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Preface

The purpose of this book is to introduce a wide range of readers — from the professional
programmer to the computer science student — to the rich world of functional programming
using the F# programming language. The book is intended as the textbook in a course on
functional programming and aims at showing the role of functional programming in a wide
spectrum of applications ranging from computer science examples over database examples
to systems that engage in a dialogue with a user.

Why functional programming using F#?
Functional programming languages have existed in academia for more than a quarter of a
century, starting with the untyped Lisp language, followed by strongly typed languages like
Haskell and Standard ML.

The penetration of functional languages to the software industry has, nevertheless, been
surprisingly slow. The reason is probably lack of support of functional languages by com-
mercial software development platforms, and software development managers are reluctant
to base software development on languages living in a non-commercial environment.

This state of affairs has been changed completely by the appearance of F#, an open-
source, full-blown functional language integrated in the Visual Studio development platform
and with access to all features in the .NET program library. The language is also supported
on Linux and MAC systems using the Mono platform.

The background

The material in this book has been developed in connection with courses taught at the Tech-
nical University of Denmark, originating from the textbook Introduction to Programming
Using SML by Hansen and Rischel (Addison-Wesley, 1999).

It has been an exciting experience for us to learn the many elegant and useful features of
the F# language, and this excitement is hopefully transferred to the reader of this book.

The chapters

e Chapter 1: The basic concepts of F#, including values, types and recursive functions, are
introduced in a manner that allows readers to solve interesting problems from the start.

e Chapter 2: A thorough introduction to the basic types in F# is given, together with a gentle
introduction to the notion of higher-order functions.

e Chapter 3: The simplest composite types of F#, tuples and records, are introduced. They
allow several values to be grouped together into one component. Furthermore, tagged
values are introduced.

iX



X Preface

e Chapter 4: A list is a finite sequence of values with the same type. Standard recursions on
lists are studied and examples illustrating a model-based approach to functional program-
ming are given.

e Chapter 5: The concepts of sets and maps are introduced and the powerful F# collection
libraries for lists, sets and maps are studied and applied in connection with a model-based
approach.

e Chapter 6: The concept of finite tree is introduced and illustrated through a broad selection
of examples.

e Chapter 7: It is shown how users can make their own libraries by means of modules
consisting of signature and implementation files. Furthermore, object-oriented features of
Fi# are mentioned.

o Chapter 8: Imperative features of F# are introduced, including the array part of the col-
lection library and the imperative sets and maps from the .NET framework.

e Chapter 9: The memory management concepts, stack, heap and garbage collection, are
described. Tail-recursive functions are introduced and two techniques for deriving such
functions are presented: one using accumulating parameters, the other continuations.
Their efficiency advantages are illustrated.

e Chapter 10: A variety of facilities for processing text are introduced, including regular
expressions, file operations, web-based operations and culture-dependent string ordering.
The facilities are illustrated using a real-world example.

e Chapter 11: A sequence is a, possibly infinite, collection of elements that are computed
on-demand only. Sequence functions are expressed using library functions or sequence
expressions that provide a step-by-step method for generating elements. Database tables
are viewed as sequences (using a type provider) and operations on databases are expressed
using query expressions.

e Chapter 12: The notion of computation expression, which is based on the theory of
monads, is studied and used to hide low-level details of a computation from its defini-
tion. Monadic parsing is used as a major example to illustrate the techniques.

e Chapter 13: This last chapter describes how to construct asynchronous reactive programs,
spending most of their time awaiting a request or a response from an external agent, and
parallel programs, exploiting the multi-core processor of the computer.

The first six chapters cover a standard curriculum in functional programming, while the
other chapters cover more advanced topics.

Further material

The book contains a large number of exercises, and further material is available at the book’s
homepage. A link to this homepage is found at:

http://www.cambridge.org/9781107019027

This material includes a complete set of slides for a course in functional programming plus
a collection of problems and descriptions of topics to be used in student projects.
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1

Getting started

In this chapter we will introduce some of the main concepts of functional programming
languages. In particular we will introduce the concepts of value, expression, declaration,
recursive function and type. Furthermore, to explain the meaning of programs we will intro-
duce the notions: binding, environment and evaluation of expressions.

The purpose of the chapter is to acquaint the reader with these concepts, in order to
address interesting problems from the very beginning. The reader will obtain a thorough
knowledge of these concepts and skills in applying them as we elaborate on them through-
out this book.

There is support of both compilation of F# programs to executable code and the execution
of programs in an interactive mode. The programs in this book are usually illustrated by the
use of the interactive mode.

The interface of the interactive F# compiler is very advanced as, for example, structured
values like tuples, lists, trees and functions can be communicated directly between the user
and the system without any conversions. Thus, it is very easy to experiment with programs
and program designs and this allows us to focus on the main structures of programs and
program designs, that is, the core of programming, as input and output of structured values
can be handled by the F# system.

1.1 Values, types, identifiers and declarations

In this section we illustrate how to use an F# system in interactive mode.
The interactive interface allows the user to enter, for example, an arithmetic expression in
a line, followed by two semicolons and terminated by pressing the return key:

2+x3 + 4;;
The answer from the system contains the value and the type of the expression:
val it : int = 10

The system will add some leading characters in the input line to make a distinction between
input from the user and output from the system. The dialogue may look as follows:

> 2%3 + 4;;
val it : int = 10
>



2 Getting started

2

The leading string “> ” is output whenever this particular system is awaiting input from
the user. It is called the prompt, as it “prompts” for input from the user. The input from the
user is ended by a double semicolon *“; ; ” while the next line contains the answer from the
system.

In the following we will distinguish between user input and answer from the system by
the use of different type fonts:

2+x3 + 4;;
val it : int = 10

The input from the user is written in t ypewriter font while the answer from the system
is written in italic typewriter font.

The above answer starts with the reserved word val, which indicates that a value has
been computed, while the special identifier it is a name for the computed value, that is, 10.
The fype of the result is int, denoting the subset of the integers {...,—2,—1,0,1,2,...}
that can be represented using the system.

The user can give a name to a value by entering a declaration, for instance:

let price = 125;;
where the reserved word let starts the declarations. In this case the system answers:
val price : int = 125

The identifier price is now a name for the integer value 125. We also say that the identifier
price is bound to 125.
Identifiers which are bound to values can be used in expressions:

price x 20;;
val it : int = 2500

The identifier it is now bound to the integer value 2500, and this identifier can also be
used in expressions:

it / price = 20;;
val it : bool = true

The operator / is the quotient operator on integers. The expression it /price = 20 isa
question to the system and the identifier it is now bound to the answer t rue of type bool,
where bool is a type denoting the two-element set {true, false} of truth values. Note that
the equality sign in the input is part of an expression of type bool, whereas the equality
sign in the answer expresses a binding of the identifier it to a value.

1.2 Simple function declarations

We now consider the declaration of functions. One can name a function, just as one can
name an integer constant. As an example, we want to compute the area of a circle with given
radius 7, using the well known area function: circleArea(r) = 7r?.
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Circle with radius r and area 7r2.

The constant 7 is found in the Library under the name System.Math.PI:

System.Math.PI;;
val it : float = 3.141592654

The type £loat denotes the subset of the real numbers that can be represented in the
system, and System.Math.PT is bound to a value of this type.

We choose the name circleArea for the circle area function, and the function is then
declared using a 1et-declaration:

let circleArea r = System.Math.PI % r *x r;;
val circleArea : float —-> float

The answer says that the identifier circleArea now denotes a value, as indicated by
the reserved word val occurring in the answer. This value is a function with the type
float —> float, where the symbol —> indicates a function type and the argument as
well as the value of the function has type £ 1oat. Thus, the answer says that circleArea
is bound to a value that is some function of type float —> float.

The function circleArea canbe applied to different arguments. These arguments must
have the type f1oat, and the result has type f1oat too:

circleArea 1.0;;
val it : float = 3.141592654

circleArea (2.0);;
val it : float = 12.56637061

Brackets around the argument 1.0 or (2.0) are optional, as indicated here.

The identifier System.Math.P1I is a composite identifier. The identifier System de-
notes a namespace where the identifier Math is defined, and System.Math denotes a
namespace where the identifier PI is defined. Furthermore, System and System.Math
denote parts of the NET Library. We encourage the reader to use program libraries whenever
appropriate. In Chapter 7 we describe how to make your own program libraries.

Comments

A string enclosed within a matching pair (* and =) is a comment which is ignored by the
F# system. Comments can be used to make programs more readable for a human reader by
explaining the intention of the program, for example:

( Area of circle with radius r *)
let circleArea r = System.Math.PI % r *x r;;
val circleArea : float —-> float
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Two slash characters // can be used for one-line comments:

// Area of circle with radius r
let circleArea r = System.Math.PI % r * r;;
val circleArea : float —-> float

A comment line can also begin with three slash characters // /. The tool XMLDocs can
produce program documentation from such comment, but we will not pursue this any further
in this book.

Comments can be very useful, especially in large programs, but long comments should
be avoided as they tend to make it more difficult for the reader to get an overview of the
program.

1.3 Anonymous functions. Function expressions

A function can be created in F# without getting any name. This is done by evaluating a func-
tion expression, that is an expression where the value is a function. This section introduces
simple function expressions and function expressions with patterns.

A nameless, anonymous function can be defined by a simple function expression, also called
a lambda expression,' for example:

fun r -> System.Math.PI % r * r;;

val it : float —-> float = <fun:clo@10-1>
it 2.0;;

val it : float = 12.56637061

The expression fun r —> System.Math.PI % r x r denotes the circle-area function
and it reads: “the function of r given by 7-72”. The reserved word fun indicates that a func-
tion is defined, the identifier r occurring to the left of —> is a pattern for the argument of the
function, and System.Math.PI * r % r is the expression for the value of the function.

The declaration of the circle-area function could be made as follows:

let circleArea = fun r -> System.Math.PI % r * r;;
val circleArea : float -> float
but it is more natural in this case to use a Let-declaration let circleArea r =...with

an argument pattern. We shall later see many uses of anonymous functions.

Function expressions with patterns

It is often convenient to define a function in terms of a number of cases. Consider, for
example, a function giving the number of days in a month, where a month is given by its
number, that is, an integer between 1 and 12. Suppose that the year of consideration is not a
leap year. This function can thus be expressed as:

I Lambda calculus was introduced by Alonzo Church in the 1930s. In this calculus an expression of the form
Az.e was used to denote the function of x given by the expression e. The fun-notation in F# is a direct
translation from A-expressions.
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function
1 -> 31 // January
-> 28 // February
-> 31 // March
-> 30 // April
31 // May
-> 30 // June
-> 31 // July
-> 31 // August
9 -> 30 // September
10 -> 31 // October
11 -> 30 // November
12 -> 31;;// December
function

O J o U w N
|
\%

stdin(17,1): warning FS0025: Incomplete pattern matches on
this expression. For example, the value 70’ may indicate a
case not covered by the pattern(s).

val it : int —-> int = <fun:clo@1l7-2>

The last part of the answer shows that the computed value, named by it, is a function with
the type int —> int, that is, a function from integers to integers. The answer also shows
the internal name for that function. The first part of the answer is a warning that the set
of patterns used in the function-expression is incomplete. The expression enumerates a
value for every legal number for a month (1, 2,...,12). At this moment we do not care
about other numbers.

The function can be applied to 2 to find the number of days in February:

it 2;;

val it : int = 28

@ 9,

This function can be expressed more compactly using a wildcard pattern *_

function

| 2 -> 28 // February

| 4 -> 30 // April

| 6 —-> 30 // June

| 9 -> 30 // September

| 11 -> 30 // November

| -> 31;;// All other months

In this case, the function is defined using six clauses. The first clause 2 —> 28 consists
of a pattern 2 and a corresponding expression 28. The next four clauses have a similar
explanation, and the last clause contains a wildcard pattern. Applying the function to a value
v, the system finds the clause containing the first pattern that matches v, and returns the
value of the corresponding expression. In this example there are just two kinds of matches
we should know:

e A constant, like 2, matches itself only, and
o the wildcard pattern _ matches any value.



6 Getting started

For example, applying the function to 4 gives 30, and applying it to 7 gives 31.
An even more succinct definition can be given using an or-pattern:

function

| 2 -> 28 // February

| 41619111 -> 30 // April, June, September, November
\ -> 31 // All other months

rs

The or-pattern 4 | 6| 9| 11 matches any of the values 4, 6,9, 11, and no other values.
We shall make extensive use of such a case splitting in the definition of functions, also
when declaring named functions:

let daysOfMonth = function
| 2 -> 28 // February
| 41619]11 -> 30 // April, June, September, November
| -> 31 // All other months

rs

val daysOfMonth : int -> 1int

daysOfMonth 3;;
val it : int = 31

daysOfMonth 9;;
val it : int = 30

1.4 Recursion

This section introduces the concept of recursion formula and recursive declaration of func-
tions by an example: the factorial function n!. It is defined by:

o =1
nl = 1-2-...-n forn>0

where n is a non-negative integer. The dots - - - indicate that all integers from 1 to n should
be multiplied. For example:

41=1-2-3-4=24

Recursion formula

The underbraced part of the below expression for n! is the expression for (n — 1)!:

nl=1-2-...-(n—1)-n  forn>1

(n—1)!
so we get the formula:

nl=n-(n—1)"! forn>1
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This formula is actually correct also for n = 1 as:
ol=1 and 1-1-1)'=1-00=1-1=1

so we get:
o =1 (Clause 1)
nl = n-(n—1) forn>0 (Clause 2)

This formula is called a recursion formula for the factorial function (_!) as it expresses the
value of the function for some argument n in terms of the value of the function for some
other argument (here: n — 1).

Computations

This definition has a form that can be used in the computation of values of the function. For
example:

(4 - 1)
.31
(3

—~

3-1))
|

o (2 1))
(2-11))

(@2 (1- (1 - 1))
[(2-(1-01))
(1-1)))

I
w W w
N

w

|
NSO SO N S N N

[\
=~ .

N N N N N N
w
NN AN N N

w
\V)

The clauses of the definition of the factorial function are applied in a purely “mechanical”
way in the above computation of 4!. We will now take a closer look at this mechanical
process as the system will compute function values in a similar manner:

Substitution in clauses

The first step is obtained from Clause 2, by substituting 4 for n. The condition for using the
second clause is satisfied as 4 > (. This step can be written in more detail as:

4!
= 4-(4-1)! (Clause 2, n = 4)

Computation of arguments

The new argument (4 — 1) of the factorial function in the expression (4 — 1)! is computed
in the next step:

- 3! (Compute argument of !)
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Thus, the principles used in the first two steps of the computation of 4! are:

e Substitute a value for n in Clause 2.
e Compute argument.

These are the only principles used in the above computation until we arrive at the expression:

4-(3-(2-(1-01)))
The next computation step is obtained by using Clause 1 to obtain a value of 0!:

4-(3-(2-(1-01)))
= 4-3-(2-(1-1))) (Clause 1)

and the multiplications are then performed in the last step:

4-3-(2-(1-1))

= 24

This recursion formula for the factorial function is an example of a general pattern that
will appear over and over again throughout the book. It contains a clause for a base case
“0!”, and it contains a clause where a more general case “n!” is reduced to an expression
“n - (n—1)!” involving a “smaller” instance “(n — 1)!” of the function being characterized.
For such recursion formulas, the computation process will terminate, that is, the computation
of n! will terminate for all n > 0.

Recursive declaration

We name the factorial function fact, and this function is then declared as follows:

let rec fact = function

| 0 —> 1

| n —> n = fact(n-1);;
val fact : int -> int

This declaration corresponds to the recursion formula for n!. The reserved word rec occur-
ring in the 1et-declaration allows the identifier being declared (fact in this case) to occur
in the defining expression.

This declaration consists of two clauses

0o —>1 and n —> n x fact(n-1)

each initiated by a vertical bar. The pattern of the first clause is the constant 0, while the
pattern of the second clause is the identifier n.

The patterns are matched with integer arguments during the evaluation of function values
as we shall see below. The only value matching the pattern 0 is 0. On the other hand, every
value matches the pattern n, as an identifier can name any value.

Evaluation

The system uses the declaration of fact to evaluate function values in a way that resembles
the above computation of 4!.
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Substitution in clauses

To evaluate fact 4, the system searches for a clause in the declaration of fact, where 4
matches the pattern of the clause.

The system starts with the first clause of the declaration: 0 —> 1. This clause is skipped
as the value 4 does not match the pattern O of this clause.

Then, the second clause: n —>n = fact (n—1) is investigated. The value 4 matches the
pattern of this clause, that is, the identifier n. The value 4 is bound to n and then substituted
for n in the right-hand side of this clause thereby obtaining the expression: 4 » fact (4-1).

We say that the expression fact 4 evaluates to 4 ~ fact (4—1) and this evaluation is
written as:

fact 4
~ 4 x fact (4-1)

where we use the symbol ~ for a step in the evaluation of an expression. Note that the
symbol ~+ is not part of any program, but a symbol used in explaining the evaluation of
expressions.

Evaluation of arguments

The next step in the evaluation is to evaluate the argument 4-1 of fact:

4 « fact (4-1)
~ 4 x fact 3

The evaluation of the expression fact 4 proceeds until a value is reached:

fact 4
~ 4 « fact (4-1) (1)
~ 4 x fact 3 (2)
~ 4 % (3 % fact (3-1)) (3)
~ 4 x (3 * fact 2) (4)
~ 4% (3 % (2 % fact(2-1))) (5)
~ 4 % (3 % (2 % fact 1)) (6)
~ 4% (3% (2 x (1 % fact(1-1)))) (7)
~ 4% (3 % (2 % (1 * fact 0))) (8)
~ 4 ox (3 x (2 x (1 x 1))) (9)
~ 4% (3% (2 % 1)) (10)
~ 4% (3% 2) (11)
~ 4 % 6 (12)
~ 24 (13)

The argument values 4, 3, 2 and 1 do not match the pattern O in the first clause of the
declaration of fact, but they match the second pattern n. Thus, the second clause is chosen
for further evaluation in the evaluation steps (1), (3), (5) and (7).

The argument value 0 does, however, match the pattern 0, so the first clause is chosen
for further evaluation in step (9). The steps (2), (4), (6) and (8) evaluate argument values to
fact, while the last steps (10) - (13) reduce the expression built in the previous steps.
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Unsuccessful evaluations

The evaluation of fact n may not evaluate to a value, because

o the system will run out of memory due to long expressions,
e the evaluation may involve bigger integers than the system can handle, or
e the evaluation of an expression may not terminate.”

For example, applying fact to a negative integer leads to an infinite evaluation:

fact -1

-1 % fact(-1 - 1)

-1 % fact -2

(=2 * fact (-2 - 1))
-1 » (=2 x fact -3)

¢ ¢ 8¢

A remark on recursion formulas

The above recursive function declaration was motivated by the recursion formula:

o =1
n! = n-(n—1)"! forn>0

which gives a unique characterization of the factorial function.
The factorial function may, however, be characterized by other recursion formulas, for
example:

o =1

1)!
n! = w forn >0
n+1

This formula is not well-suited for computations of values, because the corresponding func-
tion declaration based on this formula (where / denotes integer division):

let rec £ = function

| 0 -—> 1

| n —> f£(n+1)/(n+l);;
val f : int -> int

gives an infinite evaluation of £ k¥ when k > 0. For example:

£ 2
£(2+1)/(2+1)
£(3)/3
£(3+1)/(3+1)

¢ ¢ ¢

2 Note that a text like fact n is not part of F#. It is a schema where one can obtain a program piece by
replacing the meta symbol n with a suitable F# entity. In the following we will often use such schemas
containing meta symbols in italic font.
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Thus, in finding a declaration of a function, one has to look for a suitable recursion formula
expressing the computation of function values. This declaration of f contains a base case
“f 0”. However, the second clause does not reduce the general case “f(n)” to an instance
which is closer to the base case, and the evaluation of £(n) will not terminate when n. > 0.

1.5 Pairs

Consider the function:
t=x-x-...-x n occurrences of x, where n > 0

where T is a real number and 7 is a natural number.
The under-braced part of the expression below for 2™ is the expression for 2"~ 1:

Tt =x-x-...-x n occurrences of x, where n > 0

—

zn—1

Using the convention: 2° = 1, the function can be characterized by the recursion formula:
0

r =1

" = z-z" !t forn>0

In mathematics =™ is a function of two variables = and n, but it is treated differently in
F# using the concept of a pair:

If a; and a5 are values of types 71 and 75 then (al,ag) is a value of type 71 * 7

For example:

let a = (2.0,3);;
val a = (2.0, 3) : float =+ int

Furthermore, given patterns pat, and pat, there is a composite pattern (pat,, pat,). It
matches a pair (a;, a2) exactly when pat, matches a; and pat, matches a,, for example:

let (x,y) = ai;
val y : int = 3
val x : float = 2.0

The concept of a pair is a special case of tuples that are treated in Section 3.1.

Using these concepts we represent ™ as a function power with a pair (x,n) as the ar-
gument. The following declaration is based on the above recursion formula, using composite
patterns (x, 0) and (x,n):

let rec power = function
| (x,0) —> 1.0 /7 (1)
| (x,n) -> x * power(x,n-1);; // (2)

val power : float x int -> float

The type of poweris float * int —> float. The argument of power is therefore a pair
of type float » int while the value of the function is of type f1loat.
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The power function can be applied to pairs of type £1loat  int:

power aj;;

val it : float = 8.0
power (4.0,2);;
val it : float = 16.0

A function in F# has one argument and one value. In this case the argument is a pair (u, )
of type £loat  int, while the value of the function is of type float.
The system evaluates the expression power (4.0, 2) as follows:

power (4.0, 2)

~ 4.0 * power(4.0,2-1) (Clause 2, xis 4.0, nis 2)
~ 4.0 « power(4.0,1)

~ 4.0 (4.0 = power(4.0,1-1)) (Clause2,xis4.0,nis1)
~ 4.0 « (4.0 x power(4.0,0))

~ 4.0 « (4.0 % 1.0) (Clause 1, xis 4.0)

~ 16.0

Notes on pattern matching

Note that the order of the clauses in the declaration of power is significant. The following
declaration will not work:

function
| (x, n) —> x * powerNo(x,n-1) // This does NOT work
| (x, 0) =—> 1.0

let rec powerNo

The first pattern (x, n) will match any pair of form (u, 7) and the second clause will conse-
quently never come into use. The F# compiler actually discovers this and issues a warning:

warning FS0026: This rule will never be matched

The function can be applied to an argument (despite the warning), but that would give an
infinite evaluation since the base case (x, 0) —> 1.0 is never reached.
A similar remark on the order of clauses applies to the declaration of fact.
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One should also note that a prior binding of an identifier used in a pattern has no effect on
the pattern matching.” Hence, the following will also not work:

let zero = 0;;

let rec powerNo = function
| (x,zero) —> 1.0 // This does NOT work
| (x,n) -> x % powerNo (x,n-1)

rs

The first pattern (x, zero) will match any pair of form (u, ), binding x to v and zero
to ¢ so the second clause will again never come into use. The F# compiler issues a warning
like in the previous example.

1.6 Types and type checking

The examples in the previous sections show that types like f1oat » int —> float or int
form an integral part of the responses from the system.

In fact, F# will try to infer a type for each value, expression and declaration entered. If the
system can infer a type for the input, then the input is accepted by the system. Otherwise the
system will reject the input with an error message.

For example, the expression circleArea 2.0 is accepted, because

e circleArea has the type float —> float, and
e 2.0 has the type float.

Furthermore, the result of evaluating circleArea 2.0, thatis 12.5663706144, has
type £loat.

On the other hand, the system will reject the expression circleArea 2 with an er-
ror message since 2 has type int while the argument for circleArea must be of type
float:

circleArea 2;;
circleArea 2;;

stdin(95,12): error FS0001: This expression was expected to
have type

float
but here has type

int

The above type consideration for function application f(e) is a special case of the general
type rule for function application:

if f has type 7, —> T and e has type 7;
then f(e) has type 7.

3 Identifiers that are constructors are, however, treated in a special way (cf. Section 3.8).
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Using the notation e : 7 to assert that the expression e has type 7, this rule can be
presented more succinctly as follows:

iff:mm-—>mande:n
then f(e) : 7.

Consider, for example, the function power with type float » int —> float. In this
case, 7y is float » int and 7 is f£loat. Furthermore, the pair (4.0, 2) has type
float » int (which is 71). According to the above rule, the expression power (4.0, 2)
hence has type f1oat (which is 73).

1.7 Bindings and environments

In the previous sections we have seen that identifiers can be bound to denote an integer, a
floating-point value, a pair or a function. The notions of binding and environment are used
to explain that entities are bound by identifiers.

The execution of a declaration, say let x = e, causes the identifier « to be bound to the
value of the expression e. For example, the execution of the declaration:

let a = 3;;
val a : int = 3

causes the identifier a to be bound to 3. This binding is denoted by a — 3.
Execution of further declarations gives extra bindings. For example, execution of

let b = 7.0;;
val b : float = 7.0

gives a further binding b — 7.0.
A collection of bindings is called an environment, and the environment env; obtained
from execution of the above two declarations is denoted by:

al—>3}

wi=| 70 2

Note that this notation is not part of any program. Bindings and environments are mathe-
matical objects used to explain the meaning of programs.
The execution of an additional declaration causes an extension of env;. For example

let ¢ = (2, 8);;

val ¢ : int =+ int = (2, 8)

let circleArea r = System.Math.PI * r *x r;;
val circleArea : float —-> float

adds bindings of the identifiers ¢ and circleArea to the environment env; giving the
environment envs:

a = 3
- b — 7.0
c = (2,8)
circleArea +» “the circle area function”
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The value of an expression is always evaluated in the actual environment, that contains
the bindings of identifiers that are valid at evaluation time. When the F# system is activated,
the actual environment is the Basis Environment that gives meanings to /, +, —, sqgrt,
for example. When using environments we will usually not show bindings from the Basis
Environment. We will usually also omit bindings of identifiers like System.Math.PI
from the Library.

1.8 Euclid’s algorithm

This section presents the famous algorithm of Euclid for computing the greatest common
divisor of two natural numbers.

For a given integer n, an integer d is called a divisor of n (written d|n) if there exists an
integer ¢ such that n = ¢ - d. Hence, the number 1 is a divisor of any integer. Any integer
n # 0 has a finite number of divisors as each divisor has absolute value < |n/|, while 0 has
infinitely many divisors as any integer is a divisor of 0. Thus, integers m, n have at least one
common divisor (namely 1), and if either m # 0 or n # 0, then the set of common divisors
of m and n is finite.

The GCD theorem of Euclid states that for any integers m,n there exists an integer
ged(m, n) such that ged(m,n) > 0, and such that the common divisors of m and n are
precisely the divisors of ged(m,n).

Note that if m # 0 or n # 0 then ged(m, n) is the greatest common divisor of m and
n. Form = 0 and n = 0 we have gcd(0,0) = 0, as the common divisors for 0 and 0 are
precisely the divisors of 0, but 0 and 0 have no greatest common divisor as any number is a
divisor of 0.

Euclid gave an algorithm for computing ged(m, n) for arbitrary integers m and n and
this algorithm gives at the same time a proof of the theorem.

Division with remainder. The / and % operators

Euclid’s algorithm is based on the concept of integer division with remainder. Let m and n
be integers with m # 0. An identity with integers ¢ and  of the form:

n=q-m+r

is then called a division with quotient ¢ and remainder r. There are infinite many possible
remainders (corresponding to different quotients q):

coosm=3-Iml,n—=2-|m|, n—|m|, n, n+|m|, n+2-|m|, n+3-|m|, ...

It follows that there are two possibilities concerning remainders 7 with —|m| < r < |m]:

1. The integer 0 is a remainder and any other remainder 7 satisfies || > |m/|.

2. There are two remainders 7., and 7, such that —|m| < ry,., < 0 < 705 < .
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The Fi# operators / and % (quotient and remainder) are defined (for m = 0) such that:

n=(n/m) -m+(n3%m) (1.1)
In % m| < |m)| (1.2)
n%$m>0whenn >0 (1.3)
n$m< 0whenn <0 (1.4)

son % m = 0 when m is a divisor of n, otherwise 7,,, is used if n > 0 and 7,,,, if n < 0.
Note that the corresponding operators in other programming languages may use different
conventions for negative integers.

Euclid’s algorithm in F#
Euclid’s algorithm is now expressed in the following declaration

let rec gcd = function

| (0,n) -> n

| (m,n) -> gcd(n % m,m);;
val gecd : int * int -> int

For example:

gcd(12,27) ;;

val it : int = 3
gcd (36, 116);;
val it : int = 4

Termination of Euclid’s algorithm

It is not obvious that the evaluation of gcd(m, n) will terminate with a result for all integers

m and n. We will now prove that the second clause in the declaration is in fact used at most

|m| times in the evaluation of gcd(m, n). It follows that the evaluation always terminates.
Consider an evaluation with at least k£ (> 0) steps using the second clause:

gcd(m, n) m#0
~ ged(my, ny) my # 0
~  gcd(ma,ng) my # 0
~ gcd(mg—1,Nk—1) My—1 # 0
avd gcd(mk, nk)
~>

The right-hand side of the second clause gives the identities:

mq = nsm nq = m
Mo = nq % ma ») = ma

MmE = Ng_1 % Mg Ng = Mg
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Using |n % m| < |m| when m # 0, we get:
|m| > [mq| > > |mg| >0
It follows that
kE <|m|
because |my|, |mal, ..., |my| are k mutually different integers among the |m| integers

Im|—1,|m|—2,...,1,0.
The evaluation of gcd(m, n) will hence involve at most |m| uses of the second clause.

Proof of Euclid’s theorem
The key to prove Euclid’s theorem is that the following holds when m # 0:

The integers n $ m and m have the same common divisors as the integers n and m
This follows from the identities:
nsm+q-m=n and n—q-m=n%$m (withinteger ¢ = n/m)

which show that any common divisor of (n % m) and m is also a divisor of n, and hence a
common divisor of n and m — and conversely — any common divisor of n and m is also a
divisor of (n % m), and hence a common divisor of (n % m) and m.

Using the above integers 11, s, . . . and My, ma, . . . We hence get:

my and n; have same common divisors as m and n
Mo and N, have same common divisors as  m4 and n,

my and n, have same common divisors as  m,_; and n,_;

where the evaluation terminates with an index p where m,, = 0 and n, = gcd (m, n).

The common divisors of 0 and n,, are, however, exactly the divisors of n,, = gcd (m, n)
as any integer is a divisor of 0. It follows by induction that the common divisors of m and n
are exactly the divisors of gcd (m, n) .

1.9 Evaluations with environments

During the evaluation of expressions the system may create and use temporary bindings
of identifiers. This is, for example, the case for function applications like gcd (36, 116)
where the function gcd is applied to the argument (36, 116) . We will study such bindings
as it gives insight into how recursive functions are evaluated.

The declaration:

let rec gcd = function

| (O0,n) -> n

| (m,n) => gcd(n % m,m);;
val gcd : int % int -> int
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contains two clauses: One with pattern (0, n) and expression n and another with pattern
(m, n) and expression gcd (n % m, m) . There are hence two cases in the evaluation of an
expression gcd(x, y) corresponding to the two clauses:

1. gcd(0,y): The argument (0, y) matches the pattern (0, n) in the first clause giving the
binding n +— vy, and the system will evaluate the corresponding right-hand side expression
n using this binding:

ng(an) ~ (na [n = y]) ~Y

2. gcd(z,y) with z # 0: The argument (x, y) does not match the pattern (0, n) in the first
clause but it matches the pattern (m, n) in the second clause giving the bindings m —
z, n — vy, and the system will evaluate the corresponding right-hand side expression
gcd (n % m, m) using these bindings:

gcd(z,y) ~ (ged(n $m, m),[m—z,n—y])~ ...

Consider, for example, the expression gcd (36, 116) . The value (36, 116) does not
match the pattern (0, n), so the first evaluation step is based on the second clause:

gcd(36,116)
~ (ged(n%m, m),[m~— 36,n— 116])

The expression gcd (n $ m, m) will then be further evaluated using the bindings for m
and n. The next evaluation steps evaluate the argument expression (n %$ m, m) using the
bindings:
(gcd(n $m, m),[m+ 36,n+— 116])
~ gcd (116 % 36, 36)
~ gcd(8,36),

The evaluation continues evaluating the expression gcd (8, 36) and this proceeds in the
same way, but with different values bound to m and n:

gcd (8, 36)
~ (gcd(n%m, m),[m— 8 n— 36])
~ gcd(36%8, 8)
~ gcd (4, 8)

The evaluation will in the same way reduce the expression gcd (4, 8) to gcd (0, 4), but
the evaluation of gcd (0, 4) will use the first clause in the declaration of gcd, and the
evaluation terminates with result 4:

ged (4, 8)

~>
~ gcd(0,4)
~> (n, [nb—>4])

~ 4

Note that different bindings for m and n occur in this evaluation and that all these bindings
have disappeared when the result of the evaluation (that is, 4) is reached.
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1.10 Free-standing programs
A free-standing program contains a main function of type:
string[] —-> int

preceded by the entry point attribute:

[<EntryPoint>]
let main (param: string[]) =

The type string[] is an array type (cf. Section 8.10) and the argument param consists
of k strings (cf. Section 2.3):

param . [0], param. [1], ..., param. [k — 1]
The following is a simple, free-standing “hello world” program:

open System;;

[<EntryPoint>]

let main(param: string[]) =
printf "Hello %s\n" param.[0]
0;;

It uses the print £ function (cf. Section 10.7) to make some output. The zero result signals
normal termination of the program. The program source file Hello. £sx compiles to an
exe-file using the F# batch compiler:

fsc Hello.fsx —-o Hello.exe
and the program can now be called from a command prompt:

>Hello Peter
Hello Peter

>Hello "Sue and Allan"
Hello Sue and Allan

Using the f£sc command requires that the directory path of the F# compiler (with file name
fsc.exe or Fsc.exe)is included in the PATH environment variable.

Summary

The main purpose of this chapter is to familiarize the reader with some of the main concepts
of F# to an extent where she/he can start experimenting with the system. To this end, we have
introduced the F# notions of values, expressions, types and declarations, including recursive
function declarations.

The main concepts needed to explain the meaning of these notions are: integers and
floating-point numbers, bindings and environments, and step by step evaluation of expres-
sions.
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Exercises

Declare a function g: int —> int, where g(n) = n + 4.

Declare a function h: float = float —> float, where h(x,y) = y/22 + y2. Hint: Use
the function System.Math.Sqrt.

Write function expressions corresponding to the functions g and h in the exercises 1.1 and 1.2.
Declare a recursive function £: int —> int, where

fn)=14+2+---+(n—-1)+n

for n > 0. (Hint: use two clauses with 0 and n as patterns.)

State the recursion formula corresponding to the declaration.
Give an evaluation for £(4).

The sequence Fg, F1, Fo, ... of Fibonacci numbers is defined by:

Fob = 0
F, = 1
Fn = Fp_1+Fup2

Thus, the first members of the sequence are 0,1,1,2,3,5,8,13,....

Declare an F# function to compute F),. Use a declaration with three clauses, where the patterns
correspond to the three cases of the above definition.

Give an evaluations for Fj.

Declare a recursive function sum: int x int -> int, where

sum(m,n) =m+(m+1)+(m+2)+---+(m+(n—1)) + (m+n)

for m > 0 and n > 0. (Hint: use two clauses with (m, 0) and (m,n) as patterns.)
Give the recursion formula corresponding to the declaration.
Determine a type for each of the expressions:

(System.Math.PI, fact -1)
fact (fact 4)

power (System.Math.PI, fact 2)
(power, fact)

Consider the declarations:

let a = 5;;
let £ a =a + 1;;
let g b = (£ b) + a;;

Find the environment obtained from these declarations and write the evaluations of the expres-
sions £ 3 and g 3.
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Values, operators, expressions and functions

The purpose of this chapter is to illustrate the use of values of basic types: numbers, charac-
ters, truth values and strings by means of some examples. The concepts of operator overload-
ing and type inference are explained. Furthermore, the chapter contains a gentle introduction
to higher-order functions. It is explained how to declare operators, and the concepts of equal-
ity and ordering in F# are introduced. After reading the chapter the reader should be able to
construct simple programs using numbers, characters, strings and truth values.

2.1 Numbers. Truth values. The unit type

From mathematics we know the set of natural numbers as a subset of the set of integers,
which again is a subset of the rational numbers (i.e., fractions), and so on. In F#, however,
the set of values with the type: int, for the integers, is considered to be disjoint from the
set of values with the type: float, for floating-point numbers, that is, the part of the real
numbers that are representable in the computer. The reason is that the encodings of integer
and float values in the computer are different, and that the computer has different machine
instructions for adding integer values and for adding float values, for example.

A value of type int is written as a sequence of digits possibly prefixed with the mi-
nus sign “~”. Real numbers are written using decimal point notation or using exponential
notation, or using both:

0;7
val it : int = 0

0.0;;
val it : float

Il
(=)
S

0123;;
val it : int = 123

-7.235;;

val it : float = -7.235
-388890; ;

val it : int = —-388890

21



22 Values, operators, expressions and functions

1.23e-17;;
val it : float = 1.23e-17

where 1.23e-17 denotes 1.23 - 10717,

Operators

We will use the term operator as a synonym for function and the components of the argument
of an operator will be called operands. Furthermore, a monadic operator is an operator with
one operand, while a dyadic operator has two operands. Most monadic operators are used in
prefix notation where the operator is written in front of the operand.

Examples of operators on numbers are monadic minus —, and the dyadic operators ad-
dition +, subtraction —, multiplication * and division /. Furthermore, the relations: =, <>
(denoting inequality #), >, >= (denoting >), < and <= (denoting <), between numbers are
considered to be operators on numbers computing a truth value.

The symbol “~” is used for three purposes in F# as in mathematics. In number constants
like “~2" it denotes the sign of the constant, in expressions like “~ 2” and “- (2+1)”
it denotes an application of the monadic minus operator, and in the expression “1-2" it
denotes the dyadic subtraction operator.

Consider, as a strange example:

2 - = -1;;
val it : int =1

Starting from the right, —1 denotes the the integer “minus one ", the expression — —1 denotes
monadic minus applied to minus one, and the full expression denotes the dyadic operation
two minus one.

Division is not defined on integers, but we have instead the operators / for quotient and %
for remainder as described on Page 15, for example:

13 / =5;;
val it : int = -2
13 % -5;;

val it : int = 3

Truth values

There are two values t rue and false of the type bool:

true;;
val it : bool = true

false;;
val it : bool

false
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Logical operators

not  (unary) negation

&& logical and (conjunction)
I logical or (disjunction)

Table 2.1 Operators on truth values

Functions can have truth values as results. Consider, for example, a function even de-
termining whether an integer n is even (i.e., n $ 2 = 0). This function can be declared as
follows:

let even n = n % 2 = 0;;
val even : int —-> bool

A truth-valued function such as even is called a predicate.

Functions on truth values are often called logical operators, and some of the main ones are
shown in Table 2.1. The negation operator not applies to truth values, and the comparison
operators = and <> are defined for truth values. For example:

not true <> false;;
val it : bool = false

Furthermore, there are expressions e, | | e; and e; && es corresponding to the disjunction
and conjunction operators of propositional logic. The expression e; | | e is true if either e,
or e, (or both) are true; otherwise the expression is false. The expression e; && es is true if
both e; and e, are true; otherwise the expression is false.

Evaluations of e; | | e; and e; && e, will only evaluate the expression e; when needed,
that is, the expression e; in e; | | es is not evaluated if e; evaluates to true, and the
expression e, in e; && e is not evaluated if e; evaluates to false. For example:

1 =2 && fact -1 = 0;;
val it : bool = false

Thus, 1 = 2 && fact —1 = 0 evaluates to false without attempting to evaluate the ex-
pression fact —1 = 0, which would result in a non-terminating evaluation.

The unit type

There is only one value, written (), of type unit. It is mentioned here as it belongs to the
basic types in F#. It is used in the imperative part of F# as a “dummy” result of a computation
consisting solely of side-effects like input-output or modification of mutable data. There are
no operators on the value () of type unit.

2.2 Operator precedence and association

The monadic operator — is written in front of the argument (like other function names), while
the dyadic operators are written in infix notation, where the operator is placed between the
operands. Table 2.2 shows the arithmetic operators.
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+  unary plus

—  unary minus

+  addition

—  subtraction
multiplication
division

modulo (remainder)
%%  exponentiation

NG

Table 2.2 Arithmetic operators

Usual rules for omitting brackets in mathematical expressions also apply to F# expres-
sions. These rules are governed by two concepts: operator precedence and operator associ-
ation for dyadic operators as shown in Table 2.3. The operators occurring in the same row
have same precedence, which is higher than that of operators occurring in succeeding rows.
For example, » and / have the same precedence. This precedence is higher than that of +.

Operator Association
* Associates to the right
* /% Associates to the left
+ - Associates to the left
= <> > >= < <= No association
&& Associates to the left
| Associates to the left

Table 2.3 Operator precedence and association

Furthermore, a monadic operator (including function application) has higher precedence
than any dyadic operator. The idea is that higher (larger) precedence means earlier evalua-
tion. For example:

-2 -5 % 7 >3 -1 means ((— 2) — (5+«7)) > (3 - 1)
and
fact 2 - 4 means (fact 2) - 4

The dyadic operators for numbers and truth values (except * x) associate to the left, which
means that operators of the same precedence are applied starting from the left, so the evalu-
ation of an expression will proceed as if the expression was fully bracketed. For example:

1 -2 -3 means (1 - 2) - 3

2.3 Characters and strings

A character is a letter, a digit or a special character (i.e., a punctuation symbol like comma or
semicolon or a control character). Characters are encoded in the computer as integer values
using the Unicode alphabet, which is an international standard for encoding characters.

A character value is written as the character c enclosed in apostrophes. Examples of values
of type char are:
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4 I . .
al’

val it : char = "a’

4 r . .
rs

val it : char = 7 7/

where the last one denotes the space character.
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The new line, apostrophe, quote and backslash characters are written by means of the escape
sequences shown in Table 2.4. Functions on characters are found in the System.Char

library.

Sequence  Meaning
\’ Apostrophe
\" Quote
A\ Backslash
\b Backspace
\n Newline
\r Carriage return
\t Horizontal tab

Table 2.4 Character escape sequences
The operators | |, && and not are convenient when declaring functions with results of

type bool, like in the following declarations of the functions i sLowerCaseConsonant
and isLowerCaseVowel determining whether a character is a lower-case consonant or

vowel, respectively:

let isLowerCaseVowel ch =
ch="a’” || ch='e’ || ch='i’ || ch="0" || ch="u’;;
val isLowerCaseVowel : char —-> bool

let isLowerCaseConsonant ch =
System.Char.IsLower ch && not (isLowerCaseVowel ch);;
val isLowerCaseConsonant : char —-> bool

isLowerCaseVowel ’'i’ && not (isLowerCaseConsonant ’1’);;
val it : bool = true

isLowerCaseVowel ’'I’ || isLowerCaseConsonant ’'1I’;;
val it : bool = false

not (isLowerCaseVowel ’'z’) && isLowerCaseConsonant ’z’;;
val it : bool = true

where we use the function IsLower from the library System. Char to check whether ch
is a lower-case letter. This library contains predicates IsDigit, IsSeparator, and so

on, expressing properties of a character.
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Strings

A string is a sequence of characters. Strings are values of the type string. A string is
written inside enclosing quotes that are not part of the string. Quote, backslash or control
characters in a string are written by using the escape sequences. Comments cannot occur
inside strings as comment brackets ( (* or =) ) inside a string simply are interpreted as parts
of the string. Examples of values of type st ring are:

"abcd-—-";;
val it : string = "abcd-—-"
"\"1234\"";;
val it : string = "\"1234\""
mw., .

rs
val it : string = ""

The first one denotes the 7-character string “abcd-—-"", the second uses escape sequences
to get the 6-character string “" 1234 "” including the quotes, while the last denotes the empty
string containing no characters.

Strings can also be written using the verbatim string notation where the character @ is
placed in front of the first quote:

Q"cpcy ... Cp_q"
It denotes the string of characters ¢y ¢; ... c¢,_1 without any conversion of escape se-
quences. Hence @ "\\\\ " denotes a string of four backslash characters:

@"\\A\\";;

val it : string = "\\\\"

while the escape sequence \\ for backslash is converted in the string " \\\\":
"NANN"G
val it : string = "\\"
Verbatim strings are useful when making strings containing backslash characters. Note that

it is not possible to make a verbatim string containing a quote character because \ " is inter-
preted as a backslash character followed by the terminating quote character.

Functions on strings

The String library contains a variety of functions on strings. In this section we will just
illustrate the use of a few of them by some examples.
The 1length function computes the number of characters in a string:

String.length "1234";;

val it : int = 4

String.length "\"1234\"";;
val it : int = 6
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String.length "";; // size of the empty string
val it : int = 0

The concatenation function + joins two strings together forming a new string by placing
the two strings one after another. The operator + is used in infix mode:

let text = "abcd-——-";;
val text : string = "abcd-—-"

text + text;;

val it: string = "abcd---abcd-—--"
text + " " = text;;

val it : bool = false

text + "" = text;;

val it : bool = true

"""+ text = text;;
val it : bool = true

The last two examples show that the empty string is the neutral element for concatenation
of strings just like the number O is the neutral element for addition of integers.

Note that the same operator symbol + is used for integer addition and string concatenation.
This overloading of operator symbols is treated in Section 2.5.

A string s with length 7 is given by a sequence of n characters s = “cocy - - - ¢,_1”, where the
convention in F# is that the numbering starts at 0. For any such string s there is a function,
written s.[7], to extract the ¢’th character in s for 0 < ¢ < n — 1. The integer i used in s. ]
is called an index. For example:

"abc".[0];;
val it : char = "a’
"abc".[2];;
val it : char = ’c’
"abc".[3]1;;

System. IndexOutOfRangeException:
Stopped due to error

where the last example shows (a part of) the error message which will occur when the index

is out of bounds.
If we want to concatenate a string and a character, we need to use the st ring function

to convert the character to a string, for example

"abc" + string 'd’;;
val it : string = "abcd"
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as the operator + in this case denotes string concatenation, and this operator cannot concate-
nate a string with a character.

Conversion of integer, real or Boolean values to their string representations are done by
using the function st ring, for example:

string -4;;

val it : string = "-4"

string 7.89;;
val it : string = "7.89"

string true;;
val it : string = "True"
A simple application of this conversion function is the declaration of the function nameAge:

let nameAge (name, age) =
name + " is " + (string age) + " years old";;

It converts the integer value of the age to the corresponding string of digits and builds a
string containing the string for the name and the age. For example:

nameAge ("Diana",15+4);;
val it : string = "Diana is 19 years old"
nameAge ("Philip",1-4);;
val it : string = "Philip is -3 years old"

The st ring function can actually give a string representation of every value, including
values belonging to user-defined types. We shall return to this in Section 7.7. Examples of
string representations are:

string (12, "a’);;

val it : string = " (12, a)"

string nameAge;;
val it : string = "FSI_0022+it@29-4"

where the pair (12, ’a’) has a natural string representation in contrast to that of the user-
defined nameAge function.

2.4 If-then-else expressions
An if-then-else expression has form:
if exp, then erp, else erp,

where ezp, is an expression of type bool while exp, and exp; are expressions of the
same type. The if-then-else expression is evaluated by first evaluating ezp,. If ezp,
evaluates to true then the expression exp, is evaluated; otherwise, if exp, evaluates to
false then the expression ezp, is evaluated. Note that at most one of the expressions exp,
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and exp, will be evaluated (none of them will be evaluated if the evaluation of exp, does
not terminate).

An if-then-else expression is used whenever one has to express a splitting into cases
that cannot be expressed conveniently by use of patterns. As an example we may declare a
function on strings that adjusts a string to even size by putting a space character in front of
the string if the size is odd. Using the function even on Page 23 and if-then-else for
the splitting into cases gives the following declaration:

let even n = n % 2 = 0;;
val even : int -> bool

let adjString s = if even(String.length s)
then s else " " + s;;

val adjString : string —-> string

adjString "123";

I~

val it : string "123"
adjString "1234";;
val it : string = "1234"

One may, of course, use an 1 f-then-else expression instead of splitting into clauses
by pattern matching. But pattern matching is to be preferred, as illustrated by the following
(less readable) alternative declaration of the gcd function (cf. Page 16):

let rec gcd(m,n) = if m=0 then n

else gcd(n % m,m);;
val gecd : int % int —-> int

One should also avoid expressions of the forms:

if e; then true else e,
if e; then ey, else false

for defining Boolean combinations of expressions and instead use the shorter, equivalent
forms:

el e
e] && €9

2.5 Overloaded functions and operators

A name or symbol for a function or operator is overloaded if it has different meanings when
applied to arguments or operands of different types. We have already seen that the plus
operator + denote addition for integers but concatenation for strings.

A (mathematical) function on real numbers is considered different from the corresponding
function on integers, as they are implemented in F# by different machine instructions. An
operator of this kind is hence overloaded: it denotes different functions depending on the
context, and it depends on the types of the operands whether, for example, the operator *
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denotes multiplication on integers (of type int) or multiplication on real numbers (of type
float). The F# system tries to resolve these ambiguities in the following way:

e If the type can be inferred from the context, then an overloaded operator symbol is inter-
preted as denoting the function on the inferred type.

e If the type cannot be inferred from the context, then an overloaded operator symbol with
a default type will default to this type. The default type is int if the operator can be
applied to integers.

For example, the obvious declaration of a squaring function yields the function on inte-
gers:

let square x = x * X;;
val square : int -> 1int

Declaring a squaring function on reals can be done either by specifying the type of the
argument:

let square (x:float) = x * x;;
val square : float —-> float

or by specifying the type of the result:

let square x : float = x * x;;
val square : float —-> float

or by specifying the type of the expression for the function value:

let square x = x x x : float;;
val square : float —-> float

or by choosing any mixture of the above possibilities.

abs, acos, atan, atan2, ceil, cos, cosh, exp, floor, log
logl0, pow, pown, round, sin, sinh, sqgrt, tan, tanh

Table 2.5 Mathematical functions

There are many overloaded operators in F#, in particular mathematical functions that can
be applied to integers as well as to real numbers. Some of them can be found in Table 2.5.
The function abs, for example, computes the absolute value of a number that can be of type
int, float or any of the number types in Table 2.6, for example, £1oat 32:

abs -1;;
val it : int =1
abs -1.0;;

val it : float = 1.0

abs -3.2f;;
val it : float32 = 3.20000000f
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Overloading is extensively used in the .NET library and typing of arguments is frequently
needed to resolve ambiguities. The user may declare overloaded operators and functions
inside a type declaration as explained in Section 7.3.

2.6 Type inference

When an expression is entered, the F# system will try to determine a unique type using so-
called type inference. If this does not succeed then the expression is not accepted and an
error message is issued.

Consider once more the declaration of the function power (cf. Section 1.5):

let rec power = function
| (x, 0) -> 1.0 (+ 1 %)
| (x, n) —> x * power (x,n-1) (x 2 %)i;

val power : float = int —-> float

The F# system deduces that power has the type: f1oat  int —> f1loat. We can see how
F# is able to infer this type of power by arguing as follows:

1. The keyword function indicates that the type of power is a function type 7 —> 7/, for
some types 7 and 7.

2. Since power is applied to a pair (x, n) in the declaration, the type 7 must have the form
T1 * To for some types 7, and 7.

3. We have 5, = int, since the pattern of the first clause is (x, 0), and 0 has type int.

4. We have that 7/ = float, since the expression for the function value in the first clause:
1.0 has type float.

5. We know that power (x, n—1) has the type float since 7/ = float. Thus, the over-
loaded operator symbol = in x * power (x, n—1) resolves to £1oat multiplication and
x must be of type £1oat. We hence get 7; = float.

The above declaration of the power function has been used for illustrating the declaration
of recursive functions and the type inference performed by the system. As described above
there is already a power operator  x in F# and this should of course be used in programs.
In general we recommend to inspect the F# and .NET libraries and use available library
functions when appropriate.

2.7 Functions are first-class citizens

In functional languages, and F# is no exception, functions are what is called first-class citi-
zens. An implication of this is that a function can be argument of another function and that
the value of a function can again be a function. In this section we shall give a first, gentle
introduction to this concept, which also is known as higher-order functions.
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The value of a function can be a function

As a first example we shall consider the infix operator +. There is a version of this operator
that is not written between the operands. This non-fix version is written (+), and we shall
now study its type:

(+) i
val it : (int -> int —-> int) = <fun:1it@l1>

The type operator “—>" associates to the right, so (+) has the type:
(+) : int -> (int -> int)

This type shows that the value of the function (+) is another function with type int —> int.
Applying (+) to an integer n thus gives a function:

(+) n: int —> int
For example:
let plusThree = (+) 3;;

val plusThree : (int -> 1int)

plusThree 5;;
val it : int = 8

plusThree -7;;

val it : int = -4
The sum of two integers m and n can be computed as ( (+) m)n. The brackets can be
omitted because function application associates to the left. For example:

(+) 1 3;;
val it : int = 4

The argument of a function can be a function

Function composition f o g is defined in mathematics by: (f o g)(x) = f(g(z)). This
operator on functions is well-defined when domains and ranges of f and g match:

Iff:A— Bandg:C — A,then fog:C — B

For example, if f(y) =y + 3 and g(z) = 22, then (f o g)(z) = 2* + 3.

We want to construe the function composition o as a function, and this function will
obviously take functions as arguments. There is actually an infix operator << in F# denoting
function composition, and the above example can hence be paraphrased as follows:

let £ = fun y —-> y+3;; /7 f(y) = y+3

val f : int -> int

let g = fun x -> xX*x;; // g(x) = x*xx
val g : int -> int
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let h = £ << g;; // h = (f o q)
val h : int -> int
h 4;; // h(4) = (f o g) (4)

val it : int = 19

Using function expressions instead of named functions f, g and h, the example looks as
follows:

((fun y —> y+3) << (fun x —-> x*x)) 4;;
val it : int = 19

Declaration of higher-order functions

So far we have seen higher-order built-in functions like (+) and (<<). We shall now illus-
trate ways to declare such functions by means of a simple example.

Suppose that we have a cube with side length s, containing a liquid with density p. The
weight of the liquid is then given by p - s®. If the unit of measure of p is kg/m? and the unit
of measure of s is m then the unit of measure of the weight will be kg.

Consider the following declaration of the weight function:

let weight ro = fun s -> ro x s xx 3.0;;
val weight : float —-> float —-> float

where we use the operator * x to compute x¥ for floating-point numbers = and . A function
value weight p is again a function as the expression on the right-hand side of the decla-
ration is a fun-expression. This property of the function value is also visible in the type of
weight.

We can make partial evaluations of the function we ight to define functions for comput-
ing the weight of a cube of either water or methanol (having the densities 1000kg/m? and
786.5kg /m?® respectively under “normal” pressure and temperature):

let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)

waterWeight 1.0;;
val it : float = 1000.0

waterWeight 2.0;;
val it : float = 8000.0

let methanolWeight = weight 786.5;;
val methanolWeight : (float -> float)

methanolWeight 1.0;;
val it : float 786.5

methanolWeight 2.0;;
val it : float 6292.0
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Higher-order functions may alternatively be defined by supplying the arguments as fol-
lows in the 1et-declaration:

let weight ro s = ro » s **x 3.0;;
val weight : float -> float —-> float

and this is normally the preferred way of defining higher-order functions.

2.8 Closures

A closure gives the means of explaining a value that is a function. A closure is a triple:
(z, exp, env)

where z is an argument identifier, exp is the expression to evaluate to get a function value,
while env is an environment (cf. Section 1.7) giving bindings to be used in such an evalua-
tion.

Consider as an example the evaluation of weight 786.5 in the previous example. The
result is the closure:

ro +— 786.5
s, roxs*x3.0, | ~ = "the product function”
*x* > "the power function”

The environment contains bindings of all identifiers in the expression ro*s**3.0 except
the argument s.

Note that a closure is a value in F# — functions are first-class citizens.
The following simple example illustrates the role of the environment in the closure:
let pi = System.Math.PI;;

let circleArea r = pi * r * r;;
val circleArea : float -> float

These declarations bind the identifier pi to a f1oat value and circleArea to a closure:

pi —  3.14159...
circleArea > (r, pixrxr, [pi — 3.14159...])

A fresh binding of pi does not affect the meaning of circleArea that uses the binding
of pi in the closure:

let pi = 0;;
circleArea 1.0;;

val it : float = 3.141592654

This feature of F# is called static binding of identifers occurring in functions.
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2.9 Declaring prefix and infix operators

Expressions containing functions on pairs can often be given a more readable form by using
infix notation where the function symbol is written between the two components of the
argument. Infix form is used for the dyadic arithmetic operators +, —, %, /, for example.
This allows us to make expressions more readable by use of rules for omission of brackets.
For example: x—y—z means (z—y)—-z and z+y 2z means z+(y+z). These rules for omitting
brackets are governed by precedence and association for the operators (see Section 2.2).

Operators are written using special character strings which cannot be used as “normal”
identifiers. Infix operators are sequences of the following symbols'

s s o« + - ./ < = > 2 @ ° | -~

while prefix operators are one of

o°
o\
o\

- +. -. & &&
T T T (tilde characters)

The bracket notation converts from infix or prefix operator to (prefix) function:

e The corresponding (prefix) function for an infix operator op is denoted by (op) .
e The corresponding (prefix) function for a prefix operator op is denoted by ( “op) .

An infix operator is declared using the bracket notation as in the following declaration of

an infix exclusive-or operator . | | . on truth values:
let (.11.) pg= (p Il 9 && not(p && q);;
val ( .//]. ) bool -> bool -> bool
(L > 2) .1l. (2 + 3 < 5);;
val it : bool = false

The system determines the precedence and association of declared operators on the basis

of the characters in the operator. In the case of . | | . the periods have no influence on this,
so the precedence and association of . | | . will be the same as those of | | . Therefore,
true .||. false && true;;

is equivalent to
true .||. (false && true);;

as && has higher precedence than | | and . | | ..
A prefix operator is declared using a leading tilde character. We may, for example, declare
a prefix operator $% to calculate the reciprocal value of a f1oat as follows:

x =1.0 / x;;
) float —-> float

val it : float = 2.0

L This description of legal operators in F# is incomplete. The precise rules are complicated.
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[T

Remark: When defining an operator starting or ending in an asterisks “” a space must be
inserted after or before “) ” to avoid a conflict with the comment convention using “ (*”
and 66* ) 2

113 (”

2.10 Equality and ordering

The equality and inequality operators = and <> are defined on any basic type and on strings:

3.5 = 2e-3;;
val it : bool = false

"abcll <> "ab";;
val it : bool = true

It is not defined on functions (closures):

cos = sinj;

stdin(5,1): error FS0001: The type ’( "a -> “a)
does not support the ’‘equality’ constraint because
it is a function type

No type containing a function type can support equality as F# has no means to decide
whether two functions are equal: It is a fundamental fact of theoretical computer science
that there exists no (always terminating) algorithm to determine whether two arbitrary pro-
grams f and g (i.e., two closures) denote the same function.

The equality function is automatically extended by F# whenever the user defines a new type
—in so far as the type does not contain function types.
The type of the function eqText declared by:

let egText x y =
if x = y then "equal" else "not equal";;
val eqText : ’a -> ’a -> string when ’“a : equality

contains a type variable ' a with the constraint: when "a : equality.

This means that eqText will accept parameters x and y of any type 7 equipped with
equality:

eqText 3 4;;

val it : string = "not equal”

eqText ' '’ (char 32);;
val it : string = "equal"

Ordering

The ordering operators: >, >=, <, and <= are defined on values of basic types and on strings.
They correspond to the usual ordering of numbers. The ordering of characters is given by
the ordering of the Unicode values, while t rue > false in the ordering of truth values.
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Strings are ordered in the lexicographical ordering. That is, for two strings s; and so we
have that s; < s, if s; would occur before s5 in a lexicon. For example:

// Upper case letters precede
'A< Ta’;; // lower case letters
val it : bool = true

"automobile" < "car";;
val it : bool = true

nn < " "w. .
rrs

val it : bool true

Thus, the empty string precedes the string containing a space character, and the empty string
precedes any other string in the lexicographical ordering. Ordering is automatically extended
by F# whenever the user defines a new type, in so far as the type does not contain functions.

Using the comparison operators one may declare functions on values of an arbitrary type
equipped with an ordering:

let ordText x y = if x > y then "greater"
else if x = y then "equal"
else "less";;
val ordText : ’“a —-> ’a —-> string when ’a : comparison
The type of x and y contains a type variable ' a with the constraint

when ’'a : comparison

indicating that x and y can be of any type equipped with an ordering.
The library function compare is defined such that:

>0 ifz>y
compare r Yy = 0 ifz=y
<0 ifx<y

where the precise value of compare x y depends on the structure of the values x and y.
It may be convenient to use pattern matching with guards when declaring functions using
the compare function, for instance:

let ordText x y = match compare x y with
| £t when t > 0 —-> "greater"

| 0 -> "equal"
| _ -> "less";;
val ordText : ’a -> ’a —-> string when ’"a : comparison

The guard “whent > 0” restricts the matching, while the pattern “t” would otherwise
match any value.
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Type Description Constant
bool Logical value true, false
unit Void ()
char Character "char’
byte 8-bit unsigned integer digitsuy or 0xhexdigitsuy
sbyte 8-bit signed integer {-}digitsy or {-}0x hexdigitsy
intlé 16-bit signed integer {-}digitss or {-}0x hexdigits s
uintl6 16-bit unsigned integer digitsus or 0x hexdigits us
int 32-bit signed integer {-}digits or {-}0x hexdigits

(or int32)
uint32 32-bit unsigned integer digitsu or 0x hexdigits u
int64 64-bit signed integer {-}digitsL. or {-}0x hexdigits L
uint64 64-bit unsigned integer digits UL or Ox hexdigits UL
nativeint Machines integer {-}digitsn or {-}0x hexdigitsn
unativeint Machines unsigned integer digitsun or 0Ox hexdigits un
float32 32-bit IEEE floating-point ~ {-}digits.digits£ or

(or single) {-}digits{. digits} e {-} digits £
float 64-bit IEEE floating-point  {-}digits . digits or

(or double) {-}digits{. digits} e{-}digits
decimal High-precision decimal digitsM or {-}digits.digitsM
bigint Arbitrary integer {-}digits T
bignum Arbitrary rational number  {-}digitsN

Table 2.6 Basic Types

2.11 Function application operators | > and < |

The operator | > means “send the value as argument to the function on the right” while < |
means “‘send the value as argument to the function on the left,” that is:

arg |> fct means fct arg
fet <| arg means fct arg

These operators are sometimes useful to make expressions more readable. There are two
reasons for that:

e The operator | > allows you to write the argument to the left of the function.
e The operators | > and < | have lower precedence than the arithmetic operators.

Both expressions a+b | > sin and sin <| a+b do hence mean sin (a+b) . The operator
| > has precedence over <| so 2 |> (=) <| 3means (2 |> (-)) <] 3.

Both operators associate to the left. The parenthesesin 2 |> (3 |> (—) ) are hence needed
to get the rightmost | > operator applied before the leftmost.

2.12 Summary of the basic types

The F# system supports a number of basic types not addressed previously in this chapter.
Table 2.6 depicts the basic types, where the column “Constant” describes how constants are
written. The meta symbols digits, hexdigits, char, and {. ..} have the following meanings:

digits: One or more decimal digits: 0, 1, ..., 9
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hexdigits: One or more hex digits: 0, 1,...,9,A,B,...,F,a,b,..., f
char: A character or an escape sequence denoting a character.
{...}: The part between the brackets is optional. The brackets are not part of the string.

Hence 33e-8 is a constant of type f1oat and —0x1as is a constant of type int 16 while
32f is not accepted by F#.

Each type name denotes an overloaded conversion function converting to a value of the
type in question (in so far as this is possible).

Summary

In this chapter we have described values and functions belonging to the basic F# types: inte-
gers, reals, characters, truth values and strings. Furthermore, we have discussed evaluation
of infix operators with precedences, and the typing of arithmetic expressions where some
operators may be overloaded. The concept of higher-order functions was introduced and the
concept of a closure was used to explain the meaning of a function in F#. It was explained
how to declare operators, and finally, the concepts of equality and ordering were explained.

Exercises

2.1 Declare a function £: int —> bool such that £(n) = true exactly when n is divisible by 2
or divisible by 3 but not divisible by 5. Write down the expected values of £(24), £(27), £(29)
and £(30) and compare with the result. Hint: n is divisible by ¢ when n%q = 0.

2.2 Declare an F# function pow: string » int —> string, where:

pow(s,n) =8§-5-+ -§
—
n

where we use - to denote string concatenation. (The F# representation is +.)

2.3 Declare the F# function isIthChar: string = int * char —> bool where the value of
isIthChar(str,i,ch) is true if and only if ch is the ¢’th character in the string str (numbering
starting at zero).

2.4  Declare the F# function occFromIth: string » int * char —> int where

occFromIth(str,i,ch) = the number of occurrences of character ch
in positions j in the string str with j > i.

Hint: the value should be O for ¢ > size str.
2.5 Declare the F# function occInString: string * char —> int where

occInString(str,ch) = the number of occurrences of character ch
in the string str.

2.6 Declare the F# function notDivisible: int % int —> bool where
notDivisible(d,n) is true if and only if d is not a divisor of n.

For example notDivisible (2, 5) is true, and notDivisible (3, 9) is false.
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Values, operators, expressions and functions

1. Declare the F# function test: int * int » int —> bool. The value of test(a,b,c),
for a < b, is the truth value of:

notDivisible(a,c)
and notDivisible(a+1,c¢)

and notDivisible(b,c)

2. Declare an F# function prime: int —> bool, where prime(n) = true, if and only if n
is a prime number.

3. Declare an F# function nextPrime: int —> int, where nextPrime(n) is the smallest
prime number > n.

The following figure gives the first part of Pascal’s triangle:

1
11
121
1331
14641

The entries of the triangle are called binomial coefficients. The k’th binomial coefficient of the
n’th row is denoted (Z), forn > 0and 0 < k < n. For example, (%) =2and (3) = 6. The first
and last binomial coefficients, that is, (’8) and (Z), of row n are both 1. A binomial coefficient

inside a row is the sum of the two binomial coefficients immediately above it. These properties

can be expressed as follows:
< n ) < n ) 1
0 n

n n—1 n—1 .
(k>7<k—1 >—|—( & >1fn7£0,k;é(),andn>k.

Declare an F# function bin: int » int -> int to compute binomial coefficients.
Consider the declaration:

and

let rec £ = function
| (0,y) —> vy
| (x,y) —> f(x-1, x*xy);;

Determine the type of f.

For which arguments does the evaluation of £ terminate?
Write the evaluation steps for £ (2, 3) .

What is the mathematical meaning of f(z,y)?

el

2.10 Consider the following declaration:

let test(c,e) = if ¢ then e else 0;;

1. What is the type of test?
2. What is the result of evaluating test (false, fact (-1))?
3. Compare this with the result of evaluating

if false then fact -1 else 0
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Declare a function VAT : int —> float —> float such that the value VAT n x is obtained
by increasing x by n percent.

Declare a function unVAT: int —> float —> float such that
unVAT n (VAT n x) = x
Hint: Use the conversion function float to convert an int value to a float value.
Declare a function min of type (int —> int) —> int. The value of min(f) is the smallest

natural number n where f(n) = 0 (if it exists).
The functions curry and uncurry of types

curry : (fax '"b > 'c) >"a —>'"b > 'c
uncurry : (a -> 'b -> '¢c) -=> 'a x 'b -> 'c

are defined in the following way:
curry f is the function g where g z is the function h where h y = f(z,y).
uncurry g is the function f where f(z,y) is the value h y for the function h = g x.

Write declarations of curry and uncurry.
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Tuples, records and tagged values

Tuples, records and tagged values are compound values obtained by combining values of
other types. Tuples are used in expressing “functions of several variables” where the argu-
ment is a tuple, and in expressing functions where the result is a tuple. The components in
a record are identified by special identifiers called labels. Tagged values are used when we
group together values of different kinds to form a single set of values. Tuples, records and
tagged values are treated as “first-class citizens” in F#: They can enter into expressions and
the value of an expression can be a tuple, a record or a tagged value. Functions on tuples,
records or tagged values can be defined by use of patterns.

3.1 Tuples

An ordered collection of n values (vy,vs,...,v,), where n > 1, is called an n-tuple.
Examples of n-tuples are:

(10, true);;
val it : int # bool = (10, true)

(("abc",1),-3);;
val it : (string * int) #* int = (("abc", 1), -3)

A 2-tuple like (10, true) is also called a pair. The last example shows that a pair, for
example, ( ("abc", 1), -3), can have a component that is again a pair ("abc",1).In
general, tuples can have arbitrary values as components. A 3-tuple is called a triple and a 4-
tuple is called a quadruple. An expression like (true) is not a tuple but just the expression
true enclosed in brackets, so there is no concept of 1-tuple. The symbol () denotes the
only value of type unit (cf. Page 23).

The n-tuple (vq,vs,...,v,) represents the graph:

Uy V2 Un

The tuples (true, "abc",1,-3) and ((true, "abc"),1,-3) contain the same
values true, "abc", 1 and -3, but they are different because they have a different struc-
ture. This difference is easily seen from the structure of the corresponding graphs in Fig-
ure 3.1, where the 4-tuple (true, "abc", 1, —3) represents the graph with four branches

43
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true abc” 1 -3 true “abc”

(true, "abc",1,-3) ((true, "abc"),1,-3)

Figure 3.1 Graphs for tuple values

while the 3-tuple ( (true, "abc"), 1, -3) represents the graph with three branches and
a sub-graph with two branches.

Tuple expressions

A tuple expression (expr,,expr,,...,expr,) is obtained by enclosing n expressions
eTpry, exXPr,y, . . ., expr, in parentheses. It has the type 74 o % - - - x7,, when expr,, expr,,
..., expr,, have types 1y, To, ..., T,. For example:

(1<2,"abc",1,1-4) has type bool x string x int % int
(true, "abc") has type bool x string
((2>1,"abc"),3-2,-3) hastype (bool » string) * int * int
Remark: The tuple type 71 7o - - - xT,, corresponds to the Cartesian Product
A=A x Ay x---x A,

of n sets Aj, A,,..., A, in mathematics. An element a of the set A is a tuple a =
(a1,az,...,a,)of elements a; € Ay, a9 € Ag,...,a, € A,.

A tuple expression (expr,, expry,...,expr,) is evaluated from left to right, that is, by
first evaluating expr,, then expr,, and so on. Tuple expressions can be used in declarations
whereby an identifier is bound to a tuple value, for example:

let tpl ((1<2, "abc"), 1, 1-4);;
val tpl : (bool * string) =+ int * int = ((true, "abc"), 1, -3)

let tp2 (2>1, "abec", 3-2, -3);;
val tp2 : bool * string x int * int = (true, "abc", 1, -3)

Tuples are individual values
A tuple expression may contain identifiers that are already bound to tuples, for example:

let tl = (true, "abc");;
val tl1 : bool % string = (true, "abc")
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A |
true “abc” true “abc”

Figure 3.2 Graphs for tuples (true, "abc") and ( (true, "abc"), 1, -3)

let t2 = (t1,1,-3);;
val t2 : (bool * string) * int + int = ((true, "abc"), 1, -3)

The value bound to the identifier t 1 is then found as a subcomponent of the value bound to
t2 as shown in Figure 3.2. A fresh binding of t1 is, however, not going to affect the value

of t2:
let t1 = =7 > 2;;
val tl1 : bool = false
t2;;
val it : (bool % string) % int x int = ((true, "abc"), 1, -3)

The subcomponent (true,”’abc”) is a value in its own right and it depends in no way on possi-
ble future bindings of t 1 once the value of the expression (t1, 1, —3) has been evaluated.

Equality

Equality is defined for n-tuples of the same type, provided that equality is defined for the
components. The equality is defined componentwise, that is, (vy,vs,...,v,) is equal to
(v],Vh,...,v) if v; is equal to v for 1 < ¢ < n. This corresponds to equality of the
graphs represented by the tuples. For example:

("abc", 2, 4, 9) = ("ABC", 2, 4, 9);;

val it : bool = false

(1/ (Zrtrue)) = (2_11 (2/2>1));;

val it : bool = true

(1, (2,true)) = (1, 2, 2>1);;

(1, (2,true)) = (1, 2, 2>1);;

stdin (25,18) : error FS0001: Type mismatch. Expecting a
int * (int * bool)

but given a
int * (int * bool) * ’a

The tuples have differing lengths of 2 and 3

An error message occurs in the last example. The pair (1, (2,true)) on the left-
hand side of the equality has type int * (int * bool) while the tuple on the right-hand
side has type int %= int * bool. The system recognizes that these types are different and

issues an error message.
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Ordering

The ordering operators: >, >=, <, and <=, and the compare function are defined on n-
tuples of the same type, provided ordering is defined for the components. Tuples are ordered
lexicographically:

(:L‘la-r%' "7xn) < (y17y27" . 7yn)

exactly when, for some k, where 1 < k < n, we have:
T1=NNT2 =Y N.. . ANZp_1 = Y1 NTp < Yg
For example:

(L, "a") < (1, "ab");;
val it : bool = true

(2, "a") < (1, "ab");;
val it : bool = false

since “a” < “ab” holds while 2 < 1 does not.
The other comparison operators and the compare function can be defined in terms of =
and < as usual, for example:

("a”", ("b",true), 10.0) >= ('a’, ("b",false), 0.0);;
val it : bool = true

compare ("abcd", (true, 1)) ("abcd", (false, 2));;
val it : int =1

Tuple patterns

A tuple pattern represents a graph. For example, the pattern (x, n) is a tuple pattern. It
represents the graph shown to the left containing the identifiers x and n:

ANVA

x n 3 2

The graph represented by the value (3, 2) (shown to the right) matches the graph for the
pattern in the sense that the graph for the value is obtained from the graph for the pattern
by substituting suitable values for the identifiers in the pattern — in this case the value 3 for
the identifier x and the value 2 for the identifier n. Hence, the pattern matching gives the
bindings x — 3 and n — 2.

Patterns can be used on the left-hand side in a 1et declaration which binds the identifiers
in the pattern to the values obtained by the pattern matching, for example:

let (x,n) = (3,2);;
val x : int = 3
val n : int = 2



3.1 Tuples 47

Patterns may contain constants like the pattern (x, 0), for example, containing the con-
stant 0. It matches any pair (vy, v9) Where v, = 0, and the binding x + v is then obtained:

let (x,0) = ((3,"a"),0);;
val x : int * string = (3, "a")

This example also illustrates that the pattern matching may bind an identifier (here: x) to a
value which is a tuple.

The pattern (x, 0) is incomplete in the sense that it just matches pairs where the second
component is 0 and there are other pairs of type 7+1int that do not match the pattern. The
system gives a warning when an incomplete pattern is used:

let (x,0) = ((3,"a"),0);;

stdin(46,5): warning FS0025: Incomplete pattern matches on
this expression. For example, the value ’(_,1)’ may indicate a
case not covered by the pattern(s).

The warning can be ignored since the second component of ( (3, "a"™), 0) is, in fact, 0.
By contrast the declaration:

let (x,0) = (3,2);;
let (x,0) = (3,2);;
stdin(49,5): warning FS0025: Incomplete pattern matches on
this expression. For example, the value ’(_,1)’ may indicate a
case not covered by the pattern(s).
Microsoft.FSharp.Core.MatchFailureException: The match cases
were incomplete at <StartupCode$FSI_0036>.SFSI_0036.main@()
Stopped due to error

generates an error message because the constant 0 in the pattern does not match the cor-
responding value 2 on the right-hand side. The system cannot generate any binding in this
case.

The wildcard pattern can be used in tuple patterns. Every value matches this pattern, but
the matching provides no bindings. For example:

let ((_IX)I_IZ) = ((1Itrue)l (11213)1 false);;
val z : bool = false
val x : bool = true

A pattern cannot contain multiple occurrences of the same identifier, so (x, x), for ex-
ample, is an illegal pattern:

let (x,x) = (1,1);;
let (x,x) = (1,1);;

error FS0038: ’'x’ 1is bound twice in this pattern
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3.2 Polymorphism
Consider the function swap interchanging the components of a pair:

let swap (x,y) = (y,%X);;
val swap : ’a » b —> b % ’a

swap ("a’,"ab");;

val it : string * char = ("ab", ’a’)
swap ((1,3), ("ab",true));;
val it : (string+*bool) * (int*int) = (("ab", true), (1, 3))

The examples show that the function applies to all kinds of pairs. This is reflected in the type
of the function: “a » b ->"b » ' a.

The type of swap expresses that the argument (type ' a = ' b) must be a pair, and that
the value will be a pair (type ' b » " a) such that the first/second component of the value is
of same type as the second/first component of the argument.

The type of swap contains two type variables ' a and ' b. A type containing type vari-
ables is called a polymorphic type and a function with polymorphic type like swap is called
a polymorphic function. Polymorphic means “of many forms”: In our case the F# compiler
is able to generate a single F# function swap working on any kind of pairs and which is
hence capable of handling data of many forms.

Polymorphism is related to overloading (cf. Section 2.5) as we in both cases can apply the
same function name or operator to arguments of different types, but an overloaded operator
denotes different F# functions for different argument types (like + denoting integer addition
when applied to int’s and floating-point addition when applied to f1oat’s).

There are two predefined, polymorphic functions
fst:’a+x’'b->'a and snd:’a*x’'b->'b
on pairs, that select the first and second component, respectively. For example:

fst ((1,"a",true), "xyz");;

val it : int * string * bool = (1, "

n
7

a true)

snd(’z’, ("abc", 3.0));;
val it : string x float = ("abc", 3.0)

3.3 Example: Geometric vectors

A proper vector in the plane is a direction in the plane together with a non-negative length.
The null vector is any direction together with the length 0. A vector can be represented by its
set of Cartesian coordinates which is a pair of real numbers. A vector might instead be rep-
resented by its polar coordinates, which is also a pair of real numbers for the length and the
angle. These two representations are different, and the operators on vectors (addition of vec-
tors, multiplication by a scalar, etc.) are expressed by different functions on the representing
pairs of numbers.
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In the following we will just consider the Cartesian coordinate representation, where a

vector in the plane will be represented by a value of type f1oat x float.
We will consider the following operators on vectors:

Vector addition: (961, y1) + (3327 y2) = (931 + 22,91 + y2)

Vector reversal: —(3?, y) = ( z, )

Vector subtraction: (x1,y1) — (arz,yz) = (x1 — 22,51 — ¥2)
= (~T17y1) (~T27y2)

Multiplication by a scalar: Az, 91) = (Azy, Ayr)

Dot product: (z1,91) - (T2,92) = 2172 + 1Y

Norm (length): | (z1,91)]] = Vai+yi

We cannot use the operator symbols +, —, *, and so on, to denote the operations on vec-

tors, as this would overwrite their initial meaning. But using +. for vector addition, —.

for

vector reversal and subtraction, = . for product by a scalar and & . for dot product, we obtain
operators having a direct resemblance to the mathematical vector operators and having the

associations and precedences that we would expect.
The prefix operator for vector reversal is declared by (cf. Section 2.9):

let (7-.) (x:float,y:float) = (-x%x,-V);;
val ( "—. ) : float x float —-> float x float

and the infix operators are declared by:

let (+.) (x1, vyl1) (x2,y2) = (x1+x2,yl+y2): floatxfloat;;
val ( +. ) : float = float —-> float =+ float —> float = float

let (=.) vl v2 = vl +. . V2;;

val ( —-. ) : float % float —-> float #* float —-> float =+ float
let ( *.) x (x1,yl) = (x*x1, x=*xyl): floatxfloat;;

val ( *. ) : float —-> float » float —-> float = float

let (&.) (x1,vy1l) (x2,y2) = x1xx2 + ylxy2: float;;
val ( &. ) : float % float —-> float % float —-> float

The norm function is declared using the sgrt function (cf. Table 2.5) by:

let norm(xl:float,yl:float) = sqgrt(xlxxl+ylxyl);;
val norm : float =+ float —> float

These functions allow us to write vector expressions in a form resembling the mathematical

notation for vectors. For example:

let a = (1.0,-2.0);;
val a : float * float

(1.0, -2.0)

let b = (3.0,4.0);;
val b : float + float

(3.0, 4.0)
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let c 2.0 x. a —-. b;;
val ¢ : float = float = (-1.0, -8.0)

let d = ¢ &. aj;;
val d : float = 15.0

let e = norm bj;;
val e : float = 5.0

3.4 Records

A record is a generalized tuple where each component is identified by a label instead of the
position in the tuple.

The record type must be declared before a record can be made. We may for example
declare a type person as follows:

type Person = {age : int; birthday : int * int;
name : string; sex : string};;

The keyword type indicates that this is a type declaration and the braces { and } indicate
a record type. The (distinct) identifiers age, birthday, name and sex are called record
labels and they are considered part of the type.

A value of type Person is entered as follows:

let john = {name = "John"; age = 29;
sex = "M"; birthday = (2,11)1};;
val john : Person = {age = 29;
birthday = (2, 11);
name = "John'";
sex = "M",'}

This record contains the following fields: The string “John” with label name, the integer
29 with label age, the string “M” with label sex, and the integer pair (2,11) with label
birthday.

The declaration creates the following binding of the identifier john:

john — { age +— 29 ,birthday + (2,11), name > “John”, sex » “M”

A record is hence a local environment packaged in a certain way. It contains a binding of
each record label to the corresponding value.

A field in the record denoted by john is obtained by suffixing the identifier john with
the corresponding record label:

john.birthday; ;

val it : int * int = (2, 11)
john.sex; ;

val it : string = "M"
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Equality and ordering

The equality of two records with the same type is defined componentwise from the equality
of values associated with the same labels, so the ordering of the components in the record is
of no importance when entering values. For example

john = {age = 29; name = "John";
sex = "M"; birthday = (2,11)1};;
val it : bool = true

Hence two records are equal if they are of the same type and contain the same local bindings
of the labels.

Ordering of records is based on a lexicographical ordering using the ordering of the labels
in the record type declaration. Consider, for example:

type Tl = {a:int; b:string};;
let vl = {a=1; b="abc"};;

let v2 = {a=2; b="ab"};;
v1i<v2;;

val it : bool = true

type T2 = {b:string; a:int};;
let v1’ {T2.a=1; b="abc"};;
let v2’ = {T2.a=2; b="ab"};;
v1l’>v2';;

val it : bool = true

The value v1 is smaller than the value v2 because the label a occurs first in the record type
T1 and v1.a =1 is smaller than v2.a = 2 — while the value v1’ is larger than the value
v2’ because the label b occurs first in the record type T2 and v1’ .b = "abc" is larger
than v2’ .b="ab".

The composite identifier T2 . a consists of the record label a prefixed with the record type
T2. Itis used in order to resolve the ambiguity created by reuse of record labels.

Note that the values v1 and v1’ cannot be compared as they are of different types.

Record patterns
A record pattern is used to decompose a record into its fields. The pattern
{name = x; age = y; sex = s; birthday =(d,m)}

denotes the graph shown in Figure 3.3. It generates bindings of the identifiers %, vy, s, d and
m when matched with a person record:

age ——— vy age —— 19
birthday— (d,m) birthday— (24,12)
name —— X name ——— “Sue”
sex —— s sex —— “F”

Figure 3.3 Record pattern and record
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let sue = {name="Sue"; age = 19; sex="F";
birthday = (24,12)};;
let {name = x; age = y; sex = s; birthday = (d,m)} = sue;;
val y int = 19
val x string = "Sue"
val s string = "F"
val m int = 12
val d int = 24

Record patterns are used when defining functions. Consider, for example, the declaration
of a function age where the argument is a record of type Person:

let age {age = a; name = _; sex=_; birthday=_} = a;;
val age : Person —> 1int

let isYounglady {age=a; sex=s; name=_; birthday=_}
= a < 25 && s = "F";;
val isYoungLady : Person —> bool

age john;;
val it : int = 29

isYoungLady john;;
val it : bool = false

isYoungLady suej;;
val it : bool = true

The type of the above functions can be inferred from the context since name, age, and so
on are labels of the record type Person only.

3.5 Example: Quadratic equations

In this section we consider the problem of finding solutions to quadratic equations
ar® +br+c=0

with real coefficients a, b, c.
The equation has no solution in the real numbers if the discriminant b* — 4ac is negative;
otherwise, if b — 4ac > 0 and a # 0, then the equation has the solutions x; and x5 where:

B —b+ Vb?% — 4dac B —b—Vb% — 4dac

d =
2a me 2a
Note that z; = x5 if b*> — 4ac = 0.
We may represent the equation ax?+bx+c = 0 by the triple (a, b, ¢) of real numbers and

the solutions ; and x5 by the pair (z1, x2) of real numbers. This representation is captured
in the type declarations:

€

type Equation = float * float » float;;
type Equation = float =+ float =+ float
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type Solution = float * float;;
type Solution = float =+ float

A function:
solve: Equation -> Solution

for computing the solutions of the equation should then have the indicated type. Note that
type declarations like the ones above are useful in program documentation as they commu-
nicate the intention of the program in a succinct way. The system does, however, just treat
the identifiers Equation and Solution as shorthand for the corresponding types.

Error handling

The function solve must give an error message when b? — 4ac < 0 or a = 0 as there is no
solution in these cases. Such an error message can be signalled by using an exception. An
exception is named by an exception declaration. We may, for example, name an exception
Solve by the declaration:

exception Solve;;
exception Solve

The declaration of the function solve is:

let solve(a,b,c) =
if bxb-4.0xaxc < 0.0 || a = 0.0 then raise Solve
else ((-b + sqgrt(bxb-4.0*xax*c))/(2.0*a),
(b - sqgrt (b*b-4.0%axc))/(2.0xa));;
val solve : float x float = float —> float x float

The then branch of this declaration contains the expression: raise Solve. An evalu-
ation of this expression terminates with an error message. For example:

solve (1.0, 0.0, 1.0);;

FSI_0015+Solve: Exception of type ’FSI_0015+Solve’ was thrown.
at FSI_0016.solve (Double a, Double b, Double c)
at <StartupCodeSFSI_0017>.SFSI_0017.main@()

Stopped due to error

We say that the exception Solve is raised. Note that the use of the exception does not
influence the type of solve.
Other examples of the use of solve are:

solve (1.0, 1.0, -2.0);;
val it : float * float = (1.0, -2.0)

solve (2.0, 8.0, 8.0);;
val it : float #* float = (-2.0, -2.0)
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An alternative to declaring your own exception is to use the built-in function:
failwith: string -> 'a

that takes a string as argument. An application failwith s raises the exception Faiure s
and the argument string s is shown on the console. The function can be applied in any context
because the function value has a polymorphic type. For example:

let solve(a,b,c)
if bxb-4.0*xa*c < 0.0 || a = 0.0
then failwith "discriminant is negative or a=0.0"
else ((-b + sqgrt(bxb-4.0*ax*c))/(2.0xa),
(-b - sqgrt(bxb-4.0xaxc))/(2.0%xa));;

solve(0.0,1.0,2.0);;

System.Exception: discriminant is negative or a=0.0
at FSI_0037.solve (Double a, Double b, Double cC)
at <StartupCodeSFSI_0038>.SFSI_0038.main@()

Stopped due to error

We shall on Page 63 study how raised exceptions can be caught.

3.6 Locally declared identifiers

It is often convenient to use locally declared identifiers in function declarations. Consider
for example the above declaration of the function solve. The expression bxb-4.0*ax*c
is evaluated three times during the evaluation of solve (1.0,1.0,-2.0) and this is not
satisfactory from an efficiency point of view. Furthermore, the readability of the declaration
suffers from the repeated occurrences of the same subexpression.

These problems are avoided using a locally declared identifier d:

let solve(a,b,c) =
let d = bxb-4.0xax*c
if d < 0.0 || a = 0.0
then failwith "discriminant is negative or a=0.0"
else ((-b + sqgrt d)/(2.0*a), (b — sqgrt d)/(2.0%a));;
val solve : float % float = float —-> float = float

There is room for improvement in the above declaration as the expression sgrt d is eval-
uated twice during the evaluation of a function value. This leads to yet another declaration
of solve with a further locally declared identifier sqrtD:

let solve(a,b,c) =

let sqgrtDh =
let d bxb-4.0xaxc
if d < 0.0 || a=20.0
then failwith "discriminant is negative or a=0.0"
else sqgrt d

((-b + sqgrtD)/(2.0%a), (-b - sqrtD)/(2.0%a));;

val solve : float =% float =+ float —-> float =+ float
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The evaluation of solve (1.0,1.0,-2.0) proceeds as follows, where env denotes the
environment:

env=[ar— 1.0, b— 1.0, c — —2.0]

obtained by binding the parameters a, b and c to the actual values 1.0, 1.0 and —2.0:

Expression Environment Note
solve(1.0,1.0,-2.0)
~» let sqrth = ..., eny (D)
~»  Start evaluating subexpression
let d=bxb-4.0..., eny )
~ 1if d < 0..., env plus d — 9.0 3)
~ 30 env plus d — 9.0 @
End evaluating subexpression 5)
~  ((-b + sqgrtD... env plus sqgrtD +— 3.0 (6)
~  (1.0,-2.0) )

1. The binding of sgrtD can only be established when the value of the subexpression has
been evaluated.

2. The evaluation of the subexpression starts with the declaration let b = ....

3. The expression bxb-4 . 0xaxc evaluates to 9.0 using the bindings in env. A binding of
d to this value is added to the environment.

4. The evaluationof if d < 0.0 ... else sqrt d gives the value 3.0 using the bindings
in the environment env plus d — 9.0.

5. The evaluation of the subexpression is completed and the binding of d is removed from
the environment.

6. A binding of sqrtD to the value 3.0 is added to the environment, and the expression
((=b + sqgrtD ... is evaluated in this environment.

7. The bindings of a, b, c and sqrtD are removed and the evaluation terminates with result

(1.0, —2.0).
Note the role of indentation in F#. The 1et-expression:
let d = bxb-4.0xax*c
if d < 0.0 |] a=0.0
then failwith "discriminant is negative or a=0.0"
else sqrt d
is terminated by the occurrence of a less indented line:

((-b + sqgrtD)/(2.0%a), (-b - sqrtD)/(2.0xa));;

and this also ends the lifetime of the binding of d. One says that the 1et-expression consti-
tutes the scope of the declaration of d.
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The surrounding 1et-expression

let sqgrth =
let d = bxb-4.0xax*c
if d < 0.0 || a = 0.0

then failwith "discriminant is negative or a=0.0"
else sqgrt d
((-b + sqgrtD)/(2.0%a), (-b — sqgrtD)/(2.0%a))

is terminated by the double semicolon. Note that the expression ( (=b + ... must be on the
same indentation level as 1et sqrtD =.

A let-expression may contain more than one local declaration as shown in yet another
version of solve (probably the most readable):

let solve(a,b,c) =
let d = bxb-4.0xaxc
if d < 0.0 || a = 0.0
then failwith "discriminant is negative or a=0.0"
else let sqgrtDh = sqrt d
((-b + sqgrtD)/(2.0%a), (b — sqrtD)/(2.0%a));;
val solve : float * float = float —-> float = float

The evaluation of solve (1.0,1.0,-2.0) in this version of the function will add the
binding of d to the environment env. Later the binding of sqrtD is further added with-
out removing the binding of b. Finally the expression in the last line is evaluated and the
bindings of a, b, ¢, d and sqrtD are all removed at the same time.

3.7 Example: Rational numbers. Invariants

A rational number q is a fraction ¢ = ¢, where a and b are integers with b # 0.
Ideas to express the operations on rational numbers by function declarations come easily
from the following well-known rules of arithmetic, where a, b, ¢ and d are integers such that

b#0andd # 0:

a,c _ ad+tbhe

b d bd

a_¢ _ a e _ad-be

b d b d b

a c ac

.- = = 3.1
b d b D
ﬂ/f _ad her #0

/g = 3, Where c

%:2 exactly when ad = bc



3.7 Example: Rational numbers. Invariants 57

Representation. Invariant

We use the representation (a,b), where b > 0 and where the fraction { is irreducible, that s,
gcd(a, b) = 1, to represent the rational number §. Thus, a value (a,b) of type int * int
represents a rational number if b > 0 and gcd(a,b) = 1, and we name this condition the
invariant for pairs representing rational numbers. Any rational number has a unique normal
Sform of this kind. This leads to the type declaration:

type Qnum = int*int;; // (a,b) where b > 0 and gcd(a,b) =1

where the invariant is stated as a comment to the declaration. (The declaration of gcd is
found on Page 15.)

Operators

It is convenient to declare a function canc that cancels common divisors and thereby re-
duces any fraction with non-zero denominator to the normal form satisfying the invariant:

let canc(p,q) =
let sign = if pxg < 0 then -1 else 1
let ap = abs p
let aqg abs g
let d = gcd(ap,aq)
(sign * (ap / d), aqg / d);;

In the below declarations for the other functions, canc is applied to guarantee that the
resulting values satisfy the invariant.

When a rational number is generated from a pair of integers, we must check for division
by zero and enforce that the invariant is established for the result. The function mkQ does
that by the use of canc:

let mkQ = function
| (_,0) -> failwith "Division by zero"
| pr -> canc pr;;

The operators on rational numbers are declared below. These declarations follow the rules
(3.1) for rational numbers. We assume that the arguments are legal representations of rational
numbers, that is, they respect the invariant. Under this assumption, the result of any of the
functions must respect the invariant. This is enforced by the use of canc and mkQ:

let (.+.) (a,b) (c,d) = canc(axd + bxc, bxd);; // Addition
let (.-.) (a,b) (c,d) = canc(a*xd - bxc, b=*d);; // Subtraction
let (.*x.) (a,b) (c,d) = canc(ax*xc, bxd);; // Multiplication
let (./.) (a,b) (c,d) = (a,b) .». mkQ(d,c);; // Division

let (.=.) (a,b) (c,d) = (a,b) = (c,d);; // Equality
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Note that the definition of equality assumes the invariant. Equality should be declared by
axd=b=«c if we allow integer pairs not satisfying the invariant as there would then be many
different integer pairs representing the same rational number.

It is straightforward to convert a rational number representation to a string:
let toString(p:int,g:int) = (string p) + "/" + (string q);;
as the representation is unique. We can operate on rational numbers in a familiar manner:

let gl = mkQ(2,-3);;

val gl : int =+ int = (-2, 3)
let g2 = mkQ(5,10);;

val g2 : int * int = (1, 2)
let g3 = gl .+. g2;;

val g3 : int * int = (-1, 6)
toString(gl .-. g3 ./. a2);;
val it : string = "-1/3"

3.8 Tagged values. Constructors

Tagged values are used when we group together values of different kinds to form a single
set of values.

For example, we may represent a circle by its radius r, a square by its side length a, and
a triangle by the triple (a, b, ¢) of its side lengths a, b and c. Circles, squares, and triangles
may then be grouped together to form a single collection of shapes if we put a tag on each
representing value. The tag should be Circle, Square, or Triangle depending on the
kind of shape. The circle with radius 1.2, the square with side length 3. 4 and the triangle
with side lengths 3.0, 4.0 and 5. O are then represented by the tagged values shown in the
following graphs:

Circle Square Triangle
1.2 3.4 3.0 4.0 5.0
Circle 1.2 Square 3.4 Triangle (3.0,4.0,5.0)

In F#, a collection of tagged values is declared by a type declaration. For example, a type
for shapes is declared by:

type Shape = | Circle of float
| Square of float
| Triangle of floatxfloatxfloat;;
type Shape =
| Circle of float
| Square of float
| Triangle of float = float = float
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Constructors and values

The response from F# indicates that Shape names a type, and that Circle, Square and
Triangle are bound to value constructors. These value constructors are functions and
they give a tagged value of type Shape when applied to an argument.

For example, Circle is a value constructor with type f1loat —> Shape. This means
that Circle r denotes a value of type Shape, for every float . For example, Circle 1.2
denotes the leftmost graph in the above figure and Circle 1.2 is an example of a tagged
value, where Circle is the tag.

We can observe that Circle 1.2 is a value which is not evaluated further by F#:

Circle 1.2;;
val it : Shape = Circle 1.2

as the value in the answer is equal to the expression being evaluated, thatis, Circle 1.2.
Values can be constructed using Square and Triangle in a similar way.
Since constructors are functions in F#, Circle can be applied to an expression of type
float:

Circle (8.0 — 2.0%x3.4);;
val it : Shape = Circle 1.2

Thus, the declaration of Shape allows one to write tagged values like Circle 1.2,
Square 3.4 and Triangle (3.0,4.0,5.0) using the constructors, and any value of
type Shape has one of the forms:

Circler
Square a
Triangle (a,b,c)

for some float value r, float value a, or triple (a, b, c) of float values.

Equality and ordering

Equality and ordering are defined for tagged values provided they are defined for their com-
ponents. Two tagged values are equal if they have the same constructor and their components
are equal. This corresponds to equality of the graphs represented by the tagged values. For
example:

Circle 1.2 = Circle(1.0 + 0.2);;
val it : bool = true

Circle 1.2 = Square 1.2;;
val it : bool = false

The sequence in which the tags occur in the declaration is significant for the ordering. For
example, any circle is smaller than any square, which again is smaller than any triangle due
to the order in which the corresponding tags are declared. For example:

Circle 1.2 < Circle 1.0;;
val it : bool = false
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Circle 1.2 < Square 1.2;;
val it : bool = true

Triangle(1.0,1.0,1.0) > Square 4.0;;
val it : bool = true

Constructors in patterns

Constructors can be used in patterns. For example, an area function for shapes is declared
by:

let area = function
| Circle r -> System.Math.PI x r % r
| Square a -> a % a
| Triangle(a,b,c) ->
let s = (a+b + ¢)/2.0

sgrt (s* (s—a) x (s=b) x (s—c));;
val area : Shape —-> float

The pattern matching treats constructors differently from other identifiers:

A constructor matches itself only in a pattern match
while other identifiers match any value.

For example, the value Circle 1.2 will match the pattern Circle r, but not the other
patterns in the function declaration. The matching binds the identifier r to the value 1. 2,
and the expression Math.pi * r * r is evaluated using this binding:

area (Circle 1.2)
~ (Math.PI * r * r, [r—1.2])

>

The value Triangle (3.0,4.0,5.0) will in a similar way only match the pattern in
the third clause in the declaration, and we get bindings of a,band cto 3.0,4.0and 5.0,
and the 1et expression is evaluated using these bindings:

area (Triangle(3.0,4.0,5.0))
~ (let s = ...,[a~3.0,b+—4.0,c—5.0])

>

Invariant for the representation of shapes

Some values of type Shape do not represent geometric shapes. For example, Circle -1.0
does not represent a circle, as a circle cannot have a negative radius, Square -2 .0 does
not represent a square, as a square cannot have a negative side length, and

Triangle (3.0, 4.0, 7.5)
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does not represent a triangle, as 7.5 > 3.0 4 4.0 and, therefore, one of the triangle inequal-
ities is not satisfied.

Therefore, there is an invariant for this representation of shapes: the real numbers have to
be positive, and the triangle inequalities must be satisfied. This invariant can be declared as
a predicate isShape:

let isShape = function
| Circle r -> r > 0.0
| Square a -> a > 0.0

| Triangle(a,b,c) ->
a > 0.0 && b > 0.0 && ¢ > 0.0
&& a < b+ c & b < c + a && ¢c < a + b;;
val isShape : Shape -> bool

We consider now the declaration of an area function for geometric shapes that raises an
exception when the argument of the function does not satisfy the invariant. If we try to
modify the above area function:

let area x = if not (isShape x)
then failwith "not a legal shape"
else

then the e 1 se-branch must have means to select the right area-expression depending on the
form of x. This is done using amatch ... with ... expression:

let area x =
if not (isShape x)
then failwith "not a legal shape" raise
else match x with
| Circle r -> System.Math.PI * r % r
| Square a -> a % a
| Triangle(a,b,c) ->
let s = (a + b + ¢)/2.0
sgrt (sx (s—a) x (s=b) x (s—-c) ) ;;
val area : Shape —-> float

The modified area function computes the area of legal values of the type Shape and
terminates the evaluation raising an exception for illegal values:

area (Triangle(3.0,4.0,5.0));;

val it : float = 6.0

area (Triangle(3.0,4.0,7.5));;
System.Exception: not a legal shape
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3.9 Enumeration types

Value constructors need not have any argument, so we can make special type declarations
like:

type Colour = Red | Blue | Green | Yellow | Purple;;
type Colour =
| Red
Blue
Green
Yellow
| Purple

—_ — —

Types like Colour are called enumeration types, as the declaration of Colour just enu-
merates five constructors:

Red, Blue, Green, Yellow, Purple

where each constructor is a value of type Colour, for example:

Green; ;
val it : Colour = Green

Functions on enumeration types may be declared by pattern matching:

let niceColour = function
| Red -> true
| Blue —> true
| -> false;;
val niceColour : Colour -> bool

niceColour Purple;;
val it : bool = false

The days in a month example on Page 4 can be nicely expressed using an enumeration
type:

type Month = January | February | March | April
| May | June | July | August | September
| October | November | December;;

let daysOfMonth = function

| February -> 28
| April | June | September | November -> 30
| -> 31;;

The Boolean type is actually a predefined enumeration type:

type bool = false | true

where the order of the constructors reflects that false < true. Notice that user-defined
constructors must start with uppercase letters.
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3.10 Exceptions

Exceptions have already been used in several examples earlier in this chapter. In this section
we give a systematic account of this subject.

Raising an exception terminates the evaluation of a call of a function as we have seen for
the solve function on Page 53 that raises the exception Solve when an error situation is
encountered. In the examples presented so far the exception propagates all the way to top
level where an error message is issued.

It is possible to catch an exception using a try...with expression as in the following
solveText function:

let solveText eq =
try
string (solve eq)
with
| Solve —-> "No solutions";;
val solveText : float x float = float —-> string

It calls solve with a float triple eq representing a quadratic equation and returns the string
representation of the solutions of the equation:

solveText (1.0,1.0,-2.0);;
val it : string = "(1, -2)"

The string “No solutions” is returned if the equation has no solutions:

solveText (1.0, 0.0, 1.0);;
val it : string = "No solutions"

An application of the function failwith s will raise the exception Failure s and this
exception can also be caught. Application of the function mkQ (see Page 57), for example,
will call failwith in the case of a division by zero:

try
toString (mkQ(2,0))
with
| Failure s —-> s;;
val it : string = "Division by zero"

A try...with expression has the general form:

try e with match

where e is an expression (possibly extending over several lines) and match is a construct of
the form:

| pat, —> e
| paty —> e
| pat,, —> e,

with patterns pat,, . .. pat, and expressions €1, ..., €,.
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A try e with match expression is evaluated as follows:

e Evaluate the expression e. If this evaluation terminates normally with a value v then return
v as the result of evaluating the try ... with ... expression.

e If the evaluation raises an exception Exc then evaluate march by matching Exc to the
patterns pat, ... pat,. If Exc matches a pattern pat, then evaluate the corresponding
expression e;. If Exc matches none of the patterns then propagate the exception as a
result of evaluating the try ... with ... expression.

The exception mechanism in F# and .NET is not intended for use in the “normal case” in a
program but for error handling only.

Library functions (e.g., for performing I/O) may raise exceptions that can only be captured
using a match on type (cf. Section 7.7).

3.11 Partial functions. The option type

A function f is a partial function on a set A if the domain of f is a proper subset of A.
For example, the factorial function is a partial function on the set of integers because it is
undefined on negative integers.

In declaring a partial function, F# offers the programmer three ways of handling argument
values where the function is undefined:

1. The evaluation of the function value does not terminate.

2. The evaluation of the function value is terminated by raising an exception.

3. The evaluation of the function value gives a special result, indicating that the function is
undefined for the actual argument.

The first choice was used in the declaration of the factorial function fact, where, for
example, the evaluation of fact -1 never terminates.
The second choice was selected for the improved area function (cf. Page 61).

The third choice uses the predefined opt ion type:
type 'a option = None | Some of 'a

where None is used as result for arguments where the function is undefined while Some v
is used when the function has value v.
The constructor Some is polymorphic and can be applied to values of any type:

Some false;;
val it : bool option = Some false

Some (1, "a");;
val it : (int % string) option = Some (1, "a")

The value None is a polymorphic value of type ' a option:

Nonej; ;
val it : ’‘a option = None
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The library function
Option.get : ’'a option -> 'a

“removes the Some”, that is, Option.get (Some n) = n. It raises an exception when
applied to None. For example:

Option.get (Some (1,"a™));;
val it : int * string = (1, "a")

Option.get (Some 1);;
val it : int =1
Option.get None + 1;;

System.ArgumentException: The option value was None

We may, for instance, declare a modified factorial function optFact(n) with value
Some n! for n > 0 and None for n < 0:

let optFact n = if n < 0 then None else Some (fact n);;
val optFact : int —-> int option

The function application optFact n always gives a result:
optFact 5;;
val it : int option = Some 120
optFact -2;;
val it : int option = None

The declaration of optFact presumes that fact has already been declared. An inde-
pendent declaration of optFact is achieved using the Opt ion.get function:

let rec optFact = function
| 0 -> Some 1
| n when n > 0 —> Some(n % Option.get (optFact (n-1)))
| —> Nonej; ;

val optFact : int —-> int option

Note the use of guarded patterns in this declaration (cf. Section 2.10).

Summary

This chapter introduces the notions of tuples and tuple types, the notions of records and
record types, and the notions of tagged values and tagged-value types. Tuples and records are
composite values, and we have introduced the notion of patterns that is used to decompose
a composite value into its parts. Tagged values are used to express disjoint unions.

An operator can be given infix mode and precedence, and this feature was exploited in
writing the operators on geometric vectors in the same way as they are written in mathemat-
ical notation.

The notion of exceptions was introduced for handling errors and let expressions were
introduced for having locally declared identifiers.
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Tuples, records and tagged values

Exercises

A time of day can be represented as a triple (hours, minutes, f) where f is either AM or PM
— or as a record. Declare a function to test whether one time of day comes before another. For
example, (11,59, "AM") comes before (1,15, "PM"). Make solutions with triples as well
as with records. Declare the functions in infix notation.

The former British currency had 12 pence to a shilling and 20 shillings to a pound. Declare
functions to add and subtract two amounts, represented by triples (pounds, shillings, pence) of
integers, and declare the functions when a representation by records is used. Declare the func-
tions in infix notation with proper precedences, and use patterns to obtain readable declarations.
The set of complex numbers is the set of pairs of real numbers. Complex numbers behave almost
like real numbers if addition and multiplication are defined by:

(a,b) + (¢,d) = (a+ec,b+d)
(a,b) - (¢,d) (ac — bd, bc + ad)

1. Declare suitable infix functions for addition and multiplication of complex numbers.

2. The inverse of (a,b) with regard to addition, that is, —(a, b), is (—a, —b), and the inverse of
(a, b) with regard to multiplication, that is, 1/(a, b), is (a/(a® +b%), =b/(a? +b?)) (provided
that a and b are not both zero). Declare infix functions for subtraction and division of complex
numbers.

3. Use let-expressions in the declaration of the division of complex numbers in order to avoid
repeated evaluation of identical subexpressions.

A straight line y = az + b in the plane can be represented by the pair (a, b) of real numbers.

1. Declare a type St raightLine for straight lines.
2. Declare functions to mirror straight lines around the x and y-axes.
3. Declare a function to give a string representation for the equation of a straight line.

Make a type Solution capturing the three capabilities for roots in a quadratic equation: two
roots, one root and no root (cf. Section 3.5). Declare a corresponding solve function.

Solve Exercise 3.1 using tagged values to represent AM and PM.

Give a declaration for the area function on Page 61 using guarded patterns rather than an
if...then...else expression.



Lists

Lists are at the core of functional programming. A large number of applications can be mod-
elled and implemented using lists. In this chapter we introduce the list concept, including list
values, patterns and basic operations, and we study a collection of recursion schemas over
lists. We end the chapter introducing a model-based approach to functional programming
on the basis of two examples. The concept of a list is a special case of a collection. In the
next chapter, when we consider collections more generally, we shall see that the F# library
comprises a rich collection of powerful functions on lists.

4.1 The concept of a list
A list is a finite sequence of values
[Vo; V17 .- Un—1]

of the same type. For example, [2], [3; 2], and [2; 3; 2] are lists of integers. A list
can contain an arbitrary number of elements.

Alist [vg; v1; ...; V,_1] is either empty (when n = 0), or it is a non-empty list and
can be characterized by the first element v, called its head, and the rest [v1; ...; Up_1]
called its tail.

Figure 4.1 shows the graphs for the lists [2; 3; 2] and [2]. The list [2; 3; 2] is

2 H
3 H
2 [] 2 []
Graph for [2; 3; 2] Graph for [2]

Figure 4.1 Graphs for two lists
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hence a tagged pair with tag : : where the first component, the head of the list, is the integer
2, while the second component, the tail of the list, is the list [3; 2] with just two elements.
This list is again a tagged pair with tag : :, head 3 and tail [2]. Finally the head of the list
[2] is the integer 2, while the tail is the empty list [].

List constants in F#

Lists can be entered as values:

let xs [2;3;21;;
val xs : int list = [2; 3; 2]

let ys = ["Big"; "Mac"l;;
val ys : string list = ["Big", "Mac"]

The types int 1ist and string list, containing the type constructor 1ist, indi-
cate that the value of xs is a list of integers and that the value of ys is a list of strings.

We may have lists with any element type, so we can, for example, build lists of pairs:

[("b",2); ("c",3); ("e",5)];;

val it : (string = int) 1list = [("b", 2);("c", 3); ("e", 5)]

lists of records:

type P = {name: string; age: int}
[{name = "Brown"; age = 25}; {name = "Cook"; age = 45}];;
val it : P list =

[{name = "Brown"; age = 25}; {name = "Cook"; age = 45}]

lists of functions:

[sin; cosl;;
val it : (float —-> float) 1list

[<fun:1t@7>; <fun:1it@7-1>]
or even lists of lists:

[[2;31;[31;02;3;3115;
val it : int 1list 1list = [[2; 3]; [3]; [2; 3; 3]]

Furthermore, lists can be components of other values. We can, for example, have pairs
containing lists:

("bce", [2;3;5]);;
val it : string * int list = ("bce", [2; 3; 5])

The type constructor 1ist

The type constructor 11 st has higher precedence than « and —> in type expressions, so the
type string » int 1ist means string x (int 1ist). The type constructor 1ist
is used in postfix notation like the factorial function _! in 3! and associates to the left, so
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int list list means (int list) list. Note that int (list l1ist) would not
make sense.

All elements in a list must have the same type. For example, the following is not a legal
value in F#:

stdin(8,6): error FS0001:

This expression was expected to have type
string

but here has type
int

Equality of lists
Two lists [Zg; T1; ---; Tm—1] and [Yo; Y1; ---,Yn—1] (of the same type) are equal when
m = n and z; = y;, for all ¢ such that 0 < ¢ < m. This corresponds to equality of the
graphs represented by the lists. Hence, the order of the elements as well as repetitions of the
same value are significant in a list.

The equality operator = of F# can be used to test equality of two lists provided that the
elements of the lists are of the same type and provided that the equality operator can be used
on values of that element type.

For example:

[2;3;2] = [2;31;;
val it : bool = false

[2;3;2] = [2;3;31:;
val it : bool = false

The differences are easily recognized from the graphs representing [2; 3; 21, [2; 3]
and [2; 3; 3].

Lists containing functions cannot be compared because F# equality is not defined for func-
tions.
For example:

[sin; cos] = [1;;

The type ' ( "a -> “"a ) when
“a : (static member Sin : “a -> "a)’ does not support
the ’equality’ constraint because it is a function type
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Ordering of lists

Lists of the same type are ordered lexicographically, provided there is an ordering defined
on the elements:

[(ToiT1i - i Tm—1]<[Yoi¥Y1i - iYn-1l
exactly when

[(ToiTyj...izp]l g k=m-1<n-1
=[Y0i Y17 --- i Yk) or k<min{m—1,n—1}and xy11 < Yri1

for some k, where 0 < k < min{m — 1,n — 1}.
There are two cases in this definition of zs < ys:
1. The list xs is a proper prefix of ys:
[1; 2; 31 < [1; 27 3; 41;;
val it : bool = true
[Ill; 121; ISI] <[Ill; 127,. 131; 147];;
val it : bool = true

The examples illustrate comparisons of integer lists and character lists. Furthermore, the
empty list is smaller than any non-empty list:

[1 < [1; 2; 31;;
val it : bool = true
[1 < [[1; [(true,2)11;;
val it : bool = true
2. The lists agree on the first k elements and x, 1 < Y. 1. For example:
[(1; 2; 3; 0; 9; 101 < [1; 2; 3; 41;;

val it : bool = true

["research"; "articles"] < ["research"; "books"];;
val it : bool = true

because 0 < 4 and "articles" < "books".
The other comparison relations can be defined in terms of = and < as usual. For example:

[1; 1; 6; 10] >= [1; 21;;
val it : bool = false

The compare function is defined for lists, provided it is defined for the element type. For
example:

compare [1; 1; 6; 101 [1; 21;;

val it : int = -1

compare [1;2] [1; 1; 6; 101;;
val it : int =1
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4.2 Construction and decomposition of lists
The cons operator

The infix operator : : (called “cons”) builds a list from its head and its tail as shown in
Figures 4.2 and 4.3 so it adds an element at the front of a list:

let x = 2::[3;4;51;;
val x : int list = [2; 3; 4; 5]

let y = ""::01;;
val y : string list = [""]

x xrs
Figure 4.2 Graph for the list z: : xs
The operator associates to the right, so xo: :x1: : xS means xg: : (z1: :xs) where

and =, have the same type and xs is a list with elements of that same type (cf. Figure 4.3)
so we get, for example:

let z = 2::3::[4;51;;
val z : int list = [2; 3; 4; 5]

AN\

1 xs

o

Figure 4.3 Graph for the list zg: : (1 : :xs)

List patterns

While the cons operator can be used to construct a list from a (head) element and a (tail)
list, it is also used in list patterns. List patterns and pattern matching for lists are used in the
subsequent sections to declare functions on lists by using the bindings of identifiers in a list
pattern obtained by matching a list to the pattern.

There is the list pattern [] for the empty list while patterns for non-empty lists are con-
structed using the cons operator, that is, x : : xs matches a non-empty list.
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[] b4 XS

Pattern [ ] Pattern x : : xs

Figure 4.4 Graphs for list patterns

The patterns [] and x: : xs denote the graphs in Figure 4.4. The pattern [] matches the
empty list only, while the pattern x : : xs matches any non-empty list [Zg; Z1;...;Tp_1].
The latter matching gives the bindings x +— zg and xs — [21;...; Z,_1] of the identifiers
x and xs, as the list [xg; x1;...;x,_1] denotes the graph in Figure 4.5.

x0 [Z17...7%Tn—1]
Figure 4.5 Graph for the list [xg; x1;...;Tn—1]

For example, the execution of the declarations:

let x::xs = [1;2;3]1;;
val xs : int list = [2; 3]
val x : int = 1

will simultaneously bind x to the value 1 and xs to the value [2; 3] by matching the value
[1;2; 3] to the pattern x : : xs.

A list pattern for a list with a fixed number of elements, for example, three, may be written
as x0::x1::x2::[] orin the shorter form [x0; x1; x2]. This pattern will match any
list with precisely three elements [xg; T1; 221, and the matching binds x0 to xy, x1 to 21,
and x2 to x,. For example:

let [x0;x1;x2] = [(1,true); (2,false); (3, false)];;

let [x0;x1;x2] = [(1,true); (2,false); (3, false)];;
stdin(1,5): warning FS0025: Incomplete pattern matches on this
expression. For example, the value ’'[_;_;_;_]’ may indicate a
case not covered by the pattern(s).
val x2 : int * bool = (3, false)
val x1 : int * bool (2, false)
val x0 : int # bool = (1, true)

This generalizes to any fixed number of elements. (The F# compiler issues a warning be-
cause list patterns with a fixed number of elements are in general not recommended, but the
bindings are, nevertheless, made.)
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List patterns may have more structure than illustrated above. For example, we can con-
struct list patterns that match lists with two or more elements (e.g., x0: :x1: :xs), and
list patterns matching only non-empty lists of pairs (e.g., (y1,v2) : :ys), and so on. For
example:

let x0::x1::xs = [1.1; 2.2; 3.3; 4.4; 5.5]1;;

val xs : float 1list = [3.3; 4.4; 5.5]

val x1 : float = 2.2

val x0 : float = 1.1

let (y1, y2)::ys = [(1,[11); (2, [2]); (3, [31); (4,1041)1;;

val ys : (int % int list) list =

[(2, [2]); (3, [3]); (4, [4])]
val y2 : int list = [1]
val yl1 : int =1

We shall see examples of more involved patterns in this chapter and throughout the book.

Note the different roles of the operator symbol : : in patterns and expressions. It denotes
decomposing a list into smaller parts when used in a pattern like x0: :x1::xs, and it
denotes building a list from smaller parts in an expression like 0: : [1; 2].

Simple list expressions

In F# there are special constructs that can generate lists. In this section we will just introduce
the two simple forms of expressions called range expressions:

(b..el b..s..el

where b, e and s are expressions having number types.
The range expression [b . . e], where e > b, generates the list of consecutive elements:

[b; b+1;6+2;...; b+n]

where 7 is chosen such that b + n < e < b 4+ n + 1. The range expression generates the
empty list when e < b.
For example, the list of integers from —3 to 5 is generated by:

[ -3 .. 5 1;;
val it : int list = [-3; -2; -1; 0; 1; 2; 3; 4; 5]

and a list of floats is, for example, generated by:

[2.4 .. 3.0 %= 1.7];;

val it : float list [2.4; 3.4; 4.4; 5.4; 6.4]

Notethat 3.0 xx 1.7 =6.47300784.
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The expression s in the range expression [b .. s .. e] is called the step. It can be
positive or negative, but not zero:

b..s..el=1[b;b+s;b+2s;...;b+ns]
where b+ns<e<b+ (n+1)s ifsispositive
b+ns>e>b+ (n+1)s ifsisnegative

The generated list will be either ascending or descending depending on the sign of s. For
example, the descending list of integers from 6 to 2 is generated by:

(6 .. =1 .. 21;;
val it : int list = [6; 5; 4; 3; 2]
and the float-based representation of the list consisting of 0, 7 /2, 7, %71', 27 is generated by:

[0.0 .. System.Math.PI/2.0 .. 2.0+«System.Math.PI];;
val it : float 1list =
[0.0; 1.570796327; 3.141592654; 4.71238898; 6.283185307]

An exception is raised if the step is O:

> [0 .. 0 .. 01;;
System.ArgumentException: The step of a range cannot be zero.
Parameter name: step

Stopped due to error

4.3 Typical recursions over lists

In this section we shall consider a collection of archetypical recursive function declarations
on lists.

Function declarations with two clauses

Let us consider the function suml that computes the sum of a list of integers:

n—1 n—1
suml [Zo;Z1; ...;Tp—1] = E Ti=2o+T1+ +Tp1 =T+ E T
i=0 i=1
We get the recursion formula:
suml [Zo; L1 -+ 7Tpn_1] =g+ suml [Z1; ...;Tp_1]

We define the value of the “empty” sum, thatis, suml [],to be 0 and we arrive at a recursive
function declaration with two clauses:

let rec suml = function

|11 -> 0

| x::xs —> x + suml xs;;
val suml : int 1list —-> int
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In evaluating a function value for suml zs, F# scans the clauses and selects the first clause
where the argument matches the pattern. Hence, the evaluation of suml [1; 2] proceeds as
follows:

suml [1;2]
~ 1 4+ suml [2] (x::xs matches [1;2] withx+ 1 and xs+— [2])
~ 1 + (2 4+ suml []) (x::xsmatches [2] withx+> 2 and xs+> [])
~ 1 + (2 + 0) (the pattern [ ] matches the value [])
~ 1 + 2
~ 3

This example shows that patterns are convenient in order to split up a function declaration
into clauses covering different forms of the argument. In this example, one clause of the
declaration gives the function value for the empty list, and the other clause reduces the
computation of the function value for a non-empty list sum1(x: : s) to a simple operation
(addition) on the head = and the value of suml on the tail xs (i.e., suml xs), where the
length of the argument list has been reduced by one.

Itis easy to see that an evaluation for suml [xg; ...; ,_1] will terminate, as it contains
precisely n + 1 recursive calls of suml.

The above declaration is an example of a typical recursion schema for the declaration of
functions on lists.

Function declarations with several clauses

One can have function declarations with any number (> 1) of clauses. Consider, for exam-
ple, the alternate sum of an integer list:

altsum [Zo; @1 -..jTn-1] = Lo — L1+ T2 — -+ (—=1)" 'z,
In declaring this function we consider three different forms of the argument:

1. empty list: altsum [] =0
2. list with one element: altsum [Zg] = Ty
3. list with two or more elements:

altsum [Zg; X1;X2; «.- 7 Tp_1] =Xg — 21 +altsum [To; ...;Tp_1]

AL A

[] X [] x1 xS

Pattern [ ] Pattern [x] Pattern x0: : x1: :xs

Figure 4.6 List patterns for alt sum declaration
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These cases are covered by the patterns in Figure 4.6. Thus, the function can be declared by:

let rec altsum = function

|11 -> 0

| [x] -> X

| x0::x1::xs —> x0 - x1 + altsum xs;;
val altsum : int 1list —-> int

altsum [2; -1; 31;;
val it : int = 6

It is left as an exercise to give a declaration for alt sum containing only two clauses.

Layered patterns
We want to define a function succPairs such that:
succPairs [] = []
succPairs [x] = []
succPairs [Zo; T1; .- i Tp-1] = [(@o, 1) (@1, T2) 7 - i (Tp—2,Tn_1)]

Using the pattern x0: : x1: : xs as in the above example we get the declaration

let rec succPairs = function
| X0 :: x1 :: xs —> (x0,x1) :: succPairs(xl::xs)
I _ => [1;;

val succPairs : ’"a list -> (’a * ’"a) 1list

This works OK, but we may get a smarter declaration avoiding the cons expression x1 : : xs
in the recursive call in the following way:

| P 1 XS
okl j
Figure 4.7 A pattern x0:: (x1::_ as xs) containing a layered sub-pattern
xl::_as xs
let rec succPairs = function
| x0::(x1::_ as xs) —> (x0,x1) :: succPairs xs
| _ -> [1:;
val succPairs : ’a list -> (’a * ’a) 1list

succPairs [1;2;3]1;;
val it : (int =+ int) list = [(1, 2); (2, 3)]
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The pattern x1: : _ as xs is an example of a layered pattern. It is part of the pattern shown
in Figure 4.7. A layered pattern has the general form:

pat as id

with pattern pat and identifier id. A value val matches this pattern exactly when the value
matches the pattern pat. The matching binds identifiers in the pattern pat as usual with the
addition that the identifier id is bound to val. Matching the list [xo; x1; ... ] with the

pattern x0: : (x1::_ as xs) will hence give the following bindings:
x0 = Xy
x1l — @

Xs +—=  [X1; ...]

which is exactly what is needed in this case.

Pattern matching on result of recursive call

The following example illustrates the use of pattern matching to split the result of a recursive
call into components. The function sumP rod computes the pair consisting of the sum and
the product of the elements in a list of integers, that is:

sumProd [Xg; L1; -7 Tpn_1]
= (gt +...+Tp_1, Top*Ty *...*x Tp_1)
sumProd [] = (0,1)

The declaration is based on the recursion formula:
sumProd [Xg;L1; .- ;Tp_1] = (g + rSum, xy » rProd)

where

(rSum, rProd) = sumProd [Z1; ...;Tp_1]

This gives the declaration:

let rec sumProd = function
I [] -> (0,1)
| x::rest —>
let (rSum, rProd) = sumProd rest
(x+rSum, x«rProd) ;;
val sumProd : int 1list —-> int % int

sumProd [2;5];;
val it : int * int = (7, 10)

Another example is the unzip function that maps a list of pairs to a pair of lists:

unzip ([ (To,Y0) i (T1, Y1) 7 - 7 (Tn—1,Yn—1)]
= ([xo;x1; ... 7 %11, [YoiY1i -+ i Yn-11)
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The declaration of unzip looks as follows:

let rec unzip = function
[ [] -> ([1,[1)
| (x,y)::rest —>
let (xs,ys) = unzip rest
(x::xXs,y::YS);;
val unzip : (‘a * ’b) list —-> ’a list * ’b 1list

unzip [(1,"a"); (2,"b")1;;
val it : int list % string 1list = ([1; 2], ["a"; "b"])

The unzip function is found as List .unzip is the F# library.

Pattern matching on pairs of lists

We want to declare a function mix that mixes the elements of two lists with the same length:

mix ([Zo; T1; -..; Tp—1l, [Yo; Y17 ---7 Yn—1])
= [Xo; Yoi T1i Y1; ---i Tp-1i Yn—1]

It is declared using pattern matching on the pair of lists:

let rec mix = function

| (x::xs,y::ys) —> x::y::(mix (xs,ys))

I ([1,11) > []

| -> failwith "mix: parameter error";;
val mix : ’7a list ~ 7a list —-> ’a 1list

mix ([1;2;3]1,[4;5;61);;
val it : int list = [1; 4; 2; 5; 3; 6]

The corresponding higher-order function is defined using a mat ch expression:

let rec mix xlst ylst =
match (xlst,ylst) with
| (X::xXs,y::ys) —> x::y::(mix xs ys)

[ (01, 01) > []
| _ -> failwith "mix: parameter error";;
val mix : ’a list -> ’7a list -> ’a 1list

mix [1;2;3] [4;5;6]1;;
val it : int list = [1; 4; 2; 5; 3; 6]

4.4 Polymorphism

In this section we will study some general kinds of polymorphism, appearing frequently in
connection with lists. We will do that on the basis of three useful list functions that all can
be declared using the same structure of recursion as shown in Section 4.3.
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List membership

The member function for lists determines whether a value x is equal to one of the elements
inalist [Yo; Y17 --.7Yn—1],thatis:

isMember  [Yo; Y1; -« Yn—1]

= (z=yo)or(z=yi)or - or(z=y,1)
= (x=yp)or (isMember & [Y1; .- ;Yn_1])

Since no x can be a member of the empty list, we arrive at the declaration:

let rec isMember x = function
| y:i:ys —> x=y || (isMember x ys)
| 1] -> false;;
val isMember : ’‘a —-> ’a list —-> bool when ’"a : equality

The function isMember can be useful in certain cases, but it is not included in the F#
library.

The annotation ' a : equality indicates that ’ a is an equality type variable; see Sec-
tion 2.10. The equality type is inferred from the expression x=y. It implies that the function
isMember will only allow an argument & where the equality operator = is defined for val-
ues of the type of x. A type such as int  (bool » string) list % int list isan
equality type, and the function can be applied to elements of this type.

Append and reverse. Two built-in functions
The infix operator @ (called ‘append’) joins two lists of the same type:
[(ZoiT1i - iTm—1] @ [Yo;Y1i -+ iYn—1] = [ToiT1i - i Tm—17Y0i Y17 -+ i Yn—1]
and the function List . rev (called “reverse”) reverses a list:
List.rev [Xg;Z1; -+ .7 Tp—1] = [Tp_1; -.-;T1;Zg]

These functions are predefined in F#, but their declarations reveal important issues and are
therefore discussed here. The operator @ is actually the infix operator corresponding to the
library function List . append.

The declaration of the (infix) function @ is based on the recursion formula:

[1Quys ys
(ToiT17 v iTmo1] Qys = xo::([T1; ...;Tm-1] @ yYs)

This leads to the declaration:

let rec (@) xs ys =
match xs with
| T[] > ys
| x::xs! -> x::(xs’ @ ys);;
val (@) : ’a list —-> ’“a list -> ’a 1list
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The evaluation of append decomposes the left-hand list into its elements, that are after-
wards ‘cons’ed’ onto the right-hand list:

1;21@[3;4]
[2]1@[3;4])
2::([1Q@[3;41))
2::[3;41)
2;3;4]

73741

2
(
(
(
[

2

¢ ¢ ¢ ¢y

[
1
1
1
1
(1;
The evaluation of zs @ ys comprises m + 1 pattern matches plus m cons’es where m is the
length of zs.

The notion of polymorphism is very convenient for the programmer because one need not

write a special function for appending, for example, integer lists and another function for
appending lists of integer lists, as the polymorphic append function is capable of both:

[(1;2] @ [3;41;;
val it : int 1list = [1; 2; 3; 4]

[([1]1;[2;3]1]1 @ [[411;;
val it : int 1list 1list = [[1]; [2; 3]; [4]]

The operators : : and @ have the same precedence (5) and both associate to the right. A
mixture of these operators also associates to the right, so [1]@2:: [3], for example, is
interpreted as [1]@(2::[3]),while 1::[2]@[3] isinterpretedas 1:: ([2]Q[3]):

[1] @ 2 :: [31;;
val it : int 1list = [1; 2; 3]

1 :: [2] @ [3];;
val it : int 1list = [1; 2; 3]
For the reverse function rev, where
rev [Xg;®1; .. i%Tp_1] = [Xp_1; ... i %17 To]
we have the recursion formula:
rev [Xo;T1; -+ 7 Tp—1] ::(reV'[xl;...;xn_l]) @ [xq]

because

rev [Z1i .- iTp-1] = [Tp-1; ... ;21]
This leads immediately to a naive declaration of a reverse function:

let rec naiveRev xls =

match xls with

I T[] > [1

| X::xXs —> naiveRev xs @ [x];;
val naiveRev : ’a list -> ’a list
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This declaration corresponds directly to the recursion formula for rev: the tail list xs is
reversed and the head element x is inserted at the end of the resulting list — but it may be
considered naive as it gives a very inefficient evaluation of the reversed list:

naiveRev([1l;2; 3]
naiveRev[2;3] @
naiveRev[3]
(naiveRev ][]
([] @ [3]) @
[3] @ [2]) @ [
@ [2]
[1
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We will make a much more efficient declaration of the reverse function in a later chapter
(Page 208). The library function List . rev is, of course, implemented using an efficient
declaration.

4.5 The value restrictions on polymorphic expressions

The type system and type inference of F# is very general and flexible. It has, however, been
necessary to make a restriction on the use of polymorphic expressions in order to ensure type
correctness in all situations.

The formulation of this restriction is based on the concept of value expressions. A value
expression is an expression that is not reduced further by an evaluation, that is, it has already
the same form as its value. The following expressions are hence value expressions:

[] Some [] (5,11) (fun x —> [x])
while
List.rev [] [1 @[]

do not qualify as a value expression as they can be further evaluated. Note that a function
expression (a closure) is considered a value expression because it is only evaluated further
when applied to an argument.
The restriction applies to the expression exp in declarations
let id = exp

and states the following

At top level, polymorphic expressions are allowed only if they are value expres-
sions. Polymorphic expressions can be used freely for intermediate results.
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Hence F# allows values of polymorphic types, such as the empty list [ ], the pair (5, [[]])
or the function (fun x —-> [x]):

let z = [1;;
val z : ’"a 1list

(5, [[11) 7
val it : int * ’7a 1list 1list = (5, [[]]

let p = (fun x —> [x]);;
val p : 7a —> ’a list

On the other hand, the following is refused at top level:

stdin(86,1): error FS0030: Value restriction.
The value ’it’ has been inferred to have generic type

The restriction on polymorphic expressions may be paraphrased as follows:

e All monomorphic expressions are OK, even non-value expressions,
e all value expressions are OK, even polymorphic ones, and
e at top-level, polymorphic non-value expressions are forbidden,

where the type of a monomorphic expression does not contain type variables, that is, it is a
monomorphic type.

The rationale for these restrictions will only become clear much later when imperative
features of F# are introduced in Chapter 8. In the meantime, we just have to accept the
restrictions, and they will really not do us much harm.

Remark: A list expression ag :: aj : -+ i ap i [Agy1,-.-.,0,—1] containing values
ag, g, . . ., a,_1 is considered a value expression with the value [ag, ay, ..., a,_1].

4.6 Examples. A model-based approach

In this section we will introduce a model-based approach to functional programming by
means of two examples. The goal is to get a program directly reflecting the problem formu-
lation. An important step in achieving this goal is to identify names denoting key concepts
in the problem and to associate F# types with these names. We shall return to these two
examples in the next chapter when we have a richer set of collection types with associated
library functions.

Example: Cash register

Consider an electronic cash register that contains a data register associating the name of the
article and its price to each valid article code. A purchase comprises a sequence of items,
where each item describes the purchase of one or several pieces of a specific article.
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The task is to construct a program that makes a bill of a purchase. For each item the bill
must contain the name of the article, the number of pieces, and the total price, and the bill
must also contain the grand total of the entire purchase.

Article code and article name are central concepts that are named and associated with a
type:

type ArticleCode = string;;
type ArticleName string;;

where the choice of the st ring type for ArticleCode is somewhat arbitrary. An alter-
native choice could be the int type.

The register associates article name and article price with each article code, and we model
a register by a list of pairs. Each pair has the form:

(ac, (aname, aprice))

where ac is an article code, aname is an article name, and aprice is an article price. We
choose (non-negative) integers to represent prices (in the smallest currency unit):

type Price = int;; // pr where pr >= 0
and we get the following type for a register:

type Register = (ArticleCode » (ArticleNamex*Price)) list;;

The following declaration names a register:

let reg = [("al", ("cheese",25));
("az2", ("herring",4));
("a3", ("soft drink",5)) 1;;

A purchase comprises a list of items, where each item comprises a pair:

(np, ac)

describing a number of pieces np (that is a non-negative integer) purchased of an article with
code ac:

type NoPieces = int;; // np where np >= 0
type Item = NoPieces % ArticleCode;;
type Purchase = Ttem list;;

The following declaration names a purchase:
let pur = [(3,"a2"); (1,"al")1;;

A bill comprises an information list infos for the individual items and the grand total
sum, and this composite structure is modelled by a pair:

(infos, sum)
where each element in the list infos is a triple
(np, aname, tprice)

of the number of pieces np, the name aname, and the total price tprice of a purchased article:
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type Info = NoPieces * ArticleName x Price;;
type Infoseq Info list;;
type Bill = Infoseq » Price;;

The following value is an example of a bill:
([ (3,"herring",12); (1,"cheese",25)1,37)
The function makeBil1l computes a bill given a purchase and a register and it has the type:

makeBill: Register —-> Purchase -> Bill

In this example, it is convenient to declare a auxiliary function:
findArticle: ArticleCode -> Register —-> ArticleName x Price

to find the article name and price in the register for a given article code. This will make the
declaration for the function makeBil1 easier to comprehend. An exception is raised when
no article with the given code occurs in the register:

let rec findArticle ac = function
| (ac’,adesc) ::_ when ac=ac’ -> adesc
| _::reg -> findArticle ac reg
| ->
failwith(ac + " is an unknown article code");;
val findArticle : string —-> (string * ’a) list —-> ’a

Then the bill is made by the function:

let rec makeBill reg = function

I 11 -> ([1,0)

| (np,ac) ::pur —-> let (aname,aprice) = findArticle ac reg
let tprice = npxaprice
let (billtl,sumtl) = makeBill reg pur

((np, aname, tprice) : :billtl, tprice+sumtl) ;;
val makeBill
(string * (“a % int)) 1list -> (int * string) list
-> (int * “a * int) 1list * 1int

makeBill reg pur;;
val it : (int % string = int) 1list % int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

The declaration of makeBi11 uses the pattern introduced in Section 4.3 to decompose
the value of the recursive call.

Note that the F# system infers a more general type for the makeBil1 function than the
type given in our model. This is, however, no problem as the specified type is an instance of
the inferred type — makeBil1 has the specified type (among others).
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Example: Map colouring

We shall now consider the problem of colouring a map in a way so that neighbouring coun-
tries get different colours. We will provide a model using named types, similar to what we
did in the previous example. But the map colouring problem is more complex than the cash
register example, and we use it to illustrate functional decomposition by devising a collection
of simple well-understood functions that can be composed to solve the problem.

This problem is a famous mathematical problem and it has been proved that any (reason-
able) map can be coloured by using at most four different colours. We will not aim for an
“optimal” solution. Neither will we consider the trivial solution where each country always
gets its own separate colour. We will assume that each country is connected. This is an over-
simplification as Alaska and Kaliningrad, for example, are not connected to other regions of
the United States and Russia, respectively.

A country is represented by its name, that is a string, and a map is represented by a
neighbour relation, that is represented by a list of pairs of countries with a common border:

type Country = stringj;
type Map (Country * Country) list;;

_ 9 ¢

Consider the map in Figure 4.8 with four countries “a”, “b”, “c”, and “d”, where the coun-
try “a” has the neighbouring countries “b” and “d”, the country “b” has the neighbouring

@ _ 9

country “a”, and so on. The F# value for this map is given by the declaration of exMap.

npn

let eXMap = [("a","b"); ("C","d"); ("d","a")]’.’.
Figure 4.8 Colouring problem with 4 countries

A colour on amap is represented by the set of countries having this colour, and a colouring
is described by a list of mutually disjoint colours:

type Colour = Country list;;
type Colouring Colour list;;

The countries of the map in Figure 4.8 may hence be coloured by the colouring:
[["a";l'cll]; ["b"; "d"]]

This colouring has two colours ["a"; "c"] and ["b"; "d"], where the countries “a”
and “c” get one colour, while the countries “b” and “d” get another colour.

An overview of the model is shown in Figure 4.9 together with sample values. This figure
also contains meta symbols used for the various types, as this helps in achieving a consistent
naming convention throughout the program.
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Meta symbol: Type | Definition | Sample value
c: Country string wgn
m: Map (Country*Country) list [("a","b");
(Ilcll, lldll) ,. (lldll, Ilall) J
col: Colour Country list ["a";"c"]
cols: Colouring | Colour list [["a";"c"1; ["b";"d"]]

Figure 4.9 A Data model for map colouring problem

Our task is to declare a function:
colMap: Map —-> Colouring

that can generate a colouring of a given map. We will express this function as a composition
of simple functions, each with a well-understood meaning. These simple functions arise
from the algorithmic idea behind the solutions to the problem. The idea we will pursue here
is the following: We start with the empty colouring, that is, the empty list containing no
colours. Then we will gradually extend the actual colouring by adding one country at a time.

| country | old colouring | new colouring
l. "a" [] [["a"]]
2. "b" [["a"]] [["a|’]; ["b"]]
3. "C" [["a"]’. ["b"]] [["a|’;"c"]; ["b"]}
4. "d" [["a";“c"]; ["b"}] [["a";"c"]; ["b";"d"}]

Figure 4.10 Algorithmic idea
We illustrate this algorithmic idea on the map in Figure 4.8, with the four countries: “a”,
“b”, “c” and “d”. The four main algorithmic steps (one for each country) are shown in
Figure 4.10. We give a brief comment to each step:

1. The colouring containing no colours is the empty list.

2. The colour ["a"] cannot be extended by "b" because the countries "a" and "b" are
neighbours. Hence the colouring should be extended by a new colour ["b"].

3. The colour ["a"] can be extended by "c" because "a" and "c" are not neighbours.

4. The colour ["a", "c"] can not be extended by "d" while the colour ["b"] can be
extended by "d".

The task is now to make a program where the main concepts of this algorithmic idea are
directly represented. The concepts emphasized in the above discussion are:

e Test whether a colour can be extended by a country for a given map.
e Test whether two countries are neighbours in a given map.
e Extend a colouring by a country for a given map.

The function specification of each of the main concepts documents the algorithmic idea.
These specifications are shown in Figure 4.11. We have added the specification of a function
countries for extracting the list of countries occurring in a given map and the specifica-
tion of a function colCntrs which gives the colouring for given country list and map.
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Type
Meaning

areNb: Map —> Country —> Country —> bool
Decides whether two countries are neighbours

canBeExtBy: Map —> Colour —> Country —> bool
Decides whether a colour can be extended by a country

extColouring: Map —> Colouring —> Country —> Colouring
Extends a colouring by an extra country

countries: Map —> Country list
Computes a list of countries in a map

colCntrs: Map —> Country list —> Colouring
Builds a colouring for a list of countries

Figure 4.11 Functional break-down for map colouring problem

We now give a declaration for each of the functions specified in Figure 4.11.

1. First we declare a predicate (i.e., a truth-valued function) areNDb to determine for a given
map whether two countries are neighbours:

let areNb m cl c2 =
isMember (cl,c2) m || isMember (c2,cl) m;;

This declaration makes use of the i sMember-function declared in Section 4.4.
2. Next we declare a predicate to determine for a given map whether a colour can be ex-
tended by a country:

let rec canBeExtBy m col c =
match col with
| [] -> true
| ¢’::col’” -> not(areNb m c’ c) && canBeExtBy m col’ c;;

canBeExtBy exMap ["c"] "a";;
val it : bool = true

canBeExtBy exMap ["a"; "c"] "b";;
val it : bool = false

3. Our solution strategy is to insert the countries of a map one after the other into a colouring,
starting with the empty one. To this end we declare a function extColouring that for
a given map extends a partial colouring by a country:

let rec extColouring m cols c =
match cols with
[ 11 -> [[c]]
| col::cols’ —-> if canBeExtBy m col c
then (c::col)::cols’
else col::extColouring m cols’ c;;

extColouring exMap [] "a";;
val it : string list 1list =

[["a"]]
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extColouring exMap [["c"]] "a";;
val it : string list 1list = [["a"; "c"]]

extColouring exMap [["b"]] "a";;
val it : string list list = [["b"]; ["a"]]

Note that the first of the three examples exercises the base case of the declaration, the
second example the t hen-branch, and the last example the e1 se-branch (the recursion
and the base case).

4. In order to complete our task, we declare a function to extract a list of countries without
repeated elements from a map and a function to colour a list of countries given a map:

let addElem x ys = if isMember x ys then ys else x::ys;;
let rec countries = function
I [ -> []

| (cl,c2)::m —> addElem cl (addElem c2 (countries m));;

let rec colCntrs m = function

I [] -> []

| c::cs —> extColouring m (colCntrs m cs) c;;

The function giving a colouring for a given map is declared by combination of the func-
tions colCntrs and countries.

let colMap m = colCntrs m (countries m);;

colMap exMap;;
val it : string list 1list = [["c"; "a"]; ["b"; "d"]]

Comments

In these two examples we have just used types introduced previously in this book, and some
comments could be made concerning the adequacy of the solutions. For example, modelling
a data register by a list of pairs does not capture that each article has a unique description
in the register, and modelling a colour by a list of countries does not capture the property
that the sequence in which countries occur in the list is irrelevant. The same applies to the
property that repeated occurrences of a country in a colour are irrelevant.

In Chapter 5 we shall introduce maps and sets and we shall give more suitable models
and solutions for the two examples above.

Summary

In this chapter we have introduced the notions of lists and list types, and the notion of list
patterns. A selection of typical recursive functions on lists were presented, and the notions
of polymorphic types and values were studied. Furthermore, we have introduced a model-
based approach to functional programming, where important concepts are named and types
are associated with the names.
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Exercises

Declare function upto: int —> int list such that upton = [1;2;...;n].

Declare function downtol: int —> int list such that the value of downtol n is the list
[nym—1;...;1].

Declare function evenN: int —> int 1list such that evenNn generates the list of the first
n non-negative even numbers.

Give a declaration for alt sum (see Page 76) containing just two clauses.

Declare an F# function rmodd removing the odd-numbered elements from a list:

rmodd [xg;x1;T2;23; -..]1 = [xg;T2; ... ]

Declare an F# function to remove even numbers occurring in an integer list.

Declare an F# function multiplicity z xs to find the number of times the value = occurs
in the list xs.

Declare an F# function split such that:

split [xo;z1;®2i23; ... ;Tn—1] = ([wo;@2; ... ], [21;23; ... ])
Declare an F# function z1ip such that:

zip ([20; %17 - 5 Tn—11, (Y05 Y17 -+ i Yn—-11)
= [ (x0,%0) 7 (x1,y1); .- .7 (Tn—1,Yn—1) ]

The function should raise an exception if the two lists are not of equal length.

Declare an F# function prefix: 'a list —> ’a list —> bool when a : equality.
The value of the expression prefix [xg;x1; ...;Tm] [YoiY1i ---;yn] iStrueifm <n
and x; = y; for 0 < ¢ < m, and false otherwise.

A list of integers [xo; X1; ... ;Tn—1] 1S weakly ascending if the elements satisfy:

20 <21 S22 < ... S T2 < Tp—1

or if the list is empty. The problem is now to declare functions on weakly ascending lists.

1. Declare an F# function count: int list x int —> int, where count(zs,x) is the
number of occurrences of the integer x in the weakly ascending list zs.

2. Declare an F# function insert: int list x int —> int list, where the value of
insert(zs, z) is a weakly ascending list obtained by inserting the number z into the weakly
ascending list zs.

3. Declare an F# function intersect: int list % int list -> int list, where the
value of intersect(zs,zs’) is a weakly ascending list containing the common elements
of the weakly ascending lists zs and zs’. For instance:

intersect ([1;1;1;2;2], [1;1;2;4]) = [1;1;2]

4. Declare an F# function plus: int list * int 1ist —> int 1ist, where the value of
plus(zs,zs’) is a weakly ascending list, that is the union of the weakly ascending lists zs
and zs’. For instance:

plus([1;1;2],[1;2;4]) = [1;1;1;2;2;4]

5. Declare an F# function minus: int 1ist * int 1ist —> int 1ist, where the value
of minus(zs, zs’) is a weakly ascending list obtained from the weakly ascending list zs by
removing those elements, that are also found in the weakly ascending list zs’. For instance:

minus ([1;1;1;2;2],([1;1;2;3]) = [1;2]
minus ([1;1;2;3],[1;1;1;2;2]) = [3]
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4.12 Declare a function sum(p, zs) where p is a predicate of type int —> bool and zs is a list of
integers. The value of sum(p, zs) is the sum of the elements in zs satisfying the predicate p.
Test the function on different predicates (e.g., p(z) = = > 0).

4.13 Naive sort function:

1. Declare an F# function finding the smallest element in a non-empty integer list.

2. Declare an F# function delete: int x int list —> int list, where the value of
delete(a, zs) is the list obtained by deleting one occurrence of a in xs (if there is one).

3. Declare an F# function that sorts an integer list so that the elements are placed in weakly

ascending order.

Note that there is a much more efficient sort function List . sort in the library.
4.14 Declare a function of type int 1ist —> int option for finding the smallest element in an

integer list.

4.15 Declare an F# function revrev working on a list of lists, that maps a list to the reversed list of
the reversed elements, for example:

revrev

[([1;2];[3;4;5]]

4.16 Consider the declarations:

let rec £
I (%,

let rec g

I []

| (x,¥):

[
| (%, y:

function
) > []
1ys)

function
> 1

s > (x,y¥) (Y, X)

function

> []

—> x::(h xs)Q[x];;

sif (x-1,

= [[5;4;3];[2;1]]

yS)ii

1:g sj;

Find the types for £, g and h and explain the value of the expressions:

L. f(l‘, [yOI Yirs --

-,yn—l]),nzo

2. g[($07y0), (-Tlayl)r R (xn—17yn—1)] ,n > 0

3. hlzg,z1, ...

rTp—11,n2>0

4.17 Consider the declaration:

let rec p g
I []

| x::xs

= function
> []
-> let ys = p

g Xs

if g x then x::ys else ys@[x];;

Find the type for p and explain the value of the expression:

P q [o; T1; T35 . .

4§5Un—1]
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Consider the declaration:

let rec £ g = function

I T[] > []
X::xs => g x :: £ (fun y -> g(g y)) xs;;

Find the type for £ and explain the value of the expression:
fglzo;zis@2;. . sp—1]

Evaluation of the expression areNb m c; cg may traverse the map m twice. Explain why and
give an alternative declaration for areNb which avoids this problem.

Most of the auxiliary functions for the map-colouring program just assume an arbitrary, but
fixed, map. The function canBeExtBy, for example, just passes m on to areNb, which again
passes m on to isMember. The program can therefore be simplified by declaring (most of) the
auxiliary functions locally as sketched here:

let colMap m =
let areNb cl c2 =
let canBeExtBy col c =

Revise the program by completing this skeleton.

Revise the map-colouring program so that it can cope with countries which are islands (such as
Iceland) having no neighbours.

We represent the polynomial ag + aj -« + ... + an - 2™ with integer coefficients ag, a1, ..., an by
the list [ag, a1, ..., an]. For instance, the polynomial #3 + 2 is represented by the list [2,0,0,1].

1. Declare an F# function for multiplying a polynomial by a constant.

2. Declare an F# function for multiplying a polynomial Q(z) by z.

3. Declare infix F# operators for addition and multiplication of polynomials in the chosen rep-
resentation. The following recursion formula is useful when defining the multiplication:

0-Q(z) =0
(ap+ar-z+...+an-2™) - Q)
=ag-Qz)+=x- ((a1 +a2~w+...+an‘x”71)~Q(w))

4. Declare an F# function to give a textual representation for a polynomial.

4.23 A dating bureau has a file containing name, telephone number, sex, year of birth and themes

of interest for each client. You may make a request to the bureau stating your own sex, year
of birth and themes of interest and get a response listing all matching clients, that is, clients
with different sex, a deviation in age less than 10 years and with at least one common theme
of interest. The problem is to construct a program for generating the responses from the dating
bureau.
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Collections: Lists, maps and sets

Functional languages make it easy to express standard recursion patterns in the form of
higher-order functions. A collection of such higher-order functions on lists, for example,
provides a powerful library where many recursive functions can be obtained directly by
application of higher-order library functions. This has two important consequences:

1. The functions in the library correspond to natural abstract concepts and conscious use of
them supports high-level program design, and

2. these functions support code reuse because you can make many functions simply by ap-
plying library functions.

In this chapter we shall study libraries for lists, sets and maps, which are parts of the collec-
tion library of F#. This part of the collection library is studied together since:

o It constitutes the immutable part of the collection library. The list, set and map collections
are finite collections programmed in a functional style.
e There are many similarities in the corresponding library functions.

This chapter is a natural extension of Chapter 4 since many of the patterns introduced in
that chapter correspond to higher-order functions for lists and since more natural program
designs can be given for the two examples in Section 4.6 using sets and maps.

We will focus on the main concepts and applications in this book, and will deliberately
not cover the complete collection library of F#. The functions of the collection library do
also apply to (mutable) arrays. We address this part in Section 8.10.

5.1 Lists

This section describes the library functions map, various library functions using a predicate
on list elements plus the functions fold and foldBack. Each description aims to provide
the following:

1. An intuitive understanding of the objective of the function.
2. Examples of use of the function.

The actual declarations of the library functions are not considered as we want to concentrate
on how to use these functions in problem solving. Declarations of fold and foldBack
are, however, of considerable theoretical interest and are therefore studied in the last part of
the section. An overview of the List-library functions considered in this section is found
in Table 5.1.

93
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Operation

Meaning
map: ("a->'b) —>"a list —> 'b list, where

map f zs = [f(z0); f(z1);.. .5 f(@n-1)]
exists: ("a->bool) —>"’"a list —> bool, where

exists pzs =3z € zs.p(x)
forall: ("a->bool) —> "a list —> bool, where

forall pzs =V € zs.p(x)
tryFind: ("a ->bool) —>"a list —> ’a option, where

tryFind p zs is Some z for some z € zs with p(z) = true or None if no such x exists
filter: ("a->bool) —> "a list —> "a list, where

filter p zs = ys where ys is obtained from xs by deletion of elements z; : p(z;) = false
fold: ("a->'b->"a) —>’a->"'b list —> ' a, where

fold fa[bo;b1;. . ;bn—2;bn-1] = f(f(f(--- f(f(a,b0),b1),--.)sbn—2),bn—1)
foldBack: ("a->'b->'b) ->"a list —> "b —> ’ b, where

foldBack f [ag;a1;. . .;an—2;an—1] b= f(ao, f(a1, f(-.., f(an—2, f(an—1,0))---)))
collect: ("a->'blist) —>"a list —> "b list, where

collect flag;a1;..5an—1] = (fao)@(f a1)@---C(f an—1)

These operations are found under the names: List .map, List .exists, and so on.
We assume that zs = [zg; Z1;...;Tn—2;Tn_1].

Table 5.1 A selection of functions from the List library

The map function
The library function

List.map: ("a -> 'b) -> ’'a list -> 'b list
works as follows:
List.mapf [.%'0,.%17 ;xn_l] = [f xo,fxl, ;fxn_l]

In words:

The function application List .map f is the function that applies the function f
to each element g, 1, ..., Z,_1 inalist [Zg;Z1; - ;Tp_1]

Itis easy touse List .map:

e The function addFsExt adds the F# file extension ”.fs” to every string in a list of file
names.

e The function intPairToRational converts every integer pair in a list to the string of
a rational number on the basis of the declarations in Section 3.7.

e The function arealList computes the area of every shape in a list on the basis of the
declarations in Section 3.8.

let addFskExt = List.map (fun s -> s + ".fs");;
val addFskExt : (string list —-> string 1list)

let intPairToRational = List.map (toString << mkQ);;
val intPairToRational : ((int * int) list -> string 1list)



let arealist
val arealList

since

e addFsExt applies the function that concatenates the suffix “. £s” to a string, to every

elementina string list,

e intPairToRational applies the function that converts an integer pair to the string
representation of the corresponding rational number to every element in a list of integer

pairs, and

e arealist applies the area function to every element in a shape list.

The functions work as follows:

addFsExt
val 1t

["ListPrograms.fs";

intPairToRational
string list = ["1/3";

val it

arealist
val it

Alternative ways of declaring intPairToRational using List .map are

["ListPrograms";

string list

[Circle 2.0;
float 1ist

let intPairToRational

let intPairToRational ps

List.map (fun p -> toString (mkQ p))

where fun p => toString (mkQ p) is an expansion of the function composition opera-
tor in toString << mkQ and ps is used as explicit list argument in the last declaration.

[(2,6);

5.1 Lists

List.map area;;
(shape 1list

(20,-8);

Square 2.0;

List.map

11_5/2 n,.

-> float 1ist)

(_121_

Triangle (2.0,
[12.56637061;

4.0;

p

"AuxiliaryPrograms"];;

"AuxiliaryPrograms.fs"]

4) 155

"3/1 "]

3.0,
2.90473751]

Sii

4.

0)1:7

(fun p —> toString(mkQ p));;

Explicit list arguments could also be used in declarations of addFsExt and arealist.

The F# library contains a large number of functions using a predicate of type ' a —> bool

Functions using a predicate on the list elements

on elements in a list of type " a 1ist.
We consider some of these functions here, namely (cf. Table 5.1):

List.exists ("a —> bool) —> '"a
List.forall ("a —> bool) -> '"a
List.tryFind ("a —> bool) —> 'a
List.filter ("a => bool) -> "a

The value of the expression

List.exists p [ZTo;T1; ...

list -> bool

list -> bool

list -> ’"a option

list —> "a list
;xnfl]

is true, if p(x)) = true holds for some list element x, and false otherwise.



96 Collections: Lists, maps and sets
The value of the expression
List.forall p [ZTg;%1; .- Tp_1]

is true, if p(zx) = true holds for all list elements x, and false otherwise.
The value of the expression

List.tryFind p [Zg;%1; ... Tp_1]
is Some xy, for a list element x;, with p(x;) = true, or None if no such element exists.
The value of the expression

List.filter p [ZTg;®1; .- 7 %p_1]
is the list of those list elements x, where p(z)) = true.
Note that the evaluation of the expression

List.existsp [Xo,T1s - - Lic1rTiy ooy Tp_1]

does not terminate if the evaluation of the expression p(x;) does not terminate for some £,
where 0 < k <n — landif p(x;) = false forall j where 1 < j < k. A similar remark
will apply to the other functions using a predicate on list elements.

Simple applications of the functions are:

List.exists (fun x —> x>=2) [1;3;1;4]1;;
val it : bool = true

List.forall (fun x -> x>=2) [1;3;1;4]1;;
val it : bool = false

List.tryFind (fun x —-> x>3) [1;5;-2;81;;
val it : int option = Some 5

List.filter (fun x -> x>3) [1;5;-2;8];;
val it : int 1list = [5; 8]

The function i sMember (cf. Section 4.4) can be declared using List .exists:

let isMember x xs = List.exists (fun y -> y=x) xs;;
val isMember : “a —-> ’a list —-> bool when ’"a : equality

isMember (2,3.0) [(2, 4.0) ; (3, 7.0)1;;
val it : bool = false

lSMember "abcll [" ",. "a"; "ab"; "abcﬂ] ; ,.
val it : bool = true
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The functions fold and foldBack

The library functions List.fold and List.foldBack are very powerful and rather
useful in many circumstances, but they are somewhat difficult to understand at first glance.
To ease the understanding we use a rather naive, almost grotesque, example to convey the
ideas behind these functions.

We consider small cheeses and a round package to contain small cheeses:

v (2

cheese package

Cheeses and packages are considered elements of type cheese and package. A package
may contain zero or more cheeses.
The function

packCheese: package —-> cheese -> package

packs an extra cheese into a package:

packCheese @ W = @

The function List.fold can be applied to the function packCheese, a start package
and a list of cheeses. It uses packCheese to pack the elements of the list (the cheeses) into
the package one after the other — starting with the given start package:

List.fold packCheese @ [ @7 ; @; @ ] =

This is a special case of the general formula:

List.fold fe [xo;x1; . ;Tna] = f(..(f(fexo)m1)...) Tp

with
f=packCheese e= @ Lo = @ T1= @ T2 = @

because we can identify the sub-expressions on the right-hand side of the general formula in
our special case:

fexoz@ f(f€$0)951=

PO eno)2y) ay = (D)

and
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The function of List . fold can be expressed in words as follows:

The evaluation of List.fold fe [Zg;Z1; ...;Tp_1] accumulates the list

elements xg, Ty, . .., T,_1 using the accumulation function f and the start value e
One also says that the function f is folded over the list [xg; Z1; ... ; T,_1] starting with
the value e.

The type of List . fold is:
List.fold: (‘a —> 'b -> 'a) -> "a —> 'b list -> ’a
with list element type ’ b and accumulator type ’ a.

When applying List . £old one has to look for the following entities:

List element type ' b corresponding to cheese in the example
Accumulator type ’ a corresponding to package in the example
Accumulator function f  corresponding to packCheese in the example
Start value e corresponding to the empty package in the example

and we have to arrange the parameters in the accumulator function to suit the type of
List.fold.

As an example we consider a list vs = [vg;...;v,_1] of geometric vectors in the plane
(see Section 3.3), where v; is a pair (z;,y;) of floats, for 0 < i < n. We want to compute
the sum of the norms of the vectors in vs using the norm function declared as follows in
Section 3.3:

let norm(x:float,y:float) = sgrt(x*x+ty=*y);;
val norm : float x float —-> float

This is a case for applying List . fold with:

List element type: float = float

Accumulator type: float

Accumulator function: fun s (x,y) —> s + norm(x,V)
Start value: 0.0

This leads to the declaration:

let sumOfNorms vs =
List.fold (fun s (x,y) —> s + norm(x,y)) 0.0 vs;;
val sumOfNorms : (float » float) 1list —-> float

let vs = [(1.0,2.0); (2.0,1.0); (2.0, 5.5)]1;;
val vs : (float » float) 1list
[(1.0, 2.0); (2.0, 1.0); (2.0, 5.5)]

([

sumOfNorms vs;;
val it : float = 10.32448591
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The 1ength function on lists can be defined using List . fold with

List element type: "a

Accumulator type: int

Accumulator function: fune_ ->e+1
Start value: 0

This leads to the declaration:

let length 1st = List.fold (fun e _ -> e+l) 0 1st;;
val length : ’a list -> int

length [[1;2]; [

1703:5;81;[-211;;
val it : int = 4

Applying fold to the following version of “cons”:
fun rs x —> x::rs
where the parameters are interchanged, gives a declaration of the reverse function for lists:

let rev xs = List.fold (fun rs x —-> x::rs) [] xs;;
val rev : 7a 1list —-> ’a 1list

rev [1;2;3]1;;
val it : int 1list = [3; 2; 1]

The function List.foldBack is similar to List .fold but the list elements are accu-
mulated in the opposite order. The type of List . foldBack is:
List.foldBack: ("a -> b -> 'b) -> ’"a list -> 'b -> 'Db
and the general formula is:
List.foldBack g [Zg;T1; ... ;%Tpn1l € = gxo (g1 (... (gTn_1€)...))
We may use our “cheese” example also in this case with a modified accumulation function:

cheesePack: cheese -> package —-> package

cheesePack W @ = @

The function List.foldBack can be applied to the function cheesePack, a list of
cheeses and a start package. It uses cheesePack to pack the elements of the list (the
cheeses) taken in reverse order into the package:

List.foldBack cheesePack [@ ; @ ; ?7] @ =

where
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This is a special case of the general formula with:

g =cheesePack o= @ 1= @ 2= @ ‘= @

because we can identify the sub-expressions in the right-hand side of the general formula in
our special case:

gxge=@ ga:l(gxge)=@

gzo(gz (gaze)) = @

The function of List . foldBack can be expressed in words as follows:

and

The evaluation of List.foldBack g [xg;Z1; ... ;Tn_1] € accumulates the list
elements in reverse order z,,_1, ..., T1, Zo using the accumulation function g and
the start value e

When applying List . foldBack one has to look for the following entities:

List element type ’ a corresponding to cheese in the example
Accumulator type ' b corresponding to package in the example
Accumulator function g  corresponding to cheesePack in the example
Start value e corresponding to the empty package in the example

and we have to arrange the parameters in the accumulator function to suit the type of
List.foldBack.

Using List . foldBack we may define an alternative “sum of norms” function. Element
and accumulator types can be used unchanged, but the parameters in the accumulator func-
tion must be interchanged. This gives the following declaration:

let backSumOfNorms vs =
List.foldBack (fun (x,y) s -> s + norm(x,y)) vs 0.0;;
val backSumOfNorms : (float * float) 1list —-> float

This function will work like the previous sumOfNorms but the norms are added in the
opposite order, starting with the norm of the last vector in the list.

Applying List . foldBack on the “cons” operator:
fun x xs -> x::xs
gives the append function:

let app ys zs = List.foldBack (fun x xs —-> x::Xs) yS zS;;
val app : ’a list -> ’a list -> ’“a 1list

app [1;2;3] [4;5;6];;

val it : int list = [1; 2; 3; 4; 5; 6]
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The unzip function on Page 77 can be obtained using foldBack with the following data:

List element type "ax'Db

Accumulator type "alist x'blist

Accumulator function fun (x,y) (Xs,ys) —> (X::xs,y::yS)
Start value (L1,

This gives the declaration

let unzip zs = List.foldBack

(fun (x,y) (xs,ys) —> (X::XS,y::yS))
zs

(1,017

val unzip : (‘a * ’'b) 1list -> ’a list * ’b 1list

unzip [(1,"a"); (2,"b")1;;
al it : int list % string list = ([1; 2], ["a"; "b"])

A similar construction using List . fold gives a revUnzip function where the resulting
lists are reversed:

let revUnzip zs =
List.fold (fun (xs,ys) (x,y) —> (x::xs,vy::ys)) ([1,[1) zs;;
val revUnzip : (’'a *~ ’b) 1list -> ’7a 1list % ’b list

revUnzip [(1,"a"); (2,"b")1;;
val it : int 1list x string list = ([2; 1], ["b"; "a"])

The prefix version of an infix operator can be used as argument in fold and foldBack:
List.fold (+) 0 [1; 2; 31;;
val it : int = 6
List.foldBack (+) [1; 2; 31 0;;
val it : int = 6

These expression compute ( (0 +1) +2) +3 and 1+ (2 + (3 + 0)), but the results
are equal because + is a commutative operator: a + b = b + a.

A difference in using fold or foldBack shows up when using a non-commutative
operator, that is:

List.fold (=) 0 [1; 2; 31;;
val it : int = -6

List.foldBack (=) [1; 2; 3] 0;;
val it : int = 2

These expressions use the functions:

fun e x —> e - x
fun x e —> x - e
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and we get
List.fold (=) 0 [1;2;3] = ((0-1)-2)-3 = -6
List.foldBack (=) [1;2;3]0 = 1-(2-(3-0)) = 2

The map function can be declared using foldBack:

let map f xs = List.foldBack (fun x rs -> f x :: rs) xs [];;
val map : (‘a -> ’'b) -> ’a list -> ’b 1list
map (fun x -> x+1) [0; 1; 21;;

val it : int 1list = [1; 2; 3]

Remark

A function declared by means of fold or foldBack will always scan the whole list. Thus,
the following declaration for the exist s function

let existsF p =
List.fold (fun b -> (fun x -> p x || b)) false;;
val existsF : ('a —-> bool) —-> (’a 1list —-> bool)

will not behave like the function List .exists with regard to non-termination: It will
give a non-terminating evaluation if the list contains any element where the evaluation of the
predicate p does not terminate, while the library function List .exists may terminate in
this case as it does not scan the list further when an element satisfying the predicate has been
found. So it is not considered a good idea to use fold or foldBack to declare functions
like exists or £ind (cf. Page 95) as these functions need not scan the whole list in all
cases.

Declarations of fold and foldBack
The list functions fold and foldBack are defined on Pages 97 and 99 by the formulas:

fold fe [To;T1i .- i %n1] = f(..(f(fexy)z)...)mp
foldBack g [%o;T1i .- ;i%Tn-1]l € = gxo(gx1(...(gTpn-1€)...))

A recursion formula for £o1d is obtained by observing that:
fG..(f(fex))z)..)xpa=f(..(fex)...) 20
where €/ = f e xg. The expression on the right-hand side is equal to:
foldfe [xy;...;%p 1]
and we get the recursion formula:

fold fe [xg;®1;...;Tn_1] = fold f(fexy) [X1;...;Tn_1]

A recursion formula for foldBack is obtained by observing that the subexpression:

(gz1 (... (gxp_vre)...)
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on the right-hand side of the formula for foldBack is equal to:
foldBack g [x1; ...;Tp-1] €
and we get the recursion formula:
foldBack g [Zg;X1; ... ;ZTp_1] € =g T (foldBack g [Z1; ...; Ty 1] €)

These recursion formulas lead to the declarations:

let rec fold f e = function
| x::xs => fold £ (f e x) xs
| [] > e;;

let rec foldBack g xlst e =
match xlst with
| x::xs —-> g x (foldBack g xs e)
I [] -> e;;

The evaluation of a function value fold f e [xg;X1; ...;Tn_1] proceeds as follows
applying f in each evaluation step without building any large expression:

fold fe [xo;T1; - Tp1]

~  fold fe [T1;%2; ... ;%p_1] el = feuxg
~> fOldf@Q [Xo; 37 - 7 Tp_1] €9 = felxl
~ fOldfen—l [xn—l] €n—1 = fen—Z LTp—2
~ fOldf €En [] €n = f €n—1 Tpn—1
~ e,
The evaluation of foldBack g [xg;X1; ... ; Tn_1] € first builds a large expression:
foldBack g [Xo;Z1; ... ;Tp_1] €
~ gxo(foldBack g [X1;Xa; ... ;Tp_1] €)
~  gxo(gx; (foldBack g [X1;X2; ... ;Tp_1] €))

~ 'g.;xo (9z1 (9o (... (g xp_2 (foldBack g [x,_1] €))...)))
~  gxo (971 (922 (- (9 Tns (g Tn1 (FoldBack g [] €)...)))
~ gxo(gr1 (922 (- (9Tn-2(9Tn-16))...)))

and this expression is then evaluated “inside-out” using repeated calls of g:

(..
(..

gz (g1 (g2 (- (gTn2(gTn1€))...)))

~ gz (g1 (972 (- (gT02€))))-..))) e = gTp€
~  gxo(gT1e, ) €ho = gTa€y g
~  gTpe, €n1 = gITi€,_,
~ e, e, = gToe,

The evaluation of fo1d is obviously much more efficient than the evaluation of foldBack,
so fold should be preferred whenever possible. The List . foldBack function in the
library is more efficient than the above foldBack but List . fold is still more efficient.
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5.2 Finite sets

In solving programming problems it is often convenient to use values that are finite sets
of form {ay,as,...,a,} with elements ay, ..., a, from some set A. The notion of a set
provides a useful abstraction in cases where we have an unordered collection of elements
where repetitions among the elements are of no concern.

This section introduces the set concept and operations on sets in F# on the basis of the
library Set. The focus is on the principal issues so just a small part of the available opera-
tions will be covered. Please consult the on-line documentation (in [9]) for an overview of
the complete Set library.

The mathematical set concept

A set (in mathematics) is a collection of elements like
{Bob, Bill, Ben} and {1,3,5,7,9}

where it is possible to decide whether a given value is in the set. For example, Alice is not
in the set {Bob, Bill, Ben} and 7 is in the set {1, 3, 5,7, 9}, also written:

Alice ¢ {Bob, Bill, Ben} and 7€{1,3,5,7,9}

The empty set containing no element is written {} or ().

Since the order in which elements are enumerated in a set is of no concern, and repetitions
among members of a set is of no concern either, the following expressions denote the same
set:

{Bob,Bill, Ben}  {Bob,Bill, Ben, Bill}  {Bill, Ben, Bill, Bob}

The above examples are all finite sets; but sets may be infinite and examples are the set of
all natural numbers N = {0, 1,2, ...} and the set of all real numbers R.

A set A is a subset of a set B, written A C B, if all the elements of A are also elements
of B, for example

{Ben,Bob} - {Bob,Bﬂl,Ben} and {1, 3,9,7, 9} CN
Furthermore, two sets A and B are equal, if they are both subsets of each other:
A=1B if and only if ACBand BC A

that is, two sets are equal if they contain exactly the same elements.

The subset of a set A that consists of those elements satisfying a predicate p can be
expressed using a set-comprehension {x € A | p(x)}. For example, the set {1,3,5,7,9}
consists of the odd natural numbers that are smaller than 11:

{1,3,5,7,9} = {z € N|odd(z) and x < 11}

If it is clear from the context from which set A the elements of the set-comprehension
originate, then we use the simplified notation: {z | p(x)}.
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'

(a) AUB b)ANB (c) A\ B

Figure 5.1 Venn diagrams for (a) union, (b) intersection and (c) difference

Some of the standard operations on sets are union: A U B, intersection AN B and differ-

ence A\ B:

AUB={z|z € Aorz € B}
ANB={z|z € Aandx € B}
A\B={x€c A|z ¢ B}

that is, A U B is the set of elements that are in at least one of the sets A and B, AN B is
the set of elements that are in both A and B, and A \ B is the subset of the elements from
A that are not in B. These operations are illustrated using Venn diagrams in Figure 5.1. For
example:

{Bob, Bill, Ben} U {Alice, Bill, Ann} = {Alice, Ann, Bob, Bill, Ben}
{Bob, Bill, Ben} N {Alice, Bill, Ann} = {Bill}
{Bob, Bill, Ben} \ {Alice, Bill, Ann} = {Bob, Ben}

Sets in F#

The Set library of F# supports finite sets of elements of a type where ordering is defined,
and provides efficient implementations for a rich collection of set operations. The implemen-
tation is based on a balanced binary tree representation of a set and this is why an ordering
of the elements is required (but we will not consider such implementation details in this
section).

Consider the following example of a set in F#:

set ["Bob"; "Bill"; "Ben"];;
val it : Set<string> = set ["Ben"; "Bill"; "Bob"]

Hence, a set can be given in a manner similar to a list using the “set-builder” function set.
The resulting value is of type Set<string>, thatis, a set of strings, and we can see from
the F# answer that the elements occur according to a lexicographical ordering. A standard
number ordering is used for sets of integers, for example:

set [3; 1; 9; 5; 7; 9; 11;;
val it : Set<int> = set [1; 3; 5; 7; 9]
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Equality of two sets is tested in the usual manner:

set ["Bob";"Bill";"Ben"] = set ["Bill";"Ben";"Bill";"Bob"1];;
val it : bool = true

and sets are ordered on the basis of a similar kind of lexicographical ordering as used for
lists. (See Section 4.1.) For example, { Ann, Jane} is smaller than {Bob, Bill, Ben} (in the
F# representation) since Ann is smaller than every element in {Bob, Bill, Ben} using the
string representation:

compare (set ["Ann";"Jane"]) (set ["Bill";"Ben"; "Bob"]);;
val it : int = -1

Operation

Meaning
ofList: "a list —> Set<’a>, where ofList [ag;...;an—1] = set [ag;...;an—1]
toList: Set<’a> ->'a list, where toList {ag,...,an—1} = [a0;...;an—1]

add: "a -> Set<’a> -> Set<’a>, whereadda A= {a} UA

remove: 'a —> Set<’a> -> Set<’ a>, where remove a A = A\ {a}
contains: "a —> Set<’a> —> bool, where containsa A=a€ A
isSubset: Set<’a> —> Set<’a> —-> bool, where isSubset AB=ACB
minElement: Set<’a> —> ' a, where

minElement {ag,a1,...,an—2,an—1} = ag Whenn >0
maxElement: Set<’a> —> ' a, where

maxElement {ag,a1,...,an—2,an—1} = Gp—1 Whenn > 0
count: Set<’a> —> int, where

count {ag,ai,...,ap—2,an—1} =n

These operations are found under the names: Set .add, Set.contains, and so on.
It is assumed that the enumeration {ag, a1, ..., an—2, an—1} respects the ordering of elements.

Table 5.2 A selection of basic operations from the Set library

Basic properties and operations on sets

We shall now describe the basic properties of sets and the operations on sets in F# as shown
in Table 5.2. The functions Set .ofList and Set .toList are conversion functions be-
tween lists and sets:

let males = Set.ofList ["Bob"; "Bill"; "Ben"; "Bill"];;
val males : Set<string> = set ["Ben"; "Bill"; "Bob"]
Set.toList males;;

val it : string list = ["Ben",; "Bill"; "Bob"]

Note that the resulting list is ordered and contains no repeated elements.
An element can be inserted in a set with the function Set . add:

Set.add "Barry" males;;
val it : Set<string> = set ["Barry"; "Ben"; "Bill"; "Bob"]

and removed from a set with the function Set . remove:
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Set.remove "Bill" males;;
val it : Set<string> = set ["Ben"; "Bob"]

The add and remove operations do not change the original set, that is, they have no side
effect. The same observation applies for all other operations in the Set library. For example,
the add and remove operations above did not change the value of males:

males;;
val males : Set<string> = set ["Ben"; "Bill"; "Bob"]

Containment in a set is tested using Set . contains and a subset relationship is tested
using Set .isSubset:

Set.contains "Barry" males;;

val it : bool = false

Set.isSubset males (set ["Bob"; "Bill"; "Ann"]);;
val it : bool = false

Set.isSubset males (Set.add "Ben" (set ["Bob";"Bill";"Ann"]));;
val it : bool = true

Due to the ordering required for set elements, every non-empty set has a minimal and a
maximal element:

Set.minElement (set ["Bob"; "Bill"; "Ben"]);;

val it : string = "Ben"
Set.maxElement (set ["Bob"; "Bill"; "Ben"]);;
val it : string = "Bob"

Furthermore, the cardinality of a finite set is in F# given by the function Set . count:

Set.count (set ["Bob"; "Bill"; "Ben"]);;
val it : int = 3

Set.count (Set.empty);;

val it : int = 0

which also shows that the cardinality of the empty set (denoted by Set .empty) is 0.

Fundamental operations on sets

We shall now consider the selection of fundamental operations from the Set library in F#
shown in Table 5.3.

We illustrate set operations for union, intersection and difference using an example where
males are supposed to be all the males at a golf club, and boardMembers are the mem-
bers of the board for that club:

let boardMembers = Set.oflList [ "Alice"; "Bill"; "Ann"];;
val boardMembers : Set<string> = set ["Alice"; "Ann"; "Bill"]

Set.union males boardMembers;;
val it : Set<string> = set ["Alice";"Ann";"Ben",;"Bill";"Bob"]
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Operation

Meaning
union: Set<’a> -> Set<’a> —> Set<’a>, whereunion AB=AUB
intersect: Set<’a> —> Set<’a> —> Set<’a>, where intersect AB=ANB
difference: Set<’a> -> Set<’a> -> Set<’a>, where difference AB=A\B
filter: (’a ->bool) —> Set<’a> -> Set<’a>, where filterp A= {z € A|p(z)}
exists: ("a ->bool) —> Set<’a> —>bool, where exists p A =3z € A.p(x)
forall: ("a->bool) —> Set<’a> —>bool, where forall p A =Vz € A.p(x)
map: ("a->'b) —> Set<’a> -> Set<’b>, wheremap f A ={f(z) |z € A}
fold: (a->"b->"a) —>"’"a —> Set<’b> -> " a, where

fold fa{bg,b1,...,bp—2,bp_1} = f(f(f(-- f(f(a,bg),b1),...),bp—2),bn_1)
foldBack: ("a->'b->'b) —> Set<’a>->"b —> "b, where

foldBack f {ap,a1,.--,an-2,an—1} b= f(ag, f(a1, f(..., flan—2, f(an—1,))---)))

It is assumed that the enumerations in the sets {ag, a1, ..., an—2,an—1} and
{bo, b1, ..,bn—2,bn_1} respect the ordering of the respective types.

Table 5.3 A selection of operations from the Set library

Set.intersect males boardMembers; ;
val it : Set<string> = set ["Bill"]

Set.difference males boardMembers;;
val it : Set<string> = set ["Ben"; "Bob"]

where, for example, the set of males being board members is obtained using intersections
and the set of those who are not board members is obtained using difference.

A function can be applied to every member of a set using Set .map in the same manner
it can be applied to every element of a list using List .map. The following function, that
transforms a set of sets S = {sg,...,S,_1} to the set {|so|,...,|s,_1|} containing the
cardinalities of the elements of S, is, for example, defined using Set .map in a natural
manner:

let setOfCounts s = Set.map Set.count s;;
val setOfCounts: Set<Set<’a>> —-> Set<int> when ’a: comparison

Consider the F# value for the set of sets {{1,3,5},{2,4},{7,8,9}}:

let ss = set [set [1;3;5]; set [2;4]; set [7;8;9] 1;;
val it : Set<Set<int>>
= set [set [1; 3; 5]; set [2; 4]; set [7; 8; 9]]

setOfCounts ssj;;
val it : Set<int> = set [2; 3]

The functions: Set .exists, Set.foralland Set.filter, workin a similar manner
to their List siblings:

Set.exists (fun x -> x>=2) (set [1;3;1;41);;
val it : bool = true
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Set.forall (fun x —-> x>=2) (set [1;3;1;4]1);;
val it : bool = false

Set.filter (fun x —-> x>3) (set [1;5;-2;81);;
val it Set<int> = set [5;, 8]
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The functions Set.fold and Set.foldBack also correspond to their list siblings.

This is illustrated in the following evaluations:

Set.fold (-)
Set.foldBack (-)

(set [1;2;3])

0
(set [1;2;3]1) 0

where the ordering on the set elements is exploited.

((0-1)-2)-3
1-(2-(3-0)

—6
2

The functions sumSet and setOfCount s can be succinctly declared using foldBack:

Set.foldBack
Set<int> -> int

let sumSet s
val sumSet

(+) s 0;;

let setOfCounts s

Set.foldBack

(fun se sn —-> Set.add (Set.count se) sn)
S
Set.empty; ;

setOfCounts Set<Set<’a>> —-> Set<int> when ’a comparison

sumSet (set [1 .. 51);;

val it int = 15

setOfCounts (set [set [1;3;5]; set [2;4]; set [7;8;9] 1);;

val it Set<int> = set [2; 3]

Declarations of these functions could also be based on Set . fold:

let sumSet s = Set.fold (+) 0 s;;

let setOfCounts s = Set.fold
(fun sn se —-> Set.add (Set.count se) sn)
Set.empty

Sii

Notice that is is more natural to base a declaration of setOfCounts on Set .map as done

above, rather than basing it on one of the fold functions.

Recursive functions on sets

The functions Set .map, Set.filter, Set.fold and Set.foldBack will traverse
the complete set before they terminate, unless the evaluation is aborted by raising an excep-

tion, and this may be undesirable in some situations. Consider, for
that finds the least element in a set satisfying a given predicate:

tryFind: ("a —-> bool)

when "a

-> Set<’a> —>
comparison

"a option

example, the function
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This function can be declared by repeated extraction of the minimal element from a set until
an element satisfying the predicate is found:

let rec tryFind p s =
if Set.isEmpty s then None
else let minE = Set.minElement s
if p minE then Some minE
else tryFind p (Set.remove minE s);;

For example, the least three-element set from a set of sets is extracted as follows:

let ss = set [set [1;3;5]; set [2;4]; set [7;8;9] 1;;

tryFind (fun s -> Set.count s = 3) ss;;
val it : Set<int> option = Some (set [1; 3; 5])

A declaration of this function that is based on Set .fold will always traverse the en-
tire set leading to a linear best-case running time, while the function declared above will
terminate as soon as an element satisfying the predicate is found, and the best-case execu-
tion time is dominated by the time required for finding the minimal element in a set, and
that execution time is logarithmic in the size of the set when it is represented by a balanced
binary tree. Note however, that the worst-case execution time of traversing a set S using
Set.foldor Set.foldBack is O(]S]), that is linear in the size |.S| of the set, while it
is O(|S] - log(|S])) for a function based on a recursion schema like that for t ryFind, due
to the logarithmic operations for finding and removing the minimal element of a set.

A more efficient implementation of the function t ryFind using an enumerator is given
on Page 191, and the efficiency of different methods for traversal of collections is analyzed
in Exercise 9.14. Enumerators for collections (to be introduced in Section 8.12) provide a
far more efficient method than the above used recursion schema for t ryFind.

Example: Map colouring

The solution of the map-colouring problem from Section 4.6 shall now be improved using
sets. The basic algorithmic idea for the solution below using sets is basically the same as
that for using lists. But the model using sets is a more natural one. Furthermore, we shall
take advantage of the higher-order library functions.

A map is mathematically modelled as a binary relation of countries, that is, as a set of
country pairs. Furthermore, since the order in which countries occur in a colour is not rele-
vant and since repetition among the countries in a colour is of no concern, the natural model
of a colour is a country set. A similar observation applies to a colouring:

type Country = string;;

type Map = Set<Country=*Country>;;
type Colour Set<Country>;;

type Colouring Set<Colour>;;

Two countries ¢, ¢, are neighbors in a map m, if either (¢, ca) € mor (cz,¢1) € m. In
F# this is expressed as follows:
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let areNb cl c2 m =
Set.contains (cl,c2) m || Set.contains (c2,cl) m;;

A colour col can be extended by a country ¢ for a given map m, if for every country ¢’
in col, we have that ¢ and ¢’ are not neighbours in m. This can be directly expressed using
Set.forall:

let canBeExtBy m col c =
Set.forall (fun ¢’ -> not (areNb ¢’ ¢ m)) col;;

The function

extColouring: Map -> Colouring —-> Country -> Colouring
is declared as a recursive function over the colouring:

let rec extColouring m cols c =

if Set.isEmpty cols

then Set.singleton (Set.singleton c)

else let col = Set.minElement cols
let cols’ = Set.remove col cols
if canBeExtBy m col c
then Set.add (Set.add c col) cols’
else Set.add col (extColouring m cols’ c);;

This recursive declaration is preferred to using a declaration based on either Set.fold
or Set . foldBack, since the recursive version terminates as soon as a colour that can be
extended by the country is found, whereas a declaration based on one of the fold functions
always will iterate through the entire colouring.

A set of countries is obtained from a map by the function:

countries: Map —> Set<Country>

The declaration of this function is based on repeated insertion (using Set .fold) of the
countries in the map into a set:

let countries m =
Set.fold
(fun set (cl,c2) —> Set.add cl (Set.add c2 set))

Set.empty
mj; ;

The function
colCntrs: Map —-> Set<Country> -> Colouring

that creates a colouring for a set of countries in a given map, can be declared by repeated
insertion of countries in colourings using the ext Colouring function:

let colCntrs m cs = Set.fold (extColouring m) Set.empty csj;;
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The function that creates a colouring from a map is declared using function composition
and used as follows:

let colMap m = colCntrs m (countries m);;
let eXMap = Set.olest [("a","b"); ("C","d"); ("d","a")];;

colMap exMap;;
val it: Set<Set<string>> = set [set ["a";"c"]; set ["b";"d"]]

Comparing this set-based solution with the list-based one in Section 4.6 we can first ob-
serve that the set-based model is more natural, due to the facts that a map is a binary relation
of countries and a colouring is a partitioning of the set of countries in a map. For most of the
functions there is even an efficiency advantage with the set-based functions. This advantage
is due to the following

e the worst-case execution time for testing for membership of a set (represented by a bal-
anced binary tree) is logarithmic in the size of the set, while this operation is linear when
the set is represented by a list, and

e the worst-case execution time for inserting an element into a set (represented by a bal-
anced binary tree) is logarithmic in the size of the set, while this operation is linear when
the set is represented by a list without duplicated elements.

The use of lists has an advantage in the case of the recursive function extColouring
since the pattern matching for lists yields a more readable declaration and since the worst-
case execution time of this list-based version is linear in the size |S| of the colouring S,
while it is O(|S| - log(|S])) for the set-based one. (See remark on Page 110.)

An improved version is therefore based on the following type declaration:

type Country = string;;

type Map Set<CountryxCountry>;;
type Colour = Set<Country>;;

type Colouring Colour list;;

Just two functions ext Colouring and colCntrs are affected by this change of the type
for colouring while the remaining functions are as above. The new declarations are:

let rec extColouring m cols c =
match cols with
| T[] -> [Set.singleton c]
| col::cols’ —-> if canBeExtBy m col c
then (Set.add c¢ col)::cols’
else col:: (extColouring m cols’ c);;

let colCntrs m cs = Set.fold (extColouring m) [] cs;;

colMap exMap;;
val it : Set<string> list = [set ["a"; "c"]; set ["b"; "d"]]
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5.3 Maps

In the modelling and solution for many problems it is often convenient to use finite functions
to uniquely associate values with keys. Such finite functions from keys to values are called
maps. This section introduces the map concept and some of the main operations on maps in
the F# Map library. Please consult the on-line documentation in [9] for an overview of the
complete Map library.

The mathematical concept of a map

A map from a set A to a set B is a finite subset A’ of A together with a function m defined
on A’:

m:A — B

The set A’ is called the domain of m and we write domm = A’.
A map m can be described in a tabular form as shown below. The left column contains the

elements ag, ay, . .., a,_1 of the set A’, while the right column contains the corresponding
values m(ag) = by, m(ay) = by,...,m(a,_1) =b,_1:

[4%) bo

aq bl

Ap—1 bnfl

An element a; in the set A’ is called a key for the map m. A pair (a;, b;) is called an entry,
and b; is called the value for the key a;. Note that the order of the entries is of no significance,
as the map only expresses an association of values to keys. Note also that any two keys a;
and a; in different entries are different, as there is only one value for each key. Thus, a map
may be represented as a finite set of its entries. We use

entriesOf(m) = {(ag,bo), - -, (@n-1,bn-1)}

to denote the sets of entries of a map.

The cash register example in Chapter 4.6 comprises an article register associating name
and price to article codes, and this register can be viewed as a map. A key in the map is an
article code and the corresponding value is the pair with the name and price of the article.

A particular article register is given by the following map:

reg, : al | (cheese,25)
a2 | (herring, 4)
a3 | (soft drink, 5)

It associates the value (cheese, 25) with the key al, the value (herring, 4) with the key a2,
and the value (soft drink, 5) with the key a3. Hence, it has the domain {al,a2,a3}.
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Operation
Meaning

ofList: ("a*'b) list —> Map<’a,’b>, where
ofList [(ag,bo);...;(an—1,bp—1)] =m

toList: Map<’a,’b>-> ("a*’b) list, where
toList m = [(ao,bo); R (anfl,bnfl)]

add: "a -> "b -> Map<’a, "b> -> Map<’ a, ' b>, where
add a bm = m/, where m’ is obtained by overriding m with the entry (a, b)
containsKey: "a —> Map<’a, 'b> ->Dbool, where containsKey am = a € domm
find: "a -> Map<’a, 'b> -> " b, where
find a m = m(a), if a € dom m; otherwise an exception is raised
tryFind: "a —> Map<’a,’b> ->'b option, where
tryFind a m = Some (m(a)), if a € dom m; None otherwise
filter: ("a->'b ->Dbool) —>Map<’a, 'b>->Map<’a,'b> where filter pm
is obtained from m by deletion of entries (a;, b;) where pa; b; = false
exists: ("a->"b ->bool) —> Map<’a,’'b>->bool, where
exists pm = 3(a,b) € entriesOf(m).pab
forall: ("a->"'b ->bool) —>Map<’a, "b> -> bool, where
forall p A =VY(a,b) € entriesOf(m).pab
map: ("a->'b->"'c) —>Map<’a,’'b>->Map<’a, ’c>, where
map fm = ofList [(ao, faobo);-.-;(an—1,fan—1bn_1)]
fold: ("a->'b->'c->"a) ->"a->Map<’'b,’c>->"a, where
fold famp.=f(--(f(faboco)bici)...)bp—1cCn-1
foldBack: (fa->'b->'c->"'c) —>Map<'a, 'b>->"c ->"'c, where
foldBack fme= fapby (farbr (f...(fan—1bpn—1¢)---))

It is assumed that /m and m,,. are maps with types Map<’ a, " b> and Map<’b, ’ ¢>, that

entriesOf(m) = {(ag,b0),...,(an—1,bn—1)}
entriesOf(mye) = {(b0,€0); - s (b1, 1)}
and that the enumerations {ag, a1, ...,an—2,an—1} and {bg, b1, ..., byp_2,b,_1} respect the

ordering of the respective types.

Table 5.4 A selection of operations from the Map library

Maps in F#

The Map library of F# supports maps of polymorphic types Map<’ a, ' b>, where ’ a and
" b are the types of the keys and values, respectively, of the map. The Map is implemented
using balanced binary trees, and requires therefore that an ordering is defined on the type
" a of keys. Some of the functions of the Map library are specified in Table 5.4.

A map in F# can be generated from a list of its entries. For example:

let regl = Map.ofList [("al", ("cheese",25));
("a2", ("herring",4));
("a3", ("soft drink",5))1;;
val regl : Map<string, (string * int)> =
map [("al", ("cheese", 25)); ("a2", ("herring", 4));
("a3", ("soft drink", 5))]

is an F# map for the register reg,, where keys are strings and values are pairs of the type
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stringsint. If the list contains multiple entries for the same key, then the last occurring
entry is the significant one:

Map.ofList [(1,"a"); (2,"b"); (2,"c"); (1,"d")];;
val it : Map<int,string> = map [(1, "d"); (2, "c")]

The list of entries of a map is achieved using the Map . toList function:

Map.tolList regl;;
val it : (string * (string % int)) 1list =
[("al", ("cheese", 25)); ("a2", ("herring", 4));
("a3", ("soft drink", 5))]

An entry can be added to a map using add while the value for a key in a map is retrieved
using either find or tryFind:

let reg2 = Map.add "a4" ("bread", 6) reqgl;;
val reg2 : Map<string, (string = int)> =
map [("al", ("cheese", 25)); ("a2", ("herring", 4));
("a3", ("soft drink", 5)); ("a4", ("bread", 6))]

Map.find "a2" regl;;
val it : string * int = ("herring"”, 4)

Map.tryFind "a2" reqgl;;
val it : (string % int) option = Some ("herring", 4)

Map.containsKey "a4" regl;;
val it : bool = false

Map.find "a4" regl;;
System.Collections.Generic.KeyNotFoundException: The given key
was not present in the dictionary.

Stopped due to error

Map.tryFind "a4d" reqgl;;
val it : (string % int) option = None

where find raises an exception if the key is not in the domain of the map and tryFind
returns None in that case.

The old entry is overridden if you add an entry for an already existing key. The entry for
a given key can be deleted using the remove function:

let reg3 = Map.add "a4" ("bread", 8) reqgl;;
val reg3 : Map<string, (string x int)> =
map [("al", ("cheese", 25)); ("a2", ("herring", 4));
("a3", ("soft drink", 5)); ("a4", ("bread", 8))]
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let reg4 = Map.remove "a2" reg3;;
val reg4 : Map<string, (string * int)> =
map [("al", ("cheese", 25)); ("a3", ("soft drink", 5));
("a4", ("bread", 8))]

The Map functions exists, forall, map, fold and foldBack are similar to their
List and Set siblings. These functions are specified with type and meaning in Table 5.4,
so we just give some illustrative examples below.

The following expression tests whether there are expensive articles, for which the price
exceeds 100, in a register:

Map.exists (fun _ (_,p) —-> p > 100) regl;;
val it : bool = false

The natural requirement that every price occurring in a register must be positive is expressed
by:

Map.forall (fun _ (_,p) —> p > 0) regl;;
val it : bool = true

The part of a register with articles having a price smaller than 7 is extracted as follows:

Map.filter (fun _ (_,p) -> p < 7) reg3;;
val it : Map<string, (string #* int)> =
map [("a2", ("herring", 4)); ("a3", ("soft drink", 5))]

A new register, where a 15% discount is given on all articles, c