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Abstract 

The bath chemistry is very complex for analytical modeling due to 
its sensitivity to disturbances from other processes. The control of 
the electrolyte also represents a great challenge, provided that any 
change in the heat and mass balance may affect current efficiency 
and pot life. In order to test a good control strategy, a process 
model is very helpful. The model allows process experts to design 
and test process control strategies without compromising 
reduction cells. In addition a model allows simulations on the 
process for a long time. In this work we developed a neural-based 
strategy to model bath chemistry variables in a Multiple Input 
Multiple Output (MIMO) approach using a data-driven design. 
The achieved results are very acceptable for the process 
engineering staff of the industry where this work was performed. 

Introduction 

Aluminium became essential for the daily life, since many goods 
and services are available through the application of this light 
metal. However aluminium production in large scale became 
viable only after Hall and Heroult had discovered the smelting 
process which is named after them. It has been evolving since 
then, allowing for a greater and efficient production. This process 
is very complex, since it deals with chemical, thermal, 
electromagnetic and mechanical variables in a set of subsystems 
highly coupled with each other. This represents a great challenge 
for this process control, since any change or bias in a subprocess 
may affect other process. In spite ofthat, there are many strategies 
that permit an automatic control in most of cases, such as alumina 
feeding and anode-cathode distance control. Nevertheless in many 
smelters there are still many manual activities using measurement 
equipment subjected to noise and failure due to operations in 
harsh environments. These factors affect and prevent an efficient 
control [1]. 
Under these conditions, models have been helping process teams 
to better understand, design and test control strategies, prior to 
launching them into production. A model is a set of mathematical 
equations on a set of independent (or input) process variables 
which produce a set of target (or output) process variables. This 
set of mathematical equations is often called a nonlinear system 
dynamics model, provided that almost all systems are dynamic 
and nonlinear. Since the model should work as a virtual plant, it 
offers the possibility to simulate the process and control strategies. 
Recent works have shown that neural based models have given 
good results in nonlinear process modeling. As for aluminium 
smelting, similar works have been developed using artificial 
neural networks. Branco [2] developed a model of the electrolytic 
resistance, a critical control parameter, allowing the test of new 
feeding strategies and control. Frost and Karri [3] developed 
models for aluminium fluoride estimation using a number of 
architectures of neural networks and compared their performance. 
Soares [4] developed a model for bath temperature following a 
modeling methodology [5]. Souza [6] developed a method for 
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fluoridated alumina, a not easily measured parameter that strongly 
affects bath chemistry control. 
However, many of these works use an MISO (Multiple Input, 
Single Output) approach, i.e. they are aimed at inferring only one 
variable based on a set of variables. In this work we exploit the 
use of MIMO (Multiple Input, Multiple Output) approach for 
modeling bath chemistry variables. In its macrostructure, this 
work is based on Soares [4] and Fontes [7] and presents the 
following improvements: 

Bath Temperature and Fluoride inferred at the same 
sample rate; 
Noise and Outlier Filtering applied for cells 
MIMO structure that infers heat balance (bath 
temperature) and mass balance (aluminium fluoride, 
calcium fluoride) 

This work is structured as follows. In the Introduction the main 
subject is outlined. Then the Bath Chemistry Challenges are 
presented, supporting this work's motivation. The concept of 
Nonlinear models and their techniques is introduced. 
Subsequently, the methodology used for building the model is 
presented, including data acquisition, model's parameters 
estimation and its results. At the Conclusion, final considerations 
and future works suggestion are provided. 

Bath Chemistry Process 

Bath chemistry control is really important in the aluminium 
smelting process, because it strongly impacts on current efficiency 
[8]. To keep bath composition stable at a good range, some 
additives are added to the cell, e.g. aluminium fluoride (A1F3 or 
ALF) and calcium fluoride (CaF2 or CAF). Aluminium fluoride, 
besides having effect on mass balance, it also affects thermal 
balance, since it lowers the bath melting temperature and 
decreases alumina solubility [9]. 
Bath chemistry control uses aluminum fluoride and bath 
temperature among other factors to determine how much of any 
additive should be added into the bath. Although there are many 
chemical and physical equations to that end, many manual 
interventions are still needed [10]. 
An artificial intelligence technique approach to estimate bath 
chemistry variable arises from the fact that the bath chemistry 
variables measurements are not available in real, and most of the 
analytical modeling on both heat and mass balance are inefficient. 
So, one might consider these techniques to estimate these 
variables in a shorter basis. In this work we exploit the use of 
neural networks for bath chemistry modeling on these variables: 
Bath Temperature, Aluminium Fluoride and Calcium Fluoride. 

Nonlinear Models 

A real process has variables that represent their dynamic behavior 
through nonlinear equations. To better understand nonlinear and 
multivariable models, it is easier first to look at SISO (single 
input, single output) linear models and their parameters. In its 
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general form, a linear model consists of a dependent variable y, 
independent or control variable u and noise or disturbance e, as 
shown in equation: 

A{z -l)y(0=Z-*g£iu(0+£3e(0 F(z-!) DO"1) (1) 

where A(.), B(.), C(), D(.), F(.) are polynomials of z1, and z'1 is a 
complex variable whose meaning is also the delay operator [5]. 
This SISO linear model can be extended to a MIMO form when 
dealing with vectors Y(t), Uft) and Eft) instead of single values 
yft), uft) and eft), and matrices instead of the polynomials. For 
simplicity, let's take into account only the A(.) ΆηάΒ() matrices, 
then the model with r inputs and p outputs can be rewritten as: 

/CO =A1.Y(t-l) + - + Any.Y(t - ny) + 

Bi. U{t - 1) + - + B i /( t - n u ) + E(t) (2) 

where A, E l p x p and B ; G Wxr, ny and nu correspond to the 
number of delays at the outputs and the inputs respectively. The 
system variables, now defined as vectors, have the following 
form: 

Yit) = [y1{t)y2{t)...yp{t)} 

U(t) = [u1(t)u2(t)...ur(t)]
T 

E(t) = [e^t) e2(t). . . ep(t)f (3) 

We may also represent all the matrices from the equation (2) in 
the polynomial form as in equation (1): 

AÇz-1) = I - A^-1 - A2z~2-

ß(z _ 1 ) = ßiZ" 1 + ß 2 z" 2 + — + Bn z 
fly 

(4) 

where I stands for the identity matrix or rank ny. 
The model shown in equation (2) is also known as ARX 
(AutoRegressive with exogenous inputs). In practical 
applications, this model can be rewritten using matrix algebra as: 

Y(t) =eTu(t-l)+E(t) 

where 

(5) 

u(t - 1) = [YT(t - 1)... YT(t - ny)U
T(t - 1)... UT(t - nj]' 

Θ = \A, An ...Ar, B, Bn ... Br, (6) 

The Θ matrix is often called the parameters matrix, while the 
ϋ(ί — 1) matrix is called the regression matrix at the time t-1. As 
can be seen from equations 1-6, the regression matrix is 
represented by the current known data until instant t-1. There are a 
number of algorithms aimed at finding the optimal parameters of 
the parameters matrix [5] [11] through several methods, ranging 
from matrix algebra to gradient descent and other computations. 
As for nonlinear counterparts, the model itself is represented by a 
nonlinear matrix function Fftift); Θ). It is common to use notation 
of blocks in nonlinear models: 

-Ul(t-l)-

-Ur( t - l ) -

Delay 
Operator 

(z"n) 

—Ul(t -2)* 

—Ur(t-n)* 

— Y l ( t - l ) l 

—Yp(t-m)| 

Nonlinear 
function 

-Yi(t) 

h-vp(t 

Figure 1. System Block for a Nonlinear Model 

The model shown in figure 1 is a model with r inputs or 
independent variables and p outputs or dependent variables, along 
with n input delays and m output delays. No noise is being 
considered for simplicity purposes. The nonlinear function can 
theoretically be any nonlinear function or structure. The most 
widely used structure for nonlinear process is the artificial neural 
network [5][12]. A scheme of an ANN is shown in figure 2: 

Did Sigmoid Signnoid 

Figure 2. Artificial Neural Network Scheme 

In an ANN, all input values are processed by simple units called 
neurons or neurodes, which are laid out in layers. There are also 
many architectures of ANN's, but in this work let's take into 
account only the MLP (Multilayer Perceptron), since many MLP 
applications in the chemical field are successful [5]. In this 
architecture, each neuron is connected to all of the neurons of the 
following layer, and so forth until the output layer which produces 
the predicted output values. In this context, the connections 
among neurons represent the model parameters, or weights. 
Likewise, by changing the neural weights, the output values 
change as well. Each neuron triggers an output value to the next 
layer based on an activation function, which can be also nonlinear. 
This is how the neural network can be used to fit any nonlinear 
behavior. 
The procedure in which the neural weights are adapted is called 
training, and is performed by a training algorithm. During its 
execution, the model's predicted values are evaluated against the 
actual values taken from the plant. The training goes on until 
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some criteria are met, either by number of iterations (or epochs) or 
by minimum error. 

n: number of samples. 

Model Building 

In order to find and build a good model that represents the 
system's dynamics, some identification procedures described by 
Fortuna et al [5] and Ljung [11] are followed. A review in the 
recent literature on similar works in this field is very useful. In 
this work, the previous works developed by Soares [4] and Fontes 
[7] have been considered. Summarizing the model building steps, 
the procedure outline is: 

1. Data Collection and Filtering: In this stage, good data 
should be collected and filtered, so that process dynamic 
may be well represented; 

2. Model structure selection: from the selected dataset, 
relevant variables should be selected for the model, 
besides also eliminating the ones correlated among each 
other. Also the nonlinear structure should be selected. 
Commonly, for nonlinear processes, neural networks are 
chosen; 

3. Model estimation: In this phase, one should choose 
how the model parameters will be estimated, i.e. choice 
of the training algorithm. 

4. Model validation: An adequate validation strategy 
must be chosen to verify if the model is responding 
satisfactorily to new input data. 

Data Collection 

Aluminium smelters maintain huge database with hundreds of 
variables. From these, one should determine which data and 
which variable must be collected. This task requires a deep 
analysis on the process, and the cooperation with plant experts in 
the form of meetings [5]. Nevertheless, data statistical analysis 
such as correlation can also help finding good relevant data for the 
model, especially when there are a great number of input 
variables. 
In this work we focused on bath chemistry, in which we will 
produce in a MIMO model values for three variables: Bath 
Temperature, Aluminium Fluoride, Calcium Fluoride. After 
reviewing literature and interviewing process experts [1][8][9], we 
filtered 36 variables that may contribute to the bath chemistry 
dynamics. 
From these variables, we performed linear correlation in order to 
find variables correlated among each other and those which have a 
high correlation with the model's output variables. In this work 
we used the Pearson correlation coefficient, defined in equations 
(7) and (8): 

Mfc)y(fc--r) 
x(k)y(k-T) I-? c 

v ' ^Sx(k)x(k)by(k-T)y(k-T) 

5*(fc)yO -T) =Σ?=τχ(0ν(ί-τ)-
Σ"=ο*ϋ)Σ"=τ7ϋ·-τ) 

(7) 

(8) 

The equation (8) represents the covariance between two variables 
x and y, taking into account the delay only for one of them. This 
equation can be modified to determine the covariance between 
two variables at any delay, as shown in equation (9): 

bx(k-Tx)y(k-Ty) 

^X(i-rx)yii-ry)-^
XU-Tx)^yU-Ty) (9) 

If we evaluate the covariance between x and y making τ χ=0, then 
eq. (9) becomes eq. (8). 
After this procedure, we selected the following variables listed in 
table I. 

Table I 
Selected Variables for Soft Sensor Model with delays 

Variable 

Alumina Feed 
Bath Temperature 
Aluminium Fluoride 
percentage 
Calcium Fluorite 
percentage 
Aluminium Fluoride 
Feed 
Calcium Fluoride 
Feed 
Cell Voltage 
Cell Resistance 
Metal Level 

Unit 

Kg 
°C 

%wt 

%wt 

Kg 

Kg 

V 
μΩ 
cm 

Symbol 

QAL 
TMP 
ALF 

CAF 

ALFA 

CAFA 

VMR 
RMR 
NME 

Corr. w/ 
TMP 

-0.677 
1 
-0.621 

0.21 

0.589 

-0.235 

-0.477 
-0.52 
-0.19 

Corr. w/ 
ALF 

0.412 
-0.88 
1 

-0.233 

-0.522 

0.192 

0.44 
0.541 
0.23 

Corr w/ 
CAF 

0.049 
0.17 
-0.209 

1 

0.197 

-0.534 

-0.151 
-0.19 
0.021 

We can see through the table that some variables present low 
correlation with the target variables, and most of them have low 
correlation values with Calcium Fluoride. However, these 
variables were kept due to the fact that historically the process 
team performs statistical analysis using them. 

Filtering and Dataset Separation 

Filtering is very important to ensure that only good noise-free data 
are taken for model building. When there are outliers, there is 
always an indication of malfunctioning in the plant, and they are 
extremely bad for modeling. In order to find and remove these 
outliers, we performed the 3 sigma rule filtering, which is suited 
when large number of outliers is suspected [5]. It is defined by the 
equation (10): 

d. (10) 

Where 
rx(k)y(k-tf- Pearson correlation coefficient between the variables x 
and y delayed in τ instants; 
Sx(k)y(k-xf- Covariance value between the variables x andj' delayed 
in τ instants; 
Sx(k)x(kf- Covariance value of the variable x. 
Sy(k-z)y(k-z)'- Co variance value of variable^ delayed in τ instants; 

Where x, is the value of x at the i-th instant, μχ is the mean value 
of x, σχ is the standard deviation of x, and finally dt is a weighted 
distance of the value x at i-th instant from the mean. When \dt\ is 
greater than 3, its corresponding record is considered an outlier. 
Table II shows each variable's range determined by the 3 sigma 
rule and percentage of records that fit in that range. 
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Table II 
Selected Variables' Range determined by 3 sigma rule 

(y-n ymin)\x xmin) 

Variable 

Alumina Feed 
Bath Temperature 
Aluminium Fluoride 
percentage 
Calcium Fluorite 
percentage 
Aluminium Fluoride 
Feed 
Calcium Fluoride 
Feed 
Cell Voltage 
Cell Resistance 
Metal Level 

Symbol 

QAL 
TMP 
ALF 

CAF 

ALFA 

CAFA 

VMR 
RMR 
NME 

Lower 
limit 

1875.2 
932.5 
4.38 

3.042 

-51.54 

-22.56 

4.135 
14.49 
18.42 

Upper 
limit 

2860.2 
992.6 
17.73 

6.926 

141.39 

34.185 

4.479 
16.34 
24.24 

%of 
records in 

99.96 
99.41 
99.54 

99.91 

99.64 

99.69 

99.13 
99.27 
99.87 

Data collection spanned over 200 cells from different potlines, 
totalizing circa 16,000 records. This query was designed to keep 
full time series from each variable for each cell. That means that 
any cell presenting at least one outlier in one variable is removed 
from the dataset. Therefore, applying this rule, we kept only the 
"good" cells, reducing the dataset down to 6,395 records or only 
106 cells. 
Then we separated the data for training, tests and validation [12]. 
The training dataset will be used to estimate the model, the test 
dataset will test the model during the training procedure, and the 
validation dataset will evaluate how good the model is predicting 
values for new data. Table III shows how the dataset was 
separated into these three subsets: 

Table III. Dataset separation. 

Training 

Cells 
70 

Records 
4,212 

Tests 

Cells 
16 

Records 
970 

Validation 

Cells 
20 

Records 
1,213 

Model Structure and Estimation 

As can be seen in similar texts in the literature [5][6][7], a good 
structure for these complex processes' modeling is an NARX 
(Nonlinear AutoRegressive with exogenous inputs) structure. In 
this structure we define how many delays for each variable should 
be considered for both input and output. This structure should be a 
nonlinear function to perform the input-output mapping, which in 
this case was an MLP Neural Network. During the estimation 
process we set up several three layers neural networks by 
randomizing its parameters (number of neurons in the hidden 
layer, activation function, number of delays used). After the 
training, the ANN with best performance is chosen to represent 
the model. 
We chose the Levenberg-Marquardt [13] as the training 
algorithm, since it is able to converge MLP neural networks faster 
than traditional optimization algorithms, such as back propagation 
and steepest descent. We should highlight that, in order to prevent 
saturation in the ANN activation functions, we normalized input 
data according to equation (11): 

\xn )+y m 
(H) 

where ymax is \;y 
m 

-1; x is the value to be normalized; xm is 
the minimum value to be normalized; xmax is the maximum value 
to be normalized; y: normalized value. 
The parameter used to measure the network performance was the 
MSE error defined by equation (12): 

MSE = ^Σ^ΣΙ- ek(i)
2 (12) 

where N is the size of the dataset, P is the number of the model's 
output variables, ek(i) is the error between the predicted output 
and the actual value for the variable k at the instant i. 

Results 

After performing the training across over 100 candidate neural 
networks, we find a good configuration based on the overall error 
MSE. This configuration is shown in table IV. 

Table IV. MLP Configuration for Bath Chemistry MIMO model 

Parameter 
Neurons in 1st Layer 
1st Layer Act. Func. 
Neurons in 2nd Layer 
2nd Layer Act. Func. 
Neurons in 3rd Layer 
3rd Layer Act. Func 
Delays 
Training Epochs 
Normalized MSE 
MSE for ALF 
MSE for TMP 
MSE for CAF 

Value 
10 
Input Layer 
34 
Hyperbolic Tangent 
3 
Linear 
3 
6 
0.0172 
2.452 % 
8.39 °C 
0.793 % 

We can see through both the scatter and time series plots that the 
model's performance is pretty good: 

Scatter Plot Real TMP vs Predicted TMP 

*!«1 ')/0 9ÜO TOO 

Predicted TMP (oC) 

Figure 3a. Scatter plot for Real Bath Temperature and its 
prediction by the MIMO model 
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Comparison Between Real TMP and Predicted 
TMP 

Scatter plot Real CAF x Predicted CAF 

Figure 3b. Time series plot comparing Real Bath Temperature and 
its prediction by the MIMO model 

Scatter Plot Real %ALF vs Predicted %ALF 
1ft 

* * * * * * * 
b S Kl \J lfl 1<J I« 

Pred r[ed %ALF (ft) 

Figure 4a. Scatter plot for Real Aluminium Fluoride and its 
prediction by the MIMO model 

Comparison between Real ALF and Predicted ALF 

Figure 4b. Time series plot comparison between Real Aluminium 
Fluoride and its prediction by the MIMO model 

Predicted CAF (%} 

Figure 5a. Scatter plot for Real Calcium Fluorite and its prediction 
by the MIMO model 

Comparison between Real CAF and Predicted CAF 

Figure 5b. Time Series plot comparing Real Calcium Fluoride and 
its prediction by the MIMO model 

The works developed by McFadden [9], Hyland [8], Frost and 
Karri [3], Soares [4], and Pereira [10] have shown the possibility 
to model bath chemistry by taking into account relevant variables 
from the cells. In addition, it is known that heat balance is highly 
related to mass balance [14], so a model to predict these variables 
at once is absolutely possible. The results just confirm this fact. 
With this model, control strategies for both mass and heat balance 
can be designed and tested across several scenarios. A good 
application would be to test fluoride additions strategy and 
evaluating its performance by simulating the cells behavior after a 
number of steps. 

Conclusion 

This work proposed Bath Chemistry modeling using a MIMO 
approach. With this tool, this process can be simulated and control 
strategies may be tested and its effects may be evaluated prior to 
launching. The heat balance and mass balance are extremely 
important variables for guarantee of high current efficiency; 
nevertheless their measurements require laboratory analysis 
and/or manual procedures. That motivated the building of a 
model. The results achieved show that this model can really 
simulate the cell's bath chemistry behavior. For future works, we 
suggest the same approach to include more variables from this 
process and/or the evaluation of control strategies in this model. 
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