

Basic F# syntax, types, and functions

// Define module MyCode in namespace Company.Rules (lesson 12)
module Company.Rules.MyCode

// Open System namespace
open System

// Define a simple value (lesson 4)
let playerName = "Joe"

// Create and unwrap a tuple (lesson 9)
let playerTuple = playerName, 21
let name, age = playerTuple

// Define and create a record (lesson 10)
type Player = { Name : string; Score : int; Country : string }
let player = { Name = playerName; Score = 0; Country = "GB" }

// Function definition with copy-and-update record syntax (lessons 10, 11)
let increaseScoreBy score p = { p with Score = p.Score + score }

// Piping functions (lesson 11)
player |> increaseScoreBy 50 |> printfn "%A"

// Function with basic pattern matching and nested expressions (lesson 7, 20)
type GreetingStyle = Friendly | Normal
let greet style player =
 let greeting =

match style with
| Friendly -> "Have a nice day!"
| Normal -> "Good luck."

 sprintf "Hello, player %s! %s" player.Name greeting

// Partial function application (lesson 11)
let friendlyGreeting = greet Friendly

// Composing functions together (lesson 11)
let printToConsole text = printfn "%s" text
let greetAndPrint = friendlyGreeting >> printToConsole

Get Programming with

F#
A guide for .NET developers

Isaac Abraham

MANNING
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15 percent recycled and processed without the use
of elemental chlorine.

Manning Publications Co. Acquisitions editor: Michael Stephens
20 Baldwin Road Development editor: Elesha Hyde
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Technical development editor: Mark Elston
 Technical proofreader: Dane Balia

Production editor: David Novak
Copyeditor: Sharon Wilkey
Proofreader: Melody Dolab

Typesetter: Dottie Marsico
Cover designer: Monica Kamsvaag

ISBN 9781617293993
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

http://www.manning.com

Contents
Foreword v
Preface viii
Acknowledgments x
About this book xi
About the author xiv

Welcome to Get Programming
with F#! 1

Unit 1

F# AND VISUAL STUDIO

Lesson 1 The Visual Studio experience 17

Lesson 2 Creating your first F# program 25

Lesson 3 The REPL—changing how we
develop 34

Unit 2

HELLO F#

Lesson 4 Saying a little, doing a lot 47

Lesson 5 Trusting the compiler 58

Lesson 6 Working with immutable data 70

Lesson 7 Expressions and statements 81

Lesson 8 Capstone 1 92

Unit 3

TYPES AND FUNCTIONS

Lesson 9 Shaping data with tuples 101

Lesson 10 Shaping data with records 111

Lesson 11 Building composable functions 125

Lesson 12 Organizing code without classes 138

Lesson 13 Achieving code reuse in F# 149

Lesson 14 Capstone 2 160

Unit 4

COLLECTIONS IN F#

Lesson 15 Working with collections in F# 173

Lesson 16 Useful collection functions 186

Lesson 17 Maps, dictionaries, and sets 197

Lesson 18 Folding your way to success 206

Lesson 19 Capstone 3 219

Unit 5

THE PIT OF SUCCESS WITH THE F# TYPE
SYSTEM

Lesson 20 Program flow in F# 231

Lesson 21 Modeling relationships in F# 244

Lesson 22 Fixing the billion-dollar mistake 257

Lesson 23 Business rules as code 270

Lesson 24 Capstone 4 284

Unit 6

LIVING ON THE .NET PLATFORM

Lesson 25 Consuming C# from F# 299

Lesson 26 Working with NuGet packages 310
iii

iv Contents
Lesson 27 Exposing F# types and functions
to C# 321

Lesson 28 Architecting hybrid language
applications 331

Lesson 29 Capstone 5 342

Unit 7

WORKING WITH DATA

Lesson 30 Introducing type providers 355

Lesson 31 Building schemas from live data 365

Lesson 32 Working with SQL 376

Lesson 33 Creating type provider-backed
APIs 388

Lesson 34 Using type providers in the real
world 401

Lesson 35 Capstone 6 411

Unit 8

WEB PROGRAMMING

Lesson 36 Asynchronous workflows 425

Lesson 37 Exposing data over HTTP 439

Lesson 38 Consuming HTTP data 453

Lesson 39 Capstone 7 464

Unit 9

UNIT TESTING

Lesson 40 Unit testing in F# 477

Lesson 41 Property-based testing in F# 489

Lesson 42 Web testing 501

Lesson 43 Capstone 8 511

Unit 10

WHERE NEXT?

Appendix A The F# community 521

Appendix B F# in my organization 527

Appendix C Must-visit F# resources 537

Appendix D Must-have F# libraries 543

Appendix E Other F# language features 556

Index 564

Foreword
When I first met Isaac Abraham in 2015, I knew immediately that he shared my passion
for educating .NET developers in the art of F#. His book, which you hold in your hands,
is the text I had wanted when I first kindled my F# romance. Inside, Isaac will lead you
on a journey of F# that’s both pragmatic and relevant. If you’re a C# or Visual Basic .NET
developer, you’ll learn through a series of lessons how to apply F# to everyday .NET
development. You won’t have to wade through the deep theoretical explanations that
are often the staple of functional programming books. Instead, Isaac will guide you with
practical advice and best practices derived from his own experience as an F# developer.

I first fell in love with F# when it was still a research language being developed out of
Microsoft Research in Cambridge, England. The language was a bit rough around the
edges, but every monthly release brought a fresh set of exciting new features to explore.
The community was small but already vibrant, eager to evangelize any who would listen
about how F# was so expressive, powerful, and fun. I found myself caught up in it all.

Since F# was still very new, there weren’t many books available to help me learn the lan-
guage. Being a self-taught C# programmer, I wanted something that was light on theory
and heavy on practice, but such books hadn’t been written yet. I even made my own
meager attempt to fill that void, by writing a blog series (viewable today only via the
Internet Archive) titled, “Why I Love F#.”

In each blog article, I attempted to present F# to everyday C# developers like myself,
highlighting features that marry well with .NET development such as the F# Interactive
environment, type-safe format strings, tuples, and pattern matching. I wanted to
encourage others to explore this beautiful language that I’d become quite smitten with,
and to teach them how to use it effectively to create .NET programs. Eventually, my blog
fell by the wayside. After joining the .NET languages team at Microsoft, I could no lon-
ger find the time to keep it current and gave it up.

Fast-forward to today. Today, F# is more popular than ever and growing at a rapid pace.
F# code is running quite literally everywhere: on desktops, mobile devices, the web, IoT
v

vi Foreword
devices, and in the cloud. F# has reached its fourth major version, boasts an active and
fiercely passionate community, and enjoys first-class tooling support in many IDEs and
editors, such as Visual Studio, Visual Studio for Mac, and JetBrains Rider. And of
course, F# books are available on a wide variety of topics, from the more general pur-
pose to fully scientific.

F# exemplifies an aspect of programming that all too often is forgotten: programming
should be fun. With Isaac as your teacher, I’m confident you’ll have an absolute blast.

—DUSTIN CAMPBELL

PRINCIPAL SOFTWARE ENGINEER,
.NET LANGUAGES TEAM, MICROSOFT

In the Introduction to F#, Isaac mentions that F# leads you to a pit of success, which is
something that I wholeheartedly agree with. I believe that the way this happens has a
lot to do with how a pragmatic way of thinking, functional ideas, and a powerful run-
time come together in F#. The functional ideas serve as a fantastic tool for understand-
ing and modeling the problem domain in a simple way. At the same time, F# gives you a
versatile toolbox for solving concrete problems within the domain. This includes a lan-
guage that supports multiple paradigms including functional, object-oriented, and
imperative, but also powerful .NET and F# libraries. Again, this book introduces F#
from exactly the right perspective. It rightly puts a strong emphasis on thinking about
the domain in a functional way, but at the same time, it introduces all of the important
tools from the F# toolbox.

When I started learning the F# language 10 years ago, the typical advice was that F# is
just a functional programming language for .NET, so you should “forget everything you
know about programming,” read a couple of academic functional programming text-
books, and then figure out how to use the functional concepts to write .NET applica-
tions on your own.

I’m happy that this isn’t the advice we give to people who are curious about F# these
days. There are two main reasons for this. First, it turns out that “forgetting everything”
is just a poor strategy for learning F# if you have existing programming knowledge. Sec-
ond, it also turns out that the “functional programming” label is only partly appropriate
for the kind of code you write when using F# to solve real-world problems. This book
reflects both points, which is what makes it a fantastic material for learning F#.

The difference between F# and other .NET languages is equally easy to overstate and to
understate. On one hand, many functional language constructs now exist in C# and VB

viiForeword
.NET, so you might think that the difference isn’t that big. On the other hand, F# is
rooted in functional programming and leads you to different way of thinking about
problems, so you might think that you need to start from a clean slate. As is often the
case, the truth is somewhere in the middle. When using F#, you’ll find yourself design-
ing software differently and, as a result, falling into the pit of success described in unit 5.
At the same time, learning F# shouldn’t be as daunting as it was 10 years ago. You’ll find
many similarities to what you know already, and this book does a great job of using
them to explain F# clearly and effectively.

If you’re a C# or VB .NET developer who cares about solving problems in a pragmatic
way, this is the book for you. There’s no need to wait for the “right problem” that will be
“well suited to functional programming” and give you an excuse to learn F#. As this
book clearly explains, the point of F# isn’t just in functional programming, but in the pit
of success, where the F# way of solving problems leads you.

—TOMAS PETRICEK

PARTNER, FSHARPWORKS

Preface
Several years ago, when I was a full-time C# developer working for a .NET consultancy
in the United Kingdom, I embarked on a goal to improve the quality of software I
developed. I was fed up with writing software and having the customer find bugs that
I felt I should have caught, and disappointed that I didn’t know how to use OO pro-
gramming to model real-world problems. So I learned about SOLID, became a TDD
fanatic, and read up on things like dependency injection and design patterns. And my
software did improve! My clients were happier, and my managers were pleased with
the lower bug rates.

But soon afterward, I once again became frustrated with a lack of progress. Did we really
need this amount of rigor, of process, and of unit tests in order to become proficient soft-
ware developers? I knew that I’d taken a step forward in terms of quality by adopting
SOLID and TDD, but I wanted to achieve it in a more productive fashion. I wanted more
support from my programming language to do the right thing by default; something
that guided me to the “pit of success” without my needing to use a myriad of design
patterns in a specific way, and allowed me to get to the heart of a problem that I was try-
ing to solve.

Fast-forwarding a little, I ended up working for a financial services company working
on a rules engine to monitor dodgy-looking trades—things like insider trading. We
spent a great deal of time looking at how to create a component-based rules engine with
pluggable “rules” that we could use to build “larger” rules. What I discovered by the
end was that we had spent the last 18 months trying to implement a functional pipeline
using object-oriented constructs and design patterns.

So, having heard about F#, I thought I’d give it a look. I was initially interested in it as a
means to an end; I’d heard that it could help me write software on .NET more quickly
and with fewer bugs. I attended an intensive two-day course, and tried to use F# as
much in my own time as I could. Interestingly, while learning F#, I found that it reinvig-
orated me as a developer—not only was I learning something entirely new, but I could
viii

ixPreface
see the benefits of using the language in a tangible sense. I was able to rapidly deliver
software and yet also had the confidence that what I had delivered to my customers
worked, but without the rigor I’d experienced beforehand. At the same time, I found an
entirely new community of .NET developers that I didn’t even know existed, with dif-
ferent ideas and ways of working that made me question many of the fundamentals that
I took for granted. I realized that I was excited about and enjoying software develop-
ment again!

Over time, I learned more about F# and functional programming; coming from a C#
background, I had many preconceptions about what F# was (and wasn’t), and made lots
of mistakes on the way to learning how to use F# more effectively. This book is the cul-
mination of what I wish I had had when I was taking my first steps with F# while at the
same time trying to find out where it fits in my day-to-day work.

I couldn’t put everything that I wanted to in this book—and many of the lessons deliber-
ately leave out the hard-core details that could be useful as reference material—but as
long as you understand what this book is and isn’t, I think that you’ll find it a great start
to the world of F# and FP on .NET. It’ll help get you up and running, building on your
existing knowledge of .NET, and although it won’t necessarily take you all the way to
the finish line, it’ll offer you signposts and guidance on how to get there yourself.

Acknowledgments
Thank you to all the people who have helped guide the book throughout the many
forms it took over its development. The reviewers and MEAP participants provided
invaluable guidance during this time to help me focus on getting to the real crux in
many of the lessons. The list of reviewers includes Andy Kirsch, Anne Epstein, Bruno
Sonnino, Dane Balia, Dmytro Lypai, Dylan Scott, Ernesto Cardenas Cangahuala, Jason
Hales, Jiri Pik, Joel Clermont, Miranda Whurr, Panagiotis Kanavos, Sambaran Hazra,
Stephen Byrne, Tim Djossou, and Wes Stahler. Thanks to you all. I’d like to reserve a
special thank you for Tomas Petricek for his invaluable and extremely detailed feedback
throughout the book, as well as Dustin Campbell for taking the time to put together a
wonderful foreword. Also, thanks to the Manning team, including all my editors, for
their guidance.

Thanks also to Don Syme and Microsoft for creating and then integrating F# into Visual
Studio—my life as a software developer is much more pleasant for it! The F# commu-
nity gets a huge thank you for providing feedback during the development of this book,
but also for making F# such a fun and welcoming environment; I’ve learned so much
also about working within the community as well as on open source projects in general.

Finally, thank you to my wife, Carmen, for enduring the countless evenings and week-
ends spent working on this book, and helping me stay positive through the twists and
turns that I’ve now learned are part of creating a book.
x

About this book
Who should read this book

This book takes a practical look at how to start using functional programming tech-
niques with F# in production applications, using frameworks, libraries, and tools that
you’re already familiar with, as well as exploring F#-specific libraries that open up all
sorts of interesting options that aren’t possible today in C# and VB .NET.

It’s important to note from the outset that this book won’t teach you everything about
the F# language. Instead, we’ll focus on a core subset of the language that gives you the
most effective return for your investment; where there’s further learning available that
could be worthwhile for you, I’ll point it out. You won’t learn everything about func-
tional programming, either; again, we’ll concentrate on the most important fundamen-
tals from which the more advanced techniques and practices will naturally reveal
themselves to you over time. So, if you’re expecting to learn the ins and outs of functors,
monads, and applicatives, this book isn’t for you. If, on the other hand, you want to
learn the parts that will enable you to achieve the same qualities in software that you
strive for already, without spending time learning the inner workings of exactly why
things work from a theoretical point of view, then keep reading!

If you’re an enterprise developer on .NET, it’s likely that you’re looking to see how F#
can provide tangible benefits to you in the minimum amount of time. This book focuses
on showing you things that you can start using today with F#, be they frameworks that
you might already know, or F#-specific libraries designed to take full advantage of F#’s
powerful type system that will provide real-world benefits over existing libraries. As
such, this book focuses on using Visual Studio on Windows as the primary develop-
ment platform, although you can use almost (but not all) of the libraries mentioned here
through other IDEs and OSs.
xi

xii About this book
How this book is organized

This book is roughly split into two main sections, plus appendices. The first part of the
book introduces the F# language and development experience from within Visual Stu-
dio—a tool that you already feel at home with. We’ll start from ground zero, and work
our way up to features such as program flow, data structures, and domain modeling.
The second section of the book deals with practical applications and use cases for F#,
from working with hybrid language solutions to unit testing to data-driven websites.
We’ll look at popular existing .NET libraries wherever possible so that you can easily
compare how we approach solving challenges with frameworks that you might already
be familiar with in C# or VB .NET. We’ll also dig into some cool F#-only libraries that
will push the boundaries of what you’re familiar with. Finally, a set of appendices con-
tain helpful tips and resources for continuing to learn more about F#, as well as how to
start using it in a practical sense within your organization.

A word on the following list: each item represents a unit, which is formed of several les-
sons. A lesson is normally 8–12 pages and focuses on a single learning element; when
taken together, all of the lessons in the unit provide a coherent piece of learning. Most
units also end with a larger exercise for you to do that “brings everything together.”

 F# and Visual Studio—This unit gets you up and running with F# on Visual Studio,
in preparation for the rest of the book. You’ll also do some coding to familiarize
yourself with the environment.

 Hello, F#—This unit focuses on the core language features in F#, and provides
you with a solid foundation in using F# for basic application flow.

 Types and functions—This unit presents the data types and structures that F#
offers, and shows how to use them to model data. We’ll then look at F# functions
in more depth and see how powerful and flexible they are.

 Collections in F#—Collections are a powerful weapon in the arsenal of the F#
developer. This unit looks at the collections available in F# and when best to use
each one.

 The pit of success with the F# type system—This unit focuses on the more powerful
features of the F# language, including how to handle conditionals and flow, as
well as how to model rules into code.

 Living on the .NET platform—This unit looks at how F# interoperates with the rest
of .NET, including C# and VB .NET interoperability as well as working with
NuGet packages.

xiiiAbout this book
 Working with data—F# shines when it comes to working with data. This unit looks
at some of the unique features in F# that make working with a wide variety of
data sources easy and fun.

 Web programming—This unit looks at both consuming and creating web applica-
tions in F#, using both standard .NET and custom F# libraries.

 Unit testing—This unit covers a variety of types of testing that can be easily per-
formed in F#, from typical TDD-style testing or more powerful property-based
testing.

 Where next—The final unit contains appendices that discuss miscellaneous tech-
nical topics that are either too small for or don’t easily fit into any single unit, as
well as nontechnical elements such as the F# community. It also offers guidance
on moving forward from this book, making the leap from working through pre-
defined exercises to using F# “in the wild.”

I strongly advise that you go through all the units in the first half of the book, as it cov-
ers the core part of the F# language that’s used everywhere. You may find some of the
second-half units, which cover practical applications of F#, more or less useful, depend-
ing on how you use .NET. But I still recommend you go through all of them, as they give
you more experience with using F# in different situations, particularly the end-of-unit
capstone exercises.

About the code

All the code samples in this book are available at the following URL (including sug-
gested solutions for all capstones): https://github.com/isaacabraham/get-programming-
fsharp.

This book contains many examples of source code both in numbered listings and inline
with the text. In both cases, source code is formatted in a fixed-width font like this to sep-
arate it from ordinary text. Sometimes code is also in bold to highlight code that has
changed from previous steps in the chapter, such as when a new feature adds to an
existing line of code.

In many cases, the original source code has been reformatted; we’ve added line breaks
and reworked indentation to accommodate the available page space in the book. In rare
cases, even this was not enough, and listings include line-continuation markers (➥).
Additionally, comments in the source code have often been removed from the listings
when the code is described in the text. Code annotations accompany many of the list-
ings, highlighting important concepts.

https://github.com/isaacabraham/get-programming-fsharp
https://github.com/isaacabraham/get-programming-fsharp

xiv About the author
Book forum

Purchase of Get Programming with F# includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to www.manning.com/books/get-programming-with-f-sharp. You can also learn
more about Manning's forums and the rules of conduct at https://forums.manning.com/
forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long
as the book is in print.

About the author

ISAAC ABRAHAM is an F# MVP and has been a .NET developer since
.NET 1.0, with an interest in cloud computing and distributed data
problems. He nowadays lives in both the UK and Germany, and is
the director of Compositional IT. He specializes in consultancy,
training and development, and helping customers adopt high-
quality, functional-first solutions on the .NET platform.

Isaac focuses on practical software development techniques and
practices that can deliver good return quickly. He believes that
although an understanding of, for example, functional program-

ming underpinnings is important, these lessons need to be delivered in a way that
quickly illustrates value and benefit to students.

http://www.manning.com/books/get-programming-with-f-sharp
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

WELCOME TO GET PROGRAMMING
WITH F#!

Welcome to F#! I hope that you’re reading this book because you’ve heard something
interesting about F# and want to learn more about how to start using it within your
daily work cycle. Perhaps you’ve heard something about its data processing capabili-
ties, or that it can lead to systems with fewer bugs, or that it can lead to more rapid
development cycles than C# or VB .NET. These are all true, but there’s a whole lot more
to F# than just that. F# presents a whole host of possibilities to you as a .NET developer
that will open your eyes to a better way to develop software—one that leads to you
enjoying what you do more, while making you more productive in your job.

This introduction summarizes at a high level what F# is (and isn’t!), and then discusses
some of the benefits that you’ll receive from using it. We won’t spend much time look-
ing at the language in this introduction, so you’ll have to take some of what I say at face
value; but you’ll end up with a good idea of where F# can potentially fit in with your
day-to-day role. We’ll also cover the relationship of F# within the wider context of the
.NET ecosystem, as well as taking a look at the F# community and how F# fits into the
open source world. At the end of this introductory lesson, you’ll have a good under-
standing of the what and why of F#; the rest of the book will then explain the how!

Although I do think it’s important to read this, if you’re keen to just dig in, feel free to go
straight to lesson 1 and start bashing out some code!
1

2 Introduction Welcome to Get Programming with F#!
What is F#, and why does it matter?

Let’s first start at the beginning and discuss at a relatively high level some of the key
points of what F# is (and isn’t!). Then we’ll discuss the key question that you probably
have on the tip of your tongue: why should you spend time learning a new language
with a new way of doing things, when you could be productively bashing out code right
now in C# or VB?

What is F#?

What’s this whole buzz about F#? F# is a language that’s rapidly growing in popularity
and attracting developers to be used in a variety of domains, not just from within the
.NET ecosystem but also from without.

Let’s start by quoting directly from the fsharp.org website:

F# is a mature, open source, cross-platform, functional-first programming language. It empowers
users and organizations to tackle complex computing problems with simple, maintainable, and
robust code.

Let’s discuss a few points mentioned in that quote:

 Mature—F# is a mature language with an established community. Based on the
ML family of programming languages, and now at version 4, it’s been a first-class
citizen of Visual Studio since Visual Studio 2010 (though you may not even have
been aware of it) and runs on the .NET Framework, which itself is over 15 years
old now. In terms of the risk of using F#, you don’t have to be concerned about
things such as sourcing package dependencies or that you won’t be able to find
resources or help online.

 Open source—F# as a project is entirely open source and has been for several years
(way before Microsoft’s recent public shift toward open source). The compiler is
open source, anyone can submit changes to the compiler and language (subject to
approval of course!), and it runs not only on Windows but also on Mono, with
support for Microsoft’s new .NET Core well on the way at the time of writing.

 Functional-first—F# is prescriptive in the sense that the language encourages us
but doesn’t force us as developers to write code in a functional programming (FP)
style. We’ll describe those features in more detail shortly, and how they affect the
way we code, but for now just know that it’s an alternative way to model and
solve problems compared to the object-oriented (OO) paradigm that you’re used
to. But as F# runs on the .NET Framework (an inherently OO framework), F#
needs to support OO features. So, you can also consume and create classes and
interfaces just as you can with C#; it’s simply that it’s not the idiomatic way to

fsharp.org

3What is F#, and why does it matter?
write F#. In this book, we’ll be effectively ignoring the OO side of F#—which
would mostly just be about learning a new syntax—and focusing on the FP side,
which is much more interesting.

Another point that the preceding quote alludes to is that F# helps us focus on delivering
business logic and ultimately business value, instead of having to focus on complex
design patterns, class hierarchies, and so on in order to achieve quality. This is partly
because F# contains a powerful compiler that does a lot of the heavy lifting for us, which
can lead to more succinct solutions than you might normally achieve in C#. But in addi-
tion, the FP paradigm (in conjunction with F#) emphasizes composing small pieces of
functionality together to naturally build more powerful abstractions rather than
through designing large class hierarchies up front and building downward.

What is functional programming?

To explain this a little more, let’s quickly define FP within the context of this book. Just
as with OO design, defining exactly what FP is can be subjective; many languages that
support FP to some extent will have some features that others do not. At the end of the
day, you can think of FP as a sliding scale of language features that encourage a particu-
lar style of programming; I suggest that any FP language should have good support for
a few core fundamentals:

 Immutability—The ability to create values that can never be changed in their life-
time, which leads to a clear separation of data and functionality (unlike the OO
world, which merges both state and behavior into classes).

 Expressions—The notion that every operation in your program has a tangible out-
put that can be reasoned about.

 Functions as values—The ability to easily create, use, and share functions as a unit
of abstraction and composition within a system.

There’s certainly more to FP than just that, and many languages have features such as
sum types, pattern matching, type classes, and the often-dreaded monad; we’ll deal
with some of these features throughout this book, but the preceding three are the key
ones that we’ll really emphasize. Remember that FP is just another way to model solu-
tions to programming problems; there’s no real magic involved, nor do you need to be a
mathematical genius.

F# alongside other programming languages

Figure 1 illustrates where I believe F# fits in within the spectrum of other mainstream
programming languages.

F# and C#—two sides of the same coin

Let’s start by looking at F# which, as already stated, is a functional-first language. It’s
clearly on the FP side of the axis, yet it’s not on the far right. Why? Well, F# makes it easy

4 Introduction Welcome to Get Programming with F#!
to write code in the FP style, but is a hybrid language, supporting both OO and FP fea-
tures; it’s not a pure functional language. It allows us to write code that might not be
allowed in a stricter FP language such as Haskell.

Conversely, let’s relate this diagram to two languages that we know well—C# and VB
.NET. I suggest that both are going through a change of identity. What should we con-
sider idiomatic C# code to be? On the one hand, it started life as an OO language with
extremely limited support for FP. More recent iterations of the language have intro-
duced some (limited) FP features—and the next version of C# has introduced yet more
FP features—so perhaps it’ll move further across this axis. Yet it has its roots in the OO
paradigm, and the design of the language makes typical OO features (for example,
mutability, statements, and classes) deliberately easy to use.

Si
m

pl
er

Ty
pe

 S
ys

te
m

Ex
pr

es
si

ve Pure OO

Paradigm OO FP

Java

C#

Scala

Python

Javascript

F#

Haskell

Pragmatic FP Pure FPPragmatic OO Hybrid

Figure 1 F# within the context of other programming languages

C# and VB .NET
I’ll take this opportunity to acknowledge that figure 1 mentions C# only; as far as I’m con-
cerned, aside from a few corner cases and syntactical features, C# and VB .NET are the
same language both in terms of features and their ideology toward problem solving and
modeling (although interestingly, Microsoft in early 2017 stated that in the future VB
won’t follow C# just to ensure parity). If later in this book, I mention only C# or VB .NET
for the sake of brevity, do a find-and-replace operation in your head to show both lan-
guages.

5What is F#, and why does it matter?
In some ways, we can think about F# as being the alternative side of the same coin from
a C# perspective—often, things that are difficult to achieve in C# are easy to implement
in F#—and vice versa. Let’s take a quick look at one example of that: creating mutable
variables and immutable values in C# and F#.

var name = "Isaac";
const string name = "Isaac";

let mutable name = "Isaac"
let name = "Isaac"

In C#, we normally use mutable variables by default to store data; to make them
immutable, we need to use extra keywords (such as readonly or const). Conversely, in F#, to
make mutable variables, we need to specify an extra mutable keyword; otherwise, the lan-
guage assumes you’re working with immutable data. This mentality applies across all of
F#; it’s prescriptive about making it easy to work with certain language features that fit
in with the functional programming style, while allowing us to revert to modeling prob-
lems with objects and imperative code if we’re willing to “pay the cost” of a few extra
keywords. Table 1 lists distinctions between the default ways of working across the
three .NET languages; all of the features on the right-hand side can be considered con-
ducive to writing code in the FP style.

You might now say, “You can implement stateless functions or expressions in C#,” and
that’s true. But this isn’t the default way of working in C#. It requires extra keywords, or
extra hoops that need jumping through in order to achieve the required behavior. In F#,
the opposite is true for all of these features. Expressions are easy to achieve; statements
aren’t. Composition is easy to achieve; inheritance feels somewhat unnatural.

Listing 1 Declaring values and variables in C# and F#

Table 1 Comparing and contrasting OO- and FP- based languages on .NET

Feature C# / VB .NET F#

Execution model Statements Expressions

Data structures Mutable data Immutable data

Program flow Imperative Declarative

Modeling behavior Stateful classes Functions with separate immutable state

Reuse Inheritance Composition

Declaring a mutable variable in C#

Declaring an immutable value in C#

Declaring a mutable variable in F#

Declaring an immutable value in F#

6 Introduction Welcome to Get Programming with F#!
Expressiveness

In figure 1, we can also see a second dimension: the expressiveness of a language. F#
allows you to define your intent extremely succinctly, without a large amount of verbos-
ity in terms of syntax. Instead, you concentrate on encoding your business rules in F#
within the confines of a few simple rules; the compiler will get on with doing the heavy
lifting for you. Note that this doesn’t mean that writing F# leads to unreadable code!
Coming from a C# or VB .NET background, where we’re used to features such as curly
braces, explicit typing, and statements everywhere, F# can initially appear unusual—
even a little daunting. But it’s more accurate to think of it as succinct and expressive
with a powerful vocabulary that requires a little effort to learn. Once you’re familiar
with the syntax, the F# code is extremely easy to understand, and you can rapidly
express complex business logic in a succinct manner.

Why F#?

We’ve described at a fairly high level what F# is: a functional-first, general-purpose pro-
gramming language that runs on the .NET platform. The question now remains, why
should you, as an experienced .NET developer who is productive in C# or VB .NET and
confident at modeling problems using OO design paradigms, need to look at an alterna-
tive way of building solutions?

New possibilities

You might be looking at F# because you’re interested in using it as a way to start explor-
ing new concepts and domains such as type providers and functional programming.
This is true. You’ll find that F# opens the door to solving entirely new classes of prob-
lems such as data analysis, machine learning, and DSLs as varied as web testing and
build management—some of which you might never have thought achievable within
.NET. Although this book won’t deal in depth with all of these areas, we’ll definitely

Is FP “better” than OO?
Or is F# better than C#, for that matter? I deliberately avoid saying either of these things
when I give talks on F#. Not only can it be perceived as a controversial statement, but it
also depends on your perspective. If you prefer solving problems by using statements,
mutable data, and classes with inheritance, then you’ll probably find C# a more elegant
language, because that’s how it was designed to be used! But if you’re trying to use fea-
tures from the right-hand side of the table in your day-to-day C# or VB .NET, F# will quickly
feel like a natural fit. I can solve problems much more easily using FP features, and as
such, F# is a much better fit for me.

7What is F#, and why does it matter?
cover a few of them and point you in the direction of resources that you can further
explore in your own time.

High-quality solutions

The F# language syntax and type system is designed for writing software that exhibits
some of the key attributes of high-quality software. You can think of some of these attri-
butes as follows:

 Readability—How easy it is to read and reason about some code
 Maintainability—How easy it is to modify an existing piece of code
 Correctness—How simple it is to write code that works as intended

In all of these areas, the design of F# leads you down a path that will naturally guide
you toward code that exhibits these characteristics. First, it has a syntax that, although
initially appearing a little unusual when coming from C-style languages, enables you to
more easily read and understand its intent without performing a compilation in your
head as you read the code. Let’s discuss one of the points that I made earlier, that of
imperative versus declarative code. Imperative code can be thought of as the low-level
how—how you want to implement something. Conversely, declarative code concen-
trates more on expressing the what—what you want to achieve—and leaving the low-
level details to another party. Here’s an example of an imperative way of filtering out
odd numbers from a list by using both imperative C# and declarative F#.

IEnumerable<int> GetEvenNumbers(IEnumerable<int> numbers) {
 var output = new List<int>();
 foreach (var number in numbers) {
 if (number % 2 == 0)
 output.Add(number); }
 return output; }

let getEvenNumbers = Seq.filter(fun number -> number % 2 = 0)

In the declarative version, we’re more interested in our intent than the implementation
details. We don’t need to know the details of how the Seq.filter function is implemented
because we understand the general logic of how it behaves. Armed with this, we can
focus on our core goal, which is to identify numbers that are even. The code is much
smaller—there’s less to read, less to think about, and less that can go wrong. Of course,
you can achieve similar code in C# via LINQ; in fact, if you typically use LINQ for these

Listing 2 Imperative and declarative code samples in C# and F#

Temporary collection to store output

Manual iteration through collection

Actual filter logic

Manual addition to output collection

Focus on
business
logic

8 Introduction Welcome to Get Programming with F#!
sorts of operations today, that’s great! In F#, this is the default way of working, so you’ll
find that this style of code will be much more common throughout your applications.

Again, I don’t want you to worry too much at this stage about the nitty-gritty of the F#
syntax (or to wonder why there are apparently no arguments in the function!). I’ll
explain all of that in more detail later. But I do want you to think about the lack of type
annotations and the lightweight syntax with the minimum of boilerplate; this sort of
minimalistic approach is a common theme when working with F#.

F# also emphasizes composition rather than inheritance to achieve reuse, with support
for this baked into the language. Functions are the main component of reuse, rather
than classes, so expect to write small functions that “plug together” to create powerful
abstractions. Individual functions are nearly always easier to understand and reason
about than entire sets of methods coupled together through state in a class, just like
writing stateless functions are much easier to reason about than those that are stateful.
As such, making changes to existing code is much easier to do with a greater degree of
confidence. Here’s a simple example of how we might build behaviors into more power-
ful ones in C# and F#. Again, in C# I’ve deliberately kept things at the method level, but
also think about the effort required when trying to compose more complex sorts of
behaviors across classes and objects.

IEnumerable<int> SquareNumbers(IEnumerable<int> numbers) {
 // implementation of square elided...
}

IEnumerable<int> GetEvenNumbersThenSquare(IEnumerable<int> numbers {
 return SquareNumbers(GetEvenNumbers(numbers))
}
let squareNumbers = Seq.map(fun x -> x * x)
let getEvenNumbersThenSquare = getEvenNumbers >> squareNumbers

Listing 3 Composing behaviors in C# and F#

Where are the types?
Just like C# and VB .NET, F# is a statically typed language. But it has an extremely pow-
erful type inference engine, which means that it has the succinctness close to dynamic
languages such as Python, but with the backing of a strong type system and compiler.
You get the best of both worlds. Again, more on this later.

Manually
composing the

logic of two
functions together

Composition
as a first-class

language feature

9What is F#, and why does it matter?
Without any understanding of how the >> symbol works, it should be clear to you that
this operator fuses two functions together into one.

Finally, the F# type system is extremely powerful compared to C# and VB .NET. It
allows us to write code in such a way that we can encode many more rules directly into
our application so the compiler verifies that our code is valid without the need to resort
to, for example, unit tests. But F# does this in an extremely succinct way, so that we
aren’t discouraged from being explicit about these rules. To be honest, the majority of
the features in F# can be achieved in C# and VB .NET, but the cost would be so high in
terms of the amount of code you would need to write, we simply don’t do it. In F#, the
lightweight syntax is a game changer because it means we can encode more rules into
our code without a massive cost increase in terms of code.

Productivity

The difference with F# and other .NET languages is that the sorts of benefits I’ve men-
tioned so far are apparent from the syntax of the language right through to the F# core
libraries and packages that you’ll use. In effect, you have to write a whole lot less code
in order to design a solution that’s quicker to write, easier to understand, and cheaper to
change than in C# or VB .NET. It’s not uncommon to hear F# developers joke that if their
code compiles, there’s a good chance it works! Although this isn’t always strictly true,
and unit tests still have a place in F#, F# also definitely provides an ability to encode
more business rules directly into your program, so you don’t have to spend time writing
and maintaining unit tests. You’ll find you spend more time in F# itself defining your
application logic than in C#, but a lot less time in the debugger.

Improving your C# and VB .NET

Not only will you start to learn how to write applications that are more maintainable,
easier to understand, and reason about, but—particularly if the primary language in
your software career has been C# or VB .NET on Visual Studio—F# will open your eyes
and make you a better all-around software developer. You’ll gain a better appreciation
in C# for features such as lambda expressions, expression-bodied members (a recent
addition in C# 6), and LINQ, and will realize that the application of these sorts of fea-
tures can be used for more than just data access layers. You’ll also probably start to
approach modeling problems differently in C#, with less reliance on inheritance and
other OO constructs as the only way to solve problems.

10 Introduction Welcome to Get Programming with F#!
Working with a smarter compiler

Imagine you have a system with a simple domain model. You decide to add a new field
onto one of your core domain classes, and hit Build in Visual Studio. In the C# and VB
.NET world, this sort of change will compile without a problem, even though you
haven’t used or initialized the new field yet. You could even start to reference the field
elsewhere in your application, without the compiler preventing you from accessing it
despite having never initialized it. Later, perhaps you’ll run the application and receive
a null reference exception somewhere further down the chain. Perhaps you’ll be unlucky
and not test it out because it’s a particularly obscure branch of code. Instead, a few
months later, your users will eventually hit that part of code—and crash the application.

You might say that you could write unit tests to force this issue to the surface sooner.
That’s true. But another truth is that people often don’t write unit tests, particularly for
seemingly small changes. It’d be nice if the language could support us here. In the F#
world, adding a new field will instantly break your code. Wherever you create instances
of that type, you’ll need to explicitly set the value of the new field at initialization time.
Only after you’ve fixed all the assignments and usages would you be in a position to
deal with how that new field is being used. Nulls aren’t allowed for F# types either—so
you wouldn’t be able to set it as such. Instead, F# has the notion of optional values to
cater to both possibilities.

The net result? You spend more time fixing compiler issues and evaluating possible
branches of code, but the benefits are that you don’t need to write any unit tests to guar-
antee consistency of the type, nor is there a risk of getting a null reference exception at
runtime, and you won’t need to debug it to prove that you won’t get one.

You may feel an instinctive negative reaction to what I’ve just told you. After all, why
would you want a compiler to get in the way of you writing code and slow you down
from running your application? Don’t worry; this is a normal reaction, and is part of the
learning curve in “trusting” the compiler to help us write correct code in a much richer
way than we’re used to, which saves us a lot more time further down the road.

What’s the catch?

Although I’ve been talking about the benefits of F# and said that it makes your life eas-
ier, we all know that there’s no such thing as a free lunch. Surely there’s a catch some-
where? The truth is somewhere in between.

On the one hand, F# isn’t as hard as is claimed; you might have heard that F# should be
used only for finance applications or mathematical modeling. Don’t believe this.

11What is F#, and why does it matter?
Although it’s certainly true that F# is a good fit for those use cases because of the nature
of the language and its feature set, the language is also just as suitable for writing line-
of-business applications, domain modeling, web development, or back-end services
that fetch and shape data from a data store such as SQL Server or Mongo DB. It’s almost
as though OO languages with curly braces are apparently the only form of general-
purpose programming languages in existence! And because F# runs on .NET, you won’t
have to waste time learning lots of new libraries to be productive (although F#-specific
libraries do exist), and because we’ll be using Visual Studio 2015, you’ll be instantly
familiar with the development environment (although, again, there are some differ-
ences that we’ll cover later).

The biggest challenges you’ll face are first learning the syntax of F#, and then, more
important, unlearning the dogma of OO methodology. Things such as for loops, classes,
and mutable state are so deeply ingrained into our thought processes for modeling
domains and problem solving that it can be difficult to forget them. F# does allow you to
work with mutable data, imperative styles, and classes; but doing these sorts of things
in F# certainly isn’t idiomatic, and the syntax will feel unnatural compared to C# or VB
.NET. In essence, you’ll get the worst of both worlds. Instead, you’ll be better off starting
from a clean slate when you approach solving problems, and you should rely on follow-
ing a few simple rules and behaviors that we’ll cover throughout the book. If you can do
that, your solutions will naturally end up in a functional style.

When shouldn’t I use F#?
To cut a long story short: for the majority of use cases for .NET development today, in my
experience F# will let you get things done quicker than in C# or VB .NET with at least the
same level of quality. In fact, I’ll say right now that I recommend F# over C# or VB .NET
as a general-purpose programming language for nearly every use case today, be it busi-
ness logic, data access, or rules engines. That’s a pretty bold statement, but having used
C# since it first came out and F# for several years now, and having run a company that
makes F# one of its main selling points, I think I’m allowed to do so!

The only situations that I don’t recommend F# for are ones requiring custom tool-
ing/support that’s available only in C# or VB .NET (for example, Razor views in ASP
.NET), or where the problem domain requires features that are inherently OO-based, or
requires imperative and/or mutable code. As you’ll see in this book, these cases are
few and far between.

12 Introduction Welcome to Get Programming with F#!
F# and .NET

We use .NET every day and, by and large, we all like it. It has a wide set of ready-made
classes in the BCL across all sorts of areas such as collections, data access classes, UI
frameworks, and web access, and the CLR has many great features such as a smart gar-
bage collector. We also now have a rich ecosystem of rapidly evolving libraries through
NuGet that can be released outside full .NET Framework releases. Why should you
have to give all this up to use F#? The answer is that you don’t. F# runs on .NET.

This is something that may seem obvious but is often overlooked or misunderstood, so
it’s worth stressing. F# runs on .NET. Virtually all of the types that you use in the BCL
with C# are also accessible directly from within the F# language. You can also use
NuGet packages and reference any .NET DLL, just as you would from C# or VB .NET.
At runtime, F# is compiled into Intermediary Language (IL) and is hosted on the CLR so
you get all the normal features of the CLR such as garbage collection. You can reference
C# or VB .NET assemblies from F# and vice versa, and F# has interoperability features to
allow seamless interaction across languages, while also taking advantage of F#-specific
features to make dealing with .NET libraries nicer. You can consume (and create) classes
with inheritance, interfaces, properties, and methods. Indeed, one of the strengths of F#
is that it permits the developer to mix both FP and OO styles where appropriate. You’re
not going to have to give up the libraries that you already know, or the knowledge
you’ve learned over the past years regarding the CLR, garbage collection, reflection, and
so forth.

Although C# will, I suspect, always remain the focal point of Microsoft’s investment in
programming languages on .NET, this has always been the case. VB .NET, for example,
has never been marketed by Microsoft as the main go-to language of .NET. Similarly,
although F# doesn’t receive quite the same level of investment as C#, it’s still an import-
ant part of the .NET story and will continue to be in the .NET Core world.

In terms of VS integration, since Visual Studio 2010, F# has been supported out of the
box as a first-class citizen of Visual Studio. This has continued up until the latest version
at the time of writing, VS2015 (and will continue with VS2017). You can create all the
things you would expect to do with VS and F#, including projects in solutions that
might also contain C# or VB .NET projects. You can build assemblies in VS by using the
same process that you’re used to. You can create console applications, class libraries,
Windows applications, and web applications all within Visual Studio. What you won’t
find in F# in Visual Studio 2015 out of the box are things like support for code genera-
tion, refactorings, or the “smarter” features in VS that are designed specifically for C# or

13F# and .NET
VB .NET, such as code analysis or code metrics. But as you learn more about F#, you’ll
see that there are ways, both through third-party tooling and the language itself, to
negate the need for the tooling that we’ve come to rely on in C# or VB .NET.

F#’s place within .NET

Let’s now take a look at where F# fits within the .NET Framework and CLR runtime; see
figure 2.

The F# language sits on top of the Common Language Runtime (CLR), just as C# and VB .NET
do. The F# compiler, fsc.exe, emits .NET assemblies, just as the C# compiler csc.exe (and its
replacement Roslyn) does. In addition, the F# Compiler Service (FCS) acts in a similar manner to
Roslyn, allowing us to reason about F# code for the purposes of refactorings.

Visual F#? F#? What’s the difference?
It's worth taking a moment to explain the differences between F# and Visual F#. Visual
F# is the Microsoft-managed version of F#, which is included with Visual Studio. It’s been
open sourced on GitHub, accepting contributions from the public, but is maintained by
Microsoft, which ultimately has the final say on what features and changes are accepted.
You can consider this repository to currently be the core repository for the F# compiler
and language. A second repository (also on GitHub) is based on Visual F# and
generally has a virtually identical code base known as F# Open Edition. This itself feeds
into the cross-platform tooling support for Mono and Xamarin as well as other open
source tools and code editors. You can find out more about this relationship at
http://fsharp.github.io/.

For the purposes of this book, we’re dealing exclusively with Visual F#, so whenever you
see F#, you can consider it to mean Visual F#.

C# VB .NET

F#

Roslyn compiler

F# compiler
and compiler

services

IL

CLR Figure 2 F# alongside other popular
.NET languages

Increase Zoom

14 Introduction Welcome to Get Programming with F#!
You’ll notice that the F# compiler is drawn as a larger box than the Roslyn box. That’s
not to suggest that Roslyn / C# / VB .NET are smaller projects (in fact, quite the con-
trary)! But if you compare like-for-like idiomatic C# and F#, you’ll see that the F# com-
piler does a lot more work for us. It’s not unheard of for a single line of F# to emit the
same IL as maybe a dozen lines or more of C#. Although this might sound like a gim-
mick, it’s important. After you’ve been using F#, you’ll start to realize that having a
smarter compiler allows us to truly focus on the essentials of our problem domain, and
to trust the compiler to help us write systems that have a greater pit of success—a larger
chance of writing the correct code the first time.

Summary

That’s the end of the introduction! You should now have an understanding of what F# is
and what its benefits are. You learned that F# sits on top of .NET and is included with
Visual Studio, so it’s going to be easy for you to get up and running. Until now, you’ve
just been taking my word for all of this, so the remainder of this book will prove it to
you through practical examples.

There’s one last piece of advice I’d like to give you before going any further. To fully ben-
efit from learning F# in the most effective manner, to quote a wise man: you must
unlearn what you have learned. If you can resist the temptation to see F# as an alternative
syntax for designing code in the way you do today, and trust that there’s an alternative
way to solve the same kinds of problems, you’re halfway there.

15

U
N

IT

1

F# and Visual Studio

In this first unit of Learn F#, you’re going to gently
ease into getting up and running with F#. You’ll
mostly look at how F# works within the develop-
ment environment that you’re already most familiar
with, Visual Studio. This book uses VS2015.

You’ll also write a simple application in F# as
quickly as possible, so that you understand which
existing skills and knowledge from your C#/VB
.NET expertise can be reapplied within the world of
F#, and which can’t be. Finally, you’ll explore a dif-
ferent way of developing software in Visual Studio
called the REPL.

By the end of this unit, you’ll have a good under-
standing of how F# fits into Visual Studio and what
you should (and shouldn’t!) expect from the typical
F# developer workflow. Here we go!

1 LESSON
THE VISUAL STUDIO EXPERIENCE

I’m assuming that as a C# or VB .NET developer, you’re already familiar with Visual
Studio (VS). In this book, you’ll be using Visual Studio 2015 (VS2015) and F# 4 (which is
included with VS2015). This lesson covers how to ensure that your installation of VS
contains everything needed for the remainder of the book so that you’re on a level play-
ing field with me, and we can dive straight into F#! We’ll look at the following:

 Installing Visual Studio with F#
 Downloading F# extensions for Visual Studio 2015
 Configuring Visual Studio 2015 for use with F#

If you’ve already used F#, you might feel the need to skip this lesson. I advise you to at
least quickly skim through it to ensure that you’re working from the same baseline as I
am to avoid any confusion later.
17

18 Lesson 1 The Visual Studio experience
1.1 Installing VS2015 with F#

First, if you don’t have VS2015, don’t worry. Since VS2015, Microsoft has released a free-
to-use version known as VS2015 Community Edition. This version is completely usable
for the purposes of this book, and if you don’t have it, I encourage you to download it
now from www.visualstudio.com.

When you install VS2015, it’s important to not select the default options during the
installation process. As of VS2015, Visual Studio has become a much more componen-
tized system, such that from now on, the default options install a much more bare-bones
version. By default, F# isn’t installed out of the box with VS2015; instead, select Custom,
as shown in figure 1.1, and then pick Visual F# from the options.

Figure 1.1 Custom options during the Visual Studio 2015 installation process

I’ve already installed VS2015 without F#
What happens if you’ve already installed VS2015 and didn’t install F# at the time? Don’t
worry! The first time you use VS2015 to create a new or open an existing F# project (for
example, a console application or class library), the installer process will kick in and down-
load the F# features for you automatically. Be careful, though—the same doesn’t apply
when creating or opening a standalone F# file.

www.visualstudio.com

19Configuring Visual Studio for F#
1.2 Configuring Visual Studio for F#

Now that you’ve installed VS2015, let’s quickly look at setting it up for working with F#
in an optimal manner.

1.2.1 Visual F# tools configuration

The first thing you should do is configure the core Visual F# tools, as shown in figure 1.2.

It’s not too important at this point to know what these tools do, and you probably won’t
ever need to touch these settings again. They’ll make life easier for you as an F# devel-
oper by enabling you to do the following:

 Reference assemblies within scripts without holding locks on the file, or debug
F# scripts

 Debug F# scripts in Visual Studio
 Output trace messages within F# scripts

Figure 1.2 Configuring Visual F# tools

20 Lesson 1 The Visual Studio experience
1.2.2 Configuring the F# editor

Next, ensure that you specify in the Text Editor to insert spaces and not keep tabs. On
the same Options screen, choose Text Editor > F# > Tabs and click the Insert Spaces radio
button, as shown in figure 1.3. This is important, as F# uses spaces to denote scope.

1.3 Getting the best out of VS 2015 and F#

Almost done! Next I’d like to show you extras that are worth configuring now, before
we progress further through an extension.

Other IDEs for .NET
It’s worth pointing out that in the last couple of years, other IDEs have cropped up that
allow .NET development on Windows without Visual Studio. These include Atom and Mic-
rosoft’s very own lightweight editor, Code. Both allow you to work with F# through a fan-
tastic external plugin called Ionide. I often use Code rather than VS, as it’s extremely
lightweight and has great integration with many tools, but I still recommend Visual Studio
as the best .NET IDE out there on Windows.

Figure 1.3 Configuring Text Editor options for F#

21Getting the best out of VS 2015 and F#
1.3.1 Installing Visual F# Power Tools

Without a doubt, Visual F# Power Tools (VFPT) is the most important extension to add
to VS2015 for F# development. It adds the following extra features:

 Refactorings
 Code collapsing
 Code generation
 Code formatting
 Syntax coloring
 Code rules

The Power Tools project is completely open source, so you can visit the repository and
make changes to the tool if you have new features you’d like to see added. It also uses
the code from other projects that are available as standalone tools, such as Fantomas
(code formatting) and F# Lint (rules). Installing the VFPT will bring all of these and
more in as one extension, so it’s the quickest way to get up and running.

To install, go to Tools > Extensions and Updates and search for fsharp, as shown in figure
1.4. Alternatively, you can download the extension from the Visual Studio extensions
website (https://visualstudiogallery.msdn.microsoft.com).

Figure 1.4 Installing F# Power Tools

https://visualstudiogallery.msdn.microsoft.com

22 Lesson 1 The Visual Studio experience
After you’ve installed and restarted VS2015, go to Tools > Options > F# Power Tools >
General. You’ll see a dialog box similar to figure 1.5.

You should activate all of these options, as they’re all generally useful, with the possible
exception of graying out unused opens and declarations, as they can be quite CPU-
intensive. I recommend that you leave these options turned on to start with and see how
your machine copes.

You’ll also notice the Lint tab, which contains a whole host of “rules” that analyze your
code in the background and provide helpful suggestions regarding writing more-
effective F#. These suggestions are highlighted with orange squiggly underlines in code;
they never indicate full compiler errors, but are there as best-practice tips (although like
all code analyzers, it occasionally recommends something that isn’t feasible).

1.3.2 Configuring F# syntax highlighting

Because of the nature of the F# syntax and its use of type inference, it’s important for
you to understand how the compiler “sees” your code to aid you when fixing compile-
time errors. Now that you have VFPT installed, spend a couple of minutes configuring
syntax highlighting. To do that, choose Tools > Options > Environment > Fonts and Col-
ors and scroll down until you see the F# options, shown in figure 1.6.

What about Visual Studio 2017?
VS2017 has now been released! If you’re using VS2017, there are some important
things to note. First, the F# Power Tools are no longer available; VFPT isn’t compatible
with VS2017. As part of VS2017, the entire F#/VS integration was rewritten from the
ground up to use Visual Studio’s Rosyln IDE system (just as TypeScript does). This has
several benefits: adding new refactorings will be much easier, and the entire IDE experi-
ence will align much more closely with C# and VB .NET.

There’s a flip side to this, though. The rewritten integration with VS2017 was somewhat
late to the party and suffered from delays, as well as reliability issues—not to mention
that (again, at the time of this writing) it doesn’t offer feature parity with VS2015 + VFPT.
(I should point out that both the Visual F# team and, even more important, several people
in the F# community have put forth a huge effort to improve this in a short space of time.)

I strongly recommend waiting until the experience is equivalent to VS2015, and the reli-
ability issues have been fixed, before moving across; this might even be an update that’s
released shortly after RTM. If you’re already using VS2017, most (if not all) of the VFPT
features mentioned in this book will eventually be ported, and I predict that within 12
months, F# will have the same strong editor support in VS that C# or VB does today.

23Getting the best out of VS 2015 and F#
Figure 1.5 The Visual F# Power Tools options page

Figure 1.6 F# syntax highlighting options

24 Lesson 1 The Visual Studio experience
You don’t have to configure all of these options, but you should change those listed in
table 1.1 ahead of the defaults. The following values will set your environment up to
easily distinguish between many of the types of symbols.

Summary

In this lesson

 You installed Visual Studio 2015 and ensured that it was properly configured not
only with the built-in tools but also with an extension, Visual F# Power Tools.

 You learned that F# is a first-class citizen of Visual Studio, as it’s included “in the
box” of the installer, or can optionally be applied at a later date if you choose.

 You saw that there’s good integration for F# in the sense that the standard VS
tooling and editor options are already F#-aware. You’re now ready to start writ-
ing F# applications!

Table 1.1 Custom F# syntax highlighting

Dark theme Light theme

R G B R G B

F# Functions / Methods 094 203 255 086 156 214

F# Modules 255 128 000 000 128 128

F# Mutable Variables 255 128 128 204 000 000

F# Operators 255 128 255 185 000 092

F# Patterns 255 255 128 200 100 000

What about .NET Core and non-Windows?
This book focuses on Windows, Visual Studio, and the full .NET on Windows, but the F#
language works the same on Mono and .NET Core—although the tool-chain is slightly dif-
ferent (and I don’t cover that in this book), the language features are the same. When it
comes to .NET Framework features, things are a little different, though, as some tech-
nologies such as Windows Presentation Foundation (WPF) are Windows-specific and
don’t exist on .NET Core.

2LESSON
CREATING YOUR FIRST F# PROGRAM

Now that you’ve installed Visual Studio and have the F# tools installed in it, what can
you do with it? By the end of this lesson, you’ll see how and where F# integrates with
Visual Studio. This lesson covers the following:

 Creating an F# console application in Visual Studio
 Working with F# syntax
 Understanding F#’s “less is more” approach

2.1 F# project types

You can create projects in a solution, just as you’d do in C#, in exactly the same way. F#
has support out of the box for several project templates, the most important of which are
the following:

 Library—A Visual Studio project that compiles into a .NET assembly ending with
.dll and can be referenced by other .NET projects and assemblies. You can think of
this as equivalent to the Class Library project that you’ll be familiar with from C#.

 Console Application—A Visual Studio project that compiles into a .NET assembly
ending with .exe and is capable of being run. This can also be referenced by other
.NET projects and assemblies.

Sounds familiar, right?
25

26 Lesson 2 Creating your first F# program
Now you try

Let’s see how to create your first F# project. You’ll already know these project types from
C# or VB. NET, and they work in the same way. Creating one is as simple as following
these steps:

1 Choose File > New Project and then pick the appropriate project type.
2 If this is the first time you’ve used F#, you have to navigate down to the Other

Languages node to locate the Visual F# templates.
3 Select Console Application and set the name to MyFirstSharpApp, as shown in figure

2.1, before clicking OK.

Figure 2.1 Creating an F# console application in VS2015

Where are the projects?
You might notice that figure 2.1 shows a Web node that you don’t have. You might also
be wondering where the Windows Forms or WPF project templates are. The answer is
that out of the box, VS2015 doesn’t come with any of them. But you can overcome this
in various ways (as you’ll see in more detail later in this book), such as third-party tem-
plates or packages.

➠

27F# project types
The result will be a solution comprising a single project with numerous files in it, as
shown in figure 2.2.

Let’s go through the files one by one:

 AssemblyInfo.fs—This file sets properties of the assembly and fulfills the same
function as AssemblyInfo files in C# or VB projects. It’s not particularly interest-
ing, so let’s leave it for now.

 Program.fs—This is the launch point of your application, and is worth looking
into in more depth.

[<EntryPoint>]
let main argv =

Listing 2.1 Console application entry point

(continued)

That’s one of the reasons that F# works so well on other IDEs: because it’s never been
reliant on Visual Studio to provide much at all, its ecosystem has built up in such a way
that it can work well across both multiple IDEs and multiple OSes.

Figure 2.2 A stock F#
console application

An attribute that tells F# that this is the
function to call when starting the application

The declaration
of the function

28 Lesson 2 Creating your first F# program
 printfn "%A" argv
 0 // return an integer exit code

You probably have questions about this code snippet, and I’ll answer the most likely
ones by using a comparison with a C# console application:

 No class declaration? That’s right. F# does normally require you to create a module
as a container for functions inside .fs files, but for console applications, you can
skip this entirely. Instead, the compiler uses the name of the file as the module
implicitly. You can see this by hovering over the main function name, where
you’ll see the fully qualified name as Program.main.

 Why do I need to use EntryPoint? In C#, you don’t need the entry point because you
must instead specify it through the project properties. In F#, this is achieved by
marking the function with an attribute (note that in F#, attributes are specified as
[<Attribute>] rather than [Attribute], as the [] syntax is used elsewhere).

 Where’s the return keyword / curly braces / semicolons / type declarations (and so forth)?
These are not normally required or valid in F#! You’ll find out more in the com-
ing lessons. F# instead is whitespace-significant, which means that indentation of
code is used to represent blocks.

Now you try

Running an application in F# is the same as usual. Pressing F5 runs the application with
debugging attached, and Ctrl-F5 runs without debugging attached. Running the appli-
cation without debugging attached shows you something like figure 2.3.

Body of the function—prints the
arguments that were passed in

Body of the function—
returns 0 as the result
of the application

F# file types
Unlike C# and VB.NET, which have only a single file type, F# has two files types:

 .fs—Equivalent to .cs or .vb, these files are compiled as part of a project by
MSBuild and the filenames end in .dll or .exe.

 .fsx—An F# script file that’s a standalone piece of code that can be executed with-
out first needing to be compiled into a .dll. You’ll learn more about script files in
the coming lessons, but for now, remember that these are a lightweight and easy
way to explore code without the need for a full-blown console application. In the
next version of Visual Studio, C# will have a similar file type to this known as .csx.

29F# project types
That’s pretty, but what is it? Well, looking back in the application, you can see that you
print out the arguments supplied to the app with the call to printfn. But you’re not sup-
plying any arguments yet, so what’s [||]? The answer is that F# has native language sup-
port for some data structures and collections, including standard .NET arrays (you’ll
learn more about arrays in unit 4). The arguments passed into main (argv) are an array of
strings (or string []),as in C#/VB. In F#, the syntax for arrays is as follows:

let items = [| "item"; "item"; "item"; "item" |]

The closest equivalent in C# is probably this:

var items = new [] { "item", "item", "item", "item" };

Because you’re passing in an empty array to your application, that’s all that’s printed
out: [| |]. Let’s see how to change that by supplying arguments to the application:

1 Go to the properties pane of the project by selecting the project node in Solution
Explorer and pressing Alt-Enter.

2 Navigate to the Debug tab.
3 In the Command Line arguments box, enter the text HELLO WORLD.
4 Rerun the application.

You’ll now see the results shown in figure 2.4.

The arguments supplied are automatically converted into the array. That’s nice, but let’s
look at the F# syntax a little more, before seeing how to write some F# yourself and
incorporating it into your existing application.

Figure 2.3 Running the stock
F# console application

Figure 2.4 A command-line
F# application printing out
input arguments

30 Lesson 2 Creating your first F# program
Now you try

We’ll deal with more of the F# syntax in the next couple of lessons, but even exploring
this small code snippet raises interesting issues:

1 Mouse over each of the values defined in Program.fs to get IntelliSense over
them. You’ll see that the values all have explicit types according to the tooltips—
yet none are specified in the code. Where do they come from? This is F#’s type
inference engine at work; you’ll find out more about this in lesson 5.

2 If you installed the Power Tools extension as indicated in lesson 1, you’ll see that
main and printfn are highlighted in a different color than argv. This is because both
main and printfn are functions. You’ll find the coloring of different symbols
extremely useful in understanding the context of your code and learning how the
F# compiler parses your code.

2.2 Debugging applications in F#

Debugging applications is less important in F# than in other languages. Because of the
language design and features such as the REPL, you’ll usually have tested most out-
comes before you ever run your application. But there’s still a good debugging experi-
ence in Visual Studio for F#, with the usual features such as breakpoints and watches.
Still, at times the debugging experience falls a little short of what you’re probably used
to in C#, because some of the more advanced features of F# that don’t exist in C# aren’t
supported by the debugger.

Quick check 2.1

1 What are the two basic project types for F# shipped with Visual Studio?
2 What is the [<EntryPoint>] attribute for?
3 What are the two types of F# files in a project?

QC 2.1 answer
1 Console and Class Library
2 Marking the entry function to a console application
3 .fs (compiled file) and .fsx (script file)

31Writing your first F# program
Now you try

Let’s explore with the Visual Studio debugger:

1 Go to line 6 in Program.fs and press F9 (or if you have the breakpoints column
turned on in the editor, click there).

2 Debug the application with F5.
3 Mouse over the argv value when the breakpoint is hit. Observe that you can drill

into the array to see the values passed in, as shown in figure 2.5.
4 The normal commands such as F10 for step over and F11 for step into all work as

usual.

2.3 Writing your first F# program

Let’s end this lesson with you writing a little bit of F#. You’ll change the output of printfn
to show the length of the array passed in as well as the items themselves. Change the
code as follows.

[<EntryPoint>]
let main argv =
 let items = argv.Length
 printfn "Passed in %d items: %A" items argv
 0 // return an integer exit code

Listing 2.2 An enhanced console application

Figure 2.5 The VS
debugger within an F#
console application

Quick check 2.2 What keyboard shortcut is used for adding debug breakpoints?

QC 2.2 answer F9

32 Lesson 2 Creating your first F# program
You’ll see that when you dot into argv, you’ll get IntelliSense for the array. Make sure you
supply the arguments to printfn in the correct order!

After you’ve amended the application, running it should display the output in figure 2.6.

printfn in F#
printfn is a useful function (along with its sibling sprintf) that allows you to inject values
into strings by using placeholders. These placeholders are also used to indicate the type
of data being supplied:

 %d—int
 %f—float
 %b—Boolean
 %s—string
 %O—The .ToString() representation of the argument
 %A—An F# pretty-print representation of the argument that falls back to %O if none

exists

Supply the args, space-separated, after the raw string. Don’t use brackets or commas
to separate the arguments to printfn—only spaces (the reason for this will be explained).

Figure 2.6 An enhanced
Hello World console
application in F#

Quick check 2.3 What placeholder is used for printing strings in printfn?

QC 2.3 answer %s

33Summary
Summary

In this lesson

 You created a simple console application in F# and learned how to define an
entry point to it.

 You explored how to run console applications, and saw that running and debug-
ging F# applications isn’t very different from the C# or VB .NET experience.

 You had a first look at the F# language in a standalone application.

Try this

Enhance the application to print out the length of the array as well as the items that
were supplied by using a combination of printfn and the Length property on the array
(use dot notation, as you’re used to).

3LESSON
THE REPL—CHANGING HOW WE DEVELOP

In this lesson, you’ll look at an alternative way to develop applications than what you’re
probably used to in terms of both tools and process. You’ll first learn the pros and cons
of techniques such as debugging and unit tests, and then see how to shorten your devel-
opment cycle through alternatives that F# provides.

3.1 Code-focused developer processes

Think for a moment about your typical development process in terms of the way you
write and then validate your code. After you’ve written some C# or VB .NET, how do
you confirm that it works as you intended? What tools or process do you follow? I’m
willing to bet it follows one of the following three patterns: application-based develop-
ment, console test rigs, or automated unit tests.

3.1.1 Application-based development

You develop code for a while, thinking about the problem at hand. When you think it’s
ready, you run the application and run the section of the application to stress the code
you just wrote. If it behaves as expected, you move on to solving the next problem.

The problem with this approach, depicted in figure 3.1, is that it’s not particularly effi-
cient. The section of code you’ve just written may take time to navigate through the
34

35Code-focused developer processes
application, or may not be feasible—for example, code that gets called only under cir-
cumstances out of your control, such as only when the network connection drops.

3.1.2 Console test rigs

You develop code for a while. When
you’re ready to test it, you write a con-
sole application that calls directly into
the application code that you’ve writ-
ten—perhaps several times with specific
arguments. Figure 3.2 shows the process.

It’s hard to maintain these console test
harnesses. The cost of keeping these up-
to-date often grows quickly, particularly
as you want your test rig to grow to
cater to more scenarios and areas of
your code.

3.1.3 Automated unit tests

Unit tests are a great way to test parts of
code without running a full applica-
tion. They also give us regression tests
so that as we make changes, we know
whether we’ve broken existing behav-
ior. As you can see in figure 3.3, the pro-
cess is more complex than with test rigs.

 Code in
Visual Studio
(5 minutes)

No—fix
the code

Yes—start
next task

 Debug application
to test that behavior
is correct (between
1 and 5 minutes)

Everything
works?

Figure 3.1 Application-based
development

 Code in
Visual Studio
(5 minutes)

 Update console
test rig

(5 minutes)

 Update
console test

rig?

Yes

No—fix the codeYes—start next task

 Run console
test rig

(1 minute)

Everything
works?

No

Figure 3.2 Console test rigs

36 Lesson 3 The REPL—changing how we develop
Unfortunately, the truth is that test-driven development (TDD) is a difficult skill to
master, and if done wrong can be extremely costly—with fragile unit tests that are diffi-
cult to reason about and hard to change. It’s also expensive as a means to explore a
domain; you wouldn’t use unit tests as a means to test out a new NuGet package, for
example.

I should point out that I’m a big fan of TDD in C#. I used it religiously for many years
and found that it can raise the quality of software. But it’s hard to get right! And it
doesn’t lend itself well to trying new things quickly. What we need is a lightweight way

 Write failing test
(1 – 5 minutes)

 Implement
business logic
(1 – 5 minutes)

No

Does unit
test fail?

No—test
should fail!

No—fix tests /
write more tests

Yes—next
feature

No—next
feature

 All tests pass?

Run application
(1 – 5 minutes)

End-to-end
needed?

All good?

Figure 3.3 Test-driven
development process

37Enter the REPL
to experiment with code, test out ideas, and when we’re happy with the results, push
them into a real code base—perhaps along with some unit tests to prove the behavior.

3.2 Enter the REPL

In this section, we’ll look at an entirely different way to approach exploring and devel-
oping code: the REPL.

3.2.1 What is the REPL?

REPL stands for Read Evaluate Print Loop—a mecha-
nism for you to enter arbitrary, ad hoc code into a
standalone environment and get immediate feed-
back. The easiest way to think of a REPL is to think
of the Immediate window in Visual Studio, but
rather than being used when running an application,
a REPL is used when developing an application. You
send code to the REPL, and it evaluates the code and
then prints the result. This feedback loop, depicted

in figure 3.4, is a tremendously productive way to develop.

A REPL can be an effective replacement for all three of the use cases outlined previ-
ously. Here are some example uses for a REPL:

 Writing new business logic that you want to add to your application
 Testing existing production code with a predefined set of data
 Exploring a new NuGet package that you’ve heard about in a lightweight explor-

atory mode
 Performing rapid data analysis and exploration—think of tools such as SQL

Server Management Studio or LINQPad.

As you can see in figure 3.5, the emphasis is on quick exploration cycles: trying out
ideas in a low-cost manner and getting rapid feedback, before pushing that into the
application code base. What’s nice about F# is that because the language allows you to
encode more business rules into the code than in C#, you can often have a great deal of
confidence that your code will work. You won’t need to run end-to-ends particularly
often. Instead, you’ll find yourself working in Visual Studio and the REPL more and
more, focusing on writing code that delivers business value.

Read

Eval

Print

Figure 3.4 The Read Evaluate Print
Loop is an effective way to rapidly
explore and develop solutions.

38 Lesson 3 The REPL—changing how we develop
 Explore domain
(5 –10 minutes)

 Port to
application code

(1 minute)

Code worth
keeping?

No—start again

No—back to REPLYes—next feature

No—next feature

Run application
(1 – 5 minutes)

End-to-end
needed?

All good?

Figure 3.5 Example
REPL-driven development

REPLs, REPLs everywhere!
Many languages and development environments already have a REPL. Some full-blown
standalone applications are extremely powerful REPLs with built in-charting and report-
ing facilities, such as Python’s IPython Notebook (and more recently, Jupyter). Since
newer versions of VS2015, C# now finally does have a basic REPL called C# Interactive.

39Enter the REPL
3.2.2 F# Interactive

Let’s try out the REPL that comes with VS2015 for F#, called F# Interactive, or FSI for
short. Figure 3.6 shows the user interface.

Now you try

1 Open F# Interactive from the View > F# Interactive menu option.
2 You’re presented with a new tool window. This is most likely docked to the bot-

tom of the window. My preference is to dock it to right-hand side of the window,
occupying about 25%–30% of the width of the IDE (although I use a widescreen
monitor).

3 Clicking on the FSI pane enables you to execute any valid F# code. Enter this
command:

 printfn "Hello World";;

Figure 3.6 The F# development REPL experience in VS2015. The main code window is shown on the
left, with the top-right pane representing F# Interactive (FSI).

40 Lesson 3 The REPL—changing how we develop
You’ll see the following output:

Hello world!
val it : unit = ()

4 Enter this command:

System.DateTime.UtcNow.ToString();;

You’ll see this output:

val it : string = "06/04/2016 10:30:42"

You’re able to execute arbitrary F# code without needing to run an application; Visual
Studio itself is a host to your code. FSI outputs anything that you print out (such as the
text Hello World) as well as information itself (such as the content of values when they’re
evaluated). You’ll see more in the coming lessons.

3.2.3 State in FSI

FSI maintains state across each command, and you can bind the value of a particular
expression to a value by using the let keyword that you can then access in subsequent
calls. The following listing shows an example.

let currentTime = System.DateTime.UtcNow;;
currentTime.TimeOfDay.ToString();;

Note the two semicolons (;;) at the end of each command. This tells FSI to execute the
text currently in the buffer. Without this, FSI will add that command to the buffer until it
encounters ;; and will execute all the commands that are in the buffer.

If you want to reset all state in FSI, you can either right-click and choose Reset Interac-
tive Session, or press Ctrl-Alt-R. Similarly, you can clear the output of FSI (but retain its
state) by using Clear All or Ctrl-Alt-C.

Listing 3.1 A simple let binding

What’s it?
You probably noticed the val it = text in FSI for commands that you executed. What’s
this? it is the default value that any expressions are bound to if you don’t explicitly supply
one by using the let keyword. Executing this command

System.DateTime.UtcNow;;

is the same as executing this:

let it = System.DateTime.UtcNow;;

41F# scripts in Visual Studio

3.3 F# scripts in Visual Studio

If you’ve tried the preceding exercises, your first thought is probably something like,
“Well, this is quite useful, but the IDE support is awful!” And you’re not far wrong. You
get no syntax highlighting, no IntelliSense support—no nothing, really. A couple of
experimental extensions are available to improve this (plus some extremely promising
work being done in MonDevelop, Xamarin Studio, and with Roslyn), but at the moment
working directly in FSI isn’t a great experience.

3.3.1 Creating scripts in F#

Luckily, there’s a much better way to work with FSI that does give you IntelliSense and
syntax highlighting: F# scripts, or .fsx files. Let’s see how to create your first script and
experiment with it a little.

Now you try

1 Right-click your F# project in Visual Studio and choose Add > New Item.
2 From the dialog box that pops up, choose Installed > Code > Script File and set

the filename to scratchpad.fsx. The file automatically opens in VS.

You’ll be looking at a blank file in the main panel. Entering any text here will give you
full IntelliSense and code completion, just like inside a full .fs file. Start by entering
something simple into the script:

let text = "Hello, world"

Quick check 3.1

1 What does REPL stand for?
2 Name at least two conventional processes used for developing applications.
3 What is the F# REPL called?

QC 3.1 answer
1 REPL stands for Read Evaluate Print Loop.
2 Application-based testing, console test rigs, and unit testing.
3 F# Interactive, or FSI for short.

42 Lesson 3 The REPL—changing how we develop
Hovering over text will show you that F# has identified the value as a string. If you
move to the next line and type text., you’ll see immediately that you get full IntelliSense
for it, as shown in figure 3.7.

In this way, you can work with all .NET types and values within a script file for experi-
mentation. Even better, scripts can work together with FSI to give you a fantastic experi-
ence, as you’ll see next. And the best bit is that a script doesn’t need a solution or project
in which to function. You can open Visual Studio, choose File > New, pick an F# script,
and start working!

3.3.2 Understanding the relationship between scripts and FSI

When working with scripts, you’ll obviously want a way to evaluate the results of code
you’ve entered. This is extremely easy within an F# script: pressing Alt-Enter sends the
current line to FSI for evaluation (see Figure 3.8). In this way, you can think of the rapid
feedback cycle here as similar to writing unit tests (particularly in a TDD style), albeit in
a much more lightweight form. You can also highlight multiple lines and use the same
keypress to send all the highlighted code to FSI.

Figure 3.7 Working with F# in an .fsx script file

 F# Interactive
(FSI)

 Send to FSI .fsx script/
VS editor

StateIntelliSense

Output Reusable scripts

Figure 3.8 The relationship
between scripts and FSI

43F# scripts in Visual Studio
Now you try

Now, explore the relationship between .fsx scripts and FSI:

1 Move to the first line in your script and press Alt-Enter.
2 Observe that FSI outputs the result val text : string = "Hello, world".
3 On the next line in the script, send the command text.Length to FSI and observe

the result in FSI: val it : int = 12.
4 Reset FSI.
5 Highlight both lines and send them to FSI simultaneously.
6 Reset FSI again.
7 Highlight only the second line and send it to FSI. Notice that FSI returns an error

that text isn’t defined. You haven’t sent the first line that defines it to FSI.

Instead of you having to manually enter code in FSI, you can first enter it into a repeat-
able script and send entire sections of the script to FSI as needed. You can use scripts as a
way to completely remove the need for console test rigs; instead, you’ll have a set of
scripts to test your code in a predefined way.

3.3.3 Working with functions in scripts

You can also define functions in scripts, send them to FSI, and then call them from the
script on demand. The next listing creates a function that takes in someone’s name and
returns a string that’s the greeting of the person.

let greetPerson name age =
 sprintf "Hello, %s. You are %d years old" name age

Highlighting the entire function and sending it to FSI compiles the function.

On the next line, enter this code before sending it to FSI to execute the function call:

let greeting = greetPerson "Fred" 25

Listing 3.2 A simple function definition

Resharper and F#
You might find that Alt-Enter doesn’t work for you. This might be because you have
ReSharper installed, which “steals” this shortcut for its own use. You’ll have to reconfig-
ure ReSharper to not do this, or choose a different keyboard shortcut for FSI Send to
Interactive from within the keyboard shortcut options of VS.

44 Lesson 3 The REPL—changing how we develop
You can repeatedly highlight this line and send it to FSI. You’ll learn more about let in
lesson 4, but in case you’re wondering, repeatedly executing this line doesn’t mutate the
value of greeting multiple times. Instead, it’s creating a new value every time and discard-
ing the previous one.

Summary

In this lesson

 You explored the REPL, a powerful tool in a developers’ arsenal.
 You learned about the relationship between F# Interactive (FSI) and F# scripts

(.fsx files), and how and when to use each of them.
 You explored writing more F# code, defining your first function.

Try this

Spend a little more time in the F# script; write a function, countWords, that can return
the number of words in a string by using standard .NET string split and array function-
ality. You'll need to provide a type hint for the input argument, such as

let countWords (text:string) =...

Then, save the string and number of words to disk as a plain-text file.

Functions and type inference
Notice that mousing over greetPerson shows you the signature of the function; name is
inferred to be a string, and age an integer, and the function returns a string. You’ll explore
this more in lesson 5. For now, it’s enough to know that the sprintf function tells you that
name is a string, and age an int from the %s and %d specifiers.

Quick check 3.2

1 Do scripts need a project in order to run?
2 Give two reasons that you might use a script rather than coding directly into FSI.

QC 3.2 answer
1 No—you can run scripts as standalone files.
2 F# scripts have an improved development experience and are repeatable.

45

U
N

IT

2

Hello F#

In the previous unit, you gained a feeling for the
development experience in VS. It’s not that different
from C# and VB .NET insofar as you have the same
basic project types, as well as access to the Base
Class Library (BCL) that you already know. But we
covered only the bare essentials of the F# language.

This unit focuses on the core foundational elements
of F# as a language: how it differs from C# and VB
.NET in its aims, how it changes your approach to
problem solving in the “small,” and how you learn
to work with a compiler and language that make
you think in a slightly different way. As you’ll see,
you’ll already be familiar with some of the concepts
in C# and VB .NET; but F# takes those features and
turns the dial up to 11 on them—putting them front
and center of the language.

By the end of this unit, you’ll have a good under-
standing of the basic syntax structure and philoso-
phy of F#. You’ll gain experience working with its
rich type inference as well as with expressions and
statements. In addition, you’ll understand the bene-
fits of immutable data.

NOTE Pay attention in this unit! At the end of it,
you’ll work through a capstone exercise—a larger
lesson that’s designed to get you using all the
elements you’ll have learned thus far in a single,
coherent application. Think of it as the end-of-
level boss, and these lessons as the power-ups
you need to gain in order to beat it.

4 LESSON
SAYING A LITTLE, DOING A LOT

In this lesson, you’ll gain an overview of the basics of the F# language:

 You’ll take a closer look at the F# language syntax, including the let keyword.
 You’ll learn how to write some more-complex functions and values.
 You’ll learn what scoping is, why it’s important for creating readable code, and

how it works in F#.

Think about the programming languages that you use today. They come in all sorts of
flavors and are known for being used in different fields or situations. For example, Java
is well-known as an enterprise programming language—which has somewhat negative
connotations of a slow-moving and verbose language. Others might have a reputation
for being used at startups, academia, or in data science. Why are languages shoehorned
into specific fields, when many of them say that they’re general-purpose programming
languages? A combination of many factors sometimes helps push a language to a spe-
cific community or use case.

One of these factors might be the type system. For example, some languages are gener-
ally considered to be statically typed (Java, C#), whereas others are dynamic (Python,
JavaScript, Ruby). The latter have gained a reputation for being used in startups because
of the alleged speed at which development can occur for relatively simple systems
47

48 Lesson 4 Saying a little, doing a lot
(although several notable examples exist of organizations having to rewrite entire sys-
tems in a static language after the application grew too large—Twitter being one).

Another important feature is the syntax of the language. This, just as much as the type
system, can turn entire sets of potential developers away from a language. Too verbose,
and developers may lose patience with it and move on to another one. Too lightweight
and terse, and it might be too difficult for developers to pick up, particularly if they’re
used to a language that has a verbose syntax.

These two traits often seem to be naturally grouped, as shown in table 4.1.

The takeaway is often that static programming languages are slower to develop than
dynamic languages, because the syntax is too heavyweight and verbose, and the bene-
fits of a static type system don’t outweigh those costs. But some static languages, such as
F# and Haskell, aim to give the developer the best of both worlds: a powerful, static type
system that has an extremely lightweight syntax designed to allow developers to
express their intent without having to worry about lots of keywords and symbols for
everyday use. In this way, and in conjunction with the REPL, you can rapidly develop
applications that are underpinned by a powerful compiler and type system.

Before you dive in, let me reiterate one point: in F#, the overall emphasis is to enable you
to solve complex problems with simple code. You want to focus on solving the problem at
hand without necessarily having to first think about design patterns within which you
can put your code, or complex syntax. All the features you’re going to see now are
geared toward helping to achieve that. F# does have some common “design-patternish”
features, but in my experience, they’re few and far between, with less emphasis on them.

Table 4.1 Language traits compared

Language Type system Syntax

C# Static, simple Curly brace, verbose

Java Static, simple Curly brace, extremely verbose

Scala Static, powerful Curly brace, verbose

Python Dynamic, simple Whitespace, very lightweight

Ruby Dynamic, simple Whitespace, very lightweight

JavaScript Dynamic, simple Curly brace, lightweight

49Binding values in F#
4.1 Binding values in F#

The let keyword is the single most important keyword in the F# language. You use it to
bind values to symbols. In the context of F#, a value can range from a simple value type
such as an integer or a Plain Old C# Object (POCO), to a complex value such as an object
with fields and methods or even a function. In C#, we’re not generally used to treating
functions as values, but in F#, they’re the same—so any value can be bound to a symbol
with let.

let age = 35
let website = System.Uri "http://fsharp.org"
let add (first, second) = first + second

Here are some takeaways from that small sample:

 No types—You’ll notice that we haven’t bothered with specifying any types. The
F# compiler will figure these out for you, so if you mouse over age or website,
you’ll see int and System.Uri (although you can—and occasionally must—specify
them). This type inference is scattered throughout the language, and is so funda-
mental to how we work in F# that lesson 5 is entirely dedicated to it (and will
explain how the compiler understands that the add function takes in two num-
bers—it’s not magic!).

 No new keyword—In F#, the new keyword is optional, and generally not used except
when constructing objects that implement IDisposable. Instead, F# views a con-
structor as a function, like any other “normal” function that you might define.

 No semicolons—In F#, they’re optional; the newline is enough for the compiler to
figure out you’ve finished an expression. You can use semicolons, but they’re
completely unnecessary (unless you want to include multiple expressions on a
single line). Generally, you can forget they ever existed.

 No brackets for function arguments—You might have already seen this and asked
why this is. F# has two ways to define function arguments, known as tupled form
and curried form. We’ll deal with this distinction in a later lesson, but for now it’s

Listing 4.1 Sample let bindings

Binding 35 to the symbol age

Binding a URI to the
symbol website

Binding a function that adds
two numbers together to
the symbol add

50 Lesson 4 Saying a little, doing a lot
fine to say that both when calling and defining them, functions that take a single
argument don’t need round brackets (a.k.a. parentheses), although you can put
them in if you like; functions that take in zero or multiple arguments (as per the add
function) need them, as well as commas to separate the arguments, just like C#.

Now you try

You’ll now experiment with binding values to symbols:

1 Create a new F# script file.
2 Bind some values to symbols yourself:

a A simple type (for example, string or int).
b An object from within the BCL (for example, System.Random).
c Create a simple one-line function that takes in no arguments and calls a func-

tion on the object that you created earlier (for example, random.Next()).
3 Remember to execute each line in the REPL by using Alt-Enter.

4.1.1 let isn’t var!

Don’t confuse let with var. Unlike var, which declares variables that can be modified later,
let binds an immutable value to a symbol. The closest thing in C# would be to declare
every variable with the readonly keyword (although this isn’t entirely equivalent). It’s bet-
ter to think of let bindings as copy-and-paste directives; wherever you see the symbol,
replace it with the value that was originally assigned during the declaration.

You may have noticed that you can execute the same let binding multiple times in FSI.
This is because F# allows you to repurpose a symbol multiple times within the same
scope. This is known as shadowing, and is shown in the following listing.

let foo() =
 let x = 10
 printfn "%d" (x + 20)
 let x = "test"
 let x = 50.0
 x + 200.0

Listing 4.2 Reusing let bindings

Binds 10 to the symbol x

Prints 30 to the console

Binds “test” to the symbol x. The
original x is now out of scope.

Binds 50.0 to the
symbol x. The previous
x is now out of scope.

Returns 250.0

51Scoping values
Shadowing is a more advanced (and somewhat controversial) feature, so don’t worry
too much about it. But this is why you can declare the same symbol multiple times
within FSI.

4.2 Scoping values

I’m sure you’ve heard that global variables are a bad thing! Scoping of values is import-
ant in any language; scoping allows us not only to show intent by explaining where and
when a value is of use within a program, but also to protect us from bugs by reducing
the possibilities for a value to be used within an application. In C#, we use { } to explic-
itly mark scope, as shown in the next listing.

using System
public static int DoStuffWithTwoNumbers(int first, int second)
{
 var added = first + second;
 Console.WriteLine(“{0} + {1} = {2}”, first, second, added);
 var doubled = added * 2;
 return doubled;
}

In this context, the variable added is only in scope within the context of the curly braces.
Outside of that, it’s out of scope and not accessible by the rest of the program. On the
other hand, F# is a whitespace-significant language: rather than using curly braces, you
have to indent code to tell the compiler that you’re in a nested scope.

Listing 4.3 Scoping in C#

Quick check 4.1

1 Give at least two examples of values that can be bound to symbols with let.
2 What’s the difference between let and var?
3 Is F# a static or dynamic language?

QC 4.1 answer
1 Primitive values, values of custom types, functions.
2 let is an immutable binding of a symbol. var represents a pointer to a specific mutable object.
3 F# is a statically typed language.

52 Lesson 4 Saying a little, doing a lot
open System
let doStuffWithTwoNumbers(first, second) =
 let added = first + second
 Console.WriteLine("{0} + {1} = {2}", first, second, added)
 let doubled = added * 2
 doubled

There’s no specific restriction on the number of spaces to indent. You can indent 1 space
or 10 spaces—as long as you’re consistent within the scope! Most people use four
spaces. It’s not worth wasting time on picking the indent size, so I advise you to go with
that to start with.

You’ll see in listing 4.4 that you’ve opened up the System namespace so that you can call
Console.WriteLine directly. You can also get VFPT to open the namespaces for you, just like
standard Visual Studio, through the lightbulb tip, as shown in figure 4.1.

You’ll also notice a few more things from this multiline function:

 No return keyword—The return keyword is unnecessary and not valid F# syntax
(except in one case, which you’ll see that in the second half of this book). Instead,
F# assumes that the final expression of a scope is the result of that scope. In this
case it’s the value of doubled.

 No accessibility modifier—In F#, public is the default for top-level values. There are
several reasons for this, but it makes perfect sense in F#, because with nested
scopes (described in detail in the following section), you can hide values effec-
tively without resorting to accessibility modifiers.

 No static modifier—Again, static is the default way of working in F#. This is dif-
ferent from what you’re used to, but it fits with how you’ll design most solutions
in F#.

Listing 4.4 Scoping in F#

Creation of scope for the
doStuffWithTwoNumbers
function

Return value of the function

Figure 4.1 Visual F# Power Tools
integration in Visual Studio 2015
offering to open up a namespace

53Scoping values
4.2.1 Nested scopes

We’re used to using classes and methods as a means of scoping and data hiding. You
might have a class that contains private fields and methods, as well as one or many pub-
lic methods. You can also use methods for data hiding—again, the data is visible only
within the context of that function call. In F#, you can define arbitrary scopes at any
point you want. Let’s assume you want to estimate someone’s age by using the current
year, as shown in the following listing.

let year = DateTime.Now.Year
let age = year - 1979
let estimatedAge = sprintf "You are about %d years old!" age
// rest of application…

Looking at this code, the only thing you’re interested in is the string value estimatedAge.
The other lines are used as part of the calculation of that; they’re not used anywhere else in
your application. But currently, they’re at the top level of the code, so anything after-
ward that uses estimatedAge can also see those two values.

Why is this a problem? First, because it’s something more for you as a developer to rea-
son about—where is the year value being used? Is any other code somehow depending
on it? Second (and again, this is slightly less of an issue in F#, where values are
immutable by default), values that have large scopes tend to negatively impact a code
base in terms of bugs and/or code smells. In F#, you can eliminate this by nesting those
values inside the scope of estimatedAge as far as possible, as the next listing shows.

Listing 4.5 Unmanaged scope

Accessibility modifiers in F#
It’s worth pointing out that although F# supports most modifiers, there’s no protected
access modifier. This isn’t usually a problem; I’ve certainly never needed protected since
I started using F#. This is probably because protected is a modifier used when working
with object-oriented hierarchies—something you rarely use in F#.

54 Lesson 4 Saying a little, doing a lot
let estimatedAge =
 let age =
 let year = DateTime.Now.Year
 year - 1979
 sprintf "You are about %d years old!" age

Now it’s clear that age is used only by the estimatedAge value. Similarly, DateTime.Now.Year is
used only when calculating age. You can’t access any value outside the scope that it was
defined in, so you can think of each of these nested scopes as being mini classes if you
like—scopes for storing data that’s used to generate a value.

4.2.2 Nested functions

If you’ve been paying attention, you’ll remember that F# treats functions as values. This
means that you can also create functions within other functions! Here’s an example of
how to do this in F#.

let estimateAges(familyName, year1, year2, year3) =
 let calculateAge yearOfBirth =
 let year = System.DateTime.Now.Year
 year - yearOfBirth

 let estimatedAge1 = calculateAge year1
 let estimatedAge2 = calculateAge year2
 let estimatedAge3 = calculateAge year3

 let averageAge = (estimatedAge1 + estimatedAge2 + estimatedAge3) / 3
 sprintf "Average age for family %s is %d" familyName averageAge

You declare a function called estimateAges, which itself defines a nested helper function
called calculateAge inside it. The estimateAges function then calls calculateAge three times in
order to generate an average age estimate for the three ages that were supplied. The
ability to create nested functions means that you can start to think of functions and
classes that have a single public method as interchangeable (see table 4.2).

Listing 4.6 Tightly bound scope

Listing 4.7 Nested (inner) functions

Top-level scope

Nested scope

Value of year visible
only within scope of
“age” value

Can’t access
“year” value

Top-level function

Nested function

Calling the nested function

55Scoping values
Now you try

Within a script file, you’ll create a Windows Forms form that contains a WebBrowser con-
trol for hosting the content of a web resource that you’ll download. Here’s a snippet to
get you started.

Table 4.2 Comparing functional equivalents to core object-oriented class features

Class Function

Constructor / single public method Arguments passed to the function

Private fields Local values

Private methods Local functions

Capturing values in F#
Within the body of a nested function (or any nested value), code can access any values
defined in its containing (parent) scope without you having to explicitly supply them as
arguments to the nested function. You can think of this as similar to a lambda function
in C# “capturing” a value declared in its parents’ scope. When you return such a code
block, this is known as a closure; it’s common to do this in F#—without even realizing it.

Cyclical dependencies in F#
This is one of the best “prescriptive” features of F# that many developers coming from
C# and VB are shocked by: F# doesn’t (easily) permit cyclical dependencies. In F#, the
order in which types are defined matters. Type A can’t reference Type B if Type A is
declared before Type B, and the same applies to values.

Even more surprising is that this applies to all the files in a project—so file order in a pro-
ject matters! Files at the bottom of the project can access types and values defined
above them, but not the other way around. You can manually move files up and down in
VS by selecting the file and pressing Alt-up arrow or Alt-down arrow (or right-clicking a
file and choosing the appropriate option).

As it turns out, though, this “restriction” turns into a feature. By forcing you to avoid cyclic
dependencies, the design of your solutions will naturally become easier to reason about,
because all dependencies will always face “upward.”

56 Lesson 4 Saying a little, doing a lot
open System
open System.Net
open System.Windows.Forms

let webClient = new WebClient()
let fsharpOrg = webClient.DownloadString(Uri "http://fsharp.org")
let browser =
 new WebBrowser(ScriptErrorsSuppressed = true,
 Dock = DockStyle.Fill,
 DocumentText = fsharpOrg)
let form = new Form(Text = "Hello from F#!")
form.Controls.Add browser
form.Show()

Rewrite the preceding code so that the scopes are more tightly defined. For example,
webClient is used only during creation of the fsharpOrg value, so it can live within the defi-
nition of that value.

Next, try to make the code a function so that it can be supplied with a URL instead of
being hardcoded to fsharp.org. Creating functions from simple sets of values is incredi-
bly easy in F#:

1 Indent all the code you wish to make a function.
2 On the line above the code block, define the function along with the argument(s)

you wish to take in.
3 Replace the hardcoded values in the code block with the arguments you defined.
4 Ensure that the last line in the function block isn’t a let statement, but an

expression.

Here’s a two-part example of refactoring a set of arbitrary assignments and expressions
into a reusable function to get you started.

let r = System.Random()
let nextValue = r.Next(1, 6)
let answer = nextValue + 10

Listing 4.8 Creating a form to display a web page

Listing 4.9 Refactoring to functions—before

Opening up namespaces in F#

Object initializer-style
syntax in F#

57Summary
let generateRandomNumber max =
 let r = System.Random()
 let nextValue = r.Next(1, max)
 nextValue + 10

Summary

In this lesson

 You learned a great deal about the most fundamental parts of the syntax of F#.
 You learned about the let keyword.
 You saw how scoping works in F#.

Hopefully, you’ve seen that F# contains a relatively simple and minimalistic syntax,
with a minimum of extra symbols and keywords. A large majority of what you’ve seen
so far is “stripping away” what turned out to be “unnecessary” syntax features of C#—
but some elements of the language may be new to you, such as nested scopes and the
lack of support for cyclic dependencies.

Try this

Explore scoping in more depth: try creating a set of functions that are deeply nested
within one another. What happens if you call a function—for example, Random.Next()—
within another function as opposed to simply using the result of it? What implication
does this have for, for example, caching?

Listing 4.10 Refactoring to functions—after
Function declaration added

Code block indented

Hardcoded value
replaced with argumentReturn value as

an expression

Quick check 4.2

1 How do you indicate a new scope in F#?
2 Can you declare functions within a nested scope?
3 Do we normally need to use the return keyword to return from a scope?

QC 4.2 answer
1 Indent code to declare a new scope.
2 Yes, functions can be declared within a nested scope.
3 No, the return keyword isn’t used in F# to specify the result of an expression.

5LESSON
TRUSTING THE COMPILER

The compiler is one of the most important features in any language. In a language
such as F#, where the compiler does a lot of heavy lifting for you, it’s particularly
important that you understand the role it plays in your day-to-day development cycle.
In this lesson

 You’ll look at the F# compiler from a developer’s point of view (don’t get scared!).
 You’ll focus specifically on one area of it: type inference.
 You’ll recap what type inference is from a C# / VB .NET perspective.
 You’ll look at how F# takes type inference to the next level.

5.1 Type inference as we know it

Unless you’ve used only earlier versions of C#, you’ll almost certainly be familiar with
the var keyword. Let’s refamiliarize ourselves with the var keyword based on the official
MSDN documentation:

Variables that are declared at method scope can have an implicit type var. An implicitly typed local
variable is strongly typed just as if you had declared the type yourself, but the compiler
determines the type.
58

59Type inference as we know it
5.1.1 Type inference in C# in detail

Here’s a simple example of that description in action.

var i = 10;
int i = 10;

The right-hand side of the = can be just about any expression, so you can write more-
complicated code that may defer to another method, perhaps in another class. Natu-
rally, you need to give a little bit of thought regarding the naming of variables when
using var!

var i = customer.Withdraw(50);
var newBalance = customer.Withdraw(50);

It’s important to stress that var mustn’t be confused with the dynamic keyword in C#,
which is (as the name suggests) all about dynamic typing. var allows you to use static
typing without the need to explicitly specify the type by allowing the compiler to determine
the type for you at compile time (see figure 5.1).

Listing 5.1 Using var in C#

Listing 5.2 Variable naming with type inference

Implicitly typed

Explicitly typed

Implicitly typed. Withdraw()
returns an int, so i is
inferred to be an int.

Use of intelligent
naming to explain
intent to the reader

The multipurpose var
There’s another reason for the use of var in C#: to store references to types that have
no formal declaration, a.k.a. anonymous types. Anonymous types don’t exist in F#,
although as you’ll see later, you rarely miss them, as good alternatives exist that are in
many ways more powerful.

Figure 5.1 Simple type
inference offered by C#

60 Lesson 5 Trusting the compiler
5.1.2 Practical benefits of type inference

Even in its restricted form in C#, type inference can be a nice feature. The most obvious
benefit is that of readability: you can focus on getting results from method calls and use
the human-readable name of the value to gain its meaning, rather than the type. This is
especially useful with generics, and F# uses generics a lot. But you gain another subtler
benefit: the ease of refactoring.

Imagine you have a method Save() that stores data in the database and returns an inte-
ger value. Let’s assume that this is the number of rows saved. You then call it in your
main code.

int result = Save();

if (result == 0)
 Console.WriteLine("Failure!");
else
 Console.WriteLine(“Worked!”);

Note that you’re explicitly marking result as an integer, although the declaration of the
variable could just as well have been var. Then at some point in the future, you decide
that you want to return a Boolean that represents success/failure instead. You have to
change two things:

1 You need to manually change the method signature to specify that the method
returns bool rather than int. There’s no way around this in C#.

2 You need to go through every call site to Save() and manually fix it to bind the
result to bool rather than int. If you had used var, this wouldn’t have been a prob-
lem at all, because you’d have left the compiler to “figure out” the type of result.

Even when using var, at some point you’d normally have to make some kind of change to
your code to handle a bool instead of an int—in this case, it’s the conditional expression
for the if statement. Although var won’t fix everything for you—it’s not magic—the dif-
ference is that the compiler would have taken care of fixing the “boilerplate” error for
you automatically, leaving you to change the “real” logic (changing the expression from
comparing with 0 to comparing with true).

Listing 5.3 Depending on method results with explicit typing

Explicit binding to int

Where the value is
explicitly used as a int

61Type inference as we know it

5.1.3 Imagining a more powerful type-inference system

Unfortunately, type inference in C# and VB .NET is restricted to the single use case I’ve
illustrated. Let’s look at a slightly larger code snippet.

public static var CloseAccount(var balance, var customer)
{
 if (balance < 0)
 return false;
 else
 {
 customer.Withdraw(customer.AccountBalance);
 customer.Close();
 return true;
 }
}

This is invalid C#, because I’ve omitted all types. But couldn’t the compiler possibly
“work out” the return type or input arguments based the following?

 We’re comparing balance with 0. Perhaps this is a good indicator that balance is
also an integer (although it could also be a float or other numeric type).

 We’re returning Boolean values from all possible branches of the method. Per-
haps we want the method to return Boolean?

Listing 5.4 Hypothetical type inference in C#

Critics of type inference
Some developers shy away from type inference. A common complaint I hear is that it’s
“magic,” or alternatively that one can’t determine the type of a variable at a glance. The
first point can be easily dispelled by reading the rules for type inference: the compiler
doesn’t guess the types; a set of precedence rules guides the compiler. The second point
can also be dispelled by the number of excellent IDEs (including VS2015) that give you
mouse-over guidance for types, as well as following good practices such as sane variable
naming (which is generally a good thing to do). Overall, particularly in F#, the benefits
massively outweigh any costs.

Balance compared with 0

Returning a Boolean

Calling methods and
accessing properties
on a type

Returning a Boolean

62 Lesson 5 Trusting the compiler
 We’re accessing methods and properties on the customer object. How many
types in the application have Withdraw and Close methods and an AccountBalance
property (which is also compatible with the input argument of Withdraw)?

5.2 F# type-inference basics

We’ve discussed some of the benefits of type inference in C#, as well as some of the
issues and concerns about it. All of these are magnified with F#, because type inference
in F# is pervasive. You can write entire applications without making a single type annota-
tion (although this isn’t always possible, nor always desirable). In F#, the compiler can
infer the following:

 Local bindings (as per C#)
 Input arguments for both built-in and custom F# types
 Return types

F# uses a sophisticated algorithm that relies on the Hindley–Milner (HM) type system.
It’s not especially important to know what that is, although feel free to read up on it in
your own time! What is important to know is that HM type systems do impose some
restrictions in order to operate that might surprise you, as we’ll see shortly.

Without further ado, let’s finally get onto some F#! Thus far, all the examples you’ve
seen in F# haven’t used type annotations, but now I’ll show you a simple example that
we can break down piece by piece so you can understand how it works.

let add (a:int, b:int) : int =
 let answer:int = a + b
 answer

Listing 5.5 Explicit type annotations in F#

Quick check 5.1

1 Can you think of any limitations of the C# type-inference engine?
2 What is the difference between dynamic typing and type inference?

QC 5.1 answer
1 Types can’t be inferred from method scope, and are valid only on assignment.
2 The latter is statically typed, but types are resolved by the compiling. Dynamic typing truly

doesn’t specify types at compile time.

63F# type-inference basics
We’ll cover functions in more depth later, but to get us going here, a type signature in F#
has three main parts:

 The function name
 All input argument type(s)
 The return type

You can see from the code sample that both input arguments a and b are of type int, and
the function also returns an int.

Start by removing just the return type from the type signature of the function; when
you compile this function in FSI, you’ll see that the type signature is exactly the same
as before.

let add (a:int, b:int) =
…
// val add : a:int * b:int -> int

F# infers the return type of the function, based on the
result of the final expression in the function. In this
case, that’s answer. Now go one step further and
remove the type annotation from b. Again, when you
compile, the type signature will be the same. In this
case, it raises an interesting question: how does the
compiler know that b isn’t a float or decimal? The

answer is that in F#, implicit conversions aren’t allowed. This is another feature of the type
system that helps enforce safety and correctness, although it’s not something that you’ll
necessarily be used to. In my experience, it’s not a problem at all. And given this restric-
tion, the compiler can safely make the assumption that b is an int. Finally, remove the
remaining two type annotations, as shown in figure 5.2.

Listing 5.6 Omitting the return type from a function in F#

Type annotations in C# and F#
Many C# developers recoil when they see types declared after the name of the value. In
fact, most languages outside of C, C++, Java, and C# use this pattern. It’s particularly
common in languages such as F#, where type inference is especially powerful, or
optional type systems such as TypeScript.

Figure 5.2 F# type inference
operating on a function

64 Lesson 5 Trusting the compiler
Amazingly, the compiler still says that the types are all integers! How has it figured this
out? In this case, it’s because the + operator binds by default to integers, so all the values
are inferred to be ints.

Now you try

Experiment with this code a little more to see how the compiler responds to code
changes:

1 Mix some type annotations on the function—for example, mark a as int and b as
string. Does it compile?

2 Remove all the type annotations again, and rewrite the body to add an explicit
value, such as the following:

a + b + "hello"

3 Does this compile? What are the types? Why?
4 What happens if you call the function with an incompatible value?

Earlier, we demonstrated that type inference can not only improve readability by
removing unnecessary keywords that can obscure the meaning of your code, but also
speed up refactoring—for example, by allowing you to change the return type of a func-
tion without necessarily breaking the caller. This benefit is increased by a significant fac-
tor when working with F#, because you can automatically change the return type by
simply changing the implementation of a function, without needing to manually update
the function signature. Indeed, when coupled with its lightweight syntax and ability to
create scopes by indenting code, F# enables you to create new functions and change
type signatures of existing code incredibly easily—particularly because type inference
in F# can escape local scope, unlike in C#.

5.2.1 Limitations of type inference

F# has a few more restrictions and limitations related to type inference. Let’s go through
them one by one here.

Working with the BCL

First, type inference works best with types native to F#. By this, I mean basic types such
as ints, or F# types that you define yourself. We haven’t looked at F# types yet, so this
won’t mean much to you, but if you try to work with a type from a C# library (and this
includes the .NET BCL), type inference won’t work quite as well—although often a sin-
gle annotation will suffice within a code base.

65F# type-inference basics
let getLength name = sprintf "Name is %d letters." name.Length
let getLength (name:string) = sprintf "Name is %d letters." name.Length
let foo(name) = "Hello! " + getLength(name)

The first function won’t compile, as the F# compiler doesn’t know that name is a string
(and therefore has a Length property). The second version works, because of the annota-
tion. Any code that calls that function won’t need an annotation; the initial one will
“bleed out” naturally.

Classes and overloaded methods

Second, in F#, overloaded functions aren’t allowed. You can create (or reference from C#
libraries) classes that contain methods that are overloaded, but functions declared using
the let syntax can’t be overloaded. For this reason, type inference doesn’t completely
function on classes and methods.

5.2.2 Type-inferred generics

F# can apply type inference not just on simple values but also for type arguments. You
can either use an underscore (_) to specify a placeholder for the generic type argument,
or omit the argument completely.

open System.Collections.Generic
let numbers = List<_>()
numbers.Add(10)
numbers.Add(20)

let otherNumbers = List()
otherNumbers.Add(10)
otherNumbers.Add(20)

You should understand that F# infers the type based on the first available usage of the
type argument. The call to numbers.Add(10) is used to tell the compiler that List is of type

Listing 5.7 Type inference when working with BCL types in F#

Listing 5.8 Inferred type arguments in F#

Doesn’t compile—type
annotation is required Compiles

Compiles— “name” argument
is inferred to be string, based
on the call to getLength()

Creating a generic List, but
omitting the type argument

This syntax is also legal.

66 Lesson 5 Trusting the compiler
int. If you were to call numbers.Add with 10 and then "Hello", you’d get a compiler error on
the second call, as by this stage the compiler has selected int as the type argument.

F# also automatically makes functions generic when needed. Let’s look at a simple func-
tion that adds items to a list. In this example, no type is specified for the output value
anywhere in the code, so the compiler can’t infer the type of List. In this case, it will
make the entire createList() function generic!

let createList(first, second) =
 let output = List()
 output.Add(first)
 output.Add(second)
 output
// val createList : first:'a * second:'a -> List<'a>

In this case, you can think of 'a as the same as T in C# (a generic type argument). You can
specify the generic argument placeholder (and use it as a type annotation) if you want to
(for example, let createList<'a>(first:'a, second), but you should generally just let the
compiler infer the arguments; it’s powerful and will save you a lot of time.

5.3 Following the breadcrumbs

Because type inference escapes function scope in F#, unlike in C#, the compiler will go
through your entire code base and notify you where the types eventually clash. This is
normally a good thing, but it does mean that occasionally you’ll need to remember how

Listing 5.9 Automatic generalization of a function

Quick check 5.2

1 How does F# infer the return type of a function?
2 Can F# infer types from the BCL?
3 Does F# allow implicit conversions between numeric types?

QC 5.2 answer
1 Based on the type of the last expression in the function.
2 No, although it can infer BCL types across functions declared in F#.
3 No.

67Following the breadcrumbs
the type inference system works in order to diagnose compiler errors. Let’s look at a rel-
atively simple example that shows how making changes to types can lead to errors
occurring in unusual places.

let sayHello(someValue) =
 let innerFunction(number) =
 if number > 10 then "Isaac"
 elif number > 20 then "Fred"
 else "Sara"

 let resultOfInner =
 if someValue < 10.0 then innerFunction(5)
 else innerFunction(15)

 "Hello " + resultOfInner

let result = sayHello(10.5)

If you follow the flow, you’ll notice that the current logic suggests that the Fred branch
will never be called. Don’t worry about that; we’re more interested in the type system
and F#’s inference engine here.

Now you try

Copy the code from listing 5.10 into an F# script in VS; everything will compile by
default. Now let’s see how to break this code! Start by first changing the first if/then case
in innerFunction to compare against a string ("hello") rather than an integer (10), as shown
in figure 5.3.

Listing 5.10 Complex type-inference example

Function declaration

innerFunction—
signature is int -> string

String result of
calling innerFunction()

String result of
overall function

Sample call site

Figure 5.3 Following the breadcrumbs with type inference

68 Lesson 5 Trusting the compiler
Rather than this line showing an error, you’ll see errors in three other places! Why? This
is what I refer to as following the breadcrumbs: you need to track through at least one of
the errors and see the inferred types to understand why this has happened.

Let’s look into the first error and try to work out why it’s occurring: this expression was
expected to have type string , but here it has type int. Remember to mouse over the values
and functions to get IntelliSense of the type signatures being inferred!

1 Looking at the compiler error message, you can see that the call site to inner-
Function now expects a string, although you know that it should be an int.

2 Now look at the function signature of innerFunction. It used to be int -> string, but
now is string -> string (given a string, it returns a string).

3 Look at the function body. You can see that the first branch of the if/then code
compares number against a string rather than an int. The compiler has used this to
infer that the function should take in a string.

4 You can prove this by hovering over the number value, which sure enough is now
inferred to be a string.

5 To help you, and to guide the compiler, let’s temporarily explicitly type-annotate
the function as shown in figure 5.4.

6 You’ll see that the “false” compiler errors disappear, and the compiler now cor-
rectly identifies the error as being "hello", which should be an int.

7 After you correct the error, you can remove the type annotation again.

From this example, you can see that adding in type annotations can sometimes be use-
ful, particularly when trying to narrow down an error caused by clashing types. I rec-
ommend, however, that you in general try to avoid working with explicit types
everywhere. Your code will look much cleaner as a result.

Now you try

Try some more examples of changing values to experiment with how F# type inference works:

1 Replace Isaac with 123. Look at the errors that show up. Why do they appear?
2 Replace Fred with 123. Why is the error different from when you changed Isaac?
3 Replace 10.0 with 10. What happens? Why?

Figure 5.4 Explicit type
annotations can help to drill
down on the source of an error.

69Summary

Summary

That was an intensive lesson! We covered the following:

 Basics of type inference
 Simple type inference in C# / VB .NET
 Type inference in F#
 Limitations of F# type inference
 Diagnosing type inference problems in F#

It’s well worth spending the time to understand type inference in F#, because it’s a cru-
cial part of the flavor of the language. Type inference fits with the “more with less” phi-
losophy, as well as another side of F# discussed at the start of this lesson, which is
trusting the compiler.

You need a different mindset to create functions and arguments without type annota-
tions and let the compiler fill in the gaps, and as you saw, at times it’s important that you
understand what the compiler is doing under the hood. But as you’ll see over the com-
ing lessons, type inference is incredibly useful in writing succinct, easily refactorable
code without needing to resort to a third-party tool to “rewrite” your code for you.

Try this

Try creating other generic objects that you already know within the BCL. How does F#
work with them? Then, experiment with the code that you created in the previous les-
sons. Can you remove any of the type annotations? How does it affect the look and feel
of the code?

Quick check 5.3 Why are type annotations sometimes useful when looking at compiler
errors?

QC 5.3 answer Temporarily placing explicit type annotations allows you to guide the compiler with
your intention; this can help track down when types are incompatible in code.

6LESSON
WORKING WITH IMMUTABLE DATA

Working with immutable data is one of the more difficult aspects of functional pro-
gramming to deal with, but as it turns out, after you get over the initial hurdle, you’ll be
surprised just how easy it is to write entire applications working with purely immutable
data structures. It also goes hand in hand with many other F# features you’ll see, such as
expression-based development. In this lesson, you’ll learn

 The basic syntax for working with immutable and mutable data in F#
 Some reasons you should consider immutability by default in software develop-

ment today
 Simple examples of working with immutable values to manage changing state

6.1 Working with mutable data—a recap

Let’s start by thinking about some of the issues we come up against but often take for
granted as simply “the way things are.” Here are a few examples that I’ve either seen
firsthand or fallen foul of myself.
70

71Working with mutable data—a recap
6.1.1 The unrepeatable bug

Say you’re developing an application, and one of the test team members comes up to
you with a bug report. You walk over to that person’s desk and see the problem happen-
ing. Luckily, your tester is running in Visual Studio, so you can see the stack trace and so
on. You look through the locals and application state, and figure out why the bug is
showing up. Unfortunately, you have no idea how the application got into this state in
the first place; it’s the result of calling a number of methods repeatedly over time with
some shared mutable state stored in the middle.

You go back to your machine and try to get the same error, but this time you can’t repro-
duce it. You file a bug in your work-item tracking system and wait to see if you can get
lucky and figure out how the application got into this state.

6.1.2 Multithreading pitfalls

How about this one? You’re developing an application and have decided to use multi-
threading because it’s cool. You recently heard about the Task Parallel Library in .NET,
which makes writing multithreaded code a lot easier, and also saw that there’s a Parallel
.ForEach() method in the BCL. Great! You’ve also read about locking, so you carefully put
locks around the bits of the shared state of your application that are affected by the mul-
tithreaded code.

You test it locally and even write some unit tests. Everything is green! You release, and
two weeks later find a bug that you eventually trace to your multithreaded code. You
don’t know why it happened, though; it’s caused by a race condition that occurs only
under a specific load and a certain ordering of messages. Eventually, you revert your
code to a single-threaded model.

6.1.3 Accidentally sharing state

Here’s another one. You’ve working on a team and have designed a business object
class. Your colleague has written code to operate on that object. You call that code, sup-
plying an object, and then carry on. Sometime later, you notice a bug in your applica-
tion: the state of the business object no longer looks as it did previously!

It turns out that the code your colleague wrote modified a property on the object with-
out you realizing it. You made that property public only so that you could change it; you
didn’t intend or expect other bits of code to change the state of it! You fix the problem by
making an interface for the type that exposes the bits that are “really” public on the
type, and give that to consumers instead.

72 Lesson 6 Working with immutable data
6.1.4 Testing hidden state

Or maybe you’re writing unit tests. You want to test a specific method on your class, but
unfortunately, to run a specific branch of that method, you first need to get the object
into a specific state. This involves mocking a bunch of dependencies that are needed to
run the other methods; only then can you run your method. Then, you try to assert
whether the method worked, but the only way to prove that the method worked prop-
erly is to access a shared state that’s private to the class. Your deadlines are fast
approaching, so you change the accessibility of the private field to be Internal, and make
internals visible to your test project.

6.1.5 Summary of mutability issues

All of these problems are real issues that occur on a regular basis, and they’re nearly
always due to mutability. The problem is often that we simply assume that mutability is
a way of life, something we can’t escape, and so look for other ways around these sorts
of issues—things like encapsulation, hacks such as InternalsVisibleTo, or one of the many
design patterns out there. It turns out that working with immutable data solves many of
these problems in one fell swoop.

6.2 Being explicit about mutation

So far, you’ve only looked at simple values in F#, but even these show that by default,
values are immutable. As you’ll see in later lessons, this also applies to your own cus-
tom F# types (for example, Records).

6.2.1 Mutability basics in F#

You’ll now see immutability in action. Start by opening a script file and entering the
following code.

let name = "isaac"
name = "kate"

You’ll notice when you execute this code, you receive the following output in FSI:

val name : string = "isaac"
val it : bool = false

Listing 6.1 Creating immutable values in F#

Creating an immutable value

Trying to assign “kate” to name

73Being explicit about mutation
The false doesn’t mean that the assignment has somehow failed. It occurs because in F#,
the = operator represents equality, as == does in C#. All you’ve done is compare isaac
with kate, which is obviously false.

How do you update or mutate a value? You use the assignment operator, <-. Unfortu-
nately, trying to insert that into your code leads to an error, as shown next.

name <- "kate"
error FS0027: This value is not mutable

Oops! This still doesn’t work. It turns out that you need to take one final step to make a
value mutable, which is to use the mutable keyword.

let mutable name = "isaac"
name <- "kate"

If you installed and configured Visual F# Power Tools, you’ll notice that the name value is
now automatically highlighted in red as a warning that this is a mutable value. You can
think of this as the inverse of C# and VB .NET, whereby you use variables by default, and
explicitly mark individual items as immutable values by using the readonly keyword.

The reason that F# makes this decision is to help guide you down what I refer to as the
pit of success; you can use mutation when needed, but you should be explicit about it and
should do so in a carefully controlled manner. By default you should go down the route
of adopting immutable values and data structures.

As it turns out, you can easily develop entire applications (and I have, with web front ends,
SQL databases, and so forth) by using only immutable data structures. You’ll be surprised
when you realize how little you need mutable data, particularly in request/response-style
applications such as web applications, which are inherently stateless.

6.2.2 Working with mutable objects

Before we move on to working with immutable data, here’s a quick primer on the syntax
for working with mutable objects. I don’t recommend you create your own mutable
types, but working with the BCL is a fact of life as a .NET developer, and the BCL is
inherently OO-based and filled with mutable structures, so it’s good to know how to
interact with them.

Listing 6.2 Trying to mutate an immutable value

Listing 6.3 Creating a mutable variable

Defining a mutable variable

Assigning a new value to the variable

74 Lesson 6 Working with immutable data
Now you try

Start by creating a good old Windows Form, displaying it, and then setting a few prop-
erties of the window.

open System.Windows.Forms
let form = new Form()
form.Show()
form.Width <- 400
form.Height <- 400
form.Text <- "Hello from F#!"

Notice that you can see the mutation of the form happen through the REPL. If you exe-
cute the first three lines, you start with an empty form, but after executing the final line,
the title bar will immediately change, as shown in figure 6.1.

Listing 6.4 Working with mutable objects

Creating the form object

Mutating the form by
using the <- operator

Mutable bindings and objects
Most objects in the BCL, such as a Form, are inherently mutable. Notice that the form
symbol is immutable, so the binding symbol itself can’t be changed. But the object it
refers to is itself mutable, so properties on that object can be changed!

Figure 6.1 Creating a simple
form from an F# script

75Modeling state
F# also has a shortcut for creating mutable data structures in a way that assigns all
properties in a single action. This shortcut is somewhat similar to object initializers in
C#, except that in F# it works by making properties appear as optional constructor
arguments.

open System.Windows.Forms
let form = new Form(Text = "Hello from F#!", Width = 300, Height = 300)
form.Show()

If actual constructor arguments are required as well, you can put them in there at the
same time (VS2015 sadly doesn’t give IntelliSense for setting mutable properties in the
constructor).

6.3 Modeling state

Let’s now look at the work needed to model data with state without resorting to mutation.

6.3.1 Working with mutable data

Working with mutable data structures in the OO world follows a simple model: you cre-
ate an object, and then modify its state through operations on that object, as depicted in
figure 6.2.

Listing 6.5 Shorthand for creating mutable objects

Creating and mutating properties
of a form in one expression

Quick check 6.1

1 What keyword do you use to mark a value as mutable in F#?
2 What is the difference between = in C# and F#?
3 What keyword do you use in F# to update the value of a mutable object?

QC 6.1 answer
1 The mutable keyword.
2 In F#, = performs an equality between two values. It can also be used for binding a value to a

symbol. In C#, = always means assignment.
3 F# uses the <- operator to update a mutable value.

76 Lesson 6 Working with immutable data
What’s tricky about this model of working is that it can be hard to reason about your
code. Calling a method such as UpdateState() in the preceding example will generally
have no return value; the result of calling the method is a side effect that takes place on
the object.

Now you try

Let’s put this into practice with a simple example: driving a car. You want to be able to
write code that allows you to drive() a car, tracking the amount of petrol (gas) used.
Depending on the distance you drive, you should use up a different amount of petrol.

let mutable petrol = 100.0

let drive(distance) =
 if distance = "far" then petrol <- petrol / 2.0
 elif distance = "medium" then petrol <- petrol - 10.0
 else petrol <- petrol - 1.0

drive("far")
drive("medium")
drive("short")

petrol

Working like this, it’s worth noting a few things:

 Calling drive() has no outputs. You call it, and it silently modifies the mutable
petrol variable; you can’t know this from the type system.

 Methods aren’t deterministic. You can’t know the behavior of a method without
knowing the (often hidden) state. If you call drive("far") three times, the value of
petrol will change every time, depending on the previous calls.

 You have no control over the ordering of method calls. If you switch the order of
calls to drive(), you’ll get a different answer.

Listing 6.6 Managing state with mutable variables

UpdateState()
Stateful
object

Figure 6.2 Mutating
an object repeatedly

Initial state

Modify state through mutation

Repeatedly modify state

Check current state

77Modeling state
6.3.2 Working with immutable data

Let’s compare working with mutable data structures with working with immutable
ones, as per figure 6.3.

In this mode of operation, you can’t mutate data. Instead, you create copies of the state
with updates applied, and return that for the caller to work with; that state may be
passed in to other calls that themselves generate new state.

Now rewrite your code to use immutable data.

let drive(petrol, distance) =
 if distance = "far" then petrol / 2.0
 elif distance = "medium" then petrol - 10.0

Listing 6.7 Managing state with immutable values

GenerateNewState()

 Initial state

GenerateNewState()

 Intermediate
state

 Current state Figure 6.3 Generating
new states working with
immutable data

Performance of immutable data
I often hear this question asked: isn’t it much slower to make copies all the time rather
than modify a single object? The answer is yes and no. Yes, it’s slower to copy an object
graph than to make an in-place update. But unless you’re in a tight loop performing mil-
lions of mutations, the cost of doing so is negligible compared to, for example, opening a
database connection. Plus, many languages (including F#) have specific data structures
designed to work with immutable data in a highly efficient manner.

Function explicitly
dependent on state—takes
in petrol and distance, and
returns new petrol

78 Lesson 6 Working with immutable data
 else petrol - 1.0

let petrol = 100.0
let firstState = drive(petrol, "far")
let secondState = drive(firstState, "medium")
let finalState = drive(secondState, "short")

There are now a few key changes to the code. The most important is that you aren’t
using a mutable variable for your state any longer, but a set of immutable values. You
“thread” the state through each function call, storing the intermediate states in values
that are then manually passed to the next function call. Working in this manner, you
gain a few benefits immediately:

 You can reason about behavior much more easily. Rather than hidden side effects
on private fields, each method or function call can return a new version of the
state that you can easily understand. This makes unit testing much easier, for
example.

 Function calls are repeatable. You can call drive(50, "far") as many times as you
want, and it will always give you the same result. This is because the only values
that can affect the result are supplied as input arguments; there’s no “global
state” that’s implicitly used. This is known as a pure function. Pure functions have
nice properties, such as being able to be cached or pregenerated, as well as being
easier to test.

 The compiler is able to protect you in this case from accidentally misordering
function calls, because each function call is explicitly dependent on the output of
the previous call.

 You can also see the value of each intermediate step as you “work up” toward the
final state.

Initial state

Storing output
state in a value

Chaining calls
together manually

Passing immutable state in F#
In this example, you’ll see that you’re manually storing intermediate state and explicitly
passing that to the next function call. That’s not strictly necessary, and you’ll see in future
lessons how F# has language syntax to avoid having to do this explicitly.

79Modeling state
Now you try

Let’s see how to make some changes to your drive code:

1 Instead of using a string to represent how far you’ve driven, use an integer.
2 Instead of far, check whether the distance is more than 50.
3 Instead of medium, check whether the distance is more than 25.
4 If the distance is > 0, reduce petrol by 1.
5 If the distance is 0, make no change to the petrol consumption. In other words,

return the same state that was provided.

6.3.3 Other benefits of immutable data

Immutable data has a few other benefits that aren’t necessarily obvious from the preced-
ing example:

 When working with immutable data, encapsulation isn’t necessarily as important
as it is when working with mutable data. At times encapsulation is still valuable
(for example, as part of a public API), but on other occasions, making your data
read-only eliminates the need to “hide” your data.

 You’ll see more of this later, but one of the other benefits of working with
immutable data is that you don’t need to worry about locks within a multi-
threaded environment. Because there’s never any shared mutable state, you never
have to be concerned with race conditions. Every thread can access the same
piece of data as often as it likes, as it can never change.

Quick check 6.2

1 How do you handle changes in state when working with immutable data?
2 What is a pure function?
3 What impact does working with immutable data have with multithreading code?

QC 6.2 answer
1 By creating copies of existing data with applied changes.
2 A function that varies based only on the arguments explicitly passed to it.
3 Immutable data doesn’t need to be locked when working across multiple threads.

80 Lesson 6 Working with immutable data
Summary

In this lesson

 You learned about areas where mutable data structures can cause problems.
 You saw how immutable data can act as a form of state through copy-and-update

that works particularly well with pure functions, while avoiding side effects to
allow you to more easily reason about your code.

 You saw a simple example of how to create and work with immutable data in F#.

This is only the beginning, and you’ll see examples throughout this book of how
immutable data is a core part of F#. Also important is that F# encourages you to work
with immutable data by default, but because F# is a pragmatic language, it always allows
you to opt out of this by using the mutable keyword and <- operators. This is particularly
useful when working with types from the BCL and/or other libraries written in C# or VB
.NET that are inherently mutable. But just as working with immutable data in C# is a bit
of extra work and not necessarily idiomatic, so the inverse is true in F#.

Try this

1 Try modeling another state machine with immutable data—for example, a kettle
that can be filled with water, which is then poured into a teapot or directly into a
cup.

2 Look at working with BCL classes that are inherently mutable, such as
System.Net.WebClient. Explore various ways to create and modify them.

7LESSON
EXPRESSIONS AND STATEMENTS

Expressions and statements are two aspects of programming that we use often, and gen-
erally take for granted, but in F# the distinction between the two is much starker than
you might be used to. In this lesson, you’ll do the following:

 Explore the differences between statements and expressions
 Lean the pros and cons of both
 See how expressions in combination with the F# type system and compiler can

help you write code that’s more succinct as well as easier to reason about

7.1 Comparing statements and expressions

Before we dive in, let’s quickly recap the definitions of statements and expressions. Here
are two definitions taken directly from the C# documentation on MSDN—first state-
ments, and then expressions:

The actions that a program takes are expressed in statements. Common actions include declaring
variables, assigning values, calling methods, looping through collections, and branching to one or
another block of code, depending on a given condition.

—https://msdn.microsoft.com/en-us/library/ms173143.aspx
81

https://msdn.microsoft.com/en-us/library/ms173143.aspx

82 Lesson 7 Expressions and statements
An expression is a sequence of one or more operands and zero or more operators that can be
evaluated to a single value, object, method, or namespace.

—https://msdn.microsoft.com/en-us/library/ms173144.aspx

One of these is written in relatively plain (but somewhat verbose) English. The other is
plain confusing (to me, at least!). Let’s redefine the two terms more succinctly and
appropriately for this purposes of this lesson; see table 7.1.

In a nutshell, that’s it. In C#, we’re used to methods sometimes returning values, and a
few operators such as +, -, and / or null coalesce (??). But we’re not used to handling pro-
gram flow as expressions. Instead, language constructs in C# are generally all statement-
based, and rely on side effects to make changes in the system—something you’ve
already seen can be difficult to reason about. But how can you write applications when
program flow constructs are expressions?

7.1.1 Difficulties with statements

When working in languages such as C# and VB .NET, we often don’t think about the dif-
ferences between statements and expressions, as these languages mix and match both
features. I consider both of these languages to be primarily statement-based languages, in
that statements are easy to achieve, but expressions aren’t.

Here’s a simple example to help you compare and contrast statements and expressions.
We start with a method that takes in someone’s age and tries to print out a string that
describes the person.

public void DescribeAge(int age)
{
 string ageDescription = null;
 var greeting = "Hello";

 if (age < 18)
 ageDescription = "Child!";

Table 7.1 Statements and expressions compared

Returns something? Has side-effects?

Statements Never Always

Expressions Always Rarely

Listing 7.1 Working with statements in C#

Initializes a mutable
variable to a default

Creates a mutable variable to use later

First if branch

https://msdn.microsoft.com/en-us/library/ms173143.aspx

83Comparing statements and expressions
 else if (age < 65)
 greeting = "Adult!";

 Console.WriteLine($"{greeting}! You are a '{ageDescription}'.");
}

This code has several issues, all caused by the fact that if/then in C# is a way of con-
trolling program flow with a set of arbitrary, unrelated statements (see figure 7.1):

 There’s no handler for the case when age >= 65. You’re not accessing any proper-
ties on the string, so you won’t get any null reference exceptions; instead you’ll
just print out null. If you deliberately avoid setting ageDescription to any value, the
compiler will give you a warning regarding using an uninitialized variable—but
initializing it to null satisfies the compiler!

 The code accidentally assigned the string to greeting, rather than ageDescription, in
the second case.

 ageDescription needed to be declared with a default value before assigning it. This
opens the possibility of all sorts of bugs for more-complex logic.

Your initial instinct might be to say that no one makes mistakes like that, and that this is
a strawman example. But you’d be amazed how many bugs creep in from situations just
like this—particularly as a code base grows in size and as these sorts of code smells
begin to manifest themselves in strange ways.

7.1.2 Making life better through expressions

In the previous example, you saw a number of issues that are all valid C# code, yet
are mistakes that you were (hopefully!) able to identify quickly and easily. Why can’t
the compiler fix these things for you? Why can’t it help you get these things right the
first time?

Second if branch

 ageDescription =
“Child” Under 18?

Execute

 greeting =
“Adult” Under 65?

Execute

No

Figure 7.1 The flow of
an if/else statement

84 Lesson 7 Expressions and statements
The answer is that statements are weak. Compilers have no understanding that there’s
any relationship between all the branches of the if/else block. Instead, they’re different
paths to go down and execute; the fact that they’re all supposed to assign a value to the
same variable is purely coincidental.

You need a construct that’s a little bit more powerful in order for the compiler to under-
stand what you’re trying to achieve. As it turns out, you can fix all of these problems in
one fell swoop in C# by rewriting your code as follows.

private static string GetText(int age) {
 if (age < 18) return "Child!";
 else if (age < 65) return "Adult!";
 else return "OAP!";
}

public void DescribeAge(int age) {
 var ageDescription = GetText(age);
 var greeting = "Hello";
 Console.WriteLine($"{greeting}! You are a '{ageDescription}'.");
}

You’ve now split your code into two methods: one that has the single responsibility of
generating the description, and the other that calls it and uses the result later. There’s the
obvious benefit that moving the code into a separate method might improve readability,
but the real benefits are now shown by the way you’re naturally forced to structure your
code (see figure 7.2):

 You can no longer omit the else case when generating the description; if you do,
the C# compiler will stop you with the error not all code paths return a value.

 You can’t accidentally assign the description to the wrong variable in half of the
cases, because the assignment to ageDescription is performed in only one location.

 You don’t need to have a null-initialized variable floating around now either.

Listing 7.2 Working with expressions in C#

Expression with
signature int -> string

Callsite to function

85Using expressions in F#

7.2 Using expressions in F#

Let’s look at how F# treats expressions as a first-class element.

7.2.1 Working with expressions

F# firmly encourages expressions as the default way of working. In fact, virtually every-
thing in F# is an expression! For example,

 F# has no notion of a void function. Every function must return something
(although, once again, there’s a nice escape hatch if you need to write code that
has no result).

“Child”

“Adult”

“OAP”

 Under 18?

ageDescription =
value Under 65?

No

Value

Value

Value

No

Figure 7.2 The flow of an if/else expression

Quick check 7.1

1 How often do expressions return a value?
2 How often do statements use side effects?
3 What is the smallest unit of expression in C#?

QC 7.1 answer
1 Always.
2 Always.
3 A method is generally the smallest way to create an expression in C#.

86 Lesson 7 Expressions and statements
 All program-flow branching mechanisms are expressions.
 All values are expressions.

This illustrates why F# doesn’t need a return keyword at the end of a function. Because
everything is an expression, the last expression within a function must be the return
value. Compare the original C# sample to F# and see the differences.

open System
let describeAge age =
 let ageDescription =
 if age < 18 then "Child!"
 elif age < 65 then "Adult!"
 else "OAP!"

 let greeting = "Hello"
 Console.WriteLine("{0}! You are a '{1}'.", greeting, ageDescription)

The key thing to observe in this code sample is that the if/then block of code has a result
that’s assigned to ageDescription. This is different from within the C# block. In this case,
the if/then block acts more like a function, in that it has an (implicit) input (age) and an
explicit result (either "Child", "Adult", or "OAP"), which is then assigned to ageDescription.
By moving to this way of working with expressions, you get the same benefits that you
did in C# except here they’re a first-class part of the language. You don’t have to move
your code to extra methods to benefit from the extra safety that expressions provide.
As a further benefit, also notice that you’re no longer relying on mutable data. Both
string values are immutable by default, which fits nicely with this expression-based
mode of development.

7.2.2 Encouraging composability

A further benefit of expressions is that they encourage composability. Imagine that you
want to modify the original C# method in order to write the result to disk rather than
print to the console. Because you’re writing to the console as part of the whole method
(and therefore returning void), there’s nothing to act on. But if you separate the method
into two parts—one that generates a string, and another that outputs to the console—
you can reuse the first part much more easily (as well as make unit testing simpler).

Listing 7.3 Working with expressions in F#

Value binding

if/else expression
branches

87Using expressions in F#
public string DescribeAge(int age) {
 var ageDescription = default(string);
 // logic elided
 return ageDescription;
}

public void DescribeAndPrint(int age) {
 var description = DescribeAge(age);
 Console.WriteLine($"{greeting}! You are a '{ageDescription}'.");
}

7.2.3 Introducing unit

I mentioned that F# doesn’t allow methods to return void. How on earth does this work
in F#, then—particularly when the BCL probably has thousands of methods that return
void? The answer is that F# has a type called unit. You’ve probably seen this term floating
around in IntelliSense occasionally. The unit type is found in place of any method that
would in C# normally return void, but unlike void, appears in F# to be a regular object
that can get returned from any piece of code. In this way, you can say that every func-
tion returns a value—even if that value is unit. Similarly, every function can be thought of
as always taking in at least one input value, even if that value is unit.

Let’s look at functions and methods from both the preceding code and the BCL. You can
even bind the value of unit to a symbol, like any other normal value!

describeAge : age:int -> unit
System.Console.WriteLine : unit -> unit
"Test".GetHashCode : unit -> int
let x = describeAge 20 // val x : unit = ()

Now you try

Let’s quickly look at unit with a few practical examples:

1 Create an instance of unit by using standard let binding syntax; the right-hand
side of the equals sign needs to be ().

Listing 7.4 Composability through expressions in C#

Listing 7.5 Replacing void methods with functions that return unit

Reusable business logic—
now returns string

Compose business
logic with console
output

88 Lesson 7 Expressions and statements
2 Call the describeAge function and assign the result of the function call to a separate
value.

3 Check whether the two values are equal to one another. What is the result?

Why is all this unit business important? What’s wrong with void? One reason is that void
is a special case within the C# type system. Normal rules don’t apply to it, which is why
in many situations you have two versions of the same type in the BCL. A good example
is the Task type in .NET, which has both Task and Task<T>. In F#, all you need is Task<T>,
because even a function that returns nothing would be Task<unit>.

7.2.4 Discarding results

F# also tells you that you might be doing something wrong if you call a function and
don’t use the return value.

let writeTextToDisk text =
 let path = System.IO.Path.GetTempFileName()
 System.IO.File.WriteAllText(path, text)
 path

let createManyFiles() =
 writeTextToDisk "The quick brown fox jumped over the lazy dog"
 writeTextToDisk "The quick brown fox jumped over the lazy dog"
 writeTextToDisk "The quick brown fox jumped over the lazy dog"

createManyFiles()

You’ll notice a warning in the Visual Studio code editor under the first two calls in the
createManyFiles() function:

This expression should have type 'unit', but has type 'string'.
Use 'ignore' to discard the result of the expression, or 'let'
to bind the result to a name.

Listing 7.6 Discarding the result of an expression

unit isn’t quite an object
Unfortunately, despite unifying the type system, at runtime unit doesn’t behave quite like
a proper .NET object. For example, don’t try to call GetHashCode() or GetType() on it,
because you’ll get a null reference exception. Hopefully, a future version of F# will fix this,
but you can still think of unit as a singleton object if it helps you to visualize it.

Writes text to disk

Writes several
files to disk

Calls the function

89Using expressions in F#
The compiler is warning you that the writeToDisk() function is returning something (in
this case, the generated filename) and you’re simply discarding it! In this case, you
might decide to now change the code to make a note of all the filenames that were gen-
erated and collate them into a list to return to the caller.

In a pure functional language, such as Haskell, it wouldn’t make sense to discard the
value of a function call, because everything is an expression and there are no side
effects. In the impure .NET world, this isn’t the case; there are many functions that per-
form side effects such as file I/O and database access.

In this case, perhaps you aren’t interested in the resulting filename. Or replace this call
with one to ADO .NET that performs a SQL command; the result is the number of rows
updated. Again, perhaps you’re not interested in this. So, you can remove the preceding
warning by explicitly wrapping the result in the ignore function. ignore takes in a value
and discards it, before returning unit, and because F# allows you to silently ignore
expressions that return unit, the warning goes away.

let createManyFiles() =
 ignore(writeTextToDisk "The quick brown fox jumped over the lazy dog")
 ignore(writeTextToDisk "The quick brown fox jumped over the lazy dog")
 writeTextToDisk "The quick brown fox jumped over the lazy dog"

Listing 7.7 Explicitly ignoring the result of an expression

Quick check 7.2

1 What is the difference between a function returning unit and a void method?
2 What is the purpose of the ignore function in F#?

QC 7.2 answer
1 unit is a type that represents the absence of a specific value. Functions can return unit and

take it in as an argument. void is a custom feature in the C# language for methods that have no
return type.

2 ignore allows you to explicitly discard the result of a function call.

90 Lesson 7 Expressions and statements
7.3 Forcing statement-based evaluation

Moving to expressions means that you can’t get away any longer with things like unfin-
ished if/else branches, or even early return statements from functions. However, at
times you might need to work with statement-like evaluation (although it should defi-
nitely be the exception to the rule). You can do this in F# by ensuring that code in a given
branch returns unit.

let now = System.DateTime.UtcNow.TimeOfDay.TotalHours

if now < 12.0 then Console.WriteLine "It's morning"
elif now < 18.0 then Console.WriteLine "It's afternoon"
elif now < 20.0 then ignore(5 + 5)
else ()

By the way, the else branch here is optional. Because the first three branches all return
unit, F# allows you to implicitly ignore the else branch as well and it fills it in for you. In
this way, you’ve turned the if/else expression into a statement. There’s no result of the
conditional, just a set of side effects that return unit.

Of course, going with a statement-based approach means that you’re right back where
we started, with no type checks around dealing with all cases, and leading you down
the path of relying on mutable data.

Listing 7.8 Forcing statement-based code with unit

Console.WriteLine
returns unit

Ignoring an expression
to return unitOptional—explicitly returning

unit for the final case

Cryptic compiler errors
One aspect of F# 4 that I’m not especially fond of is the error messages that it spits out,
which are a throwback to F#’s OCaml roots. For example, if you create an if/else expres-
sion that returns a string value for the if branch, but forget to handle an else branch,
you’ll see an error similar to this:

This expression was expected to have type string but here has type unit

What the compiler is saying is that you’re missing the else case, so please add one that
returns a string. Thankfully, a concerted effort is being put forward by the community to
contribute changes to the error messages in the compiler to improve this situation. This
situation should be much improved in time for the next release of F#.

91Summary

Summary

In this lesson

 You learned about the differences between statements and expressions.
 You saw how by moving from statements to expressions you benefit from being

able to better reason about your code, with the added bonus that the compiler
can catch more bugs at an earlier stage.

 You saw that expressions in F# are a fundamental feature of the language,
whereas statements are shied away from—leading you down the road of writing
code in a manner that’s less likely to result in bugs.

As you move through the next set of lessons, you’ll see expressions more and more in
the language.

Try this

Try to port some statement-oriented code you’ve written in C# to F#, making it
expression-based in the process. What’s its impact? Then, create a program that can
read the user’s full name from the console and print the user’s first name only. Thinking
about expressions, can you write the application so that the main logic is expression-
based? What impact does this have on coupling to the console?

Quick check 7.3 Is it possible to work with statements rather than expressions in F#?

QC 7.3 answer Yes, using tricks such as ignore to ensure that branches return unit.

8LESSON
CAPSTONE 1

This lesson is slightly different from what we’ve covered so far. Instead of learning a
new language feature, you’ll try to solve a larger exercise that’s designed to bring
together all the lessons covered to this point in the book. In this lesson you’ll be
expected to

 Make changes to an existing F# application in Visual Studio
 Use the REPL as a development playground to help you develop solutions
 Port code from scripts into an F# application that’s compiled into an assembly
 Write code by using expressions and immutable data structures

8.1 Defining the problem

For this exercise, you’re going to work on a code base that builds on the petrol car exam-
ple from earlier in this unit. The objective is to write a simple application that can drive
the car to various destinations without running out of petrol. A basic application struc-
ture has already been written for you for the console runner, but the implementation of
the core code needs to be done:
92

93Starting small
1 Your car starts with 100 units of petrol.
2 The user can drive to one of four destinations. Each destination will consume a

different amount of petrol:
a Home—25 units
b Office—50 units
c Stadium—25 units
d Gas station—10 units

5 If the user tries to drive anywhere else, the system will reject the request.
6 If the user tries to drive somewhere and doesn’t have enough petrol, the system

will reject the request.
7 When the user travels to the gas station, the amount of petrol in the car should

increase by 50 units.

8.2 Some advice before you start

Here are a few tips before starting this exercise:

1 Use the REPL and a script file to explore various ideas. See if you can build up
everything in script form, before looking to build a standalone application. If you
get anything wrong, don’t worry! The whole point of a script is to allow you to
cheaply try out ideas; if an idea doesn’t work, try again. You want to explore the
domain in a carefree manner. When you find something that feels right, move on
to the next stage.

2 Avoid mutation by default.
3 Favor expressions and pure functions over statements.
4 Don’t worry if your code feels more procedural than functional at this stage.

Given the limited number of lessons you’ve gone through so far, that’s not a
problem.

8.3 Starting small

The easiest way to get something up and running quickly is, as usual, to start in the
REPL. One of the core differences in how I tend to approach problems in the FP world
compared to the OO world is to start by implementing small functions that I know are
more or less correct, without worrying too much about how they’ll be used later. As long
as the functions don’t rely on any shared external state, they can be used just about any-
where without a problem. With that in mind, let’s start!

94 Lesson 8 Capstone 1
8.3.1 Solution overview

You’ll see that in the src/code-listings/lesson-08 folder is a prebuilt Capstone1.sln solu-
tion for you to open. This contains a few files:

 Program.fs—The console runner of the application. This has already been written
for you, and we’ll briefly review it shortly.

 Car.fs—Contains the logic that you’ll create to implement the preceding rules.
 Scratchpad.fsx—Will be used to explore the domain and to experiment with some

code.

There’s also a Car - Solution.fs file, which contains a suggested solution. Don’t look at
this unless you really need to!

Let’s now review the Program.fs file. As you’ve already seen, this contains a main func-
tion, which takes in some arguments (argv). You won’t use them here, though.

while true do
 try
 let destination = getDestination()
 printfn "Trying to drive to %s" destination
 petrol <- driveTo(petrol, destination)
 printfn "Made it to %s! You have %f petrol left" destination petrol
 with ex -> printfn "ERROR: %s" ex.Message
0

There are some interesting bits to mention here. First, notice the try/with block, F#’s
equivalent of try/catch. It works in pretty much the same way, with support for the
equivalent of exception filters and so on. In general, functional programmers tend to
shy away from exceptions, especially as a way of managing control flow, so I don’t want
you to think about this sample as instructive—rather it’s because you haven’t learned all
the functional tools yet to give you a valid alternative!

Second, you’ll notice you’re using a while loop here. This isn’t exactly idiomatic F#, and
using a while loop forces you to use a mutable variable. But note that your mutable data
is isolated: it’s in a single place, and Visual Studio highlights it in a different color to warn
you. This is a key point of working in F#; in many applications, there will be a few

Listing 8.1 The main routine in your program

Start of a try/with
exception-handling block

Get the destination
from the user.

Get updated petrol
from core code and
mutate state

Handle any
exceptions.Return code

95Implementing core logic
places where mutation (or a side effect) is difficult to get rid of—and there’s nothing
inherently wrong with that. What is important is that you try to restrict mutation to just
those places, and favor immutability everywhere else (see figure 8.1). You’ll learn tricks
throughout the rest of this book for avoiding common mutation pitfalls, including the
preceding “while loop over state” challenge.

By doing this, you can design your core domain to be entirely pure and easy to reason
about and test, and you can isolate the bits of impurity and untestability to the console
runner.

8.4 Implementing core logic

To implement the solution, start by working from a script file. Test individual functions,
building up to larger functions, before eventually migrating over to a full-blown appli-
cation. To that end, open scratchpad.fsx in the solution in VS.

8.4.1 Your first function—calculating distances

Start by implementing a function that can figure out how many units of petrol will be
used by driving to a specific location—simple. This function should have one input—
the destination to drive to—and should return the amount of petrol required to get
there. (Don’t worry; in this example, the distance needed is always the same, regardless
of where you are.) Here’s a stub function to get you going.

Mutable
petrol

Program.fs

Car.fs

pure domain

• Impure user input
• Difficult to test
• Nondeterministic

Console
Figure 8.1 Separation between impure
Program.fs and pure business logic

96 Lesson 8 Capstone 1
/// Gets the distance to a given destination
let getDistance (destination) =
 if destination = "Gas" then 10
 /// remaining implementation elided…
 else failwith "Unknown destination!"

You can use the elif keyword for the other custom branches of code. The failwith key-
word is a quick way to throw an exception with a message—although there are other
ways (such as the raise keyword for custom exception types).

Now that you’ve written the function, you should test it. You don’t need to worry about
unit tests and the like at this point; you’ll use the script itself to check it! A couple of
example test calls are already included in the script for you:

1 First, compile the getDistance function by highlighting it and pressing Alt-Enter.
2 Execute both test cases, one at a time. They should both return true.

On its own, this function is pretty useless, so the next step will take you through writing
more functions that will then put you in a position to tie it all together.

8.4.2 Calculating petrol consumption

Next up, you need a function that can calculate the amount of petrol remaining after
driving a specific distance (assume that one unit of distance needs one unit of petrol).
This should be another simple function; here’s an example definition:

let calculateRemainingPetrol(currentPetrol:int, distance:int) : int = …

The function should behave as follows:

1 As long as the petrol is greater than or equal to the distance needed, it should
return the new petrol amount.

2 Otherwise, it should throw an exception with the message “Oops! You’ve run out
of petrol!”

3 Again, after you’ve developed this function, you should test it in isolation.

Listing 8.2 Creating a function to calculate distances

Function definition

Checking the destination
and returning an int as
an answer

Throwing an exception if
you can’t find a match

97Testing in scripts
8.4.3 Composing functions together

Now that you’ve created a couple of useful (albeit limited) functions, let’s see how to
build a larger function to pull them together. First, test in the script that you can call the
functions together.

let distanceToGas = getDistance("Gas")
calculateRemainingPetrol(25, distanceToGas) // should return 15
calculateRemainingPetrol(5, distanceToGas) // should throw

If that all worked, you can now build a proper function to orchestrate the two functions
together, driveTo. This function should take in some current petrol and a target destina-
tion. Next, work out the distance by using getDistance and use that to call calculate-
RemainingPetrol, the result of which you should return. Your function definition should
look like this:

let driveTo (petrol:int, destination:string) : int = …

8.4.4 Stopping at the gas station

The last part you need to do is to add extra logic to check whether the user went to the
gas station, and if so, to increase total petrol by 50. You can write this logic directly into
the driveTo function after you’ve called calculateRemainingPetrol; if the destination is Gas,
add 50 onto the output; otherwise, return what was output by calculateRemainingPetrol. Be
sure to only add the 50 units of petrol after the user has safely driven to the gas station
and not before (the user has to drive there first!).

8.5 Testing in scripts

Before you move over to a full-blown application, you can test this all in isolation in
your script. Here’s a simple test case you can try.

let a = driveTo(100, "Office")
let b = driveTo(a, "Stadium")
let c = driveTo(b, "Gas")
let answer = driveTo(c, "Home")

Listing 8.3 Testing orchestration of several functions

Listing 8.4 A test case in script

Calling the getDistance
function

A number of chained calls
to your top-level function

Answer should be 40

98 Lesson 8 Capstone 1
Observe that everything written so far is entirely pure. There’s no shared state, no muta-
tion. You can call these functions easily in isolation and build them into larger functions.

8.6 Moving to a full application

Now that you’ve tested this, you should be ready to move the code into a full application:

1 In the solution, open Car.fs.
2 Copy across the two helpers you wrote, getDistance and calculateRemainingPetrol.
3 Make sure that you paste them above the stub function for driveTo.
4 Copy across the implementation for driveTo from your script into the file, replac-

ing the existing stub implementation.

You should now be in a position to compile the application and run it. Figure 8.2 shows
the output.

Summary

You made it! Hopefully, that wasn’t too taxing. This capstone exercise has shown you
various elements from previous lessons, including the following:

 Working with scripts as a way of exploring a domain and developing code
 Writing expression-based, pure functional code
 Migrating from scripts to console applications

Figure 8.2 Sample
output from the
console runner

99

U
N

IT

3

Types and functions

So far, in terms of F# the language, you’ve looked at
type inference, structuring code with expressions,
and working with immutable data. But you’ve only
dealt with simple data values—int, string, and so on.
What about classes? Do we still have them in F#? If
not, what else do we use? And what about func-
tions? F# is supposed to be a functional program-
ming language, and yet we’ve barely covered them!

Don’t worry: this unit covers all these topics. You’ll
see how F#’s approach to separating data and behav-
ior works, and why it generally means that classes
are undesirable within a functional-first system. In
fact, this unit doesn’t focus on classes at all. Instead,
it presents alternative ways of modeling problems
without needing to resort to classes. (And believe me
when I say I’ve written entire full-stack applications
in F# without needing to write a single class!)

You’ll see how the rules you learned about
immutable data still apply, even when working
with larger data structures. You’ll also learn more
about F# functions: how they’re much more power-
ful than the simple methods that you’re used to,
and how you can often use simple functions instead
of classes. And, as if that’s not enough, you’ll also
learn how to construct larger applications through
namespacing and modules.

100 Unit 3 Types and functions
There’ll be more and more F# code in the coming lessons, so make sure you have an open
copy of Visual Studio at the ready with a blank .fsx file so that you can code as you go!

O
C

86
7

60
51
9LESSON
SHAPING DATA WITH TUPLES

You’ll start this unit by looking at the simplest data structure in F#, the tuple. Tuples are
a great way to quickly pass small bits of data around your code when classes or similar
elements feel like overkill. In this lesson

 You’ll see how tuples are used within F#.
 You’ll understand when to use and not use them.
 You’ll see how tuples work together with type inference to enable succinct code.
 You’ll see how tuples relate to the rest of .NET.

9.1 The need for tuples

Let’s start by considering an example that seems trivial and yet gets us in all sorts of
contortions nearly every day. The following method takes in a string that contains an
individual’s name (for example, "Isaac Abraham") and splits it into its constituent parts,
returning both the forename and surname.
101

102 Lesson 9 Shaping data with tuples
public ??? ParseName(string name) {
 var parts = name.Split(' ');
 var forename = parts[0];
 var surname = parts[1];
 return ???; }

What should this method return? There are a few options, none of which is particularly
satisfying (I should point out that these are all real answers that have been suggested to
me when I’ve posed this question!):

1 Create a dedicated DTO called Name, with properties Forename and Surname. This
works, but it’s a heavyweight approach for something as small as this one-off
function. And what if you have a second method that returns the forename, sur-
name, and age? You’ll quickly end up with many DTOs, all of which are similar,
and probably have to map between them because C# doesn’t allow you to com-
pare objects that have the same structure rather than type.

2 Return an anonymous type? Unfortunately, C# doesn’t allow anonymous types
to escape method scope; instead, you can return it as a weakly typed object, and
then use reflection or a similar process to get at the data. Doing something like
this effectively moves you from the world of the C# type system to the world of
runtime checking. Also, anonymous types are internal, so this solution doesn’t
work across assemblies.

3 The same as point 2, but this time use C#’s dynamic typing support to avoid
reflection.

4 Return an array of strings. Again, this isn’t ideal and means that the type system
isn’t working for you. If you want to return a mixture of types, you’re again stuck.

5 Out parameters. Everyone hates these! You need to first explicitly declare a vari-
able before calling a method, and the syntax is somewhat ugly (the C# team is
working to improve this in the future for C#).

The one option that I rarely hear is to return a tuple. Tuples are exactly what you need in
this case, but C# currently has no specific language support for them, so you have to rely
on the raw BCL type, System.Tuple. Here’s what it looks like (I’ve used explicit typing here
for documentation purposes, but it’s not necessary; I would normally use var).

Listing 9.1 Trying to return arbitrary data pairs in C#

103Tuple basics
public Tuple<string, string> ParseName(string name) {
 string[] parts = name.Split(' ');
 string forename = parts[0];
 string surname = parts[1];
 return Tuple.Create(forename, surname); }

Tuple<string, string> name = ParseName(“Isaac Abraham”);
string forename = name.Item1;
string surname = name.Item2;

Tuples are nice in that they allow you to pass arbitrary bits of data around, temporarily
grouped together. Tuples also support equality comparison by default, so you can com-
pare arbitrary tuples against one another (provided their generic types are the same,
and each type itself supports equality comparison). The problem is that the properties
show up as Item1, Item2, ItemN, and so forth, so you lose all semantic meaning. You usu-
ally either comment them to explain meaning, or immediately deconstruct the tuple into
its constituent parts with meaningful variable names.

9.2 Tuple basics

F#, on the other hand, has language support for tuples. You can rewrite listing 9.2 as
follows.

let parseName(name:string) =
 let parts = name.Split(' ')
 let forename = parts.[0]
 let surname = parts.[1]
 forename, surname
let name = parseName("Isaac Abraham")
let forename, surname = name
let fname, sname = parseName("Isaac Abraham")

Listing 9.2 Returning arbitrary data pairs in C#

Listing 9.3 Returning arbitrary data pairs in F#

Calling a method that
returns a tuple of
string, string

Manually deconstructing the
tuple into meaningful variables

Creating a tuple of
forename and surname

Calling a function that
returns a tuple

Deconstructing a tuple
into meaningful values

Deconstructing a
tuple directly from

a function call

104 Lesson 9 Shaping data with tuples
Let’s look at this in more detail. Most of this should translate easily from the C# example
that you saw, but the key parts of how you interact with tuples will be new.

First, instead of having to explicitly call the Tuple.Create function, you can create tuples
by separating values with a comma. Second, you can also deconstruct a tuple back into
separate parts by assigning them to different values, again with a comma. Tuples can
also be of arbitrary length and contain a mixture of types—so to create a tuple of three
values, you use syntax such as let a = "isaac", "abraham", 35.

Now you try

Let’s do a bit of hands-on work with tuples:

1 Open a blank .fsx file for experimenting.
2 Create a new function, parse, which takes in a string person that has the format

playername game score (for example, Mary Asteroids 2500).
3 Split the string into separate values.
4 Convert the third element to an integer. You can use either System.Convert.ToInt32(),

System.Int32.Parse(), or the F# alias function for it, int().
5 Return a three-part tuple of name, game, and score and assign it to a value.
6 Deconstruct all three parts into separate values by using let a,b,c = syntax.
7 Notice that you can choose arbitrary names for each element.

Indexers in F#
Unlike in C#, to index into an array or list, you need to use a dot between the value and
the index e.g. myList.[4]

Tuples and decimal numbers
Some countries (mostly those in mainland Europe) use commas to express decimals (for
example, 10,5 rather of 10.5). If you’re living in one of those countries, don’t get con-
fused! In F#, you don’t need the space separator, so let y = 10,5 is a tuple of two
numbers. It’s not a decimal separator.

105Tuple basics
9.2.1 When should I use tuples?

Tuples are lightweight data structures. They’re easy to create, with native language sup-
port. As such, they’re great for internal helper functions and for storing intermediary
state. You can imagine using them within a function as a way to package a few values in
order to easily pass them to another section of code, or as a way of specifying intent
(that two values are somehow bound to one another, by first name and surname, or sort
code and account number, and so forth).

The history of tuples in .NET
Tuples were introduced in the BCL in .NET 4, but they were part of the FSharp.Core
library since much earlier. Indeed, if you run any F# 2 code, you see that FSharp.Core has
a version of the Tuple type. Since F# 3, this type no longer exists; F# uses the BCL System
.Tuple instead.

C# 7 also has a similar kind of language-level tuple support (indeed, it even allows you to
assign names to Tuple elements). For performance reasons, a new ValueTuple type was
created that’s a struct (unlike System.Tuple). F# 4.1 also has a new struct keyword to
allow you to use the ValueType version; this is very useful for interop purposes.

Tuple helpers
F# also has two built-in functions for working with two-part tuples: fst and snd. As the
names suggest, these functions take in a two-part tuple and return either just the first
or second element in the tuple.

Quick check 9.1

1 How would you separate values in a tuple in F#?
2 What is the main distinction between tuples in F# and C# 6?

QC 9.1 answer
1 You use the comma to separate values.
2 F# has language support for tuples; C#6 doesn’t.

106 Lesson 9 Shaping data with tuples
9.3 More-complex tuples

Let’s briefly expand this discussion with a slightly more detailed look into tuples and
how they fit into the F# type system.

9.3.1 Tuple type signatures

It’s worth understanding tuple notation in F#, which is type * type * type. A three-part
tuple of two strings and an int would be notated as string * string * int. Figure 9.1 shows
a simple example.

9.3.2 Nested tuples

You can also nest, or group, tuples together. The preceding example treats all three ele-
ments as siblings; there’s no grouping of the name elements. You can fix that by creating
a nested tuple within a larger tuple, by grouping together the inner part with brackets.
You can visualize this in figure 9.2.

let nameAndAge = ("Joe", "Bloggs"), 28
let name, age = nameAndAge
let (forename, surname), theAge = nameAndAge

Listing 9.4 Returning more-complex arbitrary data pairs in F#

Figure 9.1 Creating a three-part tuple in F# and Visual Studio 2015

Creating a nested tuple

Deconstructing a tuple

Deconstructing the
same tuple, including the
nested component

string * string

(string * string) * int

Joe Bloggs

int

28

Figure 9.2 A tuple
containing a nested tuple

107More-complex tuples
Just to confirm: the type signature for nameAndAge here is (string * string) * int. It’s a two-
part tuple, the first part of which is itself a tuple of two strings, while the second part is
an integer. If you were to use the raw System.Tuple type here (and you can prove it by call-
ing GetType() on nameAndAge), it would look something like Tuple<Tuple<String, String>,
Int32>. I know which syntax I prefer!

9.3.3 Wildcards

If there are elements of a tuple that you’re not interested in, you can discard them while
deconstructing a tuple by assigning those parts to the underscore symbol.

let nameAndAge = "Jane", "Smith", 25
let forename, surname, _ = nameAndAge

This is particularly useful when you want to pull out only a certain section of a tuple,
and it’s better than assigning it to arbitrary values such as x or y. The underscore is a
symbol in F# that tells the type system (and the developer) that you explicitly don’t want
to use this value. You’ll also see in the coming lessons that wildcards are useful when
pattern matching, a form of conditional logic checking that replaces switch/case.

9.3.4 Type inference with tuples

F# can infer tuples, just as it does with a simple value, even for function arguments.

let explicit : int * int = 10, 5
let implicit = 10,5

let addNumbers arguments =
 let a, b = arguments
 a + b

Notice also that F# will also automatically genericize tuples within functions if a tuple
element is unused within a function.

let addNumbers arguments =
 let a, b, c, _ = arguments
 a + b

Listing 9.5 Using wildcards with tuples

Listing 9.6 Type inference with tuples in F#

Listing 9.7 Genericized functions with tuples

Discarding the third
element of the tuple

Explicit type signature

Type inferred to be int * int

“arguments” inferred to be int * int

Deconstructing a
four-part tuple

108 Lesson 9 Shaping data with tuples
What is the signature of arguments in this case? The compiler can infer the types of a and b
as integers, but the tuple has two other elements: c and the wildcard value. The compiler
will automatically make them generic type arguments to the addNumbers function: int * int
* ‘a * ‘b. This is a four-part tuple, of which the first two elements are integers, the third
is of type ‘a, and the fourth of type ‘b.

9.4 Tuple best practices

You’ve seen what tuples can do, but F# has other data structures, such as records (lesson
10) and discriminated unions. This section briefly outlines some best practices for using
tuples.

9.4.1 Tuples and the BCL

One of the nicest parts of F# is that it handles interoperability with both C# and VB.
There’s plenty to see on this later in the book, but as an example, you’ll see now how F#
uses tuple language support to elegantly remove the need for out parameters. Here’s an
example of trying to parse a number stored in a string by using C# and the Int32.TryParse
function.

Quick check 9.2

1 What is the type signature of nameAndAge in listing 9.4? Why?
2 How many elements are in nameAndAge?
3 What is the purpose of the wildcard symbol?
4 How many wildcards can you use when deconstructing a tuple?

QC 9.2 answer
1 (string * string) * int—a tuple first containing a nested tuple of two strings, and then an int.
2 Two elements: (string * string) and (int).
3 To explicitly discard unneeded elements of a tuple.
4 There’s no limit. You can discard as many elements of a tuple as you wish.

109Tuple best practices
var number = "123";
var result = 0;
var parsed = Int32.TryParse(number, out result);
let result, parsed = Int32.TryParse(number);

Here, the same BCL call that you’d normally have to call as a two-stage process with an
out parameter is replaced with a single call, and both the parsed value and parsing result
are returned as a tuple—much nicer!

9.4.2 When not to use tuples

F# has other types of data structures in addition to tuples, so clearly tuples aren’t the
only way of passing data around. When wouldn’t you use them?

Despite their ease of use, tuples aren’t generally a great fit for public APIs except when
the tuple size is small: typically two, or at most three, elements wide; anything larger
quickly becomes difficult to reason about. Why? Remember that tuple fields have no
specific names. The client of the tuple can choose arbitrary names for tuple fields when
deconstructing them, so it’s not easy to encode the semantic meaning behind a tuple.
Imagine you have a function that returns a tuple of string * string. What does this repre-
sent? Forename and Surname? City and Country? It could be anything.

So, although tuples are useful (as you’ll see, they can simplify complicated type signa-
tures), you still need to think about, for example, intelligently naming functions that
return tuples so that it’s obvious what the parts of the tuple represent. In the following
example, all three functions return the same data: a string * string tuple. But what do a
and b represent?

let a, b = getData()
let a, b = getBankDetails()
let a, b = getSortCodeAndAccountNumber()

Listing 9.8 Implicit mapping of out parameters to tuples

Listing 9.9 Intelligently naming functions

Declaring the “out”
result variable with
a default value Trying to parse

number in C#

Replacing “out”
parameters with a tuple
in a single call in F#

Poor naming

Improved naming

Better naming

110 Lesson 9 Shaping data with tuples
In situations like this, where you have a clear contract for a DTO that’s fairly stable,
you’ll probably prefer to use a record.

Summary

In this lesson

 You saw the most basic data structure in F#, the tuple.
 You understand that tuple support in F# is language support over the System.Tuple

type that exists in the BCL.
 You’ve seen how type inference works with tuples.
 You understand when and where tuples are best suited to being used.

Try this

Look at methods in common BCL namespaces, and try to find some that you think
should be “tupled.” (Hint: Ones with out parameters are a good start!) Then, write a
function to load a filename and last-modified date from the filesystem, using a tuple as
the return type.

Quick check 9.3

1 What’s generally considered the maximum size you should use for a tuple?
2 When should you be cautious of using tuples?

QC 9.3 answer
1 Two or three elements.
2 In public contracts, particularly when different elements of the tuple are of the same type and

open to misinterpretation.

10LESSON
SHAPING DATA WITH RECORDS

In the previous lesson, you looked at a lightweight, simple way of packaging data pieces
together with the tuple. You also saw that tuples are great in some situations, but in oth-
ers not so much. Now you’ll look at F#’s secondary data structure: the record, a more
fully featured data structure more akin to a class. In this lesson

 You’ll see what records are within F#.
 You’ll understand how records compare with C# and VB classes.
 You’ll learn how to affect changes to records while still retaining immutability.
 You’ll see tips for working with records.

Let’s start by continuing where we left off in the previous lesson and by describing a
situation where tuples aren’t suitable for exposing data. For example, a tuple wouldn’t
be suitable for a public contract of some sort where you want explicit named fields, or
somewhere that you need to expose more than two or three properties. Here’s a simple
example of a Customer type in C#.

public class Customer {
 public string Forename { get; set; }
 public string Surname { get; set; }

Listing 10.1 A basic DTO in C#

Type definition

Public, mutable
properties
111

112 Lesson 10 Shaping data with records
 public int Age { get; set; }
 public Address Address { get; set; }
 public string EmailAddress { get; set; }
}

This is often referred to as a Plain Old C# Object (POCO) or data transfer object (DTO)—
a class that’s used for the purposes of storing and transferring data, but not necessarily
any behavior. I’ve omitted the Address class for brevity, but it’s just another DTO.

That POCO is pretty nice, but there are issues with this sort of approach, all around data
integrity. First, there’s no way to guarantee that you’ll always create a valid object; for
example, you might forget to set the Address property. Second, you can also modify this
after the object is created; in fact, anyone could! You’ll probably want to enforce the con-
struction and lifetime of Customer in a safer way, as shown in the next listing.

public class Customer {
 public string Forename { get; private set; }
 public string Surname { get; private set; }
 public int Age { get; private set; }
 public Address Address { get; private set; }
 public string EmailAddress { get; private set; }

 public Customer(string forename, string surname, int age, Address

 ➥address, string emailAddress) {
 Forename = forename;
 Surname = surname;
 Age = age;
 Address = address;
 EmailAddress = emailAddress;
 }
}

Listing 10.2 Near-immutable DTOs in C#

Public read-only,
private mutable
properties

Nondefault constructor
guarantees safe
initialization of object

113
This is a definite improvement, but there’s a lot of boilerplate here! Even worse, you’re
still not guaranteeing that this type is immutable. The class itself could change its own
state later in, for example, a method. If you want to truly make this DTO immutable, you
have to manually create a read-only backing field, and then make a public getter for it. In
the interest of time and space (and our sanity), I’m not going to show that version here.

There’s another issue with this that we tend to once again take for granted as “the way
things are.” Let’s say you want to check whether two customers have the same address.
How would you check that? Here’s what you’d like to be able to do.

public class Address {
 public string Street { get; set; }
 public string Town { get; set; }
 public string City { get; set; }
}
var sameAddress = (customerA.Address == customer.Address);

Unfortunately, this will almost certainly return false, even if both addresses contain the
same address values. That’s because .NET classes perform reference equality checks by
default. Only if both addresses are the same object, existing in the same space in memory,
will this check return true. That’s not what you want! What you’re looking for is a form
of structural equality checking. You can do this in C# or VB .NET, but as it turns out, it’s a
lot of work. You need to do the following:

 Override GetHashCode().
 Override Equals().
 Write a custom == operator (otherwise, Equals and == will give different behavior!).

Listing 10.3 Comparing objects of the same type in C#

Trusting the compiler—again
You may think to yourself, “I never forget to set all the properties when creating this
class” or “It happens in only one place.” You’ll be surprised how often mistakes happen,
particularly after you start sharing a DTO across multiple parts of a system. It’s far bet-
ter to let the compiler enforce these sorts of rules on you; the problem is that it’s a pain
to write all the boilerplate in C#. That’s why tools such as ReSharper or CodeRush are
so common; they do a lot of this for you. As you’re starting to see, in F# many of these
things are baked directly into the language and compiler.

Example
Address type

Comparing two
address objects

114 Lesson 10 Shaping data with records
 Ideally, implement System.IEquatable.
 Ideally, implement System.Collections.Generic.IEqualityComparer.

Try implementing all of this by hand for all fields in the class (and the associated unit
tests) and you’ll discover that suddenly your POCO is no longer a plain C# object but a
COCO—a Complex Old C# Object!

You’d be surprised how often you’ll want some form of structural equality rather than
referential equality. There’s a reason we use tools such as ReSharper to generate this for
us: it’s not fun and is prone to errors. Even with a tool like ReSharper, the code that’s
generated needs to be maintained. Imagine that you add a property to an object and for-
get to regenerate the equality-checking code. This can lead to the worst kinds of bugs
that occur only at runtime in specific circumstances, depending on the objects being
compared.

10.1 POCOs done right: records in F#

F# records are best described as simple-to-use objects designed to store, transfer, and
access immutable data that have named fields—essentially the same thing you just tried
to achieve with a C# POCO.

10.1.1 Record basics

Let’s see how to implement the same Address type in F# so that it supports immutability
as well as implementing structural equality checking.

type Address =
 { Street : string
 Town : string
 City : string }

Believe it or not, that’s everything you need. For this, you’ll get the following:

 A constructor that requires all fields to be provided
 Public access for all fields (which are themselves read-only)
 Full structural equality, throughout the entire object graph

Listing 10.4 Immutable and structural equality record in F#

115POCOs done right: records in F#
E

H
44

8
33

30
10.1.2 Creating records

Creating records in F# is super easy. Record constructors, again, have specific language
support. Here’s how to create an instance of an Address, and then create a Customer with
that address (reuse the code sample from earlier for the declaration of the Address type).

type Customer =
 { Forename : string
 Surname : string
 Age : int
 Address : Address
 EmailAddress : string }
let customer =
 { Forename = "Joe"
 Surname = "Bloggs"
 Age = 30
 Address =
 { Street = "The Street"
 Town = "The Town"
 City = "The City" }
 EmailAddress = "joe@bloggs.com" }

Easy! Notice that you define the address inline while creating the customer. You
could’ve defined the address separately if you wanted to, as a separate let binding.

Listing 10.5 Constructing a nested record in F#

Declaring records on a single line
You can also define the record on a single line (useful for simple records) by using a semi-
colon as a separator (for example, type Address = { Line1 : string; Line2 : string }). Note
that for multiline declarations, like the rest of the language, you need to ensure that all
fields start on the same column.

I suggest you allow Visual F# Power Tools to take care of formatting for you, though—at
least while you’re taking your first steps with the language. You can highlight any decla-
ration and choose Edit > Advanced > FormatSelection (or FormatDocument) to have it
format your code in a consistent manner.

Declaring the
Customer
record type

Creating a
Customer with
Address inline

116 Lesson 10 Shaping data with records
Now that you’ve created a record, you can see in figure 10.1 that you can access fields on
the record just like “normal” C# objects.

Now see in figure 10.2 that, as with a constructor that requires all properties, you can’t
miss any of the fields when declaring an instance of a record.

Figure 10.1 Accessing
fields on an F# record

Figure 10.2 Compiler error when omitting the Town field from an Address record

All your fields are belong to us
One nice thing about having to eagerly set all fields of a record is that when you decide to
add a new field to a record, the compiler will instantly warn you of every location where you
create an instance of that record. That way, you can ensure that you never accidentally cre-
ate a record with half of it uninitialized. You might wonder how you’d deal with cases that
have only some values of a record up front. Or perhaps you want to use only some of the
fields in the record some of the time, and other times use all of them. In C#, it’s normal to
reuse a POCO for multiple purposes by omitting setting some fields.

This is again part of F# trying to guide you down the road of being explicit about this and
ultimately encoding these sorts of business rules or situations within the type system. We’ll
cover the most common answer (discriminated unions) in a later lesson, but the main
point is that the compiler forces you to populate all fields when creating a record value.

117Doing more with records
Now you try

Let’s have a look at creating your own record type now:

1 Define a record type in F# to store data on a Car, such as manufacturer, engine
size, number of doors, and so forth.

2 Create an instance of that record.
3 Experiment with formatting the record; use power tools to automatically format

the record for you.

10.2 Doing more with records

Let’s move on to looking at some more-advanced features that we get with records.

10.2.1 Type inference with records

You’ll notice that the code used to create an instance of a record (such as address and
customer) looks somewhat similar to the way you declare objects in JavaScript—a dynamic
language. Don’t be fooled! The compiler knows that these are static types, rather than
dynamic objects. Once again, the compiler has inferred the types based on the properties
assigned to the object. You can be explicit about this in a couple of ways: either by specify-
ing the type of the left-side binding, or by prefixing fields with the type name.

Quick check 10.1

1 What is the default accessibility modifier for fields on records?
2 What is the difference between referential and structural equality?

QC 10.1 answer
1 Public.
2 Referential equality compares two records to see whether they’re the same object in memory;

structural equality compares the content of two records.

118 Lesson 10 Shaping data with records
let address : Address =
 { Street = "The Street"
 Town = "The Town"
 City = "The City" }

let addressExplicit =
 { Address.Street = "The Street"
 Town = "The Town"
 City = "The City" }

I encourage you to avoid using explicit types unless you really need to, but one benefit
of choosing to prefix a field with the type is that the compiler will immediately give you
IntelliSense, as shown in figure 10.3.

F# will also infer a record type based on usage of an instance. Figure 10.4 shows an
example of a function that takes in a customer as an argument. After you’ve dotted into
the object once and accessed the first field, the compiler will kick in and realize what
you’re doing.

Note that until you access at least one property, the compiler (obviously) won’t be able
to deduce the type, so it’ll normally show as an object (or perhaps a generic type).

Listing 10.6 Providing explicit types for constructing records

Explicitly declaring
the type of the
address value

Explicitly declaring the
type that the Street
field belongs to

Figure 10.3 Creating a
record in F# with field-level
IntelliSense

Figure 10.4 Type inference
correctly identifies the type of
the address object.

119Doing more with records
10.2.2 Working with immutable records

Like regular value bindings, fields on F# records are immutable by default. But you
know that in the real world, you sometimes have to model the context of a value chang-
ing its state over time. How can you do this without mutating fields on a record? F#’s
answer to this is to provide copy-and-update syntax. Let’s see how to change a customer’s
email address and age.

let updatedCustomer =
 { customer with
 Age = 31
 EmailAddress = "joe@bloggs.co.uk" }

The idea behind this is that you provide a record with the modifications that you want to
perform on the record, and F# will then create a copy of the record with those changes
applied. In this way, you can get the best of all worlds:

 You can provide records to other sections of code without having to worry about
their values being implicitly modified without your knowledge.

 You can still easily simulate mutation through copy-and-update.
 If you want to write a function that does modify a record, you have it take in the

original version as an argument and return the new version as the output of the
function. This is exactly how LINQ works with collections (and it shouldn’t come
as a surprise to learn that the LINQ feature set is a subset of functional program-
ming for C#).

This way of working is a great fit for event-based architectures, where you record all
changes to data over time as immutable events and versions of records.

Listing 10.7 Copy-and-update record syntax

Members on records
You’ll notice that records have the standard members (for example, ToString() and Get-
HashCode()). That’s because records compile down to classes. And, as with classes, you
can create member methods on them. But this isn’t something that you’ll normally need
to do in F# (remember that records should act as DTOs) and isn’t covered in this lesson.

Creating a new
version of a record
by using the ‘with’
keyword

120 Lesson 10 Shaping data with records
If you absolutely have to—and this should be the exception to the rule—you can over-
ride immutability behavior on a field-by-field basis by adding the mutable modifier. You
might want to do this if you have a record that will be used in a tight loop, mutating
itself thousands of times a second, for example. Because records are reference types
(although it’s looking increasingly like the next version of F# will allow struct records),
every copy-and-update causes a new object to be allocated on the heap, so garbage col-
lector (GC) pressure could cause performance issues in such a situation. But I recom-
mend that the default should be to use immutable data structures initially, test
performance, and only if you see an issue, reconfigure the definition of the record. Cer-
tainly, in all applications I’ve written, this has never been an issue for me. Bottlenecks
are far more likely to occur with other parts of your application (for example, with data-
base connectivity).

10.2.3 Equality checking

You can safely compare two F# records of the same type with a single = for full, deep
structural equality checking.

let isSameAddress = (address = addressExplicit)

You can override this behavior with a few attributes that you can place on a record, but
I advise you to avoid looking them up unless you really need to, as you then need to fall
back to implementing GetHashCode() manually. Still, it’s worth knowing that there is an
escape hatch if needed.

Now you try

Let’s practically explore some of these features of records:

1 Define a record type, such as the Address type shown earlier.
2 Create two instances of the record that have the same values.
3 Compare the two objects by using =, .Equals, and System.Object.ReferenceEquals.
4 What are the results of all of them? Why?
5 Create a function that takes in a customer and, using copy-and-update syntax,

sets the customer’s Age to a random number between 18 and 45.

Listing 10.8 Comparing two records in F#

Comparing two
records by using
the = operator

121Tips and tricks with records
6 The function should then print the customer’s original and new age, before
returning the updated customer record.

Let’s wrap up this section by comparing classes and records, as shown in table 10.1.

10.3 Tips and tricks with records

Let’s briefly discuss a few extra tips on working with records.

10.3.1 Refactoring

Don’t forget that VFPT has support for useful refactoring tools to make life even easier.
One such feature enables you to rename refactoring on record fields (F2). Another auto-
matically populates all fields in a record when creating one, which you can then fill in:

1 Start creating an instance of a record.
2 Set at least one field on the record.
3 Move the caret to the start of the field declaration and wait for the lightbulb to

appear.

Table 10.1 Comparing classes and records

.NET classes F# records

Default mutability of data Mutable Immutable

Default equality behavior Reference equality Structural equality

Copy-and-update syntax? No Rich language support

F# type-inference support? Limited Full

Guaranteed initialization No Yes

Quick check 10.2

1 At runtime, what do records compile into?
2 What is the default type of equality checking for records?

QC 10.2 answer
1 Classes.
2 Structural equality.

122 Lesson 10 Shaping data with records
4 Press Ctrl-period and choose Generate Record Stubs from the pop-up menu, as
shown in figure 10.5.

You can configure how to fill in missing fields via VFPT by choosing Tools > Options >
F# Power Tools > Code Generation. The dialog box in figure 10.6 opens, displaying your
options.

10.3.2 Shadowing

Copy-and-update is a common feature to use in F# when working with records, but it
doesn’t necessarily feel right to create different names for value bindings every time you
update a record. That’s why F# allows you to reuse existing named bindings. This fea-
ture is called shadowing. With shadowing, you can write code as follows:

let myHome = { Street = "The Street"; Town = "The Town"; City = "The City" }
let myHome = { myHome with City = "The Other City" }
let myHome = { myHome with City = "The Third City" }

Notice here that you’re reusing the binding myHome rather than using myHome, myHome1, and
myHome2. This isn’t the same as mutating myHome. Instead, you’re reusing the same symbol
with a new value. You can observe this in VS by highlighting a symbol and witnessing
that the editor highlights references to the instance of the symbol, as shown in figure 10.7.

Figure 10.5 Automatically
generating record stubs
through VFPT

Figure 10.6 Configuring how VFTP autogenerates record stubs

123Summary
10.3.3 When to use records

Records are probably the most common type of data structure in F#. They’re more pow-
erful than tuples, with the ability to explicitly name fields as well as using a neat copy-
and-update syntax that tuples don’t have. For a C# or VB .NET developer, they’re a
natural fit for all the times you need simple DTOs within your applications. Finally, as
records compile down into classes, they can be consumed easily in other .NET lan-
guages and systems expecting classes—because that’s all they really are; it’s just that F#
wraps over them with an extremely smart compiler.

Tuples still have their place within F#, particularly when you’re working with small bits
of short-lived data, and especially if they’re used in a context where the data isn’t
exposed publicly.

Summary

In this lesson

 You saw the most common data structure in F#, the record.
 You learned the typical use cases that F# records are designed to solve.

Figure 10.7 Visual Studio
highlighting referencing to a
specific instance of a symbol

Quick check 10.3

1 What is shadowing?
2 When should you use records?

QC 10.3 answer
1 The ability to reuse an existing symbol for a new value.
2 For public contracts, typically where tuples aren’t a good fit because of the number of fields.

124 Lesson 10 Shaping data with records
 You saw how type inference works with records.
 You learned about a powerful alternative to working with mutable data, called

copy-and-update.

Try this

1 Model the Car example from lesson 6, but use records to model the state of the Car.
2 Take an existing set of classes that you have in an existing C# project and map as

records in F#. Are there any cases that don’t map well?

11LESSON
BUILDING COMPOSABLE FUNCTIONS

It seems strange to consider that we’re on lesson 11 and haven’t spent much time talking
about functions! But you’ve already seen (and built your own) functions by now, so
you’ve gained a little exposure to them. You can already do many of the same sorts of
things you’d do with methods in C# or VB .NET. This lesson digs into how powerful
functions in F# really are:

 You’ll gain a proper understanding of F# functions compared to methods.
 You’ll learn about a powerful technique called partial application.
 You’ll learn about two important operators in F# that help build larger pieces of

code: pipeline and compose.

Have an energy drink before you start this lesson, as it’s probably the one lesson in this
book that will throw the most at you in terms of F# features and syntax!

We tend to think of functions and methods as interchangeable terms. But let- bound
functions in F# are an entirely different beast compared to methods. These are the sort of
functions that you’ve already been defining so far—bound to a value through the let
keyword (you can create classes with methods in F#, although I haven’t shown the syn-
tax for this yet). Let’s see a quick comparison of methods and functions, as shown in
table 11.1.
125

126 Lesson 11 Building composable functions
Previous lessons covered some of these points (for example, functions always return
something, even if that something is the unit object), but you’ll almost certainly be sur-
prised by others. Let’s start by discussing the one term in table 11.1 that you might not
know yet: currying.

11.1 Partial function application

Partially applied functions are one of the most powerful parts of the function system in
F# as compared to C#. These functions open up all sorts of interesting possibilities. Let’s
start by clarifying something you probably already noticed from previous examples: the
following two functions appear to do the same thing, except that one uses brackets
(parentheses) and commas for input arguments (like C#), and one doesn’t. The former is
referred to as tupled form and the latter as curried form.

let tupledAdd(a,b) = a + b
let answer = tupledAdd (5,10)

let curriedAdd a b = a + b
let answer = curriedAdd 5 10

Many developers are frightened when they see the explanation of curried functions, and
to be honest, you don’t need to understand it. To make a long story short, the main dif-
ferences to take away from listing 11.1 are as follows:

 Tupled functions force you to supply all the arguments at once (like C# methods),
and have a signature of (type1 * type2 … * typeN) -> result. F# considers all the
arguments as a single object, which is why the signature looks like a tuple signa-
ture—that’s exactly what it is.

Table 11.1 Comparing methods and functions

C# methods F# let-bound functions

Behavior Statements or expressions Expressions by default

Scope Instance (object) or static (type) Static (module level or nested function)

Overloading Allowed Not supported

Currying Not supported Native support

Listing 11.1 Passing arguments with and without brackets

Tupled function
int * int -> int

Curried function
int -> int -> int

127Partial function application
 Curried functions allow you to supply only some of the arguments to a function,
and get back a new function that expects the remaining arguments. The following
listing shows an example, illustrated in figure 11.1. Curried functions have a sig-
nature of arg1 -> arg2 … -> argN -> result. You can think of these as a function that
itself returns a function (please feel free to take a moment to let that sink in).

let add first second = first + second
let addFive = add 5
let fifteen = addFive 10

Now that you know what curried functions are, let’s have a look at some cases where
they offer practical advantages over tupled functions.

Listing 11.2 Calling a curried function in steps

Creating a function
in curried form

Partially applying “add” to get
back a new function, addFive
with signature int -> int

Calling addFive

let add first second = first + second

Same as
let add 5 second = 5 + second

 let fifteen = addFive 10

 let addFive = add 5

Figure 11.1 Partially applying a function to create a new function

Partial application and currying
You might have heard the terms curried and partially applied functions before. The two
are sort of related. A curried function is a function that itself returns a function. Partial
application is the act of calling that curried function to get back a new function.

128 Lesson 11 Building composable functions

11.2 Constraining functions

One easy use for curried functions is in creating a more constrained version of a function,
sometimes known as a wrapper function. You probably use methods like this all the time
when you want to make functions easier to call when, for example, a subset of the argu-
ments are the same across multiple calls. Let’s look at a simple set of wrapper functions
that can create DateTime objects. The first one takes in year, month, and day; the second
only the month and day for this year; and the final one only the day for this year and
month.

open System
let buildDt year month day = DateTime(year, month, day)
let buildDtThisYear month day = buildDt DateTime.UtcNow.Year month day
let buildDtThisMonth day = buildDtThisYear DateTime.UtcNow.Month day

Notice that each function cascades up to a more-generalized version. This is nice, but with
curried functions, you can make the two wrapper functions much more lightweight.

let buildDtThisYear = buildDt DateTime.UtcNow.Year
let buildDtThisMonth = buildDtThisYear DateTime.UtcNow.Month

This code is identical to listing 11.2, except here you don’t have to explicitly pass
through the extra arguments to the right-hand side; F# automatically does that for you.
You wouldn’t have been able to do this form of lightweight wrapping with a function in
tupled form, because you need to pass all values of the tuple together. Of course, Visual
Studio will automatically infer that these are functions, and not simple values, as you
can see in figure 11.2.

Listing 11.3 Explicitly creating wrapper functions in F#

Listing 11.4 Creating wrapper functions by currying

Quick check 11.1 What’s the difference between a curried function and a tupled function?

QC 11.1 answer A tupled function behaves as a C# function; all arguments must be supplied. Cur-
ried functions allow you to supply a subset of the arguments, and get back a new function that expects
the remaining arguments.

129Constraining functions
It’s worth remembering that partially applied functions work from left to right: you par-
tially apply arguments starting from the left side and then work your way in. That’s
why you place year as the first argument: it’s the most general argument and the one that
you want to partially apply first.

Now you try

Create a simple wrapper function, writeToFile, for writing data to a text file:

1 The function should take in three arguments in this specific order:
a date—the current date
b filename—a filename
c text—the text to write out

2 The function signature should be written in curried form (with spaces separating
the arguments).

3 The body should create a filename in the form {date}-{filename}.txt. Use the System
.IO.File.WriteAllText function to save the contents of the file.

4 You can either manually construct the path by using basic string concatenation,
or use the sprintf function.

5 You should construct the date part of the filename explicitly by using the ToString
override—for example, ToString("yyMMdd"). You need to explicitly annotate the type
of date as System.DateTime.

If you’ve done this correctly, your function should have a signature as shown in figure
11.3. It’s really important to look at the signature of functions like this so that you learn
to understand what’s happening.

The body of the function should look something like the following listing.

Figure 11.2 Syntax highlighting for curried functions in Visual Studio

Figure 11.3 Creating a curried function in F#

130 Lesson 11 Building composable functions
open System
open System.IO
let writeToFile (date:DateTime) filename text =
 let path = sprintf "%s-%s.txt" (date.ToString "yyMMdd") filename
 File.WriteAllText(path, text)

6 You should now be able to create more-constrained versions of this function.

let writeToToday = writeToFile DateTime.UtcNow.Date
let writeToTomorrow = writeToFile (DateTime.UtcNow.Date.AddDays 1.)
let writeToTodayHelloWorld = writeToToday "hello-world"

writeToToday "first-file" "The quick brown fox jumped over the lazy dog"
writeToTomorrow "second-file" "The quick brown fox jumped over the lazy dog"
writeToTodayHelloWorld "The quick brown fox jumped over the lazy dog"

There are many useful applications of curried functions, such as dependency injection
at the function level (as you’ll see in lesson 12), but curried functions also work well in
tandem with another of F#’s functional features: pipelines.

Listing 11.5 Creating your first curried function

Listing 11.6 Creating constrained functions

Creating a constrained version
of the function to print with
today’s date

Creating a more-
constrained version to print

with a specific filename

Calling a constrained
version to create a file with
today’s date and “first-file”

Calling the more-constrained
version—only the final
argument is required

Quick check 11.2 Name at least two differences between C# methods and F# let-bound
functions.

QC 11.2 answer Functions are always static; methods can be instance-level. Functions don’t sup-
port overloading but do support currying.

131Constraining functions
11.2.1 Pipelines

Wrapper functions are a nice benefit of curried functions, but they’re not the main bene-
fit; that’s where pipelines come in. Regardless of the language you’re in, you’ll often
need to call methods in an ordered fashion, with the output of one method acting as the
input to the next. Let’s see an example of a simple set of methods that you want to
orchestrate together:

1 Get the current directory.
2 Get the creation time of the directory.
3 Pass that time to the function checkCreation. If the folder is older than seven days,

the function prints Old to the console and otherwise prints New.

You might write code that looks like the following listing.

let time =
 let directory = Directory.GetCurrentDirectory()
 Directory.GetCreationTime directory
checkCreation time

This isn’t bad, but you have a set of temporary variables that are used to pass data to the
next method in the call. And if the chain was bigger, it’d quickly get unwieldy. You
could try implicitly chaining these methods together, as shown in the following listing.

checkCreation(
 Directory.GetCreationTime(
 Directory.GetCurrentDirectory()))

This is less code, and it’s now clear that a specific relationship exists between these func-
tions. But the problem is that the order in which you read the code is now the opposite of
the order of operation. That’s definitely not what you want! You want something that
looks like figure 11.4.

Listing 11.7 Calling functions arbitrarily

Listing 11.8 Simplistic chaining of functions

Using the temporary value in
a subsequent method call

Temporary value
to store the
directory

Explicitly nesting
method calls

132 Lesson 11 Building composable functions
Luckily, F# has a special operator called the forward pipe that, much like currying, is a
simple yet powerful feature. It looks like this: arg |> function. That doesn’t mean much,
so let’s explain it another way:

Take the value on the left-hand side of the pipe, and flip it over to the right-hand side as the
last argument to the function.

In other words, given a function call addFive x, instead of calling it as addFive 10, you can
call 10 |> addFive. The result is the same; it’s simply another way of expressing the same
code. The beauty of this is that as long as the output of one function matches the input of
the next one, any function can be chained with another one. This simple rule means that
you can rewrite listing 11.8 as follows.

Directory.GetCurrentDirectory()
|> Directory.GetCreationTime
|> checkCreation

Now your code reads like it operates! Note that you could even have placed the unit
argument for GetCurrentDirectory—the () object—at the head of the pipeline, but in this
case, I’ve left it in place.

You’ll find that the pipeline is extremely useful for composing code together into a
human-readable domain-specific language (DSL). And because pipelines operate on the
last argument of a function, you can quickly create code that looks like the following.

Listing 11.9 Chaining three functions together using the pipeline operator

getCurrentDirectory getCreationTime checkCreation
() string DateTime string

Figure 11.4 Logical flow of functions

Returns a string

Takes in a DateTime,
prints to the console

Takes in a string,
returns a DateTime

133Constraining functions
let answer = 10 |> add 5 |> timesBy 2 |> add 20 |> add 7 |> timesBy 3

loadCustomer 17 |> buildReport |> convertTo Format.PDF |> postToQueue

let customersWithOverdueOrders =
 getSqlConnection “DevelopmentDb”
 |> createDbConnection
 |> findCustomersWithOrders Status.Outstanding (TimeSpan.FromDays 7.0)

This might look similar to a feature that already exists in C# and VB: extension methods.
But they’re not quite the same, as you can see in table 11.2.

11.2.2 Custom fonts

Although VS uses Consolas by default, you might want to try the freely available Fira-
Code font, a monospace font that supports ligatures. This font can represent custom
operators much more nicely.

Unfortunately, Visual Studio doesn’t support all of the ligatures (unlike VS Code), but
most, including the pipeline operator, are rendered correctly, as shown in figure 11.5.

Listing 11.10 Sample F# pipelines and DSLs

Table 11.2 Extension methods vs. curried functions

C# extension methods F#

Scope Methods must be explicitly designed
to be extension methods in a static
class with the extension point deco-
rated with the this keyword.

Any single-argument .NET method
(including the BCL) and all curried
functions can be chained together.

Extension point First argument in method signature. Last argument in function.

Currying support None. First class.

Paradigm Not always a natural fit for OO para-
digm with private state.

Natural fit for stateless functions.

Piped function chain

An example DSL for
working with customer

reports as a pipeline

Figure 11.5 Using the FiraCode font in Visual Studio 2015

134 Lesson 11 Building composable functions
Now you try

Let’s revisit the simple driving and petrol example from lesson 6 and see whether you
can make the code more elegant by using pipelines. Recall that the original code looked
something like the following.

let startingPetrol = 100.0
let petrol1 = drive(petrol, "far")
let petrol2 = drive(petrol1, "medium")
let petrol3 = drive(petrol2, "short")

Instead, I now want you to consume this code by using pipelines. Notice that in the pre-
vious pipeline example, you were working with functions that took only a single argu-
ment; this one takes in two arguments: the state (petrol) and the distance travelled.
When you want to use pipelining, remember that the last argument is the one that gets
flipped over to the left side of the pipe. Follow these steps:

1 Take the existing petrol function from listing 6.7 in chapter 6.
2 Convert the function from tupled form to curried form (remove commas and

brackets).
3 The data that should be piped through should be the last argument—so in this

case, the amount of petrol.

Your code should now look like this listing and can be consumed as follows.

let drive distance petrol = // code elided…
let startPetrol = 100.0

startPetrol
|> drive "far"
|> drive "medium"
|> drive "short"

When should you use pipelines? Generally, whenever you have a piece of data that log-
ically flows between a set of functions. That’s a wooly answer, but an element of this
comes with experience (like many features in programming languages), as well as

Listing 11.11 Review of existing petrol sample

Listing 11.12 Using pipelines to implicitly pass chained state

State as a result
first function call

Output of first function
call is passed into
second function call

drive function
rewritten as a curried
function with state as
the final argument

Starting state

Implicitly passing
state in a chain

135Composing functions together
personal preference. Some people prefer to pipeline everything; others use pipelining
only if they have at least several functions in the chain. My recommendation is to trust
your eyes. What reads better: – customer |> saveToDatabase or saveToDatabase customer? There’s
no hard-and-fast rule; the choice often depends on context. But the more you code, and
the more of other peoples’ code that you see, the more confidence you’ll gain to experi-
ment with pipelines yourself.

11.3 Composing functions together

The last element to touch on in this lesson is the somewhat less common compose oper-
ator (>>), which is useful to be aware of. Compose works hand in hand with the pipeline
operator and lets you build a new function by plugging a set of compatible functions
together.

Let’s revisit the file-processing pipeline from figure 11.4. If you start thinking about this
as a composed functional pipeline, you could name the behavior of this entire pipeline
something like checkCurrentDirectoryAge. In this context, the only elements that are of inter-
est are the initial input and the final output. The rest is effectively intermediate state. As
such, you could now rewrite the original pipeline chain from listing 11.9 as follows.

let checkCurrentDirectoryAge =
 Directory.GetCurrentDirectory
 >> Directory.GetCreationTime
 >> checkCreation
let description = checkCurrentDirectoryAge()

Listing 11.13 Automatically composing functions

Quick check 11.3

1 Which argument to a function is one that can be flipped over a pipeline?
2 Can you use C# or VB .NET methods with the pipeline?

QC 11.3 answer
1 The last argument to a curried function.
2 Yes, if they take in only a single argument.

Creating a function
by composing a set
of functions together

Calling the newly
created composed
function

136 Lesson 11 Building composable functions
This code does the same as that in listing 11.9, except you can view this as, “Plug these
three functions together, and give me back a new function.” As long as the result of the
previous function is the same type as the input of the next function, you can plug them
together indefinitely; see figure 11.6.

As you start out with F#, you probably won’t find yourself using the compose operator a
great deal. But it’s worth knowing, and when you get more comfortable with it, it’ll
allow you to generate extremely succinct and readable code.

Summary

Another sizeable lesson! Don’t worry—for the next couple of lessons, we’ll slow down a
little and let you catch your breath! In this lesson

 You learned about the differences between methods and functions in F#.
 You saw the differences between curried and tupled functions.
 You learned about the pipeline operator.
 You learned how F# allows you to natively build larger functions from smaller

functions by using the compose operator.

Figure 11.6 Composing together three functions to create a
new function

Quick check 11.4

1 What operator do you use for composing two functions together?
2 What rule do you need to adhere to in order to compose two functions together?

QC 11.4 answer
1 The >> operator is used for composition.
2 The output of the first function must be the same type as the input of the second function.

137Summary
Try this

Take an existing .NET method in the BCL, or your existing code. Try porting the code to
F#, and see what impact it has when the function is curried as opposed to tupled. Then,
try looking through an existing project where you are composing methods together
manually by calling one method and immediately supplying the result to the next
method. Try to create a composed function that does the same thing.

12LESSON
ORGANIZING CODE WITHOUT CLASSES

So far you’ve learned all about relatively low-level elements of F#: language syntax,
tuples, records, and functions, but you haven’t yet seen how to organize larger amounts
of code that should logically be grouped together. In this lesson

 You’ll review namespaces in F#.
 You’ll cover F# modules, a way to statically group behaviors in a library.
 You’ll see how to use both namespaces and modules within a standalone

application.

Organizing code elements can be tricky in the OO world, not just in terms of namespac-
ing, but in terms of responsibilities. We often spend a lot of time looking at whether
classes obey concepts such as single responsibility, or moving methods from one class to
another along with associated state. I think that the way things work in F# is much,
much simpler. We’re not so worried about classes or inheritance or behaviors and state.
Instead, because we’re typically using stateless functions operating over immutable
data, we can use alternative sets of rules for organizing code. By default, follow these
simple rules:

 Place related types together in namespaces.
 Place related stateless functions together in modules.
138

139Using namespaces and modules
That’s pretty much it for many applications. So, the obvious questions are, “What are
namespaces in F#?” and “What are modules?” Let’s take a look.

12.1 Using namespaces and modules

Let’s start by learning about the two core elements in F# for organizing code.

12.1.1 Namespaces in F#

Namespaces in F# are essentially identical to those in C# and VB in terms of functional-
ity. You use namespaces to logically organize data types, such as records (for example, a
Customer type), as well as modules. Namespaces can be nested underneath other name-
spaces in a hierarchy; again, this should be nothing new to you. You also can open name-
spaces in order to avoid having to fully qualify types or modules, and you can share
namespaces across multiple files. Of course, Visual Studio provides IntelliSense for
types as you dot into namespaces, as in C# or VB .NET (see figure 12.1).

You can observe in figure 12.1 that you can manually access functions through a fully
qualified namespace, or you can open the namespace, after which you can access the
static class File directly. Essentially, this is the same as what you already know in C#.

12.1.2 Modules in F#

One thing that namespaces can’t hold are functions—only types. You use modules in F#
to hold let-bound functions. But in F#, modules can also be used like namespaces in that
they can store types as well. Depending on your point of view, you can think of F# mod-
ules in one of two ways:

Figure 12.1 Accessing the System.IO namespace functionality

140 Lesson 12 Organizing code without classes
 Modules are like static classes in C#.
 Modules are like namespaces but can also store functions.

You can create a module for a file by using the module <my module> declaration at the top of
the file (for example, module MyFunctions). Any types or functions declared underneath this
line will live in the MyFunctions module.

Like static classes, modules can live within an enclosing namespace (which can be
nested). It’s important to note that in F# you can declare both the namespace and mod-
ule simultaneously. So module MyApplication.BusinessLogic.DataAccess means that you have a
module DataAccess that resides in the MyApplication.BusinessLogic namespace. You don’t
have to declare the namespace explicitly first.

12.1.3 Visualizing namespaces and modules

Figure 12.2 may be helpful for visualizing the relationship between namespaces and
modules in F#.

You can observe several things here. You have two files that will be compiled into a sin-
gle assembly, both of which share the same logical namespace, MyApplication.BusinessLogic.
Shared domain types are stored in a single file, Domain.fs. Functionality operating on
data access is stored in the DataAccess module in the same namespace (which, as men-
tioned earlier, can be declared inline of the module declaration).

Namespace: MyApplication.BusinessLogic

module MyApplication.BusinessLogic.DataAccess

type private DbError = { … }
let private getDbConnection() = ...

let saveCustomer = ...
let loadCustomer = ...

module private Helpers =
 let handleDbError ex = ...
 let checkDbVersion conn = ...

namespace
MyApplication.BusinessLogic

type Customer = {
 Name: string
 Age: int }

Type Account = {
 Number : int
 Owner : Customer }

dataAccess.fsdomain.fs

References

Figure 12.2 Visualizing the typical relationship between namespaces and modules

141Using namespaces and modules
In dataAccess.fs, you don’t need to explicitly open MyApplication.BusinessLogic to get
access to the Customer and Account types, because the module lives in that namespace any-
way, just as you would see with two C# classes living in the same namespace. And, as
with C# classes, you won’t automatically get access to all types in the entire namespace
hierarchy—just to types that live in the same namespace as the module is declared in.

Also, note the nested module, Helpers, which lives inside the DataAccess module. It might
help to think of this as an inner (nested) static class. You can use nested modules as a
way of grouping functions if you find your modules getting too large; if you’re not sure
of the full namespace of a module (or function), you can always mouse over it to under-
stand where it lives. Also, notice the private access modifier; see section 12.3.1 for more
on this. Figures 12.3 and 12.4 show how functions in both modules and nested modules
operate.

Figure 12.3 loadCustomer, a function living in a module that’s declared in a
namespace

Figure 12.4 checkDbVersion, declared in a nested module

142 Lesson 12 Organizing code without classes
12.1.4 Opening modules

When I first started using F#, I preferred thinking of modules as static classes. Nowadays,
I find it more natural to think of them as namespaces that happen to also be able to store
functions. One of the reasons for this is that modules can be opened, like namespaces.

Opening modules is useful when you don’t want to continually refer to the module
name in order to access types or functions. Instead, you can call the functions directly as
though they were defined in the current module, as shown in the next listing.

open CustomerFunctions

let isaac = newCustomer "isaac"
isaac |> activate |> setCity “London” |> generateReport

You’ll find opening of modules to be a valuable tool in your arsenal when creating sim-
ple, easy-to-use DSLs. Callers can open the module with your functions in it and access
the behavior directly.

Listing 12.1 Opening modules

Using static classes
Something similar to opening modules was added to the latest version of C#, whereby
static classes can now be added to a using declaration. In this way, static classes gain a
lot of extra flexibility for making more succinct code. Although F#4 can open modules, it
currently can’t open static classes, although there’s an accepted feature request on the
F# language design website (https://github.com/fsharp/fslang-suggestions) to add
support for this, so hopefully it’ll be added in time for the next release.

Opening the
CustomerFunctions module

Unqualified access to functions
from within the module

A word on domain-specific languages
Writing DSLs is particularly common in F# because of the syntax of the language (no
brackets or braces, pipelining, and so forth). With a few simple functions, you can quickly
create a set of behaviors that are human-readable; it’s not uncommon to write code that
at a top level a business analyst can read and understand. But you should also be careful
not to take DSLs too far with, for example, custom operators; it can be difficult to under-
stand what they’re doing, and if taken too far, they can sometimes be difficult to learn
how to use (while admittedly being extremely powerful).

https://github.com/fsharp/fslang-suggestions

143Moving from scripts to applications
12.1.5 Namespaces vs. modules

Because modules can be opened, you might think that they’re a complete replacement
for namespaces, but they’re not. Unlike namespaces, a module can’t span multiple files.
Nor can you create a module that has the same fully qualified name as a namespace in
another file. For this reason, you should still use namespaces as in C#, to logically group
types and modules. Use modules primarily to store functions, and secondly to store
types that are tightly related to those functions.

12.2 Moving from scripts to applications

We’ll now look at how you can port some existing code from a script into a full-blown
project.

Now you try

We discussed in lesson 3 the notion of moving from scripts to projects, and did this for a
simple application. You’ll try it again now, but this time using modules and namespaces
as you learn some features about them along the way:

1 Reopen MyFirstFSharpApp that you created earlier, or create a brand-new F# console
application.

2 Create a new F# source file called Domain.fs by right-clicking the project and
selecting Add New Item, and then selecting Code > Source File, as shown in fig-
ure 12.5. This file will hold the types that make up your domain. Recall that .fs
files act like .cs files: they live inside a project and are compiled into a full-blown
.NET assembly.

Quick check 12.1

1 Can you store values in namespaces?
2 Can you store types in modules?

QC 12.1 answer
1 No. Namespaces can store only types or modules.
2 Yes. Modules can hold types, values, and nested modules.

144 Lesson 12 Organizing code without classes
3 Create a second file, called Operations.fs. This will contain the functionality that
acts on the domain.

4 Go into Domain.fs. You’ll see it contains a module declaration, which you can
delete. Instead, add the declaration for a Customer record inside the Domain name-
space. You declare the namespace that code is in by using the namespace <my
namespace> declaration at the top of the file (for example, namespace MyTypes). Unlike
C#, you don’t need to add curly braces to live within this namespace (or even the
F# equivalent—indent your code).

namespace Domain

type Customer =
 { FirstName : string
 LastName : string
 Age : int }

Now the Customer type lives within the Domain namespace. Next, you’ll create your module
to contain some functionality that can act on the Customer:

Listing 12.2 Declaring types within a namespace

Figure 12.5 Creating a new .fs file in a project

Namespace declaration

Declaring a type to live
within the namespace

145Moving from scripts to applications
1 Open the Operations.fs file. You’ll see it already has the module declaration for you.
2 Underneath this, open the Domain namespace.

At this point, you need to watch out for file ordering in the Solution Explorer.
Domain.fs must live above Operations.fs in order for the Operations module to
access it; see figure 12.6. If it’s placed below, you can highlight Domain.fs in Solu-
tion Explorer and press the Alt-up arrow to move it up the dependency order, or
right-click and use the Move Up context menu. If this isn’t done, you’ll receive
the error message shown in figure 12.7.

3 Create a couple of functions that act on Customer; for example
a getInitials gets the initials of the customer.
b isOlderThan tests whether a customer is older than a certain age.

Your module should look something like the following listing.

module Operations
open Domain

let getInitials customer = customer.FirstName.[0], customer.LastName.[0]
let isOlderThan age customer = customer.Age > age

Listing 12.3 Declaring a module that references a namespace

Figure 12.6 Operations.fs
must live below Domain.fs to
access Domain.fs from
Operations.fs.

Figure 12.7 Trying to
access an inaccessible
namespace

Declaring a module

Opening the Domain namespace

146 Lesson 12 Organizing code without classes
Make sure all files are saved; you’re now ready to hook them together in Program.fs.
4 Ensure that Program.fs is the last (lowest) file in the project so that it can access

both Operations and Domain.
5 You’ll notice that you don’t have a module declaration in this file. The last file in

an application can omit the module declaration and have it taken from the file-
name (for example, Program).

6 Add open statements for both Domain and Operation.
7 Have the main implementation create a customer, and print out whether the cus-

tomer is an adult (older than 18) or a child.

open Domain
open Operations

[<EntryPoint>]
let main argv =
 let joe = { FirstName = "joe"; LastName = "bloggs"; Age = 21 }

 if joe |> isOlderThan 18 then printfn “%s is an adult!” joe.FirstName
 else printfn “%s is a child.” joe.FirstName

 0

Listing 12.4 Declaring a module that references a namespace

Opening custom
namespaces

Creating a
customer

Creating a simple
pipeline for a
function chain

Quick check 12.2

1 In what order are files read for dependencies in F#?
2 When can you omit a module declaration in an F# file?

QC 12.2 answer
1 Downward—the first file in the project has no dependencies, and the last has no dependents.
2 For the last file in the project.

147Tips for working with modules and namespaces
12.3 Tips for working with modules and namespaces

Let’s wrap up by looking at a few miscellaneous features of modules and namespaces.

12.3.1 Access modifiers

By default, types and functions are always public in F#. If you want to use a function
within a module (or a nested module) but don’t want to expose it publicly, mark it as
private.

12.3.2 The global namespace

If you don’t supply a parent namespace when declaring namespaces or modules, it’ll
appear in the global namespace, which is always open. Both Domain and Operations live in
the global namespace.

12.3.3 Automatic opening of modules

You can also have a module automatically open, without the caller explicitly having to
use an open declaration, by adding the [<AutoOpen>] attribute on the module. With this
attribute applied, opening the parent namespace in the module will automatically open
access to the module as well. You might use this if you have several modules that con-
tain different functionality within the same namespace and would like to open them all
automatically. As long as your program file has access to the containing namespace, you
can completely omit the open declarations. AutoOpen is commonly used when defining
DSLs, as you can open a namespace and suddenly get access to lots of functions and
operators.

12.3.4 Scripts

Some of the preceding rules work slightly differently with scripts. For starters, you can
create let-bound functions directly in a script. This is possible because an implicit mod-
ule is created for you based on the name of the script (similar to automatic namespac-
ing). You can explicitly specify the module in code if you want, but with scripts it’s
generally not needed.

148 Lesson 12 Organizing code without classes

Summary

That’s it for namespaces and modules! In this lesson

 You saw how we typically separate out types and behavior through namespaces
and modules.

 You saw how to create and access namespaces in F#.
 You learned about the module system in F#.
 You built a sample application that uses namespaces and modules to separate out

functionality, before calling both elements within a program file.

Try this

Create a sample module containing functions that emulate a simple calculator in a mod-
ule. Experiment with calling the functions from a separate script file. Then, experiment
with the [<AutoOpen>] attribute; what impact does it have on the caller’s code in terms of
succinctness?

Quick check 12.3

1 What is the AutoOpen attribute for?
2 What is the default access modifier for values in modules?

QC 12.3 answer
1 Automatically opening access to the module when the parent namespace is opened.
2 Public.

13LESSON
ACHIEVING CODE REUSE IN F#

We’re going to change tack a little in this lesson, and look at using functions (and type
inference) in F# to create lightweight code reuse, and to pass functionality (rather than
data) through a system. If you’ve used the LINQ framework at all, much of this lesson
will be familiar to you. We’ll cover

 How we tend to achieve reuse in the OO world
 A quick review of the core parts of LINQ
 Implementing higher-order functions in F#
 Dependencies as functions

We always look to reuse code in our applications, because copy-and-paste is evil—
right? Unfortunately, you know as well as I do that reuse at a low cost is sometimes
really hard to achieve! There are many types of code reuse that we strive to achieve; this
lesson focuses on a common form of reuse, although the outcomes from this lesson can
be applied across most forms of reuse.

Let’s imagine that you have a collection of customers, and need to filter out some of
them based on logic that you don’t yet know. In this case, it might be “Is the customer
female,” but at some point, you might need to write other types of filters, and you don’t
want to reimplement the logic of “filtering over the customers” every time you need a
new filter. What you need is a way to separate out the two pieces of logic, but then com-
bine them together as needed (see figure 13.1).
149

150 Lesson 13 Achieving code reuse in F#
Normally we’d look to inheritance, or perhaps create an interface to represent our filter
functionality and use something like the Template or Strategy pattern. I’m not going to
get into a debate on the virtues of Template versus Strategy—you can read up on that in
your own time—but here’s a quick example of the Strategy pattern in C# (in this case,
you might also think of it as variant of the Command pattern).

interface IFilter { bool IsValid(Customer customer); }

IEnumerable<Customer> Where(
 this IEnumerable<Customer> customers,
 IFilter filter) {
 foreach (var customer in customers)
 {
 if (filter.IsValid(customer))
 yield return customer;
 }
 }

You now have an “algorithm” that can be reused—the logic of “filtering over custom-
ers”—in your Where method, and a contract by which you can vary it—the IFilter inter-
face. So you can write any arbitrary filter now over customers. Let’s see how to consume
this design when you want to retain only customers older than 35.

public class IsOver35Filter : IFilter {
 public Boolean IsValid(Customer customer) {

Listing 13.1 Using interfaces as a way of passing code

Listing 13.2 Consuming an interface-based design

Lives in London Is over 35 Is female

Filter customers

Inject custom code
“into” algorithm

Figure 13.1 Combining a fixed algorithm with varying custom logic

Filter interface
represents a contract
used by Where()

Where receives an
instance of Filter to allow
varying the algorithm

An instance of an IFilter

151Reuse in the world of LINQ
 return customer.Age > 35;
 }
}

public void FilterOlderCustomers()
{
 var customers = new Customer[0];
 var filter = new IsOver35Filter();
 var olderCustomers = customers.Where(filter);
}

You’ve had to create a specific class to implement your IFilter interface, and then create
an instance of it later before finally passing it to your Where method.

13.1 Reuse in the world of LINQ

Of course, many methods in the BCL follow the preceding design, particularly from the
early days of .NET, such as IComparable, IComparer, and IEquatable. All of them have a single
method but require the overhead of an interface and class for you to implement them.
Even worse, some have exactly the same signature, but you can’t reuse them across both
because in .NET interfaces are nominal, not structural. Even if two interfaces have the
same structure, they’re still treated as two incompatible types; see figure 13.2 for an
example.

LINQ and C# 3 introduced a whole raft of features that were inspired by the world of func-
tional programming. One of the biggest takeaways was the pervasive use of higher-order
functions (HOF) throughout the LINQ framework. Despite the somewhat technical name, a
higher-order function is a function that takes in another function as one of its arguments.
Let’s look at a design similar to LINQ’s Where method when acting on customers.

Creating an instance of
the IsOver35Filter class

Supplying the
filter to the
Where method

! =

<<Interface>>

ICompareCustomers

Equal(Customer a, Customer b) : bool

<<Interface>>

ICustomerEqualityChecker

Equal(Customer a, Customer b) : bool

Figure 13.2 Nominal types can’t be implicitly exchanged for one another even if they
have the same structure.

152 Lesson 13 Achieving code reuse in F#
IEnumerable<Customer> Where(
 this IEnumerable<Customer> customers,
 Func<Customer, bool> filter) {
 foreach (var customer in Customers)
 {
 if (filter(customer))
 yield return customer;
 }
 }

This method looks suspiciously like that in listing 13.1, except here you don’t require a
specific interface. Instead, you pass in a function that adheres to a contract: it must take
in a Customer and return a Boolean—the same signature that the IsValid method has. This
is much more flexible than working with interfaces, because any function that has this
signature is compatible; it doesn’t have to be explicitly designed that way. You can now
call it by passing the function directly, as shown in listing 13.4.

To do this even more succinctly, C# 3 also introduced the concept of lambda expressions.
Although this is another technical-sounding term, in reality, it’s just a way of declaring a
function inline of a method.

public Boolean IsOver35(Customer customer) {
 return customer.Age > 35;
}

// …code elided…
var olderCustomers = customers.Where(IsOver35);
var olderCustomersLambda = customers.Where(customer => customer.Age > 35);

With the lambda-based approach, you’ve achieved exactly the same logic as you started
with, except now it’s all achieved in a single line. This is generally a good thing: the code
is more readable, less can go wrong, and the code is easier to change. Let’s take a
moment to review these two methods for achieving reuse; see table 13.1.

Listing 13.3 Using higher-order functions to reuse code

Listing 13.4 Consuming a higher-order function

Using Func<Customer, bool>
as a means of a contract
instead of an interface

Calling the filter on the
customer directly

Creating a function of
signature Customer ->
bool to check a
customer age

Providing the IsOver35
function to the Where
higher-order function

Reimplementing
IsOver35 as an inline

lambda expression

153Reuse in the world of LINQ

Table 13.1 Comparing OO and FP mechanisms for reuse

Object-oriented Functional

Contract specification Interface (nominal) Function (structural)

Common patterns Strategy/command Higher-order function

Verbosity Medium/heavy Lightweight

Composability and reuse Medium High

Dimensionality Multiple methods per interface Single functions

Delegates and anonymous methods
One interesting point is that .NET (and C#) has always supported the notion of typesafe
function pointers through both delegates (C# 1) and anonymous methods (C# 2). In
effect, both are rendered obsolete by the introduction of Func<T> (and lambda expres-
sions), which is a much more lightweight syntax than either of those.

Java’s approach to functions
Java introduced the concept of lambda expressions relatively late in the day (Java 8 in
2015). By this time, the single-method interface was so common that the designers of
Java opted to make single-method interfaces implicitly compatible with lambda function
signatures. In effect, all single-method interfaces are treated as potential lambda expres-
sions. In this way, all existing interfaces were automatically promoted into being usable
as lambdas.

Quick check 13.1

1 Name one difference between nominal and structural types.
2 How do we pass logic between or across code in the OO world?
3 How do we pass logic between or across code in the FP world?

QC 13.1 answer
1 Nominal types are defined by their fully qualified type name. Structural types are defined by their

signature.
2 We use interfaces to pass logic within a code base in the OO world.
3 We use functions to pass logic within a code base in the FP world.

154 Lesson 13 Achieving code reuse in F#
13.2 Implementing higher-order functions in F#

C# and VB .NET (and the BCL) have a kind of mishmash of both interface and high-
order function strategies. You’ll see that newer features added to the BCL generally
favor lambdas and higher-order functions (for example, the Task Parallel Library),
whereas older features usually favor interfaces and classes. Conversely, F#’s built-in
libraries almost exclusively focus on higher-order functions; as such, F# makes them
extremely easy to work with and create.

13.2.1 Basics of higher-order functions

This section shows how easily you can create simple higher-order functions in F#.

Now you try

You’ll start by trying to implement an equivalent of the preceding behavior (filter) in F#
to see the difference between both languages and approaches.

type Customer = { Age : int }
let where filter customers =
 seq {
 for customer in customers do
 if filter customer then
 yield customer }

let customers = [{ Age = 21 }; { Age = 35 }; { Age = 36 }]
let isOver35 customer = customer.Age > 35

customers |> where isOver35
customers |> where (fun customer -> customer.Age > 35)

Try executing this code. You’ll see that the two last lines return the only Customer who is
over 35. In the next samples, you’ll see a couple of language features you haven’t seen yet:

 The use of the seq { } block—This is a type of computation expression in F#, a more
advanced topic we’ll touch on later for asynchronous programming. Here it’s

Listing 13.5 Your first higher-order function in F#

Calling the filter
function with customer
as an argument

Explicitly creating a
function to check the
customer age

Supplying the isOver35 function
into the where function

Passing a function inline
using lambda syntax

155Implementing higher-order functions in F#
used to express that you’re generating a sequence of customers by using the yield
keyword.

 An F# list, expressed using [; ; ;] syntax—We’ll cover this in the next unit.

As in C#, although you can use let-bound functions directly as a higher-order function
argument, you can also use F#’s lambda syntax. In fact, this code is essentially the same
as the C# example, except I’ve swapped the order of the filter and customer arguments so
that I can pipe customers into where (remember that |> works by flipping the last argument
over to the left).

Our old friend type inference has come into play again, and it’s worthwhile spending a
little time looking at the type signature of the function, shown in figure 13.3.

As you can see in figure 13.3, filter is identified as a function that takes in ‘a and returns
bool:

 The compiler knows it’s a function based on usage (filter customer).
 It must return a Boolean because the output is used in an if clause.
 It takes in any ‘a. This is interesting; in our original C# example, you explicitly

bound your code to customers, but F# has realized that this function would work
just as well over orders or numbers, so it has made it generic.

 A quick way to confirm that filter has been correctly identified as a function is to
notice that it’s colored differently, assuming that F# Power Tools has been config-
ured correctly.

Also, observe that the customers value has been identified as a seq (F# shorthand for
IEnumerable<T>) because you use it within a for loop.

13.2.2 When to pass functions as arguments

Passing functions as arguments is something you’ll do extremely often when working in
F# because it’s the primary way of achieving reuse. When coupled with F#’s ability to
infer, compose, and pipeline functions, passing functions as arguments is easy to

Figure 13.3 F# inferring a higher-order function automatically

156 Lesson 13 Achieving code reuse in F#
achieve without having to write reams of hard-to-read Func<string,int,bool>-style type
annotations. Although F# has support for interfaces (in some ways, better support than
C#), it’s certainly not idiomatic to use them except when you’re passing many depend-
encies as a logically grouped set of behaviors (for example, perhaps a set of logging
functions or something similar).

It’s also easy to create higher-order functions by reverse-engineering them. Start by cre-
ating a normal function with the varying element hardcoded into the algorithm. Then,
identify all occurrences of that section, replace them with a simple named value that’s
added as an argument to the function. Figure 13.4 shows a hardcoded version of the
“filter customers over 35” function.

Observe that this is the same as listing 13.5, except the filter customer that was passed in
as the first argument has been replaced with the highlighted element of code.

13.3 Dependencies as functions

You can easily reference one piece of code from another in F# by using namespaces and
modules to reference functions in other files. But at times you’ll want to decouple two
sections of code from one another, often because you want to be able to swap out the
implementation of one without affecting the other. A common use case for this is writ-
ing testable code; for example, you might decouple your code from a “real” database so

Figure 13.4 A hardcoded
function that can be converted
into a higher-order function

Quick check 13.2

1 Can F# infer the types of higher-order functions?
2 How can you easily identify higher-order function arguments in VS?

QC 13.2 answer
1 Yes.
2 Visual F# Power Tools highlights functions in a different color.

157Dependencies as functions
that you can mock up data that it reads and writes to. This is known as dependency injec-
tion (DI): the class tells you what it requires in the constructor arguments, and you sup-
ply those requirements as dependencies. These dependencies often take the form of
interfaces that contain the behavior that can be plugged in.

But you’ve also seen that many interfaces—particularly ones with single methods—can
be replaced with functions. Indeed, it’s often preferable to explicitly pass in dependen-
cies as functions rather than one larger interface containing dozens of methods, of
which you need only one or two. It becomes much easier to understand the relationship
between a function and its dependencies. In F#, you can just as easily pass in dependen-
cies, but instead of passing them into constructors of classes, you can pass them into
functions directly.

Now you try

Let’s see how to write a function that prints a specific message regarding the Customer’s
age to a variety of output streams, such as the console or the filesystem:

1 Create an empty script file and define a Customer record type (or continue below
the existing script you’ve been working on).

2 Create a function, printCustomerAge, that takes in a Customer and, depending on the
Customer’s age, prints out Child, Teenager, or Adult, using Console.WriteLine to output
text to FSI. The signature should read as let printCustomerAge customer =.

3 Try calling the function, and ensure that it behaves as expected.
4 Identify the varying element of code. For us, this is the call to Console.WriteLine.
5 Replace all occurrences with the value writer. Initially, your code won’t compile,

as there’s no value called writer.
6 Insert writer as the first argument to the function, so it now reads let printCustomer-

Age writer customer =.
7 You’ll see that writer has been correctly identified as a function that takes in a

string and returns ‘a. Now, any function that takes in a string can be used in place
of Console.WriteLine.

let printCustomerAge writer customer =
 if customer.Age < 13 then writer "Child!"
 elif customer.Age < 20 then writer "Teenager!"
 else writer "Adult!"

Listing 13.6 Injecting dependencies into functions

Specifying your
dependency as the
writer argument

Calling writer with
a string argument

158 Lesson 13 Achieving code reuse in F#
You’re now in a position to call this function. First you can confirm it works as
before by passing Console.WriteLine as the first argument. You can also use the par-
tial application trick to build a constrained version of printCustomerAge that prints
to the console.

printCustomerAge Console.WriteLine { Age = 21 }

let printToConsole = printCustomerAge Console.WriteLine
printToConsole { Age = 21 }
printToConsole { Age = 12 }
printToConsole { Age = 18 }

8 Now create a function that can act as the dependency, in order to print to the
filesystem instead. You’ll use System.IO.File.WriteAllText as the basis for your
dependency (if the temp folder doesn’t exist, create it first!).

open System.IO
let writeToFile text = File.WriteAllText(@"C:\temp\output.txt", text)

let printToFile = printCustomerAge writeToFile
printToFile { Age = 21 }

9 Read back from the file by using System.IO.File.ReadAllText to prove that the con-
tent was correctly written out.

You’ll notice that I explicitly stated that you should supply dependencies as the first
argument(s) in a function. This is so you can partially apply the function. You inject the
dependencies up front (Console.WriteLine in this case), which returns you a new function
that requires the remaining argument(s)—in this case, the customer object. This par-
tially applied function might itself then be passed into other functions, which will have
no coupling to, for example, Console or File Systems).

Listing 13.7 Partially applying a function with dependencies

Listing 13.8 Creating a dependency to write to a file

Partially applying
printCustomerAge to create

a constrained version of it
Calling printCustomerAge
with Console.WriteLine as a
dependency

Creating a File System
writer that’s compatible
with printCustomerAge

159Summary

Summary

In this lesson, you learned about higher-order functions, the primary way to vary algo-
rithms and pass code in F#, which prepares you for working with the collections mod-
ules that you’ll look at in lesson 14. In this lesson

 You looked at typical OO designs for extending behaviors through interfaces,
and compared them to the functional approach of composing functions together
through higher-order functions.

 You gained an understanding of how F#’s type-inference engine makes it
extremely easy to reverse-engineer higher-order functions from existing code.

 You saw how to use higher-order functions as a lightweight form of DI.

Try this

Create a set of functions that use another dependency in .NET—for example, working
with HTTP data by using WebClient. Write a function that takes in the HTTP client to POST
data to a URI. What’s the dependency? The WebClient class, or a function on the WebClient?

QC 13.3 answer Dependencies in F# tend to be functions; in C#, they’re interfaces.

Quick check 13.3 What’s the key difference between passing dependencies in F# and C#?

14LESSON
CAPSTONE 2

Before we move on to the next unit—collections—here’s another end-of-level bad guy
for you to defeat. This time, we’ll shift our focus from the basics of coding in F# to the
material covered in this unit. In this lesson you’ll be expected to

 Develop a standalone F# application in Visual Studio
 Model a domain by using records, tuples, and functions
 Create reusable higher-order functions that can be altered through injected

dependencies

That’s a lot to do, but if you take this step by step, you’ll do fine.

14.1 Defining the problem

In this exercise, you’re going to write a simple bank account system. It needs to have the
following capabilities:

1 The application should allow a customer to deposit and withdraw from an
account that the customer owns, and maintain a running total of the balance in
the account.

2 If the customer tries to withdraw more money than is in the account, the transac-
tion should be declined (the balance should stay as is).
160

161Some advice before you start…
3 The system should write out all transactions to a data store when they’re
attempted. The data store should be pluggable (filesystem, console, and so forth).

4 The code shouldn’t be coupled to, for example, the filesystem or console input. It
should be possible to access the code API directly without resorting to a console
application.

5 Another developer will review your work, and that developer should be able to
easily access all of the preceding components in isolation from one another.

6 The application should be an executable as a console application.
7 On startup, the system should ask for the customer’s name and opening balance.

It then should create (in memory) an account for that customer with the specified
balance.

8 The system should repeatedly ask whether the customer wants to deposit or
withdraw money from the account.

9 The system should print out the updated balance to the user after every
transaction.

What you don’t have to worry about is the following:

 Reading data back from the filesystem. The system should store the customer’s
current balance in memory. If the application is closed, there’s no way to resume
later.

 Don’t worry about opening multiple accounts.
 Don’t worry about warning the user if that user tries to overdraw the account.

Carry on with the same balance that the user started with.

14.2 Some advice before you start…

This solution will be larger than the one in the previous capstone. Before you dive in
and start writing reams and reams of code, let me give you some simple advice that I
always follow when approaching a sizeable chunk of work in F#:

 Start small. Resist what will probably be your natural urge to design a complex
set of objects and relationships up front. Instead, write simple functions and have
each do one thing, and do it well. Trust that you can compose them together later.

 Plug these functions together, either by composing them to one another through a
third function that calls both, or calling one from another (perhaps via a higher-
order function).

162 Lesson 14 Capstone 2
 Don’t be afraid of copying and pasting code initially. You can refactor quickly in F#,
especially when using higher-order functions. Instead of prematurely guessing
where this might happen, wait until you have evidence of it—and then refactor
away!

14.3 Getting started

As usual, start by working with a simple script with types and functions, experimenting
and exploring your domain. Once you’re happy with what you have, migrate the code
over to a full console executable that can be run as a standalone application. If you get
stuck, refer to the solution in the code-listings/lesson-14 folder. But try to avoid simply
copying and pasting code from it; you’ll get much more out of this by trying to do this
yourself. Use the suggested solution only as a last resort.

Start by creating a new F# console application named Capstone2, and add an empty .fsx
file to the project.

14.4 Creating a domain

You should begin by first trying to model the types in our domain. You’ll use F# records
for this. You can identify two entities in our domain:

 Customer—A named customer of the bank.
 Account—An account that’s owned by a customer. An account should probably

have a current balance, a unique ID, and a reference to the Customer that owns the
account.

Create two record types that match the preceding definition. Then create an instance of
an account in the script directly underneath, to ensure that you’re happy with the shape
of the account and the fields in it.

14.5 Creating behaviors

You need a couple of functions to model withdrawals and deposits into the account. I’ll
help by giving you a typical function signature for deposit and a hardcoded implemen-
tation that needs replacing.

163Abstraction and reuse through higher-order functions
/// Deposits an amount into an account
let deposit (amount:decimal) (account:Account) : Account =
 { AccountId = Guid.Empty; Owner = { Name = "Sam" }; Balance = 10M }

Just to confirm: this is a pure, curried function that takes in two arguments (amount and
account) and returns a new Account (the updated version with the increased balance).
Notice that I’ve explicitly type-annotated this function; this isn’t necessary, and you can
remove the annotations later. This is just to help you along if needed. Also, notice that
I’ve put the state, account, as the last argument to the function. This is so you can pipe
data through a chain (for example, account |> deposit 50 |> withdraw 25 |> deposit 10).
Remember that you can use copy-and-update syntax in F# (by using the with keyword)
to create a new version of a record with updated data.

You also need to create a withdraw function. It’ll have an identical signature, but the
implementation will be slightly more complex: if the amount is greater than the balance,
return the account that was supplied. Otherwise, return an updated account with a
reduced balance. Make sure you test your code out in the REPL/script as you go to
ensure that you’re happy with it.

In the function signature in listing 14.1, I haven’t passed in a Customer record. That’s
because in my model, Customer is a field on Account.

type Customer = { Name : string }
type Account =
 { AccountId : System.Guid; Owner : Customer; Balance : decimal }

14.6 Abstraction and reuse through higher-order functions

The next thing you need to think about is a logging or auditing mechanism. Let’s see
how to write a couple of simple audit functions, one for the filesystem and one for the
console. Both should have the same signature.

Listing 14.1 Sample function signature for deposit functionality

Listing 14.2 Suggested domain model

Pure function
signature

Customer record

Account record with Customer
as the Owner field

164 Lesson 14 Capstone 2
let fileSystemAudit account message =
let console account message =

In effect, these functions replace the need for the typical ILogger interface you might have
used in the past that has a single Log() method on it.

For the filesystem auditor, your code should append the contents of message to a file
whose path is C:\temp\learnfs\capstone2\{customerName}\{accountId}.txt. You’ll
probably want to use sprintf as well as some methods within the System.IO.File name-
space (for example, do you need to ensure that the directory exists first)?

The console auditor should print to the console in the format "Account <accountId>:
<message>". In this case, you’ll probably want to use printfn (for example, "Account d89ac062-
c777-4336-8192-6fba87920f3c: Performed operation 'withdraw' for £50. Balance is now £75").

Again, test these functions in isolation in a script to prove you’re happy with them; cre-
ate a dummy account and customer and pass them in, ensuring that the correct outputs
occur.

let customer = { Name = "Isaac" }
let account = { AccountId = Guid.Empty; Owner = customer; Balance = 90M }

// Test out withdraw
let newAccount = account |> withdraw 10M
newAccount.Balance = 80M // should be true!

// Test out console auditor
console account "Testing console audit"
// "Account 00000000-0000-0000-0000-000000000000: Testing console audit"

14.6.1 Adapting code with higher-order functions

At this point, notice that your behaviors have little in common. The deposit and withdraw
functions have no ability to perform auditing; meanwhile, your audit functions have no
knowledge of account behaviors, nor do they create the messages that need to be

Listing 14.3 Creating pluggable audit functions

Listing 14.4 Testing functions through scripts

Auditor that
writes to
filesystem

Auditor that
prints to
console

Creating a dummy
account for testing

Testing the
withdraw function

Testing out the
console auditor

165Abstraction and reuse through higher-order functions
audited. You need something to wire them up together and create your audit messages
(figure 14.1)! You need to create a new function that should do the following:

 Try to perform an arbitrary account operation (withdraw or deposit).
 Audit the details of the transaction (for example, “withdraw £50”).
 If the account balance is modified, audit a message with the details of the transac-

tion and the new balance.
 If the account balance isn’t modified, audit a message that the transaction was

rejected.
 Return the updated account.

This looks nice in principle, but how can you write code to achieve this? Observe that
the preceding description is devoid of implementations: operation is either withdraw or
deposit; similarly, you don’t mention the type of auditor (for example, console or file
system). Here’s what your signature should look like.

let auditAs (operationName:string) (audit:Account -> string -> unit)
 ➥(operation:decimal -> Account -> Account) (amount:decimal)
 ➥(account:Account) : Account =

This function should wrap around both an operation (for example, withdraw) and an
audit function (for example, console), calling both of them appropriately. Let’s review
this function signature, one argument at a time:

 operationName—The name of the operation as a string (for example, "withdraw" or
"deposit")

Listing 14.5 Signature for an orchestration of higher-order function

Deposit Console Logger

 Withdraw File System
Logger

Orchestration Function

 Audit functionOperation

Figure 14.1 Composing disparate behaviors into a single function

Sample audit
orchestration function

166 Lesson 14 Capstone 2
 audit—The audit function you want to call (for example, the console audit
function)

 operation—The operation function you want to call (for example, the withdraw
function)

 amount—The amount to use on the operation
 account—The account to act upon

The function also returns the updated account. Let’s compare this function to the signa-
ture of one of your operations, deposit, as shown in figure 14.2.

It’s important to remember that because auditAs is a curried function, you can pass in the
first three arguments and get back a new function which requires the remaining argu-
ments and that also matches the signature of the original deposit function! Let’s see how
it works.

let account = { AccountId = Guid.NewGuid(); Owner = { Name = "Isaac" };
 ➥Balance = 100M }

account
|> deposit 100M
|> withdraw 50M

let withdrawWithConsoleAudit = auditAs "withdraw" consoleAudit withdraw
let depositWithConsoleAudit = auditAs "deposit" consoleAudit deposit

account
|> depositWithConsoleAudit 100M
|> withdrawWithConsoleAudit 50M

Listing 14.6 Partially applying a curried function

Figure 14.2 Comparing the standalone deposit function with the wrapping auditAs function

Creating an account
and customer

Calling the “raw” deposit
and withdraw functions

Creating new “decorated”
versions of deposit and
withdraw with console
auditing through currying

Calling the “decorated”
versions of deposit and
withdraw

167Writing a console application
Create the implementation of the auditAs function and test that you can call it correctly. If
you struggle to figure it out, first write a version that’s tightly coupled to, for example,
the deposit function and console logging (it doesn’t have the dependency arguments as
per the previous figure); then pull those functions out as dependencies one at a time.

14.7 Writing a console application

Until now, you’ve only had a single F# script file—not much use as a standalone application.
You’re now going to pull the code you’ve written so far into dedicated modules and name-
spaces so that they can be built into a compiled application, as illustrated in figure 14.3.

Create some .fs F# files in the project as follows:

 Domain.fs contains the Customer and Account record types in the Capstone2.Domain
namespace.

 Operations.fs contains the deposit, withdraw, and auditAs functions in the Capstone2
.Operations module.

 Auditing.fs contains the console and filesystem audit functions in the Capstone2
.Auditing module.

 Program.fs contains the bootstrapper and runner.

14.7.1 Writing the program

The entry point program itself will be fairly simple:

1 Use a combination of System.Console.ReadLine and Console.WriteLine (or printfn) func-
tions to get the user’s name and opening balance, and create an Account and
Customer record.

Figure 14.3 Pulling script
code out into a full application

168 Lesson 14 Capstone 2
2 Use Decimal.Parse to convert from a string to decimal. Don’t worry about error
handling; you can deal with that another day.

3 Create decorated versions of both the deposit and withdraw functions that use the
console auditor.

4 Use a while loop to find out the action that the user wishes to do (deposit/with-
draw/exit). Again, use console functions to get user input. See the next section,
“Managing the account state,” for more details.

5 Depending on input, call the appropriate function (the decorated deposit/with-
draw functions) to get an updated account.

14.7.2 Managing the account state

Unfortunately, at this stage you don’t know enough about state management to get away
without using a mutable value to store the account state. Later in this book, you’ll identify
ways of writing imperative style code that is normally written as while loops with external
state. For now, here’s a simple scaffold that you can use to fill in the blanks.

let mutable account = …

let withdrawWithAudit = withdraw |> auditAs "withdraw" Auditing.console
let depositWithAudit = deposit |> auditAs "deposit" Auditing.console

while true do
 let action = …

 if action = "x" then Environment.Exit 0

 let amount = …

 account <-
 if action = "d" then account |> depositWithAudit amount
 elif action = "w" then account |> withdrawWithAudit amount
 else account

As in the earlier capstone, use a mutable variable for controlling the overall loop here.

Listing 14.7 Simplified main application

Build Account (and child Customer)
record from console input Build decorated

deposit and
withdraw functions.

Find out the user’s
action—d, w, or x.

Find out the amount to use
for the deposit or withdrawal.

Call the appropriate
operation.

Default handler—
do nothing

169Referencing files from scripts
14.8 Referencing files from scripts

As you port code from scripts to full assemblies, you’ll often find yourself wanting to
access code that you’ve already ported from a script. Perhaps you’re testing new code
that interacts with existing code. In this case, it’s possible to load an .fs file into an .fsx
script. This way, you can get the best of both worlds: you can write code that can be
accessed from a script, but still run from within; for example, a console application or
website. Try the following code listing from an empty .fsx file.

#load "Domain.fs"
#load "Operations.fs"
#load "Auditing.fs"

open Capstone2.Operations
open Capstone2.Domain
open Capstone2.Auditing
open System

let withdraw = withdraw |> auditAs "withdraw" consoleAudit
let deposit = deposit |> auditAs "deposit" consoleAudit

let customer = { Name = "Isaac" }
let account = { AccountId = Guid.NewGuid(); Owner = customer; Balance = 90M }

account
|> withdraw 50M
|> deposit 50M
|> deposit 100M
|> withdraw 50M
|> withdraw 350M

The important part here is the #load directive. You can use #load to execute both .fsx
scripts and .fs files directly into a script as if you had entered the code directly yourself.
You need to think about the order of #load commands; you can’t load Operations.fs
before you load Domain.fs, because the former depends on the latter.

Listing 14.8 Accessing .fs files from a script

Loading .fs files
into a script

Opening namespaces
of .fs files

Creating
initial data

Testing code against
a sample pipeline

170 Lesson 14 Capstone 2
If your code has been implemented correctly, you should see something like the follow-
ing listing when executing the script.

Account …: Performing a withdraw operation for £50...
Account …: Transaction accepted! Balance is now £40.
Account …: Performing a deposit operation for £50...
Account …: Transaction accepted! Balance is now £90.
Account …: Performing a deposit operation for £100...
Account …: Transaction accepted! Balance is now £190.
Account …: Performing a withdraw operation for £50...
Account …: Transaction accepted! Balance is now £140.
Account …: Performing a withdraw operation for £350...
Account …: Transaction rejected!

Summary

I hope that this exercise wasn’t too difficult. Don’t feel bad if you didn’t think of every-
thing up front or had to look at the suggested solution. Developing an instinct for when
to use which tools in the language takes time. Also, definitely don’t feel frustrated if you
thought, “I could have done this with my eyes closed in C#!”

Part of the difficulty nearly every developer goes through when learning F# (or any FP
language) when coming from an OO language is to resist the temptation to fall back to the
safety net of curly braces and mutation, or to use console runners as a way to iteratively
develop an application. In fact, I suspect that other experienced F# developers might have
come up with a solution different from mine (notwithstanding the fact that we’re not
using all the features in F# yet!). As with OO, there are always different ways to solve
challenges. But the core features of the application—including immutability, expressions,
pure functions, and higher-order functions—would almost certainly all be present.

I recommend that you think up other coding challenges like this one—something that
requires you to do a little data modeling and a little functional design, and then try to
implement it. The more you do exercises like this, the more your muscle memory will
become attuned to all things F#, from basics such as syntax for creating records to more-
advanced refactoring and designing higher-order functions.

Listing 14.9 Sample output of running the sample bank account script

171

U
N

IT

4

Collections in F#

One of the difficulties in designing a book such as
this is that many of the language and library fea-
tures overlap with one another, and it’s often hard
to focus on one specific aspect without introducing
others into the mix as well. When I originally
planned this book, I envisaged discussing collec-
tions a little later—but after thinking about it, I
decided to bring it forward.

The reason is that collections in F# are fantastic!
Combined with the succinct syntax you’ve already
seen, and the possibility of a REPL-based environ-
ment, F# allows you to start working with data in
all sorts of ways that you might not have considered
before. (You’ll revisit this in unit 7.)

Part of this unit covers the basic ideas of functional
collections, something that, if you’ve ever used
LINQ before, will be quite familiar to you. This part
will get you up to speed with the typical, most com-
monly used collection functions. The latter half of
the unit focuses on slightly more advanced tips and
tricks; for example, how to use functional collec-
tions to work with immutable data to simulate
imperative loops and mutation.

15LESSON
WORKING WITH COLLECTIONS IN F#

Something we’ve touched on only briefly is working with collections of data. Nearly
everything we’ve done so far has involved a single record or tuple at a time. Yet F# has
excellent capabilities when it comes to working with datasets. Working with data is one
of its strongest features, as you’ll start to see in the coming lessons. I’ve set aside this les-
son and three more to discuss working with collections. This lesson

 Introduces you to some of the key collection types in F#
 Gets you thinking about transformations in terms of pipelines
 Illustrates how to use immutable F# collections

Simultaneously one of C#’s greatest strengths and weaknesses is that it’s become an
extremely flexible language, allowing developers to pick any number of ways to
approach a problem. This is great in the sense that it can appeal to many types of devel-
opers, but it also means—particularly for newcomers—that it can be difficult to get a
steer on a consistent, idiomatic way to solve that problem. One great example of that is
working with collections. I see this as being divided into three camps:

 The C# 2 developer—When thinking about collection operations, the developer
thinks in terms of imperative operations: for each loops, accumulators, and muta-
tions. This developer has never found working with LINQ particularly natural or
enjoyable.
173

174 Lesson 15 Working with collections in F#
 The LINQ developer—This developer has embraced C# 3 features and uses lambda
expressions when working with lists of data for simple operations such as filters,
but still uses mutation and imperative code for nonobvious situations. In my
experience, these developers often find it easier to make the leap to functional
programming.

 The wannabe FP developer—This developer has not only embraced LINQ over col-
lections, but has also started to use those features for more general operations, be
they accumulating data through aggregations, rules engines, or parallelizable
computations. These developers, perhaps without even realizing it, have already
started to embrace functional programming.

I’m not suggesting that any one type of developer in this (simplistic) generalization is
better or worse than another, but depending on your current viewpoint, you may find
more or less of this chapter natural or alien to you! Unsurprisingly, with F# being an FP-
first language, you’ll find over the next few lessons that collections are used for all sorts
of things, and not necessarily just for the typical “filter a list of customers” example.

15.1 F# collection basics

You’ll start with a simple challenge. Given a set of football results (that’s soccer for those
of you who aren’t European!), you’ll try to get an answer to the following question:
show me which teams won the most away games in the season. Here’s the structure of a
single FootballResult record and sample results.

type FootballResult =
 { HomeTeam : string
 AwayTeam : string
 HomeGoals : int
 AwayGoals : int }
let create (ht, hg) (at, ag) =
 { HomeTeam = ht; AwayTeam = at; HomeGoals = hg; AwayGoals = ag }
let results =
 [create ("Messiville", 1) ("Ronaldo City", 2)
 create ("Messiville", 1) ("Bale Town", 3)
 create ("Bale Town", 3) ("Ronaldo City", 1)
 create ("Bale Town", 2) ("Messiville", 1)

Listing 15.1 A sample dataset of football results

Record of
input data

Simple helper function
to quickly construct a
record taking in two
(string * int) tuples

An F# list of records
starts and ends
with [].

175F# collection basics
 create ("Ronaldo City", 4) ("Messiville", 2)
 create ("Ronaldo City", 1) ("Bale Town", 2)]

Now you try

Before you go through some of the alternative solutions available, have a go at trying
this yourself in C# or VB .NET (or F# if you like!), using whichever style of program-
ming you feel most comfortable with. The output that you should end up with looks
like this:

 Bale Town: 2 wins
 Ronaldo City: 1 win

15.1.1 In-place collection modifications

How did that go? Whichever solution you picked, let’s review an imperative style for
solving this sort of problem:

1 Create an output collection to store the summary data, perhaps a mutable DTO
called Team Summary that has the Team Name and Number of Away Wins.

2 For every result, if the away team scored more goals than the home team, check
whether the output collection already contains this team:
– If it does, increase the count of Away Wins for that entry.
– If it doesn’t, create a new entry with Away Wins set to 1.

3 Implement a sort algorithm to ensure that the results are sorted based on the
number of away wins.

open System.Collections.Generic
type TeamSummary = { Name : string; mutable AwayWins : int }
let summary = ResizeArray()

for result in results do
 if result.AwayGoals > result.HomeGoals then
 let mutable found = false
 for entry in summary do
 if entry.Name = result.AwayTeam then
 found <- true

Listing 15.2 An imperative solution to a calculation over data
Defining your output
summary type

Accumulator for output.
ResizeArray is an alias for
System.Collections.Generic.List.

Core algorithm

Flag to check whether
this is a new entry in
the accumulator

176 Lesson 15 Working with collections in F#
 entry.AwayWins <- entry.AwayWins + 1
 if not found then
 summary.Add { Name = result.AwayTeam; AwayWins = 1 }

let comparer =
 { new IComparer<TeamSummary> with
 member this.Compare(x,y) =
 if x.AwayWins > y.AwayWins then -1
 elif x.AwayWins < y.AwayWins then 1
 else 0 }

summary.Sort(comparer)

After executing this code, if you evaluate summary (highlight the value and send it to FSI),
you’ll see the output. There are a few things to observe here:

 The code follows a flow chart type of design, with branching decisions based on
intermediate state.

 It’s difficult to see intermediate stages of this code, and there’s nothing to suggest
that any of it is easily reusable. It’s more like you’ve taken the original objectives
and mangled them together into a broth; as such, the final code doesn’t reflect the
original intent to me insofar as you can’t read it at a glance to know what it does.

 You modify in-place (mutate) the summary list when sorting.
 As a side note, you can see one of F#’s nice features for working with interfaces,

called object initializers. You created an instance of IComparer without having to first
define a concrete type!

Let’s now compare this with a more declarative style of processing that fits much better
with a functional style: expressions over immutable data with pure functions.

15.1.2 The collection modules

At this point, I want to introduce you to the collection modules. Think of is these as F#’s
own version of the LINQ Enumerable library (although they’re more than that, in reality).
There are three modules, each tied to an associated F# collection datatype—List, Array,
and Seq—containing functions designed for querying (and generating) collections
(you’ll see more about those three types in section 15.2). The good thing is that although
each module is optimized for the datatype in question, they contain virtually identical
surface areas, so after you learn one of them, you can reuse the same skills across the
other two. Most of the query functions in these modules are higher-order functions, and
they follow a similar pattern as per figure 15.1:

Custom IComparer for
sorting based on away wins

177F# collection basics
1 Input 1—A user-defined function to customize the higher-order function
2 Input 2—An input list, array, or sequence to apply the function against in some

way
3 Output—A new list, array, or sequence with the result of the operation

This follows a similar pattern to LINQ, except whereas in LINQ the input collection is
the first argument (in order to play nicely with extension methods), in F# the input col-
lection is always the last argument to the higher-order function (which is curried). This
is, once again, in order to play nicely with the pipeline operator; the output (state) of
one operation can be chained with the next one, much as LINQ does with extension
methods. Let’s look at some examples of these higher-order functions for working with
collections.

let usaCustomers = Seq.filter areFromUSA sequenceOfCustomers
let numbersDoubled = Array.map (fun number -> number * 2) arrayOfNumbers
let customersByCity = List.groupBy (fun c -> c.City) customerList

let ukCustomers = sequenceOfCustomers |> Seq.filter areFromUK
let tripledNumbers = arrayOfNumbers |> Array.map (fun number -> number * 3)
let customersByCountry = customerList |> List.groupBy (fun c -> c.Country)

Listing 15.3 Standard pattern for F# collection module functions

Figure 15.1 Exploring the F# List module within an F# script

Passing a function
into Seq.filter to get
USA customers

Using an inline
lambda function
with Array.map

Getting UK customers
with Seq.filter and
pipeline operator

178 Lesson 15 Working with collections in F#
The second set of function calls are essentially the same as the first except you’ve flipped
the final argument over to the left of the pipe. It’s also really important to be able to read
and understand the function signatures in IntelliSense; we’ll spend time in the next les-
son going through some common collection functions so that you gain the skills to fig-
ure out the other ones yourself.

15.1.3 Transformation pipelines

With the collection modules in mind, let’s return to our challenge. Approaching this
problem with a functional style needs a slightly different approach: first try to identify
simple, isolated functions that you can quickly create, and only then look to compose
them together using reusable higher-order functions. Start by thinking about what it is
you want to do, rather than the how that you focused on before:

1 Find all results that had an away win.
2 Group all the away wins by the away team.
3 Sort the results in descending order by the number of away wins per team.

To build this pipeline, you first need to answer the question, “What is an away win?”
That’s easy: whenever the Away Team scores more goals than the Home Team, that’s an
away win. Start by creating a simple function for that, and then build up a pipeline by
using the List module.

let isAwayWin result = result.AwayGoals > result.HomeGoals

results
|> List.filter isAwayWin
|> List.countBy(fun result -> result.AwayTeam)
|> List.sortByDescending(fun (_, awayWins) -> awayWins)

Listing 15.4 A declarative solution to a calculation over data

LINQ and F#
You can use the standard LINQ functions in F#: open the System.Linq namespace, and all
the extension methods will magically appear on any collection. But I strongly urge you to
favor F#’s collection libraries. They’re designed specifically with F#’s type system in mind
and usually lead to more succinct and idiomatic solutions. F# also has a query { } con-
struct that allows use of IQueryable queries. Have a read of them yourself on MSDN;
they’re extremely powerful.

A standalone function
to calculate whether a
result is an away win

Using isAwayWin within
the List.filter HOF

Using countBy with an inline lambda
expression to return the number of
rows for each away team

179F# collection basics
I find it helps to think of a transformation pipeline as a set of dumb workers that take in
a set of data and give back a new one. Figure 15.2 illustrates the process. (This also
works when working with composed functions operating over a single object.)

This pipeline has some interesting properties:

 All stages are composed together with simple functions and pipelines. You could
easily add a new stage if you wanted to in the middle.

 Each operation is a pure function that’s completely decoupled from the overall
pipeline. You can easily test out, for example, isAwayWin in isolation on a single,
dummy result to ensure that it works properly. You could also reuse it in any
number of other pipelines or sections of code; it’s not baked in to the overall
query you’re carrying out.

 Each stage doesn’t affect the input collection. You can repeat any stage a million
times, and it will always give the same result.

Not only is the code much, much smaller, and much more readable, but it’s also much
less likely to have any bugs, because you’re deferring probably 90% of the code that you
wrote earlier to a set of general-purpose, higher-order functions (filter, grouping, order-
ing) and varying them by passing in an appropriate bit of code. The trick is to learn the
most common higher-order functions so that they become second nature.

Also observe that the three functions you’re using—filter, countBy, and sortByDescending—
all follow the same function signature as identified earlier, taking in a varying function
and an input collection, and returning a new collection. You’ll often find that pipelines
follow three stages, depicted in figure 15.3:

Messiville 1 – 2 Ronaldo City
Messiville 1 – 3 Bale Town
Bale Town 3 – 1 Ronaldo City
Bale Town 2 – 1 Messiville
Ronaldo City 4 – 2 Messiville
Ronaldo City 1 – 2 Bale Town

filter
isAwayWin

Messiville 1 – 2 Ronaldo City
Messiville 1 – 3 Bale Town
Ronaldo City 1 – 2 Bale Town

Ronaldo City, 1
Bale Town, 2

Bale Town, 2
Ronaldo City, 1

countBy
(fun result –> result.AwayTeam)

 sortByDescending
(fun (team, awayWins) –> awayWins)

Figure 15.2 Visualizing your transformation pipeline in terms of distinct stages

180 Lesson 15 Working with collections in F#
1 Create a collection of some sort.
2 When you’re inside the collections world, you can perform one or many transfor-

mations on them. You never have to check whether the collection is null or
empty, because the collection functions do that for you.

3 You end up with a final collection, or perform an aggregation to leave the collec-
tions world (for example, sum, average, first, or last).

15.1.4 Debugging pipelines

A side effect of these properties, and F#’s REPL, is that you can opt to execute part of the
pipeline and check the output of the pipeline at that stage. This is particularly useful if
you have a complex pipeline and aren’t getting the correct results at the end. You can
execute the pipeline repeatedly, each time going a little further, until you find the error.

Now you try

Let's see how to work through the pipeline that you’ve just created, as per figure 15.4:

1 To make life easier, before executing each of the next steps, clear the FSI output
by right-clicking over FSI and choosing Clear All (not Reset!)

2 In the REPL, with the code from listing 15.4 at the ready, execute the first line of
the pipeline (results) by using Alt-Enter. You’ll see all six results sent to FSI.

3 Repeat the process, but this time highlight two lines so that you execute both
results and filter.

4 Do the same again to include countBy.
5 As you execute each subset of the pipeline, building up to the end, compare the

results with that of figure 15.2.

Create a
collection

“World” of
collections

Multiple
transformations

Aggregation

Enter
collections

world

Leave
collections

world

Figure 15.3 Typical stages for a collections pipeline

181F# collection basics
15.1.5 Compose, compose, compose

I believe that one of the most common mistakes people make when implementing a
solution for operations such as this is to take a top-down approach. They try to imple-
ment loops, manual filters, and sorts over the entire dataset.

Often you’ll end up with a far more effective solution by taking a bottom-up approach.
Solve the simple parts of the problem first by writing small, easy-to-reason-about func-
tions, and then see how to plug them together and reuse them as higher-order func-
tions. Look at the preceding example: you answered the question of what your filter is,
but not how to perform the filter itself; that was delegated to the List.filter function.

If you ever find yourself writing a function that takes in a collection and manually iter-
ates over it, you’re probably doing extra work. You’ll see that over the remainder of
these lessons.

Figure 15.4 Executing a subset of a pipeline for debugging and exploratory purposes

Quick check 15.1

1 What are the three main collection modules in F#?
2 Why is the input collection the last argument to collection functions?
3 What are some of the problems with processing collections imperatively?

QC 15.1 answer
1 Seq, Array, and List.
2 This allows easy pipelining of multiple operations through currying.
3 Difficult to compose behaviors; hard to reason about.

182 Lesson 15 Working with collections in F#
15.2 Collection types in F#

Let’s take a more detailed look at the three collection types: sequences, arrays, and lists.

15.2.1 Working with sequences

F# has several collection types, the most common of which is seq (short for sequence).
Sequences are effectively an alias for the IEnumerable<T> type in the BCL, and for the pur-
poses of this lesson, you can consider them interchangeable with LINQ-generated
sequences, in that they’re lazily evaluated and (by default) don’t cache evaluations.
Also, because arrays and F# lists implement IEnumerable<T>, you can use functions in the
Seq module over both of them as well.

You can create sequences by using the seq { } syntax, but in my experience this isn’t
needed that often, so I’m going to skip over it. Instead, focus on the Seq module to con-
sume existing IEnumerable values.

15.2.2 Using .NET arrays

You looked at .NET arrays in one of the first lessons. Like C#, F# has language syntax for
arrays. But F# syntax is much more lightweight, and F# also has a nice slicing syntax to
allow you to extract a subset of an array.

let numbersArray = [| 1; 2; 3; 4; 6 |]
let firstNumber = numbersArray.[0]
let firstThreeNumbers = numbersArray.[0 .. 2]
numbersArray.[0] <- 99

You can also iterate over arrays by using for … do syntax as per sequences. Remember
that arrays are just standard BCL arrays. They’re high performance, but ultimately
mutable (although you can safely rely on the Array module functions to create new
arrays on each operation).

Listing 15.5 Working with .NET arrays in F#

Creating an array by
using [| |] syntax

Accessing an item by index

Array-slicing syntax

Mutating the
value of an item
in an array

183Collection types in F#
15.2.3 Immutable lists

F# lists (not to be confused with the System.Collections.Generic.List<T>, a.k.a. ResizeArray)
are native to F#. They work in a similar manner to arrays in that they’re eagerly evalu-
ated and you can index into them directly. But they have one key difference: F# lists are
immutable. After you create a list, you can’t add or remove items from it (and if the data
inside the list is immutable, it’s entirely fixed). Instead, you create new lists based on
existing lists by using F# language syntax for lists.

Internally, F# lists are linked lists, so it’s quick to create a new list with, for example, a
single new item at the front of the list. Let’s have a quick look at F# list syntax; try work-
ing through this sample one line at a time so that you can see the result of each operator.

let numbers = [1; 2; 3; 4; 5; 6]
let numbersQuick = [1 .. 6]
let head :: tail = numbers
let moreNumbers = 0 :: numbers
let evenMoreNumbers = moreNumbers @ [7 .. 9]

Listing 15.6 Working with F# lists

Collection separators in C# and F#
Watch out! In C#, you separate items in an array with a comma:

new [] { 1, 2, 3 }

But in F#, a comma is used to create tuples. You use the semicolon to separate items
in an array, sequence, or list:

[1; 2; 3]

If you use commas, you won’t get a compile-time error, because this is valid F#. Instead,
you’ll end up with a single tupled item! You can alternatively create a collection by placing
each element on a new line, in which case you can omit the semicolon separator entirely.

Creating a list of
six numbers

Shorthand form of list
creation (also valid on
arrays and sequences)

Decomposing a list into
head (1) and a tail (2 .. 6)

Creating a new list by
placing 0 at the front of
numbers

Appending moreNumbers
and [7 .. 9] together to
create a new list

184 Lesson 15 Working with collections in F#
You’ll see that F# has special operators for working with lists:

1 Create new lists by using the [a; b; c] syntax.
2 Deconstruct a list into a single item (head) and remainder (tail) with the ::

operator.
3 Place a single item at the front of a list by using the :: operator.
4 Merge two lists by using the @ operator.

You’ll see a warning for the third expression, mentioning something about pattern
matching. Don’t worry about this for now; you’ll come back to this in the next unit.

In addition to these language features for working with lists, you have the entire List
module at your disposal to perform all manner of useful functions on them, such as
sorting and filtering. To be honest, most of this functionality is achievable using the List
module, but these operators are sometimes useful, particularly as they can keep code
succinct. Don’t be surprised if you recoil at this initially. After you learn the operators
(and it’s really only :: and @), you’ll be fine.

15.2.4 Comparing and contrasting collections

Because you can use all three collections almost interchangeably, knowing when to use
which one can be difficult. Table 15.1 is a handy reference that quickly distinguishes the
features.

Note that performance is a more complex area. As always, your mileage may vary
depending on the context. For example, you can add to the front of a list quickly, but not
necessarily to the tail; and sequences have a Seq.cache function that can be used to avoid
repeated evaluation. Also, you haven’t looked at pattern matching yet—so bear that row
in mind!

Table 15.1 Comparing F# sequences, lists, and arrays

Seq List Array

Eager/lazy Lazy Eager Eager

Forward-only Sometimes Never Never

Immutable Yes Yes No

Performance Medium Medium/High High

Pattern matching support None Good Medium

Interop with C# Good Medium Good

185Summary

Summary

In this lesson, you learned about processing collections in a functional style, and the
benefits that you can gain from doing this. In this lesson

 You explored the three core F# collections.
 You learned about functional collection pipelines.
 You saw a few operations that you might often perform on collections.
 You learned about immutable lists.

In the following lessons, you’ll build on this knowledge and gain confidence in working
with collections by working through common operations and functions.

Try this

Find an existing LINQ query that you’ve written over an in-memory dataset; try to con-
vert it to an equivalent Seq pipeline. Or, find an existing query you’ve written in an imper-
ative style; try to rewrite it to a query pipeline by using a set of chained Seq functions.

Quick check 15.2

1 How does seq relate to IEnumerable<T>?
2 How do higher-order functions relate to collection pipelines?
3 What are the main differences between an imperative and functional approach to work-

ing with collections?

QC 15.2 answer
1 seq is effectively an F# alias for IEnumerable, and all functions in the Seq module can operate over

IEnumerables.
2 You use higher-order functions to vary collection operations that are then chained together to

form more-complex functionality.
3 Imperative routines favor modifying collections in place, whereas a functional approach creates

new collections for each stage of a pipeline. Imperative routines tend to merge all logic together,
whereas a functional approach tends to view operations as distinct stages that feed into one
another.

16LESSON
USEFUL COLLECTION FUNCTIONS

Now that you have a reasonably high-level understanding of collections in F#, this les-
son focuses on getting your muscle memory trained to use collections in practical situa-
tions. This lesson covers the following:

 The most common collection functions across the three types that you’ve learned
about (Seq, List, and Array) with some visualizations and hands-on examples

 A comparison of F# functions with similar LINQ operations
 The differences between imperative and declarative solutions
 Moving between collection types

Each operation we cover has a simple example associated with it, alongside typical use
cases and equivalents in both imperative coding and LINQ (if it exists). Go through
every example in a script yourself rather than simply reading them; you’ll learn these
effectively only through practical experience. After that, I’ll also point out some other
related functions in the collection libraries (denoted by see also) that you should look at
in your own time.

A quick note: as in LINQ, most of the methods in F# collections operate on empty collec-
tions without a problem; you’ll get back an empty collection again.
186

187Mapping functions
16.1 Mapping functions

Mapping functions take a collection of items and return another collection of items. Usu-
ally the mapping can be controlled in some way by the caller, but specialized forms of
mapping can be used here as well.

16.1.1 map

The most common collection function you’ll ever use is map. This function converts all
the items in a collection from one shape to another shape, and always returns the same
number of items in the output collection as were passed in. At the risk of repeating
myself, it’s crucial to learn the signatures of collection functions. Here’s the signature for
List.map followed by a sample in figure 16.1:

mapping:('T -> 'U) -> list:'T list -> 'U list

 mapping is a function that maps a single item from 'T to 'U.
 list is the input list of 'T that you want to convert.
 The output is a list of 'U that has been mapped.

The direct equivalent to this in terms of LINQ is Select(). A common approach to per-
forming the same operation with a loop is to first manually create an empty output col-
lection, write a for loop to iterate over the collection, and manually populate the output
collection with the output of every mapped item.

let numbers = [1 .. 10]
let timesTwo n = n * 2

let outputImperative = ResizeArray()
for number in numbers do

Listing 16.1 map

[{ Name = “Isaac”; Town = “London”}
 { Name = “Sara”; Town = “Birmingham” }
 { Name = “Tim”; Town = “London” }
 { Name = “Michelle”; Town = “Manchester” }]

fun person –> person.Town
List.map Output

 [“London”
 “Birmingham”
 “London”
 “Manchester”]

Figure 16.1 Mapping from a Person list to a String list

Input data

Mapping function

Manually constructing an
output collection, iterating,
and adding to output

188 Lesson 16 Useful collection functions
 outputImperative.Add (number |> timesTwo)

let outputFunctional = numbers |> List.map timesTwo

You can use map for most use cases where the number of input and output elements are
the same; for example, loading a set of customers from a list of customer IDs, or parsing
a set of strings to decimals. Variants of map include map2, which works by combining two
lists of the same type into a new merged list, and mapi, which includes an index item
along with the item itself—useful for when you need to know the index of the item.

See also: map2, map3, mapi, mapi2, indexed

16.1.2 iter

iter is essentially the same as map, except the function that you pass in must return unit.
This is useful as an end function of a pipeline, such as saving records to a database or
printing records to the screen—in effect, any function that has side effects; see figure 16.2.

action:('T -> 'unit) -> list:'T list -> unit

Using the List.map higher-order
function to achieve the same output

Tuples in higher-order functions
F# collection functions make extensive use of tuples as a lightweight way to pass pairs
or triples of data items around. F# allows you to “unpack” tuples within lambda expres-
sions directly within a higher-order function, so the following code is perfectly valid:

["Isaac", 30; "John", 25; "Sarah", 18; "Faye", 27]
|> List.map(fun (name, age) -> …)

The key part here is the lambda expression in the map call, where the function takes in
name and age. This is a form of pattern matching, which automatically deconstructs the
object passed in into its constituent parts.

List.iter Output

[{ Name = “Isaac”; Town = “London”}
 { Name = “Sara”; Town = “Birmingham” }
 { Name = “Tim”; Town = “London” }
 { Name = “Michelle”; Town = “Manchester” }]

fun person –>
printfn “Hello, %s”

person.Town

Side effect

Unit

Figure 16.2 Printing the name of a collection of customers

189Mapping functions
In this example, you’re operating over each record and printing a string to the console.
This is a side effect, and there’s no tangible output for each output—just unit. There’s no
like-for-like equivalent to iter in LINQ, but you can achieve the same functionality by
using a basic for-each loop (or for…in loop in F#). Compare the signature of this function
with map and see where the difference is.

See also: iter2, iter3, iteri, iteri2

16.1.3 collect

collect is a useful form of map (in fact, it’s the other way around, as you can implement map
through collect but not the other way around!). The collect function has many other
names, including SelectMany, FlatMap, Flatten, and even Bind. It takes in a list of items, and a
function that returns a new collection from each item in that collection—and then merges
them all back into a single list. Sounds confusing, right? Let’s take a look at the collect
signature first:

mapping:('T -> 'U list) -> list:'T list -> 'U list

Now compare it to map:

mapping:('T -> 'U) -> list:'T list -> 'U list

See the subtle difference? collect says that the mapping function must return a list,
rather than a single value. Here’s an example: let’s say that you have a list of customers,
and each customer has a list of orders. Let’s also assume that you already have a func-
tion called loadOrders, which takes in a Customer and returns the orders for that customer
(Customer -> Order list). You want to retrieve all of the orders for customers 1, 2, and 5 as
a single list, as shown in figure 16.3.

You have a function to load all the orders for a single customer, but how can you use
that function to build up a merged set of orders? Unfortunately, if you try to load orders
for each customer by using map, you’ll end up with the dataset shown in figure 16.4.

 transform using loadOrders

{ orderId = 1 }
{ orderId = 2 }
{ orderId = 39 }
{ orderId = 43 }
{ orderId = 56 }

{ CustomerId = 1 }
{ CustomerId = 2 }
{ CustomerId = 5 }

Figure 16.3 A prime candidate for a collect operation

190 Lesson 16 Useful collection functions
The signature of the result of this operation is Order list list (or in C# terms,
List<List<Order>>). Each function call returns a list, so you end up with a list of lists! That’s
not what you want. This is where collect comes in: it expects the higher-order function
to return a collection, which it calls on each item, just like map, but the difference is that it
merges all the items into a single list, as shown previously in figure 16.3.

type Order = { OrderId : int }
type Customer = { CustomerId : int; Orders : Order list; Town string }
let customers : Customer list = []
let orders : Order list = customers |> List.collect(fun c -> c.Orders)

Use collect to resolve many-to-many relationships, so that you can treat all sibling chil-
dren as a single concatenated list.

16.1.4 pairwise

pairwise takes a list and returns a new list of tuple pairs of the original adjacent items, as
shown in figure 16.5.

list:'T list -> ('T * 'T) list

Listing 16.2 collect

List.map loadOrders

{ orderId = 1 }
{ orderId = 2 }

{ orderId = 39 }

{ orderId = 43 }
{ orderId = 56 }

{ CustomerId = 1 }
{ CustomerId = 2 }
{ CustomerId = 5 }

Figure 16.4 Calling map against a function that returns a list

Collecting all orders for all
customers into a single list

List.pairwise [(1,2); (2,3); (3,4); (4,5)][1; 2; 3; 4; 5]

Figure 16.5 pairwise
operation on a list of numbers

191Mapping functions
This example shows a list of numbers but can be equally applied to any list of objects
that you want to show as adjacent items. pairwise operations are useful in many situa-
tions—for example, when calculating the “distance” between a list of ordered items
such as dates. First, pairwise the elements, and then map the items.

open System
[DateTime(2010,5,1)
 DateTime(2010,6,1)
 DateTime(2010,6,12)
 DateTime(2010,7,3)]
|> List.pairwise
|> List.map(fun (a, b) -> b - a)
|> List.map(fun time -> time.TotalDays)

The most common variation of this function is windowed. This function is similar to pair-
wise but allows you to control how many elements exist in each window (rather than
fixed at two elements), for example [1;2;3]; [2;3;4]; [3;4;5] and so on.

See also: windowed

Listing 16.3 Using pairwise within the context of a larger pipeline

A list of dates

Pairwise for adjacent dates

Subtracting the dates from
one another as a TimeSpan

Return the total days
between the two dates

Quick check 16.1

1 What is the F# equivalent of LINQ’s Select method?
2 What is the imperative equivalent to the iter function?
3 What does the pairwise function do?

QC 16.1 answer
1 map is the equivalent of LINQ’s Select() extension method.
2 for-each loops are the imperative equivalent to iter.
3 pairwise takes a collection of items and returns a new collection with the items windowed

together in pairs.

192 Lesson 16 Useful collection functions
16.2 Grouping functions

As the name suggests, grouping functions perform a logical grouping of data.

16.2.1 groupBy

groupBy works exactly as the LINQ version does (see figure 16.6), except the type signa-
ture is much simpler to read than the LINQ equivalent:

projection: ('T -> 'Key) -> list: 'T list -> ('Key * 'T list) list

The projection function returns a key on which you group all the items in the list. Note
that the output is a collection of simple tuples. The first element of the tuple is the key, and
the second element is the collection of items in that group. You don’t need a custom type
for the key/value pairing (such as the confusing IEnumerable<IGrouping<TKey, TSource>> in the
LINQ implementation). Also note that each version of groupBy (Seq, Array, and List)
ensures that each grouping will be returned in the same type of collection; so groups in
Seq.groupBy will be lazily evaluated, but Array and List will not be.

16.2.2 countBy

A useful derivative of groupBy is countBy. This has a similar signature, but instead of
returning the items in the group, it returns the number of items in each group (see figure
16.7):

projection: ('T -> 'Key) -> list: 'T list -> ('Key * int) list

[{ Name = “Isaac”; Town = “London” }
 { Name = “Sara”; Town = “Birmingham” }
 { Name = “Tim”; Town = “London” }
 { Name = “Michelle”; Town = “Manchester” }]

fun person –> person.Town
 List.groupBy

[“London”, [{ Name = “Isaac”; Town = “London” }
 { Name = “Tim”; Town = “London” }]
 “Birmingham”, [{ Name = “Sara”; Town = “Birmingham” }]
 “Manchester”, [{ Name = “Michelle”; Town = “Manchester” }]]

Output

Figure 16.6 Grouping a set of customers by town

193Grouping functions
16.2.3 partition

partition is a slightly simpler version of groupBy. You supply a predicate (a function that
returns true or false) and a collection; it returns two collections, partitioned based on the
predicate:

predicate: ('T -> bool) -> list: 'T list -> ('T list * 'T list)

let londonCustomers, otherCustomers =
 customers |> List.partition(fun c -> c.Town = "London")

Note that partition always splits into two collections. This restriction means that you can
safely deconstruct the output directly into the two collections, as in listing 16.4. If there
are no matches for either half of the split, an empty collection is returned for that half.

See also: chunkBySize, splitInto, splitAt

Listing 16.4 Splitting a collection in two based on a predicate

 List.countBy

[{ Name = “Isaac”; Town = “London” }
 { Name = “Sara”; Town = “Birmingham” }
 { Name = “Tim”; Town = “London” }
 { Name = “Michelle”; Town = “Manchester” }]

fun person –>
person.Town

[“London”, 2
 “Birmingham”, 1
 “Manchester”, 1]Output

Figure 16.7 Counting customers by town

Decomposing the tupled
result into the two lists

Predicate function
to split the list

Quick check 16.2

1 When would you use countBy compared to groupBy?
2 Why would you use groupBy as opposed to partition?

QC 16.2 answer
1 countBy returns the number of elements per group; groupBy returns the elements themselves.
2 groupBy can partition a collection into an infinite number of groups; partition always splits a

group into exactly two groups.

194 Lesson 16 Useful collection functions
16.3 More on collections

You can do lots more with collections in F#. Let’s briefly look at some examples.

16.3.1 Aggregates

Both the F# collections and LINQ libraries have many aggregate functions. They all
operate on a similar principle: take a collection of items and merge them into a smaller
collection of items (often just one). Generally, you’ll find that aggregate functions are the
last collection function in a pipeline. Here are some examples of aggregate functions in
F#; you’ll probably be familiar with these functions already.

let numbers = [1.0 .. 10.0]
let total = numbers |> List.sum
let average = numbers |> List.average
let max = numbers |> List.max
let min = numbers |> List.min

All of these functions are specialized versions of a more generalized function called fold;
in LINQ, it’s called Aggregate(). You’ll learn about fold in more detail in the next lesson, as
it has many applications aside from just summing numbers.

16.3.2 Miscellaneous functions

This section covers a whole bunch of miscellaneous functions. Many of them have simi-
lar LINQ equivalents, so you’ll probably already know them. Table 16.1 compares the F#
functions to those in LINQ.

Listing 16.5 Simple aggregation functions in F#

Table 16.1 Comparing miscellaneous functions

F# LINQ Comments
find Single() Equivalent to the Single() overload that takes a predi-

cate; see also findIndex, findback, and findIndexBack.

head First() Returns the first item in the collection; see also last.

item ElementAt() Gets the element at a given index.

take Take() The F# take implementation throws an exception if
there are insufficient elements in the collection; use
truncate for equivalent behavior to LINQ’s Take(). See
also takeWhile, skip, and skipWhile.

Build a list of 10 floats

Executing a set of
aggregate functions

195More on collections
16.3.3 Converting between collections

Occasionally, you’ll need to convert between lists, arrays, and sequences. Perhaps you
have a function that returns an array and want to pipe the results into another function
that expects a list, or you’re working with a collection that has specific performance
characteristics best suited to an eager array than a lazy sequence. Therefore, each mod-
ule has functions to easily convert to and from each collection type.

let numberOne =
 [1 .. 5]
 |> List.toArray
 |> Seq.ofArray
 |> Seq.head

exists Any() See also exists2

forall All() See also forall2.

contains Contains()

filter Where() See also where.

length Count() See also distinctBy.

distinct Distinct()

sortBy OrderBy() See also sort, sortByDescending, sortDescending, and
sortWith.

Listing 16.6 Converting between lists, arrays, and sequences

Table 16.1 Comparing miscellaneous functions (continued)

F# LINQ Comments

Trying with collections
You might have noticed a whole bunch of functions that start with try (for example, try-
Find and tryHead). These are equivalent to the Default methods in LINQ such as FirstOr-
Default(). But the F# equivalents all return option types. What are options? For now, think
of these as Nullable<T>, although that’s not quite accurate. You’ll find out more about the
Option type in the next unit.

Construct an int list.

Convert from an int list to an int array.

Convert from an int array
to an int sequence.

196 Lesson 16 Useful collection functions
As you can see, there are functions in all three modules that begin with of or to (for
example, ofList and toArray) that perform the appropriate conversion.

Summary

That’s about it for this lesson! I hope you’re able to see that the F# collection modules
have a wide range of powerful functions. At the risk of repeating myself, go through all
these examples yourself, executing all the pipelines incrementally; execute just the first
line, then the first two lines, and so forth, and observe the outputs in FSI.

It’s tempting to fall back to using LINQ for collection operations (indeed, there’s nothing
to stop you from doing this), but you’ll find (especially as you delve into more-
advanced features in the coming chapters) that the F# collection modules offer a much
better fit for your code. In this lesson

 You saw collection functions that are commonly used in F#.
 You saw how they relate to LINQ’s set of collection functions.
 You saw how F#’s native tuple syntax can make the equivalent function signa-

tures much simpler and more consistent than the LINQ equivalents.

Try this

Write a simple script that, given a folder path on the local filesystem, will return the
name and size of each subfolder within it. Use groupBy to group files by folder, before
using an aggregation function such as sumBy to total the size of files in each folder. Then,
sort the results by descending size. Enhance the script to return a proper F# record that
contains the folder name, size, number of files, average file size, and the distinct set of
file extensions within the folder.

Quick check 16.3

1 What is the F# equivalent to LINQ’s Aggregate method?
2 What is the F# equivalent to LINQ’s Take method?
3 Give two reasons that you might need to convert between collection types in F#.

QC 16.3 answer
1 fold
2 truncate (not take!)
3 Performance reasons, or to match the type signature of a function that you’re calling.

17LESSON
MAPS, DICTIONARIES, AND SETS

This lesson should be a fairly easy one as we round off the collection types in F#. So far
you’ve looked at collections that model ordered elements of data in some way—
sequences, lists, and arrays—that behave similarly to the BCL List or IEnumerable types.
You’ll now spend a little time looking at using other collection types in F#:

 Working with the standard Generic dictionary in F#
 Creating an immutable IDictionary
 Using the F#-specific Map type
 Using the F#-specific Set type

17.1 Dictionaries

F# has several dictionaries available to it. Let’s review the main types now.

17.1.1 Mutable dictionaries in F#

You almost certainly already know the System.Collections.Generic.Dictionary type from C#
or VB .NET. This acts as a standard lookup collection, allowing fast retrieval of values
based on a unique key. You’ll be happy to know that, as with the majority of the BCL,
you can use this class out of the box in F#.
197

198 Lesson 17 Maps, dictionaries, and sets
open System.Collections.Generic

let inventory = Dictionary<string, float>()

inventory.Add("Apples", 0.33)
inventory.Add("Oranges", 0.23)
inventory.Add("Bananas", 0.45)

inventory.Remove "Oranges"

let bananas = inventory.["Bananas"]
let oranges = inventory.["Oranges"]

This functionality should be familiar to you. The only thing to remember is that in F#,
indexer properties are preceded by a dot (for example, inventory.["Bananas"]). But you can
use F#’s syntax to make life easier: like the .NET generic List (or ResizeArray), F# can infer
the generic types of a Dictionary, using one of two syntaxes.

let inventory = Dictionary<_,_>()
inventory.Add("Apples", 0.33)

let inventory = Dictionary()
inventory.Add("Apples", 0.33)

17.1.2 Immutable dictionaries

There’s one issue with the standard dictionary: it’s mutable, so additions and removals
to the dictionary happen in place. In the world of functional programming, we prefer
immutable types where possible, so F# has a nice helper function to quickly create an
immutable IDictionary, called dict. Because the object that dict returns is immutable, you
can’t add and remove items to it. Instead, you supply it up front with a sequence of
tuples that represent the key/value pairs, which then become the fixed contents of the
dictionary for its lifetime.

Listing 17.1 Standard dictionary functionality in F#

Listing 17.2 Generic type inference with Dictionary

Creating a dictionary

Adding items to the dictionary

Removing an item
from the dictionary

Retrieving an item

Trying to access an item
that doesn’t exist—
exception is raised

Explicit placeholders for
generic type arguments

Omitting generic type
arguments completely

199Dictionaries
let inventory : IDictionary<string, float> =
 ["Apples", 0.33; "Oranges", 0.23; "Bananas", 0.45]
 |> dict

let bananas = inventory.["Bananas"]

inventory.Add("Pineapples", 0.85)
inventory.Remove("Bananas")

This syntax is lightweight and easy to use, and is especially useful for those situations
where you create a lookup and never modify it again. Unfortunately, as you can see in
listing 17.3, because it implements IDictionary but is immutable, it has methods on it that
you mustn’t call (Add, Clear, and Remove), because they’ll throw exceptions. That’s not so
nice; if the type is immutable, it shouldn’t be offering those methods! The solution is to
use a completely different type: the F# Map.

Listing 17.3 Creating an immutable IDictionary

Creating a (string * float)
list of your inventory

Creating an IDictionary
from the list

Retrieving an item

Trying to add or remove items—
System.NotSupportedException thrown

Quickly creating full dictionaries
The standard Dictionary doesn’t allow you to easily create a dictionary with an initial set
of data as dict does. But it does allow you to pass in IDictionary as the input—which is
implemented by lookups generated by dict! So you can work around this restriction by
doing the following:

 ["Apples", 10; "Bananas", 20; "Grapes", 15] |> dict |> Dictionary

Nice!

Quick check 17.1

1 What sort of situations would you use a dictionary for?
2 How does F# syntax simplify creating dictionaries?
3 Why might you use the dict function in F#?

QC 17.1 answer
1 Typically for fast key/value lookups that can mutate over time.
2 You can omit generic type arguments and use the dict function to help create them.
3 For immutable dictionaries (lookups that can never change).

200 Lesson 17 Maps, dictionaries, and sets
17.2 The F# Map

The F# Map is an immutable key/value lookup. Like dict, it offers the ability to quickly
create a lookup based on a sequence of tuples, but unlike dict, it allows you to safely add
or remove items only by using a similar mechanism to modify records or lists. You copy
the entries from the existing Map to a new Map, and then add or remove the item in ques-
tion. You can’t add items to an existing Map. Figure 17.1 illustrates the Map operation.

Let’s see how this looks.

let inventory =
 ["Apples", 0.33; "Oranges", 0.23; "Bananas", 0.45]
 |> Map.ofList

let apples = inventory.["Apples"]
let pineapples = inventory.["Pineapples"]

let newInventory =
 inventory
 |> Map.add "Pineapples" 0.87
 |> Map.remove "Apples"

The nice thing with this approach is that you get all the usual benefits of immutability
(such as determinism and safety) without the need to give up the ability to (in effect)
easily add or remove items from it. Importantly calling Add on a Map that already contains
the key won’t throw an exception. Instead, it’ll replace the old value with the new one as
it creates the new Map (the original Map will still retain the original value).

Listing 17.4 Using the F# Map lookup

Copy existing map
and add new item

 Add (“Pineapples”, 0.85) New Map

“Apples” –> 0.32
“Bananas” –> 0.28
“Oranges” –> 0.25
“Pineapples” –> 0.85

“Apples” –> 0.32
“Bananas” –> 0.28
“Oranges” –> 0.25

Figure 17.1 Creating a new map from an existing map plus a new item

Creating a (string * float)
list of your inventory

Converting the
list into a Map
for quick lookups

Retrieving an item

Retrieving an item that
doesn’t exist—
KeyNotFoundException
thrown

Copying the map with
a new item added

Copying the map with an
existing item removed

201The F# Map
You can also safely access a key in a Map by using TryFind. This doesn’t return the value,
but a wrapped option. You’ll learn about options in the next unit, but keep in the back of
your mind that Map plays nicely with them, too.

17.2.1 Useful Map functions

In addition to add and remove, the Map module has other useful functions that are similar in
nature to those in the List, Array, and Seq modules and allow you to treat maps as though
they were enumerable collections, using the same chained pipelines that you’re used to,
such as these:

 map
 filter
 iter
 partition

The main difference between the signature of these methods and the equivalents in the
other modules is that the Map higher-order functions take in both the key and the value
for each element in the map, whereas List, for example, takes in only the value:

 Seq.map: mapping (‘T -> ‘U) -> source:Seq<‘T> -> Seq<’U>
 Map.map: mapping (‘Key -> ‘T -> ‘U) -> table:Map<’Key, ‘T> -> Map<’Key, ‘U>

let cheapFruit, expensiveFruit =
 inventory
 |> Map.partition(fun fruit cost -> cost < 0.3)

Note that the key and value aren’t passed as a tuple but as a curried function, which is
why fruit and cost are separated by a space, and not a comma.

Now you try

Now you’re going to create a lookup for all the root folders on your hard disk and the
times that they were created:

1 Open a blank script.
2 Get a list of all directories within the C:\ drive on your computer (you can use

System.IO.Directory.EnumerateDirectories). The result will be a sequence of strings.

Listing 17.5 Using the F# Map module functions

Two maps, partitioned
on cost

Partition higher-order function
that receives both key (fruit)

and value (cost) as arguments

202 Lesson 17 Maps, dictionaries, and sets
3 Convert each string into a full DirectoryInfo object. Use Seq.map to perform the
conversion.

4 Convert each DirectoryInfo into a tuple of the Name of the folder and its Creation-
TimeUtc, again using Seq.map.

5 Convert the sequence into a Map of Map.ofSeq.
6 Convert the values of the Map into their age in days by using Map.map. You can sub-

tract the creation time from the current time to achieve this.

Dictionaries, dict, or Map?
Given these three lookup types, when should you use which? My advice is as follows:

 Use Map as your default lookup type. It’s immutable, and has good support for F#
tuples and pipelining.

 Use the dict function to quickly generate an IDictionary that’s needed for interop-
erability with other code (for example, BCL code). The syntax is lightweight and is
easier to create than a full Dictionary.

 Use Dictionary if you need a mutable dictionary, or have a block of code with spe-
cific performance requirements. Generally, the performance of Map will be fine,
but if you’re in a tight loop performing thousands of additions or removals to a
lookup, a Dictionary will perform better. As always, optimize as needed, rather
than prematurely.

Quick check 17.2

1 What’s the main difference between Dictionary and Map?
2 When should you use Dictionary over Map?

QC 17.2 answer
1 Dictionary is a mutable lookup; Map is immutable, creating new maps after each operation.
2 When you need to maximize performance, or are modeling an inherently mutable dataset.

203Sets
17.3 Sets

Sets are a somewhat rarely used collection type, which is a pity because they allow you
to elegantly create solutions to certain problems that would otherwise require several
lines of code. As the name suggests, Set implements a standard mathematical set of data:

In mathematics, a set is a collection of distinct objects.
—https://en.wikipedia.org/wiki/Set_(mathematics)

Unlike other collections, Set can’t contain duplicates and will automatically remove
repeated items in the set for you. F# sets are trivial to use, as they follow the same pat-
tern as the other collection types.

let myBasket = ["Apples"; "Apples"; "Apples"; "Bananas"; "Pineapples"]
let fruitsILike = myBasket |> Set.ofList

// val fruitsILike : Set<string> = set ["Apples"; "Bananas"; "Pineapples"]

Observe that fruitsILike has only the unique fruits from myBasket, without you needing
to explicitly call Distinct. Sets in F# are especially useful when you need to perform set-
based operations on two sets. Let’s assume we have two baskets of fruit and want to
combine them to find fruits we both like. Let’s compare two approaches: first using
List, and then Set.

let yourBasket = ["Kiwi"; "Bananas"; "Grapes"]

let allFruitsList = (fruits @ otherFruits) |> List.distinct

let fruitsYouLike = yourBasket |> Set.ofList
let allFruits = fruitsILike + fruitsYouLike

Listing 17.6 Creating a set from a sequence

Listing 17.7 Comparing List- and Set-based operations

Input data Converting to a set

Evaluated output
shown in FSI

Creating a second
basket of fruits

Combining the two
baskets by using @,
then distinct

Creating a
second set

“Summing” two Sets together
performs a Union operation

https://en.wikipedia.org/wiki/Set_(mathematics)

204 Lesson 17 Maps, dictionaries, and sets
The first two lines should be obvious. The interesting line is the fourth and final expres-
sion, fruitsILike + fruitsYouLike, where you seem to be adding two sets together. Can you
do this? Yes, you can! This is because the Set module includes operator overloads for
addition and subtraction, which internally it redirects to Set.union and Set.difference. As a
one-off operation, using List with distinct might suffice, but if you’re trying explicitly to
model a Set with other set-based behaviors (unions, difference, subset), Set is a much
more elegant fit. Here are some more examples.

let fruitsJustForMe = allFruits – fruitsYouLike
let fruitsWeCanShare = fruitsILike |> Set.intersect fruitsYouLike
let doILikeAllYourFruits = fruitsILike |> Set.isSubset fruitsYouLike

What’s nice is that although you’re using strings here, sets work with any type that sup-
ports comparison, which F# records and tuples do by default. You might use sets to find
out which products exist in both warehouses, or whether all customers who live in New
York are also high-value customers. Of course, sets also have standard functions such as
map and filter as well as transformers from/to List, Seq, and Array.

Summary

That’s a wrap! You’ve now seen all the main types of collections that you’ll commonly
be dealing with in F#. We reviewed four types of collections:

 Dictionaries
 IDictionary through dict
 Maps
 Sets

Listing 17.8 Sample Set-based operations

Gets fruits in A that
are not in B

Gets fruits that exist
in both A and B

Are all fruits in
A also in B?

Quick check 17.3 What function might you use to simulate simple set-style behavior in a list?

QC 17.3 answer Distinct or DistinctBy

205Summary
You’re almost finished with collections now. All that’s left in the next lesson is seeing
how to take advantage of some of the more powerful functions in the collection libraries
to push things to the limit.

Try this

Continuing from the previous lesson, create a lookup for all files within a folder so that
you can find the details of any file that has been read. Experiment with sets by identify-
ing file types in folders. What file types are shared between two arbitrary folders?

18LESSON
FOLDING YOUR WAY TO SUCCESS

The preceding few lessons covered the main collection types and how to use them. Here
we’ll round off with a few scenarios describing how collections can be used in interest-
ing ways to achieve outputs and transformations that you might not think possible
through folding. You’ll look at

 Understanding aggregations and accumulation
 Avoiding mutation through fold
 Building rules engines and functional chains

18.1 Understanding aggregations and accumulators

You’re likely already familiar with some of the aggregation functions in LINQ or F# col-
lections, such as Sum, Average, Min, Max, and Count (see figure 18.1). All of these have a com-
mon signature: they take in a sequence of elements of type T and return a single object of
type U.
206

207Understanding aggregations and accumulators
You can view this in terms of F# types as follows.

type Sum = int seq -> int
type Average = float seq -> float
type Count<'T> = 'T seq -> int

As you can see, the Sum, Average, and Count functions all share a common theme: they take
a collection of things and return a single other thing.

18.1.1 Creating your first aggregation function

Let’s look at how to implement the generic Sum aggregation; for example, calculating the
sum of the numbers 1 to 5, or the total value of three customers, or the total cost of 10
orders. Performing any aggregation, or fold, generally requires three things:

 The input collection
 An accumulator to hold the state of the output result as it’s built up
 An initial (empty) value for the accumulator to start with

See figure 18.2 for a visualization of the generalized aggregation function.

Listing 18.1 Example aggregation signatures

Aggregation

 • sum
• average
 • length

Input data
Input

Inputs

Single output

Figure 18.1 High-level visualization of aggregation

Some example types
of aggregation

208 Lesson 18 Folding your way to success
Let’s see how this might work for sum.

let sum inputs =
 let mutable accumulator = 0
 for input in inputs do
 accumulator <- accumulator + input
 accumulator

Interestingly, if you mouse over the sum function, you’ll see that it has the exact signature
described in listing 18.1: seq<int> -> int. Once again, type inference helps out here by cor-
rectly determining that the inputs value is a collection (based on the for loop) and an int
based on addition to accumulator.

Listing 18.2 Imperative implementation of sum

Take next item
from input

Yes

No

Perform aggregation
on next item

and accumulator

More items?

Update
accumulator
state

Create “empty”
accumulator state

Return
accumulator Figure 18.2 How accumulators

work imperatively

Empty accumulator

Go through every item

Apply aggregation
onto accumulator

Return accumulator

209Saying hello to fold
Now you try

Try to create aggregation functions by using the preceding style for a couple of other
aggregation functions:

1 Create a new .fsx script.
2 Copy the code from listing 18.2.
3 Create a function to calculate the length of a list (take any list from the previous

lessons as a starting point!). The only thing that should change is the line that
updates the accumulator.

4 Now do the same to calculate the maximum value of a list.

As you’re well aware, though, you’re using a mutable variable here for your accumula-
tor, as well as an imperative loop—not particularly composable. A standard answer
from a functional programmer would be to rewrite this code by using recursion, a style
of programming in which a function calls itself as a way of maintaining state. I’m not a
massive fan of recursion, because it can be difficult to follow, particularly if you come
from an imperative background (see appendix E for a short example). As you’ll see, the
majority of the time you can get away without recursion; instead, you’ll see an alterna-
tive, collection-based way to achieve the same code as in listing 18.2, without any muta-
tion and accumulation.

18.2 Saying hello to fold

fold is a generalized way to achieve the exact sort of aggregations that you’ve just been
looking at. It’s a higher-order function that allows you to supply an input collection you
want to aggregate, a start state for the accumulator, and a function that says how to accu-
mulate data. Let’s look at the argument signature for Seq.fold:

folder:('State -> 'T -> 'State) -> state:'State -> source:seq<'T> -> 'State

Quick check 18.1

1 What is the general signature of an aggregation?
2 What are the main components of any aggregation?

QC 18.1 answer
1 seq<'T> -> 'U.
2 A collection to fold over, an accumulator to hold aggregation state, and a start state.

210 Lesson 18 Folding your way to success
That’s a relatively scary-looking signature, so let’s break it down step by step:

 folder—A function that’s passed into fold that handles the accumulation (sum-
ming, averaging, or getting the length, for example)

 state—The initial start state
 source—The input collection

Let’s see what it looks like to implement sum by using the fold function.

let sum inputs =
 Seq.fold
 (fun state input -> state + input)
 0
 inputs

I’ve put the arguments on different lines here to make each argument somewhat clearer.
The key part is the fold function: it takes in the current state (accumulator) value and the
next item in the collection; your responsibility is to calculate the new state from those
two items. If you compare it to listing 18.2, you’ll see the same three key elements; the
difference is that you don’t have to explicitly store an accumulator value or iterate over
the collection. All of that is taken care of by fold itself. The next listing adds some log-
ging so you can see exactly what’s going on.

let sum inputs =
 Seq.fold
 (fun state input ->
 let newState = state + input
 printfn
 "Current state is %d, input is %d, new state value is %d"
 state
 input
 newState
 newState)
 0
 Inputs

sum [1 .. 5]

Current state is 0, input is 1, new state value is 1

Listing 18.3 Implementing sum through fold

Listing 18.4 Looking at fold with logging

Folder function
to sum the
accumulator
and input

Initial state

Input collection

Creating the
new state

Debug
message

Returning the
new state

211Saying hello to fold
Current state is 1, input is 2, new state value is 3
Current state is 3, input is 3, new state value is 6
Current state is 6, input is 4, new state value is 10
Current state is 10, input is 5, new state value is 15

It might help to see this threading of state as a visual diagram, so take a look at figure 18.3.

Now you try

Next you’ll create a few aggregations of your own to improve your familiarity with fold:

1 Open your script from earlier.
2 Implement a length function by using fold.
3 Implement a max function by using fold.

0 + 1

1 + 2

3 + 3

6 + 4

10 + 5

1

2

3

4

5

0

1

3

6

10

15

Initial state Input data
[1; 2; 3; 4; 5]

Figure 18.3 Visualizing how
state is threaded through fold

212 Lesson 18 Folding your way to success
18.2.1 Making fold more readable

One thing that I don’t find especially nice is the way that the arguments to fold are laid
out. You can make them more readable by using one of two tricks: the pipeline operator,
which you already know, or the rarely used double pipeline operator. The double pipeline
operator acts the same as the normal pipeline, but takes in the last two arguments and
moves them to the front as a tuple. Here are three ways of calling the same function.

Seq.fold (fun state input -> state + input) 0 inputs

inputs |> Seq.fold (fun state input -> state + input) 0

(0, inputs) ||> Seq.fold (fun state input -> state + input)

Using the double pipe helps me visualize folds. The code now reads to me as, “Here’s an
initial state of 0 and a collection of input numbers. Fold them both through this function,
and give me the answer.”

18.2.2 Using related fold functions

In addition to the more specific aggregations such as sum and average, the F# collection
library contains variants on fold:

 foldBack—Same as fold, but goes backward from the last element in the collection.
 mapFold—Combines map and fold, emitting a sequence of mapped results and a

final state.

Listing 18.5 Making fold read in a more logical way

Some examples of real-world use of aggregations
You probably use aggregations all the time without realizing it. The trick is to spot the
signature of “given a collection of items, you get back a single item.” Examples include the
following:

 Retrieving the total price of a set of orders
 Merging a collection of financial transactions in order to determine whether a

customer is high risk
 Aggregating a set of events in an event-driven system over initial data
 Showing a single red/amber/green status on the dashboard of an internal web-

site to indicate whether all back-end systems are functioning correctly

Using pipeline to move
“inputs” to the left side

Using the double pipeline to move both the
initial state and “inputs” to the left side

213Saying hello to fold
 reduce—A simplified version of fold, using the first element in the collection as the
initial state, so you don’t have to explicitly supply one. Perfect for simple folds
such as sum (although it’ll throw an exception on an empty input—beware!)

 scan—Similar to fold, but generates the intermediate results as well as the final
state. Great for calculating running totals.

 unfold—Generates a sequence from a single starting state. Similar to the yield
keyword.

18.2.3 Folding instead of while loops

What if you don’t have an up-front collection of data? Perhaps you’re waiting on user
input, or streaming data from a remote data source. Look at the following example,
which streams data from a file and counts the number of characters in the file.

open System.IO
let mutable totalChars = 0
let sr = new StreamReader(File.OpenRead "book.txt")

while (not sr.EndOfStream) do
 let line = sr.ReadLine()
 totalChars <- totalChars + line.ToCharArray().Length

There are easier ways to count characters in a file, but the point is that you have an
unknown “end” to this stream of data, rather than a fixed, up-front collection. How can
you use fold here, which takes in a sequence of items as input? The answer is to simulate
a collection by using the yield keyword. Let’s take a look.

open System.IO
let lines : string seq =
 seq {
 use sr = new StreamReader(File.OpenRead @"book.txt")
 while (not sr.EndOfStream) do
 yield sr.ReadLine() }

(0, lines) ||> Seq.fold(fun total line -> total + line.Length)

Listing 18.6 Accumulating through a while loop

Listing 18.7 Simulating a collection through sequence expressions

Initial state Opening a
stream to
a file

Stopping condition

Accumulation
function

Sequence expression

Yielding a row from
the StreamReader

A standard fold

214 Lesson 18 Folding your way to success
The seq { } block is a form of computation expression. I won’t talk too much about them in
this book, but a computation expression is a special block in which certain keywords,
such as yield, can be used (there are others, as you’ll see in unit 8). Here, yield has the
same functionality as in C#. It yields items to lazily generate a sequence. After you’ve
done that, you can fold over the sequence of strings, as you did earlier.

18.3 Composing functions with fold

The last element of fold that’s worth looking at briefly is as a way to dynamically compose
functions together: given a list of functions that have the same signature, give me a sin-
gle function that runs all of them together. Let’s take the example of a rules engine;
you’re writing a simple parser and want to validate that a supplied piece of text is valid:

 Every string should contain three words.
 The string must be no longer than 30 characters.
 All characters in the string must be uppercase.

What you don’t want to do is hardcode the code that does the parsing and validation.
Instead, you want to be able to supply a collection of rules and build them together to
form a single rule. This way, you can add new rules without affecting the main code
base. Trying to do this with mutation and imperative loops can be a real pain, so in the
interest of space, I’m going to skip that entirely (but feel free to try it yourself!). What
you’ll see first is how to model such a rules engine, and then how to perform the compo-
sition element of it.

Let’s start with simple functions to represent your rules. We’re not going to bother with
interfaces or anything like that. Instead, you’ll define a simple function signature for a
rule, which you’ll also alias to a specific type name called Rule to make code easier to
read later:

type Rule = string -> bool * string

Quick check 18.2

1 What’s the difference between reduce and fold?
2 Which two F# keywords are important in order to lazily generate sequences of data?

QC 18.2 answer
1 reduce doesn’t require a seed value; it uses the first item in the collection.
2 seq (to create a sequence block) and yield (to yield back values).

215Composing functions with fold
This signature says, “Give me some text as a string, and I’ll give you back both a Boolean
(passed or failed) and a string (the error message in case of failure).” You can now use
that signature to make a list of rules.

open System
type Rule = string -> bool * string

let rules : Rule list =
 [fun text -> (text.Split ' ').Length = 3, "Must be three words"
 fun text -> text.Length <= 30, "Max length is 30 characters"
 fun text -> text
 |> Seq.filter Char.IsLetter
 |> Seq.forall Char.IsUpper, "All letters must be caps"]

For a larger system, with more-complex rules, you might want to put the rules into a
module as proper let-bound functions, and then create a list based on those functions.
In this case, though, I’ve defined the rules inline. Notice that you can create a tuple of a
function with a specific signature and an error message. F# infers that text is of type string
because we’ve said that rules is a list of type Rule.

18.3.1 Composing rules manually

Given the three preceding rules, here’s how to manually compose all three into a single
“super” rule.

let validateManual (rules: Rule list) word =
 let passed, error = rules.[0] word

Listing 18.8 Creating a list of rules

Listing 18.9 Manually building a super rule

List definition

All rules
provided

inline

Type aliases
Notice the use of a type alias in listing 18.8: Rule. Type aliases let you define a type sig-
nature that you can use in place of another one. An alias isn’t a new type. The definition
it aliases is interchangeable with it, and the alias will be erased at runtime. It’s just a way
to improve documentation and readability. Note that the compiler won’t know which sig-
nature to use, so IntelliSense can sometimes show the “full” type rather than the
aliased one.

Testing the first rule

216 Lesson 18 Folding your way to success
 if not passed then false, error
 else
 let passed, error = rules.[1] word
 if not passed then false, error
 else
 let passed, error = rules.[2] word
 if not passed then false, error
 else true, ""

18.3.2 Folding functions together

The approach you’ve just seen doesn’t scale particularly well. An alternative approach is
to create a function that when given a list of rules gives back a new rule that runs all the
individual rules, using the reduce form of fold. You haven’t looked at reduce in detail yet,
so refer back to section 18.2.2 for an explanation of it if needed.

let buildValidator (rules : Rule list) =
 rules
 |> List.reduce(fun firstRule secondRule ->
 fun word ->
 let passed, error = firstRule word
 if passed then
 let passed, error = secondRule word
 if passed then true, "" else false, error
 else false, error)

let validate = buildValidator rules
let word = "HELLO FrOM F#"

validate word

// val it : bool * string = (false, "All letters must be caps")

Like all our other aggregations, this one goes follows a similar pattern (albeit in this
case, ‘T and ‘U are the same). You can also “explode” the aliased types at the same time:

Rule seq -> Rule
(string -> bool * string) seq -> (string -> bool * string)

If you’re an OO design pattern expert, you might recognize this as the composite pattern.
What you’re doing is the same as in figure 18.3, but rather than the state being an

Listing 18.10 Composing a list of rules by using reduce

Checking whether
the rule failed

Rinse and repeat
for all remaining
rules.

Higher-order function

Run first rule

Passed, move
on to next rule

Failed, return error

217Summary
integer, it’s a function that, on each iteration, covers another rule. Notice also that the sig-
nature maps to our original aggregation type: Rule list -> Rule.

In effect, this code says, “Given two rules and a word, check the word against the first. If
it passes, check against the second one.” This is itself returned as a function to reduce as a
composed rule, which is then used in the next iteration alongside the third rule.

Now you try

You might have found that last bit of code hard to understand at first. Let’s explore it so
you can better understand what happened:

1 Put printfn statements inside the rules themselves (for example, printfn "Running 3-
word rule…") so you can see what’s happening here. You’ll have to make each rule a
multiline lambda to do this.

2 Move the rules into a separate module as let-bound functions.
3 Add a new rule to the collection of rules that fails if any numbers are in the text

(the System.Char class has helpful functions here!).

Summary

That’s the end of collections! You’ve now looked at a load of aspects of collections in F#.
In this lesson in particular, you saw the following:

 Aggregations
 Folding over collections
 Folding over sequences
 Dynamically creating rules engines

Quick check 18.3

1 What OO pattern is equivalent to reducing functions together?
2 What happens to a type alias after compilation? Is it available at runtime?

QC 18.3 answer
1 The Composite pattern.
2 Type aliases are erased at runtime and revert to the real type that they alias.

218 Lesson 18 Folding your way to success
You’ll use collections throughout the rest of the book, and you’ll be introduced to more
features of the collection module later. For now, take a breath and get ready for the next
unit!

Try this

Create a simple rules engine over the filesystem example from the previous lesson. The
engine should filter out files that don’t pass certain checks, such as being over a specific
file size, having a certain extension, or being created before a specific date. Have you
ever created any rules engines before? Try rewriting them in the style we defined in this
lesson.

19LESSON
CAPSTONE 3

To round off this unit, you’ll dive back into the bank accounts problem you worked on
in capstone 2, but this time you’ll enhance it with a few new features that will test some
of your knowledge of collections, as well as further reinforcing the lessons you picked
up earlier in this book. You’ll look at

 Creating and working with sequences
 Performing aggregations
 Composing functions together
 Organizing code in modules

19.1 Defining the problem

In this exercise, you’ll start from a variant of the code that you ended up with at the end
of capstone 2 and enhance it step by step. You designed a basic application that allows
you to create an in-memory bank account, and perform withdrawals and deposits into
the account. Now you’re going to continue that good work with a few enhancements:

 Updating your main command-handling routine to eliminate mutable variables
 Storing a serialized transaction log to disk for each customer
 Rehydrating historical transactions and building an up-to-date account by using

sequence operations
219

220 Lesson 19 Capstone 3
19.1.1 Solution overview

In the src/lesson-19 folder, you’ll see a prebuilt Capstone3.sln solution for you to open.
There’s also a sample solution in the sample-solution subfolder. As always, use it if you
get stuck, but don’t use it as a starting point. The whole idea is for you to try to solve this
yourself!

19.2 Removing mutability

The first thing you can do with your newfound knowledge of sequences is to remove
the dependency on mutable variables for your main driver program. As you may
remember from capstone 2, you had to rely on an imperative while loop to keep track of
the state of the account as you modified the account with deposits or transactions, as
shown in figure 19.1.

19.2.1 Comparing imperative and declarative flows

Although having a mutable variable in a single, isolated place isn’t necessarily a prob-
lem, you can remove the reliance on it without too much difficulty. Moving from an
imperative to a declarative mode of thinking will also provide a more composable way
of expressing this logic, and avoid branching logic. There are two ways of avoiding the
imperative, mutable model:

Exit

Invalid command

Deposit or withdraw
Parse command Mutable account

Start app

Quit

Figure 19.1 Existing imperative main driver loop

221Removing mutability
 Using recursion, which I’ve deliberately avoided so far.
 Treating the changes to the account as a sequence of operations that are applied

against the previous version of the account; when the user decides to quit the
application, the sequence stops, and the final account version is the end state (see
figure 19.2).

Given a sequence of commands, you can filter out invalid ones, take until you receive a
quit command, apply amounts onto the commands, and finally process them in
sequence until you have your final account state.

The problem here, of course, is that your application is interactive. You’re asking the
user for input, rather than starting with a predefined set of commands. But that’s not too
difficult to achieve, as you’ll see shortly. The easiest thing to do is to start with a preex-
isting collection of commands in a script and try to build a pipeline that looks exactly
like figure 19.2, but in code.

#load "Domain.fs"
let openingAccount =
 { Owner = { Name = "Isaac" }; Balance = 0M; AccountId = Guid.Empty }

Listing 19.1 Creating a functional pipeline for commands

 End account
state £75

 Initial account
state £0

Take until
quit command

Unparsed
commands

 Aggregate
commands

Get amount

 [“D”; “W”; “Z”; “F”; “D”; “X”; “W”;]

 [“D”; “W”; “D”; “X”; “W”]

 [“D”; “W”; “D”]

 [(“D”, 50); (“W”, 25); (“D”, 50)]

Filter out invalid
commands

Figure 19.2 Proposed declarative view of commands as a sequence

Initial opening
account state

222 Lesson 19 Capstone 3
let account =
 let commands = ['d'; 'w'; 'z'; 'f'; 'd'; 'x'; 'w']

 commands
 |> Seq.filter isValidCommand
 |> Seq.takeWhile (not << isStopCommand)
 |> Seq.map getAmount
 |> Seq.fold processCommand openingAccount

Now you try

Your task, should you choose to accept it, is to implement the functions used in the pipe-
line in listing 19.1. The descriptions for each function are in the following bulleted list,
followed by stubs in listing 19.2. Start by opening Scratchpad.fsx, which has already
been created for you and has appropriate #load statements to import the .fs files that con-
tain all required types:

 isValidCommand—Checks whether the command is one of (d)eposit, (w)ithdraw, or
e(x)it.

 isStopCommand—Checks whether the command is the exit command.
 getAmount—Takes in a command and converts it to a tuple of the command and

also an amount. Your code should check the following:
– If the command is deposit, return ('d', 50M).
– If withdraw, return ('w', 25M).
– Otherwise, return ('x', 0M).

 processCommand—Takes in an account and a (command, amount) tuple. It should
then apply the appropriate action on the account and return the new account
back out again.

#load "Domain.fs"
#load "Operations.fs"

open Capstone3.Operations
open Capstone3.Domain
open System

let isValidCommand (command:char) = if command = 'w' then true else false
let isStopCommand (command:char) = false

Listing 19.2 Sample functions for command-processing pipeline

Set of commands
you want to process

Aggregating the validated
set of commands, using
openingAccount as initial
state

223Removing mutability
let getAmount (command:char) = command, 0M
let processCommand (account:Account) (command:char, amount:decimal) =

 account

Now that you have a pipeline, you can test it in the REPL, executing progressively more
of the pipeline, one stage at a time. You should see outputs as shown in figure 19.2 for
each stage, and end up with an account with a balance of £75.

19.2.2 Moving to user-driven input

Now that you’ve tested your pipeline in a hardcoded fashion, you can now change to
user-driven input. As you’ll see, your pipeline stays unchanged; the only difference is
that you’ll need to replace the hardcoded set of commands with user-generated input,
and change the getAmount function to again return user-generated input. First, let’s see
how to migrate your code into the program.

Now you try

1 Open the Capstone3 solution and navigate to Program.fs.
2 Copy across the helper functions you created in your script above main.
3 Copy across the main pipeline you created based on listing 19.1 in place of the

entire // Fill in the main loop here... block.
4 Run the application. You should see the final account printed with a balance of

£75.
Now that you’ve ported the code, you should start to replace the hardcoded
input by using a lazy sequence via the yield keyword.

Adapting functions to fit signatures
Notice that the arguments for processCommand use a hybrid approach of curried and
tupled form, so that it plugs into Seq.fold naturally. This isn’t uncommon to do, especially
when working with higher-order functions. You might ask when is the best time to force
a function signature into a particular shape to fit with the caller—and there’s not always
a great answer. In a way, it’s a similar to a question in the OO world of changing the sig-
nature of a class to fit into an existing interface: sometimes you’ll do it, and other times
you’ll use an adapter. In F#, an adapter over a function is a lambda (or at worst a let-
bound function) that takes in arguments in one shape and maps to another form, so it’s
probably more common than in the OO world to use the adapter approach.

224 Lesson 19 Capstone 3
let consoleCommands = seq {
 while true do
 Console.Write "(d)eposit, (w)ithdraw or e(x)it: "
 yield Console.ReadKey().KeyChar }

This sequence will execute forever; every time the pipeline pulls another item
from the sequence of commands, it’ll loop through, print to the console, and read
the key entered. It’s important to resist the temptation to filter out invalid com-
mands here. You want this to be a simple stream of keys that you can plug in to
the existing pipeline.

5 Next, replace the getAmount function with a new getAmountConsole function. It’ll also
print to the console to ask the user to enter the amount, before reading a line from
the console and parsing it as a Decimal. As this function has the same signature
(char -> char * decimal), you can replace the existing call to getAmount in the pipeline
with this one.

6 Run the application. With a little bit of care, the output will look something
(although probably not exactly) like figure 19.3.

Listing 19.3 Creating a sequence of user-generated inputs

A sequence block

Yielding out keys sourced
from the console

Figure 19.3 Sample output of our application using a function
pipeline over a lazy sequence

225Writing transactions to disk
What’s nice about this approach is that you can treat the inputs of data independently
of the processing logic over that data. You tested some filtering logic and hooked into
your existing code base, before replacing a couple of small functions in your pipeline to
move from some hardcoded data suitable for testing in a script, to a user-driven con-
sole application.

19.3 Writing transactions to disk

Let’s have a little more fun now and see how to add the ability to persist individual
account transactions to disk, which will then allow you to reload an account from disk
when you restart the application. Recall that so far, you already support the ability to
write to both the console and disk. But the format that you emit to disk isn’t suitable for
what you need. It’s just the user-friendly console outputs; you need a structure that’s
easily machine-readable.

What you need to do is amend your logging functions so that instead of taking in a raw
string message to log, they’ll take in a Transaction record, which (unsurprisingly) con-
tains the details of the transaction being attempted.

Now you try

1 In Domain.fs, create a new record type, Transaction. It should contain enough
detail with which to store what has occurred, such as the amount, whether a
deposit or withdrawal (use a string or char field), a timestamp, and perhaps
whether the attempt was successful.

2 Open the FileRepository module and change the writeTransaction function so that it
takes in a transaction rather than a message.

3 Create a serialized string that represents the transaction record by using basic
sprintf functionality; use a custom delimiter so you can easily “split apart” the
string again later. You might want to use a third-party serialization framework
such as Json.NET, but in the interests of keeping things simple for now, use some-
thing like this one.

let serialized transaction =
 sprintf "%O***%s***%M***%b"
 transaction.Timestamp
 transaction.Operation

Listing 19.4 Sample serializer for a transaction record

226 Lesson 19 Capstone 3
 transaction.Amount
 transaction.Accepted

In my suggested solution, I’ve created a module called Transactions in Domain.fs
that contains the serialization function, but feel free to put it wherever you want.

4 Your code won’t compile, because the console logger (printfTransaction in the
Auditing module) no longer matches the function signature of the file logger. Fix it
so that it takes in a transaction instead of a message string, and then prints a con-
sole message based on the content of the transaction record.

5 You’ll also need to fix the auditAs function, which carries out an operation (deposit
or withdraw), and logs what happened. You’ll need to change it to create a trans-
action and then pass that to the audit function that’s supplied.

6 When that’s compiling, make sure in Program.fs to replace the raw calls to deposit
and withdraw with the ready-made depositWithAudit and withdrawWithAudit functions.

7 Test the application; you should see that it correctly creates a file in an accounts
directory for each transaction made with the serialized contents of each transac-
tion in each file.

19.4 Rehydrating an account from disk

OK, great—you’ve now managed to get your tool serializing all the transactions to disk.
Now, let’s go the other way. On startup, instead of creating a blank account with a bal-
ance of £0, the tool should search for a folder for that user (by name), and then rehy-
drate the current status of the account based on their transaction history. This is simple,
again, if you break it into small, composable functions.

Now you try

1 Create a function, loadAccount in Operations. This function should take in an owner,
accountId, and a list of transactions, and return an account. You’ll want to sort the
transactions by oldest date first, and then fold them together into an account
(pretty much as you’ve done already in the main program). Depending on
whether the transaction was a withdrawal or a deposit, call the appropriate func-
tion in Operations.

2 Test this function (you developed the function in the script, right?) so that given a
set of transactions that you create in the script, you end up with an account that
has the correct balance. When you’re happy with it, port it into the application.

227Summary
3 Now let’s deal with pulling back the transactions from disk, which you can then
plug into loadAccount. Create a deserialize function that, given a single string, will
re-create a Transaction record from it. If you created a Transactions module, put it in
there.

4 Create a function findTransactionsOnDisk in FileRepository that, given an owner, can
retrieve the account ID and all the deserialized transactions from the folder. Sev-
eral private helper functions are already written in the module to help you along.
Because there’s a possibility that this is a new user, and this function is an expres-
sion, you’ll have to cater to that possibility. As you haven’t yet learned the
“proper” way to do that in F#, return a new Guid for the account ID and an empty
sequence of transactions by using Seq.empty.

5 In Program.fs, instead of starting with a hardcoded empty account, after captur-
ing the account owner’s name, you’ll want to call FileRepository.findTransactions-
OnDisk before passing the results to Operations.loadAccount. Depending on the
signatures of the two functions, you might be able to compose them into one
function, but this will depend on whether the output of the first matches the
input of the second!

6 Test the application by first creating a new customer and performing several
transactions before quitting the application. Then, restarting the application
should rehydrate the same account based on the transactions that were already
saved.

Summary

And we’re done! As always, there’s a suggested solution in the repository to give you
ideas on what you might have done. You’ll come back to this solution later in the book,
so you can incorporate other F# language features and libraries as appropriate.

229

U
N

IT

5

The pit of success with
the F# type system

We’re making progress now! We’ve covered F# syn-
tax, FP principles, functions, and collections—
almost there! This next unit is the last one to focus
on core language features in F#—remember that
this book covers a core subset of the F# language,
after which you’ll have some fun writing meaning-
ful applications that use a variety of frameworks
and libraries.

A common phrase you’ll hear in F# circles is the
ability to “make illegal states unrepresentable.” In
C# and VB .NET, we’re used to the notion of prov-
ing that an application is correct through, for exam-
ple, unit tests and console applications. In F#, we
still use unit tests, but to a far smaller degree. Part
of that, as you know, is because of the REPL. But
another reason is that the F# type system allows us
to represent business logic as code so that if your
application compiles, it probably just works. Sounds
crazy, right?

In a more tangible sense, this unit is all about mod-
eling program flow, domains, and business logic in
F#, covering a set of language features that work
together to provide a much more powerful way to
reason about what your program does than simple
if/then statements and inheritance hierarchies do.

20LESSON
PROGRAM FLOW IN F#

In C# and VB .NET, we have a variety of ways of performing what I consider program
flow: branching mechanisms and, to an extent, loops. In this lesson, we’ll compare and
contrast those features with equivalents in F#, looking at the following:

 for and while loops
 If/then statements and expressions
 Switch/case statements
 Pattern matching

When you’re finished, you’ll have a good idea of how to perform all sorts of complex
conditional logic much more succinctly than you might be used to.

20.1 A tour around loops in F#

I cover loops briefly in this lesson because the F# side of things has a slightly different
syntax compared to C# and VB .NET, with similar behavior. This leaves us more room to
focus on branching logic in F#, which is much more interesting. You’ve already seen
examples of these constructs in this book, so you can consider this reference material
more than anything.
231

232 Lesson 20 Program flow in F#
The main thing to know is that—comprehensions aside—these looping constructs,
although officially expressions, are inherently imperative, designed to work with side
effects (code that doesn’t have any tangible output; for example, printing to the console
or saving to the database). In that respect, these loops should be familiar to you (and
perhaps unsurprisingly not used as often in F# as C# or VB .NET).

20.1.1 for loops

for-each and for loops can be modeled by using the for .. in construct in F#. for .. in
loops also have a handy syntax for creating ranges of data quickly, so although there’s a
separate construct in F# for simple for loops (known as for .. to), I’ve ignored it here.

for number in 1 .. 10 do
 printfn "%d Hello!" number

for number in 10 .. -1 .. 1 do
 printfn "%d Hello!" number

let customerIds = [45 .. 99]
for customerId in customerIds do
 printfn "%d bought something!" customerId

for even in 2 .. 2 .. 10 do
 printfn "%d is an even number!" even

20.1.2 while loops

while loops in F# behave just like those that you’re used to.

open System.IO
let reader = new StreamReader(File.OpenRead @"File.txt")
while (not reader.EndOfStream) do
 printfn "%s" (reader.ReadLine())

Listing 20.1 for .. in loops in F#

Listing 20.2 while loops in F#

Upward-counting for loop

Downward-counting for loop

Typical for-each-style loop

Range with custom stepping

Opening a handle
to a text file

while loop that runs while the reader
isn’t at the end of the stream

233A tour around loops in F#
20.1.3 Comprehensions

Comprehensions are a powerful way of generating lists, arrays, and sequences of data
based on for loop–style syntax. The closest equivalent in C# would be the use of the
System.Linq.Enumerable.Range() method, except rather than library support, F# has native
language support for this. Here’s how comprehensions work.

open System

let arrayOfChars = [| for c in 'a' .. 'z' -> Char.ToUpper c |]
let listOfSquares = [for i in 1 .. 10 -> i * i]
let seqOfStrings = seq { for i in 2 .. 4 .. 20 -> sprintf "Number %d" i }

You’ll find comprehensions useful for quickly generating collections of data based on a
set of numbers—for example, calling a SQL stored procedure to load all customers
between two date ranges.

Listing 20.3 Comprehensions in F#

Breaking the loop
The main restriction of loops in F# is that there’s no concept of the break command, so
you can’t exit out of a loop prematurely—sorry. If you want to simulate premature exit of
a loop, you should consider replacing the loop with a sequence of values that you filter
on (or takeWhile), and loop over that sequence instead. In fact, in case you haven’t noticed
yet, no code you’ve returned in a function uses “early return”—that’s because it’s not sup-
ported in F#. Again, because everything is an expression, each branch must have an
equivalent result.

Generating an array
of the letters of the

alphabet in uppercase

Generating the squares
of the numbers 1 to 10

Generating arbitrary strings
based on every fourth

number between 2 and 20

234 Lesson 20 Program flow in F#

20.2 Branching logic in F#

We’re used to using one of two branching mechanisms in C#: if/then and switch/case.
The former is used for most general-purpose branching logic; in my experience, the lat-
ter tends to be used more rarely. That’s unfortunate, because switch/case is a more con-
strained model than if/then, which operates against a single value. This means that it’s
often a little easier to reason about branching decisions than if/then, but overall it’s fairly
limited, working only against objects from a few types (integers, strings, and enums).
If/then is more powerful, but is completely unconstrained, which means it’s relatively
easy to write code that’s hard to reason about, or branches that accidentally operate over
different data.

F# has an entirely different construct for handling branching logic called pattern match-
ing. Let’s work through an example to illustrate how to improve upon if/else expressions.

20.2.1 Priming exercise—customer credit limits

Let’s say you want to write code that calculates a customer’s credit limit, based on the
customer’s third-party credit score, and the number of years that this person has been a
customer of yours. For example, if the customer has a credit score of Medium and has
been with you for one year, you’d give them a credit limit of $500.

It sometimes helps me to understand a compound condition such as this if I visualize it
as a kind of truth table. Let’s do that now for the various cases that we want to model;
see table 20.1.

Quick check 20.1

1 What restriction does F# place on returning out of loops?
2 What is the syntax to perform for-each loops in F#?
3 Can you use while loops in F#?

QC 20.1 answer
1 You can’t prematurely exit from a for loop in F#.
2 for <binding> in <collection> do <code>
3 Yes; while loops work in F# pretty much as in C#.

235Branching logic in F#
Even with only two features and a couple of or conditions, modeling this with if/then
expressions can be a little awkward.

let limit =
 if score = "medium" && years = 1 then 500
 elif score = "good" && (years = 0 || years = 1) then 750
 elif score = "good" && years = 2 then 1000
 elif score = "good" then 2000
 else 250

You might think that this is standard code, but the truth is, reasoning about the relation-
ships of all the clauses as one unified piece of business logic can be difficult; each clause
is completely unrelated. There’s nothing to stop you from accidentally comparing
against something else instead of score in just one branch, for example. Also, notice that
the catchall parts of the code are somewhat implicit; this can lead to all sorts of weird
and wonderful bugs, particularly when you have more than just a couple of clauses.

20.2.2 Say hello to pattern matching

F#’s solution to modeling branching logic is an entirely different construct called pattern
matching. Pattern matching is an expression-based branching mechanism that also
allows inline binding for a wide variety of F# constructs—in other words, the ability to
deconstruct a tuple or record while pattern matching. Perhaps the most apt way that
I’ve heard it described is as switch/case on steroids; the principles are similar, but pattern
matching takes things a whole lot further. Let’s take a look!

Table 20.1 Modeling logic as a truth table

Credit score Years as a customer Credit limit

Medium 1 $500

Good 0 $750

Good 1 $750

Good 2 $1,000

Good <anything else> $2,000

<anything else> <anything else> $250

Listing 20.4 If/then expressions for complex logic

A simple clause

Complex clause—
AND and OR
combined

Catchall for “good”
customersCatchall for

other customers

236 Lesson 20 Program flow in F#
let limit =
 match customer with
 | "medium", 1 -> 500
 | "good", 0 | "good", 1 -> 750
 | "good", 2 -> 1000
 | "good", _ -> 2000
 | _ -> 250

The syntax is a little different from what you’re probably used to (then again, that’s par
for the course with F#!), but it’s also powerful. Some things to note:

 You always test against a single source object, much like switch/case. Unlike
if/then, it’s impossible to compare against different values across branches.

 You match against patterns that represent specific cases. In this example, these
patterns are tuples of credit score and years.

 The compiler can automatically infer the type of customer as (string * int) based on
the usage within the patterns.

 You’re matching here against constant values, just like switch/case. But you can
also deconstruct a tuple and match against the individual components of it (as
you’ll see shortly).

 You can model multiple patterns to a single, shared output.
 You can model catchall-style scenarios as well with the wildcard (_) pattern, even

on just a subset of the overall pattern.
 Pattern matching is, of course, an expression, so the match returns a value (in this

case, the credit limit for the customer). Just like if/then expressions, all the differ-
ent branches must return the same type—in this case, that’s an integer (the credit
limit).

20.2.3 Exhaustive checking

One thing that switch/case provides over if/then in C# is that the compiler can give you
a little more support (for example, if you switch on the same case twice). Pattern match-
ing has even better compiler support; it provides exhaustive checking. Because pattern
matches are expressions, a pattern match must always return a result; if an input value

Listing 20.5 Our first pattern-matching example

Implicitly matching on a
tuple of rating and years

If medium score with one-
year history, limit is $500

Two match conditions
leading to $750 limit

Catchall for other customers
with “good” score

Catchall for all other
customers

237Branching logic in F#
can’t be matched by the code at runtime, F# will throw an exception! To help you out, F#
will warn you if you don’t cater to all possibilities, as well as telling you about rules that
can never be matched.

Now you try

Let’s work through a simple example that illustrates how exhaustive pattern matching
works:

1 Open a new script file.
2 Create a function getCreditLimit that takes in a customer value. Don’t specify the

type of the customer; let the compiler infer it for you.
3 Copy across the pattern-matching code from this sample that calculates the limit

and return the limit from the function. Ensure that this compiles and that you can
call it with a sample tuple; for example, ("medium", 1).

4 Remove the final (catchall) pattern (| _ -> 250).
5 Check the warning highlighted at the top of the match clause, as shown in figure 20.1.

The warning indicates that you haven’t considered the case of a customer with an
arbitrary credit score and zero years’ history.

6 Call the function with a value that won’t be matched—for example, ("bad", 0)—
and see in FSI that a MatchFailureException is raised.

7 Fill in a new pattern at the bottom of (_, 0) and set the output for this case to 250.
8 Notice that the warning has now changed to say you need to fill in a case for

(_, 2), and so forth.

Exhaustive pattern matching is useful here as a reminder to add a catchall, but comes
into its own when working with discriminated unions, which you’ll see later in this unit.
Let’s now see how F# also warns about unreachable patterns:

1 Change the new pattern that you just created to match on (_, 1).
2 Move that clause to be the first pattern.

Figure 20.1 Exhaustive pattern matching

238 Lesson 20 Program flow in F#
3 Observe that a warning is now shown against the (medium, 1) case, as shown in
figure 20.2.

It’s important to understand that pattern matching works top down. You should always
put the most specific patterns first and the most general ones last.

20.2.4 Guards

F# also provides a nice escape hatch for pattern matching so that you can do any form of
check within a pattern rather than just matching against values. This is known as the
when guard clause. For example, you could merge two of the preceding patterns into one
with the following.

let getCreditLimit customer =
 match customer with
 | "medium", 1 -> 500
 | "good", years when years < 2 -> 750
 | … // etc.

Notice that you’ve also bound the number of years that the customer has been with you
to the years symbol. As when decomposing a tuple normally, you can choose any symbol
that you want. You can also use bound symbols on the right side of the arrow, which is
useful if the action for that pattern needs to use input values.

Listing 20.6 Using the when guard clause

Figure 20.2 F# warns
about patterns that can
never be matched.

Using the when
guard to specify a
custom pattern

When not to when?
You obviously have a lot of control when using the when clause in pattern matching, but a
cost is associated with this: the compiler won’t try to figure out anything that happens
inside the guard. As soon as you use one, the compiler won’t be able to perform exhaus-
tive pattern matching for you (although it will still exhaust all possibilities that it can
prove).

239Flexible pattern matching
20.2.5 Nested matches

Just as with if/then (or switch/case), you can nest pattern matches. I recommend doing
so only when you have an extreme number of repeated elements. Otherwise, the benefit
of removing the repeated element is offset by the cost of the extra code complexity.
Here’s how the same example would look with nested matches.

let getCreditLimit customer =
 match customer with
 | "medium", 1 -> 500
 | "good", years ->
 match years with
 | 0 | 1 -> 750
 | 2 -> 1000
 | _ -> 2000
 | _ -> 250

20.3 Flexible pattern matching

So far you’ve seen a couple of types of pattern matching: constant matching (as in listing
20.6) and tuple pattern matching (the ability to deconstruct and match against a tuple of
values by using standard F# tuple syntax). But pattern matching can do much more
than that; it can also match manyagainst other types of data. This section presents a few
common types of matches; you can find a complete list on the F# documentation site at

Listing 20.7 Nesting matches inside one another

Matching on
“good” and binding
years to a symbol

A nested match on the
value of years

Single-value match

Global catchall

Quick check 20.2

1 What are the limitations of switch/case?
2 Why can unconstrained clauses such as if/then expressions lead to bugs?
3 What sort of support does pattern matching provide to ensure correctness?

QC 20.2 answer
1 Limited set of types it can work over; no binding support.
2 It’s easy to write branches that are difficult to reason about and inconsistent.
3 Exhaustive pattern matching; binding and construction of tuples and collections.

240 Lesson 20 Program flow in F#
https://msdn.microsoft.com/en-gb/visualfsharpdocs/conceptual/fsharp-language-
reference.

20.3.1 Collections

F# lets you safely pattern match against a list or array. Instead of having code that first
checks the length of a list before indexing into it, you can get the compiler to safely
extract values out of the list in one operation. For example, let’s say you have code that
should operate on a list of customers:

 If no customers are supplied (the list is empty), you throw an error.
 If there’s one customer, print the customer’s name.
 If there are two customers, you’d like to print the sum of their balances.
 Otherwise, print the total number of customers supplied.

Pretty arbitrary logic, right?

Now you try

Let’s work through the preceding logic to see pattern matching over lists in action:

1 Create a Customer record type that has fields Balance : int and Name : string.
2 Create a function called handleCustomers that takes in a list of Customer records.
3 Implement the preceding logic by using standard if/then logic. You can use

List.length to calculate the length of customers, or explicitly type-annotate the
Customer argument as Customer list and get the Length property on the list.

4 Use failwith to raise an exception (for example, failwith "No customers supplied!").
5 Now enter the following pattern match version for comparison.

let handleCustomer customers =
 match customers with
 | [] -> failwith "No customers supplied!"
 | [customer] -> printfn "Single customer, name is %s" customer.Name
 | [first; second] ->
 printfn "Two customers, balance = %d"

Listing 20.8 Matching against lists

Matching against
an empty list

Matching against a
list of one customer

https://msdn.microsoft.com/en-gb/visualfsharpdocs/conceptual/fsharp-language-reference
https://msdn.microsoft.com/en-gb/visualfsharpdocs/conceptual/fsharp-language-reference

241Flexible pattern matching
 (first.Balance + second.Balance)
 | customers -> printfn "Customers supplied: %d" customers.Length

handleCustomer [] // throws exception
handleCustomer [{ Balance = 10; Name = "Joe" }] // prints name

One big difference with pattern matching versus manually checking the length of lists
first is that here it’s impossible to accidentally try to access a value in a list that doesn’t
exist, as the compiler is doing both the length check and expanding the values of the list
for you. You’re replacing runtime logic for compile-time safety.

An example like this is useful only for small lists; you wouldn’t do this for lists of hun-
dreds of items. But you’d be surprised how often you check against lists that have only a
few items in them.

20.3.2 Records

You can also pattern match on records. What does this mean? Well, here’s an example of
pattern matching against your fictional Customer type to return a description of records.

let getStatus customer =
 match customer with
 | { Balance = 0 } -> "Customer has empty balance!"
 | { Name = "Isaac" } -> "This is a great customer!"
 | { Name = name; Balance = 50 } -> sprintf "%s has a large balance!" name
 | { Name = name } -> sprintf "%s is a normal customer" name

{ Balance = 50; Name = "Joe" } |> getStatus

Notice that you don’t have to fill in all the fields, only the ones that you want to match
against. But if you want to, you can bind specific fields to symbols so you can use them
on the right-hand side—pretty neat!

Listing 20.9 Pattern matching with records

Matching against a
list of two customers

Matching against
all other lists

Match against
Balance field

Match against
Name field

Catchall, binding Name
to name symbol

242 Lesson 20 Program flow in F#
You can even mix and match patterns. How about checking the following three condi-
tions all at the same time:

1 The list of customers has three elements.
2 The first customer is called “Tanya.”
3 The second customer has a balance of 25.

No problem!

match customers with
| [{ Name = "Tanya" }; { Balance = 25 }; _] -> "It's a match!"
| _ -> "No match!"

20.4 To match or not to match

With two branching mechanisms at your disposal, which should you use: if/then or pat-
tern matching? My advice is to use pattern matching by default. It’s more powerful, eas-
ier to reason about, and much more flexible. The only time it’s simpler to use if/then is
when you’re working with code that returns unit, and you’re implicitly missing the
default branch.

if customer.Name = "Isaac" then printfn "Hello!"

match customer.Name with
| "Isaac" -> printfn "Hello!"
| _ -> ()

Listing 20.10 Combining multiple patterns

Listing 20.11 When to use if/then over match

Pattern matching
against a list of three

items with specific fields

Quick check 20.3 What collection types can you not pattern match against?

QC 20.3 answer Sequences can’t be pattern matched against; only arrays and lists are supported.

If/then with implicit
default else branch

Match with explicit
default case

243Summary
The F# compiler is smart enough with if/then to automatically put in a default handler
for you for the else branch, but the match construct always expects an explicit default
handler.

Summary

That’s the end of the program flow unit. Let’s recap what you looked at:

 You briefly reviewed for and while loops.
 You saw how to use comprehensions to easily generate collections.
 You compared if/then expressions with switch/case statements.
 You spent most of the lesson looking at pattern matching, a powerful branching

mechanism in F#.

We’ve really only scratched the surface of what’s possible with pattern matching. Its real
benefit is that it’s incredibly expressive, powerful, and yet simple to use—once you
know what can be done with it. Don’t be surprised if you find it a little unusual; the idea
of pattern matching is unlike both branching mechanisms you already know. You’ll be
using it more and more in the coming lessons in this unit, as it’s pervasive within F#, so
you’ll have more opportunities to get your hands dirty with it.

Try this

Experiment with pattern matching over lists, tuples, and records. Start by creating a
random list of numbers of variable length and writing pattern matches to test whether
the list

 Is a specific length
 Is empty
 Has the first item equal to 5 (hint: use head/tail syntax here with ::)

Then experiment with pattern matching over a record. Continue with the filesystem
“Try this” exercise from the previous lessons; pattern match over data to check whether
a folder is large, based on average file size or count of files.

21LESSON
MODELING RELATIONSHIPS IN F#

Although you’ve looked at different ways of storing data in F# (tuples, records, and so
forth), one thing you haven’t looked at much is how to model relationships of data
together—for example, different types of motor vehicles such as cars, motorbikes, and
vans. In this lesson, you’ll look at a way of doing this in F#, using a flexible and power-
ful modeling tool called discriminated unions. You’ll do the following:

 Briefly review inheritance in the OO world
 Learn what discriminated unions are, and how to use them
 Compare and contrast inheritance and discriminated unions

You’re probably familiar with modeling relationships in C# already, through one of two
mechanisms: composition and inheritance. The former establishes a has-a relationship,
whereas the latter typically models the is-a relationship; for example:

 A computer has a set of disk drives.
 A printer is a device.

21.1 Composition in F#

We covered composition in lesson 10, where you created two record types with one ref-
erencing the other, but let’s quickly recap it with another example.
244

245Composition in F#
type Disk = { SizeGb : int }
type Computer =
 { Manufacturer : string
 Disks: Disk list }

let myPc =
 { Manufacturer = "Computers Inc."
 Disks =
 [{ SizeGb = 100 }
 { SizeGb = 250 }
 { SizeGb = 500 }] }

In many ways, this code sample is no different from having classes, with one having a
property that’s an instance of the second class—except that F# records are much more
concise, and we don’t fall into the dogmatic one-file-per-class approach.

21.1.1 Modeling a type hierarchy

The problem is that so far, we don’t have any way of modeling an is-a relationship in F#.
For example, if you want to model different types of hard disks in the OO world, it
might look something like figure 21.1.

In the OO world, you’ll use inheritance here:

 A Hard Disk inherits from Disk.
 You store shared fields in the Disk class.
 You store fields unique to the Hard Disk in the Hard Disk class.
 Common behavior is stored in the Disk class.
 You allow overriding of common behaviors through polymorphism.

Listing 21.1 Composition with records in F#

Defining two record
types—Computer is
dependent on Disk

Creating an instance
of a Computer

Units of measure in F#
You’ll notice that listing 21.1 has a field called SizeGb of type int. One of the nice features
of F# is units of measure. These allow you to quickly create a specific type of integer—
similar to generics—to prevent accidentally mixing incompatible integers together (for
example, GB and MB, or meters and feet). In our example, you might have used some-
thing like Size : int<gb>. We won’t be covering units of measure further, but I recom-
mend looking into them in your own time.

246 Lesson 21 Modeling relationships in F#
You might have your common data represented in the Disk type (such as Manufacturer
and Size), but have the RPM speed in Hard Disk, and number of pins in MMC. Simi-
larly, you might have a Seek() method on the disk, which might work significantly differ-
ently across all three disks. But the ability to seek to a file is a piece of functionality
common to all disks, and so might be implemented using polymorphism—having an
abstract method on the base class, and then overriding that method in the derived class.
Callers then couple themselves to only the base class, without having to worry about
which implementation they’re dealing with.

21.2 Discriminated unions in F#

The standard functional programming answer to modeling is-a relationships is by using
a discriminated union (DU). There are other names for it, such as sum types, case classes in
Scala, or algebraic data types for people who want to sound smart. The best way to think
about them is one of two ways:

 Like a normal type hierarchy, but one that’s closed. By this, I mean that you define
all the different subtypes up front. You can’t declare new subtypes later.

 As a form of C#-style enums, but with the ability to add metadata to each enum
case.

Let’s take a look at a discriminated union for our fictional three-case disk drive hierarchy.

type Disk =
| HardDisk of RPM:int * Platters:int

Listing 21.2 Discriminated unions in F#

Hard disk

Disk

Solid state MMC

Figure 21.1 An is-a model that might map to an inheritance hierarchy

Base type Hard Disk subtype,
containing two custom
fields as metadata

247Discriminated unions in F#
| SolidState
| MMC of NumberOfPins:int

Each case is separated by the pipe symbol (as in pattern matching). If you want to attach
specific metadata to the case, you separate each value with an asterisk. At this point, it’s
worth pointing out that you’ve modeled the equivalent of an entire type hierarchy in
four lines of code. Compare this with what you’d normally do in C# with a conventional
class hierarchy:

1 Create a separate class for the base type and for each subclass.
2 Best practice (allegedly) dictates that you put each subclass into its own file.
3 Create a constructor for each, with appropriate fields and public properties.

21.2.1 Creating instances of DUs

Let’s see how to create, and then use, such a discriminated union in F#.

Now you try

First, start by creating a new script, DiscriminatedUnions.fsx, and copy across the dis-
criminated union definition in listing 21.2. Next, create some different types of disks.
Creating an instance of a DU case is simple:

let instance = DUCase(arg1, arg2, argn)

Start by creating an instance of a Hard Disk with 250 RPM and seven platters, followed
by an MMC disk with five pins. Finally, create an SSD disk. Because this disk contains
no custom parameters, you can do away with the “constructor call” completely. Let’s see
how this might look.

let myHardDisk = HardDisk(RPM = 250, Platters = 7)
let myHardDiskShort = HardDisk(250, 7)
let args = 250, 7
let myHardDiskTupled = HardDisk args
let myMMC = MMC 5
let mySsd = SolidState

Listing 21.3 Creating discriminated unions in F#

SolidState—no
custom fields

MMC—single custom
field as metadata

Explicitly named
argumentsLightweight

syntax

Passing all values as a single
argument, can omit brackets

Creating a DU case
without metadata

248 Lesson 21 Modeling relationships in F#
How did you do? Note that in our DU, I’ve assigned specific names to each metadata
field. This is optional; you can opt to specify just the types (for example, int * string) but
putting in names gives us some documentation, as well as more helpful IntelliSense (as
shown in figure 21.2).

Notice also that the values on the left side are all typed as the base type (Disk), rather
than the specific subtypes, as shown in figure 21.3.

21.2.2 Accessing an instance of a DU

Now that you’ve created your DU, how do you use it? You might try to dot into myHard-
Disk and access all the fields. If you try this, you’ll be disappointed; you won’t get any
properties. That’s because myHardDisk is of type Disk, and not HardDisk. What you need to do
is somehow safely unwrap this into one of the three subtypes: HardDisk, SolidState, or MMC.
(It’s irrelevant that you can see in the code that this is really a HardDisk. As far as the type
system is concerned, it could be any one of the three.) How do you safely do this? You
use our newfound friend from the previous lesson: pattern matching.

Let’s assume you want to make a function that handles your hypothetical Seek() method
from earlier. Recall that in an OO hierarchy, you’d make an abstract method on the base
class, and provide implementations on each case. In other words, all implementations
would live with their associated type; there’s no one place you’d see all of the implementa-
tions. In F#, you take a completely different approach.

let seek disk =
 match disk with
 | HardDisk _ -> "Seeking loudly at a reasonable speed!"
 | MMC _ -> "Seeking quietly but slowly"
 | SolidState -> "Already found it!"

seek mySsd

Listing 21.4 Writing functions for a discriminated union

Figure 21.2 Generated
DU constructors in F#

Figure 21.3 Values are
assigned as type Disk, not
as HardDisk.

Matches on any
type of hard disk

Matches on any
type of MMC

Returns “Already
found it!”

249Discriminated unions in F#
As you know with pattern matching, you can also match on specific values within a
match case, so you can enhance the preceding code to match on Hard Disks with an
RPM of 5400 and five spindles as per the next listing.

| HardDisk(5400, 5) -> "Seeking very slowly!"
| HardDisk(rpm, 7) -> sprintf "I have 7 spindles and RPM %d!" rpm
| MMC 3 -> "Seeking. I have 3 pins!"

This at first glance might appear completely bizarre. You’re putting all the implementa-
tions in a single place! Every time you add a new type, you have to amend this function!
Actually, this is by design and is incredibly powerful. First, you get F# to safely check the
type of the subclass for you. You can’t accidentally access the RPM field when dealing with
a SolidState disk; the type system won’t let you until you’ve matched against the appropri-
ate subtype. Next, not only can you use pattern matching to unbind specific values to vari-
ables (as in the second case in listing 21.5 with RPM) but remember that pattern matching
enforces exhaustive matching. So, you can use F#’s compiler support to warn you if you’ve
missed a specific case. For example, if you replace the catchall hard disk and MMC match
cases in listing 21.4 with those from listing 21.5, you’ll see a warning as follows:

warning FS0025: Incomplete pattern matches on this expression. For example,
the value 'HardDisk (_, 0)' may indicate a case not covered by the

 pattern(s).

Similarly, if you decide to add a new disk type—say, UsbStick—the compiler will instantly
warn that you’re not handling that case here. You can safely add new types without fear
of forgetting to handle it. This is all possible because DUs represent a fixed type hierar-
chy; you can’t create new subtypes anywhere except where the DU is defined.

Now you try

Let’s now see how to write a function that performs pattern matching over a discrimi-
nated union:

1 Create a function, describe, that takes in a hard disk.
2 The function should return texts as follows:

a If an SSD, say, “I’m a newfangled SSD.”

Listing 21.5 Pattern matching on values

Matching a hard
disk with 5400 RPM
and 5 spindles

Matching an MMC
disk with 3 pins

Matching on a hard disk with 7
spindles and binding RPM for
usage on the RHS of the case

250 Lesson 21 Modeling relationships in F#
b If an MMC with one pin, say, “I have only 1 pin.”
c If an MMC with fewer than five pins, say, “I’m an MMC with a few pins.”
d Otherwise, if an MMC, say, “I’m an MMC with <pin> pins.”
e If a hard disk with 5400 RPM, say, “I’m a slow hard disk.”
f If the hard disk has seven spindles, say, “I have 7 spindles!”
g For any other hard disk, state, “I’m a hard disk.”

3 Remember to use the wildcard character (_) to help make partial matches (for
example, (5400 RPM + any number of spindles), and guard clauses with the when
keyword.

Using wildcards with discriminated union matches
It’s tempting to use a plain wildcard for the final case in the preceding exercise. But you
should always try to be as explicit as possible with match cases over discriminated
unions. In the previous example, you should prefer HardDisk _ rather than simply _. This
way, if you add a new type to the discriminated union (for example, UsbStick), you’ll always
get warnings from the compiler to remind you to “handle” the new case.

Quick check 21.1

1 What is the OO equivalent of discriminated unions?
2 Which language feature in F# do you use to test which case of a DU a value is?
3 Can you add new cases to a DU later in your code?

QC 21.1 answer
1 Inheritance and polymorphism.
2 Pattern matching.
3 No. DUs are closed and fixed at compile time.

251Tips for working with discriminated unions
21.3 Tips for working with discriminated unions

Let’s look at a few best practices for working with DUs.

21.3.1 Nested DUs

You can easily create nested discriminated unions—a type of a type. Let’s assume you
want to create different types of MMC drives and make a nested match on that. How
would you do it? First, create your nested DU case, and then add that to the original type
hierarchy as metadata on the parent case (in this situation, that’s the MMC case of Disk).

type MMCDisk =
| RsMmc
| MmcPlus
| SecureMMC

type Disk =
| MMC of MMCDisk * NumberOfPins:int

match disk with
| MMC(MmcPlus, 3) -> "Seeking quietly but slowly"
| MMC(SecureMMC, 6) -> "Seeking quietly with 6 pins."

If you refer back to figure 21.1, what you’ve done is essentially deepen the hierarchy so
that you have three children under the MMC branch.

21.3.2 Shared fields

We haven’t yet looked at how to share common fields across a DU—for example, the
manufacturer name of a hard disk or the size. This isn’t supported with DUs; you can’t
put common fields on the base of the DU (for example, the Disk type). The best way to
achieve this is by using a combination of a record and a discriminated union, as shown
in figure 21.4. You create a wrapper record to hold any common fields, plus one more
field that contains the discriminated union—the varying data.

Listing 21.6 Nested discriminated unions

Nested DU with
associated cases

Adding the nested DU
to your parent case in
the Disk DU

Matching on both
top-level and
nested DUs
simultaneously

252 Lesson 21 Modeling relationships in F#
Here’s a code sample that’s evolved from the start of this lesson and that models both
shared and varying data.

type DiskInfo =
 { Manufacturer : string
 SizeGb : int
 DiskData : Disk }
type Computer = { Manufacturer : string; Disks : DiskInfo list }
let myPc =
 { Manufacturer = "Computers Inc."
 Disks =
 [{ Manufacturer = "HardDisks Inc."
 SizeGb = 100
 DiskData = HardDisk(5400, 7) }
 { Manufacturer = "SuperDisks Corp."
 SizeGb = 250
 DiskData = SolidState }] }

You can easily visualize this code. Consider how simple it is to map this code directly to
figure 21.5.

Listing 21.7 Shared fields using a combination of records and discriminated
unions

One of

Common fields

Composite record

DU field

Hard disk

Solid state

MMC
Figure 21.4 Composing shared
fields with varying custom data
through a record and DU

Composite record,
starting with
common fields

Varying data with field as DU

Computer record—
contains manufacturer

and a list of disks

Creating a list of
disks using [] syntax

Common fields and
varying DU as a
Hard Disk

253Tips for working with discriminated unions
21.3.3 Printing out DUs

A quick tip: if you ever want to just print out the contents of a DU in a human-readable
form, instead of manually matching over all cases and generating a sprintf for each one,
you can call sprintf "%A" on a DU. The compiler will pretty-print the entire case for you!

Manufactured by
Computers, Inc.

Disks

My PC

100 GB
5400 RPM hard disk

250 GB
solid state

Figure 21.5 Representing
your data model visually

Active patterns
F# has an even more powerful—and lightweight—mechanism for classification of data
called active patterns. This is a more advanced topic, but I recommend that you check
them out in your own time. You can think of them as discriminated unions on steroids.

Quick check 21.2

1 How do you model shared fields in a discriminated union?
2 Can you create one discriminated union with another one?

QC 21.2 answer
1 Through a composite record that contains the common fields and the DU value.
2 Yes, DUs can be embedded (or nested) within one another.

254 Lesson 21 Modeling relationships in F#
21.4 More about discriminated unions

Let’s finish covering DUs with a small comparison against OO hierarchies and enums.

21.4.1 Comparing OO hierarchies and discriminated unions

Let’s finish this exploration of DUs by comparing them with OO-style inheritance, as
shown in table 21.1.

The hard-and-fast rule is, if you need to have an extensible set of open, pluggable sub-
types that can be dynamically added, discriminated unions aren’t a great fit. Discrimi-
nated unions are fixed at compile time, so you can’t plug in new items easily.

For DUs with a large number of cases (hundreds) that change quickly, also think care-
fully. Every time you add a new case, your pattern matches over the DU will need to be
updated to handle the new subtype (although the compiler will at least tell you where
you need to update your code!). In such a case, either a record or raw functions might be
a better fit, or falling back to a class-based inheritance model.

But if you have a fixed (or slowly changing) set of cases—which in my experience is
appropriate the vast majority of the time—then a DU is a much better fit. DUs are light-
weight, easy to work with, and very flexible, as you can add new behaviors extremely
quickly without affecting the rest of your code base and get the benefit of pattern match-
ing. They’re also generally much easier to reason about; having all implementations in a
single place leads to much-easier-to-understand code.

Table 21.1 Comparing inheritance and DUs

Inheritance Discriminated unions

Usage Heavyweight Lightweight

Complexity Hard to reason about Easy to reason about

Extensibility Open set of types Closed set, compile-time, fixed location

Useful for plugin models? Yes No

Add new subtypes Easy Update all DU-related functions

Add new methods Breaking change Easy

255Summary
21.4.2 Creating enums

The last point I’ll make here is on enums. You can create standard .NET enums in F#
easily enough; the syntax is somewhat similar to a DU:

type Printer =
| Injket = 0
| Laserjet = 1
| DotMatrix = 2

The only differences are that you must give each case an explicit ordinal, and you can’t
associate metadata with any case. And, although you can pattern match over an enum
easily enough, enums can’t be exhaustively matched over, as you can cast any int to an
enum (even if there’s no associated enum case!). Therefore, you’ll always need to add a
catchall wildcard handler to an enum pattern match in order to avoid a warning. C#
won’t warn you about this, so it’s easy to forget to do this, which can lead to many
classes of bugs.

Summary

That’s a wrap on this lesson! We covered

 Comparing DUs to class hierarchies
 When and when not to use DUs

Listing 21.8 Creating an enum in F#

Enum type

Enum case with explicit
ordinal value

Quick check 21.3

1 When should you not use a discriminated union?
2 Why do you need to always place a wildcard handle for enums?

QC 21.3 answer
1 For plugin models or for unstable (or rapidly changing), extremely large hierarchies.
2 Any integer value can be cast to an enum without a runtime error.

256 Lesson 21 Modeling relationships in F#
Discriminated unions are a powerful tool in F#’s arsenal of features to help you model
domains quickly and easily. You’ll be using them for the next two lessons, so don’t worry
if it feels a little foreign to you; you’re about to get much more comfortable with it!

Try this

Take any example domain model you’ve recently written in OO and try to model it
using a combination of discriminated unions, tuples, and records. Alternatively, try to
update the rules engine you looked at earlier in the book, so that instead of returning a
tuple of the rule name and the error, it returns a Pass or Fail discriminated union, with
the failure case containing the error message.

22LESSON
FIXING THE BILLION-DOLLAR MISTAKE

Hopefully, in the preceding lesson, you gained at least an initial appreciation of discrim-
inated unions and how they allow you to quickly and easily model complex relation-
ships. In this lesson, you’ll take a look at one specific discriminated union that’s built
into F# and designed to solve a single problem: nothing! Or, more seriously, handling
null values. You’ll learn about

 Dealing with absence-of-value situations in .NET today
 Working with optional data in F#
 Using helper F# functions to deal with common optional scenarios

22.1 Working with missing values

Imagine you’re reading a JSON document from a car insurer that contains information
on a driver, including a safety rating that’s used to calculate the driver’s insurance pre-
miums. Better drivers get a positive score (and lower premium), whereas poor drivers
get a negative score, as shown in figure 22.1. Unfortunately, the data is unreliable, so
sometimes the JSON document won’t contain the safety score for a driver. In such a
case, you’ll need to send a message to the data provider to request it at a later date
again, and assign a temporary premium price of $300. The following listing shows such
an example JSON document.
257

258 Lesson 22 Fixing the billion-dollar mistake
{ "Drivers" :
 [{ "Name" : "Fred Smith", "SafetyScore": 550, "YearPassed" : 1980 },
 { "Name" : "Jane Dunn", "YearPassed" : 1980 }] }

We deal with data like this all the time today. The problem is how you normally reason
about this in .NET. Ideally, what you’d like is the ability to encode into your C# class the
fact that the Name and YearPassed fields are mandatory, and always populated, whereas
SafetyScore might sometimes be missing and is therefore optional. Unfortunately, in C#
and VB .NET today, we divide our data into two types, each of which behaves differ-
ently in this sense, as described in table 22.1.

 Classes should always be considered optional, because you can set them to null at
any point in time; it’s impossible in the C# type system to indicate that a string
can never be null.

 Structs can never be marked as null, but have a default value instead. For exam-
ple, an integer will be set to 0 by default. There are some ways that we can handle
optional data, but these are achieved at the library level, and not within the lan-
guage and type system.

If you think about it, this is bizarre. Why do we divide the way we can reason about
missing data into structs and classes? Surely, we’d like to unify this, so that all types of
data can be marked as either mandatory or optional? Before we look at that in further
detail, let’s discuss classes and structs in a little more detail.

Listing 22.1 Example JSON document with missing data

Table 22.1 Mandatory and optional values in C# and VB .NET

Data type Example
Support for
“mandatory”

Support for
“optional”

Classes String, WebClient No Yes

Structs Int, Float Yes Partial

Score < 0
$400

Score 0
$250

Score > 0
$150

No score
$300 + warn

Figure 22.1 Annual insurance premiums on a sliding scale

Driver with a safety
score of 550

Driver without a
safety score

259Working with missing values
22.1.1 The rise of the billion-dollar mistake

I’m pretty sure that at least 99% of you have seen the window in figure 22.2 many times
in Visual Studio.

We’ve all seen null reference exceptions before. They crop up in places we never think
they should happen and cost us a huge amount of time and effort—not only to fix them,
but to diagnose why they happened in the first place. Yet it turns out that the whole con-
cept of null was introduced as a sort of hack into the Algol programming language
years ago:

I couldn't resist the temptation to put in a null reference, simply because it was so easy to
implement. This has led to innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last forty years.

—Tony Hoare, https://en.wikipedia.org/wiki/Null_pointer#History

I’d estimate that the cost of null reference exceptions and associated bugs at more than a
billion dollars, many times over. And it’s not just Sir Hoare. Even members of the C#
compiler team have said that they regret putting null into the language. The problem is
that now it’s in, it’s almost impossible to remove. Here’s an example of the sort of thing
that the .NET type system should be able to prevent.

string x = null;
var length = x.Length;

Listing 22.2 Breaking the type system in .NET

Figure 22.2 A null reference exception dialog box in Visual Studio

Creating a null
reference to a string
Accessing a property
on a null object

https://en.wikipedia.org/wiki/Null_pointer#History

260 Lesson 22 Fixing the billion-dollar mistake
We know that this code will fail! But the type system can’t help us out here, because in
C# or VB .NET, any class object can be assigned null, at any time—so theoretically we
should always test before accessing one. Because we can’t mark a class object as manda-
tory, you’ve probably seen or written code like the following many times.

public void Foo(string test)
{
 if (test == null)
 return

 // Main logic here...

The problem here is, where do you draw the line at these sorts of null checks? In a per-
fect world, they should only happen at the boundaries of your application—essentially,
only when taking in data from external systems. But we know that it’s common to end
up with these sorts of null checks scattered throughout our code base. It’s not particu-
larly satisfactory, and worse still, it’s not safe; you probably won’t correctly figure out up
front all of the cases where there’s really a chance of getting a null reference exception.

22.1.2 Nullable types in .NET

We’ve seen how the standard class-based system in .NET lets us down. Conversely,
structs seem a step in the right direction: by default, they’re mandatory. But we obvi-
ously need to model optional values as well. How do we do this for integers, for exam-
ple, when we don’t have null? We have a few ways to work around this, from picking a
“magic” number that hopefully doesn’t clash with genuine values (for example, –1) to
having an extra Boolean IsValueSet property on our class that we first need to check
before going to the “real” value. Neither choices are satisfactory. In fact, this situation is
so common that Microsoft developed the Nullable type in .NET 2 to help. A nullable
type is a wrapper that extends around a “real” struct value, which may or may not exist;
see figure 22.3.

Listing 22.3 Checking for nulls in C#

Input argument—
nullable class

Manual check if
value is null

C# vNext and nulls
The C# team is putting forth a large effort to introduce some form of null checking sup-
port. It’ll be some kind of code analyzer that performs branch analysis of your code to
“prove” that you can safely access a class object. But this is quite different from F#,
which removes the whole notion of nullability from the type system, as you’ll see.

261Improving matters with the F# type system
A nullable holds an encapsulated “real” value (which might not be set), and provides a
simple API on top of it. You can ask it whether there’s a value via the HasValue property,
and if that returns true, you can then access the Value property. This is nicer than simple
null checking with classes; at least here you can explicitly distinguish between times
when a value can never be null (a standard integer) and those that might be missing (a
nullable integer). Unfortunately, nullable types can wrap only structs, not classes. Also,
although nullable objects add a convenience for us via an API, it doesn’t provide us with
type safety around them. If you go straight to the Value property without first checking
the HasValue property, you still run the risk of getting an exception.

22.2 Improving matters with the F# type system

The simple truth is that the .NET type system itself isn’t geared toward allowing us to
easily and consistently reason about mandatory and optional data. Let’s see how F#
addresses these types of data.

Real value
(private)

Nullable integer

Has value? Value GetValueOrDefault

Figure 22.3 Representation of a nullable type

Quick check 22.1

1 Why can’t C# prevent obvious null references?
2 How does the nullable type improve matters when working with data that might be missing?

QC 22.1 answer
1 The type system doesn’t support the notion of non-nullability.
2 Members such as HasValue and GetValueOrDefault provide control over nullable values.

262 Lesson 22 Fixing the billion-dollar mistake
22.2.1 Mandatory data in F#

First of all, unlike the inconsistency with classes and structs, all F# types (tuples, records,
and discriminated unions) behave in the same way, in that they’re all mandatory by
default. It is illegal to assign null to any symbol that’s of an F#-declared type. (This also
applies to classes and interfaces defined in F#. Refer to appendix E to see how to create
standard OO constructs in F#.) Let’s see an example of this based on the computer model
from the previous lesson, and how it shows as an error in VS (see figure 22.4).

let myMainDisk =
 { Manufacturer = "HardDisks Inc."
 SizeGb = 500
 DiskData = null }

Recall that records can’t be created with only some of the fields assigned, and you can’t omit
fields when creating discriminated unions. Therefore, any code that uses only F# types can’t
get a null reference exception; there’s simply no notion of null in the type system.

Listing 22.4 Trying to set an F# type value to null

Setting DiskData to
null causes a
compile-time error.

Figure 22.4 Trying to set the DiskData field to null in F#

Beating the F# type system
Corner cases do exist in which you can get null reference exceptions with F# types, using
various attributes, and some interoperability scenarios. But 99% of the time, you can for-
get about null exceptions. In day-to-day programming, they won’t be an issue.

F# types at runtime
All three F# types—tuples, records, and discriminated unions—boil down to classes at
runtime, and are therefore reference types. But the next version of F# will introduce sup-
port to compile them down to value types instead. This has no impact of nullability at com-
pile time, but will be for specific performance and interoperability scenarios.

263Improving matters with the F# type system
22.2.2 The option type

We’ve just established that F# values can never be null and are mandatory by default.
But we need some way to deal with operational data such as in listing 22.1, so F# has an
Option type (also known as Maybe in some languages). You can think of this as a kind of
nullable, except that it’s more flexible (it can work not only on F# types, but also on
classes and structs) and has language support to make it easier to more safely work with
both “has a value” and “no value” cases. The following shows how to implement
optional data in F#.

let aNumber : int = 10
let maybeANumber : int option = Some 10

let calculateAnnualPremiumUsd score =
 match score with
 | Some 0 -> 250
 | Some score when score < 0 -> 400
 | Some score when score > 0 -> 150
 | None ->
 printfn "No score supplied! Using temporary premium."
 300

calculateAnnualPremiumUsd (Some 250)
calculateAnnualPremiumUsd None

Option<T> is a simple two-case discriminated union: Some (value) or None. Just as with other
discriminated unions, you pattern match over it in order to deal with all the cases, and
unlike with null reference checks with classes, here you must explicitly handle both
cases (value and no value) up front at compile time; you can’t skip the null check.

Also, notice that when you call this function, you can no longer simply pass in 250. You
must first wrap it as Some 250 (just as you wrapped the number of pins in an MMC disk in
the previous lesson). This is slightly different from working with nullables in C#, where
the compiler will silently wrap an integer in a nullable int for you. F# is a little stricter
here, and you must explicitly wrap the number yourself.

Listing 22.5 Sample code to calculate a premium

Creating an
optional number

Handling a safety
score of (Some 0)

Handling the case when
no safety score is found

Calculating a premium with
a wrapped score of (Some
250) and then None

264 Lesson 22 Fixing the billion-dollar mistake
Now you try

Let’s see how to model the dataset from listing 22.1:

1 Create a record type to match the structure of the customer.
2 For the optional field’s type, use an option (either int option or Option<int>).
3 Create a list that contains both customers, using [a; b] syntax.
4 Change the function in listing 22.5 to take in a full customer object and match the

SafetyScore field on it.

22.3 Using the Option module

There are many common scenarios related to working with options, and some associ-
ated helper functions that come with F# in the Option module. Most of them do the same
thing: they take in an optional value, perform an operation (mapping or filtering, for
example), and then return another optional value. It may help you to keep that in mind

Optional escape hatches
If you dot into an optional discriminated union, you’ll see three properties: IsSome, IsNone,
and Value. The first two are sometimes useful, but generally you should favor pattern
matching or helper functions (see section 22.3). The latter field, Value, allows you to go
straight to the value of the object without even checking whether it exists. If it doesn’t
exist, you’ll get a null reference exception—exactly what you’re trying to avoid! Don’t ever
use this. Instead, use pattern matching to force you to deal with both Some and None cases
in your code up front.

Quick check 22.2

1 Can you get null reference exceptions in F#?
2 How should you safely dereference a value that’s wrapped in an option?

QC 22.2 answer
1 Yes, when working with types declared in C# or VB .NET. Types declared in F# normally don’t

permit nulls.
2 As Option is just a discriminated union, you should use pattern matching to cater to both

branches.

265Using the Option module
as you go through this section that many of these functions are similar to their equiva-
lents in the collection modules.

22.3.1 Mapping

Option.map allows you to map an optional value from one kind of option to another by
means of a mapping function:

mapping:('T -> 'U) -> option:'T option -> 'U option

It performs a similar purpose as List.map, which you already know:

mapping:('T -> 'U) -> list:'T list -> 'U list

In other words, it’s a higher-order function that takes in an optional value and a map-
ping function to act on it, but calls mapping only if the value is Some. If the value is None, it
does nothing. This is similar to how List.map calls the mapper only if there’s at least one
item in the list. If it’s an empty list, nothing happens. And as with List.map, the mapping
function doesn’t have to know about (in this case) options; the act of checking is taken
care of for you.

Let’s go through an example. Imagine your colleague has written a function, describe,
that describes the safety score of a driver (for example, Safe or High Risk). It’s not
designed to work with optional scores, but you want to run it against the optional safety
scores from your JSON file. You can either use a pattern match on this, or you can use
Option.map.

let description =
 match customer.SafetyScore with
 | Some score -> Some(describe score)
 | None -> None

let descriptionTwo =
 customer.SafetyScore
 |> Option.map(fun score -> describe score)

let shorthand = customer.SafetyScore |> Option.map describe
let optionalDescribe = Option.map describe

Listing 22.6 Matching and mapping

A standard match
over an option

Using Option.map to
act on the Some case

Shorthand to avoid having to
explicitly supply arguments to
describe in Option.map

Creating a new function that
safely executes describe over
optional values

266 Lesson 22 Fixing the billion-dollar mistake
All three expressions do the same thing: they run describe only if SafetyScore is Some value,
and otherwise do nothing. Option.map is especially useful because you can write entire
reams of code without having to worry about optional data. You can then chain them
together and wrap them in Option.map to get back a new function that does the option
check for you for free. This is known as lifting a function.

Also, keep an eye out for Option.map’s sibling, Option.iter. As with List.iter, you can use
this for functions that return unit, such as printing out an optional customer’s name to
the screen by using printfn—typically functions that perform side effects.

22.3.2 Binding

Option.bind is the same as Option.map, except it works with mapping functions that them-
selves return options:

binder:('T -> 'U option) -> option:'T option -> 'U option

Bind is more or less the equivalent of List.collect (or SelectMany in LINQ). It can flatten an
Option<Option<string>> to Option<string>, just as collect can flatten a List<List<string>> to
List<string>. This is useful if you chain multiple functions together, each of which returns
an option.

let tryFindCustomer cId = if cId = 10 then Some drivers.[0] else None
let getSafetyScore customer = customer.SafetyScore
let score = tryFindCustomer 10 |> Option.bind getSafetyScore

Try this one out yourself. Observe that if you replace the call to Option.bind with
Option.map, you’ll get back an Option<Option<int>>. bind protects you here by doing the double
unwrap for you: going from Option<Option<int>> to just Option<int>. Getting your head
around this double unwrap isn’t easy, but as you get more into FP, you’ll notice this pat-
tern cropping up all over the place. Even if you don’t get it yet, keep it in the back of
your mind (or check out one of Scott Wlaschin’s many excellent articles on monads if
you have some time).

Listing 22.7 Chaining functions that return an option with Option.bind

Two functions that each
return an optional value

Binding both
functions together

267Using the Option module
22.3.3 Filtering

You can also filter an option by using Option.filter. In other words, you run a predicate
over an optional value. If the value is Some, run the predicate. If it passes, keep the
optional value; otherwise, return None.

predicate:('T -> bool) -> option:'T option -> 'T option

let test1 = Some 5 |> Option.filter(fun x -> x > 5)
let test2 = Some 5 |> Option.filter(fun x -> x = 5)

22.3.4 Other Option functions

Table 22.2 provides a quick summary of some of the other optional functions. Look at
them (and the others in the Option module) in more detail in your own time; some of
them are handy.

Listing 22.8 Filtering on options

Table 22.2 Optional functions

Function Description
Option.count If optional value is None, returns 0; otherwise, returns 1.

Option.exists Runs a predicate over an optional value and returns the result. If None,
returns false.

test1 equals None.

test2 is equal
to (Some 5).

Quick check 22.3

1 When should you use Option.map rather than an explicit pattern match?
2 What’s the difference between Option.map and bind?

QC 22.3 answer
1 If the None case returns None, you can replace it with Option.map.
2 Bind should be used when the mapping function itself returns an Option.

268 Lesson 22 Fixing the billion-dollar mistake
22.4 Collections and options

You might have already noticed that there’s a kind of symmetry between the Collection
and Option modules. They both have some similar functions such as map, filter, and count.
In addition, a set of functions interoperates between them.

22.4.1 Option.toList

Option.toList (and its sibling, Option.toArray) takes in an optional value, and if it’s Some
value, returns a list with that single value in it. Otherwise, it returns an empty list. This
isn’t always needed, but it’s sometimes handy to be able to treat an optional value as a
list (or array).

22.4.2 List.choose

List.choose, on the other hand, is a useful function. You can think of it as a specialized
combination of map and filter in one. It allows you to apply a function that might return
a value, and then automatically strip out any of the items that returned None:

chooser:('T -> 'U option) -> list:'T list -> 'U list

Now you try

Let’s imagine you have a database of customers with associated IDs, and a list of cus-
tomer IDs. You want to load the names of those customers from the database, but you’re
not sure whether all of your customer IDs are valid. How can you easily get back only
those customers that exist? Follow these steps:

1 Create a function tryLoadCustomer that takes in a customer ID. If the ID is between 2
and 7, return an optional string "Customer <id>" (for example, "Customer 4"). Other-
wise, return None.

2 Create a list of customer IDs from 0 to 10.
3 Pipe those customer IDs through List.choose, using the tryLoadCustomer as the

higher-order function.
4 Observe that you have a new list of strings, but only for existing customers.

269Summary
22.4.3 “Try” functions

Throughout the collection modules, you’ll see functions that start with try, such as try-
Find, tryHead, and tryItem. Think of these as equivalent to LINQ’s OrDefault functions,
except instead of returning null if the function doesn’t have any output, these functions
all return an Option value: Some value if something was found, and None otherwise.

Summary

You saw in this lesson how two features that you learned about earlier in this unit—pattern
matching and discriminated unions—can be combined to provide a type-safe, reasonable
way of dealing with absence of value, without resorting to nulls. You learned about

 Dealing with absence of value in C#
 Using the option type in F#
 Using the Option helper module

Try this

Write an application that displays information on a file on the local hard disk. If the file
isn’t found, return None. Have the caller code handle both scenarios and print an appro-
priate response to the console. Or, update the rules engine code from previous lessons
so that instead of returning a blank string for the error message when a rule passes, it
returns None. You’ll have to also update the failure case to a Some error message!

Options, lists, and results
We’re treading dangerously close to the M word (that’s monad). If you found this idea of
symmetry between lists and options (and of safely working with options) interesting, it’s
definitely worth your while to read “Railway-Oriented Programming” on the F# for Fun
and Profit website (http://fsharpforfunandprofit.com/) by Scott Wlaschin. This website
not only goes into more depth on maps, binds, and lifting than here, but also gives a rel-
atively easy-to-understand introduction to working with monads.

Quick check 22.4 Why are collection try functions safer to use than LINQ’s orDefault methods?

QC 22.4 answer try functions return option values, rather than nulls as with defaultOf.

http://fsharpforfunandprofit.com/

23LESSON
BUSINESS RULES AS CODE

In this last lesson of the unit, you’ll see how to use F# language features such as records,
options, and discriminated unions to write code that can enforce business rules within
code. This lesson covers the following:

 Conventional ways to validate business rules
 Exploring domain modeling in F# more closely
 Exploring single-case discriminated unions
 Encoding business rules through types
 Exception handling

Our code always has some form of business rules within it. Generally, we validate that
our code is correct either by running the application and manually seeing whether it
does the right thing, or by writing some form of automated test suite that sits alongside
our code. This test suite often is as large as the “real” code base itself, and runs tests in
code that check the results of the application.

There are, of course, limits to what these tests should and shouldn’t do. Because C# is a
statically typed language, there are certain tests that we don’t need to perform, because
the compiler gives us certain guarantees. For example

 We don’t ever need to check that the Name property on a Person class, which is a
string, contains an integer. The type system provides that for free.

 We don’t ever need to check that an int is null.
270

271Specific types in F#
But here are some things that we might want to write automated tests for:

 Ensuring that we don’t mix up the AgeInYears and HeightInCm values, both of which
are integers

 Checking that an object can never get into an illegal state
 Checking that if we call a method on a class with invalid data, we correctly

reject it

This lesson presents examples of these sorts of cases. You’ll learn how to model them by
using F#’s type system in such a way as to make illegal states unrepresentable. Just as C#
makes it “illegal” to store an integer in a string field, F# can take this a step further,
allowing us to start to model business rules in code, so that it’s impossible to represent
an illegal state. This means our unit tests are a lot simpler, or ideally can be completely
omitted.

You’ve already seen examples of domain modeling in F# in the preceding few lessons,
such as modeling the parts in a computer, or accurately modeling and dealing with the
absence of a value. Now you’ll take this a step further within the context of a simple sce-
nario. Let’s assume that you want to model your customer’s contact details in code that
adheres to a number of simple rules. You’ll take each rule one at a time, and see how
your model evolves throughout the code.

23.1 Specific types in F#

Let’s start by defining a simple customer record to fulfill the first requirement:

A customer can be contacted by email, phone, or post.

type Customer =
 { CustomerId : string
 Email : string
 Telephone : string
 Address : string }

You’re using an F# record here, but you could imagine this to be a C# class; it’d look
fairly similar. Yet it’s not a great fit for the preceding requirements. For example, any of
the contact details could be filled in—or all of them—or none! You might say that this is
completely reasonable. You might write some unit tests to prove that you never set

Listing 23.1 A sample F# record representing a sample customer

Storing all possible
contact detail values as
three separate fields

272 Lesson 23 Business rules as code
more than one, and perhaps a get-only property that will tell you which of the three to
use later. But fundamentally you’re relying on writing code to test other code in the
same way a JavaScript developer might write code to “prove” that a string property isn’t
assigned an integer. How can you more accurately model this?

23.1.1 Mixing values of the same type

One thing that strikes me from the preceding example is that all four fields use the same
type: a string. Here’s an example of a function that can create a customer.

let createCustomer customerId email telephone address =
 { CustomerId = telephone
 Email = customerId
 Telephone = address
 Address = email }
let customer =
 createCustomer "C-123" "nicki@myemail.com" "029-293-23" "1 The Street"

I hope you caught the errors in that sample: it accidentally mixed up the assignments
for a few of the fields! Because you’re using the same simple type, string, for all the
fields, you get no help here from the compiler. You’d probably find out that you messed
up here if you had written some unit tests, or perhaps some days later when you check
the database and see you’re storing data in the wrong columns. Doh!

23.1.2 Single-case discriminated unions

F# has a nice way of solving this, called single-case DUs. What’s the point of a DU that
has only a single possibility? Because of the simple syntax that DUs provide, you can
use them as simple wrapper classes to prevent accidentally mixing up values. Here’s the
syntax for working with single-case DUs.

type Address = Address of string
let myAddress = Address "1 The Street"

Listing 23.2 Creating a customer through a helper function

Listing 23.3 Creating a wrapper type via a single-case discriminated union

Creating a single-case DU
to store a string Address

Creating an instance of a
wrapped Address

273Specific types in F#
let isTheSameAddress = (myAddress = "1 The Street")
let (Address addressData) = myAddress

As you can see, compared to multicase DUs, when defining a single-case DU, you can
omit the pipe to separate cases—and even put it all on a single line. Because the contents
of the discriminated union are obvious, you can also omit the name of the value argument
(string instead of address:string). When you want to create an instance of it, again because
it’s a single case, you get nice, lightweight syntax of the type name and then the value.

Note that after you’ve wrapped up a value in a single-case DU, you can’t compare a
“raw” value with it. You need to either wrap a raw value into the Address type, or
unwrap the Address. You do this in the final line, where the raw string is put into the
addressData value (notice that because this is a single-case DU, you don’t have to bother
with pattern matching).

Now you try

Let’s see how to enhance your domain model so that you can’t accidentally mix and
match the values for the different fields:

1 Start with an empty script, creating the Customer record and createCustomer function
(with the incorrect assignments).

2 Create four single-case discriminated unions, one for each type of string you
want to store (CustomerId, Email, Telephone, and Address).

3 Update the definition of the Customer type so that each field uses the correct wrap-
per type. Make sure you define the wrapper types before the Customer type!

4 Update the callsite to createCustomer so that you wrap each input value into the cor-
rect DU; you’ll need to surround each “wrapping” in parentheses (see figure 23.1).
If you’ve done this correctly, you’ll notice that your code immediately stops
working.
Interestingly, the compiler error will be generated on the callsite to createCustomer.
This is a case of “following the breadcrumbs” with type inference; if you mouse
over any of the arguments to the function itself, you’ll see that this is because
you’ve mixed up the assignments to the wrong fields.

5 Fix the assignments in the createCustomer function and you’ll see that as if by magic
all the errors disappear.

Unwrapping an Address into
its raw string as addressData

Comparing a wrapped
Address and a raw
string won’t compile

274 Lesson 23 Business rules as code
type CustomerId = CustomerId of string
type Email = Email of string
type Telephone = Telephone of string
type Address = Address of string

type Customer =
 { CustomerId : CustomerId
 Email : Email
 Telephone : Telephone
 Address : Address }

In addition to obviously trapping this error immediately, there’s also another benefit of
using single-case DUs: it’s now much easier to understand what a value represents
rather than, for example, a raw string. You no longer need to rely on the name of a value
(for example, theAddress) but can now also use the type itself to indicate the use of the
value (a CustomerId or Address, for instance).

Listing 23.4 Creating wrapper types for contact details

Figure 23.1 A single-case DU can protect you from
accidentally assigning values incorrectly.

Creating a number of
single-case DUs

Using single-case DUs
in the Customer type

275Specific types in F#
Remember to always wrap a value in a DU at the earliest opportunity—for example,
when loading in data from a text file or database, along with appropriate validation.
After it’s “inside” your domain model, you don’t have to revalidate it ever again, and
you’ll only need to unwrap a DU to its raw contents when you need to perform an oper-
ation on them. Ideally, you’ll have all these related functions in a shared module. For
example, you may have a function to create a Telephone from a string, which performs a
regex validation on the raw string before safely returning a Telephone.

23.1.3 Combining discriminated unions

By moving to discriminated unions, you can be sure that you don’t accidentally mix up
the wrong fields, and at the same time also know that none of your fields can ever be
null (because DUs can never be assigned null). But you still haven’t solved the task com-
pletely: you want to model that only one of the contact details should be allowed at any
point in time.

Give and take with the F# compiler
Using types to guide the compiler is a much quicker way of getting feedback than writing
a unit test or something similar—and it’s a much stronger test. A unit test is written by
a team of developers; the unit test might be written inconsistently or have mistakes. A
compiler is a program that provides consistent behavior—quickly. Relying on the com-
piler here by adding wrapper types gives the compiler much more information about
what you’re trying to do. In turn, the compiler will be able to help you more by providing
more guidance when you’ve done something you shouldn’t have.

Wrappers with C#
In truth, you can create similar sorts of functionality in C# or VB .NET by creating a wrap-
per class for each type (for example, Telephone, Address, or CustomerId). The truth is that
we rarely use them because of the overhead of doing this (creating a constructor and a
public property on a class in a new file, and so forth). Single-case discriminated unions
are much simpler to both create and access, with a much lighter syntax.

276 Lesson 23 Business rules as code
Now you try

Merge all three of the single-case DUs into a single three-case DU called ContactDetails
and change your Customer type to store that instead of one field for each type of contact
detail:

type ContactDetails =
| Address of string
| Telephone of string
| Email of string

6 Replace the three single-case DUs with the new ContactDetails type.
7 Update the Customer type by replacing the three optional fields with a single field

of type ContactDetails.
8 Update the createCustomer function. It now needs to take in only two arguments,

the CustomerId and the ContactDetails.
9 Update the callsite as appropriate; for example:

let customer =
 createCustomer (CustomerId "Nicki") (Email "nicki@myemail.com")

You can now guarantee that one and only one type of contact is supplied (for example,
Telephone).

23.1.4 Using optional values within a domain

This next requirement should be fairly simple:

Customers should have a mandatory primary contact detail and an optional secondary contact
detail.

Follow these steps:

10 Add a new field to your Customer that contains an optional ContactDetail, and
rename your original ContactDetail field to PrimaryContactDetails.

type Customer =
 { CustomerId : CustomerId
 PrimaryContactDetails : ContactDetails
 SecondaryContactDetails : ContactDetails option }

11 Update the createCustomer function and callsite as appropriate.

Listing 23.5 Adding an option field for optional secondary contact details

Adding an optional field for
secondary contact details

277Encoding business rules with marker types
Now you’re really starting to make some headway. You’ll never have to null check this
customer’s primary contact details, and have modeled the data in such a way that you
can have only one of the three types at once. You’ve also modeled optional secondary
contact details, and would use pattern matching to safely handle both value and
absence-of-value cases.

23.2 Encoding business rules with marker types

That was an easy change. Let’s now look at your
final change, which is perhaps the most chal-
lenging and interesting:

Customers should be validated as genuine customers,
based on whether their primary contact detail is an
email address from a specific domain. Only when
customers have gone through this validation process
should they receive a welcome email. Note that you’ll
also need to perform further functionality in the
future, depending on whether a customer is genuine.

A simplistic solution to this might look some-
thing like figure 23.2.

Quick check 23.1

1 What’s the benefit of single-case DUs over raw values?
2 When working with single-case DUs, when should you unwrap values?

QC 23.1 answer
1 Type safety—it’s impossible to accidentally mix and match values of different types. Also, seman-

tic meaning of values can be better understood through types.
2 Unwrap values only when you need to access the raw contents—not before.

Customer

Yes

No

Is genuine?

Send welcome email

Done

Send email

Figure 23.2 A typical procedural
piece of logic

278 Lesson 23 Business rules as code
And that might work just fine. You’ll probably write a couple of unit tests that take in a
Customer and ensure that you send the welcome email only for whatever you define as a
genuine customer. Maybe you’ll even separate the “is a genuine customer” into a helper
function so that you can reuse it later. But figure 23.3 shows another way to do this.

In this version, you create a function called ValidateCustomer that takes in a raw, unknown
customer, and returns a new, genuine customer, a new type that you can treat differ-
ently from the raw one. By doing this, you can distinguish between an unvalidated cus-
tomer and one that has been confirmed as genuine. As you’ll see shortly, this can be
useful in numerous ways, but first let’s see what that looks like in code.

type GenuineCustomer = GenuineCustomer of Customer

Listing 23.6 Creating custom types to represent business states

Customer

Some
genuineCustomerNone

Categorize
Non-genuine

Only genuine
customers

Genuine

Validate customer

Send email

Figure 23.3 Defining custom states with types to
prevent illegal cases

Single-case DU to wrap
around Customer

279Encoding business rules with marker types
All you do here is create a single-case DU that acts as a marker type: it wraps around a
standard Customer, and allows you to treat it differently. Here’s the code that validates a
customer.

let validateCustomer customer =
 match customer.PrimaryContactDetails with
 | Email e when e.EndsWith "SuperCorp.com" -> Some(GenuineCustomer

➥ customer)
 | Address _ | Telephone _ -> Some(GenuineCustomer customer)
 | Email _ -> None

let sendWelcomeEmail (GenuineCustomer customer) =
 printfn "Hello, %A, and welcome to our site!" customer.CustomerId

This function takes in a normal (unvalidated) Customer, and creates an optional Genuine-
Customer as output. Then you create your sendWelcomeEmail function, which allows only a
GenuineCustomer as input. This is the key point; it’s now impossible to call this function with
an unvalidated customer, as indicated in figure 23.4.

The only way to call it is to create a GenuineCustomer customer, and to do that you need to
go past the checks in the validateCustomer function. You can imagine a customer being cre-
ated and potentially validated (or not!) early in the application, and then used later to
send the email—safe in the knowledge that you can’t accidentally call it with the wrong
type of customer. The email function has no knowledge of how the customer was rated;
it simply makes it a requirement through the type system.

Listing 23.7 Creating a function to rate a customer

Custom logic
to validate a

customer

Wrapping your validated
customer as Genuine

The sendWelcomeEmail
accepts only a

GenuineCustomer as input

Figure 23.4 Making an illegal state unrepresentable

280 Lesson 23 Business rules as code
You also now no longer have to write unit tests for whether the email code does the cor-
rect check on the rating of the customer (or anywhere else you need to split between
these types of customers), because the type system protects you; you can send email
only for customers of a certain type. In effect, you’ve made illegal states unrepresentable
through types of data.

23.2.1 When and when not to use marker types

Creating marker types can be incredibly powerful. You can use them for all sorts of
things. For example, imagine being able to define email addresses that have been veri-
fied or unverified for your users. Or how about distinguishing between the states of an
order in the type system (for example, unpaid, paid, dispatched, or fulfilled)? You could
have functions that act on only fulfilled orders and not have to worry about accidentally
calling them with an unpaid order! You can also use them at the boundary of your
application, performing validation on unchecked data and converting it into checked
versions of data, which provide you with security that you can never run certain code
on invalid data.

My advice is to start simple: use single-case DUs as wrapper cases to prevent simple
errors such as mixing up customer and order IDs. It’s cheap and easy to do, and is a
massive help in eliminating some awful bugs that can crop up. Taking it further with
marker types to represent states is a step up, and definitely worth persevering with. You
can eliminate entire classes of bugs as well as eliminate swaths of boilerplate unit tests.
But be careful not to take it too far, as it can become difficult to wade through a sea of
types if overdone.

Breaking the rules?
You might ask what’s to stop you from taking a normal customer and then manually
wrapping it as a genuine customer, thereby breaking our rules. Well, you could theoreti-
cally do this. As with many other parts of F#, this is there to guide you to the pit of suc-
cess, but it won’t prevent you from going out of your way to break things! If you want to
be safe, you can create signature files (think header files), which can restrict construc-
tors of discriminated unions to a single file, thereby all but guaranteeing reliable con-
struction of a type, but this is usually overkill.

281Results vs. exceptions

23.3 Results vs. exceptions

In F#, you can use exceptions as you would in C#, by using try .. with syntax. In the
spirit of this book, I’m not showing you that syntax because there’s nothing interesting
to see (although an example is included in appendix E). But it’s interesting to note that
exceptions aren’t encoded within the type system. For example, let’s imagine inserting a
customer into a database. The signature might look like this:

insertContact : contactDetails:ContactDetails -> CustomerId

In other words, given contact details, save them to the database and return their gener-
ated customer ID. But this function doesn’t cater to the possibility that the database
might be offline, or that someone with those contact details might already exist. In fact,
someone looking at this code would know this only if there was a try/catch handler
somewhere in code, which might be an entirely different area of the code base. This can
be thought of as an unsafe function.

An alternative to using exceptions is to use a result. This is a two-case discriminated
union that holds either a Success or Failure. Here, if the call passes, you return a Success
with the CustomerId generated by the database. If it fails, you’ll return the error text from
SQL as a Failure case.

type Result<'a> =
| Success of 'a
| Failure of string

Listing 23.8 Creating a result type to encode success or failure

Quick check 23.2

1 Why don’t you create wrapper types such as single-case DUs in C#?
2 What benefit do you get from using single-case discriminated unions as marker types?
3 When should you wrap up raw values into single-case discriminated unions?

QC 23.2 answer
1 Creating single wrapper classes in C# generally requires too much boilerplate.
2 Marker types enable you to encode simple business rules directly within the type system.
3 Wrap up raw values into discriminated unions as early as possible.

Defining a simple Result
discriminated union

282 Lesson 23 Business rules as code
insertCustomer : contactDetails:ContactDetails -> Result<CustomerId>

match insertContact (Email "nicki@myemail.com") with
| Success customerId -> printfn "Saved with %A" customerId
| Failure error -> printfn "Unable to save: %s" error

Now, this function clearly states that it might not work, and callers would have to test
both success and failure cases in order to safely get to the customer. This pattern is now
so common that F# 4.1 will contain a Result type built into the standard library, just like
Option. Internally in insertCustomer, you’d execute the code in a try/catch statement; any
caught errors would be returned as a failure.

There’s a fine line between when to use exceptions and when to use results; I suggest
this rule of thumb: if an error occurs and is something that you don’t want to reason
about (for example, a catastrophic error that leads to an end of the application), stick to
exceptions. But if it’s something that you do want to reason about (for example, depend-
ing on success or failure, you want to do some custom logic and then resume processing
in the application), a result type is a useful tool to have.

Summary

Believe it or not, that was the final language lesson in this book! You did the following:

 Saw how to model business states in code
 Explored some domain modeling step-by-step with F#
 Looked at single-case discriminated unions

Type signature of a
function that might fail

Handling both
success and failure

cases up front

Quick check 23.3

1 What benefit does a result provide over an exception?
2 How should you convert code that throws exceptions into one that returns a result?

QC 23.3 answer
1 Results allow you to clearly state in the type system whether a function can fail.
2 Using a try/with block, converting the exception to a failure.

283Summary
Q

R
91

5
89

50
Another capstone exercise is coming up next to allow you to become more confident
working with types and collections. After that, you’ll start looking at the applications of
F# in various guises.

Try this

Look at an existing domain you’ve written in C#, and try to see where you might benefit
from using options and single-case DUs in your model. Try to port the domain over to
F# and see its impact!

24LESSON
CAPSTONE 4

It’s back to bank accounts again! This time you’re going to apply the lessons you
learned on domain modeling into the bank account system. In this exercise, you’ll do
the following:

 Use options in practical situations
 Use discriminated unions to accurately model a closed set of cases
 Work with collections with more-complex data
 Enforce business rules through the type system

24.1 Defining the problem

When you completed lesson 19, you had a version of a working bank account applica-
tion that could handle persistence to disk and back again, as well as remove mutation
for your command handler. Now you’re going to remove some of the “code smells” that
have been left lying around by introducing some lovely F# domain modeling. You’ll
have to do the following:

 Replace the unbounded command handlers with a fixed discriminated union
 Embed options enabling you to cater to situations where you “might not have

any data” rather than the arbitrary default values you’ve used so far
 Consider how you might enforce business rules via some F# types to stop over-

drawn customers from withdrawing funds.
284

285Stronger typing with discriminated unions
24.1.1 Solution overview

As per the previous capstone, src/lesson-24 contains a prebuilt solution for you to use as
the basis for this lesson, plus a sample solution with a fully working version for you to
learn from. Take a moment to familiarize yourself with the basic solution so that you
understand what it’s doing; hopefully, it’s not too far off from where you ended up in
the previous capstone.

24.2 Stronger typing with discriminated unions

One of the issues with the current version of code for the main program routine is that
you’re using code to enforce all your rules. “What’s wrong with that?” you may ask.
After all, isn’t that what you’re supposed to do? On the one hand, yes. But at the same
time, you want to use the F# type system as much as possible to save you from any boiler-
plate errors.

24.2.1 Reviewing the existing command handler

One area you could improve is in using a simple char value to represent your com-
mand. Of course, you need to work with a char to capture the console input, but after
you have that value, it continues to be used within the code base. This poses a few
smells immediately.

commands
|> Seq.filter isValidCommand
|> Seq.takeWhile (not << isStopCommand)
|> Seq.map getAmount
|> Seq.fold processCommand openingAccount

Something I’m not fond of here is that you can comment out the Seq.filter line, and the
code still compiles; it shouldn’t. You want some form of validation layer that can stop
you from accidentally missing things like this! Ideally, you want a bounded set of com-
mands that represent actions your application can do, and to go from the weakly typed,
essentially unbounded char type into the command type at the earliest possible opportu-
nity, as illustrated in figure 24.1.

Listing 24.1 The existing command execution pipeline

Filtering invalid characters
from the stream

Testing whether the
character represents
the exit command—in
this case, x

286 Lesson 24 Capstone 4
Doing this means that within the code, you shouldn’t ever be in the situation described
in the following listing.

let processCommand account (command, amount) =
 if command = 'd' then account |> depositWithAudit amount
 else account |> withdrawWithAudit amount

Spot the problem here? You’re assuming that if the command isn’t the character d, it must be
w (for withdrawal). Even if you handled the withdrawal case explicitly, there’s still the
otherwise case that needs to be handled. What do you do then? These sorts of smells can
initially seem innocuous but can rapidly become the source of awful bugs. Let’s see how
to stop this from happening now, before it’s too late.

24.2.2 Adding a command handler with discriminated unions

Start within scratchpad.fsx to test these tasks. Then move back into Program.fs in the
appropriate places:

1 The first thing you’ll want to do is create a simple discriminated union called
Command to represent your three application commands: Withdraw, Deposit, and Exit.
These cases represent all the activities your program can do.

2 Next, you need to write a simple function that can convert a char into a Command. I’d
typically use pattern matching here; you can match over the supplied character,
and depending on the value, return the appropriate command.

3 Because you can’t be sure what value will be provided (it might not be x, w, or d),
you’ll want to have this function return an Option<Command> to deal with the case
that an invalid character is supplied. It’s common practice to prefix such func-
tions with the word try (for example, tryParseCommand).

4 Make sure you’re happy with that function. Test it in the REPL (for example, does
x map to Exit), and then port it into the application.

Listing 24.2 Working with unbounded values

 [None; None; Some
Withdraw; Some

Deposit; None; None]
 Parse commands[‘a’; ‘b’; ‘w’; ‘d’; ‘1’; ‘z’]

Figure 24.1 Moving from a virtually unbounded type to a strictly bounded
command type

Using an else
block as a
catchall case

287Stronger typing with discriminated unions
Now you’re ready to hook your new command domain into your code—in the
pipeline around line 50 of Program.fs.

5 Replace the code in isValidCommand so that it maps from simple characters into your
Command. But because your tryParseCommand function will be returning option values,
it’s better to use choose rather than map here (lesson 22 covers choose; refer there if
needed).

6 You’ll notice that the next line in the pipeline immediately doesn’t work. That’s
because it checks against the char x; update it to compare against the Exit com-
mand instead (indeed, you might want to put the lambda inline now as the code
is obvious to read).

7 Finally, you need to update processCommand. This should pattern match over the com-
mand that’s supplied; depending on whether it’s Deposit or Withdraw, it should call
the appropriate function. If it’s Exit, it should return the account back out again.

As an extra exercise, you can apply the same technique to the loading of data from the
filesystem in Operations.loadAccount, so that instead of an if/then expression against the
text withdraw, you can try to parse the text to a Bank Operation discriminated union case
first and process that instead.

24.2.3 Tightening the model further

You now have a cleaner domain. It’s easier to reason about, because you know that there
are only three possible commands, and you don’t have to guess what the different char-
acters mean; the DU cases are self-explanatory. Unfortunately, one small smell remains:
the match expression in processCommand has to cater to the Exit command as well, even
though you know that it should never really be possible (see figure 24.2).

This is a good example of F# giving you a hint that the current way that you’ve modeled
your domain isn’t quite right. You can fix this by enhancing your domain model so that
you clearly show that there’s a difference between the Exit command and the two bank
operations.

Figure 24.2 Pattern matching warns that you haven’t handled all the cases for your DU.

288 Lesson 24 Capstone 4
type BankOperation = Deposit | Withdraw
type Command = AccountCommand of BankOperation | Exit
let tryGetBankOperation cmd =
 match cmd with
 | Exit -> None
 | AccountCommand op -> Some op

What you’ve done now is create a child DU. A Command is one of the following:

 Exit
 A bank operation (either Deposit or Withdraw)

If you follow this approach (and update the parsing code), you can use tryGetBank-
Operation in the pipeline to convert from a Command to a BankOperation; by the time you get to
the processCommand function, you’ll be able to match against BankOperation, which has only
the two cases—exactly what you want. Let’s see how that looks in figure 24.3.

Try testing this pipeline in a script with a set of sample chars, as you did in the previous
capstone!

Listing 24.3 Creating a two-level discriminated union

Defining the types of
bank operations

Filtering out nonbank
operation commands

Defining the types of
commands, one of which
is a bank operation

seq<char> seq<Command> seq<Command>

 RatedAccount seq<BankOperation
* decimal>

Fold over operations
for closing account Capture amount

Choose
commands

 Take
until exit

Only choose
bank operations

 seq<BankOperation>

Figure 24.3 Visualizing the updated pipeline

289Applying Option types with the outside world
24.3 Applying Option types with the outside world

Let’s look at a few situations where it’s useful to apply the Option type when dealing with
external data that you’re not necessarily in control of.

24.3.1 Parsing user input

If the user accidentally types a non-number when entering the amount to withdraw or
deposit, the application crashes. Stop that by updating the getAmount function, as shown
in the next listing.

let tryGetAmount command =
 Console.WriteLine()
 Console.Write "Enter Amount: "
 let amount = Console.ReadLine() |> Decimal.TryParse
 match amount with
 | true, amount -> Some(command, amount)
 | false, _ -> None

As you can see, F# plays nicely with TryParse methods in the BCL by returning both the
Boolean result of the parse operation and the parsed value itself, so you can easily pat-
tern match over it and deal with it as you see fit.

Once again, you’ve renamed this function to start with try, as it now returns an optional
value. You’ll need to update the pipeline to use choose rather than map, to skip invalid
answers.

24.3.2 Loading existing accounts

In the current implementation of the application, when the program starts up and you’ve
entered your name, the file repository attempts to locate your bank account on disk. If
the file repository can’t locate the account, it creates a default account and returns that
instead. This is nice in a “you don’t need to know” kind of way, but it’s a bit of a mis-
match of responsibilities: the file repository module should retrieve the bank account
from disk; if it can’t be located, it should be up to the caller to decide what to do next. The
call to findTransactionsOnDisk should return an option, rather than a concrete result.

Listing 24.4 Safely parsing user input

Safely parsing the
input from the user

Return output only
if the input is a
valid decimal.

Invalid input results
in no output.

290 Lesson 24 Capstone 4
If you dig into the code a bit, you’ll find the findAccountFolder function, which is the root
of the problem.

let private findAccountFolder owner =
 // code elided…
 if Seq.isEmpty folders then ""
 else
 let folder = Seq.head folders
 DirectoryInfo(folder).Name

let findTransactionsOnDisk owner =
 let folder = findAccountFolder owner
 if String.IsNullOrEmpty folder then …
 else loadTransactions folder

Here, you use an empty string to simulate the absence of a value. This is no better than
using some magic number of –1 to indicate a missing number. And indeed, the calling
findTransactionsOnDisk function has a check for an empty string that’s used to indicate that
no account exists on disk, and so you create a default account. Fix all this, starting from
the ground up:

1 Change findAccountFolder to tryFindAccountFolder. In other words, have it return None
if no folder was found, or Some folder name if it was.

2 For bonus points, convert the sequence of directories to a List and pattern match
over it instead of the if/else expression.

3 Now fix findTransactionsOnDisk, which will be failing, by removing the empty
string check and replacing it with a pattern match against the result of tryFind-
AccountFolder.

4 Next, change this function to return an option output:
a If no account folder was found, return None.
b If an account folder was found, wrap the results of loadTransactions in Some.

24.3.3 Lifting functions to support options

Almost there! You’ve fixed the low-level file repository: it now returns account details
from disk only if they exist. But now Program.fs is broken where you plug together two
functions in loadAccountFromDisk, as indicated in figure 24.4.

Listing 24.5 Unintentionally hiding optionality with a default value

“Missing” value
represented by an
empty string

Checking for the empty
string and returning an
empty account

Performing the “real” logic to
load transactions from disk

291Applying Option types with the outside world
T

Y
49

1
93

88
Don’t be scared by this error! Start by looking at the signatures of the two functions
you’re trying to compose together:

tryFindTransactionsOnDisk: string -> (string * Guid * seq<Transaction>) option
loadAccount: (string * Guid * seq<Transaction) -> Account

The output of tryFindTransactionsOnDisk is now an optional tuple. The input of loadAccount
only accepts a tuple; it doesn’t want an optional tuple. Remember, when composing two
functions, the type of output of the first must match the input type of the second.

The crude solution to this would be to “pollute” loadAccount to take in an optional tuple.
Don’t do this! A better approach is to create a new function that “lifts” the existing func-
tion to handle the optionality.

let loadAccountOptional value =
 match value with
 | Some value -> Some(Operations.loadAccount value)
 | None -> None
FileRepository.tryFindTransactionsOnDisk >> loadAccountOptional

But there’s a much quicker way to do this: anywhere you see this pattern of a match over
an option, where the None branch also returns None, you can replace the whole thing with
either Option.map or Option.bind. (You use the former if you had to manually wrap the
result in the Some branch, as shown here, and the latter if the result from the lifted func-
tion was already an Option.)

Listing 24.6 Manually lifting a function to work with an optional input

Figure 24.4 Incompatible functions can’t be composed together.

Wrapping the existing
loadAccount function
with optionality

Using the newly lifted function in
place of the original incompatible one

292 Lesson 24 Capstone 4
let loadAccountOptional = Option.map Operations.loadAccount
FileRepository.tryFindTransactionsOnDisk >> loadAccountOptional

This will now leave you with the composed loadAccountFromDisk with the signature of
string -> Account option. It may return an account, but only if one existed on disk—perfect!
At this point, you can rename the function to tryLoadAccountFromDisk.

Having done this, the last thing to do is (finally) leave the world of options and create a
default account for a new user. The best place to do this is right at the top level, after
capturing the user’s name and trying to load their account from disk.

let openingAccount =
 Console.Write "Please enter your name: "
 let owner = Console.ReadLine()

 match (tryLoadAccountFromDisk owner) with
 | Some account -> account
 | None ->
 { Balance = 0M
 AccountId = Guid.NewGuid()
 Owner = { Name = owner } }

24.4 Implementing business rules with types

This last section touches on how to enforce a slightly higher-level business rule through
the type system:

A user can go into an overdrawn state (draw out more funds than they have in their account).
But after the account has become overdrawn, the user can’t draw out any more funds (although
they can still deposit funds). After the balance returns to a non-negative state, the user can with-
draw funds once again.

Listing 24.7 Lifting a function to support options using Option.map

Listing 24.8 Creating a default account in the appropriate location

Lifting a function to support
optionality using Option.map

Composing the newly
lifted function

Trying to load the
owner’s account
from disk

Returning the account
if it was found

Creating a new account with
a new Account ID if no
account was found on disk

293Implementing business rules with types
This is something that you could achieve with pattern matching during the withdraw
process (replace the current check in withdraw so that it checks whether the account is
already overdrawn rather than the current behavior of preventing users from being
overdrawn at all). But let’s try an alternate way: you can enforce this behavior through
types. First, let’s formalize the preceding business rule:

 An account can be in one of two states: overdrawn or in credit.
 Only an account that is in credit can withdraw funds.
 Any account can deposit funds.

Now model that in F# by enhancing your domain model a little, as in figure 24.5.

type CreditAccount = CreditAccount of Account
type RatedAccount =
 | InCredit of CreditAccount
 | Overdrawn of Account

24.4.1 Testing a model with scripts

You’ve split an account in two paths, and have created a marker, or wrapper, type
(CreditAccount) to indicate that a specific account is in credit. Now, you can update your
core account operation functions.

Listing 24.9 Modeling a rated account

Marker type for an
account in creditCategorization

of account

Overdrawn

 In credit

Deposit

Withdraw but still in credit

Withdraw
and now

overdrawn

Deposit
and now
in credit

Deposit
but still overdrawn

Figure 24.5 Visualizing the state
transitions for your business rule

294 Lesson 24 Capstone 4
let classifyAccount account =
 if account.Balance >= 0M then (InCredit(CreditAccount account))
 else Overdrawn account

let withdraw amount (CreditAccount account) =
 { account with Balance = account.Balance - amount }
 |> classifyAccount

let deposit amount account =
 let account =
 match account with
 | InCredit (CreditAccount account) -> account
 | Overdrawn account -> account
 { account with Balance = account.Balance + amount }
 |> classifyAccount

I advise you to explore these functions in isolation within a script to get a “feel” for how
they work before incorporating them into the code directly. In a nutshell

 classifyAccount is a helper function. It takes in a standard account and categorizes
it based on the balance.

 withdraw now takes in only accounts that are in credit. It’s not possible to call this
function with an overdrawn account.

 deposit accepts both in-credit and overdrawn accounts.

Both withdraw and deposit return a RatedAccount back out; after performing the transaction,
they check the current balance of the account, and if it’s overdrawn, the account is cate-
gorized as Overdrawn, and the whole process begins again. This single function, classify-
Account, is the only place allowed to create a RatedAccount.

You can test this easily within a script. As you see in figure 24.6, the compiler blocks you
from calling withdraw directly on an account that might be overdrawn. You can get
around this by writing a simple wrapper function to assist here that safely tries to with-
draw funds and can be used in place of withdraw in the pipeline.

Listing 24.10 Safe operations on a bank account

Code to rate a “naked” account

Withdraw works only
with credit accounts.

Deposit works with
both credit and
overdrawn accounts.

295Implementing business rules with types
let withdrawSafe amount ratedAccount =
 match ratedAccount with
 | Credit account -> account |> withdraw amount
 | Overdrawn _ ->
 printfn "Your account is overdrawn - withdrawal rejected!"
 ratedAccount // return input back out

The point is that you’ve now provided a barrier around the internal domain. The with-
drawal operation doesn’t need to perform any validation or checks on balances before
carrying it out. Instead, this guarantee is performed by the compiler for you.

24.4.2 Plugging your new model back in

As an exercise, you should now try to plug this code back into the main application.
You’ll have to watch for several things:

 The loadAccount and processCommand functions need to be updated to work with the
new model. Both need to explicitly handle the situation where an attempt is
made to withdraw funds from an overdrawn account (rather than blindly pass-
ing it through to the underlying code). The nice thing with this approach is that
it’s now easy to reason about whether an account is overdrawn. You can pattern
match over the account (an alternative would be to use an active pattern—some-
thing you haven’t yet looked at, but you could in your own time).

 The auditAs function needs to be updated so that it works for both types of
accounts. You need to refactor it carefully so that it works while retaining the
ability to work with two types of accounts; take a look at the sample solution if

Listing 24.11 A safe withdrawal wrapper

Figure 24.6 Compiler support for enforcing business rules

296 Lesson 24 Capstone 4
you get stuck. The withAudit composed functions at the top of the program will
also need to be updated accordingly.

 You can probably completely remove the Accepted property from the Transaction
record. It’s now impossible to attempt a transaction that’s rejected from your
internal domain, so it doesn’t make sense to keep it anymore (this will also mean
updating the serialization/deserialization code).

With a little bit of work, you should end up with something that looks similar to figure 24.7.

The difference as compared to what you had at the start is that the validation layer has been
forced “up” above the core domain, and you’ve now gained extra safety to prevent acciden-
tally calling a function (withdraw) when you shouldn’t (when the account is overdrawn).

Summary

That’s the end of this capstone. It’s probably the hardest one you’ll encounter in the
entire book, as it focuses on concepts that you probably haven’t touched on much in the
past, such as using discriminated unions and a rich domain model to enforce business
rules. Don’t feel too disheartened if you struggled a little!

Figure 24.7 Testing the bank account app by using a stronger domain model

297

U
N

IT

6

Living on the .NET
platform

You’ve now finished with the language side of the
book! The rest of the units cover areas relating to
using those language features in a variety of scenar-
ios, from data access to web programming. You’ll
focus on using the lessons you’ve learned so far in
F# to perform similar tasks that you’re doing today
more quickly—and correctly—than you’re used to.
But don’t think that this means there’s nothing to
learn—far from it!

The first area we’ll cover is interoperating with the
rest of .NET, which is dominated by C# code bases.
You’ve already worked with the BCL throughout
this book, but this unit focuses on larger issues, such
as designing applications that work well in a multil-
anguage solution, as well as under what circum-
stances to rely on C# or F#. We’ll also cover how to
use NuGet packages in F# as easily as possible.

25LESSON
CONSUMING C# FROM F#

In the real world, you’ll be hard-pressed to write a purely F# application. Not only are
most of the NuGet packages out there written in C#, but the entire BCL is too. You’ve
been working with C# types and objects from F# and so you know how to deal with the
basics already, but a few extra areas are worth touching upon in order to round off this
subject. We’ll look at these topics:

 Creating hybrid solutions
 Using Visual Studio tools
 Consuming assemblies from scripts
 Consuming classes and interfaces in F#
 Safely working with nullable objects in F#

25.1 Referencing C# code in F#

In addition to working with the BCL code base, virtually any C# code you write today
can be consumed from F#. This includes the following:

 All BCL code
 .NET assemblies including NuGet packages (see lesson 26)
 Sibling projects in the same solution
299

300 Lesson 25 Consuming C# from F#
In other words, you can accomplish the same tasks in F# that you perform today in C#.
With that bold statement in mind, let’s see how to create a solution that uses both C#
and F# code right now!

25.1.1 Creating a hybrid solution

Let’s start with a simple solution that has some C# utility code that you’ll call from an F#
project. We’ll then expand on this throughout the rest of this lesson.

Now you try

1 Open Visual Studio and create a new F# console application called FSharpProject.
2 Add a new C# class library called CSharpProject to the solution. Add a reference

to the CSharpProject from the FSharpProject by using the standard Add Refer-
ence dialog box, shown in figure 25.1.

Dynamic F#
One area with richer support in C#, as compared to F#, is dynamic typing. F# does have
some support for some dynamic typing through the custom ? operator, which allows you
to handle dynamic member access in a similar vein to C#’s dynamic object types, but this
feature is rarely used. F# also has meta-programming features such as type providers,
which you’ll see in the next unit, that somewhat alleviate the need for dynamic typing.

Figure 25.1 A hybrid
C#/F# solution

301Referencing C# code in F#
That’s it. You can now start to write code in C# and use it in F#! This sort of thing
was the original aim of the .NET and CLR teams: to have the ability to mix and
match languages across a common runtime, using each language where it fits
best in terms of the problem domain at hand. Somewhat disappointingly, some-
where between 1999 and today, this message was more or less replaced with “use
C# everywhere.”

3 Open the Class1.cs file and replace the contents with a Person class as follows.

public string Name { get; private set; }
public Person(string name) {
 Name = name; }
public void PrintName() {
 Console.WriteLine($"My name is {Name}"); }

4 Build the CSharpProject.
5 Now let’s look at consuming this code from F#. First, replace the contents of the

Program.fs file with the following.

[<EntryPoint>]
let main argv =
 let tony = CSharpProject.Person "Tony"
 tony.PrintName()
 0

6 Run the application.

Listing 25.1 A simple C# class

Listing 25.2 Consuming C# code from F#

Public read-only

Constructor

Public method

Calling the Person
constructor

Calling the
PrintName method

Quick check 25.1

1 Can you share F# and C# projects in the same solution?
2 Name some types of assets that you can reference from an F# solution.
3 What kind of type is not well supported in F#?

QC 25.1 answer
1 Yes.
2 Assemblies, sibling projects, and BCL code.
3 Dynamic types.

302 Lesson 25 Consuming C# from F#
25.2 The Visual Studio experience

Working with multilanguage solutions in Visual Studio is generally a pain-free experi-
ence, although not always. Let’s look at some common tasks you’ll be familiar with, and
how they work with hybrid-language solutions.

25.2.1 Debugging

You can debug an application that works across both languages, with no problems. You
can set breakpoints in Visual Studio, and even see cross-language call stacks.

Now you try

Now try debugging F# in VS2015:

1 Set a breakpoint inside the definition C# Person class constructor.
2 Run the F# console application. Observe that the debugger hits with the name

value set to Tony, as shown in figure 25.2.

3 Also, observe that the call stack is correctly preserved across the two languages,
as shown in figure 25.3.

Figure 25.2 Debugging a
C# function called from F#

Figure 25.3 A cross-language call stack with both F# and C# stack frames

303The Visual Studio experience
25.2.2 Navigating across projects

We’re used to many of the standard Visual Studio refactoring and navigation features.
Visual F# Power Tools adds many of these to F#, including Rename, Find All References,
and Go to Definition. Unfortunately, these don’t work across languages (my under-
standing is that this is not an “F#” thing; it’s the same across VB .NET and C#, too). For
example, Find All References will trap references only in projects of the language that
you’re currently in; similarly, if you attempt to use the Go to Definition navigation fea-
ture on the C# Person constructor from F#, you’ll instead be taken to the F# metadata
view of the C# class, as shown in figure 25.4.

This is unfortunate, but (at least in my experience), it’s not a massive show stopper.
However, it is something that you should be aware of.

25.2.3 Projects and assemblies

You’ll notice that I stressed during the previous exercise to first build the C# project
before trying to access it from the F# project. That’s because Visual Studio doesn’t auto-
matically cascade code changes as they’re made across languages. You have to first
build the dependent assembly before you can see the changes in the client project. If you
make a change to code in the C# project, you’ll need to explicitly build that project
before you can “see” the changes in F#.

25.2.4 Referencing assemblies in scripts

Just as a project file has project and assembly references, so can scripts. The difference is
that a project file contains the references embedded within the .csproj or .fsproj file;
there’s no such notion as a project file for scripts, as they’re self-standing. Instead, F#
provides a few useful directives in F# scripts, listed in table 25.1.

Figure 25.4 F# metadata view of a C# type

304 Lesson 25 Consuming C# from F#
Using these directives opens up all sorts of interesting possibilities with scripts when
working with third-party code, as you can quickly reference external code and experi-
ment with them in a scratchpad environment. You’ll see this in more detail later in this
unit. Note that the preceding examples all use absolute paths, but (as you’ll see) you can
also use paths that are relative to the script location.

Now you try

Now experiment with referencing an assembly within a script:

1 Create a new script as a new solution item called Scratchpad.fsx.
2 Open the script file and enter the following code.

#r @"CSharpProject\bin\debug\CSharpProject.dll"

open CSharpProject
let simon = Person "Simon"
simon.PrintName()

3 Execute the code in the script by using the standard Send to F# Interactive behav-
ior. Notice the first line that’s output in FSI:

--> Referenced 'C:\[path elided]\CSharpProject\bin\debug\CSharpProject.dll'
 (file may be locked by F# Interactive process)

You use @ to treat backslashes as literals. Note that if your script lives in a different loca-
tion, the #r line might not work. If that’s the case, navigate to where it is in Windows
Explorer in order to identify the correct path.

Table 25.1 F# script commands

Directive Description Example usage
#r References a DLL for use within a script #r @"C:\source\app.dll"

#I Adds a path to the #r search path #I @"C:\source\"

#load Loads and executes an F# .fsx or .fs file #load @"C:\source\code.fsx"

Listing 25.3 Consuming C# assemblies from an F# script

Referencing the
CSharpProject from an F#
script. Relative references
work relative to the script
location.

Standard F# code to
utilize the newly
referenced types

305The Visual Studio experience
25.2.5 Debugging scripts

Visual Studio also allows you to debug F# scripts! I’ve purposely steered away from this
because debugging can, in my opinion, be a costly way to identify issues as opposed to
designing small, simple functions with minimal dependencies. But sometimes it’s neces-
sary, particularly if you’re using your script as a harness with which to test, for example,
C# code.

Now you try

Let’s debug the script that you already have open to see how it operates in VS2015:

1 With the script from listing 25.3 still open, right-click line 3 (the constructor call
line) with your mouse.

2 From the pop-up menu, choose Debug with F# Interactive.
3 After a short delay, you’ll see the line highlighted, as shown in figure 25.5. From

there, you can choose the regular Step Into code as usual.

4 You can also do the same by using the keyboard shortcut Ctrl-Alt-Enter.
5 When you’ve finished debugging, you can click Stop from the toolbar, or press

Shift-F5 to stop the debugging session.

Figure 25.5 Debugging an F#
script in Visual Studio 2015

Quick check 25.2

1 Can you debug across languages?
2 Can you go to a definition across languages?
3 How do you reference a library from within a script?

QC 25.2 answer
1 Yes. This works out of the box in Visual Studio 2015.
2 Partially. Visual Studio will show you metadata for the defined type in the language you’ve just

come from.
3 Using the #r directive.

306 Lesson 25 Consuming C# from F#
25.3 Working with OO constructs

Let’s move away from looking at Visual Studio tooling features now, and back to some
language-level concerns, by seeing how F# improves on standard C# object-oriented
constructs such as constructors and interfaces. Notice in listing 25.3 that that you don’t
need to bother with the new keyword when calling constructors (or supply brackets for
single-argument constructors). That’s because F# considers a constructor to be a func-
tion that, when called, returns an instance of the type (in this case, Person), so you can use
constructors in the same way as any function. For example, let’s say you want to create
five Person objects by using a list of names. Here are two ways you can do this.

open CSharpProject

let longhand =
 ["Tony"; "Fred"; "Samantha"; "Brad"; "Sophie "]
 |> List.map(fun name -> Person(name))

let shorthand =
 ["Tony"; "Fred"; "Samantha"; "Brad"; "Sophie "]
 |> List.map Person

The first version would have been typical code in F# 3, but since F# 4 you can use the
shorthand second version. The Person constructor is a function taking in a string, which
is the single argument used in List.map here, so you can omit the argument entirely.

25.3.1 Working with interfaces

Like classes, interfaces are a fact of life in the .NET framework. They can sometimes be
useful in F# as well, particularly when working with pluggable pieces of code that need
to change at runtime. As such, F# has good support for implementing them, both at the
language and at the tooling level.

Here’s how to create a simple instance of a standard BCL interface in F#: the System
.Collections.Generic.IComparer interface. This interface enables you to tell whether one
object is greater than, less than, or equal to another object of the same type. Let’s see how
to create, and consume, an instance of this interface in F#.

Listing 25.4 Treating constructors as functions

Calling a
constructor
explicitly

Treating a
constructor like a
standard function

307Working with OO constructs
open System.Collections.Generic

type PersonComparer() =
 interface IComparer<Person> with
 member this.Compare(x, y) = x.Name.CompareTo(y.Name)

let pComparer = PersonComparer() :> IComparer<Person>
pComparer.Compare(simon, Person "Fred")

The first few lines of this snippet are reasonably self-explanatory, although one point of
interest is that the Compare function doesn’t need any type annotations for x and y. These
are inferred in F# by the generic type argument <Person>. It’s important to note, however,
that you have to explicitly upcast from your PersonComparer type to IComparer<Person> by
using the :> operator. This is because F# implements interfaces explicitly, so without this
cast, you wouldn’t be able to call the Compare method. You can also define explicit inter-
face implementations in C#, but it’s generally not used. If you haven’t used explicit
interfaces before, see https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-
guide/interfaces/explicit-interface-implementation for more details (they’re a fully sup-
ported feature of C#).

Now you try

F# Power Tools comes with a handy refactoring to implement an interface for you:

1 Enter the first three lines from listing 25.5.
2 Remove the with keyword from the third line.
3 Move the caret to the start of IComparer in the same line.
4 You’ll be presented with a smart tag (figure 25.6). Press Ctrl-period to open it.
5 Try both forms of generation. The first (nonlightweight) will generate an imple-

mentation with fully annotated type signatures; the latter will omit type annota-
tions if possible and place method declarations with stub implementations on a
single line.

Listing 25.5 Treating constructors as functions

Class definition with
default constructor

Interface
header

Implementation
of interface

Creating an instance
of the interface

https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/interfaces/explicit-interface-implementation

308 Lesson 25 Consuming C# from F#

25.3.2 Object expressions

F# has another trick up its sleeve for working with interfaces, called object expressions.
Object expressions let you create an instance of an interface without creating an inter-
mediary type. Sounds impossible, right? Here’s what it looks like.

let pComparer =
 { new IComparer<Person> with
 member this.Compare(x, y) = x.Name.CompareTo(y.Name) }

The type of pComparer here is IComparer<Person>. Its “real” name is generated by the com-
piler, and you can never see this (unless using reflection). Using object expressions
allows you to skip over the need to manually construct a type to hold the implementa-
tion. You can create the implementation of the interface as an object in one step!

25.3.3 Nulls, nullables, and options

You saw in lesson 19 how to work with options. The problem is that C# classes and
structs don’t work natively with options. How do you marry these two worlds? Well,
since F# 4, you also have a few handy combinators in the Option module that allow you to
easily jump between F# options and classes, which are always potentially null, and
structs that are wrapped as nullables.

open System

let blank:string = null
let name = "Vera"
let number = Nullable 10

Listing 25.6 Using object expressions to create an instance of an interface

Listing 25.7 Option combinators for classes and nullable types

Figure 25.6 The VFPT Implement Interface refactoring

Interface definition

Interface
implementation

Creating a selection of
null and non-null strings
and value types

309Summary
let blankAsOption = blank |> Option.ofObj
let nameAsOption = name |> Option.ofObj
let numberAsOption = number |> Option.ofNullable

let unsafeName = Some "Fred" |> Option.toObj

In this way, you can safely map from other applications or libraries (which return data
that may or may not be null) into a “safe” F# domain that allows you to more easily reason
about nullability of data. Then, when leaving F# and going back to the C# or VB .NET
world, you can use Option.toObj to go back to the “unsafe” world of potentially null classes.

Summary

Hopefully, that was a relatively gentle introduction to the second half of this book! You
learned about the following:

 Multilanguage .NET solutions
 Visual Studio tooling support
 Tricks for working with scripts
 F# language features that allow you to easily work with C# constructs

Try this

Take any existing C# / VB .NET solution that you have, add an F# class library project to
it, and reference your C# library (alternatively, create an F# script and reference the C#
DLL by using the #r directive). Try to create some of your C# types from F#. If your
application has some form of console runner, try to rewrite it as an F# console applica-
tion. Explore driving your existing OO code from F#.

Null maps to None

Non-null maps
to Some

Options can be mapped
back to classes or
Nullable types

Quick check 25.3

1 What is an object expression?
2 How do you convert between a nullable and an option in F#?

QC 25.3 answer
1 An F# language feature that allows you to create instances of interfaces without a formal imple-

mentation type.
2 Using the Option.ofNullable and Option.toNullable helper functions.

26LESSON
WORKING WITH NUGET PACKAGES

In the preceding lesson, you spent time working with non-F# projects from F#, as well as
learning a few tricks on working with scripts. In this lesson, you’ll move on to working
with dependencies within scripts and projects, rather than writing standalone scripts.
You’ll see

 How to work with NuGet packages in F#
 Tips and tricks when working with scripts
 What the Paket dependency manager is

26.1 Using NuGet with F#

The good news is that NuGet packages work out of the box with F# projects in Visual
Studio. There’s no difference compared to working with C#!

26.1.1 Working with NuGet with F# projects

Let’s first see how NuGet packages work with F#.
310

311Using NuGet with F#
Now you try

You’re going to download a NuGet package from the main public NuGet server and use
it within an F# class library:

1 Create a new F# class library in Visual Studio called NugetFSharp.
2 Using the standard Manage NuGet Packages dialog box, add the Newtonsoft

.Json package to the project.
3 You’ll see that the package is downloaded and added as a reference, as in your

C# project. You can now use it directly from your F# source files.
4 Change the contents of the Library1.fs file to the following code.

module Library1

open Newtonsoft.Json
type Person = { Name : string; Age : int }

let getPerson() =
 let text = """{ "Name" : "Sam", "Age" : 18 }"""
 let person = JsonConvert.DeserializeObject<Person>(text)
 printfn "Name is %s with age %d." person.Name person.Age
 person

Here are some interesting points to note:

 You use triple-quoted strings here to allow you to use single quotes within the
string without the need to prefix with a backslash.

 Newtonsoft.Json works out of the box with F# record types! It’ll automatically
map JSON fields to F# record fields, as with C# class properties.

The main takeaway from this, though, is that you can use virtually any NuGet package
with F#. You can benefit from all of the existing libraries out there, while still using the
stronger type system, more succinct syntax, and powerful compiler of F#.

26.1.2 Experimenting with scripts

One of the nicer things that you can do with the F# REPL is to use it in conjunction with
NuGet packages to quickly and easily explore and test a new NuGet package, or to put
together a quick proof of concept that you’re working on. Let’s see what I’m talking about.

Listing 26.1 Using Newtonsoft.Json in F#

Defining an
F# record

Sample JSON text that
matches your record structure

Using
Newtonsoft.Json to
deserialize the object

312 Lesson 26 Working with NuGet packages
Let’s imagine that you need to test a new NuGet package that your team has decided to
start using on an existing project. You’ll probably look on the website of the package (if
there is one), skim through the Getting Started section of the documentation (again, if
there is one), and then download the package to your solution. Finally, you’ll try to
embed this package within the context of your application. This is a common approach,
but usually one fraught with problems. For example, testing the package within the
context of your application might be difficult. What if that code is called in only specific
circumstances that are difficult to reproduce?

Alternatively, perhaps you’ll use unit tests or a console application to prove how it
works, but we’ve already discussed how those are poor ways to experiment and
explore. It’s much more productive to use a script to test how a package works—in iso-
lation—so that you can learn how to use it properly; only then, after you’re confident in
how it works, do you add it to your code base.

Now you try

Next you’ll add another NuGet package to your project, and work with both this and
Newtonsoft.Json from within a script:

1 Add the Humanizer NuGet package to the project. This package can take arbi-
trary strings and try to make them more human-readable.

2 Open Script1.fsx, which was already added to the project on creation.
3 Reference the Humanizer assembly in your script by using the #r directive you

saw earlier in this unit. The simplest option is to open the References node in
Solution Explorer, shown in figure 26.1, get properties of the Humanizer DLL,
copy the entire path into the clipboard, and then enter the following code

Figure 26.1 Determining the full path of an assembly from a NuGet package

313Using NuGet with F#
.

#r @"<path to Humanizer.dll>"
open Humanizer
"ScriptsAreAGreatWayToExplorePackages".Humanize()

4 Execute the code; the output in FSI should be Scripts are a great way to explore
packages.

5 Explore the overloads of the Humanize method in the REPL (for example, one
takes in a LetterCasing argument).

The main point to see here is that you’ve used a script to quickly get access to a NuGet
package that you’ve downloaded, and started to explore how it works in an isolated
and safe environment. It’s much quicker to do this in a script, as you get immediate
feedback in the REPL for what’s going on. Plus, because you’re working in a script file,
you can save the script and use it again later, or use it as a form of documentation to
show other developers how to use a dependency correctly!

26.1.3 Loading source files in scripts

Next you’ll use the code you wrote earlier in listing 26.1 within a script.

#r @"<path to Newtonsoft.Json.dll>"
#load "Library1.fs"
Library1.getPerson()

Here, you load the Library1.fs source file and call a function exposed by it. An import-
ant point to note here is that you have to explicitly reference the Newtonsoft.Json assem-
bly before loading the script; this is required, as Library1.fs uses the Newtonsoft

Listing 26.2 Referencing an assembly from a NuGet package

Listing 26.3 Loading a source file into a script with a NuGet dependency

Referencing an assembly
by using #r

Sending references to FSI
You can also right-click any assembly and choose the Send to F# Interactive option,
which sends #r directly to FSI. But your scripts won’t “know” about the reference and so
won’t give you IntelliSense, and you’ll need to redo it every time you reset FSI. Explicitly
adding #r to your scripts is a much better option.

Referencing the
Newtonsoft.Json assembly

Loading the Sample.fs
source file into the REPL

Executing code from
the Sample module

314 Lesson 26 Working with NuGet packages
namespace. If you comment out the line that references Newtonsoft.Json, you’ll see an
error, as shown in figure 26.2.

Also be aware that if you #load an .fs file into a script, any other .fs files that it depends
on will need to be loaded first!

26.1.4 Improving the referencing experience

The way you’re referencing assemblies here has a couple of problems. First, you’re copy-
ing the full absolute path, which is useless if you’re going to share a script with other
developers on your team. Second, a load of repetition exists in the paths for both
Humanizer and Newtonsoft.Json. You can fix that as follows.

#I @"..\packages\"
#r @"Humanizer.Core.2.1.0\lib\netstandard1.0\Humanizer.dll"
#r @"Newtonsoft.Json.9.0.1\lib\net45\Newtonsoft.Json.dll"

You’ve moved to using a relative path to the script location (..\packages\) rather than an
absolute path. This means you can share this script with the rest of the team; in addition,
you’ve used the #I directive so you don’t have to retype that in every #r directive. You
also could have not bothered with the #I directive, and copied that to the start of both
the #r directives.

Listing 26.4 Loading a source file into a script with a NuGet dependency

Figure 26.2 Trying to load a source file without having
referenced a required dependency

Add the “..\packages\” folder to the
search list by using a relative path.

Simplified NuGet
package reference

NuGet and project references
The way NuGet interacts with .NET projects is going through something of a redesign in
the next version of the .NET project system; projects might even be able to reference the
NuGet package directly (rather than assemblies in those packages). Similarly, there’s talk
of a #nuget directive that might be added to F# scripts, but that’s speculation at this point.

315Using NuGet with F#
26.1.5 Using autogenerated references

Even when using the #I trick, maintaining the list of dependencies in a script (in the cor-
rect order!) can be a pain. Thankfully, F# Power Tools has a solution to the issue of refer-
encing project and source files.

Now you try

Now use the autogenerated references from Power Tools to see how it can help matters:

1 Right-click the References node of the project and select the Generate References
for F# Interactive option.

2 A new folder, scripts, is created in the project, along with two files: load-
references and load-project, as shown in figure 26.3.

3 Open the two files. You’ll see that the former contains #r directives for all refer-
enced assemblies, and the latter contains #load for every source file in the project
(and calls the references file too!).

4 Remove all the #r and #load directives from the script you created, and replace
them with a single #load @"Scripts\load-project-debug.fsx".

What’s especially good about this is that the files are regenerated whenever new depen-
dencies or files are added to the project, so you don’t have to maintain them manually.

Figure 26.3 Generated script
files from Visual F# Power Tools

When can’t I use autogenerated references?
If you’re sticking with Visual Studio and F# projects, autogenerated references files work
fine. But if you have a C#-only solution and still want to use F# scripts for exploration
(which is not uncommon), you have two options. First, although you can use standalone
F# scripts in a C# project (or as a solution item), you won’t get the autogenerated refer-
ence scripts, as these are available to create only in F# projects. The alternative is to
create an F# project that contains nothing but your exploratory scripts, and within which
you can also create the autogenerated reference scripts.

316 Lesson 26 Working with NuGet packages

26.2 Working with Paket

NuGet is a great tool. It simplifies sharing dependencies across .NET projects and acts
as a central repository for reusable .NET components. But it has several shortcomings,
partly due to the way in which it first came into being, and partly due to design deci-
sions that were made over the years.

Paket is an open source, flexible, and powerful dependency management client for .NET
that aims to simplify dependency management in .NET. It’s backward-compatible with
the NuGet service, so you can continue to use existing NuGet packages, but it provides
an alternative client-side application that replaces the existing NuGet client and that
also adds a whole host of new features. It’s written in F# but is fully compatible with C#,
VB .NET, and F# projects and solutions. (Disclaimer: I’m one of the contributors to the
Paket project.)

There’s another reason I’m showing you Paket: if you look at virtually any F# open
source project, or start to read any F# examples online, virtually all of them will use
Paket rather than NuGet. Therefore, it’s definitely worth your while to get up to speed
with Paket sooner rather than later.

26.2.1 Issues with the NuGet client

Here are a few issues you’ve probably come up against in the past with NuGet:

 Invalid references across projects—NuGet doesn’t prevent you from adding the
same package, but with different versions, to two projects. You may have a refer-
ence to Newtonsoft.Json version 6 in Project A, and version 7 in Project B within

Quick check 26.1

1 Can you use NuGet packages with F# projects?
2 What do you need to be aware of when calling #load on F# files?
3 How can you make life easier when referencing assemblies and files?

QC 26.1 answer
1 Yes.
2 Any dependent assemblies and F# files need to be imported first by using #r or #load.
3 Use Visual F# Power Tools to autogenerate references and project load scripts.

317Working with Paket
the same solution. You won’t get a compile error, but might get a runtime error,
depending on any number of factors.

 Updates project file on upgrade—Every time you update a NuGet dependency, the
project file changes, because NuGet packages store the version in the physical
path. This can cause merge conflicts as well as unnecessary changes to the pro-
ject file.

 Hard to reference from scripts—Because the physical path is stored in the packages
folder, scripts are tightly coupled to packages. If you update a package, your
scripts will break (unless you’re using the generated references file from VFPT).

 Difficulty managing—NuGet is difficult to reason about on large solutions (or
multiple solution-sharing projects), because NuGet doesn’t have a unified view
of dependencies across all projects or solutions (although, admittedly, NuGet 3
did put in some UI tricks to make this experience a little better). How often have
you worked on a large solution or project and deliberately put off upgrading
NuGet packages because you’re afraid that upgrading will somehow break
something?

26.2.2 Benefits of Paket

Paket addresses all of the preceding issues, as well as adding several new features,
including these:

 Dependency resolver—Paket understands your dependencies across all projects in
your solution (or repository), and will keep all your dependencies stable across
all projects. It won’t allow you to accidentally upgrade a version of a dependency
for only a part of your solution.

 Easy to reason about—You don’t have to worry about child dependencies of NuGet
packages. Paket allows you to focus on the top-level dependencies, while it inter-
nally manages the children for you without your needing to worry about them.

 Fast—Paket is extremely fast, with an intelligent resolver and caching mechanism
so that restoring packages occurs as quickly as possible.

 Lightweight—Paket is a command-line-first tool. It has an extension for Visual
Studio as well, but this is essentially a wrapper around the command-line tool,
rather than the other way around. You don’t need a GUI to add packages to your
solution or project; the configuration files are plain text, lightweight, and easy to
maintain.

 Source code dependencies—You can have a dependency on, for example, a specific
commit of a GitHub file. This is extremely useful when working with tiny

318 Lesson 26 Working with NuGet packages
dependencies (for example, helper or utility modules or the like) that don’t justify
creating a NuGet package.

Why am I showing you Paket here? One of the things you’ll notice if you start working
with any F# open source projects in the future is that virtually all of them use Paket
rather than NuGet. It not only has many advantages over NuGet, but also plays much
more nicely with F#. Scripts work more easily with Paket-sourced dependencies, and it
doesn’t couple you to Visual Studio if you decide you want to, for example, use Visual
Studio Code (or any other IDE for that matter).

Now you try

In this exercise, you’ll convert your existing package from NuGet to Paket:

1 In the existing solution, add the WindowsAzure.Storage NuGet package.
2 Open the packages.config file. Observe that it has approximately 50 NuGet pack-

ages. Which package is dependent on which? Why are you seeing 50 packages
when you asked for only three (Humanizer, Newtonsoft.Json, and Windows-
Azure.Storage)?

3 Navigate to the latest Paket release and download the Paket.exe application
(https://github.com/fsprojects/Paket/releases/latest) to the root folder (alongside
the solution file).

4 Delete the entire packages folder.
5 Open a command prompt and navigate to the root folder of the solution.
6 Run paket convert-from-nuget. Paket converts the solution from NuGet tooling to

Paket. Observe the following:
a All packages are downloaded in the packages folder but without version num-

bers. Paket doesn’t include version numbers in paths. This makes referencing
NuGet packages much easier from F# scripts!

b Two new files have been created: paket.dependencies and paket.lock. The for-
mer file contains a list of all top-level dependencies and is designed to be
human readable and editable; the latter contains the tree of interdependen-
cies.

c Your project is updated so all NuGet packages reference the new (version-free)
paths.

7 Run paket simplify. This parses the dependencies and strips out any packages
from the paket.dependencies file that aren’t top-level ones. Observe that the
dependencies file contains only two dependencies: Humanizer and Windows-
Azure.Storage (Json is a dependency of WindowsAzure.Storage). The lock file
still maintains the full tree of dependencies.

https://github.com/fsprojects/Paket/releases/latest

319Working with Paket
8 You can now open Script1.fsx; observe that the references are currently broken.
Rebuilding the solution regenerates the references script to point to the correct
locations. Notice that the paths no longer have the version numbers in them. In
the future, updating NuGet dependencies in Paket won’t break scripts that refer-
ence assemblies simply because the version changed.

There’s tons more to learn about Paket than I’ve shown you here, so it’s well worth look-
ing on the Paket website at its documentation. It contains guidance on all the features
and quick starts, and it has a responsive team that will answer questions on GitHub or
Twitter.

26.2.3 Common Paket commands

Here are some common Paket commands:

 paket update—Updates your packages with the latest versions from NuGet. By
default, Paket selects the highest version of any package available and intelligently
ensures that the latest versions are compatible across all your dependencies.

 paket restore—Brings down the current version of all dependencies specified in
the lock file. Useful for CI processes to ensure repeatable builds.

 paket add—Allows you to add a new NuGet package to the overall set of depend-
encies (for example, paket add nuget Automapper project NugetFSharp gets the latest ver-
sion of the Automapper NuGet package and adds it to the NugetFSharp project).

 Paket generate-load-scripts—Generates a set of .fsx files that call #r on all assem-
blies in a package and their dependencies.

There’s also a Visual Studio extension for Paket (available in Visual Studio Extensions
and Updates), which provides much of this functionality directly within Visual Studio.

Paket as an example of open source collaboration
Paket is a good example of how open source, community-led projects can work. What
started as a small project with a couple of developers now has dozens of contributors
and is used in many organizations. It’s a good example of how a set of developers saw
what they felt was room for improvement in the existing NuGet story, and were able to
rapidly create a new tool that fits the needs of many developers. Many of the features in
Paket were originally thought to be unimportant by the NuGet team, but now there are
signs that some of those features might be introduced into NuGet at some point.

➠

320 Lesson 26 Working with NuGet packages

Summary

In this lesson, you got your hands dirty with NuGet and F#. You did the following:

 Saw how to, and why you might want to, use NuGet packages within F# scripts
 Learned tips for how to make working with scripts even easier through Visual F#

Power Tools
 Got a brief introduction to the Paket dependency manager

Try this

Take an existing .NET solution you’ve been working on. Try first to create an F# project
in the solution, referencing the same NuGet packages as the C# project. Then, generate a
references script to the project and see whether you can start to work with those NuGet
packages from your own script! Try converting the solution from NuGet to Paket. You
might even find that Paket refuses to convert if discrepancies exist in your NuGet con-
figuration (such as different versions of the same package)!

(continued)
I should point out that this hasn’t always been a pain-free journey. The Paket and NuGet
teams haven’t always had the most positive relationship (although this has improved
over time). Also, if you’re used to the somewhat lethargic pace of NuGet updates, you
might be in for a shock with Paket. It’s not unusual to have intra-day updates and fixes to
the tool!

Quick check 26.2

1 Why can it be difficult to work with NuGet packages from F# scripts when using the
NuGet tool?

2 What does the paket.dependencies file contain?

QC 26.2 answer
1 NuGet uses the version number of the package within the path of the package, so every time you

update a package, your F# scripts will break.
2 The set of top-level dependencies for your solution.

27LESSON
EXPOSING F# TYPES AND FUNCTIONS
TO C#

In this unit (and indeed throughout this book), you’ve concentrated on how to consume
C# from F#. But it’s common to also go the other way, and write libraries in F# and con-
sume them in C#. For example, you might create a data access layer in F# underneath a
C# GUI, or write a general-purpose NuGet package in F# that can be consumed in both
C# and F#. This lesson covers the following:

 F# data types
 Namespaces and modules
 F# functions
 Gotchas when consuming F# code from C#

Even in an existing code base that’s mostly C#, you’ll still want to work with F# in some
cases. We’ll cover more of this in the coming lessons, but it’s not that unusual—particu-
larly when working on larger projects or with existing code bases. The following section
provides some examples of interoperating between F# and C#.
321

322 Lesson 27 Exposing F# types and functions to C#
27.1 Using F# types in C#

We’re fortunate that the F# team spent time looking at the situations that arise when
exposing data created in F# to C#, because they’ve done a great job in nearly all common
cases. As you’ll see, F# data types all boil down to primitives that you already know; it’s
simply that the F# language allows us to work with those same primitives at a higher
level. Let’s first look at the common F# data types we discussed in the first half of the
book.

27.1.1 Records

Records map extremely well in C#. They appear as regular classes, with a nondefault
constructor that takes in all fields exposed in the record. A default constructor won’t
normally be generated, so it won’t be possible to create the record in an uninitialized (or
partially initialized) state. Each field will appear as a public getter-only property, and
the class will implement various interfaces in order to allow structural equality check-
ing. Also, although I’ve not shown it in this book, you can create member functions on a
record. These are exposed as methods in C#.

Now you try

Let’s see how to create a mixed solution,
which you’ll use to create a number of F#
types and explore how they render in C#:

1 Create a new solution in Visual Studio,
Interop.

2 Create an F# class library, FSharp-
Code.

3 Create a C# console application,
CSharpApp.

4 Reference the FSharpCode project
from the CSharpApp project so that
you can access the F# types from the
C# project, as shown in figure 27.1.

Figure 27.1 Creating a mixed-language
solution and referencing F# from C#

323Using F# types in C#
5 Open Library1.fs, remove the sample class definition, and rebuild the solution.
6 In Library1.fs, create a simple record type to model a car, taking care to change

the namespace as shown in the following listing

namespace Model

/// A standard F# record of a Car.
type Car =
 { /// The number of wheels on the car.
 Wheels : int
 /// The brand of the car.
 Brand : string }

7 Now that you’ve created the type, go to Program.cs and within the Main()
method, try typing Model to get IntelliSense for the namespace. You’ll see that
nothing appears! This is because C# and F# projects can (currently) see changes
in code only after you’ve compiled the child project—in this case, the F# project.

8 Go ahead and rebuild the solution. You’ll see that you can now create an instance
of the F# record type, although it appears as a class to C#, as shown in figure 27.2.

9 Notice that you can access getter-only properties on the car that map to the fields.
Also observe that the triple-slash comments show in tooltips.

10 Try to use Go To Definition (F12) from the C# project when the caret is over the
Car type. Observe that a C# rendering of the F# type, based on its IL metadata, is
shown. Also notice the interfaces that are implemented for structural equality
(for example, IEquatable<T> and IComparable<T>), as well as override Equals and Get-
HashCode.

27.1.2 Tuples

Tuples in F# are instances of the standard System.Tuple type, so they appear as such when
consumed from C#, with standard Item1, Item2, and ItemN properties. The standard
.NET tuple type supports up to only eight items, so F# has a trick up its sleeve here: if

Listing 27.1 An F# record to be accessed from C#

Record definition
using lightweight
triple-slash comments

Figure 27.2 Creating an F# record from C#

324 Lesson 27 Exposing F# types and functions to C#
you have a tuple wider than eight items—let’s say ten items—the eighth element of the
tuple will itself be another tuple that has the last three items. But I strongly recommend
avoiding ever getting into a situation where you have a tuple more than three items
wide. Stick to records for such a case.

27.1.3 Discriminated unions

Remember that discriminated unions in F# are roughly equivalent to a class hierarchy in
C#, except that they’re a closed set of classes. And, sure enough, if you try to consume a
discriminated union from F#, that’s exactly what you’ll see: a set of classes (one per
case), along with a set of static helper methods to allow you to both easily check which
case the value is, and to create instances of a case yourself.

But be aware that there’s one fundamental problem with using discriminated unions in
C#. Without any support for pattern matching (something that will be partially rectified
in C# 7—it’ll probably have support matching over type checks), you’ll quickly find that
it can be painful to reason about a discriminated union in C#. Remember that in C# with
inheritance, behaviors are part of the class, and you use polymorphism to access differ-
ent implementations through virtual dispatch. Discriminated unions don’t have behav-
iors on them, but rather separate standalone functions that operate over all cases
through pattern matching.

Now you try

Let’s see how to enhance your solution to illustrate tuples and discriminated unions:

1 Update Library1.fs as follows.

Tuples in C# 7
C# 7 will almost certainly have language support for tuples, much as F# currently has.
But this will be a brand-new type (most likely called System.ValueTuple) that, unlike System
.Tuple, is a value type. To seamlessly interoperate with this, the next version of F# will
introduce a new struct keyword, which you’ll use to tell the F# compiler to also use System
.ValueTuple, so that exposing this to C# should allow you to take advantage of C# lan-
guage support as well. For now there’s nothing to worry about.

325Using F# types in C#
/// A standard F# record of a Car.
type Car =
 { /// The number of wheels on the car.
 Wheels : int
 /// The brand of the car.
 Brand : string
 /// The x/y of the car in meters
 Dimensions : float * float }

/// A vehicle of some sort.
type Vehicle =
 /// A car is a type of vehicle.
| Motorcar of Car
 /// A bike is also a type of vehicle.
| Motorbike of Name:string * EngineSize:float

2 Rebuild the F# project, and then correct the C# to create a Car. You need to pass in
a Tuple<Float, Float> for the new argument—for example, Tuple.Create(1.5, 3.5).

3 Notice that if you access the Dimensions property on the car, you’ll get Item1 and
Item2 for X and Y.
Let’s now look at discriminated unions. You created a discriminated union in list-
ing 27.2 that has two cases: Motorcar and Motorbike.

4 In IntelliSense, navigating to Model.Vehicle is shown in figure 27.3.

Listing 27.2 Creating tuples and discriminated unions in F#

A property on the
record that’s a tuple

A discriminated union
using both record and
inline arguments

Figure 27.3 Creating cases of a discriminated union from C#

326 Lesson 27 Exposing F# types and functions to C#
You can see both cases as nested types underneath the Vehicle type. Beware: there
are no constructors available for either case. Instead, you’re provided with builder
methods such as NewMotorbike that allow you to create instances of the cases.

5 Create an instance of a Motorbike.
6 The type of value returned will be Vehicle—not Motorbike! In order to test which

type the variable is, you need to use the IsMotorbike and IsMotorcar properties on
the vehicle instance, and then cast it as appropriate. Only then will you be able to
access the properties on the Motorbike itself.

This forces you to adopt a clear separation between data and behavior, and use type-
based pattern matching (which in C# 6 means resorting to casts or the as keyword) to
access the “real” data.

27.2 More on F# interoperability

Let’s quickly run through other interop scenarios for F# and C#.

27.2.1 Using namespaces and modules

You’ve seen how to use namespaces and modules to logically group types and functions
together in F#. How are they exposed in C#, though?

F# namespaces in C#

Namespaces in F# are not only logically the same as in C#; they’re essentially exactly the
same thing. If you make a type within a namespace in an F# assembly, you can reference
it in C# by using the exact same namespace. Easy.

Modules in C#

A module is rendered in C# as a static class. Any simple values on the module such as
an integer or a record value will show as a public property. Functions will show as

Quick check 27.1

1 How are records represented in C#?
2 Why are discriminated unions sometimes difficult to reason about in C#?

QC 27.1 answer
1 As classes with a default constructor, and public getter-only properties.
2 C# doesn’t have rich pattern-matching support, which can make DUs difficult to work with.

327More on F# interoperability
methods on the static class, and types will show as nested classes within the static class.
As you can see, there’s a pretty good mapping for these. You probably won’t even know
that you’re accessing an F# module from C#!

27.2.2 Using F# functions in C#

As you know, functions in F# come in two forms: tupled and curried. F# will render both
to C# as though they were tupled, so all arguments will be required at once, unlike cur-
ried functions in F#, where you can pass in just a subset to return a new function.
There’s one exception where this breaks down: if you expose an already partially curried
function to C#, it’ll look pretty strange. If you can avoid trying to read the IntelliSense, it
works reasonably well, but it’s completely nonidiomatic C#.

Now you try

Next, experiment with F# functions firsthand to see how they render in C#:

1 Enter the following code at the bottom of Library1.fs.

module Functions =
 /// Creates a car
 let CreateCar wheels brand x y =
 { Wheels = wheels; Brand = brand; Dimensions = x, y }
 /// Creates a car with four wheels.
 let CreateFourWheeledCar = CreateCar 4

2 Rebuild the F# project.
3 Call the Model.Functions.CreateCar function from C#. It appears as a normal static

method.
4 Call the Model.Functions.CreateFourWheeledCar function from C#. It appears as a prop-

erty of type FSharpFunc, which has an Invoke method on it that takes in a single
argument. (You need to add a reference to FSharp.Core to see this. Take the newest
one you can find, which is 4.4.0.0 at the time of writing.)

5 Observe that calling Invoke will return another propety with another Invoke
method! Each call relates to one constructor argument (except the first, which has
been supplied in the F# code already!).

Listing 27.3 Exposing a module of functions to C#

Function in curried form

Partially applied function

328 Lesson 27 Exposing F# types and functions to C#
var somewheeledCar = Model.Functions.CreateCar(4, "Supacars", 1.5, 3.5);
var fourWheeledCar =
 Model.Functions.CreateFourWheeledCar
 .Invoke("Supacars")
 .Invoke(1.5)
 .Invoke(3.5);

To cut a long story short, try to avoid providing partially applied functions to C#. If you
absolutely must, wrap such functions in a “normal” F# function that explicitly takes in
all arguments required by the partially applied version, and supplies those arguments
manually.

27.3 Summarizing F# to C# interoperability

Table 27.1 roughly summarizes how well (or not) different elements operate in C#.

Listing 27.4 Calling F# functions from C#

Table 27.1 Summarizing F# to C# interoperability

Element Renders as C# compatibility

Records Immutable class High

Tuples System.Tuple Medium/high

Discriminated unions Classes with builder methods Medium/low

Namespaces Namespaces High

Modules Static classes High

Functions Static methods High/medium

Calling a
standard F#

function from C#

Calling a partially applied
F# function from C#

Quick check 27.2

1 How are modules declared in F# rendered in C#?
2 Can you use F#-declared curried functions in C#?

QC 27.2 answer
1 As static classes.
2 Yes, although they can be unusual in C# to work with.

329Summarizing F# to C# interoperability
27.3.1 Gotchas

This section covers a few edge cases where you might need to do something a little dif-
ferent in order to use a specific type in C#.

Incompatible types

A few types in F# don’t exist in C#. Generally, this is because there’s no CLR support for
them, and they’re erased at compile time. The two main elements are unit of measure
(which we haven’t touched on) and type providers (which we’ll deal with in the upcom-
ing lessons).

CLI Mutable

On rare occasions, you’ll need to create an F# record from C# in an uninitialized state
(without having provided all fields to a constructor), or without getter-only properties.
Primarily, this is important for interoperating with third-party libraries that create
objects by using reflection. These libraries typically create an uninitialized object first,
and then set each property one at a time (MongoDB and Azure Web Jobs SDKs are two
examples). By default, these libraries won’t work with F# records, so to get around this,
you can place the [<CLIMutable>] attribute on a record. This doesn’t change anything from
an F# point of view, but affects the underlying IL that’s emitted so that C# code can
access a default constructor, and properties have setters.

Options

You can consume F# option types in C#, after you add a reference to FSharp.Core. But as
with other discriminated unions, they’re not particularly idiomatic to work with in C#.
Adding a few well-placed extension methods that remove the need for supplying type
arguments can help, though, so it’s worth looking at this if you want to use F#’s Option
type in C#.

Accessibility modifiers

F# also supports accessibility modifiers, just like C#—for example, public, private, and
internal. Unlike C#, things are public by default in F#, but if you want to make a function
or value hidden from C# code, mark it as internal.

Collections

F# arrays are standard .NET arrays, so they work without a problem. Likewise,
sequences appear as IEnumerable<T> to C# code. But the F# list isn’t the same type as the
standard .NET generic list (known in F# as ResizeArray). Again, without pattern matching
(and the List module), it’s of limited use, although as it implements IEnumerable<T>, you
can use LINQ on it. My advice is to avoid exposing it to C# clients. Arrays and

330 Lesson 27 Exposing F# types and functions to C#
sequences work fine, and you won’t place a dependency on the FSharp.Core assembly
on callers with those.

Summary

In this lesson, you looked at exposing code from F# to C#:

 You saw how records, tuples, and discriminated unions can be consumed in C#.
 You saw how to work with namespaces, modules, and functions.
 You learned what parts of F# don’t map well into the mostly OO C# language.
 You saw how to help smooth interoperability issues for certain common cases.

Try this

Take an existing application that you already have that’s written in C#. Try to port your
domain model from C# to F# and then reference it from C#. Try doing a simple map-
ping, without using any advanced F# modeling features, before trying a more complex
model that uses, for example, discriminated unions and options. Then try moving busi-
ness logic from C# to F# and functions on modules, rather than stateful classes.

Quick check 27.3

1 What do tuples render as in C#?
2 What is the purpose of the [<CLIMutable>] attribute?

QC 27.3 answer
1 The System.Tuple type.
2 CLIMutable provides a nondefault constructor and public setters for all properties.

28LESSON
ARCHITECTING HYBRID LANGUAGE
APPLICATIONS

This final lesson of this unit presents all the elements we’ve discussed so far within the
context of a larger, cohesive element. This lesson doesn’t have specific step-by-step exer-
cises, as we’ll be reviewing a prebuilt code base. After this lesson, a capstone exercise
will build on this information in the context of the banking application you’ve been
writing throughout this book. This lesson covers

 Crossing the boundaries from F# and C#
 Playing to the strengths of a language
 Case study—driving a WPF application from F#

28.1 Crossing language boundaries

We touched on this briefly earlier in this unit, but it’s worth reviewing this point in more
depth. Although beneath the covers F# and C# share the same runtime, at compile time
F# affords us much more safety, thus allowing us to focus on solving business problems
rather than checking for nulls and so on throughout our code base. Let’s look briefly at
how to work between the two languages in an attempt to get the best of both worlds,
taking advantage of the F# type system while still being friendly to C#.
331

332 Lesson 28 Architecting hybrid language applications
28.1.1 Accepting data from external systems

It’s extremely useful to use the F# type system to model your domain effectively. But
when interoperating with other systems (or languages), an impedance mismatch may
occur between F# and the other side. For example, F# features such as discriminated
unions (sum types) and non-nullability by default don’t exist in C#. As such, at times
you’ll want to model something in such a way that you need to choose one of two
approaches to take.

On the one hand, if you expose data structures that are foreign to C# developers, you
make your API tricky to consume. On the other hand, using a simple data model that’s
usable everywhere means giving up features in F#. And this is about more than expos-
ing APIs to C#. Sometimes you’ll be forced to deal with “dirty” data from external
sources (for example, JSON, CSV, or HTTP endpoints)—data that you don’t trust to
adhere to a particular schema, or that doesn’t allow defining domains as richly as F#.

A good way around this is to define an internal F# domain that contains all the niceties
that you’ve seen throughout this book (discriminated unions, option types, records, and
so forth) while also using a public API designed to be easy for consumers to work with
(such as C# developers). When you move in and out of the F# world, you marshal data
between the two formats. This is particularly important when going from the weakly
typed external shape to the internal, stricter F# shape. Going from data structures that
can’t encode rich schema information into the F# world is shown in figure 28.1.

In listing 28.1, let’s see an example of working with a simple domain that you want to
use from C# from a public API point of view, but want to do all the calculation from
within F#. This model represents a simple order system. An order has an ID, a customer
name, the set of items to order, plus an optional way to contact the customer to provide
updates of shipping progress.

SQL and C#—an impedance mismatch of types
The designers of SQL got one thing spot on: they allowed any data type to be marked as
either null or non-nullable. In the early days of C#, there was no concept of Nullable<T>,
so when reading, for example, nullable ints from a database, you needed to pick a default
integer value to map to in case there was no value on the database.

333Crossing language boundaries
type OrderItemRequest = { ItemId : int; Count : int }
type OrderRequest =
 { OrderId : int
 CustomerName : string // mandatory
 Comment : string // optional
 /// One of (email or telephone), or none
 EmailUpdates : string
 TelephoneUpdates : string
 Items : IEnumerable<OrderItemRequest> } // mandatory

Even a relatively simple domain model such as this has a set of implicit rules that are
documented through code comments and the like. You’re using records here, as they’re
extremely lightweight and work well in C#, but there are better ways to model this in F#.

type OrderId = OrderId of int
type ItemId = ItemId of int
type OrderItem = { ItemId : ItemId; Count : int }
type UpdatePreference =

Listing 28.1 A simple domain model for use within C#

Listing 28.2 Modeling the same domain in F#

JSON file

 Bounded context

HTTP API

F# world - safety

C# library

Validation/Transformation layer

Figure 28.1 Providing a gateway into the F# world as a means of
ensuring type safety

A mandatory string
through convention

An optional string

A set of related properties

334 Lesson 28 Architecting hybrid language applications
 | EmailUpdates of string
 | TelephoneUpdates of string
type Order =
 { OrderId : OrderId
 CustomerName : string
 ContactPreference : UpdatePreference option
 Comment : string option
 Items : OrderItem list }

It’s relatively simple to go from a weaker model to a stronger model. At the entrance to
your F# module, you accept the weak model, but immediately validate and transform it
over to your stronger model. Once in this shape, you no longer have to check for nulls or
otherwise invalid data and can immediately benefit from the improved modeling capa-
bilities.

{ CustomerName =
 match orderRequest.CustomerName with
 | null -> failwith "Customer name must be populated"
 | name -> name
 Comment = orderRequest.Comment |> Option.ofObj
 ContactPreference =
 match Option.ofObj orderRequest.EmailUpdates, Option.ofObj

➥orderRequest.TelephoneUpdates with
 | None, None -> None
 | Some email, None -> Some(EmailUpdates email)
 | None, Some phone -> Some(TelephoneUpdates phone)
 | Some _, Some _ -> failwith "Unable to proceed - only one of telephone

➥ and email should be supplied" }

In this (simplified) example, you perform these checks before entering your “safe” F#
world:

 Null check on a string.
 Convert from a string to an optional string.
 Confirm that the source request has a valid state; if the incorrect mix of fields is

populated, the request is rejected.

Listing 28.3 Validating and transforming data

CustomerName
should never
be null. Improved

modeling for
shipping updates

Comment explicitly
marked as optional

Simple null check

Explicitly marking
an optional string

Safely creating
a discriminated
union from
flattened data

335Crossing language boundaries
28.1.2 Playing to the strengths of a language

At the start of this book, I briefly distinguished between features that are natural to F#
and those in C#—for example, mutability and expressions. At times, you’ll still want to
use C# in a large system, either because of tooling or the domain at hand. Here are some
examples:

 ASP .NET MVC GUIs—C# has rich support with Razor syntax for creating HTML
GUIs on the server. There are third-party templates (downloadable directly from
within Visual Studio) that allow you to create an MVC application in F#, but a
low-frills way to get going is to create all your views and web hosts in a C# pro-
ject, and delegate to F# for your controllers (or core business logic) onward.
Given the stateless nature of web applications, F# is a great fit, and you’ll see in a
couple of units’ time how simple this is to do.

 Windows Forms GUIs—C# again benefits from code generation for GUIs, but
more than that, local client GUIs are generally mutable by nature. Again, this
isn’t necessarily an idiomatic fit for F# (although you can do it). Some good third-
party libraries such as Fody make binding C# classes to WPF applications with
MVVM easy. I know of developers who use F# for the entire WPF stack, includ-
ing code-behind views, through the ingenious FsXaml and FSharp.ViewModule
projects, others that leave code-behind as C# but use F# for view models, and still
others who have their view models in C# but services and below in F#. There’s no

Working with strings in F#
In F#, I prefer to be explicit about nullable fields. Sadly, it’s not possible in F# to make
strings non-nullable, as they come from the BCL (the same as any other C# class). Every
string could be null, even if you know it never would be. So although theoretically you
should wrap all reference types in F# options in order to be completely safe, I tend to
take a more pragmatic approach:

 If you know that a string field could conceivably be null, convert it to an option type
by using Option.ofObj.

 If it shouldn’t ever be null, check at the F# boundary and reject the object if it’s
null; if it’s not null, leave it as a string.

In this way, you still gain a safety net, and can model the distinction between optional
strings and mandatory strings, while not incurring the cost of placing option types
throughout your code base.

336 Lesson 28 Architecting hybrid language applications
right answer here; experiment with different blends of F# and C# to see what
feels more natural to you.

 Dynamic code—When working with truly dynamic data structures, F# isn’t a great
fit. There are two options: using the ? operator, which allows you to perform a
limited amount of dynamic coding, or using type providers. Again, see the next
unit for this.

 Entity Framework—I have to say, since working with F#, I’ve gone completely off
Entity Framework, because F# has far better data access libraries for most use
cases. Nonetheless, if after working through the next unit, you still want to use
EF, I’d exercise caution about defining your code-first models in F#. EF is
designed to work with inherently mutable classes, using virtual methods, and so
on—things that you can definitely model in F#—but again it’s probably a better
fit for C#.

28.2 Case study—WPF monopoly

Let’s look at a slightly larger application that uses a combination of C# and F# projects to
provide a cohesive end-to-end experience for a WPF application that models most of the
rules of the classic Monopoly game. Rather than writing all the code yourself, you can
download the source code from https://github.com/isaacabraham/monopoly (you can
use HEAD, but if you prefer, the specific commit that I’ve written this lesson against is
092c53d). Go ahead and download, build, and open the MonopolyStats solution. Now
let’s take a look at some of its aspects.

Quick check 28.1

1 What features from the F# type system might be missing for simpler domains such as
JSON or CSV?

2 Why should you consider having a rich internal, and simpler external, domain?
3 Can you name a scenario for which C# might be a better fit than F#?

QC 28.1 answer
1 Basic types, but also features such as discriminated unions and custom records.
2 Richer domain allows for better modeling internally, while a simple external domain can make life

easier for consumers coming from simpler type systems.
3 Systems where code generation is essential or important; frameworks or libraries that are

inherently mutable or designed for C#.

https://github.com/isaacabraham/monopoly

337Case study—WPF monopoly
28.2.1 Application overview

Monopoly is a board game: players take turns throwing dice to move around a board of
land properties, buying and selling them while also making money by renting proper-
ties when other players land on them. Although our application doesn’t model the
entire game, it does model the core parts:

 All of the board pieces
 Rules regarding rolling on special places such as Chance and Go to Jail
 Rules such as throwing consecutive doubles

The application allows you to roll dice randomly, either one at a time, or repeatedly roll
the dice hundreds (or thousands) of times, accumulating statistics on which properties on
the board are landed on the most. A sample of the application can be seen in figure 28.2.

The interesting parts of this application center around how the application is modeled
in F#, and then how you interact with it from C#.

Figure 28.2 A C# WPF GUI application running on top
of an F# back end

338 Lesson 28 Architecting hybrid language applications
28.2.2 Separating UI concerns from domain logic

The application is separated into four real components: a core domain written in F#, as
well as three clients—the WPF application you see here, plus an F# script used during
development, and a simple F# console application. It might be interesting to note that
the WPF GUI was written last. The code base was developed by using the REPL and
script first, before adding a console and WPF application afterward. All of them rely on
the same code base, though, as illustrated in figure 28.3.

The core domain is set in three files in the MonopolyStats project:

 Types.fs—Contains the various domain types used in Monopoly, such as the
board pieces and decks of cards.

 Data.fs—Contains the entire data model based on the defined types—the layout
of the board and the two decks of cards.

 Controller.fs—Contains the application logic and rules to drive the main program,
and represents your public API. The code is split into a module with your stand-
alone, stateless functions and a (simpler) public class for consumption in C#.

 Core domain (F#)

WPF (C#) Script (F#) Console (F#)

Figure 28.3 A core domain that can service multiple consumers

Active patterns
In Controller.fs, you’ll see two examples of active patterns—a lightweight form of discrim-
inated unions. In the first one, you classify a number of doubles as either ThreeDoubles or
LessThanThreeDoubles, which you can then pattern match over later. This can improve
readability and enables simple reuse of classifications.

339Case study—WPF monopoly
The Test.fsx script contains simple operations that you can perform on the game logic,
including experimenting with standalone functions before testing the full Controller
class to play a game. It’s worth looking through this code in your own time, but there
are some key points to note, which I’ll address now. Have the solution open as you go
through this!

28.2.3 Expressions at the core

The logic for the game is handled in the Monopoly.Functions module, such as moveBy (given a
current board position, moves by a specific distance), playTurn (plays a single move), and
tryMoveFromDeck (optionally moves the player when landing on a card deck). Observe that
all of these functions are expression-based, operating on state that’s supplied to them and
returning a new state. Even the overall playGame function returns a list of all the moves
that occurred; it builds the history up through scan (itself a derivative of fold). No muta-
tion is involved.

These functions aren’t all guaranteed to be entirely pure. (Some of them use functions
that may be impure; for example, rollDice has a signature unit -> int * int.) Nevertheless,
you can call each function directly from a script with repeatable results and no hidden
dependencies, which is crucial for easy testing and exploration. Remember, it’s rela-
tively easy to dumb down an expression-based API to become statement-based, but it’s
very difficult to go the other way. You should always strive to start with expressions if
possible.

28.2.4 C# interoperability

When called from C#, I’ve wrapped the calls to the Functions module into a Controller
class with a single method on it, PlayGame(). (Notice the Pascal casing, which is also C#-
friendly.) This class exposes an OnMoved event that’s fired whenever a move occurs (so that
they can be shown in the GUI as they happen). Notice that this event is decorated with
the CLIEvent attribute, which is needed to expose events to the C# world; unfortunately,
you can’t have CLIEvents on modules.

28.2.5 WPF and MVVM

The entire WPF and MVVM layer has been implemented in C#. The application has two
commands: one to play 50,000 turns in succession, and the second to play one turn at a
time. The commands both set up event handlers to the OnMoved event from the Controller
class, and use that to update the GUI with the number of times a position was landed on.
There’s nothing here that should be unfamiliar to a C# WPF developer; the only difference

340 Lesson 28 Architecting hybrid language applications
is that you’re calling F# to drive your view models rather than C#. Here’s a snippet from
the AutoPlayerCommand class that shows you calling F# from the C# class AutoPlayCommand.

var controller = new Controller();
controller.OnMoved += (o, e) =>
 positionLookup[e.MovementData.CurrentPosition.ToString()].Increment();
Task.Run(() => controller.PlayGame(50000));

28.2.6 Randomness

The last point of interest from an FP point of view is how to handle randomness within
the application. In the “real” application, you use the System.Random class to generate dice
throws and pick Chance cards. But when testing and exploring, you want to have
repeatable, deterministic results. Looking at the playTurn function, you can see the first
two higher-order functions it takes in are to roll dice and pick a card. Both are simple
functions that have no dependency on System.Random. By doing this, you can now easily
test this function from a script as follows.

let rollDice() = 3, 4
let pickCard() = 5
let startingPosition = { CurrentPosition = Go; DoubleCount = 0 }
let move = Functions.playTurn rollDice pickCard ignore startingPosition

Note that if you can’t decouple yourself from Random, you can also achieve deterministic
random behavior by passing in a seed value when creating the Random object. Again,
observe that you have a pure (or mostly pure!) F# domain using specific F# types, but
have wrapped it up with a simplified façade of a class with an event record to make it
more C# friendly.

Listing 28.4 Calling F# from a C# view model

Listing 28.5 Using deterministic functions for exploration

Creating an instance of
the F# controller class

Adding a standard event handler
to capture game events

Having the F# code
play 50,000 turns on
a background thread

Always roll 3, 4.

Always pick card 5.

Play from Go using
these functions.

341Summary

Summary

In this lesson, you looked at an example exposing F# to C# within the context of a
slightly larger application. This lesson covered the following:

 Working with dual domains: one F# for internal modeling, and a simplified one
for consumption by, for example, C#

 Creating a hybrid application that uses WPF/MVVM in C# with an F# engine
 Separating deterministic behavior from nondeterministic functions such as

System.Random

Try this

Try enhancing the Monopoly application by recording the cost of landing on each prop-
erty and adding that to the state of the application. Alternatively, add support for saving
the state of the game to and from disk. Finally, if you’re a WPF expert, look at how you
could port the application from C# to F# by using the FsXaml F# library.

Quick check 28.2

1 Why are expressions useful from a development and testing point of view?
2 Are there any restrictions on exposing C#-compatible events from F#?
3 Is it easier to move from expression- to statement-based code or vice versa?

QC 28.2 answer
1 They enable repeatable results on functions in a deterministic manner.
2 You can’t expose C#-compatible events from an F# module.
3 It’s easy to move from expressions to statements, but not the other way around.

29LESSON
CAPSTONE 5

Now that you’ve finished this unit, let’s wrap up by applying these lessons back to the
Bank Accounts application that you’ve been working on. You’ll see how to

 Integrate your existing F# code base with a C# WPF application
 Use third-party NuGet libraries within your F# code base
 Observe how F# domains resolve up to C# in a real solution

29.1 Defining the problem

The objective of this capstone is to plug a C# Windows Presentation Foundation (WPF)
GUI on top of the existing F# code base, replacing the console program runner with an
event-driven UI. The system will provide the same Withdraw and Deposit commands
as the console, as well as an updating transaction history. You can see how this looks in
figure 29.1.
342

343Defining the problem

29.1.1 Solution overview

src/code-listings/lesson-29 has both a starting solution and a completed version in the
sample-solution folder. There are two projects: the F# core application, and the WPF C#
front end. The latter depends on the former. (If you’re a fan of the dependency inversion
principle, you’ll know that this breaks that pattern, but for the purposes of this lesson,
it’s overkill to add it in.)

I’ve also changed the F# project from a console application to a class library, although
I’ve left the old Program.fs code in there for you to reuse if you wish. By the end of this
capstone, you’ll be able to remove that file completely.

Figure 29.1 Sample WPF GUI for the Bank Accounts application

I don’t know WPF!
Because you may not be familiar with WPF (or even GUI programming at all), you’ll find
a prebuilt GUI solution here using the Model-View-ViewModel (MVVM) design pattern. If
you’re a WPF whiz, feel free to scrap the supplied solution and start again! But the objec-
tive of this capstone isn’t to get bogged down in the depths of WPF (and if you’ve done
any WPF or Silverlight in the past, you’ll know just how complex things can get). Instead,
you want to focus on the integration of the C# and F# worlds from a language point of
view, as well as how the OO and FP paradigms work together.

344 Lesson 29 Capstone 5
29.2 Plugging in a third-party NuGet package

Let’s start with a fairly lightweight change to your F# code. In the previous incarnation
of your app, you wrote a simplistic serialization routine for persisting bank transactions
to disk. Now you’re going to update that to work with the Newtonsoft.Json library.

Now you try

1 Add a NuGet package reference to the Core F# project for Newtonsoft.Json, as
shown in figure 29.2. It shouldn’t be too hard to find, as it’s the most popular
package on NuGet.

Can’t you do WPF in F#?
You can definitely write WPF applications in F#. Admittedly, the out-of-the-box experience
is a bit of a let-down, as Visual Studio won’t do any of the code generation that you get
with C#. But two excellent libraries are available on NuGet that make using WPF in F#
relatively pain-free. First, there’s FsXaml (https://github.com/fsprojects/FsXaml), a
library that removes the need for the code-behind code generation through a type pro-
vider (see unit 7). Second, if you’re a fan of the MVVM pattern, you might want to check
out the FSharp.ViewModel project, which allows you to quickly and easily create view
models that support INotifyPropertyChanged and command bindings (https://github.com/
fsprojects/FSharp.ViewModule). I’m deliberately avoiding them in this lesson, but I use
both libraries all the time and can definitely recommend looking into them to enable
100% F# solutions (if that’s what you want).

Figure 29.2 Adding Newtonsoft.Json to an F# project

https://github.com/fsprojects/FsXaml
https://github.com/fsprojects/FSharp.ViewModule
https://github.com/fsprojects/FSharp.ViewModule
https://github.com/fsprojects/FSharp.ViewModule

345Connecting F# code to a WPF front end
2 Open scratchpad.fsx and add a #r reference to the Newtonsoft.Json package, or
use VS to generate a load references script and #load that in instead (this is what
listing 29.1 uses).

3 Create a dummy transaction record and serialize it to a string by using the
Newtonsoft.Json.JsonConvert.SerializeObject method. What’s nice is that (as with any
nongeneric, single-argument method) you can use this method natively with the
pipeline operator.

4 Observe that the string that’s emitted looks like plain, standard JSON.
5 You can use the DeserializeObject method to go back to an F# record again.

#load @"Scripts/load-project-debug.fsx"

open Capstone5.Domain
open Newtonsoft.Json
open System

let txn =
 { Transaction.Amount = 100M
 Timestamp = DateTime.UtcNow
 Operation = "withdraw" }

let serialized = txn |> JsonConvert.SerializeObject
let deserialized = JsonConvert.DeserializeObject<Transaction>(serialized)

6 Now that you know how to use JSON.NET with F#, you can replace the imple-
mentation of the serialization functions in the Domain.Transactions module with
new ones that use JSON.NET.

29.3 Connecting F# code to a WPF front end

Now let’s move on to the main event—connecting your F# bank account code to C# WPF.

29.3.1 Joining the dots

You’ll find a module in the F# project, Api.fs. This module contains a set of functions
that act as your façade over the top of the real bank account code base. This code should
provide the same functionality that lives inside Program.fs, except for anything to do
with command handling and parsing. You need to implement four functions:

Listing 29.1 Using JSON .NET with F# records

Serializing an F#
record into a

plain string
Deserializing a
string back into
an F# record

346 Lesson 29 Capstone 5
 LoadAccount—This should return a full account object based on the current state of
the transactions for an owner, similar to what tryLoadAccountFromDisk does.

 Deposit—This should perform the same logic as the depositWithAudit function in
Program.fs.

 Withdraw—As per withdrawWithAudit, you’ll have to manually unwrap creditAccount
into an account in order to get at the AccountId and Owner fields.

 LoadTransactionHistory—You should try to find any transactions on disk for the
owner. Note that you want to return only the transactions, not the owner or
account ID, so although you can use tryFindTransactionsOnDisk, you’ll need to be
selective about what parts of the function output you pass back out.

You’ll notice that, unlike the original F# code, all the functions here work off Customer,
and not Account. The rationale behind this is that before performing any operation, you
should load the latest version of the account from disk rather than using an in-memory
account that’s provided to you. Doing this guarantees that the UI can’t repeatedly pass
you the same version of an account and withdraw funds using it. The easiest way to
load in the account from disk is for the last three functions to call LoadAccount as the first
thing that they do.

Also, be aware that both LoadAccount and LoadTransactionHistory should return absolute val-
ues rather than option types. Both of them will either have to pattern match or use
defaultArg to return a default value if the account doesn’t yet exist on disk.

After you’ve implemented the API, you should test it in a script to make sure it works as
expected. Then, after you’re happy with the way it’s working, you should be in a posi-
tion to run the app!

29.3.2 Consuming the API from C#

Let’s briefly look at how to consume the API from C#. Again, don’t worry too much
about the intricacies of WPF and MVVM, but how the F# API sits within C#.

First, observe that you can create an instance of a Customer record within C#, no problem.
It appears as though it’s a normal class, and you can use it as a property on the view
model, as seen in figure 29.3.

Figure 29.3 Creating an F# record from C#

347Connecting F# code to a WPF front end
The API itself also appears to C# as though it was a normal static class, and even though
the functions are in curried form in F#, they show as regular methods in C#; see figure 29.4.

So far, so good.
7 Let’s now confirm that you also have IntelliSense comments from the F# triple-

slash declarations shown here in C#. Ensure that you have the XML Documenta-
tion File selected in the Build tab of the Properties pane of the F# project, as
shown in figure 29.5.

When it comes to displaying the Transaction records onscreen, it just works. You create an
ObservableCollection in the ViewModel (a collection that also emits events for item
changes that WPF can listen to and force rebindings of the UI). This is then bound in
XAML to CollectionViewSource, which in turn is connected to the DataGrid UI control. If
this doesn’t mean anything to you, don’t worry. But if you have used WPF or Silverlight
before, this should be standard fare.

29.3.3 Using types as business rules in C#

You’ve spent some time looking at business rules in code, using types to distinguish
between overdrawn and in-credit bank accounts. Can you do the same in C#? Well, not
really. C# 7 will have a limited form of pattern matching that you’ll be able to use to
match an object against different types—but not much more.

Figure 29.4 Accessing an F# API from C#

Figure 29.5 Turning on XML comments for a .NET project in Visual Studio 2015

348 Lesson 29 Capstone 5
But in this case, you can use the properties that F# emits with compiled discriminated
unions to simplify a rule for your GUI: whether or not to enable the Withdraw button.
This button should be available only if the bank account is in credit. How do you do this?

One option is to duplicate logic in C# to check whether an account is in credit (alarm bells
should be ringing as soon as I mentioned duplication of logic). Alternatively, you could
add a function to your API that checks whether the account is in credit. Or, finally, you
could always enable the button and leave the API to handle this (which it does anyway).

But you can go one better: remember that RatedAccount is a discriminated union that’s
either Overdrawn or InCredit, and only when the account is of type InCredit do you want to
enable the button. If you right-click RatedAccount and choose Go to Definition from Main-
ViewModel.cs, you’ll see it’s represented as a base class, with Overdrawn and InCredit as
two subclasses.

public abstract class RatedAccount {
 public Boolean IsInCredit { get; }
 public Boolean IsOverdrawn { get; }
 public class InCredit : RatedAccount {
 public CreditAccount Item { get; }
 }
 public class Overdrawn : RatedAccount {
 public Account Item { get; }
 }
}

And handily for us, F# also generates properties to allow you to easily check which sub-
class a rated account is. Let’s look at the C# code for the Withdraw command object,
which is the code that’s called whenever the user clicks the button, as well as a parse
function (to parse the textbox into an integer) and a function that indicates whether the
button should be enabled.

Listing 29.2 Viewing a discriminated union from C#-generated metadata

Base class
Runtime type check tags

InCredit subclass

Overdrawn subclass

Commands in WPF
I’m deliberately skimming over the WPF side of things here, but it’s worth understanding
what a command in WPF is. A standard command contains two methods: Execute() and
CanExecute(). The former is called whenever the control that it is bound to is activated; for
example, a Button click.The latter is called by WPF to determine whether to enable the
control—for example, to disable a Button so it can’t be clicked.

349Common fields on discriminated unions
WithdrawCommand = new Command<int>(
 amount => UpdateAccount(Api.Withdraw(amount, Owner)),
 TryParseInt,
 () => account.IsInCredit);

What’s absolutely beautiful here is how you check whether the button should be
enabled. You check the IsInCredit tag that’s generated by F#. If this account is of the type
InCredit, you enable the Withdraw button! You’re not running any code to check bank
balances; you’re using the type system to enforce a business rule! And because you
refresh the command after every transaction occurs, this will automatically refresh as
needed. Lovely.

29.4 Common fields on discriminated unions

One thing you want to do in the app is display the balance of the account. Unfortu-
nately, to do this, you’d normally have to first pattern match on whether the account is
Overdrawn or InCredit, pull out the Account, and then get the Balance. In F#, this is more or
less bearable, but in C#, it’d be awful. To work around this, you can add a member prop-
erty to RatedAccount, which will do the work for you.

type RatedAccount =
 | InCredit of CreditAccount
 | Overdrawn of Account
 member this.Balance =
 match this with
 | InCredit (CreditAccount account) -> account.Balance
 | Overdrawn account -> account.Balance

If you add this code to the RatedAccount code in F# and recompile, you’ll see that a Balance
property is now visible from C#, and you can uncomment the line in the UpdateAccount()

Listing 29.3 Using F# types to enforce UI rules

Listing 29.4 Creating a member field on a discriminated union

Command Execute
method—withdraw
funds from the account

Helper to convert
from a string to an int

Command CanExecute
method—checks whether the
button should be enabled

Member
declaration

Self-matching to
access nested fields

350 Lesson 29 Capstone 5
method so that the balance is correctly shown in the GUI. (In the full solution, I’ve cre-
ated a generic GetField helper member to get any property that’s common to both sides
of the DU.) You haven’t seen member properties before; they’re occasionally useful but
generally not necessary for many F# workloads.

29.5 Polishing up F# APIs for consumers

Here are a few more tasks that you can complete in order to make the experience even
better from a C# perspective.

29.5.1 Encapsulation

We haven’t bothered much with this so far, but when exposing an API to external con-
sumers, it’s common to hide internal implementation details. Not only does this stop
developers from accidentally taking dependencies on things you might change in the
future, but it also makes things simpler for external developers. They can much more eas-
ily explore an API if only a limited subset is made visible. Currently, if you dot into Cap-
stone5, you’ll see that all the F# modules and namespaces are available, as in figure 29.6.

8 You can easily rectify this by placing the internal or private modifier for any mod-
ule that you don’t want to show (for example, module internal Capstone5.Operations).
Recompile, and you’ll see in C# that these modules no longer show up.

Figure 29.6 Unnecessarily
showing internal implementation
modules to consumers

351Working with pure functions in a mutable world
29.5.2 Naming conventions

9 Although in F# it’s common to use camel casing for functions (for example, classify-
Account), in C# we use Pascal casing (for example, ClassifyAccount). If you’re exposing
code publicly to C# callers, make the effort to adhere to this naming convention.
Alternatively, decorate the function with the [<CompiledName>] attribute to change the
function name post-compile—for example, [<CompiledName "ClassifyAccount">].

29.5.3 Explicit naming

In F#, we occasionally omit argument or field names from types—such as fields on a
case on a discriminated union, or when we compose functions together. This doesn’t
render so well in C#. Unnamed DU fields will be rendered as Item1, Item2, and so on, and
unnamed function arguments will be named arg1, arg2, and so forth. In such cases, try to
explicitly name function arguments.

29.6 Working with pure functions in a mutable world

This final section briefly discusses issues to be aware of when mixing OO and GUI
worlds with the FP world. How do you mix stateless functions with mutable data on a
GUI? The answer is ultimately more complex—and subjective—than we can completely
discuss here, but here in a nutshell are my thoughts.

First, I recommend by default trying to work with a stateless F# layer, and threading
state between the GUI and back-end layers from one call to the next. Each call to the F#
layer takes in a state and returns a new state. In this project, this really doesn’t hold true,
but in effect you’re generating new versions of the Account and Transaction History
after every action. In other words, instead of mutating a stateful Account after each
action, you generate a new Account after every API call, as shown in figure 29.7.

WPF GUI

C# view model
Current state

Updated state

XAML binding

F# layer
Figure 29.7 Mixing mutable
and immutable worlds between
C# and F# with WPF

352 Lesson 29 Capstone 5
On the other hand, there’s obviously a performance cost associated with rebinding
everything to a GUI on every call. You’ll need to be cautious about this sort of approach
if you’re working with a GUI that’s sending thousands or millions of events a second to
a stateless F# layer. In this case, you might, for example, design your F# API to return
only changes to state from the previous state, and then manually apply those changes to
the GUI.

There’s no hard-and-fast rule. I tend to believe that you should do the simplest thing
first and optimize only if there’s good reason to.

Summary

Hopefully that wasn’t too bad! You’ve now spent some time trying to hook up a C# WPF
application to an F# code base, as well as adding some NuGet packages into the mix.
You’ve seen that F# can interoperate with the rest of the .NET ecosystem easily and
effectively.

353

U
N

IT

7

Working with data

Working with data is (in my opinion!) one of the
most exciting sections of this book. It focuses on
working with external data sources such as JSON,
CSV, and SQL while narrowing the impedance mis-
match between data sources and writing code in a
way you’ve probably never seen before, through
type providers. If you’ve been working with C# for
a reasonable amount of time, you’ll remember the
“aha” moment when you first saw LINQ. Type pro-
viders provide a similar shift in the way you work
with code and data, only magnified by 100. When
combined with the REPL and scripts, F# opens up
entirely new opportunities for ad hoc data process-
ing and analytics.

Remember—free your mind!

30LESSON
INTRODUCING TYPE PROVIDERS

Welcome to the world of data! The first lesson of this unit will

 Gently introduce you to type providers
 Get you up to speed with the most popular type provider, FSharp.Data

After this lesson, you’ll be able to work with external data sources in various formats
more quickly and easily than you’ve ever done before in .NET—guaranteed!

30.1 Understanding type providers

Type providers are a language feature first introduced in F# 3.0:

An F# type provider is a component that provides types, properties, and methods for use in your
program. Type providers are a significant part of F# 3.0 support for information-rich
programming.

—https://docs.microsoft.com/en-us/dotnet/articles/fsharp/tutorials/type-providers/index

At first glance, this sounds a bit fluffy. You already know what types, properties, and
methods are. And what does information-rich programming mean? The short answer is to
think of type providers as T4 templates on steroids—a form of code generation, but one
that lives inside the F# compiler. Confused? Read on.
355

https://docs.microsoft.com/en-us/dotnet/articles/fsharp/tutorials/type-providers/index

356 Lesson 30 Introducing type providers
Let’s look at a somewhat holistic view of type providers first, before diving in and work-
ing with one to see what the fuss is all about. You might already be familiar with the
notion of a compiler that parses C# (or F#) code and builds IL from which you can run
applications, and if you’ve ever used Entity Framework (particularly the earlier ver-
sions) or old-school SOAP web services in Visual Studio, you’re familiar with the idea of
code generation tools such as T4 templates. These are tools that can generate C# code
from another language or data source, as depicted in figure 30.1.

In this example, Entity Framework has a tool that can read a SQL database schema and
generate an .edmx file—an XML representation of a database. From here, a T4 template
is used to generate C# classes that map back to the SQL database.

Ultimately, T4 templates and the like, although useful, are awkward to use. For exam-
ple, you need to attach them into the build system to get them up and running, and they
use a custom markup language with C# embedded in them; they’re not great to work
with or distribute.

At their most basic, type providers are just F# assemblies (which anyone can write) that
can be plugged into the F# compiler, and can then be used at edit time to generate entire
type systems for you to work with as you type. In a sense, type providers serve a similar
purpose to T4 templates, except they’re much more powerful, more extensible, more
lightweight to use, and extremely flexible. They can be used with what I call live data
sources, and also offer a gateway not just to data sources but also to other programming
languages, as shown in figure 30.2.

Unlike T4 templates, type providers can affect type systems without rebuilding the pro-
ject, because they run in the background as you write code. Dozens, if not hundreds, of
type providers are available, from ones that work with simple flat files, to relational
SQL databases, to cloud-based data storage repositories such as Microsoft Azure Stor-
age or Amazon Web Services S3. The term information-rich programming refers to the
concept of bringing disparate data sources into the F# programming language in an
extensible way.

Don’t worry if that sounds a little confusing. You’ll take a look at your first type pro-
vider in just a second.

T4 template.edmx file C# entity model SQL database

Figure 30.1 Entity Framework database-first code generation process

357Working with your first type provider

30.2 Working with your first type provider

Let’s look at a simple example of a data access challenge, not unlike what you looked at
in lesson 13. You’ll work with soccer results, except that rather than working with an in-
memory dataset, you’ll work with a larger, external data source—a CSV file, located in
learnfsharp/data/ FootballResults.csv. You need to answer the following question:
which three teams won at home the most over the whole season?

F# compiler /
type system

 R type
provider

R API
surface area

 JSON document XML document CSV document

 SQL database SQL type
provider

FSharp Data
type provider

Figure 30.2 A set of F# type providers with supported data sources

Quick check 30.1

1 What is a type provider?
2 How do type providers differ from T4 templates?
3 Is the number of type providers fixed?

QC 30.1 answer
1 A flexible code generation mechanism supported by the F# compiler.
2 Type providers are supported within the F# compiler directly, and allow edit-time type generation;

there’s no code generation as with T4 templates.
3 No. Type providers can be written, downloaded, and added to your applications as separate,

reusable components.

358 Lesson 30 Introducing type providers
30.2.1 Working with CSV files today

Let’s first think about the typical process that you might use to answer this question, as
shown in figure 30.3.

Before you can even begin to perform the calculation, you need to understand the data.
This usually means looking at the source CSV file in Excel or a similar program, and
then designing a C# type to match the data in the CSV. Then, you do all of the usual boil-
erplate parsing: opening a handle to the file, skipping the header row, splitting on com-
mas, pulling out the correct columns, and parsing into the correct data types. Only after
doing all of that can you start to work with the data and produce some business value.
Most likely, you’ll use a console application to get the results, too. This entire process is
more akin to typical software engineering—not a great fit when you want to explore
data quickly and easily.

30.2.2 Introducing FSharp.Data

You could quite happily perform the preceding steps in F#; at least using the REPL
affords you a more exploratory way of development. But that process wouldn’t remove
the whole boilerplate element of parsing the file, and this is where your first type pro-
vider comes in: FSharp.Data.

FSharp.Data is an open source, freely distributable NuGet package designed to provide
generated types when working with data in CSV, JSON, or XML formats.

Using scripts for the win

At this point, I’m going to advise you to move away from heavyweight solutions and
start to work exclusively with standalone scripts; this fits much better with what you’re
going to be doing. You’ll notice in the code repository a build.cmd file—run it. This
command uses Paket to download NuGet packages into the packages folder, which you
can then reference directly in your scripts. This means you don’t need a project or solu-
tion to start coding—you can simply create scripts and jump right in. I recommend cre-
ating your scripts in the src/code-listings/ folder (or another folder at the same level,

 Understand
source data

in Excel

Create C#
POCO

 Skip
header row

 Convert
source rows
into POCOs

Perform
business

logic

Figure 30.3 Steps to parse a CSV file in order to perform a calculation on it

359Working with your first type provider
such as src/learning/) so that the package references shown in the listings here work
without needing changes.

Working with CSV files

Let’s look at our first experiment with a type provider, the CSV type provider in
FSharp.Data, and perform the analysis that we discussed at the start of this section.

Now you try

You’ll start by doing some simple data analysis over a CSV file:

1 Create a new standalone script in Visual Studio by choosing File > New. You
don’t need a solution here; remember that a script can work standalone.

2 Save the newly created file into an appropriate location as described in “Scripts
for the win.”

3 Enter the following code.

#r @"..\..\packages\FSharp.Data\lib\net40\FSharp.Data.dll"
open FSharp.Data
type Football = CsvProvider< @"..\..\data\FootballResults.csv">
let data = Football.GetSample().Rows |> Seq.toArray

That’s it. You’ve now parsed the data, converted it into a type that you can consume
from F#, and loaded it into memory. Don’t believe me? Check out figure 30.4.

Listing 30.1 Working with CSV files using FSharp.Data

Referencing the
FSharp.Data assembly

Connecting to the CSV file
to provide types based on

the supplied file

Loading in all data from
the supplied CSV file

Figure 30.4 Accessing a provided type from FSharp.Data

360 Lesson 30 Introducing type providers
You now have full IntelliSense to the dataset. That’s it! You don’t have to manually parse
the dataset; that’s been done for you. You also don’t need to figure out the types; the
type provider will scan through the first few rows and infer the types based on the con-
tents of the file! Rather than using a tool such as Excel to understand the data, you can
now begin to use F# as a tool to both understand and explore your data.

Visualizing data

While we’re at it, let’s also look at an easy-to-use F#-friendly charting library, XPlot. This
library provides access to charts available in Google Charts as well as Plotly. You’ll use
the Google Charts API here, which means adding dependencies to XPlot.GoogleCharts
(which also brings down the Google.DataTable.Net.Wrapper package):

1 Add references to both the XPlot.GoogleCharts and Google.DataTable.Net.Wrap-
per assemblies. If you’re using standalone scripts, both packages will be in the
packages folder after running build.cmd. Use #r to reference the assembly inside
one of the lib/net folders.

2 Open the XPlot.GoogleCharts namespace.
3 Execute the following code to calculate the results and plot them as a chart, as

shown in figure 30.5.

Backtick members
You’ll see in figure 30.4, as well as from the code when you try it out yourself, that the
fields listed have spaces in them! It turns out that this isn’t a type provider feature, but
one that’s available throughout F# called backtick members. Just place a double backtick
(``) at the beginning and end of the member definition, and you can put spaces, num-
bers, or other characters in the member definition. Visual Studio doesn’t correctly
provide IntelliSense for these in all cases (for example, let-bound members on modules),
but it works fine on classes and records. You’ll see some interesting uses for this when
dealing with unit testing.

361Working with your first type provider
data
|> Seq.filter(fun row ->
 row.``Full Time Home Goals`` > row.``Full Time Away Goals``)
|> Seq.countBy(fun row -> row.``Home Team``)
|> Seq.sortByDescending snd
|> Seq.take 10
|> Chart.Column
|> Chart.Show

In a few lines of code, you were able to open a CSV file you’ve never seen, explore the
schema of it, perform an operation on it, and then chart it in less than 20 lines of code—
not bad! This ability to rapidly work with and explore datasets that you haven’t even
seen before, while still allowing you to interact with the full breadth of .NET libraries
that are out there, gives F# unparalleled abilities for bringing in disparate data sources
to full-blown applications.

Listing 30.2 Charting the top ten teams for home wins

Figure 30.5 Visualizing data sourced from the CSV type provider

countBy generates a
sequence of tuples (team
vs. number of wins).

Converting the sequence
of tuples into an XPlot
Column Chart

Showing the chart in a
browser window

362 Lesson 30 Introducing type providers
30.2.3 Inferring types and schemas

One of the biggest differences in terms of mind-set when working with type providers
is the realization that the type system is driven by an external data source. This schema
may be inferred, as you saw with the CSV provider. Let’s see a quick example of how
this can affect your development process:

1 In your script, change the data source for the CSVProvider from FootballResults
.csv to FootballResultsBad.csv. This version of the CSV file has had the contents
of the Away Goals column changed from numbers to strings.

2 You’ll immediately notice a compile-time error within your query, as shown in
figure 30.6.

This is because the type provider has inferred the types based on the contents of the
sheet.

Type erasure
The vast majority of type providers fall into the category of erasing type providers. The
upshot of this is that the types generated by the provider exist only at compile time. At
runtime, the types are erased and usually compile down to plain objects; if you try to use
reflection over them, you won’t see the fields that you get in the code editor.

One of the downsides is that this makes them extremely difficult (if not impossible) to
work with in C#. On the flip side, they're extremely efficient. You can use erasing type pro-
viders to create type systems with thousands of types without any runtime overhead,
because at runtime they’re of type Object.

Generative type providers allow for runtime reflection, but are much less commonly used
(and from what I understand, much harder to develop).

Figure 30.6 Changes in inferred schema cause compile-
time errors.

363Working with your first type provider
This point is crucial to grasp, within the context of not only a script, but also a full-
blown application. Imagine you’re compiling your application off a CSV file provided
by your customer, and one day that customer provides you with a new version of the
format. You can supply the new file to your code and instantly know where incompati-
bles in your code are; any breaking changes won’t compile. This sort of instant feedback
is much quicker than either unit tests or runtime errors. Instead, you’re using the com-
piler and type system—the earliest possible stage—to show you exactly where code
breaks. Also, in case you’re wondering, type providers support the ability to redirect
from one file to another so that you can compile against one but run against another.
You’ll deal with this in the coming lessons.

Finally, note that when it comes to schema inference, some type providers work differ-
ently from others. For example, FSharp.Data allows you to manually override the
schema by supplying a custom argument to the type provider. Others can use some
form of schema guidance from the source system. For example, SQL Server provides
rich schema information from which a type provider doesn’t need to infer types at all.

Writing your own type providers?
Sorry—but this book doesn’t cover how to write your own type providers! The truth is that
they’re not easy to develop—particularly testing them while you develop them—but a few
decent resources are worth looking at, such as the Starter Pack (https://github
.com/fsprojects/FSharp.TypeProviders.StarterPack), as well as online video courses. If
you’re interested in learning how to write your own, I strongly advise you to look at some
of the simpler ones to start with, or try to contribute to one of the many open source
type providers; this is probably the best way to learn how they work.

Quick check 30.2

1 What are erased types?
2 What are backtick members?

QC 30.2 answer
1 Erased types are types that exist at compile-time only; at runtime, they’re “erased” to objects.
2 Backtick members are members of a type surrounded with double backticks, which allow you to

enter spaces and characters that would normally be forbidden in the name.

https://github.com/fsprojects/FSharp.TypeProviders.StarterPack
https://github.com/fsprojects/FSharp.TypeProviders.StarterPack
https://github.com/fsprojects/FSharp.TypeProviders.StarterPack

364 Lesson 30 Introducing type providers
Summary

In this lesson, you took your first look at type providers. The remainder of this unit will
introduce you to other forms of type providers and give you an idea of how far they can
go. In this lesson

 You saw what type providers are at a high level and learned about some of their
uses.

 You explored the FSharp.Data package and saw how to work with CSV files.
 You saw the XPlot library, a charting package that’s designed to work well with F#.

Try this

Find any CSV file that you have on your PC. Try to parse it by using the CSV type pro-
vider and perform simple operations on it, such as list aggregation. Or download a CSV
containing data and from the internet and try with that!

Alternatively, try creating a more complex query to compare the top five teams that
scored the most goals and display it in a pie chart.

31LESSON
BUILDING SCHEMAS FROM LIVE DATA

Hopefully, you enjoyed using type providers in the previous lesson; this lesson builds
on that one. You’ll explore the notion of building types from live data sources that exist
outside your code base. You’ll learn about

 Creating schemas from type providers from remote data sources
 Mixing local and remote data sources
 Avoiding issues when working with remote data sources

31.1 Working with JSON

In this section, we’ll cover the basics of working with JSON data files with type providers.

31.1.1 Live and local files

In the previous lesson, you saw how to work with a type provider operating against a
local data source—a CSV file placed on the local filesystem. As it turns out, many type
providers also offer the ability to work against remote data sources; indeed, some pro-
viders are designed to work against remote data sources as the primary way of working.

These may be resources that you own, but they might as easily be publicly available
resources that you don’t own and aren’t in control of. A good example of this can be
365

https://en.wikipedia.org/wiki/List_of_songs_recorded_by_Dream_Theater

366 Lesson 31 Building schemas from live data
seen when working with JSON data. You might use JSON as a local storage mecha-
nism—for example, as configuration files or local data storage. But JSON is also com-
monly used as a data transfer format for HTTP-enabled APIs, particularly RESTful
APIs, as shown in figure 31.1.

Let’s see how to access data from a remote JSON resource quickly and easily—in this
case, using publicly available TV listings from the United Kingdom’s BBC website.

#r @"..\..\packages\FSharp.Data\lib\net40\FSharp.Data.dll"
open FSharp.Data
type TvListing =
JsonProvider<"http://www.bbc.co.uk/programmes/genres/comedy/schedules/

➥upcoming.json">
let tvListing = TvListing.GetSample()
let title = tvListing.Broadcasts.[0].Programme.DisplayTitles.Title

The type provider will pull down the resource over HTTP for you, parsing it as though
it were a local file. As you dot into the tvListings value, you’ll see that you’re presented
with a full type hierarchy representing the entire JSON document. The JSON provider
automatically infers schema based off the full document content. There’s no need to
manually download data locally to start to use it in F#—you can point to a public,
remote resource (as in figure 31.1) and instantly start to work with it.

Listing 31.1 Opening a remote JSON data source

Remote JSON file

HTTP

Type provider Local JSON file

Local machine

File I/O

Remote web server

Figure 31.1 Type providers
can operate over local and
remote datasets

Referencing
FSharp.Data

Creating the TVListing
type based on a URL

Creating an instance
of the type provider

367Working with JSON
31.1.2 Examples of live schema type providers

Here are some examples of type providers that can work off of public data sources:
 JSON type provider—Provides a typed schema from JSON data sources
 HTML type provider—Provides a typed schema from HTML documents
 Swagger type provider—Provides a generated client for a Swagger-enabled HTTP

endpoint, using Swagger metadata to create a strongly typed model
 Azure Storage type provider—Provides a client for blob/queue/table storage assets
 WSDL type provider—Provides a client for SOAP-based web services

Now you try

Next you’ll try use the HTML type provider to visualize some Wikipedia data, to show
the number of films acted in over time by Robert DeNiro. Given an HTML page, this
type provider can find most lists and tables within it and return a strongly typed dataset
for each of them. It handles all the HTTP marshaling as well as type inference and pars-
ing (although given the inconsistent nature of HTML, it doesn’t work on all pages). The
HTML type provider is already included in the FSharp.Data package, so there’s nothing
more to download:

1 Within the script you already have opened, add references to the Google.Data-
Table.Net.Wrapper and GoogleCharts DLLs. You can find them in the packages
folder.

2 Open the XPlot.GoogleCharts namespace.
3 Create a handle to a type based on a URL that contains an HTML document:

type Films =
HtmlProvider<"https://en.wikipedia.org/wiki/Robert_De_Niro_filmography">

4 Create an instance of Films called deNiro by calling Films.GetSample().

DUs and records in type providers
One of the (current) restrictions on type providers is that they can’t generate discrimi-
nated unions. This does somewhat limit the ability of generated schemas. For example,
if the JSON type provider sees different types of data across rows for the same field, it’ll
generate a type such as StringOrDateTime, which will have both optional string and Date-
Time properties, one of which will contain Some value. A more idiomatic way to achieve this
in F# is to use a discriminated union with two cases, String and DateTime.

368 Lesson 31 Building schemas from live data
5 If you browse to the URL in your web browser, you’ll see tables in the document,
such as Film, Producing, and Directing. These tables map directly to types gener-
ated by the provider, and each table has a Rows property that exposes an array of
data; each row is typed to represent a table row (see figure 31.2).

6 Write a query that will count the number of films per year and then chart it. First,
use the Array.countBy function to count films by Year. This will give you a sequence
of tuples, which are used by the chart as X and Y values. You’ll want to convert
the Year property to a string (rather than an int) so that the chart will create the
correct number of elements in the x-axis.

7 Pipe the result into the Chart.SteppedArea function, and then into Chart.Show.

The output should look something like figure 31.3, although, of course, as this is taken
from live data, the results may be slightly different! If you couldn’t write the query,
don’t worry. A complete example is included in the code samples.

In a few lines of code, you retrieved data from a remote HTML resource over HTTP and
parsed the data into a strongly typed object, before performing some simple analysis of
it. Bear in mind that although you’re using a script, this approach would work equally
well over a fully compiled console, web, or Windows application. Even better, if the
source data changed schema, you’d know it instantly. The next time you open Visual
Studio, you’d immediately have red “squigglies” under your code. You wouldn’t even
need to run the application and wait for a deserialization exception to know that there
was a problem; the compiler does that for you. This is because every time you open the
solution, the VS editor effectively uses the F# compiler to validate the code (and provide
IntelliSense), which in turn will connect to the data source. And finally, you now know
how to use Wikipedia as a database directly from within F#!

Figure 31.2 Accessing a generated type based on an HTML table

369Avoiding problems with live schemas

31.2 Avoiding problems with live schemas

On the one hand, working directly with remote data to generate schemas allows you,
with a few lines of code, to instantly start working with data; you don’t have to down-
load anything locally, or simulate an external service. But working with remote schemas
does raise a few interesting issues, primarily because a type provider links the compila-
tion of your code to a remote data source that you might not control. Let’s look at some
of these issues.

Figure 31.3 Charting the results taken from a Wikipedia table

Quick check 31.1

1 Which type provider would you use to read data from a SOAP service?
2 Which package do the JSON and HTML type providers live in?

QC 31.1 answer
1 The WSDL type provider.
2 FSharp.Data.

370 Lesson 31 Building schemas from live data
31.2.1 Large data sources

One obvious problem is, what do you do if you need to work with a relatively large
dataset (for example, 500 MB)? Do you need to load the entire dataset in order for the
type provider to work? Won’t that be slow or memory-intensive?

31.2.2 Inferred schemas

Another problem occurs when inferring schemas. What if you have a CSV file with a field
that’s missing for the first 9,999 lines and is populated in only the final line? Does the type
provider need to read through the entire dataset in order to infer that type? Or if there are
many resources, all of which follow the same schema, which one should you use?

31.2.3 Priced schemas

Some data sources charge you for every request you make. This occurs, for example,
when accessing data from one of the two major cloud vendors (Microsoft Azure or
Amazon Web Services). Both vendors charge you (admittedly, tiny amounts) for reading
data from cloud storage—even just listing the files that are stored in them! The Azure
type provider provides the ability to dot into your cloud storage, so you can navigate
through blobs of data directly from within Visual Studio. Unfortunately, doesn’t this
mean that you’ll be paying every time you dot into a container?

31.2.4 Connectivity

Here’s one last issue: if you’re working against a remote resource, you need to have the
ability to connect to that resource in order to generate types. Let’s assume you lose inter-
net connectivity for a while. What happens then? The type provider won’t be able to
connect to the data source, which in turn will prevent the compiler from generating
types from which you can develop against.

Capabilities that are built into many type providers can help with these sorts of prob-
lems. For example, many type providers allow you to limit the number of lines that the
data source runs against for schema inference, so you might want to use the first 50 lines
to generate types for a CSV file, even though it has 1 million lines in it. Alternatively,
some type providers such as the CSV Provider allow you to pass in a string that defines
the headers (for example, "Name,string;Age,int;Dob,DateTime"). But there’s another way of
solving these sorts of problems once and for all, which you’ll look at next.

371Mixing local and remote datasets

31.3 Mixing local and remote datasets

It’s important at this point to realize that type providers have two phases of operation:
compilation and runtime, as illustrated in figure 31.4.

Unparameterized type providers
Not all type providers take in type arguments. Some, such as the COM or File System
type providers, work off the local machine and don’t need any arguments. But the major-
ity of type providers support some form of parameterization.

Quick check 31.2

1 Why should you be wary of working with data sources that charge per request?
2 Why can working with live data sources be an issue if you lose internet access?

QC 31.2 answer
1 Every time IntelliSense provides new values, you could be charged for this.
2 If you lose internet access, your code may not compile, as it can’t generate a schema from the

data source.

Generate schema
Statically available

data source

Type provider
arguments

Coding Building

GetSample() Load()

Run application

Runtime
data source

Edit time

Runtime

Compile time

Figure 31.4 Understanding the relationship between edit, compile, and runtime with
type providers

372 Lesson 31 Building schemas from live data
 The compile phase generates types based off a point-in-time schema (whether
that’s local or remote is irrelevant); this is the bit that gives you red squiggles if
you mistype something. Think of this as the equivalent of the custom tool phase
of T4 templates, if you’ve ever had to work with them before. The phase kicks in
both at edit time (when you’re typing code into VS) and at compile time (when you
perform a build).

 The runtime phase uses the previously compiled types to work with data that
matches that schema. This might be the same data that was used to generate the
schema, but it can also be another (possibly remote) data source.

When either coding (editing in Visual Studio) or building (compiling code in VS or even
MSBuild), the type provider will use the static data source to generate a schema and
push that into the type system. Later, at runtime, you might use another data source
with the same schema against the type provider; we’ll look at that next. The main point
is that you can use a local sample dataset for development and compilation, while redi-
recting to a potentially larger, real-world dataset at runtime, which solves the problems
raised in section 31.2.

31.3.1 Redirecting type providers to new data

You’ll notice with the type providers that you’ve used so far that you generate a type
provider instance by using the GetSample() function on the type. What this means is, load
in all data from the file that you used to generate the schema as the data source. But,
there’s nothing to stop you from repointing a type provider at a secondary data source
that has the same schema. You’ll often do this to overcome the issues I mentioned ear-
lier. For example

 You use a local CSV file with a small subset of data used for schema generation,
but you point the CSV provider to a larger file when working with data.

 You use a small, local JSON file that you create to guide the JSON type provider to
infer types correctly, but you point to a real remote file when working with data.

 You use the local Azure storage emulator when developing with the Azure Stor-
age type provider—thus saving you money and time—but point to a real storage
account at runtime.

In other words, you use a local data file, typically one that’s committed into source con-
trol, as part of your compile-time source code. This data file represents the schema, and
is used by the type provider for type generation, but isn’t necessarily the data that you’ll
work with.

Later in this unit, we’ll talk more about working with type providers in full-blown
applications, dealing with things such as securing connection strings, so relax if you’re

373Mixing local and remote datasets
worrying about how to use these within the context of, for example, CI servers or live
applications.

Now you try

Let’s see how to use the NuGet website as a data source to work with NuGet package
statistics and the HTML type provider, which is able to parse the HTML tables that con-
tain per-package download statistics (see figure 31.5). You’ll use a local copy of a web
page to give you a schema—and enable you to develop offline—but then redirect it to a
live page to retrieve the data:

1 Create an instance of the HTML type provider that points to sample-package
.html in the data folder (if you use a relative path, make sure it’s correct). If you
open this, you’ll see it’s a sample of the NuGet package details page.

2 Using the GetSample() method, you can interrogate the Tables property to discover
that there’s a Version History property, which has members that reflect the equiva-
lent table located in the HTML.

Local and live data mismatches
There’s one issue with working with local data sources for schema, and separate
sources for live data: you run the risk that the shape of the live data will change and you
won’t update your local schema file. In such a case, you’ll be back in the world of runtime
errors (which in itself is no worse than the world we currently live in). To be honest, that’s
a sacrifice you might have to make, and if you own the live data endpoint (for example, an
internally hosted REST service), you won’t have to worry about the case that a schema
changes without your knowledge.

Figure 31.5 A Version History table from the NuGet website

374 Lesson 31 Building schemas from live data
3 Now, instead of using GetSample(), use the Load() method to load in data from a live
URI. This takes in a string URI for the “real” data:

let�nunit�=�Package.Load "https://www.nuget.org/packages/nunit"

4 Repeat the process to download package statistics for the Entity Framework and
Newtonsoft.Json packages. The URI is the same as in the preceding step, but use
entityframework or newtonsoft.json in place of nunit.
Now that you have package statistics for all three packages, you can find the
most popular specific versions of all of three packages combined.

5 Retrieve the Version History rows for all three packages and combine them into a
single sequence; use Seq.collect to combine a sequence-of-sequences into a flat-
tened sequence. Notice that this is the exact same code you’d use with “normal”
records or values; you can use provided types in exactly the same way.

[entityFramework; nunit; newtonsoftJson]
|> Seq.collect(fun package -> package.Tables.``Version History``.Rows)

6 Sort this combined sequence in descending order by using the Downloads property.
7 Take the top 10 rows.
8 Map these rows into tuples of Version and Downloads.
9 Create a Chart.Column that’s then piped into Chart.Show; the results should look sim-

ilar to figure 31.6.

You use a local file for your schema (which in this case is taken directly from a web
browser), but download multiple datasets by using the same type provider instance.
You could equally do the same for JSON or CSV. Then you merge the data into a simple
shape from which you can graphically represent it.

Listing 31.2 Merging sequences of provided values

Creating a list of
package statistics values

Merging all rows from each
package into a single sequence

Quick check 31.3 What does it mean to redirect a type provider at runtime?

QC 31.3 answer Redirecting a type provider is the act of using a different data source at runtime
from the one used at compile time.

375Summary
Summary

That’s a wrap for this lesson. You worked with more type providers and learned about
the distinction between schema and data and the different phases of type providers. In
this lesson

 You worked with the HTML and JSON type providers.
 You learned about some of the issues that arise when working with schemas that

point to live data sources.
 You saw how to distinguish between schema and data by generating types from

a static, local schema but point to live sources for data.

Try this

Using the HTML type provider and the Wikipedia page listing all music tracks by the
band Dream Theater (https://en.wikipedia.org/wiki/List_of_songs_recorded_by_
Dream_Theater), calculate the year that they released the most albums. Visualize this as
a line chart showing the number of tracks they released per year.

Figure 31.6 Identifying the most popular NuGet release across multiple packages

https://en.wikipedia.org/wiki/List_of_songs_recorded_by_Dream_Theater
https://en.wikipedia.org/wiki/List_of_songs_recorded_by_Dream_Theater

32LESSON
WORKING WITH SQL

In this lesson, you’ll learn to use type providers with a database that you’re probably
familiar with, Microsoft SQL Server. You’ll see how to

 Quickly and easily execute queries and commands against a SQL database
 Insert data quickly and easily
 Work with reference data in code

In my experience, .NET developers working with SQL Server typically use frameworks
that fall into one of two categories:

 A full-blown object-relational mapper (ORM) tool, such as Entity Framework or
NHibernate. These tools attempt to provide a layer of abstraction over the top of
a relational DB by mapping relational tables into .NET hierarchical object mod-
els. They also typically provide features such as state tracking and conversion
from IQueryable queries into (occasionally well-optimized) T-SQL.

 Query/command patterns using either ADO .NET or a Micro ORM wrapper,
such as Dapper or PetaPoco. These provide you with the ability to write direct
SQL against a database, and automatically map the results against a DTO that
you’ve created. They tend not to provide complex state tracking but are designed
to be lightweight, high-performing, and simple to use.
376

377Creating a basic database
Both approaches have pros and cons. I’m not about to be drawn into another debate
about which one you should go with; plenty of resources and opinion pieces are avail-
able online that you can read up on. Instead, I’ll show you how F# fits in with the data
access story, particularly with type providers, and then let you make up your own mind.

32.1 Creating a basic database

In this lesson, you’ll first create a simple database with pre-populated data that you’ll
then work with in the remainder of this lesson. The database, Adventure Works Light, is
a simple order management database that you’ll use to experiment with. Don’t worry;
you don’t need to install the full-blown SQL Server (or even SQL Express)! Instead,
you’ll use the lightweight LocalDB, a free, lightweight in-process SQL database that’s
perfect for developing against.

Now you try

First you’ll deploy a sample database locally that you’ll use for the remainder of the
lesson:

1 In Visual Studio, navigate to the SQL Server Object Explorer (View menu).

1 Expand the SQL Server node.
2 You should see a node underneath that begins with (localdb). I can’t tell you

which one it’ll be, as the SQL team keeps changing the format with each release,
but it’ll look something like (localdb)\ProjectsV12 or (localdb)\MSSQLLocalDB.

3 If you don’t see any (localdb) nodes, you probably need to install SQL Server
Data Tools (SSDT). This lightweight installer should be directly available from
within Extensions and Updates in Visual Studio.

What’s SQL?
Don’t worry if you’re not an expert—or even a beginner—in SQL. This lesson covers rela-
tively basic areas of SQL and focuses on the F# side of the story. Even if you’ve never used
SQL, you’ll still find this a useful lesson—particularly as it shows how type providers can
effectively bridge the gap between a foreign language and F#—in this case, T-SQL, which
is Microsoft’s query language for SQL Server (based on the SQL standard).

378 Lesson 32 Working with SQL
4 Now, import a database onto the server. Right-click the Databases node within
the localdb server instance and choose Publish Data-Tier Application, as shown
in figure 32.1.

5 In the dialog box that appears, set the File on Disk option to the adventureworks-
lt.dacpac file from the data folder of the code repository, and set the Database
Name to AdventureWorksLT.

6 Click Publish (ignore any warnings that may appear about overwriting data).
Within a few seconds, Visual Studio will create a new database and populate it
for you to test.

That’s it. You now have a local database that you can experiment with. You can explore
the database from within Visual Studio directly by right-clicking any table and choosing
View Data. Of course, you don’t want to rely on point-and-click GUIs, but on using F# as
a way to view the data directly without needing to leave the code editor!

32.2 Introducing the SqlClient project

Let’s start by looking at the open source and free SqlClient package, a data access layer
designed specifically for MS SQL in the Micro ORM school of thought that contains sev-
eral type providers, each of which have several tricks up their sleeves that make them
much more powerful than, for example, Dapper. Since I started using this library, I’ve
completely moved away from ORMs in general.

32.2.1 Querying data with the SqlCommandProvider

Let’s now look at getting your hands dirty with the first type provider in the package,
the SqlCommandProvider.

Figure 32.1 Publishing a DACPAC to SQL Server

379Introducing the SqlClient project
Now you try

Start by connecting to the database that you just created and running a simple query to
retrieve some data from it:

1 Open a new script and add a reference to the assembly in the FSharp.Data.Sql-
Client package. This is located in the packages folder, and you can manually #r
the DLL. If using a full solution, you can opt to download the package from
NuGet and generate a references script through VFPT (see lesson 25).

2 Open the FSharp.Data namespace.
3 Enter the following code.

let [<Literal>] Conn =
 "Server=(localdb)\MSSQLLocalDb;Database=

➥AdventureWorksLT;Integrated Security=SSPI"
type GetCustomers =
 SqlCommandProvider<"SELECT * FROM SalesLT.Customer", Conn>
let customers =
 GetCustomers.Create(Conn).Execute() |> Seq.toArray
let customer = customers.[0]

A few things are happening here, so let’s go through them one at a time:
 First, you create a value to hold the connection string to SQL so that you can

reuse it (rather than passing it inline to the type provider). This value is also
marked with the [<Literal>] attribute, to mark it as a compile-time constant,
which is needed when passing values as arguments to type providers. (Also
notice that the value is Pascal-cased; it’s best practice to do this for literals.)

 Next, you generate a strongly typed command, GetCustomers, based off the connec-
tion string and an embedded SQL query. I imagine that right now most likely
you’re recoiling in horror at this. Don’t worry; we’ll talk about this in more detail
shortly.

 Finally, you execute the query, again passing in the connection string. This time,
though, the connection string is used as the runtime data source, rather than for
compile-time schema generation. The latest versions of the SqlCommandProvider

Listing 32.1 Querying a database with the SqlCommandProvider type provider

A standard SQL
connection string

Creating a
strongly typed
SQL command

Executing the command
to return a dataset

380 Lesson 32 Working with SQL
don’t allow you to implicitly reuse the static connection string, to protect you
from accidentally pointing to, for example, a development database at runtime, so
you have to pass in a connection string when executing a query (even if, as in your
case, it’s the same one). It’s as if there were no GetSample() function for the CSV pro-
vider, and you had to always use Load(). I’m not particularly fond of this decision,
but I understand why it was made.

Now let’s address the most obvious question: isn’t embedding SQL directly into your
application inherently bad? Leaving aside the point that you can pass in a path to a .sql file
instead of embedding it in—no, in the case of the SqlCommandProvider, it’s not a bad
thing to do at all. That’s because the SQL you’ve entered in there isn’t just a magic string—
it’s actually used by F# in various ways to provide compile-time safety. First, the TP automat-
ically generates a type based on the result set from SQL, for free; as you dot into customer,
you’re presented with IntelliSense that suggests properties, as shown in figure 32.2.

Because SQL has a type system (with non-nullability across all types, unlike C#), there’s
also no need to try to infer the type based on a sample of data—you can use the schema
from SQL and cascade it into F# directly. So, for example, if you navigate to the MiddleName
property, you’ll see that this has been rendered as a string option type, because it’s a
varchar null in SQL. And the type provider goes even further than this, as you’re about to
find out:

1 Write some code to print the text <firstname> <lastname> works for <company name> for
the customer value. You’ll need to either use %A for CompanyName, or use defaultArg to
safely unwrap the value from an option.

2 Change the SQL to read SELECT TOP 10 FirstName, LastName FROM SalesLT.Customer.
Observe that your code now no longer compiles, as the SQL outputs only First-
Name and LastName. Also, notice that the error occurs in the exact place you’d expect,
where the CompanyName field is accessed.

Figure 32.2 Working with
data supplied from SQL by
the SqlCommandProvider

381Introducing the SqlClient project
3 Change the table name in the SQL query from Customer to Foo. Observe that the
query itself now no longer compiles, with the error Invalid object name
'SalesLT.Foo'.

Change the query to read SELECT * FROM SalesLT.Customer WHERE CompanyName = @CompanyName.
This time, you’ll see that the compiler breaks on the next line: the Execute() method now
expects you to pass in the CompanyName as an argument as required by the query!

How does the type provider know which table names are valid in your database? How
does it know to create a method taking in a value matching the parameter specified in
the SQL? This is possible because the type provider validates the SQL against the SQL
server itself while generating types (at compile time only; it doesn’t happen at runtime).
If the SQL is invalid, it automatically cascades the errors as a compiler error. Similarly, it
uses this information in order to understand what arguments the SQL query expects,
and then cascades them to the generated types.

32.2.2 Inserting data

You can insert data with the SqlClient package in two ways. The first is to generate
insert or update commands and execute them as indicated previously. An alternative is
to use a handy wrapper around good old .NET data tables; if you’ve been using .NET
since before the days of LINQ, you’ll remember these.

Now you try

Next you’ll add some data to the Product Categories table. You’ll use a second type pro-
vider included in the SqlClient package, called SqlProgrammabilityProvider:

1 Create a new AdventureWorks type by using the code:
type AdventureWorks = SqlProgrammabilityProvider<Conn>.

2 Create an instance of the ProductCategory table type in F#. You can navigate to this
via AdventureWorks.SalesLT.Tables; it’s just a regular class.

SQL restrictions in the type provider
The SQL you can use here can be far more complex than simple SELECT statements; you
can use joins, common table expressions, stored procedures—even table valued func-
tions. But there are a few SQL commands that the TP doesn’t support; have a look at the
official documentation at http://fsprojects.github.io/FSharp.Data.SqlClient/.

http://fsprojects.github.io/FSharp.Data.SqlClient/

382 Lesson 32 Working with SQL
In fact, this type is a standard DataTable, except it has added provided members
on it, such as a strongly typed AddRow() method.

3 Add three items to the table by using the AddRow() method:
a Mittens (Parent Category ID 3)
b Long Shorts (Parent Category ID 3)
c Wooly Hats (Parent Category ID 4)
As the parent category ID is nullable on the database, you’ll have to wrap the ID
as an option; for example, Some 3.

4 You can then call the Update() method on the table. This does all the boilerplate of
creating a DataAdapter and the appropriate insert command for you.

5 Back in SQL Server Object Explorer, check that the new items have been added
by right-clicking the table and selecting View Data. You should see the extra rows
added at the end of the table.

A BulkInsert() method also is added to data tables. This allows you to insert data by
using SQL Bulk Copy functionality, which is extremely efficient and great for large one-
off inserts of data. You can also use the data table for updates and deletes, or via T-SQL
commands.

32.2.3 Working with reference data

One last area that the SqlClient package addresses is working with reference data. Nor-
mally, in any data-driven application, you’ll have static (or relatively stable) sets of
lookup data— categories, country lists, and regions that need to be referenced both in
code and data. You’ll normally have a C# enum (or perhaps a class with constant values
in it) that matches a set of items scripted into a database. Obviously, you’ll need to be
careful to keep them in sync; for example, whenever a new item is added, you have to
add it to the enum and also to the database with the same ID.

The type provider introduces SqlEnumProvider to help you by automatically generating a
class with values for all reference data values based on an arbitrary query. Here’s an
example of that for product categories.

type Categories = SqlEnumProvider<"SELECT Name, ProductCategoryId
 ➥FROM SalesLT.ProductCategory", Conn>
let woolyHats = Categories.``Wooly Hats``
printfn "Wooly Hats has ID %d" woolyHats

Listing 32.2 Generating client-side reference data from a SQL table

Generating a Categories type
for all product categories

Accessing the Wooly
Hats integer ID

383Using the SQLProvider
What’s interesting is that you’ve now bound your F# type system to the data inside a
remote system. If you were to delete the Wooly Hats row from the database and then
close and reopen the script in Visual Studio (to force the compiler to regenerate the pro-
vided types), you’d see that the code no longer compiles. In this way, it’s impossible at
compile time for your code and data to become out of sync. Of course, if you deploy the
application and then delete the data from the DB, you’re out of luck; remember that type
providers are a compile-time-only feature.

32.3 Using the SQLProvider

I’m aware that not everyone is a fan of the sort of low-level SQL queries that the Sql-
Client library forces us down. Personally, I’m a big fan of them, as the sort of stateless
model is a good match with FP practices, is a good fit for many applications, and com-
pletely avoids many of the antipatterns that you can end up with when using large
ORMs. Nonetheless, a fantastic type provider called SQLProvider (http://fsprojects
.github.io/SQLProvider/) offers an alternative way to work with SQL databases. I
should also point out that SQLProvider isn’t bound to SQL Server only—it also works
with Oracle, SQLite, Postgres, MySQL, and many ODBC data sources. Let’s see how to
achieve the same sort of functionality as with the SqlClient package.

32.3.1 Querying data

As an ORM, SQLProvider supports the IQueryable pattern. Like many IQueryable pro-
viders, it’s not 100% complete, but it’s powerful enough to do the things you’ll need on a
day-to-day basis—and a lot more. Here’s an example of an F# query expression to get
the first 10 customers.

Quick check 32.1

1 How does the SqlCommandProvider remove the risk of “stringly-typed” queries?
2 In addition to manually creating INSERT statements, how else does the SqlClient package

let you perform data insertion?

QC 32.1 answer
1 By providing edit- and compile-time validation of the query against a live SQL database.
2 Through DataTable support, which provides Insert and BulkInsert functionality.

http://fsprojects.github.io/SQLProvider/
http://fsprojects.github.io/SQLProvider/

384 Lesson 32 Working with SQL

s
e
#r @"..\..\packages\SQLProvider\lib\FSharp.Data.SqlProvider.dll"
open FSharp.Data.Sql

type AdventureWorks = SqlDataProvider<ConnectionString =
➥"<connection string goes here>", UseOptionTypes = true>

let context = AdventureWorks.GetDataContext()

let customers =
 query {
 for customer in context.SalesLt.Customer do
 take 10
 } |> Seq.toArray

let customer = customers.[0]

Again, let’s quickly review this. Having referenced the SQLProvider assembly, you cre-
ate a provided type for the database. Notice that this type provider takes in further
parameters—in this case, whether to generate option types for nullable columns (other-
wise, a default value will be generated instead). Next, you create a handle to a Data-
Context. If you’ve used Entity Framework before, you’ll know what a data context is—a
stateful handle to a database within which client-side operations can be tracked and
then a set of changes sent back to the database. Finally, you write a query expression to
take the first 10 customers from the database.

You’re not restricted to using the table entities either. You can project results to your
own custom records or use tuples (remember that F# doesn’t have anonymous types).

Listing 32.3 Querying data by using the SQLProvider library

Creating an
AdventureWork
type by using th
SqlDataProvider

Getting a handle
to a sessionized
data context

Writing a query
against the
Customer table

More on query expressions
F# query expressions are another form of computation expression, similar to what you
saw earlier with seq { } (and will see again in the next unit with async { }). A query expres-
sion can be thought of as equivalent to a LINQ query in C#: they operate in a similar way,
with an expression tree parsed by a specific provider to convert the tree into another
language (in this case, T-SQL). Unlike the LINQ query syntax, which is fairly limited, F#
query expressions have a large set of operations, such as sortBy, exists, contains, and skip;
see https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/
query-expressions for the full list. Query expressions can be used in F# over any IQuery-
able data source, so you can use them anywhere you’d write a LINQ query in C#.

https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/query-expressions
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/query-expressions
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/query-expressions

385Using the SQLProvider

n

lt

ory
 query {
 for customer in context.SalesLt.Customer do
 where (customer.CompanyName = Some "Sharp Bikes")
 select (customer.FirstName, customer.LastName)
 distinct
 }

One of the nicest things about SQLProvider is that, unlike SqlClient, you get full Intelli-
Sense on the tables and columns within it. This makes it excellent for exploration of a
database, because you don’t have to leave F# to understand the database contents; you
get everything through IntelliSense.

32.3.2 Inserting data

Adding data to the database is simple. You create new entities through the data context,
set properties, and then save changes—basically the same pattern that you use with
Entity Framework.

let category = context.SalesLt.ProductCategory.Create()

category.ParentProductCategoryId <- Some 3
category.Name <- "Scarf"

context.SubmitUpdates()

It’s worth running this yourself. Observe that all entities track their own states and have
a _State property on them. If you create a new entity, you’ll see that its initial state is
Created, but after calling SubmitUpdates(), its state changes to Unchanged. It’s also interesting
to note that unlike SqlClient, SQLProvider uses a data context, which by its very nature
is stateful. Updates are performed by first loading the data from the database, mutating
the records, and then calling SubmitChanges().

Listing 32.4 Projecting data within a more complex query

Listing 32.5 Inserting new data

A filter condition withi
a query expression

Projecting a set of
tuples as the resu

Selecting a distinct
list of results

Creating a new
entity attached to
the ProductCateg
table

Mutating properties
on the entity

Calling SubmitUpdates
to save the new data

386 Lesson 32 Working with SQL
32.3.3 Working with reference data

Working with reference data with the SQL Provider is incredibly easy thanks to a fea-
ture called individuals. Every table on the context has a property called Individuals, which
will generate a list of properties that match the rows in the database—essentially the same
as the Enum Provider. You also have subproperties underneath that allow you to choose
which column acts as the “text” property (for example, As Name or As ModifiedDate), as
shown in figure 32.3.

Again, like the SqlClient, the items in this list are based on the database contents, so if
data is removed, you’ll instantly know that your application is out of sync.

Figure 32.3 Navigating through reference data by using Individuals by Name

What about Entity Framework?
I don’t want to rule out Entity Framework (EF) as a data access technology for F#; I simply
don’t feel it’s as powerful or useful as either of the preceding type providers, both of
which give you much stronger type checking than EF in different ways, and allow you to
start exploring databases much more quickly—in just a few lines of code, as you’ve seen.
Furthermore, to create entities that work with EF requires creating types that have
mutable virtual properties and the like—the complete opposite of the kinds of types that
F# makes it easy to use. For these reasons, I suggest using one of the preceding tech-
nologies (or similar) rather than EF. If you must use EF, I recommend creating a C# layer
for your entity model and accessing that from F#.

387Summary

Summary

In this lesson, you saw how to use two type providers to work with relational data
stores, and how simple they can make your life. They fit especially well with the explor-
atory nature of scripts, and give you much stronger typing than you might be used to
when working with SQL and .NET. In this lesson

 You saw the SqlClient library, a lightweight wrapper on top of ADO .NET that
gives you strongly typed and validated SQL commands directly within F#.

 You then saw the SQLProvider, an alternative type provider that uses an ORM-
style data context model for exploring and working with SQL.

 You learned about F# query expressions, another form of computation expression
that allows you to model queries against data.

 You saw how type providers can be used to bring data into the type system
directly with, for example, reference data and individuals.

Try this

Connect to a database that you already have. Experiment with using both type provid-
ers against the data source. Also, look at reference data tables that you have in your
application layer; see if you can replicate this using both type providers and compare
this to the approach you’ve currently taken.

Quick check 32.2

1 What’s the key distinction between SqlClient and SQLProvider?
2 Is SQLProvider coupled to just MS SQL Server?

QC 32.2 answer
1 SqlClient is a low-level type provider in which you write your own SQL. The SQLProvider is an ORM

that generates queries and commands based on query expressions.
2 No, the SQLProvider works with several other SQL databases.

33LESSON
CREATING TYPE PROVIDER-BACKED APIS

So far in this unit, you’ve looked at various types providers; hopefully, you now get the
gist of how they typically operate as well as the sorts of features and pitfalls to be aware
of so that you can explore and try out other ones yourself. This lesson shows how to
quickly create APIs driven by type providers that other components can easily con-
sume. You’ll learn

 How coupling to type providers can affect your application
 How to create APIs over type providers
 When to create decoupled APIs

Just so that we’re on the same page here, let’s recap what I mean by a type provider–backed
API. So far, you’ve looked at using type providers in an exploratory mode—for example,
analyzing data within a single script. But there’s nothing to stop you from integrating
type providers within the context of a standalone application as well—be they console
applications or web apps, whether 100% F# or hybrid language applications. There are,
however, some things that are worth being aware of before trying to integrate a type
provider into an application.

At their most basic, type provider APIs are no different than standard data-oriented
APIs that you create; these typically follow the Gateway, Facade, or Repository design
patterns, by providing a simple layer on top of a lower-level data access layer. Even if
you don’t know what those design patterns are, you’ve probably done this sort of thing
388

389Creating a tightly coupled type provider API
a hundred times before with data access technologies such as Entity Framework or
ADO .NET to provide a layer of abstraction between your application and the underly-
ing, for example, SQL, database, as shown in figure 33.1.

33.1 Creating a tightly coupled type provider API

In this section, you’ll create a simple API that follows from a previous lesson—one that
can provide statistics on NuGet packages. You’ll create a simple API to do the following:

 Retrieve the total number of downloads for any given package
 Retrieve details for a specific version of a NuGet package
 Retrieve details of the latest stable release of a NuGet package

33.1.1 Building your first API

Start by building your first API, which directly exposes data and types generated by a
type provider.

Now you try

1 Create a new F# console project and add the FSharp.Data NuGet package.
2 Create a script file called NuGet.fsx in which you’ll write the API. You’ll port this

into an .fs file later, but for now you’ll stick with a script and the REPL while
you’re in exploration mode.

 SQL database

Type Provider

Get Customers
Get Orders

Create Customers

WPF View Model ASP .NET
MVC Controller Console App

Figure 33.1 A simple
façade over a SQL database
via a type provider as the data
access layer

390 Lesson 33 Creating type provider-backed APIs
3 Reference FSharp.Data within the script by either using #reference manually or a
Power Tools-generated script and #loading it.

4 Open the FSharp.Data namespace and create an instance of the HTML type pro-
vider that points to sample-package.html that you looked at earlier in this unit.

5 Create a function, getDownloadsForPackage, which, given a NuGet package name,
will return the total number of downloads for the package name.

6 Your code should look something like the following listing.

type Package = HtmlProvider< @"..\..\data\sample-package.html">

let getDownloadsForPackage packageName =
 let package = Package.Load(sprintf "https://www.nuget.org/packages/%s"
 ➥packageName)
 package.Tables.``Version History``.Rows
 |> Seq.sumBy(fun p -> p.Downloads)

That was easy! The most important part is that you’re dynamically building up the URL
for the “live” HTML Provider endpoint based on the package name that’s supplied,
after which you perform a simple in-memory query. You’ll notice that the function has a
simple signature of string -> decimal. There’s no clue for the caller that they’re using a
type provider:

7 Try calling this function from the script for a set of packages (for example, Entity-
Framework and Newtonsoft.Json).

8 Now try the next API function. Create a new function, getDetailsForVersion. It
should download the package as before, except this time the query will be differ-
ent—you’ll try to find the row where the Version contains text that will be pro-
vided as an argument. You can use find or tryFind in the Seq module for this
(essentially the F# equivalents to LINQ’s First and FirstOrDefault).

9 Notice that this function returns a strange-looking type called HtmlProvider<…>
.VersionHistory.Row (and if you used tryFind, as a wrapped option). This is the static
name of a provided type that represents Version rows; you’re exposing this type
directly outside your API. Now, that’s not necessarily a problem, but it is some-
thing we’ll discuss again later in this lesson.

Listing 33.1 Creating your first type provider–backed API function

Creating a static instance
of the type provider

Creating a live URL
based on a function
argument

391Creating a tightly coupled type provider API
33.1.2 An exercise in refactoring

At this point, let’s take a quick detour and see how to do a little refactoring of the code to
get some reuse across both functions, as they both do something similar. A basic refactor
might be to create a helper function that loads the package by name so that you can call
it from both functions—something like this.

let getPackage packageName =
 packageName |> sprintf "https://www.nuget.org/packages/%s" |>
 ➥Package.Load
let getDetailsForVersion versionText packageName =
 let package = getPackage packageName
 package.Tables.``Version History``.Rows |> Seq.tryFind(fun p ->
 ➥p.Version.Contains versionText)

That’s not bad, but you can do better. Here’s a more tightly refactored version that uses
function composition to reduce the size of your API functions to the bare essentials.

let getPackage =
 sprintf "https://www.nuget.org/packages/%s" >> Package.Load
let getVersionsForPackage (package:Package) =
 package.Tables.``Version History``.Rows
let loadPackageVersions = getPackage >> getVersionsForPackage
let getDownloadsForPackage =
 loadPackageVersions >> Seq.sumBy(fun p -> p.Downloads)
let getDetailsForVersion versionText =
 loadPackageVersions >> Seq.tryFind(fun p -> p.Version.Contains
 ➥versionText)

Listing 33.2 Trying to gain code reuse across multiple functions

Listing 33.3 Further refactoring an API implementation

Creating a helper
function to load

package data

Using the helper function
in a higher-level function

Retrieves package data Navigates to the
Version History rows

Composes the first two
functions together

Uses the composed
function at the API level

392 Lesson 33 Creating type provider-backed APIs
Let’s go through this step by step. First, you can simplify the getPackage function by using
function composition. Remember the >> operator? Well, you can use it here to eliminate
the explicit packageName argument being passed in—in other words, sprint "…%s" can itself
be thought of as a function that takes in a string and returns another string, which you
then connect as the input for the Package.Load function. And because the input of Package
.Load is a string, the signatures are compatible.

Next, you create a simple helper function, getVersionsForPackage, that navigates to the
rows of the VersionHistory.Rows collection of a given package. You could’ve written this as
an inline lambda, but I think that this is more readable.

Third, you compose those two functions together to build an even bigger function, load-
PackageVersions. Again, compare the inputs and outputs, as shown in figure 33.2.

You can compose getPackage and getVersionsForPackage together because the output of the
first is the same type as the input of the second function. The composed function takes in
the same type as the input of the first function, and returns the same type as the output of
the last function. This leaves the main two API functions, which you compose again (!)—

A refresher on pipelines and composition
Before you go too much further, let’s quickly recap the three core features of functions
in F# (refer to lesson 11 if you need to):

 Piping (| >) pipes a value through a set of functions in sequence and returns the
resulting value.

 Composing (>>) combines several functions into a new function. When called
with a value, the resulting function will pipe the value through those functions in
sequence.

 Partial application, or currying, is the ability to call a function and supply only a
subset of the inputs; a new function is returned that takes the remaining argu-
ments as inputs.

getPackage

string –> Package
string VersionHistory.Row []

Compose getVersionsForPackage

Package –> VersionHistory.Row []

loadPackageVersions

Figure 33.2 Composing functions together to build progressively more complex behaviors

393Creating a decoupled API
this time using the appropriate query function that you wanted to use before. In this
way, you can start to build up tiny composable and reusable behaviors quickly and eas-
ily (refer to lesson 11, or for the official reference, to https://docs.microsoft.com/ en-
us/dotnet/articles/fsharp/language-reference/functions/index).

10 Create the final function, getDetailsForCurrentVersion. This should do the same as
getDetailsForVersion, except that the text you’re looking for is always the same:
"(this version)". You should be able to create this function by calling getDetails-
ForCurrent-Version and supplying only the first argument (the version text to
search for).

Although this mini-exercise you’ve just gone through doesn’t have anything to do spe-
cifically with type providers, it’s a good lesson in composing small functions together to
build more complex ones that can be used as the basis for an API (or indeed any DSL).

33.2 Creating a decoupled API

What you’ve done will work just fine. But sometimes, exposing provided types directly
as an API won’t be suitable or even possible. In this case, you need to manually con-
struct types (such as F# records and discriminated unions) and then map from the pro-
vided types to these manually created types. In this case, you create a truly decoupled
API from the type provider in the sense that you expose no types at all from the type
provider to callers.

Quick check 33.1

1 Can you build APIs from type providers?
2 What rule must be followed in order to compose two functions together?
3 Can we reference provided types statically in function signatures?

QC 33.1 answer
1 Yes, by using the provided types as the domain.
2 The output of the first function must be the same type as the input of the second.
3 Yes.

https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/functions/index
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/functions/index

394 Lesson 33 Creating type provider-backed APIs
33.2.1 Reasons for not exposing provided types over an API

Here are issues you might come across when working with type providers and reasons
that you might want to decouple yourself from provided types within your application
code base:

 The business domain may not fit exactly with the data supplied by a type pro-
vider (particularly providers that don’t allow you to reshape, or project, the data
in any way), so you may need to map between the two.

 Remember that (at the time of writing) provided types can’t create records or dis-
criminated unions. This limits the richness of the types that can be emitted from a
type provider, which may in turn lead to writing extra code to compensate for
this. It might be better to map to a richer domain earlier, which will simplify the
rest of your code base.

 Provided types generally can’t be consumed outside F#. If you have a hybrid lan-
guage solution, you can forget about consuming an API such as the preceding
one from C#, because in two of the methods, you expose provided types in your
public API.

 Most type providers create types that are erased at runtime. You can’t reflect over
them, and therefore any code that uses reflection or something similar to generate
outputs won’t work. You wouldn’t be able to use the SQL Provider directly with a
framework like Newtonsoft.Json to create JSON from provided types, because at
runtime there are no types to reflect over; everything’s just a System.Object.

33.2.2 Enriching a domain by using F# types

Let’s see how to create a slightly more expressive domain for your NuGet packages for
your API. Here’s a set of F# types that represents your domain more expressively than
what you’re getting back from the HTML type provider.

Working with provided types at runtime
Authors of type providers use a few workarounds to get around the erasing types run-
time issue. One is to create generative type providers, which emit “real” types at runtime
that can be reflected over. This approach has pros and cons; some type providers are
specifically designed to be erasing as they carry no runtime overhead in terms of types.
The alternative is that some type providers expose a weakly typed dictionary of key/value
string pairs for the properties that can be accessed at runtime.

395Creating a decoupled API
open System
type PackageVersion =
 | CurrentVersion
 | Prerelease
 | Old
type VersionDetails =
 { Version : Version
 Downloads : decimal
 PackageVersion : PackageVersion
 LastUpdated : DateTime }
type NuGetPackage =
 { PackageName : string
 Versions : VersionDetails list }

This model has some nice properties compared to the original model. For example, you
no longer have the package name repeated through every version; it’s now stored only
once at the top of the package. In addition, each version is now no longer just a string,
but has a proper System.Version as well as a classification of whether this version is a pre-
release, current, or historical package. With this model, you could more easily reason
about the versions in a package, so it would be easy (and much safer!) to find out the
current version of a package, or to determine whether there have ever been any beta
versions.

33.2.3 Mapping between provided types and F# domains

Of course, now you actually need to write the code to map from your provided types to
this rich domain! I encourage you to have a crack at doing this yourself. I’ve also sup-
plied a sample solution next (and in the source code sample repository).

Now you try

Now try to create the code to map from the provider types to your strongly typed F#
domain:

1 Write a function, parse. This function should take in a single string representing
the Version property of a NuGet VersionHistory row, and return a tuple of a System
.Version object (based on the version in the supplied string) and the classification

Listing 33.4 Listing 33.4 Creating a custom domain for NuGet package statistics

Classifier of
package version

Representation of a
single package version

Representation of an
entire package

396 Lesson 33 Creating type provider-backed APIs

Conve
an arr
string
revers
of PackageVersion. So, the string "Json.NET 8.0.3" should return (8.0.3, Old), and
"9.0.2-beta1" should return (9.0.2, Prerelease).

2 You can split the string on both a space and – to determine the sort of version it is,
and then use pattern matching on the resultant array to identify the sort of string
it is. Watch out when splitting strings because package names can have spaces in
them (for example, F# Data 2.2.3). You can use either standard array indexing
logic or pattern matching. You might struggle with pattern matching, so you can
refer to my suggested solution for that. There are two cases:
a If the string ends in "(this version)", the package name is all words except the

last three words, which will be, for example, "2.2.3 (this version)".
b Otherwise, the package name will be all words except for the last word, which

will be the version.
3 Write a function, enrich, that takes in a sequence of VersionHistory.Row objects (from

the type provider) and returns NuGetPackage (your new domain model).
4 To determine the package name, take the package name from the first row in the

collection (again, you’ll need to do some work to parse to just get out the name
part). Assume that it’s repeated across all rows, so it’s safe to use the first row.

5 You can create the Version list by creating a VersionDetails record for each row,
copying across the Downloads and LastUpdated fields, and parsing the Version field.

Here’s a sample solution for the parse function if you got stuck! The rest of the solution is
provided in the source code samples.

let parse (versionText:string) =
 let getVersionPart (version:string) isCurrent =
 match version.Split '-', isCurrent with
 | [| version; _ |], true
 | [| version |], true -> Version.Parse version, CurrentVersion
 | [| version; _ |], false -> Version.Parse version, Prerelease
 | [| version |], false -> Version.Parse version, Old
 | _ -> failwith "unknown version format"

 let parts = versionText.Split ' ' |> Seq.toList |> List.rev
 match parts with
 | [] -> failwith "Must be at least two elements to a version"

Listing 33.5 Creating a custom domain for NuGet package statistics

Inner function to parse
version number from a string

rting
ay of
s to a
ed list

397Creating a decoupled API
 | "version)" :: "(this" :: version :: _ -> getVersionPart version true
 | version :: _ -> getVersionPart version false

This is more complex pattern matching than you’ve previously seen. Looking at the
lowest pattern match (not the one in getVersionPart), you do two things:

1 Split the string on spaces, convert it to a list, and then reverse it.
2 Pattern match on the list of strings. You can also match on arrays, but one of the

nice things you can do with lists is to decompose part of a list.
3 The first match says that if it’s an empty list, you’ll fail with an error.
4 The next match clause says that the list must contain at least three elements, the

first two of which must be "version)" and "(this", and the third part will bind to
the symbol version. The remaining elements are ignored.

5 Otherwise, you say that the first element of the list is bound to version, and then
ignore the rest.

You do similar pattern matching for the helper function, which parses the version string
to get out the version number and the pre-release/current version status. Notice that
when you’re pattern matching here, you match against a bounded array, one that has a
known length at compile time, by using [|a;b;c;|] syntax (with lists, it’s [a;b;c;]). Previ-
ously, you checked against an unbounded list by using [a::b::c::_]. This unbounded
syntax works only for lists, and unbounded lists work forwards-only, so you reverse the
list before matching.

The benefit of using pattern matching for this sort of parsing rather than list/array
indexing is that you use the F# language to get to individual parts of the array. With this
approach, you can much more concisely and precisely state what you want to check
rather than using things such as array length values and so on. It’s also impossible to
“accidentally” index into an item that doesn’t exist when using pattern matching
against an array or list.

33.2.4 Updating your API with a new domain

Finally, now update your API to use a new domain. It’s very natural to do in F#, thanks
to both function composition and type inference.

Matching on two cases of
strings to parse version

number and identify
current/old version

398 Lesson 33 Creating type provider-backed APIs
let loadPackageVersions = getPackage >> getVersionsForPackage >> enrich >>
➥(fun p -> p.Versions)
let getDetailsForVersion version = loadPackageVersions >> Seq.find(fun p ->
➥p.Version = version)
let getDetailsForCurrentVersion = loadPackageVersions >> Seq.find(fun p ->
➥p.PackageVersion = CurrentVersion)

let details =
 "Newtonsoft.Json" |> getDetailsForVersion (Version.Parse "9.0.1")

As you can see, it’s not a great deal of code. The main work is to add the enrich function
into loadPackageVersions, and then add a small inline function that returns the versions. You
could have left that last part out, but then all callers would need to do it. Then, you simply
fix the compiler errors. In the case of getDetailsForCurrentVersion, it involves more or less a
total rewrite because it can no longer reuse the getDetailsForVersion function, but when a
total rewrite of a function consists of half a line of code, that’s not a massive problem.

33.2.5 Converting to a standalone application

The last part of this lesson will quickly port your code over to a full-blown application.
It’s pretty simple!

Now you try

You’ll now convert your script to a standalone application:

1 Rename the file to an .fs file.
2 Remove any #load or #references you have.

Listing 33.6 Listing 33.6 Updating your API with your latest domain model

Adding your enrich
function into the
existing pipeline

Getting details for a
specific version of
Newtonsoft.Json

Saving data with type providers
You’re seeing in this unit how effective type providers are at reading data. What about
saving data back out? Some type providers support this, although because of their
nature, it’s probably not the standard behavior. Often you’ll need to look at putting the
data into records and then persisting them manually.

399Summary
3 Remove any code in the file that doesn’t relate to the API itself.
4 Place a module declaration at the top (for example, module NuGet)
5 Ensure that the following remains:

a Open the FSharp.Data namespace.
b Create the type provider type.
c Define your custom domain model.
d Mark all functions as private except those that you want to expose in the API.

6 From Program.fs, you should be able to call your API; for example:
getDetailsForCurrentVersion "entityframework" |> printfn "%A"

Summary

This lesson showed you how to start using type providers within the context of a run-
ning application, rather than simply within scripts. In this lesson

 You created a simple API façade over a type provider.
 You learned about times when provided types aren’t always suitable for use

within an application, and where you may prefer to use a richer domain model
instead.

 You created a rich F# domain and mapped from provided types to it.
 You practiced refactoring code by using composition and type inference.
 You saw an example of more advanced pattern matching to parse strings.

Quick check 33.2

1 Give one reason you might use a decoupled API over type providers.
2 What benefit does pattern matching over lists give you versus indexing in directly?
3 What does the :: symbol mean in the context of pattern matching over lists?

QC 33.2 answer
1 Richer types (for example, DUs), as well as improved interoperability with C#.
2 Compile-time safety.
3 Splits a list into a head and tail.

400 Lesson 33 Creating type provider-backed APIs
Try this

Building on a previous “Try this,” create an API that can return the songs for any given
Dream Theater album by using Wikipedia as a data source. Try returning strings to start
with; then build up to creating an explicit domain model for Albums and Tracks,
hydrating the model from the provided HTML provider types. Then, expose this as a
WPF application written in C#.

34LESSON
USING TYPE PROVIDERS IN THE REAL
WORLD

This is the final lesson on type providers. So far, you’ve looked at various providers in
the data space. You understand how and where to use them, what their strengths are,
and when and where you might not use them. In this lesson, you’ll wrap up by working
specifically with type providers in a real-world development process. You’ll learn about

 Working with configuration files
 Manually redirecting type providers
 Using type providers in a continuous integration (CI) environment

34.1 Securely accessing connection strings with type providers

You’ve already looked at how to point to live data sources in a type provider, by redirect-
ing from a static data source to a remote one at runtime. Sometimes this works quickly
and easily—as you saw with public sources such as the public NuGet feed—but occa-
sionally you’ll need to point to a secure resource, which means you’ll need to pull in a
secret key at runtime in order to access the “real” data. This could be a NuGet key, a SQL
connection string, or a username and password—it doesn’t matter. The question is, how
can you provide that secret value safely to the type provider? You certainly don’t want to
hardcode your secret connection string into the application, so what can you do?
401

402 Lesson 34 Using type providers in the real world
34.1.1 Working with configuration files

One option that many type providers offer is the ability to use application configuration
files to source a connection string, rather than having to supply it directly within code as
a literal value (which is what you’ve done so far). This provides immediate benefits:

 Config files are a well-understood concept in .NET and will be familiar to you.
 Config file values can be replaced at deployment or runtime without any changes

to your application code or binaries.
 No secure strings reside in your code base.

Now you try

Now you’re going to quickly use the configuration file support within the SQL Client
type provider to see how to easily use configuration files:

1 If you haven’t yet done so, run build.cmd in the root directory of the source list-
ings to ensure you have the SQL Client type provider NuGet package on disk.

2 Open the ready-made TypeProviderConfig solution in src\code-listings\lesson-34.
This contains a simple console application, SqlDemo, that retrieves the first 50
customers from the database and prints their company and names to the console.

3 Observe that the connection string is hardcoded into the application in order to
create the Command type.

4 Observe that the same connection is used in order to execute the query (line 8).
5 Open the app.config file in the project and locate the AdventureWorks connection

string element.
6 Set the value of the connectionString attribute to the connection string being used in

Program.fs.
7 Remove the connection string symbol (Conn) from F# and update the GetCustomers

definition as follows.

type GetCustomers = SqlCommandProvider<"SELECT TOP 50 * FROM
SalesLT.Customer", "Name=AdventureWorks">

8 Remove the explicit Conn value being supplied to the GetCustomers.Create() call, as
it’s no longer needed. (Note: this is a specific design decision of the SQL Client
type provider.)

Listing 34.1 Supplying connection details to a type provider via config

Supplying the connection
string name to the SQL
Client type provider

403Securely accessing connection strings with type providers
You’ve now removed the hardcoded connection string from code and replaced it
with a reference to a connection string in a configuration file.

9 Go back into the app.config file and deliberately change the connection string to
something invalid (for example, "XXX").

10 Rebuild the solution. Observe that your solution no longer compiles. You’ll have
to correct the connection string in the configuration file first.

34.1.2 Problems with configuration files

Configuration files are a familiar way to store connection strings. They’re well sup-
ported in the .NET ecosystem, with dedicated support for connection strings as well.
But a couple of issues may arise with configuration files that can make it difficult to
work with them and type providers, particularly when you use configuration files as
the source for both compile-time and runtime data.

The most important issue is that working with configuration files from within scripts is
a real pain. By default, the app.config file that the script will be bound to isn’t your pro-
ject’s config file, but rather one that’s used to host F# Interactive—FSI.exe (see figure
34.1)! Visual Studio’s REPL (FSI) is just a standard .NET application and has its own
app.config file.

Thus, if you try to bind to a type provider that’s driven from a connection string from
within a script (or #load a file that contains code that does this), there’s a good chance that
the type provider will try to search within FSI.exe.config rather than your application
config file. This almost certainly isn’t what you want, especially when working on a team
of developers, as each one will need to remember to do this in their own environment. If

Figure 34.1 FSI.exe is a standard .NET application that can be viewed in Task Manager.

404 Lesson 34 Using type providers in the real world
they forget, they won’t get errors when compiling (as compile time will correctly use
app.config in the project!), but when #loading the same code from within a script, they
will get errors. Take it from me: it will end in tears; don’t do it.

If you’re working on a large project, with many developers, and you want to retain the
ability to #load code that performs data access with type providers through scripts, be
aware of the limitations. There’s nothing to prevent you from saying that any code you
#load through scripts can’t connect to a database directly, and that data (or functions that
return data) must be supplied via higher-order functions. In other words, code that oper-
ates on data should never be responsible for directly retrieving that data itself. It may be
supplied by a function that loads data, but this is done in a decoupled manner. This is a
good practice in some ways, as it reduces coupling between your business application
and the source of data for them, which in turn makes testability easier.

SQL Client and configuration files
The SQl Client package does support some form of redirection here, and you can over-
ride the default behavior and supply a specific path to an app.config at compile time so
that a different config file is used. But it’s complicated to manage and confusing to rea-
son about. Which config file is being used at compile time? What about at runtime?

Quick check 34.1

1 Can you use connection strings with type providers?
2 Name one benefit of using connection strings with type providers.
3 When should you not use connection strings with type providers?

QC 34.1 answer
1 Yes.
2 Ease of use.
3 When you want to decouple code from a data source, especially with scripts.

405Manually passing connection strings
34.2 Manually passing connection strings

What other options are there? The second choice is more akin to what we’ve discussed
previously in this unit: using a static, hardcoded connection to a public/local data source
for compile-time code, and redirecting to a secure connection at runtime (see figure 34.2)

In this way, you can control your application at compile time through a well-known
sample dataset—perhaps just enough rows of data to allow you to compile the applica-
tion and for the type provider to infer schema. Then, at runtime, you (optionally) redi-
rect to another data source. This might be a test database, or integration server, or a
private feed of data that contains secure information. This is passed in to the type pro-
vider as an override. (In the context of, for example, FSharp.Data, you’ll use Load() rather
than GetSample(); in the case of SQL Client, it means passing in a connection string when
calling Create().)

Now you try

Let’s see how to adapt your code to work with a supplied override connection string
sourced from a configuration file:

1 Replace Program.fs with the following code.

Generate schema
F# connection

[<Literal>]

Coding Building

Load()

Run application

Runtime
data source

Secure connection
string (configuration

file or script)

Small sample dataset
(locally available)

Edit time

Run time

Compile time

Figure 34.2 Using different data sources and connections at compile time and runtime

406 Lesson 34 Using type providers in the real world
open System.Configuration

[<EntryPoint>]
let main _ =
 let runtimeConnectionString =
 ConfigurationManager
 .ConnectionStrings
 .["AdventureWorks"]
 .ConnectionString
 CustomerRepository.printCustomers(runtimeConnectionString)
 0

CustomerRepository is a module that contains the same code that you wrote earlier
in Program.fs, except it now expects a connection string to be supplied to it for
use at runtime. In the case of your console application, you can retrieve this from
the app.config file by using the standard .NET Configuration Manager.

2 Open the DataAccessThroughScript.fsx file and execute the code in it.
3 Observe that this file does the same thing as Program.fs, except rather than read

from a configuration file, you’ve hardcoded a connection string in the script and
supplied it in, but this could conceivably come from anywhere (a text file, config
file, or a web service, for example).

The main takeaway here is that you’ve decoupled your data access code from the
retrieval of the connection string to the data source. Your console application uses the
app.config file to retrieve the connection string, but your script wasn’t forced to use that
as well. This sort of decoupling is crucial when developing larger applications, because
being able to quickly and easily “jump in” to a specific, arbitrary source file through a
script and test it quickly and easily is a key benefit of working with scripts and a REPL.

Listing 34.2 Separating retrieval of live connection string from application code

Retrieving a connection
string from the
configuration file manually

Supplying that
connection string to
the data access layer

Quick check 34.2 Why is it good practice to decouple your data access code from a connec-
tion string?

QC 34.2 answer Scripts can more easily access production code against any data source.

407Continuous integration with type providers
34.3 Continuous integration with type providers

Let’s now talk a little about working with continuous integration (CI) and continuous
deployment (CD) processes. Both terms relate to the automation of your application
being compiled, tested, and optionally deployed whenever you make changes to the
source code. You may already be using systems such as Team City, Jenkins, AppVeyor,
or Visual Studio Team Services for this. Even if you aren’t using them today, they’re
growing in popularity all the time, and it’s worth knowing how type providers work
with them.

34.3.1 Data as part of the CI process

You already know that type providers generate types at compile time not through a cus-
tom tool (as in the case of T4 templates), but through the F# compiler. Whenever you
perform a build of code, the type provider kicks in, accessing the data source from
which it generates types that are used later in the compilation process.

Of course, CI servers build your code too—not just Visual Studio! Your build server will
need access to a valid data source in order to compile your code. For some data sources,
this won’t be a problem (for example, CSV or JSON data); include a static sample file in
your solution and compile off that. But what about other data sources, such as SQL
Server or Azure Storage? What then? The answer is, as usual, that it depends. Some data
sources have local emulators that can run on a build server (such as Azure Storage), or
may already host lightweight processes that can be used for compilation (SQL Server
has LocalDB). Other systems may not have such a rich tooling environment, and you
might need to have a “real” data source service available for your CI server to use in
order to build code.

34.3.2 Creating a build process with a SQL type provider

Figure 34.3 contains an example of how to achieve this sort of approach when using a
SQL type provider. The key is to be able to quickly and easily create an isolated database
on the CI server itself (or at least, on a database server that the CI server can easily
reach). This is relatively easy to achieve by using SQL Server LocalDB (the same data-
base service you used earlier in this unit) and Microsoft’s DACPAC technology. Many
CI servers support LocalDB out of the box, including AppVeyor and Microsoft’s own
Visual Studio Team Services.

Once the CI database is built, the application points to it for compilation (and potentially
unit testing or integration testing). Then, after the build and test phases are completed, a

408 Lesson 34 Using type providers in the real world
separate configuration value is used to direct the runtime connection string that’s set to
point to the live database server. The build database is then destroyed; when a new com-
mit into source control occurs, a clean database using the latest database schema is cre-
ated and the whole process starts again.

Using this approach, it’s extremely difficult to get into a situation where your source code
and the latest database schema get out of date. If you make changes to the database and
commit it without testing against the latest source code, the compile will fail if the schema
changes are incompatible with your F#. You won’t even need to run integration tests!

LocalDB
(temporary)

Compile solution
against database

Live DB
(permanent)

Update
connection string

 Create LocalDB
database on

CI server

Update runtime
connection string

Deploy code to
production server

Run integration
tests

Run unit tests

Build

Deploy

Test

Figure 34.3 Building a
solution using a SQL type
provider through a CI server

409Continuous integration with type providers

Best practices

You’ve seen alternative mechanisms for configuring type providers in this lesson. It’s
important to always remember that type providers nearly always have two modes of
operation—compile time and runtime—and that you can usually redirect type providers
to a different data source at runtime.

Things get trickier when mixing scripts as a driver against production code, especially if
you throw configuration files into the mix. Be careful when making choices as to
whether to use configuration files. My advice is summarized in table 34.1.

I advise you to start with using simpler configuration mechanisms, as you may be fine
using, for example, literal values for many use cases. But for larger teams—and where
you want to be able to hook into your F# code base through arbitrary scripts—manually
passing connection strings in your application gives you the most control, at the cost of
greater effort.

Table 34.1 Configuring type providers

Compile time Runtime Effort Best for

Literal values Literal values Very easy Simple systems, scripts, fixed data
sources

app.config app.config Easy Simple redirection, improved security

Literal values Function argument Medium Script drivers, large teams, full control

Quick check 34.3 Why is creating a CI process sometimes more work when using type
providers?

QC 34.3 answer You need to ensure that data sources required by type providers are available as
part of the CI process in order to perform a build of your application..

410 Lesson 34 Using type providers in the real world
Summary

In this lesson

 You saw some ways to replace type provider configuration data to allow work-
ing with private connection strings.

 You saw the pros and cons of various approaches to working with connection
strings.

 You worked with type providers within the context of a CI process.

That’s the end of the “Working with Data” unit! You’ve seen how easy it is to explore
data within the context of F#, using the REPL in conjunction with type providers to rap-
idly investigate data sources, perform operations, and then visualize them. You’ve also
seen tips and exercises for incorporating type providers within a standalone .NET appli-
cation as well as some of the concerns for working with connection strings in a secure
fashion.

Try this

Perform a build by using your CI tool of choice (Team City, for example). Build an F#
application by using a type provider with a local data source for compiling, but a
remote one for execution.

35LESSON
CAPSTONE 6

Before you leave the world of data, let’s apply some of what you learned in this unit to
the Bank Accounts solution you’ve been working on. In this lesson, you’ll plug in a SQL
Database layer to the application instead of the file-based repository that you’ve been
using until now.

35.1 Defining the problem

This capstone is an exercise in hooking in a different data source to an existing code
base, but it also explores challenges you might face with configuration and state in mod-
ules, particularly from an interoperability perspective—working with type providers in
multilanguage solutions. You’ll then work on performing SQL queries and commands,
configuration, and finally making a pluggable repository layer.

35.1.1 Solution overview

src/code-listings/lesson-35 has both a starting and a completed solution; there are three
projects: the two from the previous (slightly modified) capstone, plus a new SQL data-
base project. You’ll be deploying this locally before connecting the application to it. I’ve
also added a binding redirect to the WPF application’s app.config file to ensure that you
always look for F# 4’s FSharp.Core (4.4.0.0) rather than the F# 3.0 version (4.3.0.0).
411

412 Lesson 35 Capstone 6
35.2 Hooking up a SQL database

The first thing you’ll be doing is creating your SQL database. Look in the BankAccount-
Db project; there’s already a BankAccountDb.publish.xml file that you can double-click
from within Visual Studio to get to a prefilled dialog box, shown in figure 35.1. Click the
Publish button to deploy the database.

Note that I’ve already done a couple of things to save you some time working with SQL:

 The FSharp.Data.SqlClient package to handle data access is already installed.
 The app.config file is already configured to use a SQL connection string.

The database itself contains three tables:

 A table for Account information (the account ID and owner), dbo.Account.
 A table that contains details of every transaction that occurred, dbo.Account-

Transaction.
 A lookup table for the two operation types (Withdraw or Deposit), dbo.Operation.

This is commonly known as reference data—static (or slowly changing) data that
acts as a lookup for other tables.

Figure 35.1 The Publish Database dialog box in Visual Studio for a database project

413Creating a SQL data access layer
After you’ve deployed the database, you can compile the solution to ensure that it
builds. If it doesn’t, it’s because the database you deployed to doesn’t match the connec-
tion string in the configuration file. Update it by republishing the DB if required.

35.3 Creating a SQL data access layer

Now that the database is deployed, you can look at the code needed to interact with the
database. For this exercise, you’ll be using the FSharp.Data.SqlClient package, but to help
you along, I’ve created a standalone scratchpad.fsx script in the solution that’s set up
with example queries for you to test and explore as you go; keep this handy!

35.3.1 The SQL repository

Once again, don’t worry if you’re not a SQL guru. The solution already contains the SQL
queries you’ll need. This SqlRepository module contains two functions that will replace
the calls to the existing FileRepository:

 getAccountAndTransactions tries to find the account and transaction history of a cus-
tomer (replaces tryFindTransactionsOnDisk).

 writeTransaction saves a single transaction to the database.
 If you look at both the SQL and File repositories, you’ll notice that the functions

in both modules have identical signatures, so all you need to do is to implement
the SQL ones before switching over.

35.3.2 Working with SQL to retrieve account history

Reading the account history (getAccountAndTransactions) has the following signature:
owner:string -> (Guid * seq<Transaction> option)

Given an owner, this function should optionally return the Account ID (the Guid in the
preceding code line) and a sequence of transactions for the account. You need to imple-
ment this function; you’ll notice three prewritten SQL queries in the SqlRepository.DB sub-
module. These are there to perform all the heavy lifting, leaving you to compose them
together:

 GetAccountId returns the Account ID for a given owner (if they exist).
 FindTransactions returns the list of all transactions for a given AccountId.
 FindTransactionsByOwner returns the list of all transactions for a given Owner, along

with the account ID for each row.

414 Lesson 35 Capstone 6
You could implement getAccountAndTransactions in one of two ways. The first is to call both
the GetAccountId and FindTransactions queries separately; if the first query returns None, this
is a new account; return None. Otherwise, find any transactions for that Account ID and
return them together with the Account ID as Some; see figure 35.2.

You can test out the queries by opening the SQL Server Object Explorer pane, locating
the server and database, and right-clicking to choose New Query. From here, you can
paste in a query and click the Execute button on the query toolbar. Alternatively, if you
want to test this query in a script, you can reuse one of the scripts from earlier in the unit
(be sure to use the connection string from the app.config file!).

Observe that the GetAccountId query returns a Guid option, and not an array of Guid. This is
because you’ve supplied the SingleRow = true argument to the type definition in F#.

type GetAccountId = SqlCommandProvider<"SELECT TOP 1 AccountId FROM
dbo.Account WHERE Owner = @owner", Conn, SingleRow = true>
let accountId : Guid option =
 GetAccountId.Create(connection).Execute("tony")

Listing 35.1 Calling GetAccountId to try to retrieve account details

Figure 35.2 The result of calling two SQL queries to
locate Account and Transaction history

Defining a query to
retrieve the Account ID
for an owner

Executing the query,
passing in a specific owner
name

415Creating a SQL data access layer
But the problem with this is that you perform two SQL queries here. The second, more
efficient way would be to call a single query that returns all the data in one go, and that’s
what FindTransactionsByOwner does.

FindTransactionsByOwner performs a join across both tables and returns a single result set,
with AccountId replicated across all rows. As you can see, although this works, the
“shape” of your data has changed. Now, you have a single result set, with AccountId rep-
licated across all rows, as per figure 35.3.

There are three possibilities here:

 There’s no existing account for the owner, in which case you should get back no
rows at all.

 There’s an existing account for the owner, but no transactions, in which case you
should get back a single row with only the Account ID populated (figure 35.4).

 There’s an existing account for the owner with some transactions, in which case
you should get back at least one row with all fields populated (as shown previ-
ously in figure 35.3).

The SqlCommandProvider is smart enough to figure out that the join might not be
successful, so the provided type generated from the query is a mandatory Account ID,
but the remaining three fields are optional. As a result, you’ll have to map this into a

Figure 35.3 The result of a single query that joins across both Account and Transaction tables

Figure 35.4 The result of a query for an account holder with no transactions

416 Lesson 35 Capstone 6
<Guid * Transaction seq> option. This is a classic impedance mismatch between a relational
database model (rows and columns) and a type system such as F# that allows complex
types and non-two-dimensional models.

Now you try

1 Implement the getAccountAndTransactions function by using one of the two preced-
ing approaches.

2 If you elected the more efficient, second option, you could use a pattern match
over the records (once converted to a list):
a If it’s an empty list, there’s no account holder.
b If it’s a single-item list and the three columns are blank, it’s an account holder

with no transactions.
c Otherwise, it’s an account with a proper transaction history.

3 As you construct the Transaction records, you’ll need to set the Operation field by
mapping from the SQL field OperationId (an int) to a BankOperation (an F# discrimi-
nated union). For now, hardcode it to Deposit.

35.3.3 Working with reference data

Setting the Operation field of the Transaction needs a simple mapping from the OperationId
on the database to the discriminated union BankOperation. The usual process for doing
this would be to manually create an enum in code that “happens to match” the data-
base structure, and map between them. The type provider can’t do the mapping for
you, but it can at least remove the need for you to manually create and maintain an
enum. You can use the following code to easily map from one type to another without
any hardcoding.

let toBankOperation operationId =
 match operationId with
 | DbOperations.Deposit -> Deposit
 | DbOperations.Withdraw -> Withdraw
 | _ -> failwith "Unknown DB Operation case!"

The DbOperations type is an enum type that’s generated by the type provider, and contains
both bank operation cases (based on the contents of the Operations table in SQL). This
provides a fairly strong guarantee that you can safely create Bank Operation DUs

Listing 35.2 Using a provided enum to safely map into an F# domain model

417Creating a SQL data access layer
(although I’ve still kept an explicit failure handler just in case), without the need for
magic numbers.

35.3.4 Inserting data into SQL

When it comes to implementing the writeTransaction function, you have a couple of
options. You can either manually create an INSERT SQL statement, or use the data table
support that the type provider offers. I’ve opted to go with the latter, but feel free to
write your own insert statement if you want.

Either way, you’ll have one issue to contend with: when you insert a transaction, you
also need to insert the owner/account information, but only if this is a new account. You
could decide to make this a decision supplied to the repository—that callers have to
know whether this is a new account—but a simpler option is to do one of the following:

 Check whether there’s already a record for this account in the database; if there
isn’t, insert a new record.

 Always try to insert the account/owner record, and if it fails, swallow the excep-
tion that’s raised as a result.

You can write code as follows to create a data table, insert a row into it, and then persist
it to the database.

use accounts = new AccountsDb.dbo.Tables.Account()
accounts.AddRow(owner, accountId)
accounts.Update()

Listing 35.3 Creating a data table with a row for insertion into SQL

Using provided types in a domain model
You’ll notice that you have to map from the generated provided types into a “pure” F#
domain model. Partly this is because your solution involves C#, and provided types don’t
necessarily play well in a non-F# environment. But there’s also a question of whether you
would want to tightly couple your domain model with data that’s directly generated from
SQL. I certainly wouldn’t rule out the possibility of doing that. Indeed, it’s an extremely
rapid way to get up and running, but in a larger-scale application, it wouldn’t be uncom-
mon to decouple your domain model from the data store completely.

Creating an
in-memory
data table

Adding a row to
the data tableUpdating the database

with the new row

418 Lesson 35 Capstone 6
You can use the existing GetAccountId query to check whether there’s an existing account
ID for the supplied owner, and match on the result to test whether to create an account.
Alternatively, you could elect to always try to perform the insert, and catch the excep-
tion if it’s a SqlException where the text contains Violation of PRIMARY KEY constraint.

try codeThatMightThrow()
with
| :? SqlException as ex when ex.Message.Contains "Violation of PRIMARY KEY
➥constraint" -> ()
| _ -> reraise()

The :? operator is analogous to a safe form of type cast; if the exception is a SqlException,
you bind it to the symbol ex and can then use it within the when clause. This sort of func-
tionality is being brought into C# 7 as a limited form of pattern matching.

It’s worth bearing in mind that the writeTransaction function is a function in your system
that returns unit; it’s writing to a database and gives back nothing. This makes it some-
what difficult to reason about, because you’ve encoded the error into an exception. A
more functional approach might be to return Result<unit>; at least this explicitly states
that the save was successful, even if you don’t have any payload with that success.

When performing the save, you’ll be mapping backward, and taking the fields from a
Transaction record into a function call that takes primitives (strings, ints, and so forth),
including the integer for the OperationId on the database. You can use another pattern
match to map from the BankOperation to the DbOperations enum value, essentially inverting
listing 35.2 (a clean approach might be to make a dedicated helper submodule to store
both conversion functions).

With your SQL data access layer now written, all you have to do is plug it in. The sim-
plest option is to replace the calls in the Api to any functions in the FileRepository module
with those in the SqlRepository module. They should be drop-in replacements, as the
function signatures match exactly! Do this, and test the application to prove it works
end to end.

Listing 35.4 Pattern matching over an exception

Executing code in a try/with block

Checking against a type with
the :? operator in conjunction
with a when clauseRethrowing

the current
exception

419Making a pluggable data access layer
35.4 Making a pluggable data access layer

Let’s look at ways to improve the architecture of the application.

35.4.1 Pluggable data access repositories

Coming from an OO background, your instinct at this point might be to wonder why
you’re tightly coupling the service layer (the orchestration logic in API) with the data
layer (the SQL repository). Can’t you decouple the two of them—perhaps using some
form of dependency injection with an IoC container? You bet!

It’s beyond the scope of this lesson to do that in detail, but in the sample solution, you’ll
see how it’s done. You can do it yourself without too much difficulty, as you’ll see next.

Now you try

1 Inside Api.fs, everywhere you see a hard reference to SqlRepository, remove that
and pass in the function (writeTransaction or getAccountAndTransactions) as a higher-
order function.

2 Note that because both Withdraw and Deposit load up the account from the DB
before performing the write, they have dependencies on both read and write SQL
functions!

3 Now the caller to the API needs to pass in the SQL-dependent functions—the
view model code in the client. Compiling the app will show you exactly where
you need to pass in the functions. You’ll also have to make the SQL repository
code public again, because the view model will need to inject it into the API calls.

35.4.2 “Reusing” dependencies across functions

The problem with this solution is that you now have to repeatedly pass in the SQL
dependencies for every function call, every time you call an API function—not great. In
a purely functional solution, you’d partially apply those functions with the relevant
dependencies within a bootstrapper of some sort. (I believe the current trendy term to use
these days is composition root) and then pass the partially applied versions into the app.

But it’s sometimes useful to “group up” a list of functions into a single, logical bundle.
In this case, it’s especially useful because all of the functions (read and write to database)
use the same dependencies (the calls to the read and write functions). In F#, it’s not
possible to parameterize a module with arguments, so in this case you can fall back to
using an interface that represents your API.

420 Lesson 35 Capstone 6
/// Represents the gateway to perform bank operations.
type IBankApi =
 abstract member LoadAccount : customer:Customer -> RatedAccount
 abstract member Deposit : amount:Decimal -> customer:Customer ->
➥RatedAccount
 abstract member Withdraw : amount:Decimal -> customer:Customer ->
➥RatedAccount
 abstract member LoadTransactionHistory : customer:Customer ->
➥Transaction seq

You can now create an instance of this interface, which takes in the dependencies as
function arguments.

let buildApi loadAccountHistory saveTransaction =
 { new IBankApi with
 member this.LoadAccount(customer) = // code elided
 member this.Deposit amount customer = // code elided
 member this.LoadTransactionHistory(customer) = // code elided
 member this.Withdraw amount customer = // code elided }

Using this, you can easily make a SQL or File bank API. There’s a fully working example
in the sample solution, but here are a few things to note:

 You pass in the read and write functions as function arguments.
 In the function body, you create an instance of IBankApi. (F# allows you to create

anonymous objects from interfaces; there’s no need to formally declare a type.)
 The implementations of the member functions can all access the read and write

dependencies. In effect, you’re partially applying all the member functions with
both dependencies simultaneously!

Listing 35.5 Representing functions through an interface rather than a module

Listing 35.6 Creating a factory function for the Bank API

Name of the interface Members of
the interface

Factory function taking in
varying dependencies as
function arguments

Implementations
with access to
dependencies

421Making a pluggable data access layer
This approach to viewing interfaces is an interesting one. In the OO world, we tend to
think of interfaces as objects that have a list of member methods on them to fulfill the
interface; in the FP world, you can flip this on its head and think of interfaces as a group
of functions that can be looked up by name. In that sense, rather than using an interface,
you could as easily have used an F# record of functions.

type BankApi =
 { LoadAccount : Customer -> RatedAccount
 Deposit : Decimal -> Customer -> RatedAccount
 Withdraw : Decimal -> Customer -> RatedAccount
 LoadTransactionHistory : Customer -> Transaction seq }

let buildApi readData writeData =
 { LoadAccount = fun customer -> ()//..
 Deposit = fun amount customer -> ()//..
 Withdraw = fun amount customer -> ()//..
 LoadTransactionHistory = fun customer -> Seq.empty }

I personally prefer to use interfaces in such situations; it’s a well-known pattern. But
using records in this way does offer some advantages, such as better support for type
inference.

35.4.3 Handling SQL connection strings directly

As you observed earlier in this unit, using application configuration files is a quick way
to get up and running with SQL, but moving to an explicit connection string gives you
more flexibility and control; plus it makes it much easier to work with SQL in scripts.
The final thing you’ll want to do is migrate from the implicit connection strings that
using a configuration file offers, to working explicitly with a connection string.

Now you try

1 For all functions in the SQL Repository module, take in an extra string argument
called connectionString and pass that into all calls that connect to the DB—for
example, GetAccountId.Create() for reads.

Listing 35.7 Using a record instead of an interface

Defining a record
of functions

Creating an
implementation
of the record

422 Lesson 35 Capstone 6
2 Do the same for the Update() calls, except you need to manually create a Sql-
Connection object first (and remember to Open() it!).

open System.Data.SqlClient
use connection = new SqlConnection(connectionString)
connection.Open()

3 Where the IBankApi is created, you’ll need to pass a connectionString into both the
higher-order function calls. You can opt to get a handle to the connection string
here, or take the connection string in as an argument.

4 Either way, either in the ViewModel or the factory function, you need to get a
handle to the connection string. First, add a reference to the System.Configura-
tion assembly.

5 You can then use the ConfigurationManager static class to pull out the connection
string.

open System.Configuration
ConfigurationManager.ConnectionStrings["AccountsDb"].ConnectionString

Now that you’ve done this, you’ve completely decoupled the API layer from the data
access layer, while you’ve also removed the dependency on the application configura-
tion from the SQL layer.

Summary

That’s another capstone done! You’ve successfully integrated a SQL data access layer
into the application by using a type provider to quickly and easily give you strongly
typed access to a database. You also had a look at a practical example of creating a plug-
gable interface from F# in tandem with higher-order functions in order to decouple an
API from a data access layer.

Listing 35.8 Creating a SQL Connection object

Listing 35.9 Retrieving a connection string from the configuration system

Creating a SQL
connection object
in a using blockOpening the connection

before using it

Using ConfigurationManager
to retrieve the AccountsDb
connection string

423

U
N

IT

8

Web programming

You can’t have any programming language and
platform these days without having a decent story
for web programming! Luckily, F# is a great fit for
working on the web, with a great set of libraries and
frameworks that it can use. This unit covers both
creating and consuming web-based resources.
You’ll use a set of technologies that exist in the gen-
eral .NET ecosystem—ones that you’re probably
already familiar with—and some cool F#-specific
technologies as well.

36LESSON
ASYNCHRONOUS WORKFLOWS

The past few units have focused almost exclusively on libraries and frameworks that
work with F#. This first lesson of the unit briefly hops back to the language side of
things and introduces an important language feature in F# called asynchronous work-
flows, which allow you to orchestrate asynchronous and multithreaded code in a man-
ageable way. These provide ways to parallelize code more easily, allowing you to create
high-performing and scalable applications. You’ll see

 Why asynchronous programming is important
 What async workflows are
 A comparison of async programming in F# and C#
 Computation expressions in general

36.1 Comparing synchronous and asynchronous models

Although there’s a decent chance that you’re already aware of multithreading and asyn-
chronous programming (especially if you’ve been working with C# 5), it’s worth quickly
covering these terms and why they’re important for the web. I’m going to slightly sim-
plify things by talking about synchronous and asynchronous work. The former rep-
resents work that happens in a single, sequential flow of execution—essentially, all the
code you’ve written thus far. Asynchronous work represents the notion of doing work
425

426 Lesson 36 Asynchronous workflows
in the background, and when it completes, receiving notification that the background
work has finished, before consuming the output and continuing.

Why might you want to perform background work? The most obvious reason is perfor-
mance, because doing work in the background allows you to perform multiple tasks at
the same time. You can kick off several tasks in the background, each working with its
own pieces of data, and then when they’re all done, carry on with the main program.
Efficiency concerns exist as well, particularly when it comes to communicating with
external systems such as databases or other web servers. Using asynchronous APIs can
free up threads in the application while they wait for the external resource to return, so
that the web application can effectively handle more requests from more users at the
same time. An example comparing both approaches is shown in figure 36.1.

36.1.1 Threads, tasks, and I/O-bound workloads

There are several (perhaps too many!) ways of performing background work in .NET.
I’m not going to devote too much time to this, but rather give you a brief overview;
many great resources are available for you to read up on this elsewhere in painful detail.

Synchronous

Generate
report Load company data Load finance

history Finish

Asynchronous

Generate
report Finish

Load finance history

Load
company data

“Background
work”

Figure 36.1 An example of performing the same work both in synchronous and asynchronous fashion

http://tomasp.net/blog/csharp-async-gotchas.aspx/
http://tomasp.net/blog/csharp-async-gotchas.aspx/

427Comparing synchronous and asynchronous models
Threads

The lowest primitive for allocating background work is the thread. A .NET application
has a thread pool with a finite number of threads; when you execute work on a back-
ground thread, the thread pool assigns a thread to carry out the work. When the work is
finished, the thread pool reclaims the thread, ready for the next piece of background
work.

Tasks

Introduced in .NET 4, tasks are a higher-level abstraction over threads. They’re much
easier to work with and reason about, with good support for cancellation and parallel-
ism, and so effectively became the de facto type in C# and VB .NET to use for perform-
ing background work.

I/O-bound workloads

Both threads and tasks can be thought of as supporting CPU-bound workloads—work
that’s carried out in the current process. I/O-bound workloads are background tasks that
you want to execute that don’t need a thread to run on. These are typically used when
communicating and waiting for work from an external system to complete. Instead of
using a thread from the pool (which both the thread and task models do), the operating
system provides a low-level callback that .NET monitors; when the external system
returns with data, .NET picks up the response and resumes work. These sorts of meth-
ods are truly asynchronous; they don’t block any threads while running. Table 36.1
shows some example I/O- and CPU-bound workloads.

Why is asynchronous code important with regard to web applications in particular? The
main reason is throughput. A web application may be receiving hundreds, or even thou-
sands, of requests from different users per second, and processing those requests as
quickly as possible is usually extremely important. Because a .NET process has only a
finite number of threads, it’s important to use those threads as effectively as possible—

Table 36.1 Examples of I/O- and CPU-bound workloads

Type Example

CPU Calculating the average of a large set of numbers

CPU Running a set of rules over a loan application

I/O Downloading data from a remote web server

I/O Loading a file from disk

I/O Executing a long-running query on SQL

428 Lesson 36 Asynchronous workflows
and this means eliminating times that a thread is blocked, idling—for example, waiting
for SQL to return some data. That’s why, where possible, you should try to work with
asynchronous code.

36.1.2 Problems with asynchronous models

From a programming perspective, a few difficulties arise when working with asynchro-
nous code. Reasoning about several background items working concurrently (at the
same time) is hard, particularly with things like synchronization of multiple work items
or exception handling.

In the spirit of this book, I’m not going to go over the same ground that’s been covered
in depth many times before (particularly since C# 5 came into being). Suffice it to say
that writing truly asynchronous code by using what’s called continuation passing style is
very hard to get right. In order to solve this, the F# team came up with a brilliant solu-
tion: asynchronous workflows.

What about async/await?
If you’ve used a relatively recent version of C# (basically C# 5 onward), you’re almost cer-
tainly aware of the async/await pattern. Great! Then a lot of this lesson will feel natural
to you. That’s because the async/await pattern is based on F#’s asynchronous work-
flows—although as you’ll see, async/await isn’t quite as flexible.

Quick check 36.1

1 What’s the preferred type to use in .NET when executing work in the background?
2 What’s the difference between CPU- and I/O-bound workloads in terms of their activity

on a thread?

QC 36.1 answer
1 System.Threading.Tasks.Task.
2 CPU-bound workloads consume a thread while working; I/O ones shouldn’t.

429Introducing asynchronous workflows
36.2 Introducing asynchronous workflows

Whereas threads and tasks are library features to schedule background work, the async
workflow is a language-level feature to achieve the same thing.

36.2.1 Async workflow basics

The gist of async workflows is easy: wrap any code block that you want to execute in the
background in an async { } block. As you’ll see, this can range from something as simple
as a single value to doing a complex set of calculations. Let’s look first at how you might
schedule work in the background by carrying out the same piece of work synchro-
nously and asynchronously; execute both blocks separately in a script to observe the dif-
ferences in behavior.

printfn "Loading data!"
System.Threading.Thread.Sleep(5000)
printfn "Loaded Data!"
printfn "My name is Simon."

async {
 printfn "Loading data!"
 System.Threading.Thread.Sleep(5000)
 printfn "Loaded Data!" }
|> Async.Start

printfn "My name is Simon."

The first version executes a set of code instructions that block the thread for five seconds
(simulating loading data from an external system) before printing someone’s name. The
problem is that you can’t print the final line until the first three are completed (and FSI
will be completely blocked for you while it executes).

The second version wraps the long-running portion of code into an async { } block, and
fires it off in the background by using the Async.Start method. The difference is that now
the person’s name is printed immediately, while the asynchronous block executes in a
background thread.

Let’s now look at another example. This time, unlike the previous example, which was a
fire-and-forget one, you’ll see how to asynchronously execute code that returns a value.

Listing 36.1 Scheduling work with async blocks in F#

A conventional,
synchronous sequential
set of instructions

Wrapping a portion of
code in an async block

Starting the async block
in the background

430 Lesson 36 Asynchronous workflows
let asyncHello : Async<string> = async { return "Hello" }
let length = asyncHello.Length
let text = asyncHello |> Async.RunSynchronously
let lengthTwo = text.Length

Try this out yourself, executing one line at a time. As you can see, by wrapping the text
Hello in an async block, rather than getting back a string, you get back an async string.
This means, “When you start this async workflow, it will at some point in the future
return a string.” You can’t dot into an async workflow to, for example, get the length of
a string; you first need to unwrap the value. A couple of other points worth noting are

 Unlike normal expressions, the result of an async expression must be prefixed
with the return keyword.

 You can unwrap an Async<_> value by calling Async.RunSynchronously. This is roughly
equivalent to Task.Result; it blocks the current thread until the workflow is
completed.

One other important distinction is that creating an async block doesn’t automatically
start the work in the block; you have to explicitly start it. One way is to use one of the
methods on the Async class—for example, RunSynchronously or Start (see section 36.5.3 for a
full list of useful methods). Also, unlike Task.Result, if you repeatedly call RunSynchronously
on an async block, it will re-execute the code every time.

36.2.2 More-complex async workflows

You can do more than simple one-liners in an async block. If you want to delegate work
that does more than output hello world, that’s no problem; you can wrap entire function
calls and blocks of code within them. Here’s an example of a more complex async work-
flow that calls a nested function.

open System.Threading

let printThread text = printfn "THREAD %d: %s"
Thread.CurrentThread.ManagedThreadId text

let doWork() =

Listing 36.2 Returning the result from an async block

Listing 36.3 Larger async blocks in F#

Returning a value from
an async block

Compiler error when
trying to access a
property of an async
value

Executing and unwrapping
an asynchronous block on
the current thread

A standard function
that simulates a long-
running piece of work

431Introducing asynchronous workflows
 printThread "Starting long running work!"
 Thread.Sleep 5000
 "HELLO"

let asyncLength : Async<int> =
 printThread "Creating async block"
 let asyncBlock =
 async {
 printThread "In block!"
 let text = doWork()
 return (text + " WORLD").Length }
 printThread "Created async block"
 asyncBlock

let length = asyncLength |> Async.RunSynchronously

If you execute this code in one chunk, you’ll see the following output:

THREAD 1: Creating async block
THREAD 1: Created async block
THREAD 5: In block!
THREAD 5: Starting long running work!

It’s important to realize that no work occurs until you execute the final line in the script;
everything up until that point compiles the code but doesn’t start the background work.
You can create async blocks easily, pass them around your application without problems,
and then execute them at a time of your choosing by calling Async.RunSynchronously.

Printing to console
within an async block

Returning a number
from within the block

Unwrapping
the number

Quick check 36.2

1 What extra keyword must you use in async blocks to return a value?
2 Do async workflows immediately execute on creation?

QC 36.2 answer
1 return.
2 No. You should start them explicitly by using Async.Start or RunSynchronously.

432 Lesson 36 Asynchronous workflows
36.3 Composing asynchronous values

async blocks like those you’ve seen so far are already useful in their own right. You can
easily reason about what you want to run asynchronously, and then pass that code
around as a simple value. But you’ve seen that to unwrap an asynchronous value, you
need to call Async.RunSynchronously. This blocks the current thread until the async work-
flow has executed—which is a real shame! What’s the point in passing around code that
can run in the background if you need to block the current thread to get at the result?
Luckily, F# has a built-in way to continue when a background workflow completes,
called let!.

let getTextAsync = async { return "HELLO" }
let printHelloWorld =
 async {
 let! text : string = getTextAsync
 return printf "%s WORLD" text }

printHelloWorld |> Async.Start

A few things are happening here, so let’s take it step by step. First, you create an async
block. Inside that block, you execute the getTextAsync computation and wait for the string
result by using the let! keyword (if you’ve used C# 5’s async/await before, think of this
as loosely equivalent to await). This keyword is valid only when inside the async block;
you can’t use it outside. Now, notice that the value text is a type string—not an async
string! Essentially, let! waits for asyncWork to complete in the background (it doesn’t block
a thread), unwraps the value for you, and then continues. Try replacing let! with just let
and see what happens. Finally, you close the block and then start this composed async
workflow in the background by using Async.Start. Async.Start is perfect if you want to
kick off a workflow that has no specific end result, as in this case where the workflow
prints out something to the console.

async blocks also allow you to perform try/with blocks around a let! computation; you
can nest multiple computations together and use .NET IDisposables without a problem.

Listing 36.4 Creating a continuation by using let!

Using the let! keyword
to asynchronously
unwrap the result

Continuing work with
the unwrapped string

Starting the entire
workflow in the background

433Using fork/join

36.4 Using fork/join

One thing that’s extremely easy to achieve with async blocks is to perform a fork/join: you
launch several async workflows in the background, wait until all of them are completed,
and then continue with all the results combined. In F#, you use Async.Parallel to collate a
collection of async workflows into a single, combined workflow. Note that it doesn’t start
the new workflow; instead , it creates a new workflow that represents the result of all the
individual workflows collated together (see figure 36.2).

Here’s how you might asynchronously generate and work with 50 random numbers.

let random = System.Random()
let pickANumberAsync = async { return random.Next(10) }
let createFiftyNumbers =
 let workflows = [for i in 1 .. 50 -> pickANumberAsync]

Listing 36.5 Looking at fork /join with Async.Parallel

Quick check 36.3

1 What’s the purpose of the let! keyword?
2 When do you need to use the return keyword in F#?

QC 36.3 answer
1 To asynchronously wait for another async computation to complete.
2 At the end of an async block to return a result.

Async.Parallel

 Async<int>

 Async<int>

 Async<int>

Async<int array>

Figure 36.2 Async.Parallel combines multiple
workflows of the same type into a single workflow.

Creating 50
asynchronous
computations

434 Lesson 36 Asynchronous workflows
 async {
 let! numbers = workflows |> Async.Parallel
 printfn "Total is %d" (numbers |> Array.sum) }
createFiftyNumbers |> Async.Start

Again, try this yourself; the important thing to note here is the use of Async.Parallel.
Remember that this handy function goes from Array<Async<T> to Async<Array<T>>—see fig-
ure 36.2. In this case, this means going from Array<Async<int>> to Async<Array<int>>, which
can be awaited (incidentally, this is similar to Task.WhenAll).

Now you try

Now try downloading data from HTTP resources—using a BCL method that supports
F#’s async feature natively. It’ll use .NET’s native async support so that you can down-
load data much more efficiently:

1 Write a function, downloadData that takes in a single string URL and asynchro-
nously returns the number of bytes in the contents. It should have a signature of
string -> Async<int>:
a You can use the standard System.Net.WebClient object to perform the download.
b You can use a handy method on the WebClient designed to work specifically

with async workflows, called AsyncDownloadData. (You’ll have to create a
System.Uri from the string to work with this function.)

3 You can use let! to unwrap the async<byte[]> into a byte [].
4 You can then return the Length of the byte.
5 Within your script, create an array of three URLs:

a http://www.fsharp.org
b http://microsoft.com
c http://fsharpforfunandprofit.com

4 Use standard Array.map in conjunction with your downloadData function to map the
array of string into an array of Async<int>.

5 Use Async.Parallel to execute the workflows in parallel and return all the results as
one.

6 Use Async.RunSynchronously to block until you have the results.
7 Sum the results by using standard Array.sum to get the total number of bytes

downloaded.

Executing all computations
in parallel and unwrapping
the collated results

http://www.fsharp.org
http://microsoft.com
http://fsharpforfunandprofit.com

435Using tasks and async workflows
Your code should look like something like this.

let downloadData url = async {
 use wc = new System.Net.WebClient()
 printfn "Downloading data on thread %d" CurrentThread.ManagedThreadId
 let! data = wc.AsyncDownloadData(System.Uri url)
 return data.Length }

let downloadedBytes =
 urls
 |> Array.map downloadData
 |> Async.Parallel
 |> Async.RunSynchronously

printfn "You downloaded %d characters" (Array.sum downloadedBytes)

36.5 Using tasks and async workflows

Since .NET already has the Task type, let’s spend a few minutes comparing it with Async.

36.5.1 Interoperating with tasks

The Async type isn’t something pervasive in .NET—instead, there’s a good chance that
any libraries you use work with the Task type. Luckily, F# has a couple of handy combi-
nators (or transformation functions) that allow you to go between Task and Async, similar
to how Option has combinators for Nullables:

 Async.AwaitTask converts a task into an async workflow.
 Async.StartAsTask converts an async workflow into a task.

Listing 36.6 Asynchronously downloading data over HTTP in parallel

Quick check 36.4 What does Async.Parallel do?

QC 36.4 answer Async.Parallel allows fork/joins of multiple Async values.

436 Lesson 36 Asynchronous workflows
Now you try

Let’s see how to change the preceding code so that it uses the task version of Download-
DataTaskAsync, rather than the F#-specific AsyncDownloadData version:

1 Starting from listing 36.7, replace the call to AsyncDownloadData with one to Download-
DataTaskAsync.

2 Your code won’t compile. You can only unwrap an Async<_> inside an async block,
but you have a Task here. So, pipe the Task into the Async.AwaitTask function to con-
vert the Task into an Async. Your code will compile again.

3 Replace the call to Async.RunSynchronously with a call to Async.StartAsTask. Observe
that downloadedBytes is no longer an int[] but a Task<int[]>.

4 In the call to the printfn expression, rather than printing out downloadedBytes, print
out downloadedBytes.Result.

let downloadData url = async {
 let! data =
 wc.DownloadDataTaskAsync(System.Uri url) |> Async.AwaitTask
 return data.Length }

let downloadedBytes =
 urls
 |> Array.map downloadData
 |> Async.Parallel
 |> Async.StartAsTask

printfn "You downloaded %d characters" (Array.sum downloadedBytes.Result)

36.5.2 Comparing tasks and async

Let’s take a quick look at table 36.2 at some of the distinctions between .NET’s Task and
F#’s Async types, as well as the async/await pattern.

Listing 36.7 Replacing calls to and from Async with Task-bound methods

Table 36.2 Tasks and async compared

Task and async await F# async workflows

Native support in F# Via async combinators Yes

Allows status reporting Yes No

Clarity Hard to know where async starts and stops Very clear

Using the AwaitTask
combinator to convert

from Tasks to Async

Using the StartAsTask
combinator to convert
from Async to Task

437Using tasks and async workflows
The venerable Tomas Petricek has a great post on async/await versus async workflows,
with several excellent examples of where async/await breaks down. I recommend you
read this in your own time (see http://tomasp.net/blog/csharp-async-gotchas.aspx/),
particularly around the notion of where async starts and stops.

In general, internally in your F# code I recommend using async workflows wherever
possible. At times you might want to use tasks instead, but that’s unusual. One case is
for interop purposes; another is for extremely large numbers of CPU-bound items,
where Task is more efficient. Async was originally designed for asynchronous work
rather than, for example, huge numbers of tiny CPU-bound work items.

Of course, it’s not unusual to rely on libraries that themselves expose tasks (including
many within the BCL), but generally you’ll immediately convert them to asyncs so you
can use let! on them within an async block.

36.5.3 Useful async keywords

Table 36.3 provides a quick list of most of the common Async keywords and functions
that you’ll be using.

Unification Task and Task<T> types Unified Async<T>

Statefulness Task result evaluated only once Infinite

Table 36.3 Common Async commands

Command Usage
let! Used within an async block to unwrap an Async<T> value to T

do! Used within an async block to wait for an Async<unit> to complete

return! Used within an async block as a shorthand for let! and return

Async.AwaitTask Converts Task<T> to Async<T>, or Task to Async<unit>

Async.StartAsTask Converts Async<T> to Task<T>

Async.RunSychronously Synchronously unwraps Async<T> to <T>

Async.Start Starts an Async<unit> computation in the background (fire-and-forget)

Async.Ignore Converts Async<T> to Async<unit>

Async.Parallel Converts Async<T> array to Async<T array>

Async.Catch Converts Async<T> into a two-case DU of T or Exception

Table 36.2 Tasks and async compared (continued)

Task and async await F# async workflows

http://tomasp.net/blog/csharp-async-gotchas.aspx/

438 Lesson 36 Asynchronous workflows
Some of these you haven’t seen yet, but it’s good to know that they’re there. Experiment
with them on a scratchpad in order to see how they work.

Summary

You’ve now completed the async lesson. In this lesson

 You were introduced to the async expression.
 You learned how to use it to easily compose multiple async blocks together.
 You learned to execute multiple async workloads in parallel.

Try this

 Write an application to demonstrate the differences in terms of performance and
threads between synchronous, multithreaded, and asynchronous parallel down-
loading of 10 HTTP resources.

 Then, try using the Async methods included in FSharp.Data for downloading
JSON data from a remote resource.

 Finally, try to handle an exception raised in an async block by using the Async.Catch
method.

Quick check 36.5

1 How do you convert from Async to Task?
2 Name one benefit that Task offers over Async.

QC 36.5 answer
1 Using Async.StartAsTask.
2 Tasks allow you to report on the progress of a work item. Tasks are also more efficient when

working with large groups of work items.

37LESSON
EXPOSING DATA OVER HTTP

In this lesson, you’ll look at ways to create HTTP-enabled APIs by using F# on the .NET
platform. First, you’ll do this by using the well-known Microsoft ASP .NET framework,
using the Web API component; you’ll then move on to looking at an alternative web
technology, Suave. You’ll learn about

 Working with the ASP .NET Web API and F#
 Reasoning about HTTP response codes in F#
 Working with Async and ASP .NET
 Using Suave, an F#-first web application model

37.1 Getting up and running with the ASP .NET Web API

Let’s jump straight into this lesson and dispel any fears that your ASP .NET applications
are somehow not compatible with F# by creating an ASP .NET application, in F#! You’ll
look at two hosting mechanisms: web projects and console apps.

37.1.1 Web projects with F#

Exposing data over HTTP in .NET is most commonly done by using Microsoft’s ASP
.NET framework; if you’ve done any form of web programming on .NET, it’s a safe bet
439

440 Chapter 37 Exposing data over HTTP
that you’ve used it in some form, be it using the old-school Web Forms, its replacement
MVC, or its API-focused sibling Web API. The most common and popular way to host
an ASP .NET application in .NET is as a web project. These projects bootstrap into IIS (or
its little sibling, IIS Express), with a web.config file providing configuration information
to .NET (rather than an app.config).

Here’s the bad news out of the way: within the F# world, out of the box, Visual Studio
has no tooling support for web projects. Now here’s the good news: the F# community
has fixed this with some excellent third-party templates that are available within Visual
Studio.

Now you try

You’re now going to create a basic ASP .NET Web API 2 application with F#:

1 Open Visual Studio and choose the standard New Project.
2 In the New Project dialog box, choose Online > Templates > Visual F# > F# MVC 5.
3 From the next dialog box, choose Web API 2.2 and Katana 3.0 (Empty). You’ll

now have an empty Web API project with no controllers. Although larger, ready-
made templates are available with ready-made controllers, start with an empty
one so that you can see the basics first (you’ll also notice a non-Katana Web API
project, which uses the older global.asax-based web projects). In case you’re
unaware of Katana: it’s a middleware layer that allows you to plug lightweight
OWIN-compliant web applications into IIS.

4 Build the solution to pull down any NuGet packages required.
5 Run the solution. You’ll see that a website is created on IIS Express, and a

browser page opens with an error page. Of course, there’s nothing to see yet!

Problems with F# and web projects
The basic lack of support for web projects boils down to Visual Studio not understanding
how to resolve a web project with F# tooling. You can manually create a web project by
creating a standard F# console application and changing the project GUID in the .fsproj
file, but that leaves you with another problem: the Add New Item dialog box won’t work,
so you’ll never be able to add a new file to the project. Thankfully, a registry fix can be
applied, and will automatically be done when you install the F# MVC template.

441Getting up and running with the ASP .NET Web API
At this point, let’s take a look at what you have in the solution: a single F# file,
Startup.fs. This file acts as the bootstrapper of your application and is similar to
what you’d have with the equivalent empty project in C#. A Startup class contains
two methods: one to configure the ASP .NET app builder, and another to config-
ure the Web API.

6 Delete the two serialization lines (you’ll come back to them shortly).
7 Add a new file to the project, Controllers.fs, and enter the following code into the

file. This file will implement a simple ASP .NET controller class that can respond
to HTTP GET requests to the api/animals route.

namespace Controllers
open System.Web.Http

type Animal = { Name : string; Species : string }

[<RoutePrefix("api")>]
type AnimalsController() =
 inherit ApiController()

 [<Route("animals")>]
 member __.Get() =
 [{ Name = "Fido"; Species = "Dog" }
 { Name = "Felix"; Species = "Cat" }]

This should be similar to what you’ve done in the past with the Web API in C#; in
fact, this is a standard .NET class, although the syntax looks a little different from
C#. If you haven’t used the Web API before, the RoutePrefix and Route attributes
identify the path that the HTTP request should come from (for example, api/ani-
mals). I’ve elected to use explicit Attribute routing here rather than set up conven-
tions in the bootstrapper, but you could’ve just as easily done that, too. Notice
that you’ve defined a standard F# record here and are exposing an F# List of Ani-
mals—nothing special there!

8 Run the application again and navigate to api/animals. Depending on what
browser you’re using, the result will either be opened directly in the browser or
downloaded. Using Chrome or Firefox, you’ll see output that probably looks
something like figure 37.1.

Listing 37.1 Your first Web API controller

Creating a type
from which to
expose data

Setting the Web
API route prefix

Setting the Web API route

Creating a
GET handler

442 Chapter 37 Exposing data over HTTP
9 Ugh—XML! That’s not what you want. You’d like some JSON data, right? Let’s
turn off the XML formatter. In the RegisterWebApi method, add the following line:

config.Formatters.Remove(config.Formatters.XmlFormatter) |> ignore

10 Rerun the application and refresh the browser, as shown in figure 37.2.

11 OK, this is looking better, as you’re now getting back JSON—except all the fields
have @ post-fixed on them. This is a side-effect of the way F#’s fields are compiled,
and one you can easily fix by replacing ASP .NET’s JSON formatter with one that
comes with JSON.Net. Back in RegisterWebApi, add the following line:

config.Formatters.JsonFormatter.SerializerSettings.ContractResolver�<-
 Newtonsoft.Json.Serialization.DefaultContractResolver()

12 Rerun the application and refresh the page, as shown in figure 37.3.

Figure 37.1 Default XML output when using ASP .NET

Figure 37.2 F# records serialized using the standard JSON formatter

443Getting up and running with the ASP .NET Web API
Job done! You’ve now created an ASP .NET Web API controller that uses the standard
.NET web project. Remember that Web API isn’t tied to C# or VB .NET, so any other fea-
ture in ASP .NET such as filters can be used (and implemented) in F#, as well as the
other features of Web API’s routing engine.

37.1.2 Using OWIN host with F#

An alternative mechanism for working with Web API is to use the OWIN host for Web
API, a lightweight host for ASP .NET that allows you to create a web host as part of any
application (for example, a console application, Windows service, or WPF application).
Another benefit of this approach is that you remove the reliance on custom tooling
(Visual Studio project templates); there’s just a standard .NET console/service and a cou-
ple of library calls, and you can more easily see what’s happening—there’s no “magic”
happening behind the scenes.

Now you try

Now you’ll try to create an F# console app that uses the OWIN host to host your Web
API app:

1 Create a standard F# console application.
2 From the project properties, set the target framework to .NET 4.5.2.
3 Install the Microsoft.AspNet.WebApi.OwinSelfHost NuGet package.
4 Copy across the Controllers and Startup files from the previous web project.

Figure 37.3 F# records are correctly serialized by using the Newtonsoft.Json
formatter.

CLIMutable for F# and JSON
A common misconception in the F# community is that you must use the [<CLIMutable>]
attribute on F# records in order to make them compatible with JSON serialization. This
isn’t true, and hasn’t been for some time now; just use the DefaultContractResolver.

444 Chapter 37 Exposing data over HTTP
5 Replace the entry point of Program.fs with the following. It starts up a listener on
your machine, using the Startup class for configuration.

open Microsoft.Owin.Hosting

[<EntryPoint>]
let main _ =
 use app = WebApp.Start<Startup>(url = "http://localhost:9000/")
 printfn "Listening on localhost:9000!"
 Console.ReadLine() |> ignore

 0 // return an integer exit code

6 Try browsing localhost:9000/api/animals. The result should be the same as
before.

37.2 Abstracting the Web API from F#

One thing about the Web API is that you have to expose controllers as classes. This isn’t
necessarily a terrible thing, but it does go against the grain of everything you’ve done
thus far (using modules as the primary method for grouping functions together). In my
experience, it’s not uncommon to separate out the implementation of a controller to a
module, and have the controller as a simple mapper that’s responsible for marshalling
data in and out of the web app. This way, you can write your application code without
worrying about HTTP response codes. In some ways, this isn’t so different from work-
ing with mixed C#/F# applications, but here we’re talking about JSON and HTTP
responses as the output, rather than C# classes.

Listing 37.2 Using the OWIN host to run a web application from a console

Launching the web
app host within the
console application

Blocking the console
from quitting

Quick check 37.1

1 Can you create F# web projects in Visual Studio?
2 Do you need to use CLIMutable to serialize records in JSON for ASP .NET?

QC 37.1 answer
1 Yes, but only via the third-party F# web templates.
2 Not when using Newtonsoft’s standard JSON serializer.

445Abstracting the Web API from F#
37.2.1 Abstracting HTTP codes from F#

Let’s take a simple example and consider basic HTTP results to be one of a few different
values:

 Success with a certain payload (HTTP 202)
 Invalid (HTTP 400)
 Not found (HTTP 404)
 Internal error (HTTP 500)

One thing you wouldn’t want to do is force your internal F# code to be polluted with
HTTP codes. A much better way is to abstract this away from your internal domain. Table
37.1 and figure 37.4 provide a sample mapping from HTTP return codes to a simple F#
domain model that models the first three cases using a nested discriminated union.

Let’s see how this maps to your real code; start by abstracting away the implementation
from the controller into a standalone module like the following. (I’ve also added a sec-
ond function to try to find a specific animal by name.)

Table 37.1 Mapping HTTP return codes from F# types

HTTP code F# type Example

202 (Accepted) Some Success Some(Success { Animal = "Cat"; Name = "Felix" })

400 (Bad Request) Some Failure Some(Failure "You must provide a valid name")

404 (Not Found) None None

500 (Internal Error) Exception SQL connection exception

Some

Success

{ Animal = “Cat”
Name = “Felix” }

Some

Failure

“Invalid format”

None

Figure 37.4 Modeling both success/failure and absence of value with DUs

446 Chapter 37 Exposing data over HTTP
module AnimalsRepository =
 let all =
 [{ Name = "Fido"; Species = "Dog" }
 { Name = "Felix"; Species = "Cat" }]
 let getAll() = all
 let getAnimal name = all |> List.tryFind(fun r -> r.Name = name)

The getAnimal function returns an Option<Animal>. The next task is to write a simple mapper
function to go from this to an HttpResponseCode object that ASP .NET understands, and
update the controller class as well.

[<AutoOpen>]
module Helpers =
 let asResponse (request:HttpRequestMessage) result =
 match result with
 | Some result -> request.CreateReponse(HttpStatusCode.OK, result)
 | None -> request.CreateReponse(HttpStatusCode.NotFound)

[<RoutePrefix("api")>]
type AnimalsController() =
 inherit ApiController()

 [<Route("animals/{name}")>]
 member this.Get(name) =
 AnimalsRepository.getAnimal name |> (asResponse this.Request)

You now have a function that can take in any result, in this case, either Some result or None,
and map it to an appropriate HttpResponseMessage. Notice that rather than manually creat-
ing an HttpResponseMessage, you’re using the CreateResponse method on the Request object that
you get for free when inheriting from ApiController and passing that in (this is all created
for you by the ASP .NET Controller Factory). Also, notice the explicit type annotation
on the createReponse argument. Because HttpRequestMessage isn’t an F# type, type inference
won’t be able to figure it out for you as usual.

Listing 37.3 Listing 37.3 Moving Web API logic to a standalone module

Listing 37.4 Mapping between F# and HTTP domains

Helper function to map
from Option to
HttpResponseCode

Mapping from
Option<Animal> to
an HttpResponseCode

447Abstracting the Web API from F#
Now you try

Next, enhance the application to handle success/failure cases more cleanly:

1 Run the application, hitting the route api/animals/Felix, and observe that the
route returns HTTP 202 with the correct result.

2 Browse the route api/animals/Toby; the result will be 404 with no response pay-
load.
So far, you’ve accounted for two of the four cases from table 37.1. Now you’ll
account for the next one, HTTP 400, which is often used, for example, for valida-
tion errors (invalid requests).

3 Create a new discriminated union type, Result. This type can store one of two
cases: either a successful payload, or a failure with a string explaining the error:
type Result<'T> = Success of 'T | Failure of error:string

4 Update the implementation of getAnimal so that if the name supplied contains any
nonletters, a failure case is raised with an appropriate error. Refer to table 37.1 if
you need help with the syntax to create a nested discriminated union
(Option<Result<Animal>>).

5 You’ll also have to lift the result of the existing call to tryFind into a Success case so
that the types of both cases match.

6 Update the asReponse function so that it caters to Some Failure and Some Success cases
instead of just Some.

7 Run the application and test that all three cases are working.

Because the Web API automatically cascades exceptions to response codes of 500, you
don’t have to do anything there. But you can test it out by adding logic to your getAnimal
function so that if it takes in a special string (for example, "FAIL"), it raises an exception
by using the failwith function.

Error handling in F#
To reiterate, it’s not always considered best practice to include exceptions as a standard
part of your application. Instead, use something like Result to raise failure cases that you
can account for. This way, they’re included in the type system, and you can more easily
reason about them through pattern matching. Again, Scott Wlaschin’s excellent series
on railway-oriented programming is an in-depth look at how to model failure cases, as
well as how to reason about them succinctly.

448 Chapter 37 Exposing data over HTTP

37.3 Working with Async

The Web API has native support for working with tasks. Your controllers can return
data asynchronously (and therefore wrapped as Task<T>), and the Web API will happily
unwrap this automatically in the background for you. Let’s see how to work with asyn-
chronous data in F# by using F#’s Async type, and yet still interoperate with the Web
API’s support for tasks, as shown in figure 37.5:

1 Wrap the implementation of getAnimal in an async { } block (remember to explicitly
return the result of the match expression!). Obviously, in this example no real
asynchrony is occurring; you’re just pushing this work to a background thread,
but the principle is the same.

2 The controller method will break, because you’re trying to push an Async<Option<Result
<Animal>>> into asResponse, which expects an Option<Result<Animal>>; you need to unwrap
the async somehow. The simple thing to do would be to call Async.RunSynchronously, but
this defeats the whole purpose of using asynchronous code within a web app.
Instead, you can make the controller method itself asynchronous.

[<Route("animals/{name}")>]
member this.Get(name) =
 async {
 let! result = AnimalsRepository.getAnimal name
 return result |> asResponse this.Request.CreateResponse
 }

Listing 37.5 Creating an asynchronous Web API controller method

Quick check 37.2

1 Why would you create a layer of abstraction from your application code and HTTP
request codes?

2 How might you model no result (404) within an F# application?

QC 37.2 answer
1 To protect your business logic code from HTTP results, making use of richer F# types such as

Option, Result.
2 Through the Option type (Some/None).

Creating an async block
Asynchronously

“awaiting” the
result of getAnimal

using let!

Returning the result

449Introducing Suave
3 Notice that the result of the controller method is now an Async<HttpResponseMessage>.
4 You’re still not there. The Web API doesn’t know how to work with F# async

blocks, only Tasks. Run the application and try to access the route; you’ll always
get back an HTTP 200 with an empty payload.

5 However, Web API can natively unwrap Task<T>. Convert the async to a Task by pipe-
lining the async workflow that’s returned by the Get(name) method into Async.Start-
AsTask. The result of the controller method will now be Task<HttpResponseMessage>.

6 Rerun the application and observe that the results are once again correct.

Your code now will run entirely asynchronously, yet still play nicely with the Web API
framework’s support for Task.

37.4 Introducing Suave

Suave is an F#-first web library designed to allow you to model your web applications
by using an entirely functional-first model. It’s lightweight, and after you get your head
around the concepts it introduces (which, admittedly, are different from those you’ll
know from ASP .NET), you can rapidly create powerful applications in a lightweight
fashion.

37.4.1 Modeling web requests as functions

One thing about ASP .NET is that it (unsurprisingly) pushes you into an object-oriented
model. You have controllers that inherit from base controllers; controllers are objects

ASP .NET engine
Serve HTTP

response

Convert to
Task<T>

 Controller
 Async<T>

 Get Animal
Async<T>

Figure 37.5 Moving from an F# Async<T> to Task<T> as needed by ASP .NET

Quick check 37.3 How do you return F# results wrapped in async blocks over ASP .NET?

QC 37.3 answer Convert from Async to Task via the Async.StartAsTask combinator.

450 Chapter 37 Exposing data over HTTP
with methods on them, and so forth. In reality, web applications are a great fit for func-
tional programming and F#:

 Web apps are by nature nearly always stateless; you take in an HTTP request and
give back an HTTP response.

 Web apps often need to use asynchronous programming, which F# has excellent
support for.

 Web apps—particularly the back end—are often data-centric; another great fit for F#.

Suave takes a different approach to ASP .NET: every request is handled by a web part,
which itself is built up of other, smaller web parts. A web part is a function with a sim-
ple signature:

HttpContext -> Async<HttpContext option>

This means that given an HTTP context (the details on the request/response), a web part
must asynchronously return either of the following:

 Some context—typically, the context that was passed in, perhaps along with an
updated response payload

 Nothing

A web part can be composed of other, smaller web parts, each working together to cre-
ate a pipeline that builds up to a final response. You can think of these as similar to fil-
ters or visitors. For example, one web part may convert an object to JSON. Another
might check whether the supplied route is a GET or POST request, and so forth. The follow-
ing code provides a simple Suave pipeline that mirrors your existing Web API control-
ler; also see figure 37.6. Table 37.2 shows some common web parts.

GET >=>
 choose [
 path "/api/animals" >=> (AnimalsRepository.getAll |> asJson)
 pathScan "/api/animals/%s" getAnimal]

Listing 37.6 A simple Suave pipeline

Match only requests
that are of type GET. Choose the first

matching handler
in this list.

If the path matches,
get all animals and
return as JSON.

If the path matches, try to get
the animal, supplying the animal
name taken from the route.

451Introducing Suave

This model of composing web parts is powerful, as you can rapidly build up arbitrary
pipelines based on small, reusable functions. But the syntax and model are very differ-
ent from what you’re probably used to. For example, a custom >=> operator is used to
connect two web parts together, as well as the underlying nature of Suave—basically, a
purely functional pipeline.

What’s nice about Suave is that it’s extremely lightweight. No code-gen is needed, nor is
there any requirement for custom projects. It can live as a console application or service
and is easy to start—just a single line of code, in fact: startWebServer defaultConfig app,
where app is your overall composed web part. The code sample has a full example that
shows how you might adapt the existing code into Suave. If you like what you see, it’s
worth checking out some of the excellent resources (both online and paper-based) to
learn more about it.

Table 37.2 Common Suave web parts

Web part Description
OK Returns a string response as HTTP 200.

GET Checks the incoming request. If it’s a GET, it passes the context along; otherwise,
returns nothing.

CHOOSE Takes in several web parts, trying each of them sequentially. The first one to return a
valid response is returned; otherwise, returns nothing.

PATH Scans the request URI. If it matches the specified URL, it passes the context along;
otherwise, returns nothing.

PATH
“api/animals”

Request is
HTTP GET

Found a
match

GETHTTP
request Response

Request
is not

HTTP GET No routes
matched

No
response

AS JSON
Return getAnimals as 200

CHOOSE first passing route

PATHSCAN
“api/animal/%s”

OK / ERROR / NOT FOUND
Call getAnimal and

handle result

Figure 37.6 A simple Suave pipeline

452 Chapter 37 Exposing data over HTTP

Summary

That’s a wrap for creating web applications in F#! In this lesson
 You learned how to create ASP .NET Web API applications in F# and Visual

Studio.
 You got F# to work smoothly with ASP .NET.
 You marshaled data between F# and ASP .NET domains.
 You worked with the Suave F# web programming library.

Try this

Enhance the sample application so that it handles POST requests as well as GETs. Alterna-
tively, create a web application in F# by using ASP .NET that serves data sourced from
the FootballResults.csv file in the data folder from the source code repository. Try to use
the CSV type provider as the data access layer!

Quick check 37.4

1 What’s a web part in Suave?
2 What does Suave’s GET web part do?

QC 37.4 answer
1 A function that takes in an HTTP context and may return a new context, asynchronously.
2 If the request is an HTTP GET, passes the context back out; otherwise, returns nothing.

38LESSON
CONSUMING HTTP DATA

Having seen how to serve HTTP data by using ASP .NET in F#, you’re now going to
look at the other side of the fence: consuming HTTP data quickly and easily by using
various F# libraries. You’ll learn about

 How you might access HTTP endpoints today
 Using FSharp.Data to work with HTTP endpoints
 HTTP.fs, a lightweight F# library for HTTP access
 The Swagger type provider

Let’s start by quickly considering a few common situations you might encounter today.

You’ve written an ASP .NET Web API application and deploy it to an environment
ready for testing. Quickly, the test team gives you feedback about some issues: some
data doesn’t match as expected. And under certain circumstances, the APIs don’t seem
to respond at all. You need to set up a way to easily explore these cases as they come,
possibly even in a repeatable way.

Here’s another one. You need to consume an HTTP endpoint from an external supplier.
The problem is that there’s no SDK to consume the API; you need to do it all yourself.
The API is complex. You need to first authenticate with a time-limited token, before
exploring the API (we don’t cover this in detail in this lesson, but an example is in the
code samples for this lesson).
453

454 Lesson 38 Consuming HTTP data
What options do you have for these sorts of situations? One is to use a tool such as Fid-
dler or Postman. These are either dedicated Windows or web applications that allow
you to test endpoints by sending example request payloads to an endpoint, getting the
response back in the browser, and analyzing the responses. But this isn’t necessarily the
most effective tool; you have to leave your development IDE and context switch to
another tool. And, if you want to do anything with the response, you need to copy the
information manually into an IDE to experiment with the data. To get around this,
another option is to go straight to the System.Net.WebClient (or related classes) to start hit-
ting the endpoints directly. Doing this is often painful to do, particularly with a console
application.

F# provides libraries for working with HTTP data quickly and easily. In this lesson,
you’ll explore three options, each with different benefits.

38.1 Using FSharp.Data to work with HTTP endpoints

FSharp.Data’s JSON type provider works well at consuming HTTP endpoints that
expose JSON data quickly and easily.

Now you try

You’re going to test this by using the HTTP API that you created in the previous lesson:

1 Open the Web API project from the previous lesson and start the Web API end-
point. Note that the following code samples assume a port of 8080, but you can find
the correct port from the Web tab of the project’s properties pane (see figure 38.1).

Figure 38.1 Identifying the host URI of IIS Express for Web API in
Visual Studio 2015

455Using FSharp.Data to work with HTTP endpoints
2 Create a new .fsx script and reference the FSharp.Data NuGet package.
3 Enter the following code to retrieve the names of all animals.

#I @"..\..\..\packages"
#r @"FSharp.Data\lib\net40\FSharp.Data.dll"
open FSharp.Data
type AllAnimalsResponse =
 JsonProvider<"http://localhost:8080/api/animals">
let names =
 AllAnimalsResponse.GetSamples()
 |> Seq.map(fun a -> a.Name)
 |> Seq.toArray

As you can see in figure 38.2, you can get IntelliSense over the payload of a route,
as it’s simply JSON (this is similar to what you did in the Data unit when access-
ing the NuGet API). You can also easily make a parameterizable function to get a
specific animal.

4 Enter the following code.

type GetAnimalResponse =
 JsonProvider<"http://localhost:8080/api/animals/Felix">
let getAnimal =
 sprintf "http://localhost:8080/api/animals/%s"
 >> GetAnimalResponse.Load
getAnimal "Felix"

Listing 38.1 Using FSharp.Data to access an HTTP endpoint

Listing 38.2 Creating a parameterizable function to access a route

Creating a type that
matches the
api/animals route

Retrieving all animals

Accessing the JSON in
a strongly typed fashion

Figure 38.2 IntelliSense
from FSharp.Data and an
HTTP route

Creating a type that matches the
parameterized Animals route

Creating a simple
function to call the APICalling the function

for a specific animal

456 Lesson 38 Consuming HTTP data
Unfortunately, using FSharp.Data does have a few restrictions. First, it doesn’t give you
total control over things such as HTTP headers and the like, and second, it works only
with JSON data (obviously). Finally, it doesn’t provide any built-in way of handling var-
ious response codes (for example, 400, 404, or 500). You need to write code that can
wrap any call within a try/with block and convert into a discriminated union (for exam-
ple, Result<’T>).

type Result<'TSuccess> = Success of 'TSuccess | Failure of exn
let ofFunc code =
 try code() |> Success
 with | ex -> Failure ex
let getAnimalSafe animal =
 (fun () ->
 sprintf "http://localhost:8080/api/animals/%s" animal
 |> GetAnimalResponse.Load)
 |> ofFunc
let frodo = getAnimalSafe "NoSuchAnimal"

FSharp.Data is a lightweight, quick-and-easy way to start consuming JSON data
enabled over HTTP. But it doesn’t contain any mechanisms for discovering routes; you
need to know them already, and you need to create a separate type for each type of data
exposed.

Listing 38.3 Writing a simple try/with converter to Result

A Result
discriminated unionCombinator function

to wrap any code in
a try/with block and
convert to Result

Wrapping the
GetAnimalResponse
in Result

Safely calling the route
with a nonexistent animal

Quick check 38.1

1 Why might you use FSharp.Data to consume a JSON resource over HTTP?
2 What limitations does FSharp.Data have with working with HTTP resources?

QC 38.1 answer
1 FSharp.Data is extremely quick and easy to use, and works with all JSON web services.
2 Works only with JSON services; no error handling is built in.

457Working with HTTP.fs
38.2 Working with HTTP.fs

HTTP.fs is a small, general-purpose NuGet package for working with data over HTTP,
and enables close control over both creating requests and processing responses.

38.2.1 Building requests as a pipeline

HTTP.fs follows a standard pattern you’ve already seen when working with immutable
data and composable functions: you build a request by chaining together small func-
tions that modify a request in some way, as shown in figure 38.3.

In the fictitious figure 38.3, you’re creating a small pipeline to build an HTTP request.
First, you create a basic GET request, before modifying the request in several ways before
calling getResponse, which fires off the request and returns the data. Here’s how that looks
in code.

createRequest Get "http://host/api/animals"
|> withCookie { name = "Foo"; value = "Bar" }
|> withHeader (ContentType "test/json")
|> withKeepAlive true
|> getResponse

Listing 38.4 Mapping an HTTP composition pipeline in HTTP.fs

HTTP.fs versions
Newer versions of HTTP.fs have slightly increased the complexity of the library by intro-
ducing a dependency on other third-party libraries. To keep things simple, you’ll be using
a slightly older version of the library (1.5.1), which has a smaller API surface area and is
therefore, in my opinion, easier to work with.

withCookie withHeader withKeepAlive

createRequest

GET

“api/animals”

getResponse

Figure 38.3 Creating an HTTP request by chaining small functions together

458 Lesson 38 Consuming HTTP data
As you can see, the code maps closely to the diagram. You could use this mechanism to
construct any sort of HTTP message, with security tokens as headers, or custom cookies.

Unlike FSharp.Data, HTTP.fs returns the optional response (as raw text) as part of an
object that also contains any headers, cookies, the content length, and the response code.

Now you try

Now test HTTP.fs against your running Web API:

1 Add a reference to HTTP.fs 1.5.1 (if you’re using the packages included in the
code repository, it’ll already be in the packages folder) and open the HttpClient
namespace.

2 Create a request to the Animals endpoints.

#r @"Http.fs\lib\net40\HttpClient.dll"
open HttpClient
let request = createRequest Get "http://localhost:8080/api/animals"
let response = request |> getResponse

The request object contains all the details needed for an HTTP request: the URI to hit,
any cookies, headers, a body for POSTs, the type of request, and so forth. When you send
this to the web server by using getResponse, you get back the following.

{StatusCode = 200;
EntityBody =
Some "[{"Name":"Fido","Species":"Dog"},{"Name":"Felix","Species":"Cat"}]";
ContentLength = 66L;
Cookies = map [];
Headers =
Map
 [(ContentTypeResponse, "application/json; charset=utf-8");
 (DateResponse, "Mon, 16 Jan 2017 15:34:02 GMT");
 (Server, "Microsoft-IIS/10.0"); (NonStandard "X-Powered-By", "ASP.NET");
 (NonStandard "X-SourceFiles", <elided>)];}

Listing 38.5 Creating your first request with HTTP.fs

Listing 38.6 Getting a response from ASP .NET Web API with HTTP.fs

Status code of 200

Response body is a string option

Any headers from the
server are provided.

459Working with HTTP.fs
Notice that the EntityBody property is an Option<string> to cater to when there’s no valid
payload returned. Now, continue by working on calling the “named animal” route.
Remember from the previous lesson that this endpoint might return a valid animal if
one was found, or none, or an HTTP 400 if the name contains numbers:

3 Now, add a reference to Newtonsoft.Json and create some helper functions:

open Newtonsoft.Json
let buildRoute = sprintf "http://localhost:8080/api/%s"
let httpGetResponse = buildRoute >> createRequest Get >> getResponse

Now that you have that helper function, you can easily write some API wrappers.
Here’s a simple one that gets the response, and if there’s a payload, converts it to an F#
record.

type Animal = { Name : string; Species : string }
let tryGetAnimal animal =
 let response = sprintf "animals/%s" animal |> httpGetResponse
 response.EntityBody
 |> Option.map(fun body -> JsonConvert.DeserializeObject<Animal>(body))

It’s easy to build a simple DSL around your own custom routes to allow you to create
scripts (or even full APIs) around them. And because HTTP.fs is a simple library, and
not a framework, you’re free to use it however you want. For example, you could easily
use the provided type that you generated in listing 38.1 to handle deserialization rather
than an explicit F# record and Newtonsoft.Json. But the cost of this flexibility is that you
have to usually create a wrapper façade around HTTP.fs; you wouldn’t want to expose
the outputs from a low-level library like this to callers. There are also no provided types
here; you’ll have to create your own types, share types across both server and client, or
use something like the JSON type provider to give you types based on sample JSON.

Listing 38.7 Creating a wrapper API function with HTTP.fs and Newtonsoft.Json

Helper function to build
a route to your API

Creating a composed
function to go from a string
to an HTTP.fs response

Getting the
response from Web

API via HTTP.fs

Checking the entity
body has a value Converting it with

Newtonsoft.Json

460 Lesson 38 Consuming HTTP data

38.3 Using the Swagger type provider

Swagger is rapidly becoming a standard for providing schematized metadata HTTP
APIs (as well as an interactive browser application). It provides a web front end as well
as a programmatic API for working with web APIs. It’s a service to provide information
about other services! Most languages and runtimes provide a Swagger generator, and
.NET is no different, with the Swashbuckle package. Figure 38.4 shows what a Swagger
endpoint looks like for your Animal web service.

38.3.1 Adding Swagger to ASP .NET Web API 2

To save you some time, I’ve made small modifications to the Web API project from les-
son 37. You’ll find the modified version in the lesson-38 folder. I’ve added the Swash-
buckle NuGet package to the project, fixed the binding redirects that NuGet forgot to
do, and then made several small changes to the code base. First, I’ve added Swagger
support to the ASP .NET pipeline so that it runs on start-up.

open Swashbuckle.Application
config
 .EnableSwagger(fun config ->
 let path = sprintf @"%s\bin\FSharpWeb.XML"
 System.AppDomain.CurrentDomain.BaseDirectory
 config.IncludeXmlComments path
 config.SingleApiVersion("v1", "Animals") |> ignore)
 .EnableSwaggerUi() |> ignore

Listing 38.8 Activating Swagger within ASP .NET Web API

Quick check 38.2

1 What property is exposed by HTTP.fs that contains the response body?
2 How are errors exposed by HTTP.fs?

QC 38.2 answer
1 EntityBody.
2 The StatusCode property—no exceptions are for server-generated errors.

Enabling Swagger
documentation generation

Using XML code
comments to
generate API docs

Turning on the Swagger GUI

461Using the Swagger type provider
Having turned on XML comments support, I applied comments and attributes to the
HTTP routes so that they document what they do, as shown in figure 38.5.

Now that that’s all working, you can launch the application and navigate to the Swagger
docs endpoint. You’ll now have a full web UI showing the different API methods you’ve
surfaced, along with your XML comments on the right-hand side and an example
response document. Neat!

Figure 38.4 Viewing the Swagger-generated API documentation

Figure 38.5 Decorating a route with
the [<ResponseType>] attribute and XML
triple-slash comments

462 Lesson 38 Consuming HTTP data
38.3.2 Consuming Swagger APIs in F#

Swagger on its own is great, but even better is that the Swagger type provider for F# can
generate a full API from the Swagger endpoint.

Now you try

Try it out yourself by consuming the API you just made:

1 In your script, add #r references to YamlDotNet and both SwaggerProvider and Swagger-
Provider.Runtime assemblies in SwaggerProvider.

2 Enter the following code to create a typed instance of the Swagger provider.

#I @"..\..\..\packages"
#r "YamlDotNet/lib/net35/YamlDotNet.dll"
#r "SwaggerProvider/lib/net45/SwaggerProvider.dll"
#r "SwaggerProvider/lib/net45/SwaggerProvider.Runtime.dll"
open SwaggerProvider
type SwaggerAnimals =
 SwaggerProvider<"http://localhost:8080/swagger/docs/v1">
let animalsApi = SwaggerAnimals()

Now, you can dot into animalsApi and get access to all the methods you’ve exposed. And not
only that, but the full response types will also be generated for you, as shown in figure 38.6.

As you can see in figure 38.7, you also get generated comments based on the source
XML comments—even at the field level.

This automatic API and type generation make it incredibly easy to start consuming web-
enabled APIs in F#, since you get automatic route discovery and type generation. How-
ever, this means that the caller must expose an accurate schema via Swagger.

Listing 38.9 Hooking up the Swagger type provider to a Swagger endpoint

Generating an
API from the
Swagger
endpoint

Creating an instance of the API

Figure 38.6 Consuming a Swagger endpoint by using the Swagger type provider

463Summary

Summary

That concludes the consuming side of the HTTP unit. Let’s quickly review what we cov-
ered. In this lesson

 You saw how to use FSharp.Data to quickly and easily consume JSON-ready
HTTP endpoints.

 You then worked with the HTTP.fs package, a low-level package that gives you
full control over sending HTTP requests to web servers.

 You looked at the Swagger type provider, which provides you with full access to
a generated HTTP client based on Swagger metadata.

Try this

Enhance the error handler in listing 38.3 so that failures have specific cases instead of
just an exception (for example, PageNotFound | InternalServerError of exn | BadRequest). Then,
enhance the tryGetAnimal function in listing 38.7 to check the StatusCode and emit logging if
an HTTP 400 or 500 response is received. Finally, try to replace the explicit F# record in
listing 38.7 with the provided type created in listing 38.1.

Figure 38.7 XML comments are generated by the Swagger type
provider for fields as well as methods.

Quick check 38.3

1 What is Swagger?
2 What NuGet package is used in order to create Swagger documentation on .NET?

QC 38.3 answer
1 A standard for exposing schematized metadata on a web API.
2 Swashbuckle.

39LESSON
CAPSTONE 7

In this capstone exercise, you’ll apply the lessons you’ve learned in this Web Program-
ming unit to the Bank Accounts solution that you’ve been working on throughout the
book. Start in src/code-listings/lesson-39.

39.1 Defining the problem

In this capstone, you’ll first make your application web-enabled: you’ll add a Web API
layer on top, before consuming it via a script over HTTP. You’ll also learn how to make
your WPF application work over HTTP. Finally, you’ll make your bank account use
asynchronous data access.

39.1.1 Solution overview

At the end of the preceding capstone, you replaced the filesystem with a SQL database
for storing transactions, along with a WPF application for the GUI. In this lesson, I’ve
removed the GUI element completely (don’t worry, you could plug it back in again
without too much difficulty) as well as the database project (the schema hasn’t changed
at all). What I’ve introduced instead is an ASP .NET Web API project that you’ll use to
provide an API for the bank application. I’ve done all of the work to add the correct
NuGet packages and set up the binding redirects already, so you can focus on the appli-
cation coding.
464

465Adding Web API support to your application
39.2 Adding Web API support to your application

Start by making a controller for the bank account application. It should have endpoints
reflecting the different functions exposed by the BankAPI interface—getting details on
an account, getting the transaction history, withdrawing funds, and depositing funds.

39.2.1 Your first endpoint

Begin by creating a controller in the Controllers.fs file.

[<RoutePrefix("api")>]
type BankAccountController() =
 inherit ApiController()
 let bankApi =
 let conn = ConfigurationManager.ConnectionStrings.["AccountsDb"]
 CreateSqlApi(conn.ConnectionString)
 [<Route("accounts/{name}")>]
 member __.GetAccount(name) =
 let account = bankApi.LoadAccount { Name = name }
 match account with
 | InCredit (CreditAccount account) -> account
 | Overdrawn account -> account

That’s all that’s needed! Notice how you’re unwrapping the result of the load account so
that you return the raw account object rather than the full discriminated union. This
keeps things a little simpler in terms of the JSON that you expose. (By the way, I’m
assuming that you still have the SQL database from the previous capstone. If not, go
back and create it. Or you can replace the call to create the SQL layer with the FileApi,
but doing this will stop you from doing some of the later exercises in this lesson.)

Listing 39.1 A basic Web API controller for the Bank API

Creating a basic ASP
.NET controller

Creating an instance of
your SQL-enabled Bank API

Your first route
to retrieve basic
account details

466 Chapter 39 Capstone 7
You should now be able to run the web app, open a browser, and navigate to a URL sim-
ilar to http://localhost:8080/api/accounts/isaac. You’ll get back a response similar to this:

{"AccountId":"8e7a7909-5667-4cfb-8726-ac3c083ea621",
➥"Owner":{"Name":"isaac"},
➥"Balance":-3.0}

That was easy! You should now move along and create the transaction history route,
GetHistory (I’ve used the route transactions/{name}). Again, test it out in a browser, and
notice that transaction is serialized as follows:

{"Timestamp":"2016-12-30T17:02:53.757",
➥"Operation":{"Case":"Deposit"},"Amount":10.0}

Observe that the Operation, rather than being simply "Deposit", is a full JSON object with a
property called Case. In such situations, you can either replace the JSON serializer with
another one, or create a JSON-friendly type—a simple F# record with no discriminated
unions—and map from the complex F# type to the dumber JSON-friendly record. This
has the added benefit that you decouple your internal domain with your public, user-
facing contracts.

39.2.2 Posting data to the Web API

Next, create some handlers for Deposits and Withdrawals. You’ll notice that we’ve pre-
fixed both routes so far with the word Get. This convention tells ASP .NET that those
methods should be bound to HTTP GET requests. Similarly, prefixing a method with Post
tells ASP .NET to bind a method to HTTP POST requests. (You can explicitly state this

Dependency injection with F#
If you’ve been using ASP .NET for a while now, you’ve probably immediately spotted that
you’ve tightly coupled the controller to the SQL API implementation. Shouldn’t you be
injecting this dependency into the controller based on the interface instead? Well, you
can definitely do that; remember, F# can create interfaces just like C#. You’ll need to cre-
ate an implementation of an IDependencyResolver and assign it to the DependencyResolver
property on the HttpConfiguration object.

Discriminated unions over JSON
JSON.NET will happily serialize and deserialize F# discriminated unions for free. But the
JSON that emits isn’t the most idiomatic, as you’ve just seen. A couple of alternative seri-
alizers (such as FifteenBelow.Json) can plug into Newtonsoft to override the serialization
for F# types, and they do a much better job of creating idiomatic JSON from F# types.

467Consuming data with Swagger
with the [<HTTPPost>] attribute as well.) Because Deposit and Withdrawal are functions
that save new data (rather than just reading data), mark them as Post methods. Here’s an
example to get you started.

type TransactionRequest = { Amount : decimal }
[<Route("transactions/deposit/{name}")>]
member __.PostDeposit(name, request : TransactionRequest) =

Make sure that you also remember to unwrap RatedAccount to a raw Account, as you did
with the initial controller method (you may want to create a reusable function that does
this and call it from all three controller methods).

39.3 Consuming data with Swagger

It’s not so easy to test these POST methods in a browser, so let’s see how to expose this API
over Swagger and then write a script to access the API programmatically. You need to
do a couple of things to expose the data over Swagger: first, you need to turn on Swag-
ger in the Web API pipeline, and then you’ll have to add metadata to make Swagger a
little easier to work with.

39.3.1 Activating Swagger

To turn on Swagger, you need to hook into the configuration phase of the Web API, just
as you did earlier in this unit in the Configuration method of the Startup class.

config
 .EnableSwagger(fun config ->
 let path =
 sprintf @"%s\bin\Web.XML"
 System.AppDomain.CurrentDomain.BaseDirectory
 config.IncludeXmlComments path
 config.SingleApiVersion("v1", "Bank Accounts") |> ignore)
 .EnableSwaggerUi() |> ignore

Listing 39.2 Example routes for POSTing a Deposit request

Listing 39.3 Activating Swagger in ASP .NET Web API

Creating a custom
route for deposit

Creating a type
to hold the
POST request
payload

Binding routing and
POST payload data to

a controller method

Turning on Swagger
with support for
XML comments

468 Chapter 39 Capstone 7
Rerun the application. Navigating to http://localhost:8080/swagger/ui/index#/ should
now present you with a documented API, as shown in figure 39.1.

39.3.2 Applying metadata

Now, you can improve the API a little by adding the following:

 XML comments—Apply triple-slash XML comments over any methods or data
that are publicly exposed. This includes controller methods and any types (for
example, Transaction Request, Account, and so forth). You can comment on both F#
records and their fields.

 Response types—Place the [<ResponseType>] attribute on all controller methods, stat-
ing the type that they return—for example, [<ResponseType(typeof<Account>)>].

 Mandatory metadata—Swashbuckle generates Swagger metadata, with most fields
marked as optional by default. The problem is that the Swagger type provider
will process this metadata and generate optional types for you. This is a pity;
Swashbuckle fields should be marked as mandatory by default. Nonetheless, you
can override this by placing the [<System.ComponentModel.DataAnnotations.Required>]
attribute on any fields that are mandatory (add a reference to the System.Component-
Model.DataAnnotations assembly). For now, place it on the TransactionRequest’s Amount

Figure 39.1 A Swagger API for your Bank Account API

469Consuming data with Swagger
field, but you might want to also place it on decimal fields that are exposed by
the core Bank domain (or alternatively, to avoid polluting the internal domain,
create public types that live exclusively in your Web API domain and map across
to them).

39.3.3 Consuming your API

Now you’re ready to consume your API in F#. Open a new script and add references to
Swagger as follows.

#I @"..\..\..\packages"
#r "YamlDotNet/lib/net35/YamlDotNet.dll"
#r "SwaggerProvider/lib/net45/SwaggerProvider.dll"
#r "SwaggerProvider/lib/net45/SwaggerProvider.Runtime.dll"

open SwaggerProvider
type BankApi = SwaggerProvider<"http://localhost:8080/swagger/docs/v1">
let bankApi = BankApi()

Now you’re good to go! You can call methods on the provided client to call methods in
your HTTP API, as shown in figure 39.2.

Listing 39.4 Consuming the Bank Accounts API via the Swagger type provider

Adding references to
required assemblies

Connecting to the
Swagger endpointCreating an instance

of the Swagger client

Figure 39.2 Strongly typed access to an ASP .NET API

470 Chapter 39 Capstone 7
Think about that for a moment. You’re calling an HTTP API, with a full strongly typed
domain, in six lines of code (and no code generation required). That API is itself per-
forming some strongly typed business logic, which itself calls a pluggable data access
layer (which in this case goes to a SQL database). In all, this needed perhaps a few hun-
dred lines of code—not bad at all!

39.4 Enriching the API

Let’s look at two final areas in this capstone: working with results, and async data.

39.4.1 Working with results

The eagle-eyed among you will have spotted that for the Withdraw method, you return
a successful message even if the withdrawal fails (for example, if the user was already
overdrawn). The problem is that the Bank API doesn’t tell you whether a withdrawal
was a success; it returns either the new account if the withdrawal succeeded, or the orig-
inal account if it was rejected.

member this.Withdraw amount customer : RatedAccount =
 let account = this.LoadAccount customer
 match account with
 | InCredit (CreditAccount account as creditAccount) ->
 auditAs Withdraw saveTransaction withdraw amount creditAccount

➥account.AccountId account.Owner
 | Overdrawn _ -> account }

Notice that the return type is RatedAccount—here’s our problem. You’re going to change it
so that the return type is Result<RatedAccount>. You’ll return Success with the account when
the account was in credit, and a failure with an error message if it was overdrawn. Cre-
ate a Result type, and then change the logic so that you wrap the result of auditAs in either
a Success or a Failure with the message “Account is overdrawn—withdrawal rejected!”
Here’s a Result type definition to get you going:

type Result<'T> = Success of 'T | Failure of string

Listing 39.5 The existing Withdraw function

An InCredit account is allowed
to withdraw funds. New
account state is returned.

An Overdrawn account can’t
withdraw funds. The existing
account state is returned.

471Enriching the API
In the controller, you should now expose either OK or BadRequest, for success or failure,
respectively.

open System.Web.Http
[<Route("transactions/withdraw/{name}")>]
member this.PostWithdrawal(name, request : TransactionRequest) =
 let customer = { Name = name }
 match bankApi.Withdraw request.Amount customer with
 | Success account -> this.Ok(account) :> IHttpActionResult
 | Failure message -> this.BadRequest(message) :> IHttpActionResult

The only slight fly in the ointment is that you need to “safe upcast” from OK and Bad-
Request to IHttpActionResult so that both branches return the same type; F# won’t implicitly
upcast for you here. Quick tip: after you’ve done the explicit upcast for the first branch,
you can simplify the second from :> IHttpActionResult to just :> _.

39.4.2 Making the API asynchronous

Let’s spend a little time looking at what’s involved in making the application asynchro-
nous. The best place to start is at the bottom of the stack, and work upward—in this
case, the SQL data layer. The only method you can truly make asynchronous is get-
AccountAndTransactions. The writeTransactions function uses DataTable.Update, which doesn’t
support async. You could wrap it in an async block anyway, but you’ll just push the work
onto another thread.

You’ll first need to replace the Execute() calls to the database with AsyncExecute() calls
instead. This will then cause everything to break, because these calls now return Async<T>
instead of T. To fix it, you’ll need to unwrap from Async<T> to T by using the let! keyword,
and to do that, you need to wrap your code in an async { } block. Also, remember to
explicitly return values—for example, return Some(accountId, transactions).

After you have that fixed, you’ll see a cascading effect up the stack. All the calls will also
need to be made Async-friendly, as in C# with async/await. The IBankApi will need to be
updated so that all the methods return Async data, and the implementations of those
methods will also need to be made Async aware so that you can let! them as needed.

Listing 39.6 Surfacing errors from your domain as HTTP codes

Returning OK for
successful withdrawals

Returns BadRequest for
failed withdrawals

472 Chapter 39 Capstone 7
Note that the filesystem-based API won’t be compatible with BankApi anymore. You’ll
need to lift those functions so that they’re also async. This is easily accomplished:
FileRepository.tryFindTransactionsOnDisk >> async.Return

async.Return takes a value and wraps it in Async. In other words, whatever the result of the
function on the left is, push it into async.Return and give that result back out.

There’s one, final area to fix: the controllers themselves. Be careful that you don’t acci-
dentally return Async<T> values; you’ll need to convert them to Task<T> by using Async.Start-
AsTask. You’ll also find one last problem that’s a bit of an F# oddity: you can’t call
protected class members (such as this.OK or this.BadRequest) directly within lambdas or
async blocks. Some of your code will probably break with a lengthy error message, the
key part of which is this:

Protected members may only be accessed from an extending type and cannot be
accessed from inner lambda expressions.

You might ask, where’s the lambda expression? The answer is that async blocks (indeed,
all computation expressions) are syntactic sugar to rewrite code as continuations, which
are effectively lambda expressions. It turns out that there’s a simple, rote solution to this,
which is to make a member that explicitly calls the protected member manually, and
then call that member instead, as the next listing shows

member __.AsOk(account) = base.Ok(account)
member __.AsBadRequest(message:string) = base.BadRequest(message)

member this.PostWithdrawal(name, request : TransactionRequest) =
 async {
 let customer = { Name = name }
 let! result = bankApi.Withdraw request.Amount customer
 match result with
 | Success account ->
 return this.AsOk(account |> getAccount) :> IHttpActionResult
 | Failure message ->
 return this.AsBadRequest(message) :> _
 } |> Async.StartAsTask

Listing 39.7 Working around F# restrictions with protected members

Manually calling a protected
base class member via a
top-level member method

Calling the delegating
member method

473Summary
Don’t worry if you’re feeling confused now. I know that this workaround feels com-
pletely ridiculous. Hopefully, a future release of F# will automatically do this boilerplate
for us, but for now this is one of the edge-cases where OO features of the CLR and F#
language features don’t mesh together that nicely.

Summary

You’re finished! You’ve now written an end-to-end application that’s backed by SQL
server with a WPF front end as well as a web-enabled, fully asynchronous API service.
Not bad! Although the tools and techniques you’ve seen so far while building the appli-
cation aren’t the only ways to write F# applications, it’s worth remembering some things
that you might not have thought would be possible when you started creating the app:

 You’ve written an app that connects to SQL Server and can perform standard
CRUD operations in a type-safe manner, quickly and easily.

 You’ve implemented some business rules and seen how to model a domain by
using F# types.

 You hooked up a WPF application running in C# from an F# back end.
 You also exposed your data over an ASP .NET Web API app written entirely in

F#, using asynchronous code and using Swagger to generate documentation, and
then consumed it from a script within just a few lines of code.

 The application makes no use of mutable data, and you didn’t need to resort to
classes or inheritance. There are some impure functions—notably ones that write
data to SQL—but the core app adheres to most of the core FP behaviors, such as
separation of code and data and higher-order functions.

Try this

 Reincorporate the WPF front-end, but instead of connecting in process to the
API, use the web API that you just created. Use either Swagger or another option
for the HTTP client façade.

 Create a dedicated web domain model instead of directly exposing the types
from the internal domain over HTTP.

 Write a full web front end that uses the Web API application as a data source.

475

U
N

IT

9

Unit testing

We touched on the concept of testing early in the
book but haven’t looked at it since then. This unit
discusses when and where you might want to unit
test when working in F#, as well as exploring vari-
ous unit-testing libraries. As with the other units,
I’ll show you how to get up and running with pop-
ular .NET libraries you might already know, and
then you’ll “go pro” and use libraries designed spe-
cifically with F# in mind that are seriously cool (or
at least, as cool as you can get when it comes to unit
testing!).

40LESSON
UNIT TESTING IN F#

Let’s start this unit with a quick review of basic unit-testing tools and how they relate to
F#. You’ll see

 How to approach unit testing in F#
 How to write unit tests with F# and Visual Studio
 How to use F# DSLs for popular unit-testing libraries

40.1 Knowing when to unit test in F#

Earlier in this book, I touched briefly on unit testing and indicated that in F# you might
not need as much unit testing as you have previously. This section provides an over-
view of what I consider different levels of unit testing, and how and where they’re
appropriate in F#. This section also covers various forms of unit-testing practices,
including test-driven development (TDD).

40.1.1 Unit-testing complexity

Let’s start by stating plainly and simply that, yes, there’s still a place for unit testing in
F#. Although its type system allows you to implement some kinds of business rules in
code so that illegal states are unrepresentable (and this is a worthy goal), many rules
aren’t easily encoded within F#’s type system. Let’s partition tests into three groups—
477

478 Lesson 40 Unit testing in F#
basic type system tests, simple rules, and complex rules—and see in which languages
you might more commonly write these sorts of automated unit tests for them. Table 40.1
provides the details.

The point here is that the stronger the type system, the fewer tests you should need. Con-
sider a language such as JavaScript: at compile time, there’s no real type checking, and
even at runtime you can assign a number to a property meant to store a string, while
accidentally assigning a value to a misspelled property. (JavaScript will merrily carry on
in such a situation, which is why languages such as TypeScript are becoming popular.)
This explains why unit testing is so important in such a language; in effect, you’re writ-
ing a custom compiler for each of your programs! Languages such as C# eliminate the
need for such rudimentary tests, yet even in C#, anything more than the simplest rules
can often lead to the need for unit tests in order to maintain confidence that your appli-
cation is doing what it’s meant to do. Finally, we have F#. In many cases, I’d suggest that
unit testing doesn’t make sense, but you might still want unit tests for complex rules or
situations where the type system doesn’t protect you. Here are some examples:

 Complex business rules, particularly with conditionals—For more-complex rules, or
nested rules that combine to perform an overall feature, you’ll still probably want
some form of unit testing.

 Complex parsing—Parsing code can be tricky, and you might want some form of
unit testing to ensure that regressions don’t occur.

 A list that must have a certain number of elements in it—Some programming lan-
guages (such as Idris) do allow you to encode this within the type system. You
can specify, for example, that a function takes in an argument that’s a list of five
elements, at compile time! These languages are known as dependently typed lan-
guages; F# isn’t such a language.

Table 40.1 Types of unit testing

Type of test Example Typical languages

Simple type Is the value of the Age property an integer? JavaScript

Complex type Is the value of the Postcode field a postcode? JavaScript, C#

Simple rule Only an in-credit customer can withdraw funds. JavaScript, C#

Complex rule Complex rules engine with multiple compound rules. JS, C#, F#

479Knowing when to unit test in F#
Conversely, here are several cases in which you can often avoid the need for unit testing
because the compiler gives you a greater degree of confidence that the code is doing the
correct thing:

 Expressions—One of the fundamental principles of F# is that it encourages you to
write code as expressions using immutable values. This alone helps prevent
many types of bugs that you’d otherwise need to resort to unit testing for: func-
tions that just take in a value and return another one are much simpler to reason
about and test than those that require complex setup, with state based on previ-
ous method calls.

 Exhaustive pattern matching—The F# compiler will tell you that you’ve missed
cases for conditional logic. This is particularly useful and powerful when pattern
matching over tupled values, because you can perform truth-table-style logic and
be confident that you’ve dealt with every case.

 Single-case discriminated unions—These provide you with confidence that you
haven’t accidentally mixed up fields of the same type (for example, Customer
Name and Address Line 1) by providing a type of type such as Name of String or
Address of String, which prevents this sort of error.

 Option types—Not having null in the type system for F# values means that you
generally don’t need to worry about nulls when working within an F# domain.
Instead, you have to deal with the notion of absence-of-value only when it’s a real
possibility.

40.1.2 Test-driven development or regression testing?

We’ve discussed some high-level situations in which you might write unit tests, but I
haven’t said when to write them. Should you write them before writing production code
(test-driven development) or after the fact? Based on my experience writing production
systems in F#, and as someone who was a complete TDD zealot in C#, I can say that I
don’t perform TDD anymore. Not because I can’t be bothered or because it’s not possible
in F#—I’ve tried it. It’s that when using the language, combined with the REPL, I don’t
feel the need for TDD. My productivity feels much higher in F# without TDD—and this
includes bug-fixing—than in C# with TDD.

Instead, I do write unit tests for low-level code that’s either fiddly and complex, or at a
reasonably high level (perhaps something that can be matched to a part of a specification).
But, generally, I do this only after I’ve experimented with the code in the REPL, written
the basic functionality, and made sure it works nicely within the rest of the code base.

480 Lesson 40 Unit testing in F#
Your mileage may vary, and I don’t want to sound dogmatic here. I recommend that you
at least try by starting to write F# without unit tests, and see how you do. Alternatively,
write the tests first; you’ll most likely find that you don’t need them (particularly with
the REPL). Follow the sorts of rules and practices that you’ve learned in this book, and
in many cases where you might have resorted to unit testing or even TDD in the past,
you won’t need to any longer. The first time you perform a compound pattern match
and the compiler tells you about a case that you hadn’t thought of yourself, is when it’ll
hit you that, yes, a compiler can replace many unit tests.

40.2 Performing basic unit testing in F#

OK, that’s enough theory. Let’s get on with the practical stuff and see how to write some
unit tests. I’m going to use the popular xUnit test framework here, but you can happily
use NUnit or MSTest as well—they all work in essentially the same way.

The F# equivalent of TDD
As far as I’m aware, Mark Seeman coined the phrase type-driven development, which
has become known as a kind of F# version of test-driven development. This refers to the
idea that you use your types to encode business rules and make illegal states unrepre-
sentable, thus driving development and rules through the type system, rather than
through unit tests.

Quick check 40.1

1 What’s the relationship between a type system and unit tests?
2 Name any two features of the F# language that reduce the need for unit testing.

QC 40.1 answer
1 Generally, the stronger the type system, the fewer tests that are needed.
2 Option types, expressions, exhaustive pattern matching, discriminated unions.

481Performing basic unit testing in F#
40.2.1 Writing your first unit tests

To start, you’re now going to write a set of unit tests for arbitrary (simple) code in F#.

Now you try

Start by creating some basic unit tests using the popular XUnit test framework:

1 Create a new solution in Visual Studio and create a single F# class library. Nor-
mally, you’d probably create a separate test project, but it’s not needed for this
example.

2 Add the xUnit and XUnit.Runner.VisualStudio NuGet packages to the project.
3 Create a new file, BusinessLogic.fs, which will contain the logic that you’ll test.

module BusinessLogic

type Employee = { Name : string; Age : int }
type Department = { Name : string; Team : Employee list }

let isLargeDepartment department = department.Team.Length > 10
let isLessThanTwenty person = person.Age < 20
let isLargeAndYoungTeam department =
 department |> isLargeDepartment
 && department.Team |> List.forall isLessThanTwenty

4 Now write your first test. Start by creating a new file, BusinessLogicTests.fs
(ensure that it lives underneath BusinessLogic.fs in Solution Explorer).

5 Enter the following code in the new file.

Listing 40.1 Business logic that can be tested

NUnit or xUnit?
Both NUnit and xUnit test frameworks are popular, and both work seamlessly with F#,
so there’s no need to move from one to another just for F#. But you might want to try a
new F#-specific unit-testing library called Expecto. It’s different; rather than a test frame-
work with attributes, it’s a flexible runner that can make tests out of any function. It’s
beyond the scope of this lesson to show it, but you should definitely check it out.

A simple domain

Some simple
functions on
your domain

482 Lesson 40 Unit testing in F#
module BusinessLogicTests

open BusinessLogic
open Xunit

[<Fact>]
let isLargeAndYoungTeam_TeamIsLargeAndYoung_ReturnsTrue() =
 let department =
 { Name = "Super Team"
 Team = [for i in 1 .. 15 -> { Name = sprintf "Person %d" i;

➥Age = 19 }] }
 Assert.True(department |> isLargeAndYoungTeam)

6 Rebuild the project. You should see the test show up in Test Explorer in Visual
Studio as shown in figure 40.1; run it, and the test will go green.

Because a module in F# compiles down to a static class in .NET, and let-bound functions
in F# compile down to static methods, everything just works. You can use all the extra
features in xUnit and NUnit as well without a problem (for example, theories and
parameterized tests); they all work.

Listing 40.2 xUnit tests in F#

A Standard XUnit test
using the [<Fact>]
attribute and Assert class

Figure 40.1 F# tests show up in the Visual Studio Test Explorer as you’d expect.

Removing class names from tests
In figure 40.1, you’ll notice that the test name isn’t prefixed with the class name. To
achieve this, you need to add an app setting key xunit.methodDisplay to the app.config file
of the test assembly and set its value to method.

483Performing basic unit testing in F#
40.2.2 Naming tests in F#

Entire blogs (and probably books) exist on how to name unit tests. This can be an emo-
tive subject in many organizations, and can be difficult to keep consistent. I’ve seen
many naming standards, from conventions such as Given-When-Then (which is a popu-
lar one for people following behavior-driven development) to ones such as Method Sce-
nario Expected (recommended by Roy Osherove). There’s nothing to stop you from
following those standards (as I’ve done in the preceding listing), but thanks to F#’s back-
tick methods, you can eliminate this debate completely and name the method based on
exactly what it’s testing:

let ``Large, young teams are correctly identified``() =

Believe it or not, not only does this work, but it works beautifully. Try it: rename the test
by starting and stopping the name with double-backticks, recompile, and then view Test
Explorer again—much nicer! But don’t stop there. You can go one step further by
renaming the test module as well, so now Test Explorer looks like figure 40.2.

Much nicer, isn’t it? Aside from this, unit testing in F# acts pretty much exactly as you’d
expect in C#.

Figure 40.2 Using F# backtick methods can aid readability of unit tests.

What about BDD?
I touched on BDD before. You can certainly use frameworks such as SpecFlow to write
BDD tests, and benefit from the extra readability that backtick members give you, with
no problem. There’s another option, though: TickSpec. This extremely lightweight F#
library works with Cucumber format tests, but “automagically” binds tests to features
based on naming convention—all cool and definitely worth looking at.

484 Lesson 40 Unit testing in F#

40.3 Testing DSLs in F#

You can easily create your own domain-specific language (DSL) on top of test libraries
so that your tests take advantage of F#’s language features to make tests quicker and
easier to read and write. For example, you can use the pipeline and even replace the
Assert.True static method from xUnit with a helper function that can improve your test
readability.

let isTrue (b:bool) = Assert.True b
[<Fact>]
let ``Large, young teams are correctly identified``() =
 // existing code elided…

 department |> isLargeAndYoungTeam |> Assert.True
 department |> isLargeAndYoungTeam |> isTrue

You can immediately use the pipeline with xUnit’s existing Assertion library, but by
making a simple wrapper function, you can make your unit test even more succinct and
readable.

To make your life easier, F# also has ready-made DSL wrapper libraries around the var-
ious test frameworks that take advantage of F#’s lightweight syntax. Let’s look at a cou-
ple of them.

Listing 40.3 Creating a simple F# DSL wrapper over xUnit

Quick check 40.2

1 What are backtick methods?
2 How is xUnit able to work natively with F# modules and let-bound functions?

QC 40.2 answer
1 Methods surrounded with double-backticks can include spaces and other characters.
2 Modules and let-bound functions compile down to static classes and methods, which xUnit sup-

ports natively.

Creating a simple
wrapper around
Assert.True

Using the pipeline with the
native xUnit assertion library

Using the wrapper function
instead of Assert.True

485Testing DSLs in F#
R

T
65

0
59

29
40.3.1 FsUnit

FsUnit is a NuGet package that takes the preceding approach for a DSL so that you can
easily make fluent pipelines of conditions as tests. Wrappers exist for both NUnit and
xUnit (via the FSUnit.XUnit package). Here’s how you might write a couple of tests by
using FsUnit (see listing 40.2 for the definition of the department value).

open FsUnit.Xunit

[<Fact>]
let ``FSUnit makes nice DSLs!``() =
 department
 |> isLargeAndYoungTeam
 |> should equal true

 department.Team.Length
 |> should be (greaterThan 10)

FsUnit has a rich language, including functions for string comparisons (for example,
"isaac" |> should startWith "isa") and collection tests (for example, [1 .. 5] |> should
contain 3). If you like this style of unit testing, FsUnit is a great place to start.

Listing 40.4 Using FsUnit to create human-readable tests

FsUnit's custom
language functions
for equality checking

Custom checks for
“greater than”

Binding redirects with FsUnit
Note that FsUnit was compiled against F# 3.0, yet Visual Studio 2015 will by default set
F# projects to build against F# 4.0. You’ll need to add a binding redirect to the app.config
file of the project (if NuGet doesn’t create it). Place this in the <runtime> node:

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity
 name="FSharp.Core"
 publicKeyToken="b03f5f7f11d50a3a"
 culture="neutral"/>
 <bindingRedirect
 oldVersion="0.0.0.0-65535.65535.65535.65535"
 newVersion="4.4.0.0"/>
 </dependentAssembly>
 </assemblyBinding>

486 Lesson 40 Unit testing in F#
40.3.2 Unquote

Unquote is a test framework wrapper with a difference. It, too, works with both xUnit
and NUnit, but unlike FsUnit, it provides a way to easily assert whether the result of a
comparison is true or false—so, to check whether two values are equal to each other. At
its most basic, Unquote gives a simple custom operator that can compare two values.
Here’s how it looks.

open Swensen.Unquote
[<Fact>]
let ``Unquote has a simple custom operator for equality``() =
 department |> isLargeAndYoungTeam =! true

You can use this operator for more than comparing Booleans. For example, you can
compare whether two lists are equal, or two records are the same (remember that F#
types implement equality already!).

But Unquote goes one step further than this. Unquote, as its name suggests, takes
advantage of F#’s quotations language feature, which allows Unquote to explain why two
values don’t equal one another.

Here’s an example of using Unquote’s quotations support for a simple test.

[<Fact>]
let ``Unquote can parse quotations for excellent diagnostics``() =
 let emptyTeam = { Name = "Super Team"; Team = [] }
 test <@ emptyTeam.Name.StartsWith "D" @>

Listing 40.5 Using Unquote’s custom comparison operator

Listing 40.6 Evaluating a quotation with Unquote

The custom =! operator
fails if the values on
both sides aren’t equal.

F# quotations
F# quotations are beyond the scope of this book. Suffice it to say that they’re roughly
equivalent to C#’s expression trees. By enclosing a code block within an F# quotation,
you can get back a typed (or untyped) abstract syntax tree to perform analysis on the
code itself (treating code as data). Clear as mud? Don’t worry; you don’t need to under-
stand F# quotations to take advantage of Unquote.

Wrapping a
condition within
a quotation block

487Testing DSLs in F#
A quotation is easy to create. You wrap around the condition to test with <@ @>, as shown
in figure 40.3. (Visual F# Power Tools will also identify the quotation and display it in a
different color for you.)

If the result of the expression inside the block returns true, the test passes. What’s more
interesting is when it fails (as in the preceding example). Let’s look at a slightly simpli-
fied version of the error output from Visual Studio’s Test Runner:

emptyTeam.Name.StartsWith("D")
{ Name = "Super Team"; Team = [] }.Name.StartsWith("D")
"Super Team".StartsWith("D")
false

The first three lines represent a step-by-step guide of how the test failed:

1 Line 1 represents the original test code.
2 Line 2 evaluates the test code by replacing emptyTeam with the actual contents of

the record that this binding represents.
3 Line 3 simplifies this to just the value of the Name property that was being com-

pared against.
4 You’re finally left with a simple comparison, which returns false, so the test fails.

But now you can see exactly how Unquote reached the value false.

This is a relatively simple example, but it’s fantastically powerful. Imagine that your test
code calls a function of production code, which itself calls two other functions that
return data. It quickly becomes difficult to understand why a test failed. Unquote sheds
light on this by allowing you to understand the code without needing to resort to a
debugger.

Figure 40.3 VFPT highlights code quotation blocks for you

488 Lesson 40 Unit testing in F#

 Summary

That’s the end of basic unit testing in F#! In this lesson

 You learned when and where unit testing might and might not be appropriate in F#.
 You looked at basic unit-testing integration in F# with VS2015 and xUnit.
 You saw a couple of custom F# libraries that can make unit testing even better.

Try this

Try porting some unit tests in your own code to an F# library. Experiment with your
own custom DSL functions, FsUnit, and Unquote; try performing a set of nested func-
tion calls that return a value, and test calling this through Unquote.

Quick check 40.3

1 What is FsUnit?
2 What is a code quotation?

QC 40.3 answer
1 A DSL wrapper around xUnit and NUnit to allow fluent, human-readable tests to be written.
2 A block of code in which code is treated as data that can be programmed against.

41LESSON
PROPERTY-BASED TESTING IN F#

This lesson presents a different type of automated testing that you can do in F#, called
property-based testing (PBT). You’ll see

 What PBT is
 Why you might want to use it
 How to use the FsCheck library for .NET
 How to integrate FsCheck with popular test runners

At times, even if you’ve achieved “full test coverage”—where your tests are covering
every branch of code in the system—you still might not be satisfied with your tests.
Here are a few examples.

One common problem occurs when your code misses edge cases that you hadn’t consid-
ered. This is common when working with strings or other “unbounded” inputs. How
many times have you written code that expects a string to be a certain minimum length,
but somehow an empty string creeps into your code? Or you wrote code that indexed
into an array that turned out to be empty? Are these cases that you should’ve realisti-
cally expected?

Another example occurs when your unit tests appear to be fragile because they test only
arbitrary cases. Imagine that you have a method, half(), being tested that takes in a num-
ber and returns half of it. To test this, you write a single test case that proves that when
489

490 Lesson 41 Property-based testing in F#
calling half() with 10, you get back 5. Why did you pick 10 as the test data? Is it easy to
understand what the test is really proving? Have you tested all valid cases?

Finally, a system under test may be too complex for you to cover (or even identify) all
the possible permutations with specific test cases. This is particularly common—but not
unique—to integration tests. Normally, we unit test lower-level components well, but
tend not to have great integration tests; they’re too expensive to write to cover all combi-
nations. But this omission often misses bugs that result from unintended interactions
between two components when you finally bring them together. A good real-world
example of this is the Mars Climate Orbiter that failed in 1999 because one team wrote a
module using English units of measurement, while unknown to them, another team
used the metric system! Both components worked well in isolation, but when plugged
together, the system failed because of the unit differences. End result: a costly failed
spacecraft. (Let’s leave aside the fact that F# has a feature known as Units of Measure
that would’ve prevented this.)

In all sorts of situations, conventional unit tests can feel fake or unsatisfactory; it’s hard
to put your finger on why, but sometimes something doesn’t feel right! This is often a
sign that another form of testing might be worthwhile.

41.1 Understanding property-based testing

Setting aside the whole area of mocking frameworks, regular unit tests generally work
via a well-understood process:

1 You manually create test data.
2 You push that test data through production code.
3 You confirm that the outputs of that code are as expected.

Figure 41.1 shows a sample function, FlipCase, which takes in a string and flips the case
of all the characters. You might normally test this with a single word as a unit test (for
example, Hello becomes hELLO).

‘Hello’ ‘hELLO’FlipCase

Explicit test input with expected output

Figure 41.1 A function with an explicit test input and expected output

491Understanding property-based testing
The idea behind property-based testing is that instead of testing code with arbitrary
data that you create yourself, you allow the machine to create test data for you, based on
guidelines that you provide. Then you test behaviors, or properties of the system that
should hold true for any input values. Write enough properties, and you prove the func-
tionality of the function as a whole. Figure 41.2 illustrates this principle.

Property-based testing requires a different approach to thinking about tests; unlike con-
ventional unit tests, the system generates test values for you. Therefore, you can’t hard-
code the expected result of a test. This is where the notion of properties comes in. A
property is a kind of relationship that you can test on the output of your production
code, without knowing the value of it. Figure 41.2 specifies three properties that should
all hold true for your FlipCase function. You don’t need to know the inputs or outputs;
you just need to prove that those behaviors hold true against a large-enough sample
dataset to prove that the code works.

Property-based testing can help with many kinds of tests, and can help identify corner
cases (for which you might want to write specific unit tests).

41.1.1 How to identify properties

Identifying properties is one of the hardest parts of property-based testing, and it’s not
something that (in my experience) you can easily illustrate in a few pages. You could
probably write a whole book on the subject! Nonetheless, here are some examples of
how you might identify properties in your production code; think of this section as a
taste of what property testing is about, rather than a detailed look at every possible
aspect of it:

 Identify specific properties about the behavior of the inputs and outputs—How easy this
is to do depends on the code being implemented and the functionality you’re try-
ing to implement. For example, figure 41.2 identifies three specific properties of
the FlipCase function.

??? ???FlipCase

Same number of letters
No letter is the same case

Every letter is the same

Figure 41.2 A function with sample properties that should hold true
for all possible input values

492 Lesson 41 Property-based testing in F#
 Identify a relationship between two functions—You can pass the same input data into
two different functions and see whether a relationship exists between the outputs
of those two functions. For example, there’s a relationship between the two func-
tions “add two numbers together” and “subtract two numbers together” that you
could define as a property. In figure 41.3, the relationship is that (c – d = b × 2).
A property-based test would generate many pairs of numbers that you would
pipe into that equation to prove whether it’s true or not, through brute force.

 Compare another implementation of the same function—If you have an alternate func-
tion that does the same thing and is known to work correctly, you can compare
the results to ensure that they’re always the same. This is useful when refactoring
a function (for example, to optimize performance); you can help ensure that the
behaviors are the same for many arbitrary test cases. This is just a specialized
form of the previous item; in this case, the relationship is that the values should
always be equal!

The main point is that all of these sorts of tests can be achieved in a generalized way,
without having to know a specific input or output value.

Add

a b

c

Subtract d

Relationship

Figure 41.3 Using a secondary function is often a useful way to identify a property test.

Property-based testing in the real world
Examples of using property-based testing to identify issues and prove the validity of a sys-
tem include the Riak database system (which had several serious bugs that could result
in loss of data, until the team ran it through a property-based test system) and Dropbox.
Another example is the Paket NuGet package manager, which used FsCheck to create
various types of package dependency graphs to ensure that the package resolution algo-
rithm always picked an optimum set of versions for the packages specified.

493Introducing FsCheck

41.2 Introducing FsCheck

That’s enough theory for now—let’s move on to the practical side. FsCheck is a prop-
erty-testing library that’s effectively a port of Haskell’s QuickCheck library. FsCheck
allows you to provide it with a parameterized function that performs business logic, and
then test the result of that logic. FsCheck calls the test function many times, each time
with slightly different input values. In some ways, this isn’t so different from NUnit or
xUnit’s TestCase or Theories features, except here you don’t specify the data to test
against; FsCheck does.

41.2.1 Running tests with FsCheck

Before jumping into the thick of things with full-blown property-based tests, let’s start
with a simple test that uses FsCheck so you can get a feel for the library itself.

Now you try

1 Create a new F# class library project and solution.
2 Download the FsCheck.Xunit NuGet package. (This will also download the core

FsCheck package and xUnit).
3 Create a standard F# module and enter the following code. It creates a simple

function that manually adds the numbers in a list, followed by a test that com-
pares the values with a known good function, List.sum, that you use as a basis.

Quick check 41.1

1 Name the main difference between conventional unit tests and property-based tests.
2 Name three ways to identify properties within a system under test.

QC 41.1 answer
1 You supply explicit inputs and outputs to unit tests. PBTs are supplied random, generated data

many times.
2 Identify arbitrary properties, compare a relationship between two functions, and compare to a

known good function.

494 Lesson 41 Property-based testing in F#
open FsCheck.Xunit

let sumsNumbers numbers =
 numbers |> List.fold (+) 0

[<Property(Verbose = true)>]
let ``Correctly adds numbers`` numbers =
 let actual = sumsNumbers numbers
 actual = List.sum numbers

4 Now run the test; you’ll see that this runs and turns green.
Let’s review. This is a parameterized test. It takes in a list of numbers that you run
against your code, and compares against the List.sum function. But what list of
numbers?

5 To understand this, open the Test Explorer window and navigate to the appropri-
ate test before clicking the Output link. You’ll see something like figure 41.4.

If you scroll down the pane, you’ll see a whole host of entries. FsCheck has seen
the type of data needed by the test—a list of integers—and generated a set of
samples for it. FsCheck creates and runs 100 test cases by default. The data isn’t
completely random, either. The data intentionally starts with simple cases and
then expands to more-complex ones. In this example, you can see that FsCheck
tries various scenarios, including a simple list with two items, empty lists, and
different values. Even better, FsCheck can generate entire object graphs—full F#
records (or lists of records), each with its properties populated.

Listing 41.1 Your first FsCheck test

Code under test

Writing a parameterized
unit test through use of
the Property attribute

A parameterized unit test

Comparing expected
and actual

Figure 41.4 The output
of an FsCheck test

495Introducing FsCheck
6 Place a breakpoint on the first line of the unit test, as shown in figure 41.5.
7 Rerun the test but ensure that you choose Debug Selected Test in Test Explorer

when you right-click the test.
8 Observe that the breakpoint is repeatedly hit, once for each test run, with differ-

ent data.

41.2.2 Failing tests and shrinking

Let’s look in detail at how FsCheck handles failing tests.

Now you try

First, make your production code fail and see what happens:

1 Change the implementation of sumsNumbers so that if the list of numbers contains 5,
it always returns –1 (otherwise, it continues with normal logic).

2 Rerun the tests. You’ll see that the test fails, as shown in figure 41.6.

Figure 41.5 Setting a breakpoint within a unit test that’s called by FsCheck

FsCheck and Microsoft Pex
Years ago, Microsoft Research came up with a testing framework named Pex. Pex
would analyze your code and generate test cases based on that analysis. FsCheck
doesn’t do anything like that. It simply generates random test data across a known dis-
tribution that you can control, with the intent of proving or disproving your test cases.

496 Lesson 41 Property-based testing in F#
The key bits to notice here are twofold. In figure 41.6, you can see two items:

 Original—The initial data that failed the test, randomly generated by FsCheck.
Notice that the list contains four values.

 Shrunk—A simplified dataset that fails the test based on the original data. Notice
now that the dataset contains only a single element, 5! FsCheck has realized that
the other values have no impact on the test, and so strips them out, leaving you
with the simplest possible failure case.

Shrinking is the process by which FsCheck reduces, or simplifies, a failing test dataset to
be the simplest possible failure case that it can be. This happens automatically and helps
identify how and why a test failed.

41.3 Controlling data generation

At times you might want to control up front the data generated by FsCheck. For
instance, take your fictional FlipCase function and write one of the property tests for it.

Figure 41.6 A failing test with a shrunk test case from FsCheck

Quick check 41.2

1 What attribute do you place on a test to allow FsCheck to provide test data?
2 What is shrinking?

QC 41.2 answer
1 The [<Property>] attribute.
2 The process of simplifying a failure case to its most basic form.

497Controlling data generation
oen System
let flipCase (text:string) =
 text.ToCharArray()
 |> Array.map(fun c ->
 if Char.IsUpper c then Char.ToLower c
 else Char.ToUpper c)
 |> String

[<Property>]
let ``Always has same number of letters`` (input:string) =
 let output = input |> flipCase
 input.Length = output.Length

The problem with this is that this function is designed to work only with letters when
no numbers or special characters are allowed, and no null values either. If you run this
test now, there’s a good chance that it will fail, because FsCheck will pick random
strings, including those with nonletters. You could make the flipCase function throw out
such values, but in this case, you want the test to tell FsCheck to supply only valid data
to the test; you need a way to tell FsCheck to generate strings with only letters.

41.3.1 Guard clauses

Luckily, FsCheck offers a simple way to help, by using a guard clause in your test
function.

[<Property>]
let ``Always has same number of letters`` (input:string) =
 input <> null ==> lazy
 let output = input |> flipCase
 input.Length = output.Length

Here, you add a guard clause that says to prematurely exit any test where input is null.
(FsCheck comes with the custom ==> operator, which says, “Run the code on the right
only if the guard clause on the left passes.”) Also, notice the lazy keyword; this is a lan-
guage alias for System.Lazy and ensures that FsCheck runs the test code only when the
guard check has passed.

Listing 41.2 A function to flip case of all letters with a single property test

Listing 41.3 Providing a guard clause for FsCheck

Adding a guard clause
to an FsCheck property

498 Lesson 41 Property-based testing in F#
41.3.2 Generators and arbitrary values

A limitation of guard clauses can be observed when you need a specific clause. For
example, if you try to implement either of the other two properties we discussed, you’ll
need to enhance the guard clause so that it ignores not only null strings, but also empty
strings or those with nonletters. In such a case, FsCheck will give up and complain with
a message such as PropertyFailedException: Arguments exhausted after 3 tests. This means
that FsCheck couldn’t generate data 100 times to “pass” the guard clauses.

When guard clauses aren’t sufficient for your needs, you’ll need to create a custom gen-
erator. A generator allows you to specify a certain type of data, such as chars or strings,
which then map into arbitrary values that FsCheck can run in its tests. FsCheck comes
with many built-in arbitrary values in the FsCheck.Arb.Default module, such as the usual
lists, sets, and numbers, and even things like nonempty strings and IP addresses. Let’s see
how to create your own generator that forces all generated characters to be only letters.
In conjunction with the built-in NonEmptyString, you can achieve exactly what you need.

open FsCheck
type LettersOnlyGen() =
 static member Letters() =
 Arb.Default.Char() |> Arb.filter Char.IsLetter

[<Property(Arbitrary = [| typeof<LettersOnlyGen> |])>]
let ``Always has same number of letters`` (NonEmptyString input) =
 let output = input |> flipCase
 input.Length = output.Length

The trickiest bit to understand here is the LettersOnlyGen type. This class has a single static
method on it, Letters, that returns a type Arbitrary<Char>, the type that controls which set
of data FsCheck can use to pick from randomly. You can create multiple generator meth-
ods with any name. No conventions exist, but you must have only one method per type
that you want to generate (for example, strings, integers, or customers). In this case,
you’re creating the set of all characters, filtered by whether the character is a letter. This
is essentially the same as using Seq.filter or something similar, except instead of operat-
ing on a real list of items, you supply the logic to FsCheck to tell it how to generate data.

Listing 41.4 Creating a letters-only generator for FsCheck

Creating a class that contains
arbitrary generators

Creating a generator that
creates a stream of letters

Attaching the
generator to the
property test

499Controlling data generation
Next, you apply that generator to the test by setting the Arbitrary value of the Property
attribute. This ensures that all characters generated for this test are letters. And you can
replace the null-check guard by using the NonEmptyString discriminated union that was
previously mentioned, which FsCheck guarantees will never be null. Now if you rerun
the test (and turn on Verbose mode by passing Verbose = true to the Property attribute),
you can observe that the test cases will all be valid test data:

NonEmptyString "cAv"
NonEmptyString "S"
NonEmptyString "Yo"
NonEmptyString "UkUr"
NonEmptyString "NBwhlF"
NonEmptyString "el"
NonEmptyString "UI"
NonEmptyString "CxyP"
NonEmptyString "xeuZepyl"
NonEmptyString "bUIxl"
NonEmptyString "Pf"

Creating your own generators isn’t always trivial, but the time and effort required is
definitely worthwhile. I’ve used only simple types in this sample, but imagine creating a
generator that provides customers of a certain type for you to test, or user requests
meeting a certain specification. This can be absolutely invaluable in rapidly creating test
data for multiple tests, quickly and easily.

Quick check 41.3

1 What are guard clauses?
2 When should you not use a guard clause and prefer a full Arbitrary generator?

QC 41.3 answer
1 Simple predicates that tell FsCheck that data is invalid for a given PBT.
2 Guard clauses are useful only for simple filters. If the filters are too constraining, FsCheck won’t

be able to generate sufficient test data that meets the requirements. In these situations,
Arbitrary generators should be used.

500 Lesson 41 Property-based testing in F#
Summary

Property-based testing is a different way to approach automated testing. But it’s also a
useful tool to have in your arsenal, particularly for certain types of problems that are
difficult to white-box test (testing the internals) and that are easier to black-box test
(testing the external behaviors). This lesson has only scratched the surface of PBTs, and
you should seriously consider checking out this type of testing in more detail.

Try this

Try implementing tests with the other two properties for the FlipCase function. Then
write example functions and associated PBTs for the data model in the previous lesson,
before writing a set of property-based tests against a method in a class in the BCL (for
example, System.Collections.Generic.Queue.Enqueue).

42LESSON
WEB TESTING

This short lesson will round off our trip around testing in F#. You’ll learn about

 Web testing, and where it fits into the testing landscape
 Selenium
 Canopy
 Using Canopy for web automation

Often unit testing—even property-based tests—aren’t enough to test an entire system
from end to end. Perhaps you’ve written code that has excellent test coverage against
individual components, such as a class that calculates the interest on a loan payment, or
perhaps across two or three layers—but then tested the real application and found that
the interest that was calculated and saved to the database was incorrect. You need some-
thing that can ideally cover the entire spectrum of tiers within your application, yet you
want this to run in a repeatable way.

In my experience, there are two popular ways of doing this. One is through an accep-
tance testing framework such as Fitnesse, a system that allows business users to specify
tests through tables in a wiki website, which then calls production code behind the
scenes. It’s powerful but also requires a reasonable learning curve. That’s fair enough—
after all, F# also has a learning curve associated with it—but it’s more than just the
investment in learning it. It’s a full application, so you need to manage it within your
501

502 Lesson 42 Web testing
application tier somehow, as well as consider how it works within the context of a con-
tinuous integration environment. And finally, the .NET SDK for it is somewhat unusual;
certainly, it’s not what I’d call idiomatic.

An alternative to this when working with a website is to write web-based tests. These
are often step-by-step tests that people can follow and then record the results in a bug-
tracking system. This process is so popular that some versions of Visual Studio (and its
sibling, Team Foundation Services) even have a test recorder that allows you to record a
video of your test along with the results of the test, plus capture information such as a
call stack to more easily enable error reproductions. That’s nice, but it’s ultimately a
manual system; the more tests you have, the longer (and more expensive) it becomes to
run through the test suite.

42.1 Web automation with Canopy

In this section, you’ll look at how to run web-based tests in an automated fashion, by
writing simple, declarative programs in F# that can state how a web application should
behave. You’ll fill in fields on a web page, click buttons, and so forth—interacting with a
web site to simulate a real person—and then test the results, to see, for example, the
value of a field or the URL you’re now on. But before looking at the testing side of
things, let’s start with the basics—controlling a browser through code.

42.1.1 What Is Canopy?

Canopy is an open source, free-to-use library that wraps around the Selenium plugin. It
provides an extremely simple, easy-to-use DSL for writing basic scripts that can control
your web browser. Because it’s just a wrapper on top of Selenium, any browser that
Selenium supports is also supported by Canopy (this includes IE, Chrome, and Firefox).
You can use Canopy to perform all manner of tasks, such as filling in fields, clicking but-
tons, and dragging elements from one location to another. This can be exceptionally

Selenium
Selenium is a freely distributable WebDriver plugin to your web browser, plus an SDK
and IDE, that allows you to perform web automation. In other words, you can program-
matically automate the control of your web browser. Selenium can be run as a stand-
alone tool and can generate scripts via an IDE, but as you’ll see, there’s a much nicer way
of doing this in F#.

503Web automation with Canopy
useful for automating processes that must be done through a web-based UI. I’ve seen
individuals use this for anything from uploading information from a spreadsheet into a
web portal, to filling in timesheets at the end of every week!

42.1.2 Creating your first Canopy script

Let’s take Canopy for a quick spin to see how it works firsthand.

Now you try

This exercise uses the Google Chrome browser. The majority of the exercise will be iden-
tical for other browsers, but in the interest of keeping things simple, I focus on Chrome
(the Canopy site documents any differences). In this exercise, you’ll open Chrome, nav-
igate to the Manning website, and fill out a form to buy another copy of Get Program-
ming with F#; two copies are better than one, right? (Don’t worry; you won’t complete
the checkout!)

The Manning website may have changed since this book was written, in which case some of the
IDs or element names may no longer be correct.

1 Download the latest version of the Chrome web driver from https://sites.google
.com/a/chromium.org/chromedriver/. This driver allows you to communicate
with Chrome programmatically, so copy it to the drivers/ folder in the source
code repository.

2 Create a new F# script. As usual, I recommend putting it either in the src/code-
listings folder or at least one that’s parallel to it, so that the package references in
this lesson’s code listings work straightaway.

3 Enter the following code into your script. This references the core Selenium and
Canopy assemblies and then sets the path to where the Chromium web driver is
located. (chromeDir is a global mutable variable exposed by Canopy!):

#r @"..\..\packages\Selenium.WebDriver\lib\net40\WebDriver.dll"
#r @"..\..\packages\canopy\lib\canopy.dll"
open canopy
chromeDir <- "drivers"

4 Start a new instance of Chrome under Canopy’s control:

start chrome

You should see output similar to the following in the FSI window. (If Canopy
can’t find the driver in chromeDir, try copying it to the root of the C:\ folder.)

https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/

504 Lesson 42 Web testing
Starting ChromeDriver 2.27.440174 (…) on port 3732
Only local connections are allowed.
You’ll notice that Chrome opens by default, tiled to the right of the desktop. If
you tile VS to the left, you can send commands to Chrome and watch them take
effect.

5 Navigate to the Manning site: url "https://www.manning.com/books/get-programming-
with-f-sharp". Observe that the DSL makes commands extremely easy to read (for
example, start chrome, url <url>). You don’t use brackets or curly braces, and you
can execute arbitrary commands from the script.

6 You can choose from two versions of the book, as shown in figure 42.1; buy the
combo version.

Both of the Add to Cart buttons are submit buttons. You’ll use Canopy to get the
first element that has an ID of submit and then click it:

first "#Submit" |> click

The identifier for the element can be any valid CSS selector. After you click the
button, you receive a notification that the item has been added to the cart. You

Figure 42.1 Buying Get Programming with F# on the Manning website

505Web automation with Canopy
can also confirm this at the top of the page by looking at the cart icon, shown in
figure 42.2.

7 Now proceed to checkout. You do this by first going to the cart and then clicking
the checkout button on that page:
click ".cart-button"
click ".btn-primary"

8 You’re asked to either sign in or check out as a guest—use the second option. Set
the Email address textbox to a random name before clicking the Check Out as a
Guest button on the form:

"#email" << "Fred.Smith@fakemail.com"

elements ".btn-primary"
|> Seq.find(fun e -> e.Text = "checkout as a guest")
|> click

Note the << operator, another feature in the Canopy DSL. This allows you to set
the content of any element on the left side with the content on the right side!

9 You’re now on the final page, which captures details of the guest. Fill in all the
form fields as follows:

Figure 42.2 Adding an item to the
shopping cart on the Manning website

Getting element names for Canopy
You’ll see in step 9 that I’ve used a set of IDs and classes to identify elements that you
can access. I manually went through the page in Chrome’s developer panel to pull out
the IDs, but another option is to search for elements with specific text by using Canopy’s
elementWithText function.

506 Lesson 42 Web testing
"#firstName" << "Fred"
"#country" << "United States"
"#firstName" << "Fred"
"#lastName" << "Smith"
"#company" << "Super F# Developers Ltd."
"#address1" << "23 The Street"
"#address2" << "The Town"
"#city" << "The City"
"#USStateSelector" << "CA"
"#zip" << "90210"
"#addressPhone" << "0800 123 456"

At this point you can stop there (you can close the browser by using quit()). The main
point is that you can create a repeatable script to easily control a web browser to per-
form various actions. Canopy has a rich set of helper functions that allow you to easily
interact with a browser, including reading the contents of an element, double-clicking,
and switching tabs—a whole host of functions. (You can find out more at
http://lefthandedgoat.github .io/canopy/actions.html.)

42.2 Web tests with Canopy

Now that you’ve seen the basics of how Canopy works, let’s briefly look at the second
half of Canopy, which is a full test runner designed to create and run automated tests.

Quick check 42.1

1 What must you manually download before using Canopy?
2 Does Canopy work only with Google Chrome?
3 What custom operator do you use in Canopy to assign text to an element?

QC 42.1 answer
1 You must download the appropriate web driver for your browser.
2 No—Canopy works with multiple browsers.
3 The << operator is used to assign text to an element.

http://lefthandedgoat.github.io/canopy/actions.html

507Web tests with Canopy
42.2.1 Hooking into Canopy events

Canopy has a simple test runner that can launch directly from a script or a console appli-
cation. There’s no need to shoehorn it into a class library that supports the VS test runner
if you don’t want to. You declare events and tests through a set of functions, before start-
ing a test run. Let’s first see how to hook into events when tests start and finish.

once (fun _ -> start chrome)
before (fun _ -> url "https://www.manning.com/books/get-programming-with-
➥f-sharp")
lastly (fun _ -> quit())

Before you start your test run, Chrome will load. At the start of each test, Canopy navigates
to the Manning website, and after all the tests are complete, the browser will close. These
functions relate roughly to the [<SetUp>] and [<TearDown>] attributes in NUnit or xUnit. You
can find out more about Canopy functions and features at https://lefthandedgoat.github
.io/canopy/testing.html.

42.2.2 Creating and running tests

Creating tests with Canopy is just as simple; you call one of two functions to create (but
not run!) a test case. Both are higher-order functions. The simplest form creates a case
with an autogenerated name of Test #n (for example, Test #1, Test #2, and so forth):

test <test function>

The test function is simply a function that takes no arguments and returns no argu-
ments. Inside, it performs test code by using Canopy’s assertion test functions (see the
following code). The alternative form allows you to specify a custom test name:

<test name> &&& <test function>

Each test case that gets executed adds the test case to a list that Canopy maintains of all
test cases. When you’re finished, calling run() will execute all the test cases.

42.2.3 Working with assertions in Canopy

Canopy has a large set of common test functions that can do the usual comparisons of
elements as well as several others. Here I’ve created three tests within a test context
called Sample Tests.

Listing 42.1 Setting up a basic test run suite in Canopy

Run once before
starting the test run.

Run before each test

Run once after all tests.

https://lefthandedgoat.github.io/canopy/testing.html
https://lefthandedgoat.github.io/canopy/testing.html

508 Lesson 42 Web testing
context "Sample Tests"

test (fun _ -> "#chapter_id_1" == "LESSON 1 THE VISUAL STUDIO EXPERIENCE")
"49 lessons in total" &&& fun _ -> count ".sect1" 49
"There's a web programming unit" &&& fun _ -> ".sect0" *= "UNIT 8:

 ➥WEB PROGRAMMING"

run()

Let’s take these tests one by one:

 The first test checks that the value of a specific element (identified by the ID
chapter_id_1) is equal to LESSON 1 THE VISUAL STUDIO EXPERIENCE. Note the custom ==
operator that Canopy uses to perform the equality check.

 The second test is titled 49 lessons in total and confirms that 49 elements have the
sect1 CSS style.

 Finally, the final test gets all the sect0 elements and checks that at least one of
them has the value UNIT 8: WEB PROGRAMMING.

 You can read up on more helper functions and operators at the Canopy website
at https:// lefthandedgoat.github.io/canopy/assertions.html.

 After you’ve compiled your tests, you can run them by using the run() function.
The output should be something like this:

Starting ChromeDriver 2.27.440174 on port 3446

Test: Test #1
Passed
Test: 49 lessons in total
Passed
Test: There's a web programming unit
Passed

0 minutes 10 seconds to execute
3 passed
0 skipped
0 failed

Listing 42.2 Listing 42.2 Creating a simple test suite in Canopy

Testing the value
of an element Testing the count

of elements

Testing that a value
exists in a collectionRunning the tests

https://lefthandedgoat.github.io/canopy/assertions.html

509Web tests with Canopy
There’s even a web page version of the test reporter, shown in figure 42.3, so that you get
an interactive web page showing test results rather than just the console.

You can activate this by adding the following code before you start your test run:

open reporters
reporter <- LiveHtmlReporter(BrowserStartMode.Chrome, "drivers") :>

 IReporter

I strongly advise you to try this section for yourself and see it working firsthand. After
you realize how easy Canopy is to use, you’ll see that there are endless possibilities for
easily creating repeatable tests!

Integration with other libraries
Canopy is an extensible library, so you can choose how you output data. There’s a Team-
City plugin that outputs test results in a manner that TeamCity can read, or you can cre-
ate your own. And remember, there’s nothing to stop you from using Canopy’s assertion
libraries and using, for example, NUnit’s test runner. Similarly, there’s nothing to stop
you from using FsCheck to generate test data for you that you can then plug into Canopy!

Figure 42.3 The Canopy UI test runner

510 Lesson 42 Web testing

Summary

That’s the last testing lesson. You’ve touched the edges of Canopy and seen how to write
automated tests within F#, using a powerful yet simple-to-use DSL. Although it’s not
necessarily a pure functional library (a global state exists behind the scenes with
mutable properties), Canopy is an extremely practical library that does a terrific job of
making web automation incredibly simple. In this lesson

 You learned how to install Canopy and Selenium.
 You learned how to perform basic web automation with Canopy.
 You wrote automated tests in Canopy.

Try this

Create a web automation script to log into Twitter and print to the console the top five
posts in your Twitter feed. You can also use Canopy to create a bot to play the game
2048; see https://github.com/c4fsharp/Dojo-Canopy-2048 for a starting solution. Finally,
write automation code that searches GitHub for all F# repositories, sorting by Most
Stars, and prints out the first ten repositories.

Quick check 42.2

1 Can you use Canopy with other test runners?
2 What’s the difference between test and &&&?
3 What does the == operator represent in Canopy?

QC 42.2 answer
1 Yes, you can use Canopy from within, for example, xUnit or NUnit.
2 test generates a name for a test case, whereas &&& allows you to specify a name.
3 The == operator performs an equality test equivalent to, for example, Assert.Equals.

https://github.com/c4fsharp/Dojo-Canopy-2048

43LESSON
CAPSTONE 8

Phew—this is the last capstone exercise in this book! You’ll be performing unit testing
here, and applying some of the techniques and tools presented in this unit to the Bank
Accounts system you’ve been working on throughout the book.

43.1 Defining the problem

In this capstone, you’ll add a set of tests to the business logic domain of your application,
using various test libraries that you’ve seen in this unit, from simple unit testing with
xUnit, to DSL-based testing with Unquote, before finally writing a couple of property-
based tests. You’ll test a couple of tiers as well. In this example, you won’t be writing any
Canopy-based tests, but you’ll test a couple of internal layers within the application: the
Web API tier and the internal Bank API, as illustrated in figure 43.1.

Web browser client Web API controller Core bank API Database / filesystem

Figure 43.1 The API layers selected for unit tests
511

512 Lesson 43 Capstone 8
43.1.1 Solution overview

The solution you’ll be working with is what you finished up with at the end of the pre-
ceding capstone—a web-enabled version of your Bank API; you’ll find it in the lesson-
43 folder. The main difference is that I’ve added a new test project to the solution. Once
again, to save you from working with the hassles of NuGet binding redirects, I’ve done
all the hard work for you. But so you know what’s been done

 The project has the following NuGet packages (plus their dependencies):
– xUnit (and the Visual Studio runner)
– Unquote
– FsCheck (and xUnit integration)
– ASP .NET Web API Core

 The versions of the dependencies have been set to match those in the other pro-
jects. For example, Newtonsoft.Json is set to 9.0.1.

 A set of binding redirects ensures that everything works nicely.

(If you used Paket, none of this would be a problem, because packages are automatically
kept consistent across projects.)

43.2 Writing API tests

Start by writing a few simple API tests for your core bank API—in-memory tests that
can prove various cases of the API.

43.2.1 In-memory testing

You’ll notice in figure 43.1 that the data store area is faded compared to the controller
and API boxes. This is because you aren’t going to be doing full end-to-end tests that
“hit the database.” Instead you’ll need to create an in-memory version of the data tier so
that you can easily set up different test cases. Let’s refresh your memory as to what the
data tier looked like in your application. First, let’s look at save:

100% test coverage?
Don’t expect to go through a full set of exhaustive tests in this capstone exercise. As I’ve
mentioned, I’m not a fan of trying to achieve 100% test coverage across your applica-
tion, particularly with F#. Instead, you’ll apply some of the techniques and tools from this
unit in a code base that by now you’re (hopefully) familiar with.

513Writing API tests
accountId:Guid * customerName:string * Transaction -> unit

This says that given an account ID, a customer name, and a transaction, you can per-
form a function that performs a side effect for that transaction (in this case, save to the
database). Now let’s see the signature to load all transactions:

customerName:string -> (accountId:Guid * Transaction seq) option async

This time, you give a customer name and get back Some accountId plus the associated
transactions. If no customer exists, you get back None instead. And to further complicate
matters, this function returns asynchronously.

Now you try

Start by creating a function that will create an IBankApi but use ResizeArray as an in-
memory backing store rather than the filesystem—perfect for quick unit tests:

1 Implement the function Helpers.createInMemApi(), which will create a fake IBankApi
whenever called.

2 The existing buildApi function in the Api module will do the bulk of the work for
you; it requires both a load and a save function (with the signatures previously
identified) and returns IBankApi.

3 The buildApi function is currently private, so won’t be accessible to the test project.
You can do one of the following:
a Make it public so that it’s visible to the test project (my preference).
b Make it internal and add an InternalsVisibleTo attribute to the project.
c Implement the createMemApi function in that module.

To get you on your way, here’s a stub function for you.

open System
open Capstone8.Api

let createInMemApi() =
 let dataStore = ResizeArray()
 let save accountId owner transaction = ()
 let load (owner:string) = None |> async.Return
 buildApi load save

Listing 43.1 A stub function to create an in-memory IBankAPI

In-memory backing
store for transactions

Save and Load
function stub
implementations

Building the Bank API using
these in-memory functions

514 Lesson 43 Capstone 8
4 The save function should be easy to implement—simply add the supplied data as
a tuple to the dataStore.

5 The load function involves a slightly longer query. You need to filter out rows that
aren’t for the requested owner, and then extract the account ID from the list as
well as the transaction elements. (One way is to use a groupBy over the account ID
in order to easily extract it, and take the first group that’s returned; there should
be only one group per customer.)

6 Don’t forget to wrap the result in an async. You can use the shortcut method
async.Return to do this.

43.2.2 Example API tests in xUnit

I advise writing a few API tests to get your muscle memory up and running, such as the
following:

 Create an account if none exists—Prove that you get a new account with an empty
balance if you call LoadAccount for a nonexistent customer.

 Multiple deposits are stored correctly—Make several deposits to a new account;
determine that the final balance on calling LoadAccount is correct.

 Cannot withdraw if overdrawn—If you go into an overdrawn state, trying to with-
draw again returns a Failure result.

Here’s the first test to get you going.

 [<Fact>]
 let ``Creates an account if none exists``() =
 let customer = { Name = "Joe" }
 let api = createInMemApi()
 async {
 let! account = api.LoadAccount customer
 test <@ account.Balance = 0M @> }
 |> Async.RunSynchronously

There are important things to note about this test. First, you create an in-memory API as
part of the test. It’s stateful, and you don’t want the effects of this test shared with
another test! Second, notice that you explicitly execute this test synchronously. xUnit has
support for asynchronous tests, so you could also call Async.StartAsTask if you wanted.
(xUnit 2.2 will have native support for F#’s async { } blocks but at the time of writing is
still in beta.)

Listing 43.2 Your first API unit test

Creating a sample
input customer

Creating a clean
in-memory API

Forcing synchronous
evaluation of your test

515Testing the Web API tier
43.3 Testing the Web API tier

Now that you’ve written some basic API tests, let’s move up a level and see how to test
your Web API controllers. In my view, your Web API controllers should be extremely
thin—a mapping exercise before your internal and public domains in both directions,
and at most some extremely simple orchestration; anything more should probably be
moved into your internal domain.

Testing Web API controllers isn’t especially difficult. You create your controller object as
you would any other object, passing in any dependencies as needed (in our case, a Bank
API that talks to an in-memory list). But you do have to ensure that the request and con-
figuration properties are correctly set on the controller object. Here’s a function that will
create a test controller with everything needed.

open Capstone8.Controllers
open System.Web.Http
open System.Net.Http

let createController() =
 let api = Helpers.createInMemApi()
 let request = new HttpRequestMessage()
 let config = new HttpConfiguration()
 new BankAccountController(api, Request = request, Configuration = config)

Now you try

Create a set of tests for the HTTP layer. Again, I advise you to stick to focusing on the
mapping between data from the web layer to the internal Bank domain model and back
again. With that in mind, here are some examples you can try:

 Successful withdrawal returns OK—Check that the Withdrawal controller returns
HttpStatusCode.OK if the withdrawal worked.

 Unsuccessful withdrawal returns Bad Request—Check that the Withdrawal control-
ler returns HttpStatusCode.BadRequest if the withdrawal was rejected.

 Returns correct balance—The balance of an account is correctly entered onto the
response message.

Listing 43.3 Creating a Web API controller under test

Creating dependencies
for the Bank Account
Controller class

516 Lesson 43 Capstone 8
One thing that’s interesting is that Web API methods that return an IHTTPActionResult
rather than arbitrary objects (for example, PostDeposit compared to GetHistory) need to be
unwrapped to get the HttpResponseMessage. To save you some time digging around, here’s a
helper method that will do it for you.

open System.Threading
open System.Web.Http
open System.Threading.Tasks

let executeRequest (request:IHttpActionResult Task) =
 async {
 let! request = request |> Async.AwaitTask
 return! request.ExecuteAsync CancellationToken.None |>

➥Async.AwaitTask }
 |> Async.RunSynchronously

43.4 Using property-based tests

OK! Almost done—you have just one more type of test to try! You’ll put in a couple of
property-based tests for the Bank API, just to prove that you can.

Listing 43.4 Unwrapping a Task<IHttpActionResult>

Mocking libraries
It seems strange that we’ve gotten all the way here and not touched on mocking frame-
works! This is a question that I see coming up now and again, so it’s worth briefly
addressing. First, you can absolutely use standard mocking libraries with F#, such as
Moq (there’s even a library designed specifically with F# in mind, called Foq!). But as
you’ve seen throughout this book, often you’re simply varying code by injecting individual
functions, rather than entire objects and interfaces—in which case, it’s trivial to mock
them by creating arbitrary test functions by hand and passing them in.

There’s also a tendency in F# to lean toward passing simple data structures around to
pure functions rather than objects with behavior on them—and again, these are gener-
ally extremely easy to test.

Try not to get hung up about mocking frameworks—you'll very rarely need them.

517Using property-based tests
43.4.1 Thinking about property-based tests

As you may recall from lesson 41, we identified a few ways to discover tests. I’m going
to opt for a couple of simple tests to get you started, which will hopefully give you some
good ideas of how to find further properties to test:

 Going under 0 makes the account overdrawn—If you make a withdrawal that pushes
the account below 0, the account should become overdrawn.

 Withdrawal fails if the account is overdrawn—If the account is in an overdrawn state,
trying to withdraw funds should fail.

These are similar to the tests you wrote at the start! The difference here is that rather
than use hardcoded inputs and outputs, you’ll have to write general tests that prove the
rule. In these cases, the logic to test should be fairly obvious.

43.4.2 Your first property-based test

I’ll get you started on the first test by at least providing the signature for you. It declares
a test method that takes in a value that you’ll use as the starting balance of the account.
From there, it’s up to you to write code to force the account to go overdrawn and then
prove that the account is correctly identified as such.

[<Property(Verbose = true)>]
let ``Going under 0 makes the account overdrawn``(PositiveInt startingBalance) =
 let startingBalance = decimal startingBalance
 // ... complete the test!

The test implementation shouldn’t prove too challenging:

1 Create an instance of the test Bank API.
2 Make a deposit for the starting balance supplied.
3 Make a withdrawal of the starting balance + 1.
4 If the returned result is Success (Overdrawn _), return true.
5 Otherwise, return false (the test fails).

The important bit here is that you make a withdrawal amount based on the value used
as the starting balance. By always withdrawing one unit more than was deposited, you
can ensure that you always go overdrawn (indeed, you could start with an empty

Listing 43.5 A stub property-based test

Using FsCheck to
generate only
positive integers

Converting the
integer to a

decimal

518 Lesson 43 Capstone 8
balance to try to prove this, but starting from different amounts at least makes the test a
little more interesting).

Summary

That’s the end of the final capstone! You’ve written a set of unit tests by using tools and
techniques covered in this unit, and applied them to a domain that you’ve worked on
throughout the book.

Try this

Here are some ideas for further types of tests you could write:

 Write a set of tests using FsUnit.
 Create a mock Bank API for the controller tests, instead of using the real Bank

API logic. Use F# object initializers to avoid creating a real mock type!
 Read up on FsCheck’s model-based testing feature (also known as stateful tests).

Create a set of model-based tests proving that the Bank API correctly works with
a random sequence of withdrawals and deposits.

519

U
N

IT

10

Where next?

Congratulations—you’ve made it! That’s the end of
the learning phase of this book. Remember that this
book is split into two distinct halves; the first half
covered a core subset of the F# language, and the
second half covered applying F# in real-world sce-
narios using various technology stacks.

Having worked diligently through this book, are
you now an expert in F#? Probably not. But I’m hop-
ing that you have the confidence to attack nearly
any problem that previously you would’ve solved
by reaching for C# without a second thought.
Instead, you now know that you can use F# for just
about any use case that you’d have looked to C# for,
as well as other use cases that you previously might
not have even considered .NET a viable option for
at all.

Are you a functional programming expert? Again,
probably not. Remember, this book focused on
some of the fundamentals of FP, including expres-
sions over statements, functions as values over
classes and methods, and composition over inheri-
tance. There’s a whole world of information for you
to find out more about FP and its use within F#—
compare this to learning more design patterns in
the OO world to enrich your ability to effectively
solve problems.

520 Appendix
The final unit of this book doesn’t contain many code samples or any practical exercises.
Instead, it consists of several small appendixes that aim to address questions or issues
you may have, such as the following:

 How can I convince my boss to give me permission to use F#?
 What’s the best way to start using F# in an existing system and team?
 How can I learn more about F#?
 What features of F# didn’t you cover?

Without further ado, let’s dive in!

AAPPENDIX
THE F# COMMUNITY

Since 2015, Microsoft has openly been a fan of moving to an open source model. Lots of
.NET has been open sourced, and the impending delivery of .NET core—which includes
a lighter, cross-platform version of the CLR—suggests that Microsoft sees the long-term
future of .NET as running on equal footing on Windows, Mac, and Linux. Microsoft has
a long way to go, though, in my opinion, until it truly adopts open source—there’s a
world of difference between putting a repository on GitHub and embracing a commu-
nity-led approach to development. Nonetheless, it’s something to be applauded.

If you’re not familiar with working with open source, community-led projects, doing so
can be a great learning experience. Not only are you exposed to different coding styles
and techniques, but you also learn about a different way of developing software,
through features such as pull requests and (almost certainly) through Git and GitHub.

A.1 The F# community

F# is way ahead of the curve here in terms of the .NET community. The language and
compiler itself was open sourced several years ago, and it has a vibrant, active, passion-
ate (some might say too passionate!), and growing community behind it. F# has channels
of communication through Twitter, hangouts, real-world meetups, mailing lists, and
websites (see appendix D). But what does this mean for you as a software developer in
terms of day-to-day development, sourcing reusable libraries, and working with others?
521

522 Appendix A The F# community
A.1.1 Microsoft and F# libraries

First, you have to get used to the idea of not relying on Microsoft to provide every
library, framework, or tool. Instead, many of the libraries and tools you’ll use are open
source, run by the community, for the community. On the one hand, many people work
on these tools in their spare time rather than as a full-time job. But I should point out
that many people are able to contribute to open source projects as part of their day-to-
day jobs, because their organizations use (or maintain) those tools. At the same time,
you’ll have open, direct access to the code base (and authors), and can make fixes or
enhancements yourself, as well as encourage others to chip in. That’s not to say that
code bases in, for example, Microsoft’s repositories don’t allow changes, but you might
find a slightly higher barrier to entry to contribute to the C# compiler (and perhaps with
good reason!).

Think of all the F# libraries you’ve seen in this book: FSharp.Data, Paket, Suave, XPlot,
and FsCheck. All are open source projects that are managed by individuals within the
F# community—not Microsoft. The community, not Microsoft, dictates where the tools
go, and, ultimately, the ecosystem of tools that are available. This mentality is a sort of
survival of the fittest: tooling can rapidly evolve, benefitting everyone. This is very dif-
ferent from the typical C# library stack of Nuget, Entity Framework, ASP .NET, and so
forth, all of which are ultimately owned by Microsoft. If Microsoft decides to make a
change to these tools, you may be able to comment on the direction they take, but, ulti-
mately, you’ll have little choice but to accept the decisions that are made in Redmond.

Note that the F# community includes the Microsoft F# team, which contributes to these
tools as well, but doesn’t own them. In this way, the F# community stands out a little
from the C# and VB .NET communities, in that a much higher proportion of F# users are
actively involved in community activities. Part of this is drawn out of necessity; because
Microsoft doesn’t invest quite as much in F# as, say, C#, the F# community has matured
extremely rapidly and is remarkably self-sufficient. Frankly, this attitude is something
that the C# and VB .NET communities need to imitate in the future in order to ensure
that those languages (and associated libraries) evolve in the right way and stay relevant,
particularly with the move to .NET Core. A few years ago, a similar movement known
as the “alt .net” movement arose within the C# community. It encouraged developers to
not only look to Microsoft for tooling and libraries but to the community itself. It kind of
died off a few years ago, although it looks like it might resurrect itself with the coming
of .NET Core.

523The F# community
A.1.2 Impressions of the F# community

The F# community has become known in some circles within the .NET community—
somewhat unfairly, in my view—as the awkward sibling that operates differently than
the rest of the .NET ecosystem. Why? One reason is that although today Microsoft is
publicly committed to the future of F#, that wasn’t always the case. The F# community is
used to having to fix things that aren’t up to scratch in order to improve tooling or pro-
cesses, because for several years there was no alternative than to do it themselves. This
led to the misconception that the community was often going against the grain of estab-
lished tools and processes just for the sake of being different. As a result, the F# commu-
nity often uses alternatives to many of the common tools and libraries that you might be
familiar with; we’ll cover more of this in appendix C, which details specific libraries and
tools that make up a key part of the most common F# toolchains.

In the past, this do-it-yourself approach led to the relationship between the community
and Microsoft being somewhat uncomfortable; at times Microsoft ignored many of the
excellent .NET technologies that were created by the F# community just because of a
lack of awareness or a misconception that F# libraries couldn’t be used by .NET in gen-
eral. Other times, Microsoft teams actively attempted to thwart tools being created
within the F# community, which ultimately led to public squabbles on social media.
Hopefully, those days are now past us!

Within Microsoft, there’s a growing acceptance and acknowledgment that F# does have a
valid place within .NET in many spaces, and has a valuable role to play in moving .NET
out from the closed world it inhabited for many years and into the open.

F# elitists
There’s also a tendency to think of the F# community as somewhat elitist, looking down
on the “inferior” C# and VB .NET developers who haven’t “seen the light.” There’s unfor-
tunately an element of truth here, as occasionally people in the community have allowed
their enthusiasm for F# to bleed over into maligning those languages.

But by and large, even though many people in the F# community firmly believe that F#
offers a way to solve many types of problems that’s superior to C# or VB .NET, most
don’t feel the need to disparage the use of other languages or people who haven’t tried
F# yet.

524 Appendix A The F# community
A.2 Coding in the open source world

As an example of what I mean about community involvement, let’s take a simple sce-
nario: you’re using an open source library and find a bug, or maybe you have a feature
request to improve it. How do you report this? It’s pretty easy. You go to the GitHub
repository for the library and raise an issue; usually, someone who maintains the project
will respond within a few hours, sometimes less. Sometimes the feature will already be
there. Other times it won’t be appropriate, and still other times it’ll be accepted and
placed on the to-do list. At this point, rather than waiting until one of the maintainers
makes the appropriate changes—particularly if the change is relatively small—you
might be asked to submit a pull request with the changes yourself! The maintainers will
usually help you by providing the area of code that needs to change, and then suggest-
ing what you might do for the change. Although it would undoubtedly be quicker for
the maintainers to make the change, there’s a reason they’re keen to get a new contribu-
tor involved with the project: this grows the team of people who can help with the pro-
ject. The next time you have a feature request or bug fix, you’ll already have the source
code on your machine, and it’ll be much quicker for you to make a change.

A.3 A real-world example of open source contributions

Here’s a real-world illustration of three people on Twitter discussing a feature request
for the FsReveal project:

29th January 2016

08:39 [PI]: Hello #fsharp nation! Is there any way to do links between slides in #fsreveal?

10:03 [IA]: Can’t they just point to the URI (every slide has a #page bit in the URI)?

The F# foundation
The F# Software Foundation (http://foundation.fsharp.org/) is a not-for-profit organiza-
tion whose goal is to “promote, protect, and advance the F# programming language and
facilitate the growth of a diverse and international community of F# programmers.” The
foundation has a board, elected annually by the members of the foundation, whose
responsibility is to help shape and promote the evolution of F# as a whole. The foundation
runs several working groups and programs, such as a 1:1 mentoring program, core
engineering, and communications, and also helps connect people looking for speakers
and those giving presentations.

http://foundation.fsharp.org/

525A real-world example of open source contributions
10:04 [PI]: Yes, but I’d like the URI to be dynamically generated. Define an anchor in a
slide and reference it from another one

10:05 [PI]: But I know the correct answer is to open an issue on GitHub and write a pull-
request!

10:13 [SF]: Maybe there is already a trick in reveal.js?

14:18 [PI]: Indeed there is!

30th January 2016

10:25 [PI]: And here comes the pull request

11:27 [SF]: Awesome!

Notice the use of the #fsharp hashtag, designed to get the attention of the active F# com-
munity on Twitter. From there, it takes about 24 hours from the idea for a feature first
being formed to the solution being submitted as a pull request into the proper code base.

Let’s look at the pull request in more detail (see figure A.1). In this case, having already
spoken about a new feature for this project on Twitter with a couple of maintainers of
the project, pirmann submits a pull request (PR) with the code changes required for a
specific feature. forki (one of the project maintainers) then replies and asks for docu-
mentation to be added; shortly after, it arrives. Only then does forki accept the pull
request, and thanks pirmann for his contribution to the project. He might have also
done a quick code review of the changes to see what’s been added. Total turnaround
time from idea to release in this case was around 24 hours—not bad!

Pull requests are a low-ceremony, quick-and-easy way to help shape a system that you
use and benefit from. The feature may not have been particularly large, but by accepting
lots of small PRs, a system can rapidly grow in features and complexity.

Again, this collaborative approach is something that might be completely foreign to
you; you might even find it rude the first time someone on a project asks you to do a fix
yourself, but this attitude is perfectly normal. Working together in this manner empow-
ers us all to shape libraries and frameworks as we see fit, and with a much quicker turn-
around than you might be used to. Of course, this quick turnaround means that rapid
change often occurs within a library, which can be unsettling. There’s also the increased
risk of bugs. Some projects are more “bleeding edge” than others and are willing to
push out new versions of tools much more quickly (the flip side is that bugs are often
fixed much more quickly, too!).

526 Appendix A The F# community
Summary

The F# community is friendly, welcoming, and enthusiastic. But it also operates on a dif-
ferent mind-set than you might be used to if you’re comfortable with the approach that
we should adopt—and rely upon—everything Microsoft serves us. If you can accept
that there’s another way to get things done, and are interested in becoming an active
member of the F# community, you’ll find it’s a fun, vibrant, and extremely productive
way to collaborate and get things done! You’ll see how to get involved in appendix C.

Figure A.1 A real-world example pull request from the FsReveal project

BAPPENDIX
F# IN MY ORGANIZATION

One of the most common difficulties that developers have after they’ve tasted F# is
adopting it into their real-world, day-to-day jobs. I see this difficulty play out in three
ways:

 Making the leap from writing scripts and console applications into integrating
with the full .NET stack—things such as interoperability between C# and F#,
working with NuGet, and using frameworks such as the ASP .NET Web API.

 Convincing others of the value of using F#, and ultimately getting permission
from colleagues or management to give F# a go.

 Understanding how to start using F# in a practical way in an existing tech stack.
What areas are safe bets to start using F# that will show its strengths? How
should you start applying F# within an existing solution?

I hope that over the course of this book, you’ve gained confidence in carrying out tasks
that fulfill the first of these three points, and can see enough to assure you that F# works
fine in basically the same contexts as C# or VB .NET. This appendix covers the latter two
points: dealing with common misconceptions regarding F#, and learning how to incor-
porate it into your existing tech stack.
527

528 Appendix B F# in my organization
B.1 Introducing F# to others

Let’s first discuss the human element. This section provides pointers on how to show F#
to the rest of your team, or your boss, in such a way that they’re happy for you to start
adopting it within your organization, and how to answer many of the common fears
about adopting F#. But before reading this, have a quick look at this tongue-in-cheek
YouTube video that demonstrates a common outcome to such a conversation:
www.youtube.com/watch?v=Hd9Z9s4_DII. Then read on to see ways to avoid this hap-
pening to you!

B.1.1 Show the advantages of F#

First and foremost, I encourage you to start by stating the overall benefits of F# in simple
terms that all developers can understand. You can talk about improved productivity,
reduced bug rates, and the ability to write code that’s easy to reason about. Give tangi-
ble examples, such as showing how easy it is to work with data in F# by using type pro-
viders; give examples that relate to concerns or difficulties you might be facing in your
current project or have had in the past, such as areas where bugs crop up often and F#
could help, or where you’re doing something such as CSV-parsing. Features such as
exhaustive pattern matching and discriminated unions, or even structural equality with
records—all of these are relatively simple ways of illustrating some of the quick wins of
F#. You can use many useful online resources, such as demos or presentations that peo-
ple have done in this vein.

B.1.2 Avoid dismissing C#

By far, the biggest mistake people make when showing F# to their colleagues is to sug-
gest that C# is somehow obsolete or bad. There are two reasons for not doing this:

 No one likes being told that something they’ve invested years learning and
growing fond of is somehow wrong; it becomes an emotional discussion that’s
not worth spending time on.

 C# is not suddenly a bad language. As far as modern OO languages go, it’s prob-
ably one of the best ones out there. The question is more about whether using it
in specific areas is going to be the best fit for you and your team compared to
working with perhaps a hybrid stack that also uses F#.

There’s nothing wrong with being enthusiastic about F#. The trick is to show the bene-
fits of F# without presenting them as a direct comparison to the “shortcomings” of C#.

https://www.youtube.com/watch?v=Hd9Z9s4_DII

529Introducing F# to others
Instead, focus on the strengths of F# as a language on its own, and then as an after-
thought relate this to how you’d perform the equivalent task in C# (avoiding straw-man
examples wherever possible). Ideally, show real examples of your existing code base
and how you might have approached the problem differently using F#, and where the
pain points are. Explain that if you like working with mutable data, statements, and side
effects with inheritance, then F# probably isn’t a great fit; but if you like working with
expressions that can be reasoned about, simple functions that compose together, and
lightweight modeling without the need for a myriad of design patterns, then F# might
well be a better fit.

B.1.3 Dismiss the zero-sum game

A common misconception about a new way of doing things—particularly something
like F# or FP in general, of which there’s sadly a lot of fear, uncertainty, and doubt (FUD)
out there—is that to gain the benefits of F#, there must also be a cost associated with it.
For example, it can’t be ready for production usage, or it can’t possibly be used for
general-purpose programming.

Explain to colleagues that this isn’t true and that, yes, it’s entirely possible to reduce bug
rates and increase developer productivity and improve developer satisfaction at the
same time! Plenty of case studies are available online that you can use to prove this as
well (see appendix D). Is your company or development team so unique that these stud-
ies don’t apply to your organization?

B.1.4 Reduce the fear of learning

It’s often taken as truth that F# carries a high cost. Again, this idea perpetuates the zero-
sum-game theme: that it must be hard to learn F# if the benefits are so great! Yes, learn-
ing F# has an up-front cost, but by the same token, there was an up-front cost to learning
LINQ in C# 3, or async/await in C# 5. Because F# sits on top of the .NET Framework, you
can reuse virtually all of the frameworks and libraries that you already know; you’re
just going to be orchestrating the use of them against data in a different way. Explain
that there are ways to start small (see section B.2) and gently introduce the use of F#
without the need to throw away all your existing code. And best of all, you’re holding a
book that provides a great way to start learning F# (although perhaps you’ll need to buy
a few more copies to share with your colleagues)!

530 Appendix B F# in my organization
B.1.5 We’re already productive enough!

More often than any other argument against adopting F#, I hear that a team is “already
productive enough in C#.” This is also one of the most ridiculous arguments of all.
Against what yardstick is your team measuring itself? Have you arbitrarily decided that
it’s going to be impossible to make any more productivity gains in the future? Is your
team not even interested in exploring the possibility of reducing the cost of develop-
ment for your organization?

Ask your team about the areas of development that they would consider for using F#. If
the reply is “math or science,” their information about F# is almost certainly hearsay (F#
was initially marketed as such when it first came out many years ago). If the reply is
“only when we’re doing something especially difficult,” you can dispel this easily
enough; although F# does allow you to solve difficult problems with simple code, F# also
allows you to solve simple problems with extremely simple code!

B.1.6 It’s not fully supported by Microsoft

Until not so long ago, I might have said that there was some weight to the argument that
F# isn’t fully supported by Microsoft. Yes, the F# team is smaller than the C# team, but
that doesn’t mean that F# isn’t an important part of the Microsoft development stack.
Indeed, Microsoft has recently indicated several times that F# is here for the long haul,
that Microsoft knows there’s real value in having it as a core part of the .NET stack, and
that it’s committed to bringing F# more in line with support for tools such as VS2017.

B.1.7 Specific use cases

Your product or project might have some areas that are especially applicable to F#, such
as data manipulation, complex modeling, or working with scripts, where C# doesn’t
necessarily fit especially well. You can explain, with real examples, how F# would elim-
inate a bottleneck in your process or current development project. The problem with
going down this route is that you run the risk of F# being thought of as only applicable
to solving problems in that specific area. You then might find it difficult to “break it out”
later. On the other hand, if using F# is a roaring success, you can always use it as a
springboard from which to justify adopting it in other areas.

B.1.8 Cost/benefit analysis

Particularly when you’re dealing with decision makers rather than pure technologists,
those people who hold the purse strings will need to see why F# is of interest to them.
There’s always an inherent risk when doing anything new or different, so you’ll need to
explain in nontechnical terms why this is important for your organization.

531Introducing F# to others
Look at F# as providing your company with a competitive edge over others. Explain
how F# can reduce development costs, both in terms of time-to-market as well as main-
tenance costs. Show how F# is consistently one of the most loved languages in devel-
oper surveys, which could lead to improved staff retention. For example, in the 2016
Stack Overflow survey, F# placed third as the most loved language, with an approval
rating almost 10% higher than C#. There’s also some evidence that developers are will-
ing to take a pay cut in order to work on F#, as they understand the benefit it’ll give
them in their careers.

Jet.com is a great case study of a large organization that bet the farm on F#, building its
entire back-end stack in F# on top of Microsoft Azure. Just 18 months after launch, Jet
was bought by Walmart for a whopping $3.3 billion, due in no small part to the techni-
cal assets Jet had developed. Many other excellent case studies exist on fsharp.org in a
variety of verticals, from finance to e-commerce to gaming.

B.1.9 Hire new staff

Another common concern exists, and a fair one. If you look at the number of available
jobs for F# positions, it’ll always be lower than C# jobs—no surprises there, because C#
is used around 100 times more than F#, according to high-level figures from Microsoft.

But that’s no reason to avoid using it—developers can always cross-train to F#. In my
experience, when using F# day in and day out, it takes a few weeks for a competent
developer to become reasonably productive in the language, and a few months to be
completely comfortable in the language. (This time can be reduced further if the devel-
oper is already familiar with either .NET or functional programming.) It’s certainly
nothing that should be a major blocker, although I’ve seen this concern block adoption
of F# before.

B.1.10 Simply start using it

This approach is riskier, and depends on the level of control you have within your orga-
nization. I know of developers who have started using F# without even asking the cus-
tomer or management for approval. Potentially, this is a high-risk strategy, because if
things don’t work out—for example, you struggle with a specific part of the project, or
for some other reason the project isn’t a success and someone else blames it on “that
weird language” (this has been known to happen!)—you could end up facing difficult
questions. Also, bear in mind that doing this could mean going against the wishes of
other team members who might have a vested (and even emotional) interest in staying
with a language that they feel comfortable with.

532 Appendix B F# in my organization
The flip side to this is that if things go well, you could end up being the superstar, some-
one who was able to get things done by using the right tool for the job. Getting noticed
like this will probably also win you points with management, as someone who was able
to take personal responsibility and showed initiative to make a positive difference in the
company.

B.2 Introducing F# to your code base

OK! You have buy-in from the powers that be to start using F#, and your fellow devel-
opers are all eager to start trying F#—ideally, on your current project. The question now
is, how do you start? This section outlines a few approaches that you can take in order
to adopt F# in an existing team and project.

B.2.1 Exploratory scripts

Probably the easiest way to start using F# is with scripts. A script allows you to start to
learn the language in a relatively low-risk manner, while quickly building confidence in
the language and getting immediate benefit. In my experience, scripts are always
needed in a project (even a project whose code base is 100% C#), whether it’s to quickly
test a subset of the application (instead of the dreaded console application) or to quickly
try a new NuGet package. Alternatively, you might also use a script to aid with bug-
fixing or fault reproduction, to quickly identify a record in a database, hit an HTTP API,
and then call some code with a mashup of both. You’ll be surprised just how quickly
you’ll naturally start to use a variety of F# features even within a script!

Note that as of VS2015, C# has some support for scripts (as well as third-party tools and
systems), and this will no doubt improve in time. But for the moment, F# scripts reign
supreme in terms of experience. If you acknowledge that you’d like to use scripts to not
only provide business benefit but also to help learn F#, they are probably the lowest
hanging fruit.

B.2.2 Ad hoc processes

Some ad hoc processes are nearly always needed within a system. These processes may
take the form of scripts, but rather than as a means to explore code, they might be some-
thing to aid the day-to-day running of your system. For example, you may use a mainte-
nance process that clears certain records in a database based on the result of another
query, or the results of a text file that needs to be parsed that’s delivered on a daily basis
from a third party. Or you might use the process to generate a report once a day, every

533Introducing F# to your code base
day, by pulling in data from your source systems and emitting a PDF or HTML report
(see appendix C for details on the FsLab project).

B.2.3 Helper modules

If you’re ready to start bringing F# into your main code base, you have several options.
The easiest one to start with is to write standalone helper functions or modules of func-
tions. These show up as static classes in C# and so are easy to work with from a con-
sumption point of view, and can help you build confidence in writing hybrid
applications within your team.

But beware of underselling F# here. It’s easy to think that F# is great for small functions
that take a number and give back another number, but can’t be used for anything more
than that. You’ll also be somewhat hamstrung in that you won’t be able to use F#’s type
system for modeling if you rely on your C# domain model. Again, this is missing out on
much of the power of the language.

B.2.4 Horizontal tiers

One way to allow F# to flex its muscles a little more
is to say that from an architectural perspective, a
single horizontal tier of the application will be
written in F#. For example, you might use F# for
the validation tier, or data access layer, or even a
large module within a system (such as a calculation
engine). You can provide a contract that you
expose to consumers (and even wrap in a light-
weight OO interface to make it natural to consume
from C#), but internally you’re free to use the full
power of F#, with a rich internal domain model
built on discriminated unions, with exhaustive pat-
tern matching and type providers.

In figure B.1, you can see a fictional web stack that
uses F# for the validation and business logic,
while leaving C# for implementing the MVC con-
trollers and data access. Note that I’m not suggest-
ing that this is a recommended partition of
concerns to language!

UI tier
(HTML, TypeScript)

MVC controllers (C#)

Validation (F#)

Business logic (F#)

Data access (C#)

Figure B.1 A sample hybrid language
application stack with different
languages used for different tiers

534 Appendix B F# in my organization
Adopting a horizontal-tiers approach means that you can pick and choose which areas
you’d like to tackle, one at a time, and gain the benefit of the F# code across all the mod-
ules within the application. But if this is an existing application, you’ll need to gently
phase in the F# code to replace the C# code. This might prove challenging if your team is
actively developing at the same time across the application.

B.2.5 Vertical tiers

An alternative to partitioning by horizontal tiers is to pivot this, and partition by vertical
tiers. In this case, you provide a full end-to-end stack implementation in a single .NET
language, but only for specific business areas of the system (for example, the customer
module or the order management module). You could therefore reorganize your archi-
tecture as shown in figure B.2.

This approach has several benefits:

 You can see how a full F# stack works compared to an equivalent C# stack. Is it
any easier to work with? What are the pain points?

 The next time you create a new area of the system, you can adopt this without
treading on anyone else’s toes or affecting the existing product.

UI tier
(HTML, TypeScript)

Customer
management

(F#)

C
on

tro
lle

rs
 /

Va
lid

at
io

n
/ B

us
in

es
s

lo
gi

c
/ D

at
a

ac
ce

ss

 Order
management

(C#)

Search
(C#)

Figure B.2 Partitioning an application into vertical tiers

535Introducing F# to your code base
Y

C
43

7
47

94
The cost of this approach is that for cross-cutting code (for example, logging or caching),
you might end up having two versions of code that do the same thing, one in C# and
one in F#. It’s also somewhat bolder than the horizontal version, as you’ll rely on a new
language for an entire business area of the system.

You could try a hybrid approach, perhaps creating some cross-cutting concerns in F#
(such as a cache layer) and a subsection of the Customer module in F#. But you’ll need
to be careful that your code base doesn’t turn into a patchwork of seemingly random
language choices across your application stack!

One thing I can tell you from experience is that working in hybrid stacks often leads to
a bleed of F# code into what is historically the C# stack, because the ability to rapidly
and accurately model domains in F# quickly becomes addictive. As you move between
the two languages, you’ll probably find yourself wanting the F# side of things to
expand across the stack as you miss the extra type safety and security that the language
affords you.

B.2.6 Unit tests

I’m not a huge fan of using F# for unit tests in C# projects, but some people swear by
this. You can certainly use F#’s backtick methods to improve readability, and can use its
succinct syntax to more rapidly write tests. But you’ll probably still be working with an
object-oriented API, so you won’t easily be able to use more powerful F# features such
as currying.

The only exception to this is with something like Canopy, which has a specific DSL that
makes writing tests easy. But the flip side is that because Canopy has such a specific
DSL (with several custom operators and global mutable variables), it can be difficult to
know where “F# the language” stops and “Canopy the DSL” begins.

B.2.7 Build scripts

FAKE is a popular project in many .NET (not just F#) solutions to provide a succinct,
simple-to-use build system that can replace TeamCity for build orchestration (see
appendix C). Because the build is completely separate from your application code,
you’re isolated from the main code base, so in one sense it’s fairly low risk. But once
again, because FAKE provides a DSL on top of F#, it can be tricky for beginners to dis-
tinguish between FAKE and F#.

536 Appendix B F# in my organization
Summary

Adopting F# in your team is a two-step process. First, you need to get buy-in from those
you work with (and under!). Second, you need a plan for easing F# into your existing
development process and stack. There’s no right or wrong here. A lot depends on your
team’s appetite for learning something new (and the apparent risk of adopting some-
thing different), as well as the ease with which you can integrate F# into your product
stack. Spending a few days in advance trying out a proof of concept (or speaking with
someone who has done this before) is always a good idea.

CAPPENDIX
MUST-VISIT F# RESOURCES

One of the goals of this book is not just to give you confidence in using F#, but also to
give you the ability to join the F# community and to learn about new areas of F#. The
objective of this appendix is to point out some of the many excellent online resources
that you can take advantage of that will enrich your use of F#. I should also point out
that there are many excellent offline resources—books—by which you can further your
knowledge of F#. You can probably find the ones that are right for you by speaking to
people within the community.

C.1 Websites

Many websites are dedicated to F#; this section lists a few of the most popular ones that
you’ll definitely want to check out.

C.1.1 FSharp.org

http://fsharp.org/

The official home of F#, this contains all sorts of goodies, from customer testimonials to
Getting Started guides on a variety of platforms, to helpful guides in several areas. The
site also has details about the F# Foundation, including how to become a member, how
to contribute, and how to take part in some of the programs that the foundation runs.
537

http://fsharp.org/

538 Appendix C Must-visit F# resources
C.1.2 Community for F#

http://c4fsharp.net/

The C4FSharp site provides a list of information regarding events and user groups hap-
pening in the F# world. It also contains a list of webinars and recorded user group talks
demonstrating various aspects of F#. If you’re looking to go to a meetup or user group
near you, there’s a good chance it’ll be registered here!

The site also contains great coding dojos. These are challenges that usually last a few
hours, with a set task and model solution, usually best done in groups or pairs, often in
a user group session.

C.1.3 F# for Fun and Profit

http://fsharpforfunandprofit.com/

There’s no way you could use F# and not know about this site. F# for Fun and Profit has
been running for several years and contains many educational posts on various aspects of
F#, from error handling to domain modeling, to more complex areas of F# such as
monads. The series of posts has evolved organically over time, so they don’t necessarily
follow a clear “path,” and the content is very detailed—many of the posts have a large
number of examples that explain (very clearly!) the concepts. Although it’s not a site that
you might quickly look at for a five-minute answer to a specific question, the concepts it
deals with are definitely worth your time to read. The series on error handling and rail-
way-oriented programming alone is worth it, but dozens of series are available to read up
on. Scott Wlaschin (the author of the site) is also a regular (and excellent) speaker on F#, so
if he’s in a user group in your area, it’d be well worth your time to go listen to him.

C.1.4 F# Weekly

https://sergeytihon.wordpress.com/category/f-weekly/

F# Weekly performs an excellent news aggregation function for F#, based on new librar-
ies that have been released, news on the F# language, blog posts and videos, as well as
generally anything that’s happening in the community. Subscribing to it is definitely
worthwhile, and probably the easiest way to quickly catch up on what’s been going on
in F# over the past seven days.

http://c4fsharp.net/
http://fsharpforfunandprofit.com/
https://sergeytihon.wordpress.com/category/f-weekly/

539Social networks
C.2 Social networks

If you want to quickly interact with the rest of the F# community, whether it’s to ask
someone’s opinion on something or for advice on a problem you’re facing, F# has you
covered with a great presence on various social media.

C.2.1 Twitter

https://twitter.com/hashtag/fsharp

The #fsharp hashtag is your friend on Twitter. Whether it’s someone’s ideas or news on
F#, a new library that’s just been released, or the latest debate as to whether F# should
adopt type classes or not, it’ll almost certainly have a discussion here.

C.2.2 Slack

Slack, shown in figure C.1, is an excellent browser-based medium for discussions that
need more than 140 characters in a tweet, allowing users to chat in groups on a variety
of topics.

There are two Slack forums for F#:

 https://fsharp.slack.com/—The F# Software Foundation slack channel, with chat
rooms for beginners, general discussions, and data science to the compiler

 https://functionalprogramming.slack.com—An unofficial F# channel, but also
equally popular

Many of the F# community will crop up on here as well, so it’s often worth having both
Slack channels open in separate tabs in your web browser just in case!

Figure C.1 The F# Software Foundation Slack channel

https://twitter.com/hashtag/fsharp
https://fsharp.slack.com/
https://functionalprogramming.slack.com

540 Appendix C Must-visit F# resources
C.2.3 Reddit

https://www.reddit.com/r/fsharp/

The F# subreddit contains many news items and discussion topics that are worth look-
ing into, on a wide variety of topics. If you use the Reddit website already, this is a good
subreddit to belong to.

C.2.4 The F# mailing list

https://groups.google.com/forum/#!forum/fsharp-opensource

You can also subscribe to the F# Google group and mailing list. Since the increase in
popularity of Slack, the content on the group has dropped a little, but there are still
interesting discussions to be had on it. In addition, the F# Weekly is always sent here, so
this is an easy way of getting weekly news on F# delivered to your inbox!

C.3 Projects and language

This section presents source code repositories that are important for F#.

C.3.1 The F# compiler

There are two repositories for F#: the Microsoft Visual F# repository, which contains the
core compiler and the open sourced tooling elements (https://github.com/Microsoft/
visualfsharp), and the “open” edition of the core language and tools (https://github
.com/fsharp/fsharp). The former feeds directly into Visual Studio and the official F#
NuGet packages, whereas the latter is based off the former (theoretically, they should
always be the same) and then feeds into many of the cross-platform initiatives such as
Mono. In time, the two repositories will hopefully be merged into one, but I suggest that
for any issues (or if you want to keep up-to-date with the changes being made to the F#
language and compiler), you look at the Microsoft repository. Pull requests to the repos-
itory are definitely accepted and encouraged, although the toolchain for the compiler is
complex, so you’ll need to have your wits about you before you dive in and start to add
higher-kinded types to F#.

C.3.2 Language suggestions

The GitHub repository at https://github.com/fsharp/fslang-suggestions is used for manag-
ing suggestions to F#, and is curated by both the Microsoft Visual F# team and Don Syme
(the creator of F#). You’ll see many language suggestions here, all of which will be read by
the F# team (see figure C.2). You can also participate in existing issues by upvoting those

https://github.com/Microsoft/visualfsharp
https://github.com/Microsoft/visualfsharp
https://github.com/fsharp/fsharp
https://github.com/fsharp/fsharp
https://www.reddit.com/r/fsharp/
https://groups.google.com/forum/#!forum/fsharp-opensource
https://github.com/fsharp/fslang-suggestions
https://github.com/fsharp/fslang-suggestions

541Projects and language
that you agree with; this helps the team understand demand from developers for new fea-
tures in the next version of F#.

C.3.3 FS projects

The FS Projects website (http://fsprojects.github.io/) is a kind of semiofficial list of popu-
lar F# projects that are on NuGet and GitHub; see figure C.3.

Figure C.2 Some of the issues on the F# language suggestions repository

Figure C.3 The FS Projects website

https://github.com/fsharp/fslang-suggestions
https://github.com/fsharp/fslang-suggestions
http://fsprojects.github.io/

542 Appendix C Must-visit F# resources
FS Projects is definitely worth a look if you’re seeking a specific library, but it’s by no
means a complete list. Appendix D contains some libraries from here, as well as others
that are not included here.

Summary

This appendix contains some of the key online F# resources. There are certainly other
resources available, but the ones presented here are a great base for you to start engag-
ing with the F# community, learning from others, and sharing your knowledge and
experiences with the community at large.

DAPPENDIX
MUST-HAVE F# LIBRARIES

As an aside to all the NuGet packages you use today (almost all of which can be used
seamlessly with F#), this appendix contains a list of popular libraries and tools unique
to the F# ecosystem. It’s by no means an exhaustive list of all libraries out there (new
libraries are always cropping up), but there should be enough here to give you a few
ideas of how to start using F# in new and interesting ways.

D.1 Libraries

First, we’ll cover a whole set of F# libraries that we haven’t touched on yet in this book.
But don’t forget the ones we’ve already covered, such as Paket, FSharp.Data, and Can-
opy! Note that many of these libraries are just that: libraries, not frameworks. They can
be used interchangeably in a flexible manner, without forcing you down a specific path.
They’re nearly all open source and free to use (available on GitHub and NuGet), and
most work cross-platform without relying on Visual Studio tooling.

D.1.1 Build and DevOps

F#’s unique syntax, scripting, and language features make it a great choice for part of (or
to replace!) your build pipeline. The ability to create custom operators enables you to
perform some impressive tricks that can replace MSBuild and PowerShell for orchestrat-
ing build pipelines.
543

http://fsprojects.github.io/FsReveal/

544 Appendix D Must-have F# libraries
Fake

http://fsharp.github.io/FAKE/

FAKE (F# Make) is a build automation system with capabilities that are similar to make and rake.

FAKE comes with a large set of helper libraries to perform common tasks, such as copy-
ing files, building projects, versioning assemblies, rewriting configuration files, running
unit tests—all sorts of goodies. It can, in effect, replace your reliance on a central build
platform such as TeamCity and allow you to run builds locally as well as remotely.
Builds are made up of tasks, which are arbitrary functions that have a name; these are
then composed together using the FAKE DSL into a pipeline, as shown in figure D.1.

One of FAKE’s great strengths is that it runs as simple F# scripts, so you have total con-
trol; if you need to make your own custom build task, you can easily do so—just write
some F#! In addition, you avoid tying yourself into a particular CI server (for example,
TeamCity, AppVeyor, or VSTS). Instead, FAKE handles your build process, and because
you can run it locally, it’s much easier to reproduce problems in your CI build chain;
your CI server simply has a single task in it, which is to run the FAKE script.

ProjectScaffold

http://fsprojects.github.io/ProjectScaffold/

ProjectScaffold helps you get started with a new .NET/Mono project solution with everything
needed for successful organizing of code, tools, and publishing.

The F# ProjectScaffold was designed to create a framework to support many common
features you’ll want in an open source project, such as automated build, dependency
management, automatic NuGet package creation, HTML documentation generated
from F# scripts, and a full, one-click release process with automatic labeling and ver-
sioning to Git.

ProjectScaffold is commonly used for many open source F# projects (including many
that you’ll see in this appendix), and the tools it uses are popular and well understood

Figure D.1 An example
FAKE build pipeline

http://fsprojects.github.io/ProjectScaffold/
http://fsharp.github.io/FAKE/
http://fsprojects.github.io/FSharp.Configuration/
http://fsprojects.github.io/FSharp.Configuration/
http://fsprojects.github.io/Chessie/
http://fsprojects.github.io/Chessie/

545Libraries
in the community, such as Fake, Paket, and FSharp Formatting. But the build scripts can
be complex, so there’s a lot to get your head around.

D.1.2 Data

You’ve already seen how well suited F# is to working with data, but we haven’t covered
all the libraries out there. This section covers a few more libraries that can make your
life much easier when trying to perform more than the typical day-to-day sort of data
operations you’ve seen so far.

ExcelProvider

http://fsprojects.github.io/ExcelProvider/

As much as you might not like to admit it, Excel is everywhere and isn’t going away any
time soon. Sooner or later, you’ll need to work with data that a customer sends you in
Excel.

The ExcelProvider is a type provider that sits on top of Excel files. You can then work
with Excel files directly in F#, just as you can use the FSharp.Data type provider to work
seamlessly with CSV, JSON, or XML files. ExcelProvider has a great deal of flexibility,
and you can use cell ranges to work with only subsets of data within an entire sheet; this
is great if you have multiple datasets within a single worksheet.

Deedle

http://bluemountaincapital.github.io/Deedle/

Deedle is an easy-to-use library for data and time-series manipulation and for scientific
programming.

Deedle is F#’s equivalent of R’s DataFrames, or Python’s Pandas. It allows you to work
with datasets in a two-dimensional frame (think of old-school .NET DataTables) and per-
form operations on the frame, such as inferring missing cells based on surrounding
rows, time-series analysis, groupings, and aggregations. It’s also used within the finance
domain for things such as stock tickers and price analysis. The API definitely takes a bit
of getting used to, but it’s extremely powerful.

FsLab

https://fslab.org/

FsLab is a collection of libraries for data science. It provides a rapid development environment that
lets you write advanced analysis with a few lines of production-quality code.

If you’re interested in machine learning but thought you’d need to leave the comfortable
world of .NET to get involved, this package is for you. FsLab is a one-stop shop for

http://fsprojects.github.io/ExcelProvider/
http://bluemountaincapital.github.io/Deedle/
https://fslab.org/

546 Appendix D Must-have F# libraries
machine learning on .NET. In and of itself, it doesn’t do much; it’s a NuGet package that
references a set of other NuGet packages, including the usual data ones (such as
FSharp.Data and Deedle), charting libraries, machine learning libraries, and the R Type
Provider, which allows you to seamlessly call out to R packages and libraries from F#. It
also contains project templates that can make your life a little easier with regard to get-
ting up and running (although it’s not strictly necessary to use them).

FSharp.Charting

https://fslab.org/FSharp.Charting/

Unlike XPlot (which uses Google Charts and Plotly to render visuals), FSharp.Charting
uses the charting components built into .NET to create charts, as shown in figure D.2.
Although the results aren’t quite as flexible as XPlot (nor are they quite as pretty), the
API is easy to use, and it has support for streaming and animated charts, something
XPlot doesn’t support.

D.1.3 Web

F# is close to achieving an exceptionally good web story. You’ve already seen how F#
and functional patterns are a great fit for the web on the server, but what about on the
client? F# has two choices here, Fable and WebSharper, that allow you to do just that.

Figure D.2 Using FSharp.Charting to quickly and easily generate visual charts

https://fslab.org/FSharp.Charting/

547Libraries
Fable

http://fable.io/

Something that this book has steered away from is F# on the client, or running F# code
in the browser. You can’t directly do this, but what you can do with the Fable project is
transpile F# into JavaScript, in the same way that you can create JavaScript from Type-
Script or Dart or CoffeeScript (see figure D.3). The Fable project (and the FunScript pro-
ject it replaced) do an excellent job of this. The generated JavaScript is not only easy to
read, but also maps across many calls from the BCL to JavaScript libraries automatically.

A lot of superb work is being done in this area, including libraries that allow you to
design web pages in F# by using custom DSLs; developers are already reporting fantas-
tic productivity gains by having F# on both sides of the fence. There’s no reliance on spe-
cific Visual Studio tooling, and it works cross-platform. If you’re doing any web
programming, you should check it out. Check out http:// fable.io/repl for a page that
converts F# to JavaScript in the browser—seriously cool!

Figure D.3 Using Fable’s browser REPL to try out F#-to-JavaScript compilation

http://fable.io/
http://fable.io/repl

548 Appendix D Must-have F# libraries
WebSharper

http://websharper.com/

A fundamentally different web framework for developing functional and reactive .NET
applications.

WebSharper is a more mature project than Fable that has the same aim—F# on the cli-
ent—but tries to achieve this via a more prescriptive framework plus some Visual Stu-
dio templates. It’s extremely smart, using its own custom compiler to generate
JavaScript from F#, and allows you to write reactive (event-driven) applications entirely
in F#.

WebSharper began as a commercial platform, and although it has become free to use
now, it’s not quite the same in terms of open source as Fable. The flip side is that it has a
team of developers who maintain the project, as well as consultants who offer training,
so it’s not necessarily the case that you’ll be on your own if you use it. It’s not the easiest
framework to pick up, and being a framework, it’s not only prescriptive but also locks
you into a specific way of working.

FREYA

https://freya.io/

Elegant. Modern. Powerful. Functional web programming for F#.

Freya is another F#-first web programming framework, just like Suave, although Freya
has a different programming model. Both support the idea of composing small bits of
functionality together to build larger systems. Freya is actively updated and uses sev-
eral other libraries to provide excellent performance (in fact, it sits on top of Kestrel, part
of the new ASP .NET core framework).

F# Formatting

http://fsprojects.github.io/FSharp.Formatting/

F# Formatting is a fantastic tool that allows you to generate HTML documentation
based on F# scripts or a combination of Markdown files with embedded F# (see figure
D.4). Indeed, the documentation states that most F# open source projects are created
using this library. It also has support for embedding images, charts, tables, and even
source code (with tooltips!) inline.

You can use F# Formatting for more than just documentation of a site. You can also use
it for generating reports. For example, imagine you want to create a daily report that
contains the latest sales figures—no problem. Create an F# script with the F# Formatting
library and generate your report as an HTML document. When you’re done generating
it, email it off to key stakeholders, perhaps using a FAKE script to orchestrate the tasks!

http://websharper.com/
https://freya.io/
http://fsprojects.github.io/FSharp.Formatting/

549Libraries
D.1.4 Cloud

I spend a lot of time working with cloud applications, and F# is well placed to take
advantage of the cloud (something Microsoft is well aware of). If writing multithreaded
applications is difficult to reason about, think about the difficulty of writing applica-
tions that run across multiple machines across an unreliable network. F#’s approach to
immutable data and expressions helps reason about things here!

FSharp Azure Storage

https://github.com/fsprojects/FSharp.Azure.Storage

The Microsoft Azure storage service provides access to multiple services, one of which
is Tables, a cheap, simple, two-dimensional storage system. FSharp.Azure.Storage pro-
vides a pleasant F# DSL on top of the table service, with support for easy insertion,
updates, and queries of data directly from F# records.

Azure Storage Type Provider

http://fsprojects.github.io/AzureStorageTypeProvider/

The Azure Storage Type Provider gives you a full type provider over the three main
Azure Storage services: Blobs, Tables, and Queues. You can point the type provider to a
live Azure Storage account and receive IntelliSense over the assets in the account (see
figure D.5). It supports safe querying over tables (in that it guarantees not to generate
queries that the service will reject at runtime), and intelligently generates table types
based on the contents of a remote table; there’s no need to create F# records in advance.

Figure D.4 Using F# Formatting to generate HTML content from combined Markdown and F#

https://github.com/fsprojects/FSharp.Azure.Storage
http://fsprojects.github.io/AzureStorageTypeProvider/

550 Appendix D Must-have F# libraries
FSharp AWS DynamoDB

https://github.com/fsprojects/FSharp.AWS.DynamoDB

If you’re an Amazon Web Services developer, rather than Microsoft Azure, you can use
the FSharp AWS DynamoDB library. It’s similar to the FSharp Azure Storage library in
that it’s not a type provider, but rather aims to provide a simple API that takes advantage
of F#’s language features to make it easier to work with the DynamoDB storage system.

MBrace

http://mbrace.io/

Integrated data scripting for the cloud—get started with MBrace today.

MBrace is possibly the most exciting project of all here. It’s a general-purpose, flexible
framework for distributed computing on .NET. It allows you to wrap arbitrary code
blocks—whether they’re accessing F# functions, values, or even VB or C# code—and
distribute work across a cluster of machines, before returning with the result. It’s
extremely smart, handling distribution of captured values, exception propagation, par-
allel workloads; there’s even a big-data library that supports LINQ-style queries against
massive datasets. The programming model is extremely easy to grok if you understand
how async { } blocks work, as it’s effectively the same; you simply replace async { } with
cloud { }! There’s support for both Azure and Amazon cloud systems as well as an on-
premises model.

D.1.5 Desktop

When we touched on WPF in this book, it was explicitly left as the domain of C# for the
presentation layer, with F# providing the business logic. But that’s not entirely neces-
sary, as F# also has several excellent libraries for working with WPF.

Figure D.5 Navigating through a live Azure blob storage account in real-time with IntelliSense

https://github.com/fsprojects/FSharp.AWS.DynamoDB
http://mbrace.io/

551Libraries
FsXaml

http://fsprojects.github.io/FsXaml/

FsXaml is a type provider that can create a strongly typed view based on an XAML file.
In effect, it replaces the need for the code-generation phase used in Visual Studio when
working with XAML in C#. Using FsXaml, you can start to create complete WPF appli-
cations in F# projects, with full IntelliSense over controls that live in those views. If you
already know WPF, this type provider will allow you to continue to work with WPF but
in a 100% F# environment.

Although the official documentation is very sparse, the source code repository has some
useful samples, as well as a collection of F# WPF templates that you can add to Visual
Studio that show larger examples of working with it.

FSharp.ViewModule

https://github.com/fsprojects/FSharp.ViewModule

The companion project to FsXaml, FSharp.ViewModule, provides a framework for cre-
ating GUI applications that adhere to the Model-View-ViewModel (MVVM) pattern
that’s popular in the WPF world. The MVVM pattern is typically object-oriented, with
changes to your state combined with the INotifyPropertyChanged interface to push changes
to the view.

FSharp.ViewModule encapsulates much of this and allows you to focus on working
with simple mutable objects with automatic change tracking. There’s also an excellent
set of helpers for binding XAML commands to standard F# functions; this abstraction
means that you can write code that doesn’t stray too far for F# patterns and practices
while still being able to work with WPF views.

D.1.6 Miscellaneous

Alongside the preceding libraries, a few other miscellaneous libraries, although not nec-
essarily fitting into any specific category, are nonetheless useful and worth pointing out.

Argu

http://fsprojects.github.io/Argu/

How many times have you written a console application and needed to parse configura-
tion arguments supplied to it? Argu solves this problem for you. You define a declarative
model that represents the possible arguments that can be supplied, and the tool maps the
model to the input arguments. There’s support for mandatory and optional arguments,
automatic help, and friendly error messages, as well as automatic parsing of types.

http://fsprojects.github.io/FsXaml/
https://github.com/fsprojects/FSharp.ViewModule
http://fsprojects.github.io/Argu/

552 Appendix D Must-have F# libraries
FSharp.Management

http://fsprojects.github.io/FSharp.Management/

The FSharp.Management package contains a set of utility-type providers that you’ll
always want to have around when working on Windows with local resources:

 File System—Strongly typed access to files on the local filesystem
 Registry—Strongly typed access to the Windows registry
 WMI—Strongly typed access to the Windows Management Instrumentation ser-

vice (see figure D.6)
 PowerShell—Provides the ability to call PowerShell functions and modules

directly from F#
 SystemTimeZonesProvider—Strongly typed access to all time zones in .NET

FsReveal

http://fsprojects.github.io/FsReveal/

If you’re fed up with creating presentations using PowerPoint, FsReveal is an easy-to-
use tool that can generate web-ready slide decks based on simple Markdown files. You
don’t need a full application such as PowerPoint; you simply open a text editor (ideally,
one that can preview Markdown), and off you go. Instead of heavyweight tooling, a
simple FAKE script converts the Markdown files into a fully interactive website.

Because FsReveal sits on top of the JSReveal library to do most of the heavy lifting, it has
all the nice features that JSReveal has, such as speaker notes, support for clickers,

Figure D.6 Accessing WMI components through IntelliSense via the WMI
type provider

http://fsprojects.github.io/FSharp.Management/
http://fsprojects.github.io/FsReveal/

553Libraries
animated images, tables, and more. And because it also uses F# Formatting, you can
embed code in your slide decks and have it automatically generated in a pleasant
HTML web-based slide deck, complete with tooltips!

FSharp.Configuration

http://fsprojects.github.io/FSharp.Configuration/

FSharp.Configuration is a set of easy-to-use type providers that support the reading of
various configuration file formats:

 AppSettings—Application settings (and connection strings) for a .NET config file
(see figure D.7)

 ResX—.NET resource files
 Yaml—YAML configuration files
 INI—Old-school .ini files

Most projects have some form of configuration settings, so you’ll probably be using this
package more often than not!

Chessie

http://fsprojects.github.io/Chessie/

The last project we’ll address in this appendix is Chessie, a ready-made library for
working with Result code (code that might be a Success or Failure), also known as railway-
oriented programming. F# 4.1 will have a built-in Result type, so I imagine that Chessie
will change at some point to build on top of that. For now, it contains a complete Result

Figure D.7 Accessing application settings from an app.config file by using
the Configuration type provider

http://fsprojects.github.io/FSharp.Configuration/
http://fsprojects.github.io/Chessie/

554 Appendix D Must-have F# libraries
type along with many useful helper methods, such as mapping, binding, and so on—in
effect, the same sort of behavior that you can achieve with the Option module.

If you find that Option isn’t quite enough for you, and you want to encode error details
along the way rather than simply throwing away the None path, Chessie is a ready-made
library for you (and one that has some good documentation).

D.2 The F# toolchain

Now that you’ve looked at all of these libraries, many of the points I made at the start of
this appendix (and indeed at the start of the book) should now become clear about the
F# toolchain:

 No reliance on custom tooling in Visual Studio
 Emphasizing a code-first approach to development
 Type providers instead of code generation
 Simple, independent libraries that can be composed together
 Open source, community-led projects
 With that in mind, let’s compare a typical tooling stack that you might be used to

today, and an alternative stack that an F# developer might choose to adopt. Table
D.1 details the comparison.

Table D.1 Comparing alternative technology stacks on .NET and F#

Function Microsoft stack Pure F# stack

Complex build process MS Build custom tasks FAKE script with MSBuild

Continuous integration TeamCity, TFS pipeline, etc. FAKE script on TeamCity, TFS, etc.

Dependency management NuGet Paket with NuGet + GitHub depen-
dencies

Project system Solution and projects Standalone scripts and/or project +
solution

Ad hoc processing Console applications Standalone scripts

Test libraries xUnit, NUnit Expecto, QuickCheck, Unquote, FsT-
est

SQL ORM Entity Framework SQLProvider

SQL micro-ORM Dapper FSharp.Data SQLClient

Server-side web Full-blown Web API project Bare-bones NET Web API OWIN, or
Suave

555Summary
The main point is that although you can definitely continue to work with virtually all of
the technologies and tools in the Microsoft stack in the F# world, you’ll also find an
alternative stack on the right-hand side, which more fully embraces the points previ-
ously made, with the overall aim of trying to improve productivity (and developer satis-
faction!).

Nothing says you must pick everything on one of the two sides; the key takeaway is to
understand that there’s more than one way to solve many of the problems that previ-
ously you might have assumed had only a single option.

Summary

This appendix has hopefully given you a whirlwind tour of some of the tools and librar-
ies that weren’t introduced in the book, and shown you that there’s a wide-ranging
ecosystem in the F# world that takes full advantage of its features, in addition to the
standard set of .NET libraries you’re already familiar with. Undoubtedly, other librar-
ies could just as easily have made this list, and you should investigate finding new
libraries through the community on a regular basis.

Front-end web ASP .NET MVC, TypeScript F# with Fable

IDE Visual Studio VSCode, Emacs, Visual Studio, and so
on

Table D.1 Comparing alternative technology stacks on .NET and F# (continued)

Function Microsoft stack Pure F# stack

EAPPENDIX
OTHER F# LANGUAGE FEATURES

Get Programming with F# focuses on a core subset of the F# language. Some features were
only partially demonstrated, referenced but not shown, or completely ignored. This
appendix contains a list of many of those features (based on the current production ver-
sion of F#, F# 4.0) for you to read up on in your own time. The best place to start is prob-
ably the F# language reference on MSDN (https://docs.microsoft.com/en-gb/dotnet/
articles/fsharp/language-reference/).

E.1 Object-oriented support

This book deliberately steers clear of the rich OO support in F#, as the aim of the book
isn’t to show you how to write code like what you write today but in another syntax, but
to get you thinking about solving problems in a different way. Nonetheless, here’s a
quick sample of typical OO features in F#. This should map relatively closely to C# and
VB .NET OO features that you know, although a few differences may surprise you!
556

https://docs.microsoft.com/en-gb/dotnet/articles/fsharp/language-reference/
https://docs.microsoft.com/en-gb/dotnet/articles/fsharp/language-reference/

557Object-oriented support
E.1.1 Basic classes

type Person(age, firstname, surname) =
 let fullName = sprintf "%s %s" firstname surname

 member __.PrintFullName() =
 printfn "%s is %d years old" fullName age

 member this.Age = age
 member that.Name = fullName
 member val FavouriteColour = "Green" with get,set

Of interest in this listing is that you still can reap the benefits of type inference, while
also taking advantage of the fact that member methods and properties can access con-
structor arguments without the need to set them as private backing fields first. Also of
interest is that if a member doesn’t need to access other members, you can omit the this.
and replace it with __ (as per the PrintFullName method). Although it’s not common prac-
tice, you can also place members on records and discriminated unions. This is occasion-
ally useful, but I recommend that you prefer modules with functions that act on the
record/DU rather than members on those types.

E.1.2 Interfaces and inheritance

type IQuack =
 abstract member Quack : unit -> unit

type Duck (name:string) =
 interface IQuack with
 member this.Quack() = printfn "QUACK!"

let quacker =
 { new IQuack with
 member this.Quack() = printfn "What type of animal am I?" }

Listing E.1 Basic classes in F#

Listing E.2 Interfaces in F#

Type definition with
public constructor

Private field based
on constructor args

Public method

Public getter-only property

Mutable, public
property

Defining an interface in F#

Creating a type
that implements
an interface

Creating an instance of
an interface through an

object expression

558 Appendix E Other F# language features
This should be familiar to you, except for the last section, which shows how F# can cre-
ate an instance of an interface without first formally defining a type. This is extremely
useful if you’re creating an abstract factory, as you don’t need to formally define the
types behind the interface first. Finally, interfaces don’t need to be explicitly marked as
such; in F#, any type that contains only abstract members is automatically declared as
an interface.

 [<AbstractClass>]
 type Employee(name:string) =
 member __.Name = name
 abstract member Work : unit -> string
 member this.DoWork() =
 printfn "%s is working hard: %s!" name (this.Work())

 type ProjectManager(name:string) =
 inherit Employee(name)
 override this.Work() = "Creating a project plan"

I’m not going to explain all the ins and outs of inheritance to you here. The preceding sam-
ple maps almost directly 1:1 with equivalent C# code in terms of concepts. The only real
thing to note is that in F# you need to mark the type with the [<AbstractClass>] attribute.

E.2 Exception handling

You’ve seen exception handling occasionally in this book. Again, there’s not much to say
except that in F#, we tend to avoid exceptions as a way of message-passing, and use
them for only truly exceptional cases. F# allows you to use pattern matching on the type
of exception in order to create separate handlers; VB .NET has had this for some time,
and C# recently added a similar feature.

open System
let riskyCode() =
 raise(ApplicationException())
 ()

Listing E.3 Inheritance in F#

Listing E.4 Exception handling in F#

Creating an abstract class

Defining an abstract method

Calling an
abstract method
from a base class

Defining an inheritance
hierarchy

Overriding a virtual
or abstract method

Throwing a specific
exception by using the
raise() function

559Casting
let runSafely() =
 try
 riskyCode()
 with
 | :? ApplicationException as ex -> printfn "App exception! %O" ex
 | :? MissingFieldException as ex -> printfn "Missing field! %O" ex
 | ex -> printfn "Got some other type of exception! %O" ex

E.3 Resource management

The dispose pattern still exists within F# and has language support, as in C#. Unlike C#,
F# has two ways to work with automatic disposal of objects. The first is the use keyword,
and the second is the using block. Here’s how they look.

let createDisposable() =
 printfn "Created!"
 { new IDisposable with member __.Dispose() = printfn "Disposed!" }

let foo() =
 use x = createDisposable()
 printfn "inside!"

let bar() =
 using (createDisposable()) (fun disposableObject ->
 printfn "inside!")

As you can see, the main difference between the two alternatives is that the former one
lets the compiler determine when a disposable object goes out of scope, whereas the lat-
ter allows you to explicitly determine when scope ends, by virtue of a lambda function.

E.4 Casting

F# has support for two types of casts: upcast and downcast, shown in listing E.6 and illus-
trated in figure E.1. These are similar, but not quite the same as the as keyword and the
cast functionality offered by C# or VB .NET:

Listing E.5 Exception handling in F#

Placing code
within a try block

Multiple catch handlers
based on different

Exception subtypes

A function that creates
a disposable object

The use keyword with
implicit disposal of
resources

The using keyword
with explicit disposal
of resources

560 Appendix E Other F# language features
 Upcast (:>)will safely upcast to a parent type in the type hierarchy. It will allow
you to do this only for a type known to be “above” in the hierarchy.

 Downcast (:?>) will allow you to unsafely downcast from one type to another,
but only if the compiler knows that this is possible. For example, you can’t down-
cast from string to Exception because the compiler knows that this will never pass.
This isn’t the same as the cast functionality in C#, which will blindly allow casts
that can be proved to be invalid even at compile time.

let anException = Exception()
let upcastToObject = anException :> obj
let upcastToAppException = anException :> ApplicationException
let downcastToAppException = anException :?> ApplicationException
let downcastToString = anException :?> string

The first and third casts will compile—the first is guaranteed to work at compile time
and at runtime, and the third compiles but could cause a runtime exception. The second
and the fourth won’t compile at all—the second fails because ApplicationException isn’t
above Exception in the type hierarchy. The last one fails because the compiler knows that
Exception can never be treated as a string.

Listing E.6 Casting in F#

String Exception

ApplicationException

illegal!

u
p
c
a
s
t

:
>

d
o
w
n
c
a
s
t

:
?
>

Object

Figure E.1 Upcasts and downcasts in F# are stricter than in C#.

Safely upcasting
to Object

Trying to safely upcast to an
incompatible type (error)

Trying to unsafely
downcast to an
incompatible type (error)

Unsafely
downcasting to an
ApplicationException

561Computation expressions
Don’t forget that F# can safely pattern match on types (as seen with exception handling),
so you can safely try to cast across, and handle incompatibilities without the risk of run-
time exceptions.

E.5 Active patterns

This book briefly touched on active patterns. They’re a form of lightweight discrimi-
nated unions, and a way to categorize the same value in different ways. For example, you
could create an active pattern that categorizes strings into long/medium/short and then
pattern match directly on any string. Two more sophisticated forms of active patterns
are partial active patterns and parameterized active patterns. Both allow you even more
flexibility when pattern matching, but are beyond the scope of the book. I definitely rec-
ommend that you look into these after you’ve mastered the basics of pattern matching
and discriminated unions, because they allow for powerful abstractions.

let (|Long|Medium|Short|) (value:string) =
 if value.Length < 5 then Short
 elif value.Length < 10 then Medium
 else Long
match "Hello" with
| Short -> "This is a short string!"
| Medium -> "This is a medium string!"
| Long -> "This is a long string!"

E.6 Computation expressions

This book has mentioned computation expressions several times. Computation expres-
sions allow you to create language support for a specific abstraction, directly in code—
whether that’s asynchronous work, optional objects, sequences, or cloud computations.
F# also allows you to create your own computation expressions to capture a type of
behavior that you want to abstract away, with your own “versions” of let!. Here’s a
quick example of a computation expression for working with options.

Listing E.7 Active patterns

Defining the
active pattern

Using the pattern
within a pattern match

562 Appendix E Other F# language features
type Maybe() =
 member this.Bind(opt, func) = opt |> Option.bind func
 member this.Return v = Some v
let maybe = Maybe()
let rateCustomer name =
 match name with | "isaac" -> Some 3 | "mike" -> Some 2 | _ -> None
let answer =
 maybe {
 let! first = rateCustomer "isaac"
 let! second = rateCustomer "mike"
 return first + second }

Try this in a script yourself. I don’t expect you to understand all of this code, but the
methods in the Maybe type map to calls in the maybe{} block. (F# automatically maps let! to
Bind(), and return to Return()). Next, you have a fictional function that rates customers
based on their name. Finally, you call that function from within the maybe block. Notice
that rateCustomer returns Option<int>, yet inside the block you don’t need to check for Some
or None; the value is safely unwrapped by let!; if you try to get a customer that doesn’t
exist, the entire block will prematurely return with None.

You can even create your own custom keywords in the language when inside the com-
putation expression. They’re powerful and commonly found within custom DSLs—
definitely a more advanced feature, but one that’s worth looking into.

E.7 Code quotations

Essentially the equivalent of C#’s expression trees, code quotations allow you to wrap a
block of code inside a <@ quotation block @> and then programmatically interrogate the
abstract syntax tree (AST) within it. F# has two forms of quotations: typed and untyped.
You won’t find yourself using these in everyday code, but if you ever need to do low-level
meta programming or write your own type provider, you’ll come into contact with these.

E.8 Units of measure

Units of measure (UoM) are an incredibly useful feature of F#. The only reason they
weren’t included in the book is that they’re not needed often. UoMs allow you to create

Listing E.8 A custom computation expression

Creating your
own computation
expression

Creating a maybe { } block

Safely “unwrapping”
an option type

563Recursion
a kind of “generic” numerics, so you can have 5<Kilogram> as opposed to 5<Meter>. You can
also combine types, so you can model things such as 15<Meter/Second> and so on. It’s
extremely useful because the compiler will prevent you from accidentally mixing and
matching incompatible types. UoMs are erased away at compile time, so there’s no run-
time overhead.

E.9 Lazy computations

Lazy computations in F# allow you to create System.Lazy values by wrapping any expres-
sion in a lazy scope:

let lazyText =
 lazy
 let x = 5 + 5
 printfn "%O: Hello! Answer is %d" System.DateTime.UtcNow x
 x
let text = lazyText.Value
let text2 = lazyText.Value

In the preceding example, the code to print the answer to the console will occur only the
first time the Value property is accessed.

E.10 Recursion

Finally, as a functional-first language, F# has excellent support for recursion, with spe-
cial CLR support for tail recursion (the ability to call a recursive function without risking
stack overflow). To create a recursive function, prefix it with the rec keyword:

let rec factorial number total =
 if number = 1 then total
 else
 printfn "Number %d" number
 factorial (number - 1) (total * number)
let total = factorial 5 1

Creating a lazy scope

Returning the result
without re-executing
the computation

Explicitly evaluating
the result of a lazy
computation

Specifying that a
function can be
called recursively

Making a recursive
function callCalling a

recursive
function

INDEX
Symbols

_ (underscores) 65
; (semicolons) 40, 49
:: operator 184
:? operator 418
:> operator 307
? operator 300
() object 132
[<CLIEvent>] attribute 339
@ operator 184
`` (double backtick) member

360
<- operator 75
<@ quotation block @> 562
<< operator 505
== operator 510
==> operator 497
>=> operator 451
>> operator 135

A

abstract syntax tree. See AST
access modifiers 147
accessibility modifiers

52–53, 329
account history, retrieving

413–416
accumulators 206–209
active patterns 253, 295, 338,

561
ad hoc processes 532–533
Add New Item dialog box

440
AddRow() method 382
advantages of F# 528
aggregations 194

creating aggregation
function 207–209

overview 206–209

algebraic data types 246
anonymous methods 153
API tests, writing 512–514

example tests in xUnit 514
in-memory testing

512–514
APIs (application program-

ming interfaces)
350–351

encapsulation 350
explicit naming 351
naming conventions 351
type providers backed by

388–400
decoupled API 393–399
tightly coupled type pro-

vider API 389–393
app.config file 402–403, 406
application-based

development 34–35
applications, debugging

30–31
AppVeyor 407, 544
arbitrary data pairs 103
Argu 551
arguments, passing higher-

order functions as
155–156

argv value 31
Array module 182
Array.countBy function 368
arrays, .NET 182
ASP.NET MVC GUIs 335
ASP.NET Web API 439–444

abstracting from F#
444–448

adding Web API support
to application 465–467

first endpoint 465–466
posting data to Web

API 466–467

OWIN host 443–444
projects 439–443

ASP.NET Web API 2, adding
Swagger type provider
to 460–461

assemblies, in Visual Studio
303

AssemblyInfo.fs file 27
Assert.True method 484
AST (abstract syntax tree)

562
asynchronous models, vs.

synchronous 425–428
I/O-bound workloads

427–428
problems with asynchro-

nous models 428
tasks 427
threads 427

asynchronous workflows
async blocks 429, 472
Async class 430
Async type 448–449
Async values 472
Async.AwaitTask 435
Async.Parallel 433–434
Async.RunSynchronously

430, 432, 434, 448
Async.Start method 429,

432
Async.StartAsTask 435, 449
async/await pattern 428,

436
AsyncExecute() method

471
composing asynchronous

values 432
fork/join 433–435
overview 429–431
tasks and 435–438

async keywords 437–438
564

565Index
asynchronous workflows,
tasks and (continued)
comparing tasks and

async 436–437
interoperating with

tasks 435
autogenerated references

315
automated unit tests 35–37
automation, with Canopy

502–506
creating first script

503–506
overview 502–503

[<AutoOpen>] attribute 147
Azure Storage 367, 407, 549

B

backtick methods 360, 363,
483

base type 248
BCL, tuples and 108–109
BDD 483
Bind() function 189, 562
binding values 49–51
bottom-up approach 181
brackets 49, 126
branching logic 234–239

exhaustive checking
236–238

guards 238
nested matches 239
pattern matching 235–236
priming exercise 234–235

break command 233
build pipeline, FAKE 544
build scripts 535
builder methods 326
building redirects, with

FsUnit 485
business rules 270–282, 478

encoding with marker
types 277–280

results vs. exceptions 281
types 271–277, 292–296

combining discrimi-
nated unions
275–276

mixing values of same
type 272

plugging new model
back in 295–296

single-case discrimi-
nated unions
272–275

testing model with
scripts 293–295

using optional values
within domain
276–277

using types as 347–349

C

C# function, debugging 302
C# Interactive 38
C# programming language

compared with F# 3–5
improving abilities with 9
referencing C# code in F#

299–301
type inference in 59
using types in 322–326

discriminated unions
324–326

records 322–323
tuples 323–324

See also Interoperability of
F# with C#

caching 535
Canopy library 502, 505–509

assertions 507
creating and running tests

507
creating first script

503–506
hooking into events 507
integration with other

libraries 509
overview 502–503

capturing values 55
case classes 246
casting 559–561
CD (continuous deployment)

407
char type 285
Chessie 553–554
chromeDir variable 503
CI (continuous integration)

401
class declaration 28
Class Library project 25

classes
basic 557
overview 258, 519

[<CLIMutable>] attribute
329–330, 443

closure 55
CLR (Common Language

Runtime) 13
COCO (Complex Old C#

Object) 114
code dependencies 317
code indentation 28
code quotations 562
code reuse 149–159, 391

dependencies as functions
156

higher-order functions
and 154–156

overview 154–155
passing as arguments

155–156
in LINQ 151–153

code-focused developer
processes 34–37

application-based
development 34–35

automated unit tests 35–37
console test rigs 35

CodeRush 113
coding

dojos 538
overview 372

collections 173, 183–196,
240–241, 329

aggregates 194
collection modules

176–178
collection types 182–184

comparing and contrast-
ing collections 184

immutable lists 183–184
sequences 182
using .NET arrays 182

converting between
collections 195

debugging pipelines 180
grouping functions

192–193
countBy 192
groupBy 192
partition 193

in-place collection
modifications 175–176

566 Index
collections (continued)
mapping functions

187–191
collect 189–190
iter 188–189
map 187–188
pairwise 190–191

module 268–269
List.choose 268
Option.toList 268
try functions 269

transformation pipelines
178–179

CollectionViewSource 347
command handler

adding 286–287
reviewing existing

285–286
commands, in WPF 348
commas 183
community, F# 521–526

coding in open source
world 524

example of open source
contributions 524

impressions of 523
Microsoft and F# libraries

522
compilation phase 371
compile phase 372
compile time 404–405, 407,

409
[<CompiledName>] attribute

351
compiler 58–69, 540

benefits of 10
errors 66
limitations of 64–65

classes and overloaded
methods 65

working with BCL
64–65

type inference 58–61
benefits of 60
in C# 59
type-inferred generics

65–66
compiling code 372
compose operator 135
composing 392
composite pattern 216
composition 392, 419

comprehensions 233
computation expressions

154, 214, 561–562
configuration files

problems with 403–404
working with 402

Configuration method 467
ConfigurationManager class

422
configuring

syntax highlighting 22
Visual Studio 19–20

configuring F# editor 20
Visual F# tools

configuration 19
connection strings

manually passing with
type providers
405–406

securely accessing with
type providers
401–404

problems with configu-
ration files 403–404

working with configura-
tion files 402

Console Application 25
console test rigs 35
Console.WriteLine function

52, 158, 167
constraining functions

128–135
custom fonts 133–135
pipelines 131–133

continuation passing style
428

copy-and-update syntax 119
copying code 162
cost/benefit analysis 530–531
countBy function 192
CPU-bound workloads 427
cryptic compiler errors 90
CSV files

overview 358
parsing 528
using FSharp.Data in 359

curried form 49, 126
curried functions 127, 166
currying 392
custom comparison opera-

tor, Unquote 486
custom fonts 133–135

custom options 18
cyclical dependencies 55

D

Dapper 376
data access layer 533
data generation, controlling

496–499
generators and arbitrary

values 498
guard clauses 497

data pairs 102
data transfer object. See DTO
database rows 386
DataContext 384
DataGrid UI control 347
DateTime property 367
debugging

applications 30–31
in Visual Studio 302, 305
pipelines 180

decimal numbers 104
Decimal.Parse function 168
declaring records 115
deconstructed tuples 104
decoupled API 393–399
dedicated DTO 102
Deedle 545–546
Default methods 195
default options 18
DefaultContractResolver 443
delegates 153
dependencies, as functions

156
DependencyResolver

property 466
dependently typed

languages 478
DeserializeObject method

345
developer processes, code-

focused 34–37
application-based

development 34–35
automated unit tests 35–37
console test rigs 35

DI (dependency injection)
157, 466

dictionaries 197–199, 202
immutable 198–199
mutable 197–198

567Index
discriminated unions. See DU
dojos 538
double backtick member 360
double pipeline operator 212
double unwrap 266
downcast 559
downloadData function 434
DownloadDataTaskAsync

436
downloadedBytes 436
DSLs (domain-specific

languages) 132, 142,
477–488

complexity of 477–479
testing 484–487

FsUnit package 485
Unquote framework 486

DTO (data transfer object)
112

DU (discriminated unions)
accessing instance of

248–250
combining 275–276
common fields on 349–350
comparing OO hierarchies

and 254
creating enums 255
instances of, creating

247–248
nested 251
overview 367
printing out 253
shared fields 251–252
single-case 272–275
stronger typing with

285–288
adding command

handler 286–287
reviewing existing com-

mand handler
285–286

tightening model further
287–288

viewing 348
duplication of logic 348
dynamic code 336
dynamic keyword 59
dynamic languages 47

E

EF (Entity Framework) 386

element names, Canopy 505
elif keyword 96
else branch 90
else case 84
encapsulation 350
endpoints 332
enterprise programming

language 47
Entity Framework 336
EntityBody property 459
entry points 27
Enumerable library 176
enums, creating 255
equality checking 120–121
erasing types 362, 394
error handling 447
errors, compiler 66
escape hatches 264
ExcelProvider 545
exception handling 558
exhaustive checking

236–238
explicit naming 351
explicit typing 60
exploratory mode 388
exploratory scripts 532
expressions

composability 86
discarding results 89
functions 339
statements and 81, 83–85

difficulties with
statements 82–83

forcing statement-based
evaluation 90–91

unit type 87–88
working with 85–86
writing code with 479

expressiveness 6
external systems, accepting

data from 332–334

F

F# compiler 540
F# for Fun and Profit

website 538
F# programming language

.NET and 12–13
challenges with 10–11

compared with other
languages 3–6

C# 3–5
expressiveness 6

compiler benefits 10
debugging applications

30–31
introducing code base

532–535
ad hoc processes

532–533
build scripts 535
exploratory scripts 532
helper modules 533
horizontal tiers 533–534
unit tests 535
vertical tiers 534–535

introducing others
528–532

avoiding dismissing
C# 528–529

cost/benefit analysis
530–531

dismissing zero-sum
game 529

hiring new staff 531
reducing fear of learning

529
showing advantages of

F# 528
specific use cases 530

overview 2–3
project types 25–30
reasons for using 6–9

high-quality solutions
7–9

improving C# and
VB.NET abilities 9

new possibilities 6–7
productivity 9

writing first program
using 31

See also interoperability of
F# with C#

F# Software Foundation 524
F# Weekly website 538
F10 command 31
F11 command 31
Fable 547
failwith function 447
failwith keyword 96
FAKE (F# Make) 535, 544

568 Index
fear, uncertainty, and doubt.
See FUD

FiraCode font 133
FirstOrDefault() function

195
Fitnesse 501
fixed type 249
FlatMap function 189
Flatten function 189
flexible pattern matching

239–242
collections 240–241
records 241–242

folding 212
composing functions with

fold 214–217
composing rules

manually 215
folding functions

together 216
instead of while loops

213–214
making fold more readable

212
related fold functions

212–213
fonts, custom 133–135
for loops 187, 232
fork/join 433–435
forms 56
forward pipe 132
FP (functional programming)

3
frames, two-dimensional 545
Freya 548
FS projects 541
FsCheck library 493–496

failing tests and shrinking
495–496

running tests with 493–495
Xunit NuGet package 493

fsharp 21
FSharp AWS DynamoDB

550
FSharp Azure storage 549
#fsharp hashtag 525
FSharp.Charting 546
FSharp.Configuration 553
FSharp.Core library 105, 327,

329–330
FSharp.Data

NuGet package 389, 455

overview 546
type provider 358–361

using scripts 358–359
visualizing data

360–361
working with CSV

files 359–360
working with HTTP end-

points using 454–456
FSharp.Data.SqlClient

package 379, 412
FSharp.Management 552
FSharp.org website 537
FSharp.ViewModule 551
FSharpFunc property 327
FSI (F# Interactive) 39–40

scripts in 42–43
state in 40–41

FsLab 545–546
FsReveal project 526,

552–553
FsUnit, building redirects

with 485
FSUnit.XUnit package 485
FsXaml F# library 341, 344,

551
FUD (fear, uncertainty, and

doubt) 529
full dictionaries 199
function arguments 49
function calls, misordering

78
function composition 392
functional programming.

See FP
functions

aggregates 194
as values 54
composing together 135
composing with fold

214–217
composing rules

manually 215
folding functions

together 216
constraining 128–135

custom fonts 133–135
pipelines 131–133

converting between
collections 195

dependencies as 156
expression-based 339

grouping 192–193
countBy 192
groupBy 192
partition 193

higher-order 154–156
overview 154–155
passing as arguments

155–156
interoperability of F# with

C# 327–328
let-bound 482
Map functions 201–202
mapping 187–191

collect 189–190
iter 188–189
map 187–188
pairwise 190–191

miscellaneous 194
modeling web requests as

449
nested 54
parameterizable 455
partial function

application 126–127
pure 351
recursive 563
refactoring to 56
relationships between 492
within other functions 54

G

GC (garbage collector) 120
general-purpose program-

ming languages 47
Generate Record Stubs

option 122
generative type 362
GET requests 441, 466
GetHashCode() method 88,

120
GetType() method 88
Google.DataTable.Net.Wrap-

per package 360, 367
GoogleCharts DLLs 367
grouping functions 192–193

countBy 192
groupBy 192
partition 193

guard clauses 497
guards 238
Guid option 414

569Index
H

HasValue property 261
Helpers module 141, 533
Helpers.createInMemApi()

function 513
hiring staff 531
HOF (higher-order

functions) 154–156
overview 154–155
passing as arguments

155–156
horizontal tiers 533–534
HTML type provider 367
HTTP

consuming HTTP data
453–463

HTTP.fs 457–459
Swagger type provider

460
using FSharp.Data to

work with HTTP
endpoints 454–456

exposing data over
439–452

ASP.NET Web API
439–444

Async type 448–449
Suave library 449–451

HttpClient namespace 458
HttpConfiguration object

466
HttpResponseCode object

446
HttpStatusCode.

BadRequest 515
hybrid language applications

331–341
case study 336–340

application overview
337

C# interoperability 339
expressions at core 339
randomness 340
separating UI concerns

from domain logic
338–339

crossing language
boundaries 331–336

accepting data from
external
systems 332–334

playing to strengths of
language 335–336

hybrid languages 4
hybrid stacks 535

I

I/O-bound workloads
427–428

IComparable 323
IDependencyResolver 466
IEnumerable<T> type 182,

329
IEquatable<T> 323
if statement 60
if/then expressions 235
ignore function 89
IL (Intermediary Language)

12
ILogger interface 164
Immediate window, VS 37
immutable data

being explicit about
mutation 72–75

mutability basics in F#
72–73

working with mutable
objects 73–75

dictionaries 198–199
lists 183–184
modeling state 75–77, 79
records 119–120
value 50

impedance mismatch 416
implicit conversions 63
implicit module 147
in scope 51
incompatible types 329
individuals 386
inferred schemas 370
information-rich

programming 355–356
inheritance 519
inline binding 235
in-memory testing 512–514
INotifyPropertyChanged

interface 344, 551
INSERT SQL statement 417
installing

VFPT 21–22
Visual Studio 18

Int32.TryParse function 108
interfaces 306–307
Intermediary Language.

See IL 12

InternalsVisibleTo attribute
72, 513

interoperability of F# with C#
326–328

challenges 329–330
accessibility modifiers

329
CLI mutable 329
collections 329
incompatible types 329
options 329

functions 327–328
modules 326–327
namespaces 326
types 322–326

discriminated unions
324–326

records 322–323
tuples 323–324

invalid references 316
IPython Notebook 38
IQueryable queries 178, 376
isolated data 94
isolated databases 407
iter function 188–189

J

JSON 365–368
live and local files 365–366
live schema type providers

367–368
Jupyter 38

K

keywords, async keywords
437

L

lambda expressions 152–153
language suggestions

540–541
language syntax 48
Language-Integrated Query.

See LINQ
languages. See C# program-

ming language; F# pro-
gramming language;
hybrid language appli-
cations

570 Index
large data sources 370
lazy computations 563
let bindings 40, 49
let-bound functions 482
libraries 543–554

build and DevOps
543–545

FAKE 544
ProjectScaffold 544–545

cloud 549–550
Azure Storage Type

Provider 549
FSharp AWS

DynamoDB 550
FSharp Azure storage

549
MBrace 550

data 545–546
Deedle 545
ExcelProvider 545
FSharp.Charting 546
FsLab 545–546

desktop 550–551
FSharp.ViewModule

551
FsXaml 551

miscellaneous 551–554
Argu 551
Chessie 553–554
FSharp.Configuration

553
FSharp.Management

552
FsReveal 552–553

mocking 516
web 546–548

F# Formatting 548
Fable 547
Freya 548
WebSharper 548

library support 233
ligatures 133
LINQ (Language-Integrated

Query), code reuse
in 151–153

List.choose function 268
List.sum function 493
lists, immutable 183–184
[<Literal>] attribute 379
live data 373
#load statements 222
local data 373

local datasets, mixing with
remote datasets 371–372

LocalDB 407
logging 535
loops 231–233

comprehensions 233
for loops 232
while loops 232

M

mailing list, F# 540
main function 30, 94
maintainability 7
mandatory metadata 468
Map 200–202
mapFold 212
mapping functions 187–191

collect 189–190
iter 188–189
map 187–188
pairwise 190–191

Maybe type 263
maybe{} block 562
MBrace framework 550
measure, units of 245
member property 349
merging sequences 374
metadata, mandatory 468
methods 519
Microsoft Pex 495
Microsoft, F# libraries and

522
Microsoft.AspNet.WebApi.

OwinSelfHost NuGet
package 443

miscellaneous functions 194
mocking libraries 516
modeling relationships. See

relationships, modeling
modeling state 75–79
modules

interoperability of F# with
C# 326–327

namespaces vs. 143
opening 142, 147
overview 139–140
visualizing 140–141

monad 269
MonoDevelop 41
MonopolyStats solution 336
MSBuild 543

multilanguage solutions, in
Visual Studio 302–305

debugging 302
debugging scripts 305
navigating across projects

303
projects and assemblies

303
referencing assemblies in

scripts 303–304
multithreading pitfalls 71
mutable data 70–72

bug, unrepeatable 71
issues with, summary

of 72
modeling state 75–76
multithreading pitfalls 71
state

accidentally sharing 71
hidden, testing 72

mutable dictionaries
197–198

mutable keyword 5
mutable modifier 120
MVVM (Model-View-

ViewModel) 343, 551

N

namespaces
global namespace 147
interoperability of F# with

C# 326
modules vs. 143
overview 139
visualizing 140–141

naming conventions 351
naming functions 109
native language 29, 233
native types 64
navigating across projects, in

Visual Studio 303
nested (inner) functions 54
nested DUs (discriminated

unions) 251
nested functions 54
nested matches 239
nested scopes 53–54
nested tuples 106–107
nesting matches 239
.NET

nullable types in 260–261
overview 12–13, 182

571Index
new data, inserting 385
new keyword 49
Newtonsoft.Json package

311, 344
Newtonsoft.Json.

JsonConvert.Serialize
Object method 345

nominal interfaces 151
None branch 291
NonEmptyString 498
NuGet packages 36, 310–320

and project references 314
autogenerated references

315
issues with 316–317
#nuget directive 314
referencing experience,

improving 314
scripts

experimenting with
311–313

loading source files
in 313–314

third-party, plugging
in 344–345

null values 257–269
coalesce 82
nullable types in .NET

260–261
nulls and nullables 308
overview 257–260
type system and 261–264

mandatory data in F#
262

option type 263–264
See also Collections mod-

ule; Options module
NUnit 481

O

object expressions 308
object initializers 176
object-oriented support

556–558
ObservableCollection 347
OO (object-oriented) 2,

306–309
interfaces 306–307
nulls, nullables, and

options 308
object expressions 308

open source collaboration
319

open source contributions
524

Options 308–329
option types 195, 263, 479
Option.map 266
Option.ofNullable 309
Option.toList function 268
Option.toNullable 309
Option.toObj 309
options 329
Options module

binding 266
filtering 267
List.choose 268
mapping 265–266
Option.toList 268
other Option

functions 267
try functions 269

ORM (object-relational
mapper) 376

out of scope 51
out parameters 109
OWIN host 443–444

P

packages, NuGet 310–320
autogenerated references

315
issues with 316–317
packages.config file 318
referencing experience,

improving 314
scripts

experimenting with
311–313

loading source files
in 313–314

third-party, plugging
in 344–345

pairwise function 190–191
Paket 316–320

benefits of 317–319
commands 319
paket add command 319
paket convert-from-nuget

318
Paket generate-load-scripts

command 319

paket restore command
319

paket update command
319

paket.dependencies file
318

paket.lock file 318
Parallel.ForEach() method

71
parameterizable functions

455
parentheses 50, 126
parse function 395
parsing code 478
partial application 125, 392
partition function 193
pasting code 162
pattern matching

collections 240–241
records 241–242

patterns, active 561
pervasive type inference 62
PetaPoco 376
pipelines

debugging 180
transformation pipelines

178–179
piping 392
pit of success 14, 73
placeholders 32, 65
pluggable data access layer

419–422
handling SQL connection

strings directly 421
repositories 419

POCO (Plain Old C# Object)
49, 112

polymorphism 246
POST requests 450, 466
Power Tools options page,

Visual F# 23
PR (pull request) 525
predicate 193
printfn function 29, 32, 167
productivity 9
program flow

branching logic 234–239
exhaustive checking

236–238
guards 238
nested matches 239
pattern matching

235–236

572 Index
program flow, branching
logic (continued)
priming exercise

234–235
flexible pattern matching

239–242
collections 240–241
records 241–242

loops 231–233
comprehensions 233
for loops 232
while loops 232

project references, and
NuGet 314

project types 25–30
projects

in Visual Studio 303
navigating across 303
overview 26, 541

ProjectScaffold 544–545
Property attribute 494, 499
property-based testing

489–499, 511, 516–518
controlling data generation

496–499
generators and arbitrary

values 498
guard clauses 497

FsCheck library 493–496
failing tests and

shrinking 495–496
running tests with

493–495
identifying properties

491–493
overview 490–493

provided types, using in
domain models 417

Publish Database dialog box,
VS 412

Publish Data-Tier Applica-
tion option 378

pull request. See PR
pure functions 78

Q

query expressions 384
querying data. See SQL
QuickCheck library 493
quotations 486

R

raise keyword 96
randomness, in case study

340
readability 7
readonly keyword 50, 73
records

creating 115–117
declaring 115
equality checking 120–121
immutable 119–120
members on 119
overview 114
refactoring and 121–122
shadowing and 122
type inference with

117–118
when to use 123

recursion 209, 563
recursive functions 563
Reddit 540
redirects, binding with

FsUnit 485
reduce 213
refactoring 121–122
reference data 382–383, 386,

412, 416–417
references

autogenerated 315
invalid 316
NuGet 314
sending to FSI 313

referencing assemblies in
scripts, in Visual
Studio 303–304

regression testing, vs. test-
driven development
479–480

relationships, modeling
244–255

discriminated unions
246–250, 254–255

accessing instance of
248–250

comparing OO hierar-
chies and 254

creating enums 255
instances of, creating

247–248
nested 251
printing out 253
shared fields 251–252

modeling type hierarchy
245–246

remote datasets, mixing with
local datasets 371–372

repeatable script 43
REPL (Read Evaluate Print

Loop) 37–41
FSI 39–41
overview 37

repositories
pluggable data access

layer 419
SQL 413

ReSharper 43, 113
resource management 559
resources 537–542
response types 468
return keyword 52, 430, 433
Roslyn 41
Route attribute 441
RoutePrefix attribute 441
rules 270–282

encoding with marker
types 277–280

results vs. exceptions 281
types 271–277, 292–296

combining discrimi-
nated unions
275–276

mixing values of same
type 272

plugging new model
back in 295–296

single-case discrimi-
nated unions
272–275

testing model with
scripts 293–295

using optional values
within domain
276–277

runtime connection string
408–409

runtime phase 371–372

S

scan 213
schemas, building from live

data 365–374
connectivity 370–371

573Index
schemas, building from live
data (continued)

inferred schemas 370
inferring 362
large data sources 370
mixing local and remote

datasets 371–372
priced schemas 370
working with JSON

365–368
live and local files

365–366
live schema type

providers 367–368
scoping values 51–56

nested functions 54
nested scopes 53–54

script files 28
scripts 41–44, 147

creating in F# 41–42
debugging, in Visual

Studio 305
FSI and 42–43
functions in 43

SELECT statements 381
Select() method 187
SelectMany function 189
Selenium 502
semicolons 40, 49
sending references to FSI 313
Seq.cache function 184
Seq.filter function 7, 181
sequences

merging 374
overview 182

serializers 466
sets 203
[<SetUp>] attribute 507
shadowing 50, 122
shrinking 496
signatures 223
simple tuples 192
single-case discriminated

unions 272–275, 479
Slack 539
slicing syntax 182
social networks 539–540

F# mailing list 540
Reddit 540
Slack 539
Twitter 539

sortByDescending function
179

SpecFlow 483
sprintf function 129
SQL (Structured Query

Language) 376–387
creating basic database

377–378
creating SQL data access

layer 413–418
account history,

retrieving 413–416
inserting data 417–418
reference data 416–417
repository 413

hooking up SQL database
412–413

restrictions 381
SQL type provider

407–409
SqlClient project 378–383,

404
inserting data 381–382
querying data with Sql-

Command-
Provider 378–381

working with reference
data 382–383

SqlCommandProvider
379–380, 415

SqlEnumProvider 382
SqlProgrammability-

Provider 381
SQLProvider 383–386

inserting data 385
querying data 383–385
working with reference

data 386
SqlRepository module

413, 418
SSDT (SQL Server Data

Tools) 377
staff, hiring 531
standalone applications 388
state

accidentally sharing 71
hidden, testing 72

statement-based languages
82

statements, expressions and
81–83, 85

difficulties with statements
82–83

forcing statement-based
evaluation 90–91

static classes 142
static modifier 52
statically typed languages 47
step into command 31
step over command 31
strings, working with 335
structs 258
structural equality checking

113
structural interfaces 151
Structured Query Language.

See SQL
stub property-based test 517
Suave library 449–451
subtypes 248
sum types 246
Swagger type provider 367,

460
adding to ASP.NET Web

API 2 460–461
consuming data with

467–470
activating Swagger

467–468
applying metadata

468–469
consuming API 469–470

consuming Swagger APIs
in F# 462

Swashbuckle package 460
synchronous models, vs.

asynchronous models
425–428

I/O-bound workloads
427–428

problems with asynchro-
nous models 428

tasks 427
threads 427

syntax highlighting,
configuring 22

System.Char class 217
System.Collections.

Generic.Dictionary type
197

System.Collections.
Generic.IComparer
interface 306

System.ComponentModel.
DataAnnotations
assembly 468

System.Console.ReadLine
function 167

574 Index
System.IO namespace 139
System.IO.Directory.

EnumerateDirectories
201

System.IO.File namespace
164

System.IO.File.ReadAllText
function 158

System.IO.File.WriteAllText
function 129

System.Linq namespace 178
System.Linq.Enumerable.

Range() method 233
System.Net.WebClient 434,

454
System.Object.Reference-

Equals 120
System.Random class 340
System.Tuple type 330
System.ValueTuple 324
SystemTimeZonesProvider

552

T

T4 templates 356
tail recursion 563
Task Parallel Library 154,

516
Task.Result 430
tasks, asynchronous work-

flows and 435–438
async keywords 437
comparing tasks and

async 436–437
interoperating with tasks

435
TDD (type-driven

development) 36, 477,
480

TeamCity 544
[<TearDown>] attribute 507
test frameworks 481
test rigs 35
Test.fsx script 339
testing 489–499

controlling data generation
496–499

generators and arbitrary
values 498

guard clauses 497

DSLs 484–487
FsUnit package 485
Unquote framework 486

FsCheck library 493–496
failing tests and

shrinking 495–496
running tests with

493–495
identifying properties

491–493
in-memory 512–514
naming tests in 483
overview 490–493
property-based 516–518
removing names from 482
test-driven development

vs. regression
testing 479–480

with Canopy 506–509
assertions 507
creating and running

tests 507
hooking into events 507

writing API tests 512–514
example tests in xUnit

514
in-memory testing

512–514
writing first unit tests

481–482
Text Editor options,

configuring 20
threads 427
TickSpec 483
tightly bound scope 54
top down 238
triple-slash XML comments

468
try functions 269
try/with converter 456
tuples 101–110, 323–324

basics of 103–105
BCL and tuples 108–109
creating in F# 325
decimal numbers 104
deconstructed 104
in C# 7 324
mapping out parameters

109
need for 101–103
nested 106–107
Tuple.Create function 104

tupled form 49, 126
two-part 105
type inference with

107–108
type signatures 106
when not to use 109
wildcards 107

Twitter 539
type aliases 215
type annotations 63
type arguments 65
type inference

benefits of 60
in C# 59
type-inferred generics

65–66
with records 117–118
with tuples 107–108

type providers 355–363, 366,
401–409

APIs backed by 388–400
decoupled API 393–399
tightly coupled type pro-

vider API 389–393
continuous integration

with 407–409
creating build process

with SQL type
provider 407–409

data as part of CI
process 407

CSV files and 358
FSharp.Data 358–361

using scripts 358–359
visualizing data

360–361
working with CSV files

359–360
inferring types and

schemas 362
manually passing connec-

tion strings 405–406
overview 355–356
saving data with 398
securely accessing connec-

tion strings with
401–404

problems with configu-
ration files 403–404

working with configura-
tion files 402

575Index
type providers (continued)
SQL restrictions in 381
unparameterized 371
writing 363

type signatures 106
type system, null values and

261–264
mandatory data in F# 262
option type 263–264

typed quotations 562
types

combining discriminated
unions 275–276

inferring 362
mismatching 332
mixing values of same type

272
redirecting type providers

to new data 372
single-case discriminated

unions 272–275
using as business rules in

C# 347–349
using in C# 322–326

discriminated unions
324–326

records 322–323
tuples 323–324

using optional values
within domain
276–277

See also type providers

U

underscores 65
unfold 213
union matches 250
unions

discriminated 466
single-case discriminated

479
unit testing

automated 35–37
naming tests in 483
overview 535
test-driven development

vs. regression testing
479–480

testing DSLs 484–487
FsUnit package 485
Unquote framework 486

writing first unit tests
481–482

unit type 87–88
units of measure 245
unmanaged scope 53
unparameterized type

providers 371
Unquote framework 486
unreachable patterns 237
untyped quotations 562
unvalidated customer 278
UoM (Units of Measure)

562–563
upcast 559

V

validating data 334
validation tier 533
Value property 563
values

binding 49–51
capturing 55
nullable types in .NET

260–261
overview 257–260
scoping 51–56

nested functions 54
nested scopes 53–54

type system and 261–264
mandatory data in F#

262
option type 263–264

var keyword 58
variables 73
VB.NET, improving abilities

with 9
versions, HTTP.fs 457
vertical tiers 534–535
VFPT (Visual F# Power

Tools), installing 21–22
Visual Studio 17–24

configuring 19–20
configuring F# editor 20
F# syntax highlighting

22
Visual F# tools

configuration 19
installing 18, 21–22
multilanguage solutions

in 302–305
debugging 302

debugging scripts 305
navigating across

projects 303
projects and assemblies

303
referencing assemblies

in scripts 303–304
scripts in 41–44

creating 41–42
FSI and 42–43
functions in 43

Visual Studio Team Services
407

visualizing data 360–361
vNext 260
void methods 87, 89
VS2017 (Visual Studio 2017)

22

W

wannabe FP developer 174
weak statements 84
Web API tier, testing

515–516
web automation, with

Canopy 502–506
creating first script

503–506
overview 502–503

web testing, with Canopy
506–509

assertions 507
creating and running tests

507
hooking into events 507

WebBrowser control 55
WebSharper 548
websites 537–538

community for F# 538
F# for Fun and Profit 538
F# Weekly 538
FSharp.org 537

Where method 150–151
while loops

folding instead of 213–214
overview 94, 168, 220, 232

whitespace-significant
language 28, 51

wildcards 107, 250
Windows Forms GUIs 335

576 Index
WindowsAzure.Storage
NuGet package 318

with keyword 307
workloads, CPU-bound 427
WPF (Windows Presentation

Foundation) 24, 342
commands in 348
connecting F# code to front

end 345–349
consuming API from C#

346–347
joining dots 345–346

using types as business
rules in C# 347–349

wrapper class 275
wrapper function 128
WSDL type provider 367

X

Xamarin Studio 13, 41
XML comments

support for 461
triple-slash 468
turning on 347

XML Documentation File
347

XPlot library 364
XPlot.GoogleCharts 360, 367
xUnit

example tests in 514
overview 481

xunit.methodDisplay 482
XUnit.Runner.VisualStudio

481

Y

yield keyword 213, 223

Discriminated unions, pattern matching, and lists

// Define, create, and unwrap a single-case discriminated union (lesson 23)
type PlayerId = PlayerId of Guid
let playerId = PlayerId (Guid.NewGuid())
let (PlayerId unwrapped) = playerId

// Define and create a multicase discriminated union (lesson 22)
type ClassifiedPlayer =
 | Beginner of Player
 | Standard of Player * PlayerId * GamesPlayed : int
 | Experienced of Player * GamesPlayed : int * DateStarted : DateTime

let experiencedPlayer = Experienced(player, 24, DateTime(2015, 1, 1))

// Pattern matching over a discriminated union (lessons 20, 21)
let describe player =
 match player with
 | Beginner player ->

sprintf "%s is a beginner" player.Name
 | Standard (player, (PlayerId playerId), games) ->

sprintf "%s has ID %O and played %d games" player.Name playerId games
 | Experienced (player, games, date) ->

sprintf "%s has played %d games since %O" player.Name games date

// Create a list of players (lesson 15)
let players = [player; player; player]

// Get the names of all three players (lesson 16)
let playerNames = players |> List.map(fun p -> p.Name)

// Pattern matching over a list (lessons 16, 21)
let summary =
 match playerNames with
 | ["Joe"; _] -> "Two items, first is Joe"
 | first :: _ when first.Length = 2 ->

"The first entry has a two-letter name!"
 | ["Joe"; "Joe"; "Joe"] -> "All Joe!"
 | _ -> "Other people!"

	Get Programming with F#
	Contents
	Foreword
	Preface
	Acknowledgments
	About this book
	Who should read this book
	How this book is organized
	About the code
	Book forum

	About the author
	Welcome to Get Programming with F#!
	What is F#, and why does it matter?
	F# and .NET
	Summary

	Unit 1 F# and Visual Studio
	Lesson 1 The Visual Studio experience
	1.1 Installing VS2015 with F#
	1.2 Configuring Visual Studio for F#
	1.3 Getting the best out of VS 2015 and F#
	Summary

	Lesson 2 Creating your first F# program
	2.1 F# project types
	2.2 Debugging applications in F#
	2.3 Writing your first F# program
	Summary

	Lesson 3 The REPL—changing how we develop
	3.1 Code-focused developer processes
	3.2 Enter the REPL
	3.3 F# scripts in Visual Studio
	Summary

	Unit 2 Hello F#
	Lesson 4 Saying a little, doing a lot
	4.1 Binding values in F#
	4.2 Scoping values
	Summary

	Lesson 5 Trusting the compiler
	5.1 Type inference as we know it
	5.2 F# type-inference basics
	5.3 Following the breadcrumbs
	Summary

	Lesson 6 Working with immutable data
	6.1 Working with mutable data—a recap
	6.2 Being explicit about mutation
	6.3 Modeling state
	Summary

	Lesson 7 Expressions and statements
	7.1 Comparing statements and expressions
	7.2 Using expressions in F#
	7.3 Forcing statement-based evaluation
	Summary

	Lesson 8 Capstone 1
	8.1 Defining the problem
	8.2 Some advice before you start
	8.3 Starting small
	8.4 Implementing core logic
	8.5 Testing in scripts
	8.6 Moving to a full application
	Summary

	Unit 3 Types and functions
	Lesson 9 Shaping data with tuples
	9.1 The need for tuples
	9.2 Tuple basics
	9.3 More-complex tuples
	9.4 Tuple best practices
	Summary

	Lesson 10 Shaping data with records
	10.1 POCOs done right: records in F#
	10.2 Doing more with records
	10.3 Tips and tricks with records
	Summary

	Lesson 11 Building composable functions
	11.1 Partial function application
	11.2 Constraining functions
	11.3 Composing functions together
	Summary

	Lesson 12 Organizing code without classes
	12.1 Using namespaces and modules
	12.2 Moving from scripts to applications
	12.3 Tips for working with modules and namespaces
	Summary

	Lesson 13 Achieving code reuse in F#
	13.1 Reuse in the world of LINQ
	13.2 Implementing higher-order functions in F#
	13.3 Dependencies as functions
	Summary

	Lesson 14 Capstone 2
	14.1 Defining the problem
	14.2 Some advice before you start…
	14.3 Getting started
	14.4 Creating a domain
	14.5 Creating behaviors
	14.6 Abstraction and reuse through higher-order functions
	14.7 Writing a console application
	14.8 Referencing files from scripts
	Summary

	Unit 4 Collections in F#
	Lesson 15 Working with collections in F#
	15.1 F# collection basics
	15.2 Collection types in F#
	Summary

	Lesson 16 Useful collection functions
	16.1 Mapping functions
	16.2 Grouping functions
	16.3 More on collections
	Summary

	Lesson 17 Maps, dictionaries, and sets
	17.1 Dictionaries
	17.2 The F# Map
	17.3 Sets
	Summary

	Lesson 18 Folding your way to success
	18.1 Understanding aggregations and accumulators
	18.2 Saying hello to fold
	18.3 Composing functions with fold
	Summary

	Lesson 19 Capstone 3
	19.1 Defining the problem
	19.2 Removing mutability
	19.3 Writing transactions to disk
	19.4 Rehydrating an account from disk
	Summary

	Unit 5 The pit of success with the F# type system
	Lesson 20 Program flow in F#
	20.1 A tour around loops in F#
	20.2 Branching logic in F#
	20.3 Flexible pattern matching
	20.4 To match or not to match
	Summary

	Lesson 21 Modeling relationships in F#
	21.1 Composition in F#
	21.2 Discriminated unions in F#
	21.3 Tips for working with discriminated unions
	21.4 More about discriminated unions
	Summary

	Lesson 22 Fixing the billion-dollar mistake
	22.1 Working with missing values
	22.2 Improving matters with the F# type system
	22.3 Using the Option module
	22.4 Collections and options
	Summary

	Lesson 23 Business rules as code
	23.1 Specific types in F#
	23.2 Encoding business rules with marker types
	23.3 Results vs. exceptions
	Summary

	Lesson 24 Capstone 4
	24.1 Defining the problem
	24.2 Stronger typing with discriminated unions
	24.3 Applying Option types with the outside world
	24.4 Implementing business rules with types
	Summary

	Unit 6 Living on the .NET platform
	Lesson 25 Consuming C# from F#
	25.1 Referencing C# code in F#
	25.2 The Visual Studio experience
	25.3 Working with OO constructs
	Summary

	Lesson 26 Working with NuGet packages
	26.1 Using NuGet with F#
	26.2 Working with Paket
	Summary

	Lesson 27 Exposing F# types and functions to C#
	27.1 Using F# types in C#
	27.2 More on F# interoperability
	27.3 Summarizing F# to C# interoperability
	Summary

	Lesson 28 Architecting hybrid language applications
	28.1 Crossing language boundaries
	28.2 Case study—WPF monopoly
	Summary

	Lesson 29 Capstone 5
	29.1 Defining the problem
	29.2 Plugging in a third-party NuGet package
	29.3 Connecting F# code to a WPF front end
	29.4 Common fields on discriminated unions
	29.5 Polishing up F# APIs for consumers
	29.6 Working with pure functions in a mutable world
	Summary

	Unit 7 Working with data
	Lesson 30 Introducing type providers
	30.1 Understanding type providers
	30.2 Working with your first type provider
	Summary

	Lesson 31 Building schemas from live data
	31.1 Working with JSON
	31.2 Avoiding problems with live schemas
	31.3 Mixing local and remote datasets
	Summary

	Lesson 32 Working with SQL
	32.1 Creating a basic database
	32.2 Introducing the SqlClient project
	32.3 Using the SQLProvider
	Summary

	Lesson 33 Creating type provider-backed APIs
	33.1 Creating a tightly coupled type provider API
	33.2 Creating a decoupled API
	Summary

	Lesson 34 Using type providers in the real world
	34.1 Securely accessing connection strings with type providers
	34.2 Manually passing connection strings
	34.3 Continuous integration with type providers
	Summary

	Lesson 35 Capstone 6
	35.1 Defining the problem
	35.2 Hooking up a SQL database
	35.3 Creating a SQL data access layer
	35.4 Making a pluggable data access layer
	Summary

	Unit 8 Web programming
	Lesson 36 Asynchronous workflows
	36.1 Comparing synchronous and asynchronous models
	36.2 Introducing asynchronous workflows
	36.3 Composing asynchronous values
	36.4 Using fork/join
	36.5 Using tasks and async workflows
	Summary

	Lesson 37 Exposing data over HTTP
	37.1 Getting up and running with the ASP .NET Web API
	37.2 Abstracting the Web API from F#
	37.3 Working with Async
	37.4 Introducing Suave
	Summary

	Lesson 38 Consuming HTTP data
	38.1 Using FSharp.Data to work with HTTP endpoints
	38.2 Working with HTTP.fs
	38.3 Using the Swagger type provider
	Summary

	Lesson 39 Capstone 7
	39.1 Defining the problem
	39.2 Adding Web API support to your application
	39.3 Consuming data with Swagger
	39.4 Enriching the API
	Summary

	Unit 9 Unit testing
	Lesson 40 Unit testing in F#
	40.1 Knowing when to unit test in F#
	40.2 Performing basic unit testing in F#
	40.3 Testing DSLs in F#
	Summary

	Lesson 41 Property-based testing in F#
	41.1 Understanding property-based testing
	41.2 Introducing FsCheck
	41.3 Controlling data generation
	Summary

	Lesson 42 Web testing
	42.1 Web automation with Canopy
	42.2 Web tests with Canopy
	Summary

	Lesson 43 Capstone 8
	43.1 Defining the problem
	43.2 Writing API tests
	43.3 Testing the Web API tier
	43.4 Using property-based tests
	Summary

	Unit 10 Where next?
	Appendix A The F# community
	A.1 The F# community
	A.2 Coding in the open source world
	A.3 A real-world example of open source contributions
	Summary

	Appendix B F# in my organization
	B.1 Introducing F# to others
	B.2 Introducing F# to your code base
	Summary

	Appendix C Must-visit F# resources
	C.1 Websites
	C.2 Social networks
	C.3 Projects and language
	Summary

	Appendix D Must-have F# libraries
	D.1 Libraries
	D.2 The F# toolchain
	Summary

	Appendix E Other F# language features
	E.1 Object-oriented support
	E.2 Exception handling
	E.3 Resource management
	E.4 Casting
	E.5 Active patterns
	E.6 Computation expressions
	E.7 Code quotations
	E.8 Units of measure
	E.9 Lazy computations
	E.10 Recursion

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

