

Functional	Programming,
Simplified

(Scala	edition)

Table	of	Contents
Copyright
Introduction(or,	Why	I	Wrote	This	Book)
Who	This	Book	is	For
Goals,	Part	1:	“Soft”	Goals	of	This	Book
Goals,	Part	2:	Concrete	Goals
Goals,	Part	3:	A	Disclaimer
Question	Everything
Rules	for	Programming	in	this	Book
One	Rule	for	Reading	this	Book
What	is	“Functional	Programming”?
What	is	This	Lambda	You	Speak	Of?
The	Benefits	of	Functional	Programming
Disadvantages	of	Functional	Programming
The	“Great	FP	Terminology	Barrier”
Pure	Functions
Grandma’s	Cookies	(and	Pure	Functions)
Benefits	of	Pure	Functions
Pure	Functions	and	I/O
Pure	Function	Signatures	Tell	All
Functional	Programming	as	Algebra
A	Note	About	Expression-Oriented	Programming
Functional	Programming	is	Like	Unix	Pipelines
Functions	Are	Variables,	Too
Using	Methods	As	If	They	Were	Functions
How	to	Write	Functions	That	Take	Functions	as	Input	Parameters
How	to	Write	a	‘map’	Function
How	to	Use	By-Name	Parameters
Functions	Can	Have	Multiple	Parameter	Groups
Partially-Applied	Functions	(and	Currying)
Recursion:	Introduction
Recursion:	Motivation
Recursion:	Let’s	Look	at	Lists
Recursion:	How	to	Write	a	‘sum’	Function
Recursion:	How	Recursive	Function	Calls	Work
Visualizing	the	Recursive	sum	Function

Recursion:	A	Conversation	Between	Two	Developers
Recursion:	Thinking	Recursively
JVM	Stacks	and	Stack	Frames
A	Visual	Look	at	Stacks	and	Frames
Tail-Recursive	Algorithms
A	First	Look	at	“State”
A	Functional	Game	(With	a	Little	Bit	of	State)
A	Quick	Review	of	Case	Classes
Update	as	You	Copy,	Don’t	Mutate
A	Quick	Review	of	for	Expressions
How	to	Write	a	Class	That	Can	Be	Used	in	a	for	Expression
Creating	a	Sequence	Class	to	be	Used	in	a	for	Comprehension
Making	Sequence	Work	in	a	Simple	for	Loop
How	To	Make	Sequence	Work	as	a	Single	Generator	in	a	for	Expression
Enabling	Filtering	in	a	for	Expression
How	to	Enable	the	Use	of	Multiple	Generators	in	a	for	Expression
A	Summary	of	the	for	Expression	Lessons
Pure	Functions	Tell	No	Lies
Functional	Error	Handling
Embrace	The	Idioms!
What	to	Think	When	You	See	That	Opening	Curly	Brace
A	Quick	Review	of	How	flatMap	Works
Option	Naturally	Leads	to	flatMap
flatMap	Naturally	Leads	to	for
for	Expressions	are	Better	Than	getOrElse
Recap:	Option	->	flatMap	->	for
A	Note	About	Things	That	Can	Be	Mapped	Over
Starting	to	Glue	Functions	Together
The	“Bind”	Concept
Getting	Close	to	Using	bind	in	for	Expressions
Using	a	“Wrapper”	Class	in	a	for	Expression
Making	Wrapper	More	Generic
Changing	“new	Wrapper”	to	“Wrapper”
A	Quick	Note	About	Case	Classes	and	Companion	Objects
Using	bind	in	a	for	Expression
How	Debuggable,	f,	g,	and	h	Work
A	Generic	Version	of	Debuggable
One	Last	Debuggable:	Using	List	Instead	of	String
Key	Points	About	Monads

Signpost:	Where	We’re	Going	Next
Introduction:	The	IO	Monad
How	to	Use	an	IO	Monad
Assigning	a	for	Expression	to	a	Function
The	IO	Monad	and	a	for	Expression	That	Uses	Recursion
Diving	Deeper	Into	the	IO	Monad
I’ll	Come	Back	to	the	IO	Monad
Functional	Composition
An	Introduction	to	Handling	State
Handling	State	Manually
Getting	State	Working	in	a	for	Expression
Handling	My	Golfing	State	with	a	State	Monad
The	State	Monad	Source	Code
Signpost:	Getting	IO	and	State	Working	Together
Trying	to	Write	a	for	Expression	with	IO	and	State
Seeing	the	Problem:	Trying	to	Use	State	and	IO	Together
Solving	the	Problem	with	Monad	Transformers
Beginning	the	Process	of	Understanding	StateT
Getting	Started:	We’re	Going	to	Need	a	Monad	Trait
Now	We	Can	Create	StateT
Using	StateT	in	a	for	Expression
Trying	to	Combine	IO	and	StateT	in	a	for	Expression
Fixing	the	IO	Functions	With	Monadic	Lifting
A	First	IO/StateT	for	Expression
The	Final	IO/StateT	for	Expression
Summary	of	the	StateT	Lessons
Signpost:	Modeling	the	world	with	Scala/FP
What	is	a	Domain	Model?
A	Review	of	OOP	Data	Modeling
Modeling	the	“Data”	Portion	of	the	Pizza	POS	System	with	Scala/FP
First	Attempts	to	Organize	Pure	Functions
Implementing	FP	Behavior	with	Modules
Implementing	the	Pizza	POS	System	Using	a	Modular	Approach
The	“Functional	Objects”	Approach
Demonstrating	the	“Functional	Objects”	Approach
Summary	of	the	Domain	Modeling	Approaches
ScalaCheck	1:	Introduction
ScalaCheck	2:	A	More-Complicated	Example
The	Problem	with	the	IO	Monad

Signpost:	Type	Classes
Type	Classes	101:	Introduction
Type	Classes	102:	The	Pizza	Class
Type	Classes	103:	The	Cats	Library
Lenses,	to	Simplify	“Update	as	You	Copy”
Signpost:	Concurrency
Concurrency	and	Mutability	Don’t	Mix
Scala	Concurrency	Tools
Akka	Actors
Akka	Actor	Examples
Scala	Futures
A	Second	Futures	Example
Key	Points	About	Futures
To	Be	Continued
Appendices
Explaining	Scala’s	val	Function	Syntax
The	Differences	Between	val	and	def	When	Creating	Functions
Recursion	is	Great,	But	…
for	expression	translation	examples
A	Review	of	Case	Classes
Algebraic	Data	Types
A	Review	of	Anonymous	Functions
On	Using	def	vs	val	To	Define	Abstract	Members	in	Traits

Copyright
Copyright	2017	Alvin	J.	Alexander

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	without	prior	written
permission	from	the	author.

Disclaimer:	This	book	is	presented	solely	for	educational	purposes,	and	it’s	also
a	work	in	progress.	While	best	efforts	have	been	used	in	preparing	this	book,	the
author	makes	no	representations	or	warranties	of	any	kind	and	assume	no
liabilities	of	any	kind	with	respect	to	the	accuracy	or	completeness	of	the
contents,	and	specifically	disclaim	any	implied	warranties	of	merchantability	or
fitness	of	use	for	a	particular	purpose.	The	author	shall	not	be	held	liable	or
responsible	to	any	person	or	entity	with	respect	to	any	loss	or	incidental	or
consequential	damages	caused,	or	alleged	to	have	been	caused,	directly	or
indirectly,	by	the	information	or	programs	contained	herein.	Any	use	of	this
information	is	at	your	own	risk.	The	advice	and	strategies	contained	herein	may
not	be	suitable	for	your	situation.

Version	0.1.5,	published	October	17,	2017

http://alvinalexander.com/

Introduction(or,	Why	I	Wrote	This
Book)
The	short	version	of	“Why	I	wrote	this	book”	is	that	I	found	that	trying	to	learn
functional	programming	in	Scala	to	be	really	hard,	and	I	want	to	try	to	improve
that	situation.

The	longer	answer	goes	like	this	…

My	programming	background

My	degree	is	in	aerospace	engineering,	so	the	only	programming	class	I	took	in
college	was	a	FORTRAN	class	I	was	forced	to	take.	After	college	I	was	one	of
the	youngest	people	at	the	aerospace	company	I	worked	at,	which	meant	that	I’d
have	to	maintain	the	software	applications	our	group	used.	As	a	result,	I	became
interested	in	programming,	after	which	I	quickly	became	interested	in	(a)	“How
can	I	write	code	faster?”,	and	then	(b)	“How	can	I	write	maintainable	code?”

After	that	I	taught	myself	how	to	program	in	C	by	reading	the	classic	book,	The
C	Programming	Language	by	Kernighan	and	Ritchie,	quickly	followed	by
learning	Object-Oriented	Programming	(OOP)	with	C++	and	Java.	That	was
followed	by	investigating	other	programming	languages,	including	Perl,	PHP,
Ruby,	Python,	and	more.

Despite	having	exposure	to	all	of	these	languages,	I	didn’t	know	anything	about
Functional	Programming	(FP)	until	I	came	across	Google’s	Guava	project,
which	includes	FP	libraries	for	Java	collections.	Then,	when	I	learned	Scala	and
came	to	understand	the	methods	in	the	Scala	collections’	classes,	I	saw	that
immutable	values	and	pure	functions	had	some	really	nice	benefits,	so	I	set	out
to	learn	more	about	this	thing	called	Functional	Programming.

http://amzn.to/2aeEAZa
https://github.com/google/guava/wiki
http://scala-lang.org/

Trying	to	learn	FP	with	Scala

As	I	tried	to	learn	about	FP	in	Scala,	I	found	that	there	weren’t	any	FP	books	or
blogs	that	I	liked	—	certainly	nothing	that	catered	to	my	“I’ve	never	heard	of	FP
until	recently”	background.	Everything	I	read	was	either	(a)	dry	and	theoretical,
or	(b)	quickly	jumped	into	topics	I	couldn’t	understand.	It	seemed	like	people
enjoyed	writing	words	“monad”	and	“functor”	and	then	watching	me	break	out
in	a	cold	sweat.

As	I	googled	“scala	fp”	like	a	madman,	I	found	a	few	useful	blog	posts	here	and
there	about	functional	programming	in	Scala	—	what	I’ll	call	“Scala/FP”	in	this
book	—	but	those	were	too	disconnected.	One	article	covered	Topic	A,	another
covered	Topic	Z,	and	they	were	written	by	different	authors	with	different
experiences,	so	it	was	hard	to	find	my	way	from	A	to	Z.	Besides	being
disjointed,	they	were	often	incomplete,	or	maybe	they	just	assumed	that	I	had
some	piece	of	knowledge	that	I	didn’t	really	have.

Another	stumbling	block	is	that	experienced	FP	developers	use	generic	types	a
lot.	Conversely,	I	only	rarely	used	generics.	They	also	use	the	word	“easy”	when
describing	their	code,	as	though	saying	“easy”	is	some	sort	of	Jedi	mind	trick.
For	instance,	this	code	—	which	I’ll	break	down	as	you	go	through	this	book	—
was	introduced	with	the	text,	“it’s	very	easy	to	access	and	modify	state”:

def	updateHealth(delta:	Int):	Game[Int]	=	

				StateT[IO,	GameState,	Int]	{	(s:	GameState)	=>

				val	newHealth	=	s.player.health	+	delta

						IO((s.copy(player	=	s.player.copy(health	=	newHealth)),	newHealth))

}

I	don’t	know	about	you,	but	the	first	time	I	saw	that	code,	the	word	easy	is	not
what	came	to	mind.	What	came	to	my	mind	were	things	like,	“PHP	is	easy.
Using	setter	methods	to	modify	state	is	easy.	Whatever	that	is	…	that’s	not	easy.”

Another	problem	with	almost	all	of	the	Scala/FP	resources	is	that	they	don’t
discuss	functional	input/output	(I/O),	or	how	to	work	with	user	interfaces.	In	this
book	I	don’t	shy	away	from	those	topics:	I	write	what	I	know	about	both	of
them.

Learning	Haskell	to	learn	FP

In	the	end,	the	only	way	I	could	learn	FP	was	to	buy	four	Haskell	books,	take	a
few	weeks	off	from	my	regular	work,	and	teach	myself	Haskell.	Because	Haskell
is	a	“pure”	FP	language	—	and	because	most	experienced	Scala/FP	developers
spoke	glowingly	about	Haskell	—	I	assumed	that	by	learning	Haskell	I	could
learn	FP.

That	turned	out	to	be	true.	In	Haskell	the	only	way	you	can	write	code	is	by
using	FP	concepts,	so	you	can’t	bail	out	and	take	shortcuts	when	things	get
difficult.	Because	everything	in	Haskell	is	immutable,	I	was	forced	to	learn
about	topics	like	recursion	that	I	had	avoided	for	most	of	my	programming	life.
In	the	beginning	this	made	things	more	difficult,	but	in	the	end	I	learned	about
the	benefits	of	the	new	approaches	I	was	forced	to	learn.

Once	I	understood	Haskell,	I	went	back	to	the	Scala	resources	that	I	didn’t	like
before	and	suddenly	they	made	sense(!).	But	again,	this	only	happened	after	I
took	the	time	to	learn	Haskell,	a	language	I	didn’t	plan	on	using	in	my	work.

https://www.haskell.org

The	purpose	of	this	book

Therefore,	my	reasons	for	writing	this	book	are:

To	save	you	the	time	of	having	to	try	to	understand	many	different,
unorganized,	inconsistent	Scala/FP	blog	posts

To	save	you	the	time	of	“having	to	learn	Haskell	to	learn	FP”	(and	then
having	to	translate	that	Haskell	knowledge	back	to	Scala)

To	try	to	make	learning	Scala/FP	as	simple	as	possible

Don’t	get	my	statements	about	Haskell	wrong:	In	the	end,	Haskell	turned	out	to
be	a	really	interesting	and	even	fun	programming	language.	If	I	knew	more
about	its	libraries,	or	if	it	ran	on	the	JVM	and	I	could	use	the	wealth	of	existing
JVM	libraries	out	there,	I’d	be	interested	in	trying	to	use	it.

As	a	potential	benefit	of	this	book,	if	you	already	know	Scala/OOP	and	are
interested	in	learning	Haskell,	you	can	learn	Scala/FP	from	this	book,	and	then
you’ll	find	it	much	easier	to	understand	Haskell.

Who	This	Book	is	For
I	kept	several	audiences	in	mind	as	I	wrote	this	book:

1.	 Developers	who	want	a	simple	introduction	to	functional	programming	in
Scala

2.	 Developers	who	are	interested	in	writing	“better”	code

3.	 Parallel/concurrent	application	developers

4.	 “Big	data”	application	developers

5.	 (Possibly)	Upperclass	college	students

Here’s	a	quick	look	at	why	I	say	that	I	wrote	this	book	for	these	people.

1)	Developers	who	want	a	simple	introduction	to	FP

First,	because	this	book	started	as	a	series	of	small	notes	I	made	for	myself	as	I
learned	Scala/FP,	it’s	safe	to	say	that	I	wrote	it	for	someone	like	me	who	has
worked	with	OOP	in	Java,	but	has	only	a	limited	FP	background.	Specifically,
this	is	someone	who	became	interested	in	Scala	because	of	its	clean,	modern
syntax,	and	now	wants	a	“simple	but	thorough”	introduction	to	functional
programming	in	Scala.

Because	I’ve	also	written	programs	in	C,	C++,	Perl,	Python,	Ruby,	and	a	few
other	programming	languages,	it’s	safe	to	say	that	this	book	is	written	with	these
programmers	in	mind	as	well.

2)	Those	interested	in	writing	“better”	code

At	specific	points	in	this	book	—	such	as	(a)	when	writing	about	pure	functions,
(b)	using	val	and	not	var,	and	(c)	avoiding	the	use	of	null	values	—	I	also
wrote	this	book	for	any	developer	that	wants	to	write	better	code,	where	I	define
“better”	as	safer,	easier	to	test,	and	more	error-free.	Even	if	you	decide	not	to
write	100%	pure	FP	code,	many	FP	techniques	in	this	book	show	how	you	can
make	your	functions	safer	from	bugs.

As	a	personal	note,	an	ongoing	theme	in	my	programming	life	is	that	I	want	to
be	able	to	write	applications	faster,	without	sacrificing	quality	and
maintainability.	A	selling	point	of	FP	is	that	it	enables	you	to	write	safe	functions
—	pure	functions	that	rely	only	on	their	inputs	to	produce	their	outputs	—	that
you	can	combine	together	to	safely	create	larger	applications.

3)	Parallel/concurrent	developers

Quiz:	How	many	cores	are	in	your	smartphone?	(This	question	is	a	tip	of	the	cap
to	Derek	Wyatt,	who	wrote	about	CPU	cores	and	smartphones	in	his	book,	Akka
Concurrency).

In	addition	to	writing	safer	code,	the	“killer	app”	for	FP	since	about	2005	is	that
CPUs	aren’t	constantly	doubling	in	speed	any	more.	(See	Herb	Sutter’s	2005
article,	The	Free	Lunch	is	Over.)	Because	of	this,	CPU	designers	are	adding
more	cores	to	CPUs	to	get	more	overall	CPU	cycles/second.	Therefore,	if	you
want	your	apps	to	run	as	fast	as	possible,	it	will	help	to	use	concurrent
programming	techniques	to	put	all	of	those	cores	to	use,	and	the	best	way	we
know	how	to	do	that	today	is	to	use	FP.

Two	of	my	favorite	ways	of	writing	parallel/concurrent	applications	involve
using	Scala	futures	and	the	Akka	messaging/actors	framework.	Not	surprisingly,
FP	works	extremely	well	with	both	of	these	approaches.

http://amzn.to/29KHrcn
http://www.gotw.ca/publications/concurrency-ddj.htm
http://akka.io/

4)	Big	data	app	developers

More	recently,	Dean	Wampler	gave	a	presentation	titled,	“Copious	Data:	The
‘Killer	App’	for	Functional	Programming”.	My	experience	with	Big	Data
applications	is	limited	to	processing	large	Apache	access	log	records	with	Spark,
but	I	can	confirm	that	the	code	I	wrote	was	a	lot	like	algebra,	where	I	passed	data
into	pure	functions	and	then	used	only	the	results	from	those	functions.	My	code
had	no	dependence	on	“side	effects,”	such	as	using	mutable	variables	or
managing	state.

https://www.infoq.com/presentations/big-data-functional-programming
http://alvinalexander.com/scala/analyzing-apache-access-logs-files-spark-scala

5)	Upperclass	college	students

As	I	wrote	in	the	Scala	Cookbook,	because	of	its	“power	user”	features,	I	don’t
think	Scala	is	a	good	first	language	for	a	programmer	to	learn,	and	as	a	result	of
that,	a	book	about	Scala/FP	is	also	not	a	good	first	programming	book	to	read.

That	being	said,	I	hope	this	will	be	a	good	first	FP	book	to	read	after	a	college
student	has	experience	with	languages	like	C,	Java,	and	Scala.

http://amzn.to/24ivK4G

Caution:	Not	for	FP	experts

Finally,	as	a	result	of	the	people	I	have	written	this	book	for,	it	should	come	as
no	surprise	that	this	book	is	not	written	for	FP	experts	and	theorists.	I	offer	no
new	theory	in	this	book;	I	just	try	to	explain	functional	programming	using	the
Scala	programming	language	in	the	simplest	way	I	can.

Goals,	Part	1:	“Soft”	Goals	of	This	Book
Going	through	the	thought	process	of	“Why	do	I	want	to	write	a	book	about
Scala/FP?”	led	me	to	develop	my	goals	for	this	book.	They	are:

1.	 To	introduce	functional	programming	in	Scala	in	a	simple	but	thorough
way,	as	though	you	and	I	are	having	a	conversation.

2.	 To	present	the	solutions	in	a	systematic	way.	I	want	to	introduce	the
material	in	the	order	in	which	I	think	you’ll	run	into	problems	as	you	learn
Scala/FP.	In	this	way	I	can	break	down	complex	code	into	smaller	pieces	so
you	can	see	how	the	larger	solution	is	built	from	the	smaller	pieces.

3.	 To	discuss	the	motivation	and	benefits	of	FP	features.	For	me	it	wasn’t
always	clear	why	certain	things	in	FP	are	better,	so	I’ll	keep	coming	back	to
these	two	points.

4.	 I	want	to	save	you	the	time	and	effort	of	having	to	learn	Haskell	(or	some
other	language)	in	order	to	learn	FP.

5.	 I	want	to	help	you	learn	to	“Think	in	FP.”	(More	on	this	shortly.)

In	general,	I	want	to	help	you	start	writing	FP	code	without	having	to	learn	a	lot
of	mathematics,	background	theory,	and	technical	jargon	like	that	shown	in
Figure	[fig:fpTerminologyBarrier].

Examples	of	the	“FP	terminology	barrier”

I	refer	to	this	as	the	“FP	Terminology	Barrier,”	and	I’ll	discuss	it	more	in	an
upcoming	lesson.

A	word	of	caution:	“The	Learning	Cliff”

When	I	took	a	thermodynamics	class	in	college,	I	learned	the	quote	I	shared	at
the	beginning	of	this	chapter:

“One	learns	by	doing	the	thing.”

For	me,	this	is	a	reminder	that	sometimes	the	only	way	you	can	learn	something
is	to	work	on	it	with	your	hands.	Until	that	first	thermodynamics	class	I	never
really	had	to	do	the	thing	—	work	all	of	the	exercises	—	to	learn	the	material,
but	in	that	class	I	found	out	the	hard	way	that	there	are	times	when	I	really	have
to	dig	in	and	“do	the	thing	to	learn	the	thing.”

Aside:	Working	hard	to	learn	something	new

If	you’ve	read	the	book,	Einstein:	His	Life	and	Universe,	by	Walter	Isaacson,
you	know	that	Albert	Einstein	had	to	essentially	go	back	to	school	and	learn	a	lot
of	math	so	he	could	turn	the	Theory	of	Special	Relativity	into	the	Theory	of
General	Relativity.

He	published	the	“Einstein	field	equations”	(shown	in
Figure	[fig:einsteinFieldEquations])	in	2015,	and	there’s	no	way	that	Einstein
could	have	developed	these	equations	without	buckling	down	and	taking	the
time	to	learn	the	necessary	math.	(Lesson:	Even	one	of	the	smartest	people	in	the
history	of	Earth	had	to	work	hard	to	learn	something	new,	with	a	huge	payoff	in
the	end.)

The	Einstein	field	equations

http://amzn.to/2a2DmAp

More	on	Point	#7:	Thinking	in	FP

In	this	book	I	hope	to	change	the	way	you	think	about	programming	problems.
As	at	least	one	functional	developer	has	said,	when	you	“Think	in	FP,”	you	see
an	application	as	(a)	data	flowing	into	the	application,	(b)	being	transformed	by	a
series	of	transformer	functions,	and	(c)	producing	an	output.

The	first	lessons	in	this	book	are	aimed	at	helping	you	to	“Think	in	FP”	—	to	see
your	applications	in	this	way,	as	a	series	of	data	flows	and	transformers.

Another	important	part	of	“Thinking	in	FP”	is	that	you’ll	find	that	FP	function
signatures	are	very	important	—	much	more	important	than	they	are	in	OOP
code.	I	cover	this	in	depth	in	the	lesson,	“Pure	Function	Signatures	Tell	All.”

Summary

In	summary,	my	goals	for	this	book	are:

1.	 To	introduce	functional	programming	in	Scala	in	a	simple,	thorough	way.

2.	 To	present	the	solutions	in	a	systematic	way.

3.	 To	discuss	the	motivation	and	benefits	of	FP	features.

4.	 To	save	you	the	time	and	effort	of	having	to	learn	another	programming
language	in	order	to	understand	Scala/FP.

5.	 In	general,	to	help	you	“Think	in	FP.”

An	important	part	of	the	learning	process	is	having	a	“Question	Everything”
spirit,	and	I’ll	cover	that	next.

Goals,	Part	2:	Concrete	Goals
After	I	released	an	early	version	of	this	book,	I	realized	that	I	should	state	my
goals	for	it	more	clearly;	I	don’t	want	you	to	buy	or	read	a	book	that	doesn’t
match	what	you’re	looking	for.	More	accurately,	I	don’t	want	you	to	be
disappointed	in	the	book	because	your	expectations	are	different	than	what	I
deliver.	Therefore,	I	want	to	state	some	very	clear	and	measurable	goals	by
which	you	can	judge	whether	or	not	you	want	to	buy	this	book.

A	first	concrete	goal	is	this:	If	you	have	a	hard	time	understanding	the	book,
Functional	Programming	in	Scala,	I	want	to	provide	the	background	material
that	can	help	make	it	easier	to	understand.	That	book	is	very	good,	but	it’s	also	a
thin,	densely-packed	book,	so	if	there	are	a	few	Scala	features	you	don’t	know,
you	can	get	lost.

Second,	the	Introduction	to	Functional	Game	Programming	talk	at	the	2014
LambdaConf	was	a	big	influence	on	me.	I	remember	going	to	that	talk	and
thinking,	“Wow,	I	thought	I	knew	Scala	and	a	little	bit	about	functional
programming,	but	I	have	no	idea	what	this	guy	is	talking	about.”	Therefore,	a
second	concrete	goal	is	to	make	all	of	that	talk	and	its	associated	code
understandable	to	someone	who	has	zero	to	little	background	in	functional
programming.	The	talk	covers	the	IO,	State,	and	StateT	monads,	and	other	FP
features	like	lenses,	so	this	is	actually	a	pretty	big	goal.

A	third,	slightly-less	concrete	goal	is	that	if	you	have	no	background	in	FP,	I
want	to	make	Scala/FP	libraries	like	Cats	and	Scalaz	more	understandable.	That
is,	if	you	were	to	look	at	those	libraries	without	any	sort	of	FP	background,	I
suspect	you’d	be	as	lost	as	I	was	at	that	2014	LambdaConf	talk.	But	if	you	read
this	book,	I	think	you’ll	understand	enough	Scala/FP	concepts	that	you’ll	be	able
to	understand	what	those	libraries	are	trying	to	achieve.

A	fourth	concrete	goal	is	to	provide	you	with	all	of	the	background	knowledge
you	need	—	anonymous	functions,	type	signatures,	for	expressions,	classes	that
implement	map	and	flatMap,	etc.	—	so	you	can	better	understand	the	128,000
monad	tutorials	that	Google	currently	lists	in	their	search	results.

http://amzn.to/2sbY1hE
https://github.com/jdegoes/lambdaconf-2014-introgame
https://github.com/typelevel/cats
https://github.com/scalaz/scalaz
https://www.google.com/search?q=monad+tutorial&ie=utf-8&oe=utf-8

Goals,	Part	3:	A	Disclaimer
As	a	bit	of	a	warning,	I	want	to	be	clear	that	this	book	is	very	different	than	the
Scala	Cookbook.	The	essence	of	the	Cookbook	is,	“Here’s	a	common	problem,
and	here’s	a	solution	to	that	problem,”	i.e.,	a	series	of	recipes.

This	book	is	completely	different.

http://amzn.to/24ivK4G

The	“reporter”	metaphor

I	liken	this	book	to	being	a	reporter	who	goes	to	a	foreign	country	that	very	few
people	seem	to	know	about.	Out	of	curiosity	about	what	he	has	read	and	seen,
the	intrepid	reporter	goes	to	this	foreign	land	to	learn	more	about	it.	Nobody
knows	how	the	story	is	going	to	end,	but	the	reporter	promises	to	report	the	truth
as	he	sees	and	understands	it.

On	his	journey	through	this	new	land	the	reporter	jots	down	many	notes,
especially	as	he	has	a	few	“Aha!”	moments	when	he	grasps	new	concepts.	Over
time	he	tries	to	organize	his	notes	so	he	can	present	them	in	a	logical	order,
trying	to	translate	what	he	has	seen	into	English	(and	Scala)	as	simply	and
accurately	as	he	can.	In	the	end	there’s	no	promise	that	the	reporter	is	going	to
like	what	he	sees,	but	he	promises	to	report	everything	as	clearly	as	he	can.

A	reporter	is	not	a	salesman

To	be	clear,	there’s	no	promise	of	a	happy	ending	in	this	story.	The	reporter	isn’t
trying	to	sell	you	on	moving	to	this	new	land.	Instead	of	trying	to	sell	you,	the
reporter	aims	to	report	what	he	sees	as	accurately	as	possible,	hoping	that
—	armed	with	this	new	knowledge	—	in	the	end	you’ll	decide	what’s	in	your
own	best	interests.	Maybe	you’ll	decide	to	move	to	this	land,	maybe	you	won’t,
but	at	least	you’ll	be	well-armed	in	making	your	decision.

A	personal	experience

As	an	example	of	how	I	think	about	this,	many	years	ago	I	came	close	to	moving
to	Santa	Fe,	New	Mexico.	As	soon	as	I	visited	the	town,	I	immediately	fell	in
love	with	the	plaza	area,	the	food,	and	the	architecture	of	the	homes.	But	after
thinking	about	the	pros	and	cons	more	seriously,	I	decided	not	to	move	there.
Instead,	I	decided	to	just	vacation	there	from	time	to	time,	and	also	take	home
some	nice	souvenirs	when	I	find	them.

The	same	is	true	about	this	book:	you	may	decide	to	move	to	this	new	land,	or
you	may	decide	that	you	just	like	a	few	souvenirs.	That	choice	is	yours.	My	goal
is	to	report	what	I	find,	as	simply	and	accurately	as	I	can.

Question	Everything
A	Golden	Rule	of	this	book	is	to	always	ask,	“Why?”	By	this	I	mean	that	you
should	question	everything	I	present.	Ask	yourself,	“Why	is	this	FP	approach
better	than	what	I	do	in	my	OOP	code?”	To	help	develop	this	spirit,	let’s	take	a
little	look	at	what	FP	is,	and	then	see	what	questions	you	might	have	about	it.

What	is	FP?

I’ll	describe	FP	more	completely	in	the	“What	is	Functional	Programming?”
lesson,	but	for	the	moment	let’s	use	the	following	definition	of	FP:

FP	applications	consist	of	only	immutable	values	and	pure	functions.

Pure	function	means	that	(a)	a	function’s	output	depends	only	on	its	input
parameters,	and	(b)	functions	have	no	side	effects,	such	as	reading	user
input	or	writing	output	to	a	screen,	disk,	web	service,	etc.

While	I’m	intentionally	keeping	that	definition	short,	it’s	a	way	that	people
commonly	describe	FP,	essentially	the	FP	elevator	pitch.

https://en.wikipedia.org/wiki/Elevator_pitch

What	questions	come	to	mind?

Given	that	description,	what	questions	come	to	mind	about	FP?

Some	of	my	first	questions	were:

How	can	you	possibly	write	an	application	without	reading	input	or	writing
output?

Regarding	I/O:

How	do	I	write	database	code?

How	do	I	write	RESTful	code?

How	do	I	write	GUI	code?

If	all	variables	are	immutable,	how	do	I	handle	changes	in	my	code?

For	instance,	if	I’m	writing	an	order-entry	system	for	a	pizza	store,
what	do	I	do	when	the	customer	wants	to	change	their	pizza	crust	or
toppings	in	the	middle	of	entering	an	order?

If	you	have	a	little	more	exposure	to	FP	than	I	did,	you	might	ask:

Why	is	recursion	better?	Is	it	really	better?	Why	can’t	I	just	use	var	fields
inside	my	functions,	as	long	as	I	don’t	share	those	vars	outside	the	function
scope?

Is	“Functional	I/O”	really	better	than	“Traditional	I/O”?

A	little	later	you	might	ask:

Are	there	certain	applications	where	the	FP	approach	is	better?	Or	worse?

Decide	for	yourself	what’s	better

Critical	thinking	is	an	important	part	of	being	a	scientist	or	engineer,	and	I
always	encourage	you	to	think	that	way:

Is	 the	 approach	 I’m	 looking	 at	 better	 or	 worse	 than	 other
options?	If	so,	why?

When	doing	this	I	encourage	you	not	to	make	any	snap	judgments.	Just	because
you	don’t	like	something	initially	doesn’t	mean	that	thing	is	bad	or	wrong.

The	best	idea	wins

With	critical	thinking	you	also	need	to	tune	out	the	people	who	yell	the	loudest.
Just	because	they’re	loud,	that	doesn’t	mean	they’re	right.	Just	focus	on	which
ideas	are	the	best.

In	my	book,	A	Survival	Guide	for	New	Consultants,	I	share	this	quote	from
famed	physicist	Richard	Feynman:

“The	best	idea	wins.”

He	wrote	that	in	one	of	his	books,	where	he	shared	an	experience	of	how	Neils
Bohr	would	seek	out	a	very	young	Feynman	during	the	creation	of	the	first
atomic	bomb.	Bohr	felt	that	the	other	scientists	on	the	project	were	“Yes	men”
who	would	agree	with	anything	he	said,	while	Feynman	was	young,	curious,	and
unintimidated.	Because	Feynman	was	only	interested	in	learning	and	in	trying	to
come	up	with	the	best	solutions,	he	would	tell	Bohr	exactly	what	he	thought
about	each	idea,	and	Bohr	sought	him	out	as	a	sounding	board.

Feynman	meant	that	you	have	to	be	able	to	have	good,	honest	conversations	with
people	about	your	ideas,	and	at	the	end	of	the	day	you	have	to	put	your	ego
aside,	and	the	team	should	go	forward	with	the	best	idea,	no	matter	where	it
came	from.

This	goes	back	to	my	point:	Don’t	blindly	listen	to	people,	especially	the	people
who	yell	the	loudest	or	those	who	can	profit	from	selling	you	an	idea.	Put	your
critical	thinking	hat	on,	and	make	your	own	decisions.

http://amzn.to/2aiZaOd
http://www.feynman.com/

A	quick	aside:	Imperative	programming

In	the	next	sections	I’ll	use	the	term	“Imperative	programming,”	so	I	first	want
to	give	you	a	definition	of	what	it	means.

With	a	few	minor	changes,	Wikipedia	offers	this	description:	“Imperative
programming	is	a	programming	paradigm	that	uses	statements	that	change	a
program’s	state.	It	consists	of	a	series	of	commands	for	the	computer	to	perform.
It	focuses	on	describing	the	details	of	how	a	program	operates.”

This	Quora	page	adds:	“Imperative	programming	involves	writing	your	program
as	a	series	of	instructions	(statements)	that	actively	modify	memory	(variables,
arrays).	It	focuses	on	‘how,’	in	the	sense	that	you	express	the	logic	of	your
program	based	on	how	the	computer	would	execute	it.”

If	you’ve	ever	disassembled	a	JVM	.class	file	with	javap	-c	to	see	code	like
this:

public	void	main(java.lang.String[]);

		Code:

					0:	aload_0

					1:	aload_1

					2:	invokestatic		#60

					5:	return

That’s	the	extreme	of	what	they’re	referring	to:	imperative	programming	at	a
very	low	level.	This	code	tells	the	JVM	exactly	how	it	needs	to	solve	the
problem	at	hand.

https://en.wikipedia.org/wiki/Imperative_programming
https://www.quora.com/What-is-the-difference-between-functional-and-imperative-programming

A	critical	thinking	exercise

To	start	putting	your	critical	thinking	skill	to	work,	I’m	going	to	show	you	two
versions	of	the	same	algorithm.	As	you	see	the	two	algorithms,	I	want	you	to	jot
down	any	questions	you	have	about	the	two.

First,	here’s	an	imperative	version	of	a	sum	method:

def	sum(ints:	List[Int]):	Int	=	{

				var	sum	=	0

				for	(i	<-	ints)	{

						sum	+=	i

				}

				sum

}

This	code	modifies	a	var	field	within	a	for	loop	—	a	common	pattern	in
imperative	programming.

Next,	here’s	a	Scala/FP	version	of	that	same	method:

def	sum(xs:	List[Int]):	Int	=	xs	match	{

				case	Nil	=>	0

				case	x	::	tail	=>	x	+	sum(tail)

}

Notice	that	this	method	uses	a	match	expression,	has	no	var	fields,	and	it	makes
a	recursive	call	to	sum	in	the	last	line	of	the	method	body.

Given	those	two	versions	of	the	same	algorithm,	what	questions	come	to	your
mind?

My	questions

The	questions	you	have	will	depend	on	your	experience.	If	you’re	new	to
Scala/FP	your	first	question	might	be,	“How	does	that	second	method	even
work?”	(Don’t	worry,	I’ll	explain	it	more	in	the	lessons	on	writing	recursive
functions.)

I	remember	that	some	of	my	first	questions	were:

What’s	wrong	with	the	imperative	approach?	Who	cares	if	I	use	a	var	field

in	a	for	loop	inside	a	function?	How	does	that	affect	anything	else?

Will	the	recursive	function	blow	the	stack	with	large	lists?

Is	one	approach	faster	or	slower	than	the	other?

Thinking	in	the	long	term,	is	one	approach	more	maintainable	than	the
other?

What	if	I	want	to	write	a	“parallel”	version	of	a	sum	algorithm	(to	take
advantage	of	multiple	cores);	is	one	approach	better	than	the	other?

That’s	the	sort	of	thinking	I	want	you	to	have	when	you’re	reading	this	book:
Question	everything.	If	you	think	something	is	better,	be	honest;	why	do	you
think	it’s	better?	If	you	think	it’s	worse,	why	is	it	worse?

In	the	pragmatic	world	I	live	in,	if	you	can’t	convince	yourself	that	a	feature	is
better	than	what	you	already	know,	the	solution	is	simple:	Don’t	use	it.

As	I	learned	FP,	some	of	it	was	so	different	from	what	I	was	used	to,	I	found	that
questioning	everything	was	the	only	way	I	could	come	to	accept	it.

We	write	what	we	want,	not	how	to	do	it

As	another	example	of	having	a	questioning	attitude,	early	in	my	FP	learning
process	I	read	quotes	from	experienced	FP	developers	like	this:

“In	FP	we	don’t	tell	the	computer	how	to	do	things,	we	just	tell
it	what	we	want.”

When	I	read	this	my	first	thought	was	pretty	close	to,	“What	does	that	mean?
You	talk	to	the	computer?”

I	couldn’t	figure	out	what	they	meant,	so	I	kept	questioning	that	statement.	Were
they	being	serious,	or	was	this	just	some	sort	of	FP	koan,	trying	to	get	you
interested	in	the	topic	with	a	mysterious	statement?	It	felt	like	they	were	trying
to	sell	me	something,	but	I	was	open	to	trying	to	understand	their	point.

After	digging	into	the	subject,	I	finally	decided	that	the	main	thing	they	were
referring	to	is	that	they	don’t	write	imperative	code	with	for	loops.	That	is,	they
don’t	write	code	like	this:

def	double(ints:	List[Int]):	List[Int]	=	{

				val	buffer	=	new	scala.collection.mutable.ListBuffer[Int]()

				for	(i	<-	ints)	{

								buffer	+=	i	*	2

				}

				buffer.toList

}

val	newNumbers	=	double(oldNumbers)

Instead,	they	they	write	code	like	this:

val	newNumbers	=	oldNumbers.map(_	*	2)

With	a	for	loop	you	tell	the	compiler	the	exact	steps	you	want	it	to	follow	to
create	the	new	list,	but	with	FP	you	say,	“I	don’t	care	how	map	is	implemented,	I
trust	that	it’s	implemented	well,	and	what	I	want	is	a	new	list	with	the	doubled
value	of	every	element	in	the	original	list.”

In	this	example,	questioning	the	“We	write	what	we	want”	statement	is	a
relatively	minor	point,	but	(a)	I	want	to	encourage	a	curious,	questioning
attitude,	and	(b)	I	know	that	you’ll	eventually	see	that	statement	somewhere,	and

https://en.wikipedia.org/wiki/K%C5%8Dan

I	wanted	to	explain	what	it	means.

In	his	book	Programming	Erlang,	Joe	Armstrong	notes	that	when	he	was	first
taught	object-oriented	programming	(OOP),	he	felt	that	there	was	something
wrong	with	it,	but	because	everyone	else	was	“Going	OOP,”	he	felt	compelled	to
go	with	the	crowd.	Paraphrasing	his	words,	if	you’re	going	to	work	as	a
professional	programmer	and	put	your	heart	and	soul	into	your	work,	make	sure
you	believe	in	the	tools	you	use.

http://amzn.to/2aab4HF

What’s	next?

In	the	next	lesson	I’m	going	to	provide	a	few	programming	rules	that	I’ll	follow
in	this	book.	While	I’m	generally	not	much	of	a	“rules”	person,	I’ve	found	that
in	this	case,	having	a	few	simple	rules	makes	it	easier	to	learning	functional
programming	in	Scala.

Rules	for	Programming	in	this	Book
Alright,	that’s	enough	of	the	“preface”	material,	let’s	get	on	with	the	book!

As	I	wrote	earlier,	I	want	to	spare	you	the	route	I	took	of,	“You	Have	to	Learn
Haskell	to	Learn	Scala/FP,”	but,	I	need	to	say	that	I	did	learn	a	valuable	lesson
by	taking	that	route:

It’s	extremely	helpful	to	completely	forget	about	several	pieces
of	the	Scala	programming	language	as	you	learn	FP	in	Scala.

Assuming	that	you	come	from	an	“imperative”	and	OOP	background	as	I	did,
your	attempts	to	learn	Scala/FP	will	be	hindered	because	it	is	possible	to	write
both	imperative	code	and	FP	code	in	Scala.	Because	you	can	write	in	both	styles,
what	happens	is	that	when	things	in	FP	start	to	get	difficult,	it’s	easy	for	an	OOP
developer	to	turn	back	to	what	they	already	know.

To	learn	Scala/FP	the	best	thing	you	can	do	is	forget	that	the	imperative	options
even	exist.	I	promise	you	—	Scout’s	Honor	—	this	will	accelerate	your	Scala/FP
learning	process.

The	rules

To	accelerate	your	Scala/FP	learning	process,	this	book	uses	the	following
programming	“rules”:

1.	 There	will	be	no	null	values	in	this	book.	We’ll	intentionally	forget	that
there	is	even	a	null	keyword	in	Scala.

2.	 Only	pure	functions	will	be	used	in	this	book.

3.	 This	book	will	only	use	immutable	values	(val)	for	all	fields.	There	are	no	
var	fields	in	pure	FP	code,	so	I	won’t	use	them	in	this	book,	unless	I’m
trying	to	explain	a	point.

4.	 Whenever	you	use	an	if,	you	must	always	also	use	an	else.	Functional
programming	uses	only	expressions,	not	statements.

5.	 We	won’t	create	“classes”	that	encapsulate	data	and	behavior.	Instead	we’ll
create	data	structures	and	write	pure	functions	that	operate	on	those	data
structures.

The	rules	are	for	your	benefit	(really)

These	rules	are	inspired	by	what	I	learned	from	working	with	Haskell.	In	Haskell
the	only	way	you	can	possibly	write	code	is	by	writing	pure	functions	and	using
immutable	values,	and	when	those	really	are	your	only	choices,	your	brain	quits
fighting	the	system.	Instead	of	going	back	to	things	you’re	already	comfortable
with,	you	think,	“Hmm,	somehow	other	people	have	solved	this	problem	using
only	immutable	values,	and	I	can,	too.”	When	your	thinking	gets	to	that	point,
your	understanding	of	FP	will	rapidly	progress.

If	you’re	new	to	FP	those	rules	may	feel	limiting	—	and	you	may	be	wondering
how	you	can	possibly	get	anything	done	—	but	if	you	follow	these	rules	you’ll
find	that	they	lead	you	to	a	different	way	of	thinking	about	programming
problems.	Because	of	these	rules	your	mind	will	naturally	gravitate	towards	FP
solutions	to	problems.

For	instance,	because	you	can’t	use	a	var	field	to	initialize	a	mutable	variable
before	a	for	loop,	your	mind	will	naturally	think,	“Hmm,	what	can	I	do	here?
Ah,	yes,	I	can	use	recursion,	or	maybe	a	built-in	collections	method	to	solve	this
problem.”	Conversely,	if	you	let	yourself	reach	for	that	var	field,	you’ll	never
come	to	this	other	way	of	thinking.

Not	a	rule,	but	a	note:	using	???

While	I’m	writing	about	what	aspects	of	the	Scala	language	I	won’t	use	in	this
book,	it’s	also	worth	noting	that	I	will	often	use	the	Scala	???	syntax	when	I	first
sketch	a	function’s	signature.	For	example,	when	I	first	start	writing	a	function
named	createWorldPeace,	I’ll	start	to	sketch	the	signature	like	this:

def	createWorldPeace	=	???

I	mention	this	because	if	you	haven’t	seen	this	syntax	before	you	may	wonder
why	I’m	using	it.	The	reason	I	use	it	is	because	it’s	perfectly	legal	Scala	code;
that	line	of	code	will	compile	just	fine.	Go	ahead	and	paste	that	code	into	the
REPL	and	you’ll	see	that	it	compiles	just	like	this:

scala>	def	createWorldPeace	=	???

createWorldPeace:	Nothing

However,	while	that	code	does	compile,	you’ll	see	a	long	error	message	that
begins	like	this	if	you	try	to	call	the	createWorldPeace	function:

scala.NotImplementedError:	an	implementation	is	missing

I	wrote	about	the	???	syntax	in	a	blog	post	titled,	What	does	‘???’	mean	in
Scala?,	but	in	short,	Martin	Odersky,	creator	of	the	Scala	language,	added	it	to
Scala	for	teaching	cases	just	like	this.	The	???	syntax	just	means,	“The	body	of
this	function	is	TBD.”

If	you’re	interested	in	how	language	designers	add	features	to	a	programming
language,	that	blog	post	has	a	link	to	a	really	interesting	discussion	started	by
Mr.	Odersky.	He	begins	the	thread	by	stating,	“If	people	don’t	hold	me	back	I’m
going	to	add	this	(???)	to	Predef,”	and	then	the	rest	of	the	thread	is	an	interesting
back-and-forth	discussion	about	the	pros	and	cons	of	adding	this	feature	to	the
Scala	language,	and	possibly	using	other	names	for	it,	such	as	using	TODO	instead
of	???.

http://alvinalexander.com/scala/what-does-three-question-marks-in-scala-mean

Summary

In	summary,	the	rules	we’ll	follow	in	this	book	are:

1.	 There	will	be	no	null	values.

2.	 Only	pure	functions	will	be	used.

3.	 Immutable	values	will	be	used	for	all	fields.

4.	 Whenever	you	use	an	if,	you	must	always	also	use	an	else.

5.	 We	won’t	create	“classes”	that	encapsulate	data	and	behavior.

One	Rule	for	Reading	this	Book
In	addition	to	the	rules	for	programming	in	this	book,	there’s	one	rule	for
reading	this	book:

If	you	already	understand	the	material	 in	a	lesson,	move	on	to
the	next	lesson.

Because	I	try	to	thoroughly	cover	everything	you	might	possible	need	to	know
leading	up	to	advanced	topics	like	monads,	there	will	probably	be	some	lessons
you	don’t	need	to	read.	For	instance,	you	may	already	know	that	you	can	use
functions	as	variables,	how	to	write	functions	that	have	multiple	parameter
groups,	etc.

Therefore,	there’s	one	simple	rule	for	reading	this	book:	If	you	already
understand	a	topic	—	move	on!	(You	can	always	come	back	and	read	it	later	if
you	feel	like	there’s	something	you	missed.)

What	is	“Functional	Programming”?

Defining	Functional	Programming

It’s	surprisingly	hard	to	find	a	consistent	definition	of	functional	programming.
As	just	one	example,	some	people	say	that	functional	programming	(FP)	is	about
writing	pure	functions	—	which	is	a	good	start	—	but	then	they	add	something
else	like,	“The	programming	language	must	be	lazy.”	Really?	Does	a
programming	language	really	have	to	be	lazy	(non-strict)	to	be	FP?	(The	correct
answer	is	“no.”)

I	share	links	to	many	definitions	at	the	end	of	this	lesson,	but	I	think	you	can
define	FP	with	just	two	statements:

1.	 FP	is	about	writing	software	applications	using	only	pure	functions.

2.	 When	writing	FP	code	you	only	use	immutable	values	—	val	fields	in
Scala.

And	when	I	say	“only”	in	those	sentences,	I	mean	only.

You	can	combine	those	two	statements	into	this	simple	definition:

Functional	 programming	 is	 a	 way	 of	 writing	 software
applications	using	only	pure	functions	and	immutable	values.

Of	course	that	definition	includes	the	term	“pure	functions,”	which	I	haven’t
defined	yet,	so	let	me	fix	that.

A	working	definition	of	pure	function

I	provide	a	complete	description	of	pure	functions	in	the	“Pure	Functions”
lesson,	but	for	now,	I	just	want	to	provide	a	simple	working	definition	of	the
term.

A	pure	function	can	be	defined	like	this:

The	output	of	a	pure	function	depends	only	on	(a)	its	input	parameters	and
(b)	its	internal	algorithm.

This	is	unlike	an	OOP	method,	which	can	depend	on	other	fields	in	the
same	class	as	the	method.

A	pure	function	has	no	side	effects,	meaning	that	it	does	not	read	anything
from	the	outside	world	or	write	anything	to	the	outside	world.

It	does	not	read	from	a	file,	web	service,	UI,	or	database,	and	does	not
write	anything	either.

As	a	result	of	those	first	two	statements,	if	a	pure	function	is	called	with	an
input	parameter	x	an	infinite	number	of	times,	it	will	always	return	the	same
result	y.

For	instance,	any	time	a	“string	length”	function	is	called	with	the
string	“Alvin”,	the	result	will	always	be	5.

As	a	few	examples,	Java	and	Scala	functions	like	these	are	pure	functions:

String	uppercase	and	lowercase	methods

List	methods	like	max,	min

Math.sin(a),	Math.cos(a)

In	fact,	because	the	Java	String	class	and	Scala	List	class	are	both	immutable,
all	of	their	methods	act	just	like	pure	functions.

Even	complex	algorithms	like	checksums,	encodings,	and	encryption	algorithms

follow	these	principles:	given	the	same	inputs	an	infinite	number	of	times,	they
always	return	the	same	result.

Conversely,	functions	like	these	are	not	pure	functions:

System.currentTimeMillis

Random	class	methods	like	next,	nextInt

I/O	methods	in	classes	like	File	and	HttpURLConnection	that	read	and
write	data

The	first	two	examples	yield	different	results	almost	every	time	they	are	called,
and	I/O	functions	are	impure	because	they	have	side	effects	—	they
communicate	with	the	outside	world	to	send	and	receive	data.

Note	1:	Higher-Order	Functions	are	a	great	FP
language	feature

If	you’re	not	familiar	with	the	term	Higher-Order	Function	(HOF),	it	basically
means	that	(a)	you	can	treat	a	function	as	a	value	(val)	—	just	like	you	can	treat
a	String	as	a	value	—	and	(b)	you	can	pass	that	value	into	other	functions.

In	writing	good	FP	code,	you	pass	one	function	to	another	so	often	that	I’m
tempted	to	add	HOFs	as	a	requirement	of	my	FP	definition.	But	in	the	end,	you
can	write	FP	code	in	languages	that	don’t	support	HOFs,	including	Java.	Of
course	that	will	be	painful	and	probably	very	verbose,	but	you	can	do	it.

Therefore,	I	don’t	include	HOFs	in	my	definition	of	functional	programming.	In
the	end,	HOFs	are	a	terrific	FP	language	feature,	and	they	make	Scala	a	much
better	FP	language	than	Java,	but	it’s	still	just	a	language	feature,	not	a	part	of
the	core	definition	of	functional	programming.

Note	2:	Recursion	is	a	by-product

Sometimes	you’ll	see	a	definition	of	FP	that	states,	“Recursion	is	a	requirement
of	functional	programming.”	While	it’s	true	that	pure	FP	languages	use
recursion,	the	need	for	recursion	is	a	by-product	of	the	definition	of	FP.

Once	you	dig	into	FP,	you’ll	see	that	if	you	only	use	pure	functions	and
immutable	values,	the	only	way	you	can	do	things	like	“calculate	the	sum	of	a
list”	is	to	use	recursion.	Therefore,	it’s	a	result	of	my	definition,	not	a	part	of	the
definition.

(I	discuss	this	more	in	the	recursion	lessons.)

Proof:	Wikipedia’s	FP	definition

When	you	google	“functional	programming	definition,”	the	first	link	that
currently	shows	up	is	from	Wikipedia,	and	their	definition	of	FP	backs	up	my
statements.	The	first	line	of	their	definition	begins	like	this:

“In	 computer	 science,	 functional	 programming	 is	 a
programming	paradigm	—	a	style	of	building	the	structure	and
elements	 of	 computer	 programs	—	 that	 treats	 computation	 as
the	evaluation	of	mathematical	functions	and	avoids	changing-
state	and	mutable	data.”

So,	yes,	FP	is	made	of	(a)	pure	functions	and	(b)	immutable	data.	(Their
“mathematical	functions”	are	equivalent	to	my	pure	functions.)

As	proof	for	another	assertion	I	made	earlier,	that	Wikipedia	page	also	elaborates
on	features	that	make	an	FP	language	easier	to	use	—	such	as	being	able	to	treat
functions	as	values	—	where	they	state,	“Programming	in	a	functional	style	can
also	be	accomplished	in	languages	that	are	not	specifically	designed	for
functional	programming.”	(Think	Java.)

https://en.wikipedia.org/wiki/Functional_programming

Proof:	A	wonderful	quote	from	Mary	Rose	Cook

When	I	first	started	learning	FP,	I	was	aware	that	pure	functions	were	important,
but	this	point	was	really	driven	home	when	I	came	across	an	article	titled	A
Practical	Introduction	to	Functional	Programming	by	Mary	Rose	Cook.

Ms.	Cook	used	to	work	at	the	Recurse	Center	(formerly	known	as	“Hacker
School”)	and	now	works	at	Makers	Academy,	and	in	her	“Practical	Introduction
to	FP”	essay,	she	refers	to	using	only	pure	functions	as	a	Guide	Rope	to	learning
FP:

“When	 people	 talk	 about	 functional	 programming,	 they
mention	a	dizzying	number	of	‘functional’	characteristics.	They
mention	 immutable	 data,	 first	 class	 functions,	 and	 tail	 call
optimisation.	 These	 are	 language	 features	 that	 aid	 functional
programming.”

“They	 mention	 mapping,	 reducing,	 pipelining,	 recursing,
currying	 and	 the	 use	 of	 higher	 order	 functions.	 These	 are
programming	techniques	used	to	write	functional	code.”

“They	 mention	 parallelization,	 lazy	 evaluation,	 and
determinism.	 These	 are	 advantageous	 properties	 of	 functional
programs.”

“Ignore	all	 that.	Functional	code	is	characterised	by	one	thing:
the	absence	of	side	effects.	 It	 (a	pure	function)	doesn’t	rely	on
data	outside	the	current	function,	and	it	doesn’t	change	data	that
exists	 outside	 the	 current	 function.	 Every	 other	 ‘functional’
thing	can	be	derived	from	this	property.	Use	it	as	a	guide	rope
as	you	learn.”

When	she	writes	about	the	“absence	of	side	effects,”	she’s	referring	to	building

http://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://maryrosecook.com/
https://www.recurse.com/
http://www.makersacademy.com/

applications	from	pure	functions.

Her	guide	rope	statement	is	so	good,	it	bears	repeating:

“Functional	code	 is	characterised	by	one	 thing:	 the	absence	of
side	effects.”

When	I	first	read	this	quote,	the	little	light	bulb	went	on	over	my	head	and	I
began	focusing	even	more	on	writing	only	pure	functions.

If	you	think	about	it,	this	statement	means	exactly	what	I	wrote	at	the	beginning
of	this	lesson:

Functional	 programming	 is	 a	 way	 of	 writing	 software
applications	using	only	pure	functions	and	immutable	values.

That’s	great	…	but	why	immutable	values?

At	this	point	you	might	be	saying,	“Okay,	I	buy	the	‘pure	functions’	portion	of
your	definition,	but	what	does	immutable	values	have	to	do	with	this?	Why	can’t
my	variables	be	mutable,	i.e.,	why	can’t	I	use	var?”

The	best	FP	code	is	like	algebra

I	dig	into	this	question	in	the	“FP	is	Like	Algebra”	lesson,	but	the	short	answer
here	is	this:

The	best	FP	code	 is	 like	algebra,	and	 in	algebra	you	never	 re-
use	variables.	And	not	re-using	variables	has	many	benefits.

For	example,	in	Scala/FP	you	write	code	that	looks	like	this:

val	a	=	f(x)

val	b	=	g(a)

val	c	=	h(b)

When	you	write	simple	expressions	like	this,	both	you	and	the	compiler	are	free
to	rearrange	the	code.	For	instance,	because	a	will	always	be	exactly	the	same	as	
f(x),	you	can	replace	a	with	f(x)	at	any	point	in	your	code.

The	opposite	of	this	is	also	true:	a	can	always	be	replaced	with	f(x).	Therefore,
this	equation:

val	b	=	g(a)

is	exactly	the	same	as	this	equation:

val	b	=	g(f(x))

Continuing	along	this	line	of	thinking,	because	b	is	exactly	equivalent	to	
g(f(x)),	you	can	also	state	c	differently.	This	equation:

val	c	=	h(b)

is	exactly	the	same	as	this	equation:

val	c	=	h(g(f(x)))

From	a	programming	perspective,	knowing	that	you	can	always	replace	the
immutable	values	a	and	b	with	their	equivalent	functions	(and	vice-versa)	is
extremely	important.	If	a	and	b	had	been	defined	as	var	fields,	I	couldn’t	make
the	substitutions	that	I	did.	That’s	because	with	mutable	variables	you	can’t	be
certain	that	later	in	your	program	a	is	still	f(x),	and	b	is	still	g(a).	However,
because	the	fields	are	immutable,	you	can	make	these	algebraic	substitutions.

FP	code	is	easier	to	reason	about

Furthermore,	because	a	and	b	can	never	change,	the	code	is	easier	to	reason
about.	With	var	fields	you	always	have	to	have	a	background	thread	running	in
your	brain,	“Is	a	reassigned	somewhere	else?	Keep	an	eye	out	for	it.”	But	with
FP	code	you	never	have	to	think,	“I	wonder	if	a	was	reassigned	anywhere?”	That
thought	never	comes	to	mind.	a	is	the	same	as	f(x),	and	that’s	all	there	is	to	it,
end	of	story.	They	are	completely	interchangeable,	just	like	the	algebra	you
knew	in	high	school.

To	put	this	another	way,	in	algebra	you	never	reassign	variables,	so	it’s	obvious
that	the	third	line	here	is	a	mistake:

a	=	f(x)

b	=	g(a)

a	=	h(y)						#	d'oh	--	`a`	is	reassigned!

c	=	i(a,	b)

Clearly	no	mathematician	would	ever	do	that,	and	because	FP	code	is	like
algebra,	no	FP	developer	would	ever	do	that	either.

Another	good	reason	to	use	immutable	values

Another	good	reason	to	use	only	immutable	values	is	that	mutable	variables	(var
fields)	don’t	work	well	with	parallel/concurrent	applications.	Because
concurrency	is	becoming	more	important	as	computers	have	more	CPUs	that
have	more	cores,	I	discuss	this	in	the	“Benefits	of	Functional	Programming”	and
“Concurrency”	lessons.

As	programmers	gain	more	experience	with	FP,	their	code	tends	to	look	more
like	this	expression:

val	c	=	h(g(f(x)))

While	that’s	cool	—	and	it’s	also	something	that	your	brain	becomes	more
comfortable	with	over	time	—	it’s	also	a	style	that	makes	it	harder	for	new	FP
developers	to	understand.	Therefore,	in	this	book	I	write	most	code	in	the	simple
style	first:

val	a	=	f(x)

val	b	=	g(a)

val	c	=	h(b)

and	then	conclude	with	the	reduced	form	at	the	end:

val	c	=	h(g(f(x)))

As	that	shows,	when	functions	are	pure	and	variables	are	immutable,	the	code	is
like	algebra.	This	is	the	sort	of	thing	we	did	in	high	school,	and	it	was	all	very
logical.	(FP	developers	refer	to	this	sort	of	thing	as	“evaluation”	and
“substitution.”)

Summary

In	this	lesson,	I	defined	functional	programming	like	this:

Functional	 programming	 is	 a	 way	 of	 writing	 software
applications	using	only	pure	functions	and	immutable	values.

To	support	that,	I	also	defined	pure	function	like	this:

The	output	of	a	pure	function	depends	only	on	(a)	its	input	parameters	and
(b)	its	internal	algorithm.

A	pure	function	has	no	side	effects,	meaning	that	it	does	not	read	anything
from	the	outside	world	or	write	anything	to	the	outside	world.

As	a	result	of	those	first	two	statements,	if	a	pure	function	is	called	with	an
input	parameter	x	an	infinite	number	of	times,	it	will	always	return	the	same
result	y.

I	noted	that	higher-order	functions	(HOFs)	are	a	terrific	FP	language	feature,	and
also	stated	that	recursion	is	a	by-product	of	the	definition	of	FP.

I	also	briefly	discussed	some	of	the	benefits	of	immutable	values	(and	FP	in
general):

The	best	FP	code	is	like	algebra

Pure	functions	and	immutable	values	are	easier	to	reason	about

Without	much	support	(yet),	I	stated	that	immutable	values	make
parallel/concurrent	programming	easier

See	also

A	Postfunctional	Language,	a	scala-lang.org	post	by	Martin	Odersky

The	docs.scala-lang.org	definition	of	functional	style

The	Wikipedia	definition	of	FP

The	Clojure	definition	of	FP

The	Haskell	definition	of	FP

The	“Creative	Clojure”	website	agrees	with	my	definition	of	functional
programming

Information	about	FP	in	the	Real	World	Haskell	book

Here’s	the	msdn.microsoft.com	definition	of	FP

The	definition	of	functional	programming	on	c2.com

A	practical	introduction	to	functional	programming

An	intro	to	FP	on	the	“Learn	You	a	Haskell	for	Great	Good”	website

Stack	Exchange	thread

Why	do	immutable	objects	enable	functional	programming?

Also,	see	the	“Benefits	of	Functional	Programming”	lesson	and	the
concurrency	lessons	in	this	book

http://www.scala-lang.org/old/node/4960
http://docs.scala-lang.org/glossary/#functional-style
https://en.wikipedia.org/wiki/Functional_programming
http://clojure.org/about/functional_programming
https://wiki.haskell.org/Functional_programming
https://clojurefun.wordpress.com/2012/08/27/what-defines-a-functional-programming-language/
http://book.realworldhaskell.org/read/why-functional-programming-why-haskell.html
https://msdn.microsoft.com/en-us/library/hh297121(v=vs.100).aspx
http://c2.com/cgi/wiki?FunctionalProgramming
http://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://learnyouahaskell.com/introduction
http://programmers.stackexchange.com/questions/108105/what-should-i-understand-before-i-try-to-understand-functional-programming?rq=1
http://stackoverflow.com/questions/12207757/why-do-immutable-objects-enable-functional-programming

What	is	This	Lambda	You	Speak	Of?

Goals

Once	you	get	into	FP,	you’ll	quickly	start	hearing	the	terms	“lambda”	and
“lambda	calculus.”	The	goal	of	this	chapter	is	to	provide	background
information	on	where	those	names	come	from,	and	what	they	mean.

The	short	story

For	those	who	don’t	like	history,	this	is	the	shortest	possible	“history	of
functional	programming”	I	can	provide	that	explains	where	the	terms	lambda
and	lambda	calculus	come	from.

Lambda

Back	in	the	1930s,	Alonzo	Church	was	studying	mathematics	at	Princeton
University	and	began	using	the	Greek	symbol	λ	—	“lambda”	—	to	describe
ideas	he	had	about	these	things	called	functions.	Because	his	work	preceded	the
development	of	the	first	electronic,	general-purpose	computer	by	at	least	seven
years,	you	can	imagine	him	writing	that	symbol	on	chalkboards	to	describe	his
concept	of	functions.

So,	historically	speaking,	that’s	the	short	story	of	where	the	term	“lambda”
comes	from:	it’s	just	a	symbol	that	Mr.	Church	chose	when	he	first	defined	the
concept	of	a	function.

Fast-forward	to	today,	and	these	days	the	name	lambda	is	generally	used	to	refer
to	anonymous	functions.	That’s	all	it	means,	and	it	bears	highlighting:

In	modern	functional	programming,	lambda	means	“anonymous
function.”

If	you’re	familiar	with	other	programming	languages,	you	may	know	that	Python
and	Ruby	use	the	keyword	lambda	to	define	anonymous	functions.

The	term	lambda	calculus

As	an	aerospace	engineer,	I	always	thought	the	name	“calculus”	referred	to	the
form	of	mathematics	that	has	to	do	with	infinitesimal	changes	and	derivatives,
but	the	name	calculus	also	has	a	broader	meaning.	The	word	calculus	can	mean
“a	formal	system,”	and	indeed,	that’s	how	Wikipedia	defines	lambda	calculus:

“Lambda	 calculus	 (also	 written	 as	 λ-calculus)	 is	 a	 formal

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/ENIAC
http://www.secnetix.de/olli/Python/lambda_functions.hawk
https://rubymonk.com/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby
https://en.wikipedia.org/wiki/Lambda_calculus

system	in	mathematical	logic	for	expressing	computation	based
on	 function	 abstraction	 and	 application	 using	 variable	 binding
and	substitution.”

So	we	have:

lambda	means	“anonymous	function,”	and

calculus	means	“a	formal	system”

Therefore,	the	term	lambda	calculus	refers	to	“a	formal	way	to	think	about
functions.”

That	same	Wikipedia	link	states	this:

“Lambda	 calculus	 provides	 a	 theoretical	 framework	 for
describing	 functions	 and	 their	 evaluation.	 Although	 it	 is	 a
mathematical	abstraction	rather	 than	a	programming	 language,
it	 forms	 the	 basis	 of	 almost	 all	 functional	 programming
languages	today.”

When	I	first	started	learning	about	functional	programming,	I	found	these	terms
to	be	a	little	intimidating,	but	as	with	most	FP	terms,	they’re	just	uncommon
words	for	talking	about	“functions	and	their	evaluation.”

If	you’re	interested	in	the	deeper	history	of	FP,	including	a	guy	named	Haskell
Curry,	the	relationship	between	FORTRAN	and	FP,	and	languages	like	Lisp,
Haskell,	Scala,	and	Martin	Odersky’s	work	that	led	to	the	creation	of	Scala,
continue	reading	the	next	section.	Otherwise	feel	free	to	move	on	to	the	next
chapter.

The	Longer	Story	(History)

For	many	more	details	about	the	history	of	functional	programming,	including
the	invention	of	the	lambda	calculus,	more	details	about	the	λ	symbol,	several
key	people	in	the	FP	history,	and	languages	like	Lisp,	Haskell,	and	Scala,	see	the
online	version	of	this	chapter.

(I	try	to	make	it	an	interesting	read,	and	it	begins	like	this:	Back	in	the	1930s	—
80+	years	ago	—	gasoline	cost	17	cents	a	gallon,	World	War	II	hadn’t	started	yet
(not	until	1939,	officially),	the	United	States	was	in	the	midst	of	the	Great
Depression	(1929-1939),	and	a	man	by	the	name	of	Alonzo	Church	was	studying
mathematics	at	Princeton	University	along	with	other	legendary	figures	like
Alan	Turing,	(who	finished	his	PhD	under	Church)	and	John	von	Neumann.)

https://alvinalexander.com/scala/fp-book/what-is-this-lambda-you-speak-of
http://www-history.mcs.st-andrews.ac.uk/Biographies/Church.html

The	Benefits	of	Functional	Programming
As	I	write	about	the	benefits	of	functional	programming	in	this	chapter,	I	need	to
separate	my	answers	into	two	parts.	First,	there	are	the	benefits	of	functional
programming	in	general.	Second,	there	are	more	specific	benefits	that	come
from	using	functional	programming	in	Scala.	I’ll	look	at	both	of	these	in	these
chapter.

Benefits	of	functional	programming	in	general

Experienced	functional	programmers	make	the	following	claims	about
functional	programming,	regardless	of	the	language	they	use:

1.	 Pure	functions	are	easier	to	reason	about

2.	 Testing	is	easier,	and	pure	functions	lend	themselves	well	to	techniques	like
property-based	testing

3.	 Debugging	is	easier

4.	 Programs	are	more	bulletproof

5.	 Programs	are	written	at	a	higher	level,	and	are	therefore	easier	to
comprehend

6.	 Function	signatures	are	more	meaningful

7.	 Parallel/concurrent	programming	is	easier

I’ll	discuss	these	benefits	in	this	chapter,	and	then	offer	further	proof	of	them	as
you	go	through	this	book.

Benefits	of	functional	programming	in	Scala

On	top	of	those	benefits	of	functional	programming	in	general,	Scala/FP	offers
these	additional	benefits:

1.	 Being	able	to	(a)	treat	functions	as	values	and	(b)	use	anonymous	functions

makes	code	more	concise,	and	still	readable

2.	 Scala	syntax	generally	makes	function	signatures	easy	to	read

3.	 The	Scala	collections’	classes	have	a	very	functional	API

4.	 Scala	runs	on	the	JVM,	so	you	can	still	use	the	wealth	of	JVM-based
libraries	and	tools	with	your	Scala/FP	applications

In	the	rest	of	this	chapter	I’ll	explore	each	of	these	benefits.

1)	Pure	functions	are	easier	to	reason	about

The	book,	Real	World	Haskell,	states,	“Purity	makes	the	job	of	understanding
code	easier.”	I’ve	found	this	to	be	true	for	a	variety	of	reasons.

First,	pure	functions	are	easier	to	reason	about	because	you	know	that	they	can’t
do	certain	things,	such	as	talk	to	the	outside	world,	have	hidden	inputs,	or
modify	hidden	state.	Because	of	this,	you’re	guaranteed	that	their	function
signatures	tell	you	(a)	exactly	what’s	going	into	each	function,	and	(b)	coming
out	of	each	function.

In	his	book,	Clean	Code,	Robert	Martin	writes:

“The	 ratio	 of	 time	 spent	 reading	 (code)	 versus	writing	 is	well
over	 10	 to	 1	 …	 (therefore)	 making	 it	 easy	 to	 read	 makes	 it
easier	to	write.”

I	suspect	that	this	ratio	is	lower	with	FP.	Because	pure	functions	are	easier	to
reason	about:

I	spend	less	time	“reading”	them.

I	can	keep	fewer	details	in	my	brain	for	every	function	that	I	read.

This	is	what	functional	programmers	refer	to	as	“a	higher	level	of	abstraction.”

Because	I	can	read	pure	functions	faster	and	use	less	brain	memory	per	function,
I	can	keep	more	overall	logic	in	my	brain	at	one	time.

http://amzn.to/1TX9olw
http://amzn.to/1UJhPQy

2)	Testing	is	easier,	and	pure	functions	lend	themselves
well	to	techniques	like	property-based	testing

As	I	show	in	the	Scala	Cookbook,	it’s	easier	to	test	pure	functions	because	you
don’t	have	to	worry	about	them	dealing	with	hidden	state	and	side	effects.	What
this	means	is	that	in	imperative	code	you	may	have	a	method	like	this:

def	doSomethingHidden(o:	Order,	p:	Pizza):	Unit	...

You	can’t	tell	much	about	what	that	method	does	by	looking	at	its	signature,	but
—	because	it	returns	nothing	(Unit)	—	presumably	it	(a)	modifies	those
variables,	(b)	changes	some	hidden	state,	or	(c)	interacts	with	the	outside	world.

When	methods	modify	hidden	state,	you	end	up	having	to	write	long	test	code
like	this:

test("test	hidden	stuff	that	has	side	effects")	{

				setUpPizzaState(p)

				setUpOrderState(o,	p)

				doSomethingHidden(o,	p)

				val	result	=	getTheSideEffectFromThatMethod()

				assertEquals(result,	expectedResult)

}

In	FP	you	can’t	have	code	like	that,	so	testing	is	simpler,	like	this:

test("test	obvious	stuff")	{

				val	result	=	doSomethingObvious(x,	y,	z)

				test(result,	expectedResult)

}

Proofs

Beyond	making	unit	testing	easier,	because	functional	code	is	like	algebra	it	also
makes	it	easier	to	use	a	form	of	testing	known	as	property-based	testing.

I	write	more	about	this	in	the	lesson	on	using	ScalaCheck,	but	the	main	point	is
that	because	the	outputs	of	your	functions	depend	only	on	their	inputs,	you	can
define	“properties”	of	your	functions,	and	then	ScalaCheck	“attacks”	your
functions	with	a	large	range	of	inputs.

With	a	few	minor	edits,	the	property-based	testing	page	on	the	ScalaTest	website

http://amzn.to/24ivK4G
https://www.scalacheck.org/
http://www.scalatest.org/user_guide/property_based_testing

states:

“…	 a	 property	 is	 a	 high-level	 specification	 of	 behavior	 that
should	hold	for	a	range	of	data	points.	For	example,	a	property
might	 state,	 ‘The	size	of	a	 list	 returned	 from	a	method	should
always	be	greater	than	or	equal	to	the	size	of	the	list	passed	to
that	method.’	This	property	 should	hold	no	matter	what	 list	 is
passed.”

“The	difference	between	a	traditional	unit	test	and	a	property	is
that	 unit	 tests	 traditionally	 verify	 behavior	 based	 on	 specific
data	points	…	for	example,	a	unit	test	might	pass	three	or	four
specific	 lists	 to	 a	 method	 that	 takes	 a	 list	 and	 check	 that	 the
results	 are	as	 expected.	A	property,	by	contrast,	describes	at	 a
high	 level	 the	 preconditions	 of	 the	 method	 under	 test	 and
specifies	 some	 aspect	 of	 the	 result	 that	 should	 hold	 no	matter
what	valid	list	is	passed.”

3)	Debugging	is	easier

Because	pure	functions	depend	only	on	their	input	parameters	to	produce	their
output,	debugging	applications	written	with	pure	functions	is	easier.	Of	course
it’s	possible	to	still	make	a	mistake	when	you	write	a	pure	function,	but	once	you
have	a	stack	trace	or	debug	output,	all	you	have	to	do	is	follow	the	values	to	see
what	went	wrong.	Because	the	functions	are	pure,	you	don’t	have	to	worry	about
what’s	going	on	in	the	rest	of	the	application,	you	just	have	to	know	the	inputs
that	were	given	to	the	pure	function	that	failed.

In	Masterminds	of	Programming,	Paul	Hudak,	a	co-creator	of	the	Haskell
language,	states,	“I’ve	always	felt	that	the	‘execution	trace’	method	of	debugging
in	imperative	languages	was	broken	…	in	all	my	years	of	Haskell	programming,
I	have	never	in	fact	used	Buddha,	or	GHC’s	debugger,	or	any	debugger	at	all	…	I
find	that	testing	works	just	fine;	test	small	pieces	of	code	using	QuickCheck	or	a
similar	tool	to	make	things	more	rigorous,	and	then	—	the	key	step	—	simply
study	the	code	to	see	why	things	don’t	work	the	way	I	expect	them	to.	I	suspect
that	a	lot	of	people	program	similarly,	otherwise	there	would	be	a	lot	more
research	on	Haskell	debuggers	…”

ScalaCheck	 is	 a	 property-based	 testing	 framework	 for	 Scala
that	was	inspired	by	Haskell’s	QuickCheck.

http://amzn.to/2bedXb4
https://hackage.haskell.org/package/QuickCheck
https://www.scalacheck.org/

4)	Programs	are	more	bulletproof

People	that	are	smarter	than	I	am	can	make	the	mathematical	argument	that
complete	FP	applications	are	more	bulletproof	than	other	applications.	Because
there	are	fewer	“moving	parts”	—	mutable	variables	and	hidden	state	—	in	FP
applications,	mathematically	speaking,	the	overall	application	is	less	complex.
This	is	true	for	simple	applications,	and	the	gap	gets	larger	in	parallel	and
concurrent	programming	(as	you’ll	see	in	a	later	section	in	this	chapter).

The	way	I	can	explain	this	is	to	share	an	example	of	my	own	bad	code.	A	few
years	ago	I	started	writing	a	football	game	for	Android	devices	(American
football),	and	it	has	a	lot	of	state	to	consider.	On	every	play	there	is	state	like
this:

What	quarter	is	it?

How	much	time	is	left	in	the	quarter?

What	is	the	score?

What	down	is	it?

What	distance	is	needed	to	make	a	first	down?

Much	more	…

Here’s	a	small	sample	of	the	now-embarrassing	public	static	fields	that	I
globally	mutate	in	that	application:

//	stats	for	human

public	static	int	numRunsByHuman												=	0;

public	static	int	numPassAttemptsByHuman				=	0;

public	static	int	numPassCompletionsByHuman	=	0;

public	static	int	numInterceptionsThrownByHuman	=	0;

public	static	int	numRunningYardsByHuman				=	0;

public	static	int	numPassingYardsByHuman				=	0;

public	static	int	numFumblesByHuman									=	0;

public	static	int	numFirstDownRunsByHuman			=	0;

public	static	int	numFirstDownPassesByHuman	=	0;

When	I	wrote	this	code	I	thought,	“I’ve	written	Java	Swing	(GUI)	code	since	the
1990s,	and	Android	code	for	a	few	years.	I’m	working	by	myself	on	this,	I	don’t

http://xoplay.rocks/

have	to	worry	about	team	communication.	I	know	what	I’m	doing,	what	could
possibly	go	wrong?”

In	short,	although	a	football	game	is	pretty	simple	compared	to	a	business
application,	it	still	has	a	lot	of	“state”	that	you	have	to	maintain.	And	when
you’re	mutating	that	global	state	from	several	different	places,	well,	it	turns	out
that	sometimes	the	computer	gets	an	extra	play,	sometimes	time	doesn’t	run	off
the	clock,	etc.

Skipping	all	of	my	imperative	state-related	bugs	…	once	I	learned	how	to	handle
state	in	FP	applications,	I	gave	up	trying	to	fix	those	bugs,	and	I’m	now
rewriting	the	core	of	the	application	in	an	FP	style.

As	you’ll	see	in	this	book,	the	solution	to	this	problem	is	to	pass
the	state	around	as	a	value,	such	as	a	case	class	or	a	Map.	In	this
case	 I	might	 call	 it	GameState,	 and	 it	 would	 have	 fields	 like	
quarter,	timeRemaining,	down,	etc.

A	second	argument	about	FP	applications	being	more	bulletproof	is	that	because
they	are	built	from	all	of	these	little	pure	functions	that	are	known	to	work
extraordinarily	well,	the	overall	application	itself	must	be	safer.	For	instance,	if
80%	of	the	application	is	written	with	well-tested	pure	functions,	you	can	be
very	confident	in	that	code;	you	know	that	it	will	never	have	the	mutable	state
bugs	like	the	ones	in	my	football	game.	(And	if	somehow	it	does,	the	problem	is
easier	to	find	and	fix.)

As	an	analogy,	one	time	I	had	a	house	built,	and	I	remember	that	the	builder	was
very	careful	about	the	2x4’s	that	were	used	to	build	the	framework	of	the	house.
He’d	line	them	up	and	then	say,	“You	do	not	want	that	2x4	in	your	house,”	and
he	would	pick	up	a	bent	or	cracked	2x4	and	throw	it	off	to	the	side.	In	the	same
way	that	he	was	trying	to	build	the	framework	of	the	house	with	wood	that	was
clearly	the	best,	we	use	pure	functions	to	build	the	best	possible	core	of	our
applications.

Yes,	 I	 know	 that	 programmers	 don’t	 like	 it	 when	 I	 compare
building	a	house	to	writing	an	application.	But	some	analogies
do	fit.

5)	Programs	are	written	at	a	higher	level,	and	are
therefore	easier	to	comprehend

In	the	same	way	that	pure	functions	are	easier	to	reason	about,	overall	FP
applications	are	also	easier	to	reason	about.	For	example,	I	find	that	my	FP	code
is	more	concise	than	my	imperative	and	OOP	code,	and	it’s	also	still	very
readable.	In	fact,	I	think	it’s	more	readable	than	my	older	code.

Some	of	the	features	that	make	FP	code	more	concise	and	still	readable	are:

The	ability	to	treat	functions	as	values

The	ability	to	pass	those	values	into	other	functions

Being	able	to	write	small	snippets	of	code	as	anonymous	functions

Not	having	to	create	deep	hierarchies	of	classes	(that	sometimes	feel
“artificial”)

Most	FP	languages	are	“low	ceremony”	languages,	meaning	that	they
require	less	boilerplate	code	than	other	languages

If	 you	want	 to	 see	what	 I	mean	 by	 FP	 languages	 being	 “low
ceremony,”	 here’s	 a	 good	 example	 of	 OCaml,	 and	 this	 page
shows	examples	of	Haskell’s	syntax.

In	my	experience,	when	I	write	Scala/FP	code	that	I’m	comfortable	with	today,	I
have	always	been	able	to	read	it	at	a	later	time.	And	as	I	mentioned	when	writing
about	the	benefits	of	pure	functions,	“concise	and	readable”	means	that	I	can
keep	more	code	in	my	head	at	one	time.

I	emphasize	that	Scala/FP	code	is	concise	and	readable	because	sometimes
“more	concise”	code	can	create	a	maintenance	problem.	I	remember	that	a	friend
who	didn’t	like	Perl	once	described	Perl	code	as,	“Write	once,	read	forever.”
Because	the	syntax	could	get	so	complex,	he	couldn’t	modify	his	own	code	a
few	weeks	after	writing	it	because	he	couldn’t	remember	how	each	little
syntactical	nuance	worked.	I	have	the	same	problem	writing	complex	regular

https://ocaml.org/learn/taste.html
http://prajitr.github.io/quick-haskell-syntax/
https://www.perl.org/

expressions.	If	I	don’t	document	them	when	I	create	them,	I	can	never	tell	how
they	work	when	I	look	at	them	later.

(Personally	I	like	the	non-OO	parts	of	Perl,	and	have	written	over	150	Perl
tutorials.)

http://alvinalexander.com/perl/

6)	Pure	function	signatures	are	meaningful

When	learning	FP,	another	big	“lightbulb	going	on	over	my	head”	moment	came
when	I	saw	that	my	function	signatures	were	suddenly	much	more	meaningful
than	my	imperative	and	OOP	method	signatures.

Because	non-FP	methods	can	have	side	effects	—	which	are	essentially	hidden
inputs	and	outputs	of	those	methods	—	their	function	signatures	often	don’t
mean	that	much.	For	example,	what	do	you	think	this	imperative	method	does:

def	doSomething():	Unit	{	code	here	...

The	correct	answer	is,	“Who	knows?”	Because	it	takes	no	input	parameters	and
returns	nothing,	there’s	no	way	to	guess	from	the	signature	what	this	method
does.

In	contrast,	because	pure	functions	depend	only	on	their	input	parameters	to
produce	their	output,	their	function	signatures	are	extremely	meaningful	—	a
contract,	even.

I	write	more	about	this	in	the	upcoming	lesson,	“Pure	Functions
Tell	All.”

7)	Parallel	programming

While	writing	parallel	and	concurrent	applications	is	considered	a	“killer	app”
that	helped	spur	renewed	interest	in	FP,	I	have	written	my	parallel/concurrent
apps	(like	Sarah)	primarily	using	Akka	Actors	and	Scala	Futures,	so	I	can	only
speak	about	them:	they’re	awesome	tools.	I	wrote	about	them	in	the	Scala
Cookbook	and	on	my	website	(alvinalexander.com),	so	please	search	those
resources	for	“actors”	and	“futures”	to	find	examples.

Therefore,	to	support	the	claims	that	FP	is	a	great	tool	for	writing
parallel/concurrent	applications,	I’m	going	to	include	quotes	here	from	other
resources.	As	you’ll	see,	the	recurring	theme	in	these	quotes	is,	“Because	FP
only	has	immutable	values,	you	can’t	possibly	have	the	race	conditions	that	are
so	difficult	to	deal	with	in	imperative	code.”

The	first	quote	comes	from	an	article	titled,	“Functional	Programming	for	the
Rest	of	Us,”:

“A	 functional	 program	 is	 ready	 for	 concurrency	 without	 any
further	modifications.	You	never	have	to	worry	about	deadlocks
and	 race	 conditions	 because	 you	 don’t	 need	 to	 use	 locks.	 No
piece	of	data	 in	a	functional	program	is	modified	twice	by	the
same	thread,	let	alone	by	two	different	threads.	That	means	you
can	 easily	 add	 threads	 without	 ever	 giving	 conventional
problems	 that	 plague	 concurrency	 applications	 a	 second
thought.”

The	author	goes	on	to	add	the	information	shown	in
Figure	[fig:benefitsFpConcurrencyStory].

http://alvinalexander.com/sarah
http://amzn.to/24ivK4G
http://alvinalexander.com
http://www.defmacro.org/ramblings/fp.html

A	compiler	can	optimize	functional	programs	to	run	on	multiple	cores

The	Clojure.org	website	adds	the	statements	in
Figure	[fig:concurrencyBenniesClojure]	about	how	Clojure	and	FP	help	with
concurrency.

Concurrency	benefits	from	the	Clojure	website

Page	17	of	the	book,	Haskell,	the	Craft	of	Functional	Programming,	states,
“Haskell	programs	are	easy	to	parallelize,	and	to	run	efficiently	on	multicore
hardware,	because	there	is	no	state	to	be	shared	between	different	threads.”

In	this	article	on	the	ibm.com	website,	Neal	Ford	states,	“Immutable	objects	are
also	automatically	thread-safe	and	have	no	synchronization	issues.	They	can
never	exist	in	unknown	or	undesirable	state	because	of	an	exception.”

http://clojure.org/about/rationale
http://amzn.to/1POe1u9
http://www.ibm.com/developerworks/library/j-ft4/

In	the	pragprom.com	article,	Functional	Programming	Basics,	Robert	C.	Martin
extrapolates	from	four	cores	to	a	future	with	131,072	processors	when	he	writes:

“Honestly,	we	programmers	can	barely	get	two	Java	threads	to
cooperate	…	Clearly,	 if	 the	value	of	 a	memory	 location,	once
initialized,	 does	 not	 change	 during	 the	 course	 of	 a	 program
execution,	 then	 there’s	 nothing	 for	 the	 131072	 processors	 to
compete	 over.	 You	 don’t	 need	 semaphores	 if	 you	 don’t	 have
side	effects!	You	can’t	have	concurrent	update	problems	if	you
don’t	 update!	 …	 So	 that’s	 the	 big	 deal	 about	 functional
languages;	and	it	is	one	big	fricking	deal.	There	is	a	freight	train
barreling	 down	 the	 tracks	 towards	 us,	 with	 multi-core
emblazoned	on	it;	and	you’d	better	be	ready	by	the	time	it	gets
here.”

With	a	slight	bit	of	editing,	an	article	titled,	The	Downfall	of	Imperative
Programming	states:

“Did	 you	 notice	 that	 in	 the	 definition	 of	 a	 data	 race	 there’s
always	 talk	 of	mutation?	 Any	 number	 of	 threads	may	 read	 a
memory	 location	 without	 synchronization,	 but	 if	 even	 one	 of
them	mutates	 it,	 you	have	 a	 race.	And	 that	 is	 the	 downfall	 of
imperative	 programming:	 Imperative	 programs	will	 always	 be
vulnerable	 to	 data	 races	 because	 they	 contain	 mutable
variables.”

id	Software	co-founder	and	technical	director	John	Carmack	states:

“Programming	in	a	functional	style	makes	the	state	presented	to
your	code	explicit,	which	makes	it	much	easier	to	reason	about,
and,	in	a	completely	pure	system,	makes	thread	race	conditions
impossible.”

https://pragprog.com/magazines/2013-01/functional-programming-basics
https://www.fpcomplete.com/blog/2012/04/the-downfall-of-imperative-programming
http://www.idsoftware.com/en-us

Writing	Erlang	code	is	similar	to	using	the	Akka	actors	library	in	Scala.	The
Erlang	equivalent	to	an	Akka	actor	is	a	“process,”	and	in	his	book,	Programming
Erlang,	Joe	Armstrong	writes:

“Processes	 share	 no	 data	 with	 other	 processes.	 This	 is	 the
reason	 why	 we	 can	 easily	 distribute	 Erlang	 programs	 over
multicores	or	networks.”

For	a	final	quote,	“The	Trouble	with	Shared	State”	section	on	this	medium.com
article	states,	“In	fact,	if	you’re	using	shared	state	and	that	state	is	reliant	on
sequences	which	vary	depending	on	indeterministic	factors,	for	all	intents	and
purposes,	the	output	is	impossible	to	predict,	and	that	means	it’s	impossible	to
properly	test	or	fully	understand.	As	Martin	Odersky	puts	it:”

non-determinism	=	parallel	processing	+	mutable	state

The	author	follows	that	up	with	an	understatement:	“Program	determinism	is
usually	a	desirable	property	in	computing.”

Deterministic	algorithms	and	concurrency

Deterministic	algorithms

If	you’re	not	familiar	with	the	term	deterministic	algorithm,	Wikipedia	defines	it
like	this:	“In	computer	science,	a	deterministic	algorithm	is	an	algorithm	which,
given	a	particular	input,	will	always	produce	the	same	output,	with	the
underlying	machine	always	passing	through	the	same	sequence	of	states.”

(As	you’ll	soon	see,	this	is	basically	the	definition	of	a	pure	function.)

Conversely,	a	nondeterministic	algorithm	is	like	asking	a	user	to	ask	the	person
next	to	them	what	their	favorite	color	is:	you’re	never	guaranteed	to	get	the	same
answer.	If	you’re	trying	to	do	something	like	sort	a	list	of	numbers,	you	really
want	a	deterministic	solution.

Parallel,	Concurrent

Yossi	Kreinin	created	the	image	shown	in	Figure	[fig:diffsConcurrentParallel]	to

http://www.erlang.org/
http://akka.io/
http://amzn.to/2aab4HF
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-a-pure-function-d1c076bec976#.1nnkil8gs
https://en.wikipedia.org/wiki/Deterministic_algorithm
http://yosefk.com/blog/parallelism-and-concurrency-need-different-tools.html

help	explain	the	differences	between	the	meanings	of	“concurrent”	and
“parallel”.

The	difference	between	concurrent	and	parallel

His	image	is	based	on	a	diagram	in	this	article	by	Erlang	programmer	Joe
Armstrong.	Mr.	Armstrong	offers	this	summary	in	his	post:

Concurrent	=	Two	queues	and	one	coffee	machine

Parallel	=	Two	queues	and	two	coffee	machines

I	tend	to	use	the	two	terms	interchangeably,	but	I	will	be	more	precise	with	my
language	in	the	“Concurrency”	lessons	in	this	book.

http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html

8)	Scala/FP	benefit:	The	ability	to	treat	functions	as
values

I’ve	already	written	a	little	about	higher-order	functions	(HOFs),	and	I	write
more	about	them	later	in	this	book,	so	I	won’t	belabor	this	point:	the	fact	that
Scala	lets	you	(a)	treat	functions	as	values,	(b)	pass	functions	as	parameters	into
other	functions,	and	(c)	write	concise	anonymous	functions,	are	all	features	that
make	Scala	a	better	functional	programming	language	than	another	language
(such	as	Java)	that	does	not	have	these	features.

9)	Scala/FP	benefit:	Syntax	makes	function	signatures
easy	to	read

In	my	opinion,	the	Scala	method	syntax	is	about	as	simple	as	you	can	make
method	signatures,	especially	signatures	that	support	generic	types.	This
simplicity	usually	makes	method	signatures	easy	to	read.

For	instance,	it’s	easy	to	tell	that	this	method	takes	a	String	and	returns	an	Int:

def	foo(s:	String):	Int	=	???

These	days	I	prefer	to	use	explicit	return	types	on	my	methods,	such	as	the	Int
in	this	example.	I’ve	found	that	showing	the	explicit	type	makes	them	easier	to
read	later,	when	I’m	in	maintenance	mode.

If	you	prefer	methods	with	implicit	return	types	you	can	write	that	same	method
like	this,	which	is	also	clear	and	concise:

def	foo(s:	String)	=	???

Even	when	you	need	to	use	generic	type	parameters	—	which	make	any	method
harder	to	read	—	Scala	method	signatures	are	still	fairly	easy	to	read:

def	foo[A,	B](a:	A):	B	=	???

It’s	hard	to	make	generic	types	much	easier	than	that.

10)	Scala/FP	benefit:	The	collections	classes	have	a
functional	API

When	I	first	came	to	Scala	from	Java,	the	Scala	collections	API	was	a	real
surprise,	and	not	in	a	pleasant	way.	But,	once	I	had	that	“Aha!”	moment	and
realized	how	they	work,	I	saw	what	a	great	benefit	they	are.	Having	all	of	those
standard	functional	methods	eliminates	almost	every	need	for	custom	for	loops.

The	important	benefit	of	this	is	that	these	standard	methods	make	my	code	more
consistent	and	concise.	These	days	I	write	almost	100%	fewer	custom	for	loops,
and	that’s	good	for	me	—	and	anyone	who	has	to	read	my	code.

11)	Scala/FP	benefit:	Code	runs	on	the	JVM

Because	the	Scala	compiler	generates	Java	bytecode	that	runs	on	the	JVM,	and
because	Scala	supports	both	the	FP	and	OOP	models,	you	can	still	use	all	of
those	thousands	of	Java/JVM	libraries	that	have	been	created	in	the	last	twenty
years	in	your	Scala/FP	applications.	Even	if	those	libraries	aren’t	“Pure	FP,”	at
least	you	can	still	use	them	without	having	to	“reinvent	the	wheel”	and	write	a
new	library	from	scratch.

In	fact,	not	only	can	you	use	the	wealth	of	existing	JVM	libraries,	you	can	also
use	all	of	your	favorite	JVM	tools	in	general:

Build	tools	like	Ant,	Maven,	Gradle,	and	SBT

Test	tools	like	JUnit,	TestNG,	and	mock	frameworks

Continuous	integration	tools

Debugging	and	logging	frameworks

Profiling	tools

More	…

These	libraries	and	tools	are	a	great	strength	of	the	JVM.	If	you	ask	experienced
FP	developers	why	they’re	using	Scala	rather	than	Haskell	or	another	FP
language,	“libraries,	tools,	and	JVM”	is	the	usual	answer.

One	more	thing	…

On	a	personal	note,	a	big	early	influence	for	me	—	before	I	knew	about	any	of
these	benefits	—	was	seeing	people	like	Martin	Odersky,	Jonas	Bonér,	Bill
Venners,	and	other	leading	Scala	programmers	use	and	promote	an	FP	style.
Because	Scala	supports	both	OOP	and	FP,	it’s	not	like	they	had	to	sell	anyone	on
FP	in	order	to	get	us	to	use	Scala.	(As	a	former	business	owner,	I	feel	like	I’m
always	on	the	lookout	for	people	who	are	trying	to	“sell”	me	something.)

I	don’t	know	if	they	use	FP	100%	of	the	time,	but	what	influenced	me	is	that
they	started	using	FP	and	then	they	never	said,	“You	know	what?	FP	isn’t	that
good	after	all.	I’m	going	back	to	an	imperative	style.”

In	the	2016	version	of	Programming	in	Scala,	Martin	Odersky’s
biography	 states,	 “He	 works	 on	 programming	 languages	 and
systems,	 more	 specifically	 on	 the	 topic	 of	 how	 to	 combine
object-oriented	 and	 functional	 programming.”	 Clearly	 FP	 is
important	 to	him	(as	 is	finding	the	best	ways	to	merge	FP	and
OOP	concepts).

http://amzn.to/2byNzrs

Summary

In	summary,	the	benefits	of	“functional	programming	in	general”	are:

1.	 Pure	functions	are	easier	to	reason	about

2.	 Testing	is	easier,	and	pure	functions	lend	themselves	well	to	techniques	like
property-based	testing

3.	 Debugging	is	easier

4.	 Programs	are	more	bulletproof

5.	 Programs	are	written	at	a	higher	level,	and	are	therefore	easier	to
comprehend

6.	 Function	signatures	are	more	meaningful

7.	 Parallel/concurrent	programming	is	easier

On	top	of	those	benefits,	“functional	programming	in	Scala”	offers	these
additional	benefits:

1.	 Being	able	to	(a)	treat	functions	as	values	and	(b)	use	anonymous	functions
makes	code	more	concise,	and	still	readable

2.	 Scala	syntax	generally	makes	function	signatures	easy	to	read

3.	 The	Scala	collections’	classes	have	a	very	functional	API

4.	 Scala	runs	on	the	JVM,	so	you	can	still	use	the	wealth	of	JVM-based
libraries	and	tools	with	your	Scala/FP	applications

What’s	next

In	this	chapter	I	tried	to	share	an	honest	assessment	of	the	benefits	of	functional
programming.	In	the	next	chapter	I’ll	try	to	provide	an	honest	assessment	of	the
potential	drawbacks	and	disadvantages	of	functional	programming.

See	Also

Quotes	in	this	chapter	came	from	the	following	sources:

Real	World	Haskell

Clean	Code

Masterminds	of	Programming

Scala	Cookbook

The	ScalaCheck	website

Property-based-testing	on	the	ScalaTest	website

Functional	Programming	for	the	Rest	of	Us

Yossi	Kreinin’s	parallel	vs	concurrent	image

Joe	Armstrong’s	parallel	vs	concurrent	article

The	Clojure.org	“rationale”	page

Haskell,	the	Craft	of	Functional	Programming

The	Downfall	of	Imperative	Programming	on	fpcomplete.com

The	Akka	website

Programming	Erlang

“The	Trouble	with	Shared	State”	section	of	this	medium.com	article

Deterministic	algorithms	on	Wikipedia

I	found	John	Carmack’s	quote	in	this	reprinted	article	on	gamasutra.com

You	can	also	search	my	alvinalexander.com	website	for	examples	of	Akka	and

http://amzn.to/1TX9olw
http://amzn.to/1UJhPQy
http://amzn.to/2bedXb4
http://amzn.to/24ivK4G
https://www.scalacheck.org/
http://www.scalatest.org/user_guide/property_based_testing
http://www.defmacro.org/ramblings/fp.html
http://yosefk.com/blog/parallelism-and-concurrency-need-different-tools.html
http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html
http://clojure.org/about/rationale
http://amzn.to/1POe1u9
https://www.fpcomplete.com/blog/2012/04/the-downfall-of-imperative-programming
http://akka.io/
http://amzn.to/2aab4HF
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-a-pure-function-d1c076bec976#.1nnkil8gs
https://en.wikipedia.org/wiki/Deterministic_algorithm
http://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
http://alvinalexander.com

Scala	Futures.

Disadvantages	of	Functional
Programming
In	the	last	chapter	I	looked	at	the	benefits	of	functional	programming,	and	as	I
showed,	there	are	quite	a	few.	In	this	chapter	I’ll	look	at	the	potential	drawbacks
of	FP.

Just	as	I	did	in	the	previous	chapter,	I’ll	first	cover	the	“drawbacks	of	functional
programming	in	general”:

1.	 Writing	pure	functions	is	easy,	but	combining	them	into	a	complete
application	is	where	things	get	hard

2.	 The	advanced	math	terminology	(monad,	monoid,	functor,	etc.)	makes	FP
intimidating

3.	 For	many	people,	recursion	doesn’t	feel	natural

4.	 Because	you	can’t	mutate	existing	data,	you	instead	use	a	pattern	that	I	call,
“Update	as	you	copy”

5.	 Pure	functions	and	I/O	don’t	really	mix

6.	 Using	only	immutable	values	and	recursion	can	potentially	lead	to
performance	problems,	including	RAM	use	and	speed

After	that	I’ll	look	at	the	more-specific	“drawbacks	of	functional	programming
in	Scala”:

1.	 You	can	mix	FP	and	OOP	styles

2.	 Scala	doesn’t	have	a	standard	FP	library

1)	Writing	pure	functions	is	easy,	but	combining	them
into	a	complete	application	is	where	things	get	hard

Writing	a	pure	function	is	generally	fairly	easy.	Once	you	can	define	your	type
signature,	pure	functions	are	easier	to	write	because	of	the	absence	of	mutable
variables,	hidden	inputs,	hidden	state,	and	I/O.	For	example,	the	
determinePossiblePlays	function	in	this	code:

val	possiblePlays	=	OffensiveCoordinator.determinePossiblePlays(gameState)

is	a	pure	function,	and	behind	it	are	thousands	of	lines	of	other	functional	code.
Writing	all	of	these	pure	functions	took	time,	but	it	was	never	difficult.	All	of	the
functions	follow	the	same	pattern:

1.	 Data	comes	into	the	function

2.	 Apply	an	algorithm	(to	transform	the	data)

3.	 Transformed	data	comes	out	of	the	function

That	being	said,	the	part	that	is	hard	is,	“How	do	I	glue	all	of	these	pure
functions	together	in	an	FP	style?”	That	question	can	lead	to	the	code	I	showed
in	the	first	chapter:

def	updateHealth(delta:	Int):	Game[Int]	=	StateT[IO,	GameState,	Int]

				{	(s:	GameState)	=>

				val	newHealth	=	s.player.health	+	delta

						IO((s.copy(player	=	s.player.copy(health	=	newHealth)),	newHealth))

}

As	you	may	be	aware,	when	you	first	start	programming	in	a	pure	FP	style,
gluing	pure	functions	together	to	create	a	complete	FP	application	is	one	of	the
biggest	stumbling	blocks	you’ll	encounter.

2)	Advanced	math	terminology	makes	FP	intimidating

I	don’t	know	about	you,	but	when	I	first	heard	terms	like	combinator,	monoid,
monad,	and	functor,	I	had	no	idea	what	people	were	talking	about.	And	I’ve	been
paid	to	write	software	since	the	1990s.

As	I	discuss	in	the	next	chapter,	terms	like	this	are	intimidating,	and	that	“fear
factor”	becomes	a	barrier	to	learning	FP.

Because	I	cover	this	topic	in	the	next	chapter,	I	won’t	write	any
more	about	it	here.

3)	For	many	people,	recursion	doesn’t	feel	natural

One	reason	I	may	not	have	known	about	those	mathematical	terms	is	because
my	degree	is	in	aerospace	engineering,	not	computer	science.	Possibly	for	the
same	reason,	I	knew	about	recursion,	but	never	had	to	use	it.	That	is,	until	I
became	serious	about	writing	pure	FP	code.

As	I	wrote	in	the	“What	is	FP?”	chapter,	the	thing	that	happens	when	you	use
only	pure	functions	and	immutable	values	is	that	you	have	to	use	recursion.	In
pure	FP	code	you	no	longer	use	var	fields	with	for	loops,	so	the	only	way	to
loop	over	elements	in	a	collection	is	to	use	recursion.

Fortunately,	you	can	learn	how	to	write	recursive	code.	If	there’s	a	secret	to	the
process,	it’s	in	learning	how	to	“think	in	recursion.”	Once	you	gain	that	mindset
and	see	that	there	are	patterns	to	recursive	algorithms,	you’ll	find	that	recursion
gets	much	easier,	even	natural.

Two	paragraphs	ago	I	wrote,	“the	only	way	to	loop	over	elements	in	a	collection
is	to	use	recursion,”	but	that	isn’t	100%	true.	In	addition	to	gaining	a	“recursive
thinking”	mindset,	here’s	another	Scala/FP	secret:	once	you	understand	the	Scala
collections’	methods,	you	won’t	need	to	use	recursion	as	often	as	you	think.	In
the	same	way	that	collections’	methods	are	replacements	for	custom	for	loops,
they’re	also	replacements	for	many	custom	recursive	algorithms.	Once	you’re
comfortable	with	the	collections’	methods,	you’ll	find	that	you	reach	for	them
before	you	reach	for	recursion.

4)	Because	you	can’t	mutate	existing	data,	you	instead
use	a	pattern	that	I	call,	“Update	as	you	copy”

For	over	20	years	I’ve	written	imperative	code	where	it	was	easy	—	and
extraordinarily	common	—	to	mutate	existing	data.	For	instance,	once	upon	a
time	I	had	a	niece	named	“Emily	Maness”:

val	emily	=	Person("Emily",	"Maness")

Then	one	day	she	got	married	and	her	last	name	became	“Wells”,	so	it	seemed
logical	to	update	her	last	name,	like	this:

emily.setLastName("Wells")

In	FP	you	don’t	do	this.	You	don’t	mutate	existing	objects.

Instead,	what	you	do	is	(a)	you	copy	an	existing	object	to	a	new	object,	and	then
as	a	copy	of	the	data	is	flowing	from	the	old	object	to	the	new	object,	you	(b)
update	any	fields	you	want	to	change	by	providing	new	values	for	those	fields,
such	as	the	lastName	field	in	Figure	[fig:updateAsYouCopyEmily].

Results	of	the	“update	as	you	copy”	concept

The	way	you	“update	as	you	copy”	in	Scala/FP	is	with	the	copy	method	that
comes	with	case	classes.	First,	you	start	with	a	case	class:

case	class	Person	(firstName:	String,	lastName:	String)

Then,	when	your	niece	is	born,	you	write	code	like	this:

val	emily1	=	Person("Emily",	"Maness")

Later,	when	she	gets	married	and	changes	her	last	name,	you	write	this:

val	emily2	=	emily1.copy(lastName	=	"Wells")

After	that	line	of	code,	emily2.lastName	has	the	value	Wells.

Note:	I	intentionally	use	the	variable	names	emily1	and	emily2	in	this	example
to	make	it	clear	that	you	never	change	the	original	variable.	In	FP	you	constantly
create	intermediate	variables	like	name1	and	name2	during	the	“update	as	you
copy”	process,	but	there	are	FP	techniques	that	make	those	intermediate
variables	transparent.	I	show	those	techniques	in	lessons	later	in	this	book.

“Update	as	you	copy”	gets	worse	with	nested	objects

The	“Update	as	you	copy”	technique	isn’t	too	hard	when	you’re	working	with
this	simple	Person	object,	but	think	about	this:	What	happens	when	you	have
nested	objects,	such	as	a	Family	that	has	a	Person	who	has	a	Seq[CreditCard],
and	that	person	wants	to	add	a	new	credit	card,	or	update	an	existing	one?	(This
is	like	an	Amazon	Prime	member	who	adds	a	family	member	to	their	account,
and	that	person	has	one	or	more	credit	cards.)	Or	what	if	the	nesting	of	objects	is
even	deeper?

In	short,	this	is	a	real	problem	that	results	in	some	nasty-looking	code,	and	it	gets
uglier	with	each	nested	layer.	Fortunately,	other	FP	developers	ran	into	this
problem	long	before	I	did,	and	they	came	up	with	ways	to	make	this	process
easier.	I	cover	this	problem	and	its	solution	in	the	“Lens”	lesson	later	in	this
book.

5)	Pure	functions	and	I/O	don’t	really	mix

As	I	wrote	in	the	“What	is	Functional	Programming”	lesson,	a	pure	function	is	a
function	(a)	whose	output	depends	only	on	its	input,	and	(b)	has	no	side	effects.
Therefore,	by	definition,	any	function	that	deals	with	these	things	is	impure:

File	I/O

Database	I/O

Internet	I/O

Any	sort	of	UI/GUI	input

Any	function	that	mutates	variables

Any	function	that	uses	“hidden”	variables

Given	this	situation,	a	great	question	is,	“How	can	an	FP	application	possibly
work	without	these	things?”

The	short	answer	is	what	I	wrote	in	the	Scala	Cookbook:	you	write	as	much	of
your	application’s	code	in	an	FP	style	as	you	can,	and	then	you	write	a	thin	I/O
layer	around	the	outside	of	the	FP	code,	like	putting	“I/O	icing”	around	an	“FP
cake,”	as	shown	in	Figure	[fig:disadvantagesPureFpCore].

A	thin,	impure	I/O	layer	around	a	pure	core

Pure	and	impure	functions

In	reality,	no	programming	language	is	really	“pure,”	at	least	not	by	my
definition.	(Several	FP	experts	say	the	same	thing.)	Wikipedia	lists	Haskell	as	a
“pure”	FP	language,	and	the	way	Haskell	handles	I/O	equates	to	this	Scala	code:

def	getCurrentTime():	IO[String]	=	???

The	short	explanation	of	this	code	is	that	Haskell	has	an	IO	type	that	you	must
use	as	a	wrapper	when	writing	I/O	functions.	This	is	enforced	by	the	Haskell
compiler.

For	example,	getLine	is	a	Haskell	function	that	reads	a	line	from	STDIN,	and
returns	a	type	that	equates	to	IO[String]	in	Scala.	Any	time	a	Haskell	function
returns	something	wrapped	in	an	IO,	like	IO[String],	that	function	can	only	be
used	in	certain	places	within	a	Haskell	application.

If	that	sounds	hard	core	and	limiting,	it	is.	But	it	turns	out	to	be
a	good	thing.

Some	people	imply	that	this	IO	wrapper	makes	those	functions	pure,	but	in	my
opinion,	this	isn’t	true.	At	first	I	thought	I	was	confused	about	this	—	that	I
didn’t	understand	something	—	and	then	I	read	this	quote	from	Martin	Odersky
on	scala-lang.org:

“The	IO	monad	does	not	make	a	function	pure.	It	just	makes	it
obvious	that	it’s	impure.”

For	the	moment	you	can	think	of	an	IO	instance	as	being	like	a	Scala	Option.
More	accurately,	you	can	think	of	it	as	being	an	Option	that	always	returns	a	
Some[YourDataTypeHere],	such	as	a	Some[Person]	or	a	Some[String].

As	you	can	imagine,	just	because	you	wrap	a	String	that	you	get	from	the
outside	world	inside	of	a	Some,	that	doesn’t	mean	the	String	won’t	vary.	For
instance,	if	you	prompt	me	for	my	name,	I	might	reply	“Al”	or	“Alvin,”	and	if
you	prompt	my	niece	for	her	name,	she’ll	reply	“Emily,”	and	so	on.	I	think
you’ll	agree	that	Some[Al],	Some[Alvin],	and	Some[Emily]	are	different	values.

Therefore,	even	though	(a)	the	return	type	of	Haskell	I/O	functions	must	be

https://en.wikipedia.org/wiki/List_of_programming_languages_by_type#Functional_languages
http://www.scala-lang.org/old/node/11194.html

wrapped	in	the	IO	type,	and	(b)	the	Haskell	compiler	only	permits	IO	types	to	be
in	certain	places,	they	are	impure	functions:	they	can	return	a	different	value
each	time	they	are	called.

6)	Using	only	immutable	values	and	recursion	can
lead	to	performance	problems,	including	RAM	use
and	speed

An	author	can	get	himself	into	trouble	for	stating	that	one	programming
paradigm	can	use	more	memory	or	be	slower	than	other	approaches,	so	let	me
begin	this	section	by	being	very	clear:

When	 you	 first	 write	 a	 simple	 (“naive”)	 FP	 algorithm,	 it	 is
possible	—	just	possible	—	that	the	immutable	values	and	data-
copying	I	mentioned	earlier	can	create	a	performance	problem.

I	demonstrate	an	example	of	this	problem	in	a	blog	post	on	Scala	Quicksort
algorithms.	In	that	article	I	show	that	the	basic	(“naive”)	recursive	quickSort
algorithm	found	in	the	“Scala	By	Example”	PDF	uses	about	660	MB	of	RAM
while	sorting	an	array	of	ten	million	integers,	and	is	four	times	slower	than	using
the	scala.util.Sorting.quickSort	method.

Having	said	that,	it’s	important	to	note	how	scala.util.Sorting.quickSort
works.	In	Scala	2.12,	it	passes	an	Array[Int]	directly	to	
java.util.Arrays.sort(int[]).	The	way	that	sort	method	works	varies	by
Java	version,	but	Java	8	calls	a	sort	method	in	
java.util.DualPivotQuicksort.	The	code	in	that	method	(and	one	other
method	it	calls)	is	at	least	300	lines	long,	and	is	much	more	complex	than	the
simple/naive	quickSort	algorithm	I	show.

Therefore,	while	it’s	true	that	the	“simple,	naive”	quickSort	algorithm	in	the
“Scala	By	Example”	PDF	has	those	performance	problems,	I	need	to	be	clear
that	I’m	comparing	(a)	a	very	simple	algorithm	that	you	might	initially	write,	to
(b)	a	much	larger,	performance-optimized	algorithm.

http://alvinalexander.com/scala/scala-quicksort-algorithms-fp-recursive-imperative-performance

7)	Scala/FP	drawback:	You	can	mix	FP	and	OOP
styles

If	you’re	an	FP	purist,	a	drawback	to	using	functional	programming	in	Scala	is
that	Scala	supports	both	OOP	and	FP,	and	therefore	it’s	possible	to	mix	the	two
coding	styles	in	the	same	code	base.

While	that	is	a	potential	drawback,	many	years	ago	when	I	worked	with	a
technology	known	as	Function	Point	Analysis	—	totally	unrelated	to	functional
programming	—	I	learned	of	a	philosophy	called	“House	Rules”	that	eliminates
this	problem.	With	House	Rules,	the	developers	get	together	and	agree	on	a
programming	style.	Once	a	consensus	is	reached,	that’s	the	style	that	you	use.
Period.

As	a	simple	example	of	this,	when	I	owned	a	computer	programming	consulting
company,	the	first	developers	I	hired	wanted	a	Java	coding	style	that	looks	like
this:

public	void	doSomething()

{

				doX();

				doY();

}

As	shown,	they	wanted	curly	braces	on	their	own	lines,	and	the	code	was
indented	four	spaces.	I	doubt	that	everyone	on	the	team	loved	that	style,	but	once
we	agreed	on	it,	that	was	it.

I	think	you	can	use	the	House	Rules	philosophy	to	state	what	parts	of	the	Scala
language	your	organization	will	use	in	your	applications.	For	instance,	if	you
want	to	use	a	strict	“Pure	FP”	style,	use	the	rules	I	set	forth	in	this	book.	You	can
always	change	the	rules	later,	but	it’s	important	to	start	with	something.

There	are	two	ways	to	look	at	the	fact	that	Scala	supports	both	OOP	and	FP.	As
mentioned,	in	the	first	view,	FP	purists	see	this	as	a	drawback.

But	in	a	second	view,	people	interested	in	using	both	paradigms	within	one
language	see	this	as	a	benefit.	For	example,	Joe	Armstrong	has	written	that
Erlang	processes	—	which	are	the	equivalent	of	Akka	actors	—	can	be	written	in
an	imperative	style.	Messages	between	processes	are	immutable,	but	the	code

http://alvinalexander.com/fpa/

within	each	process	is	single-threaded	and	can	therefore	be	imperative.	If	a
language	only	supports	FP,	the	code	in	each	process	(actor)	would	have	to	be
pure	functional	code,	when	that	isn’t	strictly	necessary.

In	the	2016	version	of	Programming	in	Scala,	Martin	Odersky’s	biography
states,	“He	works	on	programming	languages	and	systems,	more	specifically	on
the	topic	of	how	to	combine	object-oriented	and	functional	programming.”
Trying	to	merge	the	two	styles	appears	to	be	an	important	goal	for	Mr.	Odersky.

Personally,	I	like	Scala’s	support	of	both	the	OOP	and	FP	paradigms	because	it
lets	me	use	whatever	style	best	fits	the	problem	at	hand.	(In	a	terrific	addition	to
this,	adding	Akka	to	the	equation	lets	me	use	Scala	the	way	other	programmers
use	Erlang.)

http://amzn.to/2byNzrs

8)	Scala/FP	drawback:	Scala	doesn’t	have	a	standard
FP	library

Another	potential	drawback	to	functional	programming	in	Scala	is	that	there
isn’t	a	built-in	library	to	support	certain	FP	techniques.	For	instance,	if	you	want
to	use	an	IO	data	type	as	a	wrapper	around	your	impure	Scala/FP	functions,	there
isn’t	one	built	into	the	standard	Scala	libraries.

To	deal	with	this	problem,	independent	libraries	like	Scalaz,	Cats,	and	others
have	been	created.	But,	while	these	solutions	are	built	into	a	language	like
Haskell,	they’re	third-party	libraries	in	Scala.

https://github.com/scalaz/scalaz
https://github.com/typelevel/cats

“Should	I	use	FP	everywhere?”

After	I	listed	all	of	the	benefits	of	functional	programming	in	the	previous
chapter,	I	asked	the	question,	“Should	I	write	all	of	my	code	in	an	FP	style?”	At
that	time	you	might	have	thought,	“Of	course!	This	FP	stuff	sounds	great!”

Now	that	you’ve	seen	some	of	the	drawbacks	of	FP,	I	think	I	can	provide	a	better
answer.

1a)	GUIs	and	Pure	FP	are	not	a	good	fit

The	first	part	of	my	answer	is	that	I	like	to	write	Android	apps,	and	I	also	enjoy
writing	Java	Swing	and	JavaFX	code,	and	the	interface	between	(a)	those
frameworks	and	(b)	your	custom	code	isn’t	a	great	fit	for	FP.

As	one	example	of	what	I	mean,	in	an	Android	football	game	I	work	on	in	my
spare	time,	the	OOP	game	framework	I	use	provides	an	update	method	that	I’m
supposed	to	override	to	update	the	screen:

@Override

public	void	update(GameView	gameView)	{

				//	my	custom	code	here	...

}

Inside	that	method	I	have	a	lot	of	imperative	GUI-drawing	code	that	currently
creates	the	UI	shown	in	Figure	[fig:disadvantagesXoplayAndroid].

http://xoplay.rocks/

The	UI	for	my	“XO	Play”	application

There	isn’t	a	place	for	FP	code	at	this	point.	The	framework	expects	me	to
update	the	pixels	on	the	screen	within	this	method,	and	if	you’ve	ever	written
anything	like	a	video	game,	you	know	that	to	achieve	the	best	performance	—
and	avoid	screen	flickering	—	it’s	generally	best	to	update	only	the	pixels	that
need	to	be	changed.	So	this	really	is	an	“update”	method,	as	opposed	to	a

“completely	redraw	the	screen”	method.

Other	“thick	client,”	GUI	frameworks	like	Swing	and	JavaFX	have	similar
interfaces,	where	they	are	OOP	and	imperative	by	design.
Figure	[fig:disadvantagesSwingTabbedPane]	shows	an	example	of	a	little	text
editor	I	wrote	and	named	“AlPad,”	and	its	major	feature	is	that	it	lets	me	easily
add	and	remove	tabs	to	keep	little	notes	organized.

A	few	tabs	in	my	“AlPad”	application

The	way	you	write	Swing	code	like	this	is	that	you	first	create	a	JTabbedPane:

JTabbedPane	tabbedPane	=	new	JTabbedPane();

Once	created,	you	keep	that	tabbed	pane	alive	for	the	entire	life	of	the
application.	Then	when	you	later	want	to	add	a	new	tab,	you	mutate	the	
JTabbedPane	instance	like	this:

tabbedPane.addTab(

				"to-do",

				null,

				newPanel,

				"to-do");

That’s	the	way	GUI	code	usually	works:	you	create	components	and	then	mutate
them	during	the	life	of	the	application	to	create	the	desired	user	interface.	The
same	is	true	for	other	Swing	components,	like	JFrame,	JList,	JTable,	etc.

Because	these	frameworks	are	OOP	and	imperative	by	nature,	this	interface
point	is	where	FP	typically	doesn’t	fit.

When	you’re	working	with	these	frameworks	you	have	to	conform	to	their	styles
at	this	interface	point,	but	there’s	nothing	to	keep	you	from	writing	the	rest	of
your	code	in	an	FP	style.	In	my	Android	football	game	I	have	a	function	call	that
looks	like	this:

val	possiblePlays	=	OffensiveCoordinator.determinePossiblePlays(gameState)

In	that	code,	determinePossiblePlays	is	a	pure	function,	and	behind	it	are
several	thousand	lines	of	other	pure	functions.	So	while	the	GUI	code	has	to

http://alvinalexander.com/apps/alpad

conform	to	the	Android	game	framework	I’m	using,	the	decision-making	portion
of	my	app	—	the	“business	logic”	—	is	written	in	an	FP	style.

1b)	Caveats	to	what	I	just	wrote

Having	stated	that,	let	me	add	a	few	caveats.

First,	Web	applications	are	completely	different	than	thick	client	(Swing,
JavaFX)	applications.	In	a	thick	client	project,	the	entire	application	is	typically
written	in	one	large	codebase	that	results	in	a	binary	executable	that	users	install
on	their	computers.	Eclipse,	IntelliJ	IDEA,	and	NetBeans	are	examples	of	this.

Conversely,	the	web	applications	I’ve	written	in	the	last	few	years	use	(a)	one	of
many	JavaScript-based	technologies	for	the	UI,	and	(b)	the	Play	Framework	on
the	server	side.	With	Web	applications	like	this,	you	have	impure	data	coming
into	your	Scala/Play	application	through	data	mappings	and	REST	functions,	and
you	probably	also	interact	with	impure	database	calls	and	impure
network/internet	I/O,	but	just	like	my	football	game,	the	“logic”	portion	of	your
application	can	be	written	with	pure	functions.

Second,	the	concept	of	Functional-Reactive	Programming	(FRP)	combines	FP
techniques	with	GUI	programming.	The	RxJava	project	includes	this
description:

“RxJava	is	a	Java	VM	implementation	of	Reactive	Extensions:
a	 library	 for	 composing	 asynchronous	 and	 event-based
programs	 by	 using	 observable	 sequences	 …	 It	 extends	 the
Observer	Pattern	 to	support	sequences	of	data/events	and	adds
operators	 that	 allow	 you	 to	 compose	 sequences	 together
declaratively	while	abstracting	away	concerns	about	things	like
low-level	 threading,	 synchronization,	 thread-safety	 and
concurrent	data	structures.”

(Note	 that	 declarative	 programming	 is	 the	 opposite	 of
imperative	programming.)

https://www.playframework.com/
https://en.wikipedia.org/wiki/Functional_reactive_programming
https://github.com/ReactiveX/RxJava
http://reactivex.io/
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming

The	ReactiveX.io	website	states:

“ReactiveX	 is	 a	 combination	 of	 the	 best	 ideas	 from	 the
Observer	 pattern,	 the	 Iterator	 pattern,	 and	 functional
programming.”

This	short	RxScala	example	from	the	RxScala	website	gives	you	a	taste	of	the
concept:

object	Transforming	extends	App	{

				/**

					*	Asynchronously	calls	'customObservableNonBlocking'

					*	and	defines	a	chain	of	operators	to	apply	to	the

					*	callback	sequence.

					*/

				def	simpleComposition()

				{

								AsyncObservable.customObservableNonBlocking()

												.drop(10)

												.take(5)

												.map(stringValue	=>	stringValue	+	"_xform")

												.subscribe(s	=>	println("onNext	=>	"	+	s))

				}

				simpleComposition()

}

This	code	does	the	following:

1.	 Using	an	“observable,”	it	receives	a	stream	of	String	values.	Given	that
stream	of	values,	it	…

2.	 Drops	the	first	ten	values

3.	 “Takes”	the	next	five	values

4.	 Appends	the	string	_xform	to	the	end	of	each	of	those	five	values

5.	 Outputs	those	resulting	values	with	println

As	this	example	shows,	the	code	that	receives	the	stream	of	values	is	written	in	a
functional	style,	using	methods	like	drop,	take,	and	map,	combining	them	into	a
chain	of	calls,	one	after	the	other.

http://reactivex.io/
https://github.com/ReactiveX/RxScala/blob/0.x/examples/src/main/scala/Transforming.scala

If	you’d	like	to	learn	more	about	this	topic,	the	RxScala	project
is	 located	 here,	 and	 Netflix’s	 “Reactive	 Programming	 in	 the
Netflix	API	with	RxJava”	blog	post	is	a	good	start.

2)	Pragmatism	(the	best	tool	for	the	job)

I	tend	to	be	a	pragmatist	more	than	a	purist,	so	when	I	need	to	get	something
done,	I	want	to	use	the	best	tool	for	the	job.

For	instance,	when	I	first	started	working	with	Scala	and	needed	a	way	to	stub
out	new	SBT	projects,	I	wrote	a	Unix	shell	script.	Because	this	was	for	my
personal	use	and	I	only	work	on	Mac	and	Unix	systems,	creating	a	shell	script
was	by	far	the	simplest	way	to	create	a	standard	set	of	subdirectories	and	a
build.sbt	file.

Conversely,	if	I	also	programmed	on	Microsoft	Windows	or	Linux	systems,	or	if
I	had	been	interested	in	creating	a	more	robust	solution	like	the	Lightbend
Activator,	I	might	have	written	a	Scala/FP	application,	but	I	didn’t	have	those
motivating	factors.	For	my	needs,	writing	that	shell	script	was	the	most
pragmatic	solution	to	the	problem.

Another	way	to	think	about	this	is	instead	of	asking,	“Is	FP	the
right	tool	for	every	application	I	need	to	write?,”	go	ahead	and
ask	that	question	with	a	different	technology.	For	instance,	you
can	ask,	“Should	I	use	Akka	actors	to	write	every	application?”
If	you’re	familiar	with	Akka,	I	think	you’ll	agree	that	writing	an
Akka	application	to	create	a	few	subdirectories	and	a	build.sbt
file	would	be	overkill	—	even	though	Akka	is	a	terrific	tool	for
other	applications.

https://github.com/ReactiveX/RxScala
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
https://www.lightbend.com/activator/download

Summary

In	summary,	potential	drawbacks	of	functional	programming	in	general	are:

1.	 Writing	pure	functions	is	easy,	but	combining	them	into	a	complete
application	is	where	things	get	hard.

2.	 The	advanced	math	terminology	(monad,	monoid,	functor,	etc.)	makes	FP
intimidating.

3.	 For	many	people,	recursion	doesn’t	feel	natural.

4.	 Because	you	can’t	mutate	existing	data,	you	instead	use	a	pattern	that	I	call,
“Update	as	you	copy.”

5.	 Pure	functions	and	I/O	don’t	really	mix.

6.	 Using	only	immutable	values	and	recursion	can	potentially	lead	to
performance	problems,	including	RAM	use	and	speed.

Potential	drawbacks	of	*functional	programming	in	Scala”	are:

1.	 You	can	mix	FP	and	OOP	styles.

2.	 Scala	doesn’t	have	a	standard	FP	library.

What’s	next

Having	covered	the	benefits	and	drawbacks	of	functional	programming,	in	the
next	chapter	I	want	to	help	“free	your	mind,”	as	Morpheus	might	say.	That
chapter	is	on	something	I	call,	“The	Great	FP	Terminology	Barrier,”	and	how	to
break	through	that	barrier.

See	also

My	Scala	Quicksort	algorithms	blog	post

Information	about	my	“AlPad”	text	editor

“Reactive	Extensions”	on	reactivex.io

Wikipedia’s	definition	of	declarative	programming

Wikipedia’s	definition	of	imperative	programming

The	RxScala	project

Netflix’s	“Reactive	Programming	in	the	Netflix	API	with	RxJava”	blog	post

http://alvinalexander.com/scala/scala-quicksort-algorithms-fp-recursive-imperative-performance
http://alvinalexander.com/apps/alpad
http://reactivex.io/
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://github.com/ReactiveX/RxScala
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html

The	“Great	FP	Terminology	Barrier”

A	short	excursion	to	…	The	Twilight	Zone

Hello,	Rod	Serling	of	The	Twilight	Zone	here.	Al	will	be	back	shortly,	but	for
now,	let	me	take	you	to	another	place	and	time	…	an	alternate	universe	…

In	this	alternate	universe	you	are	born	a	few	years	earlier,	and	one	day	you	find
yourself	writing	some	code.	One	week,	you	create	a	List	class,	and	then	a	few
days	after	that	you	find	yourself	writing	the	same	for	loops	over	and	over	again
to	iterate	over	list	elements.	Recognizing	a	pattern	and	also	wanting	to	be	DRY
(“Don’t	Repeat	Yourself”),	you	create	a	cool	new	method	on	the	List	class	to
replace	those	repetitive	for	loops:

val	xs	=	List(1,	2,	3).applyAFunctionToEveryElement(_	*	2)

You	originally	named	this	method,	“apply	a	function	to	every	element	and	return
a	value	for	each	element,”	but	after	deciding	that	was	way	too	long	for	a
function	name,	you	shortened	it	to	applyAFunctionToEveryElement.

But	the	problem	with	this	shorter	name	is	that	it’s	not	technically	accurate.
Because	you	are	applying	a	function	to	each	element	and	then	returning	the
corresponding	result	for	each	element,	you	need	a	better	name.	But	what	name	is
accurate	—	and	concise?

Pulling	out	your	handy	thesaurus,	you	come	up	with	possible	method	names	like
these:

apply

convert

evolve

transform

transmute

metamorphose

As	you	try	to	settle	on	which	of	these	names	is	best,	your	mathematics	buddy

http://www.imdb.com/title/tt0052520/

peers	over	your	shoulder	and	asks,	“What	are	you	doing?”	After	you	explain
what	you’re	working	on,	he	says,	“Oh,	cool.	In	mathematics	we	call	that	sort	of
thing	‘map.’”	Then	he	pats	you	on	the	back,	wishes	you	luck,	and	goes	back	to
doing	whatever	it	is	that	mathematicians	do.

While	some	of	the	names	you’ve	come	up	with	are	good,	this	brief	talk	with
your	friend	makes	you	think	that	it	might	be	good	to	be	consistent	with
mathematics.	After	all,	you	want	mathematicians	and	scientists	to	use	your
programming	language,	so	you	decide	to	name	your	new	method	map:

val	xs	=	List(1,	2,	3).map(_	*	2)

“Whoa,”	you	think	to	yourself,	“that	looks	cool.	I’ll	bet	there	are	zillions	of
functions	that	people	can	pass	into	map	to	achieve	all	kinds	of	cool	things.	And
then	I	can	use	phrases	like	‘map	over	a	list.’”	Things	are	taking	shape.

map	as	a	general	concept

As	you	think	about	your	invention,	it	occurs	to	you	that	there	are	at	least	a	few
different	data	types	in	the	world	that	can	be	mapped	over	…	not	just	lists,	but
hashmaps,	too.	Shoot,	you	can	even	think	of	a	String	as	a	Seq[Char],	and	then
even	that	can	be	mapped	over.	In	time	you	realize	that	any	collection	whose
elements	can	be	iterated	over	can	implement	your	new	map	function.

As	this	thought	hits	you,	you	realize	that	a	logical	thing	to	do	is	to	create	a	trait
that	declares	a	map	method.	Then	all	of	these	other	collections	can	extend	that
trait	and	implement	their	own	map	methods.	With	this	thought,	you	begin
sketching	a	new	trait:

trait	ThingsThatCanBeMappedOver	{

				//	extending	classes	need	to	implement	this

				def	map[A,	B](f:	A	=>	B):	TODO[B]

}

You	realize	that	the	map	function	signature	isn’t	quite	right	—	you’re	going	to
have	to	invent	some	other	things	to	make	this	work	—	but	never	mind	those
details	for	now,	you’re	on	a	roll.

With	that	trait,	you	can	now	implement	your	List	class	like	this:

class	List	extends	ThingsThatCanBeMappedOver	{

				...

}

As	you	write	that	first	line	of	code	you	realize	that	the	trait	name	
ThingsThatCanBeMappedOver	isn’t	quite	right.	It’s	accurate,	but	a	little	long	and
perhaps	unprofessional.	You	start	to	pull	out	your	thesaurus	again,	but	that	act
makes	you	think	of	your	math	buddy;	what	would	he	call	this	trait?	It	occurs	to
you	that	he	would	be	comfortable	writing	code	like	this:

class	List	extends	Map	{

				...

}

and	as	a	result,	you	decide	to	call	your	new	trait	Map:

trait	Map	{

				//	extending	classes	need	to	implement	this

				def	map[A,	B](f:	A	=>	B):	TODO[B]

}

There,	that	looks	professional,	and	math-y	like,	too.	Now	you	just	have	to	figure
out	the	correct	function	signature,	and	possibly	implement	a	default	method
body.

Sadly,	just	at	that	moment,	Rod	Serling	returns	you	to	this	version	of	planet
Earth	…

And	the	moral	is	…

In	this	version	of	Earth’s	history,	someone	beat	you	to	the	invention	of	“things
that	can	be	mapped	over,”	and	for	some	reason	—	possibly	because	they	had	a
mathematics	background	—	they	made	this	declaration:

“Things	that	can	be	mapped	over	shall	be	called	…	Functor.”

Huh?

History	did	not	record	whether	the	Ballmer	Peak,	caffeine,	or	other	chemicals
were	involved	in	that	decision.

In	this	book,	when	I	use	the	phrase,	“Functional	Programming	Terminology
Barrier,”	this	is	the	sort	of	thing	I’m	referring	to.	If	a	normal	human	being	had
discovered	this	technique,	they	might	have	come	up	with	a	name	like	
ThingsThatCanBeMappedOver,	but	a	mathematician	discovered	it	and	came	up
with	the	name,	“Functor.”

Moral:	A	lot	of	FP	terminology	comes	from	mathematics.	Don’t
let	it	get	you	down.

https://xkcd.com/323/

A	few	more	FP	terms

As	a	few	more	examples	of	the	terminology	barrier	I’m	referring	to,	here	are
some	other	terms	you’ll	run	into	as	you	try	to	learn	functional	programming:

Term Definition

combinator Per	the	Haskell	wiki,	this	has	two	meanings,	but	the	common
meaning	is,	“a	style	of	organizing	libraries	centered	around	the
idea	of	combining	things.”	This	refers	to	being	able	to	combine
functions	together	like	a	Unix	command	pipeline,	i.e.,	
ps	aux		grep	root		wc	-l.

higher-
order
function

A	function	that	takes	other	functions	as	parameters,	or	whose
result	is	a	function.	(docs.scala-lang.org)

lambda Another	word	for	“anonymous	function.”

As	these	examples	show,	when	you	get	into	FP	you’ll	start	seeing	new
terminology,	and	oftentimes	they	aren’t	terms	that	you	need	to	know	for	other
forms	of	programming.	For	instance,	I	taught	Java	and	OOP	classes	for	five
years,	and	I	didn’t	know	these	words	at	that	time.

A	common	theme	is	that	these	terms	generally	come	from	mathematics	fields
like	category	theory.	Personally,	I	like	math,	so	this	is	good	for	me.	When
someone	uses	a	term	like	“Combinatory	Logic,”	I	think,	“Oh,	cool,	what’s	that?
Is	it	something	that	can	make	me	a	better	programmer?”

However,	a	bad	thing	about	it	is	that	it’s	easy	to	get	lost	in	the	terminology.	If
you’ve	ever	been	lost	in	a	forest,	the	feeling	is	just	like	that.

https://wiki.haskell.org/Combinator
http://docs.scala-lang.org/tutorials/tour/higher-order-functions.html
https://en.wikipedia.org/wiki/Category_theory
https://wiki.haskell.org/Combinatory_logic

As	I	write	 later	 in	 this	book,	 I	personally	wasted	a	 lot	of	 time
wondering,	“What	is	currying?	Why	does	everyone	write	about
it	so	much?”	That	was	a	real	waste	of	time.

I’ll	say	this	more	than	once	in	this	book:	the	best	thing	you	can	do	to	learn	FP	is
to	write	code	using	only	pure	functions	and	immutable	values,	and	see	where
that	leads	you.	If	you	place	those	restrictions	on	yourself,	you’ll	eventually	come
up	with	the	same	inventions	that	mathematicians	have	come	up	with	—	and	you
might	have	simpler	names	for	all	of	the	terms.

“Mathematicians	have	big,	scary	words	like	‘identity’	and	‘associativity’	and
‘commutativity’	to	talk	about	this	stuff	—	it’s	their	shorthand.”

~	From	the	book,	Coders	at	Work

http://amzn.to/2bdqLAF

More	terms	coming	…

The	key	point	of	this	lesson	is	that	there’s	generally	no	need	to	worry	about	a	lot
of	mathematical	and	FP	jargon,	especially	when	you’re	first	getting	started.	As	I
found	out	through	my	own	experience,	all	this	terminology	does	is	create	a
learning	barrier.

That	being	said,	one	good	thing	about	terminology	is	that	it	lets	us	know	that
we’re	all	talking	about	the	same	thing.	Therefore,	I’ll	introduce	new	terms	as
they	naturally	come	up	in	the	learning	process.

See	also

The	mathematical	definition	of	“map”	on	Wikipedia

The	definition	of	“category	theory”	on	Wikipedia

Higher-order	functions	on	scala-lang.org

The	Ballmer	Peak

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Category_theory
http://docs.scala-lang.org/tutorials/tour/higher-order-functions.html
https://xkcd.com/323/

Pure	Functions

Goals

This	lesson	has	two	main	goals:

1.	 Properly	define	the	term	“pure	function.”

2.	 Show	a	few	examples	of	pure	functions.

It	also	tries	to	simplify	the	pure	function	definition,	and	shares	a	tip	on	how	to
easily	identify	many	impure	functions.

Introduction

As	I	mentioned	in	the	“What	is	Functional	Programming?”	chapter,	I	define
functional	programming	(FP)	like	this:

Functional	 programming	 is	 a	 way	 of	 writing	 software
applications	using	only	pure	functions	and	immutable	values.

Because	that	definition	uses	the	term	“pure	functions,”	it’s	important	to
understand	what	a	pure	function	is.	I	gave	a	partial	definition	of	pure	functions
in	that	chapter,	and	now	I’ll	provide	a	more	complete	definition.

Definition	of	“pure	function”

Just	like	the	term	functional	programming,	different	people	will	give	you
different	definitions	of	a	pure	function.	I	provide	links	to	some	of	those	at	the
end	of	this	lesson,	but	skipping	those	for	now,	Wikipedia	defines	a	pure	function
like	this:

1.	 The	function	always	evaluates	to	the	same	result	value	given	the	same
argument	value(s).	It	cannot	depend	on	any	hidden	state	or	value,	and	it
cannot	depend	on	any	I/O.

2.	 Evaluation	of	the	result	does	not	cause	any	semantically	observable	side
effect	or	output,	such	as	mutation	of	mutable	objects	or	output	to	I/O
devices.

That’s	good,	but	I	prefer	to	reorganize	those	statements	like	this:

1.	 A	pure	function	depends	only	on	(a)	its	declared	input	parameters	and	(b)
its	algorithm	to	produce	its	result.	A	pure	function	has	no	“back	doors,”
which	means:

1.	 Its	result	can’t	depend	on	reading	any	hidden	value	outside	of	the
function	scope,	such	as	another	field	in	the	same	class	or	global
variables.

2.	 It	cannot	modify	any	hidden	fields	outside	of	the	function	scope,	such
as	other	mutable	fields	in	the	same	class	or	global	variables.

3.	 It	cannot	depend	on	any	external	I/O.	It	can’t	rely	on	input	from	files,
databases,	web	services,	UIs,	etc;	it	can’t	produce	output,	such	as
writing	to	a	file,	database,	or	web	service,	writing	to	a	screen,	etc.

2.	 A	pure	function	does	not	modify	its	input	parameters.

This	can	be	summed	up	concisely	with	this	definition:

A	pure	function	 is	a	function	that	depends	only	on	its	declared
input	parameters	and	its	algorithm	to	produce	its	output.	It	does

https://en.wikipedia.org/wiki/Pure_function

not	read	any	other	values	from	“the	outside	world”	—	the	world
outside	of	 the	 function’s	 scope	—	and	 it	does	not	modify	any
values	in	the	outside	world.

A	mantra	for	writing	pure	functions

Once	you’ve	seen	a	formal	pure	function	definition	like	that,	I	prefer	this	short
mantra:

Output	depends	only	on	input.

Even	though	that	isn’t	100%	accurate	(because	it	doesn’t	address	side	effects),	I
prefer	it	because	it’s	short	and	easy	to	remember.	In	this	book	I’ll	generally	just
write,	“Output	depends	only	on	input”	when	referring	to	pure	functions.

The	universe	of	a	pure	function

Another	way	to	state	this	is	that	the	universe	of	a	pure	function	is	only	the	input
it	receives,	and	the	output	it	produces,	as	shown	in
Figure	[fig:universeOfAPureFunction].

The	entire	universe	of	a	pure	function

If	it	seems	like	I’m	emphasizing	this	point	a	lot,	it’s	because	I	am(!).	One	of	the
most	important	concepts	of	functional	programming	is	that	FP	applications	are
built	almost	entirely	with	pure	functions,	and	pure	functions	are	very	different
than	what	I	used	to	write	in	my	OOP	career.

A	great	benefit	of	pure	functions	is	that	when	you’re	writing	them	you	don’t
have	to	think	about	anything	else;	all	you	have	to	think	about	is	the	universe	of
this	function,	which	is	what’s	coming	into	the	function	body	from	the	outside
world;	what	happens	inside	the	function	body;	and	what	information	you	send
back	into	the	outside	world.

Examples	of	pure	and	impure	functions

Given	the	definition	of	pure	functions	and	these	simpler	mantras,	let’s	look	at
some	examples	of	pure	and	impure	functions.

Examples	of	pure	functions

Mathematical	functions	are	great	examples	of	pure	functions	because	it’s	pretty
obvious	that	“output	depends	only	on	input.”	Methods	like	these	in	scala.math._
are	all	pure	functions:

abs

ceil

max

min

I	refer	to	these	as	“methods”	because	they	are	defined	using	def	in	the	package
object	math.	However,	these	methods	work	just	like	functions,	so	I	also	refer	to
them	as	pure	functions.

Because	a	Scala	String	is	immutable,	every	method	available	to	a	String	is	a
pure	function,	including:

charAt

isEmpty

length

substring

Many	methods	that	are	available	on	Scala’s	collections’	classes	fit	the	definition
of	a	pure	function,	including	the	common	ones:

drop

http://www.scala-lang.org/api/current/#scala.math.package

filter

map

reduce

Examples	of	impure	functions

Conversely,	the	following	functions	are	impure.

Going	right	back	to	the	collections’	classes,	the	foreach	method	is	impure.	
foreach	is	used	only	for	its	side	effects,	which	you	can	tell	by	looking	at	its
signature	on	the	Seq	class:

def	foreach(f:	(A)	=>	Unit):	Unit	

Date	and	time	related	methods	like	getDayOfWeek,	getHour,	and	getMinute	are
all	impure	because	their	output	depends	on	something	other	than	their	inputs.
Their	results	rely	on	some	form	of	hidden	I/O.

Methods	on	the	scala.util.Random	class	like	nextInt	are	also	impure	because
their	output	depends	on	something	other	than	their	inputs.

In	general,	impure	functions	do	one	or	more	of	these	things:

Read	hidden	inputs	(variables	not	explicitly	passed	in	as	function	input
parameters)

Write	hidden	outputs

Mutate	the	parameters	they	are	given

Perform	some	sort	of	I/O	with	the	outside	world

http://www.scala-lang.org/api/current/#scala.collection.immutable.Seq

Tip:	Telltale	signs	of	impure	functions

By	looking	at	function	signatures	only,	there	are	two	ways	you	can	identify
many	impure	functions:

They	don’t	have	any	input	parameters

They	don’t	return	anything	(or	they	return	Unit	in	Scala,	which	is	the	same
thing)

For	example,	here’s	the	signature	for	the	println	method	of	the	Scala	Predef
object:

def	println(x:	Any):	Unit

Because	println	is	such	a	commonly-used	method,	you	already	know	that	it
writes	information	to	the	outside	world,	but	if	you	didn’t	know	that,	its	Unit
return	type	would	be	a	terrific	hint	of	that	behavior.	It	doesn’t	return	anything,	so
it	must	be	mutating	something	or	interacting	with	the	outside	world.

Similarly	when	you	look	at	Scala’s	“read*”	methods	you’ll	see	that	a	method
like	readLine	takes	no	input	parameters,	which	is	also	a	giveaway	that	it	is
impure:

def	readLine():	String

												--

Because	it	takes	no	input	parameters,	the	mantra,	“Output	depends	only	on
input”	clearly	can’t	apply	to	it.

Simply	stated:

If	a	function	has	no	input	parameters,	how	can	its	output	depend	on	its
input?

If	a	function	has	no	result,	it	must	have	side	effects:	mutating	variables,	or
performing	some	sort	of	I/O.

While	this	is	an	easy	way	to	spot	many	impure	functions,	other	impure	methods

http://www.scala-lang.org/api/current/#scala.Predef$

can	have	both	(a)	input	parameters	and	(b)	a	non-Unit	return	type,	but	still	be
impure	because	they	read	variables	outside	of	their	scope,	mutate	variables
outside	of	their	scope,	or	perform	I/O.

Summary

As	you	saw	in	this	lesson,	this	is	my	formal	definition	of	a	pure	function:

A	pure	function	 is	a	function	that	depends	only	on	its	declared
inputs	 and	 its	 internal	 algorithm	 to	produce	 its	 output.	 It	 does
not	read	any	other	values	from	“the	outside	world”	—	the	world
outside	of	 the	 function’s	 scope	—	and	 it	does	not	modify	any
values	in	the	outside	world.

Once	you	understand	the	complete	definition,	I	prefer	the	short	mantra:

Output	depends	only	on	input.

or	this	more	accurate	statement:

1.	 Output	depends	only	on	input

2.	 No	side	effects

See	also

The	Wikipedia	definition	of	a	pure	function

Wikipedia	has	a	good	discussion	on	“pure	functions”	on	their	Functional
Programming	page

The	wolfram.com	definition	of	a	pure	function

The	schoolofhaskell.com	definition	of	a	pure	function

The	ocaml.org	definition	of	a	pure	function

https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
https://reference.wolfram.com/language/tutorial/PureFunctions.html
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://ocaml.org/learn/tutorials/functional_programming.html#Pureandimpurefunctionalprogramming

Grandma’s	Cookies	(and	Pure
Functions)
To	help	explain	pure	functions,	I’d	like	to	share	a	little	story	…

Once	upon	a	time	I	was	a	freshman	in	college,	and	my	girlfriend’s	grandmother
sent	her	a	tin	full	of	cookies.	I	don’t	remember	if	there	were	different	kinds	of
cookies	in	the	package	or	not	—	all	I	remember	is	the	chocolate	chip	cookies.
Whatever	her	grandmother	did	to	make	those	cookies,	the	dough	was	somehow
more	white	than	any	other	chocolate	chip	cookie	I	had	ever	seen	before.	They
also	tasted	terrific,	and	I	ate	most	of	them.

Some	time	after	this,	my	girlfriend	—	who	would	later	become	my	wife	—
asked	her	grandmother	how	she	made	the	chocolate	chip	cookies.	Grandmother
replied,	“I	just	mix	together	some	flour,	butter,	eggs,	sugar,	and	chocolate	chips,
shape	the	dough	into	little	cookies,	and	bake	them	at	350	degrees	for	10
minutes.”	(There	were	a	few	more	ingredients,	but	I	don’t	remember	them	all.)

Later	that	day,	my	girlfriend	and	I	tried	to	make	a	batch	of	cookies	according	to
her	grandmother’s	instructions,	but	no	matter	how	hard	we	tried,	they	always
turned	out	like	normal	cookies.	Somehow	we	were	missing	something.

Digging	into	the	mystery

Perplexed	by	this	mystery	—	and	hungry	for	a	great	cookie	—	I	snuck	into
grandmother’s	recipe	box	late	one	night.	Looking	under	“Chocolate	Chip
Cookies,”	I	found	these	comments:

/**

	*	Mix	together	some	flour,	butter,	eggs,	sugar,

	*	and	chocolate	chips.	Shape	the	dough	into	

	*	little	cookies,	and	bake	them	at	350	degrees

	*	for	10	minutes.

	*/

“Huh,”	I	thought,	“that’s	just	what	she	told	us.”

I	started	to	give	up	on	my	quest	after	reading	the	comments,	but	the	desire	for	a
great	cookie	spurred	me	on.	After	thinking	about	it	for	a	few	moments,	I	realized
that	I	could	decompile	grandmother’s	makeCookies	recipe	to	see	what	it	showed.
When	I	did	that,	this	is	what	I	found:

def	makeCookies(ingredients:	List[Ingredient]):	Batch[Cookie]	=	{

				val	cookieDough	=	mix(ingredients)

				val	betterCookieDough	=	combine(cookieDough,	love)

				val	cookies	=	shapeIntoLittleCookies(betterCookieDough)

				bake(cookies,	350.DegreesFahrenheit,	10.Minutes)

}

“Aha,”	I	thought,	“here’s	some	code	I	can	dig	into.”

Looking	at	the	first	line,	the	function	declaration	seems	fine:

def	makeCookies(ingredients:	List[Ingredient]):	Batch[Cookie]	=	{

Whatever	makeCookies	does,	as	long	as	it’s	a	pure	function	—	where	its	output
depends	only	on	its	declared	inputs	—	its	signature	states	that	it	transforms	a	list
of	ingredients	into	a	batch	of	cookies.	Sounds	good	to	me.

The	first	line	inside	the	function	says	that	mix	is	some	sort	of	algorithm	that
transforms	ingredients	into	cookieDough:

val	cookieDough	=	mix(ingredients)

Assuming	that	mix	is	a	pure	function,	this	looks	good.

The	next	line	looks	okay:

val	betterCookieDough	=	combine(cookieDough,	love)

Whoa.	Hold	on	just	a	minute	…	now	I’m	confused.	What	is	love?	Where	does	
love	come	from?

Looking	back	at	the	function	signature:

def	makeCookies(ingredients:	List[Ingredient]):	Batch[Cookie]	=	{

clearly	love	is	not	defined	as	a	function	input	parameter.	Somehow	love	snuck
into	this	function.	That’s	when	it	hit	me:

“Aha!	makeCookies	is	not	a	pure	function!”’

Taking	a	deep	breath	to	get	control	of	myself,	I	looked	at	the	last	two	lines	of	the
function,	and	with	the	now-major	assumption	that	shapeIntoLittleCookies	and
bake	are	pure	functions,	those	lines	look	fine:

val	cookies	=	shapeIntoLittleCookies(betterCookieDough)

bake(cookies,	350.DegreesFahrenheit,	10.Minutes)

“I	don’t	know	where	love	comes	from,”	I	thought,	“but	clearly,	it	is	a	problem.”

Hidden	inputs	and	free	variables

In	regards	to	the	makeCookies	function,	you’ll	hear	functional	programmers	say
a	couple	of	things	about	love:

love	is	a	hidden	input	to	the	function

love	is	a	“free	variable”

These	statements	essentially	mean	the	same	thing,	so	I	prefer	the	first	statement:
to	think	of	love	as	being	a	hidden	input	into	the	function.	It	wasn’t	passed	in	as	a
function	input	parameter,	it	came	from	…	well	…	it	came	from	somewhere	else
…	the	ether.

Functions	as	factories

Imagine	that	makeCookies	is	the	only	function	you	have	to	write	today	—	this
function	is	your	entire	scope	for	today.	When	you	do	that,	it	feels	like	someone
teleported	love	right	into	the	middle	of	your	workspace.	There	you	were,
minding	your	own	business,	writing	a	function	whose	output	depends	only	on	its
inputs,	and	then	—	Bam!	—	love	is	thrown	right	into	the	middle	of	your	work.

Put	another	way,	if	makeCookies	is	the	entire	scope	of	what	you	should	be
thinking	about	right	now,	using	love	feels	like	you	just	accessed	a	global
variable,	doesn’t	it?

With	pure	functions	I	like	to	think	of	input	parameters	as	coming	into	a
function’s	front	door,	and	its	results	going	out	its	back	door,	just	like	a	black	box,
or	a	factory,	as	shown	in	Figure	[fig:cookieFactory].

Thinking	of	a	pure	function	as	a	factory	with	two	doors

But	in	the	case	of	makeCookies	it’s	as	though	love	snuck	in	through	a	side	door,
as	shown	in	Figure	[fig:cookieFactorySideDoor].

Impure	functions	use	side	doors

While	you	might	think	it’s	okay	for	things	like	love	to	slip	in	a	side	door,	if	you
spend	any	time	in	Alaska	you’ll	learn	not	to	leave	your	doors	open,	because	you
never	know	what	might	walk	in,	as	shown	in
Figure	[fig:cookieFactorySideDoorBear].

Bad	things	can	happen	when	you	use	side	doors

http://onemansalaska.com/

Free	variables

When	I	wrote	about	hidden	inputs	I	also	mentioned	the	term	“free	variable,”	so
let’s	look	at	its	meaning.	Ward	Cunningham’s	c2.com	website	defines	a	free
variable	like	this:

“A	 free	variable	 is	a	variable	used	within	a	 function,	which	 is
neither	 a	 formal	 parameter	 to	 the	 function	 nor	 defined	 in	 the
function’s	body.”

That	sounds	exactly	like	something	you	just	heard,	right?	As	a	result,	I	prefer	to
use	the	less	formal	term,	“hidden	input.”

http://c2.com/cgi/wiki?FreeVariable

What	happens	when	hidden	inputs	change?

If	Scala	required	us	to	mark	impure	functions	with	an	impure	annotation,	
makeCookies	would	be	declared	like	this	as	a	warning	to	all	readers	that,	“Output
depends	on	something	other	than	input”:

@impure

def	makeCookies	...

And	because	makeCookies	is	an	impure	function,	a	good	question	to	ask	right
now	is:

“What	happens	when	love	changes?”

The	answer	is	that	because	love	comes	into	the	function	through	a	side	door,	it
can	change	the	makeCookies	result	without	you	ever	knowing	why	you	can	get
different	results	when	you	call	it.	(Or	why	my	cookies	never	turn	out	right.)

Unit	tests	and	purity

I	like	to	“speak	in	source	code”	as	much	as	possible,	and	a	little	code	right	now
can	show	what	a	significant	problem	hidden	inputs	are,	such	as	when	you	write	a
unit	test	for	an	impure	method	like	makeCookies.

If	you’re	asked	to	write	a	ScalaTest	unit	test	for	makeCookies,	you	might	write
some	code	like	this:

test("make	a	batch	of	chocolate	chip	cookies")	{

				val	ingredients	=	List(

								Flour(3.Cups),

								Butter(1.Cup),

								Egg(2),

								Sugar(1.Cup),

								ChocolateChip(2.Cups)

)

				val	batchOfCookies	=	GrandmasRecipes.makeCookies(ingredients)

				assert(cookies.count	==	12)

				assert(cookies.taste	==	Taste.JustLikeGrandmasCookies)

				assert(cookies.doughColor	==	Color.WhiterThanOtherCookies)

}

If	you	ran	this	test	once	it	might	work	fine,	you	might	get	the	expected	results.
But	if	you	run	it	several	times,	you	might	get	different	results	each	time.

That’s	a	big	problem	with	makeCookies	using	love	as	a	hidden	input:	when
you’re	writing	black-box	testing	code,	you	have	no	idea	that	makeCookies	has	a
hidden	dependency	on	love.	All	you’ll	know	is	that	sometimes	the	test	succeeds,
and	other	times	it	fails.

Put	a	little	more	technically:

love’s	state	affects	the	result	of	makeCookies

As	a	black-box	consumer	of	this	function,	there’s	no	way	for	you	to	know
that	love	affects	makeCookies	by	looking	at	its	method	signature

If	you	have	the	source	code	for	makeCookies	and	can	perform	white-box	testing,
you	can	find	out	that	love	affects	its	result,	but	that’s	a	big	thing	about
functional	programming:	you	never	have	to	look	at	the	source	code	of	a	pure
function	to	see	if	it	has	hidden	inputs	or	hidden	outputs.

http://www.scalatest.org/

I’ve	 referred	 to	 hidden	 inputs	 quite	 a	 bit	 so	 far,	 but	 hidden
outputs	—	mutating	hidden	variables	or	writing	output	—	are
also	a	problem	of	impure	functions.

Problems	of	the	impure	world

However,	now	that	I	do	have	the	makeCookies	source	code,	several	questions
come	to	mind:

Does	love	have	a	default	value?

How	is	love	set	before	you	call	makeCookies?

What	happens	if	love	is	not	set?

Questions	like	these	are	problems	of	impure	functions	in	general,	and	hidden
inputs	in	particular.	Fortunately	you	don’t	have	to	worry	about	these	problems
when	you	write	pure	functions.

When	 you	 write	 parallel/concurrent	 applications,	 the	 problem
of	 hidden	 inputs	 becomes	 even	 worse.	 Imagine	 how	 hard	 it
would	 be	 to	 solve	 the	 problem	 if	 love	 is	 set	 on	 a	 separate
thread.

The	moral	of	this	story

Every	good	story	should	have	a	moral,	and	I	hope	you	see	what	a	problem	this
is.	In	my	case,	I	still	don’t	know	how	to	make	cookies	like	my	wife’s
grandmother	did.	(I	lay	in	bed	at	night	wondering,	what	is	love?	Where	does	
love	come	from?)

In	terms	of	writing	rock-solid	code,	the	moral	is:

love	is	a	hidden	input	to	makeCookies

makeCookies	output	does	not	depend	solely	on	its	declared	inputs

You	may	get	a	different	result	every	time	you	call	makeCookies	with	the
same	inputs

You	can’t	just	read	the	makeCookies	signature	to	know	its	dependencies

Programmers	also	say	that	makeCookies	depends	on	the	state	of	love.
Furthermore,	with	this	coding	style	it’s	also	likely	that	love	is	a	mutable	var.

My	apologies	to	my	wife’s	grandmother	for	using	her	in	this	example.	She	was
the	most	organized	person	I	ever	met,	and	I’m	sure	that	if	she	was	a	programmer,
she	would	have	written	pure	functions.	And	her	cookies	are	sorely	missed.

What’s	next

Given	all	of	this	talk	about	pure	functions,	the	next	lesson	answers	the	important
question,	“What	are	the	benefits	of	pure	functions?”

See	also

The	Wikipedia	definition	of	a	pure	function

Wikipedia	has	a	good	discussion	on	“pure	functions”	on	their	Functional
Programming	page

My	unit	test	was	written	using	ScalaTest.

When	you	need	to	use	specific	quantities	in	Scala	applications,	Squants
offers	a	DSL	similar	to	what	I	showed	in	these	examples.

https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
http://www.scalatest.org/
http://www.squants.com/

Benefits	of	Pure	Functions
The	goal	of	this	lesson	is	simple:	to	list	and	explain	the	benefits	of	writing	pure
functions.

Benefits	of	pure	functions

My	favorite	benefits	of	pure	functions	are:

They’re	easier	to	reason	about

They’re	easier	to	combine

They’re	easier	to	test

They’re	easier	to	debug

They’re	easier	to	parallelize

FP	developers	talk	about	other	benefits	of	writing	pure	functions.	For	instance,
Venkat	Subramaniam	adds	these	benefits:

They	are	idempotent

They	offer	referential	transparency

They	are	memoizable

They	can	be	lazy

In	this	lesson	I’ll	examine	each	of	these	benefits.

http://blog.agiledeveloper.com/2015/12/benefits-of-pure-functions.html

Pure	functions	are	easier	to	reason	about

Pure	functions	are	easier	to	reason	about	than	impure	functions,	and	I	cover	this
in	detail	in	the	lesson,	“Pure	Function	Signatures	Tell	All.”	The	key	point	is	that
because	a	pure	function	has	no	side	effects	or	hidden	I/O,	you	can	get	a	terrific
idea	of	what	it	does	just	by	looking	at	its	signature.

Pure	functions	are	easier	to	combine

Because	“output	depends	only	on	input,”	pure	functions	are	easy	to	combine
together	into	simple	solutions.	For	example,	you’ll	often	see	FP	code	written	as	a
chain	of	function	calls,	like	this:

val	x	=	doThis(a).thenThis(b)

																	.andThenThis(c)

																	.doThisToo(d)

																	.andFinallyThis(e)

This	capability	is	referred	to	as	functional	composition.	I’ll	demonstrate	more
examples	of	it	throughout	this	book.

As	you’ll	see	in	the	“FP	is	Like	Unix	Pipelines”	lesson,	Unix	pipelines	are	easy
to	create	because	most	Unix	commands	are	like	pure	functions:	they	read	input
and	produce	transformed	output	based	only	on	the	inputs	and	the	algorithm	you
supply.

Pure	functions	are	easier	to	test

As	I	showed	in	the	“Benefits	of	Functional	Programming”	chapter,	pure
functions	are	easier	to	test	than	impure	functions.	I	expand	on	this	in	several
other	lessons	in	this	book,	including	the	lessons	on	property-based	testing.

Pure	functions	are	easier	to	debug

In	the	“Benefits	of	Functional	Programming”	chapter	I	wrote	that	on	a	large
scale,	FP	applications	are	easier	to	debug.	In	the	small	scale,	pure	functions	are
also	easier	to	debug	than	their	impure	counterparts.	Because	the	output	of	a	pure
function	depends	only	on	the	function’s	input	parameters	and	your	algorithm,
you	don’t	need	to	look	outside	the	function’s	scope	to	debug	it.

Pure	functions	are	easier	to	parallelize

I	wrote	in	the	“Benefits	of	Functional	Programming”	chapter	that	it’s	easier	to
write	parallel/concurrent	applications	with	FP.	Because	all	of	those	same	reasons
apply	here	I	won’t	repeat	them,	but	I	will	show	one	example	of	how	a	compiler
can	optimize	code	within	a	pure	function.

I’m	not	a	compiler	writer,	so	I’ll	begin	with	this	statement	from	the	“pure
functions”	section	of	the	Wikipedia	functional	programming	page:

“If	there	is	no	data	dependency	between	two	pure	expressions,
then	 their	 order	 can	 be	 reversed,	 or	 they	 can	 be	 performed	 in
parallel	 and	 they	 cannot	 interfere	 with	 one	 another	 (in	 other
terms,	the	evaluation	of	any	pure	expression	is	thread-safe).”

As	an	example	of	what	that	means,	in	this	code:

val	x	=	f(a)

val	y	=	g(b)

val	z	=	h(c)

val	result	=	x	+	y	+	z

there	are	no	data	dependencies	between	the	first	three	expressions,	so	they	can
be	executed	in	any	order.	The	only	thing	that	matters	is	that	they	are	executed
before	the	assignment	to	result.	If	the	compiler/interpreter	wants	to	run	those
expressions	in	parallel,	it	can	do	that	and	then	merge	their	values	in	the	final
expression.	This	can	happen	because	(a)	the	functions	are	pure,	and	(b)	there	are
no	dependencies	between	the	expressions.

That	same	Wikipedia	page	also	states:

“If	 the	 entire	 language	 does	 not	 allow	 side-effects,	 then	 any
evaluation	strategy	can	be	used;	this	gives	the	compiler	freedom
to	 reorder	 or	 combine	 the	 evaluation	 of	 expressions	 in	 a
program	(for	example,	using	deforestation).”

The	2006	article,	Functional	Programming	for	the	Rest	Of	Us,	includes	a	quote

https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
http://www.defmacro.org/ramblings/fp.html

similar	to	these	Wikipedia	quotes.	It	states,	“An	interesting	property	of
functional	languages	is	that	they	can	be	reasoned	about	mathematically.	Since	a
functional	language	is	simply	an	implementation	of	a	formal	system,	all
mathematical	operations	that	could	be	done	on	paper	still	apply	to	the	programs
written	in	that	language.	The	compiler	could,	for	example,	convert	pieces	of
code	into	equivalent	but	more	efficient	pieces	with	a	mathematical	proof	that
two	pieces	of	code	are	equivalent.	Relational	databases	have	been	performing
these	optimizations	for	years.	There	is	no	reason	the	same	techniques	can’t	apply
to	regular	software.”

Pure	functions	are	idempotent

I	don’t	use	the	word	“idempotent”	too	often,	so	I’ll	quote	from	Venkat
Subramaniam’s	explanation	of	the	benefit	of	idempotence	in	regards	to	pure
functions	(with	a	few	minor	edits	by	me):

The	 word	 idempotent	 has	 a	 few	 different	 meanings	 …	 a
function	or	operation	is	idempotent	if	the	result	of	executing	it
multiple	times	for	a	given	input	is	the	same	as	executing	it	only
once	 for	 the	 same	 input.	 If	 we	 know	 that	 an	 operation	 is
idempotent,	we	can	run	it	as	many	times	as	we	like	…	it’s	safe
to	retry.

In	a	related	definition,	in	A	practical	introduction	to	functional	programming,
Mary	Rose	Cook	states:

A	 process	 is	 deterministic	 if	 repetitions	 yield	 the	 same	 result
every	time.

The	terms	idempotent	and	deterministic	are	similar	to	a	favorite	phrase	of	mine:
if	you	call	a	pure	function	with	the	same	input(s)	an	infinite	number	of	times,
you	will	always	get	the	same	result.

Honestly,	with	these	definitions	it	feels	like	I’m	writing,	“A	benefit	of	pure
functions	is	that	they	are	pure	functions.”	My	only	reason	for	keeping	this
section	is	so	that	you	have	some	exposure	to	the	terms	idempotent	and
deterministic.

This	demonstrates	that	like	many	other	uncommon	phrases	in	functional
programming,	you	can	understand	a	concept	long	before	you	know	that	someone
created	a	label	for	that	concept.

http://blog.agiledeveloper.com/2015/12/benefits-of-pure-functions-idempotent.html
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming

Pure	functions	offer	referential	transparency

Referential	transparency	(RT)	is	another	technical	term	that	you’ll	hear	in	the	FP
world.	It’s	similar	to	idempotency,	and	refers	to	what	you	(and	a	compiler)	can
do	because	your	functions	are	pure.

If	you	like	algebra,	you’ll	like	RT.	It’s	said	that	an	expression	is	referentially
transparent	if	it	can	be	replaced	by	its	resulting	value	without	changing	the
behavior	of	the	program.

For	instance,	assume	that	x	and	y	are	immutable	values	within	some	scope	of	an
application,	and	within	that	scope	they’re	used	to	form	this	expression:

x	+	y

Then	you	can	assign	this	expression	to	a	third	variable	z:

val	z	=	x	+	y

Now,	throughout	the	given	scope	of	your	program,	anywhere	the	expression	
x	+	y	is	used,	it	can	be	replaced	by	z	without	affecting	the	result	of	the	program
(and	vice-versa).

Note	that	although	I	state	that	x	and	y	are	immutable	values,	they	can	also	be	the
result	of	pure	functions.	For	instance,	hello.length	+	world.length	will
always	be	10.	This	result	could	be	assigned	to	z,	and	then	z	could	be	used
everywhere	instead	of	this	expression.	In	Scala	this	looks	like	this:

val	x	=	"hello".length			//	5

val	y	=	"world".length			//	5

val	z	=	x	+	y												//	10

Because	all	of	those	values	are	immutable,	you	can	use	z	anywhere	you	might
use	x+y,	and	in	fact,	in	this	example	you	can	replace	z	with	10	anywhere,	and
your	program	will	run	exactly	the	same.

In	 FP	 we	 say	 things	 like,	 “10	 cannot	 be	 reduced	 any	 more.”
(More	on	this	later.)

Conversely,	if	x	or	y	was	an	impure	function,	such	as	a	“get	the	current	time”

function,	z	could	not	be	a	reliable	replacement	for	x	+	y	at	different	points	in	the
application.

Pure	functions	are	memoizable

Because	a	pure	function	always	returns	the	same	result	when	given	the	same
inputs,	a	compiler	(or	your	application)	can	also	use	caching	optimizations,	such
as	memoization.

Wikipedia	defines	memoization	like	this:

“Memoization	 is	 an	 optimization	 technique	 used	 primarily	 to
speed	up	computer	programs	by	storing	the	results	of	expensive
function	 calls	 and	 returning	 the	 cached	 result	 when	 the	 same
inputs	occur	again.”

For	example,	I	previously	noted	that	my	Android	football	game	has	this	function
call:

val	possiblePlays	=	OffensiveCoordinator.determinePossiblePlays(gameState)

The	determinePossiblePlays	function	currently	has	several	thousand	lines	of
pure	functions	behind	it,	and	over	time	it’s	only	going	to	get	more	complicated.
Although	this	function	doesn’t	currently	use	memoization,	it	would	be	fairly
simple	to	create	a	cache	for	it,	so	that	each	time	it	received	the	same	gameState
it	would	return	the	same	result.

The	cache	could	be	implemented	as	a	Map,	with	a	type	of	
Map[GameState,	Seq[OffensivePlay]].	Then	when	determinePossiblePlays
receives	a	GameState	instance,	it	could	perform	a	fast	lookup	in	this	cache.

While	 those	 statements	 are	 true,	 I	 don’t	 want	 to	 oversimplify
this	 too	 much.	 determinePossiblePlays	 makes	 decisions
based	on	many	GameState	factors,	including	two	important	(a)
game	score	and	(b)	time	remaining.	Those	two	variables	would
have	to	be	factors	in	any	cache.

https://en.wikipedia.org/wiki/Memoization

Pure	functions	can	be	lazy

Laziness	is	a	major	feature	of	the	Haskell	language,	where	everything	is	lazy
(lazily	evaluated).	In	Scala	I	primarily	use	laziness	with	large	data	sets	and
streams	—	i.e.,	impure	functions	—	so	I	haven’t	personally	taken	advantage	of
this	benefit	yet.

A	quote	from	a	Haskell	co-creator

As	a	final	note,	here’s	a	quote	from	the	book,	Masterminds	of	Programming,
which	discusses	some	of	the	benefits	I	just	described:

When	asked,	“What	are	the	advantages	of	writing	in	a	language
without	 side	 effects?,”	 Simon	 Peyton	 Jones,	 co-creator	 of
Haskell,	replied,	“You	only	have	to	reason	about	values	and	not
about	state.	If	you	give	a	function	the	same	input,	it’ll	give	you
the	 same	 output,	 every	 time.	 This	 has	 implications	 for
reasoning,	for	compiling,	for	parallelism.”

http://amzn.to/2bedXb4

Summary

In	this	lesson	I	wrote	about	the	benefits	of	pure	functions.	My	favorite	benefits
are:

They’re	easier	to	reason	about

They’re	easier	to	combine

They’re	easier	to	test

They’re	easier	to	debug

They’re	easier	to	parallelize

Other	FP	developers	write	about	these	benefits	of	pure	functions:

They	are	idempotent

They	offer	referential	transparency

They	are	memoizable

They	can	be	lazy

See	also

Wikipedia	has	a	good	discussion	on	the	benefits	of	“pure	functions”	on	their
Functional	Programming	page

The	Haskell.org	definition	of	referential	transparency

Stack	Exchange	provides	a	definition	of	referential	transparency

Stack	Overflow	says,	Don’t	worry	about	the	term	RT,	it’s	for	pointy-headed
purists

Venkat	Subramaniam’s	post	on	the	benefits	of	pure	functions

If	you	like	debates	on	the	precise	meaning	of	technical	terms,	reddit.com
has	a	thread	titled,	Purity	and	referential	transparency	are	different

https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
https://wiki.haskell.org/Referential_transparency
http://programmers.stackexchange.com/questions/254304/what-is-referential-transparency
http://stackoverflow.com/questions/4865616/purity-vs-referential-transparency
http://blog.agiledeveloper.com/2015/12/benefits-of-pure-functions.html
https://www.reddit.com/r/haskell/comments/21y560/purity_and_referential_transparency_are_different/

Pure	Functions	and	I/O

Goal

The	goal	of	this	lesson	is	to	answer	the	question,	“Because	pure	functions	can’t
have	I/O,	how	can	an	FP	application	possibly	get	anything	done	if	all	of	its
functions	are	pure	functions?”

So	how	do	you	do	anything	with	functional
programming?

Given	my	pure	function	mantra,	“Output	depends	only	on	input,”	a	logical
question	at	this	point	is:

“How	do	I	get	anything	done	if	I	can’t	read	any	inputs	or	write
any	outputs?”

Great	question!

The	answer	is	that	you	violate	the	“Write	Only	Pure	Functions”	rule!	It	seems
like	many	other	resources	go	through	great	lengths	to	avoid	answering	that
question,	but	I	just	gave	you	that	answer	fairly	early	in	this	book.	(You’re
welcome.)

The	general	idea	is	that	you	write	as	much	of	your	application	as	possible	in	an
FP	style,	and	then	handle	the	UI	and	all	forms	of	input/output	(I/O)	(such	as
Database	I/O,	Web	Service	I/O,	File	I/O,	etc.)	in	the	best	way	possible	for	your
current	programming	language	and	tools.

In	Scala	the	percentage	of	your	code	that’s	considered	impure	I/O	will	vary,
depending	on	the	application	type,	but	will	probably	be	in	this	range:

On	the	low	end,	it	will	be	about	the	same	as	a	language	like	Java.	So	if	you
were	to	write	an	application	in	Java	and	20%	of	it	was	going	to	be	impure
I/O	code	and	80%	of	it	would	be	other	stuff,	in	FP	that	“other	stuff”	will	be
pure	functions.	This	assumes	that	you	treat	your	UI,	File	I/O,	Database	I/O,
Web	Services	I/O,	and	any	other	conceivable	I/O	the	same	way	that	you
would	in	Java,	without	trying	to	“wrap”	that	I/O	code	in	“functional
wrappers.”	(More	on	this	shortly.)

On	the	high	end,	it	will	approach	100%,	where	that	percentage	relies	on	two
things.	First,	you	wrap	all	of	your	I/O	code	in	functional	wrappers.	Second,
your	definition	of	“pure	function”	is	looser	than	my	definition.

I/O	wrapper’s	code

I	don’t	mean	to	make	a	joke	or	be	facetious	in	that	second	statement.	It’s	just	that
some	people	may	try	to	tell	you	that	by	putting	a	wrapper	layer	around	I/O	code,
the	impure	I/O	function	somehow	becomes	pure.	Maybe	somewhere	in	some
mathematical	sense	that	is	correct,	I	don’t	know.	Personally,	I	don’t	buy	that.

Let	me	explain	what	I’m	referring	to.

Imagine	that	in	Scala	you	have	a	function	that	looks	like	this:

def	promptUserForUsername:	String	=	???

Clearly	this	function	is	intended	to	reach	out	into	the	outside	world	and	prompt	a
user	for	a	username.	You	can’t	tell	how	it	does	that,	but	the	function	name	and
the	fact	that	it	returns	a	String	gives	us	that	impression.

Now,	as	you	might	expect,	every	user	of	an	application	(like	Facebook	or
Twitter)	should	have	a	unique	username.	Therefore,	any	time	this	function	is
called,	it	will	return	a	different	result.	By	stating	that	(a)	the	function	gets	input
from	a	user,	and	(b)	it	can	return	a	different	result	every	time	it’s	called,	this	is
clearly	not	a	pure	function.	It	is	impure.

However,	now	imagine	that	this	same	function	returns	a	String	that	is	wrapped
in	another	type	that	I’ll	name	IO:

def	promptUserForUsername:	IO[String]	=	???

Notice	that	this	a	little	like	using	the	Option/Some/None	pattern	in	Scala.

What’s	the	benefit?

That’s	interesting,	but	what	does	this	do	for	us?

Personally,	I	think	it	has	one	main	benefit:	I	can	glance	at	this	function	signature,
and	know	that	it	deals	with	I/O,	and	therefore	it’s	an	impure	function.	In	this
particular	example	I	can	also	infer	that	from	the	function	name,	but	what	if	the
function	was	named	differently?:

def	getUsername:	IO[String]	=	???

In	this	case	getUsername	is	a	little	more	ambiguous,	so	if	it	just	returned	String,
I	wouldn’t	know	exactly	how	it	got	that	String.	But	when	I	see	that	a	String	is
wrapped	with	IO,	I	know	that	this	function	interacts	with	the	outside	world	to	get
that	String.	That’s	pretty	cool.

Does	using	IO	make	a	function	pure?

But	this	is	where	it	gets	interesting:	some	people	state	that	wrapping	
promptUserForUsername’s	return	type	with	IO	makes	it	a	pure	function.

I	am	not	that	person.

The	way	I	look	at	it,	the	first	version	of	promptUserForUsername	returned	
String	values	like	these:

"alvin"

"kim"

"xena"

and	now	the	second	version	of	promptUserForUsername	returns	that	same
infinite	number	of	different	strings,	but	they’re	wrapped	in	the	IO	type:

IO("alvin")

IO("kim")

IO("xena")

Does	that	somehow	make	promptUserForUsername	a	pure	function?	I	sure	don’t
think	so.	It	still	interacts	with	the	outside	world,	and	it	can	still	return	a	different
value	every	time	it’s	called,	so	by	definition	it’s	still	an	impure	function.

I	emphasize	this	point	because	you	may	read	that	Haskell’s	IO	monad	makes	I/O
pure.	However,	as	Martin	Odersky	states	in	this	Google	Groups	Scala	debate:

“The	IO	monad	does	not	make	a	function	pure.	It	just	makes	it
obvious	that	it’s	impure.”

https://groups.google.com/forum/#!topic/scala-debate/xYlUlQAnkmE%5B251-275%5D

Summary

As	I	showed	in	this	lesson,	when	you	need	to	write	I/O	code	in	functional
programming	languages,	the	solution	is	to	violate	the	“Only	Write	Pure
Functions”	rule.	The	general	idea	is	that	you	write	as	much	of	your	application
as	possible	in	an	FP	style,	and	then	handle	the	UI,	Database	I/O,	Web	Service
I/O,	and	File	I/O	in	the	best	way	possible	for	your	current	programming
language	and	tools.

I	also	showed	that	wrapping	your	I/O	functions	in	an	IO	type	doesn’t	make	a
function	pure,	but	it	is	a	great	way	to	add	something	to	your	function’s	type
signature	to	let	every	know,	“This	function	deals	with	I/O.”	When	a	function
returns	a	type	like	IO[String]	you	can	be	very	sure	that	it	reached	into	the
outside	world	to	get	that	String,	and	when	it	returns	IO[Unit],	you	can	be	sure
that	it	wrote	something	to	the	outside	world.

What’s	next

So	far	I’ve	covered	a	lot	of	background	material	about	pure	functions,	and	in	the
next	lesson	I	share	something	that	was	an	important	discovery	for	me:	The
signatures	of	pure	functions	are	much	more	meaningful	than	the	signatures	of
impure	functions.

See	also

The	this	Google	Groups	Scala	debate	where	Martin	Odersky	states,	“The	IO
monad	does	not	make	a	function	pure.	It	just	makes	it	obvious	that	it’s
impure.”

For	more	details	about	the	IO	monad	in	Haskell,	see	the	“I/O	in	Haskell”
section	in	the	longer,	online	version	of	this	lesson.

https://groups.google.com/forum/#!topic/scala-debate/xYlUlQAnkmE%5B251-275%5D
https://alvinalexander.com/scala/fp-book/pure-functions-and-io-input-output

Pure	Function	Signatures	Tell	All
One	thing	you’ll	find	in	FP	is	that	the	signatures	of	pure	functions	tell	you	a	lot
about	what	those	functions	do.	In	fact,	it	turns	out	that	the	signatures	of	functions
in	FP	applications	are	much	more	important	than	they	are	in	OOP	applications.
As	you’ll	see	in	this	lesson:

Because	 pure	 functions	 have	 no	 side	 effects,	 their	 outputs
depend	only	on	 their	 inputs,	 and	all	FP	values	are	 immutable,
pure	function	signatures	tell	you	exactly	what	the	function	does.

OOP	function	signatures

When	writing	OOP	applications	I	never	gave	much	thought	to	method
signatures.	When	working	on	development	teams	I	always	thought,	“Meh,	let	me
see	the	method	source	code	so	I	can	figure	out	what	it	really	does.”	I	remember
one	time	a	junior	developer	wrote	what	should	have	been	a	simple	Java	“setter”
method	named	setFoo,	and	its	source	code	looked	something	like	this:

public	void	setFoo(int	foo)	{

				this.foo	=	foo;

				makeAMeal(foo);

				foo++;

				washTheDishes(foo);

				takeOutTheTrash();

}

In	reality	I	don’t	remember	everything	that	setter	method	did,	but	I	clearly
remember	the	foo++	part,	and	then	saw	that	it	used	the	foo	and	foo++	values	in
other	method	calls.	A	method	that	—according	to	its	signature	—	appeared	to	be
a	simple	setter	method	was	in	fact	much,	much	more	than	that.

I	hope	you	see	the	problem	here:	there’s	no	way	to	know	what’s	really
happening	inside	an	impure	function	without	looking	at	its	source	code.

Therefore,	the	first	moral	of	this	story	is	that	because	OOP	methods	can	have
side	effects,	I	grew	to	only	trust	methods	from	certain	people.

The	second	moral	is	that	this	situation	can’t	happen	with	pure	functions
(certainly	not	as	blatantly	as	this	example).

Signatures	of	pure	functions

The	signatures	of	pure	functions	in	Scala/FP	have	much	more	meaning	than
OOP	functions	because:

They	have	no	side	effects

Their	output	depends	only	on	their	inputs

All	values	are	immutable

To	understand	this,	let’s	play	a	simple	game.

A	game	called,	“What	can	this	pure	function	possible
do?”

As	an	example	of	this	—	and	as	a	first	thought	exercise	—	look	at	this	function
signature	and	ask	yourself,	“If	FOO	is	a	pure	function,	what	can	it	possibly	do?”:

def	FOO(s:	String):	Int	=	???

Ignore	the	name	FOO;	I	gave	the	function	a	meaningless	name	so	you’d	focus
only	on	the	rest	of	the	type	signature	to	figure	out	what	this	function	can
possibly	do.

To	solve	this	problem,	let’s	walk	through	some	preliminary	questions:

Can	this	function	read	user	input?	It	can’t	have	side	effects,	so,	no.

Can	it	write	output	to	a	screen?	It	can’t	have	side	effects,	so,	no.

Can	it	write	(or	read)	information	to	(or	from)	a	file,	database,	web	service,
or	any	other	external	data	source?	No,	no,	no,	and	no.

So	what	can	it	do?

If	you	said	that	there’s	an	excellent	chance	that	this	function	does	one	of	the
following	things,	pat	yourself	on	the	back:

Converts	a	String	to	an	Int

Determines	the	length	of	the	input	string

Calculates	a	hashcode	or	checksum	for	the	string

Because	of	the	rules	of	pure	functions,	those	are	the	only	types	of	things	this
function	can	do.	The	Int	result	must	depend	on	the	String	input.	Output
depends	only	on	input.

A	second	game	example

Here’s	a	second	example	that	shows	how	the	signatures	of	pure	functions	tell
you	a	lot	about	what	a	function	does.	Given	this	simple	class:

case	class	Person[name:	String]

What	can	a	pure	function	with	this	signature	possibly	do?:

def	FOO(people:	Seq[Person],	n:	Int):	Person	=	???

I’ll	pause	to	let	you	think	about	it	…

By	looking	only	at	the	function	signature,	you	can	guess	that	the	function
probably	returns	the	Nth	element	of	the	given	List[Person].

That’s	pretty	cool.	Because	it’s	a	pure	function	you	know	that	the	Person	value
that’s	returned	must	be	coming	from	the	Seq[Person]	that	was	passed	in.

As	an	additional	exercise,	if	I	remove	the	n	input	parameter	from	the	function:

def	FOO(people:	Seq[Person]):	Person	=	???

Can	you	guess	what	this	function	can	do?

(Pause	to	let	you	think	…)

My	best	guesses	are:

It’s	a	head	function

It’s	a	tail	function	(that	returns	only	the	last	element)

It’s	a	Frankenstein’s	Monster	function	that	builds	one	Person	from	many	
Persons

A	third	game	example

Here’s	a	different	variation	of	the	“What	can	this	pure	function	possibly	do?”
game.	Imagine	that	you	have	the	beginning	of	a	function	signature,	where	the
input	parameters	are	defined,	but	the	return	type	is	undefined:

def	foo(s:	String,	i:	Int)	...

Given	only	this	information,	can	you	answer	the	“What	can	this	function
possibly	do?”	question?	That	is,	can	you	answer	that	question	if	you	don’t	know
what	the	function’s	return	type	is?

(Another	pause	to	let	you	think	…)

The	answer	is	“no.”	Even	though	foo	is	a	pure	function,	you	can’t	tell	what	it
does	until	you	see	its	return	type.	But	…

Even	though	you	can’t	tell	exactly	what	it	does,	you	can	guess	a	little	bit.	For
example,	because	output	depends	only	on	input,	these	return	types	are	all
allowed	by	the	definition	of	a	pure	function:

def	foo1(s:	String,	i:	Int):	Char	=	???

def	foo2(s:	String,	i:	Int):	String	=	???

def	foo3(s:	String,	i:	Int):	Int	=	???

def	foo4(s:	String,	i:	Int):	Seq[String]	=	???

Even	though	you	can’t	tell	what	this	function	does	without	seeing	its	return	type,
I	find	this	game	fascinating.	Where	OOP	method	signatures	had	no	meaning	to
me,	I	can	make	some	really	good	guesses	about	what	FP	method	signatures	are
trying	to	tell	me	—	even	when	the	function	name	is	meaningless.

Trying	to	play	the	game	with	an	impure	method

Let’s	look	at	one	last	example.	What	can	this	method	possibly	do?:

def	foo(p:	Person):	Unit	=	...

Because	it	returns	Unit	(nothing),	it	must	have	a	side	effect	of	some	sort.	You
can’t	know	what	those	side	effects	are,	but	you	can	guess	that	it	may	do	any	or
all	of	these	things:

Write	to	STDOUT

Write	to	a	file

Write	to	a	database

Write	to	a	web	service

Update	some	other	variable(s)	with	the	data	in	p

Mutate	the	data	in	p

Ignore	p	and	do	something	totally	unexpected

As	you	can	see,	trying	to	understand	what	an	impure	method	can	possibly	do	is
much	more	complicated	than	trying	to	understand	what	a	pure	function	can
possibly	do.	As	a	result	of	this,	I	came	to	understand	this	phrase:

Pure	function	signatures	tell	all.

Summary

As	shown	in	this	lesson,	when	a	method	has	side	effects	there’s	no	telling	what	it
does,	but	when	a	function	is	pure	its	signature	lets	you	make	very	strong	guesses
at	what	it	does	—	even	when	you	can’t	see	the	function	name.

The	features	that	make	this	possible	are:

The	output	of	a	pure	function	depends	only	on	its	inputs

Pure	functions	have	no	side	effects

All	values	are	immutable

What’s	next

Now	that	I’ve	written	several	small	lessons	about	pure	functions,	the	next	two
lessons	will	show	how	combining	pure	functions	into	applications	feels	both	like
(a)	algebra	and	(b)	Unix	pipelines.

Functional	Programming	as	Algebra
Introduction

I	like	to	start	most	lessons	with	a	relevant	quote,	and	this	one	comes	from	the
book,	Land	of	Lisp:

“Some	advanced	Lispers	will	cringe	when	someone	says	that	a
function	 ‘returns	 a	 value.’	 This	 is	 because	 Lisp	 derives	 from
something	 called	 lambda	 calculus,	 which	 is	 a	 fundamental
programming-like	algebra	developed	by	Alonzo	Church.	In	the
lambda	calculus	you	‘run’	a	program	by	performing	substitution
rules	 on	 the	 starting	 program	 to	 determine	 the	 result	 of	 a
function.	 Hence,	 the	 result	 of	 a	 set	 of	 functions	 just	 sort	 of
magically	 appears	 by	 performing	 substitutions;	 never	 does	 a
function	consciously	‘decide’	to	return	a	value.	Because	of	this,
Lisp	purists	prefer	to	say	that	a	function	‘evaluates	to	a	result.’”

Here’s	another	quote,	from	the	book,	Thinking	Functionally	with	Haskell:

“FP	 has	 a	 simple	mathematical	 basis	 that	 supports	 equational
reasoning	about	the	properties	of	programs.”

Because	of	functional	programming’s	main	features	—	pure	functions	and
immutable	values	—	writing	FP	code	is	like	writing	algebraic	equations.
Because	I	always	liked	algebra	and	thought	it	was	simple,	this	made	FP
appealing	to	me.

I’ll	demonstrate	what	I	mean	in	this	lesson.

http://amzn.to/1PjyUeL
http://amzn.to/1PAJZtK

Goals

The	first	goal	of	this	lesson	is	to	give	some	examples	of	how	FP	code	is	like
algebra.

A	second	goal	of	this	lesson	is	to	keep	building	an	“FP	way	of	thinking”	about
programming	problems.	The	mindset	of	this	lesson	is	that	each	pure	function
you	write	is	like	writing	an	algebraic	equation,	and	then	gluing	those	functions
together	to	create	a	program	is	like	combining	a	series	of	algebraic	equations
together	to	solve	a	math	problem.

As	the	first	quote	I	shared	states,	when	you	begin	to	think	about	your	functions
as	“evaluating	to	a	result,”	you’ll	be	in	a	state	of	mind	where	you’re	thinking
about	solving	problems	and	writing	your	code	as	being	like	writing	algebraic
equations,	and	that’s	a	good	thing.

Background:	Algebra	as	a	reason	for	“Going	FP”

Hopefully	you’ll	find	your	own	reasons	for	“Going	FP,”	but	for	me	the	lightbulb
went	on	over	my	head	when	I	realized	that	FP	let	me	look	at	my	code	this	way.
Gluing	pure	functions	together	felt	like	combining	a	series	of	algebraic	equations
together	—	i.e.,	algebraic	substitution	—	and	because	I	like	algebra,	this	was	a
good	thing.

Before	learning	FP,	my	background	was	in	OOP.	I	first	learned	and	then	taught
Java	and	OOP	in	the	1990s	and	early	2000s,	and	with	that	background	I	always
looked	at	problems	from	the	eyes	of	an	OOP	developer.	OOP	never	made	me	see
writing	code	as	being	like	writing	mathematical	expressions.	I	always	thought,
“Okay,	these	things	here	are	my	objects	(Pizza,	Topping,	Order),	these	are	their
behaviors	(addTopping),	and	they	hide	their	internal	workings	from	other
objects.”

But	since	learning	FP	I	now	see	my	code	as	being	more	like	algebra,	and	it’s	a
very	different	perspective.	I	clearly	remember	my	first	thought	when	I	saw	the
connection	between	FP	and	algebra:

“Whoa	…	if	my	function’s	output	depends	solely	on	 its	 input,
well,	shoot,	I	can	always	write	one	pure	function.	If	I	can	write
one	 pure	 function,	 then	 I	 can	write	 another,	 and	 then	 another.
And	then	once	they’re	all	working	I	can	glue	them	together	to
form	a	complete	solution,	like	a	series	of	equations.	And	since
they’re	all	pure	functions	they	can’t	really	fail	—	especially	not
because	 of	 hidden	 state	 issues	 —	 at	 least	 not	 if	 I	 test	 them
properly.”

Sometimes	programming	can	get	a	little	overwhelming	when	you	think	about
writing	an	entire	application,	but	when	I	realized	that	I	can	always	write	one
pure	function,	that	gave	me	a	tremendous	sense	of	confidence.

As	 a	 programming	 tip,	 when	 you’re	 writing	 a	 pure	 function,
think	of	 that	 function	as	your	world,	your	only	concern	 in	 the

entire	world.	Because	“output	depends	only	on	 input,”	all	you
have	 to	 think	 about	 is	 that	 some	 inputs	 are	 coming	 into	 your
function	 (your	 world),	 and	 all	 you	 need	 to	 do	 is	 create	 an
algorithm	to	transform	those	inputs	into	the	desired	result.

Background:	Defining	algebra

It’s	important	to	understand	what	“algebra”	is	so	you	can	really	internalize	this
lesson.	Unfortunately,	trying	to	find	a	good	definition	of	algebra	is	difficult
because	many	people	go	right	from	the	word	“algebra”	to	“mathematics,”	and
that’s	not	what	I	have	in	mind.	This	informal	definition	of	algebra	by	Daniel
Eklund	fits	my	way	of	thinking	a	little	better:

For	 purposes	 of	 simplicity,	 let	 us	 define	 algebra	 to	 be	 two
things:	1)	a	SET	of	objects	(not	“objects”	as	in	object-oriented),
and	2)	 the	OPERATIONS	used	on	those	objects	 to	create	new
objects	from	that	set.

As	emphasized,	the	key	words	in	that	sentence	are	set	and	operations.
Mr.	Eklund	goes	on	to	define	“numeric	algebra”:

In	 the	 case	 of	numeric	 algebra	—	 informally	 known	 as	 high-
school	algebra	—	the	SET	is	the	set	of	numbers	(whether	they
be	 natural,	 rational,	 real,	 or	 complex)	 and	 the	 OPERATIONS
used	on	 these	objects	 can	be	 (but	definitely	not	 limited	 to	be)
addition	or	multiplication.	The	algebra	of	numbers	is	therefore
the	 study	 of	 this	 set,	 and	 the	 laws	 by	 which	 these	 operators
generate	(or	don’t	generate)	new	members	from	this	set.

As	an	example,	a	set	of	natural	numbers	is	[0,1,2	…	infinity].	Operations	on	that
set	can	be	add,	subtract,	and	multiply,	and	new	members	are	generated	using
these	operators,	such	as	1	+	2	yielding	3.

Mr.	Eklund	goes	on	to	define	other	types	of	algebras,	but	for	our	purposes	I’ll
just	share	one	more	sentence:

The	key	thing	to	realize	here	is	that	an	algebra	lets	us	talk	about
the	 objects	 and	 the	 operations	 abstractly,	 and	 to	 consider	 the
laws	 that	 these	 operations	 obey	 as	 they	 operate	 on	 the

http://merrigrove.blogspot.com/2011/12/another-introduction-to-algebraic-data.html
https://en.wikipedia.org/wiki/Natural_number

underlying	set.

In	Scala/FP,	the	“objects”	Mr.	Eklund	refers	to	can	be	thought	of	as	the	built-in
Scala	types	and	the	custom	types	you	create,	and	the	“operations”	can	be	thought
of	as	the	pure	functions	you	write	that	work	with	those	types.

For	instance,	in	a	pizza	store	application,	the	“set”	might	include	types	like	
Pizza,	Topping,	Customer,	and	Order.	To	find	the	operations	that	work	with	that
set,	you	have	to	think	about	the	problem	domain.	In	a	pizza	store	you	add
toppings	to	a	pizza	that	a	customer	wants,	and	then	you	can	add	one	or	more
pizzas	to	an	order	for	that	customer.	The	types	are	your	set	(the	nouns),	and	the
functions	you	create	define	the	only	possible	operations	(verbs)	that	can
manipulate	that	set.

Given	that	discussion,	a	Scala	trait	for	a	Pizza	type	might	look	like	this:

trait	Pizza	{

				def	setCrustSize(s:	CrustSize):	Pizza

				def	setCrustType(t:	CrustType):	Pizza

				def	addTopping(t:	Topping):	Pizza

				def	removeTopping(t:	Topping):	Pizza

				def	getToppings():	Seq[Topping]

}

In	the	same	way	that	1	is	a	natural	number	and	can	work	with	operations	like
add	and	subtract,	Pizza	is	a	type	and	can	work	with	the	operations	(methods)	it
defines.

From	algebra	to	FP

If	you	haven’t	worked	with	algebra	in	a	while,	it	may	help	to	see	a	few	algebraic
functions	as	a	refresher:

f(x)	=	x	+	1

f(x,y)	=	x	+	y

f(a,b,c,x)	=	a	*	x^2	+	b*x	+	c

It’s	easy	to	write	those	algebraic	equations	as	pure	functions	in	Scala/FP.
Assuming	that	all	the	values	are	integers,	they	can	be	written	as	these	functions
in	Scala:

def	f(x:	Int)	=	x	+	1

def	f(x:	Int,	y:	Int)	=	x	+	y

def	f(a:	Int,	b:	Int,	c:	Int,	x:	Int)	=	a*x*x	+	b*x	+	c

These	are	pure	functions	(“output	depends	only	on	input”)	that	use	only
immutable	values.	This	shows	one	way	that	FP	is	like	algebra,	by	starting	with
algebraic	functions	and	then	writing	the	Scala/FP	versions	of	those	functions.

From	FP	to	algebra

Similarly	I	can	start	with	Scala/FP	code	and	show	how	it	looks	like	algebraic
equations.	For	example,	take	a	look	at	these	Scala	expressions:

val	emailDoc	=	getEmailFromServer(src)

val	emailAddr	=	getAddr(emailDoc)

val	domainName	=	getDomainName(emailAddr)

You	can	see	how	that	code	is	like	algebra	if	I	add	comments	to	it:

val	emailDoc	=	getEmailFromServer(src)					//	val	b	=	f(a)

val	emailAddr	=	getAddr(emailDoc)										//	val	c	=	g(b)

val	domainName	=	getDomainName(emailAddr)		//	val	d	=	h(c)

No	matter	what	these	functions	do	behind	the	scenes,	they	are	essentially
algebraic	expressions,	so	you	can	reduce	them	just	like	you	reduce	mathematical
expressions.	Using	simple	substitution,	the	first	two	expressions	can	be
combined	to	yield	this:

val	emailAddr	=	getAddr(getEmailFromServer(src))

val	domainName	=	getDomainName(emailAddr)

Then	those	two	expressions	can	be	reduced	to	this:

val	domainName	=	getDomainName(getAddr(getEmailFromServer(src)))

If	you	look	at	the	comments	I	added	to	the	code,	you’ll	see	that	I	started	with
this:

val	b	=	f(a)

val	c	=	g(b)

val	d	=	h(c)

and	reduced	it	to	this:

val	d	=	h(g(f(a)))

I	can	make	these	substitutions	because	the	code	is	written	as	a	series	of
expressions	that	use	pure	functions.

You	can	write	the	code	in	the	three	lines,	or	perform	the	substitutions	to	end	up
with	just	one	line.	Either	approach	is	valid,	and	equal.	What	makes	this	possible
is	that	other	than	getEmailFromServer(src),	which	is	presumably	an	impure

function,	the	code:

Only	uses	pure	functions	(no	side	effects)

Only	uses	immutable	values

When	your	code	is	written	like	that,	it	really	is	just	a	series	of	algebraic
equations.

Benefit:	Algebra	is	predictable

A	great	thing	about	algebra	is	that	the	results	of	algebraic	equations	are
incredibly	predictable.	For	example,	if	you	have	a	double	function	like	this:

def	double(i:	Int)	=	i	*	2

you	can	then	call	it	with	the	number	1	an	infinite	number	of	times	and	it	will
always	return	2.	That	may	seem	obvious,	but	hey,	it’s	how	algebra	works.

Because	of	this,	you	know	that	these	things	will	always	happen:

println(double(1))			//	prints	2

println(double(2))			//			"				4

println(double(3))			//			"				6

And	you	also	know	that	this	can	never	happen:

println(double(1))		//	prints	5		(can	never	happen)

println(double(1))		//	prints	17	(can	never	happen)

With	pure	functions	you	can	never	have	two	different	return	values	for	the	same
input	value(s).	This	can’t	happen	with	pure	functions,	and	it	can’t	happen	with
algebra,	either.

A	game:	What	can	possibly	go	wrong?

A	great	thing	about	thinking	about	your	code	as	algebra	is	that	you	can	look	at
one	of	your	pure	functions	and	ask,	“What	can	possibly	go	wrong	with	this
function?”	When	you	do	so,	I	hope	that	trying	to	find	any	problems	with	it	will
be	very	difficult.	After	thinking	about	it	long	and	hard	I	hope	you	get	to	the	point
of	saying,	“Well,	I	guess	the	JVM	could	run	out	of	RAM	(but	that	doesn’t	have
anything	directly	to	do	with	my	function).”

My	point	is	that	because	it’s	isolated	from	the	rest	of	the	world,	it	should	be	a
real	struggle	to	think	about	how	your	pure	function	can	possibly	fail.	When
you’re	writing	OOP	code	you	have	to	concern	yourself	that	“output	does	not
only	depend	on	input,”	which	means	that	you	have	to	think	about	everything	else
in	the	application	that	can	fail	or	be	a	problem	—	i.e.,	things	like	(a)	state	of	the
application	outside	the	function’s	scope,	and	(b)	variables	being	mutated	while
you’re	trying	to	use	them	—	but	with	FP	code	you	don’t	have	those	concerns.

For	example,	imagine	that	you’re	writing	a	multi-threaded	imperative
application,	you’ve	been	given	a	list	of	users,	and	the	purpose	of	your	function	is
to	sort	that	list	of	users.	There	are	a	lot	of	ways	to	sort	lists,	so	that	isn’t	hard,	but
what	happens	to	your	code	if	that	list	of	users	is	mutated	by	another	thread	while
your	function	is	trying	to	sort	the	list?	For	instance,	imagine	that	20	users	are
removed	from	the	list	while	you’re	trying	to	sort	it;	what	will	happen	to	your
function?

You	can	demonstrate	this	problem	for	yourself.	Remembering	that	Scala	Array
elements	can	be	mutated,	imagine	that	you	have	an	Array[String]	like	this:

//	1	-	a	mutable	sequence	to	work	with

val	arr	=	Array("one",	"two",	"three",	"four",	"five")

Then	imagine	that	you	begin	printing	the	length	of	each	string	in	a	different
thread,	like	this:

//	2	-	start	printing	the	numbers	in	a	different	thread

val	thread	=	new	Thread	{

				override	def	run	{

								printStringLength(arr)

				}

}

thread.start

If	you	now	mutate	the	array	like	this:

//	3	-	mutate	the	sequence	to	see	how	that	other	thread	works

Thread.sleep(100)

arr(3)	=	null

you	can	easily	generate	a	NullPointerException	if	your	printStringLength
method	looks	like	this:

def	printStringLength(xs:	Seq[String])	{

				for	(x	<-	xs)	{

								println(x.length)

								Thread.sleep(200)

				}

}

Conversely,	it’s	impossible	to	replicate	this	example	if	you	use	a	Scala	Vector	or
List.	Because	these	sequences	are	immutable,	you	can’t	accidentally	mutate	a
sequence	in	one	thread	while	it’s	being	used	in	another.

Transform	as	you	copy,	don’t	mutate

In	my	previous	Java/OOP	life	I	mutated	variables	all	the	time.	That’s	how	I	did
almost	everything,	and	frankly,	I	didn’t	know	there	was	another	way.	I	knew	that
a	Java	String	was	immutable,	but	based	on	my	OOP	thinking,	I	thought	this	was
more	of	a	pain	than	anything	that	was	actually	helpful	to	me.

But	when	you	think	of	your	code	as	algebra,	you	realize	that	mutating	a	variable
has	nothing	to	do	with	algebra.	For	instance,	I	never	had	a	math	instructor	who
said,	“Okay,	x	is	currently	10,	but	let’s	go	ahead	and	add	1	to	it	so	x	is	now	11.”
Instead	what	they	said	is,	“Okay,	we	have	x,	which	is	10,	and	what	we’ll	do	is
add	1	to	it	to	get	a	new	value	y”:

x	=	10

y	=	x	+	1

In	FP	code	you	do	the	same	thing.	You	never	mutate	x,	but	instead	you	use	it	as	a
foundation	to	create	a	new	value.	In	Scala,	you	typically	do	this	using	the	case
class	copy	method.

The	case	class	copy	method

When	you	use	a	Scala	case	class	you	automatically	get	a	copy	method	that
supports	this	“transform	as	you	copy”	algebraic	philosophy.

A	simple	way	to	demonstrate	this	is	to	show	what	happens	when	a	person
changes	their	name.	I’ll	demonstrate	this	with	two	variations	of	a	Person	class,
first	showing	an	OOP/imperative	approach,	and	then	showing	an	FP/algebraic
approach.

With	OOP	code,	when	Jonathan	Stuart	Leibowitz	changes	his	name	to	Jon
Stewart,	you	write	code	like	this:

//	oop	design

class	Person(var	name:	String)

//	create	an	instance	with	the	original	name

var	p	=	new	Person("Jonathan	Stuart	Leibowitz")

//	change	the	name	by	mutating	the	instance

p.name	=	"Jon	Stewart"

In	my	OOP	life	I	wrote	code	like	that	all	the	time	and	never	gave	it	a	second
thought.	But	you	just	don’t	do	that	sort	of	thing	in	algebra.	Instead,	what	you	do
in	FP/algebraic	code	is	this:

//	fp	design

case	class	Person(name:	String)

//	create	an	instance	with	the	original	name

val	p	=	Person("Jonathan	Stuart	Leibowitz")

//	create	a	new	instance	with	the	"update	as	you	copy"	approach

val	p2	=	p.copy(name	=	"Jon	Stewart")

The	FP	approach	uses	the	copy	method	to	create	a	new	value	p2	from	the
original	p,	resulting	in	p2.name	being	“Jon	Stewart.”

Mathematically,	the	last	two	lines	of	the	FP	approach	are	similar	to	this:

val	p		=	a

val	p2	=	p	+	b

It’s	good	to	see	the	case	class	copy	approach	now,	because	(a)	it’s	a	Scala/FP
idiom,	and	(b)	we’re	going	to	use	it	a	lot	in	this	book.

As	 I	 mentioned	 earlier,	 I	 never	 thought	 of	 my	 OOP	 code	 as
having	the	slightest	thing	to	do	with	algebra.	Now	I	think	of	it
that	way	all	 the	 time,	and	 that	 thought	process	 is	 the	 result	of
writing	pure	functions	and	using	only	immutable	variables.

Later	in	this	book:	Algebraic	Data	Types

Another	way	that	FP	relates	to	algebra	is	with	a	concept	known	as	Algebraic
Data	Types,	or	ADTs.	Don’t	worry	about	that	name,	ADT	is	a	simple	concept.
For	example,	this	code	is	an	ADT:

sealed	trait	Bool

case	object	True	extends	Bool

case	object	False	extends	Bool

This	code	from	the	book,	Beginning	Scala,	is	also	an	ADT:

sealed	trait	Shape

case	class	Circle(radius:	Double)	extends	Shape

case	class	Square(length:	Double)	extends	Shape

case	class	Rectangle(h:	Double,	w:	Double)	extends	Shape

I	don’t	want	to	get	into	this	in	much	detail	right	now,	I	just	want	to	let	you	know
that	there’s	more	algebra	later	in	this	book.	The	“algebra”	in	ADTs	is	described
on	the	Haskell	wiki	like	this:

“Algebraic”	refers	to	the	property	that	an	Algebraic	Data	Type
is	 created	 by	 “algebraic”	 operations.	 The	 “algebra”	 here	 is
“sums”	and	“products”	(of	types).

Again,	don’t	fear	the	term;	it’s	another	complicated-sounding	term	for	a	simple
concept,	as	shown	in	these	examples.

http://amzn.to/1MRH8tp
https://wiki.haskell.org/Algebraic_data_type

Summary

In	this	lesson	I	tried	to	show	a	few	ways	that	functional	programming	is	like
algebra.	I	showed	how	simple	algebraic	functions	can	be	written	as	pure
functions	in	Scala,	and	I	showed	how	a	series	of	Scala	expressions	looks	just	like
a	series	of	algebraic	functions.	I	also	demonstrated	how	a	series	of	expressions
can	be	reduced	using	simple	algebraic	substitution.	I	also	noted	that	in	the	future
you’ll	learn	about	a	term	named	Algebraic	Data	Types.

The	intent	of	this	lesson	is	to	help	you	keep	building	an	“FP	way	of	thinking”
about	programming	problems.	If	you	write	your	code	using	only	pure	functions
and	immutable	variables,	your	code	will	natural	migrate	towards	this	algebraic
way	of	thinking:

Pure	Functions	+	Immutable	Values	==	Algebra

Who	knows,	you	may	even	start	saying	that	your	functions	“evaluate	to	a	result.”

See	Also

What	the	Heck	are	Algebraic	Data	Types,	the	Daniel	Eklund	paper

Algebraic	Data	Type	on	Wikipedia

The	Algebra	of	Algebraic	Data	Types

Algebraic	Data	Type	on	the	Haskell	wiki

http://merrigrove.blogspot.com/2011/12/another-introduction-to-algebraic-data.html
https://en.wikipedia.org/wiki/Algebraic_data_type
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
https://wiki.haskell.org/Algebraic_data_type

A	Note	About	Expression-Oriented
Programming

Goals

This	chapter	isn’t	a	lesson	so	much	as	it	as	an	observation	—	a	short	note	that	the
FP	code	I’m	writing	in	this	book	also	falls	into	a	category	known	as	Expression-
Oriented	Programming,	or	EOP.

In	fact,	because	Pure	FP	code	is	more	strict	than	EOP,	FP	is	a	superset	of	EOP.
As	a	result,	we	just	happen	to	be	writing	EOP	code	while	we’re	writing	Scala/FP
code.

Therefore,	my	goals	for	this	lesson	are:

To	show	the	difference	between	statements	and	expressions

To	briefly	explain	and	demonstrate	EOP

To	note	that	all	“Pure	FP”	code	is	also	EOP	code

(I	wrote	about	EOP	in	the	Scala	Cookbook,	so	I’ll	keep	this	discussion	short.)

http://amzn.to/24ivK4G

Statements	and	expressions

When	you	write	pure	functional	code,	you	write	a	series	of	expressions	that
combine	pure	functions.	In	addition	to	this	code	conforming	to	an	FP	style,	the
style	also	fits	the	definition	of	“Expression-Oriented	Programming,”	or	EOP.
This	means	that	every	line	of	code	returns	a	result	(“evaluates	to	a	result”),	and
is	therefore	an	expression	rather	than	a	statement.

As	 noted	 in	 the	 quote	 at	 the	 beginning	 of	 this	 chapter,
statements	 do	 not	 return	 results,	 and	 are	 executed	 solely	 for
their	side	effects.

An	expression	has	the	form:

val	resultingValue	=	somePureFunction(someImmutableValues)

Contrast	that	with	the	OOP	“statement-oriented	code”	I	used	to	write:

order.calculateTaxes()

order.updatePrices()

Those	two	lines	of	code	are	statements	because	they	don’t	have	a	return	value;
they’re	just	executed	for	their	side	effects.

In	FP	and	EOP	you	write	those	same	statements	as	expressions,	like	this:

val	tax	=	calculateTax(order)

val	price	=	calculatePrice(order)

While	that	may	seem	like	a	minor	change,	the	effect	on	your	overall	coding	style
is	huge.	Writing	code	in	an	EOP	style	is	essentially	a	gateway	to	writing	in	an	FP
style.

A	key	point

A	key	point	of	this	lesson	is	that	when	you	see	statements	like	this:

order.calculateTaxes()

order.updatePrices()

you	should	think,	“Ah,	these	are	statements	that	are	called	for	their	side	effects.
This	is	imperative	code,	not	FP	code.”

Scala	supports	EOP	(and	FP)

Scala	provides	strong	support	for	FP	code,	and	therefore,	EOP	code.	As	I	noted
in	the	Scala	Cookbook,	these	are	obviously	expressions:

val	x	=	2	+	2

val	doubles	=	List(1,2,3,4,5).map(_	*	2)

But	it’s	a	little	less	obvious	that	the	if/then	construct	can	also	be	used	to	write
expressions:

val	greater	=	if	(a	>	b)	a	else	b

The	match	construct	also	evaluates	to	a	result,	and	is	used	to	write	expressions:

val	evenOrOdd	=	i	match	{

				case	1	|	3	|	5	|	7	|	9	=>	println("odd")

				case	2	|	4	|	6	|	8	|	10	=>	println("even")

}

And	try/catch	blocks	are	also	used	to	write	expressions:

def	toInt(s:	String):	Int	=	{

				try	{

								s.toInt

				}	catch	{

								case	_	:	Throwable	=>	0

				}

}

http://amzn.to/24ivK4G

Summary

When	every	line	of	code	has	a	return	value,	it’s	said	that	you	are	writing
expressions,	and	using	an	EOP	style.	In	contrast,	statements	are	lines	of	code	that
do	not	have	return	values,	and	are	executed	for	their	side	effects.	When	you	see
statements	in	code	you	should	think,	“This	is	imperative	code,	not	FP	code.”

As	noted	in	this	lesson,	because	EOP	is	a	subset	of	an	FP	style,	when	you	write
Scala/FP	code	you	are	also	writing	EOP	code.

What’s	next

Given	this	background,	the	next	lesson	shows	how	writing	Unix	pipeline
commands	also	fits	an	EOP	style,	and	in	fact,	an	FP	style.

Functional	Programming	is	Like	Unix
Pipelines

Goals

The	primary	goal	of	this	lesson	is	to	show	that	you	can	think	of	writing
functional	programs	as	being	like	writing	Unix	pipeline	commands.	Stated
another	way,	if	you’ve	written	Unix	pipeline	commands	before,	you	have
probably	written	code	in	a	functional	style,	whether	you	knew	it	or	not.

As	a	second,	smaller	goal,	I	want	to	demonstrate	a	few	ways	that	you	can	look	at
your	code	visually	to	help	you	“Think	in	FP.”

Note:	This	section	 is	written	 for	Unix	and	Linux	users.	 If	you
don’t	know	Unix,	 (a)	 I	 highly	 recommend	 learning	 it,	 and	 (b)
you	may	want	 to	 (sadly)	skip	 this	section,	as	 it	may	not	make
much	sense	unless	you	know	the	Unix	commands	that	I	show.

Discussion

One	way	to	think	about	FP	is	that	it’s	like	writing	Unix/Linux	pipeline
commands,	i.e.,	a	series	of	two	or	more	commands	that	you	combine	at	the	Unix
command	line	to	get	a	desired	result.

For	example,	imagine	that	your	boss	comes	to	you	and	says,	“I	need	a	script	that
will	tell	me	how	many	unique	users	are	logged	into	a	Unix	system	at	any	given
time.”	How	would	you	solve	this	problem?

Knowing	Unix,	you	know	that	the	who	command	shows	the	users	that	are
currently	logged	in.	So	you	know	that	you	want	to	start	with	who	—	that’s	your
data	source.	To	make	things	interesting,	let’s	assume	that	who	doesn’t	support
any	command-line	arguments,	so	all	you	can	do	is	run	who	without	arguments	to
generate	a	list	of	users	logged	into	your	system,	like	this:

$	who

al							console		Oct	10	10:01

joe						ttys000		Oct	10	10:44

tallman		ttys001		Oct	10	11:05

joe						ttys002		Oct	10	11:47

who’s	output	is	well	structured	and	consistent.	It	shows	the	username	in	the	first
column,	the	“console”	they’re	logged	in	on	in	the	second	column,	and	the	date
and	time	they	logged	in	on	in	the	last	columns.

Some	Unix	systems	may	show	the	IP	address	the	user	is	logged
in	from.	I	left	that	column	off	of	these	examples	to	keep	things
simple.

If	you	didn’t	have	to	automate	this	solution,	you	could	solve	the	problem	by
looking	at	the	unique	usernames	in	the	first	column.	In	this	case	there	are	four
lines	of	output,	but	only	three	of	the	usernames	are	unique	—	al,	joe,	and	
tallman	—	so	the	answer	to	your	boss’s	question	is	that	there	are	three	unique
users	logged	into	the	system	at	the	moment.

Now	that	you	know	how	to	solve	the	problem	manually,	the	question	becomes,
how	do	you	automate	this	solution?

An	algorithm

The	solution’s	algorithm	appears	to	be:

Run	the	who	command

Create	a	list	of	usernames	from	the	first	column

Get	only	the	unique	usernames	from	that	list

Count	the	size	of	that	list

In	Unix	that	algorithm	translates	to	chaining	these	commands	together:

Start	with	who	as	the	data	source

Use	a	command	like	cut	to	create	the	list	of	usernames

Use	uniq	to	get	only	the	unique	usernames	from	that	list

Use	wc	-l	to	count	those	unique	usernames

Implementing	the	algorithm

A	solution	for	the	first	two	steps	is	to	create	this	simple	Unix	pipeline:

who	|	cut	-d'	'	-f1

That	cut	command	can	be	read	as,	“Using	a	blank	space	as	the	field	separator	(-
d),	print	the	first	field	(-f1)	of	every	row	of	the	data	stream	from	STDIN	to
STDOUT.”	That	pipeline	command	results	in	this	output:

al

joe

tallman

joe

Notice	what	I	did	here:	I	combined	two	Unix	commands	to	get	a	desired	result.
If	you	think	of	the	who	command	as	providing	a	list	of	strings,	you	can	think	of
the	cut	command	as	being	a	pure	function:	it	takes	a	list	of	strings	as	an	input
parameter,	runs	a	transformation	algorithm	on	that	incoming	data,	and	produces
an	output	list	of	strings.	It	doesn’t	use	anything	but	the	incoming	data	and	its
algorithm	to	produce	its	result.

As	a	quick	aside,	the	signature	for	a	Scala	cut	function	that	works	like	the	Unix	
cut	command	might	be	written	like	this:

def	cut(strings:	Seq[String],

								delimiter:	String,

								field:	Int):	Seq[String]	=	???

Getting	back	to	the	problem	at	hand,	my	current	pipeline	command	generates
this	output:

al

joe

tallman

joe

and	I	need	to	transform	that	data	into	a	“number	of	unique	users.”

To	finish	solving	the	problem,	all	I	need	to	do	is	to	keep	combining	more	pure
functions	—	er,	Unix	commands	—	to	get	the	desired	answer.	That	is,	I	need	to
keep	transforming	the	data	to	get	it	into	the	format	I	want.

The	next	thing	I	need	to	do	is	reduce	that	list	of	all	users	down	to	a	list	of	unique
users.	I	do	that	by	adding	the	uniq	command	to	the	end	of	the	current	pipeline:

who	|	cut	-d'	'	-f1	|	uniq

uniq	transforms	its	STDIN	to	this	STDOUT:

al

joe

tallman

Now	all	I	have	to	do	to	get	the	number	of	unique	users	is	count	the	number	of
lines	that	are	in	the	stream	with	wc	-l:

who	|	cut	-d'	'	-f1	|	uniq	|	wc	-l

That	produces	this	output:

							3

Whoops.	What’s	that	3	doing	way	over	there	to	the	right?	I	want	to	think	of	my
result	as	being	an	Int	value,	but	this	is	more	like	a	String	with	a	bunch	of
leading	spaces.	What	to	do?

Well,	it’s	Unix,	so	all	I	have	to	do	is	add	another	command	to	the	pipeline	to
transform	this	string-ish	result	to	something	that	works	more	like	an	integer.

There	are	many	ways	to	handle	this,	but	I	know	that	the	Unix	tr	command	is	a
nice	way	to	remove	blank	spaces,	so	I	add	it	to	the	end	of	the	current	pipeline:

who	|	cut	-d'	'	-f1	|	uniq	|	wc	-l	|	tr	-d	'	'

That	gives	me	the	final,	desired	answer:

3

That	looks	more	like	an	integer,	and	it	won’t	cause	any	problem	if	I	want	to	use
this	result	as	an	input	to	some	other	command	that	expects	an	integer	value	(with
no	leading	blank	spaces).

If	 you’ve	 never	 used	 the	 tr	 command	 before,	 it	 stands	 for
translate,	and	I	wrote	a	few	tr	command	examples	many	years
ago.

http://alvinalexander.com/unix/edu/un010011/

The	solution	as	a	shell	script

Now	that	I	have	a	solution	as	a	Unix	pipeline,	I	can	convert	it	into	a	little	shell
script.	For	the	purposes	of	this	lesson,	I’ll	write	it	in	a	verbose	manner	rather
than	as	a	pipeline:

WHO=`who`

RES1=`echo	$WHO		|	cut	-d'	'	-f1`

RES2=`echo	$RES1	|	uniq`

RES3=`echo	$RES2	|	wc	-l`

RES4=`echo	$RES3	|	tr	-d	'	'`

echo	$RES4

Hmm,	that	looks	suspiciously	like	a	series	of	expressions,	followed	by	a	print
statement,	doesn’t	it?	Some	equivalent	Scala	code	might	look	like	this:

val	who:	Seq[String]	=	getUsers			//	an	impure	function

val	res1	=	cut(who,	"	",	1)

val	res2	=	uniq(res1)

val	res3	=	countLines(res2)

val	res4	=	trim(res3)

println(res4)																					//	a	statement

Combining	simple	expressions

I	usually	write	“one	expression	at	a	time”	code	like	this	when	I	first	start	solving
a	problem,	and	eventually	see	that	I	can	combine	the	expressions.	For	example,
because	the	first	and	last	lines	of	code	are	impure	functions	I	might	want	to	leave
them	alone,	but	what	about	these	remaining	lines?:

val	res1	=	cut(who,	"	",	1)

val	res2	=	uniq(res1)

val	res3	=	countLines(res2)

val	res4	=	trim(res3)

In	the	first	line,	because	cut	is	a	pure	function,	res1	and	cut(who,		,	1)	will
always	be	equivalent,	so	I	can	eliminate	res1	as	an	intermediate	value:

val	res2	=	uniq(cut(who,	"	",	1))

val	res3	=	countLines(res2)

val	res4	=	trim(res3)

Next,	because	res2	is	always	equivalent	to	the	right	side	of	its	expression,	I	can
eliminate	res2	as	an	intermediate	value:

val	res3	=	countLines(uniq(cut(who,	"	",	1)))

val	res4	=	trim(res3)

Then	I	eliminate	res3	for	the	same	reason:

val	res4	=	trim(countLines(uniq(cut(who,	"	",	1))))

Because	there	are	no	more	intermediate	values,	it	makes	sense	to	rename	res4:

val	result	=	trim(countLines(uniq(cut(who,	"	",	1))))

If	you	want,	you	can	write	the	entire	original	series	of	expressions	and
statements	—	including	getUsers	and	the	println	statement	—	like	this:

println(trim(countLines(uniq(cut(getUsers,	"	",	1)))))

As	a	recap,	I	started	with	this:

val	who:	Seq[String]	=	getUsers

val	res1	=	cut(who,	"	",	1)

val	res2	=	uniq(res1)

val	res3	=	countLines(res2)

val	res4	=	trim(res3)

println(res4)

and	ended	up	with	this:

println(trim(countLines(uniq(cut(getUsers,	"	",	1)))))

The	thing	that	enables	this	transformation	is	that	all	of	those	expressions	in	the
middle	of	the	original	code	are	pure	function	calls.

That	code	shows	the	Scala	equivalent	of	the	Unix	pipeline	solution:

who	|	cut	-d'	'	-f1	|	uniq	|	wc	-l	|	tr	-d	'	'

I	 find	 solutions	 like	 this	 amusing,	 because	 condensed	 Scala
code	 like	 this	 tends	 to	 look	 like	Lisp	 code.	 To	 read	 the	 code,
you	start	at	the	inside	(with	getUsers),	and	work	your	way	out
(to	cut,	then	uniq,	etc.).

As	a	final	note,	you	don’t	have	to	use	this	condensed	style.	Use	whatever	style
you’re	comfortable	with.

How	is	this	like	functional	programming?

“That’s	great,”	you	say,	“but	how	is	this	like	functional	programming?”

Well,	when	you	think	of	the	who	command	as	generating	a	list	of	strings
(Seq[String]),	you	can	then	think	of	cut,	uniq,	wc,	and	tr	as	being	a	series	of
transformer	functions,	because	they	transform	the	input	they’re	given	into	a
different	type	of	output,	as	shown	in	Figure	[fig:unixPipelines1].

Unix	commands	transform	their	input	into	their	output

Looking	at	just	the	wc	command	—	and	thinking	of	it	as	a	pure	function	—	you
can	think	of	it	as	taking	a	Seq[String]	as	its	first	input	parameter,	and	when	it’s
given	the	-l	argument,	it	returns	the	number	of	lines	that	it	counts	in	that	Seq.

In	these	ways	the	wc	command	is	a	pure	function:

It	takes	a	Seq[String]	as	input

It	does	not	rely	on	any	other	state	or	hidden	values

It	does	not	read	or	write	to	any	files

It	does	not	alter	the	state	of	anything	else	in	the	universe

Its	output	depends	only	on	its	input

Given	the	same	input	at	various	points	in	time,	it	always	returns	the	same
value

The	one	thing	that	wc	did	that	I	didn’t	like	is	that	it	left-pads	its	output	with	blank
spaces,	so	I	used	the	tr	command	just	like	the	wc	command	to	fix	that	problem:
as	a	pure	function.

A	nice	way	to	think	of	this	code	is	like	this:

Input	->	Transformer	->	Transformer	...	Transformer->	Output

With	that	thought,	this	example	looks	as	shown	in	Figure	[fig:unixPipelines2].

Using	a	series	of	transformers	in	a	pipeline	to	solve	a	problem

Note	a	few	key	properties	in	all	of	this.	First,	data	flows	in	only	one	direction,	as
shown	in	Figure	[fig:unixPipelinesDataFlow].

Pipeline	data	flows	in	only	one	direction

Second,	Figure	[fig:unixPipelineDataNotModified]	shows	that	the	input	data	a
function	is	given	is	never	modified.

Data	is	never	modified

Finally,	as	shown	in	Figure	[fig:unixFunctionsEntranceExit],	you	can	think	of
functions	as	having	an	entrance	and	an	exit,	but	there	are	no	side	doors	or
windows	for	data	to	slip	in	or	out.

Pure	functions	have	one	entrance	and	one	exit

These	are	all	important	properties	of	pure	functions	(and	Unix	commands).

Pipelines	as	combinators

There’s	another	interesting	point	about	this	example	in	regards	to	FP.	When	I
combine	these	commands	together	like	this:

who	|	cut	-d'	'	-f1	|	uniq	|	wc	-l	|	tr	-d	'	'

I	create	what’s	called	in	Unix	a	pipeline	or	command	pipeline.	In	FP	we	call	that
same	thing	a	combinator.	That	is,	I	combined	the	three	commands	—	pure
functions	—	together	to	get	the	data	I	wanted.

If	I	had	structured	my	Scala	code	differently	I	could	have	made	it	look	like	this:

who.cut(delimiter="	",	field=1)

			.uniq

			.wc(lines	=	true)

			.tr(find="	",	replace="")

I’ll	add	a	more	formal	definition	of	“combinator”	later	in	this	book,	but	in
general,	when	you	see	code	like	this	—	a	chain	of	functions	applied	to	some
initial	data	—	this	is	what	most	people	think	when	they	use	the	term
“combinator.”	This	is	another	case	where	an	FP	term	sounds	scary,	but	remember
that	whenever	you	hear	the	term	“combinator”	you	can	think	“Unix	pipeline.”

Look	back	at	how	you	thought	about	that	problem

At	this	point	it’s	worth	taking	a	moment	to	think	about	the	thought	process
involved	in	solving	this	problem.	If	you	look	back	at	how	it	was	solved,	our
thinking	followed	these	steps:

We	started	with	the	problem	statement:	wanting	to	know	how	many	users
are	logged	into	the	system.

We	thought	about	what	data	source	had	the	information	we	needed,	in	this
case	the	output	of	the	who	command.

At	this	point	I	should	note	that	implicit	in	my	own	thinking	is	that	I	knew
the	structure	of	the	data	I’d	get	from	the	who	command.	That	is,	as	an
experienced	Unix	user	I	knew	that	who	returns	a	list	of	users,	with	each	user
login	session	printed	on	a	new	line.

Depending	on	your	thought	process	you	may	have	thought	of	the	who	output
as	a	multiline	String	or	as	a	List	(or	more	generally	as	a	Seq	in	Scala).
Either	thought	is	fine.

Because	you	knew	the	structure	of	the	who	data,	and	you	know	your	Unix
commands,	you	knew	that	you	could	apply	a	sequence	of	standard
commands	to	the	who	data	to	get	the	number	of	unique	users.

You	may	or	may	not	have	known	beforehand	that	the	wc	-l	output	is
padded	with	blank	spaces.	I	did	not.

The	functional	programming	thought	process

The	reason	I	mention	this	thought	process	is	because	that’s	what	the	functional
programming	thought	process	is	like:

You	start	with	a	problem	to	solve.

You	either	know	where	the	data	source	is,	or	you	figure	it	out.

Likewise,	the	data	is	either	in	a	known	format,	or	in	a	format	you	need	to

learn.

You	clearly	define	the	output	you	want	in	the	problem	statement.

You	apply	a	series	of	pure	functions	to	the	input	data	source(s)	to	transform
the	data	into	a	new	structure.

If	all	of	the	functions	that	you	need	already	exist,	you	use	them;	otherwise
you	write	new	pure	functions	to	transform	the	data	as	needed.

Note	 the	 use	 of	 the	word	apply	 in	 this	 discussion.	 Functional
programmers	like	to	say	that	they	apply	functions	to	input	data
to	get	a	desired	output.	As	you	saw,	using	the	word	“apply”	in
the	previous	discussion	was	quite	natural.

More	exercises

If	you’d	like	to	test	that	process	with	some	more	examples,	here	are	a	few	more
exercises	you	can	work	with	to	get	the	hang	of	an	FP	style	of	problem-solving:

Write	a	pipeline	to	show	the	number	of	processes	owned	by	the	root	user.

Write	a	pipeline	to	show	the	number	of	open	network	connections.	(Tip:	I
use	netstat	as	the	data	source.)

Use	the	lsof	command	to	show	what	computers	your	computer	is	currently
connected	to.

Write	a	pipeline	command	to	show	which	processes	are	consuming	the
most	RAM	on	your	computer.

Write	a	command	to	find	the	most	recent	.gitignore	file	on	your	computer.

Data	flow	diagrams

Besides	demonstrating	how	writing	Unix	pipeline	commands	are	like	writing	FP
code	(and	vice-versa),	I’m	also	trying	to	demonstrate	“The	FP	Thought	Process.”
Because	“output	depends	only	on	input,”	FP	lends	itself	to	something	that	used
to	be	called	“Data	Flow	Diagrams”	—	or	DFDs	—	back	in	the	old	days.

There’s	a	formal	notation	for	DFDs,	but	I	don’t	care	for	it.	(There	are	actually
several	formal	notations.)	If	I	was	going	to	sketch	out	the	solution	to	the	last
problem,	I’d	draw	it	like	the	image	in	Figure	[fig:unixDfdSketch].

A	DFD-like	sketch	of	the	pipeline	solution

Because	I’m	using	my	own	graphical	drawing	language	here,	I’ll	note	that	at	the
moment:

I	prefer	to	draw	data	flows	as	streams	(simple	tables).

I	like	to	annotate	streams	with	their	data	types.

I	like	to	draw	functions	as	rectangles	(because	of	the	whole	front-
door/back-door,	entrance/exit	concept).

I’m	not	suggesting	that	you	have	to	draw	out	every	problem	and	solution	like
this,	but	if	you’re	working	on	a	hard	problem,	this	can	be	helpful.

“Conservation	of	data”

If	I’m	working	on	a	difficult	problem,	or	trying	to	explain	a	solution	to	other
people,	I	like	to	draw	visual	diagrams	like	that.	The	book,	Complete	Systems
Analysis,	by	Robertson	and	Robertson,	defines	something	else	that	they	call	a
“Rule	of	Data	Conservation,”	which	they	state	like	this:

“Each	process	(function)	in	the	data	flow	diagram	must	be	able
to	produce	the	output	data	flows	from	its	input.”

Using	their	diagramming	process,	the	data	that	flows	from	the	who	command
would	be	described	like	this:

Who	=	Username	+	Terminal	+	Date	+	Time

If	you	take	the	time	to	draw	the	data	flows	like	this,	it’s	possible	to	make	sure
that	the	“Rule	of	Data	Conservation”	is	satisfied	—	at	least	assuming	that	you
know	each	function’s	algorithm.

“Black	holes	and	miracles”

A	set	of	Power	Point	slides	I	found	at	DePaul.edu	makes	the	following
interesting	observations	about	data	flows:

Data	stays	at	rest	unless	moved	by	a	process

Processes	cannot	consume	or	create	data

Must	have	at	least	1	input	data	flow	(to	avoid	miracles)

Must	have	at	least	1	output	data	flow	(to	avoid	black	holes)

http://amzn.to/1Q45ZLy

Just	substitute	“function”	for	“process”	in	their	statements,	and	I	really	like	those
last	two	lines	—	avoiding	black	holes	and	miracles	—	as	they	apply	to	writing
pure	functions.

One	caveat	about	this	lesson

In	this	lesson	I	tried	to	show	how	writing	Unix	pipeline	commands	is	like
writing	FP	code.	One	part	I	didn’t	show	is	a	program	that	runs	continuously	until
the	user	selects	a	“Quit”	option.	But	fear	not,	I’ll	show	this	in	an	upcoming
lesson,	I	just	need	to	provide	a	little	more	background	information,	including
covering	topics	like	recursive	programming.

Summary

As	I	mentioned	at	the	beginning,	my	main	goal	for	this	lesson	is	to	demonstrate
that	writing	Unix	pipeline	commands	is	like	writing	functional	code.	Just	like
functional	programming,	when	you	write	Unix	pipeline	commands:

You	have	data	sources,	or	inputs,	that	bring	external	data	into	your
application.

Unix	commands	such	as	cut,	uniq,	etc.,	are	like	pure	functions.	They	take
in	immutable	inputs,	and	generate	output	based	only	on	those	inputs	and
their	algorithms.

You	combine	Unix	commands	with	pipelines	in	the	same	way	that	you	use
FP	functions	as	“combinators.”

Functions	Are	Variables,	Too

Goals

The	goal	of	this	lesson	is	to	show	that	in	a	good	FP	language	like	Scala,	you	can
use	functions	as	values.	In	the	same	way	that	you	create	and	use	String	and	Int
values,	you	can	use	a	function:

val	name	=	"Al"																				//	string	value

val	weight	=	222																			//	int	value

val	double	=	(i:	Int)	=>	i	*	2					//	function	value

To	support	this	goal,	this	lesson	shows:

How	to	define	a	function	as	a	val

The	“implicit”	form	of	the	val	function	syntax

How	to	pass	a	function	to	another	function

Other	ways	to	treat	functions	as	values

http://scala-lang.org/

Scala’s	val	function	syntax

Understanding	Scala’s	val	function	syntax	is	important	because	you’ll	see
function	signatures	in	a	variety	of	places,	including:

When	you	define	val	functions

When	you	define	function	input	parameters	(i.e.,	when	one	function	takes
another	function	as	an	input	parameter)

When	you’re	reading	the	Scaladoc	for	almost	every	method	in	the	Scala
collections	classes

In	the	REPL	output

You’ll	see	examples	of	most	of	these	in	this	lesson.

Formalizing	some	definitions

Before	getting	into	this	lesson,	it	will	help	to	make	sure	that	I’m	formal	about
how	I	use	certain	terminology.	For	instance,	given	this	expression:

val	x	=	42

it’s	important	to	be	clear	about	these	things:

1.	 Technically,	x	is	a	variable,	a	specific	type	of	variable	known	as	an
immutable	variable.	Informally,	I	prefer	to	refer	to	x	as	a	“value,”	as	in
saying,	“x	is	an	integer	value.”	I	prefer	this	because	x	is	declared	as	a	val
field;	it’s	bound	to	the	Int	value	42,	and	that	can	never	change.	But	to	be
consistent	with	(a)	other	programming	resources	as	well	as	(b)	algebraic
terminology,	I’ll	refer	to	x	as	a	variable	in	this	lesson.

Wikipedia	states	that	in	algebra,	“a	variable	is	an	alphabetic	character
representing	a	number,	called	the	value	of	the	variable,	which	is	either
arbitrary	or	not	fully	specified	or	unknown.”	So	in	this	way,	referring	to	x
as	a	variable	is	consistent	with	algebraic	terms.

1.	 x	has	a	type.	In	this	case	the	type	isn’t	shown	explicitly,	but	we	know	that
the	type	is	an	Int.	I	could	have	also	defined	it	like	this:

val	x:	Int	=	42

But	because	programmers	and	the	Scala	compiler	know	that	42	is	an	Int,
it’s	convenient	to	use	the	shorter	form.

1.	 Variables	themselves	have	values,	and	in	this	example	the	variable	x	has	the
value	42.	(As	you	can	imagine,	it	might	be	confusing	if	I	wrote,	“The	value	
x	has	the	value	42.)”

I’m	formalizing	these	definitions	now	because	as	you’re	about	to	see,	these
terms	also	apply	to	creating	functions:	functions	also	have	variable	names,	types,
and	values.

https://en.wikipedia.org/wiki/Variable_%28mathematics%29

Function	literals

If	you	haven’t	heard	of	the	term	“function	literal”	before,	it’s	important	to	know
that	in	this	example:

xs.map(x	=>	x	*	2)

this	part	of	the	code	is	a	function	literal:

x	=>	x	*	2

It’s	just	like	saying	that	this	is	a	string	literal:

"hello,	world"

I	mention	this	because	…

Function	literals	can	be	assigned	to	variables

In	functional	programming	languages,	function	literals	can	be	assigned	to
variable	names.	In	Scala	this	means:

You	can	define	a	function	literal	and	assign	it	to	a	val	field,	which	creates
an	immutable	variable

You	give	that	variable	a	name,	just	like	any	other	val	field

A	function	variable	has	a	value,	which	is	the	code	in	its	function	body

A	function	variable	has	a	type	—	more	on	this	shortly

You	can	pass	a	function	around	to	other	functions,	just	like	any	other	val

You	can	store	a	function	in	a	collection,	such	as	a	Map

In	general,	you	use	a	function	variable	just	like	any	other	variable

The	val	function	syntax

In	the	“Explaining	the	val	Function	Syntax”	appendix,	I	show	two	different
ways	to	define	functions	using	vals	in	Scala.	In	this	lesson	I’ll	use	only	the
following	approach,	which	shows	the	“implicit	return	type”	syntax:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

In	this	case	“implicit”	means	that	this	function	doesn’t	explicitly	state	that	it
returns	a	Boolean	value;	both	you	and	the	compiler	can	infer	that	by	looking	at
the	function	body.

Scala	 also	 has	 a	 val	 function	 syntax	 where	 you	 explicitly
declare	 the	 function’s	 return	 type,	 and	 I	 show	 that	 in	 the
appendix.

I	discuss	the	implicit	syntax	in	detail	in	the	appendix,	but	Figure
	[fig:functionImplicitReturnTypeSyntax]	shows	a	quick	look	at	what	each	of
those	fields	means.

Scala’s	implicit	return	type	syntax	for	functions

If	that	syntax	looks	a	little	unusual,	fear	not,	I	show	more	examples	of	it	in	this
lesson	and	in	the	appendices.

Other	ways	to	write	this	function

This	function	body	is	a	short	way	of	saying	that	it	returns	true	if	the	Int	it	is
given	is	an	even	number,	otherwise	it	returns	false.	If	you	don’t	like	the	way
that	code	reads,	it	may	help	to	put	curly	braces	around	the	function	body:

val	isEven	=	(i:	Int)	=>	{	i	%	2	==	0	}

Or	you	can	make	the	if/else	condition	more	obvious:

val	isEven	=	(i:	Int)	=>	if	(i	%	2	==	0)	true	else	false

You	can	also	put	curly	braces	around	that	function	body:

val	isEven	=	(i:	Int)	=>	{	if	(i	%	2	==	0)	true	else	false	}

Finally,	if	you	prefer	a	really	long	form,	you	can	write	isEven	like	this:

val	isEven	=	(i:	Int)	=>	{

				if	(i	%	2	==	0)	{

								true

				}	else	{

								false

				}

}

Note:	I	only	show	this	last	version	to	show	an	example	of	a	multi-line	function
body.	I	don’t	recommend	writing	short	functions	like	this.

If	you	were	going	to	explain	any	of	these	functions	to	another	person,	a	good
explanation	would	be	like	this:

“The	function	isEven	 transforms	 the	 input	Int	 into	a	Boolean
value	based	on	its	algorithm,	which	in	this	case	is	i	%	2	==	0.”

When	you	read	that	sentence,	it	becomes	clear	that	the	Boolean	return	value	is
implied	(implicit).	I	know	that	when	I	look	at	the	code	I	have	to	pause	for	a
moment	before	thinking,	“Ah,	it	has	a	Boolean	return	type,”	because	it	takes	a
moment	for	my	brain	to	evaluate	the	function	body	to	determine	its	return	type.
Therefore,	even	though	it’s	more	verbose,	I	generally	prefer	to	write	functions
that	explicitly	specify	their	return	type,	because	then	I	don’t	have	to	read	the
function	body	to	determine	the	return	type.

In	my	opinion,	if	(a)	you	have	to	read	a	function’s	body	to	determine	its	return
type	while	(b)	what	you’re	really	trying	to	do	is	understand	some	other	block	of

code	—	such	as	when	you’re	debugging	a	problem	—	then	(c)	this	forces	you	to
think	about	low-level	details	that	aren’t	important	to	the	problem	at	hand.	That’s
just	my	opinion,	but	it’s	what	I’ve	come	to	believe;	I’d	rather	just	glance	at	the
function’s	type	signature.

Stated	another	way,	it’s	often	easier	to	write	functions	that	don’t	declare	their
return	types,	but	it’s	harder	to	maintain	them.

The	general	implicit	val	function	syntax

You	can	come	to	understand	the	implicit	val	function	syntax	by	pasting	a	few
functions	into	the	Scala	REPL.	For	instance,	when	you	paste	this	function	into
the	REPL:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

you’ll	see	that	the	REPL	responds	by	showing	that	isEven	is	an	instance	of
something	called	<function1>:

scala>	val	isEven	=	(i:	Int)	=>	i	%	2	==	0

isEven:	Int	=>	Boolean	=	<function1>

And	when	you	paste	a	function	that	takes	two	input	parameters	into	the	REPL:

val	sum	=	(a:	Int,	b:	Int)	=>	a	+	b

you’ll	see	that	it’s	an	instance	of	<function2>:

scala>	val	sum	=	(a:	Int,	b:	Int)	=>	a	+	b

sum:	(Int,	Int)	=>	Int	=	<function2>

When	I	line	up	the	REPL	output	for	those	two	examples,	like	this:

isEven:		Int								=>	Boolean		=		<function1>

sum:					(Int,	Int)	=>	Int						=		<function2>

you	can	begin	to	see	that	the	general	form	for	the	way	the	REPL	displays
function	variables	is	this:

variableName:	type	=	value

You	can	see	this	more	clearly	when	I	highlight	the	function	types	and	values.
This	is	the	REPL	output	for	isEven:

isEven:	Int	=>	Boolean	=	<function1>

------		--------------			-----------

name									type											value

and	this	is	the	output	for	the	sum	function:

sum:			(Int,	Int)	=>	Int		=		<function2>

----			-----------------					-----------

name									type															value

The	type	of	the	isEven	function	can	be	read	as,	“Transforms	an	Int	value	into	a	
Boolean	value,”	and	the	sum	function	can	be	read	as,	“Takes	two	Int	input
parameters	and	transforms	them	into	an	Int.”

Cool	 FP	 developers	 generally	 don’t	 say,	 “a	 function	 returns	 a
result.”	They	 say	 things	 like,	 “a	 function	 transforms	 its	 inputs
into	 an	 output	 value.”	 Or,	 as	 it’s	 stated	 in	 the	 Land	 of	 Lisp
book,	Lisp	purists	prefer	 to	say	 that	“a	function	evaluates	to	a
result.”	This	may	seem	like	a	minor	point,	but	I	find	that	using
phrases	like	this	helps	my	brain	to	think	of	my	code	as	being	a
combination	of	algebraic	functions	(or	equations)	—	and	that’s
a	good	way	to	think.

http://amzn.to/1PjyUeL

What	<function1>	and	<function2>	mean

In	the	“Explaining	the	val	Function	Syntax”	appendix	I	write	more	about	this
topic,	but	in	short,	the	output	<function1>	indicates	that	isEven	is	an	instance
of	the	Function1	trait	(meaning	that	it	has	one	input	parameter),	and	
<function2>	means	that	sum	is	an	instance	of	the	Function2	trait	(meaning	that
it	has	two	input	parameters).	The	actual	“value”	of	a	function	is	the	full	body	of
the	function,	but	rather	than	show	all	of	that,	the	REPL	uses	<function1>	and	
<function2>	to	show	that	isEven	and	sum	are	instances	of	these	types.

As	I	discuss	in	that	appendix,	behind	the	scenes	the	Scala	compiler	converts	this
function:

val	sum	=	(a:	Int,	b:	Int)	=>	a	+	b

into	code	that	looks	a	lot	like	this:

val	sum	=	new	Function2[Int,	Int,	Int]	{

				def	apply(a:	Int,	b:	Int):	Int	=	a	+	b

}

I	don’t	want	to	get	too	hung	up	on	these	details	right	now,	but	this	is	where	the	
Function2	reference	comes	from.	For	more	information	on	this	topic,	see	the
“Explaining	the	val	Function	Syntax”	appendix.

http://www.scala-lang.org/api/current/scala/Function1.html
http://www.scala-lang.org/api/current/scala/Function2.html

Passing	functions	into	other	functions

A	great	thing	about	functional	programming	is	that	you	can	pass	functions
around	just	like	other	variables,	and	the	most	obvious	thing	this	means	is	that
you	can	pass	one	function	into	another.	A	good	way	to	demonstrate	this	is	with
the	methods	in	the	Scala	collections	classes.

For	example,	given	this	list	of	integers	(List[Int]):

val	ints	=	List(1,2,3,4)

and	these	two	functions	that	take	Int	parameters:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

val	double	=	(i:	Int)	=>	i	*	2

you	can	see	that	isEven	works	great	with	the	List	class	filter	method:

scala>	ints.filter(isEven)

res0:	List[Int]	=	List(2,	4)

and	the	double	function	works	great	with	the	map	method:

scala>	ints.map(double)

res1:	List[Int]	=	List(2,	4,	6,	8)

Passing	functions	into	other	functions	like	this	is	what	functional	programming
is	all	about.

How	this	works	(the	short	answer)

In	the	upcoming	lessons	on	Higher-Order	Functions	(HOFs)	I	show	how	to	write
methods	like	map	and	filter,	but	here’s	a	short	discussion	of	how	the	process	of
passing	one	function	into	another	function	(or	method)	works.

Technically	filter	is	written	as	a	method	that	takes	a	function	as	an	input
parameter.	Any	function	it	accepts	must	(a)	take	an	element	of	the	type	contained
in	the	collection,	and	(b)	return	a	Boolean	value.	Because	in	this	example	filter
is	invoked	on	ints	—	which	is	a	List[Int]	—	it	expects	a	function	that	takes	an
Int	and	returns	a	Boolean.	Because	isEven	transforms	an	Int	to	a	Boolean,	it
works	great	with	filter	for	this	collection.

A	look	at	the	Scaladoc

The	filter	method	Scaladoc	is	shown	in	Figure		[fig:scaladocListFilter].	Notice
how	it	takes	a	predicate	which	has	the	generic	type	A	as	its	input	parameter,	and
it	returns	a	List	of	the	same	generic	type	A.	It’s	defined	this	way	because	filter
doesn’t	transform	the	list	elements,	it	just	filters	out	the	ones	you	don’t	want.

The	filter	method	of	Scala’s	List	class

As	shown	in	Figure		[fig:scaladocListMap],	map	also	takes	a	function	that	works
with	generic	types.	In	my	example,	because	ints	is	a	List[Int],	you	can	think
of	the	generic	type	A	in	the	image	as	an	Int.	Because	map	is	intended	to	let	you
transform	data,	the	generic	type	B	can	be	any	type.	In	my	example,	double	is	a
function	that	takes	an	Int	and	returns	an	Int,	so	it	works	great	with	map.

The	map	method	of	Scala’s	List	class

I	explain	this	in	more	detail	in	upcoming	lessons,	but	the	important	point	for	this
lesson	is	that	you	can	pass	a	function	variable	into	another	function.

Because	functions	are	variables	…

Because	functions	are	variables,	you	can	do	all	sorts	of	things	with	them.	For
instance,	if	you	define	two	functions	like	this:

val	double	=	(i:	Int)	=>	i	*	2

val	triple	=	(i:	Int)	=>	i	*	3

you	can	have	fun	and	store	them	in	a	Map:

val	functions	=	Map(

				"2x"	->	double,

				"3x"	->	triple

)

If	you	put	that	code	into	the	REPL,	you’ll	have	two	functions	stored	as	values
inside	a	Map.

Now	that	they’re	in	there,	you	can	pass	the	Map	around	as	desired,	and	then	later
on	get	references	to	the	functions	using	the	usual	Map	approach,	i.e.,	by
supplying	their	key	values.	For	example,	this	is	how	you	get	a	reference	to	the	
double	function	that’s	stored	in	the	Map:

scala>	val	dub	=	functions("2x")

d:	Int	=>	Int	=	<function1>

This	is	just	like	getting	a	String	or	an	Int	or	any	other	reference	out	of	a	Map	—
you	specify	the	key	that	corresponds	to	the	value.

Now	that	you	have	a	reference	to	the	original	double	function,	you	can	invoke	it:

scala>	dub(2)

res0:	Int	=	4

You	can	do	the	same	things	with	the	other	function	I	put	in	the	Map:

scala>	val	trip	=	functions("3x")

t:	Int	=>	Int	=	<function1>

scala>	trip(2)

res1:	Int	=	6

These	examples	show	how	to	create	functions	as	variables,	store	them	in	a	Map,
get	them	out	of	the	Map,	and	then	use	them.

The	point	of	this	example

Besides	showing	how	to	put	function	variables	into	Maps,	a	key	point	of	this
example	is:	in	Scala	you	can	use	a	function	variable	just	like	a	String	variable
or	an	Int	variable.	The	sooner	you	begin	treating	functions	as	variables	in	your
own	code,	the	further	you’ll	be	down	the	path	of	becoming	a	great	functional
programmer.

Exercise

Given	what	I’ve	shown	so	far,	this	request	may	be	a	bit	of	an	advanced	exercise,
but	…	here’s	that	Map	example	again:

val	functions	=	Map(

				"2x"	->	double,

				"3x"	->	triple

)

Given	that	Map,	sketch	its	data	type	here:

As	an	example	of	what	I’m	looking	for,	this	Map:

val	m	=	Map("age"	->	42)

has	a	data	type	of:

Map[String,	Int]

That’s	what	I’m	looking	for	in	this	exercise:	the	type	of	the	Map	named	
functions.

Solution	to	the	exercise

If	you	pasted	the	Map	code	into	the	REPL,	you	saw	its	output:

Map[String,	Int	=>	Int]	=	Map(2x	->	<function1>,	3x	->	<function1>)

The	first	part	of	that	output	shows	the	Map’s	data	type:

Map[String,	Int	=>	Int]

The	data	type	for	the	Map’s	key	is	String,	and	the	type	for	its	value	is	shown	as	
Int	=>	Int.	That’s	how	you	write	the	type	for	a	function	that	transforms	a

single	Int	input	parameter	to	a	resulting	Int	value.	As	you	know	from	the
previous	discussion,	this	means	that	it’s	an	instance	of	the	Function1	trait.

As	a	second	example,	if	the	Map	was	holding	a	function	that	took	two	Int’s	as
input	parameters	and	returns	an	Int	—	such	as	the	earlier	sum	function	—	its
type	would	be	shown	like	this:

Map[(Int,	Int)	=>	Int]

That	would	be	a	Function2	instance,	because	it	takes	two	input	parameters.

Examples	of	val	functions

To	help	you	get	comfortable	with	the	“implicit	return	type”	version	of	the	val
function	syntax,	here	are	the	functions	I	showed	in	this	lesson:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

val	sum	=	(a:	Int,	b:	Int)	=>	a	+	b

val	double	=	(i:	Int)	=>	i	*	2

val	triple	=	(i:	Int)	=>	i	*	3

And	here	are	a	few	more	functions	that	show	different	input	parameter	types:

val	strlen	=	(s:	String)	=>	s.length

val	concat	=	(a:	String,	b:	String)	=>	a	+	b

case	class	Person(firstName:	String,	lastName:	String)

val	fullName	=	(p:	Person)	=>	s"${p.firstName}	${p.lastName}"

Summary

Here’s	a	summary	of	what	I	showed	in	this	lesson:

Function	literals	can	be	assigned	to	val	fields	to	create	function	variables

To	be	consistent	with	algebra	and	other	FP	resources,	I	refer	to	these	fields
are	variables	rather	than	values

Examples	of	the	val	function	syntax

A	function	is	an	instance	of	a	FunctionN	trait,	such	as	Function1	or	
Function2

What	various	function	type	signatures	look	like	in	the	REPL

How	to	pass	a	function	into	another	function

How	to	treat	a	function	as	a	variable	by	putting	it	in	a	Map

That,	in	general,	you	can	use	a	function	variable	just	like	any	other	variable

In	regards	to	val	function	signatures,	understanding	them	is	important	because
you’ll	see	them	in	many	places,	including	function	literals,	the	Scaladoc,	REPL
output,	and	other	developer’s	code.	You’ll	also	need	to	know	this	syntax	so	you
can	write	your	own	functions	that	take	other	functions	as	input	parameters.

What’s	next

The	next	lesson	shows	that	you	can	use	def	methods	just	like	val	functions.
That’s	important	because	most	developers	prefer	to	use	the	def	method	syntax	to
define	their	algorithms.

See	also

Scala’s	Function1	trait

The	online	version	of	Explaining	the	val	Function	Syntax

http://www.scala-lang.org/api/current/scala/Function1.html
https://alvinalexander.com/scala/fpbook/explaining-scala-val-function-syntax-functional-programming

Using	Methods	As	If	They	Were
Functions

Goals

As	shown	in	Figure		[fig:useMethodsLikeFuncsListMapScaladoc],	have	you
noticed	that	the	Scaladoc	for	the	List	class	map	method	clearly	shows	that	it
takes	a	function?

The	map	method	of	Scala’s	List	class

But	despite	that,	you	can	somehow	pass	it	a	method	and	it	still	works,	as	shown
in	this	code:

//	[1]	create	a	method

scala>	def	doubleMethod(i:	Int)	=	i	*	2

doubleMethod:	(i:	Int)Int

//	[2]	supply	the	method	where	a	function	is	expected

scala>	List(1,2,3).map(doubleMethod)

res0:	List[Int]	=	List(2,	4,	6)

The	intent	of	this	lesson	is	to	provide	an	explanation	of	how	this	works,	and
because	it	works,	how	it	affects	your	Scala/FP	code.

Motivation

I	think	it’s	safe	to	say	that	most	Scala/FP	developers	prefer	to	define	their
“functions”	using	the	def	keyword.	But	because	the	result	isn’t	100%	exactly	the
same	as	writing	a	val	function,	it	can	be	important	to	understand	the	differences
between	the	two	approaches,	which	I	do	in	this	lesson.

A	def	method	is	not	a	val	(Part	1)

From	the	previous	lessons,	you	know	that	this	example	creates	an	instance	of	the
Function1	trait:

scala>	val	isEven	=	(i:	Int)	=>	i	%	2	==	0

isEven:	Int	=>	Boolean	=	<function1>

However,	when	you	write	the	same	algorithm	using	def,	the	REPL	output	shows
that	you	create	something	else:

scala>	def	isEven(i:	Int)	=	i	%	2	==	0

isEven:	(i:	Int)Boolean

The	REPL	output	for	the	two	examples	is	clearly	different.	This	is	because	a	val
function	is	an	instance	of	a	Function0	to	Function22	trait,	but	a	def	method	is
…	well	…	when	you’re	not	working	in	the	REPL	—	when	you’re	writing	a	real
application	—	it’s	a	method	that	needs	to	be	defined	inside	of	a	class,	object,
or	trait.

A	deeper	look

You	can	see	the	differences	between	def	methods	and	val	functions	even	more
clearly	by	working	with	the	Scala	compiler	at	the	command	line.	First,	create	a
file	named	Methods.scala	and	put	this	code	in	it:

class	Methods	{

				def	sum(a:	Int,	b:	Int)	=	a	+	b

}

When	you	compile	that	code	with	scalac:

$	scalac	Methods.scala

and	then	run	javap	on	the	resulting	Methods.class	file	you’ll	see	this	output:

$	javap	Methods

Compiled	from	"Methods.scala"

public	class	Methods	{

				public	int	sum(int,	int);

				public	Methods();

}

sum	is	clearly	a	method	in	the	class	named	Methods.	Conversely,	if	you	create	a	

sum2	function	in	that	same	class,	like	this:

class	Methods	{

				def	sum(a:	Int,	b:	Int)	=	a	+	b

				val	sum2	=	(a:	Int,	b:	Int)	=>	a	+	b

}

and	then	compile	it	with	scalac	and	examine	the	bytecode	again	with	javap,
you’ll	see	that	a	val	function	creates	something	completely	different:

public	Function2<Object,	Object,	Object>	sum2();

(I	edited	that	output	slightly	to	make	it	more	clear.)

This	lesson	explores	these	differences,	particularly	from	the	point	of	view	of
using	def	methods	just	as	though	they	are	real	val	functions.

A	def	method	is	not	a	variable	(Part	2)

In	addition	to	showing	that	def	methods	are	different	than	val	functions,	the
REPL	also	shows	that	a	method	is	not	a	variable	that	you	can	pass	around.	That
is,	you	know	that	you	can	assign	an	Int	to	a	variable	name:

scala>	val	x	=	1

x:	Int	=	1

and	then	show	information	about	that	variable:

scala>	x

res0:	Int	=	1

You	can	also	define	a	function	and	assign	it	to	a	variable:

scala>	val	double	=	(i:	Int)	=>	i	*	2

double:	Int	=>	Int	=	<function1>

and	then	show	information	about	it:

scala>	double

res1:	Int	=>	Int	=	<function1>

But	if	you	define	a	method	using	def:

scala>	def	triple(i:	Int)	=	i	*	3

triple:	(i:	Int)Int

and	then	try	to	show	that	method’s	“variable,”	what	you’ll	actually	get	is	an
error:

scala>	triple

<console>:12:	error:	missing	arguments	for	method	triple;

follow	this	method	with	`_'	if	you	want	to	treat	it	as	a	partially	applied	function

							triple

							^

The	REPL	shows	this	error	because	the	triple	method	is	not	a	variable	in	the
same	way	that	an	Int	or	a	function	is	a	variable.

Not	 yet,	 anyway.	 Very	 shortly	 I’ll	 demonstrate	 how	 you	 can
manually	create	a	variable	from	a	method.

Recap

The	reason	I	show	these	examples	is	to	demonstrate	that	until	you	do	something
like	passing	a	method	into	a	function,	a	def	method	is	not	the	same	as	a	val
function.	Despite	that,	we	know	that	somehow	you	can	later	treat	a	method	as	a
function.

Which	leads	to	the	next	question	…

How	is	it	that	I	can	use	a	method	like	a	function?

The	answer	of	why	you	can	use	a	method	like	a	function	is	hinted	at	in	Version
2.9	of	The	Scala	Language	Specification:

“Eta-expansion	 converts	 an	 expression	 of	method	 type	 to	 an
equivalent	expression	of	function	type.”

What	that	means	is	that	when	the	Scala	compiler	is	given	these	two	lines	of
code:

def	isEven(i:	Int)	=	i	%	2	==	0			//	define	a	method

val	evens	=	nums.filter(isEven)			//	pass	the	method	into	a	function

it	uses	this	“Eta	Expansion”	capability	to	automatically	convert	the	method	
isEven	into	a	function	—	a	true	Function1	instance	—	so	it	can	be	passed	into	
filter.

This	happens	automatically	during	the	compilation	process,	so	you	generally
don’t	even	have	to	think	about.	In	fact,	I	used	Scala	for	almost	a	year	before	I
thought,	“Hey,	how	is	this	even	working?”

How	to	manually	convert	a	method	to	a	function

To	give	you	an	idea	of	how	Eta	Expansion	works,	let’s	use	the	earlier	triple
example.	I	first	defined	this	method:

scala>	def	triple(i:	Int)	=	i	*	3

triple:	(i:	Int)Int

and	then	when	I	tried	to	show	its	value	in	the	REPL,	I	got	this	error:

scala>	triple

<console>:12:	error:	missing	arguments	for	method	triple;

follow	this	method	with	`_'	if	you	want	to	treat	it	as	a	

partially	applied	function

							triple

							^

The	error	message	states	that	you	can	follow	this	method	with	an	underscore	to
treat	the	method	as	a	partially	applied	function.	That’s	true,	and	I	demonstrate	it
in	the	next	lesson.	But	for	this	lesson,	the	important	thing	to	know	is	that	when
you	do	this,	you	create	a	function	from	your	method.

To	demonstrate	this,	go	ahead	and	do	what	the	error	message	says.	Follow	the
method	name	with	an	underscore,	and	also	assign	that	result	to	a	variable	name:

scala>	val	tripleFn	=	triple	_

tripleFn:	Int	=>	Int	=	<function1>

Notice	that	the	signature	of	this	result	is	Int	=>	Int.	This	means	that	tripleFn
is	a	function	that	takes	one	Int	as	an	input	parameter,	and	returns	an	Int	result.
The	REPL	output	also	shows	that	tripleFn	has	a	value	<function1>,	which
means	that	it’s	an	instance	of	the	Function1	trait.	Because	it’s	now	a	real
function,	you	can	display	its	value	in	the	REPL:

scala>	tripleFn

res0:	Int	=>	Int	=	<function1>

This	new	function	works	just	like	the	method	works,	taking	an	Int	input
parameter	and	returning	an	Int	result:

scala>	tripleFn(1)

res0:	Int	=	3

As	you’d	expect,	this	manually-created	function	works	just	fine	with	the	map

method	of	a	List[Int]:

//	create	a	List[Int]

scala>	val	x	=	List(1,2,3)

x:	List[Int]	=	List(1,	2,	3)

//	pass	in	the	`tripleFn`	function

scala>	x.map(tripleFn)

res1:	List[Int]	=	List(3,	6,	9)

This	is	a	short	example	of	what	Eta	Expansion	does	for	you	behind	the	scenes,
during	the	compilation	process.

The	key	point	of	these	examples	is	(a)	this	is	how	things	work	behind	the	scenes,
and	(b)	this	process	happens	automatically	when	you	pass	a	def	method	into	a
function	that	expects	a	function	input	parameter.	Eta	Expansion	also	lets	you	use	
def	methods	just	like	they	are	functions	in	many	other	situations.

It’s	hard	to	really	“prove”	in	the	REPL	that	this	is	what	happens	because	I	don’t
know	of	any	way	to	disable	Eta	Expansion.	While	you	can’t	prove	it	in	the
REPL,	you	can	show	what	happens	behind	the	scenes	with	the	Scala	compiler	at
the	command	line.	If	you	start	with	this	class:

class	EtaExpansionTest	{

				def	double(i:	Int)	=	i	*	2

				def	foo	=	{

								val	xs	=	List(1,2,3)

								xs.map(double)					//	pass	the	`double`	method	into	`map`

				}

}

and	then	compile	it	with	this	command:

$	scalac	-Xprint:all	Methods.scala	

you’ll	see	a	lot	of	output,	and	if	you	take	the	time	to	dig	through	that	output,
you’ll	be	amazed	at	what	the	compiler	does	to	the	xs.map(double)	code	by	the
time	it’s	done	with	it.	I	won’t	go	into	all	of	that	here,	but	if	you’re	interested	in
how	this	process	works,	I	encourage	you	to	dig	into	that	output.

In	some	places	it	doesn’t	happen	automatically

In	the	previous	lesson	I	showed	that	you	can	define	functions	and	then	store
them	in	a	Map.	Can	you	do	the	same	thing	with	methods?

Well,	if	you	define	two	methods	like	this:

def	double(i:	Int)	=	i	*	2

def	triple(i:	Int)	=	i	*	3

and	then	try	to	store	them	in	a	Map,	like	this:

val	functions	=	Map(

				"2x"	->	double,

				"3x"	->	triple

)

you’ll	get	the	following	error	messages:

<console>:13:	error:	missing	arguments	for	method	double;

follow	this	method	with	`_'	if	you	want	to	treat	it	as	a	

partially	applied	function

											"2x"	->	double,

																							^

<console>:14:	error:	missing	arguments	for	method	triple;

follow	this	method	with	`_'	if	you	want	to	treat	it	as	a	

partially	applied	function

											"3x"	->	triple

																							^

Prior	to	this	lesson	those	errors	might	have	been	a	head-scratcher,	but	now	you
know	how	to	solve	this	problem	—	how	to	manually	convert	the	methods	into
functions	by	following	the	method	invocations	with	an	underscore:

val	functions	=	Map(

				"2x"	->	double	_,

				"3x"	->	triple	_

)

As	before,	that	syntax	converts	the	double	and	triple	methods	into	functions,
and	then	everything	works	as	shown	in	the	previous	lesson.	In	this	case	that
means	that	you	can	get	a	function	back	out	of	the	Map	and	use	it:

scala>	val	dub	=	functions("2x")

dub:	Int	=>	Int	=	<function1>

scala>	dub(3)

res0:	Int	=	6

Why	this	lesson	is	important

The	reason	I	showed	everything	in	this	lesson	is	because	most	developers	prefer
the	def	method	syntax	over	the	val	function	syntax.	Given	the	choice	to	write	an
algorithm	using	either	approach,	developers	seem	to	prefer	the	def	approach,
and	I	believe	that’s	because	the	def	syntax	is	easier	to	read.

Because	of	this,	in	the	rest	of	this	book	I’ll	often	write	def	methods	and	refer	to
them	as	functions.	Technically	this	isn’t	accurate,	but	because	(a)	methods	can	be
used	just	like	functions,	and	(b)	I	don’t	want	to	have	to	keep	writing,	“A	method
that	acts	like	a	function,”	I	will	now	start	using	this	terminology.

Summary

Here’s	a	summary	of	what	I	showed	in	this	lesson:

The	Scaladoc	for	collections	methods	like	map	and	filter	show	that	they
take	functions	as	input	parameters.

Despite	that,	somehow	you	can	pass	methods	into	them.

The	reason	that	works	is	called	“Eta	Expansion.”

I	showed	how	to	manually	convert	a	method	to	a	function	(using	the
partially-applied	function	approach).

As	a	result	of	Eta	Expansion,	you	can	use	def	to	define	methods,	and	then
generally	treat	them	in	the	same	way	that	you	use	val	functions.

What’s	next

In	this	lesson	I	showed	that	you	can	generally	treat	a	def	method	just	like	a	val
function,	and	not	have	to	worry	about	the	differences	between	the	two.	I	also
showed	that	if	the	compiler	doesn’t	take	care	of	that	process	for	you
automatically,	you	can	handle	it	manually.

In	the	next	lesson	you’ll	see	how	to	write	functions	that	take	other	functions	as
input	parameters.	With	this	background,	you	know	that	this	also	means	that	those
functions	will	be	able	to	take	methods	as	input	parameters	as	well.

How	to	Write	Functions	That	Take
Functions	as	Input	Parameters

Motivation	and	Goals

The	topic	I’m	about	to	cover	is	a	big	part	of	functional	programming:	power
programming	that’s	made	possible	by	passing	functions	to	other	functions	to	get
work	done.

So	far	I’ve	shown	I’ve	shown	how	to	be	a	consumer	of	functions	that	take	other
functions	as	input	parameters,	that	is,	a	consumer	of	Higher	Order	Functions
(HOFs)	like	map	and	filter.	In	this	lesson	I’m	going	to	show	how	to	be	the
producer	of	HOFs,	i.e.,	the	writer	of	HOF	APIs.

Therefore,	the	primary	goal	of	this	lesson	is	to	show	how	to	write	functions	that
take	other	functions	as	input	parameters.	To	do	that	I’ll	show:

The	syntax	you	use	to	define	function	input	parameters

Many	examples	of	that	syntax

How	to	execute	a	function	once	you	have	a	reference	to	it

As	a	beneficial	side	effect	of	this	lesson,	you’ll	be	able	to	read	the	source	code
and	Scaladoc	for	other	HOFs,	and	you’ll	be	able	to	understand	the	function
signatures	they’re	looking	for.

Terminology

Before	we	start,	here	are	a	few	notes	about	the	terminology	I’ll	use	in	this	lesson.

1.	 I	use	the	acronym	“FIP”	to	stand	for	“function	input	parameter.”	This	isn’t
an	industry	standard,	but	because	I	use	the	term	so	often,	I	think	the
acronym	makes	the	text	easier	to	read.

2.	 As	shown	already,	I’ll	use	“HOF”	to	refer	to	“Higher	Order	Function.”

3.	 As	discussed	in	the	previous	lesson,	because	def	methods	are	easier	to	read
than	val	functions,	from	now	on	I’ll	write	def	methods	and	refer	to	them	as
“functions,”	even	though	that	terminology	isn’t	100%	accurate.

Introduction

In	the	previous	lesson	I	showed	this	function:

def	isEven(i:	Int)	=	i	%	2	==	0

I	then	showed	that	isEven	works	great	when	you	pass	it	into	the	List	class	
filter	method:

scala>	val	list	=	List.range(0,	10)

list:	List[Int]	=	List(0,	1,	2,	3,	4,	5,	6,	7,	8,	9)

scala>	val	evens	=	list.filter(isEven)

evens:	List[Int]	=	List(0,	2,	4,	6,	8)

The	key	points	of	this	are:

The	filter	method	accepts	a	function	as	an	input	parameter.

The	functions	you	pass	into	filter	must	match	the	type	signature	that	
filter	expects,	i.e.,	the	FIP	you	pass	in	must	accept	an	input	parameter	of
the	type	stored	in	the	list	and	return	a	Boolean.

Understanding	filter’s	Scaladoc

The	Scaladoc	shows	the	type	of	functions	filter	accepts,	which	you	can	see	in
Figure		[fig:scaladocFunctionsFilterAccepts].

The	Scaladoc	shows	the	type	of	functions	filter	accepts

The	Scaladoc	text	shows	that	filter	takes	a	predicate,	which	is	just	a	function
that	returns	a	Boolean	value.

This	part	of	the	Scaladoc:

p:	(A)	=>	Boolean

means	that	filter	takes	a	function	input	parameter	which	it	names	p,	and	p	must
transform	a	generic	input	A	to	a	resulting	Boolean	value.	In	my	example,	where	
list	has	the	type	List[Int],	you	can	replace	the	generic	type	A	with	Int,	and
read	that	signature	like	this:

p:	(Int)	=>	Boolean

Because	isEven	has	this	type	—	it	transforms	an	input	Int	into	a	resulting	
Boolean	—	it	can	be	used	with	filter.

A	lot	of	functionality	with	a	little	code

The	filter	example	shows	that	with	HOFs	you	can	accomplish	a	lot	of	work
with	a	little	bit	of	code.	If	List	didn’t	have	the	filter	method,	you’d	have	to
write	a	custom	method	like	this	to	do	the	same	work:

//	what	you'd	have	to	do	if	`filter`	didn't	exist

def	getEvens(list:	List[Int]):	List[Int]	=	{

				val	tmpArray	=	ArrayBuffer[Int]()

				for	(elem	<-	list)	{

								if	(elem	%	2	==	0)	tmpArray	+=	elem

				}

				tmpArray.toList

}

val	result	=	getEvens(list)

Compare	all	of	that	imperative	code	to	this	equivalent	functional	code:

val	result	=	list.filter(_	%	2	==	0)

As	you	can	see,	this	is	a	great	advantage	of	functional	programming.	The	code	is
much	more	concise,	and	it’s	also	easier	to	comprehend.

As	 FP	 developers	 like	 to	 say,	 you	 don’t	 tell	 the	 computer
specifically	 “how”	 to	 do	 something	—	 you	 don’t	 specify	 the
nitty-gritty	details	inside	a	custom	for	loop.	Instead,	in	your	FP
code	 you	 express	 a	 thought	 like,	 “I	 want	 to	 create	 a	 filtered
version	of	this	list	with	this	little	algorithm.”	When	you	do	that,
and	you	have	good	FP	 language	 to	work	with,	you	write	your

code	at	a	much	higher	programming	level.

“Common	control	patterns”

In	many	situations	Scala/FP	code	can	be	easier	to	understand	than	imperative
code.	That’s	because	a	great	benefit	of	Scala/FP	is	that	methods	like	filter,	map,
head,	tail,	etc.,	are	all	standard,	built-in	functions,	so	once	you	learn	them	you
don’t	have	to	write	custom	for	loops	any	more.	As	an	added	benefit,	you	also
don’t	have	to	read	other	developers’	custom	for	loops.

I	 say	 this	a	 lot,	but	we	humans	can	only	keep	so	much	 in	our
brains	at	one	 time.	Concise,	 readable	code	 is	 simpler	 for	your
brain	and	better	for	your	productivity.

I	know	that	when	you	first	come	to	Scala	all	of	these	methods	on	the	collections
classes	don’t	feel	like	a	benefit,	they	feel	overwhelming.	But	once	you	realize
that	almost	every	for	loop	you’ve	ever	written	falls	into	neat	categories	like	map,
filter,	reduce,	etc.,	you	also	realize	what	a	great	benefit	these	methods	are.
(And	you’ll	reduce	the	amount	of	custom	for	loops	you	write	by	at	least	90%.)

Here’s	what	Martin	Odersky	wrote	about	this	in	his	book,	Programming	in
Scala:

“You	can	use	functions	within	your	code	to	factor	out	common
control	 patterns,	 and	 you	 can	 take	 advantage	 of	 higher-order
functions	 in	 the	Scala	 library	 to	 reuse	control	patterns	 that	are
common	across	all	programmers’	code.”

Given	this	background	and	these	advantages,	let’s	see	how	to	write	functions
that	take	other	functions	as	input	parameters.

http://amzn.to/2fiqDBh

Defining	functions	that	take	functions	as	parameters

To	define	a	function	that	takes	another	function	as	an	input	parameter,	all	you
have	to	do	is	define	the	signature	of	the	function	you	want	to	accept.

To	demonstrate	this,	I’ll	define	a	function	named	sayHello	that	takes	a	function
as	an	input	parameter.	I’ll	name	the	input	parameter	callback,	and	also	say	that	
callback	must	have	no	input	parameters	and	must	return	nothing.	This	is	the
Scala	syntax	that	matches	those	requirements:

def	sayHello(callback:	()	=>	Unit)	{

				callback()

}

In	this	code,	callback	is	an	input	parameter,	and	more	specifically	it	is	a
function	input	parameter	(or	FIP).	Notice	how	it’s	defined	with	this	syntax:

callback:	()	=>	Unit

Here’s	how	this	works:

callback	is	the	name	I	give	to	the	input	parameter.	In	this	case	callback	is
a	function	I	want	to	accept.

The	callback	signature	specifies	the	type	of	function	I	want	to	accept.

The	()	portion	of	callback’s	signature	(on	the	left	side	of	the	=>	symbol)
states	that	it	takes	no	input	parameters.

The	Unit	portion	of	the	signature	(on	the	right	side	of	the	=>	symbol)
indicates	that	the	callback	function	should	return	nothing.

When	sayHello	is	called,	its	function	body	is	executed,	and	the	callback()
line	inside	the	body	invokes	the	function	that	is	passed	in.

Figure		[fig:howSayHelloAndCallbackWork]	reiterates	those	points.

How	sayHello	and	callback	work.

Now	that	I’ve	defined	sayHello,	I’ll	create	a	function	to	match	callback’s
signature	so	I	can	test	it.	The	following	function	takes	no	input	parameters	and
returns	nothing,	so	it	matches	callback’s	type	signature:

def	helloAl():	Unit	=	{	println("Hello,	Al")	}

Because	the	signatures	match,	I	can	pass	helloAl	into	sayHello,	like	this:

sayHello(helloAl)

The	REPL	demonstrates	how	all	of	this	works:

scala>	def	sayHello(callback:()	=>	Unit)	{	

					|					callback()

					|	}

sayHello:	(callback:	()	=>	Unit)Unit

scala>	def	helloAl():	Unit	=	{	println("Hello,	Al")	}

helloAl:	()Unit

scala>	sayHello(helloAl)

Hello,	Al

If	you’ve	never	done	this	before,	congratulations.	You	just	defined	a	function
named	sayHello	that	takes	another	function	as	an	input	parameter,	and	then
invokes	that	function	when	it’s	called.

It’s	important	to	know	that	the	beauty	of	this	approach	is	not	that	sayHello	can
take	one	function	as	an	input	parameter;	the	beauty	is	that	it	can	take	any
function	that	matches	callback’s	signature.	For	instance,	because	this	next

function	takes	no	input	parameters	and	returns	nothing,	it	also	works	with	
sayHello:

def	holaLorenzo():	Unit	=	{	println("Hola,	Lorenzo")	}

Here	it	is	in	the	REPL:

scala>	sayHello(holaLorenzo)

Hola,	Lorenzo

This	is	a	good	start.	Let’s	build	on	it	by	defining	functions	that	can	take	more
complicated	functions	as	input	parameters.

The	general	syntax	for	defining	function	input
parameters

I	defined	sayHello	like	this:

def	sayHello(callback:	()	=>	Unit)

Inside	of	that,	the	callback	function	signature	looks	like	this:

callback:	()	=>	Unit

I	can	explain	this	syntax	by	showing	a	few	more	examples.	Imagine	that	we’re
defining	a	new	version	of	callback,	and	this	new	version	takes	a	String	and
returns	an	Int.	That	signature	looks	like	this:

callback:	(String)	=>	Int

Next,	imagine	that	you	want	to	create	a	different	version	of	callback,	and	this
one	should	take	two	Int	parameters	and	return	an	Int.	Its	signature	looks	like
this:

callback:	(Int,	Int)	=>	Int

As	you	can	infer	from	these	examples,	the	general	syntax	for	defining	function
input	parameter	type	signatures	is:

variableName:	(parameterTypes	...)	=>	returnType

With	sayHello,	this	is	how	the	values	line	up:

General sayHello Notes

variableName callback The	name	you	give	the	FIP

parameterTypes () The	FIP	takes	no	input	parameters

returnType Unit The	FIP	returns	nothing

Naming	your	function	input	parameters

I	find	that	the	parameter	name	callback	is	good	when	you	first	start	writing

HOFs.	Of	course	you	can	name	it	anything	you	want,	and	other	interesting
names	at	first	are	aFunction,	theFunction,	theExpectedFunction,	or	maybe
even	fip.	But	from	now	on	I’ll	make	this	name	shorter	and	generally	refer	to	the
FIPs	in	my	examples	as	just	f,	like	this:

sayHello(f:	()	=>	Unit)

foo(f:(String)	=>	Int)

bar(f:(Int,	Int)	=>	Int)

Looking	at	some	function	signatures

Using	this	as	a	starting	point,	let’s	look	at	signatures	for	some	more	FIPs	so	you
can	see	the	differences.	To	get	started,	here	are	two	signatures	that	define	a	FIP
that	takes	a	String	and	returns	an	Int:

sampleFunction(f:	(String)	=>	Int)

sampleFunction(f:	String	=>	Int)

The	second	line	shows	that	when	you	define	a	function	that	takes	only	one	input
parameter,	you	can	leave	off	the	parentheses.

Next,	here’s	the	signature	for	a	function	that	takes	two	Int	parameters	and
returns	an	Int:

sampleFunction(f:	(Int,	Int)	=>	Int)

As	a	little	quiz,	can	you	imagine	what	sort	of	function	matches	that	signature?

(A	brief	pause	here	so	you	can	think	about	that.)

Any	function	that	takes	two	Int	input	parameters	and	returns	an	Int	matches
that	signature,	so	all	of	these	functions	fit:

def	sum(a:	Int,	b:	Int):	Int	=	a	+	b

def	product(a:	Int,	b:	Int):	Int	=	a	*	b

def	subtract(a:	Int,	b:	Int):	Int	=	a	-	b

You	can	see	how	sum	matches	up	with	the	FIP	signature	in	Figure
	[fig:howSumMatchesUpFipSig].

How	sum	matches	up	with	the	parameters	in	the	FIP	signature.

An	important	part	of	this	is	that	no	matter	how	complicated	the	type	signatures

get,	they	always	follow	this	same	general	syntax:

variableName:	(parameterTypes	...)	=>	returnType

For	example,	all	of	these	FIP	signatures	follow	the	same	pattern:

f:	()	=>	Unit

f:	String	=>	Int

f:	(String)	=>	Int

f:	(Int,	Int)	=>	Int

f:	(Person)	=>	String

f:	(Person)	=>	(String,	String)

f:	(String,	Int,	Double)	=>	Seq[String]

f:	List[Person]	=>	Person

A	note	about	“type	signatures”

I’m	being	a	little	loose	with	my	verbiage	here,	so	let	me	tighten	it	up	for	a
moment.	When	I	say	that	this	is	a	“type	signature”:

f:	String	=>	Int

that	isn’t	100%	accurate.	The	type	signature	of	the	function	is	really	just	this
part:

String	=>	Int

Therefore,	being	100%	accurate,	these	are	the	type	signatures	I	just	showed:

()	=>	Unit

String	=>	Int

(String)	=>	Int

(Int,	Int)	=>	Int

(Person)	=>	String

(Person)	=>	(String,	String)

(String,	Int,	Double)	=>	Seq[String]

List[Person]	=>	Person

This	may	seem	like	a	picky	point,	but	because	FP	developers	talk	about	type
signatures	all	the	time,	I	wanted	to	show	the	precise	definition.

It’s	common	in	FP	to	think	about	types	a	lot	in	your	code.	You
might	say	that	you	“think	in	types.”

A	function	that	takes	an	Int	parameter

Now	let’s	look	at	a	few	more	FIPs,	with	each	example	building	on	the	one	before
it.	First,	here’s	a	function	named	runAFunction	that	defines	a	FIP	whose
signature	states	that	it	takes	an	Int	and	returns	nothing:

def	runAFunction(f:	Int	=>	Unit):	Unit	=	{

				f(42)

}

The	function	body	says,	“Whatever	function	you	give	to	me,	I’m	going	to	pass
the	Int	value	42	into	it.”	This	isn’t	terribly	useful	or	functional,	but	it’s	a	start.

Next,	let’s	define	a	function	that	matches	f’s	type	signature.	The	following	
printIntPlus1	function	takes	an	Int	parameter	and	returns	nothing,	so	it
matches:

def	printIntPlus1	(i:	Int):	Unit	=	{	println(i+1)	}

Now	you	can	pass	printIntPlus1	into	runAFunction:

runAFunction(printIntPlus1)

Because	printIntPlus1	is	invoked	inside	runAFunction	with	the	value	42,	this
prints	43.	Here’s	what	it	all	looks	like	in	the	REPL:

scala>	def	runAFunction(f:	Int	=>	Unit):	Unit	=	{

					|					f(42)

					|	}

runAFunction:	(f:	Int	=>	Unit)Unit

scala>	def	printIntPlus1	(i:	Int):	Unit	=	{	println(i+1)	}

printIntPlus1:	(i:	Int)Unit

scala>	runAFunction(printIntPlus1)

43

Here’s	a	second	function	that	takes	an	Int	and	returns	nothing:

def	printIntPlus10(i:	Int)	{	println(i+10)	}

When	you	pass	printIntPlus10	into	runAFunction,	you’ll	see	that	it	also
works,	printing	52:

runAFunction(printIntPlus10)			//	prints	52

The	power	of	the	technique

Although	these	examples	don’t	do	too	much	yet,	you	can	see	the	power	of
HOFs:

You	can	easily	swap	in	interchangeable	algorithms.

As	long	as	the	signature	of	the	function	you	pass	in	matches	the	signature	that’s
expected,	your	algorithms	can	do	anything	you	want.	This	is	comparable	to
swapping	out	algorithms	in	the	OOP	Strategy	design	pattern.

Let’s	keep	building	on	this…

http://alvinalexander.com/java/java-strategy-design-pattern-in-java

Taking	a	function	parameter	along	with	other
parameters

Here’s	a	function	named	executeNTimes	that	has	two	input	parameters:	a
function,	and	an	Int:

def	executeNTimes(f:	()	=>	Unit,	n:	Int)	{

				for	(i	<-	1	to	n)	f()

}

As	the	code	shows,	executeNTimes	executes	the	f	function	n	times.	To	test	this,
define	a	function	that	matches	f’s	signature:

def	helloWorld():	Unit	=	{	println("Hello,	world")	}

and	then	pass	this	function	into	executeNTimes	along	with	an	Int:

scala>	executeNTimes(helloWorld,	3)

Hello,	world

Hello,	world

Hello,	world

As	expected,	executeNTimes	executes	the	helloWorld	function	three	times.
Cool.

More	parameters,	everywhere

Next,	here’s	a	function	named	executeAndPrint	that	takes	a	function	and	two	
Int	parameters,	and	returns	nothing.	It	defines	the	FIP	f	as	a	function	that	takes
two	Int	values	and	returns	an	Int:

def	executeAndPrint(f:	(Int,	Int)	=>	Int,	x:	Int,	y:	Int):	Unit	=	{

				val	result	=	f(x,	y)

				println(result)

}

executeAndPrint	passes	the	two	Int	parameters	it’s	given	into	the	FIP	it’s	given
in	this	line	of	code:

val	result	=	f(x,	y)

Except	for	the	fact	that	this	function	doesn’t	have	a	return	value,	this	example
shows	a	common	FP	technique:

Your	function	takes	a	FIP.

It	takes	other	parameters	that	work	with	that	FIP.

You	apply	the	FIP	(f)	to	the	parameters	as	needed,	and	return	a	value.	(Or,
in	this	example	of	a	function	with	a	side	effect,	you	print	something.)

To	demonstrate	executeAndPrint,	let’s	create	some	functions	that	match	f’s
signature.	Here	are	a	couple	of	functions	take	two	Int	parameters	and	return	an	
Int:

def	sum(x:	Int,	y:	Int)	=	x	+	y

def	multiply(x:	Int,	y:	Int)	=	x	*	y

Now	you	can	call	executeAndPrint	with	these	functions	as	the	first	parameter
and	whatever	Int	values	you	want	to	supply	as	the	second	and	third	parameters:

executeAndPrint(sum,	3,	11)							//	prints	14

executeAndPrint(multiply,	3,	9)			//	prints	27

Let’s	keep	building	on	this…

Taking	multiple	functions	as	input	parameters

Now	let’s	define	a	function	that	takes	(a)	multiple	FIPs	and	(b)	other	parameters
to	feed	those	FIPs.	Let’s	define	a	function	like	this:

It	takes	one	function	parameter	that	expects	two	Ints,	and	returns	an	Int

It	takes	a	second	function	parameter	with	the	same	signature

It	takes	two	other	Int	parameters

The	Ints	will	be	passed	to	the	two	FIPs

It	will	return	the	results	from	the	first	two	functions	as	a	tuple	—	a	Tuple2,
to	be	specific

Since	I	learned	FP,	I	like	to	think	in	terms	of	“Function	signatures	first,”	so
here’s	a	function	signature	that	matches	those	bullet	points:

def	execTwoFunctions(f1:(Int,	Int)	=>	Int,	

																					f2:(Int,	Int)	=>	Int,	

																					a:	Int,	

																					b:	Int):	Tuple2[Int,	Int]	=	???

Given	that	signature,	can	you	imagine	what	the	function	body	looks	like?

(I’ll	pause	for	a	moment	to	let	you	think	about	that.)

Here’s	what	the	complete	function	looks	like:

def	execTwoFunctions(f1:	(Int,	Int)	=>	Int,	

																					f2:	(Int,	Int)	=>	Int,	

																					a:	Int,

																					b:	Int):	Tuple2[Int,	Int]	=	{

				val	result1	=	f1(a,	b)

				val	result2	=	f2(a,	b)

				(result1,	result2)

}

That’s	a	verbose	(clear)	solution	to	the	problem.	You	can	shorten	that	three-line
function	body	to	just	this,	if	you	prefer:

(f1(a,b),	f2(a,b))

Now	you	can	test	this	new	function	with	the	trusty	sum	and	multiply	functions:

def	sum(x:	Int,	y:	Int)	=	x	+	y

def	multiply(x:	Int,	y:	Int)	=	x	*	y

Using	these	functions	as	input	parameters,	you	can	test	execTwoFunctions:

val	results	=	execTwoFunctions(sum,	multiply,	2,	10)

The	REPL	shows	the	results:

scala>	val	results	=	execTwoFunctions(sum,	multiply,	2,	10)

results:	(Int,	Int)	=	(12,20)

I	hope	these	examples	give	you	a	taste	for	not	only	how	to	write	HOFs,	but	the
power	of	using	them	in	your	own	code.

Okay,	that’s	enough	examples	for	now.	I’ll	cover	two	more	topics	before
finishing	this	lesson,	and	then	in	the	next	lesson	you	can	see	how	to	write	a	map
function	with	everything	I’ve	shown	so	far.

The	FIP	syntax	is	just	like	the	val	function	syntax

A	nice	thing	about	Scala	is	that	once	you	know	how	things	work,	you	can	see	the
consistency	of	the	language.	For	example,	the	syntax	that	you	use	to	define	FIPs
is	the	same	as	the	“explicit	return	type”	(ERT)	syntax	that	you	use	to	define
functions.

I	 show	 the	 ERT	 syntax	 in	 detail	 in	 a	 blog	 post	 titled,
“Explaining	Scala’s	val	Function	Syntax.”

What	I	mean	by	this	is	that	when	I	define	this	function:

sampleFunction(f:	(Int,	Int)	=>	Int)

the	part	of	this	code	that	defines	the	FIP	signature	is	exactly	the	same	as	the	ERT
signature	for	the	sum	function	that	I	define	in	that	blog	post:

val	sum:	(Int,	Int)	=>	Int	=	(a,	b)	=>	a	+	b

You	can	see	what	I	mean	if	you	line	the	two	functions	up,	as	shown	in	Figure
	[fig:fipSigSameAsSumErt].

The	FIP	signature	is	exactly	the	same	as	the	ERT	signature	for	the	sum	function.

Once	you	understand	the	FIP	type	signature	syntax,	it	becomes	easier	to	read
things	like	(a)	the	ERT	function	syntax	and	(b)	the	Scaladoc	for	HOFs.

https://alvinalexander.com/scala/fpbook/explaining-scala-val-function-syntax-functional-programming

The	general	thought	process	of	designing	HOFs

Personally,	I’m	rarely	smart	enough	to	see	exactly	what	I	want	to	do	with	all	of
my	code	beforehand.	Usually	I	think	I	know	what	I	want	to	do,	and	then	as	I	start
coding	I	realize	that	I	really	want	something	else.	Because	of	this,	my	usual
thought	process	when	it	comes	to	writing	HOFs	looks	like	this:

1.	 I	write	some	code

2.	 I	write	more	code

3.	 I	realize	that	I’m	starting	to	duplicate	code

4.	 Knowing	that	duplicating	code	is	bad,	I	start	to	refactor	the	code

Actually,	I	have	this	same	thought	process	whether	I’m	writing	OOP	code	or	FP
code,	but	the	difference	is	in	what	I	do	next.

With	OOP,	what	I	might	do	at	this	point	is	to	start	creating	class	hierarchies.	For
instance,	if	I	was	working	on	some	sort	of	tax	calculator	in	the	United	States,	I
might	create	a	class	hierarchy	like	this:

trait	StateTaxCalculator

class	AlabamaStateTaxCalculator	extends	StateTaxCalculator	...

class	AlaskaStateTaxCalculator	extends	StateTaxCalculator	...

class	ArizonaStateTaxCalculator	extends	StateTaxCalculator	...

Conversely,	in	FP	my	approach	is	to	first	define	an	HOF	like	this:

def	calculateStateTax(f:	Double	=>	Double,	personsIncome:	Double):	Double	=	...

Then	I	define	a	series	of	functions	I	can	pass	into	that	HOF,	like	this:

def	calculateAlabamaStateTax(income:	Double):	Double	=	...

def	calculateAlaskaStateTax(income:	Double):	Double	=	...

def	calculateArizonaStateTax(income:	Double):	Double	=	...

As	you	can	see,	that’s	a	very	different	implementation	process.

Note:	 I	 have	 no	 idea	 whether	 I’d	 approach	 these	 problems
exactly	 as	 shown.	 I	 just	want	 to	 demonstrate	 the	difference	 in

the	general	thought	process	between	the	two	approaches,	and	in
that	 regard	 —	 creating	 a	 class	 hierarchy	 versus	 a	 series	 of
functions	with	a	main	HOF	—	I	think	this	example	shows	that.

To	summarize	this,	the	thought	process,	“I	need	to	refactor	this	code	to	keep	it
DRY,”	is	the	same	in	both	OOP	and	FP,	but	the	way	you	refactor	the	code	is	very
different.

Summary

A	function	that	takes	another	function	as	an	input	parameter	is	called	a	“Higher
Order	Function,”	or	HOF.	This	lesson	showed	how	to	write	HOFs	in	Scala,
including	showing	the	syntax	for	function	input	parameters	(FIPs)	and	how	to
execute	a	function	that	is	received	as	an	input	parameter.

As	the	lesson	showed,	the	general	syntax	for	defining	a	function	as	an	input
parameter	is:

variableName:	(parameterTypes	...)	=>	returnType

Here	are	some	examples	of	the	syntax	for	FIPs	that	have	different	types	and
numbers	of	arguments:

def	exec(f:()	=>	Unit)	=	???			//	note:	i	don't	show	the	function	body

																															//	for	any	of	these	examples

def	exec(f:	(String)	=>	Int)

def	exec(f:	String	=>	Int)					//	parentheses	not	needed

def	exec(f:	(Int)	=>	Int)

def	exec(f:	(Double)	=>	Double)

def	exec(f:	(Person)	=>	String)

def	exec(f:	(Int)	=>	Int,	a:	Int,	b:	Int)

def	exec(f:	(Pizza,	Order)	=>	Double)

def	exec(f:	(Pizza,	Order,	Customer,	Discounts)	=>	Currency)

def	exec(f1:	(Int)	=>	Int,	f2:(Double)	=>	Unit,	s:	String)

What’s	next

In	this	lesson	I	showed	how	to	write	HOFs.	In	the	next	lesson	we’ll	put	this
knowledge	to	work	by	writing	a	complete	map	function	that	uses	the	techniques
shown	in	this	lesson.

How	to	Write	a	‘map’	Function
In	the	previous	lesson	you	saw	how	to	write	higher-order	functions	(HOFs).	In
this	lesson	you’ll	use	that	knowledge	to	write	a	map	function	that	takes	a	FIP	and
a	List.

Writing	a	map	function

Imagine	a	world	in	which	you	know	of	the	concept	of	“mapping,”	but	sadly	a	
map	method	isn’t	built	into	Scala’s	List	class.	Further	imagine	that	you’re	not
worried	about	all	lists,	you	just	want	a	map	function	for	a	List[Int].

Knowing	that	life	is	better	with	map,	you	sit	down	to	write	your	own	map	method.

First	steps

As	I	got	better	at	FP,	I	came	to	learn	that	my	first	actions	in	writing	most
functions	are:

1.	 Accurately	state	the	problem	as	a	sentence

2.	 Sketch	the	function	signature

I’ll	follow	that	approach	to	solve	this	problem.

Accurately	state	the	problem

For	the	first	step,	I’ll	state	the	problem	like	this:

I	want	 to	write	a	map	 function	 that	 can	be	used	 to	apply	other
functions	to	each	element	in	a	List[Int]	that	it’s	given.

Sketch	the	function	signature

My	second	step	is	to	sketch	a	function	signature	that	matches	that	statement.	A
blank	canvas	is	always	hard	to	look	at,	so	I	start	with	the	obvious;	I	want	a	map
function:

def	map

Looking	back	at	the	problem	statement,	what	do	I	know?	Well,	first,	I	know	that	
map	is	going	to	take	a	function	as	an	input	parameter,	and	it’s	also	going	to	take	a
List[Int].	Without	thinking	too	much	about	the	input	parameters	just	yet,	I	can
sketch	this:

def	map(f:	(?)	=>	?,	list:	List[Int]):	???

Knowing	how	map	works,	I	know	that	it	should	return	a	List	that	contains	the
same	number	of	elements	that	are	in	the	input	List.	For	the	moment,	the
important	part	about	this	is	that	this	means	that	map	will	return	a	List	of	some
sort:

def	map(f:	(?)	=>	?,	list:	List[Int]):	List...

Given	how	map	works	—	it	applies	a	function	to	every	element	in	the	input	list
—	the	type	of	the	output	List	can	be	anything:	a	List[Double],	List[Float],	
List[Foo],	etc.	This	tells	me	that	the	List	that	map	returns	needs	to	be	a	generic
type,	so	I	add	that	at	the	end	of	the	function	declaration:

def	map(f:	(?)	=>	?,	list:	List[Int]):	List[A]

Because	of	Scala’s	syntax,	I	need	to	add	the	generic	type	before	the	function
signature	as	well:

def	map[A](f:	(?)	=>	?,	list:	List[Int]):	List[A]

A	great	thing	about	going	through	that	thought	process	is	that	it	tells	me
everything	I	need	to	know	about	the	signature	for	the	function	input	parameter	f:

Because	f’s	input	parameter	will	come	from	the	List[Int],	the	parameter
type	must	be	Int

Because	the	overall	map	function	returns	a	List	of	the	generic	type	A,	f
must	also	return	the	generic	type	A

The	first	statement	lets	me	make	this	change	to	the	definition	of	f:

def	map[A](f:	(Int)	=>	?,	list:	List[Int]):	List[A]

and	the	second	statement	lets	me	make	this	change:

def	map[A](f:	(Int)	=>	A,	list:	List[Int]):	List[A]

																							-

When	I	define	a	FIP	that	has	only	one	input	parameter	I	can	leave	the
parentheses	off,	so	if	you	prefer	that	syntax,	the	finished	function	signature	looks
like	this:

def	map[A](f:	Int	=>	A,	list:	List[Int]):	List[A]

Cool.	That	seems	right.	Now	let’s	work	on	the	function	body.

The	map	function	body

A	map	function	works	on	every	element	in	a	list,	and	because	I	haven’t	covered
recursion	yet,	this	means	that	we’re	going	to	need	a	for	loop	to	loop	over	every
element	in	the	input	list.

Because	I	know	that	map	returns	a	list	that	has	one	element	for	each	element	in
the	input	list,	I	further	know	that	this	loop	is	going	to	be	a	for/yield	loop	without
any	filters:

def	map[A](f:	(Int)	=>	A,	list:	List[Int]):	List[A]	=	{

				for	{

								x	<-	list

				}	yield	???

}

The	only	question	now	is,	what	exactly	should	the	loop	yield?

(I’ll	pause	for	a	moment	here	to	let	you	think	about	that.)

The	answer	is	that	the	for	loop	should	yield	the	result	of	applying	the	input
function	f	to	the	current	element	in	the	loop.	Therefore,	I	can	finish	the	yield
expression	like	this:

def	map[A](f:	(Int)	=>	A,	list:	List[Int]):	List[A]	=	{

				for	{

								x	<-	list

				}	yield	f(x)			//<--	apply	'f'	to	each	element	'x'

}

And	that	is	the	solution	for	the	problem	that	was	stated.

You	can	use	the	REPL	to	confirm	that	this	solution	works	as	desired.	First,	paste
the	map	function	into	the	REPL.	Then	create	a	list	of	integers:

scala>	val	nums	=	List(1,2,3)

nums:	List[Int]	=	List(1,	2,	3)

Next,	write	a	function	that	matches	the	signature	map	expects:

scala>	def	double(i:	Int):	Int	=	i	*	2

double:	(i:	Int)Int

Then	you	can	use	map	to	apply	double	to	each	element	in	nums:

scala>	map(double,	nums)

res0:	List[Int]	=	List(2,	4,	6)

The	map	function	works.

Bonus:	Make	it	generic

I	started	off	by	making	map	work	only	for	a	List[Int],	but	at	this	point	it’s	easy
to	make	it	work	for	any	List.	This	is	because	there’s	nothing	inside	the	map
function	body	that	depends	on	the	given	List	being	a	List[Int]:

//	nothing	here	that's	specific	to	an	Int

for	{

				x	<-	list

}	yield	f(x)

That’s	as	“generic”	as	code	gets;	there	are	no	Int	references	in	there.	Therefore,
you	can	make	map	work	with	generic	types	by	replacing	each	Int	reference	in
the	function	signature	with	a	generic	type.	Because	this	type	appears	before	the
other	generic	type	in	the	function	signature,	I’ll	first	convert	the	old	A’s	to	B’s:

def	map[B](f:	(Int)	=>	B,	list:	List[Int]):	List[B]	=	...

								_														_																									_

Then	I	replace	the	Int	references	with	A,	and	put	an	A	in	the	opening	brackets,
resulting	in	this	signature:

def	map[A,B](f:	(A)	=>	B,	list:	List[A]):	List[B]	=	{

								_								_																			_

If	you	want	to	take	this	even	further,	there’s	also	nothing	in	this	code	that
depends	on	the	input	“list”	being	a	List.	Because	map	works	its	way	from	the
first	element	in	the	list	to	the	last	element,	it	doesn’t	matter	if	the	Seq	is	an	
IndexedSeq	or	a	LinearSeq,	so	you	can	use	the	parent	Seq	class	here	instead	of	
List:

def	map[A,B](f:	(A)	=>	B,	list:	Seq[A]):	Seq[B]	=	{

																																---						---

With	this	new	signature,	the	complete,	generic	map	function	looks	like	this:

def	map[A,B](f:	(A)	=>	B,	list:	Seq[A]):	Seq[B]	=	{

				for	{

								x	<-	list

				}	yield	f(x)

}

I	hope	you	enjoyed	that	process.	It’s	a	good	example	of	how	I	design	functions
these	days,	starting	with	the	signature	first,	then	implementing	the	function	body,

then	adding	generic	types	where	it	makes	sense.

Exercise:	Write	a	filter	function

Now	that	you’ve	seen	how	to	write	a	map	function,	I	encourage	you	to	take	the
time	to	write	a	filter	function.	Because	filter	doesn’t	return	a	sequence	that’s
the	same	size	as	the	input	sequence,	its	algorithm	will	be	a	little	different,	but	it
still	needs	to	return	a	sequence	in	the	end.

What’s	next

Where	this	lesson	provides	a	detailed	example	of	how	to	write	a	function	that
takes	other	functions	as	an	input	parameter,	the	next	lesson	will	show	how	to
write	functions	that	take	“blocks	of	code”	as	input	parameters.	That	technique
and	syntax	is	similar	to	what	I	just	showed,	but	the	“use	case”	for	this	other
technique	—	known	as	“by-name	parameters”	—	is	a	little	different.

After	that	lesson,	I’ll	demonstrate	how	to	combine	these	techniques	with	a	Scala
feature	that	lets	a	function	have	multiple	input	parameter	groups.

How	to	Use	By-Name	Parameters
Introduction

In	previous	lessons	I	showed	how	to	pass	a	function	into	another	function.	I
showed	how	to	do	that	(the	syntax),	and	I	also	showed	why	to	do	that	(to	easily
pass	in	new	algorithms).

While	that’s	a	great	feature,	sometimes	you	just	want	to	write	a	function	that
takes	a	more	general	“block	of	code.”	I	typically	do	this	when	I’m	writing	a
custom	control	structure,	and	as	it	turns	out,	it’s	also	common	technique	in	FP.

In	Scala	we	say	that	a	function	that	defines	an	input	parameter	like	this	is	a	“by-
name”	parameter,	which	is	also	referred	to	as	a	“call	by-name”	parameter.

Goals

My	goals	for	this	lesson	are	to	show:

The	differences	between	by-value	and	by-name	parameters

The	by-name	syntax

How	to	use	by-name	parameters

Examples	of	when	they	are	appropriate

A	comparison	of	by-name	parameters	and	higher-order	functions

Background:	By-value	parameters

If	you	define	a	Person	class	like	this:

case	class	Person(var	name:	String)

and	then	pass	it	into	a	Scala	function,	it’s	said	to	be	a	“call	by-value”	argument.
You	can	read	more	about	this	on	Wikipedia’s	“evaluation	strategy”	page,	but	in
short,	the	way	I	think	of	this	is	that	the	function	receives	a	pointer	to	the	object
that’s	passed	in.

This	has	a	few	repercussions.	First,	it	means	that	there’s	no	copy	of	the	object.
Under	the	covers,	the	function	essentially	receives	a	pointer	that	says,	“You	can
find	this	Person	instance	at	so-and-so	memory	address	in	the	computer’s	RAM.”

Second,	if	the	object	has	mutable	fields,	the	function	can	mutate	those	fields.
When	a	function	receives	a	Person	instance	and	the	name	field	is	a	var,	the
function	can	change	the	name:

def	changeName(p:	Person)	=	{

				p.name	=	"Al"

}

This	change	affects	the	Person	instance	that	was	passed	in.

In	regards	to	the	name	“by-value,”	the	book,	Programming	Scala,	makes	this
statement:

“Typically,	 parameters	 to	 functions	 are	 by-value	 parameters;
that	 is,	 the	 value	 of	 the	 parameter	 is	 determined	 before	 it	 is
passed	to	the	function.”

In	Scala	the	term	“call	by-value”	means	that	the	value	is	either:

A	primitive	value	(like	an	Int)	that	can’t	be	changed

A	pointer	to	an	object	(like	Person)

https://en.wikipedia.org/wiki/Evaluation_strategy
https://www.safaribooksonline.com/library/view/programming-scala/9780596801908/ch08s12.html

Background:	By-name	parameters

“By-name”	parameters	are	quite	different	than	by-value	parameters.	Rob	Norris,
(aka,	“tpolecat”)	makes	the	observation	that	you	can	think	about	the	two	types	of
parameters	like	this:

A	by-value	parameter	is	like	receiving	a	val	field;	its	body	is	evaluated
once,	when	the	parameter	is	bound	to	the	function.

A	by-name	parameter	is	like	receiving	a	def	method;	its	body	is	evaluated
whenever	it	is	used	inside	the	function.

Those	statements	aren’t	100%	accurate,	but	they	are	decent	analogies	to	start
with.

A	little	more	accurately,	the	book	Scala	Puzzlers	says	that	by-name	parameters
are	“evaluated	only	when	they	are	referenced	inside	the	function.”	The	Scala
Language	Specification	adds	this:

This	 (by-name)	 indicates	 that	 the	argument	 is	not	evaluated	at
the	 point	 of	 function	 application,	 but	 instead	 is	 evaluated	 at
each	use	within	the	function.

According	to	Wikipedia	these	terms	date	back	to	a	language	named	ALGOL	60
(yes,	the	year	1960).	But	for	me,	the	term	“by-name”	isn’t	very	helpful.	When
you	look	at	those	quotes	from	the	Puzzlers	book	and	the	Language	Specification,
you	see	that	they	both	say,	“a	by-name	parameter	is	only	evaluated	when	it’s
accessed	inside	a	function.”	Therefore,	I	find	that	the	following	names	are	more
accurate	and	meaningful	than	“by-name”:

Call	on	access

Evaluate	on	access

Evaluate	on	use

Evaluate	when	accessed

https://tpolecat.github.io/2014/06/26/call-by-name.html
http://amzn.to/21ScXJc
https://en.wikipedia.org/wiki/Evaluation_strategy
https://en.wikipedia.org/wiki/ALGOL_60

Evaluate	when	referenced

However,	because	I	can’t	change	the	universe,	I’ll	continue	to	use	the	terms	“by-
name”	and	“call	by-name”	in	this	lesson,	but	I	wanted	to	share	those	alternate
names,	which	I	think	are	more	meaningful.

Example:	Creating	a	timer

That’s	enough	background	about	the	names.	Let’s	look	at	some	code	that	shows
how	to	create	a	by-name	parameter,	and	what	it	gives	you.

On	Unix	systems	you	can	run	a	time	command	(timex	on	some	systems)	to	see
how	long	commands	take	to	execute:

$	time	find	.	-name	"*.scala"

That	command	returns	the	results	of	the	find	command	it	was	given,	along	with
the	time	it	took	to	run.	The	time	portion	of	the	output	looks	like	this:

real		0m4.351s

user		0m0.491s

sys			0m1.341s

This	is	cool,	and	it	can	be	a	helpful	way	to	troubleshoot	performance	problems.
Seeing	how	cool	it	is,	you	decide	that	you’d	like	to	create	a	similar	“timer”
method	in	Scala.

Designing	a	Scala	timer

Thinking	in	advance	about	how	your	new	timer	function	should	work,	you
decide	that	a	nice	API	will	let	you	write	code	like	this:

val	(result,	time)	=	timer(someLongRunningAlgorithm)

and	this:

val	(result,	time)	=	timer	{

				...

				...

}

As	shown,	a	timer	like	this	gives	you	both	the	result	of	the	algorithm	and	the
time	it	took	to	run.

Trying	to	define	a	function	signature

Having	seen	how	to	define	signatures	for	function	input	parameters	(FIPs)	in	the
previous	lessons,	you	realize	that	you	know	how	to	write	a	timer	…	or	at	least

you	think	you	can.

The	problem	you	run	into	right	away	is,	“Just	what	is	that	algorithm	that’s	being
passed	in?”	It	could	look	like	this:

def	timer(f:(Int)	=>	Int)	...

or	this:

def	timer(f:(Double)	=>	Double)	...

or	anything	else:

def	timer(f:()	=>	Unit)	...

def	timer(f:(Person)	=>	String)	...

def	timer(f:(Pizza,	Order)	=>	Double)	...

def	timer(f:(Pizza,	Order,	Customer,	Discounts)	=>	Currency)	...

“Hmm,”	you	begin	thinking,	“this	is	quite	a	problem	…”	in	fact,	I	can’t	use
generic	types	to	solve	this	problem.

Fortunately	the	Scala	creators	gave	us	a	nice	solution	for	problems	like	these.

By-name	syntax

The	solution	for	situations	like	this	is	to	use	Scala’s	by-name	syntax.	It’s	similar
to	defining	FIPs,	but	it	also	makes	it	possible	to	solve	problems	like	this.	The
general	syntax	for	defining	a	by-name	parameter	looks	like	this:

def	timer(blockOfCode:	=>	theReturnType)	...

If	you	look	back	at	the	function	input	parameter	examples,	you’ll	see	that	the	by-
name	syntax	is	similar	to	this	example:

def	timer(f:()	=>	Unit)	...

The	main	difference	is	that	with	the	by-name	syntax,	you	leave	off	the	()	after
the	input	parameter.

Therefore,	to	create	a	timer	that	can	accept	a	block	of	code	that	returns	any	type,
you	make	the	return	type	generic.	I	can	sketch	the	timer	signature	like	this:

def	timer[A](blockOfCode:	=>	A)	=	???

With	that	signature	in	hand,	I	can	then	complete	the	timer	function	like	this:

def	timer[A](blockOfCode:	=>	A)	=	{

				val	startTime	=	System.nanoTime

				val	result	=	blockOfCode

				val	stopTime	=	System.nanoTime

				val	delta	=	stopTime	-	startTime

				(result,	delta/1000000d)

}

As	shown,	the	timer	method	uses	the	by-name	syntax	to	accept	a	block	of	code
as	an	input	parameter.	Inside	the	timer	function	there	are	three	lines	of	code	that
deal	with	determining	how	long	the	blockOfCode	takes	to	run,	with	this	line
sandwiched	in	between	those	time-related	expressions:

				val	result	=	blockOfCode

That	line	(a)	executes	blockOfCode	and	(b)	assigns	its	return	value	to	result.
Because	blockOfCode	is	defined	to	return	a	generic	type	(A),	it	may	return	Unit,
an	Int,	a	Seq[Person],	a	Map[Person,	Seq[Person]],	whatever.

Now	you	can	use	the	timer	function	for	all	sorts	of	things.	It	can	be	used	for
something	that	isn’t	terribly	useful,	like	this:

scala>	val	(result,	time)	=	timer(println("Hello"))

Hello

result:	Unit	=	()

time:	Double	=	0.160

It	can	be	used	for	an	algorithm	that	reads	a	file	and	returns	an	iterator:

scala>	def	readFile(filename:	String)	=	io.Source.fromFile(filename).getLines

readFile:	(filename:	String)Iterator[String]

scala>	val	(result,	time)	=	timer(readFile("/etc/passwd"))

result:	Iterator[String]	=	non-empty	iterator

time:	Double	=	32.119

Or	it	can	be	used	for	just	about	anything	else:

val	(result,	time)	=	timer{	aLongRunningAlgorithmThatReturnsSomething	}

“When	is	my	code	block	run?”

A	great	question	right	now	is,	“When	are	my	by-name	parameters	executed?”

In	the	case	of	the	timer	function,	it	executes	the	blockOfCode	when	the	second

line	of	the	function	is	reached.	But	if	that	doesn’t	satisfy	your	curious	mind,	you
can	create	another	example	like	this:

def	test[A](codeBlock:	=>	A)	=	{

				println("before	1st	codeBlock")

				val	a	=	codeBlock

				println(a)

				Thread.sleep(10)

				println("before	2nd	codeBlock")

				val	b	=	codeBlock

				println(b)

				Thread.sleep(10)

				println("before	3rd	codeBlock")

				val	c	=	codeBlock

				println(c)

}

After	you	paste	that	code	into	the	Scala	REPL,	you	can	then	test	it	like	this:

scala>	test(System.currentTimeMillis)

That	line	of	code	will	produce	output	like	this:

before	1st	codeBlock

1480206447942

before	2nd	codeBlock

1480206447954

before	3rd	codeBlock

1480206447966

As	that	output	shows,	the	block	of	code	that’s	passed	in	is	executed	each	time	it’s
referenced	inside	the	function.

Another	example:	A	Swing	utility

As	another	example	of	how	I	use	this	technique,	when	I	was	writing	a	lot	of
Swing	(GUI)	code	with	Scala,	I	wrote	this	invokeLater	function	to	accept
blocks	of	code	that	should	be	run	on	the	JVM’s	Event	Dispatch	Thread	(EDT):

def	invokeLater(codeBlock:	=>	Unit)	{

				SwingUtilities.invokeLater(new	Runnable()	{

								def	run()	{

												codeBlock

								}

				})

}

If	you	haven’t	used	Swing	before,	it’s	important	to	make	sure	that	any	code	that
updates	the	UI	is	run	on	the	EDT,	and	this	function	simplifies	that	process.

invokeLater	defines	codeBlock	as	a	by-name	input	parameter,	and	codeBlock	is
expected	to	return	Unit	(nothing).	I	define	it	like	that	because	every	block	of
code	it	accepts	is	intended	to	update	the	Swing	GUI,	which	means	that	each	code
block	is	used	to	achieve	that	side	effect.

As	an	example,	here	are	two	calls	I	make	to	invokeLater	from	my	Sarah
application:

invokeLater(mainFrame.setSarahIsSleeping())

invokeLater(mainFrame.setSarahIsListening())

In	these	examples,	mainFrame.setSarahIsSleeping()	and	
mainFrame.setSarahIsListening()	are	both	function	calls,	and	those	functions
update	Sarah’s	Swing	GUI.

In	those	examples	I	pass	functions	into	invokeLater,	but	I	can	pass	a	block	of
code	into	it	as	well:

invokeLater	{

				val	controller	=	mainController.getMainFrameController()

				controller.setBackground(SARAH_IS_SLEEPING_COLOR)

}

Either	approach	—	passing	in	a	function,	or	passing	in	a	block	of	code	—	is
valid.

http://alvinalexander.com/sarah

Why	have	by-name	parameters?

Programming	in	Scala,	written	by	Martin	Odersky	and	Bill	Venners,	provides	a
great	example	of	why	by-name	parameters	were	added	to	Scala.	Their	example
goes	like	this:

1.	 Imagine	that	Scala	does	not	have	an	assert	function,	and	you	want	one.

2.	 You	attempt	to	write	one	using	function	input	parameters,	like	this:

def	myAssert(predicate:	()	=>	Boolean)	=	

				if	(assertionsEnabled	&&	!predicate())

								throw	new	AssertionError

That	code	uses	the	FIP	techniques	I	showed	in	previous	lessons,	and	assuming
that	the	variable	assertionsEnabled	is	in	scope,	it	will	compile	just	fine.	The
problem	is	that	when	you	go	to	use	it,	you	have	to	write	code	like	this:

myAssert(()	=>	5	>	3)

Because	myAssert	states	that	predicate	is	a	function	that	takes	no	input
parameters	and	returns	a	Boolean,	that’s	how	you	have	to	write	this	line	of	code.
It	works,	but	it’s	not	pleasing	to	the	eye.

The	solution	is	to	change	predicate	to	be	a	by-name	parameter:

def	byNameAssert(predicate:	=>	Boolean)	=

				if	(assertionsEnabled	&&	!predicate)

								throw	new	AssertionError

With	that	simple	change,	you	can	now	write	assertions	like	this:

byNameAssert(5	>	3)

That’s	much	more	pleasing	to	look	at	than	this:

myAssert(()	=>	5	>	3)

Programming	in	Scala	states	that	this	is	the	primary	use	case	for	by-name
parameters:

The	result	is	that	using	byNameAssert	looks	exactly	like	using	a

http://amzn.to/2fiqDBh
http://amzn.to/2fiqDBh

built-in	control	structure.

If	you	want	to	experiment	with	this	code,	here’s	the	source	code	for	a	small	but
complete	test	class	I	created	from	their	example:

object	ByNameTests	extends	App	{

				var	assertionsEnabled	=	true

				

				def	myAssert(p:	()	=>	Boolean)	=

								if	(assertionsEnabled	&&	!p())

												throw	new	AssertionError

				myAssert(()	=>	5	>	3)

				def	byNameAssert(p:	=>	Boolean)	=

								if	(assertionsEnabled	&&	!p)

												throw	new	AssertionError

				byNameAssert(5	>	3)

}

As	you	can	see	from	that	code,	there’s	only	a	small	syntactical	difference
between	(a)	defining	a	FIP	that	takes	no	input	parameters	and	(b)	a	by-name
parameter:

p:	()	=>	Boolean				//	a	function	input	parameter

p:	=>	Boolean							//	a	by-name	parameter

As	you	can	also	tell	from	these	two	lines:

myAssert(()	=>	5	>	3)

byNameAssert(5	>	3)

you	need	to	call	them	differently.

Summary

This	lesson	showed:

The	differences	between	by-value	and	by-name	parameters

Examples	of	the	by-name	syntax

How	to	use	by-name	parameters	in	your	functions

Examples	of	when	by-name	parameters	are	appropriate

Some	comparisons	of	by-name	parameters	and	higher-order	functions

See	also

On	StackOverflow,	Daniel	Sobral	has	a	nice	answer	to	a	question	about	the
difference	between	(f:	A	=>	B)	and	(f:	()	=>	A)

Scala	Puzzlers	comments	about	function	input	parameters

Evaluation	strategy	on	Wikipedia

http://stackoverflow.com/questions/4543228/whats-the-difference-between-and-unit
https://www.safaribooksonline.com/library/view/scala-puzzlers/9780981531670/adaptive-reasoning.html
https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_value

Functions	Can	Have	Multiple	Parameter
Groups

Introduction

Scala	lets	you	create	functions	that	have	multiple	input	parameter	groups,	like
this:

def	foo(a:	Int,	b:	String)(c:	Double)	...

Because	I	knew	very	little	about	FP	when	I	first	started	working	with	Scala,	I
originally	thought	this	was	just	some	sort	of	syntactic	nicety.	But	then	I	learned
that	one	cool	thing	this	does	is	that	it	enables	you	to	write	your	own	control
structures.	For	instance,	you	can	write	your	own	while	loop,	and	I	show	how	to
do	that	in	this	lesson.

Beyond	that,	the	book	Scala	Puzzlers	states	that	being	able	to	declare	multiple
parameter	groups	gives	you	these	additional	benefits	(some	of	which	are
advanced	and	I	rarely	use):

They	let	you	have	both	implicit	and	non-implicit	parameters

They	facilitate	type	inference

A	parameter	in	one	group	can	use	a	parameter	from	a	previous	group	as	a
default	value

I	demonstrate	each	of	these	features	in	this	lesson,	and	show	how	multiple
parameter	groups	are	used	to	create	partially-applied	functions	in	the	next	lesson.

http://amzn.to/21ScXJc

Goals

The	goals	of	this	lesson	are:

Show	how	to	write	and	use	functions	that	have	multiple	input	parameter
groups

Demonstrate	how	this	helps	you	create	your	own	control	structures,	which
in	turn	can	help	you	write	your	own	DSLs

Show	some	other	potential	benefits	of	using	multiple	input	parameter
groups

First	example

Defining	a	function	with	multiple	parameter	groups	is	one	of	the	easier	things	in
this	book.	Instead	of	writing	a	“normal”	add	function	with	one	parameter	group
like	this:

def	add(a:	Int,	b:	Int,	c:	Int)	=	a	+	b	+	c

just	put	your	function’s	input	parameters	in	different	groups,	with	each	group
surrounded	by	parentheses:

def	sum(a:	Int)(b:	Int)(c:	Int)	=	a	+	b	+	c

After	that,	you	can	call	sum	like	this:

scala>	sum(1)(2)(3)

res0:	Int	=	6

That’s	all	there	is	to	the	basic	technique.	The	rest	of	this	lesson	shows	the
advantages	that	come	from	using	this	approach.

A	few	notes	about	this	technique

When	you	write	sum	with	three	input	parameter	groups	like	this,	you	can’t	call	it
with	three	parameters	in	one	group:

scala>	sum(1,2,3)

<console>:12:	error:	too	many	arguments	for	method	

sum:	(a:	Int)(b:	Int)(c:	Int)Int

							sum(1,2,3)

										^

You	must	supply	the	input	parameters	in	three	separate	input	lists.

Another	thing	to	note	is	that	each	parameter	group	can	have	multiple	input
parameters:

def	doFoo(firstName:	String,	lastName:	String)(age:	Int)	=	???

How	to	write	your	own	control	structures

To	show	the	kind	of	things	you	can	do	with	multiple	parameter	groups,	let’s
build	a	control	structure	of	our	own.	To	do	this,	imagine	for	a	moment	that	you
don’t	like	the	built-in	Scala	while	loop	—	or	maybe	you	want	to	add	some
functionality	to	it	—	so	you	want	to	create	your	own	whilst	loop,	which	you	can
use	like	this:

var	i	=	0

whilst	(i	<	5)	{

				println(i)

				i	+=	1

}

A	thing	that	your	eyes	will	soon	learn	to	see	when	looking	at	code	like	this	is
that	whilst	must	be	defined	to	have	two	parameter	groups.	The	first	parameter
group	contains	i	<	5.	Note	that	this	expression	yields	a	Boolean	value.	This
tells	you	that	whilst	must	be	defined	so	that	its	first	parameter	group	expects	a	
Boolean	parameter.

The	second	parameter	group	is	the	block	of	code	enclosed	in	curly	braces
immediately	after	that.	These	two	groups	are	highlighted	in
Figure	[fig:twoParamGroups].

The	second	parameter	group	is	enclosed	in	the	curly	braces.

You’ll	see	this	pattern	a	lot	in	Scala/FP	code,	so	it	helps	to	get	used	to	it.	I
demonstrate	more	examples	in	this	chapter,	but	the	lesson	for	the	moment	is	that
when	you	see	code	like	this,	you	should	think:

I	see	a	function	named	whilst	that	has	two	parameter	groups.

The	first	parameter	group	must	evaluate	to	a	Boolean	value.

The	second	parameter	group	is	probably	defined	as	a	by-name	parameter.
This	specific	block	of	code	returns	nothing	(Unit),	because	the	last
expression	in	the	code	block	(i	+=	1)	returns	nothing.

How	to	create	whilst

To	create	the	whilst	control	structure,	define	it	as	a	function	that	takes	two
parameter	groups.	As	mentioned,	the	first	parameter	group	must	evaluate	to	a	
Boolean	value,	and	the	second	group	takes	a	block	of	code	that	evaluates	to	
Unit;	the	user	wants	to	run	this	block	of	code	in	a	loop	as	long	as	the	first
parameter	group	evaluates	to	true.

When	I	write	functions	the	first	thing	I	like	to	do	is	sketch	the	function’s
signature,	and	the	previous	paragraph	tells	me	that	whilst’s	signature	should
look	like	this:

def	whilst(testCondition:	=>	Boolean)(codeBlock:	=>	Unit)	=	???

The	two	parameters	groups	are	highlighted	in
Figure	[fig:twoParamGroupsInWhilst].

The	two	parameter	groups	in	whilst’s	function	signature.

Using	by-name	parameters

Notice	that	both	parameter	groups	use	by-name	parameters.	The	first	parameter
(testCondition)	needs	to	be	a	by-name	parameter	because	it	specifies	a	test
condition	that	will	repeatedly	be	tested	inside	the	function.	If	this	wasn’t	a	by-

name	parameter,	the	i	<	5	code	shown	here:

var	i	=	0

whilst	(i	<	5)	...

would	immediately	be	translated	by	the	compiler	into	this:

whilst	(0	<	5)	...

and	then	that	code	would	be	further	“optimized”	into	this:

whilst	(true)	...

If	this	happens,	the	whilst	function	would	receive	true	for	its	first	parameter,
and	the	loop	will	run	forever.	This	would	be	bad.

But	when	testCondition	is	defined	as	a	by-name	parameter,	the	i	<	5	code
block	is	passed	into	whilst	without	being	evaluated,	which	is	what	we	desire.

Using	a	by-name	parameter	in	the	last	parameter	group	when	creating	control
structures	is	a	common	pattern	in	Scala/FP.	This	is	because	(as	I	just	showed)	a
by-name	parameter	lets	the	consumer	of	your	control	structure	pass	in	a	block	of
code	to	solve	their	problem,	typically	enclosed	in	curly	braces,	like	this:

customControlStructure(...)	{

			//	custom	code	block	here

			...

			...

}

The	final	code

So	far,	I	showed	that	the	whilst	signature	begins	like	this:

def	whilst(testCondition:	=>	Boolean)(codeBlock:	=>	Unit)	=	???

In	FP,	the	proper	way	to	implement	whilst’s	body	is	with	recursion,	but	because
I	haven’t	covered	that	yet,	I’m	going	to	cheat	here	and	implement	whilst	with
an	inner	while	loop.	Admittedly	that’s	some	serious	cheating,	but	for	the
purposes	of	this	lesson	I’m	not	really	interested	in	whilst’s	body;	I’m	interested
in	its	signature,	along	with	what	this	general	approach	lets	you	accomplish.

Therefore,	having	defined	whilst’s	signature,	this	is	what	whilst	looks	like	as	a
wrapper	around	a	while	loop:

def	whilst(testCondition:	=>	Boolean)(codeBlock:	=>	Unit)	{

				while	(testCondition)	{

								codeBlock

				}

}

Note	that	whilst	doesn’t	return	anything.	That’s	implied	by	the	current	function
signature,	and	you	can	make	it	more	explicit	by	adding	a	Unit	return	type	to	the
function	signature:

def	whilst(testCondition:	=>	Boolean)(codeBlock:	=>	Unit):	Unit	=	{

I	prefer	this	style	of	coding,	and	with	that	change,	the	final	whilst	function
looks	like	this:

def	whilst(testCondition:	=>	Boolean)(codeBlock:	=>	Unit):	Unit	=	{

				while	(testCondition)	{

								codeBlock

				}

}

Using	whilst

Because	I	cheated	with	the	function	body,	that’s	all	there	is	to	writing	whilst.
Now	you	can	use	it	anywhere	you	would	use	while.	This	is	one	possible
example:

var	i	=	1

whilst(i	<	5)	{

				println(i)

				i	+=	1

}

Exercise:	Write	a	control	structure	using	three
parameter	groups

The	whilst	example	shows	how	to	write	a	custom	control	structure	using	two
parameter	groups.	It	also	shows	a	common	pattern:

Use	one	or	more	parameter	groups	to	break	the	input	parameters	into
different	“compartments”

Specifically	define	the	parameter	in	the	last	parameter	group	as	a	by-name
parameter	so	the	function	can	accept	a	custom	block	of	code

Control	structures	can	have	more	than	two	parameter	lists.	As	an	exercise,
imagine	that	you	want	to	create	a	control	structure	that	makes	it	easy	to	execute
a	condition	if	two	test	conditions	are	both	true.	Imagine	the	control	structure	is
named	ifBothTrue,	and	it	will	be	used	like	this:

ifBothTrue(age	>	18)(numAccidents	==	0)	{

				println("Discount!")

}

Just	by	looking	at	that	code,	you	should	be	able	to	answer	these	questions:

How	many	input	parameter	groups	does	ifBothTrue	have?

What	is	the	type	of	the	first	group?

What	is	the	type	of	the	second	group?

What	is	the	type	of	the	third	group?

Sketch	the	signature	of	the	ifBothTrue	function.	Start	by	sketching	only	the
function	signature,	as	I	did	with	the	whilst	example:

Once	you’re	confident	that	you	have	the	correct	function	signature,	sketch	the
function	body	here:

Solution

In	this	case,	because	ifBothTrue	takes	two	test	conditions	followed	by	a	block
of	code,	and	it	doesn’t	return	anything,	its	signature	looks	like	this:

def	ifBothTrue(test1:	=>	Boolean)

														(test2:	=>	Boolean)

														(codeBlock:	=>	Unit):	Unit	=	???

Because	the	code	block	should	only	be	run	if	both	test	conditions	are	true,	the
complete	function	should	be	written	like	this:

def	ifBothTrue(test1:	=>	Boolean)

														(test2:	=>	Boolean)

														(codeBlock:	=>	Unit):	Unit	=	{

				if	(test1	&&	test2)	{

								codeBlock

				}

}

You	can	test	ifBothTrue	with	code	like	this:

val	age	=	19

val	numAccidents	=	0

ifBothTrue(age	>	18)(numAccidents	==	0)	{	println("Discount!")	}

Benefit:	Using	implicit	values

A	nice	benefit	of	multiple	input	parameter	groups	comes	when	you	use	them
with	implicit	parameters.	This	can	help	to	simplify	code	when	a	resource	is
needed,	but	passing	that	resource	explicitly	to	a	function	makes	the	code	harder
to	read.

To	demonstrate	how	this	works,	here’s	a	function	that	uses	multiple	input
parameter	groups:

def	printIntIfTrue(a:	Int)(implicit	b:	Boolean)	=	if	(b)	println(a)

Notice	that	the	Boolean	in	the	second	parameter	group	is	tagged	as	an	implicit
value	—	but	don’t	worry	about	that	just	yet.	For	the	moment,	just	note	that	if	you
paste	this	function	into	the	REPL	and	then	call	it	with	an	Int	and	a	Boolean,	it
does	what	it	looks	like	it	should	do,	printing	the	Int	when	the	Boolean	is	true:

scala>	printIntIfTrue(42)(true)

42

Given	that	background,	let’s	see	what	that	implicit	keyword	on	the	second
parameter	does	for	us.

Using	implicit	values

Because	b	is	defined	as	an	implicit	value	in	the	last	parameter	group,	if	there	is
an	implicit	Boolean	value	in	scope	when	printIntIfTrue	is	invoked,	
printIntIfTrue	will	use	that	Boolean	without	you	having	to	explicitly	provide
it.

You	can	see	how	this	works	in	the	REPL.	First,	as	an	intentional	error,	try	to	call	
printIntIfTrue	without	a	second	parameter:

scala>	printIntIfTrue(1)

<console>:12:	error:	could	not	find	implicit	value	for	parameter	b:	Boolean

							printIntIfTrue(1)

																					^

Of	course	that	fails	because	printIntIfTrue	requires	a	Boolean	value	in	its
second	parameter	group.	Next,	let’s	see	what	happens	if	we	define	a	regular	
Boolean	in	the	current	scope:

scala>	val	boo	=	true

boo:	Boolean	=	true

scala>	printIntIfTrue(1)

<console>:12:	error:	could	not	find	implicit	value	for	parameter	b:	Boolean

							printIntIfTrue(1)

																					^

Calling	printIntIfTrue	still	fails,	as	expected.	Now	notice	what	happens	when	
boo	is	defined	as	an	implicit	Boolean	value:

scala>	implicit	val	boo	=	true

boo:	Boolean	=	true

scala>	printIntIfTrue(33)

33

printIntIfTrue	works	with	only	one	parameter!

This	works	because:

1.	 The	Boolean	parameter	in	printIntIfTrue’s	last	parameter	group	is	tagged
with	the	implicit	keyword

2.	 boo	is	declared	to	be	an	implicit	Boolean	value

The	way	this	works	is	like	this:

1.	 The	Scala	compiler	knows	that	printIntIfTrue	is	defined	to	have	two
parameter	groups.

2.	 It	also	knows	that	the	second	parameter	group	declares	an	implicit	Boolean
parameter.

3.	 When	printIntIfTrue(33)	is	called,	only	one	parameter	group	is	supplied.

4.	 At	this	point	Scala	knows	that	one	of	two	things	must	now	be	true.	Either
(a)	there	better	be	an	implicit	Boolean	value	in	the	current	scope,	in	which
case	Scala	will	use	it	as	the	second	parameter,	or	(b)	Scala	will	throw	the
compiler	error	shown	earlier.

Because	boo	is	an	implicit	Boolean	value	and	it’s	in	the	current	scope,	the	Scala
compiler	reaches	out	and	automatically	uses	it	as	the	input	parameter	for	the
second	parameter	group.	That	is,	boo	is	used	just	as	though	it	had	been	passed	in
explicitly.

The	benefit

If	that	code	looks	too	“magical,”	I’ll	say	two	things	about	this	technique:

It	works	really	well	in	certain	situations

Don’t	overuse	it,	because	when	it’s	used	wrongly	it	makes	code	hard	to
understand	and	maintain	(which	is	pretty	much	an	anti-pattern)

An	area	where	this	technique	works	really	well	is	when	you	need	to	refer	to	a
shared	resource	several	times,	and	you	want	to	keep	your	code	clean.	For
instance,	if	you	need	to	reference	a	database	connection	several	times	in	your
code,	using	an	implicit	connection	can	clean	up	your	code.	It	tends	to	be	obvious
that	an	implicit	connection	is	hanging	around,	and	of	course	database	access
code	isn’t	going	to	work	without	a	connection.

An	implicit	execution	context

A	similar	“shared	resource”	example	is	when	you	need	an	execution	context	in
scope	when	you’re	writing	multi-threaded	code	with	the	Akka	library.	For
example,	with	Akka	you	usually	create	an	implicit	ActorSystem	like	this	early	in
your	code:

implicit	val	actorSystem	=	ActorSystem("FutureSystem")

Then,	at	one	or	more	places	later	in	your	code	you	can	create	a	Future	like	this,
and	the	Future	“just	works”:

val	future	=	Future	{

				1	+	1

}

The	reason	this	Future	works	is	because	it’s	written	with	an	implicit	input
parameter	in	its	last	parameter	group,	like	the	printIntIfTrue	function.	If	you
dig	through	the	Akka	source	code	you’ll	see	that	Future’s	apply	method	is
written	like	this:

def	apply	[T]	(body:	=>	T)(implicit	executor:	ExecutionContext)	...

As	that	shows,	the	executor	parameter	in	the	last	parameter	group	is	an	
implicit	value	of	the	ExecutionContext	type.	Because	an	ActorSystem	is	an

instance	of	an	ExecutionContext,	when	you	define	the	ActorSystem	as	being	
implicit,	like	this:

implicit	val	actorSystem	=	ActorSystem("FutureSystem")

Future’s	apply	method	can	find	it	and	“pull	it	in”	automatically.	This	makes	the	
Future	code	more	readable.	If	Future	didn’t	use	an	implicit	value,	each
invocation	of	a	new	Future	would	have	to	look	something	like	this:

val	future	=	Future(actorSystem)	{

				code	to	run	here	...

}

That’s	not	too	bad	with	just	one	Future,	but	more	complicated	code	is	definitely
cleaner	without	it	repeatedly	referencing	the	actorSystem.

If	 you’re	 new	 to	 Akka	 Actors,	 my	 article,	 A	 simple	 working
Akka	Futures	 example,	 explains	 everything	 I	 just	wrote	 about
actors,	futures,	execution	contexts,	and	actor	systems.

http://alvinalexander.com/scala/scala-akka-futures-example-simple-working

Limits	on	implicit	parameters

The	Scala	language	specification	tells	us	these	things	about	implicit	parameters:

A	method	or	constructor	can	have	only	one	implicit	parameter	list,	and	it
must	be	the	last	parameter	list	given

If	there	are	several	eligible	arguments	which	match	the	implicit	parameter’s
type,	a	most	specific	one	will	be	chosen	using	the	rules	of	static	overloading
resolution

I’ll	show	some	of	what	this	means	in	the	following	“implicit	parameter	FAQs”.

FAQ:	Can	you	use	implicit	more	than	once	in	your	parameter
lists?

No,	you	can’t.	This	code	will	not	compile:

def	printIntIfTrue(implicit	a:	Int)(implicit	b:	Boolean)	=	if	(b)	println(a)

The	REPL	shows	the	error	message	you’ll	get:

scala>	def	printIntIfTrue(implicit	a:	Int)(implicit	b:	Boolean)	=	if	(b)	println(a)

<console>:1:	error:	'='	expected	but	'('	found.

def	printIntIfTrue(implicit	a:	Int)(implicit	b:	Boolean)	=	if	(b)	println(a)

																																	^

FAQ:	Does	the	implicit	have	to	be	in	the	last	parameter	list?

Yes.	This	code,	with	an	implicit	in	the	first	list,	won’t	compile:

def	printIntIfTrue(implicit	b:	Boolean)(a:	Int)	=	if	(b)	println(a)

The	REPL	shows	the	compiler	error:

scala>	def	printIntIfTrue(implicit	b:	Boolean)(a:	Int)	=	if	(b)	println(a)

<console>:1:	error:	'='	expected	but	'('	found.

def	printIntIfTrue(implicit	b:	Boolean)(a:	Int)	=	if	(b)	println(a)

																																					^

FAQ:	What	happens	when	multiple	implicit	values	are	in	scope	and

http://www.scala-lang.org/files/archive/spec/2.11/07-implicit-parameters-and-views.html#implicit-parameters

can	match	the	parameter?

In	theory,	as	the	Specification	states,	“a	most	specific	one	will	be	chosen	using
the	rules	of	static	overloading	resolution.”	In	practice,	if	you	find	that	you’re
getting	anywhere	near	this	situation,	I	wouldn’t	use	implicit	parameters.

A	simple	way	to	show	how	this	fails	is	with	this	series	of	expressions:

def	printIntIfTrue(a:	Int)(implicit	b:	Boolean)	=	if	(b)	println(a)

implicit	val	x	=	true

implicit	val	y	=	false

printIntIfTrue(42)

When	you	get	to	that	last	expression,	can	you	guess	what	will	happen?

The	answer	is	that	the	compiler	has	no	idea	which	Boolean	should	be	used	with
the	implicit	parameter,	so	it	bails	out	with	this	error	message:

scala>	printIntIfTrue(42)

<console>:14:	error:	ambiguous	implicit	values:

	both	value	x	of	type	=>	Boolean

	and	value	y	of	type	=>	Boolean

	match	expected	type	Boolean

							printIntIfTrue(42)

																			^

This	is	a	simple	example	of	how	using	implicit	parameters	can	create	a	problem.

Using	default	values

As	the	Scala	Puzzlers	book	notes,	you	can	supply	default	values	for	input
parameters	when	using	multiple	parameter	groups,	in	a	manner	similar	to	using
one	parameter	group.	Here	I	specify	default	values	for	the	parameters	a	and	b:

scala>	def	f2(a:	Int	=	1)(b:	Int	=	2)	=	{	a	+	b	}

f2:	(a:	Int)(b:	Int)Int

That	part	is	easy,	but	the	“magic”	in	this	recipe	is	knowing	that	you	need	to
supply	empty	parentheses	when	you	want	to	use	the	default	values:

scala>	f2

<console>:13:	error:	missing	argument	list	for	method	f2

Unapplied	methods	are	only	converted	to	functions	when	a	

function	type	is	expected.	You	can	make	this	conversion	explicit	

by	writing	`f2	_`	or	`f2(_)(_)`	instead	of	`f2`.

							f2

							^

scala>	f2()()

res0:	Int	=	3

scala>	f2(10)()

res1:	Int	=	12

scala>	f2()(10)

res2:	Int	=	11

As	the	Puzzlers	book	also	notes,	a	parameter	in	the	second	parameter	group	can
use	a	parameter	from	the	first	parameter	group	as	a	default	value.	In	this	next
example	I	assign	a	to	be	the	default	value	for	the	parameter	b:

def	f2(a:	Int	=	1)(b:	Int	=	a)	=	{	a	+	b	}

The	REPL	shows	that	this	works	as	expected:

scala>	def	f2(a:	Int	=	1)(b:	Int	=	a)	=	{	a	+	b	}

f2:	(a:	Int)(b:	Int)Int

scala>	f2()()

res0:	Int	=	2

scala>	f2(10)()

res1:	Int	=	20

I	haven’t	had	a	need	for	these	techniques	yet,	but	in	case	you	ever	need	them,
there	you	go.

http://amzn.to/21ScXJc

Summary

In	this	lesson	I	covered	the	following:

I	showed	how	to	write	functions	that	have	multiple	input	parameter	groups.

I	showed	how	to	call	functions	that	have	multiple	input	parameter	groups.

I	showed	to	write	your	own	control	structures,	such	as	whilst	and	
ifBothTrue.	The	keys	to	this	are	(a)	using	multiple	parameter	groups	and
(b)	accepting	a	block	of	code	as	a	by-name	parameter	in	the	last	parameter
group.

I	showed	how	to	use	implicit	parameters,	and	possible	pitfalls	of	using
them.

I	showed	how	to	use	default	values	with	multiple	parameter	groups.

What’s	next

The	next	lesson	expands	on	this	lesson	by	showing	what	“Currying”	is,	and	by
showing	how	multiple	parameter	groups	work	with	partially-applied	functions.

See	Also

My	article,	How	to	use	the	using	control	structure	from	Beginning	Scala

Joshua	Suereth’s	scala-arm	project	is	similar	to	the	using	control	structure

The	Scala	“Breaks”	control	structure	is	created	using	the	techniques	shown
in	this	lesson,	and	I	describe	it	in	my	article,	How	to	use	break	and	continue
in	Scala

http://alvinalexander.com/scala/using-control-structure-beginning-scala-david-pollak
https://github.com/jsuereth/scala-arm
http://alvinalexander.com/scala/break-continue-for-while-loops-in-scala-examples-how-to

Partially-Applied	Functions	(and
Currying)
Motivation

My	motivations	for	writing	this	lesson	are	a	little	different	than	usual.	Typically	I
think,	“You’ll	want	to	know	this	feature	so	you	can	use	it	like	___,”	but	the	first
motivation	for	this	lesson	goes	like	this:	You’ll	want	to	know	about	the	concept
of	“currying”	because	experienced	FP	developers	mention	it	quite	a	bit,
especially	if	they	have	Haskell	programming	experience.	(I	did	mention	that
Haskell	was	named	after	Haskell	Curry,	didn’t	I?)

A	second	motivation	is	that	the	concept	of	currying	is	related	to	the	multiple
parameter	groups	I	showed	in	the	previous	lesson	come	from.

That	being	said,	the	primary	motivation	for	writing	this	lesson	is	that	having
multiple	parameter	groups	make	it	a	little	easier	to	create	partially-applied
functions,	and	these	can	be	useful	in	your	FP	code.

I’ll	cover	all	of	these	topics	in	this	lesson.

Goals

Given	that	introduction,	the	goals	of	this	lesson	are:

Provide	a	definition	of	currying

Show	how	to	create	partially-applied	functions	from	functions	that	have	(a)
multiple	parameter	groups	or	(b)	single	parameter	groups

I’ll	also	show	how	to	create	“curried”	functions	from	regular	functions,	and
show	how	Scala	gets	these	features	to	work	with	the	JVM.

Currying

When	I	first	got	started	in	FP,	I	got	lost	in	some	of	its	nomenclature,	and
“currying”	was	a	particularly	deep	rabbit’s	hole	of	“Time	in	My	Life	I	Wish	I
Had	Spent	Differently.”

All	that	the	theory	of	currying	means	is	that	a	function	that	takes	multiple
arguments	can	be	translated	into	a	series	of	function	calls	that	each	take	a	single
argument.	In	pseudocode,	this	means	that	an	expression	like	this:

result	=	f(x)(y)(z)

is	mathematically	the	same	as	something	like	this:

f1	=	f(x)

f2	=	f1(y)

result	=	f2(z)

That’s	all	it	means.	The	Wikipedia	page	on	Currying	describes	currying	like	this:

In	mathematics	and	computer	science,	currying	is	the	technique
of	 translating	 the	 evaluation	 of	 a	 function	 that	 takes	 multiple
arguments	into	evaluating	a	sequence	of	functions,	each	with	a
single	argument.

They	later	state:

There	 are	 analytical	 techniques	 that	 can	 only	 be	 applied	 to
functions	with	a	single	argument.	Practical	functions	frequently
take	more	arguments	than	this.

What	this	means

In	my	daily	working	life,	this	theory	usually	isn’t	important.	It’s	one	of	those
things	that’s	“nice	to	know,”	but	the	important	things	are	(a)	how	this	impacted
the	design	of	the	Scala	language,	and	(b)	what	you	can	do	because	of	this	theory.

In	Scala	this	seems	to	fit	most	naturally	with	functions	that	have	multiple	input

https://en.wikipedia.org/wiki/Currying

parameters	groups,	and	I’ll	demonstrate	that	in	this	lesson.

Terminology	 note:	 In	 the	 remainder	 of	 this	 lesson	 I’ll
occasionally	use	the	acronym	“PAF”	to	mean	“partially-applied
function.”

Partially-applied	functions

To	understand	PAFs,	I’ll	start	with	two	definitions	from	this	online	JavaScript
course:

1.	 Application:	The	process	of	applying	a	function	to	its	arguments	in	order	to
produce	a	return	value.

As	in	algebra,	in	FP	you	say	that	“a	function	is	applied	to	its	arguments,”	so
“Application”	in	this	context	can	also	be	called	“Full	Application,”	or	“Complete
Application.”

1.	 Partial	Application:	This	is	the	process	of	applying	a	function	to	some	of	its
arguments.	A	partially-applied	function	gets	returned	for	later	use.	In	other
words,	a	PAF	is	a	function	that	takes	a	function	with	multiple	parameters
and	returns	a	function	with	fewer	parameters.

The	best	way	to	explain	PAFs	is	with	examples,	so	let’s	look	at	a	few.

https://github.com/learn-javascript-courses/javascript-questions/issues/7

Example	1	(partially-applied	functions)

The	following	example	shows	how	PAFs	work.	In	the	first	step,	you	define	a
function	with	multiple	parameter	groups:

scala>	def	plus(a:	Int)(b:	Int)	=	a	+	b

plus:	(a:	Int)(b:	Int)Int

Next,	rather	than	giving	the	function	all	of	the	parameters	in	the	two	parameter
groups	it	specifies,	you	give	it	(a)	the	parameter	for	the	first	group	(a),	and	(b)	a
placeholder	for	the	parameter	in	the	second	list,	the	ubiquitous	underscore
character:

scala>	def	plus2	=	plus(2)(_)

plus2:	Int	=>	Int

The	REPL	output	shows	that	this	creates	a	new	function	named	plus2	which	has
the	type	Int	=>	Int.	This	means	that	plus2	takes	an	Int	as	input,	and	returns	an
Int	as	a	result.

At	this	point	you	can	think	of	plus2	as	looking	like	this:

def	plus(b:	Int)	=	2	+	b

What’s	happened	is	that	plus2	has	been	“seeded”	with	the	initial	Int	value	2,
and	now	it’s	just	sitting	there,	waiting	for	another	Int	value	that	it	can	add	to	it.
Let’s	give	it	another	2:

scala>	plus2(2)

res0:	Int	=	4

Here’s	what	it	looks	like	when	you	give	it	a	3:

scala>	plus2(3)

res1:	Int	=	5

As	this	shows,	plus2	gladly	adds	2	to	any	Int	it	is	given.

Before	I	move	on	to	the	next	example,	notice	that	you	can	create	plus2	in	either
of	these	ways:

def	plus2	=	plus(2)(_)

def	plus2	=	plus(2)_

I	prefer	the	first	syntax,	but	some	people	prefer	the	second	approach.

Example	2	(partially-applied	functions)

The	general	benefit	that	this	approach	gives	you	is	that	it’s	a	way	to	create
specialized	methods	from	more	general	methods.	I	demonstrate	this	in	the	Scala
Cookbook,	and	I’ll	share	a	variation	of	that	example	here.

When	you’re	emitting	HTML	from	Scala	code,	a	wrap	function	that	adds	a	prefix
and	a	suffix	to	an	HTML	snippet	can	be	really	useful:

def	wrap(prefix:	String)(html:	String)(suffix:	String)	=	{

				prefix	+	html	+	suffix

}

You	can	use	that	function	to	do	something	like	this,	where	I	wrap	a	string	in
opening	and	closing	<div>	tags:

val	hello	=	"Hello,	world"

val	result	=	wrap("<div>")(hello)("</div>")

Of	course	that	<div>	tag	can	be	more	complicated,	such	as	specifying	a	CSS	
class	or	id,	but	I’m	keeping	this	simple.

It	turns	out	that	wrap	is	a	really	nice,	general	function,	so	you	can	wrap	text	in	
DIV	tags,	P	tags,	SPAN	tags,	etc.	But	if	you’re	going	to	be	wrapping	a	lot	of
strings	with	DIV	tags,	what	you	probably	want	is	a	more	specific	wrapWithDiv
function.	This	is	a	great	time	to	use	a	partially-applied	function,	because	that’s
what	they	do:	they	let	you	create	a	specific	function	from	a	general	function:

val	wrapWithDiv	=	wrap("<div>")(_:	String)("</div>")

Now	you	can	call	wrapWithDiv,	just	passing	it	the	HTML	you	want	to	wrap:

scala>	wrapWithDiv("<p>Hello,	world</p>")

res0:	String	=	<div><p>Hello,	world</p></div>

scala>	wrapWithDiv("")

res1:	String	=	<div></div>

Of	course	you	can	still	call	the	original	wrap	function:

wrap("<pre>",	"val	x	=	1",	"</pre>")

You	can	also	create	other,	more-specific	functions:

http://amzn.to/24ivK4G

val	wrapWithPre	=	wrap("<pre>")(_:	String)("</pre>")

Besides	the	unique	syntax,	the	important	point	is	that	you	make	a	more	specific
function	by	“seeding”	the	more	general	function	with	one	or	more	initial
parameters.	That	is,	you	partially	apply	parameters	to	the	general	function	to
create	the	specific	function.

Handling	the	missing	parameter

As	I	showed	in	that	example,	it’s	necessary	to	specify	the	type	of	the	missing
parameter,	as	I	did	in	this	code:

val	wrapWithDiv	=	wrap("<div>")(_:	String)("</div>")

If	you	don’t	specify	the	type,	you’ll	get	a	compiler	error	that	looks	like	this:

scala>	val	wrapWithDiv	=	wrap("<div>")(_)("</div>")

<console>:11:	error:	missing	parameter	type	for	

expanded	function	((x$1)	=>	wrap("<div>")(x$1)("</div>"))

							val	wrapWithDiv	=	wrap("<div>")(_)("</div>")

																																							^

Summary:	Partially-applied	functions

As	a	summary,	PAFs	give	you	this	capability:

You	write	a	general	function

You	create	a	specific	function	from	the	general	function

You	still	have	access	to	both	functions,	and	you	kept	your	code	“DRY”	—
you	didn’t	copy	and	paste	code	to	make	the	new	function

Creating	curried	functions	from	regular	functions

As	a	fun	example	of	some	things	you	can	do	with	PAFs,	the	“partially-applied
functions”	section	of	the	Scala	Exercises	website	demonstrates	that	you	can
create	curried	functions	from	“normal”	Scala	functions.	For	instance,	you	can
start	with	a	normal,	one-parameter	group	function	like	this:

def	add(x:	Int,	y:	Int)	=	x	+	y

Then	they	show	that	you	can	create	a	Function2	instance	from	add	by	adding	an
underscore	after	it,	like	this:

scala>	val	addFunction	=	add	_

addFunction:	(Int,	Int)	=>	Int	=	<function2>

After	that,	they	prove	that	it’s	a	Function2	instance	like	this:

(add	_).isInstanceOf[Function2[_,	_,	_]]

Finally,	they	create	a	“curried”	function	from	that	Function2	instance:

val	addCurried	=	(add	_).curried

Now	you	can	use	the	new	curried	function	like	this:

addCurried(1)(2)

As	this	shows,	calling	the	curried	method	on	the	add	function	instance	creates	a
new	function	that	has	two	parameter	groups.	(So,	a	curried	function	can	be
thought	of	as	a	function	with	multiple	parameter	groups.)

You	can	also	create	a	partially-applied	function	from	the	curried	function,	like
this:

val	addCurriedTwo	=	addCurried(2)				//	create	a	PAF

addCurriedTwo(10)																				//	use	the	PAF

The	technique	of	converting	a	def	method	into	a	true	function	uses	a	Scala
technology	known	as	“Eta	Expansion,”	which	I	discuss	in	the	Using	Methods	As
If	They	Were	Functions	lesson.

See	it	in	the	REPL

http://scala-exercises.47deg.com/koans#partiallyappliedfunctions

You	can	see	how	all	of	those	steps	work	by	pasting	the	code	into	the	REPL:

scala>	def	add(x:	Int,	y:	Int)	=	x	+	y

add:	(x:	Int,	y:	Int)Int

scala>	(add	_).isInstanceOf[Function2[_,	_,	_]]

res0:	Boolean	=	true

scala>	val	addCurried	=	(add	_).curried

addCurried:	Int	=>	(Int	=>	Int)	=	<function1>

scala>	addCurried(1)(2)

res1:	Int	=	3

scala>	val	addCurriedTwo	=	addCurried(2)

addCurriedTwo:	Int	=>	Int	=	<function1>

scala>	addCurriedTwo(10)

res2:	Int	=	12

Personally,	I	mostly	use	curried	functions	to	create	control	structures,	as	I
demonstrated	with	whilst	and	ifBothTrue	in	the	previous	lesson.	(So,	at	the
moment,	this	is	a	technique	I	know	about,	but	have	not	used.)

Partially-applied	functions	without	multiple
parameter	groups

So	far	I’ve	shown	that	you	can	create	a	partially-applied	function	with	functions
that	have	multiple	parameter	groups,	but	because	Scala	is	really	convenient,	you
can	create	PAFs	with	single	parameter	group	functions	as	well.

To	demonstrate	this,	first	define	a	function	as	usual,	with	one	parameter	group:

def	wrap(prefix:	String,	html:	String,	suffix:	String)	=	{

				prefix	+	html	+	suffix

}

Then	create	a	PAF	by	applying	the	first	and	third	parameters,	but	not	the	second:

val	wrapWithDiv	=	wrap("<div>",	_:	String,	"</div>")

The	wrapWithDiv	function	you	create	in	this	manner	works	the	same	as	the	
wrapWithDiv	function	created	in	the	previous	example:

scala>	val	wrapWithDiv	=	wrap("<div>",	_:	String,	"</div>")

wrapWithDiv:	String	=>	String	=	<function1>

scala>	wrapWithDiv("Hello,	world")

res1:	String	=	<div>Hello,	world</div>

Extra	credit:	How	can	all	of	this	work	with	the	JVM?

If	you’re	interested	in	how	things	work	under	the	covers,	a	good	question	at	this
point	is,	“How	can	this	stuff	possibly	work	with	the	JVM?”	The	JVM	certainly
wasn’t	written	to	account	for	things	like	currying	and	PAFs,	so	how	does	any	of
this	work?

A	short	answer	is	that	(a)	the	Scala	compiler	“uncurries”	your	code,	and	(b)	you
can	see	this	during	the	compilation	process.	For	example,	write	a	little	Scala
class	like	this:

class	Currying	{

				def	f1(a:	Int,	b:	Int)	=	{	a	+	b	}			//	1	param	group

				def	f2(a:	Int)(b:	Int)	=	{	a	+	b	}			//	2	param	groups

}

Then	compile	that	class	with	this	command:

$	scalac	-Xprint:all	Currying.scala

if	you	dig	through	the	end	of	that	output,	you’ll	see	that	the	Scala	compiler	has
an	“uncurry”	phase.	A	short	version	of	the	tail	end	of	the	compiler	output	looks
like	this:

[[syntax	trees	at	end	of	typer]]	//	Currying.scala

package	<empty>	{

		class	Currying	extends	scala.AnyRef	{

				def	<init>():	Currying	=	{

						Currying.super.<init>();

						()

				};

				def	f1(a:	Int,	b:	Int):	Int	=	a.+(b);

				def	f2(a:	Int)(b:	Int):	Int	=	a.+(b)

		}

}

.

.

.

[[syntax	trees	at	end	of	uncurry]]	//	Currying.scala

package	<empty>	{

		class	Currying	extends	Object	{

				def	<init>():	Currying	=	{

						Currying.super.<init>();

						()

				};

				def	f1(a:	Int,	b:	Int):	Int	=	a.+(b);

				def	f2(a:	Int,	b:	Int):	Int	=	a.+(b)

		}

}

As	that	output	shows,	I	wrote	the	two	functions	f1	and	f2	differently,	but	after
the	compiler’s	“uncurry”	phase	they	end	up	looking	the	same.

Things	 might	 look	 more	 interesting	 in	 the	 output	 if	 I	 had
created	 a	 partially-applied	 function,	 but	 I’ll	 leave	 that	 as	 an
exercise	for	the	reader.

Currying	vs	partially-applied	functions

The	concepts	of	currying	and	partially-applied	functions	are	related,	but	they
aren’t	exactly	the	same.	As	I	wrote	at	the	beginning,	currying	is	defined	like	this:

A	function	that	takes	multiple	arguments	can	be	translated	into
a	series	of	function	calls	that	each	take	a	single	argument.

This	is	particularly	important	in	a	language	like	Haskell,	where	all	functions	are
technically	curried	functions.	In	Scala	this	is	generally	a	theoretical	thing	that’s
good	to	know	about,	and	it’s	good	to	know	that	you	can	create	a	curried	function
from	a	normal	function,	but	these	aren’t	“core”	features	you	absolutely	need	to
know	to	write	code	in	Scala.

A	partially-applied	function	on	the	other	hand	is	a	function	that	you	manually
create	by	supplying	fewer	parameters	than	the	initial	function	defines.	As	I
showed	in	this	lesson,	you	can	create	the	PAF	plus2	like	this:

def	plus(a:	Int)(b:	Int)	=	a	+	b

def	plus2	=	plus(2)(_)

So,	both	concepts	are	related	to	multiple	parameter	groups,	but	in	general,	I	use
PAFs	more	often	than	I	concern	myself	with	curried	functions.

Don’t	get	bogged	down	in	terminology

As	I	mentioned	at	the	beginning	of	this	lesson,	don’t	get	bogged	down	in	the
precise	meaning	of	things	like	“curried	functions.”	It	is	good	to	know	how
multiple	input	parameter	groups	work	because	it’s	a	technique	that	is	used	a	lot
in	Scala/FP,	but	don’t	get	lost	in	worrying	about	the	exact	meaning	of	currying
like	I	did.	Understanding	how	multiple	parameter	groups	work	is	the	important
thing.

Summary

This	lesson	covered	the	following	topics:

It	provides	a	definition	of	currying

It	shows	how	to	create	partially-applied	functions	from	functions	that	have
(a)	multiple	parameter	groups	or	(b)	single	parameter	groups

It	also	shows	how	to	create	“curried”	functions	from	regular	functions,	and
provided	a	little	look	at	how	Scala	gets	these	features	to	work	with	the	JVM.

What’s	next

I’ve	covered	a	lot	of	Scala/FP	background	material	so	far,	but	occasionally	I	had
to	mix	in	a	few	var	fields	in	my	examples	because	that’s	the	only	way	to	solve
certain	problems	with	the	tools	I’ve	shown	so	far.

Well,	no	more	of	that.

In	the	next	few	lessons	things	are	going	to	be	fun,	as	I	get	to	cover	recursion.
Once	you	understand	recursive	calls,	I	think	you’ll	find	that	they’re	a	natural
way	to	think	about	writing	iterative	algorithms.

Once	I	cover	recursion	you’ll	then	be	very	close	to	handling	many	more	FP
concepts,	the	first	of	which	will	be	how	to	handle	“state”	in	FP	applications.	But
to	handle	state	in	an	FP	manner,	you’ll	need	to	know	how	to	write	recursive
functions	…

See	Also

Here	are	a	few	more	resources	related	to	currying	and	partially-applied
functions.

Daniel	Westheide’s	article,	Currying	and	Partially	Applied	Functions	is	a
good	resource.

These	discussions	on	StackOverflow	and	StackExchange	also	provide	a	little
more	insight:

With	curried	functions	you	get	easier	reuse	of	more	abstract	functions,	since
you	get	to	specialize.

“It’s	common	to	mistake	partial	function	application	for	currying	…	I’ve
almost	never	seen	anyone	use	currying	in	practice.	Partial	function
application	on	the	other	hand	is	quite	useful	in	many	languages.”

“There	is	a	slight	difference	between	currying	and	partial	application,
although	they’re	closely	related;	since	they’re	often	mixed	together,	I’ll	deal
with	both	terms.”

http://danielwestheide.com/blog/2013/01/30/the-neophytes-guide-to-scala-part-11-currying-and-partially-applied-functions.html
http://programmers.stackexchange.com/questions/185585/what-is-the-advantage-of-currying
http://stackoverflow.com/questions/5301181/what-are-the-practical-advantages-of-currying
http://stackoverflow.com/questions/12413495/what-are-the-benefits-of-currying

Recursion:	Introduction
As	you	may	have	noticed	from	this	book’s	index,	you’re	about	to	jump	into	a
series	of	lessons	on	recursive	programming.	I	separated	this	text	into	a	series	of
small	lessons	to	make	the	content	easier	to	read	initially,	and	then	easier	to	refer
to	later.

Please	note	that	some	of	these	lessons	may	be	overkill	for	some	people.	Many
people	find	recursive	programming	to	be	difficult,	so	I	demonstrate	it	in	several
different	ways.	I	start	by	reviewing	the	List	class,	then	show	a	straightforward,
“Here’s	how	to	write	a	recursive	function”	lesson.	After	that	I	add	a	few	more
lessons	to	explain	recursion	in	different	ways.

If	at	any	point	you	feel	like	you	understand	how	to	write	recursive	functions,	feel
free	to	skip	any	or	all	of	these	lessons.	You	can	always	come	back	to	them	later
if	you	need	to.

Recursion:	Motivation

What	is	recursion?

Before	getting	into	the	motivation	to	use	recursion,	a	great	question	is,	“What	is
recursion?”

Simply	stated,	a	recursive	function	is	a	function	that	calls	itself.	That’s	it.

As	you’ll	see	in	this	lesson,	a	common	use	of	recursive	functions	is	to	iterate
over	the	elements	in	a	list.

Why	do	I	need	to	write	recursive	functions?

The	next	question	that	usually	comes	up	right	about	now	is,	“Why	do	I	need	to
write	recursive	functions?	Why	can’t	I	use	for	loops	to	iterate	over	lists?”

The	short	answer	is	that	algorithms	that	use	for	loops	require	the	use	of	var
fields,	and	as	you	know	from	our	rules,	functional	programmers	don’t	use	var
fields.

(Read	on	for	the	longer	answer.)

If	you	had	var	fields

Of	course	if	you	could	use	mutable	variables	in	your	programming	language,
you	might	write	a	“sum	the	integers	in	a	list”	algorithm	like	this:

def	sum(xs:	List[Int]):	Int	=	{

				var	sum	=	0

				for	(x	<-	xs)	{

								sum	+=	x

				}

				sum

}

That	algorithm	uses	a	var	field	named	sum	and	a	for	loop	to	iterate	through
every	element	in	the	given	list	to	calculate	the	sum	of	those	integers.	From	an
imperative	programming	standpoint,	there’s	nothing	wrong	with	this	code.	I
wrote	imperative	code	like	this	in	Java	for	more	than	fifteen	years.

But	from	a	functional	programmer’s	point	of	view,	there	are	several	problems
with	this	code.

Problem	1:	We	can	only	keep	so	much	in	our	brains

One	problem	is	that	reading	a	lot	of	custom	for	loops	dulls	your	brain.

As	an	OOP/imperative	programmer	I	never	noticed	it,	but	if	you	think	about	the
way	you	thought	when	you	read	that	function,	one	of	the	first	things	you	thought
is,	“Hmm,	here’s	a	var	field	named	sum,	so	Al	is	probably	going	to	modify	that
field	in	the	rest	of	the	algorithm.”	Then	you	thought,	“Okay,	here’s	a	for	loop	…
he’s	looping	over	xs	…	ah,	yes,	he’s	using	+=,	so	this	really	is	a	‘sum’	loop,	so
that	variable	name	makes	sense.”	Once	you	learn	FP	—	or	even	if	you	just	learn
the	methods	available	on	Scala	collections	classes	—	you	realize	that’s	a	lot	of
thinking	about	a	little	custom	for	loop.

If	you’re	like	me	a	few	years	ago,	you	may	be	thinking	that	what	I	just	wrote	is
overkill.	You	probably	look	at	mutable	variables	and	for	loops	all	the	time.	But
studies	show	that	we	can	only	keep	just	so	much	information	in	our	brains	at	one
time,	therefore:

The	less	information	we	have	to	keep	in	there	is	a	win,	and

Boilerplate	for	loop	code	is	a	waste	of	our	brain’s	RAM

Maybe	this	seems	like	a	small	win	at	the	moment,	but	speaking	from	my	own
experience,	anything	I	can	do	to	keep	my	brain’s	RAM	free	for	important	things
is	a	win.

Problem	#2:	It’s	not	algebraic

Another	problem	is	that	this	code	doesn’t	look	or	feel	like	algebra.	I	discussed
this	in	the	“Functional	Programming	is	Like	Algebra”	lesson,	so	I	won’t	repeat
that	discussion	here.

Problem	#3:	There	are	no	var	fields	in	FP

Of	course	from	our	perspective	as	functional	programmers,	the	huge	problem
with	this	code	is	that	it	requires	a	var	field,	and	Scala/FP	developers	don’t	use
those.	A	var	field	is	a	crutch,	and	the	best	thing	you	can	do	to	expedite	your	FP
education	is	to	completely	forget	that	they	exist.

In	my	own	FP	experience,	I	learned	that	there’s	a	different	way	to	solve	iterative
problems	once	I	let	go	of	var	fields	and	for	loops.

What	to	do?

Because	we	can’t	use	var	fields,	we	need	to	look	at	a	different	tool	to	solve
problems	like	this.	That	tool	is	recursion.

If	you’re	like	me,	at	first	you’ll	need	to	write	recursive	functions	(because	that’s
all	you	can	do),	but	after	a	while	you’ll	want	to	write	recursive	functions.

Recursion:	Let’s	Look	at	Lists

Visualizing	lists

Because	the	List	data	structure	—	and	the	head	and	tail	components	of	a	List
—	are	so	important	to	recursion,	it	helps	to	visualize	what	a	list	and	its	head	and
tail	components	look	like.	Figure	[fig:headTailWorm]	shows	one	way	to
visualize	a	List.

One	way	to	visualize	the	head	and	tail	elements	of	a	list.

This	creative	imagery	comes	from	the	online	version	of	“Learn	You	a	Haskell
for	Great	Good”,	and	it	does	a	great	job	of	imprinting	the	concept	of	head	and
tail	components	of	a	list	into	your	brain.	As	shown,	the	“head”	component	is
simply	the	first	element	in	the	list,	and	the	“tail”	is	the	rest	of	the	list.

A	slightly	more	technical	way	to	visualize	the	head	and	tail	of	a	list	is	shown	in
Figure	[fig:visualizeListMoreTech].

http://learnyouahaskell.com/starting-out

A	slightly	more	technical	way	to	visualize	a	list.

An	even	more	accurate	way	to	show	this	is	with	a	Nil	value	in	the	very	last
position,	as	shown	in	Figure	[fig:visualizeListNilElement],	because	that’s	what	it
really	looks	like.

A	more	accurate	way	to	visualize	a	list.

Linked	lists	and	“cons”	cells

To	be	clear,	the	List	that	I’m	talking	about	is	a	linked	list	—
scala.collection.immutable.List,	which	is	the	default	list	you	get	if	you	type	List
in	your	IDE	or	the	REPL.	This	List	is	a	series	of	cells,	where	each	cell	contains
two	things:	(a)	a	value,	and	(b)	a	pointer	to	the	next	cell.	This	is	shown	in
Figure	[fig:linkedListDepiction].

A	linked	list	contains	a	value	and	a	pointer	to	the	next	cell.

As	shown,	the	last	cell	in	a	linked	list	contains	the	Nil	value.	The	Nil	in	the	last
cell	is	very	important:	it’s	how	your	recursive	Scala	code	will	know	when	it	has
reached	the	end	of	a	List.

When	drawing	a	list	like	this,	Figure	[fig:headElemOfAList]	clearly	shows	the
head	element.

http://www.scala-lang.org/api/current/#scala.collection.immutable.List

The	head	element	of	a	list.

Figure	[fig:tailElemsOfAList]	shows	the	tail	elements	of	a	list.

The	tail	elements	of	a	list

Just	like	Haskell	—	and	Lisp	before	it	—	the	default	Scala	List	works	with
these	head	and	tail	components,	and	I’ll	use	them	extensively	in	the	examples
that	follow.

For	 historical	 reasons	 these	 cells	 are	 known	 as	 “cons	 cells.”
That	 name	 comes	 from	Lisp,	 and	 if	 you	 like	 history,	 you	 can
read	more	about	it	on	Wikipedia.

https://en.wikipedia.org/wiki/Cons

Note	1:	The	empty	List

As	a	first	note	about	Lists,	a	List	with	no	elements	in	it	is	an	empty	list.	An
empty	List	contains	only	one	cell,	and	that	cell	contains	a	Nil	element,	as
shown	in	Figure	[fig:theNilList].

A	list	with	no	elements	contains	only	one	cell,	which	contains	a	Nil	element

You	can	create	an	empty	List[Int]	in	Scala	in	two	ways:

scala>	val	empty1:	List[Int]	=	List()

empty:	List[Int]	=	List()

scala>	val	empty2:	List[Int]	=	Nil

empty:	List[Int]	=	List()

scala>	empty1	==	empty2

res0:	Boolean	=	true

As	those	examples	show:

List()	==	Nil

Note	2:	Several	ways	to	create	Lists

There	are	several	ways	to	create	non-empty	Lists	in	Scala,	but	for	the	most	part
I’ll	use	two	approaches.	First,	here’s	a	technique	you’re	probably	already
familiar	with:

val	list	=	List(1,2,3)

Second,	this	is	an	approach	you	may	not	have	seen	yet:

val	list	=	1	::	2	::	3	::	Nil

These	two	techniques	result	in	the	exact	same	List[Int],	which	you	can	see	in
the	REPL:

scala>	val	list1	=	List(1,2,3)

list:	List[Int]	=	List(1,	2,	3)

scala>	val	list2	=	1	::	2	::	3	::	Nil

list:	List[Int]	=	List(1,	2,	3)

scala>	list1	==	list2

res1:	Boolean	=	true

The	second	approach	is	known	as	using	“cons	cells.”	As	you	can	see,	it’s	a	very
literal	approach	to	creating	a	List,	where	you	specify	each	element	in	the	List,
including	the	Nil	element	in	the	last	position.	If	you	forget	the	Nil	element	at
the	end,	the	Scala	compiler	will	bark	at	you:

scala>	val	list	=	1	::	2	::	3

<console>:10:	error:	value	::	is	not	a	member	of	Int

							val	list	=	1	::	2	::	3

																									^

I	show	this	because	it’s	important	—	very	important	—	to	know	that	the	last
element	in	a	List	must	be	the	Nil	element.	(I	like	to	say	that	the	Nil	element	is
to	a	List	as	a	caboose	is	to	a	train.)	We’re	going	to	take	advantage	of	this
knowledge	as	we	write	our	first	recursive	function.

Recursion:	How	to	Write	a	‘sum’
Function
With	all	of	the	images	of	the	previous	lesson	firmly	ingrained	in	your	brain,	let’s
write	a	sum	function	using	recursion!

Source	code

The	source	code	for	this	lesson	is	at	this	Github	URL:

github.com/alvinj/RecursiveSum

https://github.com/alvinj/RecursiveSum

Sketching	the	sum	function	signature

Given	a	List	of	integers,	such	as	this	one:

val	list	=	List(1,	2,	3,	4)

let’s	start	tackling	the	problem	in	the	usual	way,	by	thinking,	“Write	the	function
signature	first.”

What	do	we	know	about	the	sum	function	we	want	to	write?	Well,	we	know	a
couple	of	things:

It	will	take	a	list	of	integers	as	input

Because	it	returns	a	sum	of	those	integers,	the	function	will	return	a	single
value,	an	Int

Armed	with	only	those	two	pieces	of	information,	I	can	sketch	the	function
signature	like	this:

def	sum(list:	List[Int]):	Int	=	???

The	sum	function	body

When	thinking	about	the	function	body,	a	functional	programmer	will	think	of	a
“sum”	algorithm	as	follows:

1.	 If	the	sum	function	is	given	an	empty	list	of	integers,	it	should	return	0.
(Because	the	sum	of	nothing	is	zero.)

2.	 Otherwise,	if	the	list	is	not	empty,	the	result	of	the	function	is	the
combination	of	(a)	the	value	of	its	head	element	(1,	in	this	case),	and	(b)	the
sum	of	the	remaining	elements	in	the	list	(2,3,4).

A	slight	restatement	of	that	second	sentence	is:

“The	sum	of	a	 list	of	 integers	 is	 the	sum	of	 the	head	element,
plus	the	sum	of	the	tail	elements.”

Thinking	about	a	List	in	terms	of	its	head	and	tail	elements	is	a	standard	way	of
thinking	when	writing	recursive	functions.

Now	that	we	have	a	little	idea	of	how	to	think	about	the	problem	recursively,
let’s	see	how	to	implement	those	sentences	in	Scala	code.

Implementing	the	first	sentence	in	code

The	first	sentence	above	states:

If	the	sum	function	is	given	an	empty	list	of	integers,	 it	should
return	0.

Recursive	Scala	functions	are	often	implemented	using	match	expressions.	Using
(a)	that	information,	and	(b)	remembering	that	an	empty	list	contains	only	the	
Nil	element,	you	can	start	writing	the	body	of	the	sum	function	like	this:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	0

This	is	a	Scala	way	of	saying,	“If	the	List	is	empty,	return	0.”	If	you’re
comfortable	with	match	expressions	and	the	List	class,	I	think	you’ll	agree	that
this	makes	sense.

Note	1:	Using	return

If	you	prefer	using	return	statements	at	this	point	in	your	Scala	career,	you	can
write	that	code	like	this:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	return	0

Because	a	pure	function	doesn’t	“return”	a	value	as	much	as	it	“evaluates”	to	a
result,	you’ll	want	to	quickly	drop	return	from	your	vocabulary,	but	…	I	also
understand	that	using	return	can	help	when	you	first	start	writing	recursive
functions.

Note	2:	Using	if/then	instead

You	can	also	write	this	function	using	an	if/then	expression,	but	because	you’ll
often	use	pattern	matching	with	recursive	algorithms,	I	use	a	match	expression
here.

Note	3:	Can	also	use	List()

Because	Nil	is	equivalent	to	List(),	you	can	also	write	that	case	expression	like
this:

				case	List()	=>	0

However,	most	functional	programmers	use	Nil,	and	I’ll	continue	to	use	Nil	in
this	lesson.

Implementing	the	second	sentence	in	code

That	case	expression	is	a	Scala/FP	implementation	of	the	first	sentence,	so	let’s
move	on	to	the	second	sentence.

The	second	sentence	says,	“If	the	list	is	not	empty,	the	result	of	the	algorithm	is
the	combination	of	(a)	the	value	of	its	head	element,	and	(b)	the	sum	of	its	tail
elements.”

To	split	the	list	into	head	and	tail	components,	I	start	writing	the	second	case
expression	like	this:

case	head	::	tail	=>	???

If	you	know	your	case	expressions,	you	know	that	if	sum	is	given	a	list	like	
List(1,2,3,4),	this	pattern	has	the	result	of	assigning	head	to	the	value	1,	and
assigning	tail	the	value	List(2,3,4):

head	=	1

tail	=	List(2,3,4)

This	case	expression	is	a	start,	but	how	do	we	finish	it?	Again	I	go	back	to	the
second	sentence:

If	 the	 list	 is	 not	 empty,	 the	 result	 of	 the	 algorithm	 is	 the
combination	 of	 (a)	 the	 value	 of	 its	 head	 element,	 and	 (b)	 the
sum	of	the	tail	elements.

The	“value	of	its	head	element”	is	easy	to	add	to	the	case	expression:

case	head	::	tail	=>	head	...

But	then	what?	As	the	sentence	says,	“the	value	of	its	head	element,	and	the	sum
of	the	tail	elements,”	which	tells	us	we’ll	be	adding	something	to	head:

case	head	::	tail	=>	head	+	???

What	are	we	adding	to	head?	The	sum	of	the	list’s	tail	elements.	Hmm,	now	how
can	we	get	the	sum	of	a	list	of	tail	elements?	How	about	this:

case	head	::	tail	=>	head	+	sum(tail)

Whoa.	That	code	is	a	straightforward	implementation	of	the	sentence,	isn’t	it?

(I’ll	pause	here	to	let	that	sink	in.)

If	you	combine	this	new	case	expression	with	the	existing	code,	you	get	the
following	sum	function:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	0

				case	head	::	tail	=>	head	+	sum(tail)

}

And	that	is	a	recursive	“sum	the	integers	in	a	List”	function	in	Scala/FP.	No	
var’s,	no	for	loop.

A	note	on	those	names

If	you’re	new	to	case	expressions,	it’s	important	to	note	that	the	head	and	tail
variable	names	in	the	second	case	expression	can	be	anything	you	want.	I	wrote
it	like	this:

case	head	::	tail	=>	head	+	sum(tail)

but	I	could	have	written	this:

case	h	::	t	=>	h	+	sum(t)

or	this:

case	x	::	xs	=>	x	+	sum(xs)

This	last	example	uses	variable	names	that	are	commonly	used	with	FP,	lists,	and
recursive	programming.	When	working	with	a	list,	a	single	element	is	often
referred	to	as	x,	and	multiple	elements	are	referred	to	as	xs.	It’s	a	way	of
indicating	that	x	is	singular	and	xs	is	plural,	like	referring	to	a	single	“pizza”	or
multiple	“pizzas.”	With	lists,	the	head	element	is	definitely	singular,	while	the
tail	can	contain	one	or	more	elements.	I’ll	generally	use	this	naming	convention
in	this	book.

Proof	that	sum	works

To	demonstrate	that	sum	works,	you	can	clone	my	RecursiveSum	project	on
Github	—	which	uses	ScalaTest	to	test	sum	—	or	you	can	copy	the	following
source	code	that	extends	a	Scala	App	to	test	sum:

object	RecursiveSum	extends	App	{

				def	sum(list:	List[Int]):	Int	=	list	match	{

								case	Nil	=>	0

								case	x	::	xs	=>	x	+	sum(xs)

				}

				val	list	=	List(1,	2,	3,	4)

				val	sum	=	sum(list)

				println(sum)

}

When	you	run	this	application	you	should	see	the	output,	10.	If	so,
congratulations	on	your	first	recursive	function!

“That’s	great,”	you	say,	“but	how	exactly	did	that	end	up	printing	10?”

To	which	I	say,	“Excellent	question.	Let’s	dig	into	that!”

As	I’ve	noted	before,	I	tend	to	write	verbose	code	that’s	hopefully	easy	to
understand,	especially	in	books,	but	you	can	shrink	the	last	three	lines	of	code	to
this,	if	you	prefer:

println(sum(List(1,2,3,4)))

https://github.com/alvinj/RecursiveSum
http://www.scalatest.org/

Recursion:	How	Recursive	Function
Calls	Work
An	important	point	to	understand	about	recursive	function	calls	is	that	just	as
they	“wind	up”	as	they	are	called	repeatedly,	they	“unwind”	rapidly	when	the
function’s	end	condition	is	reached.

In	the	case	of	the	sum	function,	the	end	condition	is	reached	when	the	Nil
element	in	a	List	is	reached.	When	sum	gets	to	the	Nil	element,	this	pattern	of
the	match	expression	is	matched:

case	Nil	=>	0

Because	this	line	simply	returns	0,	there	are	no	more	recursive	calls	to	sum.	This
is	a	typical	way	of	ending	the	recursion	when	operating	on	all	elements	of	a	List
in	recursive	algorithms.

Lists	end	with	Nil

As	I	wrote	in	the	earlier	List	lesson,	a	literal	way	to	create	a	List	is	like	this:

1	::	2	::	3	::	4	::	Nil

This	is	a	reminder	that	with	any	Scala	List	you	are	guaranteed	that	the	last	List
element	is	Nil.	Therefore,	if	your	algorithm	is	going	to	operate	on	the	entire	list,
you	should	use:

case	Nil	=>	???

as	your	function’s	end	condition.

This	is	the	first	clue	about	how	the	unfolding	process	works.

Note	1:	This	is	a	feature	of	the	Scala	List	class.	You’ll	have	to
change	 the	 approach	 if	 you	 work	 with	 other	 sequential
collection	classes	like	Vector,	ArrayBuffer,	etc.	(More	on	this
later	in	the	book.)

Note	2:	Examples	of	functions	that	work	on	every	element	in	a
list	 are	map,	 filter,	 foreach,	 sum,	 product,	 and	many	more.
Examples	of	 functions	 that	don’t	operate	on	every	 list	element
are	take	and	takeWhile.

Understanding	how	the	sum	example	ran

A	good	way	to	understand	how	the	sum	function	example	ran	is	to	add	println
statements	inside	the	case	expressions.

First,	change	the	sum	function	to	look	like	this:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	{

								println("case1:	Nil	was	matched")

								0

				}

				case	head	::	tail	=>	{

								println(s"case2:	head	=	$head,	tail	=	$tail")

								head	+	sum(tail)

				}

}

Now	when	you	run	it	again	with	a	List(1,2,3,4)	as	its	input	parameter,	you’ll
see	this	output:

case2:	head	=	1,	tail	=	List(2,	3,	4)

case2:	head	=	2,	tail	=	List(3,	4)

case2:	head	=	3,	tail	=	List(4)

case2:	head	=	4,	tail	=	List()

case1:	Nil	was	matched

That	output	shows	that	sum	is	called	repeatedly	until	the	list	is	reduced	to	List()
(which	is	the	same	as	Nil).	When	List()	is	passed	to	sum,	the	first	case	is
matched	and	the	recursive	calls	to	sum	come	to	an	end.	(I’ll	demonstrate	this
visually	in	the	next	lesson.)

The	book,	Land	of	Lisp	states,	“recursive	functions	are	list	eaters,”	and	this
output	shows	why	that	statement	is	true.

http://amzn.to/1PjyUeL

How	the	recursion	works	(“going	down”)

Keeping	in	mind	that	List(1,2,3,4)	is	the	same	as	1::2::3::4::Nil,	you	can
read	the	output	like	this:

1.	 The	first	time	sum	is	called,	the	match	expression	sees	that	the	given	List
doesn’t	match	the	Nil	element,	so	control	flows	to	the	second	case
statement.

2.	 The	second	case	statement	matches	the	List	pattern,	then	splits	the
incoming	list	of	1::2::3::4::Nil	into	(a)	a	head	element	of	1	and

1.	 the	remainder	of	the	list,	2::3::4::Nil.	The	remainder	—	the	tail	—
is	then	passed	into	another	sum	function	call.

3.	 A	new	instance	of	sum	receives	the	list	2::3::4::Nil.	It	sees	that	this	list
does	not	match	the	Nil	element,	so	control	flows	to	the	second	case
statement.

4.	 That	statement	matches	the	List	pattern,	then	splits	the	list	into	a	head
element	of	2	and	a	tail	of	3::4::Nil.	The	tail	is	passed	as	an	input
parameter	to	another	sum	call.

5.	 A	new	instance	of	sum	receives	the	list	3::4::Nil.	This	list	does	not	match
the	Nil	element,	so	control	passes	to	the	second	case	statement.

6.	 The	list	matches	the	pattern	of	the	second	case	statement,	which	splits	the
list	into	a	head	element	of	3	and	a	tail	of	4::Nil.	The	tail	is	passed	as	an
input	parameter	to	another	sum	call.

7.	 A	new	instance	of	sum	receives	the	list	4::Nil,	sees	that	it	does	not	match	
Nil,	and	passes	control	to	the	second	case	statement.

8.	 The	list	matches	the	pattern	of	the	second	case	statement.	The	list	is	split
into	a	head	element	of	4	a	tail	of	Nil.	The	tail	is	passed	to	another	sum
function	call.

9.	 The	new	instance	of	sum	receives	Nil	as	an	input	parameter,	and	sees	that	it

does	match	the	Nil	pattern	in	the	first	case	expression.	At	this	point	the
first	case	expression	is	evaluated.

10.	 The	first	case	expression	returns	the	value	0.	This	marks	the	end	of	the
recursive	calls.

At	this	point	—	when	the	first	case	expression	of	this	sum	instance	returns	0	—
all	of	the	recursive	calls	“unwind”	until	the	very	first	sum	instance	returns	its
answer	to	the	code	that	called	it.

How	the	unwinding	works	(“coming	back	up”)

That	description	gives	you	an	idea	of	how	the	recursive	sum	function	calls	work
until	they	reach	the	end	condition.	Here’s	a	description	of	what	happens	after	the
end	condition	is	reached:

1.	 The	last	sum	instance	—	the	one	that	received	List()	—	returns	0.	This
happens	because	List()	matches	Nil	in	the	first	case	expression.

2.	 This	returns	control	to	the	previous	sum	instance.	The	second	case
expression	of	that	sum	function	has	return	4	+	sum(Nil)	as	its	return
value.	This	is	reduced	to	return	4	+	0,	so	this	instance	returns	4.	(I	didn’t
use	a	return	statement	in	the	code,	but	it’s	easier	to	read	this	now	if	I	say
“return.”)

3.	 Again,	this	returns	control	to	the	previous	sum	instance.	That	sum	instance
has	return	3	+	sum(List(4))	as	the	result	of	its	second	case	expression.
You	just	saw	that	sum(List(4))	returns	4,	so	this	case	expression	evaluates
to	return	3	+	4,	or	7.

4.	 Control	is	returned	to	the	previous	sum	instance.	Its	second	case	expression
has	return	2	+	sum(List(3,4))	as	its	result.	You	just	saw	that	
sum(List(3,4))	returns	7,	so	this	expression	evaluates	to	return	2	+	7,	or
9.

5.	 Finally,	control	is	returned	to	the	original	sum	function	call.	Its	second	case
expression	is	return	1	+	sum(List(2,3,4)).	You	just	saw	that	
sum(List(2,3,4))	returns	9,	so	this	call	is	reduced	to	return	1	+	9,	or	10.
This	value	is	returned	to	whatever	code	called	the	first	sum	instance.

Initial	visuals	of	how	the	recursion	works

One	way	to	visualize	how	the	recursive	sum	function	calls	work	—	the	“going
down”	part	—	is	shown	in	Figure	[fig:recursionGoingDown].

How	the	original	sum	call	leads	to	another,	then	to	another	…

After	that,	when	the	end	condition	is	reached,	the	“coming	back	up”	part	—	what
I	call	the	unwinding	process	—	is	shown	in	Figure	[fig:recursionUnwinding].

How	sum	function	calls	unwind,	starting	with	the	last	sum	call

If	this	isn’t	clear,	fear	not,	in	the	next	lesson	I’ll	show	a	few	more	visual
examples	of	how	this	works.

Visualizing	the	Recursive	sum	Function
Another	way	to	view	recursion	is	with	visual	diagrams.	To	demonstrate	this,	I’ll
use	the	rectangular	symbol	shown	in	Figure	[fig:rectFunctionSymbol]	to
represent	a	function.

This	rectangular	symbol	will	be	used	to	represent	functions	in	this	lesson

The	first	step

Using	that	symbol	and	a	list	with	only	three	elements,
Figure	[fig:the1stSumCall]	shows	a	representation	of	the	first	sum	function	call.

A	visual	representation	of	the	first	sum	call

The	top	cell	in	the	rectangle	indicates	that	this	first	instance	of	sum	is	called	with
the	parameters	1,2,3.	Note	that	I’m	leaving	the	“List”	name	off	of	these
diagrams	to	make	them	more	readable.

The	body	of	the	function	is	shown	in	the	middle	region	of	the	symbol,	and	it’s
shown	as	return	1	+	sum(2,3).	As	I	mentioned	before,	you	don’t	normally	use
the	return	keyword	with	Scala/FP	functions,	but	in	this	case	it	makes	the
diagram	more	clear.

In	the	bottom	region	of	the	symbol	I’ve	left	room	for	the	final	return	value	of	the
function.	At	this	time	we	don’t	know	what	the	function	will	return,	so	for	now	I
just	leave	that	spot	empty.

The	next	steps

For	the	next	step	of	the	diagram,	assume	that	the	first	sum	function	call	receives
the	parameter	list	(1,2,3),	and	its	body	now	calls	a	new	instance	of	sum	with	the
input	parameter	sum(2,3)	(or	sum(List(2,3)),	if	you	prefer).	You	can	imagine
the	second	case	expression	separating	the	List	into	head	and	tail	elements,	as
shown	in	Figure	[fig:the2ndSumCall].

The	first	sum	function	invokes	a	second	sum	function	call

Then	this	sum	instance	makes	a	recursive	call	to	another	sum	instance,	as	shown
in	Figure	[fig:the2ndSumCallsThe3rd].

The	second	sum	function	call	begins	to	invoke	the	third	sum	instance

Again	I	leave	the	return	value	of	this	function	empty	because	I	don’t	know	what
it	will	be	until	its	sum	call	returns.

It’s	important	to	be	clear	that	these	two	function	calls	are	completely	different
instances	of	sum.	They	have	their	own	input	parameter	lists,	local	variables,	and
return	values.	It’s	just	as	if	you	had	two	different	functions,	one	named	

sum3elements	and	one	named	sum2elements,	as	shown	in
Figure	[fig:justLikeCallingDiffFunction].

One	sum	function	calling	another	sum	instance	is	just	like	calling	a	different
function

Just	as	the	variables	inside	of	sum3elements	and	sum2elements	have	completely
different	scope,	the	variables	in	two	different	instances	of	sum	also	have
completely	different	scope.

Getting	back	to	the	sum	example,	you	can	now	imagine	that	the	next	step	will
proceed	just	like	the	previous	one,	as	shown	in	Figure	[fig:the3rdSumCall].

The	third	sum	function	has	now	been	called

The	last	recursive	sum	call

Now	we’re	at	the	point	where	we	make	the	last	recursive	call	to	sum.	In	this	case,
because	3	was	the	last	integer	in	the	list,	a	new	instance	of	sum	is	called	with	the	
Nil	value.	This	is	shown	in	Figure	[fig:nilPassedIntoLastSumCall].

Nil	is	passed	into	the	final	sum	function	call

With	this	last	sum	call,	the	Nil	input	parameter	matches	the	first	case	expression,
and	that	expression	simply	returns	0.	So	now	we	can	fill	in	the	return	value	for
this	function,	as	shown	in	Figure	[fig:returnValLastCallIs0].

The	return	value	of	the	last	sum	call	is	0

Now	this	sum	instance	returns	0	back	to	the	previous	sum	instance,	as	shown	in

Figure	[fig:return0To3rdSumCall].

0	is	returned	back	to	the	previous	sum	call

The	result	of	this	function	call	is	3	+	0	(which	is	3),	so	you	can	fill	in	its	return
value,	and	then	flow	it	back	to	the	previous	sum	call.	This	is	shown	in
Figure	[fig:the3rdSumCallReturns].

The	third	sum	call	returns	to	the	second

The	result	of	this	function	call	is	2	+	3	(5),	so	that	result	can	flow	back	to	the
previous	function	call,	as	shown	in	Figure	[fig:the2ndSumCallReturns].

The	second	sum	call	returns	to	the	first

Finally,	the	result	of	this	sum	instance	is	1	+	5	(6).	This	was	the	first	sum
function	call,	so	it	returns	the	value	6	back	to	whoever	called	it,	as	shown	in
Figure	[fig:the1stSumCallReturns].

The	first	sum	call	returns	to	the	final	result

Other	visualizations

There	are	other	ways	to	draw	recursive	function	calls.	Another	nice	approach	is
to	use	a	modified	version	of	a	UML	“Sequence	Diagram,”	as	shown	in
Figure	[fig:sumFunctionCallsAsSequenceDiagram].	Note	that	in	this	diagram
“time”	flows	from	the	top	to	the	bottom.

The	sum	function	calls	can	be	shown	using	a	UML	Sequence	Diagram

This	diagram	shows	that	the	main	method	calls	sum	with	the
parameter	List(1,2,3),	where	I	again	leave	off	the	List	part;	it	calls	sum(2,3),
and	so	on,	until	the	Nil	case	is	reached,	at	which	point	the	return	values	flow
back	from	right	to	left,	eventually	returning	6	back	to	the	main	method.

You	can	write	the	return	values	like	that,	or	with	some	form	of	the	function’s
equation,	as	shown	in	Figure	[fig:writingFunctionReturnValuesAsEquations].

https://en.wikipedia.org/wiki/Sequence_diagram

Writing	the	function	return	values	as	equations

Personally,	I	use	whatever	diagram	seems	to	help	the	most.

Summary

Those	are	some	visual	examples	of	how	recursive	function	calls	work.	If	you
find	yourself	struggling	to	understand	how	recursion	works,	I	hope	these
diagrams	are	helpful.

Recursion:	A	Conversation	Between	Two
Developers
As	an	homage	to	one	of	my	favorite	Lisp	books	—	an	early	version	of	what	is
now	The	Little	Schemer	—	this	lesson	shows	a	little	question	and	answer
interaction	that	you	can	imagine	happening	between	two	Scala	programmers.

Given	this	sum	function:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	0

				case	x	::	xs	=>	x	+	sum(xs)

}

I	hope	this	“conversation”	will	help	drive	home	some	of	the	points	about	how
recursion	works:

Person	1 Person	2

What	is	this?	
val	x	=	List(1,2,3,4)

An	expression	that	defines	a	List[Int],	which	in
this	case	contains	the	integers	1	through	4.	The
expression	binds	that	list	to	the	variable	x.

And	what	is	this?	x.head The	first	element	of	the	list	x,	which	is	1.

How	about	this?	x.tail That’s	the	remaining	elements	in	the	list	x,	which	is	
List(2,3,4).

How	about	this:	
x.tail.head

It	is	the	number	2.

http://amzn.to/1QF59aD

How	did	you	come	up
with	that?

x.tail	is	List(2,3,4),	and	List(2,3,4).head	is
the	first	element	of	that	list,	or	2.

How	about	this:	
x.tail.tail

That’s	List(3,4).

Explain,	please. x.tail	is	List(2,3,4),	and	then	
List(2,3,4).tail	is	List(3,4).

Are	you	ready	for	more? Yes,	please.

Given	the	definition	of
our	sum	function,	explain
the	first	step	in:	
sum(List(1,2,3)).

The	sum	function	receives	List(1,2,3).	This	does
not	match	the	Nil	case,	but	does	match	the	second
case,	where	x	is	assigned	to	1	and	xs	is	List(2,3).

Then	what	happens? A	new	instance	of	sum	is	called	with	the	parameter	
List(2,3).

And	then? A	new	instance	of	sum	receives	the	input	parameter	
List(2,3).	This	does	not	match	the	Nil	case,	but
does	match	the	second	case,	where	x	is	assigned	to	2
and	xs	is	List(3).

Please	continue. sum	is	called	with	the	parameter	List(3).

Go	on. A	new	instance	of	sum	receives	List(3).	This	does
not	match	the	Nil	case,	but	does	match	the	second

case,	where	x	is	assigned	to	3	and	xs	is	List().

Don’t	stop	now. sum	is	called	with	the	parameter	List().

What	happens	inside	this
instance	of	sum?

It	receives	List().	This	is	the	same	as	Nil,	so	it
matches	the	first	case.

Cool.	Something
different.	Now	what
happens?

That	case	returns	0.

Ah,	finally	a	return
value!

You’re	telling	me.

Okay,	so	now	what
happens?

This	ends	the	recursion,	and	then	the	recursive	calls
unwind,	as	described	in	the	previous	lesson.

Recursion:	Thinking	Recursively

Goal

This	lesson	has	one	primary	goal:	to	show	that	the	thought	process	followed	in
writing	the	sum	function	follows	a	common	recursive	programming	“pattern.”
Indeed,	when	you	write	recursive	functions	you’ll	generally	follow	the	three-step
process	shown	in	this	lesson.

I	don’t	want	to	make	this	too	formulaic,	but	the	reality	is	that	if	you	follow	these
three	steps	in	your	thinking,	it	will	make	it	easier	to	write	recursive	functions,
especially	when	you	first	start.

The	general	recursive	thought	process	(the	“three
steps”)

As	I	mentioned	in	the	previous	lessons,	when	I	sit	down	to	write	a	recursive
function,	I	think	of	three	things:

What	is	the	function	signature?

What	is	the	end	condition	for	this	algorithm?

What	is	the	actual	algorithm?	For	example,	if	I’m	processing	all	of	the
elements	in	a	List,	what	does	my	algorithm	do	when	the	function	receives
a	non-empty	List?

Let’s	take	a	deep	dive	into	each	step	in	the	process	to	make	more	sense	of	these
descriptions.

Step	1:	What	is	the	function	signature?

Once	I	know	that	I’m	going	to	write	a	recursive	function,	the	first	thing	I	ask
myself	is,	“What	is	the	signature	of	this	function?”

If	you	can	describe	the	function	verbally,	you	should	find	that	you	know	(a)	the
parameters	that	will	be	passed	into	the	function	and	(b)	what	the	function	will
return.	In	fact,	if	you	don’t	know	these	things,	you’re	probably	not	ready	to	write
the	function	yet.

The	sum	function

In	the	sum	function	the	algorithm	is	to	add	all	of	the	integers	in	a	given	list
together	to	return	a	single	integer	result.	Therefore,	because	I	know	the	function
takes	a	list	of	integers	as	its	input,	I	can	start	sketching	the	function	signature
like	this:

def	sum(list:	List[Int])	...

Because	the	description	also	tells	me	that	the	function	returns	an	Int	result,	I	add
the	function’s	return	type:

def	sum(list:	List[Int]):	Int	=	???

This	is	the	Scala	way	to	say	that	“the	sum	function	takes	a	list	of	integers	and
returns	an	integer	result,”	which	is	what	I	want.	In	FP,	sketching	the	function
signature	is	often	half	of	the	battle,	so	this	is	actually	a	big	step.

Step	2:	How	will	this	algorithm	end?

The	next	thing	I	usually	think	about	is,	“How	will	this	algorithm	end?	What	is	its
end	condition?”

Because	a	recursive	function	like	sum	keeps	calling	itself	over	and	over,	it’s	of
the	utmost	importance	that	there	is	an	end	case.	If	a	recursive	algorithm	doesn’t
have	an	end	condition,	it	will	keep	calling	itself	as	fast	as	possible	until	either	(a)
your	program	crashes	with	a	StackOverflowError,	or	(b)	your	computer’s	CPU
gets	extraordinarily	hot.	Therefore,	I	offer	this	tip:

Always	have	an	end	condition,	and	write	it	as	soon	as	possible.

In	the	sum	algorithm	you	know	that	you	have	a	List,	and	you	want	to	march
through	the	entire	List	to	add	up	the	values	of	all	of	its	elements.	You	may	not
know	it	at	this	point	in	your	recursive	programming	career,	but	right	away	this
statement	is	a	big	hint	about	the	end	condition.	Because	(a)	you	know	that	you’re
working	with	a	List,	(b)	you	want	to	operate	on	the	entire	List,	and	(c)	a	List
ends	with	the	Nil	element,	(d)	you	can	begin	to	write	the	end	condition	case
expression	like	this:

case	Nil	=>	???

To	be	clear,	this	end	condition	is	correct	because	you’re	working	with	a	List,
and	you	know	that	the	algorithm	will	operate	on	the	entire	List.	Because	the	Nil
element	is	to	a	List	as	a	caboose	is	to	a	train,	you’re	guaranteed	that	it’s	always
the	last	element	of	the	List.

Note:	 If	 your	 algorithm	will	 not	work	 on	 the	 entire	List,	 the
end	condition	will	be	different	than	this.

Now	the	next	question	is,	“What	should	this	end	condition	return?”

A	key	here	is	that	the	function	signature	states	that	it	returns	an	Int.	Therefore,
you	know	that	this	end	condition	must	return	an	Int	of	some	sort.	But	what	Int?
Because	this	is	a	“sum”	algorithm,	you	also	know	that	you	don’t	want	to	return
anything	that	will	affect	the	sum.	Hmmm	…	what	Int	can	you	return	when	the	
Nil	element	is	reached	that	won’t	affect	the	sum?

The	answer	is	0.

(More	on	this	shortly.)

Given	that	answer,	I	can	update	the	first	case	condition:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	0

				case	???

}

That	condition	states	that	if	the	function	receives	an	empty	List	—	denoted	by	
Nil	—	the	function	will	return	0.

Now	we’re	ready	for	the	third	step.

I’ll	expand	more	on	the	point	of	returning	0	in	this	algorithm	in	the	coming
lessons,	but	for	now	it	may	help	to	know	that	there’s	a	mathematical	theory
involved	in	this	decision.	What’s	happening	here	is	that	you’re	returning
something	known	as	an	“identity”	element	for	the	current	data	set	and	algorithm.
As	a	quick	demonstration	of	what	I’m	talking	about,	here	are	a	few	other	identity
elements	for	different	data	sets	and	algorithms:

1)	Imagine	that	you	want	to	write	a	“product”	algorithm	for	a	list	of	integers.
What	would	you	return	for	the	end	condition	in	this	case?	The	correct	answer	is	
1.	This	is	because	the	product	involves	multiplying	all	elements	of	the	list,	and
multiplying	any	number	by	1	gives	you	the	original	number,	so	this	doesn’t
affect	the	final	result	in	any	way.

2)	Imagine	that	you’re	writing	a	concatenation	algorithm	for	a	List[String].
What	would	you	return	for	the	end	condition	in	this	case?	The	correct	answer	is	,
an	empty	String	(because	once	again,	it	does	not	affect	the	final	result).

Step	3:	What	is	the	algorithm?

Now	that	you’ve	defined	the	function	signature	and	the	end	condition,	the	final
question	is,	“What	is	the	algorithm	at	hand?”

When	your	algorithm	will	operate	on	all	of	the	elements	in	a	List	and	the	first	
case	condition	handles	the	“empty	list”	case,	this	question	becomes,	“What
should	my	function	do	when	it	receives	a	non-empty	List?”

The	answer	for	a	“sum”	function	is	that	it	should	add	all	of	the	elements	in	the
list.	(Similarly,	the	answer	for	a	“product”	algorithm	is	that	it	should	multiply	all
of	the	list	elements.)

The	sum	algorithm

At	this	point	I	go	back	to	the	original	statement	of	the	sum	algorithm:

“The	sum	of	a	 list	of	 integers	 is	 the	sum	of	 the	head	element,
plus	the	sum	of	the	tail	elements.”

Because	the	first	case	expression	handles	the	“empty	list”	case,	you	know	that
the	second	case	condition	should	handle	the	case	of	the	non-empty	list.	A
common	way	to	write	the	pattern	for	this	case	expression	is	this:

case	head	::	tail	=>	???

This	pattern	says,	“head	will	be	bound	to	the	value	of	the	first	element	in	the	
List,	and	tail	will	contain	all	of	the	remaining	elements	in	the	List.”

Because	my	description	of	the	algorithm	states	that	the	sum	is	“the	sum	of	the
head	element,	plus	the	sum	of	the	tail	elements,”	I	start	to	write	a	case
expression,	starting	by	adding	the	head	element:

case	head	::	tail	=>	head	+	???

and	then	I	write	this	code	to	represent	“the	sum	of	the	tail	elements”:

case	head	::	tail	=>	head	+	sum(tail)

That	is	a	Scala/FP	recursive	way	of	expressing	the	thought,	“The	sum	of	a	list	of
integers	is	the	sum	of	the	head	element,	plus	the	sum	of	the	tail	elements.”

(I	described	that	thought	process	in	detail	in	the	previous	lessons,	so	I	won’t
repeat	all	of	that	thought	process	here.)

Now	that	we	have	the	function	signature,	the	end	condition,	and	the	main
algorithm,	we	have	the	completed	function:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	0

				case	head	::	tail	=>	head	+	sum(tail)

}

Naming	conventions

As	I	noted	in	the	previous	lessons,	when	FP	developers	work	with	lists,	they
often	prefer	to	use	the	variable	name	x	to	refer	to	a	single	element	and	xs	to	refer
to	multiple	elements,	so	this	function	is	more	commonly	written	with	these
variable	names:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	0

				case	x	::	xs	=>	x	+	sum(xs)

}

(But	you	don’t	have	to	use	those	names;	use	whatever	is	easiest	for	you	to	read.)

The	last	two	steps	are	iterative

In	practice,	the	first	step	—	sketching	the	function	signature	—	is	almost	always
the	first	step	in	the	process.	As	I	mentioned,	it’s	hard	to	write	a	function	if	you
don’t	know	what	the	inputs	and	output	will	be.

But	the	last	two	steps	—	defining	the	end	condition,	and	writing	the	algorithm
—	are	interchangeable,	and	even	iterative.	For	instance,	if	you’re	working	on	a	
List	and	you	want	to	do	something	for	every	element	in	the	list,	you	know	the
end	condition	will	occur	when	you	reach	the	Nil	element.	But	if	you’re	not
going	to	operate	on	the	entire	list,	or	if	you’re	working	with	something	other
than	a	List,	it	can	help	to	bounce	back	and	forth	between	the	end	case	and	the
main	algorithm	until	you	come	to	the	solution.

Note	that	the	sum	algorithm	I’ve	shown	specifically	works	on	a
Scala	 List,	 which	 ends	 with	 a	 Nil	 element.	 It	 will	 not	 work
with	other	sequences	like	Vector,	ArrayBuffer,	ListBuffer,	or
other	sequences	that	do	not	have	a	Nil	value	as	the	last	element
in	the	sequence.	I	discuss	the	handling	of	those	other	sequences
later	in	the	book.

Summary

When	I	sit	down	to	write	a	recursive	function,	I	generally	think	of	three	things:

What	is	the	function	signature?

What	is	the	end	condition	for	this	algorithm?

What	is	the	main	algorithm?

To	solve	the	problem	I	almost	always	write	the	function	signature	first,	and	after
that	I	usually	write	the	end	condition	next,	though	the	last	two	steps	can	also	be
an	iterative	process.

What’s	next

Now	that	you’ve	seen	this	“general	pattern”	of	writing	recursive	functions,	the
next	two	lessons	are	exercises	that	give	you	a	taste	of	how	to	use	the	patterns	to
write	your	own	recursive	functions.

First,	I’ll	have	you	write	another	recursive	function	to	operate	on	all	of	the
elements	in	a	List,	and	then	you’ll	work	on	a	recursive	algorithm	that	operates
on	only	a	subset	of	a	List.

JVM	Stacks	and	Stack	Frames
For	functions	without	deep	levels	of	recursion,	there’s	nothing	wrong	with	the
algorithms	shown	in	the	previous	lessons.	I	use	this	simple,	basic	form	of
recursion	when	I	know	that	I’m	working	with	limited	data	sets.	But	in
applications	where	you	don’t	know	how	much	data	you	might	be	processing,	it’s
important	that	your	recursive	algorithms	are	tail-recursive,	otherwise	you’ll	get	a
nasty	StackOverflowError.

For	instance,	if	you	run	the	sum	function	from	the	previous	lessons	with	a	larger
list,	like	this:

object	RecursiveSum	extends	App	{

				def	sum(list:	List[Int]):	Int	=	list	match	{

								case	Nil	=>	0

								case	x	::	xs	=>	x	+	sum(xs)

				}

				val	list	=	List.range(1,	10000)		//	MUCH	MORE	DATA

				val	x	=	sum(list)

				println(x)

}

you’ll	get	a	StackOverflowError,	which	is	really	counter	to	our	desire	to	write
great,	bulletproof,	functional	programs.

The	 actual	 number	 of	 integers	 in	 a	 list	 needed	 to	 produce	 a	
StackOverflowError	with	this	function	will	depend	on	the	java
command-line	settings	you	use,	but	the	last	 time	I	checked	the
default	Java	stack	size	it	was	1,024	kb	—	yes,	1,024	kilobytes
—	just	over	one	million	bytes.	That’s	not	much	RAM	to	work
with.	I	write	more	about	this	at	the	end	of	this	lesson,	including
how	to	change	the	default	stack	size	with	the	java	command’s	-
Xss	parameter.

I’ll	cover	tail	recursion	in	an	upcoming	lesson,	but	in	this	lesson	I	want	to
discuss	the	JVM	stack	and	stack	frames.	If	you’re	not	already	familiar	with	these

http://www.oracle.com/technetwork/java/hotspotfaq-138619.html

concepts,	this	discussion	will	help	you	understand	what’s	happening	here.	It	can
also	help	you	debug	“stack	traces”	in	general.

What	is	a	“Stack”?

To	understand	the	potential	“stack	overflow”	problem	of	recursive	algorithms,
you	need	to	understand	what	happens	when	you	write	recursive	algorithms.

The	first	thing	to	know	is	that	in	all	computer	programming	languages	there	is
this	thing	called	“the	stack,”	also	known	as	the	“call	stack.”

Official	Java/JVM	“stack”	definition

Oracle	provides	the	following	description	of	the	stack	and	stack	frames	as	they
relate	to	the	JVM:

“Each	 JVM	 thread	 has	 a	 private	 Java	 virtual	 machine	 stack,
created	 at	 the	 same	 time	 as	 the	 thread.	 A	 JVM	 stack	 stores
frames,	also	called	“stack	frames”.	A	JVM	stack	is	analogous	to
the	stack	of	a	conventional	language	such	as	C	—	it	holds	local
variables	 and	 partial	 results,	 and	 plays	 a	 part	 in	 method
invocation	and	return.”

Therefore,	you	can	visualize	that	a	single	stack	has	a	pile	of	stack	frames	that
look	like	Figure	[fig:aSingleStack].

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html

A	single	stack	has	a	pile	of	stack	frames.

As	that	quote	mentions,	each	thread	has	its	own	stack,	so	in	a	multi-threaded
application	there	are	multiple	stacks,	and	each	stack	has	its	own	stack	of	frames,
as	shown	in	Figure	[fig:multipleStacks].

Each	thread	has	its	own	stack.

The	Java	stack

To	explain	the	stack	a	little	more,	all	of	the	following	quoted	text	comes	from	the
free,	online	version	of	a	book	titled,	Inside	the	Java	Virtual	Machine,	by	Bill
Venners.	(I	edited	the	text	slightly	to	include	only	the	portions	relevant	to	stacks
and	stack	frames.)

“When	a	new	thread	is	launched,	the	JVM	creates	a	new	stack	for	the	thread.	A
Java	stack	stores	a	thread’s	state	in	discrete	frames.	The	JVM	only	performs	two
operations	directly	on	Java	stacks:	it	pushes	and	pops	frames.”

“The	method	that	is	currently	being	executed	by	a	thread	is	the	thread’s	current
method.	The	stack	frame	for	the	current	method	is	the	current	frame.	The	class	in
which	the	current	method	is	defined	is	called	the	current	class,	and	the	current
class’s	constant	pool	is	the	current	constant	pool.	As	it	executes	a	method,	the
JVM	keeps	track	of	the	current	class	and	current	constant	pool.	When	the	JVM
encounters	instructions	that	operate	on	data	stored	in	the	stack	frame,	it	performs
those	operations	on	the	current	frame.”

http://www.artima.com/insidejvm/ed2/jvm8.html

“When	a	thread	invokes	a	Java	method,	the	JVM	creates	and	pushes	a	new	frame
onto	the	thread’s	stack.	This	new	frame	then	becomes	the	current	frame.	As	the
method	executes,	it	uses	the	frame	to	store	parameters,	local	variables,
intermediate	computations,	and	other	data.”

As	 the	previous	paragraph	 implies,	 each	 instance	of	 a	method
has	 its	 own	 stack	 frame.	 Therefore,	 when	 you	 see	 the	 term
“stack	frame,”	you	can	think,	“all	of	the	stuff	a	method	instance
needs.”

What	is	a	“Stack	Frame”?

The	same	chapter	in	that	book	describes	the	“stack	frame”	as	follows:	“The	stack
frame	has	three	parts:	local	variables,	operand	stack,	and	frame	data.”

You	can	visualize	that	as	shown	in	Figure	[fig:stackFrameDetails].

Each	stack	frame	has	three	parts.

The	book	continues:

“The	sizes	of	the	local	variables	and	operand	stack,	which	are	measured	in
words,	depend	upon	the	needs	of	each	individual	method.	These	sizes	are
determined	at	compile	time	and	included	in	the	class	file	data	for	each	method.”

That’s	important:	the	size	of	a	stack	frame	varies	depending	on	the	local
variables	and	operand	stack.	The	book	describes	that	size	like	this:

“When	the	JVM	invokes	a	method,	it	checks	the	class	data	to	determine	the
number	of	words	required	by	the	method	in	the	local	variables	and	operand
stack.	It	creates	a	stack	frame	of	the	proper	size	for	the	method	and	pushes	it
onto	the	stack.”

Word	size,	operand	stack,	and	constant	pool

http://www.artima.com/insidejvm/ed2/jvm8.html

These	descriptions	introduce	the	phrases	word	size,	operand	stack,	and	constant
pool.	Here	are	definitions	of	those	terms:

First,	word	size	is	a	unit	of	measure.	From	Chapter	5	of	the	same	book,	the	word
size	can	vary	in	JVM	implementations,	but	it	must	be	at	least	32	bits	so	it	can
hold	a	value	of	type	long	or	double.

Next,	the	operand	stack	is	defined	here	on	oracle.com,	but	as	a	word	of	warning,
that	definition	gets	into	machine	code	very	quickly.	For	instance,	it	shows	how
two	integers	are	added	together	with	the	iadd	instruction.	You	are	welcome	to
dig	into	those	details,	but	for	our	purposes,	a	simple	way	to	think	about	the
operand	stack	is	that	it’s	memory	(RAM)	that	is	used	as	a	working	area	inside	a
stack	frame.

The	Java	Run-Time	Constant	Pool	is	defined	at	this	oracle.com	page,	which
states,	“A	run-time	constant	pool	…	contains	several	kinds	of	constants,	ranging
from	numeric	literals	known	at	compile-time,	to	method	and	field	references	that
must	be	resolved	at	run-time.	The	run-time	constant	pool	serves	a	function
similar	to	that	of	a	symbol	table	for	a	conventional	programming	language,
although	it	contains	a	wider	range	of	data	than	a	typical	symbol	table.”

http://www.artima.com/insidejvm/ed2/jvm3.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.6.2
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.5.5

Summary	to	this	point

I	can	summarize	what	we’ve	learned	about	stacks	and	stack	frames	like	this:

Each	JVM	thread	has	a	private	stack,	created	at	the	same	time	as	the	thread.

A	stack	stores	frames,	also	called	“stack	frames.”

A	stack	frame	is	created	every	time	a	new	method	is	called.

We	can	also	say	this	about	what	happens	when	a	Java/Scala/JVM	method	is
invoked:

When	a	method	is	invoked,	a	new	stack	frame	is	created	to	contain
information	about	that	method.

Stack	frames	can	have	different	sizes,	depending	on	the	method’s
parameters,	local	variables,	and	algorithm.

As	the	method	is	executed,	the	code	can	only	access	the	values	in	the
current	stack	frame,	which	you	can	visualize	as	being	the	top-most	stack
frame.

As	it	relates	to	recursion,	that	last	point	is	important.	As	a	function	like	our	sum
function	works	on	a	list,	such	as	List(1,2,3),	information	about	that	instance	of
sum	is	in	the	top-most	stack	frame,	and	that	instance	of	sum	can’t	see	the	data	of
other	instances	of	the	sum	function.	This	is	how	what	appears	to	be	a	single,
local	variable	—	like	the	values	head	and	tail	inside	of	sum	—	can	seemingly
have	many	different	values	at	the	same	time.

One	last	resource	on	the	stack	and	recursion

Not	to	belabor	the	point,	but	I	want	to	share	one	last	description	of	the	stack	(and
the	heap)	that	has	specific	comments	about	recursion.	The	discussion	in
Figure	[fig:seriousStackSpace]	comes	from	a	book	named	Algorithms,	by
Sedgewick	and	Wayne.

A	discussion	of	the	JVM	stack	and	heap.

There	are	two	important	lines	in	this	description	that	relate	to	recursive
algorithms:

“When	the	method	returns,	that	information	is	popped	off	the	stack,	so	the
program	can	resume	execution	just	after	the	point	where	it	called	the
method.”

“recursive	algorithms	can	sometimes	create	extremely	deep	call	stacks	and
exhaust	the	stack	space.”

http://amzn.to/1WSRnEY

Analysis

From	all	of	these	discussions	I	hope	you	can	see	the	potential	problem	of
recursive	algorithms:

When	a	recursive	function	calls	itself,	information	for	the	new	instance	of
the	function	is	pushed	onto	the	stack.

Each	time	the	function	calls	itself,	another	copy	of	the	function	information
is	pushed	onto	the	stack.	Because	of	this,	a	new	stack	frame	is	needed	for
each	level	in	the	recursion.

As	a	result,	more	and	more	memory	that	is	allocated	to	the	stack	is
consumed	as	the	function	recurses.	If	the	sum	function	calls	itself	a	million
times,	a	million	stack	frames	are	created.

A	Visual	Look	at	Stacks	and	Frames
Given	the	background	information	of	the	previous	lesson,	let’s	take	a	visual	look
at	how	the	JVM	stack	and	stack	frames	work	by	going	back	to	our	recursive	sum
function	from	the	previous	lesson.

Before	the	sum	function	is	initially	called,	the	only	thing	on	the	call	stack	is	the
application’s	main	method,	as	shown	in	Figure	[fig:mainOnStack].

main	is	the	only	thing	on	the	call	stack	before	sum	is	called.

Then	main	calls	sum	with	List(1,2,3),	which	I	show	in
Figure	[fig:firstSumCall]	without	the	“List”	to	keep	things	simple.

The	first	sum	call	is	added	to	the	stack.

The	data	that’s	given	to	sum	matches	its	second	case	expression,	and	in	my
pseudocode,	that	expression	evaluates	to	this:

return	1	+	sum(2,3)

Next,	when	a	new	instance	of	sum	is	called	with	List(2,3),	the	stack	looks	as
shown	in	Figure	[fig:theSecondSumCall].

The	second	sum	call	is	added	to	the	stack.

Again	the	second	case	expression	is	matched	inside	of	sum,	and	it	evaluates	to
this:

return	2	+	sum(3)

When	a	new	instance	of	sum	is	called	with	the	input	parameter	List(3),	the
stack	looks	like	Figure	[fig:theThirdSumCall].

The	third	sum	call	is	added	to	the	stack.

Again	the	second	case	expression	is	matched,	and	that	code	evaluates	to	this:

return	3	+	sum(Nil)

Finally,	another	instance	of	sum	is	called	with	the	input	parameter	List()	—	also
known	as	Nil	—	and	the	stack	now	looks	like	Figure	[fig:theFinalSumCall].

The	final	sum	call	is	added	to	the	stack.

This	time,	when	sum(Nil)	is	called,	the	first	case	expression	is	matched:

case	Nil	=>	0

That	pattern	match	causes	this	sum	instance	to	return	0,	and	when	it	does,	the	call
stack	unwinds	and	the	stack	frames	are	popped	off	of	the	stack,	as	shown	in	the
series	of	images	in	Figure	[fig:callStackUnwinding222].

The	unwinding	of	the	call	stack.

In	this	process,	as	each	sum	call	returns,	its	frame	is	popped	off	of	the	stack,	and
when	the	recursion	completely	ends,	the	main	method	is	the	only	frame	left	on
the	call	stack.	(The	value	6	is	also	returned	by	the	first	sum	invocation	to	the
place	where	it	was	called	in	the	main	method.)

I	hope	that	gives	you	a	good	idea	of	how	recursive	function	calls	are	pushed-on
and	popped-off	the	JVM	call	stack.

Manually	dumping	the	stack	with	the	sum	example

If	you	want	to	explore	this	in	code,	you	can	also	see	the	series	of	sum	stack	calls
by	modifying	the	sum	function.	To	do	this,	add	a	couple	of	lines	of	code	to	the	
Nil	case	to	print	out	stack	trace	information	when	that	case	is	reached:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	{

								//	this	manually	creates	a	stack	trace

								val	stackTraceAsArray	=	Thread.currentThread.getStackTrace

								stackTraceAsArray.foreach(println)

								//	return	0	as	before

								0

				}

				case	x	::	xs	=>	x	+	sum(xs)

}

Now,	if	you	call	sum	with	a	list	that	goes	from	1	to	5:

val	list	=	List.range(1,	5)

sum(list)

you’ll	get	this	output	when	the	Nil	case	is	reached:

java.lang.Thread.getStackTrace(Thread.java:1588)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)

While	that	output	isn’t	too	exciting,	it	shows	that	when	the	stack	dump	is
manually	triggered	when	the	Nil	case	is	reached,	the	sum	function	is	on	the	stack
five	times.	You	can	verify	that	this	is	correct	by	repeating	the	test	with	a	List
that	has	three	elements,	in	which	case	you’ll	see	the	sum	function	referenced	only
three	times	in	the	output:

java.lang.Thread.getStackTrace(Thread.java:1588)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:13)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)

Clearly	the	sum	function	is	being	added	to	the	stack	over	and	over	again,	once	for
each	call.

I	encourage	you	to	try	this	on	your	own	to	become	comfortable

with	what’s	happening.

Summary:	Our	current	problem	with	“basic
recursion”

I	hope	this	little	dive	into	the	JVM	stack	and	stack	frames	helps	to	explain	our
current	problem	with	“basic	recursion.”	As	mentioned,	if	I	try	to	pass	a	List
with	10,000	elements	into	the	current	recursive	sum	function,	it	will	generate	a	
StackOverflowError.	Because	we’re	trying	to	write	bulletproof	programs,	this
isn’t	good.

What’s	next

Now	that	we	looked	at	(a)	basic	recursion	with	the	sum	function,	(b)	how	that
works	with	stacks	and	stack	frames	in	the	last	two	lessons,	and	(c)	how	basic
recursion	can	throw	a	StackOverflowError	with	large	data	sets,	the	next	lesson
shows	how	to	fix	these	problems	with	something	called	“tail	recursion.”

Tail-Recursive	Algorithms

Goals

The	main	goal	of	this	lesson	is	to	solve	the	problem	shown	in	the	previous
lessons:	Simple	recursion	creates	a	series	of	stack	frames,	and	for	algorithms	that
require	deep	levels	of	recursion,	this	creates	a	StackOverflowError	(and	crashes
your	program).

“Tail	recursion”	to	the	rescue

Although	the	previous	lesson	showed	that	algorithms	with	deep	levels	of
recursion	can	crash	with	a	StackOverflowError,	all	is	not	lost.	With	Scala	you
can	work	around	this	problem	by	making	sure	that	your	recursive	functions	are
written	in	a	tail-recursive	style.

A	tail-recursive	function	is	just	a	function	whose	very	last	action	is	a	call	to
itself.	When	you	write	your	recursive	function	in	this	way,	the	Scala	compiler
can	optimize	the	resulting	JVM	bytecode	so	that	the	function	requires	only	one
stack	frame	—	as	opposed	to	one	stack	frame	for	each	level	of	recursion!

On	Stack	Overflow,	Martin	Odersky	explains	tail-recursion	in	Scala:

“Functions	which	call	themselves	as	their	last	action	are	called
tail-recursive.	 The	 Scala	 compiler	 detects	 tail	 recursion	 and
replaces	 it	with	 a	 jump	back	 to	 the	beginning	of	 the	 function,
after	updating	 the	 function	parameters	with	 the	new	values	…
as	 long	 as	 the	 last	 thing	 you	 do	 is	 calling	 yourself,	 it’s
automatically	tail-recursive	(i.e.,	optimized).”

But	that	sum	function	looks	tail-recursive	to	me	…

“Hmm,”	you	might	say,	“if	I	understand	Mr.	Odersky’s	quote,	the	sum	function
you	wrote	at	the	end	of	the	last	lesson	(shown	in	Figure	[fig:sumsLastAction])
sure	looks	tail-recursive	to	me.”

The	call	to	sum	appears	to	be	the	last	action.

“Isn’t	the	‘last	action’	a	call	to	itself,	making	it	tail-recursive?”

If	that’s	what	you’re	thinking,	fear	not,	that’s	an	easy	mistake	to	make.	But	the
answer	is	no,	this	function	is	not	tail-recursive.	Although	sum(tail)	is	at	the	end
of	the	second	case	expression,	you	have	to	think	like	a	compiler	here,	and	when
you	do	that	you’ll	see	that	the	last	two	actions	of	this	function	are:

1.	 Call	sum(xs)

2.	 When	that	function	call	returns,	add	its	value	to	x	and	return	that	result

When	I	make	that	code	more	explicit	and	write	it	as	a	series	of	one-line
statements,	you	see	that	it	looks	like	this:

val	s	=	sum(xs)

val	result	=	x	+	s

return	result

As	shown,	the	last	calculation	that	happens	before	the	return	statement	is	that
the	sum	of	x	and	s	is	calculated.	If	you’re	not	100%	sure	that	you	believe	that,
there	are	a	few	ways	you	can	prove	it	to	yourself.

1)	Proving	it	with	the	previous	“stack	trace”	example

One	way	to	“prove”	that	the	sum	algorithm	is	not	tail-recursive	is	with	the	“stack

trace”	output	from	the	previous	lesson.	The	JVM	output	shows	the	sum	method	is
called	once	for	each	step	in	the	recursion,	so	it’s	clear	that	the	JVM	feels	the
need	to	create	a	new	instance	of	sum	for	each	element	in	the	collection.

2)	Proving	it	with	the	@tailrec	annotation

A	second	way	to	prove	that	sum	isn’t	tail-recursive	is	to	attempt	to	tag	the
function	with	a	Scala	annotation	named	@tailrec.	This	annotation	won’t
compile	unless	the	function	is	tail-recursive.	(More	on	this	later	in	this	lesson.)

If	you	attempt	to	add	the	@tailrec	annotation	to	sum:

//	need	to	import	tailrec	before	using	it

import	scala.annotation.tailrec

@tailrec

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	0

				case	x	::	xs	=>	x	+	sum(xs)

}

the	scalac	compiler	(or	your	IDE)	will	show	an	error	message	like	this:

Sum.scala:10:	error:	could	not	optimize	@tailrec	annotated	method	sum:	

it	contains	a	recursive	call	not	in	tail	position

def	sum(list:	List[Int]):	Int	=	list	match	{

																																^

This	is	another	way	to	“prove”	that	the	Scala	compiler	doesn’t	think	sum	is	tail-
recursive.

So,	how	do	I	write	a	tail-recursive	function?

Now	that	you	know	the	current	approach	isn’t	tail-recursive,	the	question
becomes,	“How	do	I	make	it	tail-recursive?”

A	common	pattern	used	to	make	a	recursive	function	that	“accumulates	a	result”
into	a	tail-recursive	function	is	to	follow	these	steps:

1.	 Keep	the	original	function	signature	the	same	(i.e.,	sum’s	signature).

2.	 Create	a	second	function	by	(a)	copying	the	original	function,	(b)	giving	it	a
new	name,	(c)	making	it	private,	(d)	giving	it	a	new	“accumulator”	input
parameter,	and	(e)	adding	the	@tailrec	annotation	to	it.

3.	 Modify	the	second	function’s	algorithm	so	it	uses	the	new	accumulator.
(More	on	this	shortly.)

4.	 Call	the	second	function	from	inside	the	first	function.	When	you	do	this
you	give	the	second	function’s	accumulator	parameter	a	“seed”	value	(a
little	like	the	identity	value	I	wrote	about	in	the	previous	lessons).

Let’s	jump	into	an	example	to	see	how	this	works.

Example:	How	to	make	sum	tail-recursive

1)	Leave	the	original	function	signature	the	same

To	begin	the	process	of	converting	the	recursive	sum	function	into	a	tail-
recursive	sum	algorithm,	leave	the	external	signature	of	sum	the	same	as	it	was
before:

def	sum(list:	List[Int]):	Int	=	...

2)	Create	a	second	function

Now	create	the	second	function	by	copying	the	first	function,	giving	it	a	new
name,	marking	it	private,	giving	it	a	new	“accumulator”	parameter,	and	adding
the	@tailrec	annotation	to	it.	The	highlights	in
Figure	[fig:startingSecondFunction]	show	the	changes.

Starting	to	create	the	second	function.

This	code	won’t	compile	as	shown,	so	I’ll	fix	that	next.

Before	moving	on,	notice	that	the	data	type	for	the	accumulator
(Int)	 is	 the	 same	as	 the	data	 type	held	 in	 the	List	 that	we’re
iterating	over.

3)	Modify	the	second	function’s	algorithm

The	third	step	is	to	modify	the	algorithm	of	the	newly-created	function	to	use	the
accumulator	parameter.	The	easiest	way	to	explain	this	is	to	show	the	code	for
the	solution,	and	then	explain	the	changes.	Here’s	the	source	code:

@tailrec

private	def	sumWithAccumulator(list:	List[Int],	accumulator:	Int):	Int	=	{

				list	match	{

								case	Nil	=>	accumulator

								case	x	::	xs	=>	sumWithAccumulator(xs,	accumulator	+	x)

				}

}

Here’s	a	description	of	how	that	code	works:

I	marked	it	with	@tailrec	so	the	compiler	can	help	me	by	verifying	that	my
code	truly	is	tail-recursive.

sumWithAccumulator	takes	two	parameters,	list:	List[Int],	and	
accumulator:	Int.

The	first	parameter	is	the	same	list	that	the	sum	function	receives.

The	second	parameter	is	new.	It’s	the	“accumulator”	that	I	mentioned
earlier.

The	inside	of	the	sumWithAccumulator	function	looks	similar.	It	uses	the
same	match/case	approach	that	the	original	sum	method	used.

Rather	than	returning	0,	the	first	case	statement	returns	the	accumulator
value	when	the	Nil	pattern	is	matched.	(More	on	this	shortly.)

The	second	case	expression	is	tail-recursive.	When	this	case	is	matched	it
immediately	calls	sumWithAccumulator,	passing	in	the	xs	(tail)	portion	of	
list.	What’s	different	here	is	that	the	second	parameter	is	the	sum	of	the	
accumulator	and	the	head	of	the	current	list,	x.

Where	the	original	sum	method	passed	itself	the	tail	of	xs	and	then	later
added	that	result	to	x,	this	new	approach	keeps	track	of	the	accumulator
(total	sum)	value	as	each	recursive	call	is	made.

The	result	of	this	approach	is	that	the	“last	action”	of	the	sumWithAccumulator
function	is	this	call:

sumWithAccumulator(xs,	accumulator	+	x)

Because	this	last	action	really	is	a	call	back	to	the	same	function,	the	JVM	can
optimize	this	code	as	Mr.	Odersky	described	earlier.

4)	Call	the	second	function	from	the	first	function

The	fourth	step	in	the	process	is	to	modify	the	original	function	to	call	the	new
function.	Here’s	the	source	code	for	the	new	version	of	sum:

def	sum(list:	List[Int]):	Int	=	sumWithAccumulator(list,	0)

Here’s	a	description	of	how	it	works:

The	sum	function	signature	is	the	same	as	before.	It	accepts	a	List[Int]
and	returns	an	Int	value.

The	body	of	sum	is	just	a	call	to	the	sumWithAccumulator	function.	It	passes
the	original	list	to	that	function,	and	also	gives	its	accumulator	parameter
an	initial	seed	value	of	0.

Note	that	this	“seed”	value	is	the	same	as	the	identity	value	I	wrote	about	in	the
previous	recursion	lessons.	In	those	lessons	I	noted:

The	identity	value	for	a	sum	algorithm	is	0.

The	identity	value	for	a	product	algorithm	is	1.

The	identity	value	for	a	string	concatenation	algorithm	is	.

A	few	notes	about	sum

Looking	at	sum	again:

def	sum(list:	List[Int]):	Int	=	sumWithAccumulator(list,	0)

a	few	key	points	about	it	are:

Other	programmers	will	call	sum.	It’s	the	“Public	API”	portion	of	the
solution.

It	has	the	same	function	signature	as	the	previous	version	of	sum.	The
benefit	of	this	is	that	other	programmers	won’t	have	to	provide	the	initial
seed	value.	In	fact,	they	won’t	know	that	the	internal	algorithm	uses	a	seed
value.	All	they’ll	see	is	sum’s	signature:

		def	sum(list:	List{[}Int{]}):	Int

		

A	slightly	better	way	to	write	sum

Tail-recursive	algorithms	that	use	accumulators	are	typically	written	in	the
manner	shown,	with	one	exception:	Rather	than	mark	the	new	accumulator
function	as	private,	most	Scala/FP	developers	like	to	put	that	function	inside
the	original	function	as	a	way	to	limit	its	scope.

When	 doing	 this,	 the	 thought	 process	 is,	 “Don’t	 expose	 the
scope	of	sumWithAccumulator	unless	you	want	other	functions
to	call	it.”

When	you	make	this	change,	the	final	code	looks	like	this:

//	tail-recursive	solution

def	sum(list:	List[Int]):	Int	=	{

				@tailrec

				def	sumWithAccumulator(list:	List[Int],	currentSum:	Int):	Int	=	{

								list	match	{

												case	Nil	=>	currentSum

												case	x	::	xs	=>	sumWithAccumulator(xs,	currentSum	+	x)

								}

				}

				sumWithAccumulator(list,	0)

}

Feel	free	to	use	either	approach.	(Don’t	tell	anyone,	but	I	prefer	the	first
approach;	I	think	it	reads	more	easily.)

A	note	on	variable	names

If	you	don’t	like	the	name	accumulator	for	the	new	parameter,	it	may	help	to	see
the	function	with	a	different	name.	For	a	“sum”	algorithm	a	name	like	
runningTotal	or	currentSum	may	be	more	meaningful:

//	tail-recursive	solution

def	sum(list:	List[Int]):	Int	=	{

				@tailrec

				def	sumWithAccumulator(list:	List[Int],	currentSum:	Int):	Int	=	{

								list	match	{

												case	Nil	=>	currentSum

												case	x	::	xs	=>	sumWithAccumulator(xs,	currentSum	+	x)

								}

				}

				sumWithAccumulator(list,	0)

}

I	encourage	you	to	use	whatever	name	makes	sense	to	you.	I	prefer	currentSum
for	this	algorithm,	but	you’ll	often	hear	this	approach	referred	to	as	using	an
“accumulator,”	which	is	why	I	used	that	name	first.

Proving	that	this	is	tail-recursive

You	can	follow	my	earlier	efforts	to	demonstrate	that	this	function	really	is	tail-
recursive,	but	at	this	point	I’m	satisfied	with	one	proof:	When	you	compile	this
code	with	the	@tailrec	annotation,	the	compiler	doesn’t	give	you	an	error
message	like	it	did	before.

Summary

In	this	lesson	I:

Defined	tail	recursion

Introduced	the	@tailrec	annotation

Showed	how	to	write	a	tail-recursive	function

Showed	a	formula	you	can	use	to	convert	a	simple	recursive	function	to	a
tail-recursive	function

What’s	next

This	lesson	covered	the	basics	of	converting	a	simple	recursive	function	into	a
tail-recursive	function.	I’m	usually	not	smart	enough	to	write	a	tail-recursive
function	right	away,	so	I	usually	write	my	algorithms	using	simple	recursion,
then	convert	them	to	use	tail-recursion.

To	help	in	your	efforts,	the	next	lesson	will	show	more	examples	of	tail-
recursive	for	different	types	of	algorithms.

See	also

My	list	of	Scala	recursion	examples

Martin	Odersky	explaining	tail	recursion	on	Stack	Overflow

http://alvinalexander.com/scala/scala-recursion-examples-recursive-programming
http://stackoverflow.com/questions/12496959/summing-values-in-a-list

A	First	Look	at	“State”
In	the	next	lesson	I’m	going	to	start	writing	a	little	command-line	game,	but
before	I	get	into	that	I	want	to	discuss	the	general	concept	of	handling	“state”	in
software	applications.

Every	non-trivial	application	maintains	some	sort	of	state.	For	instance,	the	state
of	a	word	processing	application	is	the	current	document,	along	with	whether	the
document	has	been	saved	or	not	(whether	the	document	is	“clean”	or	“dirty”).
Similarly,	the	state	of	a	spreadsheet	application	is	the	spreadsheet	and	its
clean/dirty	state.	Web	versions	of	these	applications	have	additional	state,	such
as	who	the	current	user	is,	when	they	logged	in,	what	their	IP	address	is,	etc.

Even	voice	applications	like	Siri	and	Amazon	Echo	have	state.	As	I	learned	in
writing	SARAH,	one	thing	you	need	to	do	is	to	maintain	speaking/listening	state,
otherwise	the	computer	will	hear	itself	talking,	then	respond	to	itself,	eventually
kicking	off	an	endless	loop.

Siri	and	others	are	also	gaining	a	concept	that	I	call	context,	or	the	“context	of	a
conversation,”	which	also	requires	state	management.	Imagine	asking	Siri	to
order	a	pizza.	It	will	respond	by	asking	what	toppings	you	want,	where	you	want
to	order	the	pizza	from,	how	you	want	to	pay,	etc.	This	is	“conversational	state.”

http://alvinalexander.com/sarah

Handling	state	in	a	game

In	my	spare	time	I	work	on	developing	an	Android	football	game	where	I	play
against	a	computer	opponent.	If	you	know	American	Football	(as	opposed	to
what	we	Americans	call	“soccer”),	in	between	each	play	you	can	think	of	the
state	of	a	football	game	as	having	these	attributes:

Which	team	has	the	ball	(you	are	on	offense	or	defense)

Current	field	position

Down	and	distance	(such	as	“1st	and	10”)

Current	score

Time	remaining

There	 are	more	 state	 variables	 than	 this,	 but	 I’m	 keeping	 this
example	simple.

In	Scala	you	might	model	this	game	state	like	this:

case	class	GameState	(

				iHaveTheBall:	Boolean,

				fieldPosition:	Int,

				down:	Int,

				distance:	Int,

				myScore:	Int,

				computerScore:	Int,

				timeRemaining:	Int

)

On	the	first	play	of	the	game	the	initial	state	might	look	like	this:

GameState	(

				iHaveTheBall:	true,

				fieldPosition:	25,

				down:	1,

				distance:	10,

				myScore:	0,

				computerScore:	0,

				timeRemaining:	3600

)

Then,	after	the	next	play	the	state	might	look	like	this:

GameState	(

				iHaveTheBall:	true,

				fieldPosition:	29,

				down:	2,

				distance:	6,

				myScore:	0,

				computerScore:	0,

				timeRemaining:	3536

)

A	football	game	typically	has	about	150	plays,	so	in	my	game	there	is	a	
GameState	instance	for	each	of	those	plays.

Why	state	is	important

State	is	important	for	many	reasons,	not	the	least	of	which	is	to	know	when	the
game	is	over	and	who	won.	An	important	part	about	state	in	my	football	game	is
that	I	use	it	to	help	the	computer	make	decisions	about	what	plays	it	calls.

When	the	computer	is	playing	on	offense	is	uses	a	function	that	looks	like	this:

val	possiblePlays:	List[OffensivePlay]	=	

				OffensiveCoordinator.determinePossiblePlays(gameState)

The	determinePossiblePlays	function	is	a	pure	function.	I	pass	GameState	into
it,	and	with	thousands	of	lines	of	purely	functional	code	behind	it,	it	returns	a	list
of	all	the	possible	plays	that	the	algorithms	believe	make	sense	for	the	state	that
was	passed	in.

For	instance,	if	it’s	fourth	down	and	goal	at	the	opponent’s	one-yard	line	with
five	seconds	left	in	the	game	and	the	computer	is	down	21-17,	it’s	smart	enough
to	know	that	it	needs	to	try	to	score	a	touchdown	rather	than	kick	a	field	goal.
This	is	what	I	mean	by	“state”	in	the	context	of	a	football	game.

As	 the	 game	 gets	 smarter	 I	 also	 maintain	 a	 history	 of	 all
previously-called	 plays,	 so	 the	 computer	 can	 adjust	 its	 play
calls	based	on	the	player’s	tendencies.

More	state

As	you	can	imagine,	a	point	of	sales	application	for	a	pizza	store	will	have	state
that	includes:

The	number	and	types	of	pizzas	ordered

Customer	contact	information

Customer	payment	information

The	date	and	time	of	the	order

Who	took	the	order

More	…

Once	you	begin	to	think	about	it	this	way,	you’ll	see	that	every	application
maintains	state	of	some	sort.

State	and	functional	programming

As	I	mentioned,	my	football	game	has	about	150	GameState	instances	for	every
game.	In	the	context	of	functional	programming,	this	raises	an	interesting
question:	In	Scala/FP	I	can	only	have	val	instances,	so	how	can	I	possibly	create
150	new	variables	for	each	game?	Put	another	way,	if	you	assume	that	I	keep	all
of	the	plays	in	a	List,	the	question	becomes,	“How	do	I	append	GameState
values	to	an	immutable	List?”

Questions	like	this	bring	you	to	a	key	point	I	got	to	when	I	was	learning	FP:

How	am	I	supposed	to	handle	I/O,	which	by	its	very	nature	is	impure?

How	am	I	supposed	to	handle	state?

In	the	next	lesson	I’ll	show	one	way	to	handle	state	in	a	simple	game	by	building
on	what	you	just	learned	in	the	previous	lessons:	recursion.

A	Functional	Game	(With	a	Little	Bit	of
State)

Introduction

Now	that	I’ve	given	you	a	little	background	about	“state”,	let’s	build	a	simple
game	that	requires	us	to	use	state.	I’ll	build	the	game	using	recursion,	and	also
immutable	state	—	something	I	had	never	heard	of	when	I	first	starting	writing
the	Scala	Cookbook.

http://amzn.to/24ivK4G

Goals

Here	are	my	goals	for	this	lesson:

To	write	our	first	functional	application

Show	a	first	example	of	how	to	handle	“state”	in	a	Scala/FP	application

Source	code

The	best	way	to	understand	this	lesson	is	to	have	its	source	code	open	in	an	IDE
as	you	read	it.	The	source	code	is	available	at	this	URL:

github.com/alvinj/FPCoinFlipGame

Some	of	this	project’s	code	contains	some	wide	lines	that	are	hard	to	read	in	a
book.	You’ll	really	want	to	check	the	code	out	of	Github	to	see	it	properly.

https://github.com/alvinj/FPCoinFlipGame

Coin	Flip:	A	simple	FP	game

To	get	started	using	state	in	a	Scala	application,	I’ll	build	a	little	game	you	can
play	at	the	command	line.	The	application	will	flip	a	coin	(a	virtual	coin),	and	as
the	player,	your	goal	is	to	guess	whether	the	result	is	heads	or	tails.	The
computer	will	keep	track	of	the	total	number	of	flips	and	the	number	of	correct
guesses.

When	you	start	the	game,	you’ll	see	this	command-line	prompt:

(h)eads,	(t)ails,	or	(q)uit:	_

This	is	how	the	application	prompts	you	for	your	guess.	Enter	h	for	heads,	t	for
tails,	or	q	to	quit	the	game.	If	you	enter	h	or	t,	the	application	will	flip	a	virtual
coin,	then	let	you	know	if	your	guess	was	correct	or	not.

As	an	example	of	how	it	works,	I	just	played	the	game	and	made	four	guesses,
and	the	input/output	of	that	session	looks	like	this:

(h)eads,	(t)ails,	or	(q)uit:	h

Flip	was	Heads.	#Flips:	1,	#Correct:	1

(h)eads,	(t)ails,	or	(q)uit:	h

Flip	was	Tails.	#Flips:	2,	#Correct:	1

(h)eads,	(t)ails,	or	(q)uit:	h

Flip	was	Heads.	#Flips:	3,	#Correct:	2

(h)eads,	(t)ails,	or	(q)uit:	t

Flip	was	Tails.	#Flips:	4,	#Correct:	3

(h)eads,	(t)ails,	or	(q)uit:	q

===	GAME	OVER	===

#Flips:	4,	#Correct:	3

Admittedly	this	isn’t	the	most	exciting	game	in	the	world,	but	it	turns	out	to	be	a
nice	way	to	learn	how	to	handle	immutable	state	in	a	Scala/FP	application.

One	note	before	proceeding:	The	input/output	in	this	game	will	not	be	handled	in
a	functional	way.	I’ll	cover	that	in	a	future	lesson.

On	to	the	game!

Coin	Flip	game	state

Let’s	analyze	how	this	game	works:

The	computer	is	going	to	flip	a	virtual	coin.

You’re	going	to	guess	whether	that	result	is	heads	or	tails.

You	can	play	the	game	for	as	many	flips	as	you	want.

After	each	flip	the	output	will	look	like	this:

Flip	was	Tails.	#Flips:	4,	#Correct:	2

These	statements	tell	us	a	few	things	about	the	game	state:

We	need	to	track	how	many	coin	flips	there	are.

We	need	to	track	how	many	guesses	the	player	made	correctly.

I	could	track	more	information,	such	as	the	history	of	the	guess	for	each	coin	flip
and	the	actual	value,	but	to	keep	it	simple,	all	I	want	to	do	at	this	time	is	to	track
(a)	the	number	of	flips,	and	(b)	the	number	of	correct	guesses.	As	a	result,	a	first
stab	at	modeling	the	game	state	looks	like	this:

case	class	GameState	(

				numFlips:	Int,

				numCorrectGuesses:	Int

)

Game	pseudocode

Next,	let’s	start	working	on	the	game	code.

You	know	you’re	going	to	need	some	sort	of	main	loop,	and	in	the	imperative
world,	pseudocode	for	that	loop	looks	like	this:

var	input	=	""

while	(input	!=	"q")	{

				//	prompt	the	player	to	select	heads,	tails,	or	quit

				//	get	the	player's	input

				if	(input	==	"q")	{

								print	the	game	summary

								quit

				}

				//	flip	the	coin

				//	see	if	the	player	guessed	correctly

				//	print	the	#flips	and	#correct

}

I/O	functions

That’s	not	how	I’ll	write	the	loop,	but	it	does	give	me	an	idea	of	some	I/O
functions	I’m	going	to	need.	From	that	pseudocode	it	looks	like	I’m	going	to
need	these	functions:

A	“show	prompt”	function

A	“get	user	input”	function

A	function	to	print	the	number	of	flips	and	correct	answers

These	functions	have	nothing	to	do	with	FP	—	they’re	impure	I/O	functions	that
connect	our	application	to	the	outside	world	—	so	I’ll	write	them	in	the	“usual
way”.	Here’s	the	“show	prompt”	function:

def	showPrompt:	Unit	=	{	print("\n(h)eads,	(t)ails,	or	(q)uit:	")	}

Next,	here’s	the	“get	user	input”	function:

def	getUserInput	=	readLine.trim.toUpperCase

Prior	 to	 Scala	 2.11.0,	 readLine	 was	 made	 available	 to	 you
without	 an	 import	 statement	 via	 Scala’s	 Predef	 object,	 but
since	then	it’s	available	at	scala.io.StdIn.readLine.	Also,	notice
that	 I	 convert	 all	 input	 to	uppercase	 to	make	 it	 easier	 to	work
with	later.

Next,	while	the	game	is	being	played	I	want	to	print	output	like	this:

Flip	was	Tails.	#Flips:	4,	#Correct:	3

and	when	the	game	is	over	I	want	to	print	this	output:

===	GAME	OVER	===

#Flips:	4,	#Correct:	3

To	accommodate	these	needs	I	create	these	functions:

def	printableFlipResult(flip:	String)	=	flip	match	{

				case	"H"	=>	"Heads"

				case	"T"	=>	"Tails"

}

def	printGameState(printableResult:	String,	gameState:	GameState):	Unit	=	{

				print(s"Flip	was	$printableResult.	")

				printGameState(gameState)

}

def	printGameState(gameState:	GameState):	Unit	=	{

				println(s"#Flips:	${gameState.numFlips},	#Correct:	${gameState.numCorrect}")

}

def	printGameOver:	Unit	=	println("\n===	GAME	OVER	===")

Note	that	the	printGameState	functions	take	the	GameState	as	an	input
parameter,	and	use	its	fields	to	print	the	output.	The	assumption	is	that	these
functions	always	receive	the	latest,	up-to-date	GameState	instance.

If	you	know	Scala,	that’s	all	fairly	standard	“print	this	out”	and	“read	this	in”
code.

Writing	a	coin	toss	function

When	you	look	back	at	this	piece	of	the	original	pseudocode:

//	flip	the	coin

you’ll	see	that	one	more	thing	I	can	get	out	of	the	way	before	writing	the	main
loop	is	a	function	to	simulate	a	coin	toss.

A	simple	way	to	simulate	a	coin	toss	is	to	use	a	random	number	generator	and
limit	the	generator	to	return	values	of	0	and	1,	where	0	means	“heads”	and	1
mean	“tails.”	This	is	how	you	limit	Scala’s	Random.nextInt	method	to	yield
only	0	or	1:

val	r	=	new	scala.util.Random

r.nextInt(2)

The	r.nextInt(2)	code	tells	nextInt	to	return	integer	values	that	are	less	than	
2,	i.e.,	0	and	1.

Knowing	that,	I	can	write	a	coin	flip	function	like	this:

//	returns	"H"	for	heads,	"T"	for	tails

def	tossCoin(r:	Random)	=	{

				val	i	=	r.nextInt(2)

				i	match	{

								case	0	=>	"H"

								case	1	=>	"T"

				}

}

With	these	functions	out	of	the	way,	let’s	get	to	the	main	part	of	the	lesson:	how
to	write	the	main	loop	of	the	program	with	an	immutable	game	state.

Writing	the	main	loop	in	FP	style

So	now	we	need	a	“loop”	…	how	can	we	write	one	in	an	FP	style?	Using	the
tools	we	know	so	far,	the	best	way	to	handle	this	is	with	our	new	friend,
recursion.	Because	you	may	have	never	done	this	before,	let	me	add	a	few
important	notes:

With	recursion	the	main	loop	is	going	to	call	itself	repeatedly	(recursively)

Because	the	game	state	needs	to	be	updated	as	the	game	goes	along,	a	
GameState	instance	needs	to	be	passed	into	each	recursive	call

Because	each	instance	of	the	loop	will	simulate	the	flip	of	a	coin,	and
because	the	tossCoin	function	requires	a	scala.util.Random	instance,	it’s
also	best	to	pass	a	Random	instance	into	each	recursive	call	as	well

Given	that	background,	I	can	start	writing	some	code.	First,	here’s	the	GameState
I	showed	earlier:

case	class	GameState	(

				numFlips:	Int,	

				numCorrectGuesses:	Int

)

Next,	I	know	I’m	going	to	need	(a)	a	Scala	App,	(b)	initial	GameState	and	Random
instances,	and	(c)	some	sort	of	mainLoop	call	to	get	things	started.	I	also	know
that	mainLoop	will	take	the	GameState	and	Random	instances,	which	leads	me	to
this	code:

object	CoinFlip	extends	App	{

				val	s	=	GameState(0,	0)

				val	r	=	new	Random

				mainLoop(s,	r)

}

Next,	I	can	sketch	the	mainLoop	function	like	this:

@tailrec

def	mainLoop(gameState:	GameState,	random:	Random)	{

				//	a)	prompt	the	user	for	input

				//	b)	get	the	user's	input

				//	c)	flip	the	coin

				//	d)	compare	the	flip	result	to	the	user's	input

				//	e)	write	the	output

				//	f)	if	the	user	didn't	type	'h',	loop	again:

				mainLoop(newGameState,	random)

}

If	you	feel	like	you	understand	what	I’ve	sketched	in	this	mainLoop	code,	I
encourage	you	to	set	this	book	aside	and	work	on	filling	out	mainLoop’s	body	on
your	own,	using	(a)	the	I/O	functions	I	showed	earlier	and	(b)	any	other	code
you	might	need.	That’s	all	that	needs	to	be	done	now:	fill	out	the	body,	and
figure	out	where	the	recursive	mainLoop	call	(or	calls)	need	to	be	made.

Writing	the	skeleton	code

The	next	thing	I	did	to	solve	this	problem	was	to	stub	out	the	following	skeleton
code:

object	CoinFlip	extends	App	{

				val	r	=	Random

				val	s	=	GameState(0,	0)

				mainLoop(s,	r)

				@tailrec

				def	mainLoop(gameState:	GameState,	random:	Random)	{

								//	a)	prompt	the	user	for	input

								showPrompt()

								//	b)	get	the	user's	input

								val	userInput	=	getUserInput()

								userInput	match	{

												case	"H"	|	"T"	=>	{

																//	c)	flip	the	coin

																val	coinTossResult	=	tossCoin(random)

																val	newNumFlips	=	gameState.numFlips	+	1

																//	d)	compare	the	flip	result	to	the	user's	input

																if	(userInput	==	coinTossResult)	{

																				//	they	guessed	right

																				//	e)	write	the	output

																				//	f)	if	the	user	didn't	type	'h',	loop	again:

																				mainLoop(newGameState,	random)

																}	else	{

																				//	they	guessed	wrong

																				//	e)	write	the	output

																				//	f)	if	the	user	didn't	type	'h',	loop	again:

																				mainLoop(newGameState,	random)

																}

												}

												case	_			=>	{

																//	assume	they	type	'Q'

																println("\n===	GAME	OVER	===")

																printGameState(gameState)

																//	we	return	out	of	the	recursion	here

												}

								}

				}

}

That	code	is	slightly	different	than	my	pseudocode,	but	it’s	in	the	ballpark.

Now	all	I	need	to	do	is	finish	off	the	‘e’	and	‘f’	portions	of	the	algorithm.	I’ll
show	those	sections	in	the	completed	code	that	follows.

The	complete	source	code

The	following	source	code	shows	the	first	cut	of	my	solution	for	this	application.

First,	I	put	all	of	my	“utility”	functions	in	a	separate	object	named	
CoinFlipUtils,	in	a	file	named	CoinFlipUtils.scala:

package	com.alvinalexander.coinflip.v1

import	scala.util.Random

import	scala.io.StdIn.readLine

object	CoinFlipUtils	{

				def	showPrompt():	Unit	=	{	print("\n(h)eads,	(t)ails,	or	(q)uit:	")	}

				def	getUserInput():	String	=	readLine.trim.toUpperCase

				def	printableFlipResult(flip:	String):	String	=	flip	match	{

								case	"H"	=>	"Heads"

								case	"T"	=>	"Tails"

				}

				def	printGameState(

								printableFlipResult:	String,	

								gameState:	GameState):	Unit	=	

				{

								print(s"Flip	was	$printableFlipResult.	")

								printGameState(gameState)

				}

				def	printGameState(gameState:	GameState):	Unit	=	{

								println(s"#Flips:	${gameState.numFlips},	#Correct:

												${gameState.numCorrect}")

				}

				def	printGameOver():	Unit	=	println("\n===	GAME	OVER	===")

				//	returns	"H"	for	heads,	"T"	for	tails

				def	tossCoin(r:	Random):	String	=	{

								val	i	=	r.nextInt(2)

								i	match	{

												case	0	=>	"H"

												case	1	=>	"T"

								}

				}

}

I	did	that	to	keep	the	code	organized,	and	also	to	keep	my	next	file	smaller.
Here’s	the	source	code	for	CoinFlip.scala,	which	primarily	consists	of	the	
mainLoop:

package	com.alvinalexander.coinflip.v1

import	CoinFlipUtils._

import	scala.annotation.tailrec

import	scala.util.Random

case	class	GameState(numFlips:	Int,	numCorrect:	Int)

object	CoinFlip	extends	App	{

				val	r	=	Random

				val	s	=	GameState(0,	0)

				mainLoop(s,	r)

				@tailrec

				def	mainLoop(gameState:	GameState,	random:	Random)	{

								showPrompt()

								val	userInput	=	getUserInput()

								//	handle	the	result

								userInput	match	{

												case	"H"	|	"T"	=>	{

																val	coinTossResult	=	tossCoin(random)

																val	newNumFlips	=	gameState.numFlips	+	1

																if	(userInput	==	coinTossResult)	{

																				val	newNumCorrect	=	gameState.numCorrect	+	1

																				val	newGameState	=	gameState.copy(

																								numFlips	=	newNumFlips,	

																								numCorrect	=	newNumCorrect

)

																				printGameState(

																								printableFlipResult(coinTossResult),	newGameState

)

																				mainLoop(newGameState,	random)

																}	else	{

																				val	newGameState	=	gameState.copy(numFlips	=	newNumFlips)

																				printGameState(

																								printableFlipResult(coinTossResult),	newGameState

)

																				mainLoop(newGameState,	random)

																}

												}

												case	_			=>	{

																printGameOver()

																printGameState(gameState)

																//	return	out	of	the	recursion	here

												}

								}

				}

}

There	are	a	few	ways	to	shorten	and	refactor	that	code,	but	it	gives	you	an	idea
of	what	needs	to	be	done	for	this	game.

When	the	user’s	guess	is	correct

Note	that	when	the	user’s	guess	matches	the	coin	flip,	I	use	this	code:

val	newNumCorrect	=	gameState.numCorrect	+	1

val	newGameState	=	gameState.copy(numFlips	=	newNumFlips,	numCorrect	=	newNumCorrect)

printGameState(printableFlipResult(coinTossResult),	newGameState)

mainLoop(newGameState,	random)

The	key	here	is	that	when	the	user’s	guess	is	correct	I	need	to	create	a	new	
GameState	and	pass	that	new	instance	into	the	next	mainLoop	call.	I	show	that
code	in	a	long	form,	but	I	can	remove	the	newNumCorrect	temporary	variable:

val	newGameState	=	gameState.copy(

				numFlips	=	newNumFlips,	

				numCorrect	=	gameState.numCorrect	+	1

)

printGameState(printableFlipResult(coinTossResult),	newGameState)

mainLoop(newGameState,	random)

When	the	user’s	guess	is	incorrect

In	the	case	where	the	user’s	guess	is	incorrect,	I	only	need	to	update	numFlips
when	creating	a	new	GameState	instance,	so	that	block	of	code	looks	like	this:

val	newGameState	=	gameState.copy(numFlips	=	newNumFlips)

printGameState(printableFlipResult(coinTossResult),	newGameState)

mainLoop(newGameState,	random)

When	the	user	wants	to	quit	the	game

In	the	case	where	the	user	enters	anything	other	than	H	or	T,	I	assume	they	want
to	quit	the	game,	so	I	call	these	procedures:

printGameOver()

printGameState(gameState)

At	this	point	I	don’t	call	mainLoop	any	more,	so	the	recursion	ends,	all	of	the
recursive	calls	unwind,	and	the	game	ends.

Summary

At	the	beginning	of	this	lesson	I	noted	that	the	goals	for	this	lesson	were:

To	write	our	first	functional	application

Show	a	first	example	of	how	to	handle	“state”	in	an	FP	application

A	few	important	parts	about	this	lesson	that	you	may	not	have	seen	before	in
traditional	imperative	code	are:

The	use	of	an	explicit	GameState	variable

Using	recursion	as	a	way	of	looping

The	recursion	let	us	define	the	GameState	instance	as	an	immutable	val
field

Exercises

1.	 Modify	the	game	so	you	can	play	a	new	game	by	pressing	‘n’

2.	 After	adding	the	ability	to	play	a	new	game,	modify	the	program	to	keep	a
history	of	all	previously-played	games

See	also

The	Procedure	Syntax	section	of	the	Scala	Style	Guide

A	bug	entry	about	deprecating	the	Procedure	syntax

How	to	prompt	users	for	input	from	Scala	shell	scripts	tutorial

http://docs.scala-lang.org/style/declarations.html
https://issues.scala-lang.org/browse/SI-7605
http://alvinalexander.com/scala/scala-shell-scripts-how-prompt-users-input-read

A	Quick	Review	of	Case	Classes

Goals

In	this	book	I	generally	assume	that	you	know	the	basics	of	the	Scala
programming	language,	but	because	case	classes	are	so	important	to	functional
programming	in	Scala	it’s	worth	a	quick	review	of	what	case	classes	are	—	the
features	they	provide,	and	the	benefits	of	those	features.

Discussion

As	opposed	to	a	“regular”	Scala	class,	a	case	class	generates	a	lot	of	code	for
you,	with	the	following	benefits:

An	apply	method	is	generated,	so	you	don’t	need	to	use	the	new	keyword	to
create	a	new	instance	of	the	class.

Accessor	methods	are	generated	for	each	constructor	parameter,	because	
case	class	constructor	parameters	are	public	val	fields	by	default.

(You	won’t	use	var	fields	in	this	book,	but	if	you	did,	mutator	methods
would	also	be	generated	for	constructor	parameters	declared	as	var.)

An	unapply	method	is	generated,	which	makes	it	easy	to	use	case	classes
in	match	expressions.	This	is	huge	for	Scala/FP.

As	you’ll	see	in	the	next	lesson,	a	copy	method	is	generated.	I	never	use	this
in	Scala/OOP	code,	you’ll	use	it	all	the	time	in	Scala/FP.

equals	and	hashCode	methods	are	generated,	which	lets	you	compare
objects	and	easily	use	them	as	keys	in	maps	(and	sets).

A	default	toString	method	is	generated,	which	is	helpful	for	debugging.

A	quick	demo

To	demonstrate	how	case	classes	work,	here	are	a	few	examples	that	show	each
of	these	features	and	benefits	in	action.

No	need	for	new

When	you	define	a	class	as	a	case	class,	you	don’t	have	to	use	the	new	keyword
to	create	a	new	instance:

scala>	case	class	Person(name:	String,	relation:	String)

defined	class	Person

//	"new"	not	needed	before	Person

scala>	val	christina	=	Person("Christina",	"niece")

christina:	Person	=	Person(Christina,niece)

This	is	a	nice	convenience	when	writing	Scala/OOP	code,	but	it’s	a	terrific
feature	when	writing	Scala/FP	code,	as	you’ll	see	throughout	this	book.

No	mutator	methods

Case	class	constructor	parameters	are	val	by	default,	so	an	accessor	method	is
generated	for	each	parameter,	but	mutator	methods	are	not	generated:

scala>	christina.name

res0:	String	=	Christina

//	can't	mutate	the	`name`	field

scala>	christina.name	=	"Fred"

<console>:10:	error:	reassignment	to	val

							christina.name	=	"Fred"

																		^

unapply	method

Because	an	unapply	method	is	automatically	created	for	a	case	class,	it	works
well	when	you	need	to	extract	information	in	match	expressions,	as	shown	here:

scala>	christina	match	{	case	Person(n,	r)	=>	println(n,	r)	}

(Christina,niece)

Conversely,	if	you	try	to	use	a	regular	Scala	class	in	a	match	expression	like	this,
you’ll	quickly	see	that	it	won’t	compile.	You’ll	see	many	more	uses	of	case

classes	with	match	expressions	in	this	book	because	pattern	matching	is	a	BIG
feature	of	Scala/FP.

A	class	 that	defines	an	unapply	method	 is	called	an	extractor,
and	unapply	methods	enable	match/case	expressions.

copy	method

A	case	class	also	has	a	built-in	copy	method	that	is	extremely	helpful	when	you
need	to	clone	an	object	and	change	one	or	more	of	the	fields	during	the	cloning
process:

scala>	case	class	BaseballTeam(name:	String,	lastWorldSeriesWin:	Int)

defined	class	BaseballTeam

scala>	val	cubs1908	=	BaseballTeam("Chicago	Cubs",	1908)

cubs1908:	BaseballTeam	=	BaseballTeam(Chicago	Cubs,1908)

scala>	val	cubs2016	=	cubs1908.copy(lastWorldSeriesWin	=	2016)

cubs2016:	BaseballTeam	=	BaseballTeam(Chicago	Cubs,2016)

I	refer	to	this	process	as	“update	as	you	copy,”	and	this	is	such	a	big	Scala/FP
feature	that	I	cover	it	in	depth	in	the	next	lesson.

equals	and	hashCode	methods

Case	classes	also	have	generated	equals	and	hashCode	methods,	so	instances
can	be	compared:

scala>	val	hannah	=	Person("Hannah",	"niece")

hannah:	Person	=	Person(Hannah,niece)

scala>	christina	==	hannah

res1:	Boolean	=	false

These	methods	also	let	you	easily	use	your	objects	in	collections	like	sets	and
maps.

toString	methods

Finally,	case	classes	also	have	a	default	toString	method	implementation,
which	at	the	very	least	is	helpful	when	debugging	code:

scala>	christina

res0:	Person	=	Person(Christina,niece)

For	 more	 details	 on	 case	 classes,	 see	 the	 “Generating
Boilerplate	 Code	 with	 Case	 Classes”	 chapter	 in	 the	 Scala
Cookbook.

http://amzn.to/24ivK4G

Summary

In	this	lesson	I	showed	that	the	following	methods	are	automatically	created
when	you	declare	a	class	as	a	case	class:

apply

unapply

accessor	methods	are	created	for	each	constructor	parameter

copy

equals	and	hashCode

toString

These	built-in	methods	make	case	classes	easier	to	use	in	a	functional
programming	style.

What’s	next

I	thought	it	was	worth	this	quick	review	of	Scala	case	classes	because	the	next
thing	we’re	going	to	do	is	dive	into	the	case	class	copy	method.	Because	you
don’t	mutate	objects	in	FP,	you	need	to	do	something	else	to	create	updated
instances	of	objects	when	things	change,	and	the	way	you	do	this	in	Scala/FP	is
with	the	copy	method.

Update	as	You	Copy,	Don’t	Mutate
[UpdateAsYouCopy]

Goals

In	functional	programming	you	don’t	modify	(mutate)	existing	objects,	you
create	new	objects	with	updated	fields	based	on	existing	objects.	For	instance,
last	year	my	niece’s	name	was	“Emily	Maness,”	so	I	could	have	created	a	
Person	instance	to	represent	her,	like	this:

val	emily	=	Person("Emily",	"Maness")

Then	she	got	married,	and	her	last	name	became	“Wells.”	In	an	imperative
programming	language	you	would	just	change	her	last	name,	like	this:

emily.setLastName("Wells")

But	in	FP	you	don’t	do	this,	you	don’t	mutate	existing	objects.	Instead,	what	you
do	is	(a)	you	copy	the	existing	object	to	a	new	object,	and	(b)	during	the	copy
process	you	update	any	fields	you	want	to	change	by	supplying	their	new	values.

The	way	you	do	this	in	Scala/FP	is	with	the	copy	method	that	comes	with	the
Scala	case	class.	This	lesson	shows	a	few	examples	of	how	to	use	copy,
including	how	to	use	it	with	nested	objects.

Source	code

So	you	can	follow	along,	the	source	code	for	this	lesson	is	available	at
github.com/alvinj/FpUpdateAsYouCopy

https://github.com/alvinj/FpUpdateAsYouCopy

Basic	copy

When	you’re	working	with	a	simple	object	it’s	easy	to	use	copy.	Given	a	case
class	like	this:

case	class	Person	(firstName:	String,	lastName:	String)

if	you	want	to	update	a	person’s	last	name,	you	just	“update	as	you	copy,”	like
this:

val	emily1	=	Person("Emily",	"Maness")

val	emily2	=	emily1.copy(lastName	=	"Wells")

As	shown,	in	simple	situations	like	this	all	you	have	to	do	to	use	copy	is:

Make	sure	your	class	is	a	case	class.

Create	an	initial	object	(emily1),	as	usual.

When	a	field	in	that	object	needs	to	be	updated,	use	copy	to	create	a	new
object	(emily2)	from	the	original	object,	and	specify	the	name	of	the	field
to	be	changed,	along	with	its	new	value.

When	you’re	updating	one	field,	that’s	all	you	have	to	do.	(That’s	also	all	you
have	to	do	to	update	multiple	fields,	as	I’ll	show	shortly.)

The	original	instance	is	unchanged

An	important	point	to	note	about	this	is	that	the	first	instance	remains
unchanged.	You	can	verify	that	by	running	a	little	App	like	this:

object	CopyTest1	extends	App	{

				println("---	Before	Copy	---")

				val	emily1	=	Person("Emily",	"Maness")

				println(s"emily1	=	$emily1")

				//	emily	got	married

				println("\n---	After	Copy	---")

				val	emily2	=	emily1.copy(lastName	=	"Wells")

				println(s"emily1	=	$emily1")

				println(s"emily2	=	$emily2")

}

The	output	of	CopyTest1	looks	as	follows,	showing	that	the	original	emily1
instance	is	unchanged	after	the	copy:

---	Before	Copy	---

emily1	=	Person(Emily,Maness)

---	After	Copy	---

emily1	=	Person(Emily,Maness)

emily2	=	Person(Emily,Wells)

What	happens	in	practice	is	that	you	discard	the	original	object,	so	thinking
about	the	old	instance	isn’t	typically	an	issue;	I	just	want	to	mention	it.	(You’ll
see	more	examples	of	how	this	works	as	we	go	along.)

In	 practice	 you	 also	 won’t	 use	 intermediate	 variables	 with
names	 like	emily1,	emily2,	 etc.	We	 just	 need	 to	 do	 that	 now,
until	we	learn	a	few	more	things.

Updating	several	attributes	at	once

It’s	also	easy	to	update	multiple	fields	at	one	time	using	copy.	For	instance,	had	
Person	been	defined	like	this:

case	class	Person	(

				firstName:	String,

				lastName:	String,

				age:	Int

)

you	could	create	an	instance	like	this:

val	emily1	=	Person("Emily",	"Maness",	25)

and	then	create	a	new	instance	by	updating	several	parameters	at	once,	like	this:

//	emily	is	married,	and	a	year	older

val	emily2	=	emily1.copy(lastName	=	"Wells",	age	=	26)

That’s	all	you	have	to	do	to	update	two	or	more	fields	in	a	simple	case	class.

Copying	nested	objects

As	shown,	using	copy	with	simple	case	classes	is	straightforward.	But	when	a	
case	class	contains	other	case	classes,	and	those	contain	more	case	classes,
things	get	more	complicated	and	the	required	code	gets	more	verbose.

For	instance,	let’s	say	that	you	have	a	case	class	hierarchy	like	this:

case	class	BillingInfo(

				creditCards:	Seq[CreditCard]

)

case	class	Name(

				firstName:	String,	

				mi:	String,	

				lastName:	String

)

case	class	User(

				id:	Int,	

				name:	Name,	

				billingInfo:	BillingInfo,	

				phone:	String,	

				email:	String

)

case	class	CreditCard(

				name:	Name,	

				number:	String,	

				month:	Int,	

				year:	Int,	

				cvv:	String

)

Visually	the	relationship	between	these	classes	looks	like
Figure	[fig:umlRelationshipBetweenClasses].

The	visual	relationship	between	the	classes

Notice	a	few	things	about	this	code:

User	has	fields	of	type	Name	and	BillingInfo

CreditCard	also	has	a	field	of	the	Name	type

Despite	a	little	complexity,	creating	an	initial	instance	of	User	with	this
hierarchy	is	straightforward:

object	NestedCopy1	extends	App	{

				val	hannahsName	=	Name(

								firstName	=	"Hannah",

								mi	=	"C",

								lastName	=	"Jones"

)

				//	create	a	user

				val	hannah1	=	User(

								id	=	1,

								name	=	hannahsName,

								phone	=	"907-555-1212",

								email	=	"hannah@hannahjones.com",

								billingInfo	=	BillingInfo(

												creditCards	=	Seq(

																CreditCard(

																				name	=	hannahsName,

																				number	=	"1111111111111111",

																				month	=	3,

																				year	=	2020,

																				cvv	=	"123"

)

)

)

)

}

So	far,	so	good.	Now	let’s	take	a	look	at	what	you	have	to	do	when	a	few	of	the
fields	need	to	be	updated.

Updating	the	phone	number

First,	let’s	suppose	that	Hannah	moves.	I	kept	the	address	out	of	the	model	to
keep	things	relatively	simple,	but	let’s	suppose	that	her	phone	number	needs	to
be	updated.	Because	the	phone	number	is	stored	as	a	top-level	field	in	User,	this
is	a	simple	copy	operation:

//	hannah	moved,	update	the	phone	number

val	hannah2	=	hannah1.copy(phone	=	"720-555-1212")

Updating	the	last	name

Next,	suppose	that	a	little	while	later	Hannah	gets	married	and	we	need	to	update
her	last	name.	In	this	case	you	need	to	reach	down	into	the	Name	instance	of	the	
User	object	and	update	the	lastName	field.	I’ll	do	this	in	a	two-step	process	to
keep	it	clear.

First,	create	a	copy	of	the	name	field,	changing	lastName	during	the	copy
process:

//	hannah	got	married,	update	her	last	name

val	newName	=	hannah2.name.copy(lastName	=	"Smith")

If	you	print	newName	at	this	point,	you’ll	see	that	it	is	“Hannah	C	Smith.”

Now	that	you	have	this	newName	instance,	the	second	step	is	to	create	a	new
“Hannah”	instance	with	this	new	Name.	You	do	that	by	(a)	calling	copy	on	the	
hannah2	instance	to	make	a	new	hannah3	instance,	and	(b)	within	copy	you	bind
the	name	field	to	newName:

val	hannah3	=	hannah2.copy(name	=	newName)

Updating	the	credit	card

Suppose	you	also	need	to	update	the	“Hannah”	instance	with	new	credit	card
information.	To	do	this	you	follow	the	same	pattern	as	before.	First,	you	create	a
new	CreditCard	instance	from	the	existing	instance.	Because	the	creditCards
field	inside	the	billingInfo	instance	is	a	Seq,	you	need	to	reference	the	first
credit	card	instance	while	making	the	copy.	That	is,	you	reference	
creditCards(0):

val	oldCC	=	hannah3.billingInfo.creditCards(0)

val	newCC	=	oldCC.copy(name	=	newName)

Because	(a)	BillingInfo	takes	a	Seq[CreditCard],	and	(b)	there’s	only	one
credit	card,	I	make	a	new	Seq[CreditCard]	like	this:

val	newCCs	=	Seq(newCC)

With	this	new	Seq[CreditCard]	I	create	a	new	“Hannah”	instance	by	copying	
hannah3	to	hannah4,	updating	the	BillingInfo	during	the	copy	process:

val	hannah4	=	hannah3.copy(billingInfo	=	BillingInfo(newCCs))

Put	together,	those	lines	of	code	look	like	this:

val	oldCC	=	hannah3.billingInfo.creditCards(0)

val	newCC	=	oldCC.copy(name	=	newName)

val	newCCs	=	Seq(newCC)

val	hannah4	=	hannah3.copy(billingInfo	=	BillingInfo(newCCs))

You	can	shorten	that	code	if	you	want,	but	I	show	the	individual	steps	so	it’s
easier	to	read.

These	examples	show	how	the	“update	as	you	copy”	process	works	with	nested
objects	in	Scala/FP.	(More	on	this	after	the	attribution.)

Attribution

The	examples	I	just	showed	are	a	simplification	of	the	code	and	description
found	at	these	URLs:

The	“koffio-lenses”	example	on	GitHub

The	KOFF.io	“Lens	in	Scala”	tutorial

https://github.com/coffius/koffio-lenses
http://koff.io/posts/292173-lens-in-scala/

Lenses

As	you	saw,	the	“update	as	you	copy”	technique	gets	more	complicated	when
you	deal	with	real-world,	nested	objects,	and	the	deeper	the	nesting	gets,	the
more	complicated	the	problem	becomes.	But	fear	not:	there	are	Scala/FP
libraries	that	make	this	easier.	The	general	idea	of	these	libraries	is	known	as	a
“lens”	(or	“lenses”),	and	they	make	copying	nested	objects	much	simpler.	I	cover
lenses	in	a	lesson	later	in	this	book.

Summary

Here’s	a	summary	of	what	I	just	covered:

Because	functional	programmers	don’t	mutate	objects,	when	an	object
needs	to	be	updated	it’s	necessary	to	follow	a	pattern	which	I	describe	as
“update	as	you	copy”.

The	way	you	do	this	in	Scala	is	with	the	copy	method,	which	comes	with
Scala	case	classes.

As	you	can	imagine,	from	here	on	out	you’re	going	to	be	using	case	classes
more	than	you’ll	use	the	default	Scala	class.	The	copy	method	is	just	one
reason	for	this,	but	it’s	a	good	reason.	(You’ll	see	even	more	reasons	to	use	
case	classes	as	you	go	along.)

What’s	Next

As	mentioned,	I	write	about	lenses	later	in	the	book,	when	we	get	to	a	point
where	we	have	to	“update	as	you	copy”	complicated	objects.

But	for	now	the	next	thing	we	need	to	dig	into	is	for	comprehensions.	Once	I
cover	those,	you’ll	be	close	to	being	able	to	write	small,	simple,	functional
applications	with	everything	I’ve	covered	so	far.

See	Also

The	source	code	for	this	lesson	is	available	at	at	this	Github	repository

Alessandro	Lacava	has	some	notes	about	case	classes,	including	a	little
about	copy,	currying,	and	arity

The	“koffio-lenses”	example	on	GitHub

The	KOFF.io	“Lens	in	Scala”	tutorial

https://github.com/alvinj/FpUpdateAsYouCopy
http://www.alessandrolacava.com/blog/scala-case-classes-in-depth/
https://github.com/coffius/koffio-lenses
http://koff.io/posts/292173-lens-in-scala/

A	Quick	Review	of	for	Expressions

Goals

The	goal	of	this	lesson	is	to	review	at	a	high	level	how	for	loops	work	in	Scala.
This	is	necessary	because	Scala/FP	developers	really	take	advantage	of	advanced
Scala	for	loop	features.

As	an	example	of	what	I	mean,	the	goal	of	the	next	few	lessons	is	to	explain
what’s	happening	in	this	for	loop:

def	stackManip:	State[Stack,	Int]	=	for	{

				_	<-	push(3)

				a	<-	pop

				b	<-	pop

}	yield(b)

If	you	already	understand	what’s	happening	in	that	code,	feel	free	to	skip	over
these	lessons;	otherwise,	read	on.

Introduction

If	you’re	used	to	using	the	for	loop	in	Java,	Scala’s	for	loop	can	work	similar	to
it,	but	it	can	also	be	used	in	a	different	manner.

A	very	different	manner.

And	Scala/FP	developers	use	it	in	this	other	manner.

A	lot.

For	instance,	some	experienced	Scala/FP	developers	say	that	this	is	a	“simple”
use	of	a	for	loop	in	a	functional	style:

def	stackManip:	State[Stack,	Int]	=	for	{

				_	<-	push(3)

				a	<-	pop

				b	<-	pop

}	yield(b)

If	you’re	used	to	traditional	for	loops	in	languages	like	C	and	Java,	whatever	is
happening	in	this	“loop”	can	be	quite	a	surprise.

A	peek	into	what’s	happening

Let	me	explain	a	little	of	what’s	happening:	This	code	is	working	with	a	stack,
and	a	push	function	is	pushing	the	number	3	onto	a	pre-existing	stack,	and	then
the	next	two	lines	pop	values	off	of	the	stack.	But	even	knowing	that,	a	few
questions	come	to	mind:

If	a	push	function	pushes	a	number	onto	a	stack,	where	exactly	is	that
stack?

A	push	function	normally	doesn’t	return	anything	meaningful,	so	how	is	it
being	used	as	a	generator	in	a	for	loop?	And	what	is	that	underscore
character	doing	on	the	left	side	of	the	push	expression?

Assuming	that	those	pop	functions	are	popping	data	off	of	a	stack,	again	I
ask,	where	is	that	stack?

In	this	lesson	we’ll	starting	digging	into	how	the	Scala	for	expression	works.
Knowing	how	it	works	is	a	prerequisite	for	understanding	how	this	stackManip
method	works,	and	how	for	is	used	in	many	Scala/FP	situations.

New	rule:	No	more	“for	loop”

Hmmm	…	if	you	go	back	and	look	at	that	code	again,	is	it	really	a	“loop”?	No,
not	really.	However	that	code	works,	all	it	seems	to	do	is	to	perform	three
operations	on	a	stack.	This	thought	leads	us	to	a	new	rule:

For	a	variety	of	reasons	—	including	the	fact	that	this	code	isn’t	really	a	loop	but
something	called	a	comprehension	—	I	will	no	longer	use	the	term	“for	loop.”
From	now	on,	I’ll	refer	to	this	construct	as	a	“for	comprehension”	or	“for
expression.”

I	can	explain	this	name	by	once	again	taking	a	short	look	back	at	history	and
mathematics.

To	 be	 consistent	 with	 the	 historical	 references	 I’m	 about	 to
share,	I’ll	use	the	term	“for	comprehension”	in	this	lesson,	but
in	the	remainder	of	this	book	I’ll	use	the	term	“for	expression,”
which	is	more	commonly	used.

for	comprehension	history

As	a	quick	historical	tidbit,	the	name	“comprehension”	comes	from	both	Haskell
and	mathematics,	with	mathematics	preceding	Haskell	by	some	large	number	of
years.	The	book,	Haskell,	the	Craft	of	Functional	Programming,	provides	this
introduction:

“One	 of	 the	 features	 of	 a	 functional	 language	 is	 the	 list
comprehension	 notation,	 which	 has	 no	 parallels	 in	 other
paradigms.”

Learn	You	a	Haskell	for	Great	Good	states:

“List	 comprehensions	 are	 a	 way	 to	 filter,	 transform,	 and
combine	lists.	They’re	very	similar	to	the	mathematical	concept
of	set	comprehensions.	Set	 comprehensions	 are	normally	used
for	building	sets	out	of	other	sets.”

If	you’ve	used	the	Scala	for/yield	expression	at	all,	you	know	that	it	meets	this
definition.	Indeed,	you’ll	find	the	for	construct	described	on	a	page	on	the
official	Scala	website	titled	Sequence	Comprehensions.	There	they	state:

“Comprehensions	have	the	form	for	(enumerators)	yield	e,
where	 enumerators	 refers	 to	 a	 semicolon-separated	 list	 of
enumerators.	 An	 enumerator	 is	 either	 a	 generator	 which
introduces	new	variables,	or	it	is	a	filter.”

These	definitions	lead	us	to	the	for	comprehension	concepts	of	generators,
filters,	and	definitions.

http://amzn.to/1POe1u9
http://amzn.to/1POaUCv
https://en.wikipedia.org/wiki/Set-builder_notation
http://docs.scala-lang.org/tutorials/tour/sequence-comprehensions.html

Generators,	filters,	and	definitions

A	Scala	for	comprehension	can	contain	the	following	three	types	of	expressions:

Generators

Filters

Definitions

These	are	shown	in	the	following	source	code	snippet	from	the	book,
Programming	in	Scala:

for	{

				p	<-	persons													//	generator

				n	=	p.name															//	definition

				if	(n	startsWith	"To")			//	filter

}	yield

Let’s	look	at	short,	formal	definitions	for	each	of	these	elements.

Generators

Generators	have	this	general	form:

pattern	<-	expression

In	simple	cases	this	results	in	an	assignment,	like	this:

p	<-	persons

In	this	expression	the	value	p	iterates	over	all	of	the	elements	contained	in	
persons.	Generators	can	be	more	complicated	than	this,	but	this	is	their	most
simple	and	common	use.

There	are	three	more	things	to	know	about	generators:

Every	for	comprehension	begins	with	a	generator

for	comprehensions	can	have	multiple	generators

The	left	side	of	a	generator	can	also	be	a	pattern:

http://amzn.to/2fiqDBh

def	getTheSquirrel	=	for	{

				(dog,	cat,	squirrel)	<-	getAnimalsOutOfLaundryRoom

}	yield	squirrel

Definitions

for	comprehension	definitions	have	this	general	form:

pattern	=	expression

A	definition	binds	the	pattern	pattern	on	the	left	to	the	value	of	expression	on
the	right.

In	the	original	example	in	this	lesson:

n	=	p.name

the	variable	n	is	bound	to	the	value	p.name.	That	statement	has	the	same	effect	as
writing	this	code	outside	of	a	for	comprehension:

val	n	=	p.name

Filters

for	comprehension	filters	have	this	general	form:

if	(expression)

In	this	code	expression	must	have	the	type	Boolean.

A	filter	drops	all	elements	from	the	iteration	for	which	expression	returns	
false,	so	in	this	code:

if	(n	startsWith	"To")

any	value	n	that	does	not	start	with	the	string	To	will	be	dropped	during	the
iteration	process.	(Stated	the	other	way,	any	value	n	that	begins	with	the	string	To
will	be	retained	during	the	iteration	process.)

An	example

Here’s	an	example	of	each	of	these	features	in	a	Scala	for	comprehension:

case	class	Person(firstName:	String,	lastName:	String)

val	people	=	List(

				Person("barney",	"rubble"),

				Person("fred",	"flintstone")

)

val	namesStartingWithB	=	for	{

				p	<-	people																		//	generator

				fname	=	p.firstName										//	definition

				if	(fname	startsWith	"b")				//	filter

}	yield	fname.toUpperCase

If	you	put	that	code	in	the	Scala	REPL,	you	can	then	run	this	statement	to	see	the
expected	result:

scala>	namesStartingWithB.foreach(println)

BARNEY

Summary

What	you	started	to	see	in	this	lesson	is	that	Scala	for	loops	are	much	more	than
“loops.”	They’re	based	on	mathematical	set	comprehensions,	and	they	are	a	way
to	“filter,	transform,	and	combine	lists.”

You	also	saw	that	a	Scala	for	comprehension	can	contain	the	following	three
types	of	expressions:

Generators

Filters

Definitions

What’s	next

This	lesson	provides	a	quick	review	of	the	basic	features	of	for	comprehensions
as	background	for	the	next	lesson,	where	you’ll	learn	how	to	write	your	own
custom	collection	class	to	work	in	a	for	comprehension.

See	also

set	comprehensions	on	Wikipedia

Sequence	comprehensions	on	scala-lang.org

Haskell,	the	Craft	of	Functional	Programming

Learn	You	a	Haskell	for	Great	Good	states:

Programming	in	Scala

https://en.wikipedia.org/wiki/Set-builder_notation
http://docs.scala-lang.org/tutorials/tour/sequence-comprehensions.html
http://amzn.to/1POe1u9
http://amzn.to/1POaUCv
http://amzn.to/2fiqDBh

How	to	Write	a	Class	That	Can	Be	Used
in	a	for	Expression
As	a	reminder,	the	reason	for	the	next	several	lessons	on	for	expressions	is	so
that	you	can	get	to	a	point	where	you	can	understand	the	following	code:

def	stackManip:	State[Stack,	Int]	=	for	{

				_	<-	push(3)

				a	<-	pop

				b	<-	pop

}	yield(b)

To	make	this	code	easier	to	understand	—	or	understandable	at	all,	depending	on
your	background	—	let’s	start	digging	into	how	the	Scala	for	expression	works.

How	for	expressions	work

The	book,	Programming	in	Scala,	co-written	by	Scala	creator	Martin	Odersky,	is
the	definitive	reference	for	the	Scala	programming	language,	and	Section	23.6	of
that	book,	“Generalizing	for,”	describes	the	translation	rules	for	how	the	Scala
compiler	converts	(a)	the	for	expressions	you	write	into	(b)	a	series	of	method
calls	that	may	include	map,	flatMap,	foreach,	and	withFilter.

Very	importantly,	just	as	for	expressions	are	compiled	into	these	four	functions,
the	opposite	is	also	true:	if	you	write	a	class	that	implements	these	functions,	it
can	be	used	inside	a	for	expression.

http://amzn.to/2fiqDBh

Rules	about	how	these	functions	enable	for

In	the	next	several	lessons	I’ll	show	how	to	write	your	own	custom	data	types
that	can	be	used	in	for	expressions.	To	do	this	you	need	to	know	the	rules	that
govern	how	a	for	expression	is	enabled	by	these	functions.	Programming	in
Scala	gives	us	these	translation	rules:

1.	 If	a	custom	data	type	defines	a	foreach	method,	it	allows	for	loops	(both
with	single	and	multiple	generators).	(Note	the	emphasis	on	the	word
“loops”	in	that	definition.	This	refers	to	the	simple	Java-style	use	of	a	for
loop,	i.e.,	for	(i	<-	ints)	println(i).)

2.	 If	a	data	type	defines	only	map,	it	can	be	used	in	for	expressions	consisting
of	a	single	generator.

3.	 If	it	defines	flatMap	as	well	as	map,	it	allows	for	expressions	consisting	of
multiple	generators.

4.	 If	it	defines	withFilter,	it	allows	for	filter	expressions	starting	with	an	if
within	the	for	expression.

While	a	for	expression	technically	doesn’t	require	specific	signatures	for	each	of
these	methods,	if	you	want	your	custom	class	to	work	well	with	a	for	expression
it	should	generally	implement	those	methods	with	the	signatures	shown	in	this
example	class:

abstract	class	CustomClass[A]	{

				def	map[B](f:	A	=>	B):	CustomClass[B]

				def	flatMap[B](f:	A	=>	CustomClass[B]):	CustomClass[B]

				def	withFilter(p:	A	=>	Boolean):	CustomClass[A]

				def	foreach(b:	A	=>	Unit):	Unit

}

If	those	type	signatures	don’t	make	sense	just	yet,	fear	not,	I’ll	cover	them	in	the
next	few	lessons.

And	now	—	because	we’re	at	a	point	where	we	really	need	to	know	how	for
expressions	work	—	in	the	next	few	lessons	I’ll	demonstrate	how	to	satisfy	these
rules	as	we	build	a	custom	class	that	can	be	used	inside	a	Scala	for	expression.

http://amzn.to/2fiqDBh

Creating	a	Sequence	Class	to	be	Used	in
a	for	Comprehension
The	best	way	I	know	to	demonstrate	how	the	Scala	for	expression	works	is	for
us	to	build	our	own	collection	class.

To	keep	things	simple	I’m	going	to	create	a	custom	class	as	a	“wrapper”	around
an	existing	Scala	collection	class.	The	reason	for	this	is	that	I	want	you	to	focus
on	the	effects	that	writing	map,	flatMap,	withFilter,	and	foreach	methods	have
on	how	the	class	works	in	a	for	expression	—	not	on	writing	the	gory	internals
of	a	collection	class.

A	Sequence	class

I	always	like	to	“begin	with	the	end	in	mind”	and	picture	how	I	want	to	use	a
class	before	I	create	it	—	i.e.,	its	API	—	and	to	that	end,	this	is	how	I	want	to	use
a	custom	class	that	I’m	going	to	name	Sequence:

val	strings	=	Sequence("one",	"two")

val	nums	=	Sequence(1,	2,	3,	4,	5)

val	peeps	=	Sequence(

				Person("Bert"),

				Person("Ernie"),

				Person("Grover")

)

From	that	code	you	can	see	that	Sequence	will	be	able	to	work	with	generic	data
types:	it	will	be	able	to	contain	a	series	of	String,	Int,	Person,	and	other	data
types.

Given	those	lines	of	code,	you	can	infer	some	initial	requirements	about	the	
Sequence	class:

Sequence	either	needs	to	be	a	case	class,	or	it	needs	to	have	a	companion
object	that	implements	an	apply	method,	because	I	want	to	be	able	to	create
new	Sequence	instances	without	needing	the	new	keyword.

Because	the	class	will	be	used	as	a	container	for	generic	elements,	I’ll
define	the	class	to	take	a	generic	type.

Because	Sequence	instances	can	be	created	with	a	variable	number	of	initial
elements,	the	Sequence	class	constructor	will	be	defined	to	accept	a
“varargs”	parameter.

I’ll	create	this	class	in	a	series	of	steps	over	the	next	several	lessons.

Create	a	case	class	named	Sequence

The	first	step	is	to	create	a	class	named	Sequence.	I’m	going	to	make	it	a	case
class	so	I	can	write	code	like	this:

val	strings	=	Sequence(1,	2,	3)

If	I	didn’t	use	a	case	class	(or	an	apply	method	in	a	companion	object)	I’d	have
to	write	“new	Sequence”,	like	this:

val	strings	=	new	Sequence("one",	"two")

Therefore,	I	start	by	creating	a	case	class	named	Sequence:

case	class	Sequence	...

Sequence	will	be	a	container	for	generic	elements

Next,	I	know	that	I	want	Sequence	to	contain	elements	of	different	types,	so	I
expand	that	definition	to	say	that	Sequence	will	be	a	container	of	generic	types:

case	class	Sequence[A]	...

Sequence’s	constructor	will	take	a	variable	number	of
input	parameters

Next,	I	know	that	the	Sequence	constructor	will	have	one	parameter,	and	that
parameter	can	be	assigned	to	a	variable	number	of	elements,	so	I	expand	the
definition	to	this:

case	class	Sequence[A](initialElems:	A*)	...

If	you’re	not	familiar	with	using	a	varargs	parameter,	the	*	after	the	A	is	what
lets	you	pass	a	variable	number	of	elements	into	the	Sequence	constructor:

val	a	=	Sequence(1,2)

val	b	=	Sequence(1,2,3)

val	c	=	Sequence('a',	'b',	'c',	'd',	'e')

Later	in	the	Sequence	class	code	you’ll	see	how	to	handle	a	variable	number	of
input	elements.

If	you	have	a	hard	time	with	generics

If	you	have	a	hard	time	using	generic	types,	it	can	help	to	remove	the	generic
type	A	and	use	Int	instead:

case	class	Sequence(initialElems:	Int*)	...

With	this	code	you	only	have	to	think	about	Sequence	being	a	container	for
integers,	so	combined	with	the	varargs	constructor	parameter,	new	instances	of	
Sequence	can	be	created	like	this:

val	a	=	Sequence(1,2)

val	b	=	Sequence(3,5,7,11,13,17,23)

Feel	free	to	write	your	own	code	using	Int	rather	than	A,	though	I’ll	use	A	in	the
rest	of	this	lesson:

case	class	Sequence[A](initialElems:	A*)	...

Sequence	will	be	backed	by	a	Scala	collection	class

As	I	mentioned	at	the	beginning	of	this	lesson,	to	keep	this	code	from	getting	too
complicated	I’m	going	to	implement	Sequence	as	a	wrapper	around	a	Scala
collection	class.	I	originally	wrote	this	lesson	using	a	custom	linked	list	class,
but	with	that	approach	there	was	a	lot	of	code	that	was	unrelated	to	for
expressions,	so	I	opted	to	take	this	simpler	approach.

The	following	code	shows	what	I	have	in	mind:

case	class	Sequence[A](initialElems:	A*)	{

				//	this	is	a	book,	don't	do	this	at	home

				private	val	elems	=	scala.collection.mutable.ArrayBuffer[A]()

				//	initialize

				elems	++=	initialElems

}

I	make	ArrayBuffer	private	in	this	code	so	no	consumers	of	my	class	can	see
how	it’s	implemented.

Scala	constructors

If	you	haven’t	use	a	Scala	constructor	in	a	while,	remember	that	everything
inside	the	body	of	a	class	that	isn’t	a	method	is	executed	when	a	new	instance	of
the	class	is	created.	Therefore,	this	line	of	code:

elems	++=	initialElems

is	executed	when	a	new	class	instance	is	created.	For	example,	when	you	create
a	new	Sequence	like	this:

val	ints	=	Sequence(1,	2,	3)

the	int	values	1,	2,	and	3	are	added	to	the	elems	variable	when	the	class	is	first
created.

If	you	need	to	brush	up	on	how	Scala	class	constructors	work,
see	Chapter	4	of	the	Scala	Cookbook.

http://amzn.to/24ivK4G

About	++=

If	you’re	not	used	to	the	++=	method,	this	line	of	code:

elems	++=	initialElems

works	just	like	this	for	loop:

for	{

				e	<-	initialElems

}	elems	+=	e

Summary

If	you	want	to	test	this	code	before	moving	on	to	the	next	lesson,	paste	it	into	the
Scala	REPL	and	then	create	new	sequences	like	these:

val	strings	=	Sequence("a",	"b",	"c")

val	nums	=	Sequence(1,	2,	3,	4,	5)

you’ll	see	that	they’re	created	properly:

scala>	val	strings	=	Sequence("a",	"b",	"c")

strings:	Sequence[String]	=	Sequence(WrappedArray(a,	b,	c))

scala>	val	nums	=	Sequence(1,	2,	3,	4,	5)

nums:	Sequence[Int]	=	Sequence(WrappedArray(1,	2,	3,	4,	5))

Notice	that	strings	has	the	type	Sequence[String],	and	nums	has	the	type	
Sequence[Int].	That’s	generics	at	work.

Don’t	worry	about	the	data	on	the	right	side	of	the	=	 showing	
Sequence(WrappedArray(...)).	 That’s	 just	 an	 artifact	 of
taking	a	varargs	constructor	parameter.

What’s	next

Now	that	I	have	a	simple	Sequence	class	to	work	with,	I’ll	start	to	make	it	work
with	for	expressions	in	the	next	lesson.

See	also

My	article,	How	to	create	Scala	methods	that	take	variable-arguments
(varargs)	fields

How	to	create	an	Array	whose	size	can	change	(ArrayBuffer)

How	to	delete	Array	and	ArrayBuffer	elements	in	Scala

http://alvinalexander.com/scala/how-to-define-methods-variable-arguments-varargs-fields
http://alvinalexander.com/scala/how-to-create-mutable-array-size-change-arraybuffer-scala-cookbook
http://alvinalexander.com/scala/how-to-delete-array-arraybuffer-elements-scala-cookbook

Making	Sequence	Work	in	a	Simple	for
Loop
So	far	I	have	this	Sequence	class:

case	class	Sequence[A](initialElems:	A*)	{

				private	val	elems	=	scala.collection.mutable.ArrayBuffer[A]()

				//	initialize

				elems	++=	initialElems

}

With	that	code	I	can	create	new	Sequence	instances	like	this:

val	strings	=	Sequence("a",	"b",	"c")

val	nums	=	Sequence(1,	2,	3,	4,	5)

Next,	I’ll	modify	Sequence	so	I	can	use	it	as	a	generator	in	a	for	loop.

Note:	I	intentionally	use	the	word	“loop”	in	this	lesson	because
all	 I’m	 trying	 to	 do	 is	 to	 loop	 over	 the	 elements	 in	 the	
Sequence,	 like	 a	 Java	for	 loop.	 I’m	 specifically	not	 trying	 to
write	for/yield	expressions.

Trying	to	use	Sequence	in	a	simple	for	loop

To	get	started,	let’s	see	what	happens	if	I	try	to	use	a	Sequence	in	a	simple	for
loop.	When	I	paste	these	two	lines	of	code	into	the	Scala	REPL:

val	ints	=	Sequence(1,	2,	3)

for	(i	<-	ints)	println(i)

I	see	this	error	after	the	for	loop:

scala>	for	(i	<-	ints)	println(i)

<console>:14:	error:	value	foreach	is	not	a	member	of	Sequence[Int]

							for	(i	<-	ints)	println(i)

																	^

The	bad	news	is	that	Sequence	won’t	work	in	a	simple	for	loop.	But	the	good
news	is	that	the	Scala	compiler	error	tells	me	what’s	wrong:

"value	foreach	is	not	a	member	of	Sequence[Int]"

How	to	modify	Sequence	so	it	can	be	used	as	a	for
loop	generator

The	error	message	tells	me	that	this	for	loop	won’t	work	because	Sequence
doesn’t	have	a	foreach	method,	so	I’ll	go	ahead	and	implement	one.

Because	(a)	Sequence	uses	an	ArrayBuffer	behind	the	scenes,	and	(b)	I’m	not
concerned	with	how	I	implement	the	foreach	method,	I’ll	just	piggyback	on	the	
ArrayBuffer’s	foreach	method:

def	foreach(block:	A	=>	Unit):	Unit	=	{

				elems.foreach(block)

}

(As	I	mentioned	in	the	last	lesson,	for	the	purposes	of	understanding	how	the	for
expression	works	I	don’t	care	how	I	implement	a	foreach	method,	I	just	want	to
create	one	as	simply	as	possible	to	see	if	that	lets	me	use	Sequence	inside	of	
for.)

Adding	foreach	makes	my	complete	Sequence	class	look	like	this:

case	class	Sequence[A](initialElems:	A*)	{

				private	val	elems	=	scala.collection.mutable.ArrayBuffer[A]()

				//	initialize

				elems	++=	initialElems

				def	foreach(block:	A	=>	Unit):	Unit	=	{

								elems.foreach(block)

				}

}

When	I	paste	that	class	into	the	REPL,	and	then	paste	this	code	in	as	well:

val	ints	=	Sequence(1,2,3)

for	(i	<-	ints)	println(i)

I	see	that	Sequence	now	works	as	a	for	loop	generator:

scala>	for	(i	<-	ints)	println(i)

1

2

3

Excellent.	Let’s	move	on	to	the	next	step.

Exercises

1.	 If	you	don’t	like	the	way	I	implemented	foreach,	go	ahead	and	implement
it	however	you’d	like.	I	recommend	using	recursion!

How	To	Make	Sequence	Work	as	a	Single
Generator	in	a	for	Expression
Getting	Sequence	to	work	as	a	generator	in	a	simple	for	loop	was	cool,	but	does
adding	foreach	let	Sequence	also	work	when	I	add	yield?	Let’s	see.

When	I	paste	this	code	into	the	REPL:

val	ints	=	Sequence(1,2,3)

for	{

				i	<-	ints

}	yield	i*2

I	see	this	error	message:

scala>	for	{

					|					i	<-	ints

					|	}	yield	i*2

<console>:15:	error:	value	map	is	not	a	member	of	Sequence[Int]

											i	<-	ints

																^

Sadly,	Sequence	won’t	currently	work	with	for/yield,	but	again	the	REPL	tells
us	why:

error:	value	map	is	not	a	member	of	Sequence[Int]

That	error	tells	us	that	Sequence	needs	a	map	method	for	this	to	work.	Great	—
let’s	create	one.

Adding	a	map	method	to	Sequence

Again	I’m	going	to	cheat	to	create	a	simple	solution,	this	time	using	
ArrayBuffer’s	map	method	inside	Sequence’s	map	method:

def	map[B](f:	A	=>	B):	Sequence[B]	=	{

				val	abMap:	ArrayBuffer[B]	=	elems.map(f)

				Sequence(abMap:	_*)

}

This	map	method	does	the	following:

It	takes	a	function	input	parameter	that	transforms	a	type	A	to	a	type	B.

When	it’s	finished,	map	returns	a	Sequence[B].

In	the	first	line	of	the	function	I	show	abMap:	ArrayBuffer[B]	to	be	clear
that	elems.map(f)	returns	an	ArrayBuffer.	As	usual,	showing	the	type
isn’t	necessary,	but	I	think	it	helps	to	make	this	step	clear.

In	the	second	line	inside	the	function	I	use	the	:_	syntax	to	create	a	new	
Sequence	and	return	it.

About	the	:_	syntax

If	you	haven’t	seen	the	abMap:	_	syntax	before,	the	:_	part	of	the	code	is	a	way
to	adapt	a	collection	to	work	with	a	varargs	parameter.	Recall	that	the	Sequence
constructor	is	defined	to	take	a	varags	parameter,	as	shown	in	Figure
	[fig:sequenceTakesVarargsParam].

The	Sequence	constructor	takes	a	varargs	input	parameter.

For	more	information	on	this	syntax,	see	my	tutorial,	Scala’s	missing	splat
operator.

http://alvinalexander.com/bookmarks/scala/scalas-missing-splat-operator

The	complete	Sequence	class

This	is	what	the	Sequence	class	looks	like	when	I	add	the	map	method	to	it:

case	class	Sequence[A](initialElems:	A*)	{

				private	val	elems	=	scala.collection.mutable.ArrayBuffer[A]()

				//	initialize

				elems	++=	initialElems

				def	map[B](f:	A	=>	B):	Sequence[B]	=	{

								val	abMap	=	elems.map(f)

								new	Sequence(abMap:	_*)

				}

				def	foreach(block:	A	=>	Unit):	Unit	=	{

								elems.foreach(block)

				}

}

Does	for/yield	work	now?

Now	when	I	go	back	and	try	to	use	the	for/yield	expression	I	showed	earlier,	I
find	that	it	compiles	and	runs	just	fine:

scala>	val	ints	=	Sequence(1,2,3)

ints:	Sequence[Int]	=	Sequence(WrappedArray(1,	2,	3))

scala>	for	{

					|					i	<-	ints

					|	}	yield	i*2

res0:	Sequence[Int]	=	Sequence(ArrayBuffer(2,	4,	6))

An	important	point

One	point	I	need	to	make	clear	is	that	this	for/yield	expression	works	solely
because	of	the	map	method;	it	has	nothing	to	do	with	the	foreach	method.	You
can	demonstrate	this	in	at	least	two	ways.	First,	if	you	remove	the	foreach
method	from	the	Sequence	class	you’ll	see	that	this	for	expression	still	works.

Second,	if	you	create	a	little	test	class	with	this	code	in	it,	and	then	compile	it
with	scalac	-Xprint:parse,	you’ll	see	that	the	Scala	compiler	converts	this	for
expression:

for	{

				i	<-	ints

}	yield	i*2

into	this	map	expression:

ints.map(((i)	=>	i.$times(2)))

To	be	very	clear,	defining	a	foreach	method	in	Sequence	enables	this	for	loop:

for	(i	<-	ints)	println(i)

and	defining	a	map	method	in	Sequence	enables	this	for	expression:

for	{

				i	<-	ints

}	yield	i*2

Summary

I	can	summarize	what	I	accomplished	in	this	lesson	and	the	previous	lesson	with
these	lines	of	code:

//	(1)	works	because	`foreach`	is	defined

for	(p	<-	peeps)	println(p)

//	(2)	`yield`	works	because	`map`	is	defined

val	res:	Sequence[Int]	=	for	{

				i	<-	ints

}	yield	i	*	2

res.foreach(println)		//	verify	the	result

What’s	next?

This	is	a	good	start.	Next	up,	I’ll	modify	Sequence	so	I	can	use	it	with	filtering
clauses	in	for	expressions.

Enabling	Filtering	in	a	for	Expression
Next,	let’s	see	if	we	can	use	a	filtering	clause	inside	of	a	for	expression	with	the	
Sequence	code	we	have	so	far.

Trying	to	use	a	filter

When	I	paste	the	current	Sequence	class	and	this	code	into	the	Scala	REPL:

val	ints	=	Sequence(1,2,3,4,5)

val	res	=	for	{

				i	<-	ints

				if	i	>	2

}	yield	i*2

I	see	the	following	error	message:

<console>:14:	error:	value	filter	is	not	a	member	of	Sequence[Int]

											i	<-	ints

																^

Again	the	bad	news	is	that	I	can’t	use	a	filtering	clause	like	if	i	>	2,	and	the
good	news	is	that	the	REPL	tells	me	why	it	won’t	work.	So	let’s	fix	this	problem.

Before	we	continue	…

One	note	before	we	continue:	I	ran	this	example	with	the	Scala	2.11.7	REPL,
and	that	error	message	isn’t	100%	accurate.	As	I	mentioned	a	few	lessons	ago,
the	current	rule	for	how	to	get	a	custom	collection	class	to	work	in	a	for
expression	is	this:

If	a	class	defines	withFilter,	it	allows	for	filter	expressions	starting	with
an	if	within	the	for	expression

In	versions	of	Scala	up	to	2.7	the	filter	error	message	shown	in	the	REPL	was
correct,	but	starting	with	Scala	2.8	the	preferred	solution	is	to	implement	a	
withFilter	method	rather	than	a	filter	method.	Therefore,	in	the	following
code	I’ll	implement	withFilter.

I’ll	write	more	 about	 this	 shortly,	 but	 for	 the	 purposes	 of	 this
lesson	you	can	think	of	withFilter	as	being	just	like	a	filter
method.

Writing	withFilter’s	type	signature

At	this	point	a	good	question	is,	“How	does	a	filter	method	work?”

Figure	[fig:scaladocFilterList295]	shows	the	Scaladoc	for	the	filter	method	of
the	Scala	List	class.

The	Scaladoc	for	the	filter	method	of	the	Scala	List	class.

By	looking	at	that	figure	—	and	from	your	knowledge	of	the	Scala	collection
methods	—	you	know	these	things	about	how	a	typical	filter	method	works:

1.	 It	takes	a	function	input	parameter	(FIP).	That	FIP	must	be	able	to	be
applied	to	the	type	of	elements	in	the	collection,	and	must	return	a	Boolean
value.

2.	 filter	loops	over	the	elements	in	its	collection,	and	returns	a	new
collection	that	contains	the	elements	for	which	the	passed-in	function
evaluates	to	true.

For	instance,	you	can	pass	the	anonymous	function	_	>	2	into	a	List[Int]:

scala>	val	res	=	List(1,2,3,4,5).filter(_	>	2)

res:	List[Int]	=	List(3,	4,	5)

1.	 Unlike	map,	filter	doesn’t	transform	elements	in	the	collection,	it	just
returns	a	subset	of	the	elements	in	the	collection.	For	instance,	when	_	>	2
is	applied,	all	elements	in	the	collection	that	are	greater	than	2	are	returned.
This	tells	us	that	filter’s	return	type	will	be	the	same	as	the	elements	
Sequence	contains.

Put	together,	these	bullet	points	tell	us	that	a	filter	method	for	Sequence	will
have	this	type	signature:

def	filter(p:	A	=>	Boolean):	Sequence[A]	=	???

In	that	code,	p	stands	for	the	predicate	that	filter	takes	as	an	input	parameter.
Because	Sequence	contains	elements	of	type	A,	the	predicate	transforms	that	type
to	a	Boolean,	and	filter	returns	a	Sequence[A].

When	that	method	body	is	implemented	you’ll	be	able	to	write	code	like	this:

val	ints	=	Sequence(1,2,3,4,5).filter(i	>	2)

Because	Scala	for	expressions	prefer	withFilter,	I’ll	go	ahead	and	rename	
filter	to	withFilter	at	this	point:

def	withFilter(p:	A	=>	Boolean):	Sequence[A]	=	???

Given	this	type	signature,	all	I	need	to	do	now	is	implement	withFilter’s	body.

Implementing	withFilter’s	body

As	with	foreach	and	map,	I’ll	implement	withFilter’s	body	by	calling	a	method
on	Sequence’s	private	ArrayBuffer.	Because	in	the	real	world	there	are
differences	in	how	a	true	withFilter	method	works,	the	easiest	thing	to	do	here
is	to	call	filter,	so	I’ll	do	that:

def	withFilter(p:	A	=>	Boolean):	Sequence[A]	=	{

				val	tmpArrayBuffer	=	elems.filter(p)

				Sequence(tmpArrayBuffer:	_*)

}

When	I	add	this	code	to	the	existing	implementation	of	the	Sequence	class	I	get
this:

case	class	Sequence[A](initialElems:	A*)	{

				private	val	elems	=	scala.collection.mutable.ArrayBuffer[A]()

				elems	++=	initialElems

				def	withFilter(p:	A	=>	Boolean):	Sequence[A]	=	{

								val	tmpArrayBuffer	=	elems.filter(p)

								Sequence(tmpArrayBuffer:	_*)

				}

				def	map[B](f:	A	=>	B):	Sequence[B]	=	{

								val	abMap	=	elems.map(f)

								new	Sequence(abMap:	_*)

				}

				def	foreach(block:	A	=>	Unit):	Unit	=	{

								elems.foreach(block)

				}

}

Will	this	let	us	use	a	filtering	clause	in	a	for	expression?	Let’s	see.

When	I	paste	the	Sequence	class	source	code	into	the	REPL	and	then	paste	in
this	code:

val	ints	=	Sequence(1,2,3,4,5)

val	res	=	for	{

				i	<-	ints

				if	i	>	2

}	yield	i*2

I	see	the	following	result:

scala>	val	res	=	for	{

					|					i	<-	ints

					|					if	i	>	2

					|	}	yield	i*2

res:	Sequence[Int]	=	Sequence(ArrayBuffer(6,	8,	10))

Excellent,	it	works	as	desired.	I	can	now	use	if	clauses	inside	for	expressions
with	the	Sequence	class.

I’ll	implement	more	functionality	in	the	next	lesson,	but	it’s	worth	pausing	for	a
few	moments	here	to	learn	more	about	the	differences	between	implementing	
withFilter	or	filter	in	a	class	that	you	want	to	use	in	a	for	expression.

filter	vs	withFilter

You	can	read	more	about	how	for/yield	expressions	are	translated	in	a	post	on
the	official	Scala	website	titled,	“How	does	yield	work?,”	but	the	short	story	is
this:

for	comprehensions	with	if	filters	are	translated	to	withFilter	method
calls

If	withFilter	does	not	exist	on	the	class	being	used	in	the	for
comprehension,	the	compiler	will	fall	back	and	use	the	class’s	filter
method	instead

If	neither	method	exists,	the	compilation	attempt	will	fail

If	I	had	implemented	filter	in	this	lesson	(rather	than	withFilter),	in	the	next
lesson	you’d	start	to	see	compiler	warning	messages	like	this:

Warning:(31,	14)	`withFilter'	method	does	not	yet	exist	on	

Sequence[A],	

using	`filter'	method	instead

								p	<-	peeps

													^

To	avoid	those	warning	messages,	I	implemented	withFilter	here.

However	—	and	that’s	a	big	however	—	it’s	important	to	know	that	my	
withFilter	method	is	not	exactly	what	the	Scala	compiler	is	expecting.

If	you’re	not	familiar	with	the	difference	between	filter	and	withFilter	on	the
built-in	Scala	collection	classes,	I	wrote	about	them	in	a	blog	post	titled,	“An
example	that	shows	the	differences	between	strict	and	lazy	evaluation	in	Scala.”
What	I	wrote	there	can	be	summarized	by	what	you	find	in	the	withFilter
Scaladoc	on	Scala	collection	classes	like	List:

withFilter	 creates	 a	 non-strict	 filter	 of	 this	 traversable
collection.	 Note:	 the	 difference	 between	 c	filter	p	 and	
c	withFilter	p	 is	 that	 the	 former	 creates	 a	 new	 collection,
whereas	the	latter	only	restricts	the	domain	of	subsequent	map,	

http://docs.scala-lang.org/tutorials/FAQ/yield.html
http://alvinalexander.com/scala/examples-shows-differences-between-strict-lazy-evaluation-in-scala
http://www.scala-lang.org/api/current/#scala.collection.immutable.List

flatMap,	foreach,	and	withFilter	operations.

There	are	probably	ways	that	I	could	cheat	to	create	a	withFilter	method	that
meets	that	definition,	but	I	think	that	obscures	the	main	purpose	of	this	lesson:

If	you	implement	a	withFilter	or	filter	method	in	your	custom	class,
you’ll	be	able	to	use	that	class	with	an	if	clause	in	a	for	expression.	(This
assumes	that	you	also	implement	other	methods	like	foreach	and	map.)

Summary

I	can	summarize	what	I	accomplished	in	this	lesson	and	the	previous	lessons
with	these	lines	of	code:

//	(1)	a	single	generator	works	because	`foreach`	is	defined

for	(p	<-	peeps)	println(p)

//	(2)	`yield`	works	because	`map`	is	defined

val	res:	Sequence[Int]	=	for	{

				i	<-	ints

}	yield	i	*	2

res.foreach(println)

//	(3)	`if`	works	because	`withFilter`	is	defined

val	res	=	for	{

				i	<-	ints

				if	i	>	2

}	yield	i*2

What’s	next

Now	that	I	have	Sequence	working	in	all	of	these	ways,	there’s	just	one	more
thing	to	learn:	how	to	modify	it	so	we	can	use	multiple	generators	in	a	for
expression.	We’ll	accomplish	that	in	the	next	lesson.

How	to	Enable	the	Use	of	Multiple
Generators	in	a	for	Expression
One	cool	thing	about	for	expressions	is	that	you	can	use	multiple	generators
inside	of	them.	This	lets	you	do	some	nice	analytics	when	you	have	some
interesting	data	relationships.

For	instance,	suppose	you	have	some	data	like	this:

case	class	Person(name:	String)

val	myFriends	=	Sequence(

				Person("Adam"),

				Person("David"),	

				Person("Frank")

)

val	adamsFriends	=	Sequence(

				Person("Nick"),	

				Person("David"),	

				Person("Frank")

)

If	I	want	to	find	out	which	friends	of	mine	are	also	friends	of	Adam,	I	can	write
a	for	expression	like	this:

val	mutualFriends	=	for	{

				myFriend				<-	myFriends					//	generator

				adamsFriend	<-	adamsFriends		//	generator

				if	(myFriend.name	==	adamsFriend.name)

}	yield	myFriend

mutualFriends.foreach(println)

Notice	how	I	use	two	Sequence	instances	as	generators	in	that	for	expression.

Sadly,	the	compiler	tells	us	that	this	code	won’t	work,	but	happily	it	again	tells
us	why:

<console>:17:	error:	value	flatMap	is	not	a	member	of	Sequence[Person]

											myFriend	<-	myFriends

																							^

Since	you’re	used	to	reading	these	error	messages	now,	you	know	the	compiler
is	telling	us	that	we	need	to	implement	a	flatMap	method	in	the	Sequence	class
for	this	code	to	work.

flatMap,	a	curious	creature

The	flatMap	method	is	an	interesting	creature,	and	experienced	functional
programmers	seem	to	use	it	a	lot.

As	a	bit	of	background,	when	you	think	about	map’s	signature	for	a	moment,
you’ll	remember	that	it	looks	like	this:

def	map[B](f:	A	=>	B):	Sequence[B]

As	shown,	map	takes	a	function	that	transforms	a	type	A	to	a	type	B,	and	returns	a	
Sequence[B]	when	it	finishes,	transforming	all	of	the	elements	in	the	Sequence.

flatMap’s	signature	is	similar	to	map:

def	flatMap[B](f:	A	=>	Sequence[B]):	Sequence[B]

As	this	shows,	flatMap	is	similar	to	map,	but	it’s	also	different.	The	function	
flatMap	takes	transforms	a	type	A	to	a	Sequence	of	type	B	—	Sequence[B]	—
and	then	when	it’s	finished	it	also	returns	a	Sequence[B].	The	type	signatures
tell	us	that	the	difference	between	map	and	flatMap	is	the	type	of	functions	they
take	as	input	parameters.

flatMap	background

If	you	come	to	Scala	from	a	background	like	Java,	after	a	while	it	becomes
apparent	that	the	map	function	is	very	cool	–	and	you’ll	use	it	all	the	time	–	but	it
can	be	hard	to	find	a	use	for	flatMap.

As	I	wrote	in	the	Scala	Cookbook,	I	like	to	think	of	flatMap	as	“map	flat,”
because	on	collections	classes	it	works	similarly	to	a)	calling	map	and	then	b)
calling	flatten.	As	an	example	of	what	I	mean,	these	lines	of	code	show	the
difference	between	calling	map	and	flatMap	on	a	Seq[String]:

scala>	val	fruits	=	Seq("apple",	"banana",	"orange")

fruits:	Seq[java.lang.String]	=	List(apple,	banana,	orange)

scala>	fruits.map(_.toUpperCase)

res0:	Seq[java.lang.String]	=	List(APPLE,	BANANA,	ORANGE)

scala>	fruits.flatMap(_.toUpperCase)

res1:	Seq[Char]	=	List(A,	P,	P,	L,	E,	B,	A,	N,	A,	N,	A,	O,	R,	A,	N,	G,	E)

map	applies	the	function	to	each	element	in	the	input	Seq	to	create	a	transformed	
Seq,	but	flatMap	takes	the	process	a	step	further.	In	fact,	you	can	show	that
calling	flatMap	is	just	like	calling	map	and	then	calling	flatten:

scala>	val	mapResult	=	fruits.map(_.toUpperCase)

mapResult:	Seq[String]	=	List(APPLE,	BANANA,	ORANGE)

scala>	val	flattenResult	=	mapResult.flatten

flattenResult:	Seq[Char]	=	List(A,	P,	P,	L,	E,	B,	A,	N,	A,	N,	A,	O,	R,	A,	N,	G,	E)

I	won’t	show	any	more	examples	of	flatMap	here,	but	if	you	want	to	see	more
examples	of	how	it	works,	please	see	my	article,	“A	collection	of	Scala	flatMap
examples.”	I	also	demonstrate	more	ways	to	use	flatMap	in	lessons	later	in	this
book.

http://amzn.to/24ivK4G
http://alvinalexander.com/scala/collection-scala-flatmap-examples-map-flatten

Starting	to	write	a	flatMap	method

Earlier	I	showed	flatMap’s	signature	to	be:

def	flatMap[B](f:	A	=>	Sequence[B]):	Sequence[B]

Given	that	signature,	and	knowing	that	flatMap	works	like	a	map	call	followed
by	a	flatten	call,	I	can	implement	flatMap’s	function	body	by	calling	map	and
then	flatten:

def	flatMap[B](f:	A	=>	Sequence[B]):	Sequence[B]	=	{

				val	mapRes:	Sequence[Sequence[B]]	=	map(f)			//map

				flatten(mapRes)																														//flatten

}

In	the	first	line	of	the	function	body	I	call	the	map	method	we	developed	in	the
previous	lessons,	and	I	also	explicitly	show	the	type	of	mapRes:

val	mapRes:	Sequence[Sequence[B]]	=	map(f)			//map

Because	this	result	is	a	little	complicated,	I	like	to	make	the	return	type	obvious.
That’s	a	great	thing	about	Scala:	You	don’t	have	to	declare	variable	types,	but
you	can	show	them	when	you	want	to.

In	the	second	line	of	this	function	I	quickly	run	into	a	problem:	I	haven’t	defined
a	flatten	method	yet!	Let’s	fix	that.

Aside:	Why	I	wrote	the	code	as	shown

It’s	important	to	note	that	I	wrote	the	function	body	like	this:

val	mapRes:	Sequence[Sequence[B]]	=	map(f)			//map

flatten(mapRes)																														//flatten

I	did	this	because	the	function	input	parameter	that	flatMap	takes	looks	like	this:

f:	A	=>	Sequence[B]

Because	that	function	transforms	a	type	A	into	a	Sequence[B],	I	can’t	just	call	
map	and	flatten	on	elems.	For	example,	this	code	won’t	work:

//	this	won't	work

def	flatMap[B](f:	A	=>	Sequence[B]):	Sequence[B]	=	{

				val	mapRes	=	elems.map(f)

				mapRes.flatten

}

The	reason	I	can’t	cheat	like	this	is	because	elems.map(f)	returns	an	
ArrayBuffer[Sequence[B]],	and	what	I	really	need	is	a	
Sequence[Sequence[B]].	Because	of	this	I	need	to	take	the	approach	I	showed
earlier:

def	flatMap[B](f:	A	=>	Sequence[B]):	Sequence[B]	=	{

				val	mapRes:	Sequence[Sequence[B]]	=	map(f)			//map

				flatten(mapRes)																														//flatten

}

How	flatten	works

Getting	back	to	the	problem	at	hand,	I	need	to	write	a	flatten	method.	If	you
read	the	Scala	Cookbook	you	know	how	a	flatten	method	should	work	—	it
converts	a	“list	of	lists”	to	a	single	list.	A	little	example	demonstrates	this.	In	the
REPL	you	can	create	a	list	of	lists	like	this:

val	a	=	List(List(1,2),	List(3,4))

Now	when	you	call	flatten	on	that	data	structure	you	get	a	combined	(or
flattened)	result	of	List(1,2,3,4).	Here’s	what	it	looks	like	in	the	REPL:

scala>	val	a	=	List(List(1,2),	List(3,4))

a:	List[List[Int]]	=	List(List(1,	2),	List(3,	4))

scala>	a.flatten

res0:	List[Int]	=	List(1,	2,	3,	4)

Our	flatten	method	should	do	the	same	thing.

http://amzn.to/24ivK4G

Writing	a	flatten	function

Seeing	how	flatten	works,	I	can	write	pseudocode	for	a	flatten	function	like
this:

create	an	empty	list	'xs'

for	each	list	'a'	in	the	original	listOfLists

				for	each	element	'e'	in	the	list	'a'

								add	'e'	to	'xs'

return	'xs'

In	Scala/OOP	you	can	implement	that	pseudocode	like	this:

var	xs	=	ArrayBuffer[B]()

for	(listB:	Sequence[B]	<-	listOfLists)	{

				for	(e	<-	listB)	{

								xs	+=	e

				}

}

xs

Because	I’m	working	with	my	custom	Sequence	I	need	to	modify	that	code
slightly,	but	when	I	wrap	it	inside	a	function	named	flatten,	it	still	looks
similar:

def	flatten[B](seqOfSeq:	Sequence[Sequence[B]]):	Sequence[B]	=	{

				var	xs	=	ArrayBuffer[B]()

				for	(listB:	Sequence[B]	<-	seqOfSeq)	{

								for	(e	<-	listB)	{

												xs	+=	e

								}

				}

				Sequence(xs:	_*)

}

The	biggest	difference	here	is	that	I	convert	the	temporary	ArrayBuffer	to	a	
Sequence	in	the	last	step,	like	this:

Sequence(xs:	_*)

From	flatten	to	flattenLike

There’s	one	problem	with	this	function;	the	type	signature	for	a	flatten
function	on	a	Scala	List	looks	like	this:

def	flatten[B]:	List[B]

Because	my	type	signature	isn’t	the	same	as	that,	I’m	not	comfortable	naming	it	
flatten.	Therefore	I’m	going	to	rename	it	and	also	make	it	private,	so	the	new
signature	looks	like	this:

private	def	flattenLike[B](seqOfSeq:	Sequence[Sequence[B]]):	Sequence[B]

The	short	explanation	for	why	the	type	signatures	don’t	match	up	is	that	my
cheating	ways	have	finally	caught	up	with	me.	Creating	Sequence	as	a	wrapper
around	an	ArrayBuffer	creates	a	series	of	problems	if	I	try	to	define	flatten
like	this:

def	flatten[B]():	Sequence[B]	=	...

Rather	than	go	into	those	problems	in	detail,	I’ll	leave	that	as	an	exercise	for	the
reader.	Focusing	on	the	problem	at	hand	—	getting	a	flatMap	function	working
—	I’m	going	to	move	forward	using	use	my	flattenLike	function	to	get	
flatMap	working.

Making	flatMap	work

Now	that	I	have	flattenLike	written,	I	can	go	back	and	update	flatMap	to	call
it:

def	flatMap[B](f:	A	=>	Sequence[B]):	Sequence[B]	=	{

				val	mapRes:	Sequence[Sequence[B]]	=	map(f)			//map

				flattenLike(mapRes)																										//flatten

}

Testing	flatMap

Now	that	I	think	I	have	a	working	flatMap	function,	I	can	add	it	to	the	Sequence
class.	Here’s	the	complete	source	code	for	Sequence,	including	the	functions	I
just	wrote:

import	scala.collection.mutable.ArrayBuffer

case	class	Sequence[A](private	val	initialElems:	A*)	{

				//	this	is	a	book,	don't	do	this	at	home

				private	val	elems	=	ArrayBuffer[A]()

				//	initialize

				elems	++=	initialElems

				def	flatMap[B](f:	A	=>	Sequence[B]):	Sequence[B]	=	{

								val	mapRes:	Sequence[Sequence[B]]	=	map(f)			//map

								flattenLike(mapRes)																										//flatten

				}

				private	def	flattenLike[B](seqOfSeq:	Sequence[Sequence[B]]):	Sequence[B]	=	{

								var	xs	=	ArrayBuffer[B]()

								for	(listB:	Sequence[B]	<-	seqOfSeq)	{

												for	(e	<-	listB)	{

																xs	+=	e

												}

								}

								Sequence(xs:	_*)

				}

				def	withFilter(p:	A	=>	Boolean):	Sequence[A]	=	{

								val	tmpArrayBuffer	=	elems.filter(p)

								Sequence(tmpArrayBuffer:	_*)

				}

				def	map[B](f:	A	=>	B):	Sequence[B]	=	{

								val	abMap	=	elems.map(f)

								Sequence(abMap:	_*)

				}

				def	foreach(block:	A	=>	Unit):	Unit	=	{

								elems.foreach(block)

				}

}

When	I	paste	that	code	into	the	REPL,	and	then	paste	in	the	code	I	showed	at	the
beginning	of	this	lesson:

case	class	Person(name:	String)

val	myFriends	=	Sequence(

				Person("Adam"),

				Person("David"),	

				Person("Frank")

)

val	adamsFriends	=	Sequence(

				Person("Nick"),	

				Person("David"),	

				Person("Frank")

)

I	can	confirm	that	my	for	expression	with	multiple	generators	now	works:

val	mutualFriends	=	for	{

				myFriend	<-	myFriends								//	generator

				adamsFriend	<-	adamsFriends		//	generator

				if	(myFriend.name	==	adamsFriend.name)

}	yield	myFriend

mutualFriends.foreach(println)

The	output	of	that	last	line	looks	like	this:

scala>	mutualFriends.foreach(println)

Person(David)

Person(Frank)

Admittedly	I	did	some	serious	cheating	in	this	lesson	to	get	a	flatMap	function
working,	but	as	you	see,	once	flatMap	is	implemented,	you	can	use	multiple
generators	in	a	for	expression.

Summary

I	can	summarize	what	I	showed	in	all	of	the	for	expression	lessons	with	these
lines	of	code:

//	(1)	works	because	`foreach`	is	defined

for	(p	<-	peeps)	println(p)

//	(2)	`yield`	works	because	`map`	is	defined

val	res:	Sequence[Int]	=	for	{

				i	<-	ints

}	yield	i	*	2

res.foreach(println)

//	(3)	`if`	works	because	`withFilter`	is	defined

val	res	=	for	{

				i	<-	ints

				if	i	>	2

}	yield	i*2

//	(4)	works	because	`flatMap`	is	defined

val	mutualFriends	=	for	{

				myFriend	<-	myFriends								//	generator

				adamsFriend	<-	adamsFriends		//	generator

				if	(myFriend.name	==	adamsFriend.name)

}	yield	myFriend

A	Summary	of	the	for	Expression
Lessons
As	I	mentioned	at	the	beginning	of	these	for	expression	lessons,	the	book,
Programming	in	Scala	describes	the	translation	rules	for	how	the	Scala	compiler
converts	the	for	comprehensions	you	write	into	a	series	of	method	calls	that	can
include	map,	flatMap,	foreach,	and	withFilter.	As	a	reminder,	those	rules	are:

1.	 If	a	custom	data	type	defines	a	foreach	method,	it	allows	for	loops	(both
with	single	and	multiple	generators).	(Note	the	emphasis	on	the	word
“loops”	in	that	definition.	This	refers	to	the	simple	Java-style	use	of	a	for
loop,	i.e.,	for	(i	<-	ints)	println(i).)

2.	 If	a	data	type	defines	only	map,	it	can	be	used	in	for	expressions	consisting
of	a	single	generator.	(Where	“for	expressions”	means	for/yield
expressions.)

3.	 If	it	defines	flatMap	as	well	as	map,	it	allows	for	expressions	consisting	of
multiple	generators.

4.	 If	it	defines	withFilter,	it	allows	for	filter	expressions	starting	with	an	if
within	the	for	expression.

For	a	trait	named	CustomClass,	the	signatures	for	these	functions	should	look
like	this:

trait	CustomClass[A]	{

				def	map[B](f:	A	=>	B):	CustomClass[B]

				def	flatMap[B](f:	A	=>	CustomClass[B]):	CustomClass[B]

				def	withFilter(p:	A	=>	Boolean):	CustomClass[A]

				def	foreach(b:	A	=>	Unit):	Unit

}

Through	a	series	of	lessons	I	showed	how	you	can	write	your	own	foreach,	map,
withFilter,	and	flatMap	functions	so	that	your	custom	data	type	can	be	used
inside	a	for	expression.

As	I’ve	noted,	I	“cheated”	a	lot	in	these	lessons	because	I’m	not

http://amzn.to/2fiqDBh

concerned	 at	 this	 point	 with	 how	 these	 methods	 are
implemented.	In	future	lessons	I’ll	show	how	to	properly	write
these	methods.

What’s	next

As	I	mentioned	in	the	first	for	expression	lesson,	the	goal	of	all	of	this	work	is
to	help	you	understand	how	FP	code	like	this	can	possibly	work:

def	stackManip:	State[Stack,	Int]	=	for	{

				_	<-	push(3)

				a	<-	pop

				b	<-	pop

}	yield(b)

Now	that	you	have	the	background	on	how	to	write	a	class	that	works	in	a	for
expression,	you’re	much	closer	to	being	able	to	understand	how	this	code	works.
The	following	lessons	will	build	on	what	you	just	learned	until	the	mysteries	of
this	for	expression	will	be	completely	revealed.

See	also

“Set	comprehensions”	defined	on	Wikipedia

“Sequence	comprehensions”	on	scala-lang.org

How	to	use	multiple	generators	in	Scala	‘for’	expressions	(loops)

A	collection	of	Scala	‘flatMap’	examples

An	example	to	show	the	differences	between	strict	and	lazy	evaluation	in
Scala	(filter	vs	withFilter)

How	does	yield	work?	(includes	a	discussion	of	withFilter	versus	
filter)

https://en.wikipedia.org/wiki/Set-builder_notation
http://docs.scala-lang.org/tutorials/tour/sequence-comprehensions.html
http://alvinalexander.com/scala/how-to-use-multiple-generators-scala-for-expressions-loops
http://alvinalexander.com/scala/collection-scala-flatmap-examples-map-flatten
http://alvinalexander.com/scala/examples-shows-differences-between-strict-lazy-evaluation-in-scala
http://docs.scala-lang.org/tutorials/FAQ/yield.html

Pure	Functions	Tell	No	Lies
Introduction

There’s	an	important	point	about	pure	functions	that	I	didn’t	emphasize	enough
earlier	in	this	book:

Pure	functions	never	throw	exceptions!

This	is	an	important	point	I	need	to	stress,	especially	before	getting	into	the
following	lessons.

Think	of	it	this	way:	the	signature	of	a	pure	function	is	a	binding	contract	with
the	consumer	of	that	function.	If	the	function	signature	says	it	returns	an	Int:

def	foo(a:	String):	Int	=	...

then	by	golly	it	must	return	an	Int.

Importantly,	it	can’t	return	an	Int	most	of	the	time	and	throw	an	exception	some
of	the	time.	If	a	function	was	to	behave	like	that,	its	signature	would	be	a	lie.
This	would	be	bad	for	your	programming	career,	because	other	FP	developers
won’t	be	happy	with	you.

Beyond	that,	it’s	also	bad	for	your	code	because	a	key	part	of	functional
programming	is	something	called	function	composition,	and	if	your	functions
throw	exceptions,	they	won’t	compose	well.

Function	composition

As	you’ll	see	in	the	coming	lessons,	the	ability	to	compose	functions	is	a	BIG
feature	of	functional	programming.	Composing	functions	means	that	you	can
easily	glue	them	together	to	form	a	solution,	like	links	in	a	chain.	For	now	you
can	think	of	composition	as	being	like	this:

val	solution	=	myData.function1(arg1)

																					.function2(arg2,	arg3)

																					.function3(arg4)

																					.function4(arg5)

If	one	of	those	functions	can	throw	an	exception,	that	function	is	a	weak	link	in
the	chain.	If	it	was	a	real,	physical	chain,	it	would	mean	that	you	could	never
rely	on	the	chain	because	you’d	never	know	when	that	link	might	break.	In	the
code	shown	it	would	mean	that	solution	might	never	get	bound	to	a	value
because	an	exception	could	short-circuit	the	code.

Example

To	be	clear,	you	should	never	write	functions	like	these:

//	bad:	can	throw	an	exception

@throws(classOf[NumberFormatException])

def	makeFloat(s:	String):	Float	=	s.trim.toFloat

//	worse:	can	throw	an	exception	without	telling	you

def	makeInt(s:	String):	Int	=	s.trim.toInt

Inside	those	functions	both	toFloat	and	toInt	can	throw	exceptions,	and
whether	or	not	you	warn	other	developers	with	a	@throws	clause,	from	an	FP
standpoint	they’re	both	bad.	If	other	people	rely	on	these	functions	and	they
short-circuit,	their	code	won’t	be	reliable.

The	Scala/FP	way

Rather	than	throwing	exceptions,	the	Scala/FP	idiom	is	to	handle	exceptions
inside	your	functions	and	return	an	Option.	This	function	signature	tells	the	truth
to	consumers	of	the	function:

def	makeInt(s:	String):	Option[Int]	=	{

				try	{

								Some(s.trim.toInt)

				}	catch	{

								case	e:	Exception	=>	None

				}

}

The	signature	says,	“If	all	goes	well,	you’re	going	to	get	a	Some[Int]	—	an	Int
wrapped	in	a	Some	wrapper	—	but	if	something	goes	wrong	you’re	going	to	get	a
None.”

This	is	great	because	it	means	you	can	write	code	that	uses	makeInt	like	this:

makeInt(input)	match	{

				case	Some(i)	=>	println(s"i	=	$i")

				case	None	=>	println("toInt	could	not	parse	'input'")

}

In	 addition	 to	Option	 you	 can	 also	 use	Try,	Either,	 or	 third-
party	 approaches.	 I	 just	 say	 “Option”	 here	 to	 keep	 things
simple.	I	show	all	of	the	approaches	in	the	next	lesson.

Using	Option	with	for

As	a	preview	of	what	you’re	going	to	see	in	the	upcoming	lessons,	this	is	also	a
valid	(and	important)	way	of	using	Option	values	in	for	expressions:

val	result	=	for	{

				x	<-	makeInt("1")

				y	<-	makeInt("2")

				z	<-	makeInt("3")

}	yield	x	+	y	+	z

The	REPL	shows	what	that	code	yields:

scala>	val	result	=	for	{

					|					x	<-	makeInt("1")

					|					y	<-	makeInt("2")

					|					z	<-	makeInt("3")

					|	}	yield	x	+	y	+	z

result:	Option[Int]	=	Some(6)

A	great	way	to	think	about	this	particular	example	is	that	it	shows	the	“Happy
Case”	of	this	for	expression.	This	means	that	makeInt	is	able	to	parse	each	
String	and	you	get	the	desired	result	in	the	end,	in	this	case	a	Some(6).

But	note	that	the	world	can	also	give	us	“Unhappy	Cases”:

val	result	=	for	{

				x	<-	makeInt("1")

				y	<-	makeInt("hi	mom")

				z	<-	makeInt("hi	dad")

}	yield	x	+	y	+	z

In	this	example	makeInt	isn’t	going	to	be	able	to	convert	those	last	two	strings	to
Int	values,	so	the	result	isn’t	going	to	be	as	happy	as	the	previous	example.

But	fear	not:	because	(a)	makeInt	returns	Option	values,	(b)	the	Option,	Some,
and	None	classes	have	map	and	flatMap	methods,	and	(c)	the	for	expression	is
built	to	work	with	map	and	flatMap,	result	simply	ends	up	being	bound	to	
None:

scala>	val	result	=	for	{

					|					x	<-	makeInt("1")

					|					y	<-	makeInt("hi	mom")

					|					z	<-	makeInt("3")

					|	}	yield	x	+	y	+	z

result:	Option[Int]	=	None

Unlike	an	exception	blowing	up	your	code,	this	result	is	great!	Your	code	didn’t
short-circuit	and	go	flying	off	in	some	other	direction	with	an	exception;	result
just	ended	up	being	None.	This	isn’t	a	problem	at	all,	because	the	next	part	of
your	code	also	knows	how	to	deal	with	an	Option:

result	match	{

				case	Some(i)	=>	println(s"result	=	$result")

				case	None	=>	println("could	not	add	the	three	strings	as	Int	values")

}

This	is	Scala/FP	code	as	it	was	meant	to	be	written:

makeInt	is	a	pure	function

makeInt	returns	an	Option

therefore:

makeInt	can	be	used	with	match/case

multiple	makeInt	functions	can	be	used	in	a	for	expression

As	a	thought	exercise,	look	back	at	that	Unhappy	Case	again,	and	consider	what
would	have	happened	if	makeInt	would	have	thrown	an	exception	when	the	
makeInt(hi	mom)	call	was	reached.	(That’s	what	I	call	a	“Really	Unhappy
Case.”)

Keys	to	remember

The	key	points	of	this	lesson	are:

Pure	functions	never	throw	exceptions

Pure	function	signatures	are	a	contract	with	its	consumers

Scala/FP	developers	use	Option	rather	than	exceptions

Scala/FP	developers	use	Option	rather	than	null	values	(I	didn’t
demonstrate	this	point	in	these	examples)

Scala	constructs	like	match	and	for	work	great	with	Option

Visually,	the	Option	portion	of	the	summary	looks	like
Figure	[fig:scalaFpDevsUseOption].

Scala/FP	developers	use	Option,	and	don’t	use	null	values	or	exceptions.

See	also

Scala	best	practice:	How	to	use	the	Option/Some/None	pattern

Oracle’s	Unchecked	Exceptions:	The	Controversy

I	think	the	first	time	I	heard	of	the	Happy	and	Unhappy	Path	terms	was	in
an	article	titled,	First	steps	with	monads	in	Scala

http://alvinalexander.com/scala/best-practice-option-some-none-pattern-scala-idioms
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://darrenjw.wordpress.com/2016/04/15/first-steps-with-monads-in-scala/

Functional	Error	Handling
(Option,	Try,	Or,	and	Either)
[FunctionalErrorHandling]

Goals

As	you	saw	in	the	previous	lesson,	functional	programmers	never	write	functions
that	throw	exceptions.	As	I	show	in	that	lesson,	a	main	replacement	for	throwing
exceptions	is	to	return	an	Option.

As	I	mentioned,	that	was	a	bit	of	a	simplification.	While	you’ll	use	Option	a	lot,
depending	on	your	needs	you	may	also	want	to	use	other	Scala	classes	like	Try
and	Either.	In	addition	to	those	you	can	also	use	third-party	approaches	like	the	
Or	construct	in	the	Scalactic	library.

This	lesson	shows	each	of	these	approaches,	along	with	the	pros	and	cons	of
each	approach.

http://www.scalactic.org/

Option,	Some,	and	None

I	covered	Option	in	the	previous	lesson,	so	all	I’ll	do	here	is	repeat	the	code	I
showed	in	that	lesson:

def	makeInt(s:	String):	Option[Int]	=	{

				try	{

								Some(s.trim.toInt)

				}	catch	{

								case	e:	Exception	=>	None

				}

}

makeInt(input)	match	{

				case	Some(i)	=>	println(s"i	=	$i")

				case	None	=>	println("toInt	could	not	parse	'input'")

}

val	result	=	makeInt(input).getOrElse(0)

val	result	=	for	{

				x	<-	makeInt("1")

				y	<-	makeInt("2")

				z	<-	makeInt("3")

}	yield	x	+	y	+	z

A	weakness	of	Option

While	those	are	idiomatic	examples	of	how	to	use	Option,	it’s	important	to	note
that	Option	has	a	weakness:	it	doesn’t	tell	you	anything	about	why	something
failed.	For	example,	a	consumer	of	the	makeInt	function	can’t	tell	why	a	String
wasn’t	converted	to	an	Int,	it	only	knows	that	it	got	a	None	in	return.

For	the	times	when	this	is	a	problem,	Scala/FP	developers	use	constructs	that
work	like	Option	but	also	tell	them	why	something	failed.	These	constructs
include	Try	and	Either	in	the	Scala	API,	and	Or	in	the	Scalactic	library.	The	rest
of	this	lesson	shows	those	other	approaches.

Try,	Success,	and	Failure

When	you	want	to	let	consumers	of	your	code	know	why	something	failed,	use	
Try	instead	of	Option.	Just	like	Option	has	Some	(the	success	case)	and	None	(the
failure	case),	Try	has	Success	and	Failure	subclasses	—	and	Failure	contains
the	reason	why	something	failed.

To	demonstrate	this,	here’s	the	makeInt	function	rewritten	using	Try:

import	scala.util.{Try,	Success,	Failure}

def	makeInt(s:	String):	Try[Int]	=	Try(s.trim.toInt)

As	shown,	all	you	have	to	do	to	use	Try	is	to	wrap	the	exception-throwing	code
in	a	Try	constructor,	and	then	declare	that	your	function	returns	its	success	value
wrapped	in	a	Try,	such	as	makeInt	returning	the	type	Try[Int]	in	this	example.
The	REPL	shows	how	this	version	of	makeInt	works:

scala>	makeInt("1")

res0:	scala.util.Try[Int]	=	Success(1)

scala>	makeInt("foo")

res1:	scala.util.Try[Int]	=	Failure(java.lang.NumberFormatException:	For	input	string:	

"foo")

The	benefit	of	Try	over	Option	is	that	when	the	enclosed	code	throws	an
exception,	Try	returns	a	Failure	object	that	contains	the	exception	information.
That	can	be	useful	for	logging,	or	to	show	a	user	why	something	failed.

Like	Option,	Try	also	works	with	match	expressions:

makeInt("hello")	match	{

				case	Success(i)	=>	println(s"Success,	value	is:	$i")

				case	Failure(s)	=>	println(s"Failed,	message	is:	$s")

}

It	can	also	be	used	in	for	expressions:

val	answer	=	for	{

				a	<-	makeInt("1")

				b	<-	makeInt("10")

}	yield	a	+	b

The	REPL	shows	the	output	of	the	for	expression:

scala>	val	answer	=	for	{

					|					a	<-	makeInt("1")

					|					b	<-	makeInt("10")

					|	}	yield	a	+	b

answer:	scala.util.Try[Int]	=	Success(11)

See	the	Try	class	Scaladoc	for	more	information.

http://www.scala-lang.org/api/current/scala/util/Try.html

Either,	Left,	and	Right

An	approach	that’s	similar	to	Try	is	the	Scala	Either,	Left,	and	Right	classes.
While	Try	has	well-named	subtypes	in	Success	and	Failure,	Either	relies	on
convention:

Left	holds	the	error

Right	holds	the	success	value

Unfortunately,	prior	to	Scala	2.12,	that	was	just	a	convention.	But,	following	that
convention,	this	is	what	makeInt	looks	like	when	using	Either:

def	makeInt(s:	String):	Either[String,Int]	=	{

				try	{

								Right(s.trim.toInt)

				}	catch	{

								case	e:	Exception	=>	Left(e.toString)

				}

}

The	REPL	shows	how	this	works:

scala>	makeInt("1")

res0:	Either[String,Int]	=	Right(1)

scala>	makeInt("foo")

res1:	Either[String,Int]	=	Left(java.lang.NumberFormatException:	For	input	string:	"foo")

Either	can	be	used	with	match:

makeInt("11")	match	{

				case	Left(s)	=>	println("Error	message:	"	+	s)

				case	Right(i)	=>	println("Desired	answer:	"	+	i)

}

In	Scala	2.12	Either	was	redesigned,	so	right	is	always	the	success	case.	This
means	that	it	implements	map	and	flatMap,	so	it	can	now	be	used	in	for
expressions.	The	REPL	shows	what	this	looks	like:

//	works	with	Scala	2.12	and	newer

scala>	val	answer	=	for	{

					|					a	<-	makeInt("1")

					|					b	<-	makeInt("10")

					|	}	yield	a	+	b

answer:	scala.util.Either[String,Int]	=	Right(11)

Using	Or	from	Scalactic

The	Scalactic	project	—	created	by	Bill	Venners,	co-author	of	Programming	in
Scala,	and	creator	of	ScalaTest	—	includes	an	Or	construct	that	works	like	
Option,	and	also	gives	you	access	to	the	failure	message.

Because	Scalactic	is	a	third-party	library	you’ll	have	to	include	it	in	your
build.sbt	file.	See	the	Scalactic	install	page	for	information	on	how	to	get	it	set
up.

Once	you	have	Scalactic	set	up	with	SBT,	you	can	define	makeInt	like	this:

def	makeInt(s:	String):	Int	Or	ErrorMessage	=	{

				try	{

								Good(s.trim.toInt)

				}	catch	{

								case	e:	Exception	=>	Bad(e.toString)

				}

}

Notice	that	makeInt’s	signature	is	a	little	different	than	the	previous	examples:

def	makeInt(s:	String):	Int	Or	ErrorMessage

The	Int	Or	ErrorMessage	makes	it	clear	that	this	function	is	either	going	to
return	an	Int	or	it’s	going	to	return	an	ErrorMessage.	While	that’s	implied	with	
Option,	Try,	and	Either,	a	benefit	of	Scalactic	is	that	it	makes	this	very	clear.

Once	you	have	makeInt	defined,	you	can	use	it	in	all	of	the	following	ways.	This
line:

println(makeInt("1"))

prints	“Good(1).”	This	line:

println(makeInt("boo"))

prints:

Bad(java.lang.NumberFormatException:	For	input	string:	"boo")

This	match	expression:

makeInt("11")	match	{

http://amzn.to/2fiqDBh
http://www.scalatest.org/
http://www.scalactic.org/install

				case	Good(i)	=>	println("Answer:	"	+	i)

				case	Bad(msg)	=>	println("Error:	"	+	msg)

}

prints:

Answer:	11

And	this	for	expression	code:

val	result	=	for	{

				a	<-	makeInt("1")

				b	<-	makeInt("10")

}	yield	a	+	b

println(result)

prints:

Good(11)

Scalactic	has	even	more	features,	including	the	ability	to	accumulate	error
messages.	See	the	Scalactic	“Or	and	Every”	page	for	more	information.

http://www.scalactic.org/user_guide/OrAndEvery

Personal	recommendation

These	days	I	generally	use	Option	when	I	don’t	care	about	the	failure	reason,
and	I	use	Try	or	Or	when	I	need	the	failure	reason.

Don’t	forget	the	Null	Object	Pattern

As	a	final	note	on	functional	error	handling,	don’t	forget	that	it	can	sometimes
make	sense	to	use	the	Null	Object	Pattern.	A	simple	example	of	this	is	that	you
may	have	a	function	that	returns	a	List[Int]:

def	doSomething(x:	List[Int]):	List[Int]	=	...

With	a	function	like	this	it	can	make	sense	to	return	an	empty	List	rather	than
using	Option,	Try,	Either,	or	Or:

def	doSomething(list:	List[Int]):	List[Int]	=	{

				if	(someTestCondition(list))	{

								//	return	some	version	of	`list`

				}	else	{

								//	return	an	empty	List

								Nil:	List[Int]

				}

}

One	example	of	where	you	can	see	this	in	real-world	code	is	with	the	filter
method	of	the	Scala	List	class.	It	returns	an	empty	List	when	you	filter	out	all
of	the	List	elements:

scala>	List(1,2,3).filter(_	>	10)

res0:	List[Int]	=	List()

http://alvinalexander.com/scala/scala-null-object-pattern-example

Handling	null	values

In	all	of	these	examples	I	showed	the	makeInt	function,	which	handles	an
exception	and	returns	an	Option,	Try,	Either,	or	Or	value.	It’s	important	to	note
that	you	should	use	the	same	technique	when	dealing	with	null	values.

For	example,	when	using	the	Apache	HttpClient	Java	library	as	shown	below,
the	entity	variable	can	end	up	being	null:

val	httpGetRequest	=	new	HttpGet(someUrl)

val	httpClient	=	new	DefaultHttpClient

val	httpResponse	=	httpClient.execute(httpGetRequest)

val	entity	=	httpResponse.getEntity()		//	null?

Rather	than	returning	a	null	value,	a	Scala/FP	function	that	works	with	code	like
this	should	handle	the	null	value	just	like	the	previous	examples	handled	the
exception:

if	(entity	==	null)	{

				None

}	else	{

				val	inputStream	=	entity.getContent

				content	=	io.Source.fromInputStream(inputStream).getLines.mkString

				inputStream.close				

				Some(content)

}

https://hc.apache.org/httpcomponents-client-ga/

A	technical	term:	“Biasing”

On	the	Scalactic	Or	and	Every	page	you’ll	find	this	text:

“Or	differs	from	Scala’s	Either	type	in	that	Either	treats	both
its	Left	and	Right	alternatives	in	an	identical	manner,	whereas	
Or	treats	its	two	alternatives	differently:	it	favors	Good	over	Bad.
Because	 of	 this,	 it	 is	more	 convenient	 to	work	with	 Or	 when
you	 prefer	 one	 alternative	 over	 the	 other;	 for	 example,	 if	 one
alternative	 represents	 a	 valid	 result	 and	 another	 represents	 an
error.”

The	technical	term	for	this	is	to	say	that	Or	is	biased	to	the	Good	result.	Similarly	
Option	is	biased	to	Some,	and	Try	is	biased	to	Success.

As	an	example	of	what	this	means,	if	makeInt	returns	a	Some	in	a	for
expression,	the	expression	continues,	but	if	it	returns	a	None,	the	for	expression
effectively	short-circuits	at	that	point.

Note:	The	Scalactic	quote	was	true	about	Either	prior	to	Scala
2.12,	but	Either	is	now	biased,	and	Right	is	always	the	success
case.)

http://www.scalactic.org/user_guide/OrAndEvery

Key	points

In	summary,	when	you’re	working	with	code	where	(a)	you	want	to	use
something	like	Option,	but	(b)	you	also	want	the	“failure	reason,”	you	should
use	the	Scala	error-handling	constructs	Try,	Or	(from	the	Scalactic	library),	or	
Either.

Table	[table:OptionTryOrEitherComparison]	shows	a	comparison	of	these	error-
handling	classes.

Error-handling	classes	you	can	use	with
Scala.

Base	Type Success	Case Failure	Case

Option Some None

Try Success Failure

Or Good Bad

Either Right Left

Table	[table:howRecommendUsingOptionalClasses]	shows	how	I	use	each	set	of
“optional”	classes.

How	I	recommend	using	Scala’s	“optional”	classes.
Construct When	to	use

Option When	you	don’t	need	the	error	message

Try Particularly	good	when	you	want	to	wrap	exceptions

Or An	alternative	to	Try	when	you	want	the	“failure	reason”

Either I	don’t	use	Either	(because	of	its	unbiased	history	and	naming
conventions)

Lastly,	remember	that	the	Null	Object	Pattern	can	make	sense	in	certain
situations.

What’s	next

Now	that	you’ve	seen	how	Scala’s	for	expression	works,	and	how	to	properly
implement	error-handling	in	your	Scala/FP	code,	the	next	lesson	takes	a	few
moments	to	discussion	“idiomatic”	Scala/FP	code.

See	also

Easing	Into	Functional	Error	Handling	in	Scala	by	Long	Cao	was	the
inspiration	for	this	lesson

I	originally	wrote	about	this	topic	in	a	lesson	titled,	Scala	best	practice:
How	to	use	the	Option/Some/None	pattern

The	Scalactic	website

The	Scalactic	“Or	and	Every”	page

http://longcao.org/2015/06/15/easing-into-functional-error-handling-in-scala
http://alvinalexander.com/scala/best-practice-option-some-none-pattern-scala-idioms
http://www.scalactic.org/
http://www.scalactic.org/user_guide/OrAndEvery

Embrace	The	Idioms!
Before	you	proceed	any	further	in	this	book	you	need	to	be	completely
convinced	that	the	ways	I’ve	shown	to	write	Scala/FP	code	in	this	book	are
better	than	the	ways	that	you’ve	written	imperative	code	in	the	past.	First,	you
must	buy	into	the	Scala/FP	“rules”	I	outlined	early	in	the	book:

1.	 Scala/FP	code	has	no	null	values

2.	 Only	pure	functions	will	be	used

3.	 Immutable	variables	will	be	used	for	all	fields	(val	fields)

4.	 Whenever	you	use	an	if,	you	must	always	also	use	an	else

Over	the	last	few	lessons	I	showed	several	more	examples	of	idiomatic	Scala/FP
code,	including:

1.	 Because	pure	functions	don’t	throw	exceptions,	they	instead	return	Option,	
Try,	and	Or

2.	 Because	you	never	use	null,	you	instead	use	Option,	Try,	and	Or

It’s	important	at	this	point	to	believe	that	all	of	these	points	represent	better	ways
to	write	Scala	code	than	the	imperative	code	you’ve	written	up	until	this	point	in
your	career.	Quite	frankly,	if	you	aren’t	sold	that	these	approaches	are	better,
there	really	isn’t	any	reason	to	read	any	further,	because	the	rest	of	this	book
builds	on	these	points.

Idiomatic	Scala/FP

Although	I	haven’t	covered	all	of	these	topics	yet,	it’s	worth	pointing	out	at	this
point	what	idiomatic	Scala/FP	code	looks	like:

It	uses	only	pure	functions

It	uses	val,	not	var

Using	only	val	requires	using	recursion	and	common	collections	methods
like	map,	filter,	fold,	reduce

It	uses	Option,	Try,	and	Or	rather	than	exceptions	or	null	values

It	uses	case	classes	with	immutable	fields	rather	than	“OOP”	classes	with
mutable	fields

Those	idioms	naturally	lead	to:

Scala/FP	code	uses	a	lot	of	for	expressions,	which	work	well	with	types
like	Option

Scala/FP	code	uses	a	lot	of	match	expressions	(pattern	matching),	which
work	well	with	case	classes

Don’t	try	to	make	your	Scala	code	look	like	something
else

To	demonstrate	the	point	of	this	lesson	—	to	embrace	the	Scala/FP	idioms	—	let
me	share	a	story	from	my	own	history,	from	somewhere	around	the	year	2000.	It
goes	like	this	…

At	the	time	I	owned	a	software	consulting	firm,	and	we	were	trying	to	teach	Java
and	OOP	to	developers	at	a	Fortune	500	company.	One	of	their	programmers	had
previously	used	Visual	Basic	(VB),	and	when	we	started	working	with	him	he
was	trying	to	write	Java	code	by	using	the	VB	standards	he	knew.

I	never	used	VB	so	I	don’t	know	what	those	standards	were,	but	I	do	know	that
his	Java	code	looked	like	this:

public	int	Get_Some_Int_Value()	{

				int	SomeValue	=	1;

				int	AnotherValue	=	2;

				return	SomeValue	+	AnotherValue;

}

If	you	know	Java,	you	know	that	even	in	this	trivial	example	that	code	doesn’t
look	right	at	all.	Java	standards	look	like	this:

public	int	getSomeIntValue()	{

				int	someValue	=	1;

				int	anotherValue	=	2;

				return	someValue	+	anotherValue;

}

The	important	point	for	this	lesson	—	and	for	your	career	—	is	that	you
shouldn’t	try	to	make	your	Scala	code	look	like	Java,	VB,	or	any	other
programming	language.	And	specifically	in	the	case	of	this	book:	embrace	the
Scala/FP	idioms!	Only	by	embracing	the	idioms	will	you	see	that	there’s	a
different	way	to	write	your	applications,	and	that	different	way	may	result	in
safer	code	that’s	generally	easier	to	understand.

What	to	Think	When	You	See	That
Opening	Curly	Brace
During	the	process	of	writing	this	book	I	had	to	get	away	from	Scala	for	a	while,
and	when	I	came	back	to	it	one	of	the	first	things	I	saw	was	some	code	that
looked	like	this:

val	x	=	FOO	{

				//	more	code	here

}

More	accurately,	the	code	I	saw	looked	like	this:

val	x	=	FOO	{	(s:	State)	=>

				//	more	code	here

}

Right	away	I	had	to	ask	myself,	“Okay,	Al,	what	in	the	world	is	FOO,	and	how
does	this	code	work?”	It	turns	out	that	depending	on	exactly	what	the	code	looks
like,	FOO	can	be	one	of	several	things.

This	style	of	code	is	used	a	lot	by	experienced	Scala	developers,	so	if	you	don’t
know	what	FOO	is,	it’s	another	potential	stumbling	block	to	learning	Scala/FP.
Therefore,	this	lesson	is	about	what	FOO	can	possibly	be	when	you	see	code	that
looks	like	that.

The	short	answer

The	short	answer	is	that	FOO	in	this	example:

val	x	=	FOO	{

				//	more	code	here

}

can	be	several	things:

An	anonymous	class

A	function	that	takes	a	by-name	parameter

If	the	code	is	slightly	different	and	looks	like	this:

val	f	=	FOO	{	(a:	String)	=>

				//	more	code	here

}

it	can	be:

A	class	that	takes	a	function	parameter

A	function	that	takes	a	by-name	parameter

I’ll	show	examples	of	each	of	these	in	this	lesson.

1)	An	anonymous	class

In	this	code:

val	mary	=	new	Person	{

				val	name	=	"mary"

				val	age	=	22

}

I	create	an	instance	of	Person	using	Scala’s	“anonymous	class”	syntax.	There’s
no	way	for	you	to	know	it	by	looking	at	this	code,	but	I	could	have	defined	
Person	as	either	a	trait	or	an	abstract	class	(or	less	likely	as	a	class),	but	for	this
example	I	created	it	as	a	trait:

trait	Person	{

				def	name:	String

				def	age:	Int

				override	def	toString	=	s"name:	$name,	age:	$age"

}

When	you	paste	that	trait	into	the	Scala	REPL,	and	then	also	paste	in	this	code:

val	mary	=	new	Person	{

				val	name	=	"mary"

				val	age	=	22

}

println(mary)

you’ll	see	this	output:

name:	mary,	age:	22

Discussion

One	thing	you	know	about	Person	is	that	it’s	not	a	case	class.	case	classes	don’t
allow	the	use	of	the	new	keyword,	and	they	also	must	have	at	least	one
constructor	parameter.

It’s	also	unlikely,	though	possible,	that	Person	is	defined	as	a	class.	If	Person	is
a	class	with	name	and	age	fields,	those	fields	would	require	an	override
qualifier	when	mary	is	created.	The	only	way	Person	can	be	a	class	in	this
example	is	if	name	and	age	are	not	defined	in	the	class.

2)	A	function	that	takes	a	by-name	parameter

A	second	thing	that	can	look	like	this	FOO	example:

val	x	=	FOO	{

				//	more	code	here

}

is	a	function	that	takes	a	by-name	parameter.

In	the	Scala	Cookbook	I	shared	a	timer	function	that	can	be	used	like	this:

val	(result,	time)	=	timer	{

				//	some	long-running	block	of	code	here	...

				Thread.sleep(1000)

				42

}

When	I	run	that	code	I	get	a	result	like	this:

result:	42,	time:	1004.819575

As	that	example	shows,	the	timer	function	does	three	things:

Accepts	a	block	of	code

Runs	the	block	of	code

Returns	the	result	of	that	code	along	with	the	length	of	time	it	took	to	run

In	the	Cookbook	I	showed	that	timer	is	a	function	that’s	defined	to	accept	a	by-
name	parameter	named	blockOfCode:

def	timer[A](blockOfCode:	=>	A)	=	{

				val	startTime	=	System.nanoTime

				val	result	=	blockOfCode

				val	stopTime	=	System.nanoTime

				val	delta	=	stopTime	-	startTime

				(result,	delta/1000000d)

}

Therefore,	for	the	purposes	of	this	lesson,	this	timer	code:

val	(result,	time)	=	timer	{

				Thread.sleep(1000)

				42

}

http://amzn.to/24ivK4G

demonstrates	that	a	function	that	takes	a	by-name	parameter	is	a	second	way	to
let	people	write	code	that	looks	like	this	pattern:

val	x	=	FOO	{

				//	more	code	here

}

3)	A	class	that	takes	a	function	parameter

Another	code	pattern	that	you’ll	see	that	looks	similar	to	the	first	two	examples
is	this:

val	f	=	FOO	{	(a:	String)	=>

				//	more	code	here

}

In	this	code,	FOO	is	either:

A	case	class	that	takes	a	function	input	parameter	(FIP)

A	function	that	takes	a	FIP

Furthermore,	in	this	example	that	FIP	must	be	defined	to	take	one	input
parameter	that	is	either	a	String	or	a	generic	type.	As	an	example,	you	can
create	a	case	class	that	meets	that	criteria	like	this:

case	class	StringToInt(run:	String	=>	Int)

In	this	code,	run	is	declared	to	be	a	FIP	that	transforms	a	String	to	an	Int.

You	can	create	an	instance	of	that	class	by	giving	it	an	anonymous	function,	like
this:

val	stringToInt	=	StringToInt	{	s:	String	=>

				//	algorithm	can	be	as	long	as	needed	...

				s.length

}

Now	that	you’ve	created	the	stringToInt	variable,	you	can	call	the	run	function
on	it	at	any	later	time:

//	prints	"7"

println(stringToInt.run("bananas"))

Note	1:	Blurring	out	some	code

One	key	to	understand	what’s	happening	with	those	curly	braces	is	to	recognize
that	the	code	shown	in	Figure	[fig:blurredOutCurlyBrace]	is	a	function	literal
that	takes	a	single	input	parameter	(a	String),	and	returns	an	Int	(because	the

last	line	of	the	code	block	evaluates	to	an	Int).

Blurring	out	code	to	understand	what’s	happening	in	the	curly	braces.

I	find	that	“blurring	out”	code	like	that	in	my	mind	is	a	helpful	technique	to	see
the	function	literal	when	I	see	curly	braces	used	like	this.

Note	2:	run	is	just	a	field	in	the	class

Another	important	point	to	understand	is	that	because	run	is	a	constructor	input
parameter:

case	class	StringToInt(run:	String	=>	Int)

it	also	becomes	a	public	field	in	the	StringToInt	class.	It’s	a	field	in	that	class
just	like	name	is	a	field	in	this	Person	class:

case	class	Person(name:	String)

Because	name	and	run	are	both	fields	of	their	classes,	this	code:

val	p	=	Person("mary")

println(p.name)

is	similar	to	this	code:

val	stringToInt	=	StringToInt	{	s:	String	=>

				s.length

}

println(stringToInt.run("bananas"))

Note	3:	Passing	in	a	real	function

If	what’s	happening	in	the	StringToInt	code	isn’t	clear,	you	may	find	that	it’s
easier	to	pass	in	an	instance	of	a	named	function	as	opposed	to	using	an
anonymous	function.	To	demonstrate	this,	rather	than	giving	StringToInt	an
anonymous	function,	define	a	“regular,”	named	function	that	matches	run’s
signature,	i.e.,	a	function	that	transforms	a	String	to	an	Int:

def	len(s:	String)	=	s.length

Now	you	can	create	a	new	instance	of	StringToInt	by	passing	len	into	
StringToInt’s	constructor:

val	stringToInt	=	StringToInt(len)

This	is	the	same	approach	as	before,	except	this	time	I	declared	len	as	a	regular,
named	function.

Note	4:	A	more	complicated	example

Here’s	a	slightly	more	complicated	example	of	this	technique.	The	following
code	shows	a	class	that’s	defined	to	take	a	function	(a	FIP)	that	has	two	input
parameters	of	generic	type	A,	and	transforms	those	parameters	into	a	potentially
different	type	B:

case	class	Transform2ParamsTo1Param[A,	B](fun:	(A,	A)	=>	B)

To	be	clear,	here’s	the	FIP	signature	by	itself:

fun:	(A,	A)	=>	B

Now	I	can	write	code	like	this	to	create	an	instance	of	
Transform2ParamsTo1Param:

val	x	=	Transform2ParamsTo1Param	{	(a:	String,	b:	String)	=>

				a.length	+	b.length

}

Then	I	can	call	fun	on	x	like	this:

//	prints	"6"

println(x.fun("foo",	"bar"))

Because	Transform2ParamsTo1Param	defines	its	function	input	parameter	fun	to
take	generic	types,	I	can	also	write	code	like	this	to	take	two	Int	values	and
return	an	Int:

val	y	=	Transform2ParamsTo1Param	{	(a:	Int,	b:	Int)	=>

				a	+	b

}

//	prints	"3"

println(y.fun(1,	2))

While	this	might	seem	a	little	unusual	if	you	come	from	an	OOP	background,
this	is	just	another	example	of	a	class	that	takes	a	function	input	parameter,	i.e.,
an	example	of	passing	functions	around.

If	code	like	this	isn’t	comfortable	right	now,	fear	not,	it	wasn’t
comfortable	to	me	initially	either.	In	my	experience,	I	never	got
comfortable	 with	 it	 until	 I	 started	 using	 the	 technique	 in	 my
own	 code.	 (Pro	 tip:	Write	 a	 lot	 of	 code.	 As	 the	 saying	 goes,
“One	learns	by	doing	the	thing.”)

4)	A	function	that	takes	a	function	input	parameter

Getting	back	to	my	FOO	examples	…	another	code	pattern	that	can	look	like	this:

val	f	=	FOO	{	(a:	String)	=>

				//	more	code	here

}

is	when	a	function	takes	a	FIP.	I’ll	show	a	variation	of	that	in	this	section.

The	following	code	looks	like	the	FOO	and	Transform2ParamsTo1Param
examples:

val	res	=	s2i("hello")	{	s:	String	=>

				s.length

}

However,	in	this	case	s2i	is	either	a	case	class,	or	a	function	that	has	two
parameter	groups.	This	code	tells	you	that	s2i’s	first	parameter	group	must	take
a	String	parameter	(hello	in	this	case),	and	the	second	parameter	group	takes	a
function	that	transforms	a	String	to	an	Int	(or	it	may	use	generic	types).

While	s2i	can	be	implemented	as	either	a	function	or	as	a	case	class,	it’s	most
likely	a	function.	I	show	both	approaches	next.

a)	Implemented	as	a	function

The	function	approach	will	have	two	parameter	groups	that	look	like	this:

def	s2i	(s:	String)(f:	String	=>	Int)	=	f(s)

You	can	verify	this	by	pasting	the	following	code	into	the	Scala	REPL:

def	s2i	(s:	String)(f:	String	=>	Int)	=	f(s)

val	res	=	s2i("hello")	{	s:	String	=>

				s.length

}

println(res)

That	last	line	will	print	the	number	5.	This	is	a	straightforward	implementation
of	s2i.

b)	Implemented	as	a	case	class

While	this	solution	is	a	little	more	convoluted,	it’s	possible	that	s2i	can	be
implemented	as	a	case	class,	like	this:

case	class	s2i	(s:	String)(_fun:	String	=>	Int)	{

				def	fun	=	_fun(s)

}

val	res	=	s2i("hello")	{	s:	String	=>

				s.length

}

println(res.fun)

As	the	code	shows,	the	primary	difference	to	the	consumer	of	s2i	is	that	for	the
class	you	must	call	println(res.fun)	to	see	the	result,	as	opposed	to	calling	
println(res)	with	the	function.

Aside:	A	practical	use	of	multiple	parameter	groups

In	the	Scala	Cookbook	I	shared	a	practical	example	of	the	multiple	parameter
group	approach	with	this	using	code:

using(io.Source.fromFile("example.txt"))	{	source	=>

				for	(line	<-	source.getLines)	{

								println(line)

				}

}

using	is	cool	because	it	automatically	calls	the	close	method	on	the	resource
that’s	passed	into	it	in	the	first	parameter	group.	As	you’ll	see	in	the	code	that
follows,	it	calls	close	after	the	function	that’s	passed	into	the	second	parameter
group	is	run.	This	is	a	smart	and	useful	application	of	this	technique.

In	this	case,	using	is	defined	as	a	function,	like	this:

def	using[A	<:	{	def	close():	Unit	},	B](resource:	A)(f:	A	=>	B):	B	=	{

				try	{

								f(resource)

				}	finally	{

								resource.close()

				}

}

I	 first	 learned	 about	 the	 using	 control	 structure	 in	 the	 book,
Beginning	Scala.	See	the	Scala	Cookbook	for	a	more	thorough

http://amzn.to/1MRH8tp
http://amzn.to/24ivK4G

discussion	of	this	code.	Somewhere	in	history,	someone	named
this	 code	 a	 “Loan	 Pattern,”	 and	 Joshua	 Suereth	 implemented
the	same	technique	in	his	Scala	ARM	Library.

https://wiki.scala-lang.org/display/SYGN/Loan
https://github.com/jsuereth/scala-arm

5)	A	non-FP	possibility:	Reassignable	Properties

There’s	another	technique	that	enables	code	like	this,	but	a)	the	technique	is
rarely	used,	and	b)	it	would	never	be	used	in	functional	programming.	Therefore,
I	won’t	write	about	it	here,	but	if	you’re	interested	in	a	technique	that	lets	you
write	Scala/OOP	code	like	this:

def	top	=	new	MainFrame	{

				title	=	"First	Swing	App"

				contents	=	new	Button	{

								text	=	"Click	me"

				}

}

see	my	article,	Reassignable	variables	and	properties.

http://alvinalexander.com/scala/reassignable-variables-properties-def-fields-anonymous-class

Key	points

The	following	code	examples	provide	a	summary	of	the	key	points	of	this
lesson.

Anonymous	class

This	code	shows	the	creation	of	a	Person	instance	using	the	“anonymous	class”
technique:

val	mary	=	new	Person	{

				val	name	=	"mary"

				val	age	=	22

}

In	this	specific	example,	Person	may	be	defined	as	a	trait	or	abstract	class,	or
(much	less	likely)	as	a	class.

A	function	that	has	a	by-name	parameter

In	this	example,	timer	is	implemented	as	a	function	that	declares	a	by-name
parameter,	and	therefore	takes	a	block	of	code:

val	(result,	time)	=	timer	{

				//	some	long-running	block	of	code	here

				//	...

}

I	implemented	timer	like	this:

def	timer[A](blockOfCode:	=>	A)	=	{

				val	startTime	=	System.nanoTime

				val	result	=	blockOfCode

				val	stopTime	=	System.nanoTime

				val	delta	=	stopTime	-	startTime

				(result,	delta/1000000d)

}

A	case	class	that	takes	a	function	parameter

In	this	code,	StringToInt	is	implemented	as	a	case	class	that	has	a	function
input	parameter	(FIP),	and	that	FIP	apparently	transforms	a	String	to	an	Int:

val	stringToInt	=	StringToInt	{	s:	String	=>

				s.length

}

For	that	code	I	defined	this	case	class:

case	class	StringToInt(run:	String	=>	Int)

(It’s	possible	that	the	FIP	also	uses	generic	types.)

A	case	class	that	takes	a	FIP	that	has	multiple	input	parameters

In	this	example:

val	x	=	Transform2ParamsTo1Param	{	(a:	String,	b:	String)	=>

				a.length	+	b.length

}

Transform2ParamsTo1Param	is	defined	as	a	case	class	that	has	a	FIP,	and	that
FIP	must	take	two	input	parameters	itself:

case	class	Transform2ParamsTo1Param[A,	B](fun:	(A,	A)	=>	B)

A	function	or	class	that	has	multiple	parameter	groups

I	also	showed	that	when	you	see	code	like	this:

val	res	=	s2i("hello")	{	s:	String	=>

				s.length

}

s2i	will	be	a	function	or	case	class	that	has	two	parameter	groups.	It’s	much
more	likely	to	be	a	function,	which	will	be	implemented	like	this:

def	s2i	(s:	String)(f:	String	=>	Int)	=	f(s)

It’s	possible	that	it	could	also	be	a	case	class,	which	will	be	written	like	this:

case	class	s2i	(s:	String)(_fun:	String	=>	Int)	{

				def	fun	=	_fun(s)

}

Pattern	recognition

I	wrote	this	lesson	because	over	the	last	few	years	I’ve	begun	to	look	at
computer	programming	as	a	form	of	pattern	recognition.	This	was	first	made
clear	to	me	when	I	was	reading	a	book	about	Lisp	titled,	The	Little	Schemer,
where	the	authors	state:

“The	goal	of	this	book	is	to	teach	the	reader	to	think	recursively
…	It	is	our	belief	that	writing	programs	recursively	in	Scheme
is	essentially	simple	pattern	recognition.”

Some	patterns	are	easy	for	most	programmers	to	understand,	and	they’re	adopted
in	many	programming	languages.	Other	patterns	are	easy	for	some	programmers
to	recognize,	but	not	for	others.	As	I	noted	in	this	lesson,	I	stumbled	on	this
pattern	when	I	came	back	to	Scala	after	a	brief	absence:

val	x	=	FOO	{

				//	more	code	here

}

As	a	result,	I	tried	to	understand	all	of	the	things	that	FOO	could	possibly	be,	and
I	shared	that	information	here.

A	final	reason	I	mention	this	specific	pattern	is	because	Scala/FP	developers	use
it	very	often.	Because	you’ll	see	it	a	lot	in	the	code	that	follows,	I	wanted	to	be
sure	I	covered	it	here.

http://amzn.to/2rk1NTC

A	Quick	Review	of	How	flatMap	Works

Overview

This	lesson	shows	how	flatMap	is	like	using	map	followed	by	flatten	on	the
Scala	collections	classes.	As	usual,	if	you’re	already	comfortable	with	this	topic,
skip	this	lesson.

Why	would	I	ever	need	flatMap?

When	I	first	started	working	with	Scala,	I	assumed	flatMap	was	some	obscure
method	on	the	collections	classes	that	I’d	never	use.	I	thought,	“Why	would	I
ever	need	to	transform	one	element	into	a	list	of	different	elements?”	That	is,
why	would	I	ever	want	transform	this:

"foo"

into	this:

List("f",	"o",	"o")

So	I	ignored	flatMap	for	a	long	time,	but	then	when	I	started	trying	to	learn
Scala/FP,	I	found	that	functional	programmers	really	love	flatMap.

Therefore,	before	you	get	into	the	lessons	that	follow	this	one,	it	will	help	to	take
a	few	moments	to	quickly	review	how	flatMap	works.	I’ll	start	by	showing	how	
map	works	before	getting	into	flatMap.

A	quick	review	of	map’s	type	signature

The	type	signature	for	the	map	method	on	the	Scala	List	class	looks	like	this:

map[B](f:	A	=>	B):	List[B]

This	part	of	the	signature:

f:	A	=>	B

tells	us	that	map	takes	a	function	input	parameter	(FIP),	and	that	FIP	must
transform	an	element	of	type	A	into	an	element	of	type	B.	In	this	signature,	A	is
the	type	held	by	the	current	List,	so	map	on	a	List[Int]	will	take	a	FIP	that	has
this	signature:

f:	Int	=>	B

Next,	this	part	of	map’s	signature:

:	List[B]

says	that	when	map	is	finished	running	it	will	return	a	List	whose	elements	are
all	of	type	B.	This	tells	us	that	the	function	map	is	given	will	transform	all	of	the
individual	List	elements	from	type	A	to	type	B,	and	then	map	somehow
accumulates	all	of	those	elements	and	returns	a	List[B]	when	it	finishes.

While	this	type	signature	is	cool	because	it	tells	us	exactly	what	can	possibly
happen,	it	also	helps	to	see	a	specific	example.	Here’s	an	example	that	shows
how	to	transform	List[String]	into	a	List[Int]	by	using	a	function	that
transforms	a	String	to	an	Int:

scala>	val	x	=	List("hi",	"world").map(s	=>	s.length)

x:	List[Int]	=	List(2,	5)

In	this	code	map	applies	the	anonymous	function	s	=>	s.length	to	each	element
in	the	original	List[String]	to	yield	a	new	List[Int].

Note	that	I	could	have	written	that	anonymous	function	using	this	more	concise
syntax:

List("hi",	"world").map(_.length)

but	I	showed	the	verbose	syntax	because	that’s	what	I’ll	be	using	in	many	of	the
examples	that	follow.

At	this	point	a	key	thing	to	note	is	that	map	uses	the	function	it’s	given	to
transform	one	input	list	to	one	output	list.

flatMap’s	type	signature

flatMap’s	type	signature	is	different	than	map’s:

flatMap[B](f:	A	=>	GenTraversableOnce[B]):	List[B]

For	the	purposes	of	a	List	you	can	simplify	this	by	changing	
GenTraversableOnce	to	List,	like	this:

flatMap[B](f:	A	=>	List[B]):	List[B]

Where	map	takes	a	function	that	transforms	an	A	to	a	B	—	such	as	a	String	to	an	
Int:

f:	A	=>	B

flatMap	takes	a	function	that	transforms	an	A	to	a	List[B]:

f:	A	=>	List[B]

An	example	of	this	is	a	function	that	takes	the	string	foo	as	input,	and	returns	
List[f,	o,	o]	as	a	result.	(More	on	this	shortly.)

Notice	that	despite	the	fact	that	map	and	flatMap	take	different	types	of	function
input	parameters,	they	both	return	a	List[B]	in	the	end:

:	List[B]

This	implies	that	even	though	flatMap	takes	a	function	that	transforms	one	input
element	foo	into	a	List[f,	o,	o]	—	and	then	transforms	a	second	element	bar
into	List[b,	a,	r],	etc.	—	in	the	end	it	somehow	transforms	List[f,	o,	o]
and	List[b,	a,	r]	into	a	single	list	in	the	end,	in	this	case	returning,	
List[f,	o,	o,	b,	a,	r].

Conceptually	the	way	this	works	is	that	flatMap	first	applies	the	given	function
to	each	of	its	elements.	For	instance,	it	applies	a	function	to	Foo	to	get	
List[f,	o,	o].	As	flatMap	runs,	this	creates	an	intermediate	“list	of	lists,”	such
as	List(List(f,	o,	o),List(“b”,	“a”,	“r”))‘.	Finally,	the	last	thing	it	does	is	to
flatten	all	of	those	lists	into	one	final	list.

You	can	see	this	by	comparing	the	two	approaches.	First,	this	example	shows

how	flatMap	works	on	a	List[String],	given	the	anonymous	function	shown:

scala>	List("foo",	"bar").flatMap(s	=>	s.split(""))

res0:	List[String]	=	List(f,	o,	o,	b,	a,	r)

You	can	make	sense	of	this	result	by	breaking	flatMap	into	two	steps.	First,	run	
map	on	the	input	list	to	get	an	intermediate	result,	i.e.,	the	“list	of	lists”	I
mentioned.	I’ll	store	this	result	in	a	variable	named	tmpLol:

scala>	val	tmpLol	=	List("foo",	"bar").map(s	=>	s.split(""))

tmpLol:	List[Array[String]]	=	List(Array(f,	o,	o),	Array(b,	a,	r))

As	that	output	shows,	tmpLol	now	contains	
List(Array(f,	o,	o),	Array(b,	a,	r)).	(Although	the	intermediate	result
shows	a	List	of	Arrays,	that’s	just	an	implementation	detail;	just	think	of	it	as	a
“list	of	lists.”)

Now,	when	you	apply	flatten	to	that	intermediate	result	you	get	the	exact	same
result	that	I	got	when	applying	flatMap	to	the	original	list:

scala>	tmpLol.flatten

res1:	List[String]	=	List(f,	o,	o,	b,	a,	r)

This	tells	us:

In	the	first	step,	flatMap	transforms	foo	into	Array(f,	o,	o)

Next,	it	transforms	bar	into	Array(b,	a,	r)

At	this	point	flatMap	has	applied	the	given	function	to	all	of	its	input	List
elements,	and	it	has	an	intermediate	result	of	
List(Array(f,	o,	o),	Array(b,	a,	r))

In	its	last	step,	flatMap	transforms	that	“list	of	lists”	into	one	final	list,	i.e.,	
List(f,	o,	o,	b,	a,	r)

What	this	means

As	I	mentioned,	when	I	first	started	using	Scala	I	thought	flatMap	was	a	bizarre
construct	that	I	would	never	use.	But	as	you	saw	in	the	lessons	about	creating	a
custom	sequence	class	to	work	with	the	for	expression,	flatMap	plays	a	key	role
in	getting	your	custom	class	to	work	with	for.

In	fact,	because	flatMap	can	be	a	little	hard	to	understand,	we’re	fortunate	that
Martin	Odersky	&	Company	created	the	for	expression	as	some	really	sweet
syntactic	sugar	for	flatMap	—	as	you’re	about	to	see.

See	also

If	you	want	to	see	more	examples	of	how	flatMap	works	with	collections
classes,	see	my	article,	A	collection	of	Scala	‘flatMap’	examples.

http://alvinalexander.com/scala/collection-scala-flatmap-examples-map-flatten

Option	Naturally	Leads	to	flatMap
In	the	last	few	lessons	I	demonstrated	some	things	about	Option	and	flatMap
without	explaining	why	they	were	important,	other	than	to	say,	“You’ll	see	why
this	is	important	soon.”

Well,	now	you’re	at	that	point:	In	this	lesson	you’ll	begin	to	see	why	Option	and	
flatMap	are	so	important	to	the	functional	programming	style.

Options	on	top	of	Options

In	the	real	world	there’s	a	“cause	and	effect”	relationship	that	happens	when	you
use	Option	as	a	wrapper	for	your	function	return	types.	If	the	cause	is	that	you
use	Option	because	it’s	better	than	exceptions	and	null	values,	the	effect	is	that
all	of	those	Options	eventually	coalesce	at	some	point.

I’ll	demonstrate	what	I	mean	with	our	old	friend,	the	makeInt	function,	and	then
I’ll	show	a	more	real-world	example.

makeInt

To	begin,	here’s	the	makeInt	function	I	showed	a	few	lessons	ago:

def	makeInt(s:	String):	Option[Int]	=	{

				try	{

								Some(s.trim.toInt)

				}	catch	{

								case	e:	Exception	=>	None

				}

}

This	is	an	awesome	function,	right?	By	catching	the	exception	inside	the
function	and	returning	an	Int	wrapped	in	an	Option,	the	function	always	returns
something	to	its	calling	function.	It	doesn’t	try	to	throw	an	exception	that	will
short-circuit	the	rest	of	your	code.	This	is	good.	This	is	how	pure	functions
work.

Although	that’s	good,	can	you	guess	what	happens	when	you	have	code	like	this:

val	x	=	makeInt(string1)

val	y	=	makeInt(string2)

and	then	you	want	to	add	x	and	y?	The	REPL	shows	what	you’d	expect,	that	x
and	y	have	the	type	Option[Int]:

scala>	val	x	=	makeInt("1")

x:	Option[Int]	=	Some(1)

scala>	val	y	=	makeInt("2")

y:	Option[Int]	=	Some(2)

This	means	that	you	can’t	just	add	x	and	y:

scala>	x	+	y

<console>:14:	error:	type	mismatch;

	found			:	Option[Int]

	required:	String

							x	+	y

											^

In	fact,	the	REPL	is	confused	and	doesn’t	even	know	that	you	want	to	try	to	add
two	Ints,	because	those	Ints	are	wrapped	inside	of	Options.

So,	what	can	you	do?

Well,	let’s	think,	what	are	our	main	tools	for	working	with	Option	values?	So	far

I’ve	used:

match	expressions,	or	more	rarely,

getOrElse

Let’s	see	what	we	can	do	with	those.

Adding	x	and	y	with	match	expressions

If	you	try	to	add	x	and	y	using	match	expressions,	you	end	up	with	code	like	this:

val	sum	=	x	match	{

				case	None	=>	{

								y	match	{

												case	None	=>	{

																0

												}

												case	Some(i)	=>	{

																i

												}

								}

				}

				case	Some(i)	=>	{

								y	match	{

												case	None	=>	{

																i

												}

												case	Some(j)	=>	{

																i	+	j

												}

								}

				}

I	have	to	be	honest:	that	code	is	so	ugly	I	didn’t	even	both	to	see	if	it	would
compile.	I	definitely	don’t	want	to	use	this	approach.

Adding	x	and	y	with	getOrElse

Here’s	how	you	might	try	to	do	the	same	thing	with	getOrElse:

val	sum	=	x.getOrElse(0)	+	y.getOrElse(0)

That’s	a	bit	cleaner,	but	fortunately	some	smart	people	found	that	there’s	a	better
approach	that’s	much	more	powerful.

Adding	x	and	y	with	flatMap	and	map

Somewhere	in	programming	history,	someone	saw	that	if	you	try	to	add	x	and	y
using	map:

x	map	{	a	=>	

				y	map	{	b	=>	

								a	+	b	

				}

}

the	result	would	look	like	this:

scala>	x	map	{	a	=>	y	map	{	b	=>	a	+	b	}}

res0:	Option[Option[Int]]	=	Some(Some(3))

That’s	interesting,	it	almost	works.	Wrapped	inside	two	Option	values	is	the
correct	result,	3.

I	suspect	that	seeing	the	Option[Option[Int]]	made	them	think,	“I	can	make
this	situation	a	little	better	by	flattening	at	least	one	of	those	Options	…	hmm,
the	word	‘flatten’	makes	me	think	of	flatMap	…	what	if	…”

That	thought	process	led	to	them	using	flatMap	in	place	of	the	first	map:

scala>	x	flatMap	{	a	=>	y	map	{	b	=>	a	+	b	}}

res1:	Option[Int]	=	Some(3)

“Whoa,”	they	thought,	“this	gives	me	the	solution	wrapped	inside	only	one	
Option.	Now	that’s	something	I	can	work	with!”

And	then	they	remembered	the	relationship	between	map,	flatMap,	and	the	for
expression,	and	a	very	cool	thing	happened	…

(See	the	next	lesson.)

flatMap	Naturally	Leads	to	for
“Since	a	type	like	Option	that	supports	map	and	flatMap	can	be	used	in	a	for
expression,”	they	thought,	“What	would	happen	if	I	do	this?”:

val	sum	=	for	{

				x	<-	makeInt("1")

				y	<-	makeInt("2")

}	yield	x	+	y

The	REPL	shows	the	answer:

scala>	val	sum	=	for	{

					|					x	<-	makeInt("1")

					|					y	<-	makeInt("2")

					|	}	yield	x	+	y

sum:	Option[Int]	=	Some(3)

“Whoa,”	they	thought,	“not	only	does	this	give	me	the	solution	wrapped	in	only
one	Option,	it’s	also	much	easier	to	read	than	using	map	and	flatMap.”

And	then	they	thought,	“Because	it	supports	map	and	flatMap,	it	should	work
with	more	than	two	Option	values,	right?”	So	they	put	this	code	in	the	REPL:

val	sum	=	for	{

				a	<-	makeInt("1")

				b	<-	makeInt("2")

				c	<-	makeInt("3")

				d	<-	makeInt("4")

}	yield	a	+	b	+	c	+	d

and	saw	this	result:

scala>	val	sum	=	for	{

					|					a	<-	makeInt("1")

					|					b	<-	makeInt("2")

					|					c	<-	makeInt("3")

					|					d	<-	makeInt("4")

					|	}	yield	a	+	b	+	c	+	d

sum:	Option[Int]	=	Some(10)

Success!

This	is	much	better	than	chaining	together	a	whole	bunch	of	flatMap	and	map
functions,	and	it’s	even	easier	to	read	than	using	a	bunch	of	getOrElse	calls.

And	as	you’re	about	 to	 see,	 it’s	 also	more	 flexible	 (and	 safer)
than	getOrElse.

for	Expressions	are	Better	Than	
getOrElse

A	great	thing	about	using	for	expressions	that	might	not	be	immediately	obvious
is	that	they’re	better	than	using	a	series	of	getOrElse	calls.	I’ll	demonstrate	what
I	mean	in	this	lesson.

The	for	expression	“Happy	Path”

Imagine	asking	a	user	to	input	four	Int	values	as	strings.	You	could	then	sum
those	values	using	this	for	expression:

val	sum	=	for	{

				a	<-	makeInt(input1)

				b	<-	makeInt(input2)

				c	<-	makeInt(input3)

				d	<-	makeInt(input4)

}	yield	a	+	b	+	c	+	d

Next,	assume	that	they	gave	you	exactly	what	you	asked	for,	four	strings	that
properly	convert	to	integers,	like	this:

val	sum	=	for	{

				a	<-	makeInt("1")

				b	<-	makeInt("2")

				c	<-	makeInt("3")

				d	<-	makeInt("4")

}	yield	a	+	b	+	c	+	d

This	specific	example	shows	the	Happy	Path	for	this	for	expression.	When	I
say,	“Happy	Path,”	it	means	that	you	got	the	input	values	you	desired,	and
therefore	the	for	expression	completes	properly,	with	sum	ending	up	as	
Option(10).

The	for	expression	“Unhappy	Path”

But	a	great	thing	about	the	for	expression	is	that	it	also	handles	the	“Unhappy
Path,”	i.e.,	the	path	that	is	followed	when	one	or	more	of	the	String	values	don’t
convert	to	Int	values:

val	sum	=	for	{

				a	<-	makeInt("ka-boom!")

				b	<-	makeInt("2")

				c	<-	makeInt("3")

				d	<-	makeInt("4")

}	yield	a	+	b	+	c	+	d

Can	you	guess	what	happens	with	this	code?

Does	it	throw	an	exception?	No,	of	course	not,	pure	functions	don’t	throw
exceptions!

Does	sum	end	up	with	a	value?	Yes,	it	does.	sum	is	bound	to	None,	as	the	REPL
shows:

scala>	val	sum	=	for	{

					|					a	<-	makeInt("ka-boom!")

					|					b	<-	makeInt("2")

					|					c	<-	makeInt("3")

					|					d	<-	makeInt("4")

					|	}	yield	a	+	b	+	c	+	d

sum:	Option[Int]	=	None

What	happens	is	that	the	for	expression	short-circuits	when	this	line	of	code	is
reached:

a	<-	makeInt("ka-boom!")

When	makeInt	receives	a	String	it	can’t	transform	into	an	Int,	these	things
happen:

makeInt	returns	a	None

The	for	expression	short-circuits	at	that	point

sum	is	bound	to	None

The	None	result	tells	you	that	makeInt	was	given	something	it	couldn’t	convert

to	an	Int.

It’s	important	to	note	that	even	though	this	is	an	Unhappy	Path,
the	good	news	is	that	the	bad	input	doesn’t	completely	blow	up
your	for	expression.	The	expression	simply	yields	None,	which
is	 much	 better	 than	 doing	 something	 like	 throwing	 an
exception.

Compare	that	to	getOrElse

Compare	that	code	to	the	only	thing	you	can	do	with	getOrElse:

val	sum	=	makeInt(``ka-boom!'').getOrElse(0)	+

										makeInt(``2'').getOrElse(0)	+	

										makeInt(``3'').getOrElse(0)	+

										makeInt(``4'').getOrElse(0)

When	you	paste	that	code	into	the	REPL,	you’ll	see	that	sum	is	assigned	to	9	—	a
completely	different	(and	wrong)	result!

If	you	think	that’s	bad,	this	example	just	uses	Option[Int]	values;	imagine	what
could	happen	when	you	use	complex,	real	world	classes	like	Option[Person],	
Option[Pizza],	or	Option[List[List[Friend]]].

This	is	why	experienced	Scala/FP	developers	tell	you	not	to	use	getOrElse.
When	you	first	start	working	with	Scala	it	seems	like	getOrElse	could	be	a	good
thing,	but	(a)	it	can	also	be	an	incorrect	thing	when	used	in	the	wrong	places,	and
(b)	in	the	long	run	it	can	keep	you	from	seeing	a	much	better	solution	in	the	for
expression.

Remember:	Embrace	the	idioms!

Key	points

In	the	last	several	lessons	I	showed	a	for	expression	like	this:

val	sum	=	for	{

				a	<-	makeInt(string1)

				b	<-	makeInt(string2)

				c	<-	makeInt(string3)

				d	<-	makeInt(string4)

}	yield	a	+	b	+	c	+	d

I	mentioned	that	the	“Happy	Path”	is	when	all	of	the	String	values	can	be
converted	to	Int	values	and	the	expression	yields	a	Some[Int],	and	the
“Unhappy	Path”	is	what	happens	when	a	String	value	can’t	be	converted	to	an	
Int	and	the	expression	yields	a	None.

Also,	even	though	that	code	can	be	said	to	have	Happy	and	Unhappy	paths,	the
great	thing	about	the	for	expression	is	that	it	handles	both	cases.	In	the	Happy
case	sum	is	bound	to	an	Option[Int],	and	in	the	Unhappy	case	sum	is	bound	to	
None.

In	this	lesson	I	also	demonstrated	that	this	code	is	better	than	a	getOrElse
approach	because	getOrElse	can	give	you	a	wrong	(or	inappropriate)	answer.
Beyond	that,	as	you’ll	see	in	the	rest	of	this	book,	it	can	also	keep	you	from
embracing	the	Scala	idioms	that	will	lead	you	to	a	new	style	of	coding.

What’s	next

If	what’s	happening	in	the	for	expressions	I’ve	shown	so	far	isn’t	clear,	I	hope	to
clear	up	any	confusion	in	the	next	lesson.

Recap:	Option	->	flatMap	->	for
I	showed	quite	a	few	things	in	the	previous	lessons	on	for	expressions,	Option,
and	flatMap,	so	in	this	lesson	I	want	to	pause	a	little	bit	to	review	a	few
important	points	about	what	I	just	covered.

At	the	end	of	this	lesson	I’ll	share	an	important	conclusion,	so	if	you	want	to
skip	the	“review”	portions	of	this	lesson,	please	be	sure	to	read	the	conclusion
sections	(Parts	1	and	2)	before	moving	on	to	the	next	lesson.

Point	1:	If	something	can	go	wrong,	a	pure	function
returns	Option,	Try,	or	Or

The	first	point	to	reiterate	is	this:	Because	pure	functions	don’t	throw	exceptions,
they	have	to	do	something	else	when	bad	things	happen,	and	in	Scala,	the	correct
approach	is	to	return	an	Option,	Try,	or	Or.	For	example,	in	my	code,	makeInt
returns	an	Option[Int]:

def	makeInt(s:	String):	Option[Int]	=	{

				try	{

								Some(s.trim.toInt)

				}	catch	{

								case	e:	Exception	=>	None

				}

}

Option	is	a	“wrapper”

You	can	think	of	Option	as	a	wrapper,	kind	of	like	receiving	a	wrapped	gift	on
your	birthday.	In	the	case	of	makeInt,	Option	is	a	wrapper	around	an	Int.	An
important	feature	of	this	particular	wrapper	is	that	it	comes	with	map	and	
flatMap	methods.	These	enable	Option	to	work	in	for	expressions.

If	you	don’t	like	to	think	of	Option	as	a	“wrapper,”	it	might	be	even	better	to
think	of	it	as	a	box.	When	dealing	with	an	Option[Int],
Figure	[fig:option2InABox]	shows	the	Happy	Case,	where	you	get	a	box	that
contains	what	you	want,	an	Int,	which	the	Option	delivers	to	you	as	a	
Some[Int].

You	can	think	of	Option	as	a	box.	This	box	shows	a	Happy	Case,	where	a	

Some[Int]	contains	a	2.

Conversely,	in	the	Unhappy	Case	you	get	an	empty	box,	which	Option	delivers
to	you	as	a	None,	as	shown	in	Figure	[fig:optionNoneIsEmptyBox].

A	None	can	be	thought	of	as	an	empty	box.

Point	2:	How	Option’s	map	method	works

A	second	important	point	is	to	know	how	Option’s	map	method	works.	The	key
points	are:

It	yields	a	Some[A]	for	the	Happy	(success)	cases

It	yields	a	None	for	all	Unhappy	(failure)	cases

A	few	REPL	examples	show	this.	First,	when	makeInt	can	successfully
transform	a	String,	it	yields	a	Some[Int]:

scala>	makeInt("1")

res0:	Option[Int]	=	Some(1)

Second,	when	makeInt	can’t	successfully	transform	a	String,	it	yields	a	None:

scala>	makeInt("foo")

res1:	Option[Int]	=	None

As	expected,	you	get	a	Some(1)	in	the	success	case	and	a	None	in	the	failure
case.	So	far,	so	good.

Taking	this	a	step	further,	these	examples	show	how	map	behaves	with	Option’s
two	possible	results:

scala>	makeInt("1").map(_	*	2)

res2:	Option[Int]	=	Some(2)

scala>	makeInt("foo").map(_	*	2)

res3:	Option[Int]	=	None

In	the	first	case	makeInt	yields	a	Some(1)	and	then	map	is	called	on	that	result	to
yield	a	Some(2).	In	the	second	case	makeInt	can’t	convert	foo	into	an	Int	so	it
yields	a	None	without	even	invoking	map.

The	important	behavior	for	your	code	is	that	map	doesn’t	throw	an	exception,	it
just	goes	down	either	the	Happy	Path	(yielding	a	Some[A])	or	the	Unhappy	Path
(yielding	a	None).

Point	3:	flatMap	works	well	with	multiple	Options

The	next	important	point	is	that	while	map	works	well	with	one	Option,	flatMap
shines	when	it	comes	to	working	with	multiple	Options.

As	I	showed	in	the	previous	lessons,	given	this	code:

val	x	=	Option(1)

val	y	=	Option(2)

if	you	try	to	add	the	two	Option[Int]	values	with	map,	you	end	up	with	an	
Option[Option[Int]]:

scala>	x	map	{	a	=>	y	map	{	b	=>	a	+	b	}}

res0:	Option[Option[Int]]	=	Some(Some(3))

But	because	of	the	way	flatMap	works,	you	can	use	it	to	replace	the	outer	map
call	to	yield	an	Option[Int],	which	is	much	easier	to	work	with:

scala>	x	flatMap	{	a	=>	y	map	{	b	=>	a	+	b	}}

res1:	Option[Int]	=	Some(3)

Point	4:	Humans	prefer	for	expressions

While	that’s	nice,	it	can	be	hard	for	humans	to	understand.	Fortunately,	this	is
exactly	what	the	much	more	readable	for	expression	does	for	you;	it’s	a
replacement	for	a	series	of	flatMap	and	map	calls.

You	can	demonstrate	this	with	the	following	code:

class	Test	{

				val	sum	=	for	{

								a	<-	makeInt("1")

								b	<-	makeInt("2")

								c	<-	makeInt("3")

								d	<-	makeInt("4")

				}	yield	a	+	b	+	c	+	d

				def	makeInt(s:	String):	Option[Int]	=	{

								try	{

												Some(s.trim.toInt)

								}	catch	{

												case	e:	Exception	=>	None

								}

				}

}

When	you	compile	that	code	with	this	command:

scalac	-Xprint:parse	Test.scala

you’ll	see	this	as	part	of	the	output:

val	sum	=	makeInt("1").flatMap(

		((a)	=>	makeInt("2").flatMap(

				((b)	=>	makeInt("3").flatMap(

						((c)	=>	makeInt("4").map(

								((d)	=>	a.$plus(b).$plus(c).$plus(d)))))

)

)

)

);

Note:	 You’ll	 have	 to	 reformat	 scalac’s	 output	 to	 see	 it	 that
clearly.

Notice	that	this	is	a	series	of	flatMap	calls	followed	by	a	single	map	call.	This	is
how	for	expressions	like	this	are	converted	by	the	Scala	compiler.	While

compilers	like	that	code,	most	humans	don’t,	so	we	use	for	expressions.

Point	5:	for	isn’t	always	a	loop

As	a	final	note,	it’s	important	to	be	clear	that	this	is	not	a	loop:

val	sum	=	for	{

				a	<-	makeInt("1")

				b	<-	makeInt("2")

				c	<-	makeInt("3")

				d	<-	makeInt("4")

}	yield	a	+	b	+	c	+	d

That	is,	it	doesn’t	“loop”	repeatedly,	it	just	runs	once.	If	you’re	coming	to
Scala/FP	from	languages	like	C,	Java,	C#,	etc.,	this	behavior	can	be	a	surprise.

Conclusion,	Part	1

Here’s	a	concise	summary	of	the	points	I	just	covered:

Because	pure	functions	don’t	(a)	return	null	or	(b)	throw	exceptions,	they
return	Option,	Try,	or	Or

Using	Option	naturally	leads	your	code	to	look	a	certain	way,	a	“pattern”

In	the	real	world	that	pattern	eventually	leads	to	the	creation	of	values	of
the	type	Option[Option[A]]

flatMap	works	well	with	Option[Option[A]],	but	it’s	hard	for	humans	to
read

The	Scala	for	expression	is	a	human-readable	replacement	for	a	series	of	
flatMap	and	map	calls

A	more-general	observation

When	you	think	about	those	statements	more	generally,	you’ll	make	this
observation:

Any	 class	 that	 implements	map	 and	flatMap	 can	 be	 used	 in	 a	
for	 expression	 in	 the	 same	 way	 that	 I	 used	 Option	 in	 these
examples.

For	example,	not	only	does	Option	work	like	this,	but	Try,	Or,	and	Either	also
work	the	same	way.	And	they’re	not	the	only	ones.

Scala	collections	classes	have	map	and	flatMap

The	Scala	Seq	class	implements	the	map	and	flatMap	methods,	so	it	can	be	used
in	for	expressions,	such	as	this	one:

val	xs	=	Seq(1,2,3)

val	ys	=	Seq(100,200,300)

for	{

				x	<-	xs

				y	<-	ys

}	yield	x	+	y

When	that	for	expression	is	pasted	into	the	REPL,	it	yields	this	result:

res0:	Seq[Int]	=	List(101,	201,	301,	102,	202,	302,	103,	203,	303)

All	of	the	Scala	collections	classes	have	map	and	flatMap	methods	and	work	like
this,	including	List,	ArrayBuffer,	Vector,	etc.,	even	the	Map	classes.

The	Scala	Future	has	map	and	flatMap

The	Scala	Future	class	implements	map	and	flatMap	methods,	so	it	can	also	be
used	in	for	expressions,	as	shown	in	this	example:

//	(a)	create	the	futures

val	f1	=	Future	{	sleep(10*1000);	1	}

val	f2	=	Future	{	sleep(2*1000);		2	}

val	f3	=	Future	{	sleep(4*1000);		3	}

//	(b)	run	them	simultaneously	in	a	for-comprehension

val	result	=	for	{

				r1	<-	f1

				r2	<-	f2

				r3	<-	f3

}	yield	(r1	+	r2	+	r3)

//	(c)	do	whatever	you	need	to	do	with	the	result

result.onComplete	{

			case	Success(x)	=>	println(s"\nresult	=	$x")

			case	Failure(e)	=>	e.printStackTrace

}

This	is	a	particularly	interesting	example	because	like	Option,	Future	is	not	a
collection	class.	However,	because	it	implements	map	and	flatMap,	it	can	be
used	in	a	for	expression.

Conclusion,	Part	2

Once	again,	here’s	the	key	observation:	any	class	that	implements	map	and	
flatMap	can	be	used	in	a	for	expression.

Furthermore,	while	those	of	us	with	an	OOP	background	are	most	comfortable
using	collection	classes	in	for	loops,	the	Scala/FP	reality	is	that	non-collection
classes	like	Option,	Try,	Future,	and	many	others	can	also	be	used	in	for
expressions.	These	other	classes	tend	to	be	“wrappers”	of	different	types,	which
is	why	I’ve	been	using	the	term	wrapper.

As	it	turns	out,	the	Scala	for	expression	is	a	sort	of	glue	—	a	superglue	—	for
getting	pure	functions	to	work	together.	The	thing	to	remember	is	that	for	a	class
to	be	used	with	multiple	generators	in	a	for	expression,	that	class	must
implement	map	and	flatMap.

Similarly,	for	a	function	to	work	well	in	a	for	expression,	it	must	return	a	type
that	implements	map	and	flatMap.	(I	write	more	on	this	point	in	the	lessons	that
follow.)

The	m-word

And	this	is	where	we	get	to	the	fun	part.

When	speaking	casually,	some	people	like	to	say	that	any	Scala	class	that
implements	map	and	flatMap	is	a	monad.	While	that	isn’t	100%	true,	it’s	in	the
ballpark	of	truth.

As	Gabriele	Petronella	wrote	in	a	Stack	Overflow	post:

“The	only	thing	monads	are	relevant	for,	from	a	Scala	language
perspective,	 is	 the	 ability	 of	 being	 used	 in	 a	 for-
comprehension.”

By	this	he	means	that	while	monads	are	defined	more	formally	in	a	language	like
Haskell,	in	Scala	there	is	no	base	Monad	trait	to	extend;	all	you	have	to	do	is
implement	map	and	flatMap	so	your	class	can	be	used	as	a	generator	in	for
expressions.

As	you’ll	see	as	I	dig	into	this	more	in	the	coming	lessons,	classes	like	List	and	
Option	truly	are	monads,	so	congratulations	—	if	you	thought	monads	were
hard,	they	aren’t;	you’ve	already	been	using	them!

http://stackoverflow.com/questions/25361203/what-exactly-makes-option-a-monad-in-scala

See	also

The	“box”	metaphor	comes	from	this	adit.io	tutorial.

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

A	Note	About	Things	That	Can	Be
Mapped	Over
Goal

The	goal	of	this	lesson	is	to	explain	a	term	known	in	functional	programming	as
a	“functor.”

Discussion

As	I	mentioned	earlier	in	this	book,	at	some	point	in	history	someone	declared
that	“things	that	can	be	mapped-over	shall	be	called	functors.”	Therefore,	classes
like	List,	Option,	Future,	and	many	others	are	all	functors.

As	Miran	Lipovaca	states	in	his	book,	Learn	You	a	Haskell	for	Great	Good!:

“Functors	are	things	that	can	be	mapped	over.”

http://amzn.to/1POaUCv

Think	of	it	as	a	trait

In	his	blog	post,	First	steps	with	monads,	Darren	Wilkinson	makes	the
observation	that	in	pseudocode,	you	can	think	of	a	functor	as	being	a	Scala	
trait:

trait	Functor[A]	{

				def	map(f:	A	=>	B):	Functor[B]

}

You	can	then	think	of	classes	like	List,	Option,	Future,	and	many	others	as
implementing	that	trait.

https://darrenjw.wordpress.com/2016/04/15/first-steps-with-monads-in-scala/

Key	point

The	key	point	of	this	lesson:	Don’t	be	intimidated	when	you	hear	the	term
“functor”;	just	think	of	it	like	this:

Functor	=	map-able

or	this:

Functor	=	a	class	that	has	a	map	method

See	also

The	definition	of	“functor”	on	Wikipedia

Darren	Wilkinson	writes	in	his	article,	First	steps	with	monads,	“Many
collection	and	other	container	types	have	a	map	method	…	any
parameterized	type	that	does	have	a	map	method	like	this	is	known	as	a
Functor.	Again,	the	name	is	due	to	category	theory…”

https://en.wikipedia.org/wiki/Functor
https://darrenjw.wordpress.com/2016/04/15/first-steps-with-monads-in-scala/

Starting	to	Glue	Functions	Together
As	I	mentioned	at	the	beginning	of	this	book,	writing	pure	functions	isn’t	hard.
Just	make	sure	that	output	depends	only	on	input,	and	you’re	in	good	shape.

The	hard	part	of	functional	programming	involves	how	you	glue	together	all	of
your	pure	functions	to	make	a	complete	application.	Because	this	process	feels
like	you’re	writing	“glue”	code,	I	refer	to	this	process	as	“gluing,”	and	as	I
learned,	a	more	technical	term	for	this	is	called	“binding.”	This	process	is	what
most	of	the	remainder	of	this	book	is	about.

As	you	might	have	guessed	from	the	emphasis	of	the	previous
lessons,	in	Scala/FP	this	binding	process	involves	the	use	of	for
expressions.

Life	is	good	when	the	output	of	one	function	matches
the	input	of	another

To	set	the	groundwork	for	where	we’re	going,	let’s	start	with	a	simplified
version	of	a	problem	you’ll	run	into	in	the	real	world.

Imagine	that	you	have	two	functions	named	f	and	g,	and	they	both	a)	take	an	Int
as	an	input	parameter,	and	b)	return	an	Int	as	their	result.	Therefore,	their
function	signatures	look	like	this:

def	f(a:	Int):	Int	=	???

def	g(a:	Int):	Int	=	???

A	nice	thing	about	these	functions	is	that	because	the	output	of	f	is	an	Int,	it
perfectly	matches	the	input	of	g,	which	takes	an	Int	parameter.	This	is	shown
visually	in	Figure	[fig:fOutputMatchesGInput].

The	output	of	f	matches	the	input	to	g.

Because	the	output	of	f	is	a	perfect	match	to	the	input	of	g,	you	can	write	this
code:

val	x	=	g(f(100))

Here’s	a	complete	example	that	demonstrates	this:

def	f(a:	Int):	Int	=	a	*	2

def	g(a:	Int):	Int	=	a	*	3

val	x	=	g(f(100))

println(x)

Because	f(100)	is	200	and	g	of	200	is	600,	this	code	prints	600.	So	far,	so	good.

A	new	problem

Next,	imagine	a	slightly	more	complicated	set	of	requirements	where	f	and	g
still	take	an	Int	as	input,	but	now	they	return	a	String	in	addition	to	an	Int.
With	this	change	their	signatures	look	like	this:

def	f(a:	Int):	(Int,	String)	=	???

def	g(a:	Int):	(Int,	String)	=	???

One	possible	use	case	for	this	situation	is	to	imagine	that	f	and	g	are	functions	in
an	application	that	uses	a	rules	engine	or	artificial	intelligence	(AI).	In	this
situation,	not	only	do	you	want	to	know	their	result	(the	Int),	you	also	want	to
know	how	they	came	up	with	their	answer,	i.e.,	the	logical	explanation	in	the
form	of	a	String.

Think	of	writing	an	application	to	determine	the	shortest	route
from	Point	A	to	Point	Z.	A	function	might	return	a	log	message
like,	“I	chose	B	as	the	next	step	because	it	was	closer	than	C	or
D.”

While	it’s	nice	to	get	a	log	message	back	from	the	functions,	this	also	creates	a
problem:	I	can	no	longer	use	the	output	of	f	as	the	input	to	g.	In	this	new	world,	
g	takes	an	Int	input	parameter,	but	f	now	returns	(Int,	String)	(a	
Tuple2[Int,	String]).	This	mismatch	is	shown	visually	in
Figure	[fig:fOutputDoesntMatchGInput].

The	output	of	f	no	longer	matches	the	input	to	g.

When	you	really	want	to	plug	the	output	of	f	into	the	input	of	g,	what	can	you
do?

Solving	the	problem	manually

Let’s	look	at	how	we’d	solve	this	problem	manually.	First,	I’d	get	the	result	from
f:

val	(fInt,	fString)	=	f(100)

Next,	I	pass	fInt	into	g	to	get	its	results:

val	(gInt,	gString)	=	g(fInt)

gInt	is	the	final	Int	result,	so	now	I	glue	the	strings	together	to	get	the	final	
String	result:

val	logMessage	=	fString	+	gString

Now	I	can	print	the	final	Int	and	String	results:

println(s"result:	$gInt,	log:	$logMessage")

This	code	shows	a	complete	example	of	the	manual	solution	to	this	problem:

object	Step2Debug	extends	App	{

				def	f(a:	Int):	(Int,	String)	=	{

								val	result	=	a	*	2

								(result,	s"\nf	result:	$result.")

				}

				def	g(a:	Int):	(Int,	String)	=	{

								val	result	=	a	*	3

								(result,	s"\ng	result:	$result.")

				}

				//	get	the	output	of	`f`

				val	(fInt,	fString)	=	f(100)

				//	plug	the	Int	from	`f`	as	the	input	to	`g`

				val	(gInt,	gString)	=	g(fInt)

				//	create	the	total	"debug	string"	by	manually	merging

				//	the	strings	from	f	and	g

				val	debug	=	fString	+	"	"	+	gString

				println(s"result:	$gInt,	debug:	$debug")

}

That	code	prints	this	output:

result:	600,	debug:	

f	result:	200.	

g	result:	600.

While	this	approach	works	for	this	simple	case,	imagine	what	your	code	will
look	like	when	you	need	to	string	many	more	functions	together.	That	would	be
an	awful	lot	of	manually	written	(and	error-prone)	code.	We	can	do	better.

The	“Bind”	Concept
Because	Scala	supports	higher-order	functions	(HOFs),	you	can	improve	this
situation	by	writing	a	bind	function	to	glue	f	and	g	together	a	little	more	easily.
For	instance,	with	a	properly	written	bind	function	you	can	write	code	like	this
to	glue	together	f,	g,	and	h	(a	new	function	that	has	the	same	signature	as	f	and	
g):

val	fResult	=	f(100)

val	gResult	=	bind(g,	fResult)

val	hResult	=	bind(h,	gResult)

While	this	code	might	not	be	beautiful	just	yet,	it’s	certainly	better	and	less	error
prone	than	the	code	I	had	at	the	end	of	the	previous	lesson.

In	this	lesson	I’ll	show	how	to	write	a	bind	function	to	make	this	work.

The	problem	statement

Before	beginning,	let	me	clearly	define	the	problem.	Given	three	functions	with
these	signatures:

def	f(a:	Int):	(Int,	String)	=	???

def	g(a:	Int):	(Int,	String)	=	???

def	h(a:	Int):	(Int,	String)	=	???

I	want	to	write	a	bind	function	that	works	like	this:

val	fResult	=	f(100)

val	gResult	=	bind(g,	fResult)

val	hResult	=	bind(h,	gResult)

If	you	think	you	know	how	to	do	this,	step	away	from	the	book	and	start	typing
in	your	favorite	IDE.	Otherwise,	read	on.

Writing	bind’s	type	signature

Let’s	solve	this	problem	using	the	function-writing	strategy	I	introduced	early	in
the	book:	By	writing	bind’s	function	signature	before	you	do	anything	else.

bind’s	input	parameters

To	understand	what	bind’s	signature	needs	to	be,	look	at	this	line:

val	gResult	=	bind(g,	fResult)

This	tells	you	that	bind	takes	two	parameters:

1.	 The	first	parameter	is	the	function	g.	As	I	just	showed,	g	has	the	type
signature	(a:	Int):	(Int,	String)	(or,	(a:	Int)	=>	(Int,	String),	if
you	prefer).

2.	 The	second	parameter	is	fResult,	which	is	the	output	of	f.	f’s	signature
tells	us	that	fResult’s	type	is	(Int,	String)	(i.e.,	a	
Tuple2[Int,	String]).

This	tells	you	that	bind’s	input	parameters	look	like	this:

def	bind(fun:	(Int)	=>	(Int,	String),

									tup:	Tuple2[Int,	String])	...

Now	all	you	need	is	bind’s	return	type.

bind’s	return	type

By	looking	at	these	two	lines	of	code:

val	gResult	=	bind(g,	fResult)

val	hResult	=	bind(h,	gResult)

you	can	see	that	gResult	will	have	the	type	of	whatever	bind	returns.	Because
you	know	that	a)	fResult	in	the	first	line	has	the	type	(Int,	String),	and	b)	
gResult	must	have	the	same	type	as	fResult,	you	can	deduce	that	c)	bind	must
have	this	same	return	type:	(Int,	String).

Therefore,	the	complete	type	signature	for	bind	must	be	this:

def	bind(fun:	(Int)	=>	(Int,	String),

									tup:	(Int,	String)):	(Int,	String)	=	???

Now	all	you	have	to	do	is	implement	the	body	for	bind.

Note:	A	Tuple2	can	also	been	written	as	Tuple2[Int,	String].

Writing	bind’s	body

As	for	writing	bind’s	body,	all	it	does	is	automate	the	process	I	showed	at	the
end	of	the	previous	lesson.	There	I	showed	this	code:

val	(fInt,	fString)	=	f(100)

Imagine	that	this	tuple	result	will	be	used	as	input	to	bind,	so	bind	will	receive:

The	function	g	as	its	first	parameter

The	tuple	(fInt,	fString)	as	its	second	parameter

Now,	where	in	the	previous	lesson	I	had	these	lines	of	code:

val	(gInt,	gString)	=	g(fInt)

val	debug	=	fString	+	gString

you	can	imagine	them	being	replaced	by	this	bind	call:

val	(gInt,	gString)	=	bind(g,	(fInt,	fString))

By	looking	at	this	you	can	say	that	bind’s	algorithm	should	be:

1.	 Apply	the	function	you’re	given	(g)	to	the	Int	you’re	given	(fInt).	This
creates	an	(Int,	String)	((gInt,	gString)	in	this	example).

2.	 Append	the	new	string	(gString)	to	the	string	you	were	given	(fString).

3.	 Return	the	new	Int	(gInt)	and	the	merged	String	(fString	+	gString)	as
the	result.

Following	that	algorithm,	a	first	attempt	at	bind	looks	like	this:

def	bind(fun:	(Int)	=>	(Int,	String),

									tup:	Tuple2[Int,	String]):	(Int,	String)	=

{

				val	givenInt	=	tup._1

				val	givenString	=	tup._2

				//	apply	the	given	function	to	the	given	int

				val	(intResult,	stringResult)	=	fun(givenInt)

				//	append	`stringResult`	to	the	given	string

				val	newString	=	givenString	+	stringResult

				//	return	the	new	int	and	string

				(intResult,	newString)

}

Once	you’re	comfortable	with	that	code,	you	can	reduce	bind	until	it	looks	like
this:

def	bind(fun:	(Int)	=>	(Int,	String),

									tup:	Tuple2[Int,	String]):	(Int,	String)	=

{

				val	(intResult,	stringResult)	=	fun(tup._1)

				(intResult,	tup._2	+	stringResult)

}

(Or	you	can	keep	the	original	version,	if	you	prefer.)

A	complete	example

Here’s	the	source	code	for	a	complete	example	that	shows	how	f,	g,	h,	and	bind
work	together:

object	Step3Bind	extends	App	{

				def	f(a:	Int):	(Int,	String)	=	{

								val	result	=	a	*	2

								(result,	s"\nf	result:	$result.")

				}

				def	g(a:	Int):	(Int,	String)	=	{

								val	result	=	a	*	3

								(result,	s"\ng	result:	$result.")

				}

				def	h(a:	Int):	(Int,	String)	=	{

								val	result	=	a	*	4

								(result,	s"\nh	result:	$result.")

				}

				//	bind,	a	HOF

				def	bind(fun:	(Int)	=>	(Int,	String),

													tup:	Tuple2[Int,	String]):	(Int,	String)	=

				{

								val	(intResult,	stringResult)	=	fun(tup._1)

								(intResult,	tup._2	+	stringResult)

				}

				val	fResult	=	f(100)

				val	gResult	=	bind(g,	fResult)

				val	hResult	=	bind(h,	gResult)

				println(s"result:	${hResult._1},	debug:	${hResult._2}")

}

Observations

What	can	we	say	about	bind	at	this	point?	First,	a	few	good	things:

It’s	a	useful	higher-order	function	(HOF)

It	gives	us	a	way	to	bind/glue	the	functions	f,	g,	and	h

It’s	simpler	and	less	error-prone	than	the	code	at	the	end	of	the	previous
lesson

If	there’s	anything	bad	to	say	about	bind,	it’s	that	it	looks	like	it’s	dying	to	be
used	in	a	for	expression,	but	because	bind	doesn’t	have	methods	like	map	and	
flatMap,	it	won’t	work	that	way.

For	example,	wouldn’t	it	be	cool	if	you	could	write	code	that	looked	like	this:

val	finalResult	=	for	{

				fResult	<-	f(100)

				gResult	<-	g(fResult)

				hResult	<-	h(gResult)

}	yield	hResult

Getting	Close	to	Using	bind	in	for
Expressions
Now	we’re	at	a	point	where	we	see	that	bind	is	better	than	what	I	started	with,
but	not	as	good	as	it	can	be.	That	is,	I	want	to	use	f,	g,	and	h	in	a	for	expression,
but	I	can’t,	because	bind	is	a	function,	and	therefore	it	has	no	way	to	implement	
map	and	flatMap	so	it	can	work	in	a	for	expression.

What	to	do?

Well,	if	we’re	going	to	succeed	we	need	to	figure	out	how	to	create	a	class	that
does	two	things:

1.	 Somehow	works	like	bind

2.	 Implements	map	and	flatMap	methods	so	it	can	work	inside	for	expressions

A	different	way	to	write	map	and	flatMap	methods

I’ll	do	that	soon,	but	first	I	need	to	do	something	else:	I	need	to	demonstrate	a
different	way	to	write	map	and	flatMap	methods.

In	the	previous	examples	I	showed	how	to	write	map	and	flatMap	methods	for	a	
Sequence	class	that	works	like	a	collection	class.	Before	we	solve	the	bind
problem	I	need	to	show	how	to	write	map	and	flatMap	for	classes	that	are	more
like	a	“wrapper”	than	a	“collection.”	I’ll	do	that	next.

Using	a	“Wrapper”	Class	in	a	for
Expression
To	set	the	groundwork	for	solving	the	problem	of	using	bind	in	a	for
expression,	I’m	going	to	create	a	simple	“wrapper”	class	that	you	can	use	in	a	
for	expression.	By	the	end	of	this	lesson	you’ll	have	a	class	that	you	can	use	like
this:

val	result:	Wrapper[Int]	=	for	{

				a	<-	new	Wrapper(1)

				b	<-	new	Wrapper(2)

				c	<-	new	Wrapper(3)

}	yield	a	+	b	+	c

To	keep	things	simple,	the	Wrapper	class	won’t	do	much;	by	the	end	of	this
lesson	that	for	expression	will	yield	this	result:

result:	Wrapper[Int]	=	6

But	even	though	it	will	be	simple,	this	class	will	demonstrate	how	to	write	map
and	flatMap	methods	for	these	kinds	of	classes,	what	I	call	“wrapper”	classes.

It	 helps	 to	 think	 of	 these	 classes	 as	 being	 different	 than
“collection”	classes.	As	I’ve	mentioned	a	few	times,	 it’s	better
to	 think	of	 them	as	being	a	wrapper	around	whatever	 it	 is	 that
they	wrap.

In	this	lesson	I’ll	create	a	wrapper	around	Int.	I’ll	do	this	because	a)	Int	is	a
simple	data	type	that’s	easy	to	understand,	and	b)	it	lets	us	create	map	and	
flatMap	methods	in	a	manner	that’s	similar	to	what	bind	is	going	to	need.

Beginning

Following	the	concept	of	“beginning	with	the	end	in	mind,”	this	is	the	solution
that	I’ll	be	able	to	write	by	the	end	of	this	lesson:

val	result:	Wrapper[Int]	=	for	{

				a	<-	new	Wrapper(1)

				b	<-	new	Wrapper(2)

				c	<-	new	Wrapper(3)

}	yield	a	+	b	+	c

This	code	tells	me	a	couple	of	things:

1.	 Wrapper	will	be	a	class	that	takes	a	single	Int	constructor	parameter

2.	 Because	it	works	with	multiple	generators	in	a	for	expression,	Wrapper
must	implement	map	and	flatMap	methods

3.	 Because	result	has	the	type	Wrapper[Int],	those	map	and	flatMap
functions	must	return	that	same	type

Knowing	these	things,	I	can	begin	sketching	the	Wrapper	class	like	this:

class	Wrapper[Int](value:	Int)	{

				def	map(f:	Int	=>	Int):	Wrapper[Int]	=	???

				def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	???

}

That’s	cool,	I	can	sketch	quite	a	bit	of	the	Wrapper	class	just	by	knowing	how	it’s
used	in	a	for	expression.	All	that	remains	now	is	writing	the	body	of	the	map	and
flatMap	methods.

Implementing	map

When	you	look	at	map’s	signature:

def	map(f:	Int	=>	Int):	Wrapper[Int]	=	???

you	can	say	these	things	about	map:

It	takes	a	function	that	transforms	an	Int	to	an	Int

After	doing	whatever	it	does,	map	returns	a	Wrapper[Int]	(i.e.,	an	Int
inside	a	new	Wrapper)

Writing	those	statements	as	comments	inside	map’s	body	looks	like	this:

def	map(f:	Int	=>	Int):	Wrapper[Int]	=	{

				//	apply	`f`	to	an	`Int`	to	get	a	new	`Int`

				//	wrap	the	new	`Int`	in	a	`Wrapper`

}

If	you’re	smarter	than	I	was	when	I	first	learned	about	this,	you	might	guess	that
those	comments	translate	into	code	that	looks	like	this:

def	map(f:	Int	=>	Int):	Wrapper[Int]	=	{

				//	apply	`f`	to	an	`Int`	to	get	a	new	`Int`

				val	newInt	=	f(SOME_INT)

				//	wrap	the	new	`Int`	in	a	`Wrapper`

				new	Wrapper(newInt)

}

As	it	turns	out,	map	is	a	very	literal	interpretation	of	those	two	comments.	The
only	question	is,	what	is	SOME_INT?	Where	does	it	come	from?

Where	SOME_INT	comes	from

Remember	that	when	you	create	a	new	Wrapper,	you	create	it	like	this:

val	x	=	Wrapper(1)

That’s	where	the	Int	comes	from:	Wrapper’s	constructor:

class	Wrapper[Int](value:	Int)	{	...

This	tells	me	that	SOME_INT	in	map’s	body	should	be	changed	to	value,	which
leads	to	this	code:

def	map(f:	Int	=>	Int):	Wrapper[Int]	=	{

				//	apply	`f`	to	an	`Int`	to	get	a	new	`Int`

				val	newInt	=	f(value)

				//	wrap	the	new	`Int`	in	a	`Wrapper`

				new	Wrapper(newInt)

}

Figure	[fig:wrappersConstructorParameter]	shows	how	value	gets	from	
Wrapper’s	constructor	into	the	map	method.

The	Int	that	map	operates	on	comes	from	Wrapper’s	constructor	parameter.

If	this	feels	unusual	…

If	this	feels	unusual	at	this	point	—	congratulations!	Your	mind	is	now	at	a	point
where	it	feels	like	variables	shouldn’t	just	magically	appear	inside	your
functions.	This	is	a	good	thing.

What’s	happening	here	is	that	you’re	using	value	just	like	you	would	in	OOP
code.	It’s	a	constructor	parameter	that	you’re	using	inside	map.	This	is	part	of
Scala’s	“functional	objects”	paradigm.

In	another	programming	language	you	might	write	map	in	a	separate	
WrapperUtils	class,	where	value	would	be	passed	in	explicitly:

class	WrapperUtils	{

				def	map(value:	Int,	f:	Int	=>	Int):	Wrapper[Int]	=	{

								val	newInt	=	f(value)

								new	Wrapper(newInt)

				}

}

But	in	Scala’s	“functional	objects”	approach,	you	can	access	value	implicitly.
Technically	this	violates	my	rule	that	for	pure	functions,	“Output	depends	only
on	input,”	but	when	you	use	the	functional	objects	coding	style,	this	is	the	one
case	where	you	are	allowed	to	implicitly	access	other	fields	in	a	function	in	your
class.

If	 you’ve	 heard	 the	 term	 “closure”	 before,	 yes,	 this	 is
essentially	a	closure.

Here’s	the	source	code	for	the	current	Wrapper	class:

The	current	Wrapper	class

Getting	back	to	the	problem	at	hand,	here’s	the	source	code	for	the	Wrapper	class
with	its	new	map	method:

class	Wrapper[Int](value:	Int)	{

				def	map(f:	Int	=>	Int):	Wrapper[Int]	=	{

								//	apply	`f`	to	an	`Int`	to	get	a	new	`Int`

								val	newInt	=	f(value)

				

								//	wrap	the	new	`Int`	in	a	`Wrapper`

								new	Wrapper(newInt)

				}

				

				def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	???

}

If	this	is	confusing	…

If	this	is	confusing,	remember	that	it’s	the	same	way	that	Scala’s	List	class
works.	It	takes	some	parameters	in	its	constructor:

val	x	=	List(1,2,3)

and	then	its	map	method	operates	on	those	parameters:

x.map(_	*	2)				//	yields	`List(2,4,6)`

Wrapper	works	the	same	way:

val	x	=	new	Wrapper(1)

x.map(_	*	2)

Testing	map

If	you	paste	the	current	Wrapper	class	into	the	Scala	REPL	and	then	run	those
last	two	lines	of	code,	you’ll	see	this	output:

scala>	val	x	=	new	Wrapper(1)

x:	Wrapper[Int]	=	1

scala>	x.map(_	*	2)

res0:	Wrapper[Int]	=	2

Very	cool.

As	a	final	note,	remember	that	implementing	a	map	method	in	a	class	like	
Wrapper	lets	you	use	one	generator	in	a	for	expression,	so	this	code	also	works
right	now:

scala>	for	{	i	<-	x	}	yield	i	*	2

res1:	Wrapper[Int]	=	2

So	far,	so	good.	Now	let’s	create	a	flatMap	method	in	Wrapper.

Implementing	flatMap

Let’s	follow	the	same	thought	process	to	see	if	we	can	create	flatMap’s	body.
First,	when	you	look	at	flatMap’s	signature:

def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	{

you	can	say	these	things	about	flatMap:

It	takes	a	function	that	transforms	an	Int	to	a	Wrapper[Int]

After	doing	whatever	it	does,	flatMap	returns	a	Wrapper[Int]

When	I	write	those	statements	as	comments	inside	flatMap’s	signature,	I	get
this:

def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	{

				//	apply	`f`	to	an	`Int`	to	get	a	`Wrapper[Int]`

				//	return	a	new	`Wrapper[Int]`

}

flatMap	always	seems	harder	to	grok	than	map,	but	if	I’m	reading	those
comments	right,	the	flatMap	solution	is	simpler	than	map.	Here’s	what	the
solution	looks	like:

def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	{

				//	apply	`f`	to	an	`Int`	to	get	a	`Wrapper[Int]`

				val	newValue	=	f(value)

				//	return	a	new	`Wrapper[Int]`

				newValue

}

It	turns	out	that	flatMap	is	so	simple	that	you	can	reduce	that	code	to	this:

def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	{

				f(value)

}

and	then	this:

def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	f(value)

For	a	“wrapper”	class	like	the	Wrapper,	it	turns	out	that	flatMap	is	extremely

simple:	It	just	applies	the	function	it’s	given	(f)	to	the	value	it	wraps	(value).

The	complete	source	code

Here’s	the	complete	source	code	for	the	Wrapper	class:

class	Wrapper[Int](value:	Int)	{

				def	map(f:	Int	=>	Int):	Wrapper[Int]	=	{

								val	newValue	=	f(value)

								new	Wrapper(newValue)

				}

				def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	f(value)

				override	def	toString	=	value.toString

}

If	you	paste	this	Wrapper	class	into	the	REPL	and	then	run	this	for	expression:

val	result:	Wrapper[Int]	=	for	{

				a	<-	new	Wrapper(1)

				b	<-	new	Wrapper(2)

				c	<-	new	Wrapper(3)

}	yield	a	+	b	+	c

you’ll	see	the	REPL	show	this	result:

result:	Wrapper[Int]	=	6

Kind	of	a	big	step

Congratulations,	you	just	implemented	map	and	flatMap	methods	for	a	non-
collection	class,	i.e.,	a	type	of	class	that	I	call	a	“wrapper.”

If	this	seems	like	a	minor	achievement,	well,	it’s	actually	kind	of	a	big	deal.
You’re	about	to	see	that	this	is	an	important	step	that	will	soon	let	you	use	the	
bind	approach	in	a	for	expression.	(And	that’s	also	going	to	be	kind	of	a	big
deal.)

Making	Wrapper	More	Generic
I	wrote	the	previous	lesson	by	creating	a	Wrapper[Int]	so	I	wouldn’t	have	to
deal	with	generic	types	in	that	lesson,	but	now	you	can	convert	that	class	to	a
more	generic	class.	All	you	have	to	do	is:

1.	 Change	all	the	Int	references	to	the	generic	A

2.	 Change	the	map	and	flatMap	signatures	to	return	the	generic	type	B

With	those	two	changes	you	can	convert	this	Int-specific	code:

class	Wrapper[Int](value:	Int)	{

				def	map(f:	Int	=>	Int):	Wrapper[Int]	=	{

								val	newValue	=	f(value)

								new	Wrapper(newValue)

				}

				def	flatMap(f:	Int	=>	Wrapper[Int]):	Wrapper[Int]	=	f(value)

				override	def	toString	=	value.toString

}

into	this	more	generic	code:

class	Wrapper[A](value:	A)	{

				def	map[B](f:	A	=>	B):	Wrapper[B]	=	{

								val	newValue	=	f(value)

								new	Wrapper(newValue)

				}

				def	flatMap[B](f:	A	=>	Wrapper[B]):	Wrapper[B]	=	{

								val	newValue	=	f(value)

								newValue

				}

				override	def	toString	=	value.toString

}

This	new	generic	class	can	still	be	used	as	a	wrapper	around	Int	in	a	for
expression:

val	intResult:	Wrapper[Int]	=	for	{

				a	<-	new	Wrapper(1)

				b	<-	new	Wrapper(2)

				c	<-	new	Wrapper(3)

}	yield	a	+	b	+	c

println(intResult)

And	now	it	can	also	be	used	as	a	wrapper	around	String	in	a	for	expression:

val	stringResult:	Wrapper[String]	=	for	{

				a	<-	new	Wrapper("a")

				b	<-	new	Wrapper("b")

				c	<-	new	Wrapper("c")

}	yield	a	+	b	+	c

println(stringResult)

There’s	still	one	more	thing	I’d	like	to	do	with	this	code:	I’d	like	to	change	it	so	I
don’t	have	to	use	the	new	keyword	when	creating	each	Wrapper	instance.	I’ll	do
that	in	the	next	lesson.

Changing	“new	Wrapper”	to
“Wrapper”
Now	I	want	to	make	one	last	change	to	the	Wrapper	class:	I	want	to	change	it	so
I	can	just	write	Wrapper	to	create	a	new	instance,	instead	of	having	to	write	
new	Wrapper.	That	is,	I	want	to	be	able	to	write	code	like	this:

val	stringResult	=	for	{

				a	<-	Wrapper("a")

				b	<-	Wrapper("b")

				c	<-	Wrapper("c")

}	yield	a	+	b	+	c

instead	of	this:

val	stringResult	=	for	{

				a	<-	new	Wrapper("a")

				b	<-	new	Wrapper("b")

				c	<-	new	Wrapper("c")

}	yield	a	+	b	+	c

This	is	a	small	change,	but:

It	makes	the	code	more	concise

It	will	demonstrate	a	key	point	about	what	I’m	doing	in	the	larger	scheme
of	things

There	are	two	ways	to	do	this.	The	first	way	is	to	change	Wrapper	from	a	regular
class	to	a	case	class.	While	that’s	a	good	solution,	for	our	purposes	it	will
help	to	implement	this	as	an	apply	method	in	a	“companion	object.”	(I’ll	explain
why	at	the	end	of	this	lesson.)

Creating	an	apply	method	in	a	companion	object

Creating	an	apply	method	in	a	companion	object	for	Wrapper	takes	just	a	couple
of	steps:

1.	 Modify	the	Wrapper	class	to	make	its	constructor	private

2.	 Create	an	object	named	Wrapper	in	the	same	file	as	the	Wrapper	class

3.	 Create	an	apply	method	in	the	object

1)	Make	the	Wrapper	class	constructor	private

The	first	step	is	to	make	the	Wrapper	class	constructor	private.	All	this	requires
is	to	change	its	class	signature	from	this:

class	Wrapper[A]	(value:	A)	{

to	this:

class	Wrapper[A]	private	(value:	A)	{

I	make	it	private	so	I	can	reference	it	from	the	companion	object,	but	no
outside	code	can	reference	it.

2)	Create	an	object	named	Wrapper	in	the	same	file	as
the	Wrapper	class

The	next	step	is	to	create	an	object	named	Wrapper	in	the	same	file	as	the	
Wrapper	class:

class	Wrapper[A]	private	(value:	A)	{	...

}

object	Wrapper	{

}

When	you	do	this,	you	create	a	companion	object	for	the	Wrapper	class.

3)	Create	an	apply	method	in	the	companion	object
with	the	appropriate	signature

The	last	step	in	the	process	is	to	create	an	apply	method	in	the	companion
object.	apply	is	essentially	a	Factory	method	that	lets	us	create	new	Wrapper
instances	without	needing	the	new	keyword:

val	a	=	Wrapper(1)			//	'new'	is	not	needed

apply’s	syntactic	sugar

If	you	know	your	companion	objects,	you	know	that	when	you	write	this:

val	a	=	Wrapper(1)

that	code	is	translated	by	the	Scala	compiler	into	this:

val	a	=	Wrapper.apply(1)

As	shown,	that	code	makes	a	call	to	the	apply	method	in	the	companion	object.
It’s	an	example	of	Scala’s	syntactic	sugar	at	work,	and	I	think	you’ll	agree	that
this	code:

val	a	=	Wrapper(1)

is	easier	to	read	than	this:

val	a	=	Wrapper.apply(1)

or	even	this:

val	a	=	new	Wrapper(1)

Defining	apply’s	signature

We	know	a	few	things	about	the	apply	method.	First,	from	the	previous
examples	we	know	that	it	takes	an	Int	value,	or	more	generically	it	takes	an	A.
Therefore	I	can	start	to	write	its	signature	like	this:

def	apply[A](value:	A)

http://alvinalexander.com/java/java-factory-pattern-example

From	those	examples	I	also	know	that	apply	returns	a	Wrapper	instance,
specifically	a	Wrapper	around	an	A,	so	I	can	further	write	this:

def	apply[A](value:	A):	Wrapper[A]	=	???

Now	the	question	is,	how	does	apply	create	a	new	Wrapper[A]?

The	answer	is	that	it	calls	the	Wrapper	class	constructor:

def	apply[A](value:	A):	Wrapper[A]	=	new	Wrapper(value)

The	constructor	is	private	to	all	other	code,	but	because	apply	is	created	in	
Wrapper’s	companion	object,	apply	can	still	see	that	constructor.

That’s	the	complete	apply	method.	Here’s	what	it	looks	like	with	the	Wrapper
class	from	the	previous	lesson,	along	with	its	new	companion	object:

class	Wrapper[A]	private	(value:	A)	{

				def	map[B](f:	A	=>	B):	Wrapper[B]	=	{

								val	newValue	=	f(value)

								new	Wrapper(newValue)

				}

				def	flatMap[B](f:	A	=>	Wrapper[B]):	Wrapper[B]	=	{

								val	newValue	=	f(value)

								newValue

				}

				override	def	toString	=	value.toString

}

object	Wrapper	{

				def	apply[A](value:	A):	Wrapper[A]	=	new	Wrapper(value)

}

Testing	apply

Now	you	can	test	the	apply	method	with	this	little	App:

object	WrapperExample	extends	App	{

				val	intResult	=	for	{

								a	<-	Wrapper(1)

								b	<-	Wrapper(2)

								c	<-	Wrapper(3)

				}	yield	a	+	b	+	c

				println(intResult)

}

As	shown	in	the	previous	lesson,	this	returns	the	result	6.	The	only	difference
between	that	lesson	and	this	one	is	that	you	can	now	write	Wrapper(1)	instead	of
new	Wrapper(1).	This	is	solely	because	of	the	companion	object	and	its	apply
method.

Why	I	used	apply

The	reason	I	wrote	an	apply	method	in	a	companion	object	in	this	lesson	rather
than	using	a	case	class	is	a	technical	one:	FP	developers	like	to	say	that	a
method	like	apply	“lifts”	an	ordinary	value	into	the	wrapper.	Put	another	way,	an
Int	on	its	own	looks	like	this:

100

But	when	you	use	apply	to	lift	the	Int	into	Wrapper,	the	result	is	a	wrapper
around	the	Int:

Wrapper(100)

Key	points

On	the	one	hand,	the	last	few	lessons	have	been	a	series	of	small	steps.	You	saw
how	to	write	a	Wrapper	class	that	lets	you	write	code	like	this:

val	intResult	=	for	{

				a	<-	Wrapper(1)

				b	<-	Wrapper(2)

				c	<-	Wrapper(3)

}	yield	a	+	b	+	c

On	the	other	hand,	if	you’re	into	technical	terms,	there	has	been	a	larger	step
behind	all	of	this:	You	just	wrote	your	first	monad.	Well,	at	least	your	first
monad	in	this	book.

As	you’ll	see	in	the	coming	lessons,	a	monad	in	Scala	is	simply	a	class	that	has	
map	and	flatMap	methods	(so	it	can	be	used	with	multiple	generators	in	a	for
expression),	and	it	also	has	an	apply	method	that	is	used	to	“lift”	ordinary	values
like	an	Int	into	the	monad.

That	last	sentence	explains	why	I	used	apply	in	this	example:	I	wanted	to
explain	this	“lifting”	process.	Now	that	you’ve	seen	this,	in	the	future	I’ll	use	
case	classes	for	the	same	purpose.

What’s	next

While	creating	our	first	monad	is	nice,	I’m	more	interested	in	solving	problems,
and	I	still	have	a	problem	to	solve:	I	want	to	be	able	to	use	something	like	a	bind
function	inside	a	for	expression	so	I	can	use	the	f,	g,	and	h	functions	that	I
introduced	a	few	lessons	ago.	To	do	this	I’ll	use	everything	I	just	showed	about	
map,	flatMap,	and	apply	in	the	last	several	Wrapper	lessons.

A	Quick	Note	About	Case	Classes	and
Companion	Objects
Before	you	head	into	the	following	lessons,	I	want	to	note	that	I’m	about	to	start
using	case	classes	quite	a	bit.	In	general,	the	reasons	I’m	about	to	use	case
classes	are:

I	don’t	want	to	have	to	use	the	new	keyword	to	create	new	instances	of
classes

I	don’t	want	to	have	to	write	companion	objects	with	apply	methods	to
achieve	this	effect

If	you	know	your	case	classes	you	know	that	they	let	you	write	code	like	this:

for	{

				a	<-	Wrapper(1)

				b	<-	Wrapper(2)

}	yield	c

rather	than	this:

for	{

				a	<-	new	Wrapper(1)

				b	<-	new	Wrapper(2)

}	yield	c

That	may	seem	like	a	minor	difference	to	some	people,	but	I	appreciate	that
getting	rid	of	the	new	keyword	makes	the	code	cleaner	and	more	concise.

As	a	final	note,	in	real-world	Scala/FP	code	you’ll	also	want	to	use	case	classes
so	you	can	take	advantage	of	the	other	features	they	offer,	including	pattern
matching.	But	in	the	lessons	that	follow,	I’m	really	just	interested	in	those	two
bullet	points.

If	 you’re	 not	 familiar	 with	 writing	 an	 apply	 method,	 see	 the
Scala	 Cookbook,	 or	 the	 appendix,	 “Using	 apply	 with	 Scala
Companion	Objects,”	for	more	information.

http://amzn.to/24ivK4G

Using	bind	in	a	for	Expression
A	few	lessons	I	asked	that	if	you	had	three	functions	with	these	signatures:

def	f(a:	Int):	(Int,	String)

def	g(a:	Int):	(Int,	String)

def	h(a:	Int):	(Int,	String)

wouldn’t	it	be	cool	if	you	could	somehow	use	those	functions	in	a	for
expression,	like	this:

val	finalResult	=	for	{

				fResult	<-	f(100)

				gResult	<-	g(fResult)

				hResult	<-	h(gResult)

}	yield	hResult

Now	that	I‘ve	covered	the	“wrapper”	concept,	in	this	lesson	I’ll	show	exactly
how	to	do	that.

A	big	observation

At	some	point	in	the	history	of	Scala,	someone	made	a	few	observations	that
made	this	solution	possible.	The	key	insight	may	have	been	this:

For	something	to	be	used	in	a	for	expression,	it	doesn’t	have	to
be	a	class	that	implements	the	map	and	flatMap	methods	(like	
Sequence);	 it	 just	 needs	 to	 return	 a	 type	 that	 implements	 map
and	flatMap	methods.

That’s	a	big	observation,	or	at	least	it	was	for	me.	So	far	in	this	book	I’ve	shown
classes	like	Sequence	and	Wrapper	that	implement	map	and	flatMap	so	they	can
be	used	in	for,	but	the	reality	is	that	any	function	that	returns	such	a	type	can	be
used	in	for.

The	next	conceptual	leap

With	that	observation	in	hand,	it’s	a	small	conceptual	leap	to	figure	out	how	to
get	these	functions	to	work	in	for:

def	f(a:	Int):	(Int,	String)

def	g(a:	Int):	(Int,	String)

def	h(a:	Int):	(Int,	String)

Can	you	see	the	solution?

Instead	of	these	functions	returning	a	tuple,	they	could	return	…	something	else
…	a	type	that	implements	map	and	flatMap.

The	type	these	functions	return	should	be	something	like	a	Wrapper,	but	where	
Wrapper	contained	a	single	value	—	such	as	a	Wrapper[Int]	—	this	type	should
be	a	wrapper	around	two	values,	an	Int	and	a	String.	If	such	a	type	existed,	f,	
g,	and	h	could	return	their	Int	and	String	values	wrapped	in	that	type	rather
than	a	tuple.

You	could	call	it	a	TwoElementWrapper:

def	f(a:	Int):	TwoElementWrapper(Int,	String)

def	g(a:	Int):	TwoElementWrapper(Int,	String)

def	h(a:	Int):	TwoElementWrapper(Int,	String)

But	that’s	not	very	elegant.	When	you	think	about	it,	the	purpose	of	f,	g,	and	h	is
to	show	how	functions	can	return	“debug”	information	in	addition	to	their
primary	return	value,	so	a	slightly	more	accurate	name	is	Debuggable:

def	f(a:	Int):	Debuggable(Int,	String)

def	g(a:	Int):	Debuggable(Int,	String)

def	h(a:	Int):	Debuggable(Int,	String)

If	Debuggable	implements	map	and	flatMap,	this	design	will	let	f,	g,	and	h	be
used	in	a	for	expression.	Now	all	that’s	left	to	do	is	to	create	Debuggable.

Because	Debuggable	is	going	to	work	like	Wrapper,	I’m	going	to	try	to	start	with
the	Wrapper	code	from	the	previous	lesson,	and	see	if	I	can	modify	it	to	work	as
needed.

Trimming	Wrapper	down

The	first	thing	I	want	to	do	is	to	convert	Wrapper	into	a	case	class	to	simplify	it.
When	I	do	that,	and	then	rename	it	to	Debuggable,	I	get	this:

case	class	Debuggable[A]	(value:	A)	{

				def	map[B](f:	A	=>	B):	Debuggable[B]	=	{

								val	newValue	=	f(value)

								new	Debuggable(newValue)

				}

				def	flatMap[B](f:	A	=>	Debuggable[B]):	Debuggable[B]	=	{

								val	newValue	=	f(value)

								newValue

				}

}

That’s	a	start,	but	as	this	code	shows:

def	f(a:	Int):	Debuggable(Int,	String)

Debuggable	must	take	two	input	parameters.	Ignoring	generic	types	for	a	few
moments,	this	tells	me	that	Debuggable’s	signature	must	look	like	this:

case	class	Debuggable	(value:	Int,	message:	String)	{

When	I	further	remove	the	generic	types	and	bodies	from	the	map	and	flatMap
methods,	Debuggable	becomes	this:

case	class	Debuggable	(value:	Int,	message:	String)	{

				def	map(f:	Int	=>	Int):	Debuggable	=	???

				def	flatMap(f:	Int	=>	Debuggable):	Debuggable	=	???

}

Now	I	just	need	to	think	about	the	logic	for	the	map	and	flatMap	methods.

A	reminder	of	how	for	translates

An	important	thing	to	know	at	this	point	is	that	when	you	write	a	for	expression
like	this:

				val	seq	=	Sequence(1,2,3)

				for	{

								i	<-	seq

								j	<-	seq

								k	<-	seq

								l	<-	seq

				}	yield	(i+j+k+l)

it	will	be	translated	into	three	flatMap	calls	followed	by	one	map	call:

seq.flatMap	{	i	=>	

				seq.flatMap	{	j	=>	

								seq.flatMap	{	k	=>	

												seq.map	{	l	=>	

																i	+	j	+	k	+	l

												}

								}

				}

}

For	what	we’re	about	to	do,	the	most	important	thing	to	observe	is	that	map	is	(a)
the	last	function	called,	and	(b)	the	first	one	that	returns.

You	can	think	of	the	flatMap	calls	as	being	a	series	of	recursive	calls.	flatMap
keeps	calling	itself	until	the	final	expression	is	reached,	at	which	point	map	is
called.	When	map	is	called,	it	executes,	returns	its	result,	and	then	the	flatMap
calls	unwind.

With	that	knowledge	in	hand,	let’s	implement	the	map	and	flatMap	methods	for
the	Debuggable	class.

map

When	I	first	created	the	IntWrapper	class	I	showed	its	map	signature:

def	map(f:	Int	=>	Int):	Wrapper[Int]	=	???

and	then	wrote	that	you	could	say	these	things	about	map‘s	implementation:

It	takes	a	function	that	transforms	an	Int	to	an	Int

After	doing	whatever	it	does,	map	returns	a	Wrapper[Int],	i.e.,	an	Int
inside	a	new	Wrapper

Similarly,	when	you	look	at	map’s	signature	in	Debuggable:

def	map(f:	Int	=>	Int):	Debuggable	=	???

you	can	say	these	things	about	it:

It	takes	a	function	that	transforms	an	Int	to	an	Int

After	doing	whatever	it	does,	map	returns	a	Debuggable	instance

As	I	did	with	IntWrapper,	I	write	those	sentences	as	comments	inside	map	like
this:

def	map(f:	Int	=>	Int):	Debuggable	=	{

				//	apply	`f`	to	an	`Int`	to	get	a	new	`Int`

				//	wrap	that	result	in	a	`Debuggable`

}

I	can	implement	the	first	sentence	as	I	did	in	Wrapper	—	by	applying	the
function	f	to	the	value	in	Debuggable	—	to	get	this:

def	map(f:	Int	=>	Int):	Debuggable	=	{

				//	apply	`f`	to	an	`Int`	to	get	a	new	`Int`

				val	newValue	=	f(value)

				//	wrap	that	result	in	a	`Debuggable`

}

Now	map	just	needs	to	return	a	new	Debuggable	instance.

The	Debuggable	constructor	takes	an	Int	and	a	String,	which	I	named	value
and	message.	The	value	map	should	return	is	the	new,	transformed	value	I	got	by
applying	f	to	value,	so	that	part	is	good.

While	it	may	not	be	immediately	clear	why	I	should	return	the	message	from	the	
Debuggable	constructor,	it’s	the	only	String	message	I	have,	so	I’ll	use	it	to
construct	and	return	a	new	Debuggable	instance:

def	map(f:	Int	=>	Int):	Debuggable	=	{

				val	newValue	=	f(value)

				Debuggable(newValue,	message)

}

Figure	[fig:howValueMessageComeIntoMap]	shows	how	the	value	and	message
from	the	Debuggable	class	relate	to	how	they	are	used	in	map.

How	value	and	message	come	into	the	map	function.

When	I	write	Scala/FP	functions	that	use	constructor	parameters	I	often	like	to
put	a	this	reference	in	front	of	those	values	so	I	know	where	they	came	from.
That	change	leads	to	this	code:

def	map(f:	Int	=>	Int):	Debuggable	=	{

				val	newValue	=	f(this.value)

				Debuggable(newValue,	this.message)

}

That’s	the	complete	map	function.

Why	map	returns	message

The	short	answer	of	“why”	message	is	returned	here	is	because	map	is	the	“last
function	called	and	the	first	to	return.”	As	you’ll	see	in	the	details	in	the	next
lesson,	map	creates	the	first	message	in	the	stack	of	messages	created	in	the	for
expression.

flatMap

When	I	first	created	the	Wrapper	class	I	wrote	that	you	could	say	these	things
about	its	flatMap	implementation:

It	takes	a	function	that	transforms	an	Int	to	a	Wrapper[Int]

After	doing	whatever	it	does,	flatMap	returns	a	Wrapper[Int]

That	led	to	this	code,	which	was	a	direct	implementation	of	those	statements:

def	flatMap[B](f:	A	=>	Wrapper[B]):	Wrapper[B]	=	{

				val	newValue	=	f(value)

				newValue

}

For	the	debuggable	class	you	can	say	these	things	about	its	flatMap
implementation:

It	takes	a	function	that	transforms	an	Int	to	a	Debuggable	instance

After	doing	whatever	it	does,	flatMap	returns	a	Debuggable	instance

Writing	flatMap	with	those	statements	as	comments	looks	like	this:

def	flatMap(f:	Int	=>	Debuggable):	Debuggable	=	{

				//	(1)	apply	the	function	to	an	Int	to	get	a	new	Debuggable

				//	(2)	return	a	new	Debuggable	instance	based	on	the	new	value

}

As	with	the	Wrapper	class,	for	the	first	comment	the	question	is,	“What	Int
should	I	apply	the	function	to?”	As	before,	the	answer	is,	“Apply	it	to	the	value
you	hold.”	This	leads	to	this	code:

def	flatMap(f:	Int	=>	Debuggable):	Debuggable	=	{

				//	(1)	apply	the	function	to	an	Int	to	get	a	new	Debuggable

				val	newValue:	Debuggable	=	f(value)

				//	(2)	return	a	new	Debuggable	instance	based	on	the	new	value

}

So	far	this	is	the	same	as	the	Wrapper	class.	Now	let’s	get	the	second	line
working.

The	second	comment	states:

//	return	a	new	Debuggable	instance	based	on	the	new	value

This	part	was	a	little	tricky	for	me,	and	the	only	way	I	could	understand	the
solution	was	by	really	digging	into	the	code	(as	shown	in	the	next	lesson).	The
short	answer	is	that	you	need	to	create	the	new	Debuggable	instance	from:

The	Int	of	the	newValue	created	in	the	first	line

Appending	newValue.message	to	the	message	that	was	passed	into	the
current	Debuggable	instance

I’ll	explain	this	a	little	more	shortly,	but	the	short	answer	is	that	this	is	the
solution:

Debuggable(nextValue.value,	message	+	nextValue.message)

How	to	think	about	that

You	can	think	about	that	solution	as	follows.	Imagine	that	you	have	a	for
expression	with	a	series	of	Debuggable	instances,	like	this:

val	finalResult	=	for	{

				fResult	<-	f(100)

				gResult	<-	g(fResult)

				hResult	<-	h(gResult)

}	yield	hResult

Each	of	those	lines	—	f(100),	g(fResult),	etc.	—	are	going	to	add	a	new
message	to	the	overall	string	of	messages.	Therefore,	at	some	point	you	need	to
string	those	messages	together,	and	flatMap	is	the	place	where	that	happens.	The
most	recent	message	is	contained	in	newValue.message,	and	all	of	the	previous
messages	are	contained	in	the	message	that	is	passed	into	Debuggable	(i.e.,	
this.message).

I	explain	this	in	great	detail	in	the	next	lesson,	so	if	you	want	to
completely	 understand	 how	 this	 works,	 go	 ahead	 and	 look	 at
that	lesson	at	this	point.

Finishing	flatMap

Finishing	up	with	flatMap,	I	now	know	what	the	second	expression	looks	like,
so	I	add	that	to	flatMap’s	body:

def	flatMap(f:	Int	=>	Debuggable):	Debuggable	=	{

				//	(1)	apply	the	function	to	an	Int	to	get	a	new	Debuggable

				val	newValue:	Debuggable	=	f(value)

				//	(2)	return	a	new	Debuggable	instance	based	on	the	new	value

				Debuggable(newValue.value,	message	+	newValue.message)

}

The	completed	class

When	I	add	map	and	flatMap	to	the	Debuggable	class	definition,	I	now	have	this
code:

case	class	Debuggable	(value:	Int,	message:	String)	{

				def	map(f:	Int	=>	Int):	Debuggable	=	{

								val	newValue	=	f(value)

								Debuggable(newValue,	message)

				}

				def	flatMap(f:	Int	=>	Debuggable):	Debuggable	=	{

								val	newValue:	Debuggable	=	f(value)

								Debuggable(newValue.value,	message	+	"\n"	+	newValue.message)

				}

}

Now	I	just	need	to	figure	out	how	to	write	the	f,	g,	and	h	functions	so	I	can	write
a	for	expression	like	this:

val	finalResult	=	for	{

				fResult	<-	f(100)

				gResult	<-	g(fResult)

				hResult	<-	h(gResult)

}	yield	hResult

Writing	f,	g,	and	h

As	I	mentioned	earlier,	the	solution	to	getting	f,	g,	and	h	working	in	a	for
expression	is	that	they	should	return	a	Debuggable	instance.	More	specifically
they	should:

Take	an	Int	input	parameter

Return	a	Debuggable	instance

This	tells	me	that	their	signatures	will	look	like	this:

def	f(a:	Int):	Debuggable	=	???

def	g(a:	Int):	Debuggable	=	???

def	h(a:	Int):	Debuggable	=	???

In	the	previous	lessons	these	functions	worked	like	this:

f	multiplied	its	input	value	by	2

g	multiplied	its	input	value	by	3

h	multiplied	its	input	value	by	4

Thinking	only	about	f,	I	can	begin	to	write	it	like	this:

def	f(a:	Int):	Debuggable	=	{

				val	result	=	a	*	2

				val	message	=	s"f:	a	($a)	*	2	=	$result."

				???

}

This	gives	me	a	result	and	message	similar	to	what	I	had	before,	but	now	the
function	signature	tells	me	that	I	need	to	return	those	values	as	a	Debuggable
instance	rather	than	as	a	tuple.	That’s	a	simple	step:

def	f(a:	Int):	Debuggable	=	{

				val	result	=	a	*	2

				val	message	=	s"f:	a	($a)	*	2	=	$result."

				Debuggable(result,	message)

}

f	now	takes	an	Int	input	parameter,	and	yields	a	Debuggable,	as	desired.

A	test	App

g	and	h	are	simple	variations	of	f,	so	when	I	create	them	and	put	all	of	the
functions	in	a	test	App	along	with	the	original	for	expression,	I	get	this:

object	Test	extends	App	{

				val	finalResult	=	for	{

								fResult	<-	f(100)

								gResult	<-	g(fResult)

								hResult	<-	h(gResult)

				}	yield	hResult

				//	added	a	few	"\n"	to	make	the	output	easier

				//	to	read

				println(s"value:			${finalResult.value}\n")

				println(s"message:	\n${finalResult.message}")

				def	f(a:	Int):	Debuggable	=	{

								val	result	=	a	*	2

								val	message	=	s"f:	a	($a)	*	2	=	$result."

								Debuggable(result,	message)

				}

				def	g(a:	Int):	Debuggable	=	{

								val	result	=	a	*	3

								val	message	=	s"g:	a	($a)	*	3	=	$result."

								Debuggable(result,	message)

				}

				def	h(a:	Int):	Debuggable	=	{

								val	result	=	a	*	4

								val	message	=	s"h:	a	($a)	*	4	=	$result."

								Debuggable(result,	message)

				}

}

Running	that	App	yields	this	output:

value:			2400

message:	

f:	a	(100)	*	2	=	200.

g:	a	(200)	*	3	=	600.

h:	a	(600)	*	4	=	2400.

While	that	output	may	not	be	beautiful	for	many	people,	if	this	is	the	first	time
you’ve	enabled	something	like	this	in	a	for	expression	it	can	be	a	really
beautiful	thing.

More	information

I	went	through	some	parts	of	this	lesson	a	little	quicker	than	usual.	My	thinking
is	that	if	you’re	comfortable	with	how	for,	map,	and	flatMap	work,	I	didn’t	want
to	go	too	slow.	But	for	people	like	me	who	struggle	with	this	concept,	I	want	to
cover	this	topic	more	deeply.	Therefore,	the	next	lesson	takes	a	deep	dive	into
exactly	how	all	of	this	code	works.

How	Debuggable,	f,	g,	and	h	Work
If	you	want	to	see	the	nitty-gritty	details	of	how	the	Debuggable	class	works
with	the	f,	g,	and	h	functions	in	the	previous	lesson,	this	lesson	is	for	you.	I
won’t	introduce	any	new	concepts	in	this	lesson,	but	I’ll	add	a	lot	of	debugging
statements	to	that	code	to	show	exactly	how	a	for	expression	like	this	works.

Source	code

The	best	way	to	work	with	this	lesson	is	to	check	the	source	code	out	from	my
Github	project	so	you	can	easily	refer	to	the	code	as	you	read	the	lesson.	Here’s
a	link	to	the	code:

This	version	of	the	Debuggable	code	on	Github

https://github.com/alvinj/DebuggableInDetail

The	flow	of	this	lesson

The	way	this	lesson	works	is:

I’ll	show	the	same	code	as	the	previous	lesson,	but	with	many	println
statements	added	for	debugging	purposes

After	showing	the	new	code,	I’ll	show	the	output	it	produces

After	that,	I’ll	explain	that	output

I	hope	all	of	this	debug	code	(and	its	output)	provides	a	good	example	of	how	a	
for	expression	works,	especially	with	“wrapper”	classes	like	Debuggable.

The	Debuggable	class

First,	here’s	the	source	code	for	the	Debuggable	class:

case	class	Debuggable(value:	Int,	msg:	String)	{

				def	map(f:	Int	=>	Int):	Debuggable	=	{

								println("\n>>>>	entered	map		>>>>")

								println(s"map:	value:	${value}")

								println(s"map:	msg:	(${msg})")

								val	nextValue	=	f(value)			//Int

								//	there	is	no	`nextValue.msg`

								println(s"map:	nextValue:	${nextValue}")

								println("<<<<	leaving	map		<<<<\n")

								Debuggable(nextValue,	msg)

				}

				def	flatMap(f:	Int	=>	Debuggable):	Debuggable	=	{

								println("\n>>>>	entered	fmap	>>>>")

								println(s"fmap:	value:	${value}")

								println(s"fmap:	msg:	(${msg})")

								val	nextValue	=	f(value)

								println(s"fmap:	msg:	(${msg})")

								println(s"fmap:	next	val:	${nextValue.value}")

								println(s"fmap:	next	msg:	\n(${nextValue.msg})")

								println("<<<<	leaving	fmap	<<<<\n")

								Debuggable(nextValue.value,	msg	+	"\n"	+	nextValue.msg)

				}

}

The	important	notes	about	this	code	are:

I	added	println	statements	to	show	the	value	and	msg	that	map	and	
flatMap	have	before	they	apply	their	functions

I	added	println	statements	to	show	the	nextValue	that	map	and	flatMap
have	after	they	apply	their	functions,	and	also	show	the	new	message	that’s
created	when	flatMap	applies	its	function

The	f,	g,	and	h	functions

Next,	this	is	how	I	modified	the	f,	g,	and	h	functions:

object	DebuggableTestDetails	extends	App	{

				def	f(a:	Int):	Debuggable	=	{

								println(s"\n[f:	a	=	$a]")

								val	result	=	a	*	2

								Debuggable(result,	s"f:	input:	$a,	result:	$result")

				}

				def	g(a:	Int):	Debuggable	=	{

								println(s"\n[g:	a	=	$a]")

								val	result	=	a	*	3

								Debuggable(result,	s"g:	input:	$a,	result:	$result")

				}

				def	h(a:	Int):	Debuggable	=	{

								println(s"\n[h:	a	=	$a]")

								val	result	=	a	*	4

								Debuggable(result,	s"h:	input:	$a,	result:	$result")

				}

				val	finalResult	=	for	{

								fRes	<-	f(100)

								gRes	<-	g(fRes)

								hRes	<-	h(gRes)

				}	yield	hRes

				println("\n-----	FINAL	RESULT	-----")

				println(s"final	value:	${finalResult.value}")

				println(s"final	msg:			\n${finalResult.msg}")

}

As	shown,	in	the	f,	g,	and	h	functions	I	show	the	initial	value	that	each	function
receives	when	it’s	called.

How	the	for	expression	is	translated

In	the	output	that	follows	it	also	helps	to	understand	how	the	for	expression	is
translated	by	the	Scala	compiler.	This	is	what	my	for	expression	looks	like:

val	finalResult	=	for	{

				fRes	<-	f(100)

				gRes	<-	g(fRes)

				hRes	<-	h(gRes)

}	yield	hRes

And	this	is	what	the	code	looks	like	when	I	compile	the	for	expression	with	the	
scalac	-Xprint:parse	command	(and	then	clean	up	the	output):

val	finalResult	=	f(100).flatMap	{	fResult	=>	

				g(fResult).flatMap	{	gResult	=>	

								h(gResult).map	{	hResult	=>	

												hResult

								}

				}

}

Notice	that	there	are	two	flatMap	calls	followed	by	one	map	call.

The	output

When	I	run	the	test	App	shown,	this	is	the	output	I	see:

[f:	a	=	100]

>>>>	entered	fmap	>>>>

fmap:	value:	200

fmap:	msg:	(f:	input:	100,	result:	200)

[g:	a	=	200]

>>>>	entered	fmap	>>>>

fmap:	value:	600

fmap:	msg:	(g:	input:	200,	result:	600)

[h:	a	=	600]

>>>>	entered	map		>>>>

map:	value:	2400

map:	msg:	(h:	input:	600,	result:	2400)

map:	nextValue:	2400

<<<<	leaving	map		<<<<

fmap:	msg:	(g:	input:	200,	result:	600)

fmap:	next	val:	2400

fmap:	next	msg:	

(h:	input:	600,	result:	2400)

<<<<	leaving	fmap	<<<<

fmap:	msg:	(f:	input:	100,	result:	200)

fmap:	next	val:	2400

fmap:	next	msg:	

(g:	input:	200,	result:	600

h:	input:	600,	result:	2400)

<<<<	leaving	fmap	<<<<

-----	FINAL	RESULT	-----

final	value:	2400

final	msg:			

f:	input:	100,	result:	200

g:	input:	200,	result:	600

h:	input:	600,	result:	2400

Take	a	few	moments	to	review	that	output	to	see	if	you	understand	how	it	works.
One	of	the	most	important	things	to	note	is	that	the	map	method	is	called	last,	and
it	returns	before	the	flatMap	method	calls	return.

I’ll	provide	an	explanation	of	all	of	the	output	in	the	sections	that	follow.

Explaining	the	output

The	first	thing	that	happens	is	that	the	f	function	is	called	with	the	value	100:

[f:	a	=	100]

You	can	understand	this	when	you	look	at	the	first	part	of	my	for	expression:

val	finalResult	=	for	{

				fRes	<-	f(100)

The	desugared	for	expression	shows	this	even	more	clearly:

val	finalResult	=	f(100).flatMap	{	fResult	=>	

In	both	of	those	code	snippets,	f(100)	is	the	first	piece	of	code	that	is	invoked.

What	happens	in	f

What	happens	inside	of	f	is	that	this	output	is	printed:

[f:	a	=	100]

After	that,	the	value	that’s	received	is	doubled,	and	a	new	Debuggable	instance	is
created.	You	can	see	that	in	f’s	body:

def	f(a:	Int):	Debuggable	=	{

				println(s"\n[f:	a	=	$a]")

				val	result	=	a	*	2

				Debuggable(result,	s"f:	input:	$a,	result:	$result")

}

The	first	flatMap	is	called

The	next	piece	of	output	looks	like	this:

>>>>	entered	fmap	>>>>

fmap:	value:	200

fmap:	msg:	(f:	input:	100,	result:	200)

This	shows	that	flatMap	is	invoked.	This	makes	sense	when	you	look	at	the	first
line	of	the	desugared	for	expression:

val	finalResult	=	f(100).flatMap	{	fResult	=>

That	code	shows	that	flatMap	is	invoked	after	f	is	applied	to	the	value	100.

To	understand	the	debug	output,	it	helps	to	look	at	flatMap:

def	flatMap(fip:	Int	=>	Debuggable):	Debuggable	=	{

				println("\n>>>>	entered	fmap	>>>>")

				println(s"fmap:	value:	${this.value}")

				println(s"fmap:	msg:	(${this.msg})")

				val	nextValue	=	fip(value)

				println(s"fmap:	msg:	(${this.msg})")

				println(s"fmap:	next	val:	${nextValue.value}")

				println(s"fmap:	next	msg:	\n(${nextValue.msg})")

				println("<<<<	leaving	fmap	<<<<\n")

				Debuggable(nextValue.value,	msg	+	"\n"	+	nextValue.msg)

}

The	debug	output	shows	that	this.value	in	flatMap	is	200.	This	was	passed
into	the	new	Debuggable	by	f.	The	this.msg	value	is	also	provided	by	f	when	it
creates	the	new	Debuggable.

At	this	point	there’s	no	more	output	from	flatMap.	What	happens	is	that	this	line
of	code	in	flatMap	is	invoked:

val	nextValue	=	fun(value)

That	line	causes	this	output	to	be	printed:

[g:	a	=	200]

We’re	now	at	this	point	in	the	desugared	for	expression:

val	finalResult	=	f(100).flatMap	{	fResult	=>	

				g(fResult)

What	happens	in	g

The	output	[g:	a	=	200]	shows	that	the	g	function	is	entered.	Here’s	g’s	source
code:

def	g(a:	Int):	Debuggable	=	{

				println(s"\n[g:	a	=	$a]")

				val	result	=	a	*	3

				Debuggable(result,	s"g:	input:	$a,	result:	$result")

}

As	you	saw	with	f,	what	happens	here	is:

g’s	println	statement	produces	the	output	shown

a	new	result	is	calculated

g	creates	a	new	Debuggable	instance	as	its	last	line

The	second	flatMap	call	is	reached

When	g	returns	the	new	Debuggable	instance,	the	second	flatMap	call	is
invoked,	which	you	can	see	in	the	desugared	code:

val	finalResult	=	f(100).flatMap	{	fResult	=>	

				g(fResult).flatMap	{	gResult	=>	...

flatMap	is	invoked	with	values	given	to	it	by	g,	as	shown	in	its	output:

>>>>	entered	fmap	>>>>

fmap:	value:	600

fmap:	msg:	(g:	input:	200,	result:	600)

g	multiplied	the	value	it	was	given	(200)	to	produce	a	new	value,	600,	along	with
the	message	shown.

Those	lines	of	debug	output	are	produced	by	these	first	three	lines	of	code	in	
flatMap:

				println("\n>>>>	entered	fmap	>>>>")

				println(s"fmap:	value:	${this.value}")

				println(s"fmap:	msg:	(${this.msg})")

After	that,	flatMap’s	fourth	line	of	code	is	reached:

val	nextValue	=	fun(value)

That	line	of	code	causes	the	next	line	of	output	to	be	produced:

[h:	a	=	600]

This	tells	us	that	the	h	function	was	just	entered.

Note:	The	flatMap	calls	haven’t	returned	yet

I’ll	come	back	to	the	h	function	call	in	a	moment,	but	first,	it’s	important	to	note
that	the	two	flatMap	function	calls	haven’t	returned	yet.	They	both	pause	when
that	fourth	line	of	code	is	reached.

You	can	understand	that	by	a)	looking	at	flatMap’s	source	code,	and	b)	looking
at	the	desugared	for	expression:

val	finalResult	=	f(100).flatMap	{	fResult	=>	

				g(fResult).flatMap	{	gResult	=>		//	YOU	ARE	NOW	HERE

								h(gResult).map	{	hResult	=>

												hResult

								}

				}

}

The	flatMap	calls	haven’t	returned	yet	because:

The	first	flatMap	function	reaches	its	fourth	line,	which	invokes	g

When	g	finishes,	the	second	flatMap	call	is	invoked

When	that	instance	of	flatMap	reaches	its	fourth	line,	h	is	invoked

As	you’re	about	to	see,	when	h	finishes	running,	map	is	invoked

h	executes

Getting	back	to	where	I	was	…	the	last	line	of	debug	output	was	this:

[h:	a	=	600]

This	tells	you	that	the	h	function	was	just	invoked.	h	prints	that	output,	doubles
the	value	it	receives,	then	creates	a	new	Debuggable	instance	with	that	new	value
and	new	message:

def	h(a:	Int):	Debuggable	=	{

				println(s"\n[h:	a	=	$a]")

				val	result	=	a	*	4

				Debuggable(result,	s"h:	input:	$a,	result:	$result")

}

map	is	entered

As	the	desugared	for	expression	shows,	after	h	runs,	map	is	invoked:

val	finalResult	=	f(100).flatMap	{	fResult	=>	

				g(fResult).flatMap	{	gResult	=>	

								h(gResult).map	{	hResult	=>	...

The	map	call	produces	the	next	debug	output	you	see:

>>>>	entered	map		>>>>

map:	value:	2400

map:	msg:	(h:	input:	600,	result:	2400)

map:	nextValue:	2400

<<<<	leaving	map		<<<<

This	shows	that	map	is	called,	it	runs	(producing	this	output),	and	then	it	exits.
This	confirms	what	I	wrote	in	the	previous	lesson:

In	a	for	expression,	map	is	the	last	function	called	and	the	first
to	exit.

Here’s	a	look	at	map’s	source	code,	followed	by	its	output:

def	map(f:	Int	=>	Int):	Debuggable	=	{

				println("\n>>>>	entered	map		>>>>")

				println(s"map:	value:	${value}")

				println(s"map:	msg:	(${msg})")

				val	nextValue	=	f(value)			//Int

				//	there	is	no	`nextValue.msg`

				println(s"map:	nextValue:	${nextValue}")

				println("<<<<	leaving	map		<<<<\n")

				Debuggable(nextValue,	msg)

}

>>>>	entered	map		>>>>

map:	value:	2400

map:	msg:	(h:	input:	600,	result:	2400)

map:	nextValue:	2400

<<<<	leaving	map		<<<<

The	flatMap	calls	unwind

After	the	map	method	finishes,	the	next	thing	that	happens	is	that	the	flatMap
calls	begin	to	unwind.	A	look	at	the	de-sugared	code	reminds	you	why	this
unwinding	happens	now:

val	finalResult	=	f(100).flatMap	{	fResult	=>	

				g(fResult).flatMap	{	gResult	=>	

								h(gResult).map	{	hResult	=>		//	map	RETURNS

												hResult																		//	CONTROL	TO	flatMap

								}

				}

}

What’s	happened	so	far	is:

f	was	called

When	f	finished,	the	first	flatMap	function	was	called

It	called	g

When	g	finished,	the	second	flatMap	function	was	called

It	called	h

When	h	finished,	map	was	called

map	just	finished	running

Now	that	map	is	finished,	flow	of	control	returns	to	the	second	flatMap
invocation.	This	is	the	output	from	it:

fmap:	msg:	(g:	input:	200,	result:	600)

fmap:	next	val:	2400

fmap:	next	msg:	

(h:	input:	600,	result:	2400)

<<<<	leaving	fmap	<<<<

When	that	flatMap	call	finishes	running,	flow	of	control	returns	to	the	first	
flatMap	invocation,	which	produces	this	output:

fmap:	msg:	(f:	input:	100,	result:	200)

fmap:	next	val:	2400

fmap:	next	msg:	

(g:	input:	200,	result:	600

h:	input:	600,	result:	2400)

<<<<	leaving	fmap	<<<<

When	it	finishes,	the	final	output	from	the	application	is	shown.	This	is	what	the	
println	statements	look	like	at	the	end	of	the	App:

println("\n-----	FINAL	RESULT	-----")

println(s"final	value:	${finalResult.value}")

println(s"final	msg:			\n${finalResult.msg}")

and	this	is	what	their	output	looks	like:

-----	FINAL	RESULT	-----

final	value:	2400

final	msg:			

f:	input:	100,	result:	200

g:	input:	200,	result:	600

h:	input:	600,	result:	2400

Summary

If	you	had	any	confusion	about	how	for	expressions	run	—	especially	with
wrapper	classes	like	Debuggable	—	I	hope	this	lesson	is	helpful.	I	encourage
you	to	work	with	the	source	code	and	modify	it	until	you’re	completely
comfortable	with	how	it	works.	The	lessons	that	follow	will	continue	to	build	on
this	knowledge.

A	Generic	Version	of	Debuggable
Source	code

The	source	code	for	this	lesson	is	at	this	URL:

github.com/alvinj/FPDebuggable

https://github.com/alvinj/FPDebuggable

Using	generic	types

In	this	lesson	I’ll	share	a	version	of	the	Debuggable	class	that	uses	generic	types
rather	than	Ints	everywhere.

I’m	going	to	assume	that	you’re	used	to	the	process	of	converting	a	type-specific
class	to	a	class	that	uses	generic	types,	so	rather	than	explain	the	conversion
process,	I’ll	just	show	the	code:

/**

		*	The	purpose	of	this	class	is	to	show	a	version	of	the	`Debuggable`

		*	class	that	takes	a	generic	`value`	(whereas	the	previous	versions

		*	required	that	`value`	be	an	`Int`).

		*/

case	class	Debuggable[A](value:	A,	message:	String)	{

				def	map[B](f:	A	=>	B):	Debuggable[B]	=	{

								val	nextValue	=	f(value)

								Debuggable(nextValue,	message)

				}

				def	flatMap[B](f:	A	=>	Debuggable[B]):	Debuggable[B]	=	{

								val	nextValue	=	f(value)

								Debuggable(nextValue.value,	message	+	nextValue.message)

				}

}

I	used	the	following	code	to	test	this	new	version	of	Debuggable:

object	DebuggableGenericExample	extends	App	{

				def	f(a:	Int):	Debuggable[Int]	=	{

								val	result	=	a	*	2

								Debuggable(result,	s"f:	multiply	$a	*	2	=	$result\n")

				}

				def	g(a:	Int):	Debuggable[Int]	=	{

								val	result	=	a	*	3

								Debuggable(result,	s"g:	multiply	$a	*	3	=	$result\n")

				}

				def	h(a:	Int):	Debuggable[Int]	=	{

								val	result	=	a	*	4

								Debuggable(result,	s"h:	multiply	$a	*	4	=	$result\n")

				}

				val	finalResult	=	for	{

								fRes	<-	f(100)

								gRes	<-	g(fRes)

								hRes	<-	h(gRes)

				}	yield	s"result:	$hRes"

				println(finalResult.message)

				println(s"Output	is	${finalResult.value}")

}

Running	that	App	results	in	this	output:

f:	multiply	100	*	2	=	200

g:	multiply	200	*	3	=	600

h:	multiply	600	*	4	=	2400

Output	is	result:	2400

This	shows	that	after	changing	the	Debuggable	class	to	use	generic	types,	it	still
works	properly	with	Int	values.

If	you	want	 to	verify	 that	 the	generics	work	as	advertised,	 the
Github	 project	 includes	 another	 App	 named	
DebuggableGenericsWithFloats	 that	 uses	Floats	 rather	 than	
Int	values.

One	Last	Debuggable:	Using	List	Instead
of	String
Motivation	for	this	lesson

In	this	lesson	I’ll	(quickly)	show	a	slight	variation	of	the	Debuggable	class.	The
motivations	for	this	are:

It’s	important	to	get	comfortable	writing	“wrapper”	classes	like	this

Many	of	the	lessons	that	follow	show	more	wrapper	classes,	and	a	simple
variation	now	will	help	get	your	ready	for	those	later

Source	code

The	source	code	for	this	lesson	is	at	this	URL:

github.com/alvinj/FPDebuggable

https://github.com/alvinj/FPDebuggable

From	String	to	List[String]

The	change	in	this	lesson	is	relatively	simple:	I’ll	show	how	to	implement	
Debuggable	with	a	List	to	store	the	log	messages,	rather	than	using	a	String	as
I	did	in	the	previous	lessons.

Since	I	want	to	store	the	messages	as	a	List[String],	the	first	change	is	to	the	
Debuggable	class	signature,	which	now	looks	like	this:

case	class	Debuggable[A](value:	A,	log:	List[String])	{

Inside	the	Debuggable	class,	this	change	has	no	effect	on	map.	The	log	parameter
used	to	be	a	String,	and	now	it’s	a	List[String],	and	the	code	requires	no
changes:

def	map[B](f:	A	=>	B):	Debuggable[B]	=	{

				val	nextValue	=	f(value)

				Debuggable(nextValue,	this.log)

}

The	change	does	affect	flatMap,	which	now	prepends	the	old	log	message
before	nextValue.log	when	creating	a	new	Debuggable	instance:

def	flatMap[B](f:	A	=>	Debuggable[B]):	Debuggable[B]	=	{

				val	nextValue:	Debuggable[B]	=	f(value)

				Debuggable(nextValue.value,	this.log	:::	nextValue.log)

}

The	change	also	affects	f	(and	g	and	h),	which	now	give	Debuggable	a	List
(rather	than	a	String):

def	f(a:	Int):	Debuggable[Int]	=	{

				val	result	=	a	*	2

				Debuggable(result,	List(s"f:	multiply	$a	*	2	=	$result"))

}

It	also	affects	the	final	printing	of	the	log	messages:

//	print	a	`List`	(rather	than	a	`String`)

finalResult.log.foreach(l	=>	println(s"LOG:	$l"))

The	complete	source	code

With	those	changes,	here’s	the	complete	source	code	for	the	new	version	of	
Debuggable:

//	`log`	is	now	a	list

case	class	Debuggable[A](value:	A,	log:	List[String])	{

				def	map[B](f:	A	=>	B):	Debuggable[B]	=	{

								val	nextValue	=	f(value)

								Debuggable(nextValue,	this.log)

				}

				//	prepend	`this.log`	before	`nextValue.log`

				def	flatMap[B](f:	A	=>	Debuggable[B]):	Debuggable[B]	=	{

								val	nextValue:	Debuggable[B]	=	f(value)

								Debuggable(nextValue.value,	this.log	:::	nextValue.log)

				}

}

object	DebuggableList	extends	App	{

				def	f(a:	Int):	Debuggable[Int]	=	{

								val	result	=	a	*	2

								Debuggable(result,	List(s"f:	multiply	$a	*	2	=	$result"))

				}

				def	g(a:	Int):	Debuggable[Int]	=	{

								val	result	=	a	*	3

								Debuggable(result,	List(s"g:	multiply	$a	*	3	=	$result"))

				}

				def	h(a:	Int):	Debuggable[Int]	=	{

								val	result	=	a	*	4

								Debuggable(result,	List(s"h:	multiply	$a	*	4	=	$result"))

				}

				val	finalResult	=	for	{

								fRes	<-	f(100)

								gRes	<-	g(fRes)

								hRes	<-	h(gRes)

				}	yield	s"result:	$hRes"

				finalResult.log.foreach(l	=>	println(s"LOG:	$l"))

				println(s"Output	is	${finalResult.value}")

}

The	output	of	the	App	looks	like	this:

LOG:	f:	multiply	100	*	2	=	200

LOG:	g:	multiply	200	*	3	=	600

LOG:	h:	multiply	600	*	4	=	2400

Output	is	result:	2400

Discussion

While	this	was	a	relatively	minor	change	to	the	Debuggable	class,	it’s	helpful	to
see	how	that	change	has	a	ripple	effect	throughout	the	code.	I	showed	this
change	so	you	could	see	that	effect,	but	I	also	prefer	this	List	approach,	which	is
a	more	“real	world”	example	than	the	previous	String-based	example.

The	Writer	monad

If	you’re	interested	in	where	the	Debuggable	class	comes	from,	it’s	actually	an
implementation	of	something	known	as	the	Writer	monad	in	Haskell.

As	Learn	You	a	Haskell	for	Great	Good!	states,	“the	Writer	monad	is	for	values
that	have	another	value	attached	that	acts	as	a	sort	of	log	value.	Writer	allows	us
to	do	computations	while	making	sure	that	all	the	log	values	are	combined	into
one	log	value	that	then	gets	attached	to	the	result.”

http://amzn.to/1POaUCv

Key	points

In	the	last	few	lessons	I	showed	several	different	versions	of	the	Debuggable
class	to	help	you	get	comfortable	with	it.	Here	are	a	few	important	points	about
it:

A	monad	consists	of	a	class	with	map	and	flatMap	methods,	along	with
some	form	of	a	“lift”	function.

In	Scala,	a	class	built	like	this	is	intended	to	be	used	in	for	expressions.

I	refer	to	these	as	“wrapper”	classes.	While	they’re	intended	to	be	used	in	
for	expressions,	they’re	not	“containers”	like	Scala	collections	classes,
they’re	more	a	type	of	“wrapper”	or	“box.”	They	wrap	existing	types	so
they	can	be	used	in	for	expressions.

See	also

When	I	was	struggling	to	learn	what	a	monad	was,	the	following	links	were	the
best	resources	I	found:

An	old	Haskell	tutorial,	You	Could	Have	Invented	Monads

Martin	Snyder’s	YouTube	presentation,	Monadic	Logging	and	You

Darren	Wilkinson’s	article,	First	steps	with	monads	in	Scala

You	can	read	more	about	the	Writer	monad	at	these	resources:

The	book,	Learn	You	a	Haskell	for	Great	Good!

The	Writer	monad	section	of	the	haskell.org	wiki

http://blog.sigfpe.com/2006/08/you-could-have-invented-monads-and.html
https://www.youtube.com/watch?v=t-YX55ZF4g0
https://darrenjw.wordpress.com/2016/04/15/first-steps-with-monads-in-scala/
http://amzn.to/1POaUCv
https://wiki.haskell.org/All_About_Monads#The_Writer_monad

Key	Points	About	Monads
At	this	time	it’s	worth	taking	a	moment	to	pause	and	make	a	few	observations
about	monads	in	Scala:

Their	primary	purpose	is	to	let	you	compose	code	in	for	expressions	(i.e.,
to	glue	code	together)

For	a	Scala	class	to	be	a	monad,	it	needs	three	things:

A	map	method

A	flatMap	method

Some	sort	of	lift	function	(to	“lift”	another	type	into	the	monad)

As	you’ll	see	in	the	rest	of	this	book,	there	are	different	monads	for	different
purposes.

If	you	ever	get	confused	about	monads	—	such	as	why	in	the	world	they	are
needed,	or	why	people	write	about	them	so	much	—	I	encourage	you	to	come
back	to	this	section	to	review	those	points.

Signpost:	Where	We’re	Going	Next
Now	that	you’ve	seen	what	monads	are,	we’re	getting	closer	to	being	able	to
write	a	Scala/FP	version	of	the	Coin	Flip	game	that	would	make	an	experienced
functional	programmer	smile.	That	game	will	make	extensive	use	of
composition	in	a	for	expression.

However,	before	I	can	do	that	I’m	going	to	have	to	develop	a	few	new	monads,
including	the	IO	and	State	monads.	These	are	two	of	the	most	common	monads
that	are	used	in	functional	programming.

In	the	next	several	lessons	I’ll	demonstrate	the	IO	monad,	and	then	I’ll	show	how
to	use	a	State	monad.	I’ll	also	discuss	composition	a	little	more	when	the	time	is
right.

Introduction:	The	IO	Monad
The	IO	monad	is	the	grandfather	of	all	monads.	Wikipedia	states,	“Haskell	1.3
introduced	monads	as	a	more	flexible	way	to	combine	I/O	with	lazy	evaluation.”

Before	you	jump	into	using	the	IO	monad,	let	me	share	a	personal	warning:
Some	developers	say	that	the	IO	monad	somehow	makes	I/O	pure.	This	isn’t	true
—	and	I	wasted	a	lot	of	time	trying	to	understand	that	claim.

As	you’ll	see	in	the	following	lessons,	if	you	have	a	function	named	
getUserInput	that	returns	a	type	of	IO[String],	and	a	user	enters	the	string	
fred,	getUserInput	will	return:

IO["fred"]

However,	if	the	user	enters	the	string	zombie,	getUserInput	will	return	this:

IO["zombie"]

Clearly	those	values	aren’t	the	same,	just	like	List[fred]	and	List[zombie]
aren’t	the	same.	This	tells	you	that	there’s	no	guarantee	that	getUserInput	will
always	return	the	same	result	when	it’s	called.	Whether	you	want	to	say	that	
getUserInput	isn’t	idempotent,	deterministic,	or	referentially	transparent,
clearly	it	isn’t	a	pure	function.

That	being	said,	the	IO	monad	does	have	at	least	two	potential	benefits	in	Scala:

When	you	use	it,	your	I/O	function	signatures	will	declare	that	they	return
an	IO	type,	such	as	getUserInput	returning	IO[String].	This	screams	to
other	developers,	“Watch	out,	this	function	interacts	with	the	outside
world!”

It	lets	you	use	I/O	functions	in	Scala	for	expressions.

While	there’s	no	consensus	that	the	IO	monad	is	a	huge	benefit	in	Scala,	I’ll	use
it	in	the	remainder	of	this	book.	After	that,	you	can	decide	whether	those	two
benefits	are	useful	in	your	own	programming.

https://en.wikipedia.org/wiki/Monad_(functional_programming)#History

See	also

If	you’re	interested	in	the	history	of	monads,	see	this	Wikipedia	“monad”	article.

https://en.wikipedia.org/wiki/Monad_(functional_programming)

How	to	Use	an	IO	Monad

Goal

The	goal	for	this	lesson	is	to	show	how	to	use	an	IO	monad.	I’m	not	going	to
show	how	to	write	an	IO	monad	right	now,	I	just	want	to	show	how	to	use	one.

You	can	think	of	this	lesson	like	this:	If	an	IO	monad	was	built	into	the	Scala
libraries,	would	you	care	how	it	was	implemented?	Sure,	if	you	ever	had	a
problem	with	it	you’d	care	how	it	was	written,	but	if	you	never	had	a	problem
with	it,	you’d	probably	just	use	it,	just	like	you	use	a	String	or	List	without
worrying	about	how	they’re	implemented.	So	that’s	the	approach	I’m	going	to
take	in	this	lesson:	I’ll	assume	that	an	IO	monad	already	exists,	and	I’ll	show
how	to	use	it.

Background

An	IO	monad	is	a	wrapper	that	you	can	use	to	wrap	around	I/O	functions.	It’s	not
100%	necessary	to	use	an	IO	monad	to	handle	I/O,	but	in	Scala	the	benefits	of
using	one	are:

It	serves	as	a	“marker”	data	type.	When	developers	see	that	a	function
returns	an	IO[String],	they	immediately	know	that	the	function	reaches
out	into	the	outside	world	to	return	that	String	(wrapped	in	an	IO).

Similarly,	if	a	function	signature	shows	that	it	returns	IO[Unit],	developers
know	that	the	function	writes	data	to	the	outside	world.	(The	function
presumably	takes	one	or	more	input	parameters	that	will	be	written	to	the
outside	world.)

It	lets	you	use	I/O	functions	in	for	expressions.

I	demonstrate	these	points	in	this	lesson.

Source	code

The	source	code	for	the	next	three	lessons	is	available	at	this	URL:

github.com/alvinj/IOMonad

Three	notes	about	the	source	code:

The	IO	monad	code	is	in	the	file	named	IO.scala.

The	code	in	IO.scala	is	a	more	complex	version	of	a	monad	than	what	I’ve
shown	this	far.	I’ll	discuss	it	more	in	future	versions	of	this	book,	but	in
these	lessons	I’m	just	going	to	use	it	without	discussing	it.	As	usual,	feel
free	to	study	the	code,	and	modify	it	as	desired	to	make	it	your	own.	(I	will
spend	a	little	time	discussing	a	similar	State	monad	in	the	upcoming
lessons.)

The	getLine	and	putStrLn	functions	are	in	the	package.scala	file	(i.e.,	the
“package	object”	for	that	directory).

https://github.com/alvinj/IOMonad

Hello,	IO	World

If	an	IO	monad	existed	in	Scala,	you	could	use	it	to	wrap	Scala’s	existing	I/O
functions,	like	this:

def	getLine:	IO[String]	=	IO(scala.io.StdIn.readLine())

def	putStrLn(s:	String):	IO[Unit]	=	IO(println(s))

In	that	code,	getLine	returns	a	string	that’s	retrieved	by	
scala.io.StdIn.readLine	and	wraps	it	in	an	IO,	so	its	return	type	is	
IO[String].	Similarly,	putStrLn	writes	a	string	to	STDOUT	using	Scala’s	
println	function,	and	because	it	has	nothing	meaningful	to	return,	its	return
type	is	IO[Unit].	(More	on	this	shortly.)

With	those	functions	in	hand	you	can	write	a	for	expression	like	this	to	get	and
then	print	a	person’s	first	and	last	name:

object	IOTest1	extends	App	{

				for	{

								_									<-	putStrLn("First	name?")

								firstName	<-	getLine

								_									<-	putStrLn(s"Last	name?")

								lastName		<-	getLine

								_									<-	putStrLn(s"First:	$firstName,	Last:	$lastName")

				}	yield	()

}

A	few	points	about	that	code:

When	you	don’t	care	what’s	returned	by	the	right-hand	side	of	a	line	in	a	
for	expression,	you	can	use	the	_	character	on	the	left	side	of	the	<-
assignment	symbol	to	ignore	that	value.	putStrLn	returns	IO[Unit],	which
I	don’t	care	about,	so	I	use	this	approach.

In	the	end,	this	particular	for	expression	doesn’t	return	anything	of	interest,
so	I	use	yield	()	at	the	end	of	it.	(Remember	that	()	is	a	way	to	return	an
instance	of	Unit.	You	can	also	write	yield	Unit,	if	you	prefer.)

When	I	put	that	code	in	an	App	object,	run	it,	and	enter	my	first	and	last	name,	I
see	the	following:

First	name?

Alvin

Last	name?

Alexander

First:	Alvin,	Last:	Alexander

Why	this	works	in	for

This	example	shows	that	these	new	I/O	functions	—	getLine	and	putStrLn	—
can	be	used	inside	for	expressions.	As	you	can	imagine,	they	work	because	the	
IO	class	implements	map	and	flatMap	methods.

Conversely,	if	you	replace	getLine	and	putStrLn	with	Scala’s	built-in	readLine
and	println	methods,	you’ll	see	errors	related	to	println	that	state,	“flatMap	is
not	a	member	of	Unit,”	and,	“map	is	not	a	member	of	Unit.”

IO	indicates	interaction	with	the	outside	world

As	I	mentioned,	a	great	thing	about	the	IO	monad	is	that	these	signatures	clearly
tell	you	that	these	functions	reach	out	into	the	outside	world:

def	getLine:	IO[String]	=	???

def	putStrLn(s:	String):	IO[Unit]	=	???

When	you	see	signatures	like	these	you	know	that	however	getLine	works
internally,	it	clearly	reaches	into	the	outside	world	to	retrieve	a	String.
Similarly,	putStrLn	presumably	takes	the	String	that	it	receives	and	sends	it
into	the	outside	world.

Monads	don’t	have	to	be	scary

Where	“monad”	used	to	be	a	scary	name,	now	you	know	that	it	just	means	that	a
data	type	implements	map	and	flatMap	methods	so	it	can	be	used	in	for
expressions.

I	tend	to	call	these	things	“wrappers,”	and	indeed,	the	IO	monad	is	just	another
wrapper	data	type.	For	instance,	you	can	imagine	that	getLine	returns	a	String
wrapped	inside	a	box	—	an	IO	box	—	as	shown	in	Figure	[fig:stringInIoBox].

The	IO	monad	is	just	a	“wrapper”	class.	It	has	map	and	flatMap	methods	so	it
can	be	used	in	for	expressions.

The	great	thing	about	that	box	is	that	the	for	expression	knows	how	to	open	it,
and	pull	the	String	out	of	it.

Just	remember	that	monads	in	Scala	implement	map	and	flatMap	so	they	can	be
used	in	for	expressions.	After	that,	they’re	not	so	scary.

Assigning	a	for	Expression	to	a	Function
Once	you	have	an	IO	monad,	you	can	use	it	in	a	for	expression,	and	then	assign
that	expression	to	a	function.	Notice	how	forExpression	in	this	code	is	assigned
to	the	large	for	expression.	Also	notice	how	the	for	expression	ends	with	
yield	(),	so	its	return	type	is	IO[Unit]:

object	IOTest2	extends	App	{

				def	forExpression:	IO[Unit]	=	for	{

								_									<-	putStrLn("First	name?")

								firstName	<-	getLine

								_									<-	putStrLn(s"Last	name?")

								lastName		<-	getLine

								fNameUC			=		firstName.toUpperCase

								lNameUC			=		lastName.toUpperCase

								_									<-	putStrLn(s"First:	$fNameUC,	Last:	$lNameUC")

				}	yield	()

				//	run	the	block	of	code	whenever	you	want	to	...

				forExpression.run

}

One	thing	I	didn’t	mention	yet	is	that	an	IO	monad	gives	you	a	way	to	execute
the	code	at	a	later	time.	In	this	example	I	execute	the	for	expression	at	a	later
time	by	calling	the	run	method	on	the	IO	monad	instance.	In	fact,	no	I/O
happens	until	this	line	is	executed:

forExpression.run

When	I	run	this	App	and	then	type	in	my	name,	the	result	looks	like	this:

First	name?

alvin

Last	name?

alexander

First:	ALVIN,	Last:	ALEXANDER

Cool.	Now	you’ve	seen	how	to	create	a	function	using	a	for	expression,	where
that	expression	uses	a	functional	approach	to	I/O.	The	next	lesson	takes	this	one
step	further	by	returning	to	recursion.

A	note

On	a	personal	note,	I	don’t	particularly	like	the	function	name	putStrLn.
However,	a)	it	comes	from	Haskell,	and	b)	you	may	see	experienced	Scala/FP
developers	use	it,	so	I	thought	I’d	show	it	here	so	you	can	get	used	to	it.

The	IO	Monad	and	a	for	Expression
That	Uses	Recursion
In	the	next	step	of	building	up	our	knowledge,	I’ll	add	recursion	to	a	for
expression.	This	addition	lets	you	write	command-line	applications	that	loop
continuously,	much	like	my	Coin	Flip	game	did	earlier	in	this	book.

Jumping	right	in,	here’s	the	source	code	for	an	application	that	continuously
prompts	you	to	input	some	text.	The	loop	exits	when	you	type	in	the	string,
“quit”:

object	FPRecursiveLoop	extends	App	{

				def	loop:	IO[Unit]	=	for	{

								_					<-	putStrLn("Type	something:	")

								input	<-	getLine

								_					<-	putStrLn(s"You	said	'$input'.")

								_					<-	if	(input	==	"quit")	IO(Unit)	else	loop		//RECURSE

				}	yield	()

				loop.run

}

This	code	is	similar	to	the	for	expression	in	the	previous	lesson,	except	for	this
line:

_	<-	if	(input	==	"quit")	IO(Unit)	else	loop

That	line	can	be	read	as,	“If	the	user	types	‘quit’,	return	IO(Unit)	—	thereby
ending	the	recursion	—	otherwise,	recursively	call	the	loop	function.”

When	I	run	this	application	and	type	in	a	few	strings,	I	see	this	result:

Type	something:	

foo

You	said	'foo'.

Type	something:	

bar

You	said	'bar'.

Type	something:	

quit

You	said	'quit'.

Discussion

If	this	technique	seems	simple	—	that’s	great!	This	shows	that	you’re
comfortable	with	the	IO	monad	and	recursion.

The	cool	thing	about	this	loop	is	that	it	shows	a	pattern	that	you’ll	soon	be	able
to	use	to	write	all	sorts	of	command-line	applications.	For	instance,	if	you	want
to	write	a	command-line	“To	Do	List”	application,	you	can	write	it	using	this
same	pattern	when	you	have	some	IO	functions	that	let	you	read	and	write	files
(or	a	database).

What’s	next

Given	these	examples,	this	is	a	good	time	to	take	a	deeper	dive	into	the	IO
monad,	including:

Why	it	was	originally	created

The	IO	monad	philosophy

Diving	Deeper	Into	the	IO	Monad
While	the	IO	monad	works	as	I’ve	described	—	it	implements	map	and	flatMap
so	it	can	be	used	in	for	expressions,	and	it’s	intended	to	wrap	I/O	functions	—
there’s	a	little	more	to	it	than	I’ve	let	on	so	far.

To	peel	back	the	IO	curtain	a	little	more,	I’m	going	to	use	a	“professional”
version	of	an	IO	monad.	This	one	comes	from	a	project	named	Cats,	which	is	a
play	on	the	name,	“category	theory.”	Cats	is	a	leading	library	for	functional
programming	in	Scala.

https://github.com/typelevel/cats

Source	code

The	source	code	for	this	project	is	available	at	this	URL:

github.com/alvinj/IOMonadHelloWorld

https://github.com/alvinj/IOMonadHelloWorld

The	problem	with	I/O	and	FP

If	you	want	to	take	a	deep	dive	into	understanding	the	need	for	the	IO	monad	in
Haskell,	Learn	You	a	Haskell	for	Great	Good!	is	probably	the	best	resource.	But
to	keep	things	simple	in	this	book,	in	this	lesson	I’ll	reference	the	first
paragraphs	from	an	article	titled,	An	IO	monad	for	Cats.

With	a	few	simplifications,	that	story	goes	like	this:

In	Haskell	you	only	write	pure	functions.

That’s	great,	because	it	means	you	can	compose	your	functions	just	like
algebraic	equations	to	create	software	applications.

But	when	the	Haskell	creators	got	to	I/O,	they	realized	they	had	a	problem.
I/O	functions	aren’t	referentially	transparent	(RT),	so	you	can’t	combine
them	like	algebraic	expressions.	And	if	you	can’t	compose	I/O	functions
with	your	pure	functions,	you	can’t	write	an	application	that	interacts	with
the	outside	world.

The	short	story	of	the	solution	to	the	problem	is	that	monads	were	invented	in
1991,	and	in	1998	the	IO	monad	was	added	to	Haskell	as	a	way	to	deal	with	I/O.
The	IO	monad	contains	a	bit	of	a	“trick”	that	lets	you	use	I/O	functions	as	though
they	are	RT.

http://amzn.to/1POaUCv
http://typelevel.org/blog/2017/05/02/io-monad-for-cats.html

The	IO	monad’s	trick

The	trick	of	the	IO	monad	is	that	it	lets	you	write	I/O	functions	as	effects.
Philosophically,	what	happens	is	that	you	use	IO	to	describe	how	an	I/O	function
works.	Then,	instead	of	dealing	with	the	result	of	the	I/O	function	at	the	time
when	the	I/O	function	appears	to	be	called,	you	defer	the	actual	action	until
some	time	later	when	you	really	want	it	to	be	triggered.

As	an	example	of	this,	if	you	run	this	little	Scala	app	that	doesn’t	use	the	IO
monad:

object	HelloVal	extends	App	{

				val	result	=	println("Hello,	world")

}

you’ll	see	that	it	prints	Hello,	world	to	STDOUT,	as	expected.

Conversely,	the	IO	monad	trick	looks	like	this:

import	cats.effect.IO

object	IOMonadAlmostHelloWorld	extends	App	{				

				val	hello	=	IO	{	println("Hello,	world")	}

}

If	you	run	this	app,	you’ll	see	that	no	output	is	produced	by	this	code;	the	App
will	run,	but	it	won’t	produce	any	output.

What	happens	here	is	that	instead	of	hello	immediately	printing	to	the	outside
world,	it	can	be	thought	of	as	a	description	of	how	to	print	to	the	outside	world.
You	can	pass	hello	around,	and	it	carries	this	description	of	how	to	print	to	the
outside	world	along	with	it,	but	until	it’s	explicitly	told	to	execute,	nothing
happens.

Haskell	developers	refer	to	this	sort	of	thing	as	an	effect,	and	as
a	 result,	 the	 Cats’	 creators	 put	 their	 IO	 monad	 in	 a	 package
named	cats.effect.

Continuing	the	story	…	with	Cats	you	trigger	the	action	by	calling	a	method
named	unsafeRunSync	on	the	IO	instance:

import	cats.effect.IO

object	IOMonadHelloWorld	extends	App	{				

				val	helloEffect	=	IO	{	println("Hello,	world")	}

				//	...

				//	some	time	later	...

				//	...

				helloEffect.unsafeRunSync()

}

This	is	a	true	“Hello,	world”	example	using	the	Cats	IO	monad,	because	it	uses	
helloEffect.unsafeRunSync()	to	trigger	the	action/effect	when	desired,	and	
Hello,	world	is	printed	to	STDOUT.

Two	notes

I’ll	make	two	notes	about	this	code	before	moving	on.	First,	helloEffect’s	type
is	IO[Unit],	so	I	could	have	declared	that	type	explicitly,	like	this:

val	helloEffect:	IO[Unit]	=	IO	{	println("Hello,	world")	}

Second,	every	IO	monad	may	have	some	API	differences,	and	where	Cats	names
their	method	unsafeRunSync,	the	Scalaz	project	names	their	similar	method,	
unsafePerformIO.	Both	of	these	names	are	intended	to	show	that	some	“unsafe”
I/O	is	about	to	happen.

The	IO	monad	philosophy

The	IO	monad	philosophy	is	described	well	in	the	“An	IO	monad	for	Cats”
article,	so	I’ll	quote	directly	from	there	(with	a	few	minor	changes):

“In	 Haskell,	 effects	 are	 treated	 as	 first-class	 values.	 The	
putStrLn	 function	 doesn’t	 print	 to	 standard	 out,	 it	 returns	 a
value	(of	type	IO	())	which	describes	how	to	print	to	standard
out,	 but	 stops	 short	 of	 actually	doing	 it.	These	 sorts	 of	 values
can	 be	 composed	 using	 the	monadic	 operators	 (think	 Scala’s	
for	expression),	allowing	programmers	to	build	up	expressions
composed	of	 sequences	 of	 dependent	 effects,	 all	 of	which	 are
merely	descriptions	of	the	side-effects	which	will	eventually	be
performed	 by	 the	 runtime.	 Ultimately,	 the	 description	 which
comprises	 your	 whole	 program	 is	 the	 return	 result	 from	 the
main	function.”

http://typelevel.org/blog/2017/05/02/io-monad-for-cats.html

A	small	demonstration	of	that	philosophy

That	article	includes	a	demonstration	of	that	philosophy	that	I’ve	converted	into
a	small	but	complete	application:

import	cats.effect.IO

object	Program	extends	App	{

				val	program:	IO[Unit]	=	for	{

								_						<-	IO	{	println("Welcome	to	Scala!		What's	your	name?")	}

								name			<-	IO	{	scala.io.StdIn.readLine	}

								nameUC	=	name.toUpperCase	

								_						<-	IO	{	println(s"Well	hello,	$nameUC!")	}

				}	yield	()

				//	...

				//	...

				//	some	time	later	...

				//	...

				//	...

				program.unsafeRunSync()

}

As	this	example	shows,	the	IO	monad	helps	you	compose	function	calls	in	a	for
expression,	where	those	functions	can	be	a	combination	of	a)	pure	functions,	and
b)	functions	with	I/O	side	effects.	After	composing	those	function	calls	and
saving	the	result	in	a	variable,	you	can	then	trigger	it	to	be	“run”	at	some	point
later	in	your	application.

Key	point

To	be	clear,	the	key	point	here	is	that	using	IO	lets	you	write	code	that	contains
side	effects	in	a	compositional	style.	In	short,	if	you	want	to	write	for
expressions	using	pure	functions	and	I/O	functions	in	a	compositional	style,	the	
IO	monad	provides	a	solution.

Terminology

Haskell	developers	use	the	words	“effect”	and	“action”	when	talking	about	the	
IO	monad.	I	noted	the	word	“effect”	above,	and	with	the	reminder	that	putStrLn
is	defined	like	this:

def	putStrLn(s:	String):	IO[Unit]	=	IO	{	println(s)	}

this	is	how	Learn	You	a	Haskell	for	Great	Good!	uses	the	term	“action”	when
describing	putStrLn:

“We	can	read	the	type	of	putStrLn	 like	this:	putStrLn	takes	a
string	 and	 returns	 an	 I/O	 action	 that	 has	 a	 result	 type	 of	 ()
(i.e.	 the	 empty	 tuple,	 also	 know	 as	 unit).	 An	 I/O	 action	 is
something	that,	when	performed,	will	carry	out	an	action	with	a
side-effect	 (usually	 either	 reading	 from	 the	 input	 or	 printing
stuff	 to	 the	 screen),	 and	will	 also	 contain	 some	kind	of	 return
value	 inside	 it.	 Printing	 a	 string	 to	 the	 terminal	 doesn’t	 really
have	any	kind	of	meaningful	return	value,	so	a	dummy	value	of	
()	is	used.”

Here’s	another	quote	from	Learn	You	a	Haskell	for	Great	Good!	that	expands	on
that	point:

“You	 can	 think	 of	 an	 I/O	 action	 as	 a	 box	with	 little	 feet	 that
goes	 out	 into	 the	 real	 world	 and	 does	 something	 there	 (like
write	some	graffiti	on	a	wall)	and	maybe	brings	back	some	data.
Once	 it’s	 fetched	 that	 data	 for	 you,	 the	 only	way	 to	 open	 the
box	and	get	the	data	inside	it	is	to	use	the	<-	construct	…	This
is	how	Haskell	manages	to	neatly	separate	the	pure	and	impure
parts	of	our	code.”

While	that	quote	is	about	Haskell,	you	can	see	the	similarity	to	Scala/FP	when

http://amzn.to/1POaUCv
http://amzn.to/1POaUCv

talking	about	the	<-	symbol.	In	fact,	this	Haskell	application	is	equivalent	to	the
last	Scala	application	I	showed	in	this	lesson:

import	Data.Char

main	=	do

				_										<-	putStrLn	"What's	your	name?"

				name							<-	getLine

				let	nameUC	=		map	toUpper	name

				putStrLn	("Well	hello,	"	++	nameUC)

The	Haskell	do	construct	is	similar	to	the	Scala	for	expression,	and	as	this	code
shows,	there	are	some	striking	visual	similarities	between	the	two	constructs.

See	also

Towards	an	Effect	System	in	Scala:	IO	Monad

An	IO	monad	for	cats

Should	there	be	an	IO	Monad?

Monadic	IO:	Laziness	Makes	You	Free

Learn	You	a	Haskell	for	Great	Good!

https://apocalisp.wordpress.com/2011/12/19/towards-an-effect-system-in-scala-part-2-io-monad/
http://typelevel.org/blog/2017/05/02/io-monad-for-cats.html
https://github.com/typelevel/cats/issues/1224
http://underscore.io/blog/posts/2015/04/28/monadic-io-laziness-makes-you-free.html
http://amzn.to/1POaUCv

I’ll	Come	Back	to	the	IO	Monad
I’ll	come	back	to	the	IO	monad	in	a	little	while	when	I	get	to	a	point	where	I’ll
want	to	write	applications	using	it	and	the	State	monad	at	the	same	time.

Until	then,	I	want	to	point	out	one	last	thing:	So	far	I’ve	only	shown	how	to	use
the	IO	monad	with	*console*	I/O.	Can	you	guess	why	that	is?

If	you’ve	read	other	Scala	IO	monad	tutorials	on	the	internet,	you’ve	probably
noticed	the	same	thing:	Everyone	shows	how	to	use	“console	I/O,”	but	nobody
discusses	other	types	of	I/O,	such	as	file,	network,	and	database	I/O.	At	some
point	the	curious	reporter	in	you	has	to	wonder,	“Why	is	that?”

I	believe	the	reason	for	this	has	to	do	with	exception-handling.	For	example,
imagine	that	you	already	have	a	Scala	function	like	this	to	read	a	text	file	into	a	
List[String]:

def	readTextFileAsTry(filename:	String):	Try[List[String]]	=	{

				Try	{

								val	lines	=	using(io.Source.fromFile(filename))	{	source	=>

												(for	(line	<-	source.getLines)	yield	line).toList

								}

								lines

				}

}

That	function	uses	Scala’s	Try,	Success,	and	Failure	classes	to	let	you	write
code	like	this	to	handle	exceptions:

val	passwdFile	=	readTextFileAsTry("/etc/passwd-foo")

passwdFile	match	{

				case	Success(lines)	=>	lines.foreach(println)

				case	Failure(s)	=>	println(s"Failed,	message	is:	$s")

}

Good	questions	at	this	time	are:

Should	I	wrap	readTextFileAsTry	with	IO,	so	the	return	type	becomes	
IO[Try[List[String]]]?

Am	I	supposed	to	do	something	else?

I’ll	dig	into	these	questions	later,	but	first	I	want	to	dig	into	the	State	monad.

Exercises

If	you	like	open-ended	exercises,	I	recommend	the	following:

1.	 Try	wrapping	the	readTextFileAsTry	function	with	the	IO	type	to	see	what
benefits	and	drawbacks	that	approach	offers.

2.	 Try	using	a	function	like	the	Apache	Commons	IO	project’s
org.apache.commons.io.FileUtils::readFileToString	function	—	which	can
throw	an	IOException	—	with	the	Cats	IO	monad.	What	benefits	and
drawbacks	does	that	approach	offer	with	real-world	code?

https://commons.apache.org/proper/commons-io/javadocs/api-release/index.html?org/apache/commons/io/input/package-summary.html

Functional	Composition
This	is	a	good	time	to	say	that	it’s	impossible	to	overstate	how	important
function	composition	is	to	“Pure	FP”	developers.	The	desire	to	compose
everything	—	to	make	all	code	read	like	algebraic	equations	—	is	immense.	The
Pure	FP	mantra	can	be	stated	as,	“If	functions	can’t	be	composed	like	algebraic
equations,	they’re	wrong.”

Function	composition	is	kind	of	a	big	deal.

Function	composition	in	simple	terms

This	page	on	utah.edu	offers	a	simple	definition	of	function	composition:

“Composition	 is	 a	 fancy	 term	 which	 means	 ‘combining’	 …
Function	composition	is	the	process	of	combining	two	or	more
functions	 to	 produce	 a	 new	 function.	 Composing	 functions
together	is	like	snapping	together	a	series	of	pipes	for	our	data
to	flow	through.”

Technically	there	are	at	least	two	types	of	function	composition,	but	for	now	I’m
only	interested	in	the	meaning	of	composition	where	you	turn	this	code:

val	y	=	g(x)

val	z	=	f(y)

into	this	code:

val	z	=	f(g(x))

Wikipedia	refers	to	that	last	line	as	a	“highly-composed	form.”

The	utah.edu	page	makes	interesting	points	about	these	examples:

You	can	refer	to	the	first	two	lines	as	non-composed	code.

Non-composed	code	explicitly	uses	extra	variables	to	hold	the	intermediate
state	(such	as	y	in	this	example),	while	with	the	highly-composed	form	of
code	the	compiler	implicitly	creates	temporary,	hidden	variables	behind	the
scenes.

My	key	points	are:

Function	composition	is	like	combining	algebraic	equations.

You	can	only	compose	functions	when	your	functions	are	pure.

Beware:	sometimes	when	you	use	too	much	function	composition	—	i.e.,

http://www.cs.utah.edu/~germain/PPS/Topics/composition.html

the	highly-composed	form	—	your	code	can	be	hard	to	read.	This	isn’t
always	true,	but	because	we	programmers	spend	the	majority	of	our	time
reading	code,	this	is	something	to	keep	an	eye	out	for.	(Make	sure	your
code	is	easy	to	maintain.)

An	example	of	functional	composition	using	IO

In	theory,	now	that	you	have	the	Cats	IO	monad	to	make	your	I/O	functions
composable,	you	can	compose	the	CoinFlip	game	inside	a	for	expression:

def	mainLoop(gameState:	GameState,	random:	Random):	IO[Unit]		=	for	{

				_									<-	IO	{	showPrompt()	}

				userInput	<-	IO	{	getUserInput()	}

				_									<-	if	(userInput	==	"H"	||	userInput	==	"T")	for	{

																									//	this	first	line	is	a	hack;	a	for-expression	must	begin	with	a	

generator

																									_														<-	IO	{	println("you	said	H	or	T")	}

																									coinTossResult	=		tossCoin(random)

																									newNumFlips				=		gameState.numFlips	+	1

																									newGameState			=		createNewGameState(userInput,	coinTossResult,	

gameState,	random,	newNumFlips)

																									_														<-	IO	{	

printGameState(printableFlipResult(coinTossResult),	newGameState)}

																									_														<-	mainLoop(newGameState,	random)

																					}	yield	Unit

																	else	for	{

																					_	<-	IO	{	println("did	not	enter	H	or	T")	}

																					_	<-	IO	{	printGameOver()	}

																					_	<-	IO	{	printGameState(gameState)	}

																	}	yield	Unit

}	yield	Unit

mainLoop(s,	r).unsafeRunSync()

While	I	personally	wouldn’t	want	to	maintain	that	particular	block	of	code,	I
appreciate	that	it	shows	that	with	the	addition	of	the	IO	monad,	all	of	my	code
can	theoretically	be	composed	into	one	for	expression,	with	one	function	call
after	another,	with	a	few	variable	assignments	mixed	in	as	well.

When	it	makes	sense,	it	can	be	good	to	write	code	like	this.	In	this	particular
case	I’m	just	showing	this	example	to	demonstrate	that	all	of	my	function	calls
can	be	composed.

http://typelevel.org/cats/

Source	code

You	can	download	the	source	code	shown	at	this	URL:

github.com/alvinj/CoinFlipGameWithCatsIO

https://github.com/alvinj/CoinFlipGameWithCatsIO

See	also

The	quotes	in	the	utah.edu	article	are	the	same	as	in	this	medium.com
article.

The	Wikipedia	definition	of	function	composition	states,	“function
composition	is	an	act	or	mechanism	to	combine	simple	functions	to	build
more	complicated	ones.	Like	the	usual	composition	of	functions	in
mathematics,	the	result	of	each	function	is	passed	as	the	argument	of	the
next,	and	the	result	of	the	last	one	is	the	result	of	the	whole.”

https://medium.com/javascript-scene/master-the-javascript-interview-what-is-function-composition-20dfb109a1a0
https://en.wikipedia.org/wiki/Function_composition_(computer_science)

An	Introduction	to	Handling	State
Keeping	in	mind	that	the	end	goal	of	these	monad	lessons	is	to	be	able	to	write
my	Coin	Flip	game	(and	other	applications)	entirely	in	a	Scala/FP	compositional
style,	the	next	thing	I	need	to	look	at	is	how	to	handle	“state”	in	an	FP	manner.
(There’s	no	way	for	you	to	know	that	at	this	time,	but	I	know	that.)

Transitioning	from	IO	to	State

While	the	IO	monad	is	a	wrapper	that	makes	I/O	functions	easier	to	work	with	in
for	expressions,	the	State	monad	is	a	wrapper	that	makes	the	concept	of	“state”
easier	to	work	with	in	for	expressions.	The	next	few	lessons	will	first
demonstrate	the	problems	of	trying	to	work	with	state	without	a	State	monad,
and	then	I’ll	show	how	the	State	monad	helps	to	alleviate	those	problems.

Handling	State	Manually
If	you	don’t	happen	to	have	a	State	monad	laying	around,	you	can	still	handle
state	in	Scala/FP.	The	basic	ideas	are:

First,	create	some	sort	of	construct	to	model	the	state	of	your	application	at
any	moment	in	time.	Typically	this	is	a	case	class,	but	it	doesn’t	have	to	be.

Next,	create	a	“helper”	function	that	takes	a)	the	previous	state	and	b)	some
sort	of	increment	or	“delta”	to	that	state.	The	function	should	return	a	new
state	based	on	those	two	values.

I’ll	demonstrate	this	process	in	this	lesson.

Source	code

The	source	code	for	this	lesson	is	available	at:

github.com/alvinj/HandlingStateManually

https://github.com/alvinj/HandlingStateManually

Modeling	my	bad	golf	game,	Part	1

My	brother-in-law	recently	made	me	play	golf,	and	as	I	don’t	play	golf,	the
results	were	comical.	But,	the	experience	makes	for	a	simple	example	of	state,	so
here	we	go	…

Imagine	that	you’re	on	the	first	hole	of	a	golf	course,	and	you	swing	at	a	ball
three	times,	with	these	results:

The	first	ball	goes	20	yards

The	second	ball	goes	15	yards

The	third	swing	is	a	“swing	and	a	miss,”	so	technically	the	ball	goes	0	yards

One	way	to	model	the	state	after	each	stroke	is	with	a	simple	case	class	that
stores	the	cumulative	distance	of	all	my	swings:

case	class	GolfState(distance:	Int)

Given	that	model,	I	can	create	a	“helper”	function	named	nextStroke.	It	takes
the	previous	GolfState	and	the	distance	of	the	next	stroke	to	return	a	new	
GolfState:

def	nextStroke(

				previousState:	GolfState,	

				distanceOfNextHit:	Int):	GolfState	=	{

				GolfState(previousState.distance	+	distanceOfNextHit)

}

Now	I	can	use	those	two	pieces	of	code	to	create	an	application	that	models	my
three	swings:

object	Golfing1	extends	App	{

				def	nextStroke(

								previousState:	GolfState,	

								distanceOfNextHit:	Int):	GolfState	=	{

								GolfState(previousState.distance	+	distanceOfNextHit)

				}

				val	state1	=	GolfState(20)

				val	state2	=	nextStroke(state1,	15)

				val	state3	=	nextStroke(state2,	0)

				println(state3)			//prints	"GolfState(35)"

}

In	that	application,	these	lines	of	code	simulate	my	three	swings	at	the	ball:

val	state1	=	GolfState(20)

val	state2	=	nextStroke(state1,	15)

val	state3	=	nextStroke(state2,	0)

The	last	line	of	code	prints	the	final	golf	state	as	GolfState(35),	meaning	that
the	total	distance	of	my	swings	is	35	yards.

This	code	won’t	win	any	awards	—	it’s	repetitive	and	error-prone	—	but	it	does
show	how	you	have	to	model	changing	state	in	a	Scala/FP	application	with
immutable	state	variables.	(In	the	following	lessons	I	show	how	to	improve	on
this	situation	by	handling	state	in	a	for	expression.)

Modeling	my	bad	golf	game,	Part	2

While	that	example	shows	a	basic	solution	to	the	problem	at	hand,	a	more	real-
world	scenario	is	that	you’ll	want	to	model	the	state	by	keeping	a	history	of	all
golf	strokes.	Maintaining	a	history	requires	only	a	small	change	to	the	current
code.

The	following	code	shows	one	way	to	model	a	series	of	golf	swings	by	using	a
state	model	that	stores	the	series	of	golf	strokes	as	a	List:

object	Golfing2	extends	App	{

				case	class	GolfState(strokes:	List[Int])

				//	take	the	old	state,	and	an	increment	to	that	state

				def	nextStroke(gs:	GolfState,	

																			distanceOfNextHit:	Int):	GolfState	=	{

								GolfState(distanceOfNextHit	::	gs.strokes)

				}

				val	state0	=	GolfState(Nil)

				val	state1	=	nextStroke(state0,	20)

				val	state2	=	nextStroke(state1,	15)

				val	state3	=	nextStroke(state2,	0)

				println(state3)		//prints	"GolfState(List(0,	15,	20))"

}

The	important	part	of	these	examples	is	getting	used	to	these	patterns:

Creating	a	case	class	to	model	the	desired	state

Writing	a	function	that	takes	a)	an	existing	state,	and	b)	an	increment	to	that
state,	and	returns	a	new	state	based	on	those	values

Aside:	Thinking	of	state	as	pushing	onto	a	list

As	a	brief	aside,	when	you	search	the	internet	for	State	monad	examples,	you’ll
often	see	that	people	compare	it	to	pushing	items	onto	a	list.	That’s	a	valid
comparison,	and	in	fact,	I	can	rewrite	the	previous	example	like	this:

object	Golfing2bPushPop	extends	App	{

				def	push[A](xs:	List[A],	a:	A):	List[A]	=	a	::	xs

				//	model	the	three	swings

				val	s0:	List[Int]	=	Nil

				val	s1	=	push(s0,	20)

				val	s2	=	push(s1,	15)

				val	s3	=	push(s2,	0)

				//	prints	"List(0,	15,	20)"

				println(s3)

}

The	concept	of	handling	state	in	FP	applications	is	often	similar	to	pushing	items
onto	a	list,	so	examples	like	these	are	valid	metaphors	(though	they’re	not
complete	on	their	own).

A	pop	function

Note	that	a	pop	function	isn’t	required	for	this	example,	but	I	can	write	one	like
this:

def	pop[A](xs:	List[A]):	(A,	List[A])	=	(xs.head,	xs.tail)

At	the	end	of	Golfing2bPushPop	I	can	then	use	pop	like	this:

val	(swing3,	state2)	=	pop(s3)

println(s"swing3	=	$swing3")		//swing3	=	0

println(s"state2	=	$state2")		//state2	=	List(15,	20)

Recap

All	of	these	examples	show	how	to	manually	handle	state	in	a	Scala/FP
application.	You	can	significantly	improve	this	situation	by	handling	state	in	a	
for	expression	with	a	good	State	monad.

In	the	next	lesson	I’ll	show	how	to	write	a	simple	State	monad	that	lets	you
manually	handle	state	in	a	for	expression.	In	the	lesson	after	that	I’ll	show	how
to	completely	automate	state	handling	in	a	for	expression	with	a	significantly
improved	State	monad.

Getting	State	Working	in	a	for
Expression
Knowing	that	I	wanted	to	get	my	code	working	in	a	for	expression,	I	attempted
to	create	my	own	State	monad.	I	modeled	my	efforts	after	the	Wrapper	and	
Debuggable	classes	I	shared	about	10-20	lessons	earlier	in	this	book.	Starting
with	that	code,	and	dealing	with	only	Int	values,	I	created	the	following	first
attempt	at	a	State	monad:

/**

		*	this	is	a	simple	(naive)	attempt	at	creating

		*	a	State	monad

		*/

case	class	State(value:	Int)	{

				def	flatMap(f:	Int	=>	State):	State	=	{

								val	newState	=	f(value)

								State(newState.value)

				}

				def	map(f:	Int	=>	Int)	=	State(f(value))

}

This	code	is	very	similar	to	the	Wrapper	and	Debuggable	classes	I	created	earlier
in	this	book,	so	please	see	those	lessons	if	you	need	a	review	of	how	this	code
works.

With	this	State	monad	in	hand,	I	can	write	the	following	for	expression	to
model	my	golf	game:

object	StateTester	extends	App	{

				val	res	=	for	{

								a	<-	State(20)

								b	<-	State(a	+	15)		//manually	carry	over	`a`

								c	<-	State(b	+	0)			//manually	carry	over	`b`

				}	yield	c

				println(s"res:	$res")		//prints	"State(35)"

}

The	good	news	about	this	code	is:

It	shows	another	example	of	a	wrapper	class	that	implements	flatMap	and	
map

As	long	as	I	just	need	Int	values,	this	code	lets	me	use	a	concept	of	state	in
a	for	expression

Unfortunately,	the	bad	news	is	that	I	have	to	manually	carry	over	values	like	a
and	b	(as	shown	in	the	comments),	and	this	approach	is	still	cumbersome	and
error-prone.	Frankly,	the	only	improvement	I’ve	made	over	the	previous	lesson
is	that	I	now	have	“something”	working	in	a	for	expression.

What	I	need	is	a	better	State	monad.

Handling	My	Golfing	State	with	a	State
Monad
Fortunately	some	other	people	worked	on	this	problem	long	before	me,	and	they
created	a	better	State	monad	that	lets	me	handle	the	problem	of	my	three	golf
strokes	like	this:

val	stateWithNewDistance:	State[GolfState,	Int]	=	for	{

				_													<-	swing(20)

				_													<-	swing(15)

				totalDistance	<-	swing(0)

}	yield	totalDistance

Unlike	the	code	in	the	previous	lesson,	notice	that	there’s	no	need	to	manually
carry	values	over	from	one	line	in	the	for	expression	to	the	next	line.	A	good	
State	monad	handles	that	bookkeeping	for	you.

In	this	lesson	I’ll	show	what	you	need	to	do	to	make	this	for	expression	work.

Source	code

The	source	code	for	this	lesson	is	at:

github.com/alvinj/StateMonadExample

https://github.com/alvinj/StateMonadExample

Handling	state	with	a	State	monad

With	a	properly-written	State	monad	I	can	write	an	application	to	simulate	my
golf	game	like	this:

object	Golfing3	extends	App	{

				case	class	GolfState(distance:	Int)

				def	swing(distance:	Int):	State[GolfState,	Int]	=	State	{	(s:	GolfState)	=>

								val	newAmount	=	s.distance	+	distance

								(GolfState(newAmount),	newAmount)

				}

				val	stateWithNewDistance:	State[GolfState,	Int]	=	for	{

								_													<-	swing(20)

								_													<-	swing(15)

								totalDistance	<-	swing(0)

				}	yield	totalDistance

				//	initialize	a	`GolfState`

				val	beginningState	=	GolfState(0)

				//	run/execute	the	effect.

				//	`run`	is	like	`unsafeRunSync`	in	the	Cats	`IO`	monad.

				val	result:	(GolfState,	Int)	=	stateWithNewDistance.run(beginningState)

				println(s"GolfState:						${result._1}")		//GolfState(35)

				println(s"Total	Distance:	${result._2}")		//35

}

I’ll	explain	this	code	in	the	remainder	of	this	lesson.

GolfState

First,	as	with	the	previous	lesson,	I	use	a	case	class	to	model	the	distance	of
each	stroke:

case	class	GolfState(distance:	Int)

There	may	be	better	names	for	this	class,	but	I’m	trying	to	emphasize	the
concept	of	state,	so	I	use	this	name.

The	swing	function

Next,	assuming	that	you	haven’t	worked	with	a	State	monad	like	this	before,
the	swing	function	will	require	a	little	explanation:

def	swing(distance:	Int):	State[GolfState,	Int]	=	State	{	(s:	GolfState)	=>

				val	newDistance	=	s.distance	+	distance

				(GolfState(newDistance),	newDistance)

}

While	swing	is	a	little	more	gory	than	the	nextStroke	and	push	functions	from
the	previous	state	lessons,	it’s	similar	in	concept.	The	idea	is	that:

It	takes	the	distance	of	a	golf	swing	as	an	input	parameter

It	takes	an	old	state	as	an	input	parameter	(it	takes	this	parameter	as	an
input	to	the	anonymous	function)

The	result	of	the	function	is	a	new	State	instance	that’s	created	with	the
anonymous	function

The	anonymous	function	adds	a)	the	distance	that’s	given	as	a	function
input	parameter	to	b)	the	distance	from	the	previous	state,	yielding	a	new
distance

The	previous	state	is	the	State	that’s	passed	into	the	anonymous	function	(I
name	that	variable	s	so	the	code	will	fit	on	one	line	in	this	book,	but	a	better
name	is	previousState)

The	new	distance	is	used	to	yield	a	new	tuple	of	
(GolfState(newDistance),	newDistance)

The	State	monad	yields	that	as	a	State[GolfState,	Int]

swing	uses	an	anonymous	function

Notice	that	the	swing	function	uses	many	techniques	that	I	demonstrated	in	the
lessons	leading	up	to	this	point.	First,	the	highlighted	section	of	code	in
Figure	[fig:anonFunctionPassedIntoState]	is	an	anonymous	function.

An	anonymous	function	is	passed	into	State	to	create	the	swing	function.

The	anonymous	function	can	be	read	as,	“Given	an	existing	GolfState	named	s,
calculate	a	new	distance	by	adding	the	distance	from	s	to	the	new	distance	that
was	passed	in.	Then	use	that	new	distance	to	create	a	new	GolfState,	and	then
return	that	new	GolfState	and	the	new	distance	as	a	Tuple2.”	Because	I’m
using	a	State	monad	I	have	to	yield	what	it	wants,	so	I	yield	the	Tuple2	as
shown.

Next,	notice	in	Figure	[fig:newStateInstanceCreated]	that	a	new	State	instance
is	created	by	passing	that	anonymous	function	into	State’s	constructor.

A	new	State	instance	is	created	by	giving	it	an	anonymous	function.

From	the	previous	lessons	you	know	this	means	that:

State	is	either	a	case	class,	or	a	regular	class	with	an	apply	method.	(It
could	also	be	a	function,	but	because	State	is	capitalized,	convention
makes	it	most	likely	to	be	a	class.)

State’s	constructor	takes	a	function	input	parameter	(FIP)	or	a	by-name
parameter	(so	it	can	accept	an	anonymous	function	as	a	parameter).

The	for	expression

The	next	part	of	the	code	is	this	for	expression:

val	stateWithNewDistance:	State[GolfState,	Int]	=	for	{

				_													<-	swing(20)

				_													<-	swing(15)

				totalDistance	<-	swing(0)

}	yield	totalDistance

All	of	the	previous	code	was	created	to	enable	the	for	expression	to	be	written
like	this.	(This	is	a	good	time	to	note	that	earlier	in	the	book	I	wrote,	“Writing
pure	functions	is	easy,	gluing	them	together	is	hard.”)

This	expression	assigns	a	block	of	code	to	the	variable	named	
stateWithNewDistance,	where	the	“block	of	code”	is	the	for	expression	that
models	my	three	swings.	As	usual,	it	isn’t	necessary	to	show	the	variable’s	type,
but	I	do	so	to	be	clear	that	it’s	an	instance	of	State,	specifically	a	
State[GolfState,	Int]	instance.

An	important	point	to	notice	in	this	code	is	that	I	don’t	have	to	manually	carry
the	state	over	from	one	line	in	the	for	expression	to	the	next	line.	Because	I’m
working	with	a	well-written	State	monad,	its	“magic”	takes	care	of	that
bookkeeping	for	me.

The	action	begins

In	the	final	part	of	the	code,	the	action	begins.	First	I	create	an	initial	state:

val	beginningState	=	GolfState(0)

Next,	I	kick	off	the	action	by	invoking	a	run	method	on	the	State	monad
instance,	giving	it	my	beginningState	to	get	it	started:

val	result:	(GolfState,	Int)	=	stateWithNewDistance.run(beginningState)

This	run	function	has	the	same	purpose	as	the	unsafeRunSync	method	on	the
Cats	IO	monad,	letting	you	defer	the	execution	until	a	later	time.

That	line	of	code	executes	the	for	expression,	and	when	it’s	finished	running	I
print	out	the	final	result:

println(s"GolfState:						${result._1}")		//GolfState(35)

println(s"Total	Distance:	${result._2}")		//35

The	advantages	of	a	State	monad

As	you	can	see	from	the	code	in	this	lesson,	the	advantages	of	a	State	monad
are:

It	can	be	used	in	a	for	expression

Inside	the	for	expression	it	handles	all	of	the	bookkeeping	involved	in
transitioning	from	one	state	to	another,	so	you	don’t	have	to	handle	it
manually

The	disadvantages	of	a	State	monad

Conversely,	the	primary	disadvantage	of	a	State	monad	is	that	some	of	your
other	code	—	such	as	the	swing	function	—	gets	a	little	more	complicated.	In	the
long	run	this	is	offset	somewhat	by	the	fact	that	the	state-handling	pattern	is
pretty	consistent;	there’s	always	a	function	like	swing	that	helps	automate	the
dirty	work.

The	State	Monad	Source	Code
Until	this	point	I	treated	the	State	monad	code	as	a	black	box:	I	asked	you	to
use	it	as	though	it	already	existed	in	the	Scala	libraries,	just	like	you	use	String,	
List,	and	hundreds	of	other	classes	without	thinking	about	how	they’re
implemented.

My	reason	for	doing	this	is	that	the	State	code	is	a	little	complicated.	You	have
to	be	a	real	master	of	for	expressions	to	be	able	to	write	a	State	monad	that
works	like	this.

Note:	A	“master	of	for	expressions”	is	a	goal	to	shoot	for!

In	a	way,	the	State	monad	just	implements	map	and	flatMap	methods,	so	it’s
similar	to	the	Wrapper	and	Debuggable	classes	I	created	previously.	But	it	also
takes	those	techniques	to	another	level	by	using	generic	types,	by-name
parameters,	and	anonymous	functions	in	several	places.

Source	code

The	source	code	for	this	lesson	is	at	the	same	URL	as	the	previous	lesson:

github.com/alvinj/StateMonadExample

https://github.com/alvinj/StateMonadExample

The	State	source	code

Here’s	the	source	code	for	the	State	monad	I	used	in	the	previous	lesson:

case	class	State[S,	A](run:	S	=>	(S,	A))	{

				def	flatMap[B](g:	A	=>	State[S,	B]):	State[S,	B]	=	State	{	(s0:	S)	=>

								val	(s1,	a)	=	run(s0)

								g(a).run(s1)

				}

				def	map[B](f:	A	=>	B):	State[S,	B]	=	flatMap(a	=>	State.point(f(a)))

}

object	State	{

				def	point[S,	A](v:	A):	State[S,	A]	=	State(run	=	s	=>	(s,	v))

}

In	this	code	the	generic	type	S	stands	for	“state,”	and	then	A	and	B	are	generic
type	labels,	as	usual.

In	this	first	version	of	this	book	I’m	not	going	to	attempt	to	fully	explain	that
code,	but	I	encourage	you	to	work	with	it	and	modify	it	until	you	understand
how	it	works.

A	few	points	worth	noting

One	point	I	need	to	mention	is	that	State	takes	a	constructor	parameter	named	
run.	The	anonymous	function	I	highlighted	in	the	previous	lesson	is	what’s
assigned	to	run,	as	shown	in	Figure	[fig:constructorParamRunBoundToBlock].

The	constructor	parameter	run	is	bound	to	the	highlighted	block	of	code.

In	the	previous	lesson,	this	line	of	code	passed	beginningState	into	into	run:

val	result:	(GolfState,	Int)	=	stateWithNewDistance.run(beginningState)

As	a	result,	the	parameter	s	in	the	anonymous	function	is	bound	to	
beginningState	when	that	line	of	code	is	reached.	Therefore,	you	can	think	of
the	first	line	of	the	anonymous	function	as	using	beginningState	rather	than	s:

val	newDistance	=	beginningState.distance	+	distance

Don’t	be	intimidated!

I’ll	also	make	two	other	points	at	this	time.	First,	I	doubt	that	anyone	wrote	a	
State	monad	like	this	on	their	first	try.	I’m	sure	it	took	several	efforts	before
someone	figured	out	how	to	get	what	they	wanted	in	a	for	expression.

Second,	while	this	code	can	be	hard	to	understand	in	one	sitting,	I’ve	looked	at
some	of	the	source	code	inside	the	Scala	collections	classes,	and	there’s	code	in
there	that’s	also	hard	to	grok.	(Take	a	look	at	the	sorting	algorithms	and	you’ll
see	what	I	mean.)	Personally,	the	only	way	I	can	understand	complex	code	like
this	is	to	put	it	in	a	Scala	IDE	and	then	modify	it	until	I	make	it	my	own.

Where	State	comes	from

I	believe	the	original	version	of	this	State	code	came	from	this	Github	URL:

github.com/jdegoes/lambdaconf-2014-introgame

As	the	text	at	that	link	states,	“This	repository	contains	the	material	for
Introduction	to	Functional	Game	Programming	with	Scala,	held	at	LambdaConf
2014	in	Boulder,	Colorado.”	While	I	find	a	lot	of	that	material	to	be	hard	to
understand	without	someone	to	explain	it	(such	as	at	a	conference	session),
Mr.	De	Goes	created	his	own	State	monad	for	that	training	session,	and	I
believe	that	was	the	original	source	for	the	State	monad	I	just	showed.

Much	of	the	inspiration	for	this	book	comes	from	attending	that
conference	and	thinking,	“I	have	no	idea	what	these	people	are
talking	about.”

https://github.com/jdegoes/lambdaconf-2014-introgame

Make	it	your	own!

As	a	final	example	of	what	I	mean	by	“working	with	that	code	to	make	it	your
own,”	this	is	what	I	did	with	another	State	monad	that	I	found	running	wild	on
the	internet:

case	class	State[A,S](run:	S	=>	(A,S))	{

				//	s1	=	state1,	s2	=	state2,	s3	=	state3

				def	flatMap[B](f:	A	=>	State[B,S]):	State[B,S]	=	State	{	s1:	S	=>

								val	(a,	s2)	=	run(s1)

								val	stateChangeToB	=	f(a)

								val	(b,	s3)	=	stateChangeToB.run(s2)

								(b,	s3)

				}

				def	map[B](f:	A	=>	B):	State[B,S]	=

								flatMap(a	=>	State.lift(f(a)))

}

object	State	{

				/**

						*	"lifts"	a	value	and	a	state	into	a	State[S,A]

						*/

				def	lift[A,S](value:	A):	State[A,S]	=	State(state	=>	(value,	state))

}

Note:	Most	experienced	FP	developers	seem	to	prefer	the	name	
point	for	the	method	in	the	object,	but	I	prefer	the	name	lift.	I
like	to	think	that	this	method	“lifts”	a	normal	variable	(such	as
an	Int)	into	the	monad.	(If	you	think	of	a	monad	as	a	wrapper,
another	possible	name	for	this	method	is	wrap.)

I	don’t	remember	for	sure,	but	I	believe	that	I	found	the	original	version	of	this	
State	code	in	some	work	by	James	Earl	Douglas,	possibly	on	this	slide:

Slide	#3	from	a	presentation	on	the	State	Monad

Again,	if	you	want	to	understand	how	the	State	monad	works,	it’s	important	to
work	with	the	code	to	make	it	your	own.	Change	the	variable	names	as	desired,
add	debug	statements	to	the	code,	break	the	highly-composed	lines	into	non-
composed	lines	—	do	whatever	you	need	to	do	to	understand	how	it	works.

https://earldouglas.com/talks/state-monad/slides.html#(3)

Signpost:	Getting	IO	and	State	Working
Together
The	next	section	of	this	book	contains	twelve	short	lessons	that	show	how	to	get
the	IO	and	State	monads	working	together	in	a	for	expression.

Source	code

The	source	code	for	all	of	the	following	StateT	“monad	transformer”	lessons	is
available	at	this	Github	URL:

StateT	monad	transformer	source	code

https://github.com/alvinj/FPMonadTransformers

Trying	to	Write	a	for	Expression	with
IO	and	State
At	this	point	I’d	like	to	be	able	to	show	you	how	to	use	the	IO	and	State	monads
together	in	a	for	expression.

Unfortunately,	that’s	not	possible.

As	John	De	Goes	writes	in	his	LambdaConf	2014	project	notes:

“It	turns	out	that	for	theoretical	reasons,	we	can’t	just	take	any
two	monads	M1	and	M2	and	combine	them	into	another	monad	
M3.	It’s	not	possible.”

If	you’ve	ever	seen	the	image	shown	in
Figure	[fig:howWriteHelloWorldHaskell],	it	pretty	much	expresses	the
frustration	I	felt	when	I	first	read	that	sentence.

How	you	write	“Hello,	world”	in	Haskell.	(I	don’t	know	the	original	creator	of

https://github.com/jdegoes/lambdaconf-2014-introgame

this	image.)

Fortunately,	Mr.	De	Goes	goes	on	to	add	these	statements:

“However,	 there	 are	 a	 number	 of	 ways	 to	 combine	 monadic
effects,	ranging	from	Free	monads	to	monad	zippers	and	views
to	monad	coproducts	 (and	 lots	more).	The	particular	approach
we’re	going	to	look	at	involves	monad	transformers.”

I’ll	follow	his	approach	in	this	section	of	the	book,	culminating	with	writing	for
expressions	that	use	the	concepts	of	I/O	and	State	in	a	way	that	is	pleasing	to
experienced	Scala/FP	developers.

Seeing	the	Problem:	Trying	to	Use	State
and	IO	Together
If	you’re	interested	in	seeing	the	problem	yourself,	you	can	write	a	little	test	for
expression	that	uses	IO	and	State.	Interestingly,	when	I	put	this	code	in	an	IDE,
the	IDE	initially	doesn’t	show	any	errors:

object	TryStateAndIoTogether	extends	App	{

				/**

						*	State	code

						*/

				type	Stack	=	List[String]

				def	push(x:	String):	State[Stack,	Unit]	=	State[Stack,	Unit]	{

								xs	=>	(x	::	xs,	())

				}

				/**

						*	IO	functions

						*/

				def	getLine:	IO[String]	=	IO(scala.io.StdIn.readLine())

				def	putStrLn(s:	String):	IO[Unit]	=	IO(println(s))

				/**

						*	main	loop:	Prompt	a	user	for	some	input,	then	push	that	input

						*	onto	a	stack

						*/

				val	res	=	for	{

								_					<-	putStrLn("Type	anything:")			//IO

								input	<-	getLine																						//IO

								_					<-	push(input)																		//State

								_					<-	putStrLn(s"Input:	$input")			//IO

				}	yield	()

}

But	when	I	attempt	to	run	that	App,	I	see	the	following	error	output:

Error:(31,	15)	type	mismatch;

	found			:	IO[Unit]

	required:	State[Stack,?]

				(which	expands	to)		State[List[String],?]

								_					<-	putStrLn(s"Input:	$input")

								

Error:(30,	15)	polymorphic	expression	cannot	be	instantiated	

to	expected	type;

	found			:	[B]State[Stack,B]

				(which	expands	to)		[B]State[List[String],B]

	required:	IO[?]

								_					<-	push(input)

								

Error:(30,	15)	type	mismatch;

	found			:	State[Stack,B]

				(which	expands	to)		State[List[String],B]

	required:	IO[?]

								_					<-	push(input)

								

Error:(28,	15)	type	mismatch;

	found			:	Unit	=>	IO[Nothing]

	required:	Unit	=>	IO[B]

								_					<-	putStrLn("Type	anything:")

The	short	version	of	those	errors	messages	is	that	there	are	“type	mismatches,”
the	worst	of	which	is:

found			:	IO[Unit]

required:	State[Stack,?]

In	this	error	message	the	compiler	is	saying,	“I	expected	State	here,	but	you
gave	me	IO.”

If	you	attempt	to	translate	that	for	expression	into	a	series	of	flatMap	and	map
calls,	you’ll	see	the	type	mismatches.	In	short,	because	the	return	type	of	some
method	calls	doesn’t	match	the	expected	input	parameters	of	other	methods,	the
code	won’t	compile.	What	we	need	is	a	series	of	flatMap	calls	that	all	return	and
expect	the	same	wrapper	type.

Solving	the	Problem	with	Monad
Transformers
As	background	for	where	we’re	about	to	go,	I	want	to	share	one	more	quote
from	Mr.	De	Goes:

“A	monad	transformer	is	a	special	version	of	a	monad	that	can
stack	its	own	effects	on	those	of	another	monad.	If	you	stack	a
monad	 transformer	 on	 another	 monad,	 the	 result	 forms	 a
monad,	which	combines	the	effects	of	both	monads	together.”

“Not	all	monads	have	monad	transformers.	For	example,	the	IO
monad	doesn’t	have	a	transformer	version.	Fortunately,	we’re	in
luck:	while	IO	doesn’t	come	in	a	transformer	flavor,	the	State
monad	does.”

The	StateT	monad	transformer

The	State	monad	transformer	is	named	StateT.	By	convention	monad
transformers	have	a	T	at	the	end	of	their	name,	so	in	this	case	StateT	is	the
monad	transformer	version	of	State.	Similarly,	an	Option	monad	transformer	is
named	OptionT.

In	the	following	lessons	I’ll	show	everything	that’s	needed	to	use	the	StateT
monad	transformer	so	you	can	use	the	concepts	of	I/O	and	State	together	in	a	
for	expression.

Beginning	the	Process	of	Understanding	
StateT

Source	code

As	a	reminder,	the	source	code	for	all	of	the	StateT	“monad	transformer”
lessons	is	available	at	this	Github	URL:

StateT	monad	transformer	source	code

https://github.com/alvinj/FPMonadTransformers

Background

In	the	previous	lessons	I	showed	that	you	can’t	write	a	for	expression	that	tries
to	use	an	IO	monad	and	a	State	monad	together.	If	you	write	out	the	equivalent	
map/flatMap	calls,	you’ll	see	that	the	data	type	returned	by	one	method	won’t
match	up	with	the	type	expected	by	another	method.

As	I	mentioned,	there	are	a	few	possible	ways	to	solve	this	problem,	and	one
common	approach	is	to	use	something	called	a	monad	transformer.

Goal	for	the	StateT	lessons

The	main	goal	for	these	lessons	is	to	show	how	to	use	a	monad	transformer
named	StateT	that	lets	us	use	the	concepts	of	I/O	and	State	together	in	a	for
expression.	By	the	end	of	these	StateT	lessons	I’ll	show	how	to	create	and
understand	the	following	code:

def	sumLoop:	StateT[IO,	SumState,	Unit]	=	for	{

				_					<-	putStrAsStateT("\ngive	me	an	int,	or	'q'	to	quit:	")

				input	<-	getLineAsStateT

				_					<-	if	(input	==	"q")	{

																	liftIoIntoStateT(IO(Unit))

													}	else	for	{

																	i	<-	liftIoIntoStateT(IO(toInt(input)))

																	_	<-	doSumWithStateT(i)

																	_	<-	sumLoop

													}	yield	Unit

}	yield	Unit

val	result	=	sumLoop.run(SumState(0)).run

println(s"Final	SumState:	${result}")

In	the	process	of	building	up	to	this	for	expression,	I’ll	show	several	smaller
examples	of	the	individual	functions.

What	that	for	expression	does

Because	that	code	is	a	series	of	functions	you	haven’t	seen	before,	it’s	hard	to
tell	what	that	expression	does,	but	the	way	it	works	is:

putStrAsStateT	prompts	a	user	to	enter	an	integer	value,	or	q	to	quit

getLineAsStateT	reads	the	user	input

If	the	user	enters	q,	the	loop	exits

Otherwise,	toInt	is	called	to	convert	the	input	to	an	Int

That	Int	is	wrapped	in	an	IO	and	then	a	StateT

The	game	state	is	updated	with	the	new	Int

The	sumLoop	function	is	called	recursively

Here’s	an	example	of	what	this	code	looks	like	when	it’s	run:

give	me	an	int,	or	'q'	to	quit:	1

updateIntState,	old	sum:			0

updateIntState,	new	input:	1

updateIntState,	new	sum:			1

give	me	an	int,	or	'q'	to	quit:	2

updateIntState,	old	sum:			1

updateIntState,	new	input:	2

updateIntState,	new	sum:			3

give	me	an	int,	or	'q'	to	quit:	3

updateIntState,	old	sum:			3

updateIntState,	new	input:	3

updateIntState,	new	sum:			6

give	me	an	int,	or	'q'	to	quit:	q

Final	SumState:	(SumState(6),())

To	 see	 that	 output	 on	 your	 system,	 run	 the	 class	 named	
LoopWithQuitLotsOfDebug	 in	 the	 package	 v3_loop_with_quit
in	the	source	code	for	this	lesson.

Motivation

While	this	may	not	be	the	most	exciting	loop	ever	created,	if	you	can	understand
how	it	works,	you’ll	understand	the	StateT	monad	transformer,	which	is
probably	the	most	difficult	concept	in	this	book.	Once	you	understand	it,	you’ll
also	understand	how	monad	transformers	work	in	general,	meaning	that	you’ll
be	able	to	use	other	transformers,	such	as	OptionT	in	the	Cats	library.

Furthermore,	while	this	may	sound	like	a	bit	of	hyperbole,	I	hope	you’ll	also	be
able	to	understand	every	good	monad	tutorial	that	has	ever	been	written,	and
you’ll	also	be	able	to	understand	books	like	Functional	Programming	in	Scala,
Functional	and	Reactive	Domain	Modeling,	and	the	monad	lessons	in	Advanced
Scala	with	Cats.	More	importantly,	beyond	being	able	to	understand	all	of	those
resources,	I	hope	you’ll	be	able	to	use	monads	and	monad	transformers	to	solve
real-world	problems.

In	 case	 I	 didn’t	 stress	 that	 enough,	 being	 able	 to	 understand
monad	 transformers	 is	 a	 big	 deal.	 This	 topic	 is	 basically	 the
“peak	of	the	monad	mountain”	for	FP	and	this	book.

http://amzn.to/2sbY1hE
http://amzn.to/2iOT3Vh
https://underscore.io/training/courses/advanced-scala/

Getting	Started:	We’re	Going	to	Need	a	
Monad	Trait
One	thing	that	hasn’t	been	important	to	our	Scala/FP	lives	yet	is	that	the	standard
Scala	library	doesn’t	define	a	Monad	trait.	Even	though	I’ve	said	that	types	like	
Option,	List,	and	Future	work	like	monads,	you	won’t	find	code	like	this	in	the
standard	library:

//	this	code	IS	NOT	in	the	Scala	standard	library

trait	Monad

class	Option	extends	Monad

class	List	extends	Monad

class	Future	extends	Monad

Until	now	it	didn’t	matter	to	us	that	those	types	don’t	extend	a	base	Monad	trait
because	we	could	use	all	of	those	types	as	if	they	were	monads	because	they
implement	map	and	flatMap.

However,	because	we’re	now	at	a	point	where	we	need	to	use	the	StateT	monad
transformer,	and	because	a	transformer	can	only	be	stacked	on	a	type	that	is	a
known	monad	—	i.e.,	a	type	that	extends	a	Monad	trait	—	we	need	to	do	a	little
work	to	let	us	use	classes	like	Option,	List,	and	Future	with	StateT.
Specifically:

We	need	to	define	a	Monad	interface	(a	trait).

We	need	to	define	the	types	we	want	to	use	as	monads	as	instances	that
extend	the	Monad	interface.	This	will	let	us	use	them	with	StateT.

Once	we	have	a	Monad	trait	and	a	StateT	class,	we’ll	be	able	to	write	the	loop
shown	at	the	beginning	of	the	previous	lesson.

In	the	real	world	you	won’t	have	to	go	through	this	process;	you
can	 just	 use	 the	Monad	 and	 transformer	 types	 from	a	Scala/FP
library	 like	Cats.	 I’m	 only	 taking	 you	 through	 this	 process	 so
you	 can	 understand	 some	 of	 the	 things	 that	 are	 happening
behind	the	scenes.

https://typelevel.org/cats/

A	Monad	interface

I’m	not	going	to	take	you	all	the	way	through	the	development	of	a	Monad	trait,
but	I	will	take	you	through	the	initial	part	of	the	thought	process.

In	Scala,	you	create	a	Monad	interface	by	defining	a	trait	that	declares	three
methods:	the	usual	map	and	flatMap	methods,	and	also	a	lift	method	that	“lifts”
a	normal	value	into	the	monad.

FP	experts	 prefer	 to	use	names	 like	point	 or	pure	 instead	of	
lift,	 but	 because	 the	 purpose	 of	 the	 method	 is	 to	 “lift”	 a
normal	 value	 into	 a	 monad,	 I	 prefer	 the	 name	 lift.	 It’s	 like
when	 you	 write	 Some(1);	 the	 apply	 method	 in	 Some’s
companion	object	essentially	“lifts”	the	regular	integer	value	1
into	the	Some	wrapper.

Knowing	that	a	Monad	interface	needs	these	three	methods,	I	begin	sketching	the
interface	like	this:

trait	Monad	{

				def	flatMap

				def	map

				def	lift

}

Having	seen	flatMap	before,	you	know	that	it	takes	a	function	that	transforms	a
type	A	to	a	type	like	Wrapper[B].	In	this	case	the	wrapper	is	named	Monad,	so	a
first	stab	at	flatMap’s	signature	looks	like	this:

def	flatMap[A,	B](f:	A	=>	Monad[B]):	Monad[B]

Similarly,	you’ve	seen	that	map	is	a	method	that	takes	a	function	that	transforms
a	type	A	to	a	type	B,	and	then	returns	a	result	like	Wrapper[B].	Therefore,	a	first
stab	at	map’s	type	signature	looks	like	this:

def	map[A,	B](f:	A	=>	B):	Monad[B]

Finally,	knowing	that	the	purpose	of	the	lift	method	is	to	lift	a	normal	type	A
into	a	wrapper,	a	first	stab	at	its	signature	looks	like	this:

def	lift[A](a:	A):	Monad[A]

Putting	those	together,	a	first	sketch	of	a	Monad	interface	looks	like	this:

trait	Monad	{

				def	lift[A](a:	A):	Monad[A]

				def	map[A,	B](f:	A	=>	B):	Monad[B]

				def	flatMap[A,	B](f:	A	=>	Monad[B]):	Monad[B]

}

I’m	going	to	stop	at	this	point	because	I	don’t	want	to	get	into	the	gory	details,	I
just	want	to	give	you	an	idea	of	what	the	interface	looks	like.	(If	you’d	like	to
see	the	final	implementation	of	the	Monad	trait,	see	the	source	code	that	comes
with	this	project.	But	don’t	get	bogged	down	in	that	code.	Right	now	it’s	more
important	to	learn	how	to	use	a	Monad	trait,	not	how	to	write	one.)

Creating	two	Monad	instances

As	an	example	of	how	a	Monad	trait	can	be	used,	if	I	was	in	a	situation	where	I
needed	to	use	the	Scala	Option	as	a	real	Monad,	I’d	create	an	OptionMonad
instance	like	this:

implicit	val	OptionMonad	=	new	Monad[Option]	{

				def	flatMap[A,	B](ma:	Option[A])(f:	A	=>	Option[B]):	Option[B]	=	ma.flatMap(f)

				def	lift[A](a:	=>	A):	Option[A]	=	Some(a)

}

For	the	purposes	of	creating	my	for	expression	I	don’t	need	an	OptionMonad,
but	because	I	want	to	use	the	IO	monad	I’ve	been	using	in	this	book	with	
StateT,	I	do	need	an	IOMonad	instance:

implicit	val	IOMonad	=	new	Monad[IO]	{

				def	flatMap[A,	B](ma:	IO[A])(f:	A	=>	IO[B]):	IO[B]	=	ma.flatMap(f)

				def	lift[A](a:	=>	A):	IO[A]	=	IO(a)

}

Notice	a	few	things:

The	flatMap	signature	is	a	little	more	complicated	than	what	I	showed	in
my	trait,	requiring	two	input	parameter	groups.	(More	on	this	shortly.)

I	don’t	define	a	map	method	because	the	map	method	I	inherit	from	the	
Monad	trait	provides	the	right	behavior	for	them.

I	mark	IOMonad	as	implicit.	I	do	this	so	it	can	be	“pulled	into”	some	of	the
code	that	follows.	(More	on	this	shortly.)

Key	points

In	summary,	I	created	a	Monad	trait	so	I	could	create	an	IOMonad	instance.
Because	IOMonad	extends	Monad,	I’ll	be	able	to	use	it	with	the	StateT	class	that
we’ll	develop	next.

Now	We	Can	Create	StateT
Now	that	I	have	a	formally-defined	Monad	trait,	I	can	use	it	with	a	StateT	class.
The	guts	of	the	StateT	class	are	pretty	gory,	so	I	won’t	show	all	of	the	code	here,
but	I	will	highlight	the	important	things	to	know	about	it.

StateT	constructor’s	run	parameter

The	first	thing	to	know	is	that	similar	to	the	State	monad	I	showed	in	previous
lessons,	the	StateT	constructor	takes	a	run	parameter.	run	is	defined	as	a
function	input	parameter,	so	you	need	to	supply	it	a	function	when	creating	a
new	StateT	instance,	and	it	has	this	type	signature:

case	class	StateT(run:	S	=>	M[(S,	A)])	{

run’s	signature	says	that	it’s	a	function	that	transforms	a	state	S	to	a	tuple	(S,A)
that’s	wrapped	by	a	monad	M.	In	the	previous	state	lessons,	the	run	parameter	in	
State	had	the	type	S	=>	(S,A),	so	the	change	here	is	that	the	function	that’s
passed	in	must	further	wrap	(S,A)	in	a	monad.	Right	away	this	shows	why	we
needed	to	formally	define	a	Monad	type.

There’s	 no	 way	 for	 you	 to	 know	 from	 looking	 at	 only	 this
signature	that	M	stands	for	Monad,	S	stands	for	state,	and	A	stands
for	a	base	 type	(something	 like	Int).	The	only	way	you	could
really	 know	 that	—	 besides	 me	 telling	 you	—	 is	 to	 look	 at	
StateT’s	Scaladoc	or	its	source	code.

StateT’s	flatMap	signature

A	second	thing	to	know	about	StateT	is	that	its	flatMap	signature	looks	like
this:

def	flatMap[B](g:	A	=>	StateT[M,	S,	B])(implicit	M:	Monad[M]):	

				StateT[M,	S,	B]	=	StateT	{	(s0:	S)	=>

Notice	that	it	has	two	parameter	groups,	and	the	second	parameter	group	takes
an	implicit	Monad	input	parameter:

def	flatMap[B](g:	A	=>	StateT[M,	S,	B])(implicit	M:	Monad[M])

															-----------------------		--------------------

This	is	why	I	defined	the	IOMonad	to	be	an	implicit	variable	in	the	previous
lesson:

implicit	val	IOMonad	=	new	Monad[IO]	...

In	the	code	in	the	following	lessons,	what	happens	is	that	when	an	implicit
instance	of	IOMonad	is	in	scope	when	flatMap	is	invoked,	the	implicit	instance	is
automatically	pulled	into	flatMap’s	second	parameter	group.

Another	point	to	notice	about	StateT’s	signature	is	that	its	return	type	is	
StateT[M,	S,	B]:

def	flatMap[B](g:	A	...)(...):	StateT[M,	S,	B]

This	means	that	flatMap	returns	a	StateT	instance,	specifically	of	the	type	
StateT[M,	S,	B],	where	M	is	a	monad,	S	is	a	state,	and	B	is	the	transformed
version	of	the	base	type	A.

I	know	that	these	details	may	not	be	too	meaningful	yet,	but	I	want	to	point	them
out	before	we	continue.	If	you	come	back	to	this	lesson	after	you	see	the	code
that	follows,	I	believe	they’ll	be	more	meaningful	then.

If	you	want	to	see	all	of	StateT,	see	the	source	code	for	 these
lessons.	(But	again,	don’t	get	caught	up	in	it.	The	current	goal	is
to	learn	how	to	use	StateT,	not	how	to	write	it.)

Using	StateT	in	a	for	Expression
Given	a	Monad	and	a	StateT	with	the	attributes	described	in	the	previous	lessons,
we	now	have	enough	code	to	show	a	few	examples	of	how	StateT	works.	In	this
lesson	I’ll	create	the	following	for	expression	that	uses	the	add	and	multiply
functions	I’m	about	to	build:

val	forExpression:	StateT[IO,	IntState,	Int]	=	for	{

				_	<-	add(2)

				_	<-	add(3)

				x	<-	multiply(10)

}	yield	x

Source	code

The	 source	 code	 for	 this	 lesson	 is	 in	 the	 package	 named
v1_hard_coded_for,	 in	 the	same	repository	 as	 all	 of	 the	 other	
StateT	lessons.

https://github.com/alvinj/FPMonadTransformers

A	class	to	hold	the	state

The	first	thing	I’ll	do	is	create	a	little	case	class	to	hold	the	state	of	this
application,	just	like	I	did	with	the	GolfState	class	in	the	“Handling	State
Manually”	lesson:

case	class	IntState(i:	Int)

Just	as	with	those	State	lessons,	this	is	a	simple	container	for	the	“state”	in	my
application.

An	“add”	function

Next,	I’ll	create	an	add	function	that	works	with	the	StateT	monad:

def	add(i:	Int)	=	StateT[IO,	IntState,	Int]	{	oldState:	IntState	=>

				val	newValue	=	i	+	oldState.i

				val	newState	=	oldState.copy(i	=	newValue)

				IO(newState,	newValue)

}

Remember	that	StateT’s	constructor	takes	the	function	input	parameter	named	
run,	so	everything	between	the	curly	braces	is	an	anonymous	function	that	I’m
passing	into	run.

You	can	read	add’s	code	like	this:

add	takes	an	input	parameter	named	i,	which	has	the	type	Int

add’s	body	creates	a	new	StateT	instance,	specifically	a	
StateT[IO,	IntState,	Int]

The	StateT	instance	is	created	by	passing	the	anonymous	function	that’s
defined	in	between	the	curly	braces	into	StateT’s	constructor

The	anonymous	function	adds	the	value	i	to	oldState.i	to	create	
newValue

A	newState	of	type	IntState	(not	shown)	is	created	from	oldState,	using
the	usual	copy	process	to	update	its	field	i

In	the	last	line,	the	newState	and	newValue	are	wrapped	in	an	IO

In	the	end,	the	result	of	calling	add	is	a	new	StateT	instance	that	specifically	has
the	type	StateT[IO,	IntState,	Int].

A	“multiply”	function

Next,	I	can	do	the	same	thing	to	create	a	multiply	function:

def	multiply(i:	Int)	=	StateT[IO,	IntState,	Int]	{	oldState:	IntState	=>

				val	newValue	=	i	*	oldState.i

				val	newState	=	oldState.copy(i	=	newValue)

				IO(newState,	newValue)

}

Because	this	function	is	identical	to	the	previous	function	—	with	the	exception
that	it	multiplies	i	by	oldState.i	—	I	won’t	describe	it	again.

Testing	add

Before	using	these	functions	in	a	for	expression	it	can	help	to	demonstrate	how
the	add	function	works	outside	of	a	for	expression.	First,	I	can	call	add	like	this:

val	a	=	add(1)			//StateT[IO,	IntState,	Int]

As	the	comment	shows,	a	has	the	type	StateT[IO,	IntState,	Int].	Therefore,
this	code	can	be	read	as,	“I	have	a	StateT	instance	named	a	that’s	primed	to	add	
1	to	something.”

The	way	you	use	the	StateT	instance	a	is	that	you	give	an	initial	state	to	a’s	run
method,	like	this:

val	b	=	a.run(IntState(1))			//IO[(IntState,	Int)]

Here	I’ve	given	a	the	initial	state	IntState(1)	to	create	the	variable	b.
Intuitively	you	can	guess	that	somewhere	within	the	final	result	of	this	effort
you’ll	find	a	2,	but	at	this	point	that	result	is	wrapped	inside	the	IO	type	(shown
in	the	comment).

As	the	comment	in	that	code	shows,	b	has	the	type	IO[(IntState,	Int)],
meaning	that	it’s	an	IO	wrapped	around	a	tuple.	The	IO	part	doesn’t	make	much
sense	in	this	little	example	—	I’m	not	using	any	form	of	I/O	yet	—	but	I	can
extract	the	tuple	out	of	the	IO	and	print	the	IntState	like	this:

b.map(t	=>	println(s"b	state	=	${t._1}"))

That	code	results	in	this	output:

b	state	=	IntState(2)

IO	doesn’t	have	a	foreach	method,	so	I	use	map	for	the	purpose
of	printing	the	IntState	value.

As	a	review,	here’s	all	of	the	code	again:

val	a	=	add(1)														//StateT[IO,	IntState,	Int]

val	b	=	a.run(IntState(1))		//IO[(IntState,	Int)]

b.map(t	=>	println(s"b	state	=	${t._1}"))

Given	this	overview	of	how	add	works,	let’s	create	a	for	expression	that	uses	
StateT.

Using	StateT	in	a	for	expression

Next,	let’s	use	the	add	and	multiply	functions	in	a	more	normal	way	—	in	a	for
expression.	I	won’t	use	any	I/O	functions	just	yet,	but	this	example	shows	how
to	use	add	and	multiply	in	a	for	expression	with	a	few	hard-coded	values:

val	forExpression:	StateT[IO,	IntState,	Int]	=	for	{

				_	<-	add(2)

				_	<-	add(3)

				x	<-	multiply(10)

}	yield	x

This	creates	the	variable	forExpression	as	a	StateT	instance.	As	you	saw	in	the
previous	example,	you	“run”	a	StateT	instance	by	calling	its	run	method	while
giving	it	an	initial	state:

val	result:	IO[(IntState,	Int)]	=	forExpression.run(IntState(1))

Supplied	with	that	initial	state,	these	comments	show	how	the	for	expression
works:

val	forExpression:	StateT[IO,	IntState,	Int]	=	for	{

				_	<-	add(2)								//2+1		=	3	(1	is	run’s	seed	value)

				_	<-	add(3)								//3+3		=	6

				x	<-	multiply(10)		//6x10	=	60

}	yield	x

As	the	comments	show,	the	final	result	is	60,	but	we	also	know	that	result’s
type	is	IO:

val	result:	IO[(IntState,	Int)]	=	forExpression.run(IntState(1))

												--

Because	result	is	a	tuple	wrapped	in	an	IO,	I	extract	the	IntState	value	from	
result	like	this:

result.map(tuple	=>	println(s"IntState	=	${tuple._1}"))

That	code	prints	this	output:

IntState	=	IntState(60)

Key	points

While	this	example	uses	hard-coded	Int	values,	it	shows	how	to	use	functions
that	yield	a	StateT	inside	a	for	expression.

Furthermore,	it	lays	the	foundation	for	what’s	next:	I’ll	add	some	I/O	functions
into	a	for	expression,	and	that	will	let	us	really	use	an	IO	monad	with	the	StateT
monad	in	a	for	expression.

Trying	to	Combine	IO	and	StateT	in	a	
for	Expression
At	this	point	I’m	going	to	try	to	write	my	“sum	up	the	integers	a	user	gives	me”	
for	expression	using	IO	and	StateT.	As	I	try	to	write	it,	I’ll	figure	out	what	parts
are	missing,	and	add	them	in	as	I	go	along.

First,	a	reminder	that	the	intent	of	this	application	is	to:

Prompt	the	user	for	input,	which	hopefully	will	be	an	Int	value

Sum	up	those	Int	values	in	the	loop

When	the	user	types	the	letter	q,	the	loop	will	exit

Source	code

The	 source	 code	 for	 this	 lesson	 is	 in	 the	 package	 named
v2_loop_without_quit,	 in	 the	 same	 repository	 as	 all	 of	 the	
StateT	 lessons.	Work	with	 the	 LoopWithoutQuitLotsOfDebug
class	 to	 see	 a	 lot	 of	 debug	 output,	 or	 the	
LoopWithoutQuitNoDebug	 class	 to	 run	 the	 application	without
debug	output.

https://github.com/alvinj/FPMonadTransformers

I/O	functions

One	of	the	first	things	I’ll	need	to	solve	this	problem	are	some	I/O	functions	to
prompt	the	user	and	then	read	their	input.	I’ll	start	with	the	IO	functions	I	used	in
previous	lessons:

def	getLine():	IO[String]	=	IO(scala.io.StdIn.readLine())

def	putStr(s:	String):	IO[Unit]	=	IO(print(s))

For	this	lesson	I	changed	the	function	putStrLn	to	putStr	because	I	don’t	want
it	to	print	a	newline	character	after	printing	the	string,	but	otherwise	it’s	the	same
as	before.

A	toInt	function

Next,	I	need	a	function	to	transform	a	String	to	an	Int.	This	function	will	do	the
trick:

def	toInt(s:	String):	Int	=	{

				try	{

								s.toInt

				}	catch	{

								case	e:	NumberFormatException	=>	0

				}

}

In	this	case,	toInt	returns	an	Int	rather	than	an	Option[Int].	I	did	that	to	make
my	for	expression	simpler.

A	“state”	class

Next,	I	need	a	little	case	class	to	hold	the	state	of	the	application.	In	this	case	I
need	to	track	the	sum	of	the	integers	the	user	gives	me,	so	I	create	this	class:

case	class	SumState(sum:	Int)

A	state-updating	function

Next	up,	I	need	a	function	to	update	the	application’s	state	when	a	user	gives	me
a	new	Int.	Because	this	is	a	“sum”	function,	all	I	need	to	do	is	re-use	the	add
function	I	showed	in	the	previous	lesson.	I’ll	just	give	it	a	new	name	that	makes
more	sense	in	the	context	of	this	application:

def	updateAppState(newValue:	Int):	

				StateT[IO,	SumState,	Int]	=	StateT	{	(oldState:	SumState)	=>

				//	create	a	new	sum	from	`i`	and	the	previous	sum	from	`s`

				val	newSum	=	newValue	+	oldState.sum

				//	create	a	new	SumState

				val	newState:	SumState	=	oldState.copy(sum	=	newSum)

				//	return	the	new	state	and	the	new	sum,	wrapped	in	an	IO

				IO(newState,	newSum)

}

I	didn’t	mention	it	before,	but	notice	that	this	function’s	return	type	gives	you	a
hint	of	how	StateT	and	IO	work	together;	StateT	is	a	wrapper,	and	one	of	the
things	it	wraps	is	an	IO:

StateT[IO,	SumState,	Int]

							--

Because	StateT	encapsulates	both	concepts	—	State	and	IO	—	in	one	type,	it
lets	us	use	both	types	in	a	for	expression.

Trying	to	use	all	of	this	in	a	for	expression

If	I	ignore	the	“type	q	to	quit”	part	of	the	application	I	can	write	a	for	expression
like	this:

def	sumLoop:	StateT[IO,	SumState,	Unit]	=	for	{

				_					<-	putStr("\ngive	me	an	int:	")		//*

				input	<-	getLine																							//*

				i					<-	IO(toInt(input))														//*

				_					<-	updateAppStateT(i)

				_					<-	sumLoop

}	yield	Unit

Unfortunately	this	code	won’t	work.	The	first	three	lines	inside	the	for
expression	—	the	ones	tagged	with	the	*	comment	—	return	an	IO	type,	and	
updateAppStateT	returns	a	StateT	type.

This	is	a	good	time	to	mention	an	extremely	important	point:

For	this	process	to	work,	every	function	call	inside	the	for	expression	must
return	a	type	of	StateT[IO,	SumState,	A]

The	type	A	can	vary	—	it	can	be	a	String	or	Int	as	needed	in	this	example	—
but	each	function	must	return	a	StateT[IO,	SumState,	A].

Therefore,	knowing	that	the	problem	is	(a)	those	functions	return	IO,	and	(b)
they	need	to	return	StateT[IO,	SumState,	A],	the	solution	is	(c)	I	need	to	wrap
those	IO	functions	somehow	so	they’ll	return	the	correct	type.

Fixing	the	IO	Functions	With	Monadic
Lifting
We’re	at	a	point	where	the	I/O	functions	in	the	previous	lesson	return	an	IO	type,
but	they	need	to	return	a	StateT[IO,	SumState,	A].	Let’s	fix	this	problem.

My	I/O	functions	currently	look	like	this:

def	getLine():	IO[String]	=	IO(scala.io.StdIn.readLine())

def	putStr(s:	String):	IO[Unit]	=	IO(print(s))

To	work	in	the	for	expression	they	need	to	return	the	type	
StateT[IO,	SumState,	A],	so	what	can	I	do?

The	solution	is	something	called	monadic	lifting.	Once	again	I	need	to	“lift”
something,	and	in	this	case	I	need	to	lift	the	type	IO[A]	into	the	type	
StateT[IO,	SumState,	A].

Source	code

You	can	see	the	source	code	for	the	liftIoIntoStateT	function
in	 the	 package	 named	 v2_loop_without_quit,	 in	 the	 same
repository	as	all	of	the	StateT	lessons.

https://github.com/alvinj/FPMonadTransformers

The	“lift”	function

Knowing	that	I	need	to	write	a	function	that	lifts	an	IO[A]	into	the	type	
StateT[IO,	SumState,	A],	I	can	sketch	the	initial	function	signature	like	this:

def	lift(io:	IO[A]):	StateT[IO,	SumState,	A]	=	???

At	this	point	I’ll	just	show	the	complete	function	that	does	the	lifting.	The
function	is	really	just	one	line	long,	but	I	split	it	into	several	lines	so	I	can	add
some	comments	to	it:

def	liftIoIntoStateT[A](io:	IO[A]):	

				StateT[IO,	SumState,	A]	=	StateT	{	s:	SumState	=>

				//	transform	`IO[A]`	into	`IO(SumState,	A)`

				val	result:	IO[(SumState,	A)]	=	io.map(a	=>	(s,	a))

				//	use	this	as	a	way	to	see	what's	going	on	here.

				//	if	you	enter	1	and	then	2	you'll	see	the	output,	

				//	`(SumState(1),	2)`.

				//result.map(tup	=>	println(s"lift:	(${tup._1},	

				//${tup._2})"))

				//	yield	the	result	of	this	anonymous	function	(which	

				//	will	be	wrapped	by	StateT)

				result

}

As	the	function	signature	shows,	this	function	takes	an	IO[A]	input	parameter
and	yields	a	StateT[IO,	SumState,	A]	type,	which	tells	you	that	it	“lifts”	the
given	IO	value	into	StateT.	The	io.map	call	inside	the	anonymous	function
merges	the	io	input	parameter	and	the	SumState	parameter	s	into	a	new	type	of	
IO[(SumState,	A)].	Then	that	type	is	fed	into	StateT’s	constructor	to	yield	the
final	type,	StateT[IO,	SumState,	A].

As	I	mentioned,	the	anonymous	function	body	is	really	only	one	line	long;	I	just
added	the	extra	debug	code	so	you	can	see	the	type	inside	the	body.	Here’s	what
the	function	looks	like	without	the	intermediate	steps:

def	liftIoIntoStateT[A](io:	IO[A]):	

				StateT[IO,	SumState,	A]	=	StateT	{	s:	SumState	=>

				io.map(a	=>	(s,	a))		//IO[(SumState,	A)]

}

The	end	result	is	that	you	can	use	this	function	to	lift	variables	of	type	IO[A]	into
StateT,	specifically	the	type	StateT[IO,	SumState,	A].

Creating	new	I/O	functions

Now	we	can	use	this	function	to	create	new	I/O	functions	that	yield	a	StateT	so
they	can	be	used	in	the	“sum	the	integers”	for	expression.	First,	I	use	
liftIoIntoStateT	to	transform	getLine	into	a	new	function	I	name	
getLineAsStateT:

def	getLineAsStateT():	StateT[IO,	SumState,	String]	=	

				liftIoIntoStateT(getLine)

Then	I	do	the	same	thing	with	the	putStr	function:

def	putStrAsStateT(s:	String):	StateT[IO,	SumState,	Unit]	=

				liftIoIntoStateT(putStr(s))

Welcome	to	the	top	of	“Mount	Monad”

Okay,	admittedly	that	was	a	lot	of	setup	work,	but	even	if	you	don’t	know	it	yet,
we’re	now	at	the	top	of	the	monad	mountain.	Because	these	functions	yield	a	
StateT[IO,	SumState,	A],	they	can	be	used	in	the	for	expression	I	tried	to
create	in	the	previous	lesson.	In	the	next	lesson	we’ll	finally	get	IO	and	StateT
working	together!

A	First	IO/StateT	for	Expression
Now	that	we	have	a	collection	of	functions	that	all	return	this	type:

StateT[IO,	SumState,	A]

we	can	build	a	for	expression	to	prompt	a	user	to	enter	integer	values,	read	those
values,	and	then	sum	them.

To	keep	things	simple,	in	this	lesson	I’m	going	to	write	a	for	expression	that	you
have	to	kill	manually,	such	as	using	CTRL-C	at	the	command	line,	or	pressing	a
“stop”	button	in	an	IDE:

def	sumLoop:	StateT[IO,	SumState,	Unit]	=	for	{

				_					<-	putStrAsStateT("\ngive	me	an	int:	")

				input	<-	getLineAsStateT

				i					<-	liftIoIntoStateT(IO(toInt(input)))

				_					<-	doSumWithStateT(i)

				_					<-	sumLoop

}	yield	Unit

One	thing	to	notice	in	this	expression	is	this	line:

liftIoIntoStateT(IO(toInt(input)))

I	didn’t	bother	to	write	a	wrapper	function	around	toInt,	so	in	that	line:

toInt	transforms	input	from	a	String	to	an	Int

That	value	is	wrapped	in	an	IO	(an	IO[Int])

That	value	is	lifted	into	a	StateT	(a	StateT[IO,	SumState,	Int])

Just	like	I	modified	the	I/O	functions	to	return	StateT,	these	steps	are	necessary
to	get	toInt	to	work	in	the	for	expression.

Running	the	for	expression

Now	you	can	run	the	for	expression	by	giving	the	run	function	an	initial	state,
like	this:

val	result:	(SumState,	Unit)	=	sumLoop.run(SumState(0)).run

Because	you	have	to	kill	this	loop	manually	you	can’t	see	the	final	result,	but
with	some	debug	code	included	in	the	functions	you	can	see	some	output.	In	the
source	code	for	this	project,	if	you	run	the	App	named
v2_loop_without_quit.LoopWithoutQuitLotsOfDebug,	and	enter	the	numbers	1,
2,	and	3	before	killing	the	loop,	you’ll	see	this	combination	of	input/output:

give	me	an	int:	1

updateIntState,	old	sum:			0

updateIntState,	new	input:	1

updateIntState,	new	sum:			1

give	me	an	int:	2

updateIntState,	old	sum:			1

updateIntState,	new	input:	2

updateIntState,	new	sum:			3

give	me	an	int:	3

updateIntState,	old	sum:			3

updateIntState,	new	input:	3

updateIntState,	new	sum:			6

The	output	comes	from	the	doSumWithStateT	function,	which	looks	like	this:

def	doSumWithStateT(newValue:	Int):	

				StateT[IO,	SumState,	Int]	=	StateT	{	(oldState:	SumState)	=>

				//	create	a	new	sum	from	`i`	and	the	previous	sum	from	`s`

				val	newSum	=	newValue	+	oldState.sum

				println(s"updateIntState,	old	sum:			"	+	oldState.sum)

				println(s"updateIntState,	new	input:	"	+	newValue)

				println(s"updateIntState,	new	sum:			"	+	newSum)

				//	create	a	new	SumState

				val	newState:	SumState	=	oldState.copy(sum	=	newSum)

				//	return	the	new	state	and	the	new	sum,	wrapped	in	an	IO

				IO(newState,	newSum)

}

If	you	also	uncomment	the	map/println	statement	in	liftIoIntoStateT,	you’ll
see	this	additional	SumState	output:

lift:	(SumState(0),	1)

lift:	(SumState(1),	2)

lift:	(SumState(3),	3)

(SumState(6),	())

All	of	that	output	shows	the	internal	state	of	the	for	expression	as	you	enter	the
values	1,	2,	and	3.

At	this	point	I	encourage	you	to	work	with	the	source	code	in	this	portion	of	the
project	until	you	understand	how	it	works.	As	usual,	add	more	comments	and
debug	statements	to	the	code	and	modify	it	as	desired	to	make	it	your	own.

The	Final	IO/StateT	for	Expression
Source	code

The	 source	 code	 for	 this	 lesson	 is	 in	 the	 package	 named
v3_loop_with_quit,	in	the	same	repository	as	all	of	 the	StateT
lessons.	Work	with	the	LoopWithQuitLotsOfDebug	class	to	see
a	lot	of	debug	output,	or	the	LoopWithQuitNoDebug	class	to	run
the	application	without	debug	output.

https://github.com/alvinj/FPMonadTransformers

The	final	for	expression

In	the	previous	lesson	I	wanted	to	keep	the	for	expression	simple,	so	I	left	out
the	“type	q	to	quit”	part	of	the	code,	but	now	it’s	time	to	show	the	complete	code
that	lets	the	user	type	q	to	quit:

def	sumLoop:	StateT[IO,	SumState,	Unit]	=	for	{

				_					<-	putStrAsStateT("\ngive	me	an	int,	or	'q'	to	quit:	")

				input	<-	getLineAsStateT

				_					<-	if	(input	==	"q")	{

																	liftIoIntoStateT(IO(Unit))

													}	else	for	{

																	i	<-	liftIoIntoStateT(IO(toInt(input)))

																	_	<-	doSumWithStateT(i)

																	_	<-	sumLoop

													}	yield	Unit

}	yield	Unit

val	result	=	sumLoop.run(SumState(0)).run

println(s"Final	SumState:	${result}")

The	big	change	to	this	code	begins	with	this	if	statement	inside	the	for
expression:

if	(input	==	"q")	

As	the	comment	after	that	line	shows,	if	you	type	q,	the	expression	returns	Unit,
which	is	first	wrapped	in	an	IO,	and	then	wrapped	in	a	StateT,	and	the
loop/recursion	ends.	Otherwise,	control	is	passed	to	the	else	clause	where	a
second	for	expression	does	the	work	I	showed	previously,	and	a	recursive	call	to
sumLoop	is	made,	prompting	you	to	enter	another	integer,	or	q	to	quit.

A	good	thing	about	this	loop	is	that	when	you	type	q	you	can	see	the	final	
SumState.	Here’s	the	input	and	output	I	get	when	running	the	
LoopWithQuitLotsOfDebug	application	with	the	values	1,	2,	and	3:

give	me	an	int,	or	'q'	to	quit:	1

updateIntState,	old	sum:			0

updateIntState,	new	input:	1

updateIntState,	new	sum:			1

give	me	an	int,	or	'q'	to	quit:	2

updateIntState,	old	sum:			1

updateIntState,	new	input:	2

updateIntState,	new	sum:			3

give	me	an	int,	or	'q'	to	quit:	3

updateIntState,	old	sum:			3

updateIntState,	new	input:	3

updateIntState,	new	sum:			6

give	me	an	int,	or	'q'	to	quit:	q

Final	SumState:	(SumState(6),())

As	with	the	for	expression	in	the	previous	lesson,	I	encourage	you	to	work	with
the	source	code	for	this	portion	of	the	project	and	add	debug	statements	and
modify	it	until	you	understand	it,	making	it	your	own.

You’ll	probably	have	to	read	it	more	than	once

Using	and	understanding	StateT	is	probably	the	most	difficult	topic	in	this	book.
But	if	you	can	understand	it,	I	believe	you’ll	be	able	to	deeply	understand	many
uses	of	monads.

Because	this	topic	is	difficult,	I	suspect	that	you’ll	have	to	read	these	StateT
lessons	more	than	once,	and	I	apologize	for	that.	Throughout	this	book	I’ve	tried
to	make	each	topic	as	easy	to	understand	as	possible,	but	“monad	transformers”
is	a	deep	topic	that	you	may	need	to	review	several	times	to	understand.

Focus	on	how	to	use	Monad	and	StateT

I’d	like	to	add	one	more	thing	at	this	point:	Unless	you’re	interested	in	theory,
don’t	get	too	caught	up	in	how	Monad	and	StateT	are	implemented.	By	that	I
mean	that	you	should	first	focus	on	how	to	use	StateT,	and	after	that,	if	you
want	to	know	how	to	write	Monad	and	StateT	you	can	dig	into	that	source	code.

Think	of	it	this	way:	When	you	first	learned	how	to	sort	a	list	in
Scala,	 did	 you	 check	 the	 Scala	 library	 source	 code	 out	 from
Github	to	see	how	the	sort	algorithms	were	implemented,	or	did
you	just	try	to	sort	your	collection?

Summary	of	the	StateT	Lessons
As	you	saw	in	these	StateT	lessons,	the	key	to	being	able	to	use	both	the	IO	and	
State	monads	in	a	for	expression	is	to	use	a	StateT	transformer	monad	that
encapsulates	both	State	and	IO	within	the	same	construct,	specifically	a	
StateT[IO,	SumState,	A]	in	this	examples.	StateT	works	just	like	State,	and
it’s	also	a	wrapper	around	IO.

There	are	other	approaches	to	the	problem	of	using	multiple	monads	in	a	for
expression,	but	using	monad	transformers	like	StateT	is	a	common	solution.	For
example,	the	Cats	project	includes	monad	transformers	including	StateT,	
OptionT,	EitherT,	and	more.

https://typelevel.org/cats/

How	about	those	types!

An	interesting	thing	about	everything	you’ve	been	through	in	this	book	is	that
you’re	probably	used	to	seeing	types	like	StateT[IO,	SumState,	A]	by	now.	If
you’re	like	me,	when	you	first	started	this	book	you	probably	rarely	used
anything	like	that,	but	by	now,	seeing	types	like	this	is	second	nature.

Conclusion:	Always	ask	“Why?”

As	you	saw	in	this	lesson	—	and	even	in	the	monad	lessons	leading	up	to	this
one	—	you	have	to	go	through	a	lot	of	setup	work	in	FP	to	be	able	to	use	the
concepts	of	State	and	I/O	in	the	same	for	expression.	Early	in	this	book	I
encouraged	you	to	always	ask	“Why?”	as	you	work	through	the	lessons,	and	this
is	a	good	time	to	do	that	again:

Why	 would	 anyone	 go	 through	 this	 much	 work	 when	 it’s	 so
much	easier	to	write	imperative	loops?

I	encourage	you	to	try	to	answer	that	question	yourself,	but	I’ll	provide	my	own
thoughts	as	well.

The	first	part	of	my	answer	is	that	monads	and	Scala’s	for	expression	give	FP
developers	a	way	to	write	a	sequence	of	computations	using	only	immutable
variables	and	pure	functions.	If	you	want	to	know	how	to	write	a	series	of
computations	using	only	“Pure	FP,”	this	is	the	best	way	the	brightest	minds
know	how	to	do	this	today.

The	second	part	of	the	answer	is	that	you	must	have	a	strong	—	make	that
intense	—	desire	to	see	all	of	your	code	as	being	like	math,	like	algebra.	In	your
mind	you	can’t	just	settle	for	writing	pure	functions,	you	must	also	have	an
intense	dislike	for	mutable	variables	anywhere	in	your	code.	Only	when	you
develop	that	passion	will	you	be	willing	to	go	through	this	effort,	and	find	the
beauty	in	code	like	this.

In	my	own	case	I	can	say	that	going	through	this	process	has	helped	me	learn	to
write	better	code.	In	my	“Pure	OOP”	days	I	never	thought	much	about	mutable
variables	and	method	signatures,	that	was	the	only	way	I	knew	how	to	do	things.
But	these	days	I	use	immutable	variables	and	pure	functions	as	much	as	possible,
and	I	always	follow	the	mantra	of	“write	the	function	signature	first”	that	I’ve
shown	in	this	book:	I	first	sketch	the	function	signature,	and	only	when	I’m
confident	that	the	input	parameters	and	return	type	are	correct	do	I	write	the
function	body.

See	also

These	lessons	are	heavily	based	on	the	code	from	John	De	Goes’	2014
LambdaConf	presentation,	Introduction	to	Functional	Game	Programming	with
Scala.	The	Monad	and	StateT	source	code	comes	directly	from	that	project.

The	typelevel.org	book,	“Advanced	Scala	with	Cats,”	which	is	currently
accessible	at	this	URL,	is	a	good	resource	for	learning	more	about	monads.

https://github.com/jdegoes/lambdaconf-2014-introgame
https://underscore.io/training/courses/advanced-scala/

Signpost:	Modeling	the	world	with
Scala/FP
As	you	can	imagine,	functional	programming	changes	the	way	you	model	the
world	we	live	in.	Where	OOP	tells	us	to	encapsulate	data	and	behavior	in	the
same	class,	Scala/FP	tells	us	that	data	should	be	modeled	using	case	classes,	and
behavior	—	i.e.,	functions	—	should	be	modeled	somewhere	else.	That	concept
of	“somewhere	else”	is	what	the	next	several	lessons	are	about.

Here’s	an	outline	of	the	next	nine	lessons:

First,	I	define	the	concept	of	domain	modeling.

Next,	I	provide	a	short	review	of	domain	modeling	in	OOP.	I	do	this	as	a
means	of	providing	contrast	to	the	FP	approaches	that	follow.

Then	I	show	how	to	model	FP	behavior	using	a	“utilities”	class	approach,
and	also	do	the	same	thing	with	companion	objects.

After	that	I’ll	show	how	to	put	your	behaviors	in	modules,	an	approach	that
encourages	compositionality.

Finally,	I’ll	show	how	to	write	the	same	application	using	a	hybrid	OOP/FP
“functional	objects”	approach.

The	next	lesson	begins	with	a	short	discussion	of	domain	modeling.

What	is	a	Domain	Model?
Before	I	get	into	the	process	of	domain	modeling	in	OOP	and	FP,	it	will	help	to
be	precise	about	what	a	“domain	model”	is.

Domain

As	shown	in	the	introductory	quote	for	this	lesson,	a	domain	is	“a	sphere	of
activity	or	knowledge.”	When	we	build	software	applications,	we	work	in	the
domains	of	the	businesses	we	write	applications	for.	For	example,	these	are	some
of	the	businesses	I’ve	written	software	for	in	my	career:

a	pizza	company

a	magazine	printing	company

a	company	that	creates	software	for	advertising	agencies

As	you	can	imagine,	each	of	these	businesses	has	their	own	“sphere	of	activity
or	knowledge”:

a	pizza	company	understands	pizzas,	toppings,	customers,	orders,	stores,
drivers,	deliveries,	etc.

a	printing	company	understands	everything	to	do	with	magazines,	covers,
paper,	ink,	magazine	pages,	inserts,	etc.

advertising	businesses	know	about	advertisers,	print	ads,	commercials	on
television	and	radio,	billboards,	and	terms	like	“coverage”	and	“frequency”

As	those	examples	show,	each	business	domain	is	its	own	little	world,	with	its
own	sphere	of	knowledge.

Domain	model

A	domain	model	refers	to	the	way	we	model	the	objects	in	a	given	domain	as
software	engineers.	It’s	a	conceptual	model	where	we	organize	and	define	the
entities	we	encounter	in	the	domain	(pizzas,	orders,	etc.),	the	attributes	of	those
entities	(toppings,	crust	size,	crust	type),	the	relationships	between	the	entities	(a
pizza	has	toppings,	an	order	has	one	or	more	pizzas),	and	the	behaviors	and
interactions	of	those	entities	(add	topping	to	pizza,	add	pizza	to	order).

A	domain	model	is	also	a	vocabulary	or	dictionary	that	represents	a	shared
understanding	of	the	domain.	Everyone	involved	in	the	project,	including	the
product	owner,	stakeholders,	development	team,	etc.,	should	understand	the
vocabulary	and	be	able	to	use	it	as	a	communication	tool.	When	someone	says,
“A	customer	calls	a	store	to	order	a	pizza	for	delivery,”	all	of	those	terms	should
be	understood	by	everyone	on	the	project.

The	term	“domain	model”	can	refer	to	a	visual	model,	the	source	code	we	write,
or	the	written	documentation	we	create,	but	in	any	format	it	is	a	conceptual
model	of	the	domain.

Finally,	you	can	implement	a	domain	model	using	OOP,	FP,	any	other
programming	paradigms	that	may	evolve	in	the	future,	and	in	terms	of	source
code,	a	domain	model	can	be	implemented	in	any	programming	language.

What’s	next

In	the	lessons	that	follow,	I’ll	first	show	a	Scala/OOP	version	of	a	domain	model
for	a	pizza	store.	After	that	I’ll	show	different	ways	to	implement	the	domain
model	using	Scala/FP.

See	also

For	much	more	information	on	the	process	of	building	domain	models,	see	these
books	about	Domain-Driven	Design:

Domain	Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software

Implementing	Domain-Driven	Design

Both	of	those	books	are	very	detailed,	and	highly-regarded.

http://amzn.to/2vxt1vG
http://amzn.to/2vy1omg

A	Review	of	OOP	Data	Modeling
Before	I	get	into	the	Scala/FP	domain	modeling	lessons,	I	want	to	share	what	a
Scala/OOP	data	model	might	look	like	for	a	Pizza	point	of	sales	(POS)	system.
For	the	purposes	of	this	lesson	I’m	going	to	assume	that	a	pizza	store	can	only
sell	pizzas;	it	doesn’t	sell	other	things	like	breadsticks,	cheesesticks,	salads,
beverages,	etc.

The	source	code

The	source	code	for	this	lesson	is	at	this	Github	URL:

github.com/alvinj/PizzaPosOopStyle

https://github.com/alvinj/PizzaPosOopStyle

A	note	before	we	begin

If	I	was	going	to	model	a	Pizza	POS	system	using	a	“100%	correct”	OOP
design,	I	would	make	the	fields	of	each	class	private,	and	require	get	and	set
method	calls	on	them,	like	this:

class	Pizza	{

				type	Money	=	BigDecimal

				//	private	fields

				private	var	_crustSize:	CrustSize	=	MediumCrustSize

				private	var	_crustType:	CrustType	=	RegularCrustType

				private	val	_toppings	=	ArrayBuffer[Topping]()

				def	getCrustSize	=	_crustSize

				def	setCrustSize(cs:	CrustSize)	{

								_crustSize	=	cs

				}

				def	getCrustType	=	_crustType

				def	setCrustType(ct:	CrustType)	{

								_crustType	=	ct

				}

				def	getToppings	=	_toppings

				def	addTopping(t:	Topping)	{

								_toppings	+=	t

				}

				//	more	code	...

}

However,	I’m	not	going	to	do	that	in	this	lesson	because	(a)	I	assume	that	you
understand	OOP,	(b)	this	book	isn’t	about	OOP,	and	(c)	once	I	create	several
classes,	that	approach	requires	a	lot	of	boilerplate	code	that	obscures	what	I	want
to	show.	Therefore,	in	this	lesson	I’m	going	to	write	my	OOP	classes	using
public	var	fields	without	getter	and	setter	methods.

Modeling	toppings,	crust	size,	and	crust	type

To	build	a	pizza	you	need	to	define	what	your	toppings,	crust	size,	and	crust	type
look	like.	In	both	the	OOP	and	FP	worlds,	these	attributes	are	best	defined	as
enumerations,	as	shown	here:

sealed	trait	Topping

case	object	Cheese	extends	Topping

case	object	Pepperoni	extends	Topping

case	object	Sausage	extends	Topping

case	object	Mushrooms	extends	Topping

case	object	Onions	extends	Topping

sealed	trait	CrustSize

case	object	SmallCrustSize	extends	CrustSize

case	object	MediumCrustSize	extends	CrustSize

case	object	LargeCrustSize	extends	CrustSize

sealed	trait	CrustType

case	object	RegularCrustType	extends	CrustType

case	object	ThinCrustType	extends	CrustType

case	object	ThickCrustType	extends	CrustType

The	benefits	of	enumerations	are:

You	can	use	the	types	Topping,	CrustSize,	and	CrustType	in	function
signatures

They	work	well	in	other	places,	such	as	match	expressions

Type	safety	in	general

Aside:	Use	enums,	not	strings

Don’t	ever	use	strings	where	you	should	use	enumerations.	That	is,	don’t	ever	do
this:

val	CHEESE				=	"cheese"

val	PEPPERONI	=	"pepperoni"

That	approach	leads	to	code	like	this:

def	addTopping(p:	Pizza,	t:	String)

def	getToppings():	Seq[String]

Enumerations	also	work	much	better	with	pattern	matching.

A	Pizza	class

Once	you	have	those	pizza	attributes,	you	can	define	the	OOP	version	of	a	Pizza
class	like	this:

class	Pizza	{

				var	crustSize:	CrustSize	=	MediumCrustSize

				var	crustType:	CrustType	=	RegularCrustType

				//	no	need	for	`toppings`	to	be	a	`var`;	`ArrayBuffer`	is	mutable

				val	toppings	=	ArrayBuffer[Topping]()

				def	addTopping(t:	Topping):	Unit	=	{	toppings	+=	t	}

				def	removeTopping(t:	Topping):	Unit	=	{	toppings	-=	t	}

				def	removeAllToppings():	Unit	=	{	toppings.clear()	}

				def	getPrice(

								toppingsPrices:	Map[Topping,	Money],

								crustSizePrices:	Map[CrustSize,	Money],

								crustTypePrices:	Map[CrustType,	Money]

):	Money	=	???

}

Many	developers	use	the	BigDecimal	class	to	handle	currency,	so	I	also	create	a
type	alias	named	Money	to	make	those	type	signatures	a	little	more	meaningful:

type	Money	=	BigDecimal

Here	are	a	few	important	notes	about	this	non-FP	code:

I	use	a	regular	Scala	class	to	create	Pizza,	instead	of	case	class

addTopping,	removeTopping,	and	removeAllToppings	return	Unit,	and
mutate	toppings

Also,	depending	on	your	design	beliefs,	getPrice	may	or	may	not	be	included	in
this	class.	(When	working	on	an	OOP	design,	I	used	to	use	CRC	cards	and	ask,
“What	class	has	the	responsibility	for	this	behavior?”)	It’s	important	to	note	that
the	actual	pizza	price	depends	on	the	cost	of	the	toppings,	crust	size,	and	crust
type,	so	those	prices	—	which	are	typically	stored	in	a	database	—	would	have
to	be	passed	into	this	method.

https://en.wikipedia.org/wiki/Class-responsibility-collaboration_card

An	OOP	Order	class

Next,	here’s	a	Scala/OOP	Order	class	that	models	a	customer’s	order,	including
how	many	pizzas	they’re	buying,	along	with	their	customer	information:

class	Order	{

				//	an	order	contains	a	list	of	pizzas

				val	pizzas	=	ArrayBuffer[Pizza]()

				//	could	be	a	constructor	parameter	if	you	always	create

				//	a	customer	before	creating	an	order

				var	customer:	Customer	=	null

				def	addPizzaToOrder(p:	Pizza):	Unit	=	{

								pizzas	+=	p

				}

				def	removePizzaFromOrder(p:	Pizza):	Unit	=	{

								pizzas	-=	p

				}

				//	need	to	implement	these

				def	getBasePrice():	Money	=	???

				def	getTaxes():	Money	=	???

				def	getTotalPrice():	Money	=	???

}

Customer-related	classes

Next,	here	are	the	customer-related	classes:

class	Customer	(

				var	name:	String,

				var	phone:	String,

				var	address:	Address

)

class	Address	(

				var	street1:	String,

				var	street2:	String,

				var	city:	String,

				var	state:	String,

				var	zipCode:	String

)

In	a	real-world	OOP	design	those	classes	would	have	getter	and	setter	methods,
but	notice	that	without	them	it’s	easier	to	see	that	Customer	and	Address	don’t
have	any	behaviors,	they’re	just	data	structures.

Finally,	it’s	important	to	note	that	street2	is	actually	an	optional	field;	it’s	not
required	for	all	addresses.	Depending	on	your	OOP	philosophy,	you	can	leave
the	Address	design	as	shown,	and	then	have	street2	be	null	or	an	empty	
String	when	it	isn’t	present,	or	you	can	define	it	as	an	optional	field:

class	Address	(

				var	street1:	String,

				var	street2:	Option[String],		//optional

				var	city:	String,

				var	state:	String,

				var	zipCode:	String

)

In	OOP	this	choice	is	open	to	debate,	but	in	FP	it	will	always	be	specified	as	
Option[String].

The	important	points	of	the	OOP	design

The	important	points	to	note	about	this	design	are	that	the	Pizza	class	includes
impure	methods	like	these:

def	addTopping(t:	Topping):	Unit

def	removeTopping(t:	Topping):	Unit

def	removeAllToppings():	Unit

The	Order	class	also	has	these	impure	methods:

def	addPizzaToOrder(p:	Pizza):	Unit

def	removePizzaFromOrder(p:	Pizza):	Unit

Finally,	because	Order	also	encapsulates	data	and	behavior,	it	may	also	have
these	built-in	methods,	which	may	also	end	up	being	impure:

def	getBasePrice():	Money

def	getTaxes():	Money

def	getTotalPrice():	Money

Recognizing	impure	method	signatures

Remember	that	when	you	see	a	Unit	return	type	you	should	immediately	think,
“This	is	not	a	pure	function.”	In	these	examples,	all	of	the	functions	that	have	
Unit	return	types	are	mutating	some	internal	state.

In	addition	to	those	methods,	the	other	methods	that	take	no	input	parameters	are
technically	not	pure	functions.	These	methods	presumably	make	calculations
based	on	the	internal	state	of	those	classes	and	therefore	might	not	be	mutating
any	internal	state,	but	you	definitely	can’t	use	the	pure	function	mantra,	“Output
depends	only	on	input.”

Modeling	the	“Data”	Portion	of	the
Pizza	POS	System	with	Scala/FP
In	FP,	the	data	and	the	operators	on	that	data	are	two	separate	things;	you	aren’t
forced	to	encapsulate	them	together	like	you	do	with	OOP.

The	concept	is	like	numerical	algebra.	When	you	think	about	whole	numbers
whose	values	are	greater	than	or	equal	to	zero,	you	have	a	set	of	possible	values
that	looks	like	this:

0,	1,	2	...	Int.MaxInt

Ignoring	the	division	of	whole	numbers,	the	possible	operators	on	those	values
are:

+,	-,	*

An	FP	design	is	implemented	in	a	similar	way:

You	have	a	set	of	values

You	have	a	collection	of	operators	that	work	on	those	values

In	this	lesson	I’ll	show	how	to	implement	the	“data”	portion	of	the	Scala/FP
model	for	the	Pizza	POS	system,	and	in	the	following	lessons	I’ll	show	different
techniques	for	modeling	the	“behaviors”	using	Scala/FP.

Modeling	the	data

Modeling	the	“data”	portion	of	a	domain	model	in	Scala/FP	is	simple:

Model	the	data	as	case	classes	with	immutable	fields.

Given	that	one	simple	rule,	the	Scala/FP	data	model	for	the	Pizza	POS	system	is
as	follows.	First,	the	toppings,	crust	size,	and	crust	type	are	modeled	as
enumerations,	just	as	they	were	in	the	OOP	design:

sealed	trait	Topping

case	object	Cheese	extends	Topping

case	object	Pepperoni	extends	Topping

case	object	Sausage	extends	Topping

case	object	Mushrooms	extends	Topping

case	object	Onions	extends	Topping

sealed	trait	CrustSize

case	object	SmallCrustSize	extends	CrustSize

case	object	MediumCrustSize	extends	CrustSize

case	object	LargeCrustSize	extends	CrustSize

sealed	trait	CrustType

case	object	RegularCrustType	extends	CrustType

case	object	ThinCrustType	extends	CrustType

case	object	ThickCrustType	extends	CrustType

Next,	all	of	the	other	classes	are	modeled	as	case	classes	with	immutable	fields:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				toppings:	Seq[Topping]

)

case	class	Order	(

				pizzas:	Seq[Pizza],

				customer:	Customer

)

case	class	Customer	(

				name:	String,

				phone:	String,

				address:	Address

)

case	class	Address	(

				street1:	String,

				street2:	Option[String],

				city:	String,

				state:	String,

				zipCode:	String

)

Notice	that	this	code	really	is	just	a	simple	data	model;	there	are	no	“behaviors”
mixed	in	with	the	data.	Personally,	I	like	this.	By	separating	(a)	the	data	from	(b)
the	operations	on	that	data,	the	data	attributes	and	relationships	are	clear.	The
data	model	is	easy	to	read,	like	declaring	the	design	for	a	relational	database.

Skinny	domain	objects

In	his	book,	Functional	and	Reactive	Domain	Modeling,	Debasish	Ghosh	states
that	where	OOP	practitioners	describe	their	classes	as	“rich	domain	models”	that
encapsulate	data	and	behaviors,	FP	data	models	can	be	thought	of	as	“skinny
domain	objects.”	This	is	because,	as	this	lesson	shows,	the	data	models	are
defined	as	case	classes	with	attributes,	but	no	behaviors.

http://amzn.to/2iOT3Vh

What	about	the	operations?

This	leads	to	a	very	interesting	question:

Because	FP	separates	the	data	from	the	operations	on	that	data,
how	do	you	implement	those	operations	in	Scala/FP?

I’ll	show	several	possible	approaches	in	the	following	lessons.

First	Attempts	to	Organize	Pure
Functions
There	are	several	different	ways	to	implement	behaviors	(functions)	in	Scala/FP.
I’ll	begin	by	showing	two	possible	approaches	in	this	lesson,	and	then	show
better	in	the	following	lessons.

Introduction

In	this	lesson	I’ll	show	how	to	put	your	functions	in	what	I	call	a	“Utils”	object.
After	that,	I’ll	show	how	to	put	the	same	functions	in	a	companion	object.

I	generally	don’t	recommend	using	these	approaches,	but	they	are	what	I	tried
when	I	first	started	working	with	Scala/FP.	(I	use	a	style	similar	to	this	when
writing	pure	functions	in	Java	for	Android	applications.)

Source	code

Because	I	don’t	recommend	these	approaches	in	Scala,	I	haven’t	created	a
Github	project	for	this	lesson.

Option	1:	Handling	Scala/FP	behavior	with	a	“Utils”
class

One	option	is	to	implement	“behavior”	in	what	I	call	a	standalone	“utilities”
class.	For	instance,	the	Pizza	case	class	from	the	previous	lesson	can	have	a
corresponding	PizzaUtils	object	that	contains	all	of	the	pure	functions	that
operate	on	a	Pizza:

object	PizzaUtils	{

				type	Money	=	BigDecimal

				def	addTopping(p:	Pizza,	t:	Topping):	Pizza	=	???

				def	removeTopping(p:	Pizza,	t:	Topping):	Pizza	=	???

				def	removeAllToppings(p:	Pizza):	Pizza	=	???

				def	updateCrustSize(p:	Pizza,	cs:	CrustSize):	Pizza	=	???

				def	updateCrustType(p:	Pizza,	ct:	CrustType):	Pizza	=	???

				def	calculatePrice	(

								p:	Pizza,

								toppingsPrices:	Map[Topping,	Money],

								crustSizePrices:	Map[CrustSize,	Money],

								crustTypePrices:	Map[CrustType,	Money]

):	Money	=	???

}

Notice	that	this	is	just	a	collection	of	pure	functions	that	I	put	in	a	standalone	
object.	You’d	call	these	functions	like	this:

val	pizza2	=	PizzaUtils.addTopping(pizza1,	Pepperoni)

val	pizza3	=	PizzaUtils.updateCrustSize(LargeCrustSize)

With	this	approach	I	find	that	all	of	those	PizzaUtils	references	clutter	up	the
code,	so	it’s	cleaner	to	import	the	functions	and	then	use	them	like	this:

import	PizzaUtils._

val	pizza2	=	addTopping(pizza1,	Pepperoni)

val	pizza3	=	updateCrustSize(LargeCrustSize)

val	price	=	calculatePrice(

				pizza3,

				toppingsPrices,

				crustSizePrices,

				crustTypePrices

)

There	are	a	few	things	to	say	about	this	code.	First,	all	of	the	functions	are	pure
functions.	For	instance,	addTopping	and	removeTopping	take	a	Pizza	and	a	

Topping	as	inputs,	and	return	a	new	Pizza	as	a	result:

def	addTopping(p:	Pizza,	t:	Topping):	Pizza	=	???

def	removeTopping(p:	Pizza,	t:	Topping):	Pizza	=	???

The	crust	size	and	type	functions	follow	the	same	pattern:

def	updateCrustSize(p:	Pizza,	cs:	CrustSize):	Pizza	=	???

def	updateCrustType(p:	Pizza,	ct:	CrustType):	Pizza	=	???

In	the	OOP	design	you	can	mutate	the	toppings,	crust	size,	and	crust	type	on	an
existing	Pizza	reference,	but	in	FP	you	don’t	do	that.	Instead,	you	use	functions
like	these	to	construct	a	new,	updated	pizza	from	the	old	pizza	and	the	new
toppings,	crust	size,	and	crust	type.	This	is	the	way	you	update	objects	in	FP,	so
the	pure	functions	in	the	following	two	lessons	will	look	just	like	these,	they’ll
just	be	organized	differently.

I	wrote	about	this	approach	in	the	earlier,	“”	lesson,	so	I	won’t
belabor	this	point	here.	See	that	lesson	for	more	details.

Notice	that	a	benefit	of	separating	data	from	behavior	is	that	it	forces	you	to
write	pure	functions.	Because	(a)	the	case	classes	contain	immutable	fields	and
(b)	the	behaviors	are	not	encapsulated	in	the	same	class,	each	function	must	take
an	instance	of	the	primary	data	type	(such	as	Pizza)	as	an	input	parameter,	and
the	function	must	also	evaluate	to	a	result.	There’s	no	way	for	you	to	“cheat”	and
mutate	a	data	structure	under	the	covers.	The	approach	itself	forces	you	to	write
pure	functions.

The	remainder	of	the	design

If	I	were	to	implement	more	of	this	approach,	I’d	eventually	create	more
“utilities”	objects,	such	as	an	OrderUtils	object,	and	possibly	one	or	more
objects	related	to	price	and	tax	calculations.	But	hopefully	the	PizzaUtils	object
gives	you	the	central	idea	of	this	concept:	Put	all	of	your	pure	functions	that
operate	on	a	domain	object	in	a	“Utils”	object.

While	 I	 call	 this	 a	 “Utils”	 object,	 as	 you’ll	 see	 in	 the	 next
lesson,	the	preferred	name	for	a	collection	of	functions	like	this
is	a	“service”	class.

Option	2:	Handling	behavior	in	FP	with	a	companion
object

As	a	variation	of	the	first	approach,	rather	than	putting	your	functions	in	a
separate	Utils	object,	you	can	use	Scala’s	concept	of	a	“companion	object”	for
the	exact	same	purpose.

With	the	companion	object	approach	you	put	the	data	model	in	a	case	class	just
as	before,	but	then	instead	of	putting	your	functions	in	a	separate	Utils	object,
you	put	them	in	an	object	in	the	same	file	as	the	case	class,	where	the	object
has	the	same	name	as	the	case	class.	This	type	of	object	is	known	as	a
companion	object.

The	result	looks	like	this:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				val	toppings:	Seq[Topping]

)

object	Pizza	{

				def	addTopping(p:	Pizza,	t:	Topping):	Pizza	=	???

				def	removeTopping(p:	Pizza,	t:	Topping):	Pizza	=	???

				def	removeAllToppings(p:	Pizza):	Pizza	=	???

				def	calculatePrice	(

								p:	Pizza,

								toppingsPrices:	Map[Topping,	Price],

								crustSizePrices:	Map[CrustSize,	Price],

								crustTypePrices:	Map[CrustType,	Price]

):	Money	=	???

				def	updateCrustSize(p:	Pizza,	cs:	CrustSize):	Pizza	=	???

				def	updateCrustType(p:	Pizza,	ct:	CrustType):	Pizza	=	???

}

With	this	approach	the	functions	look	just	like	the	PizzaUtils	code,	but	you	call
them	on	the	Pizza	object:

val	pizza2	=	Pizza.addTopping(pizza1,	Pepperoni)

val	pizza3	=	Pizza.updateCrustSize(LargeCrustSize)

As	before,	all	of	those	Pizza	references	tend	to	create	unnecessary	noise,	so	you
can	eliminate	them	by	importing	them	like	this:

import	Pizza._

https://alvinalexander.com/scala/how-to-create-scala-object-instances-without-new-apply-case-class

val	pizza2	=	addTopping(pizza1,	Pepperoni)

val	pizza3	=	updateCrustSize(LargeCrustSize)

The	end	result	of	these	two	approaches	is	nearly	identical.	The	only	difference	is
where	you	put	the	functions	that	operate	on	Pizza	instances.

One	thing	about	companion	objects	is	that	a	companion	object
can	 access	 the	 private	 fields	 of	 the	 case	 class	 it’s	 associated
with.	 In	OOP	 this	 is	 a	 helpful	 attribute,	 but	 in	FP	 this	 feature
might	encourage	you	to	write	impure	functions.

https://alvinalexander.com/scala/how-to-static-members-in-scala-companion-objects-fields-methods

What’s	next

As	mentioned,	I	used	these	techniques	as	my	first	“naive”	steps	into	Scala/FP.	In
the	next	lesson	I’ll	show	a	more	advanced	technique	that	shows	the	concept	of
“modules”	in	Scala/FP.

Implementing	FP	Behavior	with
Modules

The	source	code

The	source	code	for	this	lesson	is	at	this	Github	URL:

github.com/alvinj/FPModulesIrishSetter

https://github.com/alvinj/FPModulesIrishSetter

What	is	a	module?

This	lesson	is	about	implementing	behaviors	(functions)	in	modules,	so	it	begs
the	question,	what	is	a	module	in	Scala?

The	book,	Programming	in	Scala,	describes	a	module	like	this:

“A	 module	 is	 a	 ‘smaller	 program	 piece’	 with	 a	 well	 defined
interface	and	a	hidden	implementation.”

The	Scala	Language	Specification	provides	this	hint	as	to	what	a	module	is:

“The	 object	 definition	 defines	 a	 single	 object	 (or:	 module)
conforming	to	the	template	t.”

Those	quotes	provide	a	start,	but	they’re	not	too	helpful	on	their	own.	The	slide
shown	in	Figure	[fig:scalaTraitLikeOCamlModule]	is	from	a	lambdafoo.com
presentation,	and	provides	the	most	clear	definition	of	a	module	that	I’ve	seen.

As	you’ll	see	in	this	lesson,	a	Scala	trait	is	similar	to	a	module	in	the	OCaml
language.

As	that	slide	begins	to	show,	the	idea	of	a	module	in	Scala	is	to	use	a	trait	to

http://amzn.to/2fiqDBh
http://lambdafoo.com/scala-syd-2015-modules/#8

gather	your	pure	functions	into	logical	units	of	behavior.	In	this	lesson	I’ll	show
how	to	use	Scala	traits	to	create	modules,	and	then	how	to	combine	those	traits
to	build	larger	objects	and	complete	applications.

The	essence	of	the	problem

The	reasons	for	adopting	a	modular	programming	approach	are	described	in
Programming	in	Scala:

“As	a	program	grows	in	size,	it	becomes	increasingly	important	to	organize	it	in
a	modular	way.	First,	being	able	to	compile	different	modules	that	make	up	the
system	separately	helps	different	teams	work	independently.	In	addition,	being
able	to	unplug	one	implementation	of	a	module	and	plug	in	another	is	useful,
because	it	allows	different	configurations	of	a	system	to	be	used	in	different
contexts,	such	as	unit	testing	on	a	developer’s	desktop,	integration	testing,
staging,	and	deployment.”

In	regards	to	the	first	point,	in	FP	it’s	nice	to	be	able	to	say,	“Hey,	Team	A,	how
about	if	you	work	on	the	Order	functions,	and	Team	B	will	work	on	the	Pizza
functions?”

In	regards	to	the	second	point,	a	good	example	is	that	you	might	use	a	mock
database	on	your	desktop	and	then	use	real	databases	in	the	Test	and	Production
environments.	In	this	case	you’ll	create	traits	like	these:

trait	Database	{	...	}

trait	MockDatabase	extends	Database	{	...	}

trait	TestDatabase	extends	Database	{	...	}

trait	ProductionDatabase	extends	Database	{	...	}

One	point	I’ll	add	to	that	description	is	that	modularization	is	a	way	to	help	you
handle	the	complexity	that	comes	with	building	large	applications.

http://amzn.to/2fiqDBh

The	essence	of	the	solution

The	essence	of	the	modular	solution	is	also	described	well	in	Programming	in
Scala:

“Any	technique	that	aims	to	facilitate	this	kind	of	modularity	needs	to	provide	a
few	essentials.	First,	there	should	be	a	module	construct	that	provides	a	good
separation	of	interface	and	implementation.	Second,	there	should	be	a	way	to
replace	one	module	with	another	that	has	the	same	interface	without	changing	or
recompiling	the	modules	that	depend	on	the	replaced	one.	Lastly,	there	should	be
a	way	to	wire	modules	together.	This	wiring	task	can	by	thought	of	as
configuring	the	system.”

http://amzn.to/2fiqDBh

The	essence	of	the	technique

Given	that	background,	the	essence	of	programming	with	modules	in	Scala/FP
goes	like	this:

You	write	pure	functions,	as	I	did	in	the	previous	lesson

In	this	case,	the	pure	functions	are	organized	in	relatively	small,	logically-
organized	traits

You	combine	(compose)	the	traits	together	as	needed	to	create	objects,
using	the	traits	as	mixins

A	simple	example

Here’s	a	simple	example	of	this	technique.	Imagine	that	you	want	to	define	the
behaviors	for	a	dog,	let’s	say	an	Irish	Setter.	One	way	to	do	this	is	to	jump	right
in	and	create	an	IrishSetter	class:

class	IrishSetter	{	...	}

This	is	a	bad	idea.	A	better	idea	is	to	think	about	the	interfaces	for	different	types
of	dog	behaviors,	and	then	build	a	specific	implementation	of	an	Irish	Setter
when	you’re	ready.

For	example,	an	initial	thought	is	that	a	dog	is	an	animal:

trait	Animal

More	specifically,	a	dog	is	an	animal	with	a	tail,	and	that	tail	has	a	color:

abstract	class	AnimalWithTail(tailColor:	Color)	extends	Animal

Next,	you	might	think,	“Since	a	dog	has	a	tail,	what	kind	of	behaviors	can	a	tail
have?”	With	that	thought,	you	might	then	sketch	a	trait	like	this:

trait	DogTailServices	{

				def	wagTail	=	???

				def	lowerTail	=	???

				def	raiseTail	=	???

				def	curlTail	=	???

}

Next,	because	you	know	that	you	only	want	this	trait	to	be	mixed	into	classes
that	extend	AnimalWithTail,	you’ll	add	a	self-type	to	the	trait:

trait	DogTailServices	{

				//	implementers	must	be	a	sub-type	of	AnimalWithTail

				this:	AnimalWithTail	=>

				def	wagTail	=	???

				def	lowerTail	=	???

				def	raiseTail	=	???

				def	curlTail	=	???

}

If	you	read	the	Scala	Cookbook,	you	know	that	this	peculiar	looking	line
declares	a	self-type,	which	means,	“This	trait	can	only	be	mixed	into	classes	that

http://amzn.to/24ivK4G

extend	AnimalWithTail”:

this:	AnimalWithTail	=>

Because	I	want	to	keep	this	example	simple,	I’ll	go	ahead	and	implement	the
functions	(“services”)	in	the	DogTailServices	class	like	this:

trait	DogTailServices	{				

				this:	AnimalWithTail	=>

				def	wagTail	=	println("wagging	tail")

				def	lowerTail	=	println("lowering	tail")

				def	raiseTail	=	println("raising	tail")

}

Next,	as	I	think	more	about	a	dog,	I	know	that	it	has	a	mouth,	so	I	sketch	another
trait	like	this:

trait	DogMouthServices	{

				this:	AnimalWithTail	=>				

				def	bark	=	println("bark!")

				def	lick	=	println("licking")

}

I	could	keep	going	on	like	this,	but	I	hope	you	see	the	idea:	You	think	about	the
services	(or	behaviors)	that	are	associated	with	a	domain	object,	and	then	you
sketch	those	services	as	functions	in	logically	organized	traits.	(Advice:	Just	start
with	your	best	ideas,	then	re-organize	them	as	your	thinking	becomes	more
clear.)

Since	I’m	not	going	to	go	further	and	define	more	dog-related	behaviors,	I’ll
stop	at	this	point	and	create	a	module	as	an	implementation	of	an	Irish	Setter
with	the	services	I’ve	defined	so	far:

object	IrishSetter

				extends	AnimalWithTail(Color.red)	

				with	DogTailServices

				with	DogMouthServices

If	you	start	the	Scala	REPL	like	this:

$	scala	-Djava.awt.headless=true

Welcome	to	Scala	...

and	then	import	the	necessary	Color	class:

scala>	import	java.awt.Color

import	java.awt.Color

and	then	import	all	of	those	traits	into	the	REPL	(not	shown	here),	you’ll	see	that
you	can	call	the	functions/services	on	your	IrishSetter:

scala>	IrishSetter.bark

bark!

scala>	IrishSetter.wagTail

wagging	tail

While	this	is	a	simple	example,	it	shows	the	general	process	of	“programming
with	modules”	in	Scala.

Aside:	headless	mode

When	I	started	the	Scala	REPL,	I	used	this	command:

scala	-Djava.awt.headless=true	

This	starts	the	JVM	in	something	known	as	“headless”	mode.	I	did	this	because
creating	an	instance	of	an	AWT	class	in	the	REPL	causes	the	JVM	to	think,
“He’s	using	an	AWT	class,	this	must	be	a	GUI	application,”	and	the	REPL	loses
input	focus.	Starting	the	JVM	in	headless	mode	disables	that	behavior.

If	you’re	using	a	Mac	and	want	to	see	what	I’m	referring	to,	start	the	REPL
without	the	headless	argument:

$	scala

Welcome	to	Scala	...

and	then	run	these	two	commands:

scala>	import	java.awt._

import	java.awt._

scala>	val	c	=	Color.red

c:	java.awt.Color	=	java.awt.Color[r=255,g=0,b=0]

You’ll	see	that	the	REPL	and	Terminal	lose	input	focus,	and	the	name	
MainGenericRunner	appears	in	the	Mac	menu	bar.	(I	assume	that	a	similar	thing
happens	on	Windows	and	Linux	systems.)	If	you	use	the	headless	argument,
this	won’t	happen.

About	the	name	“service”

The	name	service	comes	from	the	fact	that	these	functions	provide	a	series	of
public	“services”	that	are	available	to	external	clients.	I	find	that	this	name
makes	sense	when	you	imagine	that	these	functions	are	implemented	as	a	series
of	web	service	calls.	For	instance,	when	you	use	Twitter’s	REST	API	to	write	a
Twitter	client,	the	functions	they	make	available	to	you	in	that	API	are
considered	to	be	a	series	of	web	services.

Implementing	the	Pizza	POS	System
Using	a	Modular	Approach
Now	that	you’ve	seen	how	to	go	through	the	modular	programming	process	once
with	some	simple	traits,	I’ll	go	ahead	and	implement	the	Pizza	Store	POS	using
modules.

The	source	code

The	source	code	for	this	lesson	is	at	this	Github	URL:

github.com/alvinj/PizzaPosFpModularStyle

https://github.com/alvinj/PizzaPosFpModularStyle

The	Pizza	POS	data	models

First,	although	the	Pizza	POS	data	model	hasn’t	changed,	I’ll	show	it	again	here
as	a	reminder:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				toppings:	Seq[Topping]

)

case	class	Order	(

				pizzas:	Seq[Pizza],

				customer:	Customer

)

case	class	Customer	(

				name:	String,

				phone:	String,

				address:	Address

)

case	class	Address	(

				street1:	String,

				street2:	Option[String],

				city:	String,

				state:	String,

				zipCode:	String

)

sealed	trait	Topping

case	object	Cheese	extends	Topping

case	object	Pepperoni	extends	Topping

case	object	Sausage	extends	Topping

case	object	Mushrooms	extends	Topping

case	object	Onions	extends	Topping

sealed	trait	CrustSize

case	object	SmallCrustSize	extends	CrustSize

case	object	MediumCrustSize	extends	CrustSize

case	object	LargeCrustSize	extends	CrustSize

sealed	trait	CrustType

case	object	RegularCrustType	extends	CrustType

case	object	ThinCrustType	extends	CrustType

case	object	ThickCrustType	extends	CrustType

The	PizzaService	interface

The	next	thing	I	tend	to	think	about	are	the	Pizza	behaviors,	so	I	initially	sketch
a	PizzaServiceInterface	trait	like	this:

trait	PizzaServiceInterface	{

				def	addTopping(p:	Pizza,	t:	Topping):	Pizza

				def	removeTopping(p:	Pizza,	t:	Topping):	Pizza

				def	removeAllToppings(p:	Pizza):	Pizza

				def	updateCrustSize(p:	Pizza,	cs:	CrustSize):	Pizza

				def	updateCrustType(p:	Pizza,	ct:	CrustType):	Pizza

				def	calculatePizzaPrice(

								p:	Pizza,

								toppingsPrices:	Map[Topping,	Money],

								crustSizePrices:	Map[CrustSize,	Money],

								crustTypePrices:	Map[CrustType,	Money]

):	Money

}

These	are	the	exact	same	function	signatures	I	used	in	the	previous	lesson;	the
only	difference	is	that	I’ve	put	them	in	a	trait	here,	as	opposed	to	a	“Utils”
class	or	companion	object.

When	you	write	a	pure	interface	like	this,	you	can	think	of	it	as	a	contract,	a
contract	that	states,	“all	non-abstract	classes	that	extend	this	trait	must	provide	an
implementation	of	these	services.”

In	the	real	world,	what	I’d	do	at	this	point	is	imagine	that	I’m	the	consumer	of
this	API.	When	I	do	that,	I	start	sketching	some	code	to	make	sure	I	like	what
this	API	looks	like:

val	p	=	Pizza(

				MediumCrustSize,

				RegularCrustType,

				Seq(Cheese)

)

//	the	functions	in	PizzaServiceInterface

val	p1	=	addTopping(p,	Pepperoni)

val	p2	=	addTopping(p1,	Mushrooms)

val	p3	=	updateCrustType(p2,	ThickCrustType)

val	p4	=	updateCrustSize(p3,	LargeCrustSize)

That	code	“feels”	okay	—	feels	like	what	I	want	—	so	at	this	point	I’d	typically
start	sketching	another	interface.	But	since	this	is	a	book,	I’m	going	to	go	ahead

and	wrap	up	this	module	by	going	through	the	work	of	creating	a	concrete
implementation	of	this	interface.

Notice	 that	 this	 is	usually	a	 two-step	process.	 In	 the	first	step,
you	 sketch	 the	 contract	 of	 your	 API	 as	 an	 interface.	 In	 the
second	 step	 you	 create	 a	 concrete	 implementation	 of	 that
interface.	 In	 some	 cases	 you’ll	 end	 up	 creating	 multiple
concrete	implementations	of	the	base	interface.

Creating	a	concrete	implementation

Now	that	I	know	what	the	PizzaServiceInterface	looks	like,	I	can	create	a
concrete	implementation	of	it	by	writing	code	for	all	of	the	functions	I	declared:

trait	PizzaService	extends	PizzaServiceInterface	{

				def	addTopping(p:	Pizza,	t:	Topping):	Pizza	=	{

								val	newToppings	=	p.toppings	:+	t

								p.copy(toppings	=	newToppings)

				}

				def	removeTopping(p:	Pizza,	t:	Topping):	Pizza	=	{

								val	newToppings	=	ListUtils.dropFirstMatch(p.toppings,	t)

								p.copy(toppings	=	newToppings)

				}

				def	removeAllToppings(p:	Pizza):	Pizza	=	{

								val	newToppings	=	Seq[Topping]()

								p.copy(toppings	=	newToppings)

				}

				def	updateCrustSize(p:	Pizza,	cs:	CrustSize):	Pizza	=	{

								p.copy(crustSize	=	cs)

				}

				def	updateCrustType(p:	Pizza,	ct:	CrustType):	Pizza	=	{

								p.copy(crustType	=	ct)

				}

				def	calculatePizzaPrice(

								p:	Pizza,

								toppingsPrices:	Map[Topping,	Money],

								crustSizePrices:	Map[CrustSize,	Money],

								crustTypePrices:	Map[CrustType,	Money]

):	Money	=	{

								//	TODO	implement	a	real	algorithm	based	on	those	sequences

								val	base	=	BigDecimal(10)

								val	numToppings	=	p.toppings.size

								val	price	=	base	+	1.00	*	numToppings

								price

				}

}

While	this	two-step	process	of	creating	an	interface	followed	by	an
implementation	isn’t	always	necessary,	if	you	want	to	be	an	API	creator,	it’s	a
good	discipline	to	learn.

Database

In	the	real	world,	pizza-related	prices	will	be	stored	in	a	database,	and	in	this
section	I	want	to	show	the	impact	that	has	on	a	modular	design.

Again	I’ll	start	with	an	interface	that	I’ll	name	PizzaDaoInterface.	It	declares
the	methods	that	a	“Pizza	database	access	object	(DAO)”	should	have:

trait	PizzaDaoInterface	{

				def	getToppingPrices():	Map[Topping,	Money]

				def	getCrustSizePrices():	Map[CrustSize,	Money]

				def	getCrustTypePrices():	Map[CrustType,	Money]

}

These	methods	return	the	pricing	data	maps	that	are	passed	into	the	
calculatePizzaPrice	function	in	the	PizzaService	trait.

One	way	to	implement	this	interface	is	with	a	mock	object,	and	that’s	what	I’ll
do	for	this	lesson.	Here’s	a	mock	implementation	of	the	PizzaDaoInterface:

object	MockPizzaDao	extends	PizzaDaoInterface	{

				def	getToppingPrices():	Map[Topping,	Money]	=	{

								Map(

												Cheese				->	BigDecimal(1),

												Pepperoni	->	BigDecimal(1),

												Sausage			->	BigDecimal(1),

												Mushrooms	->	BigDecimal(1)

)

				}

				def	getCrustSizePrices():	Map[CrustSize,	Money]	=	{

								Map(

												SmallCrustSize		->	BigDecimal(0),

												MediumCrustSize	->	BigDecimal(1),

												LargeCrustSize		->	BigDecimal(2)

)

				}

				def	getCrustTypePrices():	Map[CrustType,	Money]	=	{

								Map(

												RegularCrustType	->	BigDecimal(0),

												ThickCrustType			->	BigDecimal(1),

												ThinCrustType				->	BigDecimal(1)

)

				}

}

In	the	real	world	you’d	also	also	have	a	TestPizzaDao	and	

ProductionPizzaDao,	but	this	is	enough	for	our	purposes.

The	OrderService	trait

The	next	thing	I’d	think	about	in	the	Pizza	POS	system	are	the
behaviors/services	related	to	an	Order.	The	main	service	this	trait	needs	to
provide	is	the	ability	to	calculate	the	price	of	an	order,	so	I	begin	by	writing	this:

trait	OrderServiceInterface	{

				def	calculateOrderPrice(o:	Order):	Money

}

Given	an	Order,	calculateOrderPrice	returns	the	price	of	the	order	as	a	Money
type.

To	work	the	database	into	the	application,	let’s	assume	that	this	is	where	I	decide
to	access	the	database.	I	might	not	do	this	in	the	real	world,	but	I	don’t	want	to
make	this	example	too	complicated.

That	assumption	leads	me	to	add	this	database	reference	to	the	interface:

trait	OrderServiceInterface	{

				//	implementing	classes	should	provide	their	own	database

				//	that	is	an	instance	of	PizzaDaoInterface,	such	as

				//	MockPizzaDao,	TestPizzaDao,	or	ProductionPizzaDao

				protected	def	database:	PizzaDaoInterface

				def	calculateOrderPrice(o:	Order):	Money

}

The	implementation	of	OrderServiceInterface

Now	I	can	put	the	work	in	to	create	an	implementation	of	the	
OrderServiceInterface.	I’ll	share	the	complete	source	code	for	the
implementation,	and	then	explain	it:

trait	AbstractOrderService	extends	OrderServiceInterface	{

				//	create	a	concrete	implementation	of	the	trait	so	we

				//	can	use	its	`calculatePizzaPrice`	function

				object	PizzaService	extends	PizzaService

				import	PizzaService.calculatePizzaPrice

				//	all	implementations	of	this	trait	will	use	these	functions,

				//	so	go	ahead	and	define	them	here

				private	lazy	val	toppingPricesMap			=	database.getToppingPrices()

				private	lazy	val	crustSizePricesMap	=	database.getCrustSizePrices()

				private	lazy	val	crustTypePricesMap	=	database.getCrustTypePrices()

				//	the	publicly-available	service

				def	calculateOrderPrice(o:	Order):	Money	=

								calculateOrderPriceInternal(

												o,	

												toppingPricesMap,	

												crustSizePricesMap,	

												crustTypePricesMap

)

				private	def	calculateOrderPriceInternal(

								o:	Order,

								toppingPrices:	Map[Topping,	Money],

								crustSizePrices:	Map[CrustSize,	Money],

								crustTypePrices:	Map[CrustType,	Money]

):	Money	=	{

								val	pizzaPrices:	Seq[Money]	=	for	{

												pizza	<-	o.pizzas

								}	yield	{

												calculatePizzaPrice(

																pizza,

																toppingPrices,

																crustSizePrices,

																crustTypePrices

)

								}

								pizzaPrices.sum

				}

}

To	understand	this	code,	it	helps	to	look	at	the	calculateOrderPriceInternal
function	first.	When	you	look	at	its	code	you’ll	see:

It	requires	the	three	data	maps	from	the	database

It	also	requires	the	calculatePizzaPrice	function	from	the	PizzaService
trait

Knowing	that,	the	other	lines	of	code	make	sense.	First,	I	create	a	concrete
instance	of	the	PizzaService:

object	PizzaService	extends	PizzaService

You	can’t	call	functions	on	a	trait,	so	you	need	to	create	a	concrete	instance	of
that	trait	before	you	do	anything	else.	This	technique	is	common	with	the
modular	programming	approach,	and	it’s	known	as	“reifying”	the	trait.	(The
word	reify	is	defined	as,	“Taking	an	abstract	concept	and	making	it	concrete.”)

Next,	I	import	the	function	I	need	from	PizzaService:

import	PizzaService.calculatePizzaPrice

After	that,	I	get	the	data	maps	I	need	from	the	database	reference:

private	lazy	val	toppingPrices	=	database.getToppingPrices()

private	lazy	val	crustSizePrices	=	database.getCrustSizePrices()

private	lazy	val	crustTypePrices	=	database.getCrustTypePrices()

I	implement	these	as	private	because	nobody	else	needs	to	access	them.

I	further	define	them	as	lazy	for	a	totally	different	reason:	This	trait	still	isn’t
completely	useful.	Because	it	doesn’t	have	a	concrete	database	reference,	it’s
not	completely	usable	as	it	is	(which	is	why	I	include	the	word	“Abstract”	in	the
trait	name).	To	make	use	of	this	trait	I’ll	have	to	extend	it	one	more	time.

Using	the	MockPizzaDao

Because	the	AbstractOrderService	class	is	nearly	complete,	it	takes	just	one
more	step	to	create	an	implementation	of	it	that	works	with	the	MockPizzaDao.
All	you	have	to	do	is	declare	an	object	that	extends	the	trait	and	state	that	its	
database	reference	is	the	MockPizzaDao:

object	MockDbOrderService	extends	AbstractOrderService	{

				val	database	=	MockPizzaDao

}

This	is	a	nice	technique,	because	if	you	want	a	ProductionPizzaDao	you	can
easily	create	a	similar	object	to	use	in	Production:

object	ProductionOrderService	extends	AbstractOrderService	{

				val	database	=	ProductionPizzaDao

}

Now	that	I	have	the	MockDbOrderService,	I	can	test	all	of	my	code	in	a	“driver”
class	to	show	that	it	all	works	the	way	I	want	it	to	work.

A	driver	class	to	test	the	design

Here’s	a	driver	class	I	created	to	test	the	API	I	created.	I	explain	what	I’m	doing
in	the	comments	in	the	code,	so	please	see	those	comments	for	the	primary
discussion	of	this	code:

object	MainDriver	extends	App	{

				//	create	a	concrete	PizzaService	instance	so	i	can

				//	call	its	functions

				object	PizzaService	extends	PizzaService

				//	import	all	of	its	functions

				import	PizzaService._

				//	create	a	sample	Address

				val	address	=	Address(

								"1	Main	Street",

								None,

								"Talkeetna",

								"AK",

								"99676"

)

				//	create	a	sample	Customer

				val	customer	=	Customer(

								"Alvin	Alexander",

								"907-555-1212",

								address

)

				//	start	to	create	an	Order	for	the	Customer.	notice	that

				//	this	brings	up	a	question,	should	i	have	used	an	Option

				//	for	the	Seq[Pizza]	parameter?

				val	o1	=	Order(

								Seq[Pizza](),		//TODO	use	Option	here	instead?

								customer

)

				//	create	a	pizza

				val	p1	=	Pizza(

								MediumCrustSize,

								RegularCrustType,

								Seq(Cheese)

)

				//	with	the	current	api,	this	is	what	you	have	to	do	to

				//	add	a	new	pizza	to	an	existing	order.	this	tells	me

				//	that	OrderServiceInterface	needs	an	`addPizzaToOrder`

				//	function.

				val	newPizzas	=	o1.pizzas	:+	p1

				val	o2	=	o1.copy(pizzas	=	newPizzas)

				//	build	another	pizza

				val	p2	=	Pizza(

								MediumCrustSize,

								RegularCrustType,

								Seq(Cheese)

)

				//	test	the	PizzaService	functions

				val	p2a	=	addTopping(p2,	Pepperoni)

				val	p2b	=	addTopping(p2a,	Mushrooms)

				val	p2c	=	updateCrustType(p2b,	ThickCrustType)

				val	p2Last	=	updateCrustSize(p2c,	LargeCrustSize)

				//	update	the	order	with	the	second	pizza.	again	i	see

				//	that	i	should	have	create	an	`addPizzaToOrder`	function.

				val	pizzas3	=	o2.pizzas	:+	p2Last

				val	o3	=	o2.copy(pizzas	=	pizzas3)

				println(o3)

				//	note	that	i	could	have	created	the	second	pizza	like	this

				val	p2d	=	updateCrustSize(

								updateCrustType(

												addTopping(

																addTopping(p2,	Pepperoni),

																Mushrooms

),

												ThickCrustType

),

								LargeCrustSize

)

				//	calculate	the	price	of	the	current	order	(o3)	using	the

				//	MockDbOrderService

				import	com.alspizza.pos.services.MockDbOrderService.calculateOrderPrice

				val	orderPrice	=	calculateOrderPrice(o3)

				println(s"Order	Price	=	$orderPrice")

				//	i	forgot	to	test	`removeTopping`,	give	it	a	spin

				val	p5	=	Pizza(

								MediumCrustSize,

								RegularCrustType,

								Seq(Cheese,	Pepperoni,	Pepperoni,	Sausage)

)

				val	p5a	=	removeTopping(p5,	Pepperoni)

				println("\nSHOULD	BE	Cheese/Pepperoni/Sausage:")

				println(p5a)

}

I	made	two	discoveries	by	writing	this	driver	class,	one	that	you	can	see,	and	one
that	you	don’t	see.	The	one	you	can	see	is	that	by	going	through	this	process	I
realized	that	the	OrderServiceInterface	should	have	had	an	addPizzaToOrder
function.

The	second	thing	you	can’t	see	is	that	by	going	through	this	process	I	realized
that	I	didn’t	like	the	way	I	originally	implemented	the	code	in	the	
AbstractOrderService	trait.	By	working	with	this	driver	class	I	was	able	to
improve	my	original	approach	to	create	the	code	you	currently	see	in	
AbstractOrderService.	(My	previous	mistakes	were	in	leaving	the	price	maps
publicly	available,	and	in	requiring	MainDriver	to	have	those,	and	pass	them
into	an	earlier	version	of	the	calculateOrderPrice	method.)

In	summary,	the	main	point	of	creating	a	driver	App	like	this	is	that	it	lets	me
look	at	my	service	API	from	the	perspective	of	a	consumer	of	the	API.	Going
through	that	process	helps	me	find	my	mistakes.

Discussion

There	are	a	few	important	parts	about	what	I	showed	that	I	should	briefly	note:

1.	 There	are	multiple	ways	to	provide	the	“order	services”	implementation

2.	 Different	designs	of	the	DAO	functions	might	return	Try,	DBIO,	or	another
monad

3.	 I	stressed	the	“interface”	and	“asbtract”	parts	of	this	by	using	the	names	
Interface	and	Abstract	in	the	trait	names

4.	 If	i	had	taken	this	further	you	would	see	the	advantages	of
combining/stacking/composing	traits,	like	you	saw	with	the	Irish	Setter
example

I’ll	briefly	discuss	these	points	in	the	sections	that	follow.

1)	There	are	multiple	ways	to	provide	the	“order	services”
implementation

There	are	different	ways	that	I	could	have	implemented	the	“order	service”	traits,
but	I	chose	the	approach	shown	because	the	current	code	tells	me	that	the	
getToppingPrices,	getCrustSizePrices,	and	getCrustTypePrices	functions
can	be	implemented	in	AbstractOrderService.	If	and	when	that	situation
changes,	my	design	would	change	to	reflect	that	new	knowledge.

In	short,	the	solution	I	showed	may	not	be	perfect;	it’s	just	an	attempt	to	show	a
simple	example	of	how	to	build	a	modular	design	that	accesses	a	database	for	the
current	problem.

2)	The	DAO	functions	might	return	Try,	DBIO,	or	another	monad

The	DAO	functions	I	showed	return	a	Map,	but	when	you	work	with	real
databases,	your	functions	may	end	up	returning	a	monadic	type.	For	instance,	a
function	may	return	Try	in	case	there’s	a	problem	accessing	the	database.	The
Scala	Slick	database	library	methods	return	a	type	of	DBIO,	which	appears	to	be

http://slick.lightbend.com/doc/3.2.0/dbio.html

similar	to	the	IO	approach	I	described	in	this	book.	(I	haven’t	worked	with	it
yet.)

If	the	functions	work	that	way,	the	design	would	change	to	reflect	that	change.

3)	I	stressed	the	“interface”	name

The	more	I	write	code	—	actually,	the	more	I	maintain	code	—	the	more	I	prefer
code	that	is	obvious.	For	instance,	many	times	I	prefer	a	“verbose”	style	instead
of	a	concise	style,	and	that	has	to	do	with	maintaining	the	code.	I	work	on	many
different	projects,	and	I	don’t	like	having	to	take	extra	time	to	try	to	understand
code	that	has	been	reduced	to	an	extremely	condensed	form.

The	same	is	true	for	naming	things	like	traits	and	classes.	I	prefer	meaningful
names,	so	while	my	style	may	go	against	the	grain,	I	like	to	see	the	word
“Interface”	in	a	trait	name	when	I	truly	mean	that	the	trait	is	intended	to	be	an
interface,	and	I	like	to	use	the	word	“Abstract”	when	the	trait	is	truly	abstract
(i.e.,	when	it’s	not	completely	ready	to	be	reified).	I	prefer	that	style,	but	if	that’s
too	literal	for	your	taste,	use	whatever	style	you	prefer.

4)	If	I	had	taken	this	further	…

If	I	had	built	out	a	larger	version	of	this	example	you	would	have	seen	many
traits	for	different	parts	of	the	domain	vocabulary:

Possibly	a	separate	“price	calculator”	trait

Almost	certainly	there	would	be	a	series	of	traits	for	calculating	taxes
(which	would	be	required	for	selling	pizzas	in	different	countries)

Traits	to	model	different	employee	roles

A	set	of	traits	to	model	coupons	and	discounts

As	just	one	example,	if	we	decided	to	start	selling	other	products	besides	pizzam
there	would	be	a	series	of	traits	that	would	look	something	like	this:

sealed	trait	Product

trait	Pizza	extends	Product

trait	Breadsticks	extends	Product

trait	Cheesesticks	extends	Product

trait	Beverage	extends	Product

trait	BottledBeverage	extends	Beverage

trait	CannedBeverage	extends	Beverage

The	exact	implementation	of	those	traits	would	depend	on	(a)	what	their
behaviors	(services)	are,	and	(b)	how	you	want	to	organize	them,	but	almost
certainly	you’ll	want	to	be	able	to	add	a	Product	to	an	Order	like	this:

trait	OrderServicesInterface	{

				def	addProductToOrder(o:	Order,	p:	Product):	Order

				...

}

Benefits	of	this	approach

The	benefits	of	a	modular	style	of	programming	are	described	well	in	the
original	quote	I	shared	from	Programming	in	Scala:

As	a	program	grows	in	size,	it’s	important	to	organize	it	in	a	modular	way
as	a	means	to	handle	complexity

With	separate	modules,	multiple	teams	can	work	on	different	modules
independently

Being	able	to	unplug	one	implementation	and	plug	in	a	different	one	lets
you	build	different	configurations,	such	as	using	a	mock	database	in
development	and	real	databases	in	Test	and	Production

http://amzn.to/2fiqDBh

Disadvantages	of	this	approach

The	main	disadvantage	of	this	approach	is	that	you	may	need	to	learn	a	few	new
Scala	programming	techniques.	(But	if	you	want	to	be	a	top	Scala	developer,
that’s	actually	a	good	thing.)

For	instance,	if	you	haven’t	used	traits	as	mixins,	you’ll	be	using	that	technique	a
lot,	because	it’s	the	essence	of	the	modular	solution.	Along	with	that	you’ll	also
want	to	use	techniques	like	self-types,	which	I	demonstrated	in	this	lesson.

As	another	example	of	learning	new	techniques,	when	I	first	learned	the	“reify”
technique,	I	had	never	seen	a	line	of	code	like	this	before:

object	OrderService	extends	OrderService

That	line	is	a	real	head-scratcher	if	someone	demonstrates	it	without	explaining
it.

Finally,	it	will	take	time	and	experience	to	learn	how	to	properly	organize	your
traits.	For	example,	one	thing	I	intentionally	tried	to	show	with	the	“order
services”	traits	is	that	there	are	times	that	you’ll	want	to	avoid	hard-coding	one
trait	to	another.	In	my	example	I	intentionally	had	the	OrderServiceInterface
contain	a	reference	to	the	PizzaDaoInterface	so	it	wouldn’t	be	hardwired	to	the
MockPizzaDao	(or	any	other	specific	DAO	implementation):

trait	OrderServiceInterface	{

				protected	def	database:	PizzaDaoInterface

}

If	you	come	to	Scala/FP	from	an	OOP	background,	it	can	take	a	while	to	get
used	to	modular	programming	with	traits,	but	that	example	shows	the	pattern	of
how	to	avoid	tying	one	trait	to	a	concrete	implementation	of	another	trait.

See	also

The	primary	references	for	this	style	of	programming	are:

The	“Modular	Programming	Using	Objects”	chapter	in	the	book,
Programming	in	Scala

The	book,	Functional	and	Reactive	Domain	Modeling,	by	Debasish	Ghosh,
shows	long,	detailed	examples	of	this	technique

Other	references	that	may	be	helpful:

Class	composition	with	mixins	on	scala-lang.org

Using	Scala	traits	as	modules

How	to	use	Scala	traits	as	simple	mixins

Scala:	How	to	limit	which	classes	can	use	a	trait	by	inheritance

How	to	define	a	Scala	trait	so	it	can	only	be	subclassed	by	a	certain	type

A	slide	showing	that	Scala	traits	are	like	OCaml	modules

http://amzn.to/2fiqDBh
http://amzn.to/2iOT3Vh
https://docs.scala-lang.org/tour/mixin-class-composition.html
http://www.warski.org/blog/2014/02/using-scala-traits-as-modules-or-the-thin-cake-pattern/
https://alvinalexander.com/scala/how-to-use-scala-traits-as-mixins-mixing-in-traits
https://alvinalexander.com/scala/how-to-limit-which-classes-can-use-traits-inheritance-in-scala
https://alvinalexander.com/scala/how-to-define-scala-trait-subclassed-certain-self-types
http://lambdafoo.com/scala-syd-2015-modules/#6

The	“Functional	Objects”	Approach
It	seems	like	most	Scala/FP	developers	prefer	the	modular	programming
approach	shown	in	the	previous	lesson,	but	there’s	still	one	more	way	you	can
implement	behaviors	in	your	code:	Follow	the	same	approach	used	in	the	Scala
collections	classes,	such	as	the	List	class.

Option	4:	Handling	behavior	with	functional	objects

In	Chapter	6	of	the	book	Programming	in	Scala,	the	authors	define	the	term,
“Functional	Objects”	as	“objects	that	do	not	have	any	mutable	state.”	Like	the	
List	class,	this	means	that	the	List	methods	don’t	mutate	the	internal	List	state;
instead,	you	get	a	copy	of	a	new	List	as	a	result.

I	sometimes	refer	to	this	approach	as	a	“hybrid	FP/OOP	design”	because	you:

Model	the	data	as	immutable	fields	in	case	classes.

Put	the	behaviors	(methods)	in	the	same	class	as	the	data.

Implement	the	behaviors	as	pure	functions.	They	don’t	mutate	any	internal
state;	rather,	they	return	a	new	instance	of	the	class.

This	really	is	a	hybrid	approach:

Like	an	OOP	design,	the	methods	are	encapsulated	in	the	class	with	the
data,	but

The	methods	are	implemented	as	pure	functions	that	don’t	mutate	the	data

http://amzn.to/2fiqDBh

Example

Using	this	approach,	the	Pizza	class	I	used	in	the	previous	lesson	is	built	like
this:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				val	toppings:	Seq[Topping]

)	{

				def	addTopping(t:	Topping):	Pizza	=	???

				def	removeTopping(t:	Topping):	Pizza	=	???

				def	removeAllToppings():	Pizza	=	???

				def	updateCrustSize(cs:	CrustSize):	Pizza	=	???

				def	updateCrustType(ct:	CrustType):	Pizza	=	???

				def	getPrice(

								toppingPrices:	Map[Topping,	Money],

								crustSizePrices:	Map[CrustSize,	Money],

								crustTypePrices:	Map[CrustType,	Money]

):	Money	=	???

}

Notice	that	unlike	the	previous	approaches,	these	methods	no	longer	take	a	
Pizza	reference	as	an	input	parameter.	They	assume	that	the	Pizza	to	be
operated	on	is	the	current	Pizza	reference,	i.e.,	this.

Code	that	uses	this	design	looks	like	this:

val	pizza1	=	Pizza(

				LargeCrustSize,

				ThinCrustType,

				Seq(Cheese)

)

val	pizza2	=	pizza1.addTopping(Pepperoni)

val	pizza3	=	pizza2.updateCrustType(ThickCrustType)

val	price	=	pizza3.getPrice(

				toppingPrices,

				crustSizePrices,

				crustTypePrices

)

Notice	that	in	this	line:

val	pizza2	=	pizza1.addTopping(Pepperoni)

the	Pepperoni	topping	is	added	to	whatever	toppings	are	in	the	pizza1	reference
to	create	a	new	Pizza	instance	named	pizza2.	Following	the	FP	model,	pizza1
isn’t	mutated,	it’s	just	used	to	create	a	new	instance	with	the	updated	data.

Are	the	functions	pure?

In	this	example,	because	getPrice	doesn’t	take	any	input	parameters,	by	my
own	definition	it’s	not	a	strictly	pure	function.	You	can’t	say,	“Output	depends
only	on	input,”	because	there	appears	to	be	no	input.

That	being	said,	what’s	really	going	on	with	these	method	calls	is	that	they
receive	an	implicit	this	reference,	so	under	the	covers	they	really	look	like	this:

val	pizza2	=	pizza1.addTopping(this,	Pepperoni)

val	pizza3	=	pizza2.updateCrustType(this,	ThickCrustType)

val	price	=	pizza3.getPrice(

				this,

				toppingPrices,

				crustSizePrices,

				crustTypePrices

)

In	that	regard,	these	methods	on	the	Pizza	class	are	as	pure	as	methods	like	map
and	filter	on	the	List	class.

The	same	design	as	the	Scala	collections	classes

As	I	mentioned,	this	approach	is	exactly	how	the	Scala	collections	classes	are
designed:

val	list	=	List(1,2,3,4,5)

val	littleNumbers	=	list.filter(_	<	3)

Just	like	the	Pizza	class,	you	can	say	these	things	about	the	List	class:

It	has	an	immutable	internal	data	model	(in	this	case	the	list	of	numbers	1	to
5)

filter	is	defined	as	a	method	in	List

filter	doesn’t	mutate	the	List’s	internal	state;	it	returns	a	new	List	based
on	(a)	its	internal	model,	and	(b)	the	function	you	supply	to	filter

I	provide	a	complete	example	of	this	approach	in	the	next	lesson.

Demonstrating	the	“Functional	Objects”
Approach
To	demonstrate	the	“functional	objects”	approach	I	created	an	example	project,
which	I	share	in	this	lesson.	To	follow	along	with	this	discussion,	the	source
code	for	this	lesson	is	at	this	Github	URL:

github.com/alvinj/PizzaPosFpFunctionalObjectsStyle

https://github.com/alvinj/PizzaPosFpFunctionalObjectsStyle

The	enumerations

The	enumerations	are	the	same	as	in	all	previous	lessons:

sealed	trait	Topping

case	object	Cheese	extends	Topping

case	object	Pepperoni	extends	Topping

case	object	Sausage	extends	Topping

case	object	Mushrooms	extends	Topping

case	object	Olives	extends	Topping

sealed	trait	CrustType

case	object	RegularCrustType	extends	CrustType

case	object	ThinCrustType	extends	CrustType

case	object	ThickCrustType	extends	CrustType

sealed	trait	CrustSize

case	object	SmallCrustSize	extends	CrustSize

case	object	MediumCrustSize	extends	CrustSize

case	object	LargeCrustSize	extends	CrustSize

Database	access	object	(DAO)

The	DAO	for	this	project	is	the	same	as	the	MockPizzaDao	from	the	previous
lesson,	without	bothering	to	extend	an	interface:

object	MockPizzaDao	{

				def	getToppingPrices():	Map[Topping,	Money]	=	{

								Map(

												Cheese				->	BigDecimal(1),

												Pepperoni	->	BigDecimal(1),

												Sausage			->	BigDecimal(1),

												Mushrooms	->	BigDecimal(1)

)

				}

				def	getCrustSizePrices():	Map[CrustSize,	Money]	=	{

								Map(

												SmallCrustSize		->	BigDecimal(0),

												MediumCrustSize	->	BigDecimal(1),

												LargeCrustSize		->	BigDecimal(2)

)

				}

				def	getCrustTypePrices():	Map[CrustType,	Money]	=	{

								Map(

												RegularCrustType	->	BigDecimal(0),

												ThickCrustType			->	BigDecimal(1),

												ThinCrustType				->	BigDecimal(1)

)

				}

}

The	Pizza	model

Finally	—	getting	to	the	purpose	of	this	lesson	—	I	create	the	Pizza	model	using
the	same	pizza	behaviors	I	used	in	the	previous	lesson,	with	slight	modifications
so	they	can	be	used	inside	a	Pizza	class:

//	the	data	model

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				val	toppings:	Seq[Topping]

)	{

				//	the	operations	on	the	data	model

				def	addTopping(t:	Topping):	Pizza	=	{

								this.copy(toppings	=	this.toppings	:+	t)

				}

				def	removeTopping(t:	Topping):	Pizza	=	{

								val	newToppings	=	Utils.dropFirstMatch(this.toppings,	t)

								this.copy(toppings	=	newToppings)

				}

				def	removeAllToppings(p:	Pizza):	Pizza	=	{

								val	newToppings	=	Seq[Topping]()

								this.copy(toppings	=	newToppings)

				}

				def	updateCrustSize(cs:	CrustSize):	Pizza	=	{

								this.copy(crustSize	=	cs)

				}

				def	updateCrustType(ct:	CrustType):	Pizza	=	{

								this.copy(crustType	=	ct)

				}

				def	getPrice(

								toppingPrices:	Map[Topping,	Money],

								crustSizePrices:	Map[CrustSize,	Money],

								crustTypePrices:	Map[CrustType,	Money]

):	Money	=	{

								//	TODO	implement	a	real	algorithm	based	on	those	sequences

								val	base	=	BigDecimal(10)

								val	numToppings	=	this.toppings.size

								val	price	=	base	+	1.00	*	numToppings

								price

				}

}

As	those	functions	show,	rather	than	taking	an	explicit	Pizza	reference	as	an
input	parameter,	the	functions	refer	to	the	current	Pizza	instance	with	the	this
reference.	Other	than	that	change,	these	functions	are	identical	to	the	pizza-
related	functions	in	the	previous	lesson.

A	“driver”	application

When	I’m	writing	classes	like	this	I	usually	create	a	little	test	application	I	can
use	to	test	the	API	that	I’m	creating.	This	is	the	code	I	wrote	to	test	the	“model”
code	I	just	showed:

object	Driver	extends	App	{

				//	initialize	the	data	from	database

				val	toppingPrices	=	MockPizzaDao.getToppingPrices()

				val	crustSizePrices	=	MockPizzaDao.getCrustSizePrices()

				val	crustTypePrices	=	MockPizzaDao.getCrustTypePrices()

				//	create	a	pizza

				val	pizza1	=	Pizza(

								MediumCrustSize,

								ThinCrustType,

								Seq(Cheese,	Pepperoni)

)

				//	make	sure	you	can	create	modified	versions	of

				//	the	initial	pizza

				val	pizza2	=	pizza1.addTopping(Olives)

				val	pizza3	=	pizza2.updateCrustSize(LargeCrustSize)

				println(s"pizza3:	$pizza3")

				//	getPrice	looks	like	this

				val	pizzaPrice	=	pizza3.getPrice(

								toppingPrices,

								crustSizePrices,

								crustTypePrices

)

				println(s"price	of	pizza3:	$pizzaPrice")

				//	can	also	do	this

				val	pizza4	=	pizza1.addTopping(Olives)

																							.updateCrustSize(LargeCrustSize)

																							.updateCrustType(ThickCrustType)

				println(s"pizza4:	$pizza4")

}

Discussion

Visually,	I	prefer	this	“functional	object”	coding	style:

val	pizza2	=	pizza1.addTopping(Pepperoni)

to	this	style:

val	pizza2	=	addTopping(pizza1,	Pepperoni)

Something	about	seeing	a	method	name	attached	to	a	variable	name	as	
variable.method(parameters)	is	easier	for	my	brain	to	read,	though	that	may
just	be	the	result	of	programming	in	an	OOP	style	for	a	few	decades.

That	being	said,	I’m	currently	developing	applications	using	the	modular
programming	style,	and	I’ve	come	to	enjoy	the	process	of	using	traits	to	build
modules,	and	then	combining	those	modules	to	build	applications.	At	the	time	of
this	writing	I	can’t	recommend	one	style	100%	over	the	other	style	for	all
situations.

Summary	of	the	Domain	Modeling
Approaches
In	the	last	several	lessons	I	showed	a	variety	of	ways	to	model	data	and
behaviors	(functions)	in	Scala/FP.

Defining	a	data	model	in	Scala/FP	is	simple:	Just	model	the	data	as	case	classes
with	immutable	fields.	This	approach	is	similar	to	creating	a	relational	database
design,	and	it	becomes	a	blueprint	of	the	classes,	their	fields,	and	their
relationships.

When	it	comes	to	modeling	behaviors	I	showed	several	different	possible
approaches:

Put	your	functions	in	“Utils”	classes

Put	your	functions	in	companion	objects

Use	a	modular	programming	style

Use	a	“functional	objects”	approach

While	I	like	the	readability	of	the	“functional	objects”	approach,	the	modular
programming	style	may	offer	advantages	related	to	using	modules,	such	as
letting	multiple	teams	work	on	different	modules	simultaneously,	and	the	ability
to	“wire	together”	modules	to	create	different	configurations.

While	I’m	sure	FP	experts	will	say	“just	use	modules,”	I	encourage	you	to	use
both	the	modular	approach	and	the	functional	objects	approach	to	see	which
style	you	prefer.	While	the	modular	approach	may	be	preferred	by	FP	experts,
it’s	worth	noting	that	the	Scala	language	designers	could	have	implemented	the
collections	classes	in	that	manner,	but	they	chose	to	use	the	functional	objects
approach,	which	I	find	very	readable.

Historically,	 the	 modular	 programming	 style	 has	 its	 roots	 in
ML-based	languages	such	as	OCaml,	and	this	style	is	also	used

https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/OCaml

in	other	FP	languages,	such	as	Haskell	and	F#	(which	is	based
on	OCaml).

ScalaCheck	1:	Introduction
Once	all	of	your	functions	work	like	algebraic	equations	and	you	look	at	an
individual	function,	it’s	a	simple	step	to	wonder:

Are	there	some	general	properties	I	can	state	about	my	function?

If	there	are	general	properties,	is	there	a	way	I	can	test	those	properties
without	having	to	write	a	bunch	of	little	unit	tests?

The	answer	to	the	first	question	is	typically	“Yes,”	and	ScalaCheck	is	a	tool	that
lets	you	answer	“yes”	to	the	second	question.	In	this	lesson	I’ll	demonstrate	how
ScalaCheck	works	(and	explain	everything	I	just	wrote).

https://www.scalacheck.org/

Overview

Here’s	the	elevator	pitch	on	ScalaCheck,	from	the	book,	ScalaCheck:	The
Definitive	Guide:

ScalaCheck	is	a	tool	for	testing	Scala	and	Java	programs,	based
on	 property	 specifications	 and	 automatic	 test	 data	 generation.
The	 basic	 idea	 is	 that	 you	 define	 a	property	 that	 specifies	 the
behaviour	 of	 a	method	or	 some	unit	 of	 code,	 and	ScalaCheck
checks	 that	 the	 property	 holds.	 All	 test	 data	 are	 generated
automatically	in	a	random	fashion,	so	you	don’t	have	to	worry
about	any	missed	cases.

The	rest	of	this	lesson	will	show	how	ScalaCheck	works,	and	how	it	compares	to
other	testing	tools,	like	JUnit	and	ScalaTest.

http://amzn.to/2eNKcSg

Introduction

Let’s	say	that	you’ve	just	written	this	function:

def	increaseRandomly(i:	Int)	=	{

				val	randomNum	=	getRandomIntFrom1To100()

				i	+	randomNum

}

Because	it	increments	the	value	it’s	given	by	a	random	amount,	it	isn’t	a	pure
function,	but	it	is	a	relatively	simple	function.	It	adds	a	random	number	that
varies	from	1	to	100	to	the	number	it’s	given.

Two	notes	about	this	code:

I	show	the	source	code	for	getRandomIntFrom1To100	later

I	use	an	impure	function	with	a	random	number	generator	because	it	makes
the	tests	that	follow	more	interesting

Having	written	this	function,	you	now	want	to	test	it.	If	you	were	writing	unit
tests	you’d	start	to	write	a	number	of	test	cases	to	prove	(or	disprove)	that	the
function	works,	but	with	ScalaCheck	you	start	differently.	The	first	thing	you	do
is	ask	the	question,	“What	are	some	general	properties	or	observations	I	can
make	about	how	increaseRandomly	works?”

When	I	think	about	the	general	behavior	of	this	function,	I	know	that	the	number
given	to	it	will	always	be	increased	by	at	least	1.	Therefore,	I	can	make	this
observation:

Regardless	of	how	many	times	it’s	called,	the	result	of	increaseRandomly
should	always	be	greater	than	the	number	given	to	it	as	an	input	parameter

It	may	be	greater	by	1,	or	it	may	be	greater	by	any	number	up	to	100,	but	in
general,	the	result	should	always	be	greater;	it	should	never	be	equal	to	or	lower
than	the	input	value.	ScalaCheck	refers	to	this	general	observation	as	a
“property”	of	the	function.

Writing	a	test

The	way	you	write	this	“general	property	test”	with	ScalaCheck	looks	like	this:

property("increaseRandomly")	=	forAll	{	input:	Int	=>

				val	result	=	MathUtils.increaseRandomly(input)

				result	>	input

}

I’ll	explain	that	code	in	a	moment,	but	once	you	get	used	to	the	syntax,	you’ll
find	that	you	can	read	it	as,	“The	property	named	increaseRandomly	says	that
for	all	Int	values,	call	the	function	increaseRandomly.	Then	for	every	Int	value
increaseRandomly	is	given,	its	result	should	be	greater	than	its	input.”

As	you	get	more	familiar	with	ScalaCheck	you’ll	read	that	more	concisely	as,
“For	any	Int	value,	the	result	of	increaseRandomly	should	always	be	greater
than	its	input	value.”

Explaining	the	property	test

Here’s	a	breakdown	of	how	that	code	works.	First,	the	test	begins	with	this	line,
where	you	give	the	property	test	a	name:

property("increaseRandomly")	=	...

This	is	similar	to	JUnit,	but	ScalaCheck	refers	to	this	as	a	“property”	rather	than
a	“test.”

Next,	that	line	continues:

property("increaseRandomly")	=	forAll	{	input:	Int	=>

As	you	know	from	reading	this	book,	this	piece	of	code	indicates	the	beginning
of	an	anonymous	function:

{	input:	Int	=>

This	tells	you	that	forAll	is	a	case	class	or	function	that	takes	a	block	of	code	as
an	input	value.

What	you	have	no	way	of	knowing	at	this	time	is	that	forAll	is	an	important

ingredient	in	the	ScalaCheck	recipe:	most	property	tests	begin	with	forAll.
When	you	see	forAll,	you	can	read	it	as,	“For	all	possible	elements	of	the	type
shown,	run	the	block	of	code	that	follows.”

forAll	has	some	options	that	I’ll	show	in	a	little	while,	but	with	this	specific
example,	just	know	that	forAll	sees	the	Int	parameter	input,	and	responds	by
generating	random	Int	values	that	it	will	feed	into	your	anonymous	function,
one	at	a	time.	By	default,	forAll	generates	100	random	Int	values	to	test	your
function,	with	a	special	emphasis	on	edge	conditions	like	0,	Int.MinValue,	and	
Int.MaxValue.

The	rest	of	the	code	in	the	anonymous	function	is	standard	Scala.	The	
increaseRandomly	function	is	called,	and	then	forAll	requires	a	Boolean	value
to	be	returned	at	the	end	of	the	block:

property("increaseRandomly")	=	forAll	{	input:	Int	=>

				val	result	=	MathUtils.increaseRandomly(input)

				result	>	input

}

As	I	showed	earlier	in	the	book,	you	can	infer	from	this	code	that	forAll’s	type
signature	looks	something	like	this:

def	forAll(codeBlock:	=>	Boolean)

Source	code

The	easiest	way	to	run	the	test	is	to	check	my	project	out	of	Github,	and	then	run
it	from	your	IDE	or	from	the	SBT	command	line.	The	source	code	is	available	at
this	Github	URL:

github.com/alvinj/FPScalaCheck

The	code	for	this	lesson	is	in	these	two	files	in	that	project:

MathUtils	under	src/main/scala/utils

IncreaseRandomlySpec	under	src/test/scala/utils

One	note	about	the	project	code:	As	usual,	SBT	project	dependencies	are
declared	in	the	build.sbt	file.	I	import	both	ScalaCheck	and	ScalaTest
dependencies	with	these	lines	of	code	so	I	can	show	the	differences	between	the
two	approaches	in	these	lessons:

//	all	of	these	imports	will	only	work	under	'src/test/scala'

libraryDependencies	++=	Seq(

				"org.scalacheck"	%%	"scalacheck"	%	"1.13.4"	%	"test",		//scalacheck

				"org.scalactic"	%%	"scalactic"	%	"3.0.1"	%	"test",					//scalatest

				"org.scalatest"	%%	"scalatest"	%	"3.0.1"	%	"test"						//scalatest

)

https://github.com/alvinj/FPScalaCheck
http://www.scala-sbt.org/

Running	the	test

Given	that	SBT	configuration,	when	you	run	the	test	(such	as	with	sbt	test)
you’ll	see	output	that	looks	like	this:

!	AddOneSpec.increaseRandomly:	Falsified	after	13	passed	tests.

>	ARG_0:	2147483647

Found	1	failing	properties.

Wait,	what?	Falsified?	There’s	an	error	in	my	function?	That	can’t	be	right	…

If	you	know	your	Int	values	well,	you	know	that	indeed	there	is	a	problem	with
my	function.	When	you	take	the	number	2147483647	—	also	known	as	
Int.MaxValue	—	and	add	1	to	it,	you	see	this	result	in	the	REPL:

scala>	2147483647	+	1

res0:	Int	=	-2147483648

As	shown,	adding	1	to	Int.MaxValue	causes	the	result	to	roll	over	to	
Int.MinValue.	This	causes	my	property	test	to	fail.

Note	that	there’s	nothing	wrong	with	this	property	specification:

property("increaseRandomly")	=	forAll	{	input:	Int	=>

				val	result	=	MathUtils.increaseRandomly(input)

				result	>	input

}

This	is	the	correct	way	to	use	ScalaCheck	to	state,	“When	increaseRandomly	is
given	any	Int,	the	value	it	returns	should	be	greater	than	the	value	it’s	given.”
The	problem	is	with	the	increaseRandomly	function,	specifically	what	happens
when	it	adds	any	positive	number	to	Int.MaxValue.

Looking	at	how	a	ScalaCheck	property	test	works

I’ll	fix	increaseRandomly	shortly,	but	before	I	do	that,	it	will	help	to	see	what
ScalaCheck	just	did	to	“falsify”	my	property	test.	You	can	learn	more	about
ScalaCheck	by	adding	a	print	statement	to	the	property:

property("increaseRandomly")	=	forAll	{	input:	Int	=>

				println(s"input	=	$input")

				val	result	=	MathUtils.increaseRandomly(input)

				result	>	input

}

When	you	add	that	print	statement	and	run	the	test	again,	you’ll	see	lines	of
output	that	look	like	this:

input	=	-2147483648

input	=	2147483647

input	=	1073741823

input	=	-1073741823

input	=	536870911

input	=	-536870911

input	=	268435455

input	=	-268435455

...

...

...

!	AddOneSpec.increaseRandomly:	Falsified	after	1	passed	tests.

>	ARG_0:	2147483647

Found	1	failing	properties.

The	input	values	are	generated	randomly,	so	you’ll	see	different	values	each	time
you	run	a	test,	but	the	general	process	is	that	ScalaCheck	will	run	up	to	100	tests
against	your	function,	trying	to	“falsify”	the	property	you	stated.	It	will	do	this
whether	you’re	testing	against	Ints,	Strings,	or	any	other	data	type	you	specify,
including	your	own	custom	data	types.

What	“falsify”	means	(and	does)

“Falsifying”	a	property	is	similar	to	a	unit	test:	If	a	ScalaCheck	property	test
returns	false,	the	test	is	considered	to	be	failed.	More	accurately,	it	means	that
the	property	you	stated	about	your	function	has	been	proven	false,	or	wrong.

ScalaCheck:	The	Definitive	Guide,	describes	how	property	tests	work	like	this:

“When	 ScalaCheck	 tests	 a	 property	 created	 with	 the	 forAll
method,	it	tries	to	falsify	it	by	assigning	different	values	to	the
parameters	of	the	provided	function,	and	evaluating	the	boolean
result.	 If	 it	 can’t	 locate	 a	 set	 of	 arguments	 that	 makes	 the
property	 false,	 then	 ScalaCheck	 will	 regard	 the	 property	 as
passed.”

Test	case	simplification

ScalaCheck	takes	this	even	further	with	a	feature	known	as	test	case
simplification.	ScalaCheck:	The	Definitive	Guide	describes	this	feature	as
follows:

“Test	case	simplification	is	a	powerful	feature	of	ScalaCheck.	It
is	 enabled	 by	 the	 fact	 that	 properties	 are	 abstract,	 and
ScalaCheck	therefore	has	control	over	the	test	data	that	is	used.
As	 soon	 as	ScalaCheck	 finds	 a	 set	 of	 arguments	 that	makes	 a
property	false,	it	tries	to	simplify	those	arguments.	For	example,
if	 a	 property	 takes	 a	 list	 of	 integers	 as	 its	 parameter,	 then
ScalaCheck	will	 first	 generate	many	different	 integer	 lists	 and
feed	them	to	the	property.	If	it	stumbles	across	a	list	that	makes
the	 property	 false,	 ScalaCheck	 will	 test	 the	 property	 with
smaller	and	smaller	variants	of	that	list,	as	long	as	the	property
still	fails.	Then	ScalaCheck	prints	both	the	smallest	list	that	still

http://amzn.to/2eNKcSg
http://amzn.to/2eNKcSg

causes	property	failure,	and	the	original	list	it	stumbled	across.
By	default,	the	first	generated	parameter	is	called	ARG_0.”

The	book	continues:

“In	 the	 end,	 the	 smallest	 possible	 test	 case	 that	 makes	 the
property	 false	 will	 be	 presented	 along	 with	 the	 original
arguments	that	caused	the	initial	failure.”

This	process	doesn’t	work	in	all	cases,	but	when	it	works	it’s	a	nice	way	to	cut	to
the	root	of	the	problem.

Fixing	increaseRandomly

The	problem	with	increaseRandomly	is	that	when	it’s	given	Int.MaxValue	as	an
input	parameter,	the	number	it	returns	flips	over	to	being	a	negative	value:

scala>	Int.MaxValue	+	1

res0:	Int	=	-2147483648

One	way	to	fix	the	problem	is	to	force	the	calculation	to	take	place	as	a	Long
rather	than	an	Int.	I	show	how	to	do	this	in	the	REPL:

scala>	Int.MaxValue	+	1.toLong

res1:	Long	=	2147483648

To	implement	the	solution,	add	that	change	to	the	body	of	increaseRandomly,
and	then	declare	that	it	returns	a	Long	value:

def	increaseRandomly(i:	Int):	Long	=	{

				val	randomNum	=	getRandomIntFrom1To100()

				i	+	randomNum.toLong

}

When	I	make	that	change,	remove	the	println	statement	from	my	property	test,
and	then	run	the	test,	I	see	this	output:

+	AddOneSpec.increaseRandomly:	OK,	passed	100	tests.

This	tells	me	that	increaseRandomly	passed	100	tests	that	were	thrown	at	it	by
the	ScalaCheck	framework.	I	can	now	feel	comfortable	that	the	general	property
I	stated	—	increaseRandomly’s	result	must	always	be	greater	than	its	input
value	—	is	correct.

ScalaCheck	also	works	with	OOP

As	you	saw	with	this	example,	ScalaCheck	not	only	works	with	pure	functions,
but	with	impure	methods	as	well.	It	also	works	with	OOP	code.	In	fact,	there
isn’t	anything	specific	to	ScalaCheck	and	FP,	with	one	exception:

It’s	a	lot	easier	to	test	FP	functions	than	it	is	to	test	OOP	methods,	because
FP	functions	don’t	deal	with	hidden	state

As	I	wrote	in	the	lesson	about	the	benefits	of	pure	functions,	this	attribute	alone
makes	pure	functions	easier	to	test	in	general,	and	easier	to	test	in	ScalaCheck
specifically.	With	OOP,	you	often	need	to	set	up	state	before	testing	a	method,
but	with	FP	functions	there	is	significantly	less	setup	work:	output	depends	only
on	input.

ScalaCheck	concepts

Although	this	was	a	simple	example,	it	demonstrated	many	of	the	most
important	things	to	know	about	ScalaCheck:

You	use	it	to	test	general	properties	of	your	functions

Therefore,	you	don’t	write	low-level	unit	tests

By	default,	each	function	is	tested	100	times	(100	times	if	all	tests	succeed;
less	than	that	if	a	test	is	falsified)

The	tests	are	run	with	randomly-generated	data

What	I	haven’t	discussed	yet	is	that	the	test	data	is	created	with	generators

You	can	use	built-in	generators,	as	I	did	in	this	example,	letting	ScalaCheck
generate	random	integers;	you	can	also	write	your	own	generators,	which
you’ll	need	to	do	for	your	custom	data	types

(I’ll	discuss	generators	more	in	the	next	lesson.)

Other	concepts	are	similar	to	JUnit.	For	instance,	you	can	create	many	property
tests	in	one	file,	and	you	can	also	put	tests	in	many	different	files.

Benefits	of	property-based	testing	(from	the
ScalaCheck	book)

ScalaCheck:	The	Definitive	Guide,	lists	the	following	benefits	of	using
ScalaCheck	as	compared	to	other	testing	frameworks:

Test	coverage	can	increase:	Because	test	cases	are	generated	randomly,
many	more	tests	are	thrown	at	your	functions	than	you’ll	get	with	static	unit
tests

Specification	completeness:	Because	you	define	exactly	how	your	function
should	work	under	all	conditions,	it’s	similar	to	writing	a	test	specification

Maintenance:	Because	a	single	property	often	compares	to	many	individual
unit	tests,	code	size	and	repetition	decreases,	and	refactoring	is	easier

Test	readability:	Again,	it	can	take	many	unit	tests	to	compare	to	a	single
property	test,	which	at	the	very	least	reduces	the	amount	of	code	you	need
to	read

Test	case	simplification:	I	discussed	this	in	the	“What	‘falsify’	means	(and
does)”	lesson,	but	in	short,	ScalaCheck	will	try	to	find	the	smallest	possible
test	case	that	makes	a	property	test	false

http://amzn.to/2vGthoB

Disadvantages	of	property-based	testing

The	major	disadvantages	of	ScalaCheck	compared	to	traditional	unit	tests	are:

Because	it	runs	100	tests	for	each	property,	and	generates	random	data	for
each	test,	it’s	arguably	100	times	slower	than	a	unit	test

While	sometimes	it	can	be	easy	to	state	a	property	of	a	function	in	words,	it
can	occasionally	be	difficult	to	implement	that	property	in	Scala	code

When	you	know	that	one	or	more	specific	fringe	conditions	can	cause	a
problem	with	a	function,	you	may	want	the	comfort	of	ensuring	those	tests
are	run	with	static	ScalaTest	(or	JUnit)	unit	tests

In	regards	to	the	first	point,	it’s	important	to	add	this	caveat:	a	single	property
test	is	often	the	equivalent	of	many	individual	unit	tests.

Where	ScalaCheck	works	well

When	I	first	learned	about	ScalaCheck,	I	wondered	if	it	could	replace	unit	tests
completely.	The	reality	I’ve	found	is	that	ScalaCheck	works	well	for	some	cases,
and	unit	tests	works	well	for	others.

The	example	I	showed	demonstrates	a	case	where	ScalaCheck	works	well:

You	can	clearly	state	one	or	more	general	properties	about	how	a	function
works	in	English	(or	whatever	your	preferred	spoken	language	is).

You	can	easily	express	those	same	properties	in	Scala	code.	That	is,	it
doesn’t	feel	like	a	great	deal	of	work	(or	a	hack)	to	create	the	necessary
generators	and	property	tests.

Where	ScalaCheck	doesn’t	work	as	well

I	haven’t	yet	found	a	simple,	“OMG,	don’t	even	try	to	use	ScalaCheck	for	these
tests!”	rule	of	thumb,	but	I	can	state	where	ScalaCheck	doesn’t	work	as	well	by
writing	the	opposite	of	the	previous	rules.	Specifically,	don’t	use	ScalaCheck
where:

You	can’t	clearly	state	in	English	the	general	properties	about	how	a
function	works.	(Hopefully	this	will	be	very	rare	now	that	you	write	pure
functions.)

You	can’t	easily	write	property	tests	in	Scala	to	express	those	properties,
i.e.,	it	feels	like	a	tremendous	workaround	or	hack	to	create	the	necessary
generators	and	tests.

ScalaCheck	2:	A	More-Complicated
Example
In	this	lesson	I’ll	share	a	non-trivial	example	of	how	I	used	ScalaCheck	to	test	a
function	I	wrote	recently.

While	working	on	a	Scala/FP	application,	I	needed	to	create	a	function	that
reduced	duplicate	occurrences	of	a	value	in	a	list	down	to	a	single	value.	More
accurately,	given	(a)	a	list,	and	(b)	a	value	to	look	for,	the	purpose	of	the	function
is	to	retain	the	first	occurrence	of	that	element,	and	remove	all	subsequent
occurrences	of	that	element.	I	named	this	function,	dropAllButFirst.

As	an	example	of	how	this	works,	imagine	that	you	have	this	list:

val	xs	=	List(1,	2,	3,	2,	4,	2,	5)

With	this	list,	I	can	use	dropAllButFirst	to	create	a	new	list	that	keeps	the	first
occurrence	of	the	number	2	and	removes	all	subsequent	occurrences	like	this:

val	xss	=	dropAllButFirst(xs,	2)

When	I	apply	dropAllButFirst	as	shown,	xss	should	have	this	data:

List(1,	2,	3,	4,	5)

https://www.scalacheck.org/

Testing	with	ScalaTest	or	JUnit

If	I	was	going	to	test	dropAllButFirst	with	ScalaTest	or	JUnit	—	and	assuming
that	I	want	to	keep	looking	for	the	number	2	—	the	first	thing	I’d	do	is	think
about	what	sample	lists	I	should	test	with.	When	I	do	that,	I	come	up	with	a
series	of	test	lists	like	these:

List()

List(1)

List(1,2)

List(1,2,2)

List(1,2,2,3)

List(1,2,2,3,2)

List(2)

List(2,1)

List(2,1,2)

List(2,1,2,3)

List(2,1,2,3,2)

Can	you	think	of	any	other	lists	I	should	test	against?	That’s	a	little	bit	of	a
problem	with	the	traditional	ScalaTest/JUnit	approach:	Have	you	really	thought
of	every	possible	set	of	data	to	test	your	function	with?

Testing	with	ScalaCheck

While	that’s	probably	your	first	thought	when	working	with	unit	tests,	you’ll
find	that	your	first	thought	when	using	ScalaCheck	is	quite	different.	With
ScalaCheck,	the	first	thing	you	think	is,	“What	general	statements	or
observations	can	I	make	about	this	function	that	are	always	true?”	I	find	that	this
thought	process	feels	more	like	writing	a	test	specification	(or	requirements
specification)	than	writing	a	unit	test.

A	first	observation	about	dropAllButFirst

When	I	thought	about	dropAllButFirst,	the	first	general	observation	that	came
to	mind	is:

1.	 If	the	element	you	want	to	drop	is	not	in	the	input	list,	the	resulting	list
should	be	exactly	the	same	as	the	input	list

Using	my	ScalaTest/JUnit	test	data	as	an	example,	this	means	that	if	
dropAllButFirst	gets	this	list	as	an	input:

List(1)

it	should	return	the	exact	same	list	as	an	output.	Using	just	this	one	list	as	an
example,	I	can	express	this	general	property	in	Scala	code	like	this:

val	xs	=	List(1)

val	result	=	dropAllButFirst(xs,	2)

result	==	xs

If	that	last	line	doesn’t	return	true,	there’s	something	wrong	with	my	function.

(I’ll	demonstrate	how	to	write	this	property	more	generally	with	ScalaCheck	in	a
few	moments.)

A	second	observation	about	dropAllButFirst

The	second	general	observation	I	can	make	about	dropAllButFirst	is	similar	to
the	first	one:

1.	 If	only	one	occurrence	of	the	element	you	want	to	drop	is	in	the	input	list,
the	resulting	list	should	be	the	same	as	the	input	list

I	can	test	this	statement	just	like	the	first	observation,	so	I	won’t	say	anything
else	about	it.

A	third	observation	about	dropAllButFirst

Next,	I	begin	thinking	about	lists	that	contain	more	than	one	instance	of	the
value	I’m	searching	for,	and	I	come	up	with	this	observation:

1.	 If	more	than	one	occurrence	of	the	element	you	want	to	drop	is	in	the	input
list,	then:	(A)	the	first	element	should	remain	in	its	original	position;	(B)	all
other	occurrences	of	that	element	should	be	dropped;	(C)	all	other	elements
in	the	list	should	be	as	they	were.

Parts	A	and	B	of	that	statement	are	easy	to	test	—	and	I’ll	show	how	to	do	that
shortly	—	but	I	initially	found	Part	C	to	be	hard	to	implement	without	using	
dropAllButFirst	to	prove	itself(!).	This	is	a	potential	problem	with	using
random	data.	For	instance,	with	static	test	data	you	know	that	this	list:

List(1,2,2,3)

should	be	reduced	to	this:

List(1,2,3)

But	when	you	get	100	random	lists	like	this:

List(1,2,3,2,4,5,2,6)

List(1000,-2347896,9876543,1133456)

you	have	no	idea	what	you’re	going	to	get	as	input,	so	you	have	to	find	different
ways	to	prove	that	the	output	list	is	correct.

Implementing	the	third	observation

The	way	I	implemented	the	third	observation	was	to	think	about	tests	that	I	could
actually	write	in	Scala.	After	a	little	trial	and	error,	I	came	up	with	a	set	of	sub-
tests	to	implement	each	phrase	of	that	observation.	Specifically,	given	any	input
list	that	has	more	than	one	occurrence	of	the	element	I	want	to	search	for,	after

running	dropAllButFirst:

A.	The	first	element	should	remain	in	its	original	position.	I	can	implement
this	by	finding	the	first	occurrence	in	both	the	“before”	and	“after”	lists
using	the	List	class	indexOf	method.

B.	All	other	occurrences	should	be	dropped.	Because	the	first	test	confirms
that	the	first	occurrence	is	in	the	proper	location,	this	test	only	needs	to
confirm	that	the	“after”	list	contains	only	one	occurrence	of	the	value	I
want	to	remove.	I	can	do	this	with	the	List	class	count	method.

C.	All	other	elements	in	the	list	should	be	as	they	were.	This	is	a	more
complicated	algorithm	that	I’ll	describe	next.

There	are	other	ways	to	write	an	algorithm	for	this	third	test,	but	the	method	I
came	up	with	is	to	split	the	input	and	result	lists	at	the	point	of	the	first
occurrence,	and	work	with	those	sub-lists.	For	instance,	given	this	input	list:

val	input	=	List(1,	2,	3,	2,	4,	2,	5)

the	correct	result	should	be:

val	result	=	List(1,	2,	3,	4,	5)

If	I	split	the	input	list	at	the	location	of	the	first	2,	I	get	these	two	lists:

val	inputBefore	=	List(1)

val	inputAfter		=	List(3,	2,	4,	2,	5)

Next,	my	algorithm	is	supposed	to	remove	all	remaining	2	values	in	inputAfter,
so	I	can	use	filter	to	achieve	that	effect:

val	inputAfterFilter	=	inputAfter.filter(_	==	2)

That	gives	me:

val	inputAfterFilter	=	List(3,	4,	5)

Therefore,	splitting	my	“input”	list	into	two	sub-lists,	and	removing	the	matches
from	the	second	sub-list	results	in	these	two	lists:

val	inputBefore	=	List(1)

val	inputAfterFilter	=	List(3,	4,	5)

Now	I	can	do	the	same	thing	with	the	result	list.	Starting	with	this	result,
which	I	know	to	be	correct:

val	result	=	List(1,	2,	3,	4,	5)

I	split	it	at	the	location	of	the	2,	and	get	these	two	sub-lists:

val	resultBefore	=	List(1)

val	resultAfter		=	List(3,	4,	5)

If	everything	works	properly,	I	can	then	compare	those	two	lists	to	these	two
lists:

val	inputBefore						=	List(1)

val	inputAfterFilter	=	List(3,	4,	5)

If,	for	all	possible	List[Int],	inputBefore	equals	resultBefore,	and	
inputAfterFilter	equals	resultAfter,	I	can	be	sure	that	dropAllButFirst
works.

Discussion

Item	C	shows	a	problem	with	ScalaCheck:	I	basically	had	to	create	a	second
version	of	my	algorithm	to	prove	that	the	first	version	of	my	algorithm	works
properly.	(I	haven’t	shown	its	source	code	yet,	but	dropAllButFirst	uses	a
recursive	algorithm.)

There	may	be	other	ways	that	you	can	write	tests	to	feel	comfortable	about	Item
C,	but	this	is	the	best	“proof”	I	came	up	with.	There	are	other	less-extensive
ways	that	are	easier	to	implement	that	will	give	you	a	pretty	high	level	of
confidence	that	dropAllButFirst	works	as	intended,	but	they	didn’t	give	me	as
much	confidence	as	this	approach.

The	ScalaCheck	thought	process

While	property	tests	can	occasionally	be	hard	to	implement,	I	really	like	the
ScalaCheck	thought	process.	In	several	cases,	such	as	with	dropAllButFirst,	it
made	me	think	harder.

In	fact,	as	I	was	working	on	these	property	tests	I	thought,	“Hmm,	
dropAllButFirst	is	really	a	special	implementation	of	a	more	general
algorithm.	For	instance,	what	if	I	ever	want	to	keep	the	first	two	elements,	and
then	drop	all	of	the	rest?	Or	the	first	three	elements,	etc.”	The	process	of
thinking	more	generally	about	the	properties	of	dropAllButFirst	made	me
think	of	that,	and	I	don’t	know	if	I	would	have	had	that	same	thought	while
writing	unit	tests.

Source	code

The	source	code	for	this	project	is	at	the	same	URL	as	the	previous	lesson:

github.com/alvinj/FPScalaCheck

https://github.com/alvinj/FPScalaCheck

The	ScalaCheck	code

At	this	point	the	best	thing	I	can	do	is	show	the	code	I	used	to	implement	those
property	tests	using	the	ScalaCheck	syntax.	Excluding	the	import	statements,
boilerplate	class	code,	and	the	List[Int]	generators	I	created	for	these	tests,
here’s	the	property	test	that	implements	the	three	observations	I	made	about	
dropAllButFirst:

object	DropAllButFirstSpec	extends	Properties("DropAllButFirstSpec")	{

				val	NUM_TO_DROP	=	2

				property("dropAllButFirstIntLists")	=	

								forAll(GenSeq.g1to5)	{	input:	List[Int]	=>

								//	run	`dropAllButFirst`

								val	result	=	ListUtils.dropAllButFirst(input,	2)

								//	start	the	tests

								val	numMatches	=	input.count(_	==	NUM_TO_DROP)

								if	(numMatches	==	0)	{

												/**

														*	OBSERVATION	1:	If	the	element	you	want	to	drop	is	not	

														*	in	the	input	list,	the	resulting	list	should	be	the	

														*	same	as	the	input	list

														*/

												input	==	result

								}	else	if	(numMatches	==	1)	{

												/**

														*	OBSERVATION	2:	If	only	one	occurrence	of	the	element	

														*	you	want	to	drop	is	in	the	input	list,	the	resulting	

														*	list	should	be	the	same	as	the	input	list

														*/

												input	==	result

								}	else	{

												/**

														*	OBSERVATION	3:	If	more	than	one	occurrence	of	the	

														*	element	you	want	to	drop	is	in	the	input	list,	then:	

														*	(a)	the	first	element	should	remain	in	its	original	

														*	position;	(b)	all	other	occurrences	should	be	dropped;

														*	(c)	all	other	elements	in	the	list	should	be	as	they	were.

														*/

												//	(a)	“the	first	element	should	remain	in	its	original	position.”

												val	element1PositionOriginal	=	input.indexOf(NUM_TO_DROP)

												val	element1PositionFinal	=	result.indexOf(NUM_TO_DROP)

												//	(b)	“all	other	occurrences	should	be	dropped.”	it's	enough

												//	to	test	that	there	is	only	one	occurrence	in	`result`

												val	numOccurrencesInResult	=	result.count(_	==	NUM_TO_DROP)

												//	(c)	“all	other	elements	in	the	list	should	be	as	they	were.”

												val	locationOfFirstOccurrenceInInput	=	input.indexOf(NUM_TO_DROP)

												val	(inputBefore,	inputAfter)	=	

																input.splitAt(locationOfFirstOccurrenceInInput)

												//	splitAt	retains	the	'split'	element	as	the	first	element	

												//	of	the	"after"	list.	therefore,	only	look	at	the	tail	of	

												//	the	"after"	list.

												val	inputAfterTail	=	inputAfter.tail

												val	inputAfterFiltered	=	inputAfterTail.filter(_	!=	NUM_TO_DROP)

												val	locationOfFirstOccurrenceInResult	=	result.indexOf(NUM_TO_DROP)

												val	(resultBefore,	resultAfter)	=	

																result.splitAt(locationOfFirstOccurrenceInResult)

												val	resultAfterTail	=	resultAfter.tail

												//	run	all	of	the	“Observation	3”	property	tests

												(

																element1PositionOriginal	==	element1PositionFinal	&&	//property	3.a

																numOccurrencesInResult	==	1																							&&	//property	3.b

																inputBefore	==	resultBefore																							&&	//property	3.c

																inputAfterFiltered	==	resultAfterTail																//property	3.c

)

								}

				}

}

Hopefully	most	of	that	code	is	readable.	If	you’re	new	to	ScalaCheck,	this	line
probably	needs	the	most	explanation:

property("dropAllButFirstIntLists")	=	

				forAll(GenSeq.g1to5)	{	input:	List[Int]	=>

In	this	case	I	created	a	ScalaCheck	generator	named	GenSeq.g1to5	that
generates	lists	of	integers	in	a	manner	that	I	thought	was	best	to	stress-test	
dropAllButFirst.	I’ll	discuss	that	shortly.

Another	point	worth	mentioning	is	that	the	splitAt	method	retains	the	element
you’re	splitting	on	—	2	in	this	case	—	in	the	second	list,	so	you	need	to	drop	that
element	from	the	second	list.	It’s	always	the	head	element	of	that	list,	so	you	can
easily	drop	it	by	just	taking	the	tail	of	that	list:

val	inputAfterTail	=	inputAfter.tail

Finally,	a	property	test	wants	a	single,	final	Boolean	value	as	a	result,	and	I
achieve	that	by	running	all	of	the	“Observation	3”	tests	at	the	end:

(

				element1PositionOriginal	==	element1PositionFinal	&&		//property	3.a

				numOccurrencesInResult	==	1																							&&		//property	3.b

				inputBefore	==	resultBefore																							&&		//property	3.c

				inputAfterFiltered	==	resultAfterTail																	//property	3.c

)

Creating	a	List[Int]	generator

There	are	two	critical	skills	involved	in	working	with	ScalaCheck:

Writing	properties	(what	I	call	“property	tests”)

Writing	generators

Generators	are	the	functions	that	generate	the	random	data	that	is	used	to	test
your	code.	There	are	many	default	generators,	such	as	the	generator	that	created
random	Int	values	for	the	test	in	the	previous	lesson.	However,	you’ll	often	need
to	create	your	own,	such	as	when	you	need	to	test	against	your	own	custom	case
classes.

If	you	want	to	learn	a	lot	about	writing	generators,	I	encourage	you	to	read
ScalaCheck:	The	Definitive	Guide,	but	in	this	section	I’ll	show	how	I	wrote	a
few	List[Int]	generators	to	test	dropAllButFirst.

I	could	easily	write	20-50	pages	on	 this	 topic,	 so	as	a	bit	of	a
warning,	I	only	cover	generators	here	at	a	high	level.

The	default	List[Int]	generator

First,	I	tried	to	use	the	default	List[Int]	generator	like	this:

property("dropAllButFirstIntLists")	=	forAll	{	input:	List[Int]	=>

The	problem	with	it	is	that	I	need	to	make	sure	my	tests	usually	have	at	least	one
2	in	them,	but	because	this	generator	creates	Int	values	from	Int.MinValue	to	
Int.MaxValue,	that	rarely	happens.

Generate	values	in	a	range

One	of	the	better	generators	I	created	looks	like	this:

val	g1to5:	Gen[List[Int]]	=	Gen.containerOf[List,Int](Gen.choose(1,	5))

This	creates	lists	of	random	lengths	by	evenly	distributing	the	numbers	1	to	5.

http://amzn.to/2eNKcSg

Here	are	some	sample	values	from	this	generator:

input:	List()

input:	List(3)

input:	List(2,	1)

input:	List(4,	3,	5)

input:	List(1,	3,	3,	5)

input:	List(3,	2,	2,	2,	2,	3,	4)

input:	List(1,	1,	1,	2,	5,	4,	2,	4,	5,	2)

input:	List(5,	1,	2,	1,	5,	5,	2,	4,	3,	3,	5,	2,	5,	5)

Some	of	the	lists	it	generates	are	much	longer	than	what	I’ve	shown	here,	which
is	good	or	bad,	depending	on	your	needs.

Generate	values	using	a	frequency	distribution

I	also	created	a	generator	that	let	me	control	how	many	2’s	were	generated	in
comparison	to	other	values.	This	is	a	two-step	process.	In	the	first	step,	you	set
up	your	frequency	distribution.	Here	I	declare	that	I	want	four	times	as	many	2’s
as	I	want	other	integers:

val	favorTwos:	Gen[Int]	=	Gen.frequency(

				(1,	1),

				(4,	2),			//4x	the	number	of	2s

				(1,	3),

				(1,	4),

				(1,	5)

)

In	the	second	step,	I	create	a	generator	that	generates	List[Int]	values:

genMostlyTwos:	Gen[List[Int]]	=	Gen.containerOf[List,Int](favorTwos)

Here	is	some	sample	data	from	this	generator:

input:	List()

input:	List(2)

input:	List(2,	2,	1)

input:	List(2,	2,	2,	2)

input:	List(3,	1,	5,	2,	5,	2)

input:	List(3,	2,	1,	2,	3,	2,	2,	2)

input:	List(2,	4,	3,	2,	5,	2,	1,	4,	1)

As	with	the	previous	generator,	the	lists	it	generates	are	much	longer	than	what
I’ve	shown,	which	is	good	or	bad,	depending	on	your	needs.

Another	way	to	control	the	distribution

This	third	example	shows	another	way	I	came	up	with	to	control	the	distribution
of	Int	values.	First,	I	created	a	List[Int]	like	this:

import	scala.util.Random

val	littleList:	List[Int]	=	Random.shuffle(List(1,2,3,4,5,6,2,7,8,9))

Then	I	use	the	Gen.someOf	helper	function	to	create	this	List[Int]	generator:

val	littleListGen:	Gen[List[Int]]	=	Gen.someOf(littleList).map(_.toList)

One	of	the	best	features	of	this	approach	is	that	it	creates	lists	that	contain	ten
elements	or	less:

input:	List(8)

input:	List(5,	8,	6)

input:	List(4,	8,	9,	6)

input:	List(4,	7,	5,	3,	2,	8)

input:	List(2,	5,	9,	3,	2,	6,	8,	4)

input:	List(8,	7,	9,	3,	2,	6,	1,	4,	5)

input:	List(2,	7,	9,	3,	2,	6,	1,	4,	5,	8)

More	on	generators

As	I	mentioned,	I	could	easily	write	dozens	of	pages	about	ScalaCheck
generators.	Rather	than	doing	that,	I	encourage	you	to	clone	my	project	from
Github,	then	(a)	un-comment	the	println	statement	inside	the	
DropAllButFirstSpec_IntLists	property	test,	and	then	(b)	experiment	and
change	the	first	line	of	code	in	the	property	test	to	use	the	different	generators,
like	this:

property("dropAllButFirstIntLists")	=	forAll(GenIntSeq.g1to5)	...

property("dropAllButFirstIntLists")	=	forAll(GenIntSeq.genMostlyTwos)	...

property("dropAllButFirstIntLists")	=	forAll(GenIntSeq.littleListGen)	...

After	that,	experiment	with	the	process	to	see	the	pros	and	cons	of	each
approach,	and	see	if	you	can	create	better	generators.

Running	the	property	test

When	you	run	the	“dropAllButFirstIntLists”	property	test	with	(a)	your	IDE	or
(b)	from	the	SBT	command	line	(with	sbt	test),	you	should	see	this	result:

+	DropFirstSpec.dropAllButFirst_SeqOfInts:	OK,	passed	100	tests.

That	tells	you	that	this	property	test	was	tested	with	100	random	lists,	and
ScalaCheck	didn’t	find	any	problems.

One	problem	not	found

Unless	you	create	a	generator	to	generate	very	large	lists,	one	problem	that
ScalaCheck	won’t	find	is	that	because	my	dropAllButFirst	function	isn’t	tail-
recursive,	it	will	run	into	StackOverflow	errors	on	large	lists.	I	didn’t	concern
myself	with	this	problem	because	I	knew	that	I	only	wanted	to	use	the	function
on	small	lists,	but	this	is	a	potential	problem	with	both	ScalaCheck	(and	unit	test
frameworks).

Please	 clone	 my	 Github	 project	 to	 see	 the	 dropAllButFirst
implementation.

One	more	note:	Tests	as	specification

ScalaCheck:	The	Definitive	Guide,	makes	a	good	observation	that	also	describes
this	process	well:

“While	 the	 idea	 of	 ‘tests	 as	 specification’	 is	 to	 make	 your
specification	more	test-centered,	property-based	testing	goes	in
the	opposite	direction	by	making	your	tests	more	specification-
like.	It	does	so	by	generalizing	tests	to	properties.”

The	book	further	adds,	“A	specification	is	a	definition	of	a	program’s	behavior	in
the	general	case.”	In	my	view,	that’s	exactly	what	property	tests	are.

http://amzn.to/2eNKcSg

Summary

I	hope	these	two	chapters	have	given	you	a	taste	of	how	ScalaCheck	works,
including	a	glimpse	of	its	pros	and	cons.

I	find	it	easiest	to	learn	something	like	this	by	experimenting	with	it,	so	I
encourage	you	to	clone	my	Github	project	and	work	with	it	as	desired	to	become
comfortable	with	it.	In	the	project	I	also	include	additional	property	tests,	so	you
can	see	even	more	examples.	One	of	the	tests	works	with	pizza	toppings	and	a	
List[Topping]	generator	so	you	can	see	something	besides	Int	tests.

See	also

The	ScalaCheck	user	guide

A	presentation	titled,	“Practical	ScalaCheck”

Code	Examples	for	ScalaCheck:	The	Definitive	Guide

The	SBT	“Testing”	page

How	to	use	ScalaCheck	in	the	SBT	REPL

Adventures	in	Abstract	Algebra	Part	III:	Using	ScalaCheck	to	Verify
Infinite	Algebraic	Structures

ScalaCheck	was	originally	based	on	QuickCheck,	which	is	a	Haskell	testing
library.	If	you’re	interested	in	reading	about	it	(and	know	Haskell)	this	An
introduction	to	QuickCheck	testing	article	is	good

https://github.com/rickynils/scalacheck/blob/master/doc/UserGuide.md
http://noelmarkham.github.io/practical-scalacheck/index.html#/
https://booksites.artima.com/scalacheck/examples/html/ch06.html
http://www.scala-sbt.org/0.13/docs/Testing.html
http://alvinalexander.com/misc/how-to-use-scalacheck-in-sbt-console-repl-shell
http://jtfmumm.com/blog/2015/09/04/adventures-in-abstract-algebra-part-4-using-scalacheck-to-verify-infinite-algebraic-structures/
https://www.schoolofhaskell.com/user/pbv/an-introduction-to-quickcheck-testing

The	Problem	with	the	IO	Monad
When	I	first	learned	about	the	IO	monad	I	thought	it	was	extremely	cool.	The
idea	that	all	of	my	I/O	functions	could	return	an	IO	type	sounded	terrific.	Any
developer	on	a	project	could	look	at	a	function	signature	in	the	source	code	or
Scaladoc,	see	that	it	returned	IO,	and	they	would	immediately	know	that	it
interacted	with	the	outside	world.

But	as	I	went	from	theory	to	reality,	I	noticed	that	every	example	of	the	IO
monad	only	showed	how	to	use	console	I/O.	I	couldn’t	find	an	example	of
anyone	using	the	IO	monad	with	network	or	file	I/O.

The	reality

As	I	dug	into	it,	I	learned	about	the	reality	of	the	situation.	The	short	version	of
the	story	goes	like	this:

Your	I/O	functions	are	probably	already	returning	Try	(or	maybe	Option)

Try	and	Option	are	both	monads,	so	it	doesn’t	make	sense	to	further	wrap
those	results	in	IO

I’ll	show	an	example	of	this	situation	in	the	rest	of	this	lesson,	and	also	show
two	ways	to	declare	the	return	type	of	I/O	functions.

Note:	Prefer	Try	over	Option	for	I/O	functions

I	prefer	to	use	Try	for	file	and	network	I/O	functions	because	I	usually	want	to
know	what	the	exception	was	when	a	function	fails.	Try	gives	me	the	exception
when	there	is	a	problem,	but	Option	just	returns	None,	which	doesn’t	tell	me
what	the	actual	problem	was.

Source	code

The	source	code	for	this	lesson	is	available	at	the	following	URL:

github.com/alvinj/FPIOMonadNotReallyUsed

https://github.com/alvinj/FPIOMonadNotReallyUsed

Discussion

To	demonstrate	this	situation,	let’s	look	at	a	short	example.	First,	imagine	that
you	already	have	this	readTextFileAsString	function,	which	returns	
Try[String]:

def	readTextFileAsString(filename:	String):	Try[String]	=

				Try	{

								val	lines	=	using(io.Source.fromFile(filename))	{	source	=>

												(for	(line	<-	source.getLines)	yield	line).toList

								}

								lines.mkString("\n")

				}

As	I	showed	in	the	“,”	one	way	to	use	functions	that	return	Try	is	like	this:

val	passwdFile	=	readTextFileAsString("/etc/passwdFoo")

passwdFile	match	{

				case	Success(s)	=>	println(s)

				case	Failure(e)	=>	println(e)

}

Attempt	to	wrap	that	in	IO

Next,	imagine	that	you	want	to	wrap	all	of	your	functions	in	the	IO	monad,	so
you	write	this	code:

def	readTextFileAsStringIO(filename:	String):	IO[Try[String]]	=	{

				IO(readTextFileAsString(filename))

}

All	that	function	does	is	wrap	the	result	of	the	previous	function	with	the	IO
monad.	As	shown,	the	function	now	returns	the	type	IO[Try[String]],	which
you	can	loosely	read	as,	“A	monad	wrapped	around	a	monad	wrapped	around	a	
String.”

Now	imagine	trying	to	use	this	result.	You	might	attempt	to	write	code	like	this:

val	pfile2	=	readTextFileAsStringIO("/etc/passwdFoo")

val	z	=	for	{

				a	<-	pfile2		//get	Try[String]	out	of	IO

				b	<-	a							//get	String	out	of	Try

}	yield	b

println(z)

But	as	you	can	guess	from	what	you	saw	in	the	StateT	lessons,	that	will	give

you	a	type	mismatch	error:

Error:(16,	11)	type	mismatch;

	found			:	scala.util.Try[String]

	required:	io_examples.v1.IO[?]

								b	<-	a							//get	String	out	of	Try

Just	as	bad	as	that	error,	all	this	approach	does	is	make	your	code	more
complicated	for	no	good	reason.	Because	the	first	function
(readTextFileAsString)	already	returns	its	result	as	a	Try,	you	can	already	use
it	in	for	and	match	expressions;	IO	doesn’t	add	a	benefit	here.

Once	I	dug	into	this	code	and	saw	these	problems,	I	understood	why	IO	doesn’t
seem	to	be	used	in	the	real	world,	at	least	not	for	file	and	network	I/O	in	Scala:	It
makes	the	code	more	complicated,	and	adds	no	value,	other	than	trying	to	have
all	of	your	I/O	functions	return	an	IO	type.

If	you	really	like	the	IO	idea	…

If	you	really	like	the	idea	of	using	an	IO	type	as	a	way	to	signal	to	other
developers,	“This	function	interacts	with	the	outside	world	via	I/O,”	one	thing
you	can	do	is	create	a	type	alias	that	lets	you	use	IO	rather	than	Try	in	your
function	signatures:

import	scala.util.Try

type	IO[A]	=	Try[A]

With	this	type	alias	you	can	declare	that	your	functions	return	IO	rather	than	Try:

def	readTextFileAsString(filename:	String):	IO[String]	=

				Try	{

								val	lines	=	using(io.Source.fromFile(filename))	{	source	=>

												(for	(line	<-	source.getLines)	yield	line).toList

								}

								lines.mkString("\n")

				}

Benefits

Assuming	that	you’re	not	already	using	an	IO	monad	in	your	project,	I	don’t
think	this	approach	will	be	confusing,	and	it	will	give	you	the	intended	benefits
of	the	IO	monad:

It	tells	all	other	developers	that	this	function	uses	I/O

It	lets	developers	use	the	function	in	the	usual	monadic	ways,	i.e.,	such	as
combining	instances	in	for	expressions

Before	you	run	off	and	use	this	approach,	I	should	make	a	few	more	points:

I	don’t	know	if	anyone	uses	this	technique	in	the	real	world

You	arguably	get	the	same	two	benefits	by	returning	Try

Or	take	it	even	further

Finally,	if	you	decide	that	you	do	like	this	type	alias	technique,	you	can	take	it	a
step	further	and	create	a	type	alias	named	FileIO	for	file	I/O	functions,	and	

NetworkIO	for	network	I/O	functions.

As	an	example	of	this,	the	Slick	database	library	from	Lightbend	has	functions
that	return	the	type	alias	DBIO	for	non-streaming	database	functions,	and	
StreamingDBIO	for	streaming	functions.	Both	of	those	are	aliases	for	the	
DBIOAction	type.

http://slick.lightbend.com/

Key	points

In	summary,	the	benefits	of	returning	an	IO	type	from	your	I/O	functions	are:

It	tells	all	other	developers,	“this	function	uses	I/O”

Because	it	implements	map	and	flatMap,	it	lets	developers	use	the	function
in	the	usual	monadic	ways,	i.e.,	in	for	expressions

However,	because	functions	that	work	with	file	and	network	resources	already
return	Try,	it	doesn’t	make	sense	to	stack	IO	onto	Try,	and	in	fact,	it	only	makes
your	code	more	complicated,	at	best.

Therefore,	the	two	main	options	are:

Define	your	I/O	functions	to	return	Try.

As	an	experiment,	create	a	type	alias	IO	and	use	it	as	the	function	return
type	instead	of	Try.	You	can	also	take	that	a	step	further	and	declare
multiple	aliases,	such	as	FileIO,	NetworkIO,	and	DatabaseIO.

Signpost:	Type	Classes
In	this	section	of	the	book	I’ll	cover	Scala	type	classes,	a	programming
technique	that	lets	you	add	new	behavior	to	closed	data	types.	The	use	of	type
classes	isn’t	strictly	limited	to	the	functional	programming	style,	but	because
they’re	used	so	much	in	the	Cats	library	—	an	FP	library	for	Scala	—	it’s
important	to	know	how	they	work.

https://typelevel.org/cats/

Type	Classes	101:	Introduction

Source	code

The	source	code	for	all	of	the	type	class	lessons	is	available	at	the	following
URL:

github.com/alvinj/FPTypeClasses

The	code	for	this	lesson	is	in	the	typeclasses.v1_humanlike	package.	One	note
about	the	source	code:	It	contains	an	extra	eatHumanFood	function	that	isn’t
shown	in	the	examples	that	follow.	I	include	that	function	in	the	source	code	so
you	can	see	how	to	define	multiple	functions	in	a	type	class.

https://github.com/alvinj/FPTypeClasses

Introduction

The	book	Advanced	Scala	with	Cats	defines	a	type	class	as	a	programming
technique	that	lets	you	add	new	behavior	to	closed	data	types	without	using
inheritance,	and	without	having	access	to	the	original	source	code	of	those	types.
Strictly	speaking,	this	isn’t	a	technique	that’s	limited	to	functional	programming,
but	because	it’s	used	so	much	in	the	Cats	library,	I	want	to	show	some	examples
of	the	approach	here,	as	well	as	the	motivation	for	the	technique.

Cats	is	a	popular	FP	library	for	Scala.

https://underscore.io/books/advanced-scala/
https://typelevel.org/cats/

Motivation

The	authors	of	Advanced	Scala	with	Cats	make	an	interesting	observation	about
inheritance,	and	I’ll	offer	a	slight	variation	of	that	point.

Given	an	OOP	Pizza	class	like	this:

class	Pizza(var	crustSize:	CrustSize,	var	crustType:	CrustType)	{

				val	toppings	=	ArrayBuffer[Topping]()

				def	addTopping(t:	Topping):	Unit	=	{	toppings	+=	t	}

				def	removeTopping(t:	Topping):	Unit	=	{	toppings	-=	t	}

				def	removeAllToppings():	Unit	=	{	toppings.clear()	}

}

If	you	want	to	change	the	data	or	methods	in	this	OOP	approach,	what	would
you	normally	do?	The	answer	in	both	cases	is	that	you’d	modify	that	class.

Next,	given	a	modular	FP	design	of	that	same	code:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				toppings:	Seq[Topping]

)

trait	PizzaService	{

				def	addTopping(p:	Pizza,	t:	Topping):	Pizza	=	???

				def	removeTopping(p:	Pizza,	t:	Topping):	Pizza	=	???

				def	removeAllToppings(p:	Pizza):	Pizza	=	???

}

If	you	want	to	change	the	data	or	methods	in	this	code,	what	would	you	normally
do?	The	answer	here	is	a	little	different.	If	you	want	to	change	the	data,	you
update	the	case	class,	and	if	you	want	to	change	the	methods,	you	update	the
code	in	PizzaService.

These	two	examples	show	that	there’s	a	difference	in	the	code	you	have	to
modify	when	you	want	to	add	new	data	or	behavior	to	OOP	and	FP	designs.

Type	classes	give	you	a	completely	different	approach.	Rather	than	updating	any
existing	source	code,	you	create	type	classes	to	implement	the	new	behavior.

In	these	lessons	I’ll	show	type	class	examples	so	you	can	learn	about	the

technique	in	general,	and	more	specifically	learn	about	it	so	you	can	understand
how	the	Cats	library	works,	since	much	of	it	is	implemented	using	type	classes.

https://typelevel.org/cats/

Type	classes	have	three	components

Let’s	jump	into	some	examples	of	how	to	create	and	use	type	classes	so	you	can
see	how	they	work.

Type	classes	consist	of	three	components:

The	type	class,	which	is	defined	as	a	trait	that	takes	at	least	one	generic
parameter	(a	generic	“type”)

Instances	of	the	type	class	for	types	you	want	to	extend

Interface	methods	you	expose	to	users	of	your	new	API

Data	for	the	first	example

For	the	first	example,	assume	that	I	have	these	existing	data	types:

sealed	trait	Animal

final	case	class	Dog(name:	String)	extends	Animal

final	case	class	Cat(name:	String)	extends	Animal

final	case	class	Bird(name:	String)	extends	Animal

Now	assume	that	you	want	to	add	new	behavior	to	the	Dog	class.	Because	dogs
are	well	known	for	their	ability	to	speak	like	humans,	you	want	to	add	a	new	
speak	behavior	to	Dog	instances,	but	you	don’t	want	to	add	the	same	behavior	to
cats	or	birds.

If	you	have	the	source	code	for	those	behaviors,	you	could	just	add	the	new
function	there.	But	in	this	example	I’m	going	to	show	how	to	add	the	behavior
using	a	type	class.

https://www.youtube.com/watch?v=qXo3NFqkaRM

Step	1:	The	type	class

The	first	step	is	to	create	a	trait	that	uses	at	least	one	generic	parameter.	In	this
case,	because	I	want	to	add	a	“speak”	function,	which	is	a	“human	like”
behavior,	I	define	my	trait	like	this:

trait	BehavesLikeHuman[A]	{

				def	speak(a:	A):	Unit

}

Using	the	generic	type	A	lets	us	apply	this	new	functionality	to	whatever	type	we
want.	For	instance,	if	you	want	to	apply	it	to	a	Dog	and	a	Cat,	you	can	do	that
because	I’ve	left	the	type	generic.

Step	2:	Type	class	instances

The	second	step	of	the	process	is	to	create	instances	of	the	type	class	for	the	data
types	you	want	to	enhance.	In	my	case,	because	I	only	want	to	add	this	new
behavior	to	the	Dog	type,	I	create	only	one	instance,	which	I	define	like	this:

object	BehavesLikeHumanInstances	{

				//	only	for	`Dog`

				implicit	val	dogBehavesLikeHuman	=	new	BehavesLikeHuman[Dog]	{

								def	speak(dog:	Dog):	Unit	=	{

												println(s"I'm	a	Dog,	my	name	is	${dog.name}")

								}

				}

}

The	key	points	about	this	step	are:

I	only	create	an	instance	of	BehavesLikeHuman	for	the	Dog	type.

I	didn’t	create	instances	for	Cat	or	Bird	because	I	don’t	want	them	to	have
this	behavior.

I	implement	the	speak	method	as	desired	for	the	Dog	type.

I	tag	the	instance	as	implicit	so	it	can	be	easily	pulled	into	the	code	that
I’ll	write	in	the	next	steps.

I	wrap	the	code	in	an	object,	primarily	as	a	way	to	help	me	organize	it.
This	isn’t	too	important	in	a	small	example,	but	it’s	helpful	in	larger,	real-
world	applications.

Step	3:	The	API	(interface)

In	the	third	step	of	the	process	you	create	the	functions	that	you	want	consumers
of	your	API	to	see.	There	are	two	possible	approaches	in	this	step:

Define	a	function	in	an	object,	just	like	the	“Utils”	approach	I	described	in
the	domain	modeling	lessons

Define	an	implicit	function	that	can	be	invoked	on	a	Dog	instance

I	refer	to	these	approaches	as	options	3a	and	3b,	and	for	consumers	of	these
approaches,	their	code	will	look	like	this:

BehavesLikeHuman.speak(aDog)			//3a

aDog.speak																					//3b

I’ll	show	how	to	implement	these	approaches	next,	but	to	be	clear,	you	don’t
have	to	implement	both	approaches.	They	are	two	different	options	—
competitive	approaches.

Option	3a:	The	Interface	Objects	approach

In	the	Advanced	Scala	with	Cats	book,	the	authors	refer	to	approach	3a	as	the
“Interface	Objects”	approach.	I	refer	to	this	as	the	“explicit”	approach	because	it
uses	functions	in	objects,	just	like	the	“Utils”	approach	I	described	in	the
Domain	Modeling	lessons.

For	my	dog	example,	I	just	define	a	speak	function	in	an	object,	like	this:

object	BehavesLikeHumanInstances	{

				//	only	for	`Dog`

				implicit	val	dogBehavesLikeHuman	=	new	BehavesLikeHuman[Dog]	{

								def	speak(dog:	Dog):	Unit	=	{

												println(s"I'm	a	Dog,	my	name	is	${dog.name}")

								}

				}

}

Because	speak	can	be	applied	to	any	type,	I	still	need	to	use	a	generic	type	to
define	the	function.	The	function	also	expects	an	instance	of	BehavesLikeHuman
to	be	in	scope	when	the	function	is	executed,	and	that	instance	is	pulled	into	the

https://underscore.io/books/advanced-scala/

function	through	the	implicit	parameter	in	the	second	parameter	group.

As	a	consumer,	you	use	this	3a	approach	as	follows.	First,	import	the	
dogBehavesLikeHuman	instance:

import	BehavesLikeHumanInstances.dogBehavesLikeHuman

Remember	that	it	contains	a	speak	method	that’s	implemented	for	a	Dog.	Next,
create	a	Dog	instance:

val	rover	=	Dog("Rover")

Finally,	you	can	apply	the	BehavesLikeHuman.speak	function	to	the	rover
instance:

BehavesLikeHuman.speak(rover)

That	results	in	this	output:

I'm	a	Dog,	my	name	is	Rover

That’s	the	summary	of	the	complete	approach	using	Option	3a.	As	a	final	point,
notice	that	you	can	also	manually	pass	the	dogBehavesLikeHuman	instance	into
the	second	parameter	group:

BehavesLikeHuman.speak(rover)(dogBehavesLikeHuman)

That’s	not	necessary,	because	the	parameter	in	the	second	parameter	group	is
defined	as	an	implicit	variable,	but	I	wanted	to	show	that	you	can	also	pass	the
type	in	manually,	if	you	prefer.

Notice	that	the	final	result	of	this	approach	is	that	you	have	a	new	function
named	speak	that	works	for	the	Dog	type.	This	is	nice,	but	it	also	seems	like	a	lot
of	work	to	create	a	“Utils”	function	you	can	apply	to	a	Dog.	In	my	opinion,
Option	3b	is	where	all	of	this	work	really	pays	off.

Option	3b:	The	Interface	Syntax	approach

As	an	alternative	to	Option	3a,	you	can	use	a	second	approach	that	the	Advanced
Scala	with	Cats	book	refers	to	as	the	“Interface	Syntax”	approach.	The	keys	of
this	approach	are:

https://underscore.io/books/advanced-scala/

In	the	end,	it	lets	you	call	your	new	function	as	dog.speak

The	Cats	book	refers	to	the	methods	you	create	as	“extension	methods,”
because	they	extend	existing	data	types	with	the	new	methods

The	Cats	project	refers	to	this	as	“syntax”	for	the	type	class

As	a	quick	review,	in	Step	1	of	the	process	I	created	a	trait	that	uses	a	generic
type:

trait	BehavesLikeHuman[A]	{

				def	speak(a:	A):	Unit

}

Then	in	Step	2	I	created	an	instance	of	the	type	class	for	the	Dog	data	type:

object	BehavesLikeHumanInstances	{

				//	only	for	`Dog`

				implicit	val	dogBehavesLikeHuman	=	new	BehavesLikeHuman[Dog]	{

								def	speak(dog:	Dog):	Unit	=	{

												println(s"I'm	a	Dog,	my	name	is	${dog.name}")

								}

				}

}

Now	in	Step	3b,	I	create	the	new	“interface	syntax”	like	this:

object	BehavesLikeHumanSyntax	{

				implicit	class	BehavesLikeHumanOps[A](value:	A)	{

								def	speak(implicit	behavesLikeHumanInstance:	BehavesLikeHuman[A]):	Unit	=	{

												behavesLikeHumanInstance.speak(value)

								}

				}

}

Consumers	of	this	approach	will	write	their	code	as	follows.	First,	they	import
the	dogBehavesLikeHuman	instance	as	before:

import	BehavesLikeHumanInstances.dogBehavesLikeHuman

Then	they	import	the	implicit	class	from	inside	the	BehavesLikeHumanSyntax
object:

import	BehavesLikeHumanSyntax.BehavesLikeHumanOps

Next,	they	create	a	Dog	instance	as	usual:

val	rover	=	Dog("Rover")

Finally,	the	big	difference	between	options	3a	and	3b	is	that	with	Option	3b,	they
can	invoke	your	methods	directly	on	the	rover	instance,	like	this:

rover.speak

This	shows	the	benefit	of	all	of	the	work	leading	up	to	this	point:	The	Dog
instance	has	a	new	speak	method.	If	you	didn’t	have	access	to	the	original	Dog
source	code,	this	would	be	a	huge	win.	More	generally,	it	shows	a	three-step
process	you	can	use	to	add	new	functionality	to	any	“closed”	class.

Note:	As	I	mentioned	earlier,	the	source	code	for	this	lesson	has
an	additional	eatHumanFood	function	that	shows	how	to	define
multiple	functions	in	a	type	class.

Key	points

As	demonstrated,	a	type	class	consists	of	three	components:

The	type	class	itself,	which	is	defined	as	a	trait	that	takes	at	least	one
generic	parameter

Instances	of	the	type	class	for	the	data	types	you	want	to	extend

Interface	methods	you	expose	to	users	of	your	new	API

The	benefits	of	using	a	type	class	are:

It	provides	an	approach	that	lets	you	add	new	behavior	to	existing	classes
without	using	traditional	inheritance,	especially	in	the	case	where	you	can’t
(or	don’t	want	to)	modify	the	existing	source	code	of	existing	data	types

What’s	next

In	the	next	lesson	I’ll	provide	a	more	practical	example	of	using	a	type	class,
using	the	source	code	from	the	pizza	classes	from	the	Domain	Modeling	lessons.

Type	Classes	102:	The	Pizza	Class
If	you	looked	at	the	source	code	for	the	Domain	Modeling	lessons	you	probably
noticed	that	I	said	one	thing,	but	did	another.	I	said	that	I	liked	the	approach	of
not	including	any	methods	in	my	case	classes,	but	then	I	wrote	this	code:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				toppings:	Seq[Topping]

)	{

				override	def	toString	=

								s"""

								|		Pizza	($crustSize,	$crustType),	toppings	=	$toppings""".stripMargin

}

I	overrode	the	toString	method	in	both	the	Pizza	and	Order	classes	because	I
wanted	to	control	how	they	looked	when	they	were	printed	out.	This	shows	a
conflict	of	that	situation:

I	want	to	declare	my	data	types	with	plain	case	classes	(with	no	behaviors)

I	also	want	to	control	what	those	data	types	look	like	when	they	are	printed

There	are	several	ways	to	resolve	this	conflict,	and	in	this	lesson	I’ll	show	how
to	use	type	classes	so	(a)	I	can	declare	my	data	types	without	any	methods,	and
(b)	still	get	the	output	I	want.

Source	code

The	source	code	for	this	lesson	is	in	the	same	repository	as	the	previous	lesson:

github.com/alvinj/FPTypeClasses

The	code	for	this	lesson	is	in	the	typeclasses.v2_pizza2string	package	of	that
project.

https://github.com/alvinj/FPTypeClasses

The	solution

To	implement	the	solution,	I	first	define	the	Pizza	class	the	way	I	really	want	it,
as	a	simple	declaration	of	its	data	types	without	any	methods:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				toppings:	Seq[Topping]

)

Next,	I’ll	implement	a	type	class	that	lets	me	get	the	printed	output	I	want.	I’ll
follow	the	same	three-step	approach	I	showed	in	the	previous	lesson:

Define	the	type	class	as	a	trait	that	takes	at	least	one	generic	parameter

Define	an	instance	of	the	type	class	for	the	Pizza	class

Create	interface	methods	that	I’ll	expose	to	consumers	of	this	code

Step	1:	Define	the	type	class

First,	I	create	a	type	class	named	ToString.	It	takes	a	generic	parameter,	and
defines	an	abstract	method:

trait	ToString[A]	{

				def	toString(a:	A):	String

}

Step	2:	Define	an	instance	of	the	type	class	for	the
Pizza	class

Next,	I	define	an	instance	of	the	type	class	named	pizzaAsString	that	overrides
the	toString	method	to	declare	the	way	I	want	a	Pizza	to	be	printed:

implicit	val	pizzaAsString	=	new	ToString[Pizza]	{

				def	toString(p:	Pizza):	String	=	{

								s"""|Pizza(${p.crustSize},	${p.crustType}),

												|						toppings	=	${p.toppings}""".stripMargin

				}

}

Step	3:	Create	interface	methods	to	make	available	to
consumers	of	this	code

Finally,	I	create	the	code	that	I	want	consumers	of	my	API	to	use.	In	the	source
code	for	this	lesson	I	show	code	for	both	Option	3a	and	Option	3b,	but	in	this
text	I’ll	only	use	the	code	for	Option	3b,	which	looks	like	this:

object	ToStringSyntax	{

				implicit	class	ToStringOps[A](value:	A)	{

								def	asString(implicit	toStringInstance:	ToString[A]):	String	=	{

												toStringInstance.toString(value)

								}

				}

}

Step	4:	Using	the	API

With	that	code	in	place,	I	can	write	some	test	code	as	follows.	First,	I	import
what	I	need:

import	ToStringInstances.pizzaAsString

import	ToStringSyntax._

Next,	I	create	a	Pizza	instance:

val	p	=	Pizza(

				LargeCrustSize,	

				ThinCrustType,	

				Seq(Cheese,	Pepperoni,	Sausage)

)

Finally,	I	print	the	Pizza	instance	using	the	asString	method	I	defined	in	my
type	class:

println(p.asString)

This	results	in	the	following	output:

Pizza(LargeCrustSize,	ThinCrustType),	

						toppings	=	List(Cheese,	Pepperoni,	Sausage)

Discussion

In	this	example	I	followed	the	steps	from	the	previous	lesson,	so	I	won’t	go	over
them	in	detail.	One	thing	I	will	mention	is	that	I	intentionally	named	the	method
in	the	ToString	trait	toString:

trait	ToString[A]	{

				def	toString(a:	A):	String

And	then	in	Step	3b	I	intentionally	named	my	API	method	asString:

object	ToStringSyntax	{

				implicit	class	ToStringOps[A](value:	A)	{

								def	asString(implicit	toStringInstance:	ToString[A]):	String	=	{

I	did	this	to	show	you	that	the	method	name	in	your	public	API	—	the	asString
method	in	ToStringOps	—	doesn’t	have	to	match	the	method	name	in	the	type
class	trait.	You	are	more	than	welcome	to	keep	those	method	names	consistent,
but	as	this	example	shows,	they	don’t	have	to	be	the	same.

The	second	thing	to	notice	with	this	approach	is	that	to	get	the	“to	string”	effect,
you	need	to	call	asString	when	printing	a	pizza:

println(p.asString)

This	isn’t	quite	as	convenient	as	overriding	the	toString	method	in	the	Pizza
class,	but	because	I	like	to	keep	my	case	class	definitions	clean	of	any	methods,
I	prefer	this	approach	in	this	situation.

Work	with	the	source	code

I	encourage	you	to	work	with	the	source	code	for	this	project	to	understand	this
technique.	In	the	code	you’ll	find	two	packages	under	the	root	typeclasses
package:

v2_pizza2string	contains	the	source	code	I	just	showed,	and	includes	code
for	both	options	3a	and	3b

v3_order2string	shows	the	same	approach	applied	to	both	the	Pizza	and	
Order	case	classes

The	code	in	v3_order2string	shows	a	minor	adjustment	I	had	to	make	to	the
process	because	an	order	contains	one	or	more	pizzas,	and	I	want	to	avoid
duplicating	code.	See	the	pizzaAsAStringHelper	method	in	the	
ToStringInstances	object	for	those	details.

Other	approaches

It’s	important	to	note	that	if	I	want	to	keep	my	case	classes	clean,	I	can	also	put
these	functions	in	a	“Utils”	class:

object	PizzaUtils	{

				def	pizzaToString(p:	Pizza):	String	=	???

				def	orderToString(o:	Order):	String	=	???

}

and	then	print	like	this:

println(PizzaUtils.pizzaToString(pizza))

println(PizzaUtils.orderToString(order))

But	in	the	larger	scheme	of	things,	I’m	also	trying	to	help	you	get	ready	to	use
the	type	classes	in	the	Cats	project.

https://typelevel.org/cats/

Key	points

The	key	point	of	this	lesson	is	that	this	approach	lets	me	cleanly	define	my	case
classes	using	only	the	data	types:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				toppings:	Seq[Topping]

)

case	class	Order	(

				pizzas:	Seq[Pizza],

				customer:	Customer

)

and	it	also	gives	me	a	way	to	print	them	in	a	readable	format	using	the	asString
method	that	appears	to	be	defined	directly	on	the	Pizza	and	Order	classes:

println(pizza.asString)

println(order.asString)

Type	Classes	103:	The	Cats	Library
As	a	final	example	of	how	to	use	type	classes,	I’ll	show	how	to	repeat	the
example	from	the	previous	lesson	using	the	open	source	“Cats”	FP	library	for
Scala.	With	the	examples	you’ve	seen	already,	this	will	be	a	quick	process.

https://github.com/typelevel/cats

Source	code

Step	1	is	to	clone	my	source	code	for	this	lesson,	which	is	available	at	this	URL:

github.com/alvinj/FPTypeClassesWithCats

The	first	important	thing	to	notice	in	this	code	is	that	I	include	the	Cats	library	in
the	project	with	this	line	in	the	build.sbt	file:

libraryDependencies	++=	Seq(

				"org.typelevel"	%%	"cats-core"	%	"1.0.0-MF"

)

https://github.com/alvinj/FPTypeClassesWithCats
https://github.com/typelevel/cats

The	Pizza	class

In	the	source	code,	the	Pizza	case	class	is	defined	as	usual:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				toppings:	Seq[Topping]

)

Using	Cats

In	this	lesson	I’m	going	to	use	the	Cats	Show	type	class.	Show	is	similar	to	the	
ToString	type	class	I	used	in	the	previous	lesson	in	that	it	provides	a	way	to	add
a	“to	string”	method	to	an	existing	class.

The	first	thing	I	do	in	my	driver	class	is	import	everything	I	need	from	the	Cats
library:

import	cats.Show											//the	type	class

import	cats.syntax.show._		//the	interface	syntax

As	the	comments	show,	this	imports	the	Cats	Show	type	class	and	its	interface
syntax.

Next,	this	is	how	you	create	an	implicit	instance	of	the	Show	type	class,	which	I
name	pizzaShow:

implicit	val	pizzaShow	=	Show.show[Pizza]	{	p	=>

				s"""|Pizza(${p.crustSize},	${p.crustType}),

								|						toppings	=	${p.toppings}""".stripMargin

}

While	that	code	is	slightly	different	from	what	I	showed	in	the	previous	lessons,
I	hope	you	can	see	the	similarity	between	my	approach	and	the	Cats	approach.

To	use	this	implicit	instance,	all	I	have	to	do	is	create	a	Pizza:

val	pizza	=	Pizza(

				LargeCrustSize,

				ThinCrustType,

				Seq(Cheese,	Pepperoni,	Sausage)

)

and	then	print	it	using	the	show	method	that’s	now	available	to	it,	thanks	to	the	
pizzaShow	instance:

println(pizza.show)

This	results	in	the	same	output	as	in	the	previous	lessons:

Pizza(LargeCrustSize,	ThinCrustType),

						toppings	=	List(Cheese,	Pepperoni,	Sausage)

More	about	Cats	and	Show

If	you’re	serious	about	working	with	Scala/FP,	I	encourage	you	to	get	a	copy	of
Advanced	Scala	with	Cats.	You	can	download	the	PDF	for	free,	or	donate	any
amount	you	want	for	the	book.	(The	current	suggested	donation	is	$10,	and	it’s
well	worth	that	price	if	you	want	to	use	the	Cats	project.)

To	see	more	about	how	Show	works,	start	an	SBT	session	from	the	root	directory
of	the	project	for	this	lesson:

$	sbt

Then,	inside	of	SBT,	start	a	REPL	session	like	this:

>	console

After	a	few	moments	you’ll	be	in	a	Scala	REPL	session,	with	the	additional
benefit	that	the	Cats	library	is	available	to	you	(thanks	to	this	nice	feature	of
SBT).

Now	you	can	import	the	Show	type	class	and	its	syntax,	as	before:

import	cats.Show

import	cats.syntax.show._

Then	you	can	import	a	few	pre-built	instances	Cats	provides	for	you,	including
these	for	the	Int	and	List	types:

import	cats.instances.int._

import	cats.instances.list._

Once	you’ve	done	that,	you	can	call	the	show	method	on	those	built-in	Scala
types:

scala>	123.show												//Int

res0:	String	=	123

scala>	List(1,2,3).show				//List

res1:	String	=	List(1,	2,	3)

The	Show	library	has	instances	for	many	more	built-in	Scala	types.	While	this
only	shows	the	tip	of	the	iceberg,	I	hope	you	can	see	the	power	of	the	approach.

https://underscore.io/books/advanced-scala/

Key	points

The	key	points	of	this	lesson	are:

The	Cats	library	has	type	classes	like	Show	available,	so	you	don’t	always
have	to	write	your	own

Even	though	the	people	who	wrote	Cats	have	never	seen	the	Pizza	class,	it
was	easy	to	use	Pizza	and	Show	together	because	of	the	power	of	the	type
class	approach

I	also	wanted	to	give	you	an	idea	of	how	to	get	started	using	Cats

See	also

In	this	lesson	I	showed	how	to	start	a	REPL	session	inside	of	SBT	using	the	
console	command.	You	can	also	use	the	consoleQuick	command	to	start	a
REPL	session	faster.	I	describe	the	two	approaches	here:

How	to	start	a	Scala	REPL	session	inside	SBT

The	two	best	Cats	resources	I	know	are	here:

The	Cats	library	is	available	at	github.com/typelevel/cats

The	book,	Advanced	Scala	with	Cats,	is	available	at
underscore.io/books/advanced-scala/

https://alvinalexander.com/misc/scala-how-to-start-repl-session-in-sbt-simple-build-tool
https://github.com/typelevel/cats
https://underscore.io/books/advanced-scala/

Lenses,	to	Simplify	“Update	as	You
Copy”

Goal

In	the	“”	lesson	I	showed	that	when	you	use	the	“update	as	you	copy”	approach
on	nested	data	structures,	your	code	can	quickly	get	ugly	and	complicated.	As
this	lesson’s	introductory	quote	states,	a	Lens	is	a	way	of	simplifying	this
problem.	Therefore,	the	goal	of	this	lesson	is	to	show	how	lenses	work.

Source	code

If	you	want	to	follow	along	with	the	code	in	this	lesson,	get	a	copy	of	the	source
code	from	this	Github	repository:

github.com/alvinj/FPLenses

https://github.com/alvinj/FPLenses

Lens	libraries

There	are	no	“lens”	libraries	built	into	Scala,	but	there	are	several	third-party
libraries.	In	the	following	example	I’ll	show	an	example	of	how	to	use	a	library
named	Quicklens.

https://github.com/adamw/quicklens

A	Scala	Quicklens	example

To	get	started,	here’s	the	data	model	I’ll	use	in	this	lesson:

case	class	User(

				id:	Int,	

				name:	Name,

				billingInfo:	BillingInfo,

				phone:	String,	

				email:	String

)

case	class	Name(

				firstName:	String,

				lastName:	String

)

case	class	Address(

				street1:	String,

				street2:	String,

				city:	String,

				state:	String,

				zip:	String

)

case	class	CreditCard(

				name:	Name,

				number:	String,

				month:	Int,

				year:	Int,

				cvv:	String

)

case	class	BillingInfo(

				creditCards:	Seq[CreditCard]

)

Given	that	model,	I	create	this	instance	of	a	User:

val	user	=	User(

				id	=	1,

				name	=	Name(

								firstName	=	"Al",

								lastName	=	"Alexander"

),

				billingInfo	=	BillingInfo(

								creditCards	=	Seq(

												CreditCard(

																name	=	Name("Al",	"Alexander"),

																number	=	"1111111111111111",

																month	=	3,

																year	=	2020,

																cvv	=	""

)

)

),

				phone	=	"907-555-1212",

				email	=	"al@al.com"

)

To	show	how	a	lens	works,	assume	that	you	need	to	change	both	the	User.phone
and	User.email	fields.	One	way	to	do	this	using	Quicklens	is	with	a	step-by-
step	process,	like	this:

val	user1	=	user.modify(_.phone).setTo("720-555-1212")

val	user2	=	user1.modify(_.email).setTo("al@example.com")

That’s	a	good	start,	but	with	Quicklens	I	can	do	even	better.	This	example	shows
how	to	modify	those	fields	as	well	as	the	firstName	field	in	the	Name	object,	all
with	one	expression:

val	newUser	=	user.modify(_.phone).setTo("720-555-1212")

																		.modify(_.email).setTo("al@example.com")

																		.modify(_.name.firstName).setTo("Alvin")

That’s	pretty	cool,	and	it’s	much	easier	than	what	I	showed	at	the	end	of	the
“Update	as	You	Copy”	lesson.

Discussion

As	mentioned,	lenses	let	you	create	updated	versions	of	immutable	objects.
While	the	“update	as	you	copy”	approach	is	useful	for	non-nested	objects,	a
good	lens	library	is	extremely	helpful	when	you	need	to	update	values	that	are
buried	deep	inside	nested	objects.

Lenses	basically	hide	the	nasty	object-copying	operations	you	would	have	to
handle	manually,	and	they	make	your	code	look	clean	in	the	process.

Lens	projects

I	showed	the	Quicklens	library	in	this	lesson	because	it’s	relatively	simple	and
easy	to	use:

github.com/adamw/quicklens

Here’s	a	list	of	a	few	other	Scala	Lens	libraries	that	are	available:

Monocle	is	under	active	development

You	can	find	an	example	of	the	Shapeless	lens	library	on	this	Github	page

Goggles	aims	to	simplify	Monocle

https://github.com/adamw/quicklens
http://julien-truffaut.github.io/Monocle/
https://github.com/milessabin/shapeless/wiki/Feature-overview:-shapeless-2.0.0
https://github.com/kenbot/goggles

See	also

My	example	in	this	lesson	is	a	simplification	of	the	examples	on	this	koff.io
page

http://koff.io/posts/292173-lens-in-scala/

Signpost:	Concurrency
This	section	of	the	book	covers	tools	for	writing	parallel	and	concurrent
applications	in	Scala.	Here’s	an	outline	of	the	next	several	lessons:

First,	I’ll	demonstrate	the	problem	of	using	mutable	data	structures	with
multiple	threads

Then	I’ll	show	how	to	use	Akka	actors	to	create	long-running	parallel
processes

Finally,	I’ll	show	how	to	use	Scala	futures	for	“one-shot”	tasks	that	run	in
parallel	and	return	a	result	when	they	complete

Concurrency	and	Mutability	Don’t	Mix

Source	code

The	source	code	for	this	lesson	is	available	at	the	following	URL:

github.com/alvinj/FPConcurrencyAndMutability

https://github.com/alvinj/FPConcurrencyAndMutability

Goals

The	goal	of	this	lesson	is	to	show	that	concurrency	and	mutability	don’t	work
well	together.	While	history	has	shown	us	that	it	is	possible	to	write	parallel	and
concurrent	applications	with	mutable	data	structures,	the	reality	is	that	it’s	much
easier	to	write	them	using	immutable	data.

The	extremely	short	version	of	this	lesson	goes	like	this:

mutable	data	structures	+	multiple	threads	=	very	complex

My	background

Historically,	I’ve	enjoyed	the	complexity	of	writing	multi-threaded	applications;
I	took	them	on	as	a	challenge.	Back	in	the	early	2000s	I	used	Java	threads	a	fair
amount,	and	even	wrote	a	“database	connection	pool”	library	that	was	featured
in	a	book.	I	mention	this	only	to	point	out	that	I’m	familiar	with	the	problems	of
writing	parallel/concurrent	applications	using	only	the	Java	Thread	primitive.
Knowing	those	perils	—	and	being	more	interested	in	solving	problems	than
challenging	the	limits	of	my	brain	—	when	I	first	learned	about	Scala	futures	and
Akka	actors,	I	quickly	switched	to	using	them.

The	problem	of	mutable	data	structures	and	multiple
threads

If	you	try	to	use	mutable	data	structures	with	multiple	threads,	you’ll	find	that
it’s	easy	to	create	race	and	deadlock	conditions.	In	the	case	of	my	database
connection	pool	library,	I	ran	tests	on	it	for	days	at	a	time	with	different
simulated	conditions	until	I	had	confidence	that	it	worked	properly.

You	can	easily	create	corrupt,	inconsistent	data	with	threads	and	mutable	data
structures.	Indeed,	I	can	show	the	problem	with	just	a	few	lines	of	Scala	code.
Given	this	class	with	mutable	fields:

class	Person	(

				var	name:	String,

				var	town:	String,

				var	state:	String

)	{

				override	def	toString	=	s"name:	$name,	town:	$town,	state:	$state"

}

The	following	code	with	just	one	thread	running	in	parallel	demonstrates	the
problem:

object	SimpleBadConcurrency	extends	App	{

				val	me	=	new	Person("Alvin",	"Talkeetna",	"Alaska")

				val	t1	=	new	Thread	{

								override	def	run	{

												Thread.sleep(1000)

												me.town	=	"Boulder"

												Thread.sleep(3000)

												me.state	=	"Colorado"

								}

				}

				//	start	the	thread

				t1.start

				

				println(s"1)	$me")

				

				Thread.sleep(2000)

				println(s"2)	$me")

				

				Thread.sleep(2000)

				println(s"3)	$me")

				

}

That	code	prints	the	following	output:

1)	name:	Alvin,	town:	Talkeetna,	state:	Alaska

2)	name:	Alvin,	town:	Boulder,	state:	Alaska

3)	name:	Alvin,	town:	Boulder,	state:	Colorado

In	case	it’s	not	clear,	the	data	in	this	line	is	corrupt:

2)	name:	Alvin,	town:	Boulder,	state:	Alaska

Boulder	is	in	Colorado,	not	Alaska.

Of	course	this	is	a	relatively	simple	“race	condition”	example	that	I	created	with
exaggerated	delay	times,	but	it	illustrates	the	real	problem:	If	mutable	data	can
be	modified	by	more	than	one	thread,	there’s	always	a	chance	for	data
corruption.	Then,	once	you	start	trying	to	fix	that	problem	with	synchronization,
you	enter	the	world	of	multi-thread	locks.

https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Deadlock

That	can’t	happen	with	immutable	data	structures

Conversely,	the	same	problem	can’t	happen	with	immutable	data	structures,	even
when	using	the	Thread	primitive.	The	following	code	shows	why.	First,	I	start
with	the	usual	Scala/FP	case	class	with	immutable	fields:

case	class	Person	(

				name:	String,

				town:	String,

				state:	String

)	{

				override	def	toString	=	s"name:	$name,	town:	$town,	state:	$state"

}

Next,	here’s	an	attempt	to	write	the	same	code	as	before:

object	GoodConcurrency	extends	App	{

				val	me	=	Person("Alvin",	"Talkeetna",	"Alaska")

				val	t1	=	new	Thread	{

								override	def	run	{

												Thread.sleep(1000)

												//	this	code	won't	compile	-	Person	is	immutable

												//me.town	=	"Boulder"

												Thread.sleep(3000)

												//	this	code	won't	compile	-	Person	is	immutable

												//me.state	=	"Colorado"

								}

				}

				t1.start

				//	more	code	here	...

}

As	I	show	in	the	comments,	you	can’t	even	write	code	the	same	way	as	the	first
example	because	you	can’t	mutate	the	fields	inside	the	Person	object.	If	you	use
immutable	data	structures	—	such	as	case	classes	with	immutable	fields	in
Scala/FP	—	you	can’t	possibly	run	into	the	same	problem.

Quotes	from	the	masters

Rather	than	writing	more	about	using	threads	with	mutable	data	structures,	I’ll
conclude	this	lesson	with	a	few	“quotes	from	the	masters.”	I	found	this	quote	by
John	Carmack	in	the	book,	Learning	Concurrent	Programming	in	Scala:

“Programming	in	a	functional	style	makes	the	state	presented	to
your	code	explicit,	which	makes	it	much	easier	to	reason	about,
and,	in	a	completely	pure	system,	makes	thread	race	conditions
impossible.”

Related	to	that	quote,	it’s	important	to	note	that	everything	I	write	in	this	book
about	Scala/FP	shows	how	to	create	a	“completely	pure	system.”

In	relation	to	parallel/concurrent	programming,	Joe	Armstrong,	creator	of	the
Erlang	language,	writes:

“State	is	the	root	of	all	evil.”

In	that	comment	he’s	referring	to	“mutable	state.”

From	this	fpcomplete.com	article	by	Bartosz	Milewski:

“Did	 you	 notice	 that	 in	 the	 definition	 of	 ‘data	 race’	 there’s
always	talk	of	mutation?”

Martin	Odersky,	creator	of	the	Scala	language,	once	shared	this	simple	equation:

non-determinism	=	parallel	processing	+	mutable	state

(In	programming,	“non-determinism”	is	bad.)

One	more	quote

In	the	terrific	book,	Java	Concurrency	in	Practice,	Brian	Goetz	writes	about
mutable	objects.	He	states,	“The	publication	requirements	for	an	object	depend

http://amzn.to/2fWn70c
https://www.fpcomplete.com/blog/
https://www.schoolofhaskell.com/user/bartosz
http://amzn.to/2fdFfSK

on	its	mutability.”	By	“publication”	he	means,	“how	an	object	can	be	shared
publicly.”	He	follows	that	statement	with	these	bullet	points:

Immutable	objects	can	be	published	through	any	mechanism

Effectively	immutable	objects	must	be	safely	published

Mutable	objects	must	be	safely	published,	and	must	be	either	thread-safe	or
guarded	by	a	lock

For	this	discussion	it	doesn’t	matter	what	the	definition	of	“effectively
immutable	objects”	is;	the	key	point	is	that	when	you	use	anything	but
immutable	objects,	things	quickly	get	more	complicated.

As	he	further	writes,	“Whenever	you	acquire	a	reference	to	an	object,	you	should
know	what	you	are	allowed	to	do	with	it.	Do	you	need	to	acquire	a	lock	before
using	it?	Are	you	allowed	to	modify	its	state,	or	only	read	it?	Many	concurrency
errors	stem	from	failing	to	understand	these	‘rules	of	engagement’	for	a	shared
object.	When	you	publish	an	object,	you	should	document	how	the	object	can	be
accessed.”

A	great	thing	about	using	only	immutable	objects	in	Scala/FP	is	that	there’s	no
need	to	“document	how	the	object	can	be	accessed.”	Every	object	is	immutable,
and	can	therefore	“be	published	through	any	mechanism.”	I’ll	end	this	section
with	one	last	quote	from	his	book:

“Immutable	objects	are	always	thread-safe.”

What’s	next

While	I	won’t	write	any	more	about	the	Thread	primitive,	the	following	lessons
cover	Scala’s	main	tools	for	writing	parallel	and	concurrent	applications:	Scala
futures,	and	Akka	actors.

See	also

If	you’re	interested	in	writing	parallel/concurrent	applications,	I	can	confirm	that
these	books	are	excellent:

Java	Concurrency	in	Practice,	Brian	Goetz

Learning	Concurrent	Programming	in	Scala,	is	written	by	Aleksandar
Prokopec,	creator	of	the	Scala	Parallel	Collections	framework

Two	main	solutions	for	dealing	with	concurrency	in	Scala	are	to	use	(a)	futures
and	(b)	the	Akka	actors	library.	While	this	book	is	now	a	little	dated,	it	covers
both	of	the	topics	very	well:

Akka	Concurrency

http://amzn.to/2fdFfSK
http://amzn.to/2hqMtjY
http://amzn.to/2y0fKwy

Scala	Concurrency	Tools
Now	that	you’ve	seen	an	example	of	the	problem	with	mutable	data	structures
and	concurrency,	we’ll	look	at	some	of	the	tools	Scala	provides	to	support
parallel	and	concurrent	programming.	The	two	main	tools	are:

Akka	actors

Scala	futures	(which	came	from	Akka)

Scala	also	comes	with	a	third	tool:

Parallel	collections	classes

The	Scala	and	Java	industries	also	provide	reactive	extensions,	which	are
libraries	for	“composing	asynchronous	and	event-based	programs	using
observable	sequences”:

RxScala

RxJava

In	addition	to	these	tools,	you	can	also	use	the	Java	Thread	primitive	in	the	(rare)
situations	where	it	makes	sense.

In	the	next	lessons	I’ll	focus	on	Akka	actors	and	Scala	futures,	which	have	been
the	two	primary	tools	in	my	experience.

https://en.wikipedia.org/wiki/Reactive_extensions
https://github.com/ReactiveX/RxScala
https://github.com/ReactiveX/RxJava

The	differences	between	Actors	and	Futures

The	book	Akka	Concurrency	provides	a	good	description	of	the	differences
between	actors	and	futures:

“An	actor	 is	 a	 live	 object	 that	 can	 interact	 between	 itself	 and
any	number	of	other	objects,	functioning	as	long-lived	message
processors	 with	 potentially	 changing	 state.	 The	 future,	 on	 the
other	hand,	is	intended	as	a	one-shot,	single-purpose	entity	that
is	only	addressable	by	the	chunk	of	code	waiting	for	the	future’s
promise,	and	the	other	chunk	of	code	that	fulfills	that	promise.”

Actors	and	futures	are	deep	topics	that	entire	books	have	been	written	about.	I
won’t	be	able	to	go	into	the	detail	those	books	cover,	but	I’ll	provide	an
overview	of	them	in	the	next	several	lessons,	focusing	on	how	they	relate	to	the
functional	programming	concepts	presented	in	this	book.

http://amzn.to/2y0fKwy

Scala’s	parallel	collections	classes

A	third	tool	that	can	help	in	certain	situations	are	Scala’s	parallel	collections
classes.	I	won’t	be	covering	those	classes	in	this	book,	but	they	were	written	by
Aleksandar	Prokopec,	who	wrote	a	terrific	book	named	Learning	Concurrent
Programming	in	Scala	that	covers	those	classes,	and	Scala	concurrency	in
general.	Please	see	that	book,	or	these	other	resources	for	learning	about	Scala’s
parallel	collections	classes:

The	scala-lang.org	Parallel	Collections	Overview

My	Examples	of	how	to	use	parallel	collections	in	Scala

http://amzn.to/2hqMtjY
http://docs.scala-lang.org/overviews/parallel-collections/overview.html
https://alvinalexander.com/scala/how-to-use-parallel-collections-in-scala-performance

The	best	tool	for	each	job

No	tool	is	right	for	every	job.	A	nice	benefit	of	Scala	is	that	it	offers	different
tools	for	different	parallel	programming	needs:

Actors	are	long	running	entities	that	can	run	on	distributed	systems,	and
respond	to	messages	to	perform	their	tasks.	They’re	useful	in	building
event-driven	systems,	where	each	actor	can	serialize	concurrent	access	to
its	resource(s).

Futures	are	intended	for	“one-shot,”	concurrent	tasks.	When	it	returns,	a
future	is	expected	to	produce	a	single	value	as	a	result,	such	as	accessing	a
REST	web	service.

The	parallel	collections	classes	may	be	useful	for	running	algorithms	(think
map,	filter,	etc.)	on	large	data	sets.

Reactive	extensions	are	useful	when	building	asynchronous,	event-driven
applications;	streaming	data	from	external	sources;	and	incrementally
propagating	changes	in	the	data	model	throughout	the	application.	(Most	of
this	text	is	from	the	book,	Learning	Concurrent	Programming	in	Scala.)

The	Java	Thread	is	a	relatively	primitive	tool	for	building	low-level	tasks,
such	as	building	other	parallel/concurrent	libraries.

In	the	lessons	that	follow	I’ll	demonstrate	Akka	actors	and	Scala	futures.

See	also

I	briefly	wrote	about	the	Scala	parallel	collection	classes

https://alvinalexander.com/scala/how-to-use-parallel-collections-in-scala-performance

Akka	Actors

Introduction

This	lesson	is	about	the	Akka	actors	library.	In	the	lesson	you’ll	learn	about:

Actors	and	the	actor	model

Akka’s	benefits

I	also	share	several	Akka	examples	you	can	work	with.

Technically,	Akka	isn’t	directly	related	to	functional	programming,	other	than	a
few	concepts:

Actors	are	long-running	threads	that	respond	to	immutable	messages	sent	to
them

The	messages	sent	to	actors	are	typically	instances	of	case	classes	and	case
objects

Actors	respond	to	messages	with	pattern-matching	statements

Actors	don’t	share	any	state	with	other	actors,	so	by	definition	there	is	no
mutable,	shared	state

Background:	Erlang

The	original	Scala	actor	library	—	which	was	replaced	by	Akka	—	was
patterned	after	a	language	named	Erlang.	In	the	book	Programming	Erlang,
Erlang	co-creator	Joe	Armstrong	writes:

“Erlang	 belongs	 to	 the	 family	 of	 functional	 programming
languages.	 Functional	 programming	 forbids	 code	 with	 side
effects.	Side	 effects	 and	 concurrency	don’t	mix.	 In	Erlang	 it’s
OK	to	mutate	state	within	an	individual	process	but	not	for	one
process	to	tinker	with	the	state	of	another	process.”

An	Erlang	process	is	equivalent	to	an	Akka	actor,	so	you	can	say,	“In	Akka	it’s

http://akka.io/
https://www.erlang.org/
http://amzn.to/2aab4HF

OK	to	mutate	state	within	an	individual	actor	but	not	for	one	process	to	tinker
with	the	state	of	another	actor.”

Notice	that	unlike	“Pure	FP,”	Mr.	Armstrong	states	that	it’s	okay	to	mutate	state
within	an	individual	process.	This	is	similar	to	saying,	“It’s	okay	to	mutate	state
within	a	pure	function	—	such	as	using	a	var	field	and	for	loop	rather	than
recursion	—	as	long	as	you	don’t	mutate	state	outside	of	the	pure	function.”

Akka	benefits

While	(in	my	opinion)	Akka	isn’t	directly	related	to	functional	programming,	it’s
a	great	way	to	build	massively	parallel	systems	using	Scala.	All	of	these	industry
buzzwords	are	used	to	describe	Akka:

asynchronous

event-driven

message-driven

reactive

scalable	(“scale	up”	and	“scale	out”)

concurrent	and	parallel

non-blocking

location	transparency

resilient	and	redundant	(no	single	point	of	failure	with	multiple,	distributed
servers)

fault-tolerant

All	of	those	benefits	are	great,	but	the	first	great	benefit	is	that	Akka	and	the
actor	model	greatly	simplify	the	process	of	working	with	multiple,	long-running
threads.	In	fact,	when	working	with	Akka,	you	never	really	think	about	threads,
you	just	write	actors	to	respond	to	messages	in	a	non-blocking	manner,	and	the
threads	take	of	themselves.

Actors	and	the	Actor	Model

The	first	thing	to	know	about	Akka	actors	is	the	actor	model,	which	is	a	mental
model	of	how	to	think	about	a	system	built	with	actors.	In	that	model	the	first
concept	to	understand	is	an	actor:

An	actor	is	a	long-running	process	that	runs	in	parallel	to	the	main
application	thread,	and	responds	to	messages	that	are	sent	to	it.

An	actor	is	the	smallest	unit	when	building	an	actor-based	system,	just	like
a	class	is	the	smallest	unit	in	an	OOP	system.

Like	a	class,	an	actor	encapsulates	state	and	behavior.

You	can’t	peek	inside	an	actor	to	get	its	state.	You	can	send	an	actor	a
message	requesting	state	information	(like	texting	a	person	to	ask	how
they’re	feeling),	but	you	can’t	reach	in	and	execute	one	of	its	methods	or
access	its	fields	(just	like	you	can’t	peak	inside	someone	else’s	brain).

An	actor	has	a	mailbox	(an	inbox),	and	the	actor’s	purpose	in	life	is	to
process	the	messages	in	its	mailbox.

You	communicate	with	an	actor	by	sending	it	an	immutable	message.	These
messages	go	directly	into	the	actor’s	mailbox.

When	an	actor	receives	a	message,	it’s	like	taking	a	letter	out	of	its	mailbox.
It	opens	the	letter,	processes	the	message	using	one	of	its	algorithms,	then
moves	on	to	the	next	message	in	the	mailbox.	If	there	are	no	more
messages,	the	actor	waits	until	it	receives	one.

Akka	experts	recommend	thinking	of	an	actor	as	being	like	a	person,	such	as	a
person	in	a	business	organization:

You	can’t	know	what’s	going	on	inside	another	person.	All	you	can	do	is
send	them	a	message	and	wait	for	their	response.

An	actor	has	one	parent,	known	as	a	supervisor.	In	Akka,	that	supervisor	is
the	actor	that	created	it.

An	actor	may	have	children.	For	instance,	a	President	in	a	business	may
have	a	number	of	Vice	Presidents.	Those	VPs	are	like	children	of	the
President,	and	they	may	also	have	many	subordinates.	(And	those
subordinates	may	have	many	subordinates,	etc.)

An	actor	may	have	siblings	—	i.e.,	other	actors	at	the	same	level.	For
instance,	there	may	be	10	VPs	in	an	organization,	and	they	are	all	at	the
same	level	in	the	organization	chart.

Actors	should	delegate	their	work

There’s	one	more	important	point	to	know	about	actors:	As	soon	as	an	actor
receives	a	message,	it	should	delegate	its	work.	Actors	need	to	be	able	to
respond	to	messages	in	their	mailbox	as	fast	as	possible,	so	the	actor	mantra	is,
“Delegate,	delegate,	delegate.”

If	you	think	of	an	actor	as	being	a	person,	imagine	that	one	message	includes	a
task	that’s	going	to	take	a	month	to	complete.	If	the	actor	worked	on	that	task	for
a	month,	it	wouldn’t	be	able	to	respond	to	its	mailbox	for	a	month.	That’s	bad.
But	if	the	actor	delegates	that	task	to	one	of	its	children,	it	can	respond	to	the
next	message	in	its	mailbox	immediately	(and	delegate	that	as	well).

Akka	benefits

Here	are	some	benefits	of	using	Akka	actors,	mostly	coming	from	Lightbend’s
Akka	Quickstart	Guide	and	the	Akka.io	website:

Event-driven	model:	Actors	perform	work	in	response	to	messages.

Communication	between	actors	is	asynchronous,	allowing	actors	to	send
messages	and	continue	their	own	work	without	blocking	to	wait	for	a	reply.

Actors	and	streams	let	you	build	systems	that	scale	up,	using	the	resources
of	a	server	more	efficiently,	and	scale	out,	using	multiple	servers.

Performance:	Actors	have	been	shown	to	process	up	to	50	million
messages/second	on	a	single	machine.

Lightweight:	Each	instance	consumes	only	a	few	hundred	bytes,	which
allows	millions	of	concurrent	actors	to	exist	in	a	single	application
(allowing	~2.5	million	actors	per	GB	of	heap).

Distributed	systems	without	single	points	of	failure.	Load	balancing	and
adaptive	routing	across	nodes.

Asynchronous,	non-blocking	stream	processing	with	backpressure.

Strong	isolation	principles:	Unlike	regular	objects	in	Scala,	an	actor	does
not	have	a	public	API	in	terms	of	methods	that	you	can	invoke.	Instead,	its
public	API	is	defined	through	messages	that	the	actor	handles.

Location	transparency:	The	system	constructs	actors	from	a	factory	and
returns	references	to	the	instances.	Because	the	location	of	actors	doesn’t
matter	—	they	can	be	running	on	the	current	server	or	some	other	server	—
actor	instances	can	start,	stop,	move,	and	restart	to	scale	up	and	down,	as
well	as	recover	from	unexpected	failures.

http://developer.lightbend.com/guides/akka-quickstart-scala/
http://akka.io

A	video	example

Way	back	in	2011	I	started	developing	a	“personal	assistant”	named	SARAH,
which	was	based	on	the	computer	assistant	of	the	same	name	on	the	television
show	Eureka.	The	entire	application	was	based	on	Akka	actors.	SARAH	is	like
the	Amazon	Echo	running	on	your	computer.	You	speak	to	it	to	access	and
manage	information:

Get	news	headlines	from	different	sources

Get	weather	reports	and	stock	prices

Manage	a	“to-do	list”

Control	iTunes	with	voice	commands

Check	your	email

Perform	Google	searches

Beyond	just	responding	to	voice	commands	with	spoken	and	displayed	output,
SARAH	also	has	long-running	background	tasks	—	small	pieces	of	software	I
call	“agents”	—	so	it	can	do	other	things:

Tell	me	when	I	receive	new	email	from	people	I’m	interested	in

Report	the	time	at	the	top	of	every	hour	(“The	time	is	11	a.m.”)

For	more	information	on	SARAH,	see	the	“Sarah	-	Version	2”	video	at
alvinalexander.com/sarah.	I	haven’t	worked	on	SARAH	in	a	while,	but	it	gives
you	can	idea	of	what	can	be	done	with	Akka	actors.

http://www.imdb.com/title/tt0796264/
http://amzn.to/2y4bgoJ
https://alvinalexander.com/sarah

How	Akka	relates	to	FP

In	my	opinion,	the	main	ways	Akka	relates	to	functional	programming	are:

The	best	way	to	send	messages	to	actors	is	with	immutable	case	classes	and
case	objects

When	actors	receive	those	messages,	they	can’t	even	attempt	to	mutate
them

Actors	respond	to	messages	with	pattern-matching	statements	in	their	
receive	method

Because	actors	don’t	share	state,	it’s	often	easier	to	implement	actor
behaviors	with	pure	functions

Because	actors	run	on	different	threads,	they	give	you	a	relatively	simple
way	to	implement	concurrency	in	an	application	with	immutable	data

What’s	next

Given	this	background,	the	next	lesson	shows	several	examples	of	how	to	use
Akka	actors.

Akka	Actor	Examples
In	this	lesson	I’ll	show	two	examples	of	applications	that	use	Akka	actors,	and
I’ll	show	where	you	can	find	a	third	Akka	application	that’s	more	complicated,
but	hopefully	not	too	complicated	for	a	next	step.

Source	code

The	source	code	for	this	lesson	is	available	at	the	following	URL:

github.com/alvinj/FPAkkaHelloWorld

https://github.com/alvinj/FPAkkaHelloWorld

An	Akka	Hello,	world	example

Let’s	look	at	an	example	of	how	to	write	a	“Hello,	world”	application	using
Akka.

Writing	a	Hello	actor

An	actor	is	an	instance	of	the	akka.actor.Actor	class,	and	once	it’s	created,	all
it	does	is	respond	to	messages	that	are	sent	to	it.	For	this	“Hello,	world”	example
I	want	an	actor	that	responds	to	“hello”	messages,	so	I	start	with	code	like	this:

case	class	Hello(msg:	String)

class	HelloActor	extends	Actor	{

				def	receive	=	{

								case	Hello(s)	=>	{

												println(s"you	said	'$s'")

												println(s"$s	back	at	you!\n")

								}

								case	_	=>	println("huh?")

				}

}

In	the	first	line	of	code	I	define	a	case	class	named	Hello.	The	preferred	way	to
send	messages	with	Akka	is	to	use	instances	of	case	classes	and	case	objects,
which	support	immutability	and	pattern-matching.	Therefore,	I	define	Hello	as	a
simple	wrapper	around	a	string.

After	that,	I	define	HelloActor	as	an	instance	of	Actor.	The	body	of	HelloActor
is	just	the	receive	method,	which	you	implement	to	define	the	actor’s	initial
behavior,	i.e.,	how	the	actor	responds	to	the	messages	it	receives.

The	way	this	code	works	is	that	when	HelloActor	receives	a	new	message	in	its
inbox,	receive	is	triggered	as	a	response	to	that	event,	and	the	incoming
message	is	tested	against	receive’s	case	statements.	In	this	example,	if	the
message	is	of	the	type	Hello,	the	first	case	statement	handles	the	message;	if	the
message	is	anything	else,	the	second	case	statement	is	triggered.	(The	second	
case	statement	is	a	“catch-all”	statement	that	handles	all	unknown	messages.)

Of	course	actors	get	more	complicated	than	this,	but	that’s	the	essence	of	the
actor	programming	pattern.	You	create	case	classes	and	case	objects	to	define
the	types	of	messages	you	want	your	actor	to	receive.	Because	the	only	way	the

rest	of	your	code	can	interact	with	the	actor	is	by	sending	messages	to	it,	those
classes	and	objects	become	your	actor’s	API.	Then	inside	the	receive	method
you	define	how	you	want	to	respond	to	each	message	type.	At	a	high	level,	that’s
how	you	write	actor	code.

A	test	program

Now	all	you	need	is	a	little	driver	program	to	test	the	actor.	This	one	will	do:

object	AkkaHelloWorld	extends	App	{

				//	an	actor	needs	an	ActorSystem

				val	system	=	ActorSystem("HelloSystem")

				//	create	and	start	the	actor

				val	helloActor	=	system.actorOf(

								Props[HelloActor],	

								name	=	"helloActor"

)

				//	send	the	actor	two	known	messages

				helloActor	!	Hello("hello")

				helloActor	!	Hello("buenos	dias")

				//	send	it	an	unknown	message

				helloActor	!	"hi!"

				//	shut	down	the	system

				system.terminate()

}

Here’s	how	that	code	works.	First,	actors	need	an	ActorSystem	that	they	can	run
in,	so	you	create	one	like	this:

val	system	=	ActorSystem("HelloSystem")

Just	give	the	ActorSystem	a	unique	name,	and	you’re	ready	to	go.

The	 ActorSystem	 is	 the	main	 construct	 that	 takes	 care	 of	 the
gory	 thread	 details	 behind	 the	 scenes.	 Per	 the	 Akka	 website,
“An	ActorSystem	 is	a	heavyweight	 structure	 that	will	 allocate
1…N	Threads,	so	create	one	per	logical	application	…	It	is	also
the	entry	point	for	creating	or	looking	up	actors.”

Next,	as	that	quote	states,	you	create	new	actors	with	the	ActorSystem,	so	this	is
how	you	create	an	instance	of	a	HelloActor:

http://doc.akka.io/api/akka/2.0/akka/actor/ActorSystem.html

val	helloActor	=	system.actorOf(

				Props[HelloActor],

				name	=	"helloActor"

)

There	are	a	few	variations	of	that	syntax,	but	the	important	part	is	that	you	create
an	instance	of	HelloActor	by	calling	actorOf	on	the	ActorSystem	as	shown.

Besides	the	required	import	statements,	that’s	the	entire	setup	process.	At	this
point	the	helloActor	instance	is	up	and	running	(in	parallel	with	the	main
application	thread),	and	you	can	send	it	messages.	This	is	how	you	send	it	a
message:

helloActor	!	Hello("hello")

This	line	of	code	can	be	read	as,	“Send	the	message	Hello(hello)	to	the	actor
named	helloActor,	and	don’t	wait	for	a	reply.”

The	!	character	is	how	you	send	a	message	to	an	actor.	More	precisely,	it’s	how
you	send	a	message	to	an	actor	without	waiting	for	a	reply	back	from	the	actor.
This	is	by	far	the	most	common	way	to	send	a	message	to	an	actor;	you	don’t
want	to	wait	for	a	reply	back	from	the	actor,	because	that	would	cause	your
application’s	thread	to	block	at	that	point,	and	blocking	is	bad.

This	case	statement	inside	the	HelloActor	will	handle	this	message	when	it’s
received:

//	in	HelloActor

case	Hello(s)	=>	{

				println(s"you	said	'$s'")

				println(s"$s	back	at	you!\n")

}

Inside	that	case	statement	I	print	two	lines	of	output,	but	this	is	normally	where
you	call	other	functions	to	respond	to	the	message.	You’ll	often	delegate	work	to
child	actors	at	this	point.

Looking	back	at	the	code,	after	I	send	the	two	Hello	messages	to	the	
HelloActor,	I	send	it	this	message:

helloActor	!	"hi!"

Because	HelloActor	doesn’t	know	how	to	handle	a	String	message,	it	will
respond	to	this	message	with	its	“catch-all”	case	statement:

//	in	HelloActor

case	_	=>	println("huh?")

At	this	point	the	AkkaHelloWorld	application	reaches	this	line	of	code,	which
shuts	down	the	ActorSystem:

system.terminate()

That’s	the	entire	Akka	“Hello,	world”	application.

I	encourage	you	to	work	with	the	source	code	from	the	repository	for	this	lesson.
In	the	HelloWorld.scala	file,	add	new	messages	(as	case	classes	and	objects),
and	then	add	new	case	statements	to	the	receive	method	in	HelloActor	to
respond	to	those	messages.	Keep	fooling	around	with	it	until	you’re	sure	you
know	how	it	all	works.

A	second	example

As	a	slightly	more	complicated	example,	Echo.scala	in	this	lesson’s	source	code
contains	an	Akka	application	that	responds	to	whatever	you	type	at	the	command
line.	First,	the	application	has	a	case	class	and	a	case	object	that	are	used	to
send	and	receive	messages:

case	class	Message(msg:	String)

case	object	Bye

Next,	this	is	how	the	EchoActor	responds	to	the	messages	it	receives:

class	EchoActor	extends	Actor	{

				def	receive	=	{

								case	Message(s)	=>	println("\nyou	said	"	+	s)

								case	Bye	=>	println("see	ya!")

								case	_	=>	println("huh?")

				}

}

That	follows	the	same	pattern	I	showed	in	the	first	example.

Finally,	here’s	a	driver	program	you	can	use	to	test	the	EchoActor:

object	EchoMain	extends	App	{

				//	an	actor	needs	an	ActorSystem

				val	system	=	ActorSystem("EchoSystem")

				//	create	and	start	the	actor

				val	echoActor	=	system.actorOf(Props[EchoActor],	name	=	"echoActor")

				//	prompt	the	user	for	input

				var	input	=	""

				while	(input	!=	"q")	{

								print("type	something	(q	to	quit):	")

								input	=	StdIn.readLine()

								echoActor	!	Message(input)

				}

				echoActor	!	Bye

				//	shut	down	the	system

				system.terminate()

}

Notice	that	after	the	ActorSystem	and	echoActor	are	created,	the	application	sits
in	a	loop	prompting	you	for	input,	until	you	enter	the	character	q.	Once	you	type	
q	and	the	loop	terminates,	the	echoActor	is	sent	one	last	message:

echoActor	!	Bye

After	that,	the	system	shuts	down.

This	is	what	the	output	of	the	application	looks	like	when	you	run	it	and	type	a
few	things	at	the	command	line:

type	something	(q	to	quit):	hello

you	said	hello

type	something	(q	to	quit):	hola

you	said	hola

type	something	(q	to	quit):	q

you	said	q

bye!

More	examples

I	could	keep	showing	more	examples,	but	the	pattern	is	the	same:

Create	case	classes	and	case	objects	for	the	messages	you	want	your	actor
to	handle.	These	messages	become	the	API	for	the	actor.

Program	your	actor(s)	to	respond	to	those	messages	as	desired.

Send	messages	to	your	actors	using	!.

If	you’d	like	to	work	with	a	more-complicated	example	that	isn’t	too
complicated,	I	created	an	Akka	application	that	works	a	little	like	SARAH	and
the	Amazon	Echo,	albeit	at	your	computer’s	command	line.	See	this	page	on	my
website	for	more	details:

alvinalexander.com/amazon-echo-akka

That	web	page	describes	how	the	application	works,	but	here’s	a	quick	example
of	some	command-line	input	and	output	with	the	application:

ekko:	weather

stand	by	...

The	current	temperature	is	78	degrees,	and	the	sky	is	partly	cloudy.

ekko:	forecast

stand	by	...

Here's	the	forecast.

For	Sunday,	a	low	of	59,	a	high	of	85,	and	Partly	Cloudy	skies.	

For	Monday,	a	low	of	53,	a	high	of	72,	and	Scattered	Thunderstorms	skies.

ekko:	todo	add	Wake	Up

1.	Wake	Up

Again,	please	see	that	web	page	for	more	details	and	the	source	code.
Additionally,	see	the	“See	Also”	section	at	the	end	of	this	lesson	for	more	Akka
examples.

http://amzn.to/2xwmlgM
https://alvinalexander.com/amazon-echo-akka

Where	Akka	fits	in

As	these	examples	show,	an	actor	is	an	instance	of	Actor.	Once	created,	an	actor
resides	in	memory,	waiting	for	messages	to	appear	in	its	inbox.	When	it	receives
a	new	message,	it	responds	to	the	message	with	the	case	statements	defined	in
its	receive	method.

An	actor	runs	on	its	own	thread,	so	when	you	send	it	a	message	from	the	main
thread	in	your	application,	it	does	whatever	it	does	on	that	other	thread.
Depending	on	your	needs,	this	can	be	a	great	approach	for	reactive
programming,	because	it	can	help	to	keep	the	UI	for	your	application	responsive.
In	something	like	a	Swing	(or	JavaFX)	GUI	application,	the	process	can	look
like	this:

The	user	provides	input	through	the	GUI.

Your	application’s	event-handling	code	responds	to	that	input	event	by
sending	a	message	to	the	appropriate	actor.

The	Swing	“Event	Dispatch	Thread”	(EDT)	remains	responsive	because	the
work	is	not	being	handled	on	the	EDT.

When	the	actor	receives	the	message,	it	immediately	delegates	that	work	to
a	child	actor.	(I	didn’t	show	that	process	in	this	book,	but	you	can	find
examples	on	my	website	and	in	the	Scala	Cookbook.)

When	the	actor	(and	its	children)	finish	processing	the	message,	it	sends	a
message	back,	and	that	message	results	in	the	UI	being	updated	(eventually
being	handled	by	SwingUtilities.invokeLater(),	in	the	case	of	Swing).

This	is	exactly	the	way	SARAH	works.

While	the	actor	model	isn’t	the	only	way	to	handle	this	situation,	actors	work
well	when	you	want	to	create	parallel	processes	that	will	live	in	memory	for	a
long	time,	and	have	messages	that	they	know	how	to	respond	to.

In	the	case	of	SARAH	—	which	works	like	Amazon	Echo	or	a	long-running
instance	of	Siri	—	it	has	many	actors	that	know	how	to	do	different	kinds	of

http://amzn.to/24ivK4G

work,	including:

Actors	to	get	news	headlines,	check	my	email,	get	stock	quotes,	search
Google,	and	get	Twitter	trends,	etc.

Actors	to	represent	a	mouth,	ears,	and	brain,	where	the	“ear	actor”	listens	to
your	computer’s	microphone,	the	“mouth	actor”	speaks	through	the
computer’s	speakers,	and	the	“brain	actor”	knows	how	to	process	inputs
and	outputs,	and	delegate	work	to	all	of	the	other	actors.

Key	points

While	the	Akka	actor	system	isn’t	directly	tied	to	functional	programming,	it’s
primary	mechanisms	are:

Messages	are	typically	sent	with	case	classes	and	case	objects

Actors	respond	to	messages	with	pattern-matching	statements	in	their	
receive	method

Actors	don’t	share	any	state	with	other	actors,	so	there	is	no	mutable,	shared
state

Because	actors	don’t	share	state,	it’s	often	easier	to	implement	actor
behaviors	with	pure	functions

Akka	is	intended	for	building	reactive,	responsive,	event-driven	(message-
driven),	scalable	systems,	and	the	actor	model	greatly	simplifies	the	process	of
working	with	many	long-running	threads.

Actors	work	well	when	you	want	objects	that	live	in	RAM	for	a	long	time,	and
respond	to	one	or	more	messages	during	their	lifetime.	(Futures,	which	you’ll
see	in	the	next	lesson,	are	better	for	“one	shot,”	short-lived	concurrency	needs.)

Finally,	all	of	these	buzzwords	truly	apply	to	Akka	actors:	scalable	(scale	up	and
scale	out),	reactive,	event-driven,	message-driven,	concurrent,	parallel,
asynchronous,	non-blocking,	location	transparency,	resilient,	redundant,	fault-
tolerant	(and	more).

See	also

The	Akka	website

The	Akka	documentation

Akka	is	based	on	the	“Actor	Model”

I	wrote	about	Akka	Actors	in	depth	in	the	Scala	Cookbook

SARAH,	at	alvinalexander.com/sarah

My	“Akkazon	Ekko”	application,	which	is	a	simple	version	of	SARAH:
alvinalexander.com/amazon-echo-akka

Akka	was	inspired	by	the	Erlang	language,	which	is	used	to	“build
massively	scalable	soft	real-time	systems	with	requirements	on	high
availability”

Akka	Actors:	An	example	video	game

A	‘Ping	Pong’	Scala	Akka	actors	example

An	Akka	actors	‘remote’	example

Understanding	the	methods	in	the	Scala/Akka	Actor	lifecycle

How	to	create	a	Scala/Akka	Actor	whose	constructor	requires	arguments

http://akka.io/
http://akka.io/docs/
https://en.wikipedia.org/wiki/Actor_model
http://akka.io/
http://amzn.to/24ivK4G
https://alvinalexander.com/sarah
https://alvinalexander.com/amazon-echo-akka
https://www.erlang.org/
https://alvinalexander.com/scala/akka-actors-video-game
https://alvinalexander.com/scala/scala-akka-actors-ping-pong-simple-example
https://alvinalexander.com/scala/simple-akka-actors-remote-example
https://alvinalexander.com/scala/understand-methods-akka-actors-scala-lifecycle
https://alvinalexander.com/scala/scala-akka-create-actors-constructors-have-arguments

Scala	Futures

Source	code

The	source	code	for	this	lesson	is	at	this	URL:

github.com/alvinj/FPFutures

https://github.com/alvinj/FPFutures

Introduction

While	an	Akka	actor	runs	for	a	long	time	and	is	intended	to	handle	many
messages	over	its	lifetime,	a	Scala	future	is	intended	as	a	one-shot,	“handle	this
relatively	slow	and	potentially	long-running	computation,	and	call	me	back	with
a	result	when	you’re	done”	construct.

While	I	see	Akka	as	only	being	related	to	functional	programming	in	the	ways	I
described	in	the	previous	lessons,	a	Future	is	directly	related	to	the	FP	concepts
described	in	this	book.	Indeed,	the	book	Advanced	Scala	with	Cats	says	this
about	Scala	futures:

“Future	 is	 a	 monad	 that	 allows	 us	 to	 sequence	 computations
without	worrying	that	they	are	asynchronous.”

As	usual,	this	means	that	Future	is	a	class	that	implements	map	and	flatMap,	so
it	can	be	used	in	for	expressions.

And	as	this	quote	from	the	scala-lang.org	“Futures	and	Promises”	page	shows,
futures	support	FP	buzzwords	like	‘combinators’	and	‘compose’:

“By	default,	futures	and	promises	are	non-blocking,	making	use
of	callbacks	instead	of	typical	blocking	operations.	To	simplify
the	use	of	callbacks	both	syntactically	and	conceptually,	Scala
provides	 combinators	 such	 as	 flatMap,	 foreach,	 and	 filter
used	to	compose	futures	in	a	non-blocking	way.”

In	this	lesson	I’ll	show	how	to	run	several	futures	in	parallel,	and	then	combine
their	results	in	a	for	expression,	and	a	few	other	useful	Future	methods.

https://underscore.io/books/advanced-scala/
http://docs.scala-lang.org/overviews/core/futures.html

Goals

Futures	are	a	large	topic	that	I	could	write	a	small	book	about.	Since	there	are
already	good	books	about	Akka	and	futures	I’m	not	going	to	do	that,	but	I	do
want	to	cover	enough	about	futures	so	you	can	see:

Their	basic	use

How	they’re	used	in	a	monadic	programming	style

How	some	of	the	Future	callback	methods	work

A	real-world	example

An	example	in	the	REPL

Let’s	start	with	an	example	of	a	Future	in	the	Scala	REPL.	First,	paste	in	these	
import	statements:

import	scala.concurrent.Future

import	scala.concurrent.ExecutionContext.Implicits.global

import	scala.util.{Failure,	Success}

Now,	you	can	create	a	future	that	will	sleep	for	one	second,	and	then	return	the
value	42:

scala>	val	a	=	Future	{	Thread.sleep(1000);	42	}

a:	scala.concurrent.Future[Int]	=	Future(<not	completed>)

Because	Future	has	a	map	function,	you	use	it	as	usual:

scala>	val	b	=	a.map(_	*	2)

b:	scala.concurrent.Future[Int]	=	Future(<not	completed>)

This	shows	Future(<not	completed>)	right	away,	but	if	you	check	b’s	value
again,	you’ll	see	that	it	contains	the	expected	result	of	84:

scala>	b

res1:	scala.concurrent.Future[Int]	=	Future(Success(84))

Notice	that	the	84	you	expected	is	wrapped	in	a	Success,	which	is	further
wrapped	in	a	Future.	This	is	a	key	point	to	know:	The	value	in	a	Future	is
always	an	instance	of	one	of	the	Try	types:	Success	or	Failure.	Therefore,
when	working	with	the	result	of	a	future,	use	the	usual	Try-handling	techniques,
or	one	of	the	other	Future	callback	methods.	One	commonly	used	callback
method	is	onComplete,	which	takes	a	partial	function,	in	which	you	should
handle	the	Success	and	Failure	cases,	like	this:

a.onComplete	{

				case	Success(value)	=>	println(s"Got	the	callback,	value	=	$value")

				case	Failure(e)	=>	e.printStackTrace

}

When	you	paste	that	code	in	the	REPL	you’ll	see	the	result:

Got	the	callback,	value	=	42

There	are	other	ways	to	process	the	results	from	futures,	and	I’ll	list	the	most

common	methods	later	in	this	lesson.

An	example	application

I	like	to	use	the	following	application	to	introduce	futures	because	it’s	simple,
and	it	shows	several	key	points	about	how	to	work	with	futures:

How	to	create	futures

How	to	combine	multiple	futures	in	a	for	expression	to	obtain	a	single
result

How	to	work	with	that	result	once	you	have	it,	in	this	case	using	
onComplete	to	handle	the	result	as	a	side	effect

Here’s	the	example:

package	futures.v1

import	scala.concurrent.Future

import	scala.concurrent.ExecutionContext.Implicits.global

import	scala.util.{Failure,	Success}

object	MultipleFutures1	extends	App	{

				//	(a)	create	three	futures

				val	f1	=	Future	{	sleep(800);	1	}

				val	f2	=	Future	{	sleep(200);	2	}

				val	f3	=	Future	{	sleep(400);	3	}

				//	(b)	get	a	combined	result	in	a	for-comprehension

				val	result	=	for	{

								r1	<-	f1

								r2	<-	f2

								r3	<-	f3

				}	yield	(r1	+	r2	+	r3)

				//	(c)	do	whatever	you	need	to	do	with	the	result

				result.onComplete	{

							case	Success(x)	=>	println(s"\nresult	=	$x")

							case	Failure(e)	=>	e.printStackTrace

				}

				//	important	for	a	little	parallel	demo:	need	to	keep

				//	the	jvm’s	main	thread	alive

				sleep(3000)

				

				def	sleep(time:	Long):	Unit	=	Thread.sleep(time)

}

Creating	the	futures

Let’s	walk	through	that	code	to	see	how	it	works.	First,	I	create	three	futures
with	these	lines	of	code:

val	f1	=	Future	{	sleep(800);	1	}

val	f2	=	Future	{	sleep(200);	2	}

val	f3	=	Future	{	sleep(400);	3	}

Those	lines	of	code	are	equivalent	to	calling	the	apply	method	in	Future’s
companion	object:

val	f1	=	Future.apply	{	sleep(800);	1	}

An	important	thing	to	know	about	Future	is	that	it	immediately	begins	running
the	block	of	code	inside	the	curly	braces.	(It	isn’t	like	the	Java	Thread,	where
you	create	an	instance	and	later	call	its	start	method.)	For	example,	the	sleep
function	call	in	f1	begins	running	immediately	after	this	line	of	code:

val	f1	=	Future	{	sleep(800);	1	}

The	three	futures	in	the	example	admittedly	don’t	do	much.	They	sleep	for	their
allotted	times,	and	then	return	Int	values.	For	example,	after	800	ms,	f1	will
eventually	contain	the	value	1.	People	often	use	the	word	eventually	with	futures
because	the	return	time	is	usually	indeterminate:	you	don’t	know	when	you’ll	get
a	result	back,	you	just	hope	to	get	a	successful	result	back	“eventually.”

Another	important	point	to	know	is	that	a	Future	always	returns	a	type	of	
Future[A].	In	these	examples,	that	type	is	Future[Int]:

val	f1:	Future[Int]	=	Future	{	sleep(800);	1	}

You	 declare	 the	 return	 type	 like	 that,	 but	 remember	 that	 a	
Future	always	contains	an	instance	of	Try,	so	the	actual	result
of	f1	will	be	Future(Success(1)).

The	for	expression

The	for	expression	in	the	application	looks	like	this:

val	result	=	for	{

				r1	<-	f1

				r2	<-	f2

				r3	<-	f3

}	yield	(r1	+	r2	+	r3)

You	can	read	this	as,	“Whenever	f1,	f2,	and	f3	return	with	their	values,	sum
them	up	with	yield,	and	assign	that	value	to	the	variable	result.”	I	didn’t	show
it	in	the	code,	but	result	also	has	the	type	Future[Int]:

val	result:	Future[Int]	=	for	{	...

It’s	important	to	know	that	the	main	thread	in	the	application	doesn’t	stop	at	this
point.	In	fact,	if	you	print	the	result	from	System.currentTimeMillis()	before
and	after	the	for	expression,	you	probably	won’t	see	a	difference	of	more	than	a
few	milliseconds.	I	demonstrate	this	in	the	example	in	the	next	lesson.

onComplete

The	final	part	of	the	application	looks	like	this:

result.onComplete	{

			case	Success(x)	=>	println(s"\nresult	=	$x")

			case	Failure(e)	=>	e.printStackTrace

}

As	I	showed	before,	onComplete	is	a	method	that’s	available	on	a	Future,	and
you	use	it	to	process	the	future’s	result	as	a	side	effect.	In	the	same	way	that	the	
foreach	method	on	collections	classes	returns	Unit	and	is	only	used	for	side
effects,	onComplete	returns	Unit	and	you	only	use	it	for	side	effects	like	printing
the	results,	updating	a	GUI,	updating	a	database,	etc.

You	can	read	that	code	as,	“Whenever	result	has	a	final	value	—	i.e.,	after	all
of	the	futures	return	and	are	summed	in	the	for	expression	—	come	here.	If
everything	returned	successfully,	run	the	println	statement	shown	in	the	
Success	case.	Otherwise,	if	an	exception	was	thrown,	go	to	the	Failure	case
and	print	the	exception’s	stack	trace.”

As	that	code	implies,	it’s	completely	possible	that	a	Future	may	fail.	For
example,	imagine	that	you	call	a	web	service	in	a	future,	but	the	web	service	is
down.	That	Future	instance	will	contain	an	exception,	so	when	you	call	
result.onComplete	like	this,	control	will	flow	to	the	Failure	case.

That	sleep	call

A	final	point	to	note	about	small	examples	like	this	is	that	you	need	to	have	a	
sleep	call	at	the	end	of	your	App:

sleep(3000)

That	call	keeps	the	main	thread	of	the	JVM	alive	for	three	seconds.	If	you	don’t
include	a	call	like	this,	the	JVM’s	main	thread	will	exit	before	you	get	a	result
from	the	three	futures,	which	are	running	on	other	threads.	This	isn’t	usually	a
problem	in	the	real	world,	but	it’s	a	problem	for	little	demos	like	this.

Similar	to	the	real	world

While	that	example	doesn’t	do	much	and	you	know	up	front	long	it	takes	for
each	Future	to	complete,	it’s	remarkably	similar	to	code	that	you’ll	use	in	the
real	world.	For	example,	if	you	call	a	function	named	
Cloud.executeLongRunningTask()	to	get	an	Int	result	that	will	take	an
indeterminate	amount	of	time,	you’ll	still	construct	the	future	in	the	same	way:

val	task:	Future[Int]	=	Future	{

				Cloud.executeLongRunningTask(a,	b,	c)

}

Then,	whenever	the	future	is	finished,	you’ll	also	use	a	method	like	onComplete
to	process	the	result:

task.onComplete	{

				case	Success(value)	=>	outputTheResult(value)

				case	Failure(e)	=>	outputTheError(e)

}

So	although	the	code	in	the	curly	braces	of	the	f1/f2/f3	example	doesn’t	do
much,	the	use	of	futures	in	that	example	follows	the	same	pattern	that	you’ll	use
in	the	real	world:

Construct	one	or	more	futures	to	run	tasks	off	of	the	main	thread

If	you’re	using	multiple	futures	to	yield	a	single	result,	combine	the	futures
in	a	for	expression

Use	a	callback	method	like	onComplete	to	process	the	final	result

A	Second	Futures	Example
Source	code

The	source	code	for	this	lesson	is	at	the	same	URL	as	the	previous	lesson:

github.com/alvinj/FPFutures

https://github.com/alvinj/FPFutures

A	Futures	example	with	debug	output

To	create	the	example	in	this	lesson,	I	modified	the	delay	times	of	the	first
example,	added	calls	to	get	the	Thread	IDs,	and	added	time	checks	at	various
points	in	the	application	to	show	the	details	of	how	futures	work,	especially	with
for	expressions	and	callback	methods.	Here’s	the	source	code	for	this	example:

package	futures.v1

import	scala.concurrent.Future

import	scala.concurrent.ExecutionContext.Implicits.global

import	scala.util.{Failure,	Success}

object	MultipleFuturesWithThreadIds	extends	App	{

				val	mainThreadId	=	Thread.currentThread.getId

				var	f1ThreadId	=	0L

				var	f2ThreadId	=	0L

				var	f3ThreadId	=	0L

				val	startTime	=	currentTime

				/**

						*	(a)	create	the	futures.	as	you'll	see	in	the

						*	time-related	output,	they	start	running	immediately.

						*/

				val	f1:	Future[Int]	=	Future	{

								println(s"f1	start:										${deltaTime(startTime)}")

								f1ThreadId	=	Thread.currentThread.getId

								sleep(1200)

								1

				}

				val	f2:	Future[Int]	=	Future	{

								println(s"f2	start:										${deltaTime(startTime)}")

								f2ThreadId	=	Thread.currentThread.getId

								sleep(400)

								2

				}

				val	f3:	Future[Int]	=	Future	{

								println(s"f3	start:										${deltaTime(startTime)}")

								f3ThreadId	=	Thread.currentThread.getId

								sleep(800)

								3

				}

				//	(b)	merge	the	results	when	they	become	available

				println(s"before	for:								${deltaTime(startTime)}")

				val	result:	Future[(Long,	Int)]	=	for	{

								r1	<-	f1

								r2	<-	f2

								r3	<-	f3

				}	yield	(deltaTime(startTime),	r1	+	r2	+	r3)

				println(s"after	for:									${deltaTime(startTime)}")

				/**

						*	the	f1/f2/f3	println	statements	show	that	those	code

						*	blocks	are	started	immediately.	but	because	they’re

						*	on	different	threads,	the	time-related	println	statements

						*	in	this	(main)	thread	show	that	the	main	thread	goes

						*	flying	right	through	the	for-expression.

						*/

				//	(c)	handle	the	result	as	a	side	effect

				println(s"before	onComplete:	${deltaTime(startTime)}")

				result.onComplete	{

								case	Success(x)	=>	{

												//	sleep	to	show	that	for’s	`yield`	expression

												//	happens	just	before	this	point

												sleep(10)

												//	the	“in	success”	time	should	be	almost	exactly	the

												//	same	as	the	longest	sleep	time,	plus	the	10ms	delay

												//	above;	approximately	1210ms	for	my	sample	times.

												val	tInSuccessCase	=	deltaTime(startTime)

												println(s"in	Success	case:			${tInSuccessCase}")

												println(s"\nresult	=	$x")

												println(s"onComplete	tid:	${Thread.currentThread.getId}")

								}

								case	Failure(e)	=>	e.printStackTrace

				}

				println(s"after	onComplete:		${deltaTime(startTime)}")

				//	important	for	a	small	parallel	demo:	keep	the	main	jvm

				//	thread	alive

				println(s"start	sleep(2000):	${deltaTime(startTime)}")

				sleep(2000)

				println("")

				println("Thread	IDs")

				println("----------")

				println(s"Main	Thread	ID:	${mainThreadId}")

				println(s"F1	Thread	ID:			${f1ThreadId}")

				println(s"F2	Thread	ID:			${f2ThreadId}")

				println(s"F3	Thread	ID:			${f3ThreadId}")

				def	sleep(time:	Long)	=	Thread.sleep(time)

				def	currentTime	=	System.currentTimeMillis()

				def	deltaTime(t0:	Long)	=	System.currentTimeMillis()	-	t0

}

I	encourage	you	to	view	that	code	in	your	IDE	as	I	discuss	it	in	the	following
paragraphs.

When	I	run	that	code	at	the	command	line	with	SBT,	I	see	output	that	looks	like
this:

f1	start:										1

f2	start:										1

f3	start:										2

before	for:								1

after	for:									2

before	onComplete:	2

after	onComplete:		2

start	sleep(2000):	2

result	=	(1204,6)

in	Success	case:			1215

Thread	IDs

Main	Thread	ID:	85

F1	Thread	ID:			74

F2	Thread	ID:			72

F3	Thread	ID:			73

onComplete	tid:	74

I	rearranged	that	output	slightly	to	highlight	the	key	points:

The	main	thread	flies	through	f1,	f2,	f3,	the	for	expression,	and	the	
onComplete	expression	almost	instantly

The	sleep(2000)	statement	begins	after	only	2	ms

The	(1204,6)	output	shows	that	the	yield	statement	in	the	for	expression
returns	its	value	at	1204	ms

Because	of	the	10	ms	sleep	time	I	added,	the	“in	Success	case”	statement
prints	11	ms	later,	at	1215	ms

I’ll	discuss	the	thread	IDs	shortly,	but	the	important	point	to	notice	is	that
F1,	F2,	and	F3	are	all	different	than	the	Main	Thread	ID

A	key	here	is	the	time	the	yield	statement	returns	(1204	ms):	This	value	is	just	a
few	milliseconds	more	than	f1’s	sleep	time.	This	confirms	that	f1,	f2	and	f3	ran
in	parallel.	If	they	had	run	serially	—	one	after	the	other	—	the	yield	statement
would	not	have	returned	until	2400	ms	had	passed	(i.e.,	the	combined	run	times
of	f1,	f2,	and	f3).

Also	note	that	I	added	a	10	ms	sleep	time	in	the	Success	case.	I	did	this	to	show
that	the	yield	statement	returns	before	onComplete	is	called.	(On	my	computer,
if	I	don’t	add	that	delay,	the	yield	and	Success	times	are	identical.)

Key	points	of	this	example

I	added	all	of	the	print	statements	to	the	code	to	show	how	this	process	works:

The	futures	are	started	immediately

The	main	JVM	thread	flies	right	through	the	for	and	onComplete
expressions

yield	in	the	for	expression	is	executed	when	all	of	the	futures	complete

onComplete	is	executed	immediately	after	that

The	thread	IDs

Once	you’re	comfortable	with	how	the	code	works	time-wise,	another	thing	to
look	at	is	the	printout	of	the	Thread	IDs	at	the	end	of	the	App:

Thread	IDs

Main	Thread	ID:	85

F1	Thread	ID:			74

F2	Thread	ID:			72

F3	Thread	ID:			73

onComplete	tid:	74

The	actual	numeric	values	don’t	matter,	they’ll	be	different	if	you	run	them	in
your	IDE	or	in	SBT	—	and	they	keep	getting	larger	the	more	times	you	run	the	
App	in	SBT	—	but	the	important	point	is	that	f1,	f2,	and	f3	all	have	different
values	than	the	main	thread.	I	show	this	output	as	another	way	to	demonstrate
that	all	of	the	futures	ran	on	different	threads	than	the	main	thread	—	they	were
all	running	in	parallel.

I	also	show	the	Thread	ID	from	inside	onComplete.	In	this	case,	it’s	74,	which	is	
f1’s	Thread	ID:

F1	Thread	ID:			74

onComplete	tid:	74

Futures	will	re-use	threads	where	they	can,	and	while	there’s	no	guarantee	that
this	will	always	be	the	case,	I’ve	found	that	in	small	examples	with	these	sleep
times,	the	onComplete	Thread	ID	is	the	same	as	f1’s.	(This	Thread	ID	will	vary
if	you	make	f2	or	f3	sleep	longer	than	f1.)

The	final	result

The	actual	result	of	this	application	isn’t	too	important	—	I	really	just	want	to
show	how	futures	work	—	but	the	final	answer	is	6,	which	I	returned	in	the	tuple
from	yield:

result	=	(1204,6)

Details	to	know	about	Futures

Here	are	a	few	more	details	to	know	about	futures.	First,	the	scala-lang.org
“Futures	and	Promises”	page	provides	this	summary:

“The	idea	is	simple:	a	Future	 is	a	sort	of	a	placeholder	object
that	you	can	create	for	a	result	that	does	not	yet	exist.	Generally,
the	 result	 of	 the	Future	 is	 computed	 concurrently	 and	 can	 be
later	collected.	Composing	concurrent	tasks	in	this	way	tends	to
result	 in	 faster,	 asynchronous,	 non-blocking	 parallel	 code.	 A	
Future	 is	 an	 object	 holding	 a	 value	 which	 may	 become
available	at	some	point.”

Here	are	some	key	points	about	futures:

A	future	represents	the	result	of	an	asynchronous	computation,	and	has	a
return	type,	such	as	Future[Int].

The	value	in	a	future	is	always	an	instance	of	Try,	so	you	always	deal	with	
Success	and	Failure	when	handling	a	future’s	result.

You	typically	work	with	the	results	of	a	future	using	its	callback	methods,
such	as	onComplete.

A	future	is	a	monad,	and	can	be	composed.	It	has	combinator	methods	like	
map,	flatMap,	filter,	etc.

There’s	no	guarantee	that	your	future’s	callback	method	will	be	called	on
the	same	thread	the	future	was	run	on.

In	regards	to	that	last	point,	here’s	another	quote	from	the	“Futures	and
Promises”	page:

“We	 should	 now	 comment	 on	when	 exactly	 the	 callback	 gets
called.	Since	it	requires	the	value	in	the	future	to	be	available,	it

http://docs.scala-lang.org/overviews/core/futures.html

can	only	be	called	after	the	future	is	completed.	However,	there
is	no	guarantee	it	will	be	called	by	the	thread	that	completed	the
future	 or	 the	 thread	 which	 created	 the	 callback.	 Instead,	 the
callback	 is	 executed	 by	 some	 thread,	 at	 some	 time	 after	 the
future	object	is	completed.	We	say	that	the	callback	is	executed
eventually.”

Future’s	callback	methods

The	scala.concurrent.Future	class	Scaladoc	separates	Future	methods	into	three
categories:

1.	 Callbacks:

onComplete

andThen

foreach

1.	 Polling:

isCompleted

value

1.	 Transformations:

transform

transformWith

failed

fallbackTo

mapTo

recover

recoverWith

transform

familiar	methods:	collect,	filter,	flatten,	flatMap,	map,	withFilter,	
zip,	and	zipWith

https://www.scala-lang.org/api/current/scala/concurrent/Future.html

An	example	of	transform

As	an	example	of	the	transform	combinator,	if	you	put	these	import	statements
into	a	Scala	REPL	session:

import	scala.concurrent.Future

import	scala.concurrent.ExecutionContext.Implicits.global

import	scala.util.{Failure,	Success}

and	then	paste	in	these	lines	of	code:

val	f1	=	Future	{	Thread.sleep(500);	1	}

val	rez	=	f1.transform	(

				i	=>	i	*	42,

				e	=>	new	Exception("something	bad	happened:	"	+	e)

)

rez.value

Thread.sleep(600)

rez.value

you’ll	see	these	results:

scala>	val	f1	=	Future	{	Thread.sleep(500);	1	}

f1:	scala.concurrent.Future[Int]	=	Future(<not	completed>)

scala>	val	rez	=	f1.transform	(

					|					i	=>	i	*	42,

					|					e	=>	new	Exception("something	bad	happened:	"	+	e)

					|)

rez:	scala.concurrent.Future[Int]	=	Future(<not	completed>)

scala>	rez.value

res0:	Option[scala.util.Try[Int]]	=	None

scala>	Thread.sleep(600)

scala>	rez.value

res1:	Option[scala.util.Try[Int]]	=	Some(Success(42))

Notice	how	rez	is	initially	listed	as	Future(<not	completed>).	After	that,	
rez.value	yields	a	None	initially,	but	after	you	wait	long	enough	for	the	future	to
complete,	it	eventually	yields	a	Some(Success(42)).

In	code	outside	the	REPL	you	should	use	callback	methods	like	
onComplete	and	transform,	and	not	value.	(value	is	a	method
that	shows	the	current	value	of	a	Future.)

Key	points	about	callback	methods

Here	are	a	few	key	points	about	Future’s	callback	methods:

Callback	methods	are	called	asynchronously	when	a	future	completes.

A	callback	method	is	executed	by	some	thread,	some	time	after	the	future	is
completed.

onComplete	takes	a	callback	function	of	type	Try[T]	=>	Unit.	As	usual,
the	Unit	return	type	is	a	great	hint	that	it	only	lets	you	handle	the	result	as	a
side	effect.

The	order	in	which	callbacks	are	executed	is	not	guaranteed.

From	the	“Futures	and	Promises”	page,	“onComplete,	onSuccess,	and	
onFailure	have	the	result	type	Unit,	so	they	can’t	be	chained.	This	design
was	intentional,	to	avoid	any	suggestion	that	callbacks	may	be	executed	in	a
particular	order.”

If	you	struggle	with	the	name	…

One	more	point	about	Scala	futures:	If	you’re	struggling	with	the	concept,	it
might	be	because	of	the	name	“future.”	In	my	case	that	name	slowed	me	down
for	a	while	(and	I	was	used	to	writing	multi-threaded	code).	I	kept	having	to	ask
myself,	“Why	are	they	using	the	name	‘future’?	What	is	that	name	trying	to
convey?”

One	night	I	was	reading	the	book	Akka	Concurrency	and	I	got	so	frustrated	that
I	wrote	35	alternate	names	for	Future	in	the	margins	of	the	book.	I	knew	the
name	“thread”	wasn’t	right,	because	that	would	be	confusing	with	Java	threads.	I
eventually	decided	that	for	me,	the	name	“ConcurrentTask”	made	more	sense
than	“Future.”

Fortunately	in	Scala	you	can	rename	types	when	you	import	them,	so	in	the
following	example	I	rename	Future	to	ConcurrentTask	so	you	can	see	what	I’m
talking	about:

import	scala.concurrent.{Future	=>	ConcurrentTask}			//rename

//	start	a	long-running	task

val	task	=	ConcurrentTask	{

				Cloud.executeLongRunningTask(a,	b,	c)

}

//	whenever	the	task	completes,	execute	this	code

task.onComplete	{

				case	Success(value)	=>	println(s"Success,	value	=	$value")

				case	Failure(e)	=>	println(s"Failure:	${e.getMessage}")

}

Even	as	I	look	at	this	code	four	years	after	I	wrote	in	the	margin	of	that	book,	the
name	ConcurrentTask	is	still	easier	for	my	brain	to	understand	than	Future.	So,
if	you’re	struggling	with	the	concept,	it	may	just	be	the	name.

About	the	name	ConcurrentTask

If	you’re	wondering	how	I	came	up	with	the	name	ConcurrentTask,	I	found	it	in
the	scala-lang.org	“Futures	and	Promises”	documentation:

“Composing	 concurrent	 tasks	 in	 this	 way	 tends	 to	 result	 in
faster,	asynchronous,	non-blocking	parallel	code.”

http://amzn.to/2xhUNd4
http://docs.scala-lang.org/overviews/core/futures.html

As	that	quote	implies,	other	meaningful,	alternate	names	for	a	future	can	be
AsynchronousTask	or	NonBlockingParallelTask.

A	larger	example

If	you’re	interested	in	a	larger,	real-world	example,	the	source	code	for	this
lesson	includes	a	Swing/GUI	application	that	uses	futures	and	onComplete.

The	main	class	of	the	application	is	named	FutureBoard.	The	intent	of	the
application	is	to	work	a	little	like	a	text-only	version	of	Flipboard	or	an	RSS
reader.	When	you	go	to	the	File	menu	and	click	the	Update	menu	item,	the
application	uses	three	futures	as	part	of	the	process	of	reaching	out	onto	the
internet	to	get	content	from	the	Chicago	Tribune,	the	Denver	Post,	and	Scala-
related	tweets	from	Twitter.	Those	three	news	sources	are	contacted	in	parallel
using	futures,	and	the	windows	in	the	GUI	are	updated	“whenever.”

Until	all	of	those	websites	change	their	URLs	and/or	CSS,	the	application	looks
like	Figure	[fig:futureBoardAfterData].

https://flipboard.com/

What	the	FutureBoard	application	looks	like	after	it	gets	data	from	its	three
internet	resources.

As	usual,	I	encourage	you	to	work	with	that	code	and	make	it	your	own	to	learn
more	about	futures.

Key	Points	About	Futures
As	a	summary	of	the	last	two	lessons,	here	are	some	key	points	about	working
with	Scala	futures.

First,	a	few	points	about	futures	as	they	relate	to	functional	programming:

Future	implements	map	and	flatMap,	so	it	works	as	a	monad.

As	Debashish	Ghosh	wrote	in	Functional	and	Reactive	Domain	Modeling,
“Just	as	Try	manages	exceptions	using	effects,	another	abstraction	in	the
Scala	library	called	Future	helps	you	manage	latency	as	an	effect.”

When	you	need	to	start	several	futures	and	combine	their	results	into	one
value,	merge	the	results	in	a	for	expression.

Future	has	a	nice	collection	of	callback	methods,	and	I	demonstrated	the	
map,	onComplete,	and	transform	methods.

The	value	in	a	future	is	always	an	instance	of	Try,	so	you	always	work	with
Success	and	Failure	when	handling	a	future’s	result.

Other	Future	keys:

I	think	of	a	future	as	a	one-shot,	“handle	this	relatively	slow	and	potentially
long-running	computation,	and	call	me	back	with	a	result	when	you’re
done”	construct.

Personally,	I	find	the	name	ConcurrentTask	more	meaningful	than	Future.

A	future	represents	the	result	of	an	asynchronous	computation,	and	has	a
return	type	of	Future[A],	which	was	Future[Int]	in	my	examples.

Futures	are	started	immediately.	(Unlike	the	Java	Thread	class,	there	is	no	
run	method	to	call.)

The	examples	show	that	the	main	JVM	thread	flies	right	through	the	for
and	onComplete	expressions.	They	aren’t	executed	until	the	future(s)	return.

http://amzn.to/2iOT3Vh

In	the	examples	I	showed,	yield	in	the	for	expression	is	executed	when	all
of	the	futures	complete,	and	onComplete	is	executed	immediately	after	that.

You	typically	work	with	the	results	of	a	future	using	its	callback	methods,
such	as	onComplete	and	transform.

Callback	methods	are	called	asynchronously	when	a	future	completes.

There’s	no	guarantee	that	your	future’s	callback	method	will	be	called	on
the	same	thread	the	future	was	run	on.

There’s	no	guarantee	about	the	order	in	which	callback	methods	are
executed.

Promises

Lastly,	I	didn’t	write	about	the	Scala	Promise	class	because	it’s	rarely	used
directly.	The	book	Learning	Concurrent	Programming	in	Scala	states:

“A	 promise	 and	 a	 future	 represent	 two	 aspects	 of	 a	 single-
assignment	variable:	 the	promise	allows	you	 to	assign	a	value
to	the	future	object,	whereas	the	future	allows	you	to	read	that
value.”

and	then	later:

“We	 would	 like	 to	 somehow	 create	 a	 bridge	 between	 legacy
callback-based	 APIs	 and	 futures	 …	 this	 is	 where	 promises
come	 in	 handy	 …	 Use	 promises	 to	 bridge	 the	 gap	 between
callback-based	APIs	and	futures.”

http://amzn.to/2fWn70c

See	also

Programming	in	Scala	has	an	excellent	chapter	about	Scala	Futures

Akka	Concurrency	is	a	little	out	of	date	now,	but	it’s	still	an	excellent
resource	about	Akka	actors	and	futures

Learning	Concurrent	Programming	in	Scala	is	an	excellent	resource	about
concurrent	programming

My	post,	A	look	at	how	exceptions	work	with	Scala	Futures	and	the
onComplete	‘Failure’	case

The	Future	scaladoc

“Futures	and	Promises”	on	scala-lang.org

http://amzn.to/2fiqDBh
http://amzn.to/2xhUNd4
http://amzn.to/2ycv1X1
https://alvinalexander.com/scala/how-exceptions-work-scala-futures-oncomplete-failure
http://www.scala-lang.org/api/current/scala/concurrent/Future.html
http://docs.scala-lang.org/overviews/core/futures.html

To	Be	Continued
I’ll	add	the	final	lessons	to	this	book	as	soon	as	I	can.	At	this	point	there	are	only
a	few	more	things	to	add,	including	a	“Summary/Conclusion”	chapter,	more
source	code	examples,	and	possibly	a	few	other	things.

Once	I	finish	those	lessons,	I’ll	work	on	improving	the	formatting	of	the	book.

Appendices
I	created	the	following	lessons	as	appendices	because	I	thought	they	would	be
helpful	in	supporting	your	process	of	learning	functional	programming	in	Scala.

Explaining	Scala’s	val	Function	Syntax
Background

I	wrote	in	the	“Functions	are	Values”	lesson	that	most	developers	prefer	to	use
the	def	syntax	to	define	methods	—	as	opposed	to	writing	functions	using	val	—
because	they	find	the	method	syntax	easier	to	read	than	the	function	syntax.
When	you	write	methods,	you	let	the	compiler	convert	them	into	functions	with
its	built-in	“Eta	Expansion”	capability.	There’s	nothing	wrong	with	this.
Speaking	as	someone	who	used	Java	for	15+	years,	the	def	syntax	was	easier	for
me	to	read	at	first,	and	I	still	use	it	a	lot.

But	if	you	come	from	something	like	a	Haskell	background,	you	may	find	that
the	val	function	syntax	is	easier	to	read;	it’s	more	familiar.	Or,	once	you	dig	into
the	val	function	syntax	—	as	shown	in	this	lesson	—	you	may	say,	“Hey,	I
prefer	the	val	syntax.”

Beyond	your	background	and	preferences,	there’s	another	important	point	about	
val	functions:	You’ll	use	the	exact	same	syntax	to	define	functions	as	input
parameters.	For	example,	this	calculate	function	declares	an	input	parameter
named	f:

calculate(f:	(Int,	Int)	=>	Int)

f	is	a	function	that	transforms	two	Int	values	into	a	resulting	Int	value,	and	the
syntax	you	use	to	define	f’s	type	is	the	same	syntax	that	I	explore	in	this	lesson.

Goals

Given	that	background,	the	primary	goal	of	this	lesson	is	to	explain	and
demonstrate	Scala’s	val	syntax	for	writing	functions.	I’ll	show	both	forms	of	the
function	syntax,	(a)	the	“explicit	return	type”	syntax,	and	(b)	the	“implicit	return
type”		syntax.

I	also	show	that	when	you	define	a	function	as	a	val,	what	you’re	really	doing	is
giving	a	value	name	to	an	anonymous	function.	Finally,	I	also	show	that	behind
the	scenes,	when	Scala	compiles	a	function,	what	it	really	does	is	create	an
instance	of	the	Function0	through	Function22	traits.

Scala’s	function	syntax

In	Scala,	there	are	at	least	two	syntax	forms	for	defining	functions	using	val.
The	biggest	distinction	is	whether	you	want	to	(a)	let	the	return	type	be
“implicit”	—	meaning	that	you	don’t	show	it,	and	the	compiler	infers	it	—	or	(b)
define	the	function’s	return	type	explicitly.

In	this	lesson	I’m	going	to	use	the	terms	“explicit	return	type”
(ERT),	and	“implicit	return	type”	(IRT).	These	aren’t	industry-
standard	 acronyms,	 but	 because	 I	 will	 be	 using	 these	 phrases
often	in	this	lesson,	I	have	come	up	with	these	acronyms.

The	following	lines	show	the	implicit	and	explicit	syntax	for	a	function	named	
add1,	which	returns	an	Int	value	that	is	1	larger	than	the	Int	value	it	is	given	as
an	input	parameter:

val	add1	=	(i:	Int)	=>	i	+	1											//	implicit	return	type	(IRT)

val	add1:	Int	=>	Int	=	(i)	=>	i	+	1				//	explicit	return	type	(ERT)

One	variation	of	this	is	that	you	can	put	curly	braces	around	the	function	body:

val	add1	=	(i:	Int)	=>	{	i	+	1	}

val	add1:	Int	=>	Int	=	(i)	=>	{	i	+	1	}

You	generally	need	to	use	curly	braces	around	multi-line	functions,	but	you	can
also	use	them	in	one-line	functions	if	you	prefer.

With	the	ERT	syntax,	when	you	have	only	one	input	parameter,	you	can	leave
the	parentheses	off	of	the	parameter	name:

val	add1:	Int	=>	Int	=	(i)	=>	{	i	+	1	}

val	add1:	Int	=>	Int	=		i		=>	{	i	+	1	}			//	parentheses	not	required

All	of	those	examples	show	a	function	that	takes	one	input	parameter.	The	next
examples	show	the	syntax	for	a	sum	function	that	takes	two	input	parameters:

val	sum	=	(a:	Int,	b:	Int)	=>	a	+	b												//	implicit

val	sum:	(Int,	Int)	=>	Int	=	(a,	b)	=>	a	+	b			//	explicit

When	I	first	came	to	Scala	from	Java,	I	didn’t	like	this	syntax	—	at	all	—	but

now	that	I	understand	it,	I	have	no	problems	with	it,	and	even	like	it.

Explaining	the	ERT	syntax

Figure	[fig:fieldsInErtSumFunction]	explains	the	fields	in	the	ERT	version	of	the
sum	function.

The	fields	in	the	ERT	version	of	the	sum	function.

As	that	shows,	the	signature	consists	of:

Assigning	a	function	name,	sum.

The	function’s	input	parameter	type(s).

The	function’s	return	type.

Giving	names	to	the	function’s	input	parameters.

Writing	the	function	body.

In	any	programming	language	that	declares	its	input	and	output	types,	you	need
to	declare	all	of	these	things;	it’s	just	a	matter	of	how	you	declare	them	that
makes	each	approach	different.	For	instance,	when	you	look	at	Scala’s	method
syntax,	you	see	that	it	requires	the	exact	same	fields,	they’re	just	ordered
differently,	with	different	field-separator	symbols:

def	sum(a:	Int,	b:	Int):	Int	=	a	+	b

Viewing	the	function	signature	as	two	blocks

A	method	that	helped	me	understand	Scala’s	function	syntax	was	to	break	it	up
into	different	“blocks.”	Figure	[fig:funSigIsTwoBlocks]	shows	that	you	can	look
at	the	signature	as	two	blocks.

You	can	look	at	Scala’s	function	signature	as	containing	two	blocks.

When	you	do	that,	you	can	see	that	the	first	block	declares	the	function’s	input
and	return	types,	as	shown	in	Figure	[fig:funSigFirstBlock].

The	first	block	declares	a	function’s	input	and	return	types.

If	you’ve	worked	with	a	language	like	C,	where	you	declare	a	function’s	types	in
a	header	file,	this	becomes	clear.

In	a	similar	manner,	the	second	block	declares	the	function’s	input	parameter
names	and	the	function’s	algorithm,	as	shown	in
Figure	[fig:secondBlockDeclaresInputParams].

A	function’s	second	block	declares	the	input	parameter	names	and	its	algorithm.

A	key	point	of	this	block	is	that	it	shows	how	the	input	parameter	names	are	used
within	the	algorithm;	it	makes	sense	that	the	parameter	names	are	close	to	the

function	body.

I	find	that	when	I	highlight	the	code	like	this,	the	val	function	signature	makes	a
lot	of	sense.

=>,	the	“Universal	Transformer”

Furthermore,	because	I	like	to	think	of	the	=>	symbol	as	Scala’s	“Universal
Transformer”	–	like	Star	Trek’s	“Universal	Translator”	—	I	can	also	look	inside
each	block	to	see	the	intended	transformation.

For	instance,	Figure	[fig:theErtTransformerSymbol]	shows	that	the	=>	symbol	in
the	first	block	of	the	sum	function	shows	that	it	transforms	two	input	Int	values
into	an	Int	return	value.

The	transformer	symbol	in	the	function’s	first	block.

As	shown	in	Figure	[fig:transformerSymbolIn2ndBlock],	the	=>	in	the	second
block	similarly	shows	how	the	function	transforms	its	input	parameter	names
with	its	algorithm.

The	transformer	symbol	in	the	function’s	second	block.

Reading	IRT	function	signatures

Those	examples	show	how	you	can	read	the	function	signature	when	you
explicitly	show	the	function’s	return	type,	i.e.,	the	ERT	approach.	You	can	use	a
similar	approach	to	understand	the	implicit	return	type	syntax.

To	demonstrate	this,	the	following	isEven	function	determines	whether	the	input
Int	parameter	is	an	even	or	odd	number.	It	returns	a	Boolean	value,	but	because
you	and	the	Scala	compiler	can	both	infer	the	return	type	by	looking	at	the
function	body,	I	don’t	explicitly	declare	it:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

You	can	view	the	fields	in	isEven	as	shown	in	Figure	[fig:fieldsInIsEven].

A	breakdown	if	the	fields	in	the	isEven	function.

As	with	the	previous	examples,	you	can	see	in	the	signature	that	the	“Universal
Transformer”	symbol	transforms	an	input	value	to	an	output	value,	as	shown	in
Figure	[fig:universalTransformerTransformsI2O].

The	“Universal	Transformer”	symbol	transforms	an	input	value	to	an	output
value.

This	IRT	syntax	is	more	concise	than	the	ERT	syntax,	and	it’s	similar	to	the	def
method	signature.

With	both	the	ERT	and	IRT	signatures,	I	find	that	it	helps	to	read	function
signatures	as	sentences.	Fo	example,	I	read	this	function:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

like	this:

“The	function	isEven	 transforms	 the	 input	Int	 into	a	Boolean
value	based	on	its	algorithm,	which	in	this	case	is	i	%	2	==	0.”

Exercise

Take	a	moment	to	sketch	the	syntax	for	an	isEven	function	that	declares	an
explicit	return	type:

	

Key:	Using	return	doesn’t	feel	right

Another	eye-opener	for	me	is	that	once	I	understood	the	val	function	syntax,	I
realized	that	using	Scala’s	return	keyword	doesn’t	feel	right.	To	me,	this	code
looks	and	feels	right:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

But	this	attempt	to	use	return	does	not	look	right:

val	isEven	=	(i:	Int)	=>	return	i	%	2	==	0

With	the	function	syntax	you’re	not	really	“returning”	anything,	you’re	just
assigning	a	block	of	code	to	a	value,	so	return	feels	out	of	place	here.	(In	fact,	
return	is	so	out	of	place	here	that	the	second	example	won’t	even	compile.)

There	are	times	I	still	want	to	“return”	something	from	a	def	method,	but	I	find
that	I	never	want	to	use	return	when	I	use	the	val	function	syntax.	As	I	wrote	in
the	early	“Functional	Code	Feels	Like	Algebra”	lesson,	in	FP	you	really	are
writing	a	series	of	equations.

Examples	of	function	syntax	using	isEven

If	the	body	of	isEven	(i	%	2	==	0)	is	hard	to	read,	that’s	okay,	for	at	least	one
reason:	It	gives	me	a	chance	to	write	a	little	more	about	the	function	syntax.

First	off,	it	may	help	to	know	that	the	isEven	function	I	showed	originally:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

is	a	shorthand	way	of	writing	this:

val	isEven	=	(i:	Int)	=>	if	(i	%	2	==	0)	true	else	false

This	longer	form	makes	it	more	clear	about	how	isEven	works.	If	you	really
prefer	longer	forms,	you	can	write	this	same	function	like	this:

val	isEven	=	(i:	Int)	=>	{

				if	(i	%	2	==	0)	{

								true

				}	else	{

								false

				}

}

I	show	these	examples	because	I	want	to	list	the	many	ways	you	can	write	
isEven	using	an	implicit	return	type:

val	isEven	=	(i:	Int)	=>	{	if	(i	%	2	==	0)	true	else	false	}

val	isEven	=	(i:	Int)	=>	if	(i	%	2	==	0)	true	else	false

val	isEven	=	(i:	Int)	=>	{	i	%	2	==	0	}

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

val	isEven	=	i:	Int	=>	i	%	2	==	0

The	next	examples	show	different	ways	you	can	write	isEven	when	declaring	an
explicit	return	type:

val	isEven:	(Int)	=>	Int	=	(i)	=>	{	if	(i	%	2	==	0)	true	else	false	}

val	isEven:	(Int)	=>	Int	=	i			=>	{	if	(i	%	2	==	0)	true	else	false	}

val	isEven:	(Int)	=>	Int	=	(i)	=>	{	i	%	2	==	0	}

val	isEven:	(Int)	=>	Int	=	i			=>	{	i	%	2	==	0	}

val	isEven:	(Int)	=>	Int	=	(i)	=>	i	%	2	==	0

val	isEven:	(Int)	=>	Int	=	i			=>	i	%	2	==	0

val	isEven:	(Int)	=>	Int	=	(i)	=>	{

				if	(i	%	2	==	0)	{

								true

				}	else	{

								false

				}

}

There	are	even	more	ways	that	you	can	write	isEven.	Later	in	this	lesson	I’ll
show	how	you	can	write	it	by	explicitly	extend	Function1	with	the	anonymous
class	syntax.

The	REPL	shows	the	explicit	function	syntax

It’s	interesting	to	note	that	the	REPL	shows	the	same	function	signature	whether
I	use	the	ERT	or	IRT	syntax:

//	ERT

scala>	val	sum:	(Int,	Int)	=>	Int	=	(a,	b)	=>	a	+	b

sum:	(Int,	Int)	=>	Int	=	<function2>

//	IRT

scala>	val	sum	=	(a:	Int,	b:	Int)	=>	a	+	b

sum:	(Int,	Int)	=>	Int	=	<function2>

But	what	I	really	like	about	the	REPL	output	is	that	it	shows	the	ERT	function
syntax.	Note	the	similarity	between	the	ERT	syntax	I	wrote,	and	what	the	REPL
responds	with:

val	sum:	(Int,	Int)	=>	Int	=	(a,	b)	=>	a	+	b				//	my	code

				sum:	(Int,	Int)	=>	Int	=	<function2>								//	repl	output

The	type	signature	the	REPL	shows	is	identical	to	the	ERT’s	type	signature.

We’re	giving	an	anonymous	function	a	name

Assuming	that	you’ve	already	written	anonymous	functions	in	Scala,	you	may
have	noticed	that	what	I’m	doing	in	all	of	these	examples	is	that	I’m	assigning
the	anonymous	function	i	%	2	==	0	to	a	val	named	isEven:

val	isEven	=	(i:	Int)	=>	i	%	2	==	0

What	I	mean	by	that	is	that	this	code	is	an	anonymous	function:

													(i:	Int)	=>	i	%	2	==	0

and	the	only	thing	the	previous	code	is	doing	is	assigning	the	value	named	
isEven	to	this	anonymous	function.	You	can	see	that	more	clearly	in	the
following	images.	First,	Figure	[fig:anonFunctionPart]	shows	the	anonymous
function	part.

The	anonymous	function	part	of	the	expression.

Then	Figure	[fig:variableAssignedToAnonFunction]	shows	the	variable	name
that	is	assigned	to	the	anonymous	function.

The	variable	name	that	is	assigned	to	the	anonymous	function.

As	another	way	of	showing	this,	you	can	paste	the	anonymous	function	into	the
REPL:

scala>	(i:	Int)	=>	i	%	2	==	0

res0:	Int	=>	Boolean	=	<function1>

and	then	assign	isEven	to	res0:

scala>	val	isEven	=	res0

isEven:	Int	=>	Boolean	=	<function1>

After	that,	you	can	use	isEven	as	before:

scala>	isEven(42)

res1:	Boolean	=	true

As	shown,	the	function	syntax	just	assigns	a	value	name	to	an	anonymous
function.

isEven	is	an	instance	of	Function1

I	discuss	this	next	point	in	the	“Functions	are	Values”	lesson,	so	I	won’t	go	into
it	too	much	here,	but	it’s	worth	mentioning	that	in	all	of	these	examples,	isEven
is	an	instance	of	the	Function1	trait.

This	is	what	the	output	is	trying	to	tell	you	when	you	paste	isEven	into	the
REPL:

scala>	val	isEven	=	(i:	Int)	=>	i	%	2	==	0

isEven:	Int	=>	Boolean	=	<function1>

The	REPL	output	shows	that	isEven’s	result	is	an	instance	of	Function1,	which
it	shows	as	<function1>.

If	you	haven’t	seen	this	before,	the	reason	that	isEven	is	an	instance	of	
Function1	is	because	it	takes	one	input	parameter.	As	shown	in
Figure	[fig:function1ScaladocValFunSyn],	the	Function1	Scaladoc	shows	that
this	is	exactly	what	it’s	intended	for.

The	Scaladoc	clearly	shows	that	Function1	is	a	“function	of	‘	parameter’”.

By	comparison,	a	sum	function	that	takes	two	input	parameters	is	an	instance	of
the	Function2	trait:

scala>	val	sum:	(Int,	Int)	=>	Int	=	(a,	b)	=>	a	+	b

sum:	(Int,	Int)	=>	Int	=	<function2>

In	fact,	I	note	in	“The	differences	between	def	and	val	when	defining	functions”
appendix	that,	if	you	want	to,	you	can	define	sum	like	this:

http://www.scala-lang.org/api/current/index.html#scala.Function1

val	sum	=	new	Function2[Int,	Int,	Int]	{

				def	apply(a:	Int,	b:	Int):	Int	=	a	+	b

}

As	I	show	in	that	appendix,	that’s	what	the	Scala	compiler	really	does	for	you
when	you	define	sum.

Finally,	while	I’m	in	the	neighborhood,	this	is	how	you	define	isEven	using	this
approach:

val	isEven	=	new	Function1[Int,	Boolean]	{

				def	apply(i:	Int):	Boolean	=	i	%	2	==	0

}

Most	developers	don’t	use	this	approach;	I’m	just	trying	to	show	how	things
work	under	the	hood.

Conspiracy	Theory:	The	function	syntax	has	its	root
in	Haskell

I	can	neither	confirm	nor	deny	what	I’m	about	to	write,	but	in	the	spirit	of	a	good
The	X-Files	conspiracy,	I	suspect	that	this	syntax:

val	sum:	(Int,	Int)	=>	Int	=	(a,	b)	=>	a	+	b

has	its	roots	in	Haskell,	or	perhaps	another	language	like	ML	(which	I	only	know
from	looking	at	its	Wikipedia	page).

The	reason	I	suspect	this	is	because	of	how	you	define	Haskell	functions.	For
example,	here’s	the	Haskell	syntax	to	define	a	function	named	
addPizzaToOrder,	which	takes	Order	and	Pizza	instances	as	input	parameters,
and	returns	a	new	Order	as	a	result:

addPizzaToOrder	::	Order	->	Pizza	->	Order

addPizzaToOrder	anOrder	aPizza	=	(function	body	here	...)

The	first	line	shows	the	function’s	signature,	which	includes	only	(a)	the
function	name,	(b)	its	input	types,	and	(c)	its	output	type.	This	is	a	little	like
declaring	a	function	signature	in	a	C	header	file.

In	Haskell,	it’s	a	slight	simplification	to	say	that	the	output	type
is	 the	 last	 type	 listed	after	 the	string	of	->	 symbols.	So	 in	 this
example,	the	addPizzaToOrder	function	returns	an	Order.

The	second	line	shows	the	input	parameter	names	(anOrder,	aPizza),	which
correspond	to	the	types	declared	on	the	first	line	(Order,	Pizza).	The	same
function	is	written	like	this	using	Scala’s	ERT	syntax:

val	addPizzaToOrder:	(Order,	Pizza)	=>	Order	=	(anOrder,	aPizza)	=>	???

I	don’t	know	about	you,	but	when	I	look	at	Figure	[fig:funSyntaxHaskellBlocks],
to	me	it	looks	like	the	Scala	syntax	merges	the	two	Haskell	lines	into	one	line.

https://en.wikipedia.org/wiki/ML_%28programming_language%29

The	Scala	function	syntax	seems	to	merge	two	Haskell	lines	into	one.

But	again,	this	is	just	X-Files	speculation.	I’ve	never	spoken	to	Martin	Odersky
or	anyone	else	about	this.	;)

(As	supporting	conspiracy	theory	material,	Haskell	1.0	was	defined	in	1990,	and
the	“Haskell	98”	standard	was	published	in	February,	1999.	The	history	of	Scala
on	Wikipedia	states,	“The	design	of	Scala	started	in	2001	…	following	from
work	on	Funnel,	a	programming	language	combining	ideas	from	functional
programming	and	Petri	nets.	After	an	internal	release	in	late	2003,	Scala	1.0	was
released	publicly	in	early	2004	on	the	Java	platform.”	So,	the	timeline	fits	the
conspiracy	theory.	;)

For	more	information	on	Scala’s	history,	see	Scala’s	Prehistory	on	scala-
lang.org.

https://en.wikipedia.org/wiki/Scala_%28programming_language%29#History
http://lampwww.epfl.ch/funnel/
http://www.scala-lang.org/old/node/239.html

Summary

The	intent	of	this	lesson	was	to	explain	and	explore	Scala’s	function	syntax.
Here’s	a	summary	of	what	was	covered:

I	showed	two	forms	of	the	Scala	function	syntax,	showing	the	implicit
return	type	(IRT)	syntax,	and	the	explicit	return	type	(ERT)	syntax.

I	showed	how	you	can	break	the	ERT	syntax	down	into	blocks	to
understand	it	more	easily.

I	showed	that	the	REPL	output	for	functions	looks	just	like	the	ERT	type
signature	syntax.

I	showed	where	the	=>	(Universal	Transformer)	symbol	fits	in	both	the	ERT
and	IRT	approaches.

I	noted	that	since	the	function	approach	really	just	assigns	a	block	of	code
to	a	val	field,	it	doesn’t	feel	right	to	use	the	return	keyword	when	defining
functions.

I	noted	that	all	we’re	really	doing	when	we	define	a	function	is	giving	a
name	to	an	anonymous	function.

I	showed	that	“under	the	hood,”	you’ll	find	that	functions	are	instances	of
traits	like	Function1	and	Function2.

Then	I	took	a	detour	and	shared	a	little	conspiracy	theory.	;)

See	also

Scala’s	Function1	trait

The	ML	programming	language

The	Funnel	programming	language

history	of	Scala	on	Wikipedia

Scala’s	Prehistory	on	scala-lang.org

http://www.scala-lang.org/api/current/index.html#scala.Function1
https://en.wikipedia.org/wiki/ML_%28programming_language%29
http://lampwww.epfl.ch/funnel/
https://en.wikipedia.org/wiki/Scala_%28programming_language%29#History
http://www.scala-lang.org/old/node/239.html

The	Differences	Between	val	and	def
When	Creating	Functions
Goals

The	main	goals	for	this	lesson	are:

Discuss	the	differences	between	val	and	def	“functions”

Demonstrate	the	differences	between	val	and	def	“functions”

Background

For	the	most	part	—	maybe	98%	of	the	time	—	the	differences	between	defining
a	“function”	using	def	or	val	aren’t	important.	As	I	can	personally	attest,	you
can	write	Scala	code	for	several	years	without	knowing	the	differences.	As	long
as	you’re	able	to	define	a	val	function	or	def	method	like	this:

val	isEvenVal	=	(i:	Int)	=>	i	%	2	==	0

def	isEvenDef(i:	Int)	=	i	%	2	==	0

and	then	pass	them	into	the	filter	method	of	a	List,	like	this:

scala>	val	xs	=	List(1,2,3,4)

xs:	List[Int]	=	List(1,	2,	3,	4)

scala>	xs.filter(isEvenVal)					//val

res0:	List[Int]	=	List(2,	4)

scala>	xs.filter(isEvenDef)					//def

res1:	List[Int]	=	List(2,	4)

the	differences	between	them	rarely	seem	to	matter.

But	as	you	become	a	more	advanced	Scala	developer	—	and	as	you	see	the	code
that	some	Scala/FP	developers	like	to	write	—	knowing	the	differences	between	
val	functions	and	def	methods	can	be	helpful,	and	in	some	cases	it	may	be
essential	to	understand	how	code	works.

case	expressions	in	functions

One	example	of	where	this	is	essential	is	when	Scala/FP	developers	use	case
expressions	to	define	functions,	like	this:

val	f:	(Any)	=>	String	=	{

				case	i:	Int	=>	"Int"

				case	d:	Double	=>	"Double"

				case	_	=>	"Other"

}

When	I	saw	code	like	this	for	the	first	time	I	thought,	“How	can	that	possibly
work?	There’s	no	match	before	the	case	statements,	and	the	definition	also	don’t
show	any	input	parameters	defined	…	how	can	this	work?”

The	answer	is	that	this	function	does	compile	and	it	does	work,	yielding	the

results	that	you’d	expect	from	the	case	expressions:

f(1)					//	Int

f(1d)				//	Double

f(1f)				//	Other

f("a")			//	Other

But	why	this	works	can	be	a	mystery	—	a	mystery	I’ll	resolve	in	this	lesson.

Terminology	in	this	lesson

While	def	is	technically	used	to	define	a	method,	in	this	section	I’ll	often	refer	to
it	as	a	function.	Furthermore,	I’ll	use	the	terms	“function	created	with	val”	and
“function	created	with	def”	—	or	more	concisely,	“val	function”	and	“def
function”	—	when	I	want	to	be	clear	about	what	I’m	referring	to.

A	quick	summary	of	the	differences	between	val	and	
def	functions

To	get	started,	here’s	a	quick	summary	of	the	differences	between	val	and	def
functions.

val	functions

There	are	a	few	different	ways	you	can	write	a	val	function,	but	a	common	way
to	write	them	looks	like	this:

val	add	=	(a:	Int,	b:	Int)	=>	a	+	b

A	val	function	has	these	attributes:

It	is	100%	correct	to	use	the	term	“function”	when	referring	to	it.

add	is	created	as	a	variable,	in	this	case	as	a	val	field.

Under	the	hood,	the	Scala	compiler	implements	this	specific	example	as	an
instance	of	the	Function2	trait.

val	functions	are	concrete	instances	of	Function0	through	Function22.

Because	val	functions	are	instances	of	Function0	through	Function22,
there	are	several	methods	available	on	these	instances,	including	andThen,	
compose,	and	toString.

As	shown	earlier,	val	functions	can	use	case	expressions	without	a
beginning	match.

Note	that	you	can	manually	define	functions	using	syntax	like	this:

val	sum	=	new	Function2[Int,	Int,	Int]	{	...

That’s	rarely	done,	but	I’ll	fully	demonstrate	that	syntax	later	in	this	lesson	so
you	can	learn	more	about	how	things	work	under	the	covers.

Because	add	is	a	true	variable	(a	val	field),	you	can	examine	it	in	the	REPL,	like

this:

scala>	add

res0:	(Int,	Int)	=>	Int	=	<function2>

Note	that	the	add	function	isn’t	invoked;	the	REPL	just	shows	its	value.

def	functions

What	I	call	a	“def	function”	looks	like	this:

def	add(a:	Int,	b:	Int)	=	a	+	b

It	has	these	attributes:

It	is	not	100%	correct	to	use	the	term	“function”	when	referring	to	it.
Technically,	it	is	not	a	function.

It	is	a	method	that	needs	to	be	defined	within	a	class	or	object.

As	a	method	in	a	class:

It	has	access	to	the	other	members	in	the	same	class.

It’s	passed	an	implicit	reference	to	the	class’s	instance.	(For	example,
when	the	map	method	is	called	on	a	List,	map	has	an	implicit	reference
to	the	this	object,	so	it	can	access	the	elements	in	the	instance’s	List.)

When	you	write	a	def,	you	can	specify	parameterized	(generic)	types,	like
this:

def	fooA:	String	=	???

Finally,	note	that	when	you	define	add	like	this	in	the	REPL:

def	add(a:	Int,	b:	Int)	=	a	+	b

you	can’t	examine	its	value	in	the	REPL	in	the	same	way	you	could	with	a	val
function:

scala>	add

<console>:12:	error:	missing	arguments	for	method	add;

follow	this	method	with	`_'	if	you	want	to	treat	it	as	a	

partially	applied	function

							add

							^

Converting	methods	to	functions

As	a	final	note	in	this	initial	summary,	you	can	convert	a	def	method	into	a	real	
val	function.	You	can	do	this	manually	yourself,	and	the	Scala	compiler	also
does	it	automatically	when	needed.	This	feature	is	called,	“Eta	Expansion,”	and	I
show	how	it	works	in	another	appendix	in	this	book.

More	details

I’ll	show	many	more	details	in	this	lesson	—	for	instance,	I’ll	show	decompiled
examples	of	val	and	def	functions	—	but	I	wanted	to	start	with	these	key	points.

Why	a	val	function	can	use	a	case	expression	without
a	beginning	match

I	noted	at	the	beginning	of	this	lesson	that	you	can	write	a	val	function	using	
case	expressions	without	a	beginning	match	keyword,	like	this:

val	f:	(Any)	=>	String	=	{

				case	i:	Int	=>	"Int"

				case	d:	Double	=>	"Double"

				case	_	=>	"Other"

}

The	reasons	this	syntax	works	are:

1.	 A	block	of	code	with	one	or	more	case	expressions	is	a	legal	way	to	define
an	anonymous	function.

2.	 As	I	mention	in	the	“Functions	are	Values”	lesson,	when	you	create	a	val
function,	all	you’re	really	doing	with	code	like	this	is	assigning	a	variable
name	to	an	anonymous	function.

To	support	that	first	statement,	Section	15.7	of	Programming	in	Scala	states:

“A	 sequence	of	 cases	 in	 curly	braces	 can	be	used	 anywhere	 a
function	literal	can	be	used.”

Here	are	two	examples	that	show	how	you	can	use	a	case	expression	as	an
anonymous	function.	First,	a	modulus	example:

scala>	List(1,2,3,4).filter({	case	i:	Int	=>	i	%	2	==	0	})

res0:	List[Int]	=	List(2,	4)

Next,	a	“string	length”	example:

scala>	val	misc	=	List("adam",	"alvin",	"scott")

misc:	List[String]	=	List(adam,	alvin,	scott)

scala>	misc.map({	case	s:	String	=>	s.length	>	4	})

res1:	List[Boolean]	=	List(false,	true,	true)

If	you	read	the	Scala	Cookbook,	you	may	also	remember	this	example	from
Section	9.8	on	Partial	Functions:

http://amzn.to/2fiqDBh
http://amzn.to/24ivK4G

scala>	List(0,1,2)	collect	{	case	i:	Int	if	i	!=	0	=>	42	/	i	}

res2:	List[Int]	=	List(42,	21)

This	example	works	because	(a)	the	case	expression	creates	an	anonymous
function,	and	(b)	the	collect	method	works	with	Partial	Functions.	Contrast	that
with	map,	which	explodes	with	a	MatchError	when	it’s	used	with	that	same	case
expression:

scala>	List(0,1,2)	map	{	case	i:	Int	if	i	!=	0	=>	42	/	i	}

scala.MatchError:	0	(of	class	java.lang.Integer)

The	val	function	syntax

As	I	noted	earlier,	a	val	function	is	simply	a	variable	name	that’s	assigned	to	a
function	literal.	To	demonstrate	this,	Figure	[fig:AnonymousFunction-1-literal]
shows	the	function	literal.

The	function	literal	(anonymous	function)	is	highlighted.

And	Figure	[fig:AnonymousFunction-2-name]	shows	the	variable	name	being
assigned	to	the	function	literal.

A	variable	name	is	assigned	to	the	function	literal.

By	contrast,	if	you	want	to	write	the	same	code	using	def,	it	would	be	defined
like	this:

def	isEven(i:	Int):	Boolean	=	i	%	2	==	0

Decompiling	a	def	method

As	you	might	suspect,	a	def	method	in	a	Scala	class	is	compiled	into	a	similar
method	on	a	Java	class.	To	demonstrate	this,	if	you	start	with	this	Scala	class:

class	DefTest	{

				def	add1(a:	Int)	=	a	+	1

}

you	can	then	compile	it	with	scalac.	When	you	compile	it	with	the	following
command	and	look	at	its	output,	you’ll	find	that	there’s	still	a	method	in	a	class:

$	scalac	-Xprint:all	DefTest.scala

package	<empty>	{

		class	DefTest	extends	Object	{

				def	add1(a:	Int):	Int	=	a.+(1);		//<--	the	method

				def	<init>():	DefTest	=	{

						DefTest.super.<init>();

						()

				}

		}

}

If	you	further	disassemble	the	resulting	.class	file	with	javap,	you’ll	see	this
output:

$	javap	DefTest

Compiled	from	"DefTest.scala"

public	class	DefTest	{

				public	int	add1(int);			//<--	the	method

				public	DefTest();

}

Clearly,	add1	is	a	method	in	the	bytecode	for	the	DefTest	class.

Finally,	if	you	completely	decompile	the	.class	file	back	into	Java	source	code
using	Jad,	you’ll	again	see	that	add1	is	a	method	in	the	Java	version	of	the	
DefTest	class:

public	class	DefTest	{

				public	int	add1(int	a)	{

								return	a	+	1;

				}

				public	DefTest()	{}

}

By	all	accounts,	creating	a	Scala	def	method	creates	a	standard	method	in	a	Java
class.

Decompiling	a	val	function

A	Scala	function	that’s	created	with	val	is	very	different	than	a	method	created
with	def.	While	def	creates	a	method	in	a	class,	a	function	is	an	instance	of	a
class	that	implements	one	of	the	Function0	through	Function22	traits.

To	see	this,	create	a	class	named	ValTest.scala	with	these	contents:

class	ValTest	{

				val	add1	=	(a:	Int)	=>	a	+	1

}

When	you	compile	that	class	with	scalac,	you’ll	see	that	it	creates	two	.class
files:

ValTest.class

ValTest$$anonfun$1.class

When	you	decompile	ValTest.class	with	javap	you	see	this	output:

$	javap	ValTest

Compiled	from	"ValTest.scala"

public	class	ValTest	{

				public	scala.Function1<java.lang.Object,	java.lang.Object>	add1();

				public	ValTest();

}

That	output	shows	that	add1	is	defined	as	a	method	in	the	ValTest	class	that
returns	an	instance	of	the	Function1	trait.

Back	in	the	good	old	days	(around	Scala	2.8)	it	was	much	easier	to	look	at	this
code	to	see	what’s	going	on,	but	these	days	I	find	it	hard	to	see	what’s	going	on
in	these	class	files	using	javap,	so	I	revert	to	decompiling	them	with	Jad.
Decompiling	ValTest.class	converts	the	class	file	to	Java	source	code:

import	scala.Function1;

import	scala.Serializable;

import	scala.runtime.BoxesRunTime;

public	class	ValTest	{

				public	Function1	add1()	{

								return	add1;

				}

				public	ValTest()	{}

				private	final	Function1	add1	=	new	Serializable()	{

								public	final	int	apply(int	a)	{

												return	apply$mcII$sp(a);

								}

								public	int	apply$mcII$sp(int	a)	{

												return	a	+	1;

								}

												public	final	volatile	Object	apply(Object	v1)	{

																return	

																BoxesRunTime.boxToInteger(apply(BoxesRunTime.unboxToInt(v1)));

												}

				

												public	static	final	long	serialVersionUID	=	0L;

				}

;

}

While	this	code	is	still	hard	to	interpret,	a	couple	of	things	are	clear:

add1()	is	a	method	in	the	ValTest	class.

The	add1()	method	returns	the	add1	instance.

The	add1	instance	is	created	by	making	an	anonymous	class	instance	of	
scala.Serializable.

The	add1	instance	has	an	apply	method	that	calls	another	method	named	
apply$mcII$sp,	and	that	second	method	contains	the	body	of	the	original
function,	a	+	1.

What	isn’t	clear	from	this	code	unless	you	dig	pretty	deep	into	it	is	that	the
original	Scala	function:

val	add1	=	(a:	Int)	=>	a	+	1

creates	add1	as	an	instance	of	Function1.	It’s	easier	to	see	this	in	the	REPL.

Looking	at	val	functions	in	the	REPL

When	you	put	this	function	in	the	Scala	REPL,	you	see	this	result:

scala>	val	add1	=	(a:	Int)	=>	a	+	1

add1:	Int	=>	Int	=	<function1>

This	shows	that	add1	is	an	instance	of	Function1.	If	you’re	not	comfortable	with

the	REPL	output,	one	way	you	can	prove	this	is	to	show	that	add1	is	an	object
with	an	apply	method:

scala>	add1.apply(2)

res0:	Int	=	3

To	be	clear,	when	you	call	add1(2),	this	is	exactly	what	happens	under	the	hood.
Scala	has	some	nice	syntactic	sugar	that	hides	this	from	you	—	and	makes	your
code	easy	to	read	—	but	this	is	what	really	happens	under	the	hood.

You	can	further	demonstrate	this	by	looking	at	the	Function1	Scaladoc.	There
you’ll	see	that	any	class	that	implements	Function1	must	have	these	three
methods:

andThen

compose

toString

This	code	demonstrates	that	add1	has	the	andThen	method:

scala>	(add1	andThen	add1)(5)

res1:	Int	=	7

This	shows	that	compose	is	available	on	add1:

scala>	(add1	compose	add1)(10)

res2:	Int	=	12

toString	also	works:

scala>	add1.toString

res3:	String	=	<function1>

Finally,	because	add1	takes	an	Int	input	parameter	and	returns	an	Int,	it	is
implemented	as	an	instance	of	Function1[Int,Int].	You	can	also	demonstrate
this	in	the	REPL:

scala>	add1.isInstanceOf[Function1[Int,Int]]

res4:	Boolean	=	true

Clearly,	add1	is	an	object	of	type	Function1.

http://www.scala-lang.org/api/current/index.html#scala.Function1

Trying	that	on	a	def	method

By	comparison,	if	you	try	to	call	toString	on	a	method	created	with	def,	all	you
get	is	an	error:

scala>	def	double(a:	Int)	=	a	*	2

double:	(a:	Int)Int

scala>	double.toString

<console>:12:	error:	missing	arguments	for	method	double;

follow	this	method	with	`_'	if	you	want	to	treat	it	as	a	

partially	applied	function

							double.toString

							^

As	mentioned,	a	def	is	not	really	a	val,	it	just	works	like	a	val	when	you	pass	it
to	other	functions	because	of	the	Eta	Expansion	feature	that	I	mentioned	earlier.

Creating	Function	instances	manually

As	a	final	way	of	showing	that	a	function	created	with	val	creates	a	complete
object,	it	may	help	to	know	that	you	can	create	your	own	Function1,	Function2
…	Function22	instances	manually.	This	gives	you	another	idea	of	how	things
work	under	the	hood.

Previously	I	defined	an	add1	function	like	this:

val	add1	=	(a:	Int)	=>	a	+	1

Then	I	showed	that	it	looks	like	this	in	the	REPL:

scala>	val	add1	=	(a:	Int)	=>	a	+	1

add1:	Int	=>	Int	=	<function1>

The	following	code	shows	the	manual	way	to	create	a	similar	function:

class	Add2	extends	Function1[Int,	Int]	{

				def	apply(a:	Int)	=	a	+	2

}

val	add2	=	new	Add2

Once	you’ve	taken	those	steps,	you	can	invoke	add2	just	like	add1:

add2(1)

Because	add2	takes	an	Int	and	returns	an	Int,	it’s	implemented	as	an	instance	of
Function1[Int,Int].	Had	it	been	a	function	that	took	a	Double	and	returned	a	
String,	it	would	be	defined	as	a	Function1[Double,String].

If	 a	 function	 takes	 two	 input	 parameters,	 you	 define	 it	 as	 an
instance	of	Function2,	a	function	with	three	input	parameters	is
an	instance	of	Function3,	etc.

If	you	copy	and	paste	those	add2	lines	of	code	into	the	REPL,	you’ll	see	this
output,	which	confirms	that	it	works	as	described:

defined	class	Add2

add2:	Add2	=	<function1>

res0:	Int	=	3

Using	the	anonymous	class	syntax

You	can	also	manually	create	a	function	using	the	anonymous	class	syntax.
Here’s	a	Function2	instance	named	sumLengths	that	adds	the	lengths	of	two
strings	you	provide:

val	sumLengths	=	new	Function2[String,	String,	Int]	{

				def	apply(a:	String,	b:	String):	Int	=	a.length	+	b.length

}

The	REPL	shows	that	it	works	as	expected:

scala>	sumLengths("talkeetna",	"alaska")

res0:	Int	=	15

In	practice	I	don’t	create	functions	like	this,	but	it	can	be	helpful	to	know	some
of	the	things	that	the	Scala	compiler	does	for	you.

Using	parameterized	(generic)	types

One	thing	you	can	do	with	def	methods	that	you	can’t	do	with	val	functions	is
use	generic	types.	That	is,	with	def	you	can	write	a	function	that	takes	a	generic
type	A,	like	this:

def	firstChar[A](a:	A)	=	a.toString.charAt(0)

and	then	use	it	as	shown	in	these	examples:

firstChar("foo")

firstChar(42)

You	can’t	do	the	same	thing	with	the	simple	val	function	syntax:

//	error:	this	won't	compile

val	firstChar[A]	=	(a:	A)	=>	a.toString.charAt(0)

Coerce	a	parameterized	method	into	a	function

You	can	coerce	a	parameterized	method	into	a	function.	For	example,	start	with
a	method	that	uses	a	generic	type:

def	lengthOfThing[A]	=	(a:	A)	=>	a.toString.length

Then	coerce	that	method	into	a	function	as	you	declare	a	specific	type:

val	f	=	lengthOfThing[Int]

Once	you	do	that,	you	can	call	the	function	f	you	just	created:

f(694)

This	works,	as	shown	in	the	REPL:

scala>	def	lengthOfThing[A]	=	(a:	A)	=>	a.toString.length

lengthOfThing:	[A]=>	A	=>	Int

scala>	val	f	=	lengthOfThing[Int]

f:	Int	=>	Int	=	<function1>

scala>	f(694)

res0:	Int	=	3

Kinda-sorta	use	generic	types	with	FunctionX	traits

Digging	deeper	into	the	magic	toolbox	…	you	can	more	or	less	do	the	same
thing	by	using	parameterized	types	with	the	FunctionX	traits,	like	this	
Function2	example:

class	SumLengths[A,	B]	extends	Function2[A,	B,	Int]	{

				def	apply(a:	A,	b:	B):	Int	=	

								a.toString.length	+	b.toString.length

}

Once	you’ve	defined	that	class,	you	can	create	a	sumLengths	instance	like	this:

val	sumLengths	=	new	SumLengths[Any,	Any]

sumLengths("homer",	"alaska")

If	you	paste	the	class	and	those	last	two	lines	into	the	REPL,	you’ll	see	this
output:

defined	class	SumLengths

sumLengths:	SumLengths[Any,Any]	=	<function2>

res0:	Int	=	11

Some	of	these	examples	aren’t	very	practical;	I	just	want	to	show	some	things
that	can	be	done.

Summary

In	summary,	this	lesson	showed	the	differences	between	val	functions	and	def
methods.	Some	of	the	topics	that	were	covered	are:

Using	case	expressions	with	val	functions	and	anonymous	classes	without
requiring	the	leading	match

A	def	method	is	a	method	in	a	class	(just	like	a	Java	method	is	a	method	in
its	class)

val	functions	are	a	concrete	instances	of	Function0	through	Function22

val	functions	are	objects	that	have	methods	like	andThen	and	compose

How	to	manually	define	val	functions

See	also

Much	of	this	discussion	was	inspired	by	Jim	McBeath’s	article,	Scala
functions	vs	methods

Function	composition	(andThen,	compose)

Stack	Overflow	has	a	discussion	titled,	Difference	between	method	and
function	in	Scala,	which	builds	on	Mr.	McBeath’s	blog	post

How	much	one	ought	to	know	about	Eta	Expansion

Revealing	the	Scala	magician’s	code:	method	vs	function

An	old	scala-lang.org	post,	Passing	methods	around

http://jim-mcbeath.blogspot.com/2009/05/scala-functions-vs-methods.html
https://twitter.github.io/scala_school/pattern-matching-and-functional-composition.html
http://stackoverflow.com/questions/2529184/difference-between-method-and-function-in-scala
http://blog.jaceklaskowski.pl/2013/11/23/how-much-one-ought-to-know-eta-expansion.html
https://dzone.com/articles/revealing-scala-magician’s
http://www.scala-lang.org/old/node/11910.html

Recursion	is	Great,	But	…

Source	code

The	source	code	for	this	lesson	is	available	at	the	following	URL:

github.com/alvinj/FPRecursionIsGreatBut

https://github.com/alvinj/FPRecursionIsGreatBut

Goal

The	primary	goal	of	this	lesson	is	to	show	that	while	recursion	is	cool,	fun,	and
interesting,	with	Scala	methods	like	filter,	map,	fold,	and	reduce,	you	won’t
need	to	use	recursion	as	often	as	you	think.	As	just	one	example	of	this,	if	you
find	yourself	writing	a	recursive	function	to	walk	over	all	of	the	elements	in	a
list	to	return	some	final,	single	value,	this	is	a	sign	that	you	may	want	to	use	
fold	or	reduce	instead.

Introduction

As	you	saw	in	the	lessons	on	recursive	programming,	you	can	use	recursion	to
solve	“looping”	programming	problems	in	a	functional	way.	Hopefully	you	also
saw	that	recursion	isn’t	too	hard,	and	might	even	be	fun.

So,	while	recursion	is	great,	as	a	functional	programmer	you	also	need	to	know
that	you	won’t	need	to	use	it	as	often	as	you	might	think.	When	you’re	working
with	Scala	collections	it’s	often	easier	to	use	built-in	collection	methods	that	take
care	of	the	recursion	for	you.	Some	of	the	most	common	methods	you’ll	use	are:

filter

map

reduce

fold

This	lesson	shows	how	to	use	built-in	collections	methods	like	reduce,	fold,	and
scan,	so	you	can	use	them	instead	of	writing	custom	recursion	functions.

Calculating	a	sum	with	recursion

As	a	quick	review,	in	the	recursion	lessons	you	saw	that	if	you	have	a	List	like
this:

val	list	=	List(1,	2,	3,	4)

you	can	write	a	recursive	function	to	calculate	the	sum	of	the	list	elements	like
this:

def	sum(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	0

				case	x	::	xs	=>	x	+	sum(xs)

}

This	function	isn’t	tail-recursive,	but	it’s	simpler	than	the	tail-recursive	sum
function,	so	I’ll	use	it	in	this	lesson.

As	a	quick	review,	you	can	read	this	function	—	the	second	case	statement	in
particular	—	as,	“The	sum	of	a	List	is	(a)	the	value	of	the	first	element	plus	(b)
the	sum	of	the	remaining	elements.”	Also,	because	the	last	element	in	a	Scala	
List	is	the	Nil	value,	you	write	the	first	case	condition	to	end	the	recursion	(and
return	from	it)	when	that	last	element	is	reached.

That’s	nice,	but	…

That	recursive	sum	function	is	awesome,	but	if	you	look	closely	at	a	product
algorithm,	you’ll	begin	to	see	a	pattern:

def	product(list:	List[Int]):	Int	=	list	match	{

				case	Nil	=>	1

				case	x	::	xs	=>	x	*	product(xs)

}

Do	you	see	the	pattern?

If	not,	see	if	you	can	find	the	pattern	by	filling	in	the	blanks	in	the	following
code:

def	ALGORITHM(list:	List[Int]):	Int	=	list	match	{

				//	this	case	always	handles	what?

				case	___________	

				//	this	case	always	seems	to	have	a	head,	tail,	and	<something	else>

				case	____	::	____	=>	____		________	ALGORITHM(____)

}

I	probably	didn’t	give	you	enough	hints	of	what	I’m	looking	for,	so	I’ll	give	you
my	solution.	When	you	look	at	sum	and	product	in	a	general	sense,	the	pattern	I
see	looks	like	this:

def	ALGORITHM(xs:	List[Int]):	Int	=	xs	match	{

				case	[TERMINATING	CONDITION]

				case	HEAD	::	TAIL	=>	HEAD	[OPERATOR]	ALGORITHM(TAIL)

}

Because	there’s	a	set	of	commonly-needed	recursive	algorithms	—	and	because
programmers	don’t	like	writing	the	same	code	over	and	over	—	these	algorithms
have	been	encapsulated	as	methods	in	the	Scala	collections	classes.	The	great
thing	about	this	is	that	you	can	use	these	existing	methods	instead	of	having	to
write	custom	recursive	functions	manually	each	time.

In	the	case	of	the	sum	and	product	algorithms	I	just	showed,	this	general	pattern
is	encapsulated	as	a	series	of	“reduce”	functions	in	the	collections	classes.	I’ll
demonstrate	those	next.

Using	reduce

While	the	reduce	method	on	the	Scala	List	class	isn’t	implemented	exactly	as	I
showed	in	the	sum	and	product	functions,	it	does	encapsulate	the	same	basic
algorithm:	walk	through	a	sequence	of	elements,	apply	a	function	to	each
element,	and	then	return	a	final,	single	value.	As	a	result,	you	can	use	reduce
instead	of	custom	recursive	algorithms,	like	the	sum	and	product	functions.

At	 the	 time	 of	 this	 writing,	 the	 List	 class	 reduce	 method	 is
implemented	 in	 the	 TraversableOnce	 trait.	 If	 you	 look	 at	 the
source	 code	 for	 that	 class,	 you’ll	 see	 that	 reduce	 calls	
reduceLeft,	so	you’ll	want	to	pay	attention	to	the	reduceLeft
source	code.

When	you	first	use	reduce	it	may	look	a	little	unusual,	but	you’ll	quickly	get
used	to	it,	and	eventually	appreciate	it.

How	to	calculate	a	sum	with	reduce

To	use	reduce	on	a	Scala	sequence,	all	you	have	to	do	is	provide	the	algorithm
you	want	reduce	to	use.	For	example,	a	“sum”	algorithm	using	reduce	looks
like	this:

def	sum(list:	List[Int]):	Int	=	list.reduce(_	+	_)

If	you’ve	never	used	reduce	before,	that	_	+	_	code	may	look	a	little	unusual	at
first,	but	it’s	just	an	anonymous	function.	It	may	also	be	easier	to	read	if	I	show
the	long	form	for	the	anonymous	function:

def	sum(list:	List[Int]):	Int	=	list.reduce((x,y)	=>	

				x	+	y

)

A	key	here	is	knowing	that	reduce	passes	two	variables	to	the	anonymous
function.	I’ll	explain	these	variables	more	in	the	next	section.

Until	then,	a	quick	example	in	the	Scala	REPL	demonstrates	that	this	approach
works	as	a	“sum	the	elements	in	a	list”	algorithm:

http://www.scala-lang.org/api/current/index.html#scala.collection.TraversableOnce

scala>	def	sum(list:	List[Int]):	Int	=	list.reduce((x,y)

							=>	x	+	y)

sum:	(list:	List[Int])Int

scala>	val	a	=	List(1,2,3,4)

a:	List[Int]	=	List(1,	2,	3,	4)

scala>	sum(a)

res1:	Int	=	10

Cool,	right?

Let’s	take	a	look	at	how	reduce	works.

How	reduce	works

The	reduce	method	in	Scala	is	implemented	as	a	little	wrapper	method	that	calls
the	reduceLeft	method,	so	I’ll	describe	how	reduceLeft	works	first.	After	that
I’ll	show	how	reduceRight	works.

Have	 no	 fear	 about	 those	 names.	 reduceLeft	 simply	walks	 a
collection	 from	 the	 first	 element	 to	 the	 last	 element	 (from	 the
left	 to	 the	 right),	 and	 reduceRight	 does	 the	 opposite	 thing,
walking	 the	collection	 from	 the	 last	 element	backwards	 to	 the
first	element.

How	reduceLeft	works

When	you	use	reduceLeft	to	walk	through	a	sequence,	it	walks	the	sequence	in
order	from	its	first	element	(the	head	element)	to	the	last	element.	For	instance,
if	a	sequence	named	friends	has	four	elements,	reduceLeft	first	works	with	
friends[0],	then	friends[1],	then	friends[2],	and	finally	friends[3].

More	accurately,	what	reduceLeft	does	is:

It	applies	your	algorithm	to	the	first	two	elements	in	the	sequence.	In	the
first	step	it	applies	the	algorithm	to	friends[0]	and	friends[1].

Applying	your	algorithm	to	those	two	elements	yields	a	result.

Next,	reduceLeft	applies	your	algorithm	to	(a)	that	result,	and	(b)	the	next
element	in	the	sequence	(friends[2],	in	this	case).	That	yields	a	new
result.

reduceLeft	continues	in	this	manner	for	all	elements	in	the	list.

When	reduceLeft	finishes	running	over	all	of	the	elements	in	the	sequence,
it	returns	the	final	result	as	its	value.	For	example,	a	sum	algorithm	returns
the	sum	of	all	of	the	elements	in	a	list	as	a	single	value,	and	a	product
algorithm	returns	the	product	of	all	list	elements	as	a	single	value.

As	you	can	imagine,	this	is	where	the	name	“reduce”	comes	from	—	it’s	used	to
reduce	an	entire	list	down	to	some	meaningful,	single	value.

One	subtle	but	important	note	about	reduceLeft:	the	function	you	supply	must
return	the	same	data	type	that’s	stored	in	the	collection.	This	is	necessary	so	
reduceLeft	can	combine	(a)	the	temporary	result	from	each	step	with	(b)	the
next	element	in	the	collection.

Demonstrating	how	reduceLeft	works

Next,	I’ll	demonstrate	how	reduceLeft	works	in	two	ways.	First,	I’ll	add	some
“debug/trace”	code	to	an	algorithm	so	you	can	see	output	from	reduceLeft	as	it
runs.	Second,	I’ll	show	a	handy	diagram	I	use	when	I	apply	reduceLeft	to	new
algorithms.

1)	Showing	how	reduceLeft	works	with	debug/trace
code

A	good	way	to	show	how	reduceLeft	works	is	to	put	some	debugging	println
statements	inside	an	algorithm.	I’ll	use	a	modified	version	of	the	sum	function	I
showed	earlier	to	demonstrate	this.

First,	I’ll	define	an	add	function	that	produces	debug	output:

def	add(x:	Int,	y:	Int):	Int	=	{

				val	theSum	=	x	+	y

				println(s"received	$x	and	$y,	their	sum	is	$theSum")

				theSum

}

All	this	function	does	is	add	two	integers,	but	before	it	returns	its	result	it	prints
out	information	that	will	help	demonstrate	how	reduceLeft	works.

Now	all	I	have	to	do	is	use	this	add	function	with	some	sample	data.	This	is	what
it	looks	like	when	I	use	add	with	reduceLeft	on	a	simple	List[Int]:

scala>	val	a	=	List(1,2,3,4)

a:	List[Int]	=	List(1,	2,	3,	4)

scala>	a.reduceLeft(add)

received	1	and	2,	their	sum	is	3

received	3	and	3,	their	sum	is	6

received	6	and	4,	their	sum	is	10

res0:	Int	=	10

This	output	shows:

The	first	time	add	is	called	by	reduceLeft	it	receives	the	values	1	and	2.	It
yields	the	result	3.

The	second	time	add	is	called	it	receives	the	value	3	—	the	result	of	the
previous	application	—	and	3,	the	next	value	in	the	list.	It	yields	the	result	
6.

The	third	time	add	is	called	it	receives	the	value	6	—	the	result	of	the
previous	application	—	and	4,	the	next	value	in	the	list.	It	yields	the	result	
10.

At	this	point	reduceLeft	has	finished	walking	over	the	elements	in	the	list
and	it	returns	the	final	result,	10.

Exercise

Write	down	what	the	reduceLeft	output	looks	like	if	you	change	the	add
algorithm	to	a	product	algorithm:

scala>	a.reduceLeft(product)

received	__	and	__,	their	product	is	____

received	__	and	__,	their	product	is	____

received	__	and	__,	their	product	is	____

res0:	Int	=	____

Exercise

reduceLeft	is	flexible,	and	can	be	used	for	any	purpose	where	you	need	to	walk
through	a	sequence	in	the	manner	described	to	yield	a	final,	single	result.	For
instance,	this	function	yields	the	largest	of	the	two	values	it’s	given:

def	max(a:	Int,	b:	Int)	=	{

				val	max	=	if	(a	>	b)	a	else	b

				println(s"received	$a	and	$b,	their	max	is	$max")

				max

}

Exercise:	Given	this	new	list:

val	xs	=	List(11,	7,	14,	9)

write	down	what	the	output	looks	like	when	you	use	max	with	reduceLeft	on
that	list:

scala>	xs.reduceLeft(max)

received	__	and	__,	their	max	is	____

received	__	and	__,	their	max	is	____

received	__	and	__,	their	max	is	____

res0:	Int	=	____

2)	Showing	how	reduceLeft	works	with	diagrams

Whenever	I	forget	how	Scala’s	“reduce”	functions	work,	I	come	back	to	a	simple
diagram	that	helps	remind	me	of	how	the	process	works.

To	demonstrate	it,	I’ll	start	with	this	list	of	values:

val	a	=	List(1,	2,	5,	10)

Then	I’ll	imagine	that	I’m	using	the	add	function	with	reduceLeft	on	that	list:

a.reduceLeft(add)

The	first	thing	I	do	is	write	out	the	first	several	values	of	the	list	in	a	row,	as
shown	in	Figure	[fig:fold-1].

I	leave	spaces	between	the	values	because	my	next	step	involves	hand-
calculating	the	result	of	applying	my	algorithm	to	the	first	two	elements	of	the
list,	as	shown	in	Figure	[fig:fold-2].

This	shows	that	I’m	using	a	+	algorithm,	and	in	its	first	step,	reduceLeft	applies

that	algorithm	to	the	first	two	values	in	the	list,	1	and	2.	This	yields	the	first
intermediate	result,	3,	as	shown	in	Figure	[fig:fold-3].

The	next	thing	I	do	is	carry	this	intermediate	value	up	to	the	space	between	the
original	2	and	5	in	the	list.	This	is	shown	in	Figure	[fig:fold-4].

As	shown	in	Figure	[fig:fold-5],	I	then	add	this	intermediate	value	(3)	to	the	next
value,	5.

This	gives	me	a	new	intermediate	value	of	8,	as	shown	in	Figure	[fig:fold-6].

Now	I	proceed	as	before,	carrying	that	value	back	to	the	top,	between	the
original	5	and	10.	This	is	shown	in	Figure	[fig:fold-7].

Finally,	as	shown	in	Figure	[fig:fold-8],	I	add	this	intermediate	value	(8)	to	the
last	value	in	the	list	(10)	to	get	the	final	result,	18.

For	me,	this	is	a	nice	way	of	visualizing	how	the	reduceLeft	function	works.
When	I	haven’t	used	it	for	a	while,	I	find	that	it	helps	to	see	a	diagram	like	this.

Exercises

1.	 Using	the	same	list	values,	draw	the	“product”	algorithm.	(See

Figure	[fig:fold-11].)

1.	 Using	the	same	list	values,	draw	the	“max”	algorithm.	(See	Figure	[fig:fold-
12].)

Summary	of	the	visual	diagram

In	summary,	this	diagram	is	a	visual	way	to	show	how	reduceLeft	works.	The
generic	version	of	the	diagram	is	shown	in	Figure	[fig:fold-Generic-Fold].

A	look	at	a	different	data	type

The	data	type	contained	in	the	sequence	you’re	working	on	can	be	anything	you
need.	For	instance,	if	you	want	to	determine	the	longest	or	shortest	string	in	a	list
of	strings,	you	can	use	reduceLeft	with	the	length	method	of	the	String	class.

To	demonstrate	this,	start	with	a	sequence	of	strings:

val	peeps	=	Vector(

				"al",	"hannah",	"emily",	"christina",	"aleka"

)

Then	you	can	determine	the	longest	string	like	this:

scala>	peeps.reduceLeft((x,y)	=>	if	

							(x.length	>	y.length)	x	else	y)

res0:	String	=	christina

and	the	shortest	string	like	this:

scala>	peeps.reduceLeft((x,y)	=>	if	

							(x.length	<	y.length)	x	else	y)

res1:	String	=	al

You	can	also	create	functions	like	longest	and	shortest:

def	longest(x:	String,	y:	String)	=	

				if	(x.length	>	y.length)	x	else	y

def	shortest(x:	String,	y:	String)	=	

				if	(x.length	<	y.length)	x	else	y

and	use	them	to	get	the	same	results:

scala>	peeps.reduceLeft(longest)

res0:	String	=	christina

scala>	peeps.reduceLeft(shortest)

res1:	String	=	al

If	this	had	been	a	collection	of	Person	instances,	you	could	run	a	similar
algorithm	on	each	person’s	name	to	get	the	longest	and	shortest	names.

As	another	example,	you	can	concatenate	a	list	of	strings	using	the	same
approach	I	used	to	sum	the	elements	in	a	list:

scala>	val	x	=	List("foo",	"bar",	"baz")

x:	List[String]	=	List(foo,	bar,	baz)

scala>	x.reduceLeft(_	+	_)

res0:	String	=	foobarbaz

reduceRight

The	reduceRight	method	works	like	reduceLeft,	but	it	marches	through	the
elements	in	order	from	the	last	element	to	the	first	element.	For	summing	the
elements	in	a	List[Int]	the	order	doesn’t	matter:

scala>	val	a	=	List(1,2,3,4)

a:	List[Int]	=	List(1,	2,	3,	4)

scala>	a.reduceLeft(_	+	_)

res1:	Int	=	10

scala>	a.reduceRight(_	+	_)

res2:	Int	=	10

But	if	for	some	reason	you	want	to	apply	a	subtraction	algorithm	to	the	same	list,
it	can	make	a	big	difference:

scala>	val	a	=	List(1,2,3,4)

a:	List[Int]	=	List(1,	2,	3,	4)

scala>	a.reduceLeft(_	-	_)

res0:	Int	=	-8

scala>	a.reduceRight(_	-	_)

res1:	Int	=	-2

How	reduceRight	receives	its	elements

To	be	clear	about	how	reduceRight	works,	this	example	shows	how	it	works
with	the	earlier	“debug	add”	function:

scala>	val	a	=	List(1,2,3,4)

a:	List[Int]	=	List(1,	2,	3,	4)

scala>	a.reduceRight(add(_,_))

received	3	and	4,	their	sum	is	7

received	2	and	7,	their	sum	is	9

received	1	and	9,	their	sum	is	10

res0:	Int	=	10

Note	that	in	the	first	step,	reduceRight	receives	the	elements	as	3	and	4.	When	I
first	learned	about	it,	I	assumed	that	it	would	receive	those	elements	as	4	and	3
(starting	with	the	last	element,	then	the	next-to-last	element,	etc.).	This	is	an
important	detail	to	know.

Note	1:	reduce	vs	reduceLeft

Being	one	for	brevity,	I’d	prefer	to	use	reduce	in	my	code	rather	than	
reduceLeft,	assuming	that	they	work	the	same	way.	However,	that	doesn’t
appear	to	be	a	safe	assumption.

Ever	since	I	began	looking	into	it	(starting	somewhere	around	2011),	the	reduce
method	in	the	Scala	sequence	classes	has	always	just	called	reduceLeft.	This	is
how	the	reduce	method	is	defined	in	the	TraversableOnce	class	in	Scala	2.12.2:

def	reduce[A1	>:	A](op:	(A1,	A1)	=>	A1):	A1	=

				reduceLeft(op)

That	being	said,	there	appears	to	be	no	guarantee	that	this	will	always	be	the
case.	The	documentation	for	the	reduce	method	in	the	List	class	Scaladoc
states,	“The	order	in	which	operations	are	performed	on	elements	is	unspecified
and	may	be	nondeterministic.”	As	a	result,	I	always	use	reduceLeft	when	I	want
to	walk	a	collection	from	its	first	element	to	its	last.

In	 the	Scala	Cookbook	 I	 showed	 that	reduce	 is	 definitely	 not
deterministic	when	using	the	parallel	collections	classes.

Note	2:	Performance

In	theory,	if	your	algorithm	is	commutative	—	changing	the	order	of	the
operands	does	not	change	the	result,	such	as	+	and	*	—	you	can	use	reduceLeft
or	reduceRight	to	get	the	same	result.

In	practice,	my	tests	are	different	than	theory.	In	one	example,	using	Scala	2.12
with	the	default	JVM	parameters,	when	I	create	a	Vector	that	contains	ten
million	random	Int	values,	xs.reduceLeft(max)	is	consistently	at	least	three
times	faster	than	xs.reduceRight(max).

Microbenchmarks	 like	 this	 are	 notoriously	 criticized,	 but	 a
difference	of	3-4X	is	significant.	You	can	test	this	on	your	own
system	 with	 the	 ReducePerformanceTest1	 application	 in	 this
lesson’s	source	code.

Furthermore,	if	(a)	you’re	specifically	working	with	a	Scala	List	and	(b)	your
algorithm	is	commutative,	you	should	always	use	reduceLeft.	This	is	because	

http://amzn.to/24ivK4G
https://en.wikipedia.org/wiki/Commutative_property

List	is	a	linear	sequential	collection	—	not	an	indexed	sequential	collection	—
so	it	will	naturally	be	faster	for	an	algorithm	to	work	from	the	head	of	a	List
towards	the	tail.	(A	Scala	List	is	a	singly	linked-list,	so	moving	from	the	head
towards	the	tail	of	the	list	is	fast	and	efficient.)

The	source	code	for	this	lesson	shows	that	the	List	problem	is	worse	than	the
previous	paragraph	suggests.	I’ve	found	that	if	you’re	specifically	working	with
a	Scala	List	you	can	easily	generate	a	StackOverflowError	with	a	call	to	
reduceRight(max).	As	you	can	see	in	the	ReducePerformanceTest1	application
source	code	for	this	lesson,	with	the	default	JVM	settings	and	a	List	with
30,000	Int	values,	calling	xs.reduceRight(max)	throws	a	
StackOverflowError.

In	a	related	note,	the	reduceRight	method	attempts	to	do	what	it	can	to	be
efficient.	In	the	TraversableOnce	class	in	Scala	2.12.2,	reduceRight	first
reverses	the	list	and	then	calls	reduceLeft:

def	reduceRight[B	>:	A](op:	(A,	B)	=>	B):	B	=	{

				if	(isEmpty)

								throw	new	

				UnsupportedOperationException("empty.reduceRight")

				reversed.reduceLeft[B]((x,	y)	=>	op(y,	x))

}

In	that	same	class,	reversed	is	defined	like	this:

protected[this]	def	reversed	=	{

				var	elems:	List[A]	=	Nil

				self	foreach	(elems	::=	_)

				elems

}

See	the	source	code	of	that	class	for	more	information.	(And	wow,	did	you
notice	the	use	of	a	var	field	and	a	foreach	call	in	reversed,	and	how	it	takes	no
input	parameters?	There’s	no	FP	in	this	method.)

In	summary,	my	rules	for	List	are:

If	the	function	is	commutative,	use	reduceLeft	or	reduce

If	the	function	is	not	commutative,	use	what	you	need	for	your	algorithm
(reduceLeft	or	reduceRight)

Finally,	if	your	algorithm	requires	you	to	use	reduceRight	and	you	find	that

https://www.scala-lang.org/api/current/scala/collection/TraversableOnce.html

there	is	a	performance	problem,	consider	using	an	indexed	sequential	collection
such	as	Vector.

If	you’re	not	familiar	with	the	terms	linear	and	indexed	 in	 this
discussion,	I	write	about	them	in	the	Collections	lessons	in	the
Scala	Cookbook.

http://amzn.to/24ivK4G

How	foldLeft	works

The	foldLeft	method	works	just	like	reduceLeft,	but	it	lets	you	set	a	seed
value	for	the	first	element.	The	following	examples	demonstrate	a	“sum”
algorithm,	first	with	reduceLeft	and	then	with	foldLeft,	to	demonstrate	the
difference:

scala>	val	a	=	Seq(1,	2,	3)

a:	Seq[Int]	=	List(1,	2,	3)

scala>	a.reduceLeft(_	+	_)

res0:	Int	=	6

scala>	a.foldLeft(20)(_	+	_)

res1:	Int	=	26

scala>	a.foldLeft(100)(_	+	_)

res2:	Int	=	106

In	the	last	two	examples,	foldLeft	uses	20	and	then	100	for	its	first	element,
which	affects	the	final	sum,	as	shown.

To	further	demonstrate	how	foldLeft	works,	I’ll	go	back	to	the	debug	add
function	I	used	earlier:

def	add	(x:	Int,	y:	Int):	Int	=	{

				val	theSum	=	x	+	y

				println(s"received	$x	and	$y,	their	sum	is	$theSum")

				theSum

}

Here’s	the	result	of	applying	add	to	the	last	foldLeft	example:

scala>	val	a	=	Seq(1,	2,	3)

a:	Seq[Int]	=	List(1,	2,	3)

scala>	a.foldLeft(100)(add)

received	100	and	1,	their	sum	is	101

received	101	and	2,	their	sum	is	103

received	103	and	3,	their	sum	is	106

res0:	Int	=	106

Aside:	foldLeft	uses	two	parameter	lists

Remember	that	when	you	see	something	like	foldLeft(20)(_	+	_),	it	means
that	foldLeft	is	defined	to	take	two	parameter	lists.	Figure	[fig:fold-foldLeft-
signature]	shows	what	foldLeft’s	signature	looks	like	on	Scala’s	sequential

collection	classes.

foldLeft	in	the	Seq	class	is	defined	to	take	two	parameter	lists

How	foldRight	works

The	foldRight	method	works	just	like	reduceRight	—	working	through	the
sequence	in	order	from	the	last	element	back	to	the	first	element	—	and	also	lets
you	set	a	seed	value.	Here’s	an	example	of	how	foldRight	works	with	the	add
function	I	just	showed:

scala>	a.foldRight(100)(add)

received	3	and	100,	their	sum	is	103

received	2	and	103,	their	sum	is	105

received	1	and	105,	their	sum	is	106

res0:	Int	=	106

Again,	for	algorithms	that	aren’t	commutative,	it	can	be	important	to	notice	the
order	in	which	the	first	two	elements	are	supplied	to	your	function.

scanLeft	and	scanRight

Two	methods	named	scanLeft	and	scanRight	walk	through	a	sequence	in	a
manner	similar	to	foldLeft	and	foldRight,	but	the	key	difference	is	that	they
return	a	sequence	rather	than	a	single	value.

The	scanLeft	Scaladoc	states,	“Produces	a	collection	containing	cumulative
results	of	applying	the	operator	going	left	to	right.”	To	understand	how	it	works,
I’ll	use	the	trusty	add	function	again:

def	add	(x:	Int,	y:	Int):	Int	=	{

				val	theSum	=	x	+	y

				println(s"received	$x	and	$y,	their	sum	is	$theSum")

				theSum

}

Here’s	what	scanLeft	looks	like	when	it’s	used	with	add	and	a	seed	value:

scala>	val	a	=	Seq(1,	2,	3)

a:	Seq[Int]	=	List(1,	2,	3)

scala>	a.scanLeft(10)(add)

received	10	and	1,	their	sum	is	11

received	11	and	2,	their	sum	is	13

received	13	and	3,	their	sum	is	16

res0:	Seq[Int]	=	List(10,	11,	13,	16)

A	few	notes	about	this:

scanLeft	returns	a	new	sequence,	as	opposed	to	the	single	value	that	
reduceLeft	and	foldLeft	return.

scanLeft	is	a	little	like	map,	but	where	map	applies	a	function	to	each
element	in	a	collection,	scanLeft	applies	a	function	to	(a)	the	previous
result	and	(b)	the	current	element	in	the	sequence.

As	a	final	note,	the	scanRight	method	works	the	same	way,	but	marches	through
the	collection	from	the	last	element	backwards	to	the	first	element:

scala>	a.scanRight(10)(add)

received	3	and	10,	their	sum	is	13

received	2	and	13,	their	sum	is	15

received	1	and	15,	their	sum	is	16

res1:	Seq[Int]	=	List(16,	15,	13,	10)

How	foldLeft	is	like	recursion

I	mentioned	at	the	beginning	of	this	lesson	that	you	won’t	have	to	use	recursion
as	often	as	you	think	because	the	FP	developers	who	came	before	us	recognized
that	there	are	certain	common	patterns	involved	in	writing	recursive	functions.

For	instance,	imagine	a	world	in	which	all	lists	contain	only	three	elements,	and
you	want	to	write	a	foldLeft	function.	If	you	further	assume	that	you’re	writing
a	foldLeft	function	for	only	Int	values,	you	can	write	foldLeft	like	this:

def	foldLeft(a:	Int)(xs:	List[Int])(f:	(Int,	Int)	=>	Int):

				Int	=	{

				//	1st	application

				val	result1	=	f(a,	xs(0))

				//	2nd	application

				val	result2	=	f(result1,	xs(1))

				//	3rd	application

				val	result3	=	f(result2,	xs(2))

				result3

}

When	you	look	at	that	code,	it	sure	looks	like	there’s	a	pattern	there:	a	recursive
pattern	at	that!	In	fact,	if	you	rename	the	input	parameter	a	to	result0,	the
pattern	becomes	even	more	obvious:

//	1st	iteration

val	result1	=	f(result0,	xs(0))

//	2nd	iteration

val	result2	=	f(result1,	xs(1))

//	3rd	iteration

val	result3	=	f(result2,	xs(2))

result3

The	pattern	is:

Create	a	result	by	applying	the	function	f	to	(a)	the	previous	result	and	(b)
the	current	element	in	the	list.

Do	the	same	thing	with	the	new	result	and	the	next	list	item.

Do	the	same	thing	with	the	new	result	and	the	next	list	item	…

Implementing	foldLeft	with	recursion

I	showed	how	to	write	recursive	code	earlier	in	this	book,	so	at	this	point	I’ll	just
jump	right	into	a	complete	example	of	how	to	write	a	foldLeft	function	for	a	
List[Int]	using	recursion:

package	folding

object	FoldLeftInt	extends	App	{

				val	a	=	List(1,2,3,4)

				def	add(a:	Int,	b:	Int)	=	a	+	b

				println(foldLeft(0)(a)(add))

				def	foldLeft(lastResult:	Int)(list:	List[Int])(f:	(Int,	Int)	=>	Int):	

								Int	=	list	match	{

								case	Nil	=>	lastResult

								case	x	::	xs	=>	{

												val	result	=	f(lastResult,	x)

												println(s"last:	$lastResult,	x:	$x,	result	=	$result")

												foldLeft(result)(xs)(f)

								}

				}

}

I	left	the	debugging	println	statement	in	there	so	you	can	see	this	output	when
you	run	this	program:

last:	0,	x:	1,	result	=	1

last:	1,	x:	2,	result	=	3

last:	3,	x:	3,	result	=	6

last:	6,	x:	4,	result	=	10

10

As	this	shows,	foldLeft	and	other	functions	like	it	are	just	convenience
functions	that	exist	so	you	don’t	have	to	write	the	same	recursive	code	over	and
over	again.

Convert	foldLeft	to	use	generic	types

As	I’ve	shown	throughout	this	book,	I	often	write	functions	using	a	specific
type,	then	convert	them	to	a	generic	type	when	I	see	that	the	algorithm	doesn’t
depend	on	the	specific	type.	The	foldLeft	algorithm	doesn’t	depend	on	the	type
being	an	Int,	so	I	can	replace	all	of	the	Int	references	in	the	function	signature
to	A,	and	then	add	the	required	[A]	before	the	function	parameter	lists:

def	foldLeft[A](lastResult:	A)(list:	List[A])(f:	(A,	A)	=>	A):	A	

				=	list	match	{	...

Even	more	methods

There	are	more	methods	in	the	Scala	collections	classes	that	work	in	a	similar
manner.	See	the	List	class	Scaladoc	for	a	complete	list	of	the	methods	that	are
available	for	the	List	class.

https://www.scala-lang.org/api/current/scala/collection/immutable/List.html

Key	points

In	summary,	the	goal	of	this	lesson	is	to	demonstrate	why	you	won’t	need	to
write	recursive	functions	as	often	as	you	might	expect.	Built-in	Scala	collection
methods	like	filter,	map,	reduce,	and	fold	greatly	reduce	the	number	of
custom	“iterate	over	this	list”	functions	you’ll	need	to	write.

In	fact,	if	you	find	yourself	writing	a	recursive	function	to	walk	over	all	of	the
elements	in	a	list	to	return	some	final,	single	value,	this	is	a	sign	that	you	may
want	to	use	fold	or	reduce	instead.

See	also

“Fold”	on	the	Haskell	Wiki

“Fold”	on	Wikipedia

How	to	use	variable	names	with	foldLeft

How	to	walk	through	a	Scala	collection	with	reduce	and	fold

The	Scala	Cookbook	intentionally	includes	over	130	pages	of	recipes	and
examples	of	how	to	use	the	Scala	collections	methods

https://wiki.haskell.org/Fold
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
http://alvinalexander.com/source-code/scala/how-use-variable-names-scala-foldleft-reduceleft-and-reduceright-methods
http://alvinalexander.com/scala/how-to-walk-scala-collections-reduceleft-foldright-cookbook
http://amzn.to/24ivK4G

for	expression	translation	examples
This	appendix	consists	of	examples	of	how	different	for	expressions	translate	to	
map	and	flatMap	function	calls.	A	few	examples	also	show	foreach	and	
withFilter.	(I	don’t	include	a	thorough	discussion	of	each	translation,	I	just
show	my	initial	code	and	how	it’s	translated	by	the	Scala	compiler.)

Sample	lists

The	examples	that	follow	assume	that	three	List	variables	named	xs,	ys,	and	zs
exist,	such	as	these:

val	xs	=	List(1,2,3)

val	ys	=	List(4,5,6)

val	zs	=	List(7,8,9)

The	Scala	compiler	translates	this	for	expression:

for	{

				x	<-	xs

}	println(x)

into	this	code:

xs.foreach(x	=>	println(x))

Notes

for/println	translates	to	foreach

This	for	expression:

val	a	=	for	{

				x	<-	xs

}	yield	x	

translates	to	this	code:

val	a	=	xs.map(x	=>	x)

Notes

a	single	generator	in	for/yield	translates	to	map

This	for	expression:

val	a	=	for	{

				x	<-	xs

				y	<-	ys

}	yield	x	+	y

translates	to	this	code:

val	a	=	xs.flatMap	{	x	=>	

				ys.map(y	=>	x	+	y)

}

Notes

two	generators	in	for/yield	becomes	flatMap/map

This	for	expression:

val	x	=	for	{

				i	<-	Option(1)

				j	<-	Option(2)

}	yield	i	*	j

translates	to	this	code:

val	x	=	Option(1).flatMap	{	i	=>	

				Option(2).map	{	j	=>	

								i	*	j

				}

}

Notes

as	in	the	previous	example,	two	generators	in	for/yield	becomes	
flatMap/map.	It	doesn’t	matter	if	they	class	in	the	for	expression	is	a	List
or	an	Option.

This	for	expression:

val	a	=	for	{

				x	<-	xs

				y	<-	ys

				z	<-	zs

}	yield	x	+	y	+	z

translates	to	this	code:

val	a	=	xs.flatMap	{	x	=>	

				ys.flatMap	{	y	=>	

								zs.map	{	z	=>	

												x	+	y	+	z

								}

				}

}

Notice	that	what	I	show	in	the	translated	code	as	x	+	y	+	z	is	a	simplification	of
what	really	happens.	When	scalac	compiles	the	code,	it	really	looks	like	this:

zs.map(((z)	=>	x.$plus(y).$plus(z)))

I	mention	this	now	because	you’ll	see	it	in	some	of	the	examples	that	follow.

Notes

three	generators	in	for/yield	becomes	flatMap/flatMap/map

This	for	expression:

val	a	=	for	{

				x	<-	xs

				if	x	<	2			//filter

}	yield	x

translates	to	this	code:

val	a	=	xs.withFilter(x	=>	x	<	2)

										.map(x	=>	x)

Notes

‘if’	translates	to	withFilter

notice	that	withFilter	is	called	before	map

This	for	expression:

val	a	=	for	{

				x	<-	xs

				if	x	>	2				//filter

				y	<-	ys

				z	<-	zs

}	yield	x	+	y	+	z

translates	to	this	code:

val	a	=	xs.withFilter	{	x	=>	

				x.$greater(2).flatMap	{	x	=>	

								ys.flatMap	{	y	=>	

												zs.map	{	z	=>	

																x.$plus(y).$plus(z)

												}

								}

				}

}

Notes

if	translates	to	withFilter	(at	the	appropriate	place)

This	for	expression:

val	a	=	for	{

				x	<-	xs

				if	x	>	2				//filter

				y	<-	ys

				z	<-	zs

}	yield	{

				val	b	=	x	+	y

				val	c	=	b	*	z

				c

}

translates	to	this	code:

val	a	=	xs.withFilter	{	x	=>	

				x.$greater(2).flatMap	{	x	=>	

								ys.flatMap	{	y	=>	

												zs.map	{	z	=>

																val	b	=	x.$plus(y)

																val	c	=	b.$times(z)

																c

												}

								}

				}

}

Notes

I	created	this	example	to	show	that	(a)	you	can	use	a	block	of	code	after	yield,
and	(b)	how	that	code	is	translated	by	the	compiler	into	an	anonymous	function
inside	map.

A	Review	of	Case	Classes
Introduction

This	appendix	chapter	is	an	excerpt	from	the	Scala	Cookbook.	This	is	Recipe
4.14	of	the	Cookbook,	“How	to	generate	boilerplate	code	with	Scala	case
classes.”

I’m	including	this	chapter	in	this	book	because	case	classes	are	so	important	to
functional	programming,	and	I	want	to	make	sure	you	have	background
information	about	how	they	work.	Please	note	that	some	of	the	information	that
follows	may	refer	to	var	fields	in	case	classes;	as	Scala/FP	developers,	we	don’t
use	those	features,	but	for	the	times	when	you’re	writing	OOP	code	it	can	be
helpful	to	know	about	them.

http://amzn.to/24ivK4G

Problem

You’re	working	with	Scala	match	expressions,	actors,	or	other	situations	where
you	want	to	use	the	case	class	syntax	to	automatically	generate	boilerplate	code,
including	accessor	and	mutator	methods,	along	with	apply,	unapply,	toString,	
equals,	and	hashCode	methods,	and	more.

http://www.scala-lang.org/

Solution

Define	your	class	as	a	case	class,	defining	any	parameters	it	needs	in	its
constructor:

//	name	and	relation	are	'val'	by	default

case	class	Person(name:	String,	relation:	String)

Defining	a	class	as	a	case	class	results	in	a	lot	of	boilerplate	code	being
generated	for	you,	with	the	following	benefits:

An	apply	method	is	generated,	so	you	don’t	need	to	use	the	new	keyword	to
create	a	new	instance	of	the	class.

Accessor	methods	are	generated	for	the	constructor	parameters,	because	
case	class	constructor	parameters	are	val	by	default.	Mutator	methods	are
further	generated	for	parameters	declared	as	var.

A	good,	default	toString	method	is	generated.

An	unapply	method	is	generated,	making	it	easy	to	use	case	classes	in	
match	expressions.

equals	and	hashCode	methods	are	generated.

A	copy	method	is	generated.

Here’s	a	look	at	those	features.	First,	when	you	define	a	class	as	a	case	class,
you	don’t	have	to	use	the	new	keyword	to	create	a	new	instance:

scala>	case	class	Person(name:	String,	relation:	String)

defined	class	Person

//	"new"	not	needed	before	Person

scala>	val	emily	=	Person("Emily",	"niece")

emily:	Person	=	Person(Emily,niece)

Case	class	constructor	parameters	are	val	by	default,	so	accessor	methods	are
generated	for	the	parameters,	but	mutator	methods	are	not	generated:

scala>	emily.name

res0:	String	=	Emily

scala>	emily.name	=	"Fred"

<console>:10:	error:	reassignment	to	val

							emily.name	=	"Fred"

																		^

By	defining	a	case	class	constructor	parameter	as	a	var,	both	accessor	and
mutator	methods	are	generated:

scala>	case	class	Company	(var	name:	String)

defined	class	Company

scala>	val	c	=	Company("Mat-Su	Valley	Programming")

c:	Company	=	Company(Mat-Su	Valley	Programming)

scala>	c.name

res0:	String	=	Mat-Su	Valley	Programming

//	because	it’s	a	var,	you	can	change	the	name

scala>	c.name	=	"Valley	Programming"

c.name:	String	=	Valley	Programming

Case	classes	also	have	a	good	default	toString	method	implementation:

scala>	emily

res0:	Person	=	Person(Emily,niece)

Because	an	unapply	method	is	automatically	created	for	a	case	class,	it	works
well	when	you	need	to	extract	information	in	match	expressions,	as	shown	here:

scala>	emily	match	{	case	Person(n,	r)	=>	println(n,	r)	}

(Emily,niece)

Case	classes	also	have	generated	equals	and	hashCode	methods,	so	instances
can	be	compared:

scala>	val	hannah	=	Person("Hannah",	"niece")

hannah:	Person	=	Person(Hannah,niece)

scala>	emily	==	hannah

res1:	Boolean	=	false

A	case	class	even	creates	a	copy	method	that	is	helpful	when	you	need	to	(a)
clone	an	object	and	(b)	change	some	of	the	fields	during	the	cloning	process:

scala>	case	class	Employee(name:	String,	loc:	String,	role:	String)

defined	class	Employee

scala>	val	fred	=	Employee("Fred",	"Anchorage",	"Salesman")

fred:	Employee	=	Employee(Fred,Anchorage,Salesman)

scala>	val	joe	=	fred.copy(name="Joe",	role="Mechanic")

joe:	Employee	=	Employee(Joe,Anchorage,Mechanic)

Discussion

Case	classes	are	primarily	intended	to	create	“immutable	records”	that	you	can
easily	use	in	pattern-matching	expressions.	Indeed,	pure	FP	developers	look	at	
case	classes	as	being	similar	to	immutable	records	found	in	ML,	Haskell,	and
other	languages.

As	a	result	of	this,	case	class	constructor	parameters	are	val	by	default.	As	a
reviewer	of	this	book	with	an	FP	background	wrote,	“Case	classes	allow	var
fields,	but	then	you	are	subverting	their	very	purpose.”

Generated	code

As	shown	in	the	Solution,	when	you	create	a	case	class,	Scala	generates	a
wealth	of	code	for	your	class.	To	see	the	code	that’s	generated	for	you,	first
compile	a	simple	case	class,	then	disassemble	it	with	javap.

For	example,	put	this	small	amount	of	code	in	a	file	named	Person.scala:

case	class	Person(

				var	name:	String,

				var	age:	Int

)

Then	compile	the	file:

$	scalac	Person.scala

This	creates	two	class	files,	Person.class	and	Person$.class.	Disassemble
Person.class	with	this	command:

$	javap	Person

This	results	in	the	following	output,	which	is	the	public	signature	of	the	class:

Compiled	from	"Person.scala"

public	class	Person	extends	java.lang.Object	

implements	scala.ScalaObject,scala.Product,scala.Serializable{

		public	static	final	scala.Function1	tupled();

		public	static	final	scala.Function1	curry();

		public	static	final	scala.Function1	curried();

		public	scala.collection.Iterator	productIterator();

		public	scala.collection.Iterator	productElements();

		public	java.lang.String	name();

		public	void	name_$eq(java.lang.String);

		public	int	age();

		public	void	age_$eq(int);

		public	Person	copy(java.lang.String,	int);

		public	int	copy$default$2();

		public	java.lang.String	copy$default$1();

		public	int	hashCode();

		public	java.lang.String	toString();

		public	boolean	equals(java.lang.Object);

		public	java.lang.String	productPrefix();

		public	int	productArity();

		public	java.lang.Object	productElement(int);

		public	boolean	canEqual(java.lang.Object);

		public	Person(java.lang.String,	int);

}

Then	disassemble	Person$.class:

$	javap	Person$

Compiled	from	"Person.scala"

public	final	class	Person$	

extends	scala.runtime.AbstractFunction2

implements	scala.ScalaObject,scala.Serializable	{

		public	static	final	Person$	MODULE$;

		public	static	{};

		public	final	java.lang.String	toString();

		public	scala.Option	unapply(Person);

		public	Person	apply(java.lang.String,	int);

		public	java.lang.Object	readResolve();

		public	java.lang.Object	apply(java.lang.Object,	java.lang.Object);

}

As	you	can	see,	Scala	generates	a	lot	of	source	code	when	you	declare	a	class	as
a	case	class.

As	a	point	of	comparison,	if	you	remove	the	keyword	case	from	that	code	—
making	it	a	“regular”	class	—	compile	it,	and	then	disassemble	it,	Scala	only
generates	the	following	code:

public	class	Person	extends	java.lang.Object{

		public	java.lang.String	name();

		public	void	name_$eq(java.lang.String);

		public	int	age();

		public	void	age_$eq(int);

		public	Person(java.lang.String,	int);

}

That’s	a	big	difference.	The	case	class	results	in	22	more	methods	than	the
“regular”	class.	If	you	need	that	functionality,	this	is	a	good	thing.	However,	if
you	don’t	need	all	this	additional	functionality,	consider	using	a	“regular”	class
declaration	instead.	For	instance,	if	the	only	thing	you	want	is	to	be	able	to
create	new	instances	of	a	class	without	the	new	keyword:

val	p	=	Person("Alex")

create	an	apply	method	in	the	companion	object	of	a	“regular”	class,	as
described	in	Recipe	6.8,	“Creating	Object	Instances	Without	Using	the	new
Keyword”.	Remember,	there	isn’t	anything	in	a	case	class	you	can’t	code	for
yourself.

See	Also

Recipe	4.3	of	the	Scala	Cookbook,	“How	to	Define	Auxiliary	Constructors
in	Scala	Classes”	shows	how	to	write	additional	apply	methods	so	a	case
class	can	appear	to	have	multiple	constructors

A	discussion	of	extractor	objects	on	scala-lang.org

http://amzn.to/24ivK4G
http://docs.scala-lang.org/tutorials/tour/extractor-objects.html

Algebraic	Data	Types

Introduction

I	debated	for	a	long	time	about	how	to	introduce	Algebraic	Data	Types	(ADTs)
in	this	book.	I	finally	decided	that	ADTs	aren’t	a	way	of	proactively	designing
FP	code;	instead,	they’re	a	way	of	categorizing	the	FP	code	you’ve	already
written,	specifically	your	FP	data	models.	That	is,	you	don’t	sit	down	and	say,	“I
want	to	write	my	Customer	class	as	a	‘sum	of	the	products’	ADT.”	Instead,	if
you	do	anything,	you	might	look	at	some	code	and	say,	“Hey,	Mary,	did	you
notice	that	the	Customer	class	is	a	‘sum	of	the	products’	ADT?”

Because	I	look	at	ADTs	as	a	way	of	categorizing	or	classifying	code	rather	than
designing	code,	I	decided	it	was	best	to	include	this	topic	as	an	appendix	in	this
book,	rather	than	as	a	lesson	in	the	front	of	the	book.

The	“TL;DR”	version	of	this	lesson	goes	like	this:	If	you	create	your	data
models	using	(a)	case	classes	with	immutable	fields	and	(b)	case	objects,	and
(c)	those	data	types	have	no	methods,	you’re	already	writing	ADTs.

Surprise:	Almost	every	case	class	and	case	object	in	this	book
is	 some	 form	 of	 ADT.	 I	 just	 didn’t	 think	 it	 was	 important	 to
categorize	them	when	I	wrote	them.

Goals,	motivation

The	goals	of	this	lesson	are:

To	define	basic	ADT	terminology

To	show	examples	of	the	different	ADT	types

To	help	demonstrate	another	way	to	see	your	Scala/FP	code	as	algebra

In	regards	to	that	last	point,	a	main	benefit	of	being	aware	of	ADTs	is	that	you
begin	to	see	your	code	as	being	even	more	like	algebra.	You	specifically	begin	to
see	your	case	classes	and	case	objects	as	sets	of	objects,	and	the	functions	that
operate	on	them	as	operators	on	those	data	sets.	To	understand	what	that	means,
it	will	help	to	formally	define	algebra.

What	is	“Algebra”?

To	understand	ADTs,	you	first	have	to	understand	what	is	meant	by	the	word
“algebra.”	Informally,	an	algebra	can	be	thought	of	as	consisting	of	two	things:

A	set	of	objects

The	operations	that	can	be	applied	to	those	objects	to	create	new	objects

Technically	 an	 algebra	 also	 consists	 of	 a	 third	 item,	 the	 laws
that	govern	the	algebra,	but	I’m	not	going	to	cover	laws	in	this
lesson.

If	you’re	like	me,	you	never	thought	of	algebra	as	anything	other	than	high
school	algebra,	but	it	turns	out	that	any	concept	that	can	be	thought	of	as	(a)	a	set
of	objects,	and	(b)	operators	on	those	objects	is	a	form	of	algebra.	Here	are	a	few
examples.

Numeric	algebra

“High	school	algebra”	is	the	algebra	we	learned	back	in	high	school	(or	possibly
earlier).	It’s	more	formally	known	as	“numeric	algebra,”	the	algebra	of	numbers.
You	can	think	of	it	like	this:

A	set	of	objects,	such	as	whole	numbers

The	operations	that	can	be	used	on	those	objects:	+,	-,	*	(and	/)

One	thing	I	never	thought	about	is	that	the	operators	are	used	on	existing
numbers	(objects)	to	create	new	numbers	(objects):

1	+	1	=	2

3	*	3	=	9

Notice	that	even	in	basic	math,	the	numbers	2	and	9	are	“created”	from	the
numbers	1	and	3	by	using	the	+	and	*	operators.

Relational	algebra

Another	type	of	algebra	is	known	as	“relational	algebra.”	This	is	the	algebra	of
relational	databases,	and	in	this	algebra	the	database	tables	are	the	“set	of
objects,”	and	query	tools	like	SELECT,	UPDATE,	and	JOIN	are	the	“operators”
that	let	you	create	new	objects	from	the	existing	objects.

Algebra	in	programming

Throughout	this	book	you’ve	been	using	algebra,	possibly	without	knowing	it.	(I
certainly	didn’t	know	it	when	I	started	working	with	FP.)	For	example,	take	a
look	at	this	case	class:

case	class	Pair	(

				a:	Int,

				b:	Int

)

This	code	creates	a	new	type	Pair	from	two	instances	of	the	existing	type	Int.
The	class	constructor	itself	is	an	“operator”	that	lets	you	create	new	types	from
existing	Scala	types,	just	like	+	and	*	let	you	create	new	numbers	from	existing
numbers.

Here’s	another	example	of	how	you	can	use	Scala	operators	to	create	new	data
types	from	existing	ones:

sealed	trait	Direction

case	object	North	extends	Direction

case	object	South	extends	Direction

case	object	East	extends	Direction

case	object	West	extends	Direction

To	learn	about	the	“algebra”	of	these	two	examples,	read	on	…

Three	types	of	Algebraic	Data	Types

ADTs	fall	into	three	main	categories:

Sum	type

Product	type

Hybrid	types

You	actually	just	saw	the	first	two	types,	and	I’ll	explain	all	three	of	them	in	the
following	sections.

The	Sum	type

The	Direction	example	I	just	showed	is	called	a	“Sum	type,”	or	Sum	ADT.	The
Sum	type	is	also	referred	to	as	an	“enumerated	type”	because	you	simply
enumerate	all	of	the	possible	instances	of	the	type.	A	few	important	points	about
this	are:

Sum	types	are	typically	created	with	a	sealed	trait	as	the	base	type,	with
instances	created	as	case	objects.	You	use	a	sealed	trait	because	you	don’t
want	them	to	be	extended.

The	number	of	enumerated	types	you	list	are	the	only	possible	instances	of
the	base	type.	In	this	example,	Direction	has	four	possible	values:	North,	
South,	East,	or	West.

We	use	the	phrases	“is	a”	and	“or”	when	talking	about	Sum	types.	For
example,	North	is	a	type	of	Direction,	and	Direction	is	a	North	or	a	
South	or	an	East	or	a	West.

People	use	different	names	for	the	concrete	instances	in	a	Sum
type,	including	value	constructors,	alternates,	and	cases.

Another	example

As	another	example,	imagine	that	you	need	to	write	your	own	“boolean”	type	for
Scala.	You	can	write	them	as	a	Sum	type	like	this:

sealed	trait	Bool

case	object	True	extends	Bool

case	object	False	extends	Bool

Just	like	the	Direction	example,	the	base	type	is	defined	as	a	sealed	trait	and
the	two	possible	values	are	defined	as	case	object.	Also	notice	that	this
approach	uses	the	sealed	trait	and	case	object	syntax	as	operators	to	create
new	data	types.

Why	use	sealed	trait?

A	great	feature	of	using	sealed	trait	is	that	it	lets	the	compiler	perform
“exhaustiveness	checking.”	What	happens	is	that	a	sealed	trait	can	only	be
extended	in	the	file	in	which	it	was	defined;	because	it	can’t	be	extended
anywhere	else,	the	compiler	knows	all	of	the	subtypes	of	the	trait	that	can
possibly	exist.	Because	of	this,	the	compiler	can	exhaustively	check	the	possible
cases	in	match	expressions,	and	it	will	emit	a	warning	if	the	match	expression
isn’t	exhaustive.	This	makes	your	programming	life	easier,	and	your	code	safer.

Why	use	case	object?

The	reason	Sum	types	use	the	case	object	declaration	is	that	they	only	require
singleton	instances,	and	the	Scala	object	provides	that	functionality.	For
instance,	with	the	Bool	example	it	makes	sense	to	have	only	one	True	instance	in
all	of	your	code.	There’s	no	need	to	create	new	True	and	False	instances	every
time	you	work	with	boolean	values.	Scala’s	object	gives	you	this	singleton
functionality.

As	Scala/FP	developers,	we	further	use	case	object	—	as	opposed	to	object
—	because	it	provides	important	additional	functionality,	with	the	most
important	feature	being	support	for	pattern	matching;	its	automatically-generated
unapply	method	lets	case	objects	work	easily	in	match	expressions.
(case	object	also	provides	default	equals	and	hashCode	methods,	extends	
Serializable,	has	a	good	default	toString	method,	etc.)

The	Product	type

The	second	type	of	ADT	is	known	as	a	“Product	type.”	It’s	name	comes	from	the
fact	that	you	use	the	Scala	case	class	constructor	to	create	a	data	type	whose
number	of	possible	concrete	instances	can	be	determined	by	multiplying	the
number	of	possibilities	of	all	of	its	constructor	fields.

Take	this	class	for	example:

case	class	DoubleBoo	(

				b1:	Bool,

				b2:	Bool

)

How	many	possible	instances	of	this	class	can	you	have?	Well,	each	field	can
either	be	True	or	False,	so	the	possibilities	are:

DoubleBoo(True,	True)

DoubleBoo(True,	False)

DoubleBoo(False,	True)

DoubleBoo(False,	False)

Therefore,	the	correct	answer	is	that	there	are	four	possible	instances.	You	can
also	derive	this	answer	mathematically:

b1	has	two	possibilities

b2	has	two	possibilities

The	total	number	of	possible	instances	is	determined	by	multiplying	the
number	of	possibilities	of	each	constructor	field,	and	2	multiplied	by	2	is	4

Because	the	number	of	possible	instances	of	Product	ADTs	can	be	calculated	by
multiplying	the	number	of	possible	values	of	every	constructor	parameter,	what
do	you	think	the	number	of	possibilities	of	this	Pair	type	are:

case	class	Pair	(

				a:	Int,

				b:	Int

)

If	you	answered,	“A	lot,”	that’s	close	enough.	An	Int	has	2^32	possible	values,
so	if	you	multiply	the	number	of	possible	Int	values	by	itself,	you	get	a	very

large	number.

Next,	what	do	you	think	the	number	of	possibilities	are	for	this	class:

case	class	Person	(

				firstName:	String,

				lastName:	String,

				mother:	Person,

				father:	Person

)

If	you	answered,	“Infinite,”	that’s	a	good	answer.	Because	a	String	has	an
infinite	number	of	possibilities,	Person	can	have	an	infinite	number	of	concrete
instances.

While	 I	 don’t	 concern	 myself	 with	 ADTs	 too	 much,	 this
particular	 point	 had	 a	 significant	 impact	 on	me.	When	 I	 first
saw	this,	I	realized	that	any	time	a	function	accepted	a	String,
that	String	had	an	infinite	number	of	possibilities.	That’s	a	lot
to	account	for.	Similarly,	a	boolean	value	has	two	possibilities,
a	Byte	 has	 256	 possible	 values,	 and	 the	Direction	 Sum	 type
has	 four	 possibilities.	 The	 lesson	 for	 me	 is	 that	 the	 fewer
possibilities	you	have	 to	deal	with,	 the	simpler	your	code	will
be.	(At	the	very	least,	this	was	the	last	time	I	ever	used	a	series
of	string	constants	instead	of	enumerations.)

Before	we	move	on,	here	are	a	few	important	points	about	the	Product	type:

Writing	case	class	and	defining	the	constructor	parameters	is	essentially
the	“product”	operator.

The	number	of	possible	values	of	a	Product	type	is	the	product	of	all
possible	combinations	of	the	constructor	parameters	(i.e.,	a	Cartesian
product).

We	use	the	phrases	“has	a”	and	“and”	when	talking	about	Product	types.	
Pair	has	a	a	and	a	b;	Person	has	a	firstName,	lastName,	mother,	and	
father.

As	shown	in	the	Person	example,	Product	types	can	be	recursive;	mother
and	father	are	declared	as	Person	types	inside	the	Person	definition.

Hybrid	types

The	Sum	and	Product	types	are	the	two	base	ADTs;	all	other	ADTs	are	hybrids
created	from	those	base	types.	As	the	book	Essential	Scala	states,	“An	algebraic
data	type	is	any	data	that	uses	the	above	two	patterns”	(Sum	and	Product).

One	formally-defined	hybrid	type	is	known	as	the	“Sum	of	Products”	type.	With
a	few	minor	changes	to	reflect	modern	Scala	practices,	Mario	Gleichmann
created	a	good	example	of	this	in	2011:

sealed	trait	Shape

final	case	class	Circle(radius:	Double)	extends	Shape

final	case	class	Rectangle(width:	Double,	height:	Double)	extends	Shape

These	types	represent	a	Sum	type	because	Shape	is	a	Circle	or	a	Rectangle;	
Circle	is	a	Product	type	because	it	has	a	radius;	and	Rectangle	is	also	Product
type	because	it	has	a	width	and	a	height.

There	are	other	variations	of	these	possibilities,	which	is	why	I	refer	to	all	other
combinations	as	“hybrid”	types.	For	instance,	the	Pizza	class	in	the	domain
modeling	lessons	is	a	Product	type	that	contains	three	Sum	types:

case	class	Pizza	(

				crustSize:	CrustSize,

				crustType:	CrustType,

				toppings:	Seq[Topping]

)

Sum	and	Product	types	can	be	combined	in	any	ways	that	are	needed	to	solve	the
problem	at	hand.	Hopefully	this	demonstrates	the	point	I	made	at	the	beginning
of	this	lesson:	ADTs	are	just	a	way	of	formally	categorizing	the	data	types	in
your	data	model.

https://underscore.io/books/essential-scala/
https://gleichmann.wordpress.com/2011/02/08/functional-scala-algebraic-datatypes-sum-of-products-types/

Pattern	matching

A	great	benefit	of	ADTs	is	that	they	simplify	and	encourage	the	use	of	pattern
matching	in	your	code.	For	instance,	given	these	Shape	types:

sealed	trait	Shape

final	case	class	Circle(radius:	Double)	extends	Shape

final	case	class	Rectangle(width:	Double,	height:	Double)	extends	Shape

you	can	easily	write	an	isRound	function	using	pattern	matching:

def	isRound(s:	Shape):	Boolean	=	s	match	{

				case	Circle(_)	=>	true

				case	_	=>	false

}

Similarly,	using	the	Bool	type	I	created	earlier:

sealed	trait	Bool

case	object	True	extends	Bool

case	object	False	extends	Bool

you	can	define	and	and	or	functions	with	pattern	matching:

def	and(a:	Bool,	b:	Bool):	Bool	=	(a,b)	match	{

				case	(True,	True)			=>	True

				case	(False,	False)	=>	True

				case	(True,	False)		=>	False

				case	(False,	True)		=>	False

}

def	or(a:	Bool,	b:	Bool):	Bool	=	(a,b)	match	{

				case	(True,	_)	=>	True

				case	(_,	True)	=>	True

				case	(_,	_)				=>	False

}

This	is	what	those	last	two	functions	look	like	in	the	Scala	REPL:

scala>	or(True,False)

res0:	Bool	=	True

scala>	and(True,False)

res1:	Bool	=	False

As	demonstrated	in	these	examples,	using	pattern	matching	with	ADTs	is	a
common	programming	pattern	…	a	Scala/FP	idiom.

Key	points

The	key	points	of	this	lesson	are:

If	you	create	your	data	models	using	(a)	case	classes	with	immutable	fields
and	(b)	case	objects,	and	(c)	those	data	types	have	no	methods,	you’re
already	writing	ADTs	(whether	you	knew	it	or	not).

I	view	ADTs	as	a	way	of	categorizing	or	observing	code,	not	designing
code.

An	“algebra”	is	a	set	of	objects,	the	operators	that	can	be	used	on	those
objects,	and	laws	governing	their	behavior.

The	two	main	types	of	ADTs	are	the	Sum	type	and	Product	type.	Other
hybrid	ADTs	are	derived	from	these	base	types.

ADTs	encourage	a	pattern-matching	style	of	programming.

See	also

If	you	don’t	mind	a	little	Haskell,	Chris	Taylor’s	The	Algebra	of	ADTs	is	an
excellent	resource,	and	discusses	ADT	“laws”

Mario	Gleichmann	wrote	a	series	of	articles	on	ADTs	in	Scala,	starting	with
this	one

Daniel	Eklund	wrote	a	good	article,	What	the	heck	are	Algebraic	Data
Types?

Susan	Potter	has	a	nice	example	of	ADTs	in	Scala

Tim	Perrett	uses	ADTs	well	in	this	“traffic	signal”	example

ADTs	are	described	here	on	Wikipedia

ADTs	are	described	here	on	Haskell.org

Wikipedia	has	this	definition	of	Universal	Algebra

Martin	Odersky	mentions	ADTs	in	this	acm.org	article

In	underscore.io’s	article	on	sealed	traits	they	have	a	nice	discussion	of
ADTs

http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
http://gleichmann.wordpress.com/2011/01/30/functional-scala-algebraic-datatypes-enumerated-types/
http://merrigrove.blogspot.com/2011/12/another-introduction-to-algebraic-data.html
https://gist.github.com/mbbx6spp/5548937
https://github.com/timperrett/free-monads/blob/master/src/main/scala/signal.scala
https://en.wikipedia.org/wiki/Algebraic_data_type
https://wiki.haskell.org/Algebraic_data_type
https://en.wikipedia.org/wiki/Universal_algebra
http://cacm.acm.org/magazines/2014/4/173220-unifying-functional-and-object-oriented-programming-with-scala/fulltext
https://underscore.io/blog/posts/2015/06/02/everything-about-sealed.html

A	Review	of	Anonymous	Functions
This	lesson	provides	a	review	of	anonymous	functions,	including:

The	basics

When	and	how	you	can	reduce	anonymous	functions

A	simple	way	to	recognize	them	in	complex	code

How	to	pass	multiple	parameters	to	anonymous	functions

An	example

In	Scala	you	can	use	anonymous	functions	—	also	known	as	function	literals	—
to	solve	problems	in	a	concise	yet	still	readable	way.

For	example,	given	this	List:

val	x	=	List.range(1,	10)

you	can	pass	an	anonymous	function	to	x’s	filter	method	to	create	a	new	List
that	contains	only	even	numbers:

val	evens	=	x.filter((i:	Int)	=>	i	%	2	==	0)

The	REPL	demonstrates	this:

scala>	val	evens	=	x.filter((i:	Int)	=>	i	%	2	==	0)

evens:	List[Int]	=	List(2,	4,	6,	8)

In	that	example,	this	portion	of	the	code	is	known	as	an	anonymous	function:

(i:	Int)	=>	i	%	2	==	0

This	is	the	most	explicit	form	for	defining	a	function	literal	in	Scala.	Thanks	to
several	shortcuts	that	I’ll	describe	soon,	the	original	solution	can	be	made	this
concise,	if	you	prefer:

val	evens	=	x.filter(_	%	2	==	0)

The	REPL	shows	that	this	yields	the	same	result	as	the	previous	code:

scala>	val	evens	=	x.filter(_	%	2	==	0)

evens:	List[Int]	=	List(2,	4,	6,	8)

Reducing	anonymous	functions

In	the	example	shown,	this	code	is	the	original	function	literal:

(i:	Int)	=>	i	%	2	==	0

When	reading	this	code	it	helps	to	think	of	the	=>	symbol	as	a	transformer,
because	the	expression	transforms	the	parameter	list	on	the	left	side	of	the
symbol	(an	Int	named	i):

(i:	Int)	=>	i	%	2	==	0

into	a	new	result	using	the	algorithm	on	the	right	side	of	the	symbol	(in	this	case,
an	expression	that	results	in	a	Boolean):

(i:	Int)	=>	i	%	2	==	0

As	mentioned,	this	example	shows	the	long	form	for	defining	an	anonymous
function,	which	can	be	simplified	in	several	different	ways.	Once	again,	here’s
the	most	explicit	form:

val	evens	=	x.filter((i:	Int)	=>	i	%	2	==	0)

Because	the	Scala	compiler	knows	that	x	is	a	List[Int]	it	can	infer	i’s	type,	and
the	Int	declaration	can	be	dropped	off:

val	evens	=	x.filter(i	=>	i	%	2	==	0)

Because	Scala	lets	you	use	the	_	wildcard	character	instead	of	a	variable	name
when	the	parameter	appears	only	once	in	the	function,	this	code	can	be
simplified	even	more:

val	evens	=	x.filter(_	%	2	==	0)

In	other	situations	you	can	simplify	your	anonymous	functions	further.	For
instance,	here’s	the	explicit	form	for	an	anonymous	function	that	prints	each
element	in	a	List:

x.foreach((i:Int)	=>	println(i))

As	before,	the	Int	declaration	isn’t	required:

x.foreach((i)	=>	println(i))

Because	there’s	only	one	argument,	the	parentheses	around	the	i	parameter
aren’t	needed:

x.foreach(i	=>	println(i))

Because	i	is	used	only	once	in	the	function	body,	the	expression	can	be	further
simplified	with	the	_	wildcard:

x.foreach(println(_))

Finally,	if	a	function	literal	consists	of	one	statement	that	takes	a	single
argument,	you	don’t	need	to	explicitly	name	and	specify	the	argument,	so	the
statement	can	be	reduced	to	just	this:

x.foreach(println)

Recognizing	anonymous	functions	in	complex	code

I	find	that	reading	small	anonymous	functions	isn’t	too	hard,	but	when	they	span
multiple	lines	and	are	used	with	code	I	haven’t	seen	before,	sometimes	they	can
take	a	few	moments	to	recognize.

Eventually	I	discovered	the	technique	shown	in
Figure	[fig:idComplexAnonFunctions]	to	identify	complex	anonymous
functions.

How	to	recognize	an	anonymous	function	in	complex	code.

As	that	image	shows,	when	you	see	an	opening	curly	brace	followed	by	a	new
variable	name	and	the	transformer	symbol:

{	http	=>

you	should	recognize	that	this	is	the	beginning	of	an	anonymous	function.

In	this	code	the	anonymous	function	takes	one	parameter	which	is	named	http.
When	you	see	this	pattern	you	can	assume	that	the	parameter	will	be	used	in	the
block	of	code	that	follows	it.	In	this	example,	the	http	parameter	is	eventually
used	in	the	sixth	line	of	the	anonymous	function.

The	pattern	is	the	same	in	simple	examples

While	that	code	is	complicated,	it	follows	the	same	pattern	as	the	examples	I
showed	before.	For	instance,	this	example:

x.foreach((i)	=>	println(i))

can	be	rewritten	in	a	multi-line	form,	like	this:

x.foreach	{	i	=>	

				println(i)

}

Again,	as	soon	as	you	see	this	pattern:

{	i	=>	

you	know:

“Something”	is	being	passed	from	x.foreach	into	the	block	of	code	that
follows

That	something	is	represented	by	the	new	variable	named	i

Because	(a)	x	is	a	List[Int],	and	(b)	foreach	iterates	over	each	element	in
the	list	—	passing	one	element	at	a	time	to	the	function	inside	the	curly
braces	—	you	know	that	i	is	an	Int

If	the	code	you’re	reading	is	confusing,	you	can	also	learn	that	by	inspecting	i	in
your	IDE.	Or,	if	it’s	your	code,	you	can	also	declare	i’s	type	like	this,	if	you
prefer:

x.foreach	{	i:	Int	=>	

				println(i)

}

In	any	case,	you	know	that	i	represents	an	element	that’s	being	passed	by	
foreach	into	the	anonymous	function	that	follows.

In	the	same	way,	you	can	know	that	in	the	code	shown	in
Figure	[fig:httpIsAParam],	http	is	a	parameter	that’s	being	passed	by	the	
withHttp	function	of	the	Gigahorse	object.

http	is	a	parameter	that’s	passed	into	an	anonymous	function.

The	general	pattern

More	generally,	this	anonymous	function	“pattern	recognition”	process	looks
like	Figure	[fig:anonFunctionPatternRecognition].

The	general	process	of	how	to	recognize	anonymous	functions	in	complex	code.

Passing	multiple	parameters	to	an	anonymous
function

Scala	code	can	also	pass	multiple	parameters	to	anonymous	functions.	You	can
demonstrate	this	with	a	Map:

//	create	a	Map

val	map	=	Map(

				1	->	10,

				2	->	20,

				3	->	30

)

//	an	anonymous	function	that	takes	two	parameters

val	newMap	=	map.transform((k,v)	=>	k	+	v)

In	that	last	line	of	code,	each	Map	key/value	pair	is	passed	to	the	anonymous
function	k	+	v.	As	before,	you	can	rewrite	that	code	in	a	multi-line	format	to
look	like	the	http	example:

val	newMap	=	map.transform	{	(k,v)	=>

				k	+	v

}

No	matter	how	you	write	it,	the	Scala	REPL	shows	the	result	of	using	k	+	v
with	transform:

scala>	val	newMap	=	map.transform((k,v)	=>	k	+	v)

newMap:	scala.collection.immutable.Map[Int,Int]	=	Map(1	->	11,	2	->	22,	3	->	33)

In	this	example,	the	transform	function	creates	a	new	value	for	each	key	by
adding	the	key	and	value	for	each	element	in	the	Map.

See	also

How	to	filter	a	Scala	Map	(filterKeys,	retain,	transform)

How	to	traverse	a	Map	in	Scala	(for	loop,	foreach)

http://alvinalexander.com/scala/how-to-filter-map-filterkeys-retain-scala-cookbook
http://alvinalexander.com/scala/how-to-traverse-map-for-loop-foreach-scala-cookbook

On	Using	def	vs	val	To	Define	Abstract
Members	in	Traits
When	I	update	the	Scala	Cookbook,	I	need	to	update	Recipe	8.2,	“How	to	use
abstract	and	concrete	fields	in	Scala	traits.”	That	recipe	is	written	particularly
with	an	OOP	developer	in	mind,	and	I	didn’t	write	about	handling	the	same
situation	from	an	FP	perspective.

http://amzn.to/24ivK4G

Short	story:	Use	def	to	define	fields	in	your	traits

The	short	story	is	that	if	you	want	to	declare	an	abstract	member	in	a	trait,	and
that	member	may	later	be	fulfilled	by	a	def	or	val	field	in	an	implementing
class,	the	most	flexible	approach	is	to	define	the	member	as	a	def	field.	The
primary	benefit	of	this	approach	is	depicted	in	Figure	[fig:defVsValInTraits],
which	is	a	slide	from	an	“Effective	Scala”	talk	given	by	Mirco	Dotta.

Why	you	shouldn’t	use	val	to	define	fields	in	traits.

I’ll	expand	on	this	point	in	this	lesson.

https://twitter.com/mircodotta?lang=en

“A	val	can	override	a	def,	but	a	def	cannot	override	a
val”

A	good	way	to	think	about	this	situation	is	with	a	quote	from	this	Stack
Overflow	page:

“A	val	can	override	a	def,	but	a	def	cannot	override	a	val”

val	can	override	a	def

The	“val	can	override	a	def”	part	of	that	statement	is	demonstrated	with	this
code:

//	val	can	override	def

trait	SentientBeing	{

				def	id:	Int

}

class	Person	extends	SentientBeing	{

				val	id	=	2

}

That	code	compiles	and	works	as	expected.

def	cannot	override	a	val

The	“def	cannot	override	a	val”	statement	can	be	shown	by	attempting	to	write
code	like	this:

trait	SentientBeing	{

				val	id:	Int

}

class	Person	extends	SentientBeing	{

				//	won't	compile.

				//	error:	“method	`id`	needs	to	be	a	stable,	

				//	immutable	value”

				def	id	=	2

}

As	the	comments	show,	attempting	to	create	code	like	this	results	in	a	compiler
error.	As	the	error	message	implies,	using	val	implies	a	guarantee	that	the
variable	is	stable	and	immutable,	and	a	def	does	not	imply	that	same	guarantee.
If	you	make	id	a	var	field	in	SentientBeing,	that	error	message	will	go	away.

https://stackoverflow.com/questions/13126104/is-there-any-advantage-to-definining-a-val-over-a-def-in-a-trait

(But	Scala/FP	developers	don’t	use	var	fields.)

More	motivation	to	use	def	in	traits

A	comment	on	this	Stack	Overflow	page	makes	a	few	more	good	points	about
why	you	should	use	a	def	field	in	a	trait:

“A	 def	 can	 be	 implemented	 by	 either	 of	 a	 def,	 a	 val,	 a	
lazy	val,	 or	 an	 object.	 So	 it’s	 the	 most	 abstract	 form	 of
defining	a	member.	Since	 traits	are	usually	abstract	 interfaces,
saying	you	want	a	val	is	saying	how	the	implementation	should
do.”

From	the	standpoint	of	writing	really	meaningful	code,	the	last	two	sentences	in
that	paragraph	are	good.	They	get	to	the	essence	of	creating	a	field	like	this	in	a
trait:

What	is	my	intent?

What	am	I	really	trying	to	express	about	the	id	field	in	the	trait?

I	used	to	program	very	casually	in	Java	—	such	as	not	worrying	about	marking
fields	private	or	final,	etc.	—	but	as	I	get	older	(and	hopefully	wiser),	I’ve
learned	that	with	Scala	you	can	be	very	clear	about	what	you’re	trying	to
communicate	to	yourself	and	other	developers	by	taking	a	few	moments	to	think
about	issues	like	this.	You	should	be	able	to	say	to	other	developers,	“I	did	that
intentionally,	and	here’s	why	…”

https://stackoverflow.com/questions/19642053/when-to-use-val-or-def-in-scala-traits

More	information

If	you	want	to	dig	into	this	topic	more,	I	encourage	you	to	read	the	links	below,
and	also	use	the	usual	tools	to	examine	how	the	compiler	translates	your	Scala
code	into	bytecode:

Use	scalac	-Xprint:all	when	compiling	your	code

Disassemble	your	bytecode	with	javac	-p

Use	JAD	or	a	similar	tool	to	decompile	your	class	files	to	see	how	the	code
is	implemented	in	Java

As	just	a	hint	of	what	you’ll	see,	when	you	compile	the	SentientBeing	class
when	it	declares	id	as	a	def	field,	you’ll	see	this	output:

abstract	trait	SentientBeing	extends	Object	{

				def	id():	Int

}

And	when	you	declare	it	as	a	val	field,	you’ll	see	this	output:

abstract	trait	SentientBeing	extends	Object	{

				<stable>	<accessor>	def	id():	Int

}

See	also

Mirco	Dotta’s	Effective	Scala	slides

A	Stack	Overflow	Q&A	on	When	to	use	a	val	or	def	in	traits

Choices	with	def	and	val	in	Scala

https://www.slideshare.net/mircodotta/effective-scala
https://stackoverflow.com/questions/19642053/when-to-use-val-or-def-in-scala-traits
http://blog.jessitron.com/2012/07/choices-with-def-and-val-in-scala.html

	Table of Contents
	Copyright
	Introduction(or, Why I Wrote This Book)
	Who This Book is For
	Goals, Part 1: “Soft” Goals of This Book
	Goals, Part 2: Concrete Goals
	Goals, Part 3: A Disclaimer
	Question Everything
	Rules for Programming in this Book
	One Rule for Reading this Book
	What is “Functional Programming”?
	What is This Lambda You Speak Of?
	The Benefits of Functional Programming
	Disadvantages of Functional Programming
	The “Great FP Terminology Barrier”
	Pure Functions
	Grandma’s Cookies (and Pure Functions)
	Benefits of Pure Functions
	Pure Functions and I/O
	Pure Function Signatures Tell All
	Functional Programming as Algebra
	A Note About Expression-Oriented Programming
	Functional Programming is Like Unix Pipelines
	Functions Are Variables, Too
	Using Methods As If They Were Functions
	How to Write Functions That Take Functions as Input Parameters
	How to Write a ‘map’ Function
	How to Use By-Name Parameters
	Functions Can Have Multiple Parameter Groups
	Partially-Applied Functions (and Currying)
	Recursion: Introduction
	Recursion: Motivation
	Recursion: Let’s Look at Lists
	Recursion: How to Write a ‘sum’ Function
	Recursion: How Recursive Function Calls Work
	Visualizing the Recursive sum Function
	Recursion: A Conversation Between Two Developers
	Recursion: Thinking Recursively
	JVM Stacks and Stack Frames
	A Visual Look at Stacks and Frames
	Tail-Recursive Algorithms
	A First Look at “State”
	A Functional Game (With a Little Bit of State)
	A Quick Review of Case Classes
	Update as You Copy, Don’t Mutate
	A Quick Review of for Expressions
	How to Write a Class That Can Be Used in a for Expression
	Creating a Sequence Class to be Used in a for Comprehension
	Making Sequence Work in a Simple for Loop
	How To Make Sequence Work as a Single Generator in a for Expression
	Enabling Filtering in a for Expression
	How to Enable the Use of Multiple Generators in a for Expression
	A Summary of the for Expression Lessons
	Pure Functions Tell No Lies
	Functional Error Handling
	Embrace The Idioms!
	What to Think When You See That Opening Curly Brace
	A Quick Review of How flatMap Works
	Option Naturally Leads to flatMap
	flatMap Naturally Leads to for
	for Expressions are Better Than getOrElse
	Recap: Option -> flatMap -> for
	A Note About Things That Can Be Mapped Over
	Starting to Glue Functions Together
	The “Bind” Concept
	Getting Close to Using bind in for Expressions
	Using a “Wrapper” Class in a for Expression
	Making Wrapper More Generic
	Changing “new Wrapper” to “Wrapper”
	A Quick Note About Case Classes and Companion Objects
	Using bind in a for Expression
	How Debuggable, f, g, and h Work
	A Generic Version of Debuggable
	One Last Debuggable: Using List Instead of String
	Key Points About Monads
	Signpost: Where We’re Going Next
	Introduction: The IO Monad
	How to Use an IO Monad
	Assigning a for Expression to a Function
	The IO Monad and a for Expression That Uses Recursion
	Diving Deeper Into the IO Monad
	I’ll Come Back to the IO Monad
	Functional Composition
	An Introduction to Handling State
	Handling State Manually
	Getting State Working in a for Expression
	Handling My Golfing State with a State Monad
	The State Monad Source Code
	Signpost: Getting IO and State Working Together
	Trying to Write a for Expression with IO and State
	Seeing the Problem: Trying to Use State and IO Together
	Solving the Problem with Monad Transformers
	Beginning the Process of Understanding StateT
	Getting Started: We’re Going to Need a Monad Trait
	Now We Can Create StateT
	Using StateT in a for Expression
	Trying to Combine IO and StateT in a for Expression
	Fixing the IO Functions With Monadic Lifting
	A First IO/StateT for Expression
	The Final IO/StateT for Expression
	Summary of the StateT Lessons
	Signpost: Modeling the world with Scala/FP
	What is a Domain Model?
	A Review of OOP Data Modeling
	Modeling the “Data” Portion of the Pizza POS System with Scala/FP
	First Attempts to Organize Pure Functions
	Implementing FP Behavior with Modules
	Implementing the Pizza POS System Using a Modular Approach
	The “Functional Objects” Approach
	Demonstrating the “Functional Objects” Approach
	Summary of the Domain Modeling Approaches
	ScalaCheck 1: Introduction
	ScalaCheck 2: A More-Complicated Example
	The Problem with the IO Monad
	Signpost: Type Classes
	Type Classes 101: Introduction
	Type Classes 102: The Pizza Class
	Type Classes 103: The Cats Library
	Lenses, to Simplify “Update as You Copy”
	Signpost: Concurrency
	Concurrency and Mutability Don’t Mix
	Scala Concurrency Tools
	Akka Actors
	Akka Actor Examples
	Scala Futures
	A Second Futures Example
	Key Points About Futures
	To Be Continued
	Appendices
	Explaining Scala’s val Function Syntax
	The Differences Between val and def When Creating Functions
	Recursion is Great, But …
	for expression translation examples
	A Review of Case Classes
	Algebraic Data Types
	A Review of Anonymous Functions
	On Using def vs val To Define Abstract Members in Traits

