
2
Basics

RMarkdown provides an authoring framework for data science. You can use
a single R Markdown file to both
• save and execute code, and
• generate high quality reports that can be shared with an audience.
R Markdown was designed for easier reproducibility, since both the comput-
ing code and narratives are in the same document, and results are automati-
cally generated from the source code. RMarkdown supports dozens of static
and dynamic/interactive output formats.
If you prefer a video introduction to R Markdown, we recommend that
you check out the website https://rmarkdown.rstudio.com, and watch the
videos in the “Get Started” section, which cover the basics of R Markdown.
Below is aminimal RMarkdown document, which should be a plain-text file,
with the conventional extension .Rmd:

title: "Hello R Markdown"
author: "Awesome Me"
date: "2018-02-14"
output: html_document

This is a paragraph in an R Markdown document.

Below is a code chunk:

```{r}
fit = lm(dist ~ speed, data = cars)
b = coef(fit)

5

https://rmarkdown.rstudio.com


6 2 Basics

plot(cars)
abline(fit)
```

The slope of the regression is `r b[1]`.
```

You can create such a text file with any editor (including but not limited to
RStudio). If you use RStudio, you can create a new Rmd file from the menu
File -> New File -> R Markdown.
There are three basic components of an R Markdown document: the meta-
data, text, and code. Themetadata is written between the pair of three dashes
---. The syntax for the metadata is YAML (YAML Ain’t Markup Language,
https://en.wikipedia.org/wiki/YAML), so sometimes it is also called the
YAMLmetadata or the YAML frontmatter. Before it bites you hard, we want
to warn you in advance that indentation matters in YAML, so do not forget
to indent the sub-fields of a top field properly. See the Appendix B.21 of Xie
(2016) for a few simple examples that show the YAML syntax.
The body of a document follows the metadata. The syntax for text (also
known as prose or narratives) is Markdown, which is introduced in Section
2.5. There are two types of computer code, which are explained in detail in
Section 2.6:
• A code chunk starts with three backticks like ```{r} where r indicates
the language name,2 and ends with three backticks. You can write chunk
options in the curly braces (e.g., set the figure height to 5 inches: ```{r,
fig.height=5}).

• An inline R code expression starts with `r and ends with a backtick `.
Figure 2.1 shows the above example in the RStudio IDE. You can click the
Knit button to compile the document (to an HTML page). Figure 2.2 shows
the output in the RStudio Viewer.
Now please take a closer look at the example. Did you notice a problem? The
object b is the vector of coefficients of length 2 from the linear regression;
b[1] is actually the intercept, and b[2] is the slope! This minimal example
shows you why R Markdown is great for reproducible research: it includes

1https://bookdown.org/yihui/bookdown/r-markdown.html
2It is not limited to the R language; see Section 2.7 for how to use other languages.

https://en.wikipedia.org/wiki/YAML
https://bookdown.org/yihui/bookdown/r-markdown.html


2.0 7

 

 

FIGURE 2.1: Aminimal R Markdown example in RStudio.

the source code right inside the document, which makes it easy to discover
and fix problems, as well as update the output document. All you have to do
is change b[1] to b[2], and click the Knit button again. Had you copied a
number -17.579 computed elsewhere into this document, it would be very
difficult to realize the problem. In fact, I had used this example a few times
by myself in my presentations before I discovered this problem during one
of my talks, but I discovered it anyway.
Although the above is a toy example, it could become a horror story if it
happens in scientific research that was not done in a reproducible way (e.g.,
cut-and-paste). Here are two of my personal favorite videos on this topic:
• “A reproducible workflow” by Ignasi Bartomeus and Francisco
Rodríguez-Sánchez (https://youtu.be/s3JldKoA0zw). It is a 2-min

https://youtu.be/s3JldKoA0zw


8 2 Basics

 

 

FIGURE 2.2: The output document of the minimal R Markdown example in
RStudio.



2.1 Example applications 9

video that looks artistic but also shows very common and practical
problems in data analysis.

• “The Importance of Reproducible Research in High-Throughput Biol-
ogy” by Keith Baggerly (https://youtu.be/7gYIs7uYbMo). You will be
impressed by both the content and the style of this lecture. Keith Bag-
gerly and Kevin Coombes were the two notable heroes in revealing the
Duke/Potti scandal3, whichwas described as “one of the biggest medical
research frauds ever” by the television program “60 Minutes”.

It is fine for humans to err (in computing), as long as the source code is readily
available.

2.1 Example applications

Now you have learned the very basic concepts of R Markdown. The idea
should be simple enough: interweave narratives with code in a document,
knit the document to dynamically generate results from the code, and you
will get a report. This idea was not invented by RMarkdown, but came from
an early programming paradigm called “Literate Programming” (Knuth,
1984).
Due to the simplicity of Markdown and the powerful R language for data
analysis, R Markdown has been widely used in many areas. Before we dive
into the technical details, we want to show some examples to give you an
idea of its possible applications.

2.1.1 Airbnb’s knowledge repository

Airbnb uses R Markdown to document all their analyses in R, so they can
combine code and data visualizations in a single report (Bion et al., 2018).
Eventually all reports are carefully peer-reviewed and published to a com-
pany knowledge repository, so that anyone in the company can easily find
analyses relevant to their team. Data scientists are also able to learn as much

3https://en.wikipedia.org/wiki/Anil_Potti

https://youtu.be/7gYIs7uYbMo
https://en.wikipedia.org/wiki/Anil_Potti


10 2 Basics

as they want from previous work or reuse the code written by previous au-
thors, because the full R Markdown source is available in the repository.

2.1.2 Homework assignments on RPubs

A huge number of homework assignments have been published to the web-
site https://RPubs.com (a free publishing platform provided by RStudio),
which shows that R Markdown is easy and convenient enough for students
to do their homework assignments (see Figure 2.3). When I was still a stu-
dent, I did most of my homework assignments using Sweave, which was
a much earlier implementation of literate programming based on the S lan-
guage (later R) and LaTeX. I was aware of the importance of reproducible
research but did not enjoy LaTeX, and few of my classmates wanted to use
Sweave. Right after I graduated, RMarkdownwas born, and it has been great
to see so many students do their homework in the reproducible manner.
In a 2016 JSM (Joint Statistical Meetings) talk, I proposed that course instruc-
tors could sometimes intentionally insert some wrong values in the source
data before providing it to the students for them to analyze the data in the
homework, then correct these values the next time, and ask them to do the
analysis again. Thisway, students should be able to realize the problemswith
the traditional cut-and-paste approach for data analysis (i.e., run the analy-
sis separately and copy the results manually), and the advantage of using R
Markdown to automatically generate the report.

2.1.3 Personalized mail

One thing you should remember about RMarkdown is that you can program-
matically generate reports, althoughmost of the time youmay be just clicking
the Knit button in RStudio to generate a single report from a single source
document. Being able to program reports is a super power of R Markdown.
MineÇetinkaya-Rundel oncewanted to create personalized handouts for her
workshop participants. She used a template R Markdown file, and knitted
it in a for-loop to generate 20 PDF files for the 20 participants. Each PDF
contained both personalized information and common information. Youmay
read the article https://rmarkdown.rstudio.com/articles_mail_merge.
html for the technical details.

https://RPubs.com
https://rmarkdown.rstudio.com/articles_mail_merge.html
https://rmarkdown.rstudio.com/articles_mail_merge.html


2.1 Example applications 11

 

 

FIGURE 2.3: A screenshot of RPubs.com that contains some homework ass-
ginments submitted by students.

2.1.4 2017 Employer Health Benefits Survey

The 2017 Employer Health Benefits Survey4 was designed and analyzed
by the Kaiser Family Foundation, NORC at the University of Chicago, and
Health Research & Educational Trust. The full PDF report was written in R
Markdown (with thebookdownpackage). It has a unique appearance,which
was made possible by heavy customizations in the LaTeX template. This ex-

4https://www.kff.org/health-costs/report/2017-employer-health-benefits-
survey/

https://www.kff.org/health-costs/report/2017-employer-health-benefits-survey/
https://www.kff.org/health-costs/report/2017-employer-health-benefits-survey/


12 2 Basics

ample shows you that if you really care about typesetting, you are free to
apply your knowledge about LaTeX to create highly sophisticated reports
from R Markdown.

2.1.5 Journal articles

Chris Hartgerink explained how and why he used R Markdown to write
dynamic research documents in the post at https://elifesciences.
org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-
markdown. He published a paper titled “Too Good to be False: Nonsignifi-
cant Results Revisited” with two co-authors (Hartgerink et al., 2017). The
manuscript was written in R Markdown, and results were dynamically
generated from the code in R Markdown.
When checking the accuracy of P-values in the psychology literature, his
colleagues and he found that P-values could be mistyped or miscalculated,
which could lead to inaccurate or even wrong conclusions. If the P-values
were dynamically generated and inserted instead of being manually copied
from statistical programs, the chance for those problems to exist would be
much lower.
Lowndes et al. (2017) also shows that using R Markdown (and version con-
trol) not only enhances reproducibility, but also produces better scientific re-
search in less time.

2.1.6 Dashboards at eelloo

R Markdown is used at eelloo (https://eelloo.nl) to design and generate
research reports. Here is one of their examples (in Dutch): https://eelloo.
nl/groepsrapportages-met-infographics/, where you can find gauges,
bar charts, pie charts, wordclouds, and other types of graphs dynamically
generated and embedded in dashboards.

2.1.7 Books

Wewill introduce the R Markdown extension bookdown in Chapter 12. It is
an R package that allows you to write books and long-form reports withmul-
tiple Rmd files. After this package was published, a large number of books

https://elifesciences.org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-markdown
https://elifesciences.org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-markdown
https://elifesciences.org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-markdown
https://eelloo.nl
https://eelloo.nl/groepsrapportages-met-infographics/
https://eelloo.nl/groepsrapportages-met-infographics/


2.2 Example applications 13

have emerged. You can find a subset of them at https://bookdown.org.
Some of these books have been printed, and some only have free online ver-
sions.
There have also been students who wrote their dissertations/theses with
bookdown, such as Ed Berry: https://eddjberry.netlify.com/post/
writing-your-thesis-with-bookdown/. Chester Ismay has even provided
an R package thesisdown (https://github.com/ismayc/thesisdown) that
can render a thesis in various formats. Several other people have cus-
tomized this package for their own institutions, such as Zhian N. Kam-
var’s beaverdown (https://github.com/zkamvar/beaverdown) and Ben
Marwick’s huskydown (https://github.com/benmarwick/huskydown).

2.1.8 Websites

The blogdown package to be introduced in Chapter 10 can be used to
build general-purpose websites (including blogs and personal websites)
based on R Markdown. You may find tons of examples at https://github.
com/rbind or by searching on Twitter: https://twitter.com/search?q=
blogdown. Here are a few impressive websites that I can quickly think of off
the top of my head:
• Rob J Hyndman’s personal website: https://robjhyndman.com (a very
comprehensive academic website).

• Amber Thomas’s personal website: https://amber.rbind.io (a rich
project portfolio).

• Emi Tanaka’s personal website: https://emitanaka.github.io (in par-
ticular, check out the beautiful showcase page).

• “Live Free or Dichotomize” by Nick Strayer and Lucy D’Agostino Mc-
Gowan: http://livefreeordichotomize.com (the layout is elegant, and
the posts are useful and practical).

https://bookdown.org
https://eddjberry.netlify.com/post/writing-your-thesis-with-bookdown/
https://eddjberry.netlify.com/post/writing-your-thesis-with-bookdown/
https://github.com/ismayc/thesisdown
https://github.com/zkamvar/beaverdown
https://github.com/benmarwick/huskydown
https://github.com/rbind
https://github.com/rbind
https://twitter.com/search?q=blogdown
https://twitter.com/search?q=blogdown
https://robjhyndman.com
https://amber.rbind.io
https://emitanaka.github.io
http://livefreeordichotomize.com


14 2 Basics

2.2 Compile an R Markdown document

The usual way to compile an R Markdown document is to click the Knit
button as shown in Figure 2.1, and the corresponding keyboard shortcut is
Ctrl + Shift + K (Cmd + Shift + K on macOS). Under the hood, RStudio
calls the function rmarkdown::render() to render the document in a new R
session. Please note the emphasis here, which often confuses R Markdown
users. Rendering an Rmd document in a new R session means that none of
the objects in your current R session (e.g., those you created in your R console) are
available to that session.5 Reproducibility is the main reason that RStudio uses
a new R session to render your Rmd documents: in most cases, you may
want your documents to continue to work the next time you open R, or in
other people’s computing environments. See this StackOverflow answer6 if
you want to know more.
If you must render a document in the current R session, you can also call
rmarkdown::render() by yourself, and pass the path of the Rmd file to this
function. The second argument of this function is the output format, which
defaults to the first output format you specify in the YAML metadata (if it is
missing, the default is html_document). When you have multiple output for-
mats in themetadata, and do notwant to use the first one, you can specify the
one you want in the second argument, e.g., for an Rmd document foo.Rmd
with the metadata:

output:
html_document:

toc: true
pdf_document:

keep_tex: true

You can render it to PDF via:

rmarkdown::render('foo.Rmd', 'pdf_document')

The function call gives you much more freedom (e.g., you can generate a
5This is not strictly true, but mostly true. You may save objects in your current R session to

a file, e.g., .RData, and load it in a new R session.
6https://stackoverflow.com/a/48494678/559676

https://stackoverflow.com/a/48494678/559676


2.3 Compile an R Markdown document 15

series of reports in a loop), but you should bear reproducibility inmindwhen
you render documents this way. Of course, you can start a new and clean R
session by yourself, and call rmarkdown::render() in that session. As long
as you do not manually interact with that session (e.g., manually creating
variables in the R console), your reports should be reproducible.
Another main way to work with Rmd documents is the R Markdown Note-
books, which will be introduced in Section 3.2. With notebooks, you can run
code chunks individually and see results right inside the RStudio editor. This
is a convenient way to interact or experiment with code in an Rmd docu-
ment, because you do not have to compile the whole document. Without us-
ing the notebooks, you can still partially execute code chunks, but the execu-
tion only occurs in the R console, and the notebook interface presents results
of code chunks right beneath the chunks in the editor, which can be a great
advantage. Again, for the sake of reproducibility, you will need to compile
the whole document eventually in a clean environment.
Lastly, I want tomention an “unofficial”way to compile Rmddocuments: the
function xaringan::inf_mr(), or equivalently, the RStudio addin “Infinite
Moon Reader”. Obviously, this requires you to install the xaringan package
(Xie, 2018g), which is available on CRAN. The main advantage of this way is
LiveReload: a technology that enables you to live preview the output as soon
as you save the source document, and you do not need to hit the Knit but-
ton. The other advantage is that it compiles the Rmd document in the current
R session, which may or may not be what you desire. Note that this method
only works for Rmd documents that output to HTML, including HTML doc-
uments and presentations.
A few R Markdown extension packages, such as bookdown and blogdown,
have their own way of compiling documents, and we will introduce them
later.
Note that it is also possible to render a series of reports instead of single one
from a single R Markdown source document. You can parameterize an R
Markdown document, and generate different reports using different param-
eters. See Chapter 15 for details.



16 2 Basics

2.3 Cheat sheets

RStudio has created a large number of cheat sheets, including the one-page
R Markdown cheetahs, which are freely available at https://www.rstudio.
com/resources/cheatsheets/. There is also a more detailed R Markdown
reference guide. Both documents can be used as quick references after you
become more familiar with R Markdown.

2.4 Output formats

There are two types of output formats in the rmarkdown package: docu-
ments, and presentations. All available formats are listed below:
• beamer_presentation
• github_document
• html_document
• ioslides_presentation
• latex_document
• md_document
• odt_document
• pdf_document
• powerpoint_presentation
• rtf_document
• slidy_presentation
• word_document

We will document these output formats in detail in Chapters 3 and 4. There
aremore output formats provided in other extension packages (starting from
Chapter 5). For the output format names in the YAML metadata of an Rmd
file, you need to include the package name if a format is from an extension
package, e.g.,

output: tufte::tufte_html

https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/


2.4 Output formats 17

If the format is from the rmarkdown package, you do not need the rmark-
down:: prefix (although it will not hurt).
When there are multiple output formats in a document, there will be a drop-
down menu behind the RStudio Knit button that lists the output format
names (Figure 2.4).

 

 

FIGURE 2.4: The output formats listed in the dropdown menu on the RStu-
dio toolbar.

Each output format is often accompanied with several format options. All
these options are documented on the R package help pages. For example,
you can type ?rmarkdown::html_document in R to open the help page of the
html_document format. When you want to use certain options, you have to
translate the values from R to YAML, e.g.,

html_document(toc = TRUE, toc_depth = 2, dev = 'svg')

can be written in YAML as:

output:
html_document:

toc: true
toc_depth: 2
dev: 'svg'

The translation is often straightforward. Remember that R’s TRUE, FALSE, and
NULL are true, false, and null, respectively, in YAML. Character strings in



18 2 Basics

YAML often do not require the quotes (e.g., dev: 'svg' and dev: svg are
the same), unless they contain special characters, such as the colon :. If you
are not sure if a string should be quoted or not, test it with the yaml package,
e.g.,

cat(yaml::as.yaml(list(
title = 'A Wonderful Day',
subtitle = 'hygge: a quality of coziness'

)))

title: A Wonderful Day
subtitle: 'hygge: a quality of coziness'

Note that the subtitle in the above example is quoted because of the colon.
If a certain option has sub-options (which means the value of this option is a
list in R), the sub-options need to be further indented, e.g.,

output:
html_document:

toc: true
includes:

in_header: header.html
before_body: before.html

Some options are passed to knitr, such as dev, fig_width, and fig_height.
Detailed documentation of these options can be found on the knitr docu-
mentationpage: https://yihui.name/knitr/options/. Note that the actual
knitr option names can be different. In particular, knitr uses . in names, but
rmarkdownuses _, e.g., fig_width in rmarkdown corresponds to fig.width
in knitr. We apologize for the inconsistencies—programmers often strive for
consistencies in their own world, yet one standard plus one standard often
equals three standards.7 If I were to design the knitr package again, I would
definitely use _.
Some options are passed to Pandoc, such as toc, toc_depth, and num-
ber_sections. You should consult the Pandoc documentation when in

7https://xkcd.com/927/

https://yihui.name/knitr/options/
https://xkcd.com/927/


2.5 Markdown syntax 19

doubt. R Markdown output format functions often have a pandoc_args ar-
gument, which should be a character vector of extra arguments to be passed
to Pandoc. If you find any Pandoc features that are not represented by the
output format arguments, you may use this ultimate argument, e.g.,

output:
pdf_document:

toc: true
pandoc_args: ["--wrap=none", "--top-level-division=chapter"]

2.5 Markdown syntax

The text in an R Markdown document is written with the Markdown syn-
tax. Precisely speaking, it is Pandoc’s Markdown. There are many flavors
of Markdown invented by different people, and Pandoc’s flavor is the most
comprehensive one to our knowledge. You can find the full documentation
of Pandoc’s Markdown at https://pandoc.org/MANUAL.html. We strongly
recommend that you read this page at least once to know all the possibilities
with Pandoc’s Markdown, even if you will not use all of them. This section
is adapted from Section 2.18 of Xie (2016), and only covers a small subset of
Pandoc’s Markdown syntax.

2.5.1 Inline formatting

Inline text will be italic if surrounded by underscores or asterisks, e.g., _text_
or *text*. Bold text is produced using a pair of double asterisks (**text**).
A pair of tildes (~) turn text to a subscript (e.g., H~3~PO~4~ renders H3PO4).
A pair of carets (^) produce a superscript (e.g., Cu^2+^ renders Cu2+).
To mark text as inline code, use a pair of backticks, e.g., `code`. To include
𝑛 literal backticks, use at least 𝑛 + 1 backticks outside, e.g., you can use four
backticks to preserve three backtick inside: ```` ```code``` ````, which is
rendered as ```code```.

8https://bookdown.org/yihui/bookdown/markdown-syntax.html

https://pandoc.org/MANUAL.html
https://bookdown.org/yihui/bookdown/markdown-syntax.html


20 2 Basics

Hyperlinks are created using the syntax [text](link), e.g., [RStu-
dio](https://www.rstudio.com). The syntax for images is similar: just add
an exclamation mark, e.g., ![alt text or image title](path/to/image).
Footnotes are put inside the square brackets after a caret ^[], e.g., ^[This is
a footnote.].
There are multiple ways to insert citations, and we recommend that you use
BibTeX databases, because they work better when the output format is La-
TeX/PDF. Section 2.89 of Xie (2016) has explained the details. The key idea is
that when you have a BibTeX database (a plain-text file with the conventional
filename extension .bib) that contains entries like:

@Manual{R-base,
title = {R: A Language and Environment for Statistical

Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2017},
url = {https://www.R-project.org/},

}

Youmay add a field named bibliography to the YAMLmetadata, and set its
value to the path of the BibTeX file. Then inMarkdown, youmay use @R-base
(which generates “R Core Team (2018)”) or [@R-base] (which generates “(R
Core Team, 2018)”) to reference the BibTeX entry. Pandoc will automatically
generated a list of references in the end of the document.

2.5.2 Block-level elements

Section headers can be written after a number of pound signs, e.g.,

# First-level header

## Second-level header

### Third-level header

9https://bookdown.org/yihui/bookdown/citations.html

https://bookdown.org/yihui/bookdown/citations.html


2.5 Markdown syntax 21

If you do not want a certain heading to be numbered, you can add {-} or
{.unnumbered} after the heading, e.g.,

# Preface {-}

Unordered list items start with *, -, or +, and you can nest one list within
another list by indenting the sub-list, e.g.,

- one item
- one item
- one item

- one more item
- one more item
- one more item

The output is:
• one item
• one item
• one item

– one more item
– one more item
– one more item

Ordered list items start with numbers (you can also nest lists within lists),
e.g.,

1. the first item
2. the second item
3. the third item

- one unordered item
- one unordered item

The output does not look too much different with the Markdown source:

1. the first item
2. the second item
3. the third item

•one unordered item
•one unordered item



22 2 Basics

Blockquotes are written after >, e.g.,

> "I thoroughly disapprove of duels. If a man should challenge me,
I would take him kindly and forgivingly by the hand and lead him
to a quiet place and kill him."

>
> --- Mark Twain

The actual output (we customized the style for blockquotes in this book):

“I thoroughly disapprove of duels. If a man should challenge me, I
would take him kindly and forgivingly by the hand and lead him to
a quiet place and kill him.”

—Mark Twain

Plain code blocks can be written after three or more backticks, and you can
also indent the blocks by four spaces, e.g.,

```
This text is displayed verbatim / preformatted
```

Or indent by four spaces:

This text is displayed verbatim / preformatted

In general, you’d better leave at least one empty line between adjacent but
different elements, e.g., a header and a paragraph. This is to avoid ambiguity
to the Markdown renderer. For example, does “#” indicate a header below?

In R, the character
# indicates a comment.

And does “-” mean a bullet point below?



2.5 Markdown syntax 23

The result of 5
- 3 is 2.

Different flavors of Markdown may produce different results if there are no
blank lines.

2.5.3 Math expressions

Inline LaTeX equations can bewritten in a pair of dollar signs using the LaTeX
syntax, e.g., $f(k) = {n \choose k} p^{k} (1-p)^{n-k}$ (actual output:
𝑓(𝑘) = (𝑛

𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘); math expressions of the display style can be writ-
ten in a pair of double dollar signs, e.g., $$f(k) = {n \choose k} p^{k}
(1-p)^{n-k}$$, and the output looks like this:

𝑓 (𝑘) = (𝑛
𝑘)𝑝𝑘 (1 − 𝑝)𝑛−𝑘

You can also use math environments inside $ $ or $$ $$, e.g.,

$$\begin{array}{ccc}
x_{11} & x_{12} & x_{13}\\
x_{21} & x_{22} & x_{23}
\end{array}$$

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23

$$X = \begin{bmatrix}1 & x_{1}\\
1 & x_{2}\\
1 & x_{3}
\end{bmatrix}$$

𝑋 = ⎡⎢
⎣

1 𝑥1
1 𝑥2
1 𝑥3

⎤⎥
⎦



24 2 Basics

$$\Theta = \begin{pmatrix}\alpha & \beta\\
\gamma & \delta
\end{pmatrix}$$

Θ = (𝛼 𝛽
𝛾 𝛿)

$$\begin{vmatrix}a & b\\
c & d
\end{vmatrix}=ad-bc$$

∣𝑎 𝑏
𝑐 𝑑∣ = 𝑎𝑑 − 𝑏𝑐

2.6 R code chunks and inline R code

You can insert an R code chunk either using the RStudio toolbar (the Insert
button) or the keyboard shortcut Ctrl + Alt + I (Cmd + Option + I on
macOS).
There are a lot of things you can do in a code chunk: you can produce text
output, tables, or graphics. You have fine control over all these output via
chunk options,which can be provided inside the curly braces (between ```{r
and }). For example, you can choose hide text output via the chunk option
results = 'hide', or set the figure height to 4 inches via fig.height = 4.
Chunk options are separated by commas, e.g.,

```{r, chunk-label, results='hide', fig.height=4}

The value of a chunk option can be an arbitrary R expression, which makes
chunk options extremely flexible. For example, the chunk option eval con-
trols whether to evaluate (execute) a code chunk, and you may conditionally
evaluate a chunk via a variable defined previously, e.g.,

2.6 R code chunks and inline R code 25

```{r}
# execute code if the date is later than a specified day
do_it = Sys.Date() > '2018-02-14'
```

```{r, eval=do_it}
x = rnorm(100)
```

There are a large number of chunk options in knitr documented at https:
//yihui.name/knitr/options. We list a subset of them below:
• eval: Whether to evaluate a code chunk.
• echo: Whether to echo the source code in the output document (someone
may not prefer reading your smart source code but only results).

• results: When set to 'hide', text output will be hidden; when set to
'asis', text output is written “as-is”, e.g., you can write out raw Mark-
down text from R code (like cat('**Markdown** is cool.\n')). By de-
fault, text output will be wrapped in verbatim elements (typically plain
code blocks).

• collapse: Whether to merge text output and source code into a single code
block in the output. This is mostly cosmetic: collapse = TRUE makes the
output more compact, since the R source code and its text output are dis-
played in a single output block. The default collapse = FALSE means R
expressions and their text output are separated into different blocks.

• warning, message, and error: Whether to show warnings, messages, and
errors in the output document. Note that if you set error = FALSE, rmark-
down::render() will halt on error in a code chunk, and the error will be
displayed in the R console. Similarly, when warning = FALSE or message
= FALSE, these messages will be shown in the R console.

• include: Whether to include anything from a code chunk in the output
document. When include = FALSE, this whole code chunk is excluded in
the output, but note that it will still be evaluated if eval = TRUE. When you
are trying to set echo = FALSE, results = 'hide', warning = FALSE, and
message = FALSE, chances are you simply mean a single option include =
FALSE instead of suppressing different types of text output individually.

https://yihui.name/knitr/options
https://yihui.name/knitr/options

26 2 Basics

• cache: Whether to enable caching. If caching is enabled, the same code
chunk will not be evaluated the next time the document is compiled (if
the code chunk was not modified), which can save you time. However, I
want to honestly remind you of the two hard problems in computer science
(via Phil Karlton): naming things, and cache invalidation. Caching can be
handy but also tricky sometimes.

• fig.width and fig.height: The (graphical device) size of R plots in inches.
R plots in code chunks are first recorded via a graphical device in knitr, and
then written out to files. You can also specify the two options together in a
single chunk option fig.dim, e.g., fig.dim = c(6, 4) means fig.width
= 6 and fig.height = 4.

• out.width and out.height: The output size of R plots in the output doc-
ument. These options may scale images. You can use percentages, e.g.,
out.width = '80%'means 80% of the page width.

• fig.align: The alignment of plots. It can be 'left', center, or 'right'.
• dev: The graphical device to record R plots. Typically it is 'pdf' for LaTeX
output, and 'png' for HTML output, but you can certainly use other de-
vices, such as 'svg' or 'jpeg'.

• fig.cap: The figure caption.
• child: You can include a child document in themain document. This option
takes a path to an external file.

Chunk options in knitr can be surprisingly powerful. For example, you can
create animations froma series of plots in a code chunk. Iwill not explain how
here because it requires an external software package10, but encourage you to
read the documentation carefully to discover the possibilities. You may also
read Xie (2015), which is a comprehensive guide to the knitr package, but
unfortunately biased towards LaTeX users for historical reasons (which was
one of the reasons why I wanted to write this R Markdown book).
There is an optional chunk option that does not take any value, which is the
chunk label. It should be the first option in the chunk header. Chunk labels
aremainly used in filenames of plots and cache. If the label of a chunk ismiss-
ing, a default one of the form unnamed-chunk-i will be generated, where i
is incremental. I strongly recommend that you only use alphanumeric char-
acters (a-z, A-Z and 0-9) and dashes (-) in labels, because they are not spe-

10https://blogdown-demo.rbind.io/2018/01/31/gif-animations/

https://blogdown-demo.rbind.io/2018/01/31/gif-animations/

2.6 R code chunks and inline R code 27

cial characters and will surely work for all output formats. Other characters,
spaces and underscores in particular, may cause trouble in certain packages,
such as bookdown.
If a certain option needs to be frequently set to a value in multiple code
chunks, you can consider setting it globally in the first code chunk of your
document, e.g.,

```{r, setup, include=FALSE}
knitr::opts_chunk$set(fig.width = 8, collapse = TRUE)
```

Besides code chunks, you can also insert values of R objects inline in text. For
example:

```{r}
x = 5 # radius of a circle
```

For a circle with the radius `r x`,
its area is `r pi * x^2`.

2.6.1 Figures

By default, figures produced by R code will be placed immediately after the
code chunk they were generated from. For example:

```{r}
plot(cars, pch = 18)
```

You can provide a figure caption using fig.cap in the chunk options. If the
document output format supports the option fig_caption: true (e.g., the
output format rmarkdown::html_document), the R plots will be placed into
figure environments. In the case of PDF output, such figures will be automat-
ically numbered. If you alsowant to number figures in other formats (such as
HTML), please see the bookdown package in Chapter 12 (in particular, see
Section 12.4.4).

28 2 Basics

PDF documents are generated through the LaTeX files generated from R
Markdown. A highly surprising fact to LaTeX beginners is that figures float
by default: even if you generate a plot in a code chunk on the first page,
the whole figure environment may float to the next page. This is just how
LaTeX works by default. It has a tendency to float figures to the top or bot-
tom of pages. Although it can be annoying and distracting, we recommend
that you refrain from playing the “Whac-A-Mole” game in the beginning of
your writing, i.e., desparately trying to position figures “correctly” while
they seem to be always dodging you. You may wish to fine-tune the po-
sitions once the content is complete using the fig.pos chunk option (e.g.,
fig.pos = 'h'). See https://www.sharelatex.com/learn/Positioning_
images_and_tables for possible values of fig.pos and more general tips
about this behavior in LaTeX. In short, this can be a difficult problem for PDF
output.
To place multiple figures side-by-side from the same code chunk, you can
use the fig.hold='hold' option along with the out.width option. Figure
2.5 shows an example with two plots, each with a width of 50%.

par(mar = c(4, 4, 0.2, 0.1))
plot(cars, pch = 19)
plot(pressure, pch = 17)

5 10 15 20 25

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

speed

d
is

t

0 50 100 150 200 250 300 350

0
2
0
0

4
0
0

6
0
0

8
0
0

temperature

p
re

s
s
u
re

FIGURE 2.5: Two plots side-by-side.

If you want to include a graphic that is not generated from R code, you may
use the knitr::include_graphics() function, which gives you more con-
trol over the attributes of the image than the Markdown syntax of ![alt

https://www.sharelatex.com/learn/Positioning_images_and_tables
https://www.sharelatex.com/learn/Positioning_images_and_tables

2.6 R code chunks and inline R code 29

text or image title](path/to/image) (e.g., you can specify the image
width via out.width). Figure 2.6 provides an example of this.

```{r, out.width='25%', fig.align='center', fig.cap='...'}
knitr::include_graphics('images/hex-rmarkdown.png')
```


FIGURE 2.6: The R Markdown hex logo.

2.6.2 Tables

The easiest way to include tables is by using knitr::kable(), which can cre-
ate tables forHTML, PDF andWord outputs.11 Table captions can be included
by passing caption to the function, e.g.,

```{r tables-mtcars}
knitr::kable(iris[1:5, ], caption = 'A caption')
```

Tables in non-LaTeX output formats will always be placed after the code
block. For LaTeX/PDF output formats, tables have the same issue as figures:
theymay float. If youwant to avoid this behavior, youwill need to use the La-
TeX package longtable12, which can break tables across multiple pages. This
can be achieved by adding \usepackage{longtable} to your LaTeX pream-
ble, and passing longtable = TRUE to kable().
If you are looking for more advanced control of the styling of tables, you are

11You may also consider the pander package. There are several other packages for produc-
ing tables, including xtable, Hmisc, and stargazer, but these are generally less compatible
with multiple output formats.

12https://www.ctan.org/pkg/longtable

https://www.ctan.org/pkg/longtable

30 2 Basics

recommended to use the kableExtra13 package, which provides functions to
customize the appearance of PDF and HTML tables. Formatting tables can
be a very complicated task, especially when certain cells span more than one
column or row. It is evenmore complicatedwhen you have to consider differ-
ent output formats. For example, it is difficult to make a complex table work
for both PDF andHTML output.We know it is disappointing, but sometimes
you may have to consider alternative ways of presenting data, such as using
graphics.
We explain in Section 12.3 how the bookdown package extends the func-
tionality of rmarkdown to allow for figures and tables to be easily cross-
referenced within your text.

2.7 Other language engines

A less well-known fact about R Markdown is that many other languages are
also supported, such as Python, Julia, C++, and SQL. The support comes
from the knitr package, which has provided a large number of language
engines. Language engines are essentially functions registered in the object
knitr::knit_engine. You can list the names of all available engines via:

names(knitr::knit_engines$get())

[1] "awk" "bash" "coffee"
[4] "gawk" "groovy" "haskell"
[7] "lein" "mysql" "node"
[10] "octave" "perl" "psql"
[13] "Rscript" "ruby" "sas"
[16] "scala" "sed" "sh"
[19] "stata" "zsh" "highlight"
[22] "Rcpp" "tikz" "dot"
[25] "c" "fortran" "fortran95"
[28] "asy" "cat" "asis"
[31] "stan" "block" "block2"
[34] "js" "css" "sql"

13https://cran.r-project.org/package=kableExtra

https://cran.r-project.org/package=kableExtra

2.7 Other language engines 31

[37] "go" "python" "julia"
[40] "theorem" "lemma" "corollary"
[43] "proposition" "conjecture" "definition"
[46] "example" "exercise" "proof"
[49] "remark" "solution"

Most engines have been documented in Chapter 11 of Xie (2015). The engines
from theorem to solution are only available when you use the bookdown
package, and the rest are shipped with the knitr package. To use a different
language engine, you can change the language name in the chunk header
from r to the engine name, e.g.,

```{python}
x = 'hello, python world!'
print(x.split(' '))
```

For engines that rely on external interpreters such as python, perl, and ruby,
the default interpreters are obtained from Sys.which(), i.e., using the inter-
preter found via the environment variable PATH of the system. If you want to
use an alternative interpreter, you may specify its path in the chunk option
engine.path. For example, you may want to use Python 3 instead of the de-
fault Python 2, and we assume Python 3 is at /usr/bin/python3 (may not be
true for your system):

```{python, engine.path = '/usr/bin/python3'}
import sys
print(sys.version)
```

You can also change the engine interpreters globally for multiple engines,
e.g.,

knitr::opts_chunk$set(engine.path = list(
python = '~/anaconda/bin/python',
ruby = '/usr/local/bin/ruby'

))

Note that you can use a named list to specify the paths for different engines.

32 2 Basics

Most engines will execute each code chunk in a separate new session (via a
system() call in R), which means objects created in memory in a previous
code chunk will not be directly available to latter code chunks. For example,
if you create a variable in a bash code chunk, you will not be able to use it in
the next bash code chunk. Currently the only exceptions are r, python, and
julia. Only these engines execute code in the same session throughout the
document. To clarify, all r code chunks are executed in the same R session,
all python code chunks are executed in the same Python session, and so on,
but the R session and the Python session are independent.14

I will introduce some specific features and examples for a subset of language
engines in knitr below. Note that most chunk options should work for both
R and other languages, such as eval and echo, so these options will not be
mentioned again.

2.7.1 Python

The python engine is based on the reticulate package (Allaire et al., 2018b),
whichmakes it possible to execute all Python code chunks in the samePython
session. If you actually want to execute a certain code chunk in a new Python
session, you may use the chunk option python.reticulate = FALSE. If you
are using a knitr version lower than 1.18, you should update your R pack-
ages.
Below is a relatively simple example that shows how you can create/modify
variables, and draw graphics in Python code chunks. Values can be passed
to or retrieved from the Python session. To pass a value to Python, assign
to py$name, where name is the variable name you want to use in the Python
session; to retrieve a value from Python, also use py$name.

title: "Python code chunks in R Markdown"
date: 2018-02-22

A normal R code chunk

14This is not strictly true, since the Python session is actually launched from R.What I mean
here is that you should not expect to use R variables and Python variables interchangeably
without explicitly importing/exporting variables between the two sessions.

2.7 Other language engines 33

```{r}
library(reticulate)
x = 42
print(x)
```

Modify an R variable

In the following chunk, the value of `x` on the right hand side
is `r x`, which was defined in the previous chunk.

```{r}
x = x + 12
print(x)
```

A Python chunk

This works fine and as expected.

```{python}
x = 42 * 2
print(x)
```

The value of `x` in the Python session is `r py$x`.
It is not the same `x` as the one in R.

Modify a Python variable

```{python}
x = x + 18
print(x)
```

Retrieve the value of `x` from the Python session again:

```{r}



34 2 Basics

py$x
```

Assign to a variable in the Python session from R:

```{r}
py$y = 1:5
```

See the value of `y` in the Python session:

```{python}
print(y)
```

Python graphics

You can draw plots using the **matplotlib** package in Python.

```{python}
import matplotlib.pyplot as plt
plt.plot([0, 2, 1, 4])
plt.show()
```

You may learn more about the reticulate package from https://rstudio.
github.io/reticulate/.

2.7.2 Shell scripts

You can also write Shell scripts in RMarkdown, if your system can run them
(the executable bash or sh should exist). Usually this is not a problem for
Linux or macOS users. It is not impossible for Windows users to run Shell
scripts, but you will have to install additional software (such as Cygwin15 or
the Linux Subsystem).

15https://www.cygwin.com

https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://www.cygwin.com

2.7 Other language engines 35

```{bash}
echo "Hello Bash!"
cat flights1.csv flights2.csv flights3.csv > flights.csv
```

Shell scripts are executed via the system2() function in R. Basically knitr
passes a code chunk to the command bash -c to run it.

2.7.3 SQL

The sql engine uses the DBI16 package to execute SQL queries, print their
results, and optionally assign the results to a data frame.
To use the sql engine, you first need to establish a DBI connection to a
database (typically via the DBI::dbConnect() function). You can make use
of this connection in a sql chunk via the connection option. For example:

```{r}
library(DBI)
db = dbConnect(RSQLite::SQLite(), dbname = "sql.sqlite")
```

```{sql, connection=db}
SELECT * FROM trials
```

By default, SELECT queries will display the first 10 records of their results
within the document. The number of records displayed is controlled by the
max.print option, which is in turn derived from the global knitr option
sql.max.print (e.g., knitr::opts_knit$set(sql.max.print = 10); N.B. it
is opts_knit instead of opts_chunk). For example, the following code chunk
displays the first 20 records:

```{sql, connection=db, max.print = 20}
SELECT * FROM trials
```

16https://cran.rstudio.com/package=DBI

https://cran.rstudio.com/package=DBI

36 2 Basics

You can specify no limit on the records to be displayed via max.print = -1
or max.print = NA.
By default, the sql engine includes a caption that indicates the total number
of records displayed. You can override this caption using the tab.cap chunk
option. For example:

```{sql, connection=db, tab.cap = "My Caption"}
SELECT * FROM trials
```

You can specify that you want no caption all via tab.cap = NA.
If you want to assign the results of the SQL query to an R object as a data
frame, you can do this using the output.var option, e.g.,

```{sql, connection=db, output.var="trials"}
SELECT * FROM trials
```

When the results of a SQL query are assigned to a data frame, no records will
be printed within the document (if desired, you can manually print the data
frame in a subsequent R chunk).
If you need to bind the values of R variables into SQL queries, you can do so
by prefacing R variable references with a ?. For example:

```{r}
subjects = 10
```

```{sql, connection=db, output.var="trials"}
SELECT * FROM trials WHERE subjects >= ?subjects
```

If you have many SQL chunks, it may be helpful to set a default for the con-
nection chunk option in the setup chunk, so that it is not necessary to specify
the connection on each individual chunk. You can do this as follows:

2.7 Other language engines 37

```{r setup}
library(DBI)
db = dbConnect(RSQLite::SQLite(), dbname = "sql.sqlite")
knitr::opts_chunk$set(connection = "db")
```

Note that the connection option should be a string naming the connection
object (not the object itself). Once set, you can execute SQL chunks without
specifying an explicit connection:

```{sql}
SELECT * FROM trials
```

2.7.4 Rcpp

The Rcpp engine enables compilation of C++ into R functions via the Rcpp
sourceCpp() function. For example:

```{Rcpp}
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}
```

Executing this chunk will compile the code and make the C++ function
timesTwo() available to R.
You can cache the compilation of C++ code chunks using standard knitr
caching, i.e., add the cache = TRUE option to the chunk:

```{Rcpp, cache=TRUE}
#include <Rcpp.h>



38 2 Basics

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}
```

In some cases, it is desirable to combine all of the Rcpp code chunks in a
document into a single compilation unit. This is especially useful when you
want to intersperse narrative between pieces of C++ code (e.g., for a tutorial
or user guide). It also reduces total compilation time for the document (since
there is only a single invocation of the C++ compiler rather than multiple).
To combine all Rcpp chunks into a single compilation unit, you use the
ref.label chunk option along with the knitr::all_rcpp_labels() func-
tion to collect all of the Rcpp chunks in the document. Here is a simple exam-
ple:

All C++ code chunks will be combined to the chunk below:

```{Rcpp, ref.label=knitr::all_rcpp_labels(), include=FALSE}
```

First we include the header `Rcpp.h`:

```{Rcpp, eval=FALSE}
#include <Rcpp.h>
```

Then we define a function:

```{Rcpp, eval=FALSE}
// [[Rcpp::export]]
int timesTwo(int x) {

return x * 2;
}
```


2.7 Other language engines 39

The two Rcpp chunks that include code will be collected and compiled to-
gether in the first Rcpp chunk via the ref.label chunk option. Note that we
set the eval = FALSE option on the Rcpp chunkswith code in them to prevent
them from being compiled again.

2.7.5 Stan

The stan engine enables embedding of the Stan probabilistic programming
language17 within R Markdown documents.
The Stan model within the code chunk is compiled into a stanmodel object,
and is assigned to a variable with the name given by the output.var option.
For example:

```{stan, output.var="ex1"}
parameters {

real y[2];
}
model {

y[1] ~ normal(0, 1);
y[2] ~ double_exponential(0, 2);

}
```

```{r}
library(rstan)
fit = sampling(ex1)
print(fit)
```

2.7.6 JavaScript and CSS

If you are using an R Markdown format that targets HTML output
(e.g., html_document and ioslides_presenation, etc.), you can include
JavaScript to be executed within the HTML page using the JavaScript engine
named js.

17http://mc-stan.org

http://mc-stan.org

40 2 Basics

For example, the following chunk uses jQuery (which is included in most R
Markdown HTML formats) to change the color of the document title to red:

```{js, echo=FALSE}
$('.title').css('color', 'red')
```

Similarly, you can embed CSS rules in the output document. For example,
the following code chunk turns text within the document body red:

```{css, echo=FALSE}
body {

color: red;
}
```

Without the chunk option echo = FALSE, the JavaScript/CSS code will be
displayed verbatim in the output document, which is probably not what you
want.

2.7.7 Julia

The Julia18 language is supported through the JuliaCall package (Li, 2018).
Similar to the python engine, the julia engine runs all Julia code chunks in
the same Julia session. Below is a minimal example:

```{julia}
a = sqrt(2); # the semicolon inhibits printing
```

2.7.8 C and Fortran

For code chunks that use C or Fortran, knitr uses R CMD SHLIB to compile the
code, and load the shared object (a *.so file on Unix or *.dll on Windows).
Then you can use .C() / .Fortran() to call the C / Fortran functions, e.g.,

18https://julialang.org

https://julialang.org

2.8 Interactive documents 41

```{c, test-c, results='hide'}
void square(double *x) {

*x = *x * *x;
}
```

Test the `square()` function:

```{r}
.C('square', 9)
.C('square', 123)
```

You can find more examples on different language engines in the GitHub
repository https://github.com/yihui/knitr-examples (look for file-
names that contain the word “engine”).

2.8 Interactive documents

RMarkdown documents can also generate interactive content. There are two
types of interactive RMarkdowndocuments: you can use theHTMLWidgets
framework, or the Shiny framework (or both). Theywill be described inmore
detail in Chapter 16 and Chapter 19, respectively.

2.8.1 HTML widgets

The HTML Widgets framework is implemented in the R package htmlwid-
gets (Vaidyanathan et al., 2018), interfacing JavaScript libraries that create
interactive applications, such as interactive graphics and tables. Several wid-
get packages have been developed based on this framework, such asDT (Xie,
2018c), leaflet (Cheng et al., 2018), and dygraphs (Vanderkam et al., 2017).
Visit https://www.htmlwidgets.org to know more about widget packages
as well as how to develop a widget package by yourself.

https://github.com/yihui/knitr-examples
https://www.htmlwidgets.org

42 2 Basics

Figure 2.7 shows an interactive map created via the leaflet package, and the
source document is below:

title: "An Interactive Map"

Below is a map that shows the location of the
Department of Statistics, Iowa State University.

```{r out.width='100%', echo=FALSE}
library(leaflet)
leaflet() %>% addTiles() %>%

setView(-93.65, 42.0285, zoom = 17) %>%
addPopups(

-93.65, 42.0285,
'Here is the <b>Department of Statistics</b>, ISU'

)
```

Although HTML widgets are based on JavaScript, the syntax to create them
in R is often pure R syntax.
If you include an HTML widget in a non-HTML output format, such as a
PDF, knitrwill try to embed a screenshot of the widget if you have installed
the R packagewebshot (Chang, 2017) and the PhantomJS package (via web-
shot::install_phantomjs()).

2.8.2 Shiny documents

The shiny package (Chang et al., 2018) builds interactive web apps powered
by R. To call Shiny code from an R Markdown document, add runtime:
shiny to the YAML metadata, like in this document:

title: "A Shiny Document"
output: html_document
runtime: shiny

2.8 Interactive documents 43

FIGURE 2.7: An R Markdown document with a leaflet map widget.

44 2 Basics

A standard R plot can be made interactive by wrapping
it in the Shiny `renderPlot()` function. The `selectInput()`
function creates the input widget to drive the plot.

```{r eruptions, echo=FALSE}
selectInput(

'breaks', label = 'Number of bins:',
choices = c(10, 20, 35, 50), selected = 20

)

renderPlot({
par(mar = c(4, 4, .1, .5))
hist(

faithful$eruptions, as.numeric(input$breaks),
col = 'gray', border = 'white',
xlab = 'Duration (minutes)', main = ''

)
})
```

Figure 2.8 shows the output, where you can see a dropdown menu that al-
lows you to choose the number of bins in the histogram.
Youmay use Shiny to run any R code that you like in response to user actions.
Since web browsers cannot execute R code, Shiny interactions occur on the
server side and rely on a live R session. By comparison, HTML widgets do
not require a live R session to support them, because the interactivity comes
from the client side (via JavaScript in the web browser).
You can learn more about Shiny at https://shiny.rstudio.com.
HTML widgets and Shiny elements rely on HTML and JavaScript. They will
work in any R Markdown format that is viewed in a web browser, such as
HTML documents, dashboards, and HTML5 presentations.

https://shiny.rstudio.com

2.8 Interactive documents 45

FIGURE 2.8: An R Markdown document with a Shiny widget.

