
M A N N I N G

Nina Zumel
John Mount
 FOREWORD

Jeremy Howard
Rachel Thomas

SECOND EDITION

Practical Data Science with R

The lifecycle of a data science project: loops within loops

What problem
am I solving?

What information
do I need?

Find patterns in
the data that lead

to solutions.

Does the model
solve my problem?

Deploy the model
to solve the problem

in the real world.

Collect &
manage

data

Build the
model

Evaluate
& critique

model

Present
results &
document

Deploy
model

Establish that I can
solve the problem,

and how.

Define the
goal

Licensed to Ajit de Silva <agdesilva@gmail.com>

Praise for the First Edition

Clear and succinct, this book provides the first hands-on map of the fertile ground
between business acumen, statistics, and machine learning.

—Dwight Barry,
Group Health Cooperative

This is the book that I wish was available when I was first learning Data Science. The
author presents a thorough and well-organized approach to the mechanics and mastery
of Data Science, which is a conglomeration of statistics, data analysis, and computer
science.

—Justin Fister, AI researcher,
PaperRater.com

The most comprehensive content I have seen on Data Science with R.
—Romit Singhai, SGI

Covers the process end to end, from data exploration to modeling to delivering the
results.

—Nezih Yigitbasi,
Intel

Full of useful gems for both aspiring and experienced data scientists.
—Fred Rahmanian,

Siemens Healthcare

Hands-on data analysis with real-world examples. Highly recommended.
—Dr. Kostas Passadis,

IPTO

In working through the book, one gets the impression of being guided by knowledgeable
and experienced professionals who are holding nothing back.

 —Amazon reader
Licensed to Ajit de Silva <agdesilva@gmail.com>

Licensed to Ajit de Silva <agdesilva@gmail.com>

Practical Data Science
with R

SECOND EDITION

NINA ZUMEL
AND JOHN MOUNT

FOREWORD BY JEREMY HOWARD
AND RACHEL THOMAS

M A N N I N G
SHELTER ISLAND
Licensed to Ajit de Silva <agdesilva@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Dustin Archibald
Technical development editor: Doug Warren

Review editor: Aleksandar Dragosavljević
Manning Publications Co. Project manager: Lori Weidert
20 Baldwin Road Copy editor: Ben Berg
PO Box 761 Proofreader: Katie Tennant
Shelter Island, NY 11964 Technical proofreader: Taylor Dolezal

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617295874
Printed in the United States of America
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://www.manning.com

 To our parents

 Olive and Paul Zumel
 Peggy and David Mount
Licensed to Ajit de Silva <agdesilva@gmail.com>

Licensed to Ajit de Silva <agdesilva@gmail.com>

brief contents
PART 1 INTRODUCTION TO DATA SCIENCE 1

1 ■ The data science process 3
2 ■ Starting with R and data 18
3 ■ Exploring data 51
4 ■ Managing data 88
5 ■ Data engineering and data shaping 113

PART 2 MODELING METHODS ... 161
6 ■ Choosing and evaluating models 163
7 ■ Linear and logistic regression 215
8 ■ Advanced data preparation 274
9 ■ Unsupervised methods 311

10 ■ Exploring advanced methods 353

PART 3 WORKING IN THE REAL WORLD 401
11 ■ Documentation and deployment 403
12 ■ Producing effective presentations 437

vii

Licensed to Ajit de Silva <agdesilva@gmail.com>

Licensed to Ajit de Silva <agdesilva@gmail.com>

contents
foreword xv
preface xvi
acknowledgments xvii
about this book xviii
about the authors xxv
about the foreword authors xxvi
about the cover illustration xxvii

PART 1 INTRODUCTION TO DATA SCIENCE1

1 The data science process 3
1.1 The roles in a data science project 4

Project roles 4

1.2 Stages of a data science project 6
Defining the goal 7 ■ Data collection and management 8
Modeling 10 ■ Model evaluation and critique 12
Presentation and documentation 14 ■ Model deployment
and maintenance 15

1.3 Setting expectations 16
Determining lower bounds on model performance 16

2 Starting with R and data 18
2.1 Starting with R 19

Installing R, tools, and examples 20 ■ R programming 20
ix

Licensed to Ajit de Silva <agdesilva@gmail.com>

CONTENTSx
2.2 Working with data from files 29
Working with well-structured data from files or URLs 29
Using R with less-structured data 34

2.3 Working with relational databases 37
A production-size example 38

3 Exploring data 51
3.1 Using summary statistics to spot problems 53

Typical problems revealed by data summaries 54

3.2 Spotting problems using graphics and visualization 58
Visually checking distributions for a single variable 60
Visually checking relationships between two variables 70

4 Managing data 88
4.1 Cleaning data 88

Domain-specific data cleaning 89 ■ Treating missing
values 91 ■ The vtreat package for automatically treating
missing variables 95

4.2 Data transformations 98
Normalization 99 ■ Centering and scaling 101
Log transformations for skewed and wide distributions 104

4.3 Sampling for modeling and validation 107
Test and training splits 108 ■ Creating a sample group
column 109 ■ Record grouping 110 ■ Data provenance 111

5 Data engineering and data shaping 113
5.1 Data selection 116

Subsetting rows and columns 116 ■ Removing records with
incomplete data 121 ■ Ordering rows 124

5.2 Basic data transforms 128
Adding new columns 128 ■ Other simple operations 133

5.3 Aggregating transforms 134
Combining many rows into summary rows 134

5.4 Multitable data transforms 137
Combining two or more ordered data frames quickly 137
Principal methods to combine data from multiple tables 143

5.5 Reshaping transforms 149
Moving data from wide to tall form 149 ■ Moving data from tall
to wide form 153 ■ Data coordinates 158
Licensed to Ajit de Silva <agdesilva@gmail.com>

CONTENTS xi
PART 2 MODELING METHODS161

6 Choosing and evaluating models 163
6.1 Mapping problems to machine learning tasks 164

Classification problems 165 ■ Scoring problems 166
Grouping: working without known targets 167
Problem-to-method mapping 169

6.2 Evaluating models 170
Overfitting 170 ■ Measures of model performance 174
Evaluating classification models 175 ■ Evaluating scoring
models 185 ■ Evaluating probability models 187

6.3 Local interpretable model-agnostic explanations (LIME)
for explaining model predictions 195
LIME: Automated sanity checking 197 ■ Walking through
LIME: A small example 197 ■ LIME for text classification 204
Training the text classifier 208 ■ Explaining the classifier’s
predictions 209

7 Linear and logistic regression 215
7.1 Using linear regression 216

Understanding linear regression 217 ■ Building a
linear regression model 221 ■ Making predictions 222
Finding relations and extracting advice 228 ■ Reading the
model summary and characterizing coefficient quality 230
Linear regression takeaways 237

7.2 Using logistic regression 237
Understanding logistic regression 237 ■ Building a
logistic regression model 242 ■ Making predictions 243
Finding relations and extracting advice from logistic
models 248 ■ Reading the model summary and characterizing
coefficients 249 ■ Logistic regression takeaways 256

7.3 Regularization 257
An example of quasi-separation 257 ■ The types of regularized
regression 262 ■ Regularized regression with glmnet 263

8 Advanced data preparation 274
8.1 The purpose of the vtreat package 275
8.2 KDD and KDD Cup 2009 277

Getting started with KDD Cup 2009 data 278 ■ The bull-in-
the-china-shop approach 280
Licensed to Ajit de Silva <agdesilva@gmail.com>

CONTENTSxii
8.3 Basic data preparation for classification 282
The variable score frame 284 ■ Properly using the treatment
plan 288

8.4 Advanced data preparation for classification 290
Using mkCrossFrameCExperiment() 290 ■ Building a
model 292

8.5 Preparing data for regression modeling 297
8.6 Mastering the vtreat package 299

The vtreat phases 299 ■ Missing values 301
Indicator variables 303 ■ Impact coding 304
The treatment plan 305 ■ The cross-frame 306

9 Unsupervised methods 311
9.1 Cluster analysis 312

Distances 313 ■ Preparing the data 316 ■ Hierarchical
clustering with hclust 319 ■ The k-means algorithm 332
Assigning new points to clusters 338 ■ Clustering
takeaways 340

9.2 Association rules 340
Overview of association rules 340 ■ The example problem 342
Mining association rules with the arules package 343
Association rule takeaways 351

10 Exploring advanced methods 353
10.1 Tree-based methods 355

A basic decision tree 356 ■ Using bagging to improve
prediction 359 ■ Using random forests to further improve
prediction 361 ■ Gradient-boosted trees 368 ■ Tree-based model
takeaways 376

10.2 Using generalized additive models (GAMs)
to learn non-monotone relationships 376
Understanding GAMs 376 ■ A one-dimensional regression
example 378 ■ Extracting the non-linear relationships 382
Using GAM on actual data 384 ■ Using GAM for logistic
regression 387 ■ GAM takeaways 388

10.3 Solving “inseparable” problems using support vector
machines 389
Using an SVM to solve a problem 390 ■ Understanding support
vector machines 395 ■ Understanding kernel functions 397
Support vector machine and kernel methods takeaways 399
Licensed to Ajit de Silva <agdesilva@gmail.com>

CONTENTS xiii
PART 3 WORKING IN THE REAL WORLD401

11 Documentation and deployment 403
11.1 Predicting buzz 405
11.2 Using R markdown to produce milestone documentation 406

What is R markdown? 407 ■ knitr technical details 409
Using knitr to document the Buzz data and produce the model 411

11.3 Using comments and version control for running
documentation 414
Writing effective comments 414 ■ Using version control to
record history 416 ■ Using version control to explore your
project 422 ■ Using version control to share work 424

11.4 Deploying models 428
Deploying demonstrations using Shiny 430 ■ Deploying
models as HTTP services 431 ■ Deploying models by
export 433 ■ What to take away 435

12 Producing effective presentations 437
12.1 Presenting your results to the project sponsor 439

Summarizing the project’s goals 440 ■ Stating the project’s
results 442 ■ Filling in the details 444 ■ Making
recommendations and discussing future work 446
Project sponsor presentation takeaways 446

12.2 Presenting your model to end users 447
Summarizing the project goals 447 ■ Showing how the
model fits user workflow 448 ■ Showing how to use the
model 450 ■ End user presentation takeaways 452

12.3 Presenting your work to other data scientists 452
Introducing the problem 452 ■ Discussing related work 453
Discussing your approach 454 ■ Discussing results and future
work 455 ■ Peer presentation takeaways 457

appendix A Starting with R and other tools 459
appendix B Important statistical concepts 484
appendix C Bibliography 519

index 523
Licensed to Ajit de Silva <agdesilva@gmail.com>

Licensed to Ajit de Silva <agdesilva@gmail.com>

foreword
Practical Data Science with R, Second Edition, is a hands-on guide to data science, with a
focus on techniques for working with structured or tabular data, using the R language
and statistical packages. The book emphasizes machine learning, but is unique in the
number of chapters it devotes to topics such as the role of the data scientist in proj-
ects, managing results, and even designing presentations. In addition to working out
how to code up models, the book shares how to collaborate with diverse teams, how to
translate business goals into metrics, and how to organize work and reports. If you
want to learn how to use R to work as a data scientist, get this book.

 We have known Nina Zumel and John Mount for a number of years. We have
invited them to teach with us at Singularity University. They are two of the best data sci-
entists we know. We regularly recommend their original research on cross-validation
and impact coding (also called target encoding). In fact, chapter 8 of Practical Data Sci-
ence with R teaches the theory of impact coding and uses it through the author’s own R
package: vtreat.

 Practical Data Science with R takes the time to describe what data science is, and how
a data scientist solves problems and explains their work. It includes careful descriptions
of classic supervised learning methods, such as linear and logistic regression. We liked
the survey style of the book and extensively worked examples using contest-winning
methodologies and packages such as random forests and xgboost. The book is full of
useful, shared experience and practical advice. We notice they even include our own
trick of using random forest variable importance for initial variable screening.

 Overall, this is a great book, and we highly recommend it.
 —JEREMY HOWARD

AND RACHEL THOMAS
xv

Licensed to Ajit de Silva <agdesilva@gmail.com>

preface
This is the book we wish we’d had as we were teaching ourselves that collection of sub-
jects and skills that has come to be referred to as data science. It’s the book that we’d
like to hand out to our clients and peers. Its purpose is to explain the relevant parts of
statistics, computer science, and machine learning that are crucial to data science.

 Data science draws on tools from the empirical sciences, statistics, reporting, ana-
lytics, visualization, business intelligence, expert systems, machine learning, databases,
data warehousing, data mining, and big data. It’s because we have so many tools that
we need a discipline that covers them all. What distinguishes data science itself from
the tools and techniques is the central goal of deploying effective decision-making
models to a production environment.

 Our goal is to present data science from a pragmatic, practice-oriented viewpoint.
We work toward this end by concentrating on fully worked exercises on real data—
altogether, this book works through over 10 significant datasets. We feel that this
approach allows us to illustrate what we really want to teach and to demonstrate all the
preparatory steps necessary in any real-world project.

 Throughout our text, we discuss useful statistical and machine learning concepts,
include concrete code examples, and explore partnering with and presenting to non-
specialists. If perhaps you don’t find one of these topics novel, we hope to shine a light
on one or two other topics that you may not have thought about recently.
xvi

Licensed to Ajit de Silva <agdesilva@gmail.com>

acknowledgments
We wish to thank our colleagues and others who read and commented on our early
chapter drafts. Special appreciation goes to our reviewers: Charles C. Earl, Christopher
Kardell, David Meza, Domingo Salazar, Doug Sparling, James Black, John MacKintosh,
Owen Morris, Pascal Barbedo, Robert Samohyl, and Taylor Dolezal. Their comments,
questions, and corrections have greatly improved this book. We especially would like to
thank our development editor, Dustin Archibald, and Cynthia Kane, who worked on
the first edition, for their ideas and support. The same thanks go to Nichole Beard,
Benjamin Berg, Rachael Herbert, Katie Tennant, Lori Weidert, Cheryl Weisman, and
all the other editors who worked hard to make this a great book.

 In addition, we thank our colleague David Steier, Professor Doug Tygar from UC
Berkeley’s School of Information Science, Professor Robert K. Kuzoff from
the Departments of Biological Sciences and Computer Science at the University of
Wisconsin-Whitewater, as well as all the other faculty and instructors who have used
this book as a teaching text. We thank Jim Porzak, Joseph Rickert, and Alan Miller for
inviting us to speak at the R users groups, often on topics that we cover in this book.
We especially thank Jim Porzak for having written the foreword to the first edition,
and for being an enthusiastic advocate of our book. On days when we were tired and
discouraged and wondered why we had set ourselves to this task, his interest helped
remind us that there’s a need for what we’re offering and the way we’re offering it.
Without this encouragement, completing this book would have been much harder.
Also, we’d like to thank Jeremy Howard and Rachel Thomas for writing the new fore-
word, inviting us to speak, and providing their strong support.
xvii

Licensed to Ajit de Silva <agdesilva@gmail.com>

about this book
This book is about data science: a field that uses results from statistics, machine learn-
ing, and computer science to create predictive models. Because of the broad nature of
data science, it’s important to discuss it a bit and to outline the approach we take in
this book.

What is data science?

The statistician William S. Cleveland defined data science as an interdisciplinary field
larger than statistics itself. We define data science as managing the process that can
transform hypotheses and data into actionable predictions. Typical predictive analytic
goals include predicting who will win an election, what products will sell well together,
which loans will default, and which advertisements will be clicked on. The data scien-
tist is responsible for acquiring and managing the data, choosing the modeling tech-
nique, writing the code, and verifying the results.

 Because data science draws on so many disciplines, it’s often a “second calling.”
Many of the best data scientists we meet started as programmers, statisticians, business
intelligence analysts, or scientists. By adding a few more techniques to their reper-
toire, they became excellent data scientists. That observation drives this book: we
introduce the practical skills needed by the data scientist by concretely working
through all of the common project steps on real data. Some steps you’ll know better
than we do, some you’ll pick up quickly, and some you may need to research further.

 Much of the theoretical basis of data science comes from statistics. But data science
as we know it is strongly influenced by technology and software engineering methodolo-
gies, and has largely evolved in heavily computer science– and information technology–
driven groups. We can call out some of the engineering flavor of data science by listing
some famous examples:
xviii

Licensed to Ajit de Silva <agdesilva@gmail.com>

ABOUT THIS BOOK xix
 Amazon’s product recommendation systems
 Google’s advertisement valuation systems
 LinkedIn’s contact recommendation system
 Twitter’s trending topics
 Walmart’s consumer demand projection systems

These systems share a lot of features:

 All of these systems are built off large datasets. That’s not to say they’re all in the
realm of big data. But none of them could’ve been successful if they’d only used
small datasets. To manage the data, these systems require concepts from com-
puter science: database theory, parallel programming theory, streaming data
techniques, and data warehousing.

 Most of these systems are online or live. Rather than producing a single report or
analysis, the data science team deploys a decision procedure or scoring proce-
dure to either directly make decisions or directly show results to a large number
of end users. The production deployment is the last chance to get things right,
as the data scientist can’t always be around to explain defects.

 All of these systems are allowed to make mistakes at some non-negotiable rate.
 None of these systems are concerned with cause. They’re successful when they find

useful correlations and are not held to correctly sorting cause from effect.

This book teaches the principles and tools needed to build systems like these. We
teach the common tasks, steps, and tools used to successfully deliver such projects.
Our emphasis is on the whole process—project management, working with others,
and presenting results to nonspecialists.

Roadmap

This book covers the following:

 Managing the data science process itself. The data scientist must have the ability
to measure and track their own project.

 Applying many of the most powerful statistical and machine learning tech-
niques used in data science projects. Think of this book as a series of explicitly
worked exercises in using the R programming language to perform actual data
science work.

 Preparing presentations for the various stakeholders: management, users,
deployment team, and so on. You must be able to explain your work in concrete
terms to mixed audiences with words in their common usage, not in whatever
technical definition is insisted on in a given field. You can’t get away with just throw-
ing data science project results over the fence.

We’ve arranged the book topics in an order that we feel increases understanding. The
material is organized as follows.
Licensed to Ajit de Silva <agdesilva@gmail.com>

ABOUT THIS BOOKxx
 Part 1 describes the basic goals and techniques of the data science process, empha-
sizing collaboration and data. Chapter 1 discusses how to work as a data scientist.
Chapter 2 works through loading data into R and shows how to start working with R.

 Chapter 3 teaches what to first look for in data and the important steps in charac-
terizing and understanding data. Data must be prepared for analysis, and data issues
will need to be corrected. Chapter 4 demonstrates how to correct the issues identified
in chapter 3.

 Chapter 5 covers one more data preparation step: basic data wrangling. Data is not
always available to the data scientist in a form or “shape” best suited for analysis. R pro-
vides many tools for manipulating and reshaping data into the appropriate structure;
they are covered in this chapter.

 Part 2 moves from characterizing and preparing data to building effective predic-
tive models. Chapter 6 supplies a mapping of business needs to technical evaluation
and modeling techniques. It covers the standard metrics and procedures used to eval-
uate model performance, and one specialized technique, LIME, for explaining spe-
cific predictions made by a model.

 Chapter 7 covers basic linear models: linear regression, logistic regression, and
regularized linear models. Linear models are the workhorses of many analytical tasks,
and are especially helpful for identifying key variables and gaining insight into the
structure of a problem. A solid understanding of them is immensely valuable for a
data scientist.

 Chapter 8 temporarily moves away from the modeling task to cover more advanced
data treatment: how to prepare messy real-world data for the modeling step. Because
understanding how these data treatment methods work requires some understanding
of linear models and of model evaluation metrics, it seemed best to defer this topic
until part 2.

 Chapter 9 covers unsupervised methods: modeling methods that do not use
labeled training data. Chapter 10 covers more advanced modeling methods that
increase prediction performance and fix specific modeling issues. The topics covered
include tree-based ensembles, generalized additive models, and support vector
machines.

 Part 3 moves away from modeling and back to process. We show how to deliver
results. Chapter 11 demonstrates how to manage, document, and deploy your mod-
els. You’ll learn how to create effective presentations for different audiences in
chapter 12.

 The appendixes include additional technical details about R, statistics, and more
tools that are available. Appendix A shows how to install R, get started working, and
work with other tools (such as SQL). Appendix B is a refresher on a few key statisti-
cal ideas.

 The material is organized in terms of goals and tasks, bringing in tools as they’re
needed. The topics in each chapter are discussed in the context of a representative
project with an associated dataset. You’ll work through a number of substantial projects
Licensed to Ajit de Silva <agdesilva@gmail.com>

ABOUT THIS BOOK xxi
over the course of this book. All the datasets referred to in this book are at the book’s
GitHub repository, https://github.com/WinVector/PDSwR2. You can download the
entire repository as a single zip file (one of GitHub’s services), clone the repository to
your machine, or copy individual files as needed.

Audience

To work the examples in this book, you’ll need some familiarity with R and statistics.
We recommend you have some good introductory texts already on hand. You don’t
need to be expert in R before starting the book, but you will need to be familiar with it.

 To start with R, we recommend Beyond Spreadsheets with R by Jonathan Carroll
(Manning, 20108) or R in Action by Robert Kabacoff (now available in a second edi-
tion: http://www.manning.com/kabacoff2/), along with the text’s associated website,
Quick-R (http://www.statmethods.net). For statistics, we recommend Statistics, Fourth
Edition, by David Freedman, Robert Pisani, and Roger Purves (W. W. Norton & Com-
pany, 2007).

 In general, here’s what we expect from our ideal reader:

 An interest in working examples. By working through the examples, you’ll learn at
least one way to perform all steps of a project. You must be willing to attempt
simple scripting and programming to get the full value of this book. For each
example we work, you should try variations and expect both some failures
(where your variations don’t work) and some successes (where your variations
outperform our example analyses).

 Some familiarity with the R statistical system and the will to write short scripts and pro-
grams in R. In addition to Kabacoff, we list a few good books in appendix C.
We’ll work specific problems in R; you’ll need to run the examples and read
additional documentation to understand variations of the commands we didn’t
demonstrate.

 Some comfort with basic statistical concepts such as probabilities, means, standard devia-
tions, and significance. We’ll introduce these concepts as needed, but you may
need to read additional references as we work through examples. We’ll define
some terms and refer to some topic references and blogs where appropriate.
But we expect you will have to perform some of your own internet searches on
certain topics.

 A computer (macOS, Linux, or Windows) to install R and other tools on, as well as inter-
net access to download tools and datasets. We strongly suggest working through the
examples, examining R help() on various methods, and following up with
some of the additional references.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2
http://www.manning.com/kabacoff2/
http://www.statmethods.net

ABOUT THIS BOOKxxii
What is not in this book?

 This book is not an R manual. We use R to concretely demonstrate the important
steps of data science projects. We teach enough R for you to work through the
examples, but a reader unfamiliar with R will want to refer to appendix A as well
as to the many excellent R books and tutorials already available.

 This book is not a set of case studies. We emphasize methodology and technique.
Example data and code is given only to make sure we’re giving concrete, usable
advice.

 This book is not a big data book. We feel most significant data science occurs at a
database or file manageable scale (often larger than memory, but still small
enough to be easy to manage). Valuable data that maps measured conditions to
dependent outcomes tends to be expensive to produce, and that tends to
bound its size. For some report generation, data mining, and natural language
processing, you’ll have to move into the area of big data.

 This is not a theoretical book. We don’t emphasize the absolute rigorous theory of
any one technique. The goal of data science is to be flexible, have a number of
good techniques available, and be willing to research a technique more deeply if
it appears to apply to the problem at hand. We prefer R code notation over beau-
tifully typeset equations even in our text, as the R code can be directly used.

 This is not a machine learning tinkerer’s book. We emphasize methods that are
already implemented in R. For each method, we work through the theory of
operation and show where the method excels. We usually don’t discuss how to
implement them (even when implementation is easy), as excellent R implemen-
tations are already available.

Code conventions and downloads

This book is example driven. We supply prepared example data at the GitHub reposi-
tory (https://github.com/WinVector/PDSwR2), with R code and links back to original
sources. You can explore this repository online or clone it onto your own machine. We
also supply the code to produce all results and almost all graphs found in the book as a
zip file (https://github.com/WinVector/PDSwR2/raw/master/CodeExamples.zip),
since copying code from the zip file can be easier than copying and pasting from the
book. Instructions on how to download, install, and get started with all the suggested
tools and example data can be found in appendix A, in section A.1.

 We encourage you to try the example R code as you read the text; even when we’re
discussing fairly abstract aspects of data science, we’ll illustrate examples with concrete
data and code. Every chapter includes links to the specific dataset(s) that it references.

 In this book, code is set with a fixed-width font like this to distinguish it from
regular text. Concrete variables and values are formatted similarly, whereas abstract
math will be in italic font like this. R code is written without any command-line prompts
such as > (which is often seen when displaying R code, but not to be typed in as new R
code). Inline results are prefixed by R’s comment character #. In many cases, the
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2/raw/master/CodeExamples.zip

ABOUT THIS BOOK xxiii
original source code has been reformatted; we’ve added line breaks and reworked
indentation to accommodate the available page space in the book. In rare cases, even
this was not enough, and listings include line-continuation markers (➥). Additionally,
comments in the source code have often been removed from the listings when the
code is described in the text. Code annotations accompany many of the listings, high-
lighting important concepts.

Working with this book

Practical Data Science with R is best read while working at least some of the examples. To
do this we suggest you install R, RStudio, and the packages commonly used in the
book. We share instructions on how to do this in section A.1 of appendix A. We also
suggest you download all the examples, which include code and data, from our
GitHub repository at https://github.com/WinVector/PDSwR2.

DOWNLOADING THE BOOK’S SUPPORTING MATERIALS/REPOSITORY

The contents of the repository can be downloaded as a zip file by using the “download
as zip” GitHub feature, as shown in the following figure, from the GitHub URL
https://github.com/WinVector/PDSwR2.

Clicking on the “Download ZIP” link should download the compressed contents of
the package (or you can try a direct link to the ZIP material: https://github.com/
WinVector/PDSwR2/archive/master.zip). Or, if you are familiar with working with
the Git source control system from the command line, you can do this with the follow-
ing command from a Bash shell (not from R):

git clone https://github.com/WinVector/PDSwR2.git

GitHub download example
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2/archive/master.zip
https://github.com/WinVector/PDSwR2/archive/master.zip
https://github.com/WinVector/PDSwR2/archive/master.zip
https://github.com/WinVector/PDSwR2

ABOUT THIS BOOKxxiv
In all examples, we assume you have either cloned the repository or downloaded and
unzipped the contents. This will produce a directory named PDSwR2. Paths we discuss
will start with this directory. For example, if we mention working with PDSwR2/UCI-
Car, we mean to work with the contents of the UCICar subdirectory of wherever you
unpacked PDSwR2. You can change R’s working directory through the setwd() com-
mand (please type help(setwd) in the R console for some details). Or, if you are
using RStudio, the file-browsing pane can also set the working directory from an
option on the pane’s gear/more menu. All of the code examples from this book are
included in the directory PDSwR2/CodeExamples, so you should not need to type
them in (though to run them you will have to be working in the appropriate data
directory—not in the directory you find the code in).

 The examples in this book are supplied in lieu of explicit exercises. We suggest
working through the examples and trying variations. For example, in section 2.3.1,
where we show how to relate expected income to schooling and gender, it makes
sense to try relating income to employment status or even age. Data science requires
curiosity about programming, functions, data, variables, and relations, and the earlier
you find surprises in your data, the easier they are to work through.

Book forum

Purchase of Practical Data Science with R includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access
the forum, go to https://forums.manning.com/forums/practical-data-science-with-r-
second-edition. You can also learn more about Manning's forums and the rules of con-
duct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://forums.manning.com/forums/practical-data-science-with-r-second-edition
https://forums.manning.com/forums/practical-data-science-with-r-second-edition
https://forums.manning.com/forums/practical-data-science-with-r-second-edition
https://forums.manning.com/forums/about

about the authors
Nina Zumel has worked as a scientist at SRI International, an
independent, nonprofit research institute. She has worked as
chief scientist of a price optimization company and founded a
contract research company. Nina is now a principal consul-
tant at Win-Vector LLC. She can be reached at nzumel@win-
vector.com.

John Mount has worked as a computational scientist in bio-
technology and as a stock trading algorithm designer, and has
managed a research team for Shopping.com. He is now a prin-
cipal consultant at Win-Vector LLC. John can be reached at
jmount@win-vector.com.
xxv

Licensed to Ajit de Silva <agdesilva@gmail.com>

about the foreword authors
JEREMY HOWARD is an entrepreneur, business strategist, developer, and educator. Jer-
emy is a founding researcher at fast.ai, a research institute dedicated to making deep
learning more accessible. He is also a faculty member at the University of San Fran-
cisco, and is chief scientist at doc.ai and platform.ai.

 Previously, Jeremy was the founding CEO of Enlitic, which was the first company to
apply deep learning to medicine, and was selected as one of the world’s top 50 smart-
est companies by MIT Tech Review two years running. He was the president and chief
scientist of the data science platform Kaggle, where he was the top-ranked participant
in international machine learning competitions two years running.

 RACHEL THOMAS is director of the USF Center for Applied Data Ethics and
cofounder of fast.ai, which has been featured in The Economist, MIT Tech Review, and
Forbes. She was selected by Forbes as one of 20 Incredible Women in AI, earned her
math PhD at Duke, and was an early engineer at Uber. Rachel is a popular writer and
keynote speaker. In her TEDx talk, she shares what scares her about AI and why we
need people from all backgrounds involved with AI.
xxvi

Licensed to Ajit de Silva <agdesilva@gmail.com>

about the cover illustration
The figure on the cover of Practical Data Science with R is captioned “Habit of a Lady of
China in 1703.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses
of Different Nations, Ancient and Modern (four volumes), London, published between
1757 and 1772. The title page states that these are hand-colored copperplate engrav-
ings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geogra-
pher to King George III.” He was an English cartographer who was the leading map
supplier of his day. He engraved and printed maps for government and other official
bodies and produced a wide range of commercial maps and atlases, especially of
North America. His work as a mapmaker sparked an interest in local dress customs of
the lands he surveyed and mapped; they are brilliantly displayed in this four-volume
collection.

 Fascination with faraway lands and travel for pleasure were relatively new pheno-
mena in the eighteenth century, and collections such as this one were popular, intro-
ducing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations centuries ago. Dress codes have
changed, and the diversity by region and country, so rich at that time, has faded away.
It is now often hard to tell the inhabitant of one continent from another. Perhaps,
viewing it optimistically, we have traded a cultural and visual diversity for a more var-
ied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of national costumes three centuries ago, brought back to
life by Jefferys’ pictures.
xxvii

Licensed to Ajit de Silva <agdesilva@gmail.com>

Licensed to Ajit de Silva <agdesilva@gmail.com>

Part 1

Introduction
to data science

In part 1, we concentrate on the most essential tasks in data science: working
with your partners, defining your problem, and examining your data.

 Chapter 1 covers the lifecycle of a typical data science project. We look at the
different roles and responsibilities of project team members, the different stages
of a typical project, and how to define goals and set project expectations. This
chapter serves as an overview of the material that we cover in the rest of the
book, and is organized in the same order as the topics that we present.

 Chapter 2 dives into the details of loading data into R from various external
formats and transforming the data into a format suitable for analysis. It also dis-
cusses the most important R data structure for a data scientist: the data frame.
More details about the R programming language are covered in appendix A.

 Chapters 3 and 4 cover the data exploration and treatment that you should
do before proceeding to the modeling stage. In chapter 3, we discuss some of
the typical problems and issues that you’ll encounter with your data and how to
use summary statistics and visualization to detect those issues. In chapter 4, we
discuss data treatments that will help you deal with the problems and issues in
your data. We also recommend some habits and procedures that will help you
better manage the data throughout the different stages of the project.

 Chapter 5 covers how to wrangle or manipulate data into a ready-for-analysis
shape.

 On completing part 1, you’ll understand how to define a data science proj-
ect, and you’ll know how to load data into R and prepare it for modeling and
analysis.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Licensed to Ajit de Silva <agdesilva@gmail.com>

The data science process
Data science is a cross-disciplinary practice that draws on methods from data
engineering, descriptive statistics, data mining, machine learning, and predictive
analytics. Much like operations research, data science focuses on implementing
data-driven decisions and managing their consequences. For this book, we will con-
centrate on data science as applied to business and scientific problems, using these
techniques.

 The data scientist is responsible for guiding a data science project from start to
finish. Success in a data science project comes not from access to any one exotic
tool, but from having quantifiable goals, good methodology, cross-discipline inter-
actions, and a repeatable workflow.

 This chapter walks you through what a typical data science project looks like:
the kinds of problems you encounter, the types of goals you should have, the tasks
that you’re likely to handle, and what sort of results are expected.

This chapter covers
 Defining data science

 Defining data science project roles

 Understanding the stages of a data science project

 Setting expectations for a new data science project
3

Licensed to Ajit de Silva <agdesilva@gmail.com>

4 CHAPTER 1 The data science process
 We’ll use a concrete, real-world example to motivate the discussion in this chapter.1

 Example Suppose you’re working for a German bank. The bank feels that it’s losing
too much money to bad loans and wants to reduce its losses. To do so, they want a tool
to help loan officers more accurately detect risky loans.

This is where your data science team comes in.

1.1 The roles in a data science project
Data science is not performed in a vacuum. It’s a collaborative effort that draws on a
number of roles, skills, and tools. Before we talk about the process itself, let’s look at
the roles that must be filled in a successful project. Project management has been a
central concern of software engineering for a long time, so we can look there for guid-
ance. In defining the roles here, we’ve borrowed some ideas from Fredrick Brooks’
“surgical team” perspective on software development, as described in The Mythical
Man-Month: Essays on Software Engineering (Addison-Wesley, 1995). We also borrowed
ideas from the agile software development paradigm.

1.1.1 Project roles

Let’s look at a few recurring roles in a data science project in table 1.1.

Sometimes these roles may overlap. Some roles—in particular, client, data architect,
and operations—are often filled by people who aren’t on the data science project
team, but are key collaborators.

PROJECT SPONSOR

The most important role in a data science project is the project sponsor. The sponsor is the per-
son who wants the data science result; generally, they represent the business interests.

1 For this chapter, we'll use a credit dataset donated by Dr. Hans Hofmann, professor of integrative biology, to
the UCI Machine Learning Repository in 1994. We've simplified some of the column names for clarity. The
original dataset can be found at http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).
We'll show how to load this data and prepare it for analysis in chapter 2. Note that the German currency at
the time of data collection was the deutsche mark (DM).

Table 1.1 Data science project roles and responsibilities

Role Responsibilities

Project sponsor Represents the business interests; champions the project

Client Represents end users’ interests; domain expert

Data scientist Sets and executes analytic strategy; communicates with spon-
sor and client

Data architect Manages data and data storage; sometimes manages data
collection

Operations Manages infrastructure; deploys final project results
Licensed to Ajit de Silva <agdesilva@gmail.com>

5The roles in a data science project
In the loan application example, the sponsor might be the bank’s head of Consumer
Lending. The sponsor is responsible for deciding whether the project is a success or
failure. The data scientist may fill the sponsor role for their own project if they feel
they know and can represent the business needs, but that’s not the optimal arrange-
ment. The ideal sponsor meets the following condition: if they’re satisfied with the
project outcome, then the project is by definition a success. Getting sponsor sign-off
becomes the central organizing goal of a data science project.

KEEP THE SPONSOR INFORMED AND INVOLVED It’s critical to keep the sponsor
informed and involved. Show them plans, progress, and intermediate suc-
cesses or failures in terms they can understand. A good way to guarantee proj-
ect failure is to keep the sponsor in the dark.

To ensure sponsor sign-off, you must get clear goals from them through directed
interviews. You attempt to capture the sponsor’s expressed goals as quantitative state-
ments. An example goal might be “Identify 90% of accounts that will go into default at
least two months before the first missed payment with a false positive rate of no more
than 25%.” This is a precise goal that allows you to check in parallel if meeting the
goal is actually going to make business sense and whether you have data and tools of
sufficient quality to achieve the goal.

CLIENT

While the sponsor is the role that represents the business interests, the client is the
role that represents the model’s end users’ interests. Sometimes, the sponsor and cli-
ent roles may be filled by the same person. Again, the data scientist may fill the client
role if they can weight business trade-offs, but this isn’t ideal.

 The client is more hands-on than the sponsor; they’re the interface between the
technical details of building a good model and the day-to-day work process into which
the model will be deployed. They aren’t necessarily mathematically or statistically
sophisticated, but are familiar with the relevant business processes and serve as the
domain expert on the team. In the loan application example, the client may be a loan
officer or someone who represents the interests of loan officers.

 As with the sponsor, you should keep the client informed and involved. Ideally,
you’d like to have regular meetings with them to keep your efforts aligned with the
needs of the end users. Generally, the client belongs to a different group in the orga-
nization and has other responsibilities beyond your project. Keep meetings focused,
present results and progress in terms they can understand, and take their critiques to
heart. If the end users can’t or won’t use your model, then the project isn’t a success,
in the long run.

DATA SCIENTIST

The next role in a data science project is the data scientist, who’s responsible for tak-
ing all necessary steps to make the project succeed, including setting the project strat-
egy and keeping the client informed. They design the project steps, pick the data
sources, and pick the tools to be used. Since they pick the techniques that will be
Licensed to Ajit de Silva <agdesilva@gmail.com>

6 CHAPTER 1 The data science process
tried, they have to be well informed about statistics and machine learning. They’re
also responsible for project planning and tracking, though they may do this with a
project management partner.

 At a more technical level, the data scientist also looks at the data, performs statisti-
cal tests and procedures, applies machine learning models, and evaluates results—the
science portion of data science.

DATA ARCHITECT

The data architect is responsible for all the data and its storage. Often this role is filled
by someone outside of the data science group, such as a database administrator or
architect. Data architects often manage data warehouses for many different projects,
and they may only be available for quick consultation.

OPERATIONS

The operations role is critical both in acquiring data and delivering the final results.
The person filling this role usually has operational responsibilities outside of the data
science group. For example, if you’re deploying a data science result that affects how
products are sorted on an online shopping site, then the person responsible for run-
ning the site will have a lot to say about how such a thing can be deployed. This person
will likely have constraints on response time, programming language, or data size that
you need to respect in deployment. The person in the operations role may already be
supporting your sponsor or your client, so they’re often easy to find (though their
time may be already very much in demand).

1.2 Stages of a data science project
The ideal data science environment is one that encourages feedback and iteration
between the data scientist and all other stakeholders. This is reflected in the lifecycle
of a data science project. Even though this book, like other discussions of the data sci-
ence process, breaks up the cycle into distinct stages, in reality the boundaries
between the stages are fluid, and the activities of one stage will often overlap those of
other stages.2 Often, you’ll loop back and forth between two or more stages before
moving forward in the overall process. This is shown in figure 1.1.

2 One common model of the machine learning process is the cross-industry standard process for data mining
(CRISP-DM) (https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining). The model
we’ll discuss here is similar, but emphasizes that back-and-forth is possible at any stage of the process.

Domain empathy
It is often too much to ask for the data scientist to become a domain expert. How-
ever, in all cases the data scientist must develop strong domain empathy to help
define and solve the right problems.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining

7Stages of a data science project
Even after you complete a project and deploy a model, new issues and questions can
arise from seeing that model in action. The end of one project may lead into a follow-
up project.

 Let’s look at the different stages shown in figure 1.1.

1.2.1 Defining the goal

The first task in a data science project is to
define a measurable and quantifiable goal. At
this stage, learn all that you can about the
context of your project:

 Why do the sponsors want the project
in the first place? What do they lack,
and what do they need?

 What are they doing to solve the prob-
lem now, and why isn’t that good
enough?

 What resources will you need: what
kind of data and how much staff? Will

What problem
am I solving?

What information
do I need?

Find patterns in
the data that lead

to solutions.

Does the model
solve my problem?

Deploy the model
to solve the problem

in the real world.

Collect &
manage

data

Build the
model

Evaluate
& critique

model

Present
results &
document

Deploy
model

Establish that I can
solve the problem,

and how.

Define the
goal

Figure 1.1 The lifecycle of a data
science project: loops within loops

Collect &
manage

data

Build the
model

Evaluate
& critique

model

Present
results &

document

Deploy
model

Define the
goal
Licensed to Ajit de Silva <agdesilva@gmail.com>

8 CHAPTER 1 The data science process
you have domain experts to collaborate with, and what are the computational
resources?

 How do the project sponsors plan to deploy your results? What are the con-
straints that have to be met for successful deployment?

Let’s come back to our loan application example. The ultimate business goal is to
reduce the bank’s losses due to bad loans. Your project sponsor envisions a tool to
help loan officers more accurately score loan applicants, and so reduce the number of
bad loans made. At the same time, it’s important that the loan officers feel that they
have final discretion on loan approvals.

 Once you and the project sponsor and other stakeholders have established prelim-
inary answers to these questions, you and they can start defining the precise goal of
the project. The goal should be specific and measurable; not “We want to get better at
finding bad loans,” but instead “We want to reduce our rate of loan charge-offs by at
least 10%, using a model that predicts which loan applicants are likely to default.”

 A concrete goal leads to concrete stopping conditions and concrete acceptance
criteria. The less specific the goal, the likelier that the project will go unbounded,
because no result will be “good enough.” If you don’t know what you want to achieve,
you don’t know when to stop trying—or even what to try. When the project eventually
terminates—because either time or resources run out—no one will be happy with the
outcome.

 Of course, at times there is a need for looser, more exploratory projects: “Is there
something in the data that correlates to higher defaults?” or “Should we think about
reducing the kinds of loans we give out? Which types might we eliminate?” In this situ-
ation, you can still scope the project with concrete stopping conditions, such as a time
limit. For example, you might decide to spend two weeks, and no more, exploring the
data, with the goal of coming up with candidate hypotheses. These hypotheses can
then be turned into concrete questions or goals for a full-scale modeling project.

 Once you have a good idea of the project goals, you can focus on collecting data to
meet those goals.

1.2.2 Data collection and management

This step encompasses identifying the data
you need, exploring it, and conditioning it to
be suitable for analysis. This stage is often the
most time-consuming step in the process. It’s
also one of the most important:

 What data is available to me?
 Will it help me solve the problem?
 Is it enough?
 Is the data quality good enough?

Collect &
manage

data

Build the
model

Evaluate
& critique

model

Present
results &
document

Deploy
model

Define the
goal
Licensed to Ajit de Silva <agdesilva@gmail.com>

9Stages of a data science project
Imagine that, for your loan application problem, you’ve collected a sample of repre-
sentative loans from the last decade. Some of the loans have defaulted; most of them
(about 70%) have not. You’ve collected a variety of attributes about each loan applica-
tion, as listed in table 1.2.

In your data, Loan_status takes on two possible values: GoodLoan and BadLoan. For
the purposes of this discussion, assume that a GoodLoan was paid off, and a BadLoan
defaulted.

TRY TO DIRECTLY MEASURE THE INFORMATION YOU NEED As much as possible, try
to use information that can be directly measured, rather than information that
is inferred from another measurement. For example, you might be tempted to
use income as a variable, reasoning that a lower income implies more difficulty
paying off a loan. The ability to pay off a loan is more directly measured by
considering the size of the loan payments relative to the borrower’s disposable
income. This information is more useful than income alone; you have it in
your data as the variable Installment_rate_in_percentage_of_disposable_
income.

This is the stage where you initially explore and visualize your data. You’ll also clean
the data: repair data errors and transform variables, as needed. In the process of
exploring and cleaning the data, you may discover that it isn’t suitable for your prob-
lem, or that you need other types of information as well. You may discover things in
the data that raise issues more important than the one you originally planned to
address. For example, the data in figure 1.2 seems counterintuitive.

Table 1.2 Loan data attributes

Status_of_existing_checking_account (at time of application)
Duration_in_month (loan length)
Credit_history
Purpose (car loan, student loan, and so on)
Credit_amount (loan amount)
Savings_Account_or_bonds (balance/amount)
Present_employment_since
Installment_rate_in_percentage_of_disposable_income
Personal_status_and_sex
Cosigners
Present_residence_since
Collateral (car, property, and so on)
Age_in_years
Other_installment_plans (other loans/lines of credit—the type)
Housing (own, rent, and so on)
Number_of_existing_credits_at_this_bank
Job (employment type)
Number_of_dependents
Telephone (do they have one)
Loan_status (dependent variable)
Licensed to Ajit de Silva <agdesilva@gmail.com>

10 CHAPTER 1 The data science process
Why would some of the seemingly safe applicants (those who repaid all credits to the
bank) default at a higher rate than seemingly riskier ones (those who had been delin-
quent in the past)? After looking more carefully at the data and sharing puzzling find-
ings with other stakeholders and domain experts, you realize that this sample is
inherently biased: you only have loans that were actually made (and therefore already accepted).
A true unbiased sample of loan applications should include both loan applications that
were accepted and ones that were rejected. Overall, because your sample only includes
accepted loans, there are fewer risky-looking loans than safe-looking ones in the data.
The probable story is that risky-looking loans were approved after a much stricter vet-
ting process, a process that perhaps the safe-looking loan applications could bypass.
This suggests that if your model is to be used downstream of the current application
approval process, credit history is no longer a useful variable. It also suggests that even
seemingly safe loan applications should be more carefully scrutinized.

 Discoveries like this may lead you and other stakeholders to change or refine the
project goals. In this case, you may decide to concentrate on the seemingly safe loan
applications. It’s common to cycle back and forth between this stage and the previous
one, as well as between this stage and the modeling stage, as you discover things in the
data. We’ll cover data exploration and management in depth in chapters 3 and 4.

1.2.3 Modeling

You finally get to statistics and machine learning during the modeling, or analysis,
stage. Here is where you try to extract useful insights from the data in order to achieve
your goals. Since many modeling procedures make specific assumptions about data

Figure 1.2 The fraction of defaulting loans by credit history category. The dark region of each
bar represents the fraction of loans in that category that defaulted.

other credits (not at this bank)

delinquencies in past

no current delinquencies
BadLoan

GoodLoan

all credits at this bank paid back

no credits/all paid back

0.00 0.25 0.50 0.75 1.00

fraction of defaulted loans

cr
ed

it
hi

st
or

y

Good.Loan

Why do these loans have
a higher default rate…

…than these loans?
Licensed to Ajit de Silva <agdesilva@gmail.com>

11Stages of a data science project
distribution and relationships, there may be
overlap and back-and-forth between the mod-
eling stage and the data-cleaning stage as you
try to find the best way to represent the data
and the best form in which to model it.

 The most common data science modeling
tasks are these:

 Classifying—Deciding if something
belongs to one category or another

 Scoring—Predicting or estimating a
numeric value, such as a price or prob-
ability

 Ranking—Learning to order items by
preferences

 Clustering—Grouping items into most-similar groups
 Finding relations—Finding correlations or potential causes of effects seen in the

data
 Characterizing—Very general plotting and report generation from data

For each of these tasks, there are several different possible approaches. We’ll cover
some of the most common approaches to the different tasks in this book.

 The loan application problem is a classification problem: you want to identify loan
applicants who are likely to default. Some common approaches in such cases are logis-
tic regression and tree-based methods (we’ll cover these methods in depth in chapters
7 and 10). You’ve been in conversation with loan officers and others who would be
using your model in the field, so you know that they want to be able to understand the
chain of reasoning behind the model’s classification, and they want an indication of
how confident the model is in its decision: is this applicant highly likely to default, or
only somewhat likely? To solve this problem, you decide that a decision tree is most
suitable. We’ll cover decision trees more extensively in chapter 10, but for now we will
just look at the resulting decision tree model.3

 Let’s suppose that you discover the model shown in figure 1.3. Let’s trace an exam-
ple path through the tree. Let’s suppose that there is an application for a one-year
loan of DM 10,000 (deutsche mark, the currency at the time of the study). At the top
of the tree (node 1 in figure 1.3), the model checks if the loan is for longer than 34
months. The answer is “no,” so the model takes the right branch down the tree. This is
shown as the highlighted branch from node 1. The next question (node 3) is whether
the loan is for more than DM 11,000. Again, the answer is “no,” so the model branches
right (as shown by the darker highlighted branch from node 3) and arrives at leaf 3.

3 In this chapter, for clarity of illustration, we deliberately fit a small and shallow tree.

Collect &
manage

data

Build the
model

Evaluate
& critique

model

Present
results &
document

Deploy
model

Define the
goal
Licensed to Ajit de Silva <agdesilva@gmail.com>

12 CHAPTER 1 The data science process
Historically, 75% of loans that arrive at this leaf are good loans, so the model recom-
mends that you approve this loan, as there is a high probability that it will be paid off.

 On the other hand, suppose that there is an application for a one-year loan of DM
15,000. In this case, the model would first branch right at node 1, and then left at
node 3, to arrive at leaf 2. Historically, all loans that arrive at leaf 2 have defaulted, so
the model recommends that you reject this loan application.

 We’ll discuss general modeling strategies in chapter 6 and go into details of spe-
cific modeling algorithms in part 2.

1.2.4 Model evaluation and critique

Once you have a model, you need to deter-
mine if it meets your goals:

 Is it accurate enough for your needs?
Does it generalize well?

 Does it perform better than “the obvi-
ous guess”? Better than whatever esti-
mate you currently use?

 Do the results of the model (coeffi-
cients, clusters, rules, confidence inter-
vals, significances, and diagnostics)
make sense in the context of the prob-
lem domain?

Figure 1.3 A decision tree model for finding bad loan applications. The outcome nodes show
confidence scores.

Duration ≥
 34 months

Credit amt
< 2249

Credit amt
≥ 11,000

Duration ≥
 44 months

Credit amt
< 7413

BadLoan
(0.88)

BadLoan
(1.0)

GoodLoan
(0.75)

GoodLoan
(0.61)

BadLoan
(0.68)

GoodLoan
(0.56)

yes no

"yes" branches to left
"no" branches to right

Confidence scores are
for the declared class:

BadLoan (1.0) means all the
loans that land at the leaf are bad.

GoodLoan (0.75) means 75% of the
loans that land at the leaf are good.

node 1

node 3node 2

node 4

node 5

leaf 1 leaf 2 leaf 3

leaf 4

leaf 6leaf 5

Collect &
manage

data

Build the
model

Evaluate
& critique

model

Present
results &
document

Deploy
model

Define the
goal
Licensed to Ajit de Silva <agdesilva@gmail.com>

13Stages of a data science project
If you’ve answered “no” to any of these questions, it’s time to loop back to the model-
ing step—or decide that the data doesn’t support the goal you’re trying to achieve. No
one likes negative results, but understanding when you can’t meet your success crite-
ria with current resources will save you fruitless effort. Your energy will be better spent
on crafting success. This might mean defining more-realistic goals or gathering the
additional data or other resources that you need to achieve your original goals.

 Returning to the loan application example, the first thing to check is whether the
rules that the model discovered make sense. Looking at figure 1.3, you don’t notice
any obviously strange rules, so you can go ahead and evaluate the model’s accuracy. A
good summary of classifier accuracy is the confusion matrix, which tabulates actual clas-
sifications against predicted ones.4

 In listing 1.1, you will create a confusion matrix where rows represent actual loan
status, and columns represent predicted loan status. To improve legibility, the code
references matrix elements by name rather than by index. For example, conf_mat
["GoodLoan", "BadLoan"] refers to the element conf_mat[2, 1]: the number of
actual good loans that the model predicted were bad. The diagonal entries of the
matrix represent correct predictions.

library("rpart")
load("loan_model_example.RData")
conf_mat <-

table(actual = d$Loan_status, pred = predict(model, type = 'class'))

pred
actual BadLoan GoodLoan
BadLoan 41 259
GoodLoan 13 687

(accuracy <- sum(diag(conf_mat)) / sum(conf_mat))
[1] 0.728

(precision <- conf_mat["BadLoan", "BadLoan"] / sum(conf_mat[, "BadLoan"])
[1] 0.7592593

(recall <- conf_mat["BadLoan", "BadLoan"] / sum(conf_mat["BadLoan",]))
[1] 0.1366667

(fpr <- conf_mat["GoodLoan","BadLoan"] / sum(conf_mat["GoodLoan",]))
[1] 0.01857143

4 Normally, we’d evaluate the model against a test set (data that wasn’t used to build the model). In this example,
for simplicity, we'll evaluate the model against the training data (data that was used to build the model). Also
note we are following a convention that we will use when plotting: predictions are the x-axis, which for tables
means predictions are the column names. Be aware that there are other conventions for confusion matrices.

Listing 1.1 Calculating the confusion matrix

How to install all the packages needed to run
examples in the book can be found here:
https://github.com/WinVector/PDSwR2/blob/master/packages.R. This file can be found at

https://github.com/WinVector/PDSwR2/
tree/master/Statlog.

Creates the
confusion matrix

Overall model accuracy:
73% of the predictions
were correct.

Model precision: 76% of the applicants
predicted as bad really did default.

False positive rate: 2% of the good applicants
were mistakenly identified as bad.

Model recall: the model found
14% of the defaulting loans.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/packages.R
https://github.com/WinVector/PDSwR2/tree/master/Statlog
https://github.com/WinVector/PDSwR2/tree/master/Statlog

14 CHAPTER 1 The data science process
The model predicted loan status correctly 73% of the time—better than chance
(50%). In the original dataset, 30% of the loans were bad, so guessing GoodLoan all
the time would be 70% accurate (though not very useful). So you know that the
model does better than random and somewhat better than obvious guessing.

 Overall accuracy is not enough. You want to know what kind of mistakes are being
made. Is the model missing too many bad loans, or is it marking too many good loans
as bad? Recall measures how many of the bad loans the model can actually find. Preci-
sion measures how many of the loans identified as bad really are bad. False positive rate
measures how many of the good loans are mistakenly identified as bad. Ideally, you
want the recall and the precision to be high, and the false positive rate to be low. What
constitutes “high enough” and “low enough” is a decision that you make together with
the other stakeholders. Often, the right balance requires some trade-off between
recall and precision.

 There are other measures of accuracy and other measures of the quality of a
model, as well. We’ll talk about model evaluation in chapter 6.

1.2.5 Presentation and documentation

Once you have a model that meets your suc-
cess criteria, you’ll present your results to
your project sponsor and other stakeholders.
You must also document the model for those
in the organization who are responsible for
using, running, and maintaining the model
once it has been deployed.

 Different audiences require different
kinds of information. Business-oriented audi-
ences want to understand the impact of your
findings in terms of business metrics. In the
loan example, the most important thing to
present to business audiences is how your
loan application model will reduce charge-
offs (the money that the bank loses to bad
loans). Suppose your model identified a set of bad loans that amounted to 22% of the
total money lost to defaults. Then your presentation or executive summary should
emphasize that the model can potentially reduce the bank’s losses by that amount, as
shown in figure 1.4.

 You also want to give this audience your most interesting findings or recommenda-
tions, such as that new car loans are much riskier than used car loans, or that most
losses are tied to bad car loans and bad equipment loans (assuming that the audience
didn’t already know these facts). Technical details of the model won’t be as interesting
to this audience, and you should skip them or only present them at a high level.

Collect &
manage

data

Build the
model

Evaluate
& critique

model

Present
results &
document

Deploy
model

Define the
goal
Licensed to Ajit de Silva <agdesilva@gmail.com>

15Stages of a data science project
A presentation for the model’s end users (the loan officers) would instead emphasize
how the model will help them do their job better:

 How should they interpret the model?
 What does the model output look like?
 If the model provides a trace of which rules in the decision tree executed, how

do they read that?
 If the model provides a confidence score in addition to a classification, how

should they use the confidence score?
 When might they potentially overrule the model?

Presentations or documentation for operations staff should emphasize the impact of
your model on the resources that they’re responsible for. We’ll talk about the struc-
ture of presentations and documentation for various audiences in part 3.

1.2.6 Model deployment and maintenance

Finally, the model is put into operation. In many organizations, this means the data
scientist no longer has primary responsibility for the day-to-day operation of the
model. But you still should ensure that the model will run smoothly and won’t make

Figure 1.4 Example slide from an executive presentation

retraining

domestic appliances

repairs

others

education

car (used)

radio/television

business

furniture/equipment

car (new)

0 100,000 200,000 300,000

charge-offs (DM)

lo
an

 c
at

eg
or

y
with model (dark blue) overlaid on results without model (gray)

Charge-off amounts by loan category: with and without model

Result: Model Reduced Charge-offs by 22%
Licensed to Ajit de Silva <agdesilva@gmail.com>

16 CHAPTER 1 The data science process
disastrous unsupervised decisions. You also
want to make sure that the model can be
updated as its environment changes. And in
many situations, the model will initially be
deployed in a small pilot program. The test
might bring out issues that you didn’t antici-
pate, and you may have to adjust the model
accordingly. We’ll discuss model deployment
in chapter 11.

 When you deploy the model, you might
find that loan officers frequently override the
model in certain situations because it contra-
dicts their intuition. Is their intuition wrong?
Or is your model incomplete? Or, in a more
positive scenario, your model may perform so
successfully that the bank wants you to extend it to home loans as well.

 Before we dive deeper into the stages of the data science lifecycle, in the following
chapters, let’s look at an important aspect of the initial project design stage: setting
expectations.

1.3 Setting expectations
Setting expectations is a crucial part of defining the project goals and success criteria.
The business-facing members of your team (in particular, the project sponsor) proba-
bly already have an idea of the performance required to meet business goals: for
example, the bank wants to reduce their losses from bad loans by at least 10%. Before
you get too deep into a project, you should make sure that the resources you have are
enough for you to meet the business goals.

 This is an example of the fluidity of the project lifecycle stages. You get to know the
data better during the exploration and cleaning phase; after you have a sense of the
data, you can get a sense of whether the data is good enough to meet desired perfor-
mance thresholds. If it’s not, then you’ll have to revisit the project design and goal-
setting stage.

1.3.1 Determining lower bounds on model performance

Understanding how well a model should do for acceptable performance is important
when defining acceptance criteria.

 The null model represents the lower bound on model performance that you should
strive for. You can think of the null model as being “the obvious guess” that your model
must do better than. In situations where there’s a working model or solution already in
place that you’re trying to improve, the null model is the existing solution. In situations
where there’s no existing model or solution, the null model is the simplest possible

Collect &
manage

data

Build the
model

Evaluate
& critique

model

Present
results &

document

Deploy
model

Define the
goal
Licensed to Ajit de Silva <agdesilva@gmail.com>

17Summary
model: for example, always guessing GoodLoan, or always predicting the mean value of
the output when you’re trying to predict a numerical value.

 In our loan application example, 70% of the loan applications in the dataset
turned out to be good loans. A model that labels all loans as GoodLoan (in effect, using
only the existing process to classify loans) would be correct 70% of the time. So you
know that any actual model that you fit to the data should be better than 70% accu-
rate to be useful—if accuracy were your only metric. Since this is the simplest possible
model, its error rate is called the base error rate.

 How much better than 70% should you be? In statistics there’s a procedure called
hypothesis testing, or significance testing, that tests whether your model is equivalent to a
null model (in this case, whether a new model is basically only as accurate as guessing
GoodLoan all the time). You want your model accuracy to be “significantly better”—in
statistical terms—than 70%. We will discuss significance testing in chapter 6.

 Accuracy is not the only (or even the best) performance metric. As we saw previ-
ously, the recall measures the fraction of true bad loans that a model identifies. In our
example, the null model that always guesses GoodLoan would have zero recall in iden-
tifying bad loans, which obviously is not what you want. Generally, if there is an exist-
ing model or process in place, you’d like to have an idea of its precision, recall, and
false positive rates; improving one of these metrics is almost always more important
than considering accuracy alone. If the purpose of your project is to improve the exist-
ing process, then the current model must be unsatisfactory for at least one of these
metrics. Knowing the limitations of the existing process helps you determine useful
lower bounds on desired performance.

Summary
The data science process involves a lot of back-and-forth—between the data scientist
and other project stakeholders, and between the different stages of the process. Along
the way, you’ll encounter surprises and stumbling blocks; this book will teach you pro-
cedures for overcoming some of these hurdles. It’s important to keep all the stake-
holders informed and involved; when the project ends, no one connected with it
should be surprised by the final results.

 In the next chapters, we’ll look at the stages that follow project design: loading,
exploring, and managing the data. Chapter 2 covers a few basic ways to load the data
into R, in a format that’s convenient for analysis.

 In this chapter you have learned

 A successful data science project involves more than just statistics. It also
requires a variety of roles to represent business and client interests, as well as
operational concerns.

 You should make sure you have a clear, verifiable, quantifiable goal.
 Make sure you’ve set realistic expectations for all stakeholders.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Starting with R and data
This chapter works through how to start working with R and how to import data
into R from diverse sources. This will prepare you to work examples throughout
the rest of the book.

Figure 2.1 is a diagram representing a mental model for the book that has been
reshaded to emphasize the purpose of this chapter: starting to work with R and
importing data into R. The overall diagram shows the data science process diagram
from chapter 1 combined with a rebus form of the book title. In each chapter, we
will reshade this mental model to indicate the parts of the data science process we
are emphasizing. For example: in this chapter, we are mastering the initial steps of
collecting and managing data, and touching on issues of practicality, data, and R
(but not yet the art of science).

This chapter covers
 Starting to work with R and data

 Mastering R’s data frame structure

 Loading data into R

 Recoding data for later analysis
18

Licensed to Ajit de Silva <agdesilva@gmail.com>

19Starting with R
Many data science projects start when someone points the analyst toward a bunch of
data, and the analyst is left to make sense of it.5 Your first thought may be to use ad
hoc tools and spreadsheets to sort through it, but you will quickly realize that you’re
taking more time tinkering with the tools than actually analyzing the data. Luckily,
there’s a better way: using R. By the end of the chapter, you’ll be able to confidently
use R to extract, transform, and load data for analysis.

R without data is like going to the theater to watch the curtain go up and down.
—Adapted from Ben Katchor’s

Julius Knipl, Real Estate Photographer: Stories

2.1 Starting with R
R is open source software that runs well on Unix, Linux, Apple’s macOS, and Micro-
soft Windows. This book will concentrate on how to work as a data scientist. However,
to work the examples, the reader must be familiar with R programming. If you want to
pick up some prerequisite knowledge, we suggest consulting free manuals from CRAN
(the main R package repository: https://cran.r-project.org/manuals.html) and other
online materials. A number of good books for starting with R include these:

5 We assume the reader is interested in working as an analyst, statistician, or data scientist, so we will alternate
using these terms to represent people similar to the reader.

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 2.1 Chapter 2 mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://cran.r-project.org/manuals.html

20 CHAPTER 2 Starting with R and data
 R in Action, Second Edition, Robert Kabacoff, Manning, 2015
 Beyond Spreadsheets with R, Jonathan Carroll, Manning, 2018
 The Art of R Programming, Norman Matloff, No Starch Press, 2011
 R for Everyone, Second Edition, Jared P. Lander, Addison-Wesley, 2017

Each book has a different teaching style, and some include material on statistics,
machine learning, and data engineering. A little research may tell you which books
work well for you. This book will concentrate on working substantial data science
examples, demonstrating the steps needed to overcome typical issues found in your
own future real-world applications.

It is our opinion that data science is repeatable: the same job rerun on the same
data should give a similar quality result (the exact result may vary due to numeric
issues, timing issues, issues arising from parallelism, and issues around pseudo-
random numbers). In fact, we should insist on repeatability. This is why we are discuss-
ing programming in a data science book. Programming is the reliable way to specify a
reusable sequence of operations. With this in mind, one should always consider a data
refresh (getting newer, corrected, or larger data) as a good thing, because rerunning
an analysis should be, by design, very easy. An analysis that has a number of steps per-
formed by hand is never going to be easy to repeat.

2.1.1 Installing R, tools, and examples

We suggest you follows the steps in section A.1 of appendix A to install R, packages,
tools, and the book examples.

LOOK FOR HELP R includes a very nice help system. To get help on an R com-
mand, just run the help() command in the R console. For example, to see
details about how to change directories, you would type help(setwd). You
must know the name of the function to get help, so we strongly recommend
keeping notes. For some simple functions, we will not explain the function
and leave it to the reader to call help() to work out what the function does.

2.1.2 R programming

In this section, we will briefly describe some R programming conventions, semantics,
and style issues. Details can be found in package-specific documentation, the R
help() system, and by trying variations of the examples we present here. Here, we’ll
concentrate on aspects that differ from other common programming languages, and
conventions that we emphasize in the book. This should help you get into an R frame
of mind.

There are a number of common R coding style guides. Coding style is an attempt to
make things more consistent, clear, and readable. This book will follow a style varia-
tion we have found to be very effective in teaching and code maintenance. Obviously,
our style is just one among many, and is in no way mandatory. Good starting refer-
ences include these:
Licensed to Ajit de Silva <agdesilva@gmail.com>

21Starting with R
 The Google R Style Guide (https://google.github.io/styleguide/Rguide.html)
 Hadley Wickham's style guide from Advanced R (http://adv-r.had.co.nz/

Style.html)

We will try to minimize differences from current convention and call out where we
have such differences. We also recommend “R tips and tricks” from the author’s blog.6

R is a rich and broad language, often with many ways to accomplish the same task.
This represents a bit of an initial learning curve, as the meaning of R programs can be
hard to discern until you get familiar with the notation. However, time spent reviewing
some of the basic notation is well rewarded, as it will make working through the com-
ing substantial examples much easier. We understand the grammar of R is itself unin-
teresting to the reader coming here to learn data science methods and practices (our
exact target audience!), but this small initial exertion prevents a lot of confusion later.
We will use this section to describe a bit of R’s notation and meaning, concentrating
on that which is particularly useful and surprising. All the following are small and
basic points, but many of them are subtle and worth experimenting with.

PREFER WORKING CODE Prefer programs, scripts, or code that works but does
not yet do what you want. Instead of writing a large, untested program or
script that embodies every desired step of analysis, write a program that per-
forms a step correctly, and then iteratively revise the script to perform more
steps correctly. This discipline of moving from a working revision usually gets
to final correct results much faster than attempting to debug a large, faulty
system into correctness.

EXAMPLES AND THE COMMENT CHARACTER (#)
In examples, we will show R commands as free text, with the results prefixed by the
hash mark, #, which is R’s comment character. In many examples, we will include the
results after the commands, prefixed with the comment character. R printing usually
includes array cell indices in square braces and often involves line wrapping. For
example, printing the integers 1 through 25 looks like the following:

print(seq_len(25))
[1] 1 2 3 4 5 6 7 8 9 10 11 12
[13] 13 14 15 16 17 18 19 20 21 22 23 24
[25] 25

Notice the numbers were wrapped to three lines, and each line starts with the index of
the first cell reported on the line inside square brackets. Sometimes we will not show
results, an extra encouragement to work these particular examples.

PRINTING

R has a number of rules that turn implicit or automatic printing on and off. Some pack-
ages such as ggplot2 use printing to trigger their intended operations. Typing a value
usually triggers printing the value. Care must be taken in a function or a for loop, as in

6 See http://www.win-vector.com/blog/tag/r-tips/.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://google.github.io/styleguide/Rguide.html
http://adv-r.had.co.nz/Style.html
http://adv-r.had.co.nz/Style.html
http://adv-r.had.co.nz/Style.html

22 CHAPTER 2 Starting with R and data
these contexts, R’s automatic printing of results is disabled. Printing of very large objects
can be a problem, so you want to avoid printing objects of unknown size. Implicit print-
ing can often be forced by adding extra parentheses such as in “(x <- 5)”.

VECTORS AND LISTS

Vectors (sequential arrays of values) are fundamental R data structures. Lists can hold
different types in each slot; vectors can only hold the same primitive or atomic type in
each slot. In addition to numeric indexing, both vectors and lists support name-keys.
Retrieving items from a list or vector can be done by the operators shown next.

VECTOR INDEXING R vectors and lists are indexed from 1, and not from 0 as
with many other programming languages.

example_vector <- c(10, 20, 30)
example_list <- list(a = 10, b = 20, c = 30)

example_vector[1]
[1] 10

example_list[1]
$a
[1] 10

example_vector[[2]]
[1] 20

example_list[[2]]
[1] 20

example_vector[c(FALSE, TRUE, TRUE)]
[1] 20 30

example_list[c(FALSE, TRUE, TRUE)]
$b
[1] 20
##
$c
[1] 30

example_list$b
[1] 20

example_list[["b"]]
[1] 20

We will not always share so many notes for every example, but we invite the reader to
work as if there were such notes by calling help() on every function or command
used. Also, we very much encourage trying variations. In R “errors ” are just R’s way
of saying it safely refused to complete an ill-formed operation (an error does not
indicate “crash,” and results are not corrupted). So fear of errors should not limit
experiments.

Builds an example vector. c() is R’s concatenate operator—it builds longer
vectors and lists from shorter ones without nesting. For example, c(1) is
just the number 1, and c(1, c (2, 3)) is equivalent to c (1, 2, 3), which in turn
is the integers 1 through 3 (though stored in a floating-point format).

Builds an example list

Demonstrates vector and list use of
[]. Notice that for the list, [] returns
a new short list, not the item.

Demonstrates vector and list use of [[]]. In common cases,
[[]] forces a single item to be returned, though for nested
lists of complex type, this item itself could be a list.

Vectors and lists can be indexed by vectors
of logicals, integers, and (if the vector or
list has names) characters.

For named examples, the syntax example_list$b is
essentially a short-hand for example_list[["b"]] (the
same is true for named vectors).
Licensed to Ajit de Silva <agdesilva@gmail.com>

23Starting with R
x <- 1:5
print(x)
[1] 1 2 3 4 5

x <- cumsumMISSPELLED(x)
Error in cumsumMISSPELLED(x) : could not find function "cumsumMISSPELLED"

print(x)
[1] 1 2 3 4 5

x <- cumsum(x)
print(x)
[1] 1 3 6 10 15

Another aspect of vectors in R is that most R operations are vectorized. A function or
operator is called vectorized when applying it to a vector is shorthand for applying a
function to each entry of the vector independently. For example, the function
nchar() counts how many characters are in a string. In R this function can be used on
a single string, or on a vector of strings.

LISTS AND VECTORS ARE R’S MAP STRUCTURES Lists and vectors are R’s map
structures. They can map strings to arbitrary objects. The primary list opera-
tions [], match (), and %in% are vectorized. This means that, when applied to a
vector of values, they return a vector of results by performing one lookup per
entry. For pulling individual elements out of a list, use the double-bracket
notation [[]].
nchar("a string")
[1] 8

nchar(c("a", "aa", "aaa", "aaaa"))
[1] 1 2 3 4

LOGICAL OPERATIONS R’s logical operators come in two flavors. R has stan-
dard infix scalar-valued operators that expect only one value and have the
same behavior and same names as you would see in C or Java: && and ||. R
also has vectorized infix operators that work on vectors of logical values: &
and |. Be sure to always use the scalar versions (&& and ||) in situations such
as if statements, and the vectorized versions (& and |) when processing logi-
cal vectors.

NULL AND NANA (NOT AVAILABLE) VALUES

In R NULL is just a synonym for the empty or length-zero vector formed by using the
concatenate operator c() with no arguments. For example, when we type c() into the
R console, we will see the value NULL returned. In R NULL is not any sort of invalid
pointer (as it is in most C/Java-related languages). NULL is simply a length-zero vector.
Concatenating NULL is a safe and well-defined operation (in fact it’s a “no operation”

Defines a value we are
interested in and stores
it in the variable x

Attempts, and fails, to
assign a new result to x

Notice that in addition to
supplying a useful error
message, R preserves the
original value of x.Tries the operation again, using the

correct spelling of cumsum().
cumsum(), short for cumulative sum,
is a useful function that computes
running totals quickly.
Licensed to Ajit de Silva <agdesilva@gmail.com>

24 CHAPTER 2 Starting with R and data
or “no-op” that does nothing). For example, c(c(), 1, NULL) is perfectly valid and
returns the value 1.

NA stands for “not available” and is fairly unique to R. Most any simple type can take
on the value NA. For example, the vector c("a", NA, "c") is a vector of three charac-
ter strings where we do not know the value of the second entry. Having NA is a great
convenience as it allows us to annotate missing or unavailable values in place, which
can be critical in data processing. NA behaves a little bit like the NaN value in floating-
point arithmetic,7 except we are not restricted to using it only with floating-point
types. Also, NA means “not available,” not invalid (as NaN denotes), so NA has some con-
venient rules such as the logical expression FALSE & NA simplifying to FALSE.

IDENTIFIERS

Identifiers or symbol names are how R refers to variables and functions. The Google R
Style Guide insists on writing symbol names in what is called “CamelCase” (word
boundaries in names are denoted by uppercase letters, as in “CamelCase” itself). The
Advanced R guide recommends an underscore style where names inside identifiers
are broken up with underscores (such as “day_one” instead of “DayOne”). Also, many
R users use a dot to break up names with identifiers (such as “day.one”). In particular,
important built-in R types such as data.frame and packages such as data.table use
the dot notation convention.

We recommend using the underscore notation, but find we often must switch
between conventions when working with others. If possible, avoid the dot convention,
as this notation is usually used for other purposes in object-oriented languages and
databases, and so needlessly confuses others.8

LINE BREAKS

It is generally recommended to keep R source code lines at 80 columns or fewer. R
accepts multiple-line statements as long as where the statement ends is unambiguous.
For example, to break the single statement “1 + 2" into multiple lines, write the code
as follows:

1 +
2

Do not write code like the following, as the first line is itself a valid statement, creating
ambiguity:

1
+ 2

7 The limits of floating-point arithmetic, or how real numbers are commonly approximated in computers, is a com-
mon source of confusion and problems when working with numeric data. To appreciate the issues of working
with numeric data, we recommend data scientists read David Goldberg’s 1991 Computing Surveys. “What Every
Computer Scientist Should Know About Floating-Point Arithmetic” has been publicly shared from this issue
(https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html).

8 The dot notation likely comes from the Lisp world (which strongly influenced R) and the aversion to under-
scores likely is a holdover from when “_” was one of the usable assignment operators in R (it is no longer used
as an assignment operator in R).
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

25Starting with R
The rule is this: force a syntax error every time reading the statement across multiple
lines terminates early.

SEMICOLONS

R allows semicolons as end-of-statement markers, but does not require them. Most
style guides recommend not using semicolons in R code and certainly not using them
at ends of lines.

ASSIGNMENT

R has many assignment operators (see table 2.1); the preferred one is <-. = can be
used for assignment in R, but is also used to bind argument values to argument names
by name during function calls (so there is some potential ambiguity in using =).

LEFT-HAND SIDES OF ASSIGNMENTS

Many popular programming languages only allow assignment of values into variable
name or symbols. R allows slice expressions on the left-hand sides of assignments, and
both numeric and logical array indexing. This allows for very powerful array-slicing
commands and coding styles. For example, we can replace all the missing values
(denoted by “NA") in a vector with zero as shown in the following example:

d <- data.frame(x = c(1, NA, 3))
print(d)
x
1 1
2 NA
3 3

d$x[is.na(d$x)] <- 0
print(d)
x
1 1
2 0
3 3

FACTORS

R can handle many kinds of data: numeric, logical, integer, strings (called character
types), and factors. Factors are an R type that encodes a fixed set of strings as integers.
Factors can save a lot on storage while appearing to behave as strings. However, factors
can have potentially confusing interactions with the as.numeric() command (which

Table 2.1 Primary R assignment operators

Operator Purpose Example

<- Assign the value on the right
to the symbol on the left.

x <- 5 # assign the value of 5
to the symbol x

= Assign the value on the right
to the symbol on the left.

x = 5 # assign the value of 5 to
the symbol x

-> Assign left to right, instead of
the traditional right to left.

5 -> x # assign the value of 5
to the symbol x

“data.frame ” is R’s tabular data type, and the
most important data type in R. A data.frame
holds data organized in rows and columns.

When printing data.frames, row numbers are shown
in the first (unnamed) column, and column values
are shown under their matching column names.

We can place a slice or selection of the x column
of d on the left-hand side of an assignment to
easily replace all NA values with zero.
Licensed to Ajit de Silva <agdesilva@gmail.com>

26 CHAPTER 2 Starting with R and data
returns the factor codes for factors, but parses text for character types). Factors also
encode the entire set of allowed values, which is useful—but can make combining
data from different sources (that saw different sets of values) a bit of a chore. To avoid
issues, we suggest delaying conversion of strings to factors until late in an analysis. This
is usually accomplished by adding the argument stringsAsFactors = FALSE to func-
tions such as data.frame() or read.table(). We, however, do encourage using fac-
tors when you have a reason, such as wanting to use summary() or preparing to
produce dummy indicators (see “A bit more on factor coding” after listing 2.10 for
more details on dummy indicators and their relation to factors).

NAMED ARGUMENTS

R is centered around applying functions to data. Functions that take a large number
of arguments rapidly become confusing and illegible. This is why R includes a named
argument feature. As an example, if we wanted to set our working directory to “/tmp”
we would usually use the setwd() command like so: setwd("/tmp"). However,
help(setwd) shows us the first argument to setwd() has the name dir, so we could
also write this as setwd(dir = "/tmp"). This becomes useful for functions that have a
large number of arguments, and for setting optional function arguments. Note:
named arguments must be set by =, and not by an assignment operator such as <-.

If you have a procedure with 10 parameters, you probably missed some.

—Alan Perlis, “Epigrams on Programming,”
ACM SIGPLAN Notices 17

PACKAGE NOTATION

In R there are two primary ways to use a function from a package. The first is to attach
the package with the library() command and then use the function name. The sec-
ond is to use the package name and then :: to name the function. An example of this
second method is stats::sd(1:5). The :: notation is good to avoid ambiguity or to
leave a reminder of which package the function came from for when you read your
own code later.

VALUE SEMANTICS

R is unusual in that it efficiently simulates “copy by value" semantics. Any time a user
has two references to data, each evolves independently: changes to one do not affect
the other. This is very desirable for part-time programmers and eliminates a large class
of possible aliasing bugs when writing code. We give a quick example here:

d <- data.frame(x = 1, y = 2)
d2 <- d
d$x <- 5

print(d)
x y
1 5 2

print(d2)
x y
1 1 2

Creates some example
data and refers to it
by the name d

Creates an
additional reference
d2 to the same data

Alters the value
referred to by d
Licensed to Ajit de Silva <agdesilva@gmail.com>

27Starting with R
Notice d2 keeps the old value of 1 for x. This feature allows for very convenient and
safe coding. Many programming languages protect references or pointers in function
calls in this manner; however, R protects complex values and does so in all situations
(not just function calls). Some care has to be taken when you want to share back
changes, such as invoking a final assignment such as d2 <- d after all desired changes
have been made. In our experience, R’s value isolation semantics prevents far more
issues than the copy-back inconvenience it introduces.

ORGANIZING INTERMEDIATE VALUES

Long sequences of calculations can become difficult to read, debug, and maintain.
To avoid this, we suggest reserving the variable named “.” to store intermediate val-
ues. The idea is this: work slow to move fast. For example: a common data science
problem is to sort revenue records and then calculate what fraction of total revenue
is achieved up to a given sorting key. In R this can be done easily by breaking this task
into small steps:

data <- data.frame(revenue = c(2, 1, 2),
sort_key = c("b", "c", "a"),
stringsAsFactors = FALSE)

print(data)

revenue sort_key
1 2 b
2 1 c
3 2 a

. <- data

. <- .[order(.$sort_key), , drop = FALSE]

.$ordered_sum_revenue <- cumsum(.$revenue)

.$fraction_revenue_seen <- .$ordered_sum_revenue/sum(.$revenue)
result <- .

print(result)

revenue sort_key ordered_sum_revenue fraction_revenue_seen
3 2 a 2 0.4
1 2 b 4 0.8
2 1 c 5 1.0

The R package dplyr replaces the dot notation with what is called piped notation (sup-
plied by a another package named magrittr, and similar to the JavaScript method,
chaining). Because the dplyr is very popular, you are likely to see code written in this
style, and we will use this style from time to time to help prepare you for such code.

Our notional, or
example, data.

Assign our data to a temporary variable named “.”.
The original values will remain available in the “data”
variable, making it easy to restart the calculation from
the beginning if necessary.

Use the order command to sort the rows. drop = FALSE is not strictly needed, but it is
good to get in the habit of including it. For single-column data.frames without the drop
= FALSE argument, the [,] indexing operator will convert the result to a vector, which is
almost never the R user's true intent. The drop = FALSE argument turns off this
conversion, and it is a good idea to include it “just in case” and a definite requirement
when either the data.frame has a single column or when we don’t know if the data.frame
has more than one column (as the data.frame comes from somewhere else).

Assigns the result away from “.” to
a more memorable variable name
Licensed to Ajit de Silva <agdesilva@gmail.com>

28 CHAPTER 2 Starting with R and data
However, it is important to remember that dplyr is merely a popular alternative to
standard R code, and not a superior alternative.

library("dplyr")

result <- data %>%
arrange(., sort_key) %>%
mutate(., ordered_sum_revenue = cumsum(revenue)) %>%
mutate(., fraction_revenue_seen = ordered_sum_revenue/sum(revenue))

Each step of this example has been replaced by the corresponding dplyr equivalent.
arrange() is dplyr’s replacement for order(), and mutate() is dplyr’s replacement
for assignment. The code translation is line by line, with the minor exception that
assignment is written first (even though it happens after all other steps). The calcula-
tion steps are sequenced by the magrittr pipe symbol %>%.

The magrittr pipe allows you to write any of x %>% f, x %>% f(), or x %>% f(.) in
place of f(x). Typically, x %>% f is the notation taught: however, we feel x %>% f(.) is
the most explicit in representing what is happening.9

The details of the dplyr notation can be found here: http://dplyr.tidyverse.org/
articles/dplyr.html. Be aware that debugging long dplyr pipelines is difficult, and
during development and experimentation it makes sense to break dplyr pipelines
into smaller steps, storing intermediate results into temporary variables.

The intermediate result notation has the advantages that it is easy to both restart
and step-debug. In this book, we will use different notations as convenient.

THE DATA.FRAME CLASS

The R data.frame class is designed to store data in a very good “ready for analysis”
format. data.frames are two-dimensional arrays where each column represents a vari-
able, measurement, or fact, and each row represents an individual or instance. In this
format, an individual cell represents what is known about a single fact or variable for a
single instance. data.frames are implemented as a named list of column vectors (list
columns are possible, but they are more of the exception than the rule for
data.frames). In a data.frame, all columns have the same length, and this means we
can think of the kth entry of all columns as forming a row.

Operations on data.frame columns tend to be efficient and vectorized. Adding,
looking up, and removing columns is fast. Operations per row on a data.frame can
be expensive, so you should prefer vectorized column notations for large data.frame
processing.

R’s data.frame is much like a database table in that it has schema-like information:
an explicit list of column names and column types. Most analyses are best expressed in
terms of transformations over data.frame columns.

9 For our own work, we actual prefer to use the “dot pipe” %.>% from the wrapr package that enforces more
notational consistency.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://dplyr.tidyverse.org/articles/dplyr.html
http://dplyr.tidyverse.org/articles/dplyr.html
http://dplyr.tidyverse.org/articles/dplyr.html

29Working with data from files
LET R DO THE WORK FOR YOU

Most common statistical or data processing operations already have a good implemen-
tation either in “base R” (R itself and its core packages such as utils and stats) or in
an extension package. If you do not delegate to R, you end up fighting R. For exam-
ple, a programmer coming from Java might expect to have to use a for loop to add
every row of values from two data columns. In R, adding two data columns is consid-
ered fundamental and achieved as follows:

d <- data.frame(col1 = c(1, 2, 3), col2 = c(-1, 0, 1))
d$col3 <- d$col1 + d$col2
print(d)
col1 col2 col3
1 1 -1 0
2 2 0 2
3 3 1 4

data.frames are in fact named lists of columns. We will use them throughout the
book. In R one tends to work over columns and let R’s vectorized nature perform the
specified operation over every row at once. If you find yourself iterating over rows in
R, you are fighting the language.

SEARCH FOR READY-MADE SOLUTIONS Searching for the right R function can
be tedious, but it is well worth the time (especially if you keep searchable
notes). R was designed for data analysis, so the most common steps needed in
a data analysis have already been implemented well in R, though possibly
under an obscure name and possibly with odd default settings. It is as chemist
Frank Westheimer said, “A couple of months in the laboratory can frequently
save a couple of hours in the library.”10 This is a deliberately ironic restate-
ment of the move-fast-by-working-slow principle: researching available solu-
tions costs time, but often saves far more direct coding time.

2.2 Working with data from files
The most common ready-to-go data format is in fact a family of tabular formats called
structured values. Most of the data you find will be in (or nearly in) one of these for-
mats. When you can read such files into R, you can analyze data from an incredible
range of public and private data sources. In this section, we’ll work on two examples
of loading data from structured files, and one example of loading data directly from a
relational database. The point is to get data quickly into R so we can then use R to per-
form interesting analyses.

2.2.1 Working with well-structured data from files or URLs

The easiest data format to read is table-structured data with headers. As shown in fig-
ure 2.2, this data is arranged in rows and columns with a header showing the column
names. Each column represents a different fact or measurement; each row represents

10 See https://en.wikiquote.org/wiki/Frank_Westheimer.
Licensed to Ajit de Silva <agdesilva@gmail.com>

30 CHAPTER 2 Starting with R and data
an instance or datum about which we know the set of facts. A lot of public data is in
this format, so being able to read it opens up a lot of opportunities.

Before we load the German credit data we used in the previous chapter, let’s
demonstrate the basic loading commands with a simple dataset originally from the
University of California Irvine Machine Learning Repository (http://archive.ics
.uci.edu/ml/). The UCI data files tend to come without headers, so to save steps (and
to keep things simple) we’ve pre-prepared our first data example from the UCI car
dataset: http://archive.ics.uci.edu/ml/machine-learning-databases/car/. Our pre-
prepared file is included in the book support directory PDSwR2/UCICar (please see
section FM.5.6 for instructions) and looks like the following:

buying,maint,doors,persons,lug_boot,safety,rating
vhigh,vhigh,2,2,small,low,unacc
vhigh,vhigh,2,2,small,med,unacc
vhigh,vhigh,2,2,small,high,unacc
vhigh,vhigh,2,2,med,low,unacc
...

AVOID “BY HAND” STEPS OUTSIDE OF R We strongly encourage you to avoid
performing steps “by hand” outside of R when importing data. It’s tempting
to use an editor to add a header line to a file, as we did in our example. A bet-
ter strategy is to write an R script to perform any necessary reformatting.
Automating these steps greatly reduces the amount of trauma and work
during the inevitable data refresh. Receiving new, better data should always
feel like good news, and writing automated and replicable procedures is a big
step in this direction.

Our example in section 2.2.2 will show how to add headers without editing
files by hand as we did in this example.

Notice that this presentation is structured like a spreadsheet with easy-to-identify rows
and columns. Each (non-header) row represents a review of a different model of car.
The columns represent facts about each car model. Most of the columns are objective
measurements (purchase cost, maintenance cost, number of doors, and so on), and
the final subjective column “rating” is marked with the overall rating (vgood, good,
acc, and unacc). These sorts of details come from the documentation found with the
original data, and are key to projects (so we suggest keeping a lab book or notes).

LOADING WELL-STRUCTURED DATA

Loading data of this type into R is a one-liner: we use the R command utils::read
.table() and we’re done.11 To work this exercise, we assume that you have downloaded

11 Another option is using functions from the readr package.

The header row contains the names of the data
columns, in this case separated by commas. When
the separators are commas, the format is called
comma-separated values, or .csv.

The data rows are in the same format as
the header row, but each row contains
actual data values. In this case, the first
row represents the set of name/value pairs:
buying=vhigh, maintenance=vhigh,
doors=2, persons=2, and so on.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

31Working with data from files
and unpacked the contents of this book’s GitHub repository https://github.com/
WinVector/PDSwR2 and changed your working directory to PDSwR2/UCICar as
explained in section “Working with this book” in the front matter (to do this, you will
use the setwd() R function, and you will need to type in the full path to where you
have saved PDSwR2, not just the text fragment we have shown). Once R is in the PDS-
wR2/UCICar directory, reading the data is done as shown in the following listing.

uciCar <- read.table(
'car.data.csv',
sep = ',',
header = TRUE,
stringsAsFactor = TRUE
)

View(uciCar)

Listing 2.1 loads the data and stores it in a new R data frame object called uciCar,
which we show a View() of in figure 2.2.

Listing 2.1 Reading the UCI car data

Command to read from a file or URL
and store the result in a new data
frame object called uciCar Filename or URL to

get the data from Specifies the column or field
separator as a comma

Tells R to expect a header line that
defines the data column names

Tells R to convert string values to
factors. This is the default
behavior, so we are just using this
argument to document intent.Examines the data with R’s

built-in table viewer

Figure 2.2 Car data viewed as a table
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2

32 CHAPTER 2 Starting with R and data
The read.table() command is powerful and flexible; it can accept many different
types of data separators (commas, tabs, spaces, pipes, and others), and it has many
options for controlling quoting and escaping data. read.table() can read from local
files or remote URLs. If a resource name ends with the .gz suffix, read.table()
assumes the file has been compressed in gzip style and will automatically decompress
it while reading.

EXAMINING OUR DATA

Once we’ve loaded the data into R, we’ll want to examine it. These are the commands
to always try first:

 class()—Tells you what kind of R object you have. In our case, class(uciCar)
tells us the object uciCar is of class data.frame. Class is an object-oriented con-
cept, which describes how an object is going to behave. R also has a (less useful)
typeof() command, which reveals how the object's storage is implemented.

 dim()—For data frames, this command shows how many rows and columns are
in the data.

 head()—Shows the top few rows (or “head") of the data. Example: head(uciCar).
 help()—Provides the documentation for a class. In particular, try help(class

(uciCar)).
 str()—Gives you the structure for an object. Try str(uciCar).
 summary()—Provides a summary of almost any R object. summary(uciCar)

shows us a lot about the distribution of the UCI car data.
 print()—Prints all the data. Note: for large datasets, this can take a very long

time and is something you want to avoid.
 View()—Displays the data in a simple spreadsheet-like grid viewer.

MANY R FUNCTIONS ARE GENERIC Many R functions are generic in that they
work much the same on many data types, or even object-oriented in that they
pick a correct behavior depending on the runtime class of the object they are
working with. We suggest that if you see a function used in an example on
one object or class, try it on others. Common R functions that can be used on
many different classes and types include length(), print(), saveRDS(),
str(), and summary(). The R runtime is very robust and rewards experimen-
tation. Most common errors are caught and cannot corrupt your data or
crash the R interpreter. So please, experiment!

We show the results of a few of these steps next (R results are shown prefixed by “##”
after each step).

class(uciCar)
[1] "data.frame"
summary(uciCar)
buying maint doors

Listing 2.2 Exploring the car data

The loaded object uciCar
is of type data.frame.
Licensed to Ajit de Silva <agdesilva@gmail.com>

33Working with data from files
high :432 high :432 2 :432
low :432 low :432 3 :432
med :432 med :432 4 :432
vhigh:432 vhigh:432 5more:432
##
persons lug_boot safety
2 :576 big :576 high:576
4 :576 med :576 low :576
more:576 small:576 med :576
##
rating
acc : 384
good : 69
unacc:1210
vgood: 65

dim(uciCar)
[1] 1728 7

The summary() command shows us the distribution of each variable in the dataset.
For example, we know each car in the dataset was declared to seat 2, 4, or more per-
sons, and we know there were 576 two-seater cars in the dataset. Already we’ve learned
a lot about our data, without having to spend a lot of time manually building pivot
tables as we would have to in a spreadsheet.

WORKING WITH OTHER DATA FORMATS

.csv is not the only common data file format you’ll encounter. Other formats include

.tsv (tab-separated values), pipe-separated (vertical bar) files, Microsoft Excel work-
books, JSON data, and XML. R’s built-in read.table() command can be made to
read most separated value formats. Many of the deeper data formats have correspond-
ing R packages:

 CSV/TSV/FWF—The package reader (http://readr.tidyverse.org) supplies tools
for reading “separated data” such as comma-separated values (CSV), tab-
separated values (TSV), and fixed-width files (FWF).

 SQL—https://CRAN.R-project.org/package=DBI
 XLS/XLSX—http://readxl.tidyverse.org
 .RData/.RDS—R has binary data formats (which can avoid complications of

parsing, quoting, escaping, and loss of precision in reading and writing
numeric or floating-point data as text). The .RData format is for saving sets of
objects and object names, and is used through the save()/load() commands.
The .RDS format is for saving single objects (without saving the original object
name) and is used through the saveRDS()/readRDS() commands. For ad hoc
work, .RData is more convenient (as it can save the entire R workspace), but for
reusable work, the .RDS format is to be preferred as it makes saving and restor-
ing a bit more explicit. To save multiple objects in .RDS format, we suggest
using a named list.

 JSON—https://CRAN.R-project.org/package=rjson

[1] is merely an output sequence marker. The actual
information is this: uciCar has 1728 rows and 7
columns. Always try to confirm you got a good parse by
at least checking that the number of rows is exactly one
fewer than the number of lines of text in the original
file. The difference of one is because the column header
counts as a line of text, but not as a data row.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://readr.tidyverse.org
https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=rjson

34 CHAPTER 2 Starting with R and data
 XML—https://CRAN.R-project.org/package=XML
 MongoDB—https://CRAN.R-project.org/package=mongolite

2.2.2 Using R with less-structured data

Data isn’t always available in a ready-to-go format. Data curators often stop just short
of producing a ready-to-go machine-readable format. The German bank credit dataset
discussed in chapter 1 is an example of this. This data is stored as tabular data without
headers; it uses a cryptic coding of values that requires the dataset’s accompanying
documentation to untangle. This isn’t uncommon and is often due to habits or limita-
tions of other tools that commonly work with the data. Instead of reformatting the
data before we bring it into R, as we did in the last example, we’ll now show how to
reformat the data using R. This is a much better practice, as we can save and reuse the
R commands needed to prepare the data.

Details of the German bank credit dataset can be found at http://mng.bz/mZbu,
and we have included a copy of this data in the directory PDSwR2/Statlog. We’ll show
how to transform this data into something meaningful using R. After these steps, you
can perform the analysis already demonstrated in chapter 1. As we can see in our file
excerpt, the data appears to initially be an incomprehensible block of codes:

A11 6 A34 A43 1169 A65 A75 4 A93 A101 4 ...
A12 48 A32 A43 5951 A61 A73 2 A92 A101 2 ...
A14 12 A34 A46 2096 A61 A74 2 A93 A101 3 ...

...

TRANSFORMING DATA IN R
Data often needs a bit of transformation before it makes sense. In order to decrypt
troublesome data, you need what’s called the schema documentation or a data dictionary.
In this case, the included dataset description says the data is 20 input columns fol-
lowed by one result column. In this example, there’s no header in the data file. The
column definitions and the meaning of the cryptic A-* codes are all in the accompany-
ing data documentation. Let’s start by loading the raw data into R. Start a copy of R or
RStudio and type in the commands in the following listing.

setwd("PDSwR2/Statlog")
d <- read.table('german.data', sep=' ',

stringsAsFactors = FALSE, header = FALSE)

As there was no column header in the file, our data.frame d will have useless column
names of the form V#. We can change the column names to something meaningful
with the c() command, as shown in the following listing.

d <- read.table('german.data',
sep = " ",
stringsAsFactors = FALSE, header = FALSE)

Listing 2.3 Loading the credit dataset

Listing 2.4 Setting column names

Replace this path with the actual
path where you have saved PDSwR2.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/mZbu
https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=mongolite

35Working with data from files
colnames(d) <- c('Status_of_existing_checking_account', 'Duration_in_month',
'Credit_history', 'Purpose', 'Credit_amount', 'Savings_accou

nt_bonds',
'Present_employment_since',
'Installment_rate_in_percentage_of_disposable_income',
'Personal_status_and_sex', 'Other_debtors_guarantors',
'Present_residence_since', 'Property', 'Age_in_years',
'Other_installment_plans', 'Housing',
'Number_of_existing_credits_at_this_bank', 'Job',
'Number_of_people_being_liable_to_provide_maintenance_for',
'Telephone', 'foreign_worker', 'Good_Loan')

str(d)
'data.frame': 1000 obs. of 21 variables:
$ Status_of_existing_checking_account : chr "A11" "A

12" "A14" "A11" ...
$ Duration_in_month : int 6 48 12

42 24 36 24 36 12 30 ...
$ Credit_history : chr "A34" "A

32" "A34" "A32" ...
$ Purpose : chr "A43" "A

43" "A46" "A42" ...
$ Credit_amount : int 1169 595

1 2096 7882 4870 9055 2835 6948 3059 5234 ...
$ Savings_account_bonds : chr "A65" "A

61" "A61" "A61" ...
$ Present_employment_since : chr "A75" "A

73" "A74" "A74" ...
$ Installment_rate_in_percentage_of_disposable_income : int 4 2 2 2

3 2 3 2 2 4 ...
$ Personal_status_and_sex : chr "A93" "A

92" "A93" "A93" ...
$ Other_debtors_guarantors : chr "A101" "

A101" "A101" "A103" ...
$ Present_residence_since : int 4 2 3 4

4 4 4 2 4 2 ...
$ Property : chr "A121" "

A121" "A121" "A122" ...
$ Age_in_years : int 67 22 49

45 53 35 53 35 61 28 ...
$ Other_installment_plans : chr "A143" "

A143" "A143" "A143" ...
$ Housing : chr "A152" "

A152" "A152" "A153" ...
$ Number_of_existing_credits_at_this_bank : int 2 1 1 1

2 1 1 1 1 2 ...
$ Job : chr "A173" "

A173" "A172" "A173" ...
$ Number_of_people_being_liable_to_provide_maintenance_for: int 1 1 2 2

2 2 1 1 1 1 ...
$ Telephone : chr "A192" "

A191" "A191" "A191" ...
$ foreign_worker : chr "A201" "

A201" "A201" "A201" ...
$ Good_Loan : int 1 2 1 1

2 1 1 1 1 2 ...
Licensed to Ajit de Silva <agdesilva@gmail.com>

36 CHAPTER 2 Starting with R and data

Prefer
c

na
c
in
The c() command is R’s method to construct a vector.12 We copied the column names
directly from the dataset documentation. By assigning our vector of names into the
data frame’s colnames(), we’ve reset the data frame’s column names to something
sensible.

ASSIGNING TO ACCESSORS In R the data frame class has a number of data
accessors such as colnames() and names(). Many of these data accessors can
be assigned to, as we saw when we assigned new names in listing 2.3 with col-
names(d) <- c('Status_of_existing_checking_account', ...). This abil-
ity to assign into accessors is a bit unusual, but a very useful feature of R.

The data documentation further tells us the column names, and also has a code dic-
tionary of the meanings of all of the cryptic A-* codes. For example, it says in column 4
(now called Purpose, meaning the purpose of the loan) that the code A40 is a “new car
loan,” A41 is a “used car loan,” and so on. We can use R’s list-mapping capabilities to
remap the values to more descriptive terms. The file PDSwR2/Statlog/GCD-
Steps.Rmd is an R Markdown that includes all the steps up through now and also
remaps the values from the A# forms to clearer names. The file first implements the
dataset documentation’s value mapping as an R named vector. This allows us to
change the illegible names (such as A11) into somewhat meaningful descriptions
(such as ... < 0 DM, which itself is presumably shorthand for “zero or fewer deutsche
marks reported”).13 The first few lines of this map definition look like the following:

mapping <- c('A11' = '... < 0 DM',
'A12' = '0 <= ... < 200 DM',
'A13' = '... >= 200 DM / salary assignments for at least 1 year',
...

)

Note: In building a named map, you must use the argument binding symbol =, and
not any of the assignment operators such as <-.

With the mapping list defined, we can then use the following for loop to convert
values in each column that was of type character from the original cryptic A-* codes
into short level descriptions taken directly from the data documentation. We, of
course, skip any such transform for columns that contain numeric data.

source("mapping.R")
for(ci in colnames(d)) {

if(is.character(d[[ci]])) {
d[[ci]] <- as.factor(mapping[d[[ci]]])

}
}

12 c() also concatenates lists or vectors, without introducing additional nesting.
13 German currency at the time of data collection was the deutsche mark (DM).

Listing 2.5 Transforming the car data

This file can be found at https://github.com/
WinVector/PDSwR2/blob/master/Statlog/mapping.R. using

olumn
mes to
olumn
dices.

The [[]] notation is using the fact that data.frames are named lists of
columns. So we are working on each column in turn. Notice the mapping

lookup is vectorized: it is applied to all elements in the column in one step.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/Statlog/mapping.R
https://github.com/WinVector/PDSwR2/blob/master/Statlog/mapping.R

37Working with relational databases
As we mentioned, the complete set of column preparations for this is in the R Mark-
down file PDSwR2/Statlog/GCDSteps.Rmd. We encourage readers to examine this
file and try all of these steps themselves. For convenience, the prepared data is saved
in PDSwR2/Statlog/creditdata.RDS.

EXAMINING OUR NEW DATA

We can now easily examine the purpose of the first three loans with the command
print(d[1:3,'Purpose']). We can look at the distribution of loan purpose with
summary(d$Purpose). This summary is why we converted the values into factors, as
summary() does not report much for string/character types, though we could also use
table(d$Purpose, useNA = "always") directly on character types. We can also start
to investigate the relation of loan type to loan outcome, as shown in the following
listing.

setwd("PDSwR2/Statlog")
d <- readRDS("creditdata.RDS")

table(d$Purpose, d$Good_Loan)

BadLoan GoodLoan
business 34 63
car (new) 89 145
car (used) 17 86
domestic appliances 4 8
education 22 28
furniture/equipment 58 123
others 5 7
radio/television 62 218
repairs 8 14
retraining 1 8

From the output, we can see we have successfully loaded the data from the file. How-
ever, as mentioned, a lot of data is in other sources such as Excel spreadsheets (with the
readxl package, these can be treated much like the way one works with files) and in
databases (including big data systems such as Apache Spark). We will next discuss work-
ing with relational databases through the SQL query language and the DBI package.

2.3 Working with relational databases
In many production environments, the data you want lives in a relational or SQL data-
base, not in files. Public data is often in files (as they are easier to share), but your
most important client data is often in databases. Relational databases scale easily to
hundreds of millions of records and supply important production features such as
parallelism, consistency, transactions, logging, and audits. Relational databases are
designed to support online transaction processing (OLTP), so they’re likely where
transactions you need to know about were actually produced.

Listing 2.6 Summary of Good_Loan and Purpose

Sets the working directory. You will
have to replace PDSwR2/Statlog
with the actual full path to Statlog
on your machine.

Reads the prepared
statlog data
Licensed to Ajit de Silva <agdesilva@gmail.com>

38 CHAPTER 2 Starting with R and data
Often you can export the data into a structured file and use the methods from our
previous sections to then transfer the data into R. But this is generally not the right
way to do things. Exporting from databases to files is often unreliable and idiosyn-
cratic due to loss of schema information, escaping, quoting, and character-encoding
issues. The best way to work with data found in databases is to connect R directly to
the database, which is what we’ll demonstrate in this section.

As a step of the demonstration, we’ll first show how to load data into a database. Rela-
tional databases are a good place for transformations such as joins or sampling (though
packages such as sqldf and dplyr give R similar capabilities), which will be the topic of
chapter 5. We will start working with data in a database for our next example.

2.3.1 A production-size example

For our production-size example, we’ll use the 2016 United States Census American
Community Survey (ACS) Public Use Microdata Sample (PUMS) data, often called
“ACS PUMS.” We have documentation on how to download and prepare a sample of
this data in the dictionary PDSwR2/PUMS/download. We also have a ready-to-work-with
recoded sample in the R-data file PDSwR2/PUMS/PUMSsample.RDS, allowing you to
skip the initial download and processing steps.

The PUMS data is ideal for setting up somewhat realistic data science scenarios:
summarizing data and building models predicting one column of the data from other
columns. We will return to this dataset later in this book.

The PUMS is a remarkable set of data involving around 3 million individuals and
1.5 million households. It is one of the few shared United States Census datasets that
deals with individual people and households (instead of per-region summaries). This
is important, as most common data science tasks are designed to use detailed per-
individual records, so this is public data that is most like the private data a data scien-
tist would work with. Each row contains over 200 facts about each individual or house-
hold (income, employment, education, number of rooms, and so on). The data has
household cross-reference IDs so individuals can be joined to the household they’re
in. The size of the dataset is interesting: a few gigabytes when compressed. So it’s small
enough to store on a good network or thumb drive, but larger than is convenient to
work with on a laptop with R in memory (which is more comfortable when working in
the range of hundreds of thousands of rows).

SUMMARIES OR MARGINALS Moving from individual-oriented data to summa-
ries or marginals is an easy process called summary statistics or basic analytics.
Converting the other way is often not possible, or at best a deep statistical
problem (beyond the scope of basic data science). Most United States Census
data is shared as regional summaries, so it often requires sophisticated statisti-
cal imputation methodology to generate useful individual-level predictive
models. The PUMS data is very useful because it is individually oriented.
Licensed to Ajit de Silva <agdesilva@gmail.com>

39Working with relational databases
Tens of millions of rows is a sweet spot size for relational database or SQL-assisted
analysis on a single machine. We’re not yet forced to move into a database cluster or a
Apache Spark cluster to do our work.

CURATING THE DATA

A hard rule of science is that you must be able to reproduce your results. At the very
least, you should be able to repeat your own successful work through your recorded
steps. Everything must either have directions on how to produce it or clear documenta-
tion on where it came from. We call this the “no alien artifacts” discipline. For example,
when we said we’re using PUMS American Community Survey data, this statement isn’t
precise enough for anybody to know what data we specifically mean. Our actual note-
book entry (which we keep online, so we can search it) on the PUMS data is shown in
the next listing.

Data downloaded 4/21/2018 from:Reduce Zoom

https://www.census.gov/data/developers/data-sets/acs-1year.2016.html
https://www.census.gov/programs-surveys/acs/

➥technical-documentation/pums.html
http://www2.census.gov/programs-

surveys/acs/tech_docs/pums/data_dict/PUMSDataDict16.txt
https://www2.census.gov/programs-surveys/acs/data/pums/2016/1-Year/

First in a `bash` shell perform the following steps:

wget https://www2.census.gov/programs-surveys/acs/data/

➥pums/2016/1-Year/csv_hus.zip
md5 csv_hus.zip

MD5 (csv_hus.zip) = c81d4b96a95d573c1b10fc7f230d5f7a
wget https://www2.census.gov/programs-surveys/acs/data/pums/2016/1-

Year/csv_pus.zip
md5 csv_pus.zip
MD5 (csv_pus.zip) = 06142320c3865620b0630d74d74181db
wget http://www2.census.gov/programs-

surveys/acs/tech_docs/pums/data_dict/PUMSDataDict16.txt
md5 PUMSDataDict16.txt
MD5 (PUMSDataDict16.txt) = 56b4e8fcc7596cc8b69c9e878f2e699aunzip csv_hus.zip

Listing 2.7 PUMS data provenance documentation
(PDSwR2/PUMS/download/LoadPUMS.Rmd)

When we downloaded the data
Where we found the data documentation. This

is important to record, as many data files don’t
contain links back to the documentation.

The exact steps we took

Cryptographic hashes of the file contents we downloaded. These are very
short summaries (called hashes) that are highly unlikely to have the same
value for different files. These summaries can later help us determine if
another researcher in our organization is using the same data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

40 CHAPTER 2 Starting with R and data
KEEP NOTES A big part of being a data scientist is being able to defend your
results and repeat your work. We strongly advise keeping local copies of data
and keeping a notebook. Notice that in listing 2.7 we not only show how and
when we got the data, we also show what cryptographic hash the download
had at the time. This is important to help ensure reproducible results and
also to diagnose if and where something has changed. We also strongly advise
keeping all of your scripts and code under version control, as we'll discuss in
chapter 11. You absolutely need to be able to answer exactly what code and
which data were used to build results you presented last week.

A particularly important form of note maintenance is using Git source con-
trol, which we will discuss in chapter 11.

STARTING WITH THE PUMS DATA

It is important to at least skim the downloaded PUMS data documentation: PDS-
wR2/PUMS/ACS2016_PUMS_README.pdf (a file that was in the downloaded zip
container) and PDSwR2/PUMS/PUMSDataDict16.txt (one of the files we down-
loaded). Three things stand out: the data is distributed as comma-separated struc-
tured files with column headers, the values are coded as indecipherable integers
(much like our earlier Statlog example), and the individuals are weighted to repre-
sent varying numbers of additional households. The R Markdown14 script PDS-
wR2/PUMS/download/LoadPUMS.Rmd reads the CSV files (from a compressed
intermediate file), recodes the values to more-meaningful strings, and takes a pseudo-
random sample of the data with probabilities proportional to the specified household
sampling weights. The proportional sampling both cuts the file size down to around
10 megabytes (a size easy to be distributed through GitHub) and builds a sample that
can be used in a statistically correct manner, without further reference to the Census
weights.

SAMPLING When we say “pseudo-random sample,” we simply mean a sample
built from R’s pseudo-random number generator. R’s random number gener-
ator is called “pseudo-random” as it is actually a deterministic sequence of
choices that are hoped to be hard to predict and thus behave much like a
truly random unpredictable sample. Pseudo-random samples are good to
work with as they are repeatable: start the pseudo-random generator with the
same seed, and you get the same sequences of choices. Prior to the wide-
spread availability of digital computers, statisticians used to achieve this
repeatability by using pre-prepared tables such as Rand Corporation’s 1955
book A Million Random Digits with 100,000 Normal Deviates. The intent is that a
random sample should have properties very similar to the total population.
The more common the feature you are working with, the more often this is in
fact true.

14 We will discuss R Markdown later in this book. It is an important format for storing both R code and text doc-
umentation together.
Licensed to Ajit de Silva <agdesilva@gmail.com>

41Working with relational databases
Note: Some care must be taken around the repeatability of pseudo-random
experiments. A number of things can interfere with the exact reproduction of
pseudo-random samples and results. For example, using a different order of
operation can produce different results (especially in the case of parallel algo-
rithms), and R itself changed details of its pseudo-random number when it
moved from version 3.5.* (used in the preparation of this book) to 3.6.* (the
next version of R). As with things like floating-point representations, one
must sometimes accept equivalent results in place of exactly identical results.

Structured data at a scale of millions of rows is best handled in a database, though R
and the data.table package also work well at this scale. We will simulate working with
data that lives in a database by copying our PUMS sample into an in-memory database,
as shown next.

library("DBI")
library("dplyr")
library("rquery")

dlist <- readRDS("PUMSsample.RDS")
db <- dbConnect(RSQLite::SQLite(), ":memory:")
dbWriteTable(db, "dpus", as.data.frame(dlist$ss16pus))
dbWriteTable(db, "dhus", as.data.frame(dlist$ss16hus))
rm(list = "dlist")

dbGetQuery(db, "SELECT * FROM dpus LIMIT 5")

dpus <- tbl(db, "dpus")
dhus <- tbl(db, "dhus")

print(dpus)
glimpse(dpus)

View(rsummary(db, "dpus"))

Listing 2.8 Loading data into R from a relational database

Attaches some packages we wish to
use commands and functions from.

Loads the data from the compressed RDS disk
format into R memory. Note: You will need to
change the path PUMSsample to where you
have saved the contents of PDSwR2/PUMS.

Connects to a new RSQLite in-memory database.
We will use RSQLite for our examples. In practice

you would connect to a preexisting database, such
as PostgreSQL or Spark, with preexisting tables.

Copies the data from the
in-memory structure dlist

into the database

Uses the SQL query language
for a quick look at up to five
rows of our data

Removes our local copy of the data, as
we are simulating having found the
data in the database

Builds dplyr handles that refer
to the remote database data

Uses dplyr to
examine and work
with the remote data

Uses the rquery package
to get a summary of the
remote data
Licensed to Ajit de Silva <agdesilva@gmail.com>

42 CHAPTER 2 Starting with R and data
In this listing, we have deliberately not shown any of the results the commands pro-
duce, as we would like you to try this example yourself.

CODE EXAMPLES All code examples from this book are available in the direc-
tory PDSwR2/CodeExamples. Taking code from this directory can be easier
than retyping it and more reliable than copying and pasting from an elec-
tronic copy of the book (avoiding issues of page breaks, character encodings,
and formatting glitches such as smart quotes).

Note that this data, while small, is out of the range where using spreadsheets is conve-
nient. Using dim(dlist$ss16hus) and dim(dlist$ss16pus) (before the rm() step, or
after reloading the data), we see that our household sample has 50,000 rows and 149
columns, and the people sample has 109,696 rows and 203 columns. All columns and
value codes are defined in the Census documentation. Such documentation is critical,
and we supply links to the documentation in PDSwR2/PUMS.

EXAMINING AND CONDITIONING THE PUMS DATA

The point of loading data into R is to facilitate modeling and analysis. Data analysts
should always have their “hands in the data” and always take a quick look at their data
after loading it. As our example, we’ll demonstrate how to perform a quick examina-
tion of some of the PUMS columns or fields.

Each row of PUMS data represents a single anonymized person or household. Per-
sonal data recorded includes occupation, level of education, personal income, and
many other demographics variables. We loaded the data in listing 2.8, but before we
continue, let’s discuss a few of the columns found in the dataset and its documentation:

 Age—An integer found in column AGEP
 Employment class—Examples: for-profit company, nonprofit company, and so on,

found in column COW
 Education level—Examples: no high school diploma, high school, college, and

so on, found in column SCHL
 Total person’s income—Found in column PINCP
 Sex of worker—Found in column SEX

We will make our example problem to relate income (represented in US dollars in the
field) to these variables. This is a typical predictive modeling task: relating some vari-
ables we know the values of (age, employment, and so on) to a variable we wish to
know (in this case, income). This task is an example of supervised learning, meaning
we use a dataset where both the observable variables (denoted “independent vari-
ables” in statistics) and the unobserved outcome (or the “dependent variable”) are
both available at the same time. You usually get such labeled data by buying data,
employing annotators, or using older data where you have had time to observe the
desired outcome.
Licensed to Ajit de Silva <agdesilva@gmail.com>

43Working with relational databases
DON’T BE TOO PROUD TO SAMPLE Many data scientists spend too much time
adapting algorithms to work directly with big data. Often this is wasted effort,
as for many model types you would get almost exactly the same results on a
reasonably sized data sample. You only need to work with “all of your data”
when what you’re modeling isn’t well served by sampling, such as when char-
acterizing rare events or performing linkage calculations over social networks.

We don’t want to spend too much on time on the artificial aspects of the example
problem; our goal is to illustrate modeling and data-handling procedures. Conclu-
sions are very dependent on choices of data conditioning (what subset of the data you
use) and data coding (how you map records to informative symbols). This is why
empirical scientific papers have a mandatory “materials and methods” section describ-
ing how data was chosen and prepared. Our data treatment is to select a subset of “typ-
ical full-time workers” by restricting the subset to data that meets all of the following
conditions:

 Workers self-described as full-time employees
 Workers reporting at least 30 hours a week of activity
 Workers 18–65 years of age
 Workers with an annual income between $1,000 and $250,000.

The following listing shows the code to limit to our desired subset of the data. Con-
tinuing with our data from listing 2.8, we work as shown in listing 2.9. As our data is
small (just a sample from PUMS), we use the DBI package to bring the data into R
where we can work with it.

dpus <- dbReadTable(db, "dpus")

dpus <- dpus[, c("AGEP", "COW", "ESR", "PERNP",
"PINCP","SCHL", "SEX", "WKHP")]

for(ci in c("AGEP", "PERNP", "PINCP", "WKHP")) {
dpus[[ci]] <- as.numeric(dpus[[ci]])

}

dpus$COW <- strtrim(dpus$COW, 50)

str(dpus)

Listing 2.9 Loading data from a database

Copies data from the database into R memory.
This assumes we are continuing from the
previous example, so the packages we have
attached are still available and the database
handle db is still valid.

All the columns in this copy of PUMS data are stored as
the character type to preserve features such as leading

zeros from the original data. Here we are converting
columns we wish to treat as numeric to the numeric type.

Non-numeric values, often missing entries, get coded
with the symbol NA, which stands for not available.

Selects a subset of columns we want
to work with. Restricting columns is
not required, but improves legibility
of later printing.

The PUMS level names are very long (which is one of
the reasons these columns are distributed as
integers), so for this dataset that has level names
instead of level codes, we are shortening the
employment codes to no more than 50 characters.

Looks at the first few rows of
data in a column orientation.
Licensed to Ajit de Silva <agdesilva@gmail.com>

44 CHAPTER 2 Starting with R and data
WATCH OUT FOR NAS R’s representation for blank or missing data is NA.
Unfortunately, a lot of R commands quietly skip NAs without warning. The
command table(dpus$COW, useNA = 'always') will show NAs much like
summary(dpus$COW) does.

We have now performed a few standard data analysis steps: loading the data, repro-
cessing a few columns, and taking a look at the data. These steps have been per-
formed using what we call “base R,” which means using features and functions coming
from the R language itself and the basic packages that are automatically attached
(such as base, stats, and utils). R is well suited to data processing tasks, as this is
what most users come to R to do. There are extension packages such as dplyr that
have their own data processing notation and can perform many steps directly against
data in a database in addition to being able to work on data held in memory. We share
examples showing how to perform the same data processing steps using base R in the
R Markdown example PDSwR2/PUMS/PUMS1.Rmd, or using dplyr in PDS-
wR2/PUMS/PUMS1_dplyr.Rmd, or using the advanced query generation package
rquery in PDSwR2/PUMS/PUMS1_rquery.Rmd.

We are now ready to work our notional problem in listing 2.10: characterizing
income with relation to other facts known about individuals. We will start with some
domain-specific steps: we will remap some level names and convert the levels to fac-
tors, each with a chosen reference level. Factors are strings taken from a specified set
(much like an enumerate type in other languages). Factors also have one special level
called the reference level ; it is convention that each level is considered to be a difference
from the reference level. For example, we will set all less-than-bachelors-degree educa-
tion levels to a new level called No Advanced Degree and make No Advanced Degree our
reference level. Some R modeling functions will then score education levels such as
Master’s Degree as how they differ from the reference level No Advanced Degree.
This will be made clear in our example.

target_emp_levs <- c(
"Employee of a private for-profit company or busine",
"Employee of a private not-for-profit, tax-exempt, ",
"Federal government employee",
"Local government employee (city, county, etc.)",
"Self-employed in own incorporated business, profes",
"Self-employed in own not incorporated business, pr",
"State government employee")

complete <- complete.cases(dpus)

Listing 2.10 Remapping values and selecting rows from data

Defines a vector of
employment
definitions we
consider “standard”

Builds a new logical vector indicating which rows have valid values in all of our
columns of interest. In real applications, dealing with missing values is important
and cannot always be handled by skipping incomplete rows. We will return to the

issue of properly dealing with missing values when we discuss managing data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

45Working with relational databases

t

/

stdworker <- with(dpus,
(PINCP>1000) &
(ESR=="Civilian employed, at work") &
(PINCP<=250000) &
(PERNP>1000) & (PERNP<=250000) &
(WKHP>=30) &
(AGEP>=18) & (AGEP<=65) &
(COW %in% target_emp_levs))

dpus <- dpus[complete & stdworker, , drop = FALSE]

no_advanced_degree <- is.na(dpus$SCHL) |
(!(dpus$SCHL %in% c("Associate's degree",

"Bachelor's degree",
"Doctorate degree",
"Master's degree",
"Professional degree beyond a bachelor's degree")))

dpus$SCHL[no_advanced_degree] <- "No Advanced Degree"

dpus$SCHL <- relevel(factor(dpus$SCHL),
"No Advanced Degree")

dpus$COW <- relevel(factor(dpus$COW),
target_emp_levs[[1]])

dpus$ESR <- relevel(factor(dpus$ESR),
"Civilian employed, at work")

dpus$SEX <- relevel(factor(dpus$SEX),
"Male")

saveRDS(dpus, "dpus_std_employee.RDS")

summary(dpus)

A BIT MORE ON FACTOR CODING

R’s factor type encodes strings as integer indices into a known set of possible strings.
For example, our SCHL column is represented in R as follows:

levels(dpus$SCHL)
[1] "No Advanced Degree" "Associate's degree"

[3] "Bachelor's degree" "Doctorate degree"
[5] "Master's degree" "Professional degree

beyond a bachelor's degree"

Builds a new logical vector indicating which workers we consider typical full-
time employees. All of these column names are the ones we discussed earlier.
The results of any analysis will be heavily influenced by this definition, so, in a
real task, we would spend a lot of time researching the choices in this step. It
literally controls who and what we are studying. Notice that to keep things
simple and homogeneous, we restricted this study to civilians, which would be
an unacceptable limitation in a complete work.

Restricts to only rows or
examples that meet our
definition of a typical
worker

Recodes education, merging the
less-than-bachelor’s-degree
levels to the single level No
Advanced Degree

Converts our string-valued columns
to factors, picking the reference
level with the relevel() function

Save this data to a file so we can use i
in later examples. This file is also
already available at the path PDSwR2
PUMS/dpus_std_employee.RDS.

Takes a look at our data. One of the advantages of factors is that summary()
builds up useful counts for them. However, it was best to delay having string
codes as factors until after we finished with remapping level codes.

Shows the possible
levels for SCHL
Licensed to Ajit de Silva <agdesilva@gmail.com>

46 CHAPTER 2 Starting with R and data

Show
the fir

leve
repres

as

Show
fir

string v
for
head(dpus$SCHL)

[1] Associate's degree Associate's degree Associate's degree No Advanced D

egree Doctorate degree Associate's degree

6 Levels: No Advanced Degree Associate's degree Bachelor's degree Doctor

ate degree ... Professional degree beyond a bachelor's degree

str(dpus$SCHL)

Factor w/ 6 levels "No Advanced Degree",..: 2 2 2 1 4 2 1 5 1 1 ...

Non-statisticians are often surprised that you can use non-numeric columns (such as
strings or factors) as inputs to or variables in models. This can be accomplished a num-
ber of ways, and the most common one is a method called introducing indicators or
dummy variables. In R this encoding is often automatic and unseen. In other systems
(such as Python’s scikit-learn), the analyst must specify an encoding (through a method
name such as “one-hot”). In this book, we will use this encoding and additional, more
sophisticated encodings from the vtreat package. The SCHL column can be explicitly
converted into basic dummy variables as we show next. This recoding strategy will be
used both implicitly and explicitly in the book, so we will demonstrate it here:

d <- cbind(
data.frame(SCHL = as.character(dpus$SCHL),

stringsAsFactors = FALSE),
 model.matrix(~SCHL, dpus)

)
d$'(Intercept)' <- NULL
str(d)

'data.frame': 41305 obs. of 6 variables:
$ SCHL : chr "Associate's d

egree" "Associate's degree" "Associate's degree" "No Advanced Degree" ..
.

$ SCHLAssociate's degree : num 1 1 1 0 0 1 0
0 0 0 ...

$ SCHLBachelor's degree : num 0 0 0 0 0 0 0
0 0 0 ...

$ SCHLDoctorate degree : num 0 0 0 0 1 0 0
0 0 0 ...

$ SCHLMaster's degree : num 0 0 0 0 0 0 0
1 0 0 ...

$ SCHLProfessional degree beyond a bachelor's degree: num 0 0 0 0 0 0 0
0 0 0 ...

s how
st few
ls are
ented
codes

s the
st few
alues
 SCHL

The cbind operator combines two
data frames by columns, or each
row is built by matching columns
from rows in each data frame.

Builds a data.frame with
the SCHL column recoded

as character strings instead
of as a factor

Builds a matrix with
dummy variables

generated from the
SCHL factor column

Removes a column named "(Intercept)" from the
data.frame, as it is a side effect of model.matrix
that we are not interested in at this time.

Shows the structure that presents the original SCHL
string form along with the indicators. str() presents

the first few rows in transpose format (flipped so
rows are now up and down and columns are across).
Licensed to Ajit de Silva <agdesilva@gmail.com>

47Working with relational databases
Notice that the reference level No Advanced Degree did not get a column, and new
indicator columns have a 1, which reveals which value is in the original SCHL column.
The No Advanced Degree columns have all-zero dummies, so we can also tell which
examples had that value. This coding can be read as “all-zero rows are the base or nor-
mal case and other rows differ from the all-zero case by having one indicator on
(showing which case we are talking about).” Notice that this encoding contains all the
information of the original string form, but all columns are now numeric (which is a
format many machine learning and modeling procedures require). This format is
implicitly used in many R machine learning and modeling functions, and the user
may not even be aware of the conversion.

WORKING WITH THE PUMS DATA

At this point, we are ready to practice working on our problem with data. As we have
seen, summary(dpus) already gives us information about the distribution of every vari-
able in our dataset. We can also look at relations between variables with one of the tab-
ulating commands: tapply() or table(). For example, to see a count of examples
simultaneously broken down by level of schooling and sex, we could type in the com-
mand table(schooling = dpus$SCHL, sex = dpus$SEX). To get the mean income
broken down the same way, we could use the command tapply(dpus$PINCP,
list(dpus$SCHL, dpus$SEX), FUN = mean).

table(schooling = dpus$SCHL, sex = dpus$SEX)

sex
schooling Male Female
No Advanced Degree 13178 9350
Associate's degree 1796 2088
Bachelor's degree 4927 4519
Doctorate degree 361 269
Master's degree 1792 2225
Professional degree beyond a bachelor's degree 421 379

tapply(
dpus$PINCP,
list(dpus$SCHL, dpus$SEX),
FUN = mean
)

Male Female
No Advanced Degree 44304.21 33117.37
Associate's degree 56971.93 42002.06
Bachelor's degree 76111.84 57260.44
Doctorate degree 104943.33 89336.99
Master's degree 94663.41 69104.54
Professional degree beyond a bachelor's degree 111047.26 92071.56

Uses the table command to
count how often each pair
of SCHL and SEX occurs

Uses tapply to tally how often
each pair of SCHL of SEX occurs

This argument is the vector of data we are
aggregating or summarizing in the tapply.

This argument list specifies how we are
grouping the data, in this case
simultaneously by SCHL and SEX.

This argument specifies how we
are aggregating values; in this

case, we are taking the mean or
average using the mean function.
Licensed to Ajit de Silva <agdesilva@gmail.com>

48 CHAPTER 2 Starting with R and data
The same calculation in dplyr idiom is as follows:

library("dplyr")

dpus %>%
group_by(., SCHL, SEX) %>%
summarize(.,

count = n(),
mean_income = mean(PINCP)) %>%

ungroup(.) %>%
arrange(., SCHL, SEX)

A tibble: 12 x 4
SCHL SEX count mean_income
<fct> <fct> <int> <dbl>
1 No Advanced Degree Male 13178 44304.
2 No Advanced Degree Female 9350 33117.
3 Associate's degree Male 1796 56972.
4 Associate's degree Female 2088 42002.
5 Bachelor's degree Male 4927 76112.
6 Bachelor's degree Female 4519 57260.
7 Doctorate degree Male 361 104943.
8 Doctorate degree Female 269 89337.
9 Master's degree Male 1792 94663.
10 Master's degree Female 2225 69105.
11 Professional degree beyond a bachelor's degree Male 421 111047.
12 Professional degree beyond a bachelor's degree Female 379 92072.

dplyr pipelines express tasks as sequences of basic data transformations. Also, notice
that the tapply() result was in a so-called wide format (data cells keyed by row and
column), and the dplyr output is in a tall format (data cells keyed by key columns in
each row).

We can even graph relations, as shown in listing 2.11. Finally, if we want a model
estimating income as a joint function of all of our other variables simultaneously, we
can try a regression, which is the topic of chapter 8. Converting between such formats
is one of the key topics covered in chapter 5.

WVPlots::ScatterHist(
dpus, "AGEP", "PINCP",
"Expected income (PINCP) as function age (AGEP)",
smoothmethod = "lm",
point_alpha = 0.025)

This is a moment to celebrate, as we have finally achieved a data science goal. In fig-
ure 2.3, we are looking at the data and relations in the data. The technical task of
explaining the summary information in the graph will be covered in chapter 8.

We’ll return to the Census data and demonstrate more-sophisticated modeling
techniques a few times in this book. In all cases, we are working these examples to
demonstrate the basic challenges one encounters in working with their hands on the
data, and to introduce some of the R tools that are ready to help. As a follow-up, we

Listing 2.11 Plotting the data
Licensed to Ajit de Silva <agdesilva@gmail.com>

49Summary
strongly advise running these examples, consulting the help() on all of these func-
tions, and also searching online for official documentation and user guides.

Summary
In this chapter, we’ve worked through the basics of how to initially extract, transform,
and load data for analysis. For smaller datasets, we perform the transformations using
R and in memory. For larger datasets, we advise using a SQL database or even a big
data system such as Spark (via the sparklyr package plus SQL, dplyr, or rquery). In
any case, we save all the transformation steps as code (either in SQL or in R) that can
be reused in the event of a data refresh. The intent of this chapter was to prepare for
the actual interesting work in our next chapters: exploring, managing, correcting,
and modeling data.

R is built to work with data, and the purpose of loading data into R is to examine
and work with it. In chapter 3, we’ll demonstrate how to characterize your data
through summaries, exploration, and graphing. These are key steps early in any mod-
eling effort because it is through these steps that you learn the actual details and
nature of the problem you’re hoping to model.

_____ 0

__ 0.01

__ 0.02

__ 0.03

de
ns

ity

_ 50000

_ 1e+05

150000

_ 2e+05

250000

20 30 40 50 60

AGEP

P
IN

C
P

0.
0e

+
00

5.
0e

−
06

1.
0e

−
05

1.
5e

−
05

density

Expected income (PINCP) as function of age (AGEP)
lm: F Test summary: (R2=0.064, F(1,41303)=2.82e+03, p<1e−05).

Figure 2.3 Scatter plot of income (PINCP) as a function of age (AGEP)
Licensed to Ajit de Silva <agdesilva@gmail.com>

50 CHAPTER 2 Starting with R and data
In this chapter you have learned

 Data frames, with their discipline of each row being an instance and each col-
umn being a variable or measurement, are a preferred data structure for data
analysis.

 Use utils::read.table() or the readr package to load small, structured data-
sets into R.

 The DBI package allows you to work directly with databases or Apache Spark
using any of SQL, dplyr, or rquery.

 R is designed to work with data in high-level steps, and has many ready-made,
data-transforming commands and functions. Generally, if a task becomes diffi-
cult in R, it is because you are accidentally attempting to reimplement high-
level data transforms in terms of low-level programming steps.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Exploring data
In the last two chapters, you learned how to set the scope and goal of a data science
project, and how to start working with your data in R. In this chapter, you’ll start to
get your hands into the data. As shown in the mental model (figure 3.1), this chap-
ter emphasizes the science of exploring the data, prior to the model-building step.
Your goal is to have data that is as clean and useful as possible.

 Example Suppose your goal is to build a model to predict which of your customers
don’t have health insurance. You’ve collected a dataset of customers whose health
insurance status you know. You’ve also identified some customer properties that you
believe help predict the probability of insurance coverage: age, employment status,
income, information about residence and vehicles, and so on.

This chapter covers
 Using summary statistics to explore data

 Exploring data using visualization

 Finding problems and issues during data exploration
51

Licensed to Ajit de Silva <agdesilva@gmail.com>

52 CHAPTER 3 Exploring data
You’ve put all your data into a single data frame called customer_data that you’ve
input into R.1 Now you’re ready to start building the model to identify the customers
you’re interested in.

It’s tempting to dive right into the modeling step without looking very hard at the
dataset first, especially when you have a lot of data. Resist the temptation. No dataset is
perfect: you’ll be missing information about some of your customers, and you’ll have
incorrect data about others. Some data fields will be dirty and inconsistent. If you
don’t take the time to examine the data before you start to model, you may find your-
self redoing your work repeatedly as you discover bad data fields or variables that need
to be transformed before modeling. In the worst case, you’ll build a model that
returns incorrect predictions—and you won’t be sure why.

GET TO KNOW YOUR DATA BEFORE MODELING By addressing data issues early,
you can save yourself some unnecessary work, and a lot of headaches!

1 We have a copy of this synthetic dataset available for download from https://github.com/WinVector/
PDSwR2/tree/master/Custdata, and once it's saved, you can load it into R with the command
customer_data <- readRDS("custdata.RDS"). This dataset is derived from the census data that you saw
in chapter 2. We have introduced a little noise to the age variable to reflect what is typically seen in real-world
noisy datasets. We have also included some columns not necessarily relevant to our example scenario, but
which exhibit some important data anomalies.

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 3.1 Chapter 3 mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/Custdata
https://github.com/WinVector/PDSwR2/tree/master/Custdata
https://github.com/WinVector/PDSwR2/tree/master/Custdata

53Using summary statistics to spot problems
You’d also like to get a sense of who your customers are. Are they young, middle-aged,
or seniors? How affluent are they? Where do they live? Knowing the answers to these
questions can help you build a better model, because you’ll have a more specific idea
of what information most accurately predicts the probability of insurance coverage.

In this chapter, we’ll demonstrate some ways to get to know your data, and discuss
some of the potential issues that you’re looking for as you explore. Data exploration
uses a combination of summary statistics—means and medians, variances, and counts—
and visualization, or graphs of the data. You can spot some problems just by using sum-
mary statistics; other problems are easier to find visually.

3.1 Using summary statistics to spot problems
In R, you’ll typically use the summary() command to take your first look at the data.
The goal is to understand whether you have the kind of customer information that
can potentially help you predict health insurance coverage, and whether the data is of
good enough quality to be informative.1

setwd("PDSwR2/Custdata")
customer_data = readRDS("custdata.RDS")
summary(customer_data)
custid sex is_employed income
Length:73262 Female:37837 FALSE: 2351 Min. : -6900
Class :character Male :35425 TRUE :45137 1st Qu.: 10700
Mode :character NA's :25774 Median : 26200
Mean : 41764
3rd Qu.: 51700
Max. :1257000
##

Listing 3.1 The summary() command

1 If you haven’t already done so, we suggest you follow the steps in section A.1 of appendix A to install R, pack-
ages, tools, and the book examples.

Organizing data for analysis
For most of this book, we’ll assume that the data you’re analyzing is in a single data
frame. This is not how data is usually stored. In a database, for example, data is usu-
ally stored in normalized form to reduce redundancy: information about a single cus-
tomer is spread across many small tables. In log data, data about a single customer
can be spread across many log entries, or sessions. These formats make it easy to
add (or, in the case of a database, modify) data, but are not optimal for analysis. You
can often join all the data you need into a single table in the database using SQL, but
in chapter 5, we’ll discuss commands like join that you can use within R to further
consolidate data.

Change this to your actual path to the
directory where you unpacked PDSwR2 The variable is_employed is missing

for about a third of the data. The
variable income has negative values,

which are potentially invalid.
Licensed to Ajit de Silva <agdesilva@gmail.com>

54 CHAPTER 3 Exploring data
marital_status health_ins
Divorced/Separated:10693 Mode :logical
Married :38400 FALSE:7307
Never married :19407 TRUE :65955
Widowed : 4762
##
##
##
housing_type recent_move num_vehicles
Homeowner free and clear :16763 Mode :logical Min. :0.000
Homeowner with mortgage/loan:31387 FALSE:62418 1st Qu.:1.000
Occupied with no rent : 1138 TRUE :9123 Median :2.000
Rented :22254 NA's :1721 Mean :2.066
NA's : 1720 3rd Qu.:3.000
Max. :6.000
NA's :1720
age state_of_res gas_usage
Min. : 0.00 California : 8962 Min. : 1.00
1st Qu.: 34.00 Texas : 6026 1st Qu.: 3.00
Median : 48.00 Florida : 4979 Median : 10.00
Mean : 49.16 New York : 4431 Mean : 41.17
3rd Qu.: 62.00 Pennsylvania: 2997 3rd Qu.: 60.00
Max. :120.00 Illinois : 2925 Max. :570.00
(Other) :42942 NA's :1720

The summary() command on a data frame reports a variety of summary statistics on
the numerical columns of the data frame, and count statistics on any categorical col-
umns (if the categorical columns have already been read in as factors1).

As you see from listing 3.1, the summary of the data helps you quickly spot poten-
tial problems, like missing data or unlikely values. You also get a rough idea of how
categorical data is distributed. Let’s go into more detail about the typical problems
that you can spot using the summary.

3.1.1 Typical problems revealed by data summaries

At this stage, you’re looking for several common issues:

 Missing values
 Invalid values and outliers
 Data ranges that are too wide or too narrow
 The units of the data

Let’s address each of these issues in detail.

1 Categorical variables are of class factor in R. They can be represented as strings (class character), and
some analytical functions will automatically convert string variables to factor variables. To get a useful sum-
mary of a categorical variable, it needs to be a factor.

About 90% of the customers
have health insurance.

The variables housing_type, recent_move,
num_vehicles, and gas_usage are each

missing 1720 or 1721 values.

The average value of the variable age seems plausible, but the minimum and maximum values seem
unlikely. The variable state_of_res is a categorical variable; summary() reports how many customers

are in each state (for the first few states).
Licensed to Ajit de Silva <agdesilva@gmail.com>

55Using summary statistics to spot problems
MISSING VALUES

A few missing values may not really be a problem, but if a particular data field is
largely unpopulated, it shouldn’t be used as an input without some repair (as we’ll dis-
cuss in section 4.1.2). In R, for example, many modeling algorithms will, by default,
quietly drop rows with missing values. As you see in the following listing, all the miss-
ing values in the is_employed variable could cause R to quietly ignore more than a
third of the data.

is_employed
FALSE: 2321
TRUE :44887
NA's :24333

housing_type recent_move
Homeowner free and clear :16763 Mode :logical
Homeowner with mortgage/loan:31387 FALSE:62418
Occupied with no rent : 1138 TRUE :9123
Rented :22254 NA's :1721
NA's : 1720
##
##
num_vehicles gas_usage
Min. :0.000 Min. : 1.00
1st Qu.:1.000 1st Qu.: 3.00
Median :2.000 Median : 10.00
Mean :2.066 Mean : 41.17
3rd Qu.:3.000 3rd Qu.: 60.00
Max. :6.000 Max. :570.00
NA's :1720 NA's :1720

If a particular data field is largely unpopulated, it’s worth trying to determine why;
sometimes the fact that a value is missing is informative in and of itself. For example,
why is the is_employed variable missing so many values? There are many possible rea-
sons, as we noted in listing 3.2.

Whatever the reason for missing data, you must decide on the most appropriate
action. Do you include a variable with missing values in your model, or not? If you
decide to include it, do you drop all the rows where this field is missing, or do you con-
vert the missing values to 0 or to an additional category? We’ll discuss ways to treat
missing data in chapter 4. In this example, you might decide to drop the data rows
where you’re missing data about housing or vehicles, since there aren’t many of them.
You probably don’t want to throw out the data where you’re missing employment
information, since employment status is probably highly predictive of having health
insurance; you might instead treat the NAs as a third employment category. You will
likely encounter missing values when model scoring, so you should deal with them
during model training.

Listing 3.2 Will the variable is_employed be useful for modeling?

The variable is_employed is missing for more than a third of the data.
Why? Is employment status unknown? Did the company start
collecting employment data only recently? Does NA mean “not in the
active workforce” (for example, students or stay-at-home parents)?

The variables
housing_type,
recent_move,
num_vehicles, and
gas_usage are missing
relatively few values—
about 2% of the data.
It’s probably safe to
just drop the rows that
are missing values,
especially if the missing
values are all in the
same 1720 rows.
Licensed to Ajit de Silva <agdesilva@gmail.com>

56 CHAPTER 3 Exploring data
INVALID VALUES AND OUTLIERS

Even when a column or variable isn’t missing any values, you still want to check that
the values that you do have make sense. Do you have any invalid values or outliers?
Examples of invalid values include negative values in what should be a non-negative
numeric data field (like age or income) or text where you expect numbers. Outliers
are data points that fall well out of the range of where you expect the data to be. Can
you spot the outliers and invalid values in the next listing?

summary(customer_data$income)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-6900 11200 27300 42522 52000 1257000

summary(customer_data$age)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 34.00 48.00 49.17 62.00 120.00

Often, invalid values are simply bad data input. A negative number in a field like age,
however, could be a sentinel value to designate “unknown.” Outliers might also be data
errors or sentinel values. Or they might be valid but unusual data points—people do
occasionally live past 100.

As with missing values, you must decide the most appropriate action: drop the data
field, drop the data points where this field is bad, or convert the bad data to a useful
value. For example, even if you feel certain outliers are valid data, you might still want
to omit them from model construction, if the outliers interfere with the model-fitting
process. Generally, the goal of modeling is to make good predictions on typical cases,
and a model that is highly skewed to predict a rare case correctly may not always be
the best model overall.

DATA RANGE

You also want to pay attention to how much the values in the data vary. If you believe
that age or income helps to predict the probability of health insurance coverage, then
you should make sure there is enough variation in the age and income of your cus-
tomers for you to see the relationships. Let’s look at income again, in the next listing.
Is the data range wide? Is it narrow?

Listing 3.3 Examples of invalid values and outliers

Negative values for income could indicate bad
data. They might also have a special meaning, like
“amount of debt.” Either way, you should check
how prevalent the issue is, and decide what to do.
Do you drop the data with negative income? Do
you convert negative values to zero?

Customers of age zero, or customers of an age
greater than about 110, are outliers. They fall
out of the range of expected customer values.

Outliers could be data input errors. They could
be special sentinel values: zero might mean “age

unknown” or “refuse to state.” And some of
your customers might be especially long-lived.
Licensed to Ajit de Silva <agdesilva@gmail.com>

57Using summary statistics to spot problems
summary(customer_data$income)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-6900 10700 26200 41764 51700 1257000

Even ignoring negative income, the income variable in listing 3.4 ranges from zero to
over a million dollars. That’s pretty wide (though typical for income). Data that
ranges over several orders of magnitude like this can be a problem for some modeling
methods. We’ll talk about mitigating data range issues when we talk about logarithmic
transformations in chapter 4.

Data can be too narrow, too. Suppose all your customers are between the ages of 50
and 55. It’s a good bet that age range wouldn’t be a very good predictor of the pro-
bability of health insurance coverage for that population, since it doesn’t vary much
at all.

We’ll revisit data range in section 3.2, when we talk about examining data graphically.
One factor that determines apparent data range is the unit of measurement. To

take a nontechnical example, we measure the ages of babies and toddlers in weeks or
in months, because developmental changes happen at that time scale for very young
children. Suppose we measured babies’ ages in years. It might appear numerically that
there isn’t much difference between a one-year-old and a two-year-old. In reality,
there’s a dramatic difference, as any parent can tell you! Units can present potential
issues in a dataset for another reason, as well.

UNITS

Does the income data in listing 3.5 represent hourly wages, or yearly wages in units of
$1000? As a matter of fact, it’s yearly wages in units of $1000, but what if it were hourly
wages? You might not notice the error during the modeling stage, but down the line
someone will start inputting hourly wage data into the model and get back bad predic-
tions in return.

Listing 3.4 Looking at the data range of a variable

Income ranges from zero
to over a million dollars,
a very wide range.

How narrow is “too narrow” for a data range?
Of course, the term narrow is relative. If we were predicting the ability to read for chil-
dren between the ages of 5 and 10, then age probably is a useful variable as is. For
data including adult ages, you may want to transform or bin ages in some way, as you
don’t expect a significant change in reading ability between ages 40 and 50. You
should rely on information about the problem domain to judge if the data range is nar-
row, but a rough rule of thumb relates to the ratio of the standard deviation to the
mean. If that ratio is very small, then the data isn’t varying much.
Licensed to Ajit de Silva <agdesilva@gmail.com>

58 CHAPTER 3 Exploring data
IncomeK = customer_data$income/1000
summary(IncomeK)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.90 10.70 26.20 41.76 51.70 1257.00

Are time intervals measured in days, hours, minutes, or milliseconds? Are speeds in
kilometers per second, miles per hour, or knots? Are monetary amounts in dollars,
thousands of dollars, or 1/100 of a penny (a customary practice in finance, where cal-
culations are often done in fixed-point arithmetic)? This is actually something that
you’ll catch by checking data definitions in data dictionaries or documentation,
rather than in the summary statistics; the difference between hourly wage data and
annual salary in units of $1000 may not look that obvious at a casual glance. But it’s
still something to keep in mind while looking over the value ranges of your variables,
because often you can spot when measurements are in unexpected units. Automobile
speeds in knots look a lot different than they do in miles per hour.

3.2 Spotting problems using graphics and visualization
As you’ve seen, you can spot plenty of problems just by looking over the data summa-
ries. For other properties of the data, pictures are better than text.

We cannot expect a small number of numerical values [summary statistics] to
consistently convey the wealth of information that exists in data. Numerical reduction
methods do not retain the information in the data.

—William Cleveland,
The Elements of Graphing Data

Figure 3.2 shows a plot of how customer ages are distributed. We’ll talk about what the
y-axis of the graph means later; for now, just know that the height of the graph corre-
sponds to how many customers in the population are of that age. As you can see,
information like the peak age of distribution, the range of the data, and the presence
of outliers is easier to absorb visually than it is to determine textually.

The use of graphics to examine data is called visualization. We try to follow William
Cleveland’s principles for scientific visualization. Details of specific plots aside, the key
points of Cleveland’s philosophy are these:

 A graphic should display as much information as it can, with the lowest possible
cognitive strain to the viewer.

 Strive for clarity. Make the data stand out. Specific tips for increasing clarity
include these:

Listing 3.5 Checking units; mistakes can lead to spectacular errors

The variable IncomeK is defined as IncomeK =
customer_data$income/1000. But suppose you didn’t know that. Looking

only at the summary, the values could plausibly be interpreted to mean
either “hourly wage” or “yearly income in units of $1000.”
Licensed to Ajit de Silva <agdesilva@gmail.com>

59Spotting problems using graphics and visualization
– Avoid too many superimposed elements, such as too many curves in the
same graphing space.

– Find the right aspect ratio and scaling to properly bring out the details of the
data.

– Avoid having the data all skewed to one side or the other of your graph.
 Visualization is an iterative process. Its purpose is to answer questions about the

data.

During the visualization stage, you graph the data, learn what you can, and then
regraph the data to answer the questions that arise from your previous graphic. Differ-
ent graphics are best suited for answering different questions. We’ll look at some of
them in this section.

In this book, we'll demonstrate the visualizations and graphics using the R graph-
ing package ggplot2 (the R realization of Leland Wilkinson’s Grammar of Graphics,
Springer, 1999), as well as some prepackaged ggplot2 visualizations from the package
WVPlots. You may also want to check out the ggpubr and ggstatsplot packages for
more prepackaged ggplot2 graphs. And, of course, other R visualization packages,
such as base graphics or the lattice package, can produce similar plots.

0.000

0.005

0.010

0.015

0.020

0 25 50 75 100 125

age

de
ns

ity

Invalid
values?

It’s easier to read the mean, median,
and central 50% of the customer
population from the summary.

It’s easier to get a sense of
the customer age range
from the graph.

Outliers

Curious blip
around 90. Data
input problem?

summary(custdata$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 34.00 48.00 49.16 62.00 120.00

Figure 3.2 Some information is easier to read from a graph, and some from a summary.
Licensed to Ajit de Silva <agdesilva@gmail.com>

60 CHAPTER 3 Exploring data
In the next two sections, we’ll show how to use pictures and graphs to identify data
characteristics and issues. In section 3.2.2, we’ll look at visualizations for two variables.
But let’s start by looking at visualizations for single variables.

3.2.1 Visually checking distributions for a single variable

In this section we will look at

 Histograms
 Density plots
 Bar charts
 Dot plots

The visualizations in this section help you answer questions like these:

 What is the peak value of the distribution?
 How many peaks are there in the distribution (unimodality versus bimodality)?
 How normal (or lognormal) is the data? We’ll discuss normal and lognormal

distributions in appendix B.
 How much does the data vary? Is it concentrated in a certain interval or in a cer-

tain category?

A note on ggplot2
The theme of this section is how to use visualization to explore your data, not how to
use ggplot2. The ggplot2 package is based on Leland Wilkinson’s book, Grammar
of Graphics. We chose ggplot2 because it excels at combining multiple graphical ele-
ments together, but its syntax can take some getting used to. Here are the key points
to understand when looking at our code snippets:

 Graphs in ggplot2 can only be defined on data frames. The variables in a
graph—the x variable, the y variable, the variables that define the color or the
size of the points—are called aesthetics, and are declared by using the aes
function.

 The ggplot() function declares the graph object. The arguments to
ggplot() can include the data frame of interest and the aesthetics. The
ggplot() function doesn’t itself produce a visualization; visualizations are
produced by layers.

 Layers produce the plots and plot transformations and are added to a given
graph object using the + operator. Each layer can also take a data frame and
aesthetics as arguments, in addition to plot-specific parameters. Examples of
layers are geom_point (for a scatter plot) or geom_line (for a line plot).

This syntax will become clearer in the examples that follow. For more information,
we recommend Hadley Wickham’s reference site https://ggplot2.tidyverse.org/
reference/, which has pointers to online documentation; the Graphs section of Win-
ston Chang’s site http://www.cookbook-r.com/; and Winston Chang’s R Graphics
Cookbook (O'Reilly, 2012).
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/
http://www.cookbook-r.com/

61Spotting problems using graphics and visualization
One of the things that’s easy to grasp visually is the shape of the data distribution. The
graph in figure 3.3 is somewhat flattish between the ages of about 25 and about 60,
falling off slowly after 60. However, even within this range, there seems to be a peak at
around the late-20s to early 30s range, and another in the early 50s. This data has mul-
tiple peaks: it is not unimodal.1

Unimodality is a property you want to check in your data. Why? Because (roughly
speaking) a unimodal distribution corresponds to one population of subjects. For the
solid curve in figure 3.4, the mean customer age is about 50, and 50% of the custom-
ers are between 34 and 64 (the first and third quartiles, shown shaded). So you can say
that a “typical” customer is middle-aged and probably possesses many of the demo-
graphic qualities of a middle-aged person—though, of course, you have to verify that
with your actual customer information.

The dashed curve in figure 3.4 shows what can happen when you have two peaks, or
a bimodal distribution. (A distribution with more than two peaks is multimodal.) This set
of customers has about the same mean age as the customers represented by the solid
curve—but a 50-year-old is hardly a “typical” customer! This (admittedly exaggerated)

1 The strict definition of unimodal is that a distribution has a unique maximum value; in that sense, figure 3.3
is unimodal. However, most people use the term “unimodal” to mean that a distribution has a unique peak
(local maxima); the customer age distribution has multiple peaks, and so we will call it multimodal.

0.000

0.005

0.010

0.015

0.020

0 25 50 75 100 125

age

de
ns

ity

Distribution peaks
around mid/late 20s

Outliers

Peaks again in early 50s

Figure 3.3 The density plot of age
Licensed to Ajit de Silva <agdesilva@gmail.com>

62 CHAPTER 3 Exploring data
example corresponds to two populations of customers: a fairly young population
mostly in their teens to late twenties, and an older population mostly in their 70s.
These two populations probably have very different behavior patterns, and if you want
to model whether a customer probably has health insurance or not, it wouldn’t be a
bad idea to model the two populations separately.

The histogram and the density plot are two visualizations that help you quickly
examine the distribution of a numerical variable. Figures 3.1 and 3.3 are density plots.
Whether you use histograms or density plots is largely a matter of taste. We tend to
prefer density plots, but histograms are easier to explain to less quantitatively-minded
audiences.

HISTOGRAMS

A basic histogram bins a variable into fixed-width buckets and returns the number of
data points that fall into each bucket as a height. For example, suppose you wanted a
sense of how much your customers pay in monthly gas heating bills. You could group
the gas bill amounts in intervals of $10: $0–10, $10–20, $20–30, and so on. Customers
at a boundary go into the higher bucket: people who pay around $20 a month go into
the $20–30 bucket. For each bucket, you then count how many customers are in that
bucket. The resulting histogram is shown in figure 3.5.

“Average”
customer — but

not “typical”
customer!

0.000

0.005

0.010

0.015

0.020

0 25 50 75 100

age

de
ns

ity

population mean_age

1 bimodal 50.0

2 unimodal 50.1

Figure 3.4 A unimodal distribution (solid curve) can usually be modeled as coming from a single
population of users. With a bimodal distribution (dashed curve), your data often comes from two
populations of users.
Licensed to Ajit de Silva <agdesilva@gmail.com>

63Spotting problems using graphics and visualization
You create the histogram in figure 3.5 in ggplot2 with the geom_histogram layer.

library(ggplot2)
ggplot(customer_data, aes(x=gas_usage)) +

geom_histogram(binwidth=10, fill="gray")

With the proper binwidth, histograms visually highlight where the data is concen-
trated, and point out the presence of potential outliers and anomalies. In figure 3.5,
for example, you see that some outlier customers have much larger gas bills than is
typical, so you may possibly want to drop those customers from any analysis that uses
gas heating bills as an input. You also see an unusually high concentration of people
who pay $0–10/month in gas. This could mean that most of your customers don’t
have gas heating, but on further investigation you notice this in the data dictionary
(table 3.1).

Listing 3.6 Plotting a histogram

0

10000

20000

30000

0 200 400 600

gas_usage

co
un

t

Outliers

Suspiciously high count
of gas payments in
the $0–10 range

Figure 3.5 A histogram tells you where your data is concentrated. It also visually highlights outliers
and anomalies.

Load the ggplot2 library, if you
haven’t already done so.

The binwidth parameter tells the geom_histogram
call how to make bins of $10 intervals (default is

datarange/30). The fill parameter specifies the
color of the histogram bars (default: black).
Licensed to Ajit de Silva <agdesilva@gmail.com>

64 CHAPTER 3 Exploring data
In other words, the values in the gas_usage column are a mixture of numerical values
and symbolic codes encoded as numbers. The values 001, 002, and 003 are sentinel val-
ues, and to treat them as numerical values could potentially lead to incorrect conclu-
sions in your analysis. One possible solution in this case is to convert the numeric
values 1-3 into NA, and add additional Boolean variables to indicate the possible cases
(included in rent/condo fee, and so on).

The primary disadvantage of histograms is that you must decide ahead of time how
wide the buckets are. If the buckets are too wide, you can lose information about the
shape of the distribution. If the buckets are too narrow, the histogram can look too
noisy to read easily. An alternative visualization is the density plot.

DENSITY PLOTS

You can think of a density plot as a continuous histogram of a variable, except the area
under the density plot is rescaled to equal one. A point on a density plot corresponds
to the fraction of data (or the percentage of data, divided by 100) that takes on a partic-
ular value. This fraction is usually very small. When you look at a density plot, you’re
more interested in the overall shape of the curve than in the actual values on the y-axis.
You’ve seen the density plot of age; figure 3.6 shows the density plot of income.

You produce figure 3.6 with the geom_density layer, as shown in the following listing.

library(scales)

ggplot(customer_data, aes(x=income)) + geom_density() +
scale_x_continuous(labels=dollar)

When the data range is very wide and the mass of the distribution is heavily concen-
trated to one side, like the distribution in figure 3.6, it’s difficult to see the details of its
shape. For instance, it’s hard to tell the exact value where the income distribution has
its peak. If the data is non-negative, then one way to bring out more detail is to plot
the distribution on a logarithmic scale, as shown in figure 3.7. This is equivalent to
plotting the density plot of log10(income).

Table 3.1 Data dictionary entry for gas_usage

Value Definition

NA Unknown or not applicable

001 Included in rent or condo fee

002 Included in electricity payment

003 No charge or gas not used

004-999 $4 to $999 (rounded and top-coded)

Listing 3.7 Producing a density plot

The scales package
brings in the dollar
scale notation.

Sets the x-axis
labels to dollars
Licensed to Ajit de Silva <agdesilva@gmail.com>

65Spotting problems using graphics and visualization
0.0e+00

5.0e–06

1.0e–05

1.5e–05

$0 $400,000 $800,000 $1,200,000
income

de
ns

ity

Most of the distribution is
concentrated at the low end:
less than $200,000 a year. It’s
hard to get good resolution here.

Wide data range: several
orders of magnitude

Blip at around
$500,000?

Figure 3.6 Density plots show where data is concentrated.

0.00

0.25

0.50

0.75

1.00

$10 $100 $1,000 $10,000 $100,000 $1,000,000

income

de
ns

ity

Peak of income
distribution at ~$40,000

Customers with
income >$200,000

are rare, but no
longer look like
“outliers” in log

space.

Most customers have income in
the $10,000–$100,000 range.

More customers
have income in the
$10,000 range than
you would expect.

Very low income
outliers

Blip at around
$500,000

more visible

Figure 3.7 The density plot of income on a log10 scale highlights details of the income distribution
that are harder to see in a regular density plot.
Licensed to Ajit de Silva <agdesilva@gmail.com>

66 CHAPTER 3 Exploring data
In ggplot2, you can plot figure 3.7 with the geom_density and scale_x_log10 layers,
such as in the following listing.

ggplot(customer_data, aes(x=income)) +
geom_density() +
scale_x_log10(breaks = c(10, 100, 1000, 10000, 100000, 1000000),

 ➥labels=dollar) +
annotation_logticks(sides="bt", color="gray")

When you issue the preceding command, you also get back a warning message:

Warning in self$trans$transform(x): NaNs produced
Warning: Transformation introduced infinite values in continuous x-axis
Warning: Removed 6856 rows containing non-finite values (stat_density).

This tells you that ggplot2 ignored the zero- and negative-valued rows (since log(0)
= Infinity), and that there were 6856 such rows. Keep that in mind when evaluating
the graph.

In log space, income is distributed as something that looks like a “normalish” distribu-
tion, as will be discussed in appendix B. It’s not exactly a normal distribution (in fact,
it appears to be at least two normal distributions mixed together).

BAR CHARTS AND DOTPLOTS

A bar chart is a histogram for discrete data: it records the frequency of every value of a
categorical variable. Figure 3.8 shows the distribution of marital status in your cus-
tomer dataset. If you believe that marital status helps predict the probability of health
insurance coverage, then you want to check that you have enough customers with dif-
ferent marital statuses to help you discover the relationship between being married
(or not) and having health insurance.

Listing 3.8 Creating a log-scaled density plot

Sets the x-axis to be in log10 scale, with
manually set tick points and labels as dollars

Adds log-scaled tick marks
to the top and bottom of
the graph

When should you use a logarithmic scale ?
You should use a logarithmic scale when percent change, or change in orders of mag-
nitude, is more important than changes in absolute units. You should also use a log
scale to better visualize data that is heavily skewed.

For example, in income data, a difference in income of $5,000 means something very
different in a population where the incomes tend to fall in the tens of thousands of dol-
lars than it does in populations where income falls in the hundreds of thousands or
millions of dollars. In other words, what constitutes a “significant difference” depends
on the order of magnitude of the incomes you’re looking at. Similarly, in a population
like that in figure 3.7, a few people with very high income will cause the majority of the
data to be compressed into a relatively small area of the graph. For both those reasons,
plotting the income distribution on a logarithmic scale is a good idea.
Licensed to Ajit de Silva <agdesilva@gmail.com>

67Spotting problems using graphics and visualization
The ggplot2 command to produce figure 3.8 uses geom_bar:

ggplot(customer_data, aes(x=marital_status)) + geom_bar(fill="gray")

This graph doesn’t really show any more information than summary(customer_
data$marital.stat) would show, but some people find the graph easier to absorb
than the text. Bar charts are most useful when the number of possible values is fairly
large, like state of residence. In this situation, we often find that a horizontal graph
like that shown in figure 3.9 is more legible than a vertical graph.

The ggplot2 command to produce figure 3.9 is shown in the next listing.

ggplot(customer_data, aes(x=state_of_res)) +
geom_bar(fill="gray") +
coord_flip()

Cleveland1 prefers the dot plot to the bar chart for visualizing discrete counts. This is
because bars are two dimensional, so that a difference in counts looks like a difference

Listing 3.9 Producing a horizontal bar chart

1 See William S. Cleveland, The Elements of Graphing Data, Hobart Press, 1994.

0

10000

20000

30000

40000

divorced/separated married never married widowed

marital_status

co
un

t

Figure 3.8 Bar charts show the distribution of categorical variables.

Plots bar chart as before:
state_of_res is on x-axis,
count is on y-axis

Flips the x and y
axes: state_of_res is
now on the y-axis
Licensed to Ajit de Silva <agdesilva@gmail.com>

68 CHAPTER 3 Exploring data

Flips th
as
in bar areas, rather than merely in bar heights. This can be perceptually misleading.
Since the dot-and-line of a dot plot is not two dimensional, the viewer considers only
the height difference when comparing two quantities, as they should.

Cleveland also recommends that the data in a bar chart or dot plot be sorted, to
more efficiently extract insight from the data. This is shown in figure 3.10. Now it is
easy to see in which states the most customers—or the fewest—live.

A sorted visualization requires a bit more manipulation, at least in ggplot2,
because by default, ggplot2 will plot the categories of a factor variable in alphabetical
order. Fortunately, much of the code is already wrapped in the ClevelandDotPlot
function from the WVPlots package.

library(WVPlots)
ClevelandDotPlot(customer_data, "state_of_res",

sort = 1, title="Customers by state") +
coord_flip()

Listing 3.10 Producing a dot plot with sorted categories

Alabama
Alaska

Arizona
Arkansas
California
Colorado

Connecticut
Delaware

District of Columbia
Florida

Georgia
Hawaii
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

0 2500 5000 7500

count

st
at

e_
of

_r
es

Figure 3.9 A horizontal bar chart can be easier to read when there are several categories with long
names.

Loads the WVPlots library

Plots the state_of_res
column of the
customer_data data frame

e axes
 before

“sort = 1” sorts the categories in
increasing order (most frequent last).
Licensed to Ajit de Silva <agdesilva@gmail.com>

69Spotting problems using graphics and visualization
Before we move on to visualizations for two variables, we’ll summarize the visualiza-
tions that we’ve discussed in this section in table 3.2.

Table 3.2 Visualizations for one variable

Graph type Uses Examples

Histogram or density plot Examine data range
Check number of modes
Check if distribution is normal/
lognormal
Check for anomalies and outliers

Examine the distribution of
customer age to get the typi-
cal customer age range
Examine the distribution of
customer income to get typi-
cal income range

Bar chart or dot plot Compare frequencies of the values
of a categorical variable

Count the number of custom-
ers from different states of
residence to determine which
states have the largest or
smallest customer base

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●
●

●
●

●
●

Wyoming
Vermont

Alaska
District of Columbia

North Dakota
South Dakota

Delaware
Montana

Rhode Island
New Hampshire

Maine
Idaho

Hawaii
New Mexico

Nebraska
West Virginia

Kansas
Arkansas

Utah
Mississippi

Nevada
Iowa

Connecticut
Oklahoma
Kentucky

Oregon
Alabama

Louisiana
South Carolina

Minnesota
Colorado

Wisconsin
Maryland
Missouri
Indiana

Tennessee
Arizona

Massachusetts
Washington

Virginia
New Jersey

Georgia
Michigan

North Carolina
Ohio

Illinois
Pennsylvania

New York
Florida
Texas

California

0 2500 5000 7500

count

st
at

e_
of

_r
es

Customers by state

Figure 3.10 Using a dot plot and sorting by count makes the data even easier to read.
Licensed to Ajit de Silva <agdesilva@gmail.com>

70 CHAPTER 3 Exploring data
3.2.2 Visually checking relationships between two variables

In addition to examining variables in isolation, you’ll often want to look at the rela-
tionship between two variables. For example, you might want to answer questions like
these:

 Is there a relationship between the two inputs age and income in my data?
 If so, what kind of relationship, and how strong?
 Is there a relationship between the input marital status and the output health

insurance? How strong?

You’ll precisely quantify these relationships during the modeling phase, but exploring
them now gives you a feel for the data and helps you determine which variables are
the best candidates to include in a model.

This section explores the following visualizations:

 Line plots and scatter plots for comparing two continuous variables
 Smoothing curves and hexbin plots for comparing two continuous variables at

high volume
 Different types of bar charts for comparing two discrete variables
 Variations on histograms and density plots for comparing a continuous and dis-

crete variable

First, let’s consider the relationship between two continuous variables. The first plot
you might think of (though it's not always the best) is the line plot.

LINE PLOTS

Line plots work best when the relationship between two variables is relatively clean:
each x value has a unique (or nearly unique) y value, as in figure 3.11. You plot figure
3.11 with geom_line.

x <- runif(100)
y <- x^2 + 0.2*x
ggplot(data.frame(x=x,y=y), aes(x=x,y=y)) + geom_line()

When the data is not so cleanly related, line plots aren’t as useful; you’ll want to use
the scatter plot instead, as you’ll see in the next section.

SCATTER PLOTS AND SMOOTHING CURVES

You’d expect there to be a relationship between age and health insurance, and also a
relationship between income and health insurance. But what is the relationship
between age and income? If they track each other perfectly, then you might not want

Listing 3.11 Producing a line plot

First, generate the data for this example. The
x variable is uniformly randomly distributed
between 0 and 1.

The y variable is a
quadratic function of x.

Plots the line plot
Licensed to Ajit de Silva <agdesilva@gmail.com>

71Spotting problems using graphics and visualization
to use both variables in a model for health insurance. The appropriate summary statis-
tic is the correlation, which we compute on a safe subset of our data.

customer_data2 <- subset(customer_data,
0 < age & age < 100 &
0 < income & income < 200000)

cor(customer_data2$age, customer_data2$income)
[1] 0.005766697

The correlation is positive, as you might expect, but nearly zero, meaning there is
apparently not much relation between age and income. A visualization gives you more
insight into what’s going on than a single number can. Let’s try a scatter plot first (fig-
ure 3.12). Because our dataset has over 64,000 rows, which is too large for a legible
scatterplot, we will sample the dataset down before plotting. You plot figure 3.12 with
geom_point, as shown in listig 3.13.

Listing 3.12 Examining the correlation between age and income

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00

x

y

Figure 3.11 Example of a line plot

Only consider a subset of
data with reasonable age
and income values.

Gets correlation of
age and incomeResulting correlation is

positive but nearly zero.
Licensed to Ajit de Silva <agdesilva@gmail.com>

72 CHAPTER 3 Exploring data
set.seed(245566)
customer_data_samp <-

dplyr::sample_frac(customer_data2, size=0.1, replace=FALSE)

ggplot(customer_data_samp, aes(x=age, y=income)) +
geom_point() +

ggtitle("Income as a function of age")

The relationship between age and income isn’t easy to see. You can try to make the
relationship clearer by also plotting a smoothing curve through the data, as shown in
figure 3.13.

The smoothing curve makes it easier to see that in this population, income tends to
increase with age from a person’s twenties until their mid-thirties, after which income

Listing 3.13 Creating a scatterplot of age and income

0

50000

100000

150000

200000

20 40 60 80

age

in
co

m
e

Income as a function of age

Income tends to increase in this range and tends to decrease in this range.

But the relationship
is hard to see.

Figure 3.12 A scatter plot of income versus age

Make the random sampling
reproducible by setting the
random seed.

Creates the scatterplot

For legibility, only
plot a 10% sample

of the data. We will
show how to plot

all the data in a
following section.
Licensed to Ajit de Silva <agdesilva@gmail.com>

73Spotting problems using graphics and visualization
increases at a slower, almost flat, rate until about a person’s mid-fifties. Past the mid-
fifties, income tends to decrease with age.

In ggplot2, you can plot a smoothing curve to the data by using geom_smooth :

ggplot(customer_data_samp, aes(x=age, y=income)) +
geom_point() + geom_smooth() +
ggtitle("Income as a function of age")

For datasets with a small number of points, the geom_smooth function uses the loess
(or lowess) function to calculate smoothed local linear fits of the data. For larger
datasets, like this one, geom_smooth uses a spline fit.

By default, geom_smooth also plots a "standard error" ribbon around the smooth-
ing curve. This ribbon is wider where there are fewer data points and narrower where
the data is dense. It's meant to indicate where the smoothing curve estimate is more
uncertain. For the plot in figure 3.13, the scatterplot is so dense that the smoothing
ribbon isn’t visible, except at the extreme right of the graph. Since the scatterplot
already gives you the same information that the standard error ribbon does, you can
turn it off with the argument se=FALSE, as we will see in a later example.

A scatter plot with a smoothing curve also makes a useful visualization of the rela-
tionship between a continuous variable and a Boolean. Suppose you’re considering

0

50000

100000

150000

200000

20 40 60 80

age

in
co

m
e

Income as a function of age

Figure 3.13 A scatter plot of income versus age, with a smoothing curve
Licensed to Ajit de Silva <agdesilva@gmail.com>

74 CHAPTER 3 Exploring data
using age as an input to your health insurance model. You might want to plot health
insurance coverage as a function of age, as shown in figure 3.14.

The variable health_ins has the value 1 (for TRUE) when the person has health
insurance, and 0 (for FALSE) otherwise. A scatterplot of the data will have all the y-values
at 0 or 1, which may not seem informative, but a smoothing curve of the data estimates
the average value of the 0/1 variable health_ins as a function of age. The average value
of health_ins for a given age is simply the probability that a person of that age in your
dataset has health insurance.

Figure 3.14 shows you that the probability of having health insurance increases as
customer age increases, from about 80% at age 20 to nearly 100% after about age 75.

0.00

0.25

0.50

0.75

1.00

20 40 60 80

age

he
al

th
_i

ns

Probability of health insurance by age

The smoothing curve shows the fraction of customers
with health insurance, as a function of age.

The y variable is boolean (0/1); we’ve jittered the
points for legibility.

About 80% of people in their early 20s have health insurance.

Figure 3.14 Fraction of customers with health insurance, as a function of age

Why keep the scatterplot?
You might ask, why bother to plot the points? Why not just plot the smoothing curve?
After all, the data only takes on the values 0 and 1, so the scatterplot doesn’t seem
informative.
Licensed to Ajit de Silva <agdesilva@gmail.com>

75Spotting problems using graphics and visualization
An easy way to plot figure 3.14 is with the BinaryYScatterPlot function from
WVPlots:

BinaryYScatterPlot(customer_data_samp, "age", "health_ins",
title = "Probability of health insurance by age")

By default, BinaryYScatterPlot fits a logistic regression curve through the data. You
will learn more about logistic regression in chapter 8, but for now just know that a
logistic regression tries to estimate the probability that the Boolean outcome y is true,
as a function of the data x.

If you tried to plot all the points from the customer_data2 dataset, the scatter plot
would turn into an illegible smear. To plot all the data in higher volume situations like
this, try an aggregated plot, like a hexbin plot.

HEXBIN PLOTS

A hexbin plot is like a two-dimensional histogram. The data is divided into bins, and the
number of data points in each bin is represented by color or shading. Let’s go back to
the income versus age example. Figure 3.15 shows a hexbin plot of the data. Note how
the smoothing curve traces out the shape formed by the densest region of data.

To make a hexbin plot in R, you must have the hexbin package installed. We’ll dis-
cuss how to install R packages in appendix A. Once hexbin is installed and the library
loaded, you create the plots using the geom_hex layer, or use the convenience func-
tion HexBinPlot from WVPlots, as we do here. HexBinPlot predefines a color scale
where denser cells are colored darker; the default ggplot2 color scale colors denser
cells lighter.

library(WVPlots)

HexBinPlot(customer_data2, "age", "income", "Income as a function of age") +
geom_smooth(color="black", se=FALSE)

Listing 3.14 Producing a hexbin plot

This is a matter of taste, but we like to keep the scatterplot because it gives us a
visual estimate of how much data there is in different ranges of the x variable. For
example, if your data has only a dozen or so customers in the 70–100 age range, then
you know that estimates of the probability of health insurance in that age range may
not be very good. Conversely, if you have hundreds of customers spread over that age
range, then you can have more confidence in the estimate.

The standard error ribbon that geom_smooth plots around the smoothing curve gives
equivalent information, but we find the scatterplot more helpful.

Loads the WVPlots library

Plots the hexbin of income
as a function of age

Adds the smoothing line in
black; suppresses standard
error ribbon (se=FALSE)
Licensed to Ajit de Silva <agdesilva@gmail.com>

76 CHAPTER 3 Exploring data
In this section and the previous section, we’ve looked at plots where at least one of the
variables is numerical. But in our health insurance example, the output is categorical,
and so are many of the input variables. Next we’ll look at ways to visualize the relation-
ship between two categorical variables.

BAR CHARTS FOR TWO CATEGORICAL VARIABLES

Let’s examine the relationship between marital status and the probability of health
insurance coverage. The most straightforward way to visualize this is with a stacked bar
chart, as shown in figure 3.16.

The stacked bar chart makes it easy to compare the total number of people in each
marital category, and to compare the number of uninsured people in each marital cat-
egory. However, you can’t directly compare the number of insured people in each
category, because the bars don’t all start at the same level. So some people prefer the
side-by-side bar chart, shown in figure 3.17, which makes it easier to compare the num-
ber of both insured and uninsured across categories—but not the total number of
people in each category.

0

50000

100000

150000

200000

20 40 60 80 100

age

in
co

m
e

100

200

300

400

500

count

Income as a function of age

The hexbin plot gives a sense of the
shape of a dense data cloud.

Darker bins: more customers

Lighter bins: fewer customers

Figure 3.15 Hexbin plot of income versus age, with a smoothing curve superimposed
Licensed to Ajit de Silva <agdesilva@gmail.com>

77Spotting problems using graphics and visualization
0

10000

20000

30000

40000

divorced/separated married never married widowed

marital_status

co
un

t health_ins
TRUE

FALSE

The height
of each bar
represents

total customer
count.

Most customers
are married.

Never-married
customers are
most likely to
be uninsured.

Widowed
customers are
rare, but very
unlikely to be

uninsured.

The dark
section

represents
uninsured
customers.

Figure 3.16 Health insurance versus marital status: stacked bar chart

0

10000

20000

30000

divorced/separated married never married widowed

marital_status

co
un

t health_ins
FALSE

TRUE

The dark
bars

represent
uninsured

customers.

The light
bars represent

insured
customers.

A side-by-side bar
chart makes it harder

to compare the
absolute number of
customers in each

category, but easier
to compare insured
or uninsured across

categories.

Figure 3.17 Health insurance versus marital status: side-by-side bar chart
Licensed to Ajit de Silva <agdesilva@gmail.com>

78 CHAPTER 3 Exploring data
If you want to compare the number of insured and uninsured people across catego-
ries, while keeping a sense of the total number of people in each category, one plot to
try is what we call a shadow plot. A shadow plot of this data creates two graphs, one for
the insured population and one for the uninsured population. Both graphs are super-
imposed against a “shadow graph” of the total population. This allows comparison
both across and within marital status categories, while maintaining information about
category totals. This is shown in figure 3.18.

The main shortcoming of all the preceding charts is that you can’t easily compare the
ratios of insured to uninsured across categories, especially for rare categories like Wid-
owed. You can use what ggplot2 calls a filled bar chart to plot a visualization of the
ratios directly, as in figure 3.19.

The filled bar chart makes it obvious that divorced customers are slightly more
likely to be uninsured than married ones. But you’ve lost the information that being
widowed, though highly predictive of insurance coverage, is a rare category.

Which bar chart you use depends on what information is most important for you to
convey. The code to generate each of these plots is given next. Note the use of the
fill aesthetic in the ggplot2 commands; this tells ggplot2 to color (fill) the bars

health_ins: TRUE

health_ins: FALSE

divorced/separated married never married widowed

0

10000

20000

30000

40000

0

10000

20000

30000

40000

marital_status

co
un

t

Health insurance status by marital status

The “shadow” plot
reports the total

customer count in
each category.

Here, the dark
section represents
the uninsured
customers.

Here, the dark
section represents
the insured
customers.

Figure 3.18 Health insurance versus marital status: shadow plot
Licensed to Ajit de Silva <agdesilva@gmail.com>

79Spotting problems using graphics and visualization
according to the value of the variable health_ins. The position argument to
geom_bar specifies the bar chart style.

ggplot(customer_data, aes(x=marital_status, fill=health_ins)) +
geom_bar()

ggplot(customer_data, aes(x=marital_status, fill=health_ins)) +
geom_bar(position = "dodge")

ShadowPlot(customer_data, "marital_status", "health_ins",
title = "Health insurance status by marital status")

ggplot(customer_data, aes(x=marital_status, fill=health_ins)) +
geom_bar(position = "fill")

In the preceding examples, one of the variables was binary; the same plots can be
applied to two variables that each have several categories, but the results are harder to
read. Suppose you’re interested in the distribution of marriage status across housing
types. Some find the side-by-side bar chart easiest to read in this situation, but it’s not
perfect, as you see in figure 3.20.

Listing 3.15 Specifying different styles of bar chart

0.00

0.25

0.50

0.75

1.00

divorced/separated married never married widowed

marital_status

co
un

t

health_ins
FALSE

TRUE

The dark
section

represents
the fraction

of uninsured
customers

in each
category.

Rather than
showing counts,
each bar
represents the
population of
the category
normalized
to one.

Figure 3.19 Health insurance versus marital status: filled bar chart

Stacked bar chart, the default

Side-by-side bar chart

Uses the ShadowPlot
command from the WVPlots
package for the shadow plotFilled bar chart
Licensed to Ajit de Silva <agdesilva@gmail.com>

80 CHAPTER 3 Exploring data

Side-by
bar

The fac
bar
A graph like figure 3.20 gets cluttered if either of the variables has a large number of
categories. A better alternative is to break the distributions into different graphs, one
for each housing type. In ggplot2 this is called faceting the graph, and you use the
facet_wrap layer. The result is shown in figure 3.21.

The code for figures 3.20 and 3.21 looks like the next listing.

cdata <- subset(customer_data, !is.na(housing_type))

ggplot(cdata, aes(x=housing_type, fill=marital_status)) +
geom_bar(position = "dodge") +

scale_fill_brewer(palette = "Dark2") +
coord_flip()

ggplot(cdata, aes(x=marital_status)) +
geom_bar(fill="darkgray") +

facet_wrap(~housing_type, scale="free_x") +
coord_flip()

Listing 3.16 Plotting a bar chart with and without facets

homeowner
free and clear

homeowner with
mortgage/loan

occupied with
no rent

rented

0 5000 10000 15000 20000

count

ho
us

in
g_

ty
pe

marital_status

divorced/separated

married

never married

widowed

“occupied with
no rent” is a
rare category.
It’s hard to read
the distribution.

Figure 3.20 Distribution of marital status by housing type: side-by-side bar chart

Restricts to the data
where housing_type
is known

-side
chart

Uses coord_flip () to rotate the graph
so that marital_status is legible

eted
chart

Facets the graph by housing.type. The scales="free_x" argument specifies
that each facet has an independently scaled x-axis; the default is that all
facets have the same scales on both axes. The argument "free_y" would
free the y-axis scaling, and the argument "free" frees both axes.

Uses coord_flip() to
rotate the graph
Licensed to Ajit de Silva <agdesilva@gmail.com>

81Spotting problems using graphics and visualization
COMPARING A CONTINUOUS AND CATEGORICAL VARIABLE

Suppose you want to compare the age distributions of people of different marital sta-
tuses in your data. You saw in section 3.2.1 that you can use histograms or density plots
to look at the distribution of continuous variables like age. Now you want multiple dis-
tribution plots: one for each category of marital status. The most straightforward way
to do this is to superimpose these plots in the same graph.

Figure 3.22 compares the age distributions of the widowed (dashed line) and never
married (solid line) populations in the data. You can quickly see that the two popula-
tions are distributed quite differently: the widowed population skews older, and the
never married population skews younger.

The code to produce figure 3.22 is as follows.

customer_data3 = subset(customer_data2, marital_status %in%
 c("Never married", "Widowed"))
ggplot(customer_data3, aes(x=age, color=marital_status,
 linetype=marital_status)) +

geom_density() + scale_color_brewer(palette="Dark2")

Listing 3.17 Comparing population densities across categories

Note that
every facet
has a
different
scale on
the count
axis.

occupied with no rent rented

homeowner free and clear homeowner with mortgage/loan

0 100 200 300 400 500 0 2500 5000 7500

0 2500 5000 7500 10000 0 5000 10000 15000 20000

divorced/
separated

married

never
married

widowed

divorced/
separated

married

never
married

widowed

count

m
ar

ita
l_

st
at

us

Figure 3.21 Distribution of marital status by housing type: faceted side-by-side bar chart

Restricts to the data for widowed
or never married people

Differentiates the
color and line
style of the plots
by marital_status
Licensed to Ajit de Silva <agdesilva@gmail.com>

82 CHAPTER 3 Exploring data
Overlaid density plots give you good information about distribution shape: where
populations are dense and where they are sparse, whether the populations are sepa-
rated or overlap. However, they lose information about the relative size of each popu-
lation. This is because each individual density plot is scaled to have unit area. This has
the advantage of improving the legibility of each individual distribution, but can fool
you into thinking that all the populations are about the same size. In fact, the super-
imposed density plots in figure 3.22 can also fool you into thinking that the widowed
population becomes greater than the never married population after age 55, which is
actually not true.

To retain information about the relative size of each population, use histograms.
Histograms don't superimpose well, so you can use the facet_wrap() command with
geom_histogram(), as you saw with bar charts in listing 3.16. You can also produce a
histogram version of the shadow plot, using the ShadowHist() function from WVPlots,
as shown next.

0.00

0.02

0.04

20 40 60 80

age

de
ns

ity marital_status
never married

widowed

The never-married population
skews younger.

The widowed population
skews older.

The populations
appear to cross

here — but
they don’t!

Figure 3.22 Comparing the distribution of marital status for widowed and never married populations
Licensed to Ajit de Silva <agdesilva@gmail.com>

83Spotting problems using graphics and visualization

ShadowHist(customer_data3, "age", "marital_status",
 "Age distribution for never married vs. widowed populations", binwidth=5)

The result is shown in figure 3.23. Now you can see that the widowed population is
quite small, and doesn’t exceed the never married population until after about age
65—10 years later than the crossover point in figure 3.22.

You should also use faceting when comparing distributions across more than two cate-
gories, because too many overlaid plots are hard to read. Try examining the age distri-
butions for all four categories of marital status; the plot is shown in figure 3.24.

ggplot(customer_data2, aes(x=age)) +
geom_density() + facet_wrap(~marital_status)

Listing 3.18 Comparing population densities across categories with ShadowHist()

Sets the bin widths of the histogram to 5

marital_status: Widowed

marital_status: Never married

25 50 75 100

0

1000

2000

3000

4000

0

1000

2000

3000

4000

age

co
un

t

Age distribution for never married vs. widowed populations

Figure 3.23 ShadowHist comparison of the age distributions of widowed and never married
populations
Licensed to Ajit de Silva <agdesilva@gmail.com>

84 CHAPTER 3 Exploring data
Again, these density plots give you good information about distribution shape, but
they lose information about the relative size of each population.

OVERVIEW OF VISUALIZATIONS FOR TWO VARIABLES

Table 3.3 summarizes the visualizations for two variables that we’ve covered.

Table 3.3 Visualizations for two variables

Graph type Uses Examples

Line plot Shows the relationship between two
continuous variables. Best when that
relationship is functional, or nearly
so.

Plot y = f(x).

Scatter plot Shows the relationship between two
continuous variables. Best when the
relationship is too loose or cloud-like
to be easily seen on a line plot.

Plot income vs. years in the work-
force (income on the y-axis).

never married widowed

divorced/separated married

20 40 60 80 20 40 60 80

0.00

0.02

0.04

0.00

0.02

0.04

age

de
ns

ity

Figure 3.24 Faceted plot of the age distributions of different marital statuses
Licensed to Ajit de Silva <agdesilva@gmail.com>

85Spotting problems using graphics and visualization
Smoothing curve Shows underlying “average” relation-
ship, or trend, between two continu-
ous variables. Can also be used to
show the relationship between a con-
tinuous and a binary or Boolean vari-
able: the fraction of true values of
the discrete variable as a function of
the continuous variable.

Estimate the "average" relationship
of income to years in the work-
force.

Hexbin plot Shows the relationship between two
continuous variables when the data
is very dense.

Plot income vs. years in the work-
force for a large population.

Stacked bar chart Shows the relationship between two
categorical variables (var1 and
var2). Highlights the frequencies of
each value of var1. Works best
when var2 is binary.

Plot insurance coverage (var2) as
a function of marital status (var1)
when you wish to retain information
about the number of people in each
marital category.

Side-by-side bar chart Shows the relationship between two
categorical variables (var1 and
var2). Good for comparing the fre-
quencies of each value of var2
across the values of var1. Works
best when var2 is binary.

Plot insurance coverage (var2) as
a function of marital status (var1)
when you wish to directly compare
the number of insured and unin-
sured people in each marital
category.

Shadow plot Shows the relationship between two
categorical variables (var1 and
var2). Displays the frequency of
each value of var1, while allowing
comparison of var2 values both
within and across the categories of
var1.

Plot insurance coverage (var2) as
a function of marital status (var1)
when you wish to directly compare
the number of insured and unin-
sured people in each marital cate-
gory and still retain information
about the total number of people in
each marital category.

Filled bar chart Shows the relationship between two
categorical variables (var1 and
var2). Good for comparing the rela-
tive frequencies of each value of
var2 within each value of var1.
Works best when var2 is binary.

Plot insurance coverage (var2) as
a function of marital status (var1)
when you wish to compare the ratio
of uninsured to insured people in
each marital category.

Bar chart with faceting Shows the relationship between two
categorical variables (var1 and
var2). Best for comparing the rela-
tive frequencies of each value of
var2 within each value of var1
when var2 takes on more than two
values.

Plot the distribution of marital sta-
tus (var2) as a function of housing
type (var1).

Table 3.3 Visualizations for two variables (continued)

Graph type Uses Examples
Licensed to Ajit de Silva <agdesilva@gmail.com>

86 CHAPTER 3 Exploring data
There are many other variations and visualizations you could use to explore the data;
the preceding set covers some of the most useful and basic graphs. You should try dif-
ferent kinds of graphs to get different insights from the data. It’s an interactive pro-
cess. One graph will raise questions that you can try to answer by replotting the data
again, with a different visualization.

Eventually, you’ll explore your data enough to get a sense of it and to spot most
major problems and issues. In the next chapter, we’ll discuss some ways to address
common problems that you may discover in the data.

Summary
At this point, you’ve gotten a feel for your data. You’ve explored it through summaries
and visualizations; you now have a sense of the quality of your data, and of the rela-
tionships among your variables. You’ve caught and are ready to correct several kinds
of data issues—although you’ll likely run into more issues as you progress.

Maybe some of the things you’ve discovered have led you to reevaluate the question
you’re trying to answer, or to modify your goals. Maybe you’ve decided that you need
more or different types of data to achieve your goals. This is all good. As we men-
tioned in the previous chapter, the data science process is made of loops within loops.
The data exploration and data cleaning stages (we’ll discuss cleaning in the next
chapter) are two of the more time-consuming—and also the most important—stages

Overlaid density plot Compares the distribution of a con-
tinuous variable over different values
of a categorical variable. Best when
the categorical variable has only two
or three categories. Shows whether
the continuous variable is distributed
differently or similarly across the
categories.

Compare the age distribution of
married vs. divorced populations.

Faceted density plot Compares the distribution of a con-
tinuous variable over different values
of a categorical variable. Suitable for
categorical variables with more than
three or so categories. Shows
whether the continuous variable is
distributed differently or similarly
across the categories.

Compare the age distribution of
several marital statuses (never
married, married, divorced,
widowed).

Faceted histogram or
shadow histogram

Compares the distribution of a con-
tinuous variable over different values
of a categorical variable while retain-
ing information about the relative
population sizes.

Compare the age distribution of
several marital statuses (never
married, married, divorced, wid-
owed), while retaining information
about relative population sizes.

Table 3.3 Visualizations for two variables (continued)

Graph type Uses Examples
Licensed to Ajit de Silva <agdesilva@gmail.com>

87Summary
of the process. Without good data, you can’t build good models. Time you spend here
is time you don’t waste elsewhere.

In the next chapter, we’ll talk about fixing the issues that you’ve discovered in the
data.

In this chapter you have learned

 Take the time to examine and understand your data before diving into the
modeling.

 The summary command helps you spot issues with data range, units, data type,
and missing or invalid values.

 The various visualization techniques have different benefits and applications.
 Visualization is an iterative process and helps answer questions about the data.

Information you learn from one visualization may lead to more questions—
that you might try to answer with another visualization. If one visualization
doesn't work, try another. Time spent here is time not wasted during the mod-
eling process.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Managing data
In chapter 3, you learned how to explore your data and how to identify common
data issues. In this chapter, you’ll see how to fix the data issues that you’ve discov-
ered. After that, we’ll talk about transforming and organizing the data for the mod-
eling process. Most of the examples in this chapter use the same customer data that
you used in the previous chapter.1

As shown in the mental model (figure 4.1), this chapter again emphasizes the sci-
ence of managing the data in a statistically valid way, prior to the model-building step.

4.1 Cleaning data
In this section, we’ll address issues that you discovered during the data explora-
tion/visualization phase, in particular, invalid and missing values. Missing values in
data happen quite commonly, and the way you treat them is generally the same

This chapter covers
 Fixing data quality problems

 Transforming data before modeling

 Organizing your data for the modeling process

1 The data can be loaded by saving the file custdata.RDS from https://github.com/WinVector/PDSwR2/
tree/master/Custdata and then running readRDS("custdata.RDS") in R.
88

Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/Custdata
https://github.com/WinVector/PDSwR2/tree/master/Custdata
https://github.com/WinVector/PDSwR2/tree/master/Custdata

89Cleaning data
from project to project. Handling invalid values is often domain-specific: which values
are invalid, and what you do about them, depends on the problem that you are trying
to solve.

 Example Suppose you have a numeric variable called credit_score. Domain
knowledge will tell you what the valid range for that variable should be. If the credit
score is supposed to be a customer’s “classic FICO score,” then any value outside the
range 300–850 should be treated as invalid. Other types of credit scores will have dif-
ferent ranges of valid values.

We’ll look at an example of domain-specific data cleaning first.

4.1.1 Domain-specific data cleaning

From our data exploration in the previous chapter, we know of some issues with our
data:

 The variable gas_usage mixes numeric and symbolic data: values greater than 3
are monthly gas_bills, but values from 1 to 3 are special codes. In addition,
gas_usage has some missing values.

 The variable age has the problematic value 0, which probably means that the
age is unknown. In addition, there are a few customers with ages older than 100

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 4.1 Chapter 4 mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

90 CHAPTER 4 Managing data

C
th
in
va
years, which may also be an error. However, for this project, we'll treat the value
0 as invalid, and assume ages older than 100 years are valid.

 The variable income has negative values. We’ll assume for this discussion that
those values are invalid.

These sorts of issues are quite common. In fact, most of the preceding problems were
already in the actual census data that our notional customer data example is based on.

A quick way to treat the age and income variables is to convert the invalid values to
NA, as if they were missing variables. You can then treat the NAs using the automatic
missing-value treatment discussed in section 4.1.2.2

library(dplyr)
customer_data = readRDS("custdata.RDS")

customer_data <- customer_data %>%
mutate(age = na_if(age, 0),

income = ifelse(income < 0, NA, income))

The gas_usage variable has to be treated specially. Recall from chapter 3 that the val-
ues 1, 2, and 3 aren’t numeric values, but codes:

 The value 1 means “Gas bill included in rent or condo fee.”
 The value 2 means “Gas bill included in electricity payment.”
 The value 3 means “No charge or gas not used.”

One way to treat gas_usage is to convert all the special codes (1, 2, 3) to NA, and to add
three new indicator variables, one for each code. For example, the indicator variable
gas_with_electricity will have the value 1 (or TRUE) whenever the original gas_usage
variable had the value 2, and the value 0 otherwise. In the following listing, you will cre-
ate the three new indicator variables, gas_with_rent, gas_with_electricity, and no_
gas_bill.

customer_data <- customer_data %>%
mutate(gas_with_rent = (gas_usage == 1),

gas_with_electricity = (gas_usage == 2),
no_gas_bill = (gas_usage == 3)) %>%

mutate(gas_usage = ifelse(gas_usage < 4, NA, gas_usage))

Listing 4.1 Treating the age and income variables

2 If you haven’t already done so, we suggest you follows the steps in section A.1 of appendix A to install R, pack-
ages, tools, and the book examples.

Listing 4.2 Treating the gas_usage variable

Loads the data

The function mutate() from the dplyr package adds
columns to a data frame, or modifies existing columns.
The function na_if (), also from dplyr, turns a specific
problematic value (in this case, 0) to NA.

Converts negative
incomes to NA

reates
e three
dicator
riables

Converts the
special codes in
the gas_usage
column to NA
Licensed to Ajit de Silva <agdesilva@gmail.com>

91Cleaning data
4.1.2 Treating missing values

Let’s take another look at some of the variables with missing values in our customer
dataset from the previous chapter. One way to find these variables programmatically is
to count how many missing values are in each column of the customer data frame,
and look for the columns where that count is greater than zero. The next listing
counts the number of missing values in each column of the dataset.

count_missing = function(df) {
sapply(df, FUN=function(col) sum(is.na(col)))

}

nacounts <- count_missing(customer_data)
hasNA = which(nacounts > 0)
nacounts[hasNA]

is_employed income housing_type
25774 45 1720
recent_move num_vehicles age
1721 1720 77
gas_usage gas_with_rent gas_with_electricity
35702 1720 1720
no_gas_bill
1720

Fundamentally, there are two things you can do with these variables: drop the rows
with missing values, or convert the missing values to a meaningful value. For variables
like income or age that have very few missing values relative to the size of the data
(customer_data has 73,262 rows), it could be safe to drop the rows. It wouldn’t be safe
to drop rows from variables like is_employed or gas_usage, where a large fraction of
the values is missing.

In addition, remember that many modeling algorithms in R (and in other lan-
guages) will quietly drop rows that have missing values. So if you have wide data, and
many columns have missing values, it may not be safe to drop rows with missing values.
This is because the fraction of rows with at least one missing value can be high in that
situation, and you can lose most of your data, as figure 4.2 shows. So for this discus-
sion, we will convert all the missing values to meaningful values.

Listing 4.3 Counting the missing values in each variable

Defines a function that counts
the number of NAs in each
column of a data frame

Applies the function to customer_data,
identifies which columns have missing
values, and prints the columns and counts

<NA><NA>
<NA>

<NA>
<NA>

<NA>

<NA>

Figure 4.2 Even a few missing values can lose all your data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

92 CHAPTER 4 Managing data
MISSING DATA IN CATEGORICAL VARIABLES
When the variable with missing values is categorical, an easy solution is to create a new
category for the variable, called, for instance, missing or _invalid_. This is shown
schematically for the variable housing_type in figure 4.3.

MISSING VALUES IN NUMERIC OR LOGICAL VARIABLES
Suppose your income variable were missing substantial
data, as in figure 4.4. You believe that income is still an
important predictor of the probability of health insur-
ance coverage, so you still want to use the variable. What
do you do? This can depend on why you think the data is
missing.

THE NATURE OF MISSING VALUES
You might believe that the data is missing because the
data collection failed at random, independent of the situ-
ation and of the other values. In this case, you can replace
the missing values with a “reasonable estimate,” or
imputed value. Statistically, one commonly used estimate is
the expected, or mean, income, as shown in figure 4.5.

Assuming that the customers with missing income are
distributed the same way as the others, replacing missing
values with the mean will be correct on average. It’s also
an easy fix to implement.

housing type

occupy no rent

own

own with
mortgage

own with
mortgage

rent

rent

<NA>

<NA>

housing type

occupy no rent

own

own with
mortgage

own with
mortgage

rent

rent

invalid

invalid

Missing values replaced
with new level _invalid_

Figure 4.3 Creating a new level for missing categorical values

income

<NA>

80,000

80,000

50,000

54,000

270,000

<NA>

<NA>

68,400

42,000

<NA>

80,000

<NA>

<NA>

Figure 4.4 Income data with
missing values
Licensed to Ajit de Silva <agdesilva@gmail.com>

93Cleaning data
You can improve this estimate when you remember that income is related to other
variables in your data—for instance, you know from your data exploration in the pre-
vious chapter that there’s a relationship between age and income. There might be a
relationship between state of residence or marital status and income, as well. If you
have this information, you can use it. The method of imputing a missing value of an
input variable based on the other input variables can be applied to categorical data,
as well.3

It’s important to remember that replacing missing values by the mean, as well as
other more sophisticated methods for imputing missing values, assumes that the cus-
tomers with missing income are in some sense typical. It’s possible that the customers
with missing income data are systematically different from the others. For instance, it
could be the case that the customers with missing income information truly have no
income, because they are full-time students or stay-at-home spouses or otherwise not
in the active workforce. If this is so, then “filling in” their income information by using
one of the preceding methods is an insufficient treatment, and may lead to false
conclusions.

3 The text R in Action, Second Edition (Robert Kabacoff, 2014, http://mng.bz/ybS4) includes an extensive dis-
cussion of several value imputation methods available in R.

90,550
income

80,000

80,000

50,000

54,000

270,000

68,400

42,000

80,000

90,550

90,550

90,550

90,550

90,550

90,550

Calculate mean income.

Replace missing values
with mean income.

income

<NA>

80,000

80,000

50,000

54,000

270,000

<NA>

<NA>

68,400

42,000

<NA>

80,000

<NA>

<NA>

Figure 4.5 Replacing missing values with the mean
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/ybS4

94 CHAPTER 4 Managing data
TREATING MISSING VALUES AS INFORMATION

You still need to replace the NAs with a stand-in value, perhaps the mean. But the mod-
eling algorithm should know that these values are possibly different from the others.
A trick that has worked well for us is to replace the NAs with the mean, and add an
additional indicator variable to keep track of which data points have been altered.
This is shown in figure 4.6.

The income_isBAD variable lets you differentiate the two kinds of values in the data:
the ones that you are about to add, and the ones that were already there.

You’ve seen a variation of this approach already, in another example of systematic
missing values: the gas_usage variable. Most of the customers with missing gas_usage
values aren’t random: they either pay for gas together with another bill, such as elec-
tricity or rent, or they don’t use gas. You identified those customers by adding addi-
tional indicator variables: no_gas_bill, gas_with_rent, and so on. Now you can fill in
the “missing” values in gas_usage with a stand-in value, such as zero, or the average
value of gas_usage.

The idea is that at the modeling step, you give all the variables—income,
income_isBAD, gas_usage, no_gas_bill, and so on—to the modeling algorithm, and
it can determine how to best use the information to make predictions. If the missing
values really are missing randomly, then the indicator variables that you added are

Replace missing
values with mean
income and add
isBad column.

Calculate
mean income.

income_isBAD

0

0

0

0

0

0

0

0

1

1

1

1

1

1

income

<NA>

80,000

80,000

50,000

54,000

270,000

<NA>

<NA>

68,400

42,000

<NA>

80,000

<NA>

<NA>

90,550
income

80,000

50,000

54,000

270,000

42,000

80,000

90,550

90,550

90,550

90,550

90,550

90,550

80,000

68,400

isBad column
has value 1
wherever <NA>
is replaced by
mean income.

Figure 4.6 Replacing missing values with the mean and adding an indicator column to track the
altered values
Licensed to Ajit de Silva <agdesilva@gmail.com>

95Cleaning data
uninformative, and the model should ignore them. If the missing values are missing
systematically, then the indicator variables provide useful additional information to
the modeling algorithm.

MISSINGNESS INDICATORS CAN BE USEFUL We’ve observed in many situations
that the isBAD variables are sometimes even more informative and useful than
the original variables!

If you don’t know whether the missing values are random or systematic, we recom-
mend assuming that the difference is systematic, rather than working hard to impute
values to the variables based on the random missingness assumption. As we said ear-
lier, treating missing values as if they are missing at random when they really indicate a
systematic difference in some of the datums may lead to false conclusions.

4.1.3 The vtreat package for automatically treating missing variables

Since missing values are such a common problem with data, it’s useful to have an auto-
matic and repeatable process for dealing with them. We recommend using the vtreat
variable treatment package. The vtreat process creates a treatment plan that records
all the information needed to repeat the data treatment process: for example, the
average observed income, or all the observed values of a categorical variable like
housing_type. You then use this treatment plan to “prepare” or treat your training
data before you fit a model, and then again to treat new data before feeding it into the
model. The idea is that treated data is “safe,” with no missing or unexpected values,
and shouldn’t ruin the model.

You’ll see more-sophisticated examples of using vtreat in later chapters, but for
now you will just create a simple treatment plan to manage the missing values in
customer_data. Figure 4.7 shows the processes of creating and applying this simple
treatment plan. First, you have to designate which columns of the data are the input
variables: all of them except health_ins (which is the outcome to be predicted) and
custid:

varlist <- setdiff(colnames(customer_data), c("custid", "health_ins"))

Then, you create the treatment plan, and “prepare” the data.

library(vtreat)
treatment_plan <-

design_missingness_treatment(customer_data, varlist = varlist)
training_prepared <- prepare(treatment_plan, customer_data)

Listing 4.4 Creating and applying a treatment plan
Licensed to Ajit de Silva <agdesilva@gmail.com>

96 CHAPTER 4 Managing data
The data frame training_prepared is the treated data that you would use to train a
model. Let’s compare it to the original data.

colnames(customer_data)
[1] "custid" "sex" "is_employed"
[4] "income" "marital_status" "health_ins"
[7] "housing_type" "recent_move" "num_vehicles"
[10] "age" "state_of_res" "gas_usage"
[13] "gas_with_rent" "gas_with_electricity" "no_gas_bill"

colnames(training_prepared)
[1] "custid" "sex"
[3] "is_employed" "income"
[5] "marital_status" "health_ins"
[7] "housing_type" "recent_move"
[9] "num_vehicles" "age"
[11] "state_of_res" "gas_usage"
[13] "gas_with_rent" "gas_with_electricity"

Listing 4.5 Comparing the treated data to the original

design_missingness_
treatment()

Treatment
plan

prepare()

Model

Treatment
plan

prepare() Predictions

Model Training

Model

Model Application

Prepared
training
data

Prepared
application

data

predict()

Training
data

Training
data

Training
data

Application
data

Fit Model

Original training data, possibly
with missing values

Use training data to create treatment plan

Apply treatment plan
to training data

Prepared training
data has no

missing values.

Use prepared
data to fit model

Application
data, possibly
with missing

values Apply treatment
plan to

application data

Prepared
application data
has no missing

values. Call model on
prepared application

data to make
predictions

Figure 4.7 Creating and applying a simple treatment plan

The prepared data has
additional columns that are
not in the original data,
most importantly those with
the _isBAD designation.
Licensed to Ajit de Silva <agdesilva@gmail.com>

97Cleaning data
[15] "no_gas_bill" "is_employed_isBAD"
[17] "income_isBAD" "recent_move_isBAD"
[19] "num_vehicles_isBAD" "age_isBAD"
[21] "gas_usage_isBAD" "gas_with_rent_isBAD"
[23] "gas_with_electricity_isBAD" "no_gas_bill_isBAD"

nacounts <- sapply(training_prepared, FUN=function(col) sum(is.na(col)))
sum(nacounts)
[1] 0

Now examine a few columns that you know had missing values.

htmissing <- which(is.na(customer_data$housing_type))

columns_to_look_at <- c("custid", "is_employed", "num_vehicles",
"housing_type", "health_ins")

customer_data[htmissing, columns_to_look_at] %>% head()
custid is_employed num_vehicles housing_type health_ins
55 000082691_01 TRUE NA <NA> FALSE
65 000116191_01 TRUE NA <NA> TRUE
162 000269295_01 NA NA <NA> FALSE
207 000349708_01 NA NA <NA> FALSE
219 000362630_01 NA NA <NA> TRUE
294 000443953_01 NA NA <NA> TRUE

columns_to_look_at = c("custid", "is_employed", "is_employed_isBAD",
"num_vehicles","num_vehicles_isBAD",
"housing_type", "health_ins")

training_prepared[htmissing, columns_to_look_at] %>% head()
custid is_employed is_employed_isBAD num_vehicles
55 000082691_01 1.0000000 0 2.0655
65 000116191_01 1.0000000 0 2.0655
162 000269295_01 0.9504928 1 2.0655
207 000349708_01 0.9504928 1 2.0655
219 000362630_01 0.9504928 1 2.0655
294 000443953_01 0.9504928 1 2.0655
num_vehicles_isBAD housing_type health_ins
55 1 _invalid_ FALSE
65 1 _invalid_ TRUE
162 1 _invalid_ FALSE
207 1 _invalid_ FALSE
219 1 _invalid_ TRUE
294 1 _invalid_ TRUE

customer_data %>%
summarize(mean_vehicles = mean(num_vehicles, na.rm = TRUE),
mean_employed = mean(as.numeric(is_employed), na.rm = TRUE))

mean_vehicles mean_employed
1 2.0655 0.9504928

Listing 4.6 Examining the data treatment

The prepared data has no missing values.

Finds the rows where
housing_type was missing

Looks at a few columns from
those rows in the original data

Looks at those
rows and
columns in the
treated data
(along with the
isBADs)

Verifies the expected
number of vehicles

and the expected
unemployment

rate in the dataset
Licensed to Ajit de Silva <agdesilva@gmail.com>

98 CHAPTER 4 Managing data
You see that vtreat replaced missing values of the categorical variable housing_type
with the token _invalid_, and missing values of the numerical column num_vehicles
with its average value in the original data. It also converted the logical variable is_
employed to a numeric variable, and replaced missing values with its average value in
the original data.

In addition to fixing missing data, there are other ways that you can transform the
data to address issues that you found during the exploration phase. In the next sec-
tion, we’ll examine some additional common transformations.

4.2 Data transformations
The purpose of data transformation is to make data easier to model, and easier to
understand. Machine learning works by learning meaningful patterns in training
data, and then making predictions by exploiting those patterns in new data. There-
fore, a data transformation that makes it easier to match patterns in the training data
to patterns in new data can be a benefit.

 Example Suppose you are considering the use of income as an input to your insur-
ance model. The cost of living will vary from state to state, so what would be a high sal-
ary in one region could be barely enough to scrape by in another. Because of this, it
might be more meaningful to normalize a customer’s income by the typical income in the
area where they live. This is an example of a relatively simple (and common) transfor-
mation.

For this example, you have external information about the median income in each
state, in a file called median_income.RDS. Listing 4.7 uses this information to normalize
the incomes. The code uses a join operation to match the information from median_
income.RDS to the existing customer data. We will discuss joining tables in the next
chapter, but for now, you should understand joining as copying data into a data frame
from another data frame with matching rows.

library(dplyr)
median_income_table <-

readRDS("median_income.RDS")
head(median_income_table)

state_of_res median_income
1 Alabama 21100
2 Alaska 32050
3 Arizona 26000
4 Arkansas 22900
5 California 25000
6 Colorado 32000

training_prepared <- training_prepared %>%
left_join(., median_income_table, by="state_of_res") %>%
mutate(income_normalized = income/median_income)

Listing 4.7 Normalizing income by state

If you have downloaded the PDSwR2 code
example directory, then median_income.RDS
is in the directory PDSwR2/Custdata. We
assume that this is your working directory.

Joins median_income_table into the
customer data, so you can normalize
each person’s income by the median

income of their state
Licensed to Ajit de Silva <agdesilva@gmail.com>

99Data transformations
head(training_prepared[, c("income", "median_income", "income_normalized")])

income median_income income_normalized
1 22000 21100 1.0426540
2 23200 21100 1.0995261
3 21000 21100 0.9952607
4 37770 21100 1.7900474
5 39000 21100 1.8483412
6 11100 21100 0.5260664

summary(training_prepared$income_normalized)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.4049 1.0000 1.5685 1.9627 46.5556

Looking at the results in listing 4.7, you see that customers with an income higher
than the median income of their state have an income_normalized value larger than
1, and customers with an income lower than the median income of their state have an
income_normalized value less than 1. Because customers in different states get a dif-
ferent normalization, we call this a conditional transform. A long way to say this is that
“the normalization is conditioned on the customer’s state of residence.” We would call
scaling all the customers by the same value an unconditioned transform.

The need for data transformation can also depend on which modeling method you
plan to use. For linear and logistic regression, for example, you ideally want to make
sure that the relationship between the input variables and the output variable is
approximately linear, and that the output variable is constant variance (the variance
of the output variable is independent of the input variables). You may need to trans-
form some of your input variables to better meet these assumptions.

In this section, we’ll look at some useful data transformations and when to use
them:

 Normalization
 Centering and scaling
 Log transformations

4.2.1 Normalization

Normalization (or rescaling) is useful when absolute quantities are less meaningful
than relative ones. You’ve already seen an example of normalizing income relative to
another meaningful quantity (median income). In that case, the meaningful quantity
was external (it came from outside information), but it can also be internal (derived
from the data itself).

For example, you might be less interested in a customer’s absolute age than you are
in how old or young they are relative to a “typical” customer. Let’s take the mean age
of your customers to be the typical age. You can normalize by that, as shown in the fol-
lowing listing.

Compares the values
of income and

income_normalized
Licensed to Ajit de Silva <agdesilva@gmail.com>

100 CHAPTER 4 Managing data
summary(training_prepared$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
21.00 34.00 48.00 49.22 62.00 120.00

mean_age <- mean(training_prepared$age)
age_normalized <- training_prepared$age/mean_age
summary(age_normalized)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4267 0.6908 0.9753 1.0000 1.2597 2.4382

A value for age_normalized that is much less than 1 signifies an unusually young cus-
tomer; much greater than 1 signifies an unusually old customer. But what constitutes
“much less” or “much greater” than 1? That depends on how wide an age spread your
customers tend to have. See figure 4.8 for an example.

The average customer in both populations is 50. The population 1 group has a fairly
wide age spread, so a 35-year-old still seems fairly typical (perhaps a little young). That
same 35-year-old seems unusually young in population 2, which has a narrow age
spread. The typical age spread of your customers is summarized by the standard devia-
tion. This leads to another way of expressing the relative ages of your customers.

Listing 4.8 Normalizing by mean age

0.00

0.02

0.04

0.06

0.08

0 10 20 30 40 50 60 70 80 90 100

age

de
ns

ity label

population 1

population 2

Average age of both
populations is 50.

A 35-year-old is fairly
typical in population 1,
but unusually young
in population 2.

Population 1
includes people in
a wide age range.

Population 2 falls
mostly in the 40-60
age range.

Figure 4.8 Is a 35-year-old young?
Licensed to Ajit de Silva <agdesilva@gmail.com>

101Data transformations
4.2.2 Centering and scaling

You can rescale your data by using the standard deviation as a unit of distance. A cus-
tomer who is within one standard deviation of the mean age is considered not much
older or younger than typical. A customer who is more than one or two standard devi-
ations from the mean can be considered much older, or much younger. To make the
relative ages even easier to understand, you can also center the data by the mean, so a
customer of “typical age” has a centered age of 0.

(mean_age <- mean(training_prepared$age))
[1] 49.21647

(sd_age <- sd(training_prepared$age))
[1] 18.0124

print(mean_age + c(-sd_age, sd_age))
[1] 31.20407 67.22886

training_prepared$scaled_age <- (training_prepared$age -
mean_age) / sd_age

training_prepared %>%
filter(abs(age - mean_age) < sd_age) %>%
select(age, scaled_age) %>%
head()

age scaled_age
1 67 0.9872942
2 54 0.2655690
3 61 0.6541903
4 64 0.8207422
5 57 0.4321210
6 55 0.3210864

training_prepared %>%
filter(abs(age - mean_age) > sd_age) %>%
select(age, scaled_age) %>%
head()

age scaled_age
1 24 -1.399951
2 82 1.820054
3 31 -1.011329
4 93 2.430745
5 76 1.486950
6 26 -1.288916

Now, values less than -1 signify customers younger than typical; values greater than 1
signify customers older than typical.

Listing 4.9 Centering and scaling age

Takes the mean

Takes the standard deviation

The typical age range for
this population is from
about 31 to 67.

Uses the mean value as the
origin (or reference point) and
rescales the distance from the
mean by the standard deviation

Customers in the typical age
range have a scaled_age with
magnitude less than 1.

Customers outside the typical
age range have a scaled_age
with magnitude greater than 1.
Licensed to Ajit de Silva <agdesilva@gmail.com>

102 CHAPTER 4 Managing data
When you have multiple numeric variables, you can use the scale() function to cen-
ter and scale all of them simultaneously. This has the advantage that the numeric vari-
ables now all have similar and more-compatible ranges. To make this concrete,
compare the variable age in years to the variable income in dollars. A 10-year difference
in age between two customers could be a lot, but a 10-dollar difference in income is

A technicality
The common interpretation of standard deviation as a unit of distance implicitly
assumes that the data is distributed normally. For a normal distribution, roughly two-
thirds of the data (about 68%) is within plus/minus one standard deviation from the
mean. About 95% of the data is within plus/minus two standard deviations from the
mean. In figure 4.8 (reproduced as a faceted graph in figure 4.9), a 35-year-old is
within one standard deviation from the mean in population 1, but more than one (in
fact, more than two) standard deviations from the mean in population 2.

You can still use this transformation if the data isn’t normally distributed, but the
standard deviation is most meaningful as a unit of distance if the data is unimodal
and roughly symmetric around the mean.

label: population 2

label: population 1

0 10 20 30 40 50 60 70 80 90 100

0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.08

age

de
ns

ity

Average age of both
populations is 50.

A 35-year-old is fairly
typical in population 1,
but unusually young
in population 2.

Shaded regions: mean +/–
one standard deviation

Figure 4.9 Faceted graph: is a 35-year-old young?
Licensed to Ajit de Silva <agdesilva@gmail.com>

103Data transformations
quite small. If you center and scale both variables, then the value 0 means the same
thing for both scaled variables: the mean age or mean income. And the value 1.5 also
means the same thing: a person who is 1.5 standard deviations older than the mean
age, or who makes 1.5 standard deviations more than the mean income. In both situa-
tions, the value 1.5 can be considered a big difference from the average.

The following listing demonstrates centering and scaling four numerical variables
from the data with scale().

dataf <- training_prepared[, c("age", "income", "num_vehicles", "gas_usage")]
summary(dataf)

age income num_vehicles gas_usage
Min. : 21.00 Min. : 0 Min. :0.000 Min. : 4.00
1st Qu.: 34.00 1st Qu.: 10700 1st Qu.:1.000 1st Qu.: 50.00
Median : 48.00 Median : 26300 Median :2.000 Median : 76.01
Mean : 49.22 Mean : 41792 Mean :2.066 Mean : 76.01
3rd Qu.: 62.00 3rd Qu.: 51700 3rd Qu.:3.000 3rd Qu.: 76.01
Max. :120.00 Max. :1257000 Max. :6.000 Max. :570.00

dataf_scaled <- scale(dataf, center=TRUE, scale=TRUE)

summary(dataf_scaled)
age income num_vehicles gas_usage
Min. :-1.56650 Min. :-0.7193 Min. :-1.78631 Min. :-1.4198
1st Qu.:-0.84478 1st Qu.:-0.5351 1st Qu.:-0.92148 1st Qu.:-0.5128
Median :-0.06753 Median :-0.2666 Median :-0.05665 Median : 0.0000
Mean : 0.00000 Mean : 0.0000 Mean : 0.00000 Mean : 0.0000
3rd Qu.: 0.70971 3rd Qu.: 0.1705 3rd Qu.: 0.80819 3rd Qu.: 0.0000
Max. : 3.92971 Max. :20.9149 Max. : 3.40268 Max. : 9.7400

(means <- attr(dataf_scaled, 'scaled:center'))
age income num_vehicles gas_usage

49.21647 41792.51062 2.06550 76.00745

(sds <- attr(dataf_scaled, 'scaled:scale'))
age income num_vehicles gas_usage
18.012397 58102.481410 1.156294 50.717778

Because the scale() transformation puts all the numeric variables in compatible
units, it’s a recommended preprocessing step for some data analysis and machine
learning techniques like principal component analysis and deep learning.

KEEP THE TRAINING TRANSFORMATION

When you use parameters derived from the data (like means, medians, or standard
deviations) to transform the data before modeling, you generally should keep those
parameters and use them when transforming new data that will be input to the model.
When you used the scale() function in listing 4.10, you kept the values of the

Listing 4.10 Centering and scaling multiple numeric variables

Centers the data by its mean and
scales it by its standard deviation

Gets the means and standard
deviations of the original data, which

are stored as attributes of dataf_scaled
Licensed to Ajit de Silva <agdesilva@gmail.com>

104 CHAPTER 4 Managing data
scaled:center and scaled:scale attributes as the variables means and sds, respec-
tively. This is so that you can use these values to scale new data, as shown in listing
4.11. This makes sure that the new scaled data is in the same units as the training data.

The same principle applies when cleaning missing values using the design_
missingness_treatment() function from the vtreat package, as you did in section
4.1.3. The resulting treatment plan (called treatment_plan in listing 4.1.3) keeps the
information from the training data in order to clean missing values from new data, as
you saw in listing 4.5.

newdata <- customer_data

library(vtreat)
newdata_treated <- prepare(treatment_plan, newdata)

new_dataf <- newdata_treated[, c("age", "income",
"num_vehicles", "gas_usage")]

dataf_scaled <- scale(new_dataf, center=means, scale=sds)

However, there are some situations when you may wish to use new parameters. For
example, if the important information in the model is how a subject’s income relates
to the current median income, then when preparing new data for modeling, you would
want to normalize income by the current median income, rather than the median
income from the time when the model was trained. The implication here is that the
characteristics of someone who earns three times the median income will be different
from those of someone who earns less than the median income, and that these differ-
ences are the same independent of the actual dollar amount of the income.

4.2.3 Log transformations for skewed and wide distributions

Normalizing by mean and standard deviation, as you did in section 4.2.2, is most
meaningful when the data distribution is roughly symmetric. Next, we’ll look at a
transformation that can make some distributions more symmetric.

Monetary amounts—incomes, customer value, account values, or purchase sizes—
are some of the most commonly encountered sources of skewed distributions in data
science applications. In fact, as we'll discuss in appendix B, monetary amounts are
often lognormally distributed : the log of the data is normally distributed. This leads us to
the idea that taking the log of monetary data can restore symmetry and scale to the
data, by making it look “more normal.” We demonstrate this in figure 4.11.

For the purposes of modeling, it’s generally not too critical which logarithm you
use, whether the natural logarithm, log base 10, or log base 2. In regression, for exam-
ple, the choice of logarithm affects the magnitude of the coefficient that corresponds
to the logged variable, but it doesn’t affect the structure of the model. We like to use

Listing 4.11 Treating new data before feeding it to a model

Simulates having a new customer dataset

Cleans it using the treatment
plan from the original dataset

Scales age, income, num_vehicles, and
gas_usage using the means and standard

deviations from the original dataset
Licensed to Ajit de Silva <agdesilva@gmail.com>

105Data transformations
log base 10 for monetary amounts, because orders of ten seem natural for money:
$100, $1000, $10,000, and so on. The transformed data is easy to read.

AN ASIDE ON GRAPHING Notice that the bottom panel of figure 4.10 has the
same shape as figure 3.7. The difference between using the ggplot layer
scale_x_log10 on a density plot of income and plotting a density plot of
log10(income) is primarily axis labeling. Using scale_x_log10 will label the
x-axis in dollar amounts, rather than in logs.

It’s also generally a good idea to log transform data containing values that range over
several orders of magnitude, for example, the population of towns and cities, which
may range from a few hundred to several million. One reason for this is that modeling
techniques often have a difficult time with very wide data ranges. Another reason is
because such data often comes from multiplicative processes rather than from an
additive one, so log units are in some sense more natural.

As an example of an additive process, suppose you are studying weight loss. If you
weigh 150 pounds and your friend weighs 200, you’re equally active, and you both go
on the exact same restricted-calorie diet, then you’ll probably both lose about the
same number of pounds. How much weight you lose doesn’t depend on how much
you weighed in the first place, only on calorie intake. The natural unit of measure-
ment in this situation is absolute pounds (or kilograms) lost.

log10income

income

0 2 4 6

0 400000 800000 1200000

0.0e+00

5.0e–06

1.0e–05

1.5e–05

0.00

0.25

0.50

0.75

1.00

de
ns

ity
The income distribution is
asymmetric and skewed so
most of the mass is on the left.

The log10 (income) distribution is
nearly symmetric, with a long tail
to the left (very small income).

Figure 4.10 A nearly lognormal distribution and its log
Licensed to Ajit de Silva <agdesilva@gmail.com>

106 CHAPTER 4 Managing data
As an example of a multiplicative process, consider salary increases. If management
gives everyone in the department a raise, it probably isn’t giving everyone $5,000
extra. Instead, everyone gets a 2% raise: how much extra money ends up in your pay-
check depends on your initial salary. In this situation, the natural unit of measure-
ment is percentage, not absolute dollars. Other examples of multiplicative processes:

 A change to an online retail site increases conversion (purchases) for each item
by 2% (not by exactly two purchases).

 A change to a restaurant menu increases patronage every night by 5% (not by
exactly five customers every night).

When the process is multiplicative, log transforming the process data can make mod-
eling easier.

Unfortunately, taking the logarithm only works if the data is non-negative, because
the log of zero is –Infinity and the log of negative values isn’t defined (R marks the log
of negative numbers as NaN: not a number). There are other transforms, such as arc-
sinh, that you can use to decrease data range if you have zero or negative values. We
don’t always use arcsinh, because we don’t find the values of the transformed data to
be meaningful. In applications where the skewed data is monetary (like account bal-
ances or customer value), we instead use what we call a signed logarithm. A signed loga-
rithm takes the logarithm of the absolute value of the variable and multiplies by the
appropriate sign. Values strictly between -1 and 1 are mapped to zero. The difference
between log and signed log is shown in figure 4.11.

0.00

0.25

0.50

0.75

1.00

0 2 4 6

transformed income

de
ns

ity

solid line: log10(income)

dashed line: signedlog10(income)

signedlog10(income) picks up
the non-positive data that
log10(income) dropped.

Figure 4.11 Signed log lets you visualize non-positive data on a logarithmic scale.
Licensed to Ajit de Silva <agdesilva@gmail.com>

107Sampling for modeling and validation
Here’s how to calculate signed log base 10 in R:

signedlog10 <- function(x) {
ifelse(abs(x) <= 1, 0, sign(x)*log10(abs(x)))

}

This maps all datums between -1 and 1 to zero, so clearly this transformation isn’t use-
ful if values with magnitude less than 1 are important. But with many monetary vari-
ables (in US currency), values less than a dollar aren’t much different from zero (or
1), for all practical purposes. So, for example, mapping account balances that are less
than or equal to $1 (the equivalent of every account always having a minimum bal-
ance of $1) is probably okay. You can also pick a larger threshold for “small,” such as
$100. This would map the small accounts of less than $100 to the same value, and
eliminate the long left tail in figures 4.10 and 4.11. In some situations, eliminating this
long tail can be desirable—for one thing, it makes a graph of the data less visually
skewed.4

Once you’ve got the data suitably cleaned and transformed, you’re almost ready to
start the modeling stage. Before we get there, we have one more step.

4.3 Sampling for modeling and validation
Sampling is the process of selecting a subset of a population to represent the whole
during analysis and modeling. In the current era of big datasets, some people argue
that computational power and modern algorithms let us analyze the entire large data-
set without the need to sample. But keep in mind even “big data” is usually itself a
sample from a larger universe. So some understanding of sampling is always needed
to work with data.

We can certainly analyze larger datasets than we could before, but sampling is still a
useful tool. When you’re in the middle of developing or refining a modeling proce-
dure, it’s easier to test and debug the code on small subsamples before training the
model on the entire dataset. Visualization can be easier with a subsample of the data;
ggplot runs faster on smaller datasets, and too much data will often obscure the pat-
terns in a graph, as we mentioned in chapter 3. And often it’s not feasible to use your
entire customer base to train a model.

It’s important that the dataset that you do use is an accurate representation of your
population as a whole. For example, your customers might come from all over the
United States. When you collect your customer data, it might be tempting to use all
the customers from one state, say Connecticut, to train the model. But if you plan to
use the model to make predictions about customers all over the country, it’s a good
idea to pick customers randomly from all the states, because what predicts health
insurance coverage for Texas customers might be different from what predicts health
insurance coverage in Connecticut. This might not always be possible (perhaps only

4 There are methods other than capping to deal with signed logarithms, such as the arcsinh function (see
http://mng.bz/ZWQa), but they also distort data near zero and make almost any data appear to be bimodal,
which can be deceiving.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/ZWQa

108 CHAPTER 4 Managing data
your Connecticut and Massachusetts branches currently collect the customer health
insurance information), but the shortcomings of using a nonrepresentative dataset
should be kept in mind.

Another reason to sample your data is to create test and training splits.

4.3.1 Test and training splits

When you’re building a model to make predictions, like our model to predict the
probability of health insurance coverage, you need data to build the model. You also
need data to test whether the model makes correct predictions on new data. The first
set is called the training set, and the second set is called the test (or holdout) set. Figure
4.12 shows the splitting process (along with an optional split for a calibration set,
which is discussed in the sidebar “Train/calibration/test splits”).

The training set is the data that you
feed to the model-building algorithm
(we'll cover specific algorithms in part
2) so that the algorithm can fit the
correct structure to best predict the
outcome variable. The test set is the
data that you feed into the resulting
model, to verify that the model’s pre-
dictions will be accurate on new data.
We’ll go into detail about the kinds of
modeling issues that you can detect by

Training data Test data

Calibration
data

Training
data

Data

All data available for modeling

Training data for
model fitting

Test data for
model evaluation

Train/test split

(If needed) Train/calibration split

Training data for
model fitting

Calibration data for
setting model-fitting

parameters

Figure 4.12 Splitting data into training and test (or training, calibration, and test) sets

Train/calibration/test splits
Many writers recommend train/calibra-
tion/test splits, where the calibration set
is used to set parameters that the
model-fitting algorithm needs, and the
training set is used to fit the model. This
is also good advice. Our philosophy is
this: split the data into train/test early,
don’t look at test until final evaluation,
and if you need calibration data, resplit it
from your training subset.
Licensed to Ajit de Silva <agdesilva@gmail.com>

109Sampling for modeling and validation

g

using holdout data in chapter 6. For now, we’ll get our data ready for doing holdout
experiments at a later stage.

4.3.2 Creating a sample group column

A convenient way to manage random sampling is to add a sample group column to
the data frame. The sample group column contains a number generated uniformly
from zero to one, using the runif() function. You can draw a random sample of arbi-
trary size from the data frame by using the appropriate threshold on the sample
group column.

For example, once you’ve labeled all the rows of your data frame with your sample
group column (let’s call it gp), then the set of all rows such that gp < 0.4 will be about
four-tenths, or 40%, of the data. The set of all rows where gp is between 0.55 and 0.70
is about 15% of the data (0.7 – 0.55 = 0.15). So you can repeatably generate a random
sample of the data of any size by using gp.

set.seed(25643)
customer_data$gp <- runif(nrow(customer_data))
customer_test <- subset(customer_data, gp <= 0.1)
customer_train <- subset(customer_data, gp > 0.1)

dim(customer_test)
[1] 7463 16

dim(customer_train)
[1] 65799 16

Listing 4.12 generates a test set of approximately 10% of the data and allocates the
remaining 90% of the data to the training set.

The dplyr package also has functions called sample_n() and sample_frac() that
draw a random sample (a uniform random sample, by default) from a data frame.
Why not just use one of these to draw training and test sets? You could, but you should
make sure to set the random seed via the set.seed() command (as we did in listing
4.12) to guarantee that you’ll draw the same sample group every time. Reproducible
sampling is essential when you’re debugging code. In many cases, code will crash
because of a corner case that you forgot to guard against. This corner case might show
up in your random sample. If you’re using a different random input sample every
time you run the code, you won’t know if you will tickle the bug again. This makes it
hard to track down and fix errors.

You also want repeatable input samples for what software engineers call regression
testing (not to be confused with statistical regression). In other words, when you make
changes to a model or to your data treatment, you want to make sure you don’t break
what was already working. If model version 1 was giving “the right answer” for a cer-
tain input set, you want to make sure that model version 2 does so also.

Listing 4.12 Splitting into test and training using a random group mark

Here we generate a training
set using the remaining data.

Here we generate a
test set of about
10% of the data.

Creates
the

rouping
column

Sets the random seed so this example is reproducible
Licensed to Ajit de Silva <agdesilva@gmail.com>

110 CHAPTER 4 Managing data
We find that storing a sample group column with the data is a more reliable way to
guarantee reproducible sampling during development and testing.

REPRODUCIBLE SAMPLING IS NOT JUST A TRICK FOR R If your data is in a data-
base or other external store, and you only want to pull a subset of the data
into R for analysis, you can draw a reproducible random sample by generat-
ing a sample group column in an appropriate table in the database, using the
SQL command RAND.

4.3.3 Record grouping

One caveat is that the preceding trick works if every object of interest (every customer,
in this case) corresponds to a unique row. But what if you’re interested less in which
customers don’t have health insurance, and more in which households have uninsured
members? If you’re modeling a question at the household level rather than the cus-
tomer level, then every member of a household should be in the same group (test or
training). In other words, the random sampling also has to be at the household level.

Suppose your customers are marked both by a household ID and a customer ID.
This is shown in figure 4.13. We want to split the households into a training set and a
test set. Listing 4.13 shows one way to generate an appropriate sample group column.

household_data <- readRDS("hhdata.RDS")
hh <- unique(household_data$household_id)

set.seed(243674)
households <- data.frame(household_id = hh,

gp = runif(length(hh)),
stringsAsFactors=FALSE)

household_data <- dplyr::left_join(household_data,
households,

by = "household_id")

Listing 4.13 Ensuring test/train split doesn’t split inside a household

household_id customer_id age income

 000000004 000000004_01 65 940
 000000023 000000023_01 43 29000
 000000023 000000023_02 61 42000
 000000327 000000327_01 30 47000
 000000327 000000327_02 30 37400
 000000328 000000328_01 62 42500
 000000328 000000328_02 62 31800
 000000404 000000404_01 82 28600
 000000424 000000424_01 45 160000
 000000424 000000424_02 38 250000

000000004 000000004_01 65 940

000000327 000000327_01 30 47000
000000327 000000327 02 30 37400

000000404 000000404 01 82 28600

household 1

household 2

household 3

household 4

household 5

household 6
Figure 4.13 Example of a dataset
with customers and households

If you have downloaded the PDSwR2 code
example directory, then the household dataset
is in the directory PDSwR2/Custdata. We
assume that this is your working directory. Gets the unique household IDs

Generates a unique sampling
group ID per household, and
puts in a column named gp

Joins the household
IDs back into the
original data
Licensed to Ajit de Silva <agdesilva@gmail.com>

111Sampling for modeling and validation
The resulting sample group column is shown in figure 4.14. Everyone in a household
has the same sampling group number.

Now we can generate the test and training sets as before. This time, however, the
threshold 0.1 doesn’t represent 10% of the data rows, but 10% of the households,
which may be more or less than 10% of the data, depending on the sizes of the house-
holds.

4.3.4 Data provenance

You’ll also want to add a column (or columns) to record data provenance: when your
dataset was collected, perhaps what version of your data-cleaning procedure was used
on the data before modeling, and so on. This metadata is akin to version control for
data. It’s handy information to have, to make sure that you’re comparing apples to
apples when you’re in the process of improving your model, or comparing different
models or different versions of a model.

Figure 4.15 shows an example of some possible metadata added to training data. In
this example, you have recorded the original data source (called “data pull 8/2/18”),
when the data was collected, and when it was treated. If, for example, the treatment
date on the data is earlier than the most recent version of your data treatment proce-
dures, then you know that this treated data is possibly obsolete. Thanks to the meta-
data, you can go back to the original data source and treat it again.

household_id customer_id age income gp
 000000004 000000004_01 65 940 0.20952116
 000000023 000000023_01 43 29000 0.40896034
 000000023 000000023_02 61 42000 0.40896034
 000000327 000000327_01 30 47000 0.55881933
 000000327 000000327_02 30 37400 0.55881933
 000000328 000000328_01 62 42500 0.55739973
 000000328 000000328_02 62 31800 0.55739973
 000000404 000000404_01 82 28600 0.54620515
 000000424 000000424_01 45 160000 0.09107758
 000000424 000000424_02 38 250000 0.09107758

household 1

household 2

household 3

household 4

household 5

household 6

Notice that each
member of a
household has
the same group
number.

000000004 000000004_01 65 940 0.20952116

000000327 000000327_01 30 47000 0.55881933
000000327 000000327_02 30 37400 0.55881933

000000404 000000404_01 82 28600 0.54620515

Figure 4.14 Sampling the dataset by household rather than customer

Figure 4.15 Recording the data source, collection date, and treatment date with data
Licensed to Ajit de Silva <agdesilva@gmail.com>

112 CHAPTER 4 Managing data
Summary
At some point, you’ll have data quality that is as good as you can make it. You’ve fixed
problems with missing data and performed any needed transformations. You’re ready
to go on to the modeling stage.

Remember, though, that data science is an iterative process. You may discover
during the modeling process that you have to do additional data cleaning or transfor-
mation. You may have to go back even further and collect different types of data.
That’s why we recommend adding columns for sample groups and data provenance to
your datasets (and, later, to the models and model output), so you can keep track of
the data management steps as the data and the models evolve.

In this chapter you have learned

 Different ways of handling missing values may be more suitable for a one pur-
pose or another.

 You can use the vtreat package to manage missing values automatically.
 How to normalize or rescale data, and when normalization/rescaling are

appropriate.
 How to log transform data, and when log transformations are appropriate.
 How to implement a reproducible sampling scheme for creating test/train

splits of your data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Data engineering
and data shaping
This chapter will show you how to use R to organize or wrangle data into a shape
useful for analysis. Data shaping is a set of steps you have to take if your data is not
found all in one table or in an arrangement ready for analysis.

Figure 5.1 is the mental model for this chapter: working with data. Previous
chapters have assumed the data is in a ready-to-go form, or we have pre-prepared
the data to be in such a form for you. This chapter will prepare you to take these
steps yourself. The basic concept of data wrangling is to visualize your data being
structured to make your task easier, and then take steps to add this structure to
your data. To teach this, we'll work a number of examples, each with a motivating
task, and then work a transform that solves the problem. We'll concentrate on a set
of transforms that are powerful and useful, and that cover most common situations.

This chapter covers
 Becoming comfortable with applying data transforms

 Starting with important data manipulation packages
including data.table and dplyr

 Learning to control the layout of your data
113

Licensed to Ajit de Silva <agdesilva@gmail.com>

114 CHAPTER 5 Data engineering and data shaping
We will show data wrangling solutions using base R, data.table, and dplyr.1 Each of
these has its advantages, which is why we are presenting more than one solution.
Throughout this book, we are deliberately using a polyglot approach to data wran-
gling: mixing base R, data.table, and dplyr, as convenient. Each of these systems has
its strengths:

 Base R—This is code written in R that directly manipulates data.frames using
R’s built-in capabilities. Breaking complex transforms into base R primitives can
be a puzzle, but we will give you the tools to solve the puzzle in this chapter.

 data.table—data.table is the package for fast and memory-efficient data
manipulation in R. It differs from normal R semantics in that data.table uses
reference semantics where changes are made directly in a shared data structure
(visible to all references to the same structure) instead of R’s more typical value
semantics (where changes made in one reference do not become visible to
other references). data.table notation specifies powerful transforms through
a variation of the []-indexing operator, and is well explained in help(data
.table, package="data.table") and vignette("datatable-intro", package=
"data.table").

1 For database tasks, we suggest using dbplyr or rquery, which we will touch on briefly in appendix A.

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 5.1 Chapter 5 mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

115
 dplyr—dplyr is a popular data manipulation package that emphasizes data
manipulations through sequences of SQL-like (or Codd-style) operators. dplyr
is usually not as fast (or space efficient) as data.table, but the notations are
convenient.

Some good places to start on manipulating data in R are the following free guides:

 Getting Started in R, data.table version: https://eddelbuettel.github.io/gsir-te/
Getting-Started-in-R.pdf

 Getting Started in R, tidyverse version: https://github.com/saghirb/Getting-
Started-in-R

We want to improve your ability to write R code (to translate intent into implementa-
tion) and to read R code (to infer intent from existing code). To this end, this chap-
ter, like much of this book, is designed as a sequence of worked examples. We strongly
encourage you try running the examples yourself (they are available here:
https://github.com/WinVector/PDSwR2). It is key to get into the habit of planning
(even drawing) your data transformation before coding. Finish clarifying your intent
before getting bogged down by the details of coding. Trust that there are easy-to-find
methods for most common data wrangling tasks in R, and plan with the assumption
that you can find them when needed. The principle is this: make your analysis simpler
by transforming your data into a simple “data matrix” format where each row is an
observation, and each column is a measurement type. Fix issues, such as odd column
names, early, and then you don’t have to write complicated code to work around them.

This chapter is organized in terms of the type of transform needed. For variety, we
will bring in a number of small notional datasets, and spend a little time looking at
each dataset. This task-to-example organization will give you a quick introduction to
data transforms in R. The transforms we are going to cover include these:

 Choosing a subset of columns
 Choosing a subset of rows
 Reordering rows
 Creating new columns
 Dealing with missing values
 Combining two datasets by row
 Combining two datasets by column
 Joining two datasets
 Aggregating rows
 General data reshaping (tall versus wide forms)

The idea is that this list will give you enough tools for a very large number of tasks.
We'll work from problems to solutions. We will show which command solves a given
problem, and leave details of the command’s syntax to R’s help system and the guides
and tutorials we suggest in this chapter. Please think of this chapter as a Rosetta Stone
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://eddelbuettel.github.io/gsir-te/Getting-Started-in-R.pdf
https://eddelbuettel.github.io/gsir-te/Getting-Started-in-R.pdf
https://eddelbuettel.github.io/gsir-te/Getting-Started-in-R.pdf
https://github.com/saghirb/Getting-Started-in-R
https://github.com/saghirb/Getting-Started-in-R
https://github.com/WinVector/PDSwR2

116 CHAPTER 5 Data engineering and data shaping
for data wrangling: each concept is explained once and then executed three times
(usually in base R, data.table, and dplyr).

Our first application (subsetting rows and columns) will set up the general pattern
of the applications, so it is worth reading through even if you are already confidently
subsetting data in R.

DATA SOURCES In this chapter, we'll use small, toy-sized datasets to make it
easier to examine data before and after the transforms. We strongly suggest
you run all the examples along with us. All examples are either built-in data
that comes with R or available from the book’s GitHub site: https://github
.com/WinVector/PDSwR2. Also, all code examples can be found in the Code-
Examples at the same location. We suggest cloning or downloading this mate-
rial to help working with this book.

For more information on R’s built-in examples, try the command help(datasets).

5.1 Data selection
This section covers removing rows, removing columns, reordering columns, removing
missing data, and reordering data rows. In the era of big data, you often have too
much to look at, so limiting your data to what you need can greatly speed up your
work.

5.1.1 Subsetting rows and columns

A common task when working with a dataset is selecting a subset of rows or columns.

SITUATION

For our first example, we will use the iris dataset : measurements of sepal length and
width and petal length and width for three species of iris.

First we will look at some aspects of the data. We suggest always doing this and mak-
ing it part of an “eyes on the data” work discipline. For example, figure 5.2 shows the
petal dimensions of our example irises:

library("ggplot2")

summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
##
Species
setosa :50
versicolor:50
virginica :50

Attaches the ggplot2 package
for later plotting

Takes a look at the built-in iris data
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2

117Data selection
ATTACHING PACKAGES It is good practice to attach packages early. If a package
won't attach, try installing it with a command such as install.packages
("ggplot2").

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

ggplot(iris,
aes(x = Petal.Length, y = Petal.Width,

shape = Species, color = Species)) +
geom_point(size =2) +
ggtitle("Petal dimensions by iris species: all measurements")

The iris data comes preinstalled with R and is part of the datasets package. We will
deliberately use small examples in this chapter so it is easy to look at results.

0.0

0.5

1.0

1.5

2.0

2.5

2 4 6

setosa

versicolor

virginica

petal.Length

Petal dimensions by iris species: all measurements

species

pe
ta

l.W
id

th

Figure 5.2 Example iris plot
Licensed to Ajit de Silva <agdesilva@gmail.com>

118 CHAPTER 5 Data engineering and data shaping
SCENARIO

Suppose we are assigned to generate a report on only petal length and petal width, by iris species,
for irises where the petal length is greater than 2. To accomplish this, we need to select a subset of
columns (variables) or a subset of rows (instances) from a data frame.

Column and row selections look like figure 5.3.

THE DIAGRAMS The diagrams in this chapter are meant to be mnemonic car-
toons of the transform. We suggest looking at the actual data before and after
the transform to get more details on what the data transforms are doing. We
also suggest reviewing them again after working the solutions and noticing
how they abstract the arrangement of the data before and after the trans-
forms. Think of these diagrams as a visual index of transforms.

SOLUTION 1: BASE R
The base R solution works by using the [,] indexing operator.

DROP = FALSE When working with [,] always add a third argument drop =
FALSE to get around the issue that the default behavior when selecting a sin-
gle column from an R data.frame returns a vector and not a data.frame
containing the column. In many cases, we know we have more than one col-
umn, and don’t strictly need the command. But it is good to get in the habit
of adding this argument to avoid unpleasant surprises.

a

1

2

3

b

4

5

6

a

1

2

3

b

4

5

6

c

7

8

9

a

1

3

Select desired
columns

Select desired
rows

b

4

6

c

7

9

a

1

2

3

b

4

5

6

c

7

8

9

Figure 5.3 Selecting columns and rows
Licensed to Ajit de Silva <agdesilva@gmail.com>

119Data selection
The solution strategy is this:

 Get desired columns by name or column index in the second position of [,].
 Get desired rows by Boolean per-row selection in the first position of [,].

columns_we_want <- c("Petal.Length", "Petal.Width", "Species")
rows_we_want <- iris$Petal.Length > 2

before
head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

iris_base <- iris[rows_we_want, columns_we_want, drop = FALSE]

after
head(iris_base)

Petal.Length Petal.Width Species
51 4.7 1.4 versicolor
52 4.5 1.5 versicolor
53 4.9 1.5 versicolor
54 4.0 1.3 versicolor
55 4.6 1.5 versicolor
56 4.5 1.3 versicolor

Notice column selection is also a good way to reorder columns. An advantage of base
R is it tends to be fast and has very stable APIs: code written this year in base R is most
likely to work next year (tidyverse packages, unfortunately, tend to have less-stable
APIs). The one disadvantage is that a few base R defaults are irritating. For example,
we included the drop=FALSE notation to work around the fact that base R would
return a vector instead of a data.frame if we tried to select only one column.

SOLUTION 2: DATA.TABLE

Row and column selection in data.table is performed similarly to base R. data
.table uses a very powerful set of index notations. In this case, we use a .. notation to
tell data.table that we are using the second index position to specify column names
(and not to specify calculations, as we will demonstrate later).

library("data.table")

iris_data.table <- as.data.table(iris)

columns_we_want <- c("Petal.Length", "Petal.Width", "Species")
rows_we_want <- iris_data.table$Petal.Length > 2

iris_data.table <- iris_data.table[rows_we_want , ..columns_we_want]

head(iris_data.table)

Converts to data.table class
to get data.table semantics

The .. notation tells data.table that
columns_we_want isn’t itself the name of a column

but a variable referring to names of columns.
Licensed to Ajit de Silva <agdesilva@gmail.com>

120 CHAPTER 5 Data engineering and data shaping
Petal.Length Petal.Width Species
1: 4.7 1.4 versicolor
2: 4.5 1.5 versicolor
3: 4.9 1.5 versicolor
4: 4.0 1.3 versicolor
5: 4.6 1.5 versicolor
6: 4.5 1.3 versicolor

The advantage of data.table is that it is the fastest and most memory efficient solu-
tion for data wrangling in R at a wide range of scales. data.table has a very helpful
FAQ, and there is a nice cheat sheet:

 https://cran.r-project.org/web/packages/data.table/vignettes/datatable-faq
.html

 https://www.datacamp.com/community/tutorials/data-table-cheat-sheet

Both of these will make more sense if you approach them after working some exam-
ples from the data.table vignette accessible in R with the command vignette
("datatable-intro", package = "data.table").

Taking care when using data.table

data.table works like data.frames for packages that are not data.table-aware. This
means you can use data.tables with just about any package, even those that predate
data.table. In a data.table-aware situation (using data.table at the command
line, or using a package that depends on data.table), data.table implements
slightly enhanced semantics. We show a quick example here:

library("data.table")

df <- data.frame(x = 1:2, y = 3:4)

df[, x]
Error in `[.data.frame`(df, , x) : object 'x' not found

x <- "y"
dt <- data.table(df)

dt[, x]
[1] 1 2

dt[, ..x]
y
1: 3
2: 4

SOLUTION 3: DPLYR

The dplyr solution is written in terms of select and filter:

 dplyr::select to select desired columns
 dplyr::filter to select desired rows

It is traditional to chain dplyr steps with the magrittr pipe operator %>%, but assigning
to temporary variables works just as well. While teaching here, we'll use explicit dot nota-
tion, where the data pipeline is written as iris %>% select(., column) instead of the

Example data.frame

Notice that writing
df[, x] instead of
df[, "x"] is an error
(assuming x is not
bound to a value in
our environment).

Sets up data.table example

Notice that this returns the
column x much like d$x would.

This uses data.table’s “look up”
idiom to get a data.table of columns
referred to by the variable x.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-faq.html
https://www.datacamp.com/community/tutorials/data-table-cheat-sheet

121Data selection
more-common implicit first-argument notation (iris %>% select(column)). Explicit
dot notation was discussed in chapter 2 and is the topic of the following R Tip:
http://www.win-vector.com/blog/2018/03/r-tip-make-arguments-explicit-in-magrittr-
dplyr-pipelines/.2

library("dplyr")

iris_dplyr <- iris %>%
select(.,

Petal.Length, Petal.Width, Species) %>%
filter(.,

Petal.Length > 2)

head(iris_dplyr)

Petal.Length Petal.Width Species
1 4.7 1.4 versicolor
2 4.5 1.5 versicolor
3 4.9 1.5 versicolor
4 4.0 1.3 versicolor
5 4.6 1.5 versicolor
6 4.5 1.3 versicolor

The advantage of dplyr is the emphasis of data processing as a sequence of operations
broken down into a visible pipeline.

There is a nice cheat sheet for dplyr available from https://www.rstudio.com/wp-
content/uploads/2015/02/data-wrangling-cheatsheet.pdf. Cheat sheets are always
going to be a bit brief, so the sheet will become very useful after you have tried a few
examples.

5.1.2 Removing records with incomplete data

An important variation of subsetting data is removing rows of data that have missing
values. We will also deal with some simple strategies for replacing missing values by
moving values across rows (using na.locf()) or moving values across columns (called
coalescing).3

In this section, we will show how to quickly select only rows that have no missing
data or values. This is only an example; we generally suggest using the methodologies
in chapters 4 and 8 for treating missing values in real-world applications.

SITUATION

As our preceding example does not have missing values, we will move to another
example: the msleep dataset of sleep times of animals with different characteristics. In
this dataset, several rows have missing values. An additional goal of this example is to

2 A powerful alternate pipe called the dot arrow pipe (written as %.>%) that insists on explicit dot notation and
supplies additional capabilities can be found in the wrapr package. For most of this book, we will stick to the
magrittr pipe, but we encourage curious readers to check out the wrapr pipe in their own work.

3 There is actually an entire science devoted to imputing values for missing data. A good resource on this topic
is https://CRAN.R-project.org/view=MissingData.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://www.win-vector.com/blog/2018/03/r-tip-make-arguments-explicit-in-magrittr-dplyr-pipelines/
http://www.win-vector.com/blog/2018/03/r-tip-make-arguments-explicit-in-magrittr-dplyr-pipelines/
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://CRAN.R-project.org/view=MissingData

122 CHAPTER 5 Data engineering and data shaping
familiarize you with a number of common practice datasets. These are the datasets
that you should break out to try a new data wrangling method.

First, as always, let’s look at the data:

library("ggplot2")
data(msleep)

str(msleep)

Classes 'tbl_df', 'tbl' and 'data.frame': 83 obs. of 11 variables:
$ name : chr "Cheetah" "Owl monkey" "Mountain beaver" "Greater sh

ort-tailed shrew" ...
$ genus : chr "Acinonyx" "Aotus" "Aplodontia" "Blarina" ...
$ vore : chr "carni" "omni" "herbi" "omni" ...
$ order : chr "Carnivora" "Primates" "Rodentia" "Soricomorpha" ...
$ conservation: chr "lc" NA "nt" "lc" ...
$ sleep_total : num 12.1 17 14.4 14.9 4 14.4 8.7 7 10.1 3 ...
$ sleep_rem : num NA 1.8 2.4 2.3 0.7 2.2 1.4 NA 2.9 NA ...
$ sleep_cycle : num NA NA NA 0.133 0.667 ...
$ awake : num 11.9 7 9.6 9.1 20 9.6 15.3 17 13.9 21 ...
$ brainwt : num NA 0.0155 NA 0.00029 0.423 NA NA NA 0.07 0.0982 ...
$ bodywt : num 50 0.48 1.35 0.019 600 ...

summary(msleep)

name genus vore
Length:83 Length:83 Length:83
Class :character Class :character Class :character
Mode :character Mode :character Mode :character
##
##
##
##
order conservation sleep_total sleep_rem
Length:83 Length:83 Min. : 1.90 Min. :0.100
Class :character Class :character 1st Qu.: 7.85 1st Qu.:0.900
Mode :character Mode :character Median :10.10 Median :1.500
Mean :10.43 Mean :1.875
3rd Qu.:13.75 3rd Qu.:2.400
Max. :19.90 Max. :6.600
NA's :22
sleep_cycle awake brainwt bodywt
Min. :0.1167 Min. : 4.10 Min. :0.00014 Min. : 0.005
1st Qu.:0.1833 1st Qu.:10.25 1st Qu.:0.00290 1st Qu.: 0.174
Median :0.3333 Median :13.90 Median :0.01240 Median : 1.670
Mean :0.4396 Mean :13.57 Mean :0.28158 Mean : 166.136
3rd Qu.:0.5792 3rd Qu.:16.15 3rd Qu.:0.12550 3rd Qu.: 41.750
Max. :1.5000 Max. :22.10 Max. :5.71200 Max. :6654.000
NA's :51 NA's :27

SCENARIO

We have been asked to build an extract of the msleep data that has no missing values.
To accomplish this, we will remove all rows that have missing values. The cartoon of
the transform is shown in figure 5.4.

Copies the msleep from the ggplot2
package into our workspace
Licensed to Ajit de Silva <agdesilva@gmail.com>

123Data selection
Base R solution

 complete.cases() returns a vector with one entry for each row of the data
frame, which is TRUE if and only if the row has no missing entries. Once we
know what rows we want, it is just a matter of selecting those rows (which we
have seen earlier).

 na.omit() performs the whole task in one step.

clean_base_1 <- msleep[complete.cases(msleep), , drop = FALSE]

summary(clean_base_1)

name genus vore
Length:20 Length:20 Length:20
Class :character Class :character Class :character
Mode :character Mode :character Mode :character
##
##
##
order conservation sleep_total sleep_rem
Length:20 Length:20 Min. : 2.900 Min. :0.600
Class :character Class :character 1st Qu.: 8.925 1st Qu.:1.300
Mode :character Mode :character Median :11.300 Median :2.350
Mean :11.225 Mean :2.275
3rd Qu.:13.925 3rd Qu.:3.125
Max. :19.700 Max. :4.900
sleep_cycle awake brainwt bodywt
Min. :0.1167 Min. : 4.30 Min. :0.00014 Min. : 0.0050
1st Qu.:0.1792 1st Qu.:10.07 1st Qu.:0.00115 1st Qu.: 0.0945
Median :0.2500 Median :12.70 Median :0.00590 Median : 0.7490
Mean :0.3458 Mean :12.78 Mean :0.07882 Mean : 72.1177
3rd Qu.:0.4167 3rd Qu.:15.07 3rd Qu.:0.03670 3rd Qu.: 6.1250
Max. :1.0000 Max. :21.10 Max. :0.65500 Max. :600.0000

nrow(clean_base_1)

[1] 20

clean_base_2 = na.omit(msleep)

a

1

2

3

4

5

6

a

3

5

6

b

8

10

11

b

7

NA

8

9

10

11

c

13

14

15

c

NA

12

13

NA

14

15 Figure 5.4 Removing rows
with missing values
Licensed to Ajit de Silva <agdesilva@gmail.com>

124 CHAPTER 5 Data engineering and data shaping
nrow(clean_base_2)

[1] 20

data.table solution

The complete.cases() solution also works with data.table:

library("data.table")

msleep_data.table <- as.data.table(msleep)

clean_data.table = msleep_data.table[complete.cases(msleep_data.table),]

nrow(clean_data.table)

[1] 20

dplyr solution

dplyr::filter can also be used with complete.cases().

With magrittr pipe notation, a . is taken to mean the item being piped. So we can use
. to refer to our data multiple times conveniently, such as telling the dplyr::filter to
use the data both as the object to be filtered and as the object to pass to complete
.cases().

library("dplyr")

clean_dplyr <- msleep %>%
filter(., complete.cases(.))

nrow(clean_dplyr)

[1] 20

5.1.3 Ordering rows

In this section, we want to sort or control what order our data rows are in. Perhaps the
data came to us unsorted, or sorted for a purpose other than ours.

SCENARIO

We are asked to build a running or cumulative sum of sales by time, but the data came
to us out of order:

purchases <- wrapr::build_frame(
"day", "hour", "n_purchase" |

1 , 9 , 5 |
2 , 9 , 3 |
2 , 11 , 5 |
1 , 13 , 1 |
2 , 13 , 3 |
1 , 14 , 1)

PROBLEM

Reorder the rows by day and then hour and compute a running sum. The abstract dia-
gram is shown in figure 5.5.

Uses wrapr::build_frame
to type data in directly in
legible column order
Licensed to Ajit de Silva <agdesilva@gmail.com>

125Data selection
Base R solution

order_index <- with(purchases, order(day, hour))

purchases_ordered <- purchases[order_index, , drop = FALSE]
purchases_ordered$running_total <- cumsum(purchases_ordered$n_purchase)

purchases_ordered

day hour n_purchase running_total
1 1 9 5 5
4 1 13 1 6
6 1 14 1 7
2 2 9 3 10
3 2 11 5 15
5 2 13 3 18

data.table solution

library("data.table")

DT_purchases <- as.data.table(purchases)

order_cols <- c("day", "hour")
setorderv(DT_purchases, order_cols)

DT_purchases[, running_total := cumsum(n_purchase)]

print(DT_purchases)

:= AND [] Operations that alter data in place (such as :=) annotate the result
to suppress printing. This is important, as often you are working with large
structures and do not want intermediate data to print. [] is a no-operation
that as a side effect restores printing.

setorderv() reorders data in place and takes a list of ordering column names to spec-
ify the order. This is much more convenient than the base R solution that takes

a

1

2

2

1

2

1

a

1

1

1

2

2

2

b

1

2

3

1

2

3

b

3

2

3

1

1

2

order

Figure 5.5 Ordering rows

with() executes the code in its second argument
as if the columns of the first argument were variables.
This lets us write x instead of purchases_ordered$x.

Computes the running sum

Reorders data
Licensed to Ajit de Silva <agdesilva@gmail.com>

126 CHAPTER 5 Data engineering and data shaping
multiple ordering columns as multiple arguments. wrapr::orderv() tries to bridge
this gap by allowing the user to specify ordering constraints with a list of columns (col-
umn values, not column names).

dplyr solution

dplyr uses the word arrange to order data, and mutate to add a new column:

library("dplyr")

res <- purchases %>%
arrange(., day, hour) %>%
mutate(., running_total = cumsum(n_purchase))

print(res)

ADVANCED USE OF ORDERING

For our advanced example, suppose we want the cumulative sum of sales to be per-
day—that is, to reset the sum at the start of each day.

Base R solution

This easiest base R solution is a split and recombine strategy:

order_index <- with(purchases, order(day, hour))
purchases_ordered <- purchases[order_index, , drop = FALSE]

data_list <- split(purchases_ordered, purchases_ordered$day)

data_list <- lapply(
data_list,
function(di) {

di$running_total <- cumsum(di$n_purchase)
di

})

purchases_ordered <- do.call(base::rbind, data_list)
rownames(purchases_ordered) <- NULL

purchases_ordered

day hour n_purchase running_total
1 1 9 5 5
2 1 13 1 6
3 1 14 1 7
4 2 9 3 3
5 2 11 5 8
6 2 13 3 11

data.table solution

The data.table solution is particularly concise. We order the data and then tell
data.table to calculate the new running sum per-group with the by argument. The
idea that the grouping is a property of the calculation, and not a property of the data,
is similar to SQL and helps minimize errors.

First sorts the data Now splits the data
into a list of groups

Applies the cumsum
to each group

Puts the results back
together into a single
data.frame

R often keeps annotations in rownames().
In this case, it is storing the original row
numbers of the pieces we are assembling.
This can confuse users when printing, so it
is good practice to remove these
annotations, as we do here.
Licensed to Ajit de Silva <agdesilva@gmail.com>

127Data selection
:= VERSUS = In data.table, := means “assign in place”—it is used to alter or
create a column in the incoming data.table. Conversely, = is used to mean
“create in new data.table,” and we wrap these sorts of assignments in a .()
notation so that column names are not confused with arguments to
data.table.

library("data.table")

new copy for result solution
DT_purchases <- as.data.table(purchases)[order(day, hour),

.(hour = hour,
n_purchase = n_purchase,
running_total = cumsum(n_purchase)),

by = "day"]
print(DT_purchases)

in-place solution
DT_purchases <- as.data.table(purchases)
order_cols <- c("day", "hour")
setorderv(DT_purchases, order_cols)
DT_purchases[, running_total := cumsum(n_purchase), by = day]
print(DT_purchases)

don't reorder the actual data variation!
DT_purchases <- as.data.table(purchases)
DT_purchases[order(day, hour),

`:=`(hour = hour,
n_purchase = n_purchase,
running_total = cumsum(n_purchase)),

by = "day"]

print(DT_purchases)

SEQUENCING DATA.TABLE OPERATIONS Sequencing data.table operations is
achieved either by writing in-place operations one after the other (as we did
in these examples) or by starting a new open-[right after a close-] for opera-
tions that create new copies (this is called method chaining and is equivalent to
using a pipe operator).

dplyr solution

The dplyr solution works because the command mutate() (which we will discuss in
the next section) works per-group if the data is grouped. We can make the data
grouped by using the group_by() command :

library("dplyr")

res <- purchases %>%
arrange(., day, hour) %>%
group_by(., day) %>%
mutate(., running_total = cumsum(n_purchase)) %>%
ungroup(.)

print(res)

Adding the by keyword
converts the calculation into
a per-group calculation.

First solution: result is a second copy of
the data .(=) notation. Only columns used
in the calculation (such as day) and those
explicitly assigned to are in the result.

Second solution: result is
computed in place by
ordering the table before
the grouped calculation.

Third solution: result is in the same order as the
original table, but the cumulative sum is computed as
if we sorted the table, computed the grouped running
sum, and then returned the table to the original order.
Licensed to Ajit de Silva <agdesilva@gmail.com>

128 CHAPTER 5 Data engineering and data shaping
UNGROUP() In dplyr it is important to always ungroup your data when you are
done performing per-group operations. This is because the presence of a dplyr
grouping annotation can cause many downstream steps to calculate unex-
pected and incorrect results. We advise doing this even after a summarize()
step, as summarize() removes one key from the grouping, leaving it unclear to
a code reader if the data remains grouped or not.

5.2 Basic data transforms
This section covers adding and renaming columns.

5.2.1 Adding new columns

The section covers adding new variables (columns) to a data frame, or applying trans-
formations to existing columns (see figure 5.6).

EXAMPLE DATA

For our example data, we will use air quality measurements with missing data and
non-standard date formatting, for the year 1973:

library("datasets")
library("ggplot2")

summary(airquality)

Ozone Solar.R Wind Temp
Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
NA's :37 NA's :7
Month Day
Min. :5.000 Min. : 1.0
1st Qu.:6.000 1st Qu.: 8.0
Median :7.000 Median :16.0
Mean :6.993 Mean :15.8
3rd Qu.:8.000 3rd Qu.:23.0
Max. :9.000 Max. :31.0
##

a

1

2

3

b

4

5

6

c

7

8

9

a

1

2

3

New column
derived from

existing
columns

(Optional)
Delete
original
columns

b

4

5

6

a

1

2

3

b

8

10

12

c

7

8

9

d

8

10

12

Figure 5.6 Adding or altering columns
Licensed to Ajit de Silva <agdesilva@gmail.com>

129Basic data transforms

e
e:
w
e
he

/
-

SCENARIO

We are asked to convert this non-standard date representation into a new, more useful
date column for queries and plotting.

library("lubridate")
library("ggplot2")

create a function to make the date string.
datestr = function(day, month, year) {

paste(day, month, year, sep="-")
}

Base R solution

In base R, we create new columns by assigning to them:

airquality_with_date <- airquality

airquality_with_date$date <- with(airquality_with_date,
dmy(datestr(Day, Month, 1973)))

airquality_with_date <- airquality_with_date[,
c("Ozone", "date"),

 drop = FALSE]

head(airquality_with_date)

Ozone date
1 41 1973-05-01
2 36 1973-05-02
3 12 1973-05-03
4 18 1973-05-04
5 NA 1973-05-05
6 28 1973-05-06

ggplot(airquality_with_date, aes(x = date, y = Ozone)) +
geom_point() +
geom_line() +
xlab("Date") +
ggtitle("New York ozone readings, May 1 - Sept 30, 1973")

The preceding code produces figure 5.7.
Base R has had transform-style (or pipeable) versions of these basic operators for

quite some time (just no pipe!). Let’s work the example again in that style:

library("wrapr")

airquality %.>%
transform(., date = dmy(datestr(Day, Month, 1973))) %.>%
subset(., !is.na(Ozone), select = c("Ozone", "date")) %.>%
head(.)

Ozone date
1 41 1973-05-01
2 36 1973-05-02
3 12 1973-05-03
4 18 1973-05-04
6 28 1973-05-06
7 23 1973-05-07

Builds a copy of the data Adds the date column, using
with () to refer to columns

without needing the table name

Limits down to the
columns of interest

Shows the results

Plots the results

Runs all the steps as before using
transform() and subset(), adding an
extra step of filtering down to rows

that do not have missing Ozone values

Attaches the wrapr
package to define th
wrapr dot arrow pip
%.>%. The dot arro
pipe is another R pip
and is described in t
R Journal at https://
journal.r-project.org
archive/2018/RJ-2018
042/index.html.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://journal.r-project.org/archive/2018/RJ-2018-042/index.html
https://journal.r-project.org/archive/2018/RJ-2018-042/index.html
https://journal.r-project.org/archive/2018/RJ-2018-042/index.html

130 CHAPTER 5 Data engineering and data shaping
data.table solution

data.table uses := to show column alterations or creations that are supposed to
happen “in place” (the data.table at hand gets altered, instead of a new one being
created).

library("data.table")

DT_airquality <-
as.data.table(airquality)[

, date := dmy(datestr(Day, Month, 1973))][
, c("Ozone", "date")]

head(DT_airquality)

Ozone date
1: 41 1973-05-01
2: 36 1973-05-02
3: 12 1973-05-03
4: 18 1973-05-04
5: NA 1973-05-05
6: 28 1973-05-06

0

50

100

150

May Jun Jul Aug Sep Oct

date

New York ozone readings, May 1 - Sept 30, 1973

oz
on

e

Figure 5.7 Ozone plot example

Builds a data.table
copy of the data

Adds the date column

Limits down to the
columns of interest
Licensed to Ajit de Silva <agdesilva@gmail.com>

131Basic data transforms
Notice how the open-[steps work a lot like pipes, connecting one data.table stage to
another. This is one of the reasons data.table places so many operations inside the
[]: in R the [] naturally chains operations left to right.

dplyr solution

dplyr users will remember that in dplyr, new columns are produced with the
mutate() command :

library("dplyr")

airquality_with_date2 <- airquality %>%
mutate(., date = dmy(datestr(Day, Month, 1973))) %>%
select(., Ozone, date)

head(airquality_with_date2)

Ozone date
1 41 1973-05-01
2 36 1973-05-02
3 12 1973-05-03
4 18 1973-05-04
5 NA 1973-05-05
6 28 1973-05-06

THE SCENARIO CONTINUED

Notice the original Ozone graph had holes in the data, due to missing values. We will
try to fix this by propagating the last known Ozone reading forward to the dates with
missing values. This “the task was finished ... until we looked at the results” situation is
typical of data science. So always look, and look for problems.

Filling in missing values from earlier in a column is illustrated in figure 5.8.
The zoo package supplies a function called na.locf(), which is designed to solve

our issue. We will show how to apply this function now.

a

1

NA

2

3

NA

4

b

1

1

2

3

3

4

na.locf()

Figure 5.8 Filling in
missing values
Licensed to Ajit de Silva <agdesilva@gmail.com>

132 CHAPTER 5 Data engineering and data shaping
Base R solution

library("zoo")

airquality_corrected <- airquality_with_date
airquality_corrected$OzoneCorrected <-

na.locf(airquality_corrected$Ozone, na.rm = FALSE)

summary(airquality_corrected)

Ozone date OzoneCorrected
Min. : 1.00 Min. :1973-05-01 Min. : 1.00
1st Qu.: 18.00 1st Qu.:1973-06-08 1st Qu.: 16.00
Median : 31.50 Median :1973-07-16 Median : 30.00
Mean : 42.13 Mean :1973-07-16 Mean : 39.78
3rd Qu.: 63.25 3rd Qu.:1973-08-23 3rd Qu.: 52.00
Max. :168.00 Max. :1973-09-30 Max. :168.00
NA's :37

ggplot(airquality_corrected, aes(x = date, y = Ozone)) +
geom_point(aes(y=Ozone)) +
geom_line(aes(y=OzoneCorrected)) +
ggtitle("New York ozone readings, May 1 - Sept 30, 1973",

subtitle = "(corrected)") +
xlab("Date")

This produces figure 5.9.

0

50

100

150

May Jun Jul Aug Sep Oct

date

oz
on

e

New York ozone readings, May 1 - Sept 30, 1973
(corrected)

Figure 5.9 Ozone plot again
Licensed to Ajit de Silva <agdesilva@gmail.com>

133Basic data transforms
USE NA.RM = FALSE Always use na.rm = FALSE with na.locf(); otherwise, it
may delete initial NA elements from your data.

data.table solution

library("data.table")
library("zoo")

DT_airquality[, OzoneCorrected := na.locf(Ozone, na.rm=FALSE)]

summary(DT_airquality)

Ozone date OzoneCorrected
Min. : 1.00 Min. :1973-05-01 Min. : 1.00
1st Qu.: 18.00 1st Qu.:1973-06-08 1st Qu.: 16.00
Median : 31.50 Median :1973-07-16 Median : 30.00
Mean : 42.13 Mean :1973-07-16 Mean : 39.78
3rd Qu.: 63.25 3rd Qu.:1973-08-23 3rd Qu.: 52.00
Max. :168.00 Max. :1973-09-30 Max. :168.00
NA's :37

Notice that data.table performed the correction “in place,” in DT_airquality
instead of producing a new data.frame.

dplyr solution

library("dplyr")
library("zoo")

airquality_with_date %>%
mutate(.,

OzoneCorrected = na.locf(Ozone, na.rm = FALSE)) %>%
summary(.)

Ozone date OzoneCorrected
Min. : 1.00 Min. :1973-05-01 Min. : 1.00
1st Qu.: 18.00 1st Qu.:1973-06-08 1st Qu.: 16.00
Median : 31.50 Median :1973-07-16 Median : 30.00
Mean : 42.13 Mean :1973-07-16 Mean : 39.78
3rd Qu.: 63.25 3rd Qu.:1973-08-23 3rd Qu.: 52.00
Max. :168.00 Max. :1973-09-30 Max. :168.00
NA's :37

5.2.2 Other simple operations

A number of additional simple operations commonly used in working with data are
available—in particular, renaming columns by altering the column names directly,
and also removing columns by assigning NULL. We will show these briefly:

d <- data.frame(x = 1:2, y = 3:4)
print(d)
#> x y
#> 1 1 3
#> 2 2 4

colnames(d) <- c("BIGX", "BIGY")
print(d)
#> BIGX BIGY
#> 1 1 3
Licensed to Ajit de Silva <agdesilva@gmail.com>

134 CHAPTER 5 Data engineering and data shaping
#> 2 2 4

d$BIGX <- NULL
print(d)
#> BIGY
#> 1 3
#> 2 4

5.3 Aggregating transforms
This section covers transforms that combine multiple rows or multiple columns.

5.3.1 Combining many rows into summary rows

Here we address the situation where there are multiple observations or measurements
of a single subject, in this case species of Iris, that we wish to aggregate into a single
observation.

SCENARIO

We have been asked to make a report summarizing iris petals by species.

PROBLEM

Summarize measurements by category, as shown in figure 5.10.

EXAMPLE DATA

Again, we use measurements of petal length and width, by iris species, from the iris
dataset :

library("datasets")
library("ggplot2")

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Group
into

categories

Summarize
each

category

a

1

2

3

4

5

6

b

7

8

9

10

11

12

c

13

14

15

16

17

18

a

1

2

3

4

5

6

b

7

8

9

10

11

12

c

13

14

15

16

17

18

a

3

7

11

b

15

19

23

c

27

31

35

Figure 5.10 Aggregating rows
Licensed to Ajit de Silva <agdesilva@gmail.com>

135Aggregating transforms
Base R solution

iris_summary <- aggregate(
cbind(Petal.Length, Petal.Width) ~ Species,
data = iris,
FUN = mean)

print(iris_summary)

Species Petal.Length Petal.Width
1 setosa 1.462 0.246
2 versicolor 4.260 1.326
3 virginica 5.552 2.026

library(ggplot2)
ggplot(mapping = aes(x = Petal.Length, y = Petal.Width,

shape = Species, color = Species)) +
geom_point(data = iris, # raw data

alpha = 0.5) +
geom_point(data = iris_summary, # per-group summaries

size = 5) +
ggtitle("Average Petal dimensions by iris species\n(with raw data for refer

ence)")

This produces figure 5.11, a new iris plot with group mean annotations.

0.0

0.5

1.0

1.5

2.0

2.5

2 4 6

setosa

versicolor

virginica

petal.Length

species

pe
ta

l.W
id

th

Average petal dimensions by iris species
(with raw data for reference)

Figure 5.11 Iris plot
Licensed to Ajit de Silva <agdesilva@gmail.com>

136 CHAPTER 5 Data engineering and data shaping
data.table solution

library("data.table")

iris_data.table <- as.data.table(iris)
iris_data.table <- iris_data.table[,

.(Petal.Length = mean(Petal.Length),
Petal.Width = mean(Petal.Width)),

by = .(Species)]

print(iris_data.table)

dplyr solution

 dplyr::group_by

 dplyr::summarize

 A one-argument aggregation function, for example sum or mean

library("dplyr")

iris_summary <- iris %>% group_by(., Species) %>%
summarize(.,

Petal.Length = mean(Petal.Length),
Petal.Width = mean(Petal.Width)) %>%

ungroup(.)

print(iris_summary)

Window functions

Both data.table and dplyr have grouped versions of the preceding operations (simi-
lar to what relational databases call window functions). This lets each row include the
per-group summary in each row without having to build a summary table and join
(the usual way to compute such quantities). For example:

iris_copy <- iris
iris_copy$mean_Petal.Length <-

ave(iris$Petal.Length, iris$Species, FUN = mean)
iris_copy$mean_Petal.Width <- ave(iris$Petal.Width, iris$Species, FUN = mean)

head(iris_copy)
tail(iris_copy)

In data.table, the task looks like the following:

library("data.table")

iris_data.table <- as.data.table(iris)

iris_data.table[,
`:=`(mean_Petal.Length = mean(Petal.Length),

mean_Petal.Width = mean(Petal.Width)),
by = "Species"]

print(iris_data.table)

Please run the preceding code and print iris_data.table to see that the computed
means are per-group.

dplyr has similar functionality:
Licensed to Ajit de Silva <agdesilva@gmail.com>

137Multitable data transforms
library("dplyr")

iris_dplyr <- iris %>%
group_by(., Species) %>%
mutate(.,

mean_Petal.Length = mean(Petal.Length),
mean_Petal.Width = mean(Petal.Width)) %>%

ungroup(.)

head(iris_dplyr)

Again, it is critical to ungroup() when applying per-group transforms. Also, be aware
that dplyr grouped operations (in particular, row selection through filter()) can
be much slower than ungrouped operations, so you want to make your group()/
ungroup() intervals as short as possible. And dplyr grouped operations are usually
much slower than data.table grouped operations in general.

5.4 Multitable data transforms
This section covers operations between multiple tables. This includes the tasks of split-
ting tables, concatenating tables, and joining tables.

5.4.1 Combining two or more ordered data frames quickly

Here we discuss combining two data frames, with the same number of rows or col-
umns (and same order!). A more involved, but more general way to combine data is
demonstrated in section 5.4.2.

SCENARIO

We have been asked to draw information about products from a sales database and
produce a report. Typically, different facts (in this case, price and units sold) are
stored in different tables, so to produce our report, we will have to combine data from
more than one table.

For example, suppose our example data was the following:

productTable <- wrapr::build_frame(
"productID", "price" |
"p1" , 9.99 |
"p2" , 16.29 |
"p3" , 19.99 |
"p4" , 5.49 |
"p5" , 24.49)

salesTable <- wrapr::build_frame(
"productID", "sold_store", "sold_online" |
"p1" , 6 , 64 |
"p2" , 31 , 1 |
"p3" , 30 , 23 |
"p4" , 31 , 67 |
"p5" , 43 , 51)

productTable2 <- wrapr::build_frame(
"productID", "price" |
"n1" , 25.49 |
Licensed to Ajit de Silva <agdesilva@gmail.com>

138 CHAPTER 5 Data engineering and data shaping
"n2" , 33.99 |
"n3" , 17.99)

productTable$productID <- factor(productTable$productID)
productTable2$productID <- factor(productTable2$productID)

PROBLEM 1: APPENDING ROWS

When two tables have the exact same column structure, we can concatenate them to
get a larger table, as in figure 5.12.

Base R solution

rbind

rbind_base = rbind(productTable,
productTable2)

Note that rbind creates a new factor variable when merging incompatible factor vari-
ables:

str(rbind_base)

'data.frame': 8 obs. of 2 variables:
$ productID: Factor w/ 8 levels "p1","p2","p3",..: 1 2 3 4 5 6 7 8
$ price : num 9.99 16.29 19.99 5.49 24.49 ...

data.table solution

library("data.table")

rbindlist(list(productTable,
productTable2))

productID price
1: p1 9.99
2: p2 16.29
3: p3 19.99
4: p4 5.49
5: p5 24.49
6: n1 25.49
7: n2 33.99
8: n3 17.99

data.table also correctly merges factor types.

a

1

2

3

b

4

5

6

c

7

8

9

a

1

2

3

10

11

b

4

5

6

12

13

c

7

8

9

14

15

a

10

11

b

12

13

c

14

15

Figure 5.12 Unioning rows
Licensed to Ajit de Silva <agdesilva@gmail.com>

139Multitable data transforms
dplyr solution

dplyr::bind_rows

library("dplyr")

bind_rows(list(productTable,
productTable2))

Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

productID price
1 p1 9.99
2 p2 16.29
3 p3 19.99
4 p4 5.49
5 p5 24.49
6 n1 25.49
7 n2 33.99
8 n3 17.99

Notice that bind_rows coerces incompatible factor variables to character.

PROBLEM 2: SPLITTING TABLES

The inverse of row binding is splitting. Many difficult calculations can be made easy by
splitting a data frame into a family of data frames, then working on each data frame,
and finally rebinding them together. The best implementation is the one found in
data.table, which has some priority (being one of the first). na.rm = FALSE only sim-
ulates splitting and recombining data (so tends to be very fast).

Base R solution

add an extra column telling us which table
each row comes from
productTable_marked <- productTable
productTable_marked$table <- "productTable"
productTable2_marked <- productTable2
productTable2_marked$table <- "productTable2"

combine the tables
rbind_base <- rbind(productTable_marked,

productTable2_marked)
rbind_base

productID price table
1 p1 9.99 productTable
2 p2 16.29 productTable
3 p3 19.99 productTable
4 p4 5.49 productTable
5 p5 24.49 productTable
6 n1 25.49 productTable2
7 n2 33.99 productTable2
8 n3 17.99 productTable2
Licensed to Ajit de Silva <agdesilva@gmail.com>

140 CHAPTER 5 Data engineering and data shaping
split them apart
tables <- split(rbind_base, rbind_base$table)
tables

$productTable
productID price table
1 p1 9.99 productTable
2 p2 16.29 productTable
3 p3 19.99 productTable
4 p4 5.49 productTable
5 p5 24.49 productTable
##
$productTable2
productID price table
6 n1 25.49 productTable2
7 n2 33.99 productTable2
8 n3 17.99 productTable2

data.table solution

data.table combines the split, apply, and recombine steps into a single, very efficient
operation. We will continue our example with the rbind_base object to show the
effect. data.table is willing to call a user function or execute a user expression for
each data group and supplies special variables to work per-group:

 .BY—A named list of the grouping variables and values per group. .BY is a list
of scalars, as by definition grouping variables do not vary per group.

 .SD—A data.table representation of the set of rows for the given group with
the grouping columns removed.

For instance, to compute a max price per group, we can do the following:

library("data.table")

convert to data.table
dt <- as.data.table(rbind_base)

arbitrary user defined function
f <- function(.BY, .SD) {

max(.SD$price)
}

apply the function to each group
and collect results
dt[, max_price := f(.BY, .SD), by = table]

print(dt)

productID price table max_price
1: p1 9.99 productTable 24.49
2: p2 16.29 productTable 24.49
3: p3 19.99 productTable 24.49
4: p4 5.49 productTable 24.49
5: p5 24.49 productTable 24.49
6: n1 25.49 productTable2 33.99
7: n2 33.99 productTable2 33.99
8: n3 17.99 productTable2 33.99
Licensed to Ajit de Silva <agdesilva@gmail.com>

141Multitable data transforms
Note that the preceding is a powerful general form not needed for such a simple task.
Simple per-group aggregation of values is usually achieved by naming the columns:

library("data.table")

dt <- as.data.table(rbind_base)
grouping_column <- "table"
dt[, max_price := max(price), by = eval(grouping_column)]

print(dt)

productID price table max_price
1: p1 9.99 productTable 24.49
2: p2 16.29 productTable 24.49
3: p3 19.99 productTable 24.49
4: p4 5.49 productTable 24.49
5: p5 24.49 productTable 24.49
6: n1 25.49 productTable2 33.99
7: n2 33.99 productTable2 33.99
8: n3 17.99 productTable2 33.99

In this example, we took the liberty of showing how we would group by a column cho-
sen by a variable.

dplyr solution

dplyr doesn’t have its own split implementation. dplyr tries to simulate working on
subtables with its group_by() notation. For example, to compute the maximum price
per group in dplyr, we would write code like the following:

rbind_base %>%
group_by(., table) %>%
mutate(., max_price = max(price)) %>%
ungroup(.)

A tibble: 8 x 4
productID price table max_price
<fct> <dbl> <chr> <dbl>
1 p1 9.99 productTable 24.5
2 p2 16.3 productTable 24.5
3 p3 20.0 productTable 24.5
4 p4 5.49 productTable 24.5
5 p5 24.5 productTable 24.5
6 n1 25.5 productTable2 34.0
7 n2 34.0 productTable2 34.0
8 n3 18.0 productTable2 34.0

This is not going to be as powerful as calling an arbitrary function per data group.
Licensed to Ajit de Silva <agdesilva@gmail.com>

142 CHAPTER 5 Data engineering and data shaping
PROBLEM 3: APPENDING COLUMNS

Append a data frame as columns to another data frame. The data frames must have
the same number of rows and same row order (with respect to what we consider to be
row-keys). This is illustrated in figure 5.13.

Create a table of product information (price and units sold), from productTable and
salesTable. This assumes that the products are sorted in the same order in both
tables. If they are not, then sort them, or use a join command to merge the tables
together (please see section 5.4.2).

Base R solution

cbind

cbind(productTable, salesTable[, -1])

productID price sold_store sold_online
1 p1 9.99 6 64
2 p2 16.29 31 1
3 p3 19.99 30 23
4 p4 5.49 31 67
5 p5 24.49 43 51

data.table solution

For binding columns, data.table methods require the data to already be of type
data.table.

library("data.table")

cbind(as.data.table(productTable),
as.data.table(salesTable[, -1]))

productID price sold_store sold_online
1: p1 9.99 6 64
2: p2 16.29 31 1
3: p3 19.99 30 23
4: p4 5.49 31 67
5: p5 24.49 43 51

a

1

2

3

b

4

5

6

c

7

8

9

d

10

11

12

e

13

14

15

d

10

11

12

e

13

14

15

a

1

2

3

b

4

5

6

c

7

8

9

Figure 5.13 Unioning columns
Licensed to Ajit de Silva <agdesilva@gmail.com>

143Multitable data transforms
dplyr solution

dplyr::bind_cols

library("dplyr")

list of data frames calling convention
dplyr::bind_cols(list(productTable, salesTable[, -1]))

productID price sold_store sold_online
1 p1 9.99 6 64
2 p2 16.29 31 1
3 p3 19.99 30 23
4 p4 5.49 31 67
5 p5 24.49 43 51

5.4.2 Principal methods to combine data from multiple tables

Join is the relational name for the process of combining two tables to create a third.
The join results in a table that possibly has a new row for every pair of rows from the
original two tables (plus possibly rows from each table that did not have matches from
the other table). Rows are matched on key-values, matching from one table to
another. The simplest case is when each table has a set of columns that uniquely deter-
mine each row (a unique key), and this is the case we will discuss here.

SCENARIO

Our example data is information about products in a sales database. Various facts (in
this case, price and units sold) are stored in different tables. Missing values are
allowed. We are tasked with combining these tables to produce a report.

First let’s set up some example data:

productTable <- wrapr::build_frame(
"productID", "price" |
"p1" , 9.99 |
"p3" , 19.99 |
"p4" , 5.49 |
"p5" , 24.49)

salesTable <- wrapr::build_frame(
"productID", "unitsSold" |
"p1" , 10 |
"p2" , 43 |
"p3" , 55 |
"p4" , 8)

LEFT JOIN

The most important join for the data scientist is likely the left join. This join keeps
every row from the left table and adds columns coming from matching rows in the
right table. When there are no matching rows, NA values are substituted in. Usually,
you design the right table (the second argument to your join command) to have
unique keys; otherwise, the number of rows may grow (there is no need for the left
table to have unique keys).
Licensed to Ajit de Silva <agdesilva@gmail.com>

144 CHAPTER 5 Data engineering and data shaping
The operation is typically used to adjoin data from the second (or right) table into a
copy of the first or left table, as shown in figure 5.14.

Base R solution

merge with argument all.x = TRUE

merge(productTable, salesTable, by = "productID", all.x = TRUE)

productID price unitsSold
1 p1 9.99 10
2 p3 19.99 55
3 p4 5.49 8
4 p5 24.49 NA

data.table solution

library("data.table")

productTable_data.table <- as.data.table(productTable)
salesTable_data.table <- as.data.table(salesTable)

index notation for join
idea is rows are produced for each row inside the []
salesTable_data.table[productTable_data.table, on = "productID"]

productID unitsSold price
1: p1 10 9.99
2: p3 55 19.99
3: p4 8 5.49
4: p5 NA 24.49

data.table also overrides merge()
merge(productTable, salesTable, by = "productID", all.x = TRUE)

productID price unitsSold
1 p1 9.99 10
2 p3 19.99 55
3 p4 5.49 8
4 p5 24.49 NA

key column

1

2

3

4

5

a

6

7

8

9

10

key column

1

2

3

4

5

a

6

7

8

9

10

b

NA

12

NA

13

14

key column

0

2

4

5

b

11

12

13

14

Figure 5.14 Left join
Licensed to Ajit de Silva <agdesilva@gmail.com>

145Multitable data transforms
Base R indexing solution

The data.table index notation reminds us that there is another very good Base R way
to use one table to add a single column to another: vectorized lookup through the
match() and [] methods.

library("data.table")

joined_table <- productTable
joined_table$unitsSold <- salesTable$unitsSold[match(joined_table$productID,
salesTable$productID)]
print(joined_table)

productID price unitsSold
1 p1 9.99 10
2 p3 19.99 55
3 p4 5.49 8
4 p5 24.49 NA

match() found the matching indices, and [] used the indices to retrieve the data.
Please see help(match) for more details.

dplyr solution

library("dplyr")

left_join(productTable, salesTable, by = "productID")

productID price unitsSold
1 p1 9.99 10
2 p3 19.99 55
3 p4 5.49 8
4 p5 24.49 NA

Right join

There is also a join called right join that is just the left join with the arguments reversed.
As the right join is so similar to the left, we will forgo any right join examples.

INNER JOIN

In an inner join, you merge two tables into a single table, keeping only the rows where
the key exists in both tables. This produces an intersection of the two tables, as shown
in figure 5.15.

key column

1

2

3

4

5

a

6

7

8

9

10

key column

2

4

5

a

7

9

10

b

12

13

14

key column

0

2

4

5

b

11

12

13

14

Figure 5.15 Inner join
Licensed to Ajit de Silva <agdesilva@gmail.com>

146 CHAPTER 5 Data engineering and data shaping
Base R solution

merge

merge(productTable, salesTable, by = "productID")

productID price unitsSold
1 p1 9.99 10
2 p3 19.99 55
3 p4 5.49 8

data.table solution

library("data.table")

productTable_data.table <- as.data.table(productTable)
salesTable_data.table <- as.data.table(salesTable)

merge(productTable, salesTable, by = "productID")

productID price unitsSold
1 p1 9.99 10
2 p3 19.99 55
3 p4 5.49 8

dplyr solution

inner_join

library("dplyr")

inner_join(productTable, salesTable, by = "productID")

productID price unitsSold
1 p1 9.99 10
2 p3 19.99 55
3 p4 5.49 8

FULL JOIN

In a full join, you merge two tables into a single table, keeping rows for all key values.
Notice that the two tables have equal importance here. We show the result in figure 5.16.

key column

1

2

3

4

5

a

6

7

8

9

10

key column

0

1

2

3

4

5

a

NA

6

7

8

9

10

b

11

NA

12

NA

13

14

key column

0

2

4

5

b

11

12

13

14

Figure 5.16 Full join
Licensed to Ajit de Silva <agdesilva@gmail.com>

147Multitable data transforms
Base R solution

merge with argument all=TRUE

note that merge orders the result by key column by default
use sort=FALSE to skip the sorting
merge(productTable, salesTable, by = "productID", all=TRUE)

productID price unitsSold
1 p1 9.99 10
2 p2 NA 43
3 p3 19.99 55
4 p4 5.49 8
5 p5 24.49 NA

data.table solution

library("data.table")

productTable_data.table <- as.data.table(productTable)
salesTable_data.table <- as.data.table(salesTable)

merge(productTable_data.table, salesTable_data.table,
by = "productID", all = TRUE)

productID price unitsSold
1: p1 9.99 10
2: p2 NA 43
3: p3 19.99 55
4: p4 5.49 8
5: p5 24.49 NA

dplyr solution

dplyr::full_join

library("dplyr")

full_join(productTable, salesTable, by = "productID")

productID price unitsSold
1 p1 9.99 10
2 p3 19.99 55
3 p4 5.49 8
4 p5 24.49 NA
5 p2 NA 43

A HARDER JOIN PROBLEM

The examples we have given up to now do not use row order. Some problems can be
solved much more efficiently with methods that do use row order, such as
data.table's powerful rolling join operation.

Scenario

You are given historic stock trade and quote (bid/ask) data. You are asked to perform
the following analyses on the stock data: find what the bid and ask price were current
when each trade was performed. This involves using row order to indicate time, and
sharing information between rows.
Licensed to Ajit de Silva <agdesilva@gmail.com>

148 CHAPTER 5 Data engineering and data shaping
Example data

In stock markets, the bid is the highest price somebody has declared they are willing to
pay for a stock, and the ask is the lowest price that somebody has declared they are
willing to sell a stock for. Bid and ask data are called quotes, and they usually are in an
irregular time series (as new quotes can be formed at arbitrary times, not just at regu-
lar intervals), such as the following example:

library("data.table")

quotes <- data.table(
bid = c(5, 5, 7, 8),
ask = c(6, 6, 8, 10),
bid_quantity = c(100, 100, 100, 100),
ask_quantity = c(100, 100, 100, 100),
when = as.POSIXct(strptime(

c("2018-10-18 1:03:17",
"2018-10-18 2:12:23",
"2018-10-18 2:15:00",
"2018-10-18 2:17:51"),

"%Y-%m-%d %H:%M:%S")))

print(quotes)

bid ask bid_quantity ask_quantity when
1: 5 6 100 100 2018-10-18 01:03:17
2: 5 6 100 100 2018-10-18 02:12:23
3: 7 8 100 100 2018-10-18 02:15:00
4: 8 10 100 100 2018-10-18 02:17:51

Another irregular time series is trades. These are after-the-fact reports about
exchanges of quantities of stock at a given price at a given time.

trades <- data.table(
trade_id = c(32525, 32526),
price = c(5.5, 9),
quantity = c(100, 200),
when = as.POSIXct(strptime(

c("2018-10-18 2:13:42",
"2018-10-18 2:19:20"),

"%Y-%m-%d %H:%M:%S")))

print(trades)

trade_id price quantity when
1: 32525 5.5 100 2018-10-18 02:13:42
2: 32526 9.0 200 2018-10-18 02:19:20

Rolling joins

The data.table rolling join is perfect for finding what was the most recent quote
information for each trade. A rolling join is a type of join on an ordered column that
gives us the most recent data available at the lookup time.

quotes[, quote_time := when]
trades[, trade_time := when]
quotes[trades, on = "when", roll = TRUE][

, .(quote_time, bid, price, ask, trade_id, trade_time)]
Licensed to Ajit de Silva <agdesilva@gmail.com>

149Reshaping transforms
quote_time bid price ask trade_id trade_time
1: 2018-10-18 02:12:23 5 5.5 6 32525 2018-10-18 02:13:42
2: 2018-10-18 02:17:51 8 9.0 10 32526 2018-10-18 02:19:20

We read the preceding as “for each trade, look up the appropriate quote.” In the join,
the when field comes from the trades, which is why we added a quote_time field so we
could also see when the quote was established. The data.table rolling join is very
fast, and also not easy to efficiently simulate in base R, SQL, or dplyr.

Rolling joins are unique to data.table. In R there are a number of tasks, such as
matching most recent records, that are easily expressed as moving indexes across
rows. However, moving indexes across rows tends to be inefficient in R, as it can’t be
vectorized like column operations can. A rolling join is a direct way of solving such
problems, and has an efficient implementation.

5.5 Reshaping transforms
This section covers moving data between rows and columns. This is often called pivot-
ing, a name from Pito Salas’s work that combines data summarization and shape trans-
forms. Examples will be worked in three packages: data.table, cdata (which only
reshapes data, and does not summarize data), and tidyr. Base R does have notations
for these transforms (such as stack() and unstack()), but the package versions are
significantly better tools.

5.5.1 Moving data from wide to tall form

We will show how to move data records where all measurements are in single rows to a
new record set where data is in multiple rows. We call this moving from a wide form to
a thin or tall form.

DATA EXAMPLE

Let’s work with measurements of vehicle drivers/passengers injured or killed, by
month. The data includes additional information about fuel price and whether seat-
belts are required by law.

Relevant variables for this example:

 date—Year and month of measurement (numeric representation)
 DriversKilled—Car drivers killed
 front—Front seat passengers killed or seriously injured
 rear—Rear seat passengers killed or seriously injured
 law—Whether or not seatbelt law was in effect (0/1)

library("datasets")
library("xts")

move the date index into a column
dates <- index(as.xts(time(Seatbelts)))
Seatbelts <- data.frame(Seatbelts)
Seatbelts$date <- dates

restrict down to 1982 and 1983
Licensed to Ajit de Silva <agdesilva@gmail.com>

150 CHAPTER 5 Data engineering and data shaping
Seatbelts <- Seatbelts[(Seatbelts$date >= as.yearmon("Jan 1982")) &
(Seatbelts$date <= as.yearmon("Dec 1983")),
, drop = FALSE]

Seatbelts$date <- as.Date(Seatbelts$date)
mark if the seatbelt law was in effect
Seatbelts$law <- ifelse(Seatbelts$law==1, "new law", "pre-law")
limit down to the columns we want
Seatbelts <- Seatbelts[, c("date", "DriversKilled", "front", "rear", "law")]

head(Seatbelts)

date DriversKilled front rear law
157 1982-01-01 115 595 238 pre-law
158 1982-02-01 104 673 285 pre-law
159 1982-03-01 131 660 324 pre-law
160 1982-04-01 108 676 346 pre-law
161 1982-05-01 103 755 410 pre-law
162 1982-06-01 115 815 411 pre-law

To get our data into a presentable format, we have performed transforms described in
earlier sections of this chapter: selecting rows, selecting columns, adding new derived
columns, and so on. The data now has one row per date (we think of the date as the
row-key) and contains information such as how many people were killed in each of
three seating positions (driver, front, rear) and if the new seatbelt law was in effect.

We want to see if the new seatbelt law saves lives. Notice that we are missing a key bit
of information: a normalizing factor such as number of cars owned per date, driving
population size by date, or total miles driven per date (risks make more sense as rates
than as absolute counts). This is an example of true data science being an iterative
process: we are going to do the best job we can with the data at hand, but in a real
project, we would also go back to sources and partners to try to get the critical missing
data (or at least an estimate or proxy for the missing data).

Let’s plot the data conditioned on the law:

let's give an example of the kind of graph we have in mind,
using just driver deaths
library("ggplot2")

ggplot(Seatbelts,
aes(x = date, y = DriversKilled, color = law, shape = law)) +

geom_point() +
geom_smooth(se=FALSE) +
ggtitle("UK car driver deaths by month")

This code produces figure 5.17.
From the chart, it looks like the introduction of the seatbelt law produced a drop in

deaths that is non-trivial when compared to the normal variation in deaths. It also
looks like the effect may have reverted quickly.

Suppose our follow-up question is to break down this data further to seating posi-
tion (as types of seatbelts differ quite a bit by seating position).

To make such a plot with ggplot2, we need to move the data from all facts being in
each row to having one row per seating position. This is an example of moving from a
Licensed to Ajit de Silva <agdesilva@gmail.com>

151Reshaping transforms
wide or denormalized format, the natural format for machine learning tasks, to a tall
or multiline record format.

PROBLEM

Plot deaths conditioned on date and seating position, using ggplot2. ggplot2
requires the data to be in a long, rather than wide, format. So we will concentrate on
how to perform this transform. We call this sort of transform moving data from row-
oriented records to blocks of rows, as shown in figure 5.18.

1983-011982-01 1982-07 1983-07 1984-01

75

100

125

150

date

dr
iv

er
sK

ill
ed

UK car driver deaths by month

new law

pre-law

law

Figure 5.17 Passenger deaths plot

index

1

2

3

info

a

a

c

meas1

4

5

6

meas2

7

8

9

Gather
measurements

into same column

info

a

a

c

a

a

c

index

1

2

3

1

2

3

meastype

meas1

meas1

meas1

meas2

meas2

meas2

meas

4

5

6

7

8

9
Figure 5.18 Wide-to-tall conversion
Licensed to Ajit de Silva <agdesilva@gmail.com>

152 CHAPTER 5 Data engineering and data shaping
Solution 1: data.table::melt.data.table()

We can solve this with data.table::melt.data.table(). Specify the columns of the
original table that the values are to be taken from with the measure.vars argument.
Specify the pair of columns the information is to be written into in the transformed
table with the arguments variable.name (the new key column) and value.name (the
new value column).

library("data.table")

seatbelts_long2 <-
melt.data.table(as.data.table(Seatbelts),

id.vars = NULL,
measure.vars = c("DriversKilled", "front", "rear"),
variable.name = "victim_type",
value.name = "nvictims")

These new graphs do show us something more: the law had essentially no effect on
people in the rear seats. This could be perhaps because the law didn't cover these
seats, perhaps enforcing rear seat compliance was difficult, or perhaps rear-seat seat-
belts were lap belts (instead of three-point restraints) and were not effective. The
strongest benefit seems to be to front-seat passengers, and that is not too unusual, as
they tend to have high-quality seatbelts and are not sitting in front of the steering col-
umn (a primary source of fatal injuries).

Solution 2: cdata::unpivot_to_blocks()

library("cdata")

seatbelts_long3 <- unpivot_to_blocks(
Seatbelts,
nameForNewKeyColumn = "victim_type",
nameForNewValueColumn = "nvictims",
columnsToTakeFrom = c("DriversKilled", "front", "rear

"))

cdata has simple methods to specify the coordinated conversions of many columns at
once. A good introduction can be found at http://www.win-vector.com/blog/2018/
10/faceted-graphs-with-cdata-and-ggplot2/.

We encourage you to try all three solutions and convince yourself they produce the
equivalent results. We prefer the cdata solution, but it is new and not as well known as
the data.table or tidyr solutions.

Solution 3: tidyr::gather()

library("tidyr")

seatbelts_long1 <- gather(
Seatbelts,
key = victim_type,
value = nvictims,
DriversKilled, front, rear)

head(seatbelts_long1)
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://www.win-vector.com/blog/2018/10/faceted-graphs-with-cdata-and-ggplot2/
http://www.win-vector.com/blog/2018/10/faceted-graphs-with-cdata-and-ggplot2/
http://www.win-vector.com/blog/2018/10/faceted-graphs-with-cdata-and-ggplot2/

153Reshaping transforms
date law victim_type nvictims
1 1982-01-01 pre-law DriversKilled 115
2 1982-02-01 pre-law DriversKilled 104
3 1982-03-01 pre-law DriversKilled 131
4 1982-04-01 pre-law DriversKilled 108
5 1982-05-01 pre-law DriversKilled 103
6 1982-06-01 pre-law DriversKilled 115

ggplot(seatbelts_long1,
aes(x = date, y = nvictims, color = law, shape = law)) +

geom_point() +
geom_smooth(se=FALSE) +
facet_wrap(~victim_type, ncol=1, scale="free_y") +
ggtitle("UK auto fatalities by month and seating position")

And we now have the passenger death data faceted by seating position in figure 5.19.

5.5.2 Moving data from tall to wide form

We have been given data in a log style, where each detail of a measurement is written
in a separate row. Colloquially, we call this a tall or thin data form (formally, it is
related to information storage ideas such as RDF triples). The operation of moving to

300

400

500

400
500

600

700

800

900

75

100

125

150

1983-011982-01 1982-07 1983-07 1984-01

date

rear

front

driversKilled

nv
ic

tim
s

UK auto fatalities by month and seating position

new law

pre-law

law

Figure 5.19 Faceted passenger death plot
Licensed to Ajit de Silva <agdesilva@gmail.com>

154 CHAPTER 5 Data engineering and data shaping
a wide form is very much like what Microsoft Excel users call pivoting, except aggrega-
tions (sums, averages, counts) are not strictly part of moving from tall to wide form
(we suggest aggregating first before transforming). Also, moving from tall to wide
form is, of course, the inverse of the moving from wide to tall form conversion we dis-
cussed earlier.

THE DATA

For our example, we have taken the ChickWeight data from R’s datasets package.
Please try these commands along with the book and take extra steps to examine the
data (using commands such as View(), head(), summary() and so on):

library("datasets")
library("data.table")
library("ggplot2")

ChickWeight <- data.frame(ChickWeight) # get rid of attributes
ChickWeight$Diet <- NULL # remove the diet label
pad names with zeros
padz <- function(x, n=max(nchar(x))) gsub(" ", "0", formatC(x, width=n))
append "Chick" to the chick ids
ChickWeight$Chick <- paste0("Chick", padz(as.character(ChickWeight$Chick)))

head(ChickWeight)

weight Time Chick
1 42 0 Chick01
2 51 2 Chick01
3 59 4 Chick01
4 64 6 Chick01
5 76 8 Chick01
6 93 10 Chick01

This data is organized so each row is a single fact (weight) about a given chick at a
given time. The is a very easy format to produce and transmit, which is why it is popu-
lar in scientific settings. To perform interesting work or learn from the data, we need
to bring the data into a wider structure. For our problem, we would like all the weight
facts about a chick to be in a single row, with time as the new column name.

Before doing that, let’s use some of our earlier lessons to get a look at the data. We
can aggregate the data to move from information about individuals to overall trends.

aggregate count and mean weight by time
ChickSummary <- as.data.table(ChickWeight)
ChickSummary <- ChickSummary[,

.(count = .N,
weight = mean(weight),
q1_weight = quantile(weight, probs = 0.25),
q2_weight = quantile(weight, probs = 0.75)),

by = Time]
head(ChickSummary)

Time count weight q1_weight q2_weight
1: 0 50 41.06000 41 42
2: 2 50 49.22000 48 51
3: 4 49 59.95918 57 63
Licensed to Ajit de Silva <agdesilva@gmail.com>

155Reshaping transforms
4: 6 49 74.30612 68 80
5: 8 49 91.24490 83 102
6: 10 49 107.83673 93 124

In ChickSummary the only key is Time (specified by the data.tableby argument) and
we can now see how many chicks are surviving at a given time and the distribution of
surviving chick weights at a given time.

We can present this table graphically. To use ggplot2 to do this, we need to move
the summarized data to a tall form (as ggplot2 prefers to work with tall data). We use
cdata::unpivot_to_blocks:

library("ggplot2")

ChickSummary <- cdata::unpivot_to_blocks(
ChickSummary,

nameForNewKeyColumn = "measurement",
nameForNewValueColumn = "value",
columnsToTakeFrom = c("count", "weight"))

ChickSummary$q1_weight[ChickSummary$measurement=="count"] <- NA
ChickSummary$q2_weight[ChickSummary$measurement=="count"] <- NA

CW <- ChickWeight
CW$measurement <- "weight"

ggplot(ChickSummary, aes(x = Time, y = value, color = measurement)) +
geom_line(data = CW, aes(x = Time, y = weight, group = Chick),

color="LightGray") +
geom_line(size=2) +
geom_ribbon(aes(ymin = q1_weight, ymax = q2_weight),

alpha = 0.3, colour = NA) +
facet_wrap(~measurement, ncol=1, scales = "free_y") +
theme(legend.position = "none") +
ylab(NULL) +
ggtitle("Chick Weight and Count Measurements by Time",

subtitle = "25% through 75% quartiles of weight shown shaded around
mean")

This gives the chick weights organized by time and chick, as shown in figure 5.20.
Here we have plotted the total count of surviving chicks as a function of time, plus

the weight trajectory of each individual check, and the summary statistics (mean
weight, and 25% through 75% quartiles of weight).

PROBLEM

We can now return to the example task of this section: putting all the information
about each chick into a single row.

Unpivots into tall
form for plotting

Makes sure we have the exact set
of columns needed for plotting

Makes the plot
Licensed to Ajit de Silva <agdesilva@gmail.com>

156 CHAPTER 5 Data engineering and data shaping
Diagrammatically, it looks like the following: one column’s (meastype) values are used
as new column headers and a second column (meas) supplies values. We call this mov-
ing data from blocks to wide row records, as illustrated in figure 5.21.

100

200

300

45

46

47

48

49

50

0 5 10 15 20

time

Chick weight and count measurements by time
25% through 75% quartiles of weight shown shaded around mean

weight

count

Figure 5.20 Chick count and weight over time

index

1

2

3

1

2

3

index

1

2

3

Spread
measurements
into separate

columns

meas1

4

5

6

meastype

meas1

meas1

meas1

meas2

meas2

meas2

meas2

7

8

9

meas

4

5

6

7

8

9
Figure 5.21 Moving from tall to wide form
Licensed to Ajit de Silva <agdesilva@gmail.com>

157Reshaping transforms
Solution 1: data.table::dcast.data.table()

To move data to a wide form using dcast.data.table(), we specify the rows and col-
umns of a result matrix using a formula with the ~notation. We then say how to popu-
late the cells of this matrix with the value.var argument. In our case, to get a data
frame with a row per chick, a column per time, and weight in the cells, we use the fol-
lowing step:

library("data.table")

ChickWeight_wide2 <- dcast.data.table(
as.data.table(ChickWeight),
Chick ~ Time,
value.var = "weight")

This table is a matrix where the row is identified by the chick, and the column is time.
The cells contain the weight for the given chick and time (and NA if the chick did not
survive to a given time). Notice that this format is much easier to read and may be
required for reporting.

data.table’s implementation of dcast also allows more-powerful transforms, such
as casting to multiple variables and aggregations at the same time.

Solution 2: cdata::pivot_to_rowrecs()

cdata::pivot_to_rowrecs() describes the intended table by row-keys, column to
take new column keys from, and column to take values from :

library("cdata")

ChickWeight_wide3 <- pivot_to_rowrecs(
ChickWeight,
columnToTakeKeysFrom = "Time",
columnToTakeValuesFrom = "weight",
rowKeyColumns = "Chick")

Solution 3: tidyr::spread()

library("tidyr")

ChickWeight_wide1 <- spread(ChickWeight,
key = Time,
value = weight)

head(ChickWeight_wide1)

Chick 0 2 4 6 8 10 12 14 16 18 20 21
1 Chick01 42 51 59 64 76 93 106 125 149 171 199 205
2 Chick02 40 49 58 72 84 103 122 138 162 187 209 215
3 Chick03 43 39 55 67 84 99 115 138 163 187 198 202
4 Chick04 42 49 56 67 74 87 102 108 136 154 160 157
5 Chick05 41 42 48 60 79 106 141 164 197 199 220 223
6 Chick06 41 49 59 74 97 124 141 148 155 160 160 157
Licensed to Ajit de Silva <agdesilva@gmail.com>

158 CHAPTER 5 Data engineering and data shaping
5.5.3 Data coordinates

There are a lot of details to data transforms. The important concept to retain is this:
data has coordinates such as name of table, name of column, and identity of row. The
exact way the coordinates are specified is an implementation detail to be overcome or
transformed to a convenient state. All of this is a consequence of Codd’s second rule
of database design: “Each and every datum (atomic value) in a relational database is
guaranteed to be logically accessible by resorting to a combination of table name, pri-
mary key value, and column name.”4 What we hope you have learned is this: what
parts of the coordinates (or access plan) happen to be the table name, versus row-
keys, versus the column name is an alterable implementation detail.

PREFER SIMPLE CODE Building temporary tables, adding columns, and cor-
recting column names early is much better than having complicated analysis
code. This follows Raymond’s “Rule of Representation.”

Raymond's “Rule of Representation”
Fold knowledge into data, so program logic can be stupid and robust.

—The Art of Unix Programming,
Erick S. Raymond, Addison-Wesley, 2003

We suggest transforming your data to fix problems (correct column names, change
the data layout) early, to make later steps easier. The format you should try to move to
for predictive modeling is what database designers call a denormalized form, or what
statisticians call a multivariate data matrix, or model matrix: a regular array where rows
are individuals, and columns are possible observations.5

The interested reader may want to pursue cdata’s powerful diagrammatic system of
data layout, which is being broadly adopted, and is discussed here: https://github
.com/WinVector/cdata.

Summary
In this chapter, we’ve worked through the basic examples of transform data for analy-
sis and presentation.

At this point, we have worked through a great number of data transforms. Natural
questions to ask are these: are these enough transforms? Can we quickly decompose
any task into a small sequence of these transforms?

The answer is “no and yes.” There are more-specialized transforms such as “rolling
window” functions and other time-series operations that are hard to express in terms
of these transforms, but do in fact have their own efficient implementations in R and
data.table. However, toward the “yes” answer, there are good reasons to consider the
set of transforms we have learned as substantial. The basic manipulation transforms

4 See https://en.wikipedia.org/wiki/Edgar_F._Codd.
5 See W. J. Krzanowski and F. H. C. Marriott, Multivariate Analysis, Part 1, Edward Arnold, 1994.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://github.com/WinVector/cdata
https://github.com/WinVector/cdata
https://github.com/WinVector/cdata

159Summary
pretty much cover all of Edgar F. Codd’s relational algebra: a set of transforms that has
been driving data engineering since 1970.

In this chapter you have learned

 How to use a catalog of powerful data-reshaping transforms
 How to apply these transforms to solve data organization issues

In part 2 of the book, we’ll talk about the process of building and evaluating models to
meet your stated objectives.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Licensed to Ajit de Silva <agdesilva@gmail.com>

Part 2

Modeling methods

In part 1, we discussed the initial stages of a data science project. After you’ve
defined more precisely the questions you want to answer and the scope of the
problem you want to solve, it’s time to analyze the data and find the answers. In
part 2, we work with powerful modeling methods from statistics and machine
learning.

 Chapter 6 covers how to identify appropriate modeling methods to address
your specific business problem. It also discusses how to evaluate the quality and
effectiveness of models that you or others have discovered.

 Chapter 7 covers basic linear models: linear regression, logistic regression,
and regularized linear models. Linear models are the workhorses of many ana-
lytical tasks, and are especially helpful for identifying key variables and gaining
insight into the structure of a problem. A solid understanding of them is
immensely valuable for a data scientist.

 Chapter 8 temporarily moves away from the modeling task to cover advanced
data preparation with the vtreat package. vtreat prepares messy real-world
data for the modeling step. Because understanding how vtreat works requires
some understanding of linear models and of model evaluation metrics, it
seemed best to defer this topic until part 2.

 Chapter 9 covers unsupervised methods: clustering and association rule min-
ing. Unsupervised methods don’t make explicit outcome predictions; they dis-
cover relationships and hidden structure in the data. Chapter 10 touches on
some more-advanced modeling algorithms. We discuss bagged decision trees,
random forests, gradient boosted trees, generalized additive models, and sup-
port vector machines.
Licensed to Ajit de Silva <agdesilva@gmail.com>

162 PART 2 Modeling methods
 We work through every method that we cover with a specific data science problem
along with a nontrivial dataset. Where appropriate, we also discuss additional model
evaluation and interpretation procedures that are specific to the methods we cover.

 On completing part 2, you’ll be familiar with the most popular modeling methods,
and you’ll have a sense of which methods are most appropriate for answering differ-
ent types of questions.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Choosing and
evaluating models
In this chapter, we will discuss the modeling process (figure 6.1). We discuss this
process before getting into the details of specific machine learning approaches,
because the topics in this chapter apply generally to any kind of model. First, let’s
discuss choosing an appropriate model approach.

This chapter covers
 Mapping business problems to machine learning tasks

 Evaluating model quality

 Explaining model predictions
163

Licensed to Ajit de Silva <agdesilva@gmail.com>

164 CHAPTER 6 Choosing and evaluating models
6.1 Mapping problems to machine learning tasks
As a data scientist, your task is to map a business problem to a good machine learning
method. Let’s look at a real-world situation. Suppose that you’re a data scientist at an
online retail company. There are a number of business problems that your team
might be called on to address:

 Predicting what customers might buy, based on past transactions
 Identifying fraudulent transactions
 Determining price elasticity (the rate at which a price increase will decrease

sales, and vice versa) of various products or product classes
 Determining the best way to present product listings when a customer searches

for an item
 Customer segmentation: grouping customers with similar purchasing behavior
 AdWord valuation: how much the company should spend to buy certain

AdWords on search engines
 Evaluation of marketing campaigns
 Organizing new products into a product catalog

Your intended uses of the model have a big influence on what methods you should
use. If you want to know how small variations in input variables affect outcome, then

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 6.1 Mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

165Mapping problems to machine learning tasks
you likely want to use a regression method. If you want to know what single variable
drives most of a categorization, then decision trees might be a good choice. Also, each
business problem suggests a statistical approach to try. For the purposes of this discus-
sion, we will group the different kinds of problems that a data scientist typically solves
into these categories:

 Classification—Assigning labels to datums
 Scoring—Assigning numerical values to datums
 Grouping—Discovering patterns and commonalities in data

In this section, we’ll describe these problem classes and list some typical approaches
to each.

6.1.1 Classification problems

Let’s try the following example.

 Example Suppose your task is to automate the assignment of new products to your
company’s product categories, as shown in figure 6.2.

This can be more complicated than it sounds. Products that come from different
sources may have their own product classification that doesn’t coincide with the one
that you use on your retail site, or they may come without any classification at all.
Many large online retailers use teams of human taggers to hand categorize their prod-
ucts. This is not only labor intensive, but inconsistent and error prone. Automation is
an attractive option; it’s labor saving, and can improve the quality of the retail site.

Computers ->
desktops

Computers ->
laptops

Computers ->
monitors

Computers ->
printers

Electronics ->
games

Electronics ->
stereo systems

Figure 6.2 Assigning products to product categories
Licensed to Ajit de Silva <agdesilva@gmail.com>

166 CHAPTER 6 Choosing and evaluating models
Product categorization based on product attributes and/or text descriptions of the
product is an example of classification: deciding how to assign (known) labels to an
object. Classification itself is an example of what is called supervised learning: in order
to learn how to classify objects, you need a dataset of objects that have already been
classified (called the training set). Building training data is the major expense for most
classification tasks, especially text-related ones.

Common classification methods that we will cover in this book include logistic regres-
sion (with a threshold) and decision tree ensembles.

6.1.2 Scoring problems

Scoring can be explained as follows.

Example Suppose that your task is to help evaluate how different marketing cam-
paigns can increase valuable traffic to the website. The goal is not only to
bring more people to the site, but to bring more people who buy.

In this situation, you may want to consider a number of different factors: the commu-
nication channel (ads on websites, YouTube videos, print media, email, and so on);
the traffic source (Facebook, Google, radio stations, and so on); the demographic tar-
geted; the time of year, and so on. You want to measure if these factors increase sales,
and by how much.

Predicting the increase in sales from a particular marketing campaign based on fac-
tors such as these is an example of regression, or scoring. In this case, a regression model
would map the different factors being measured into a numerical value: sales, or the
increase in sales from some baseline.

Predicting the probability of an event (like belonging to a given class) can also be
considered scoring. For example, you might think of fraud detection as classification:
is this event fraud or not? However, if you are trying to estimate the probability that an
event is fraud, this can be considered scoring. This is shown in figure 6.3. Scoring is
also an instance of supervised learning.

Multicategory vs. two-category classification
Product classification is an example of multicategory or multinomial classification.
Most classification problems and most classification algorithms are specialized for
two-category, or binomial, classification. There are tricks to using binary classifiers to
solve multicategory problems (for example, building one classifier for each category,
called a one-versus-rest classifier). But in most cases it’s worth the effort to find a
suitable multiple-category implementation, as they tend to work better than multiple
binary classifiers (for example, using the package mlogit instead of the base
method glm() for logistic regression).
Licensed to Ajit de Silva <agdesilva@gmail.com>

167Mapping problems to machine learning tasks
6.1.3 Grouping: working without known targets

The preceding methods require that you have a training dataset of situations with
known outcomes. In some situations, there’s not (yet) a specific outcome that you
want to predict. Instead, you may be looking for patterns and relationships in the data
that will help you understand your customers or your business better.

These situations correspond to a class of approaches called unsupervised learning:
rather than predicting outputs based on inputs, the objective of unsupervised learn-
ing is to discover similarities and relationships in the data. Some common unsuper-
vised tasks include these:

 Clustering—Grouping similar objects together
 Association rules—Discovering common behavior patterns, for example, items

that are always bought together, or library books that are always checked out
together

Let’s expand on these two types of unsupervised methods.

WHEN TO USE BASIC CLUSTERING

A good clustering example is the following.

 Example Suppose you want to segment your customers into general categories of peo-
ple with similar buying patterns. You might not know in advance what these groups
should be.

Credit Card Type

Amount

Online?

Purchase Type

Delivery = Billing Address?

Credit Card Type

Amount

Online?

Purchase Type

Delivery = Billing Address?

Yes

$75

Houseware

Yes

Yes

Home Electronics

No

Probability of Fraud

$500

HIGH

LOW

Figure 6.3 Notional example of determining the probability that a transaction is fraudulent
Licensed to Ajit de Silva <agdesilva@gmail.com>

168 CHAPTER 6 Choosing and evaluating models
This problem is a good candidate for k-means clustering. K-means clustering is one way
to sort the data into groups such that members of a cluster are more similar to each
other than they are to members of other clusters.

Suppose that you find (as in figure 6.4) that your customers cluster into those with
young children, who make more family-oriented purchases, and those with no chil-
dren or with adult children, who make more leisure- and social-activity-related pur-
chases. Once you have assigned a customer into one of those clusters, you can make
general statements about their behavior. For example, a customer in the with-young-
children cluster is likely to respond more favorably to a promotion on attractive but
durable glassware than to a promotion on fine crystal wine glasses.

We will cover k-means and other clustering approaches in more detail in section 9.1.

WHEN TO USE ASSOCIATION RULES

You might be interested in directly determining which products tend to be purchased
together. For example, you might find that bathing suits and sunglasses are frequently
purchased at the same time, or that people who purchase certain cult movies, like
Repo Man, will often buy the movie soundtrack at the same time.

This is a good application for association rules (or even recommendation systems).
You can mine useful product recommendations: whenever you observe that someone

tens of dollars

hundreds of dollars

mostly social about even mostly family

ratio of home/family to social/travel related purchases

av
er

ag
e

pu
rc

ha
se

 a
m

ou
nt

"The Going-Out
Crowd”

"Families with
young children"

"Couples, no
young children"

Figure 6.4 Notional example of clustering your customers by purchase pattern and purchase
amount
Licensed to Ajit de Silva <agdesilva@gmail.com>

169Mapping problems to machine learning tasks
has put a bathing suit into their shopping cart, you can recommend suntan lotion, as
well. This is shown in figure 6.5. We’ll cover the Apriori algorithm for discovering
association rules in section 9.2.

6.1.4 Problem-to-method mapping

To summarize the preceding, table 6.1 maps some typical business problems to their
corresponding machine learning tasks.

Table 6.1 From problem to approach

Example tasks Machine learning terminology

Identifying spam email
Sorting products in a product catalog
Identifying loans that are about to default
Assigning customers to preexisting customer
clusters

Classification —Assigning known labels to objects.
Classification is a supervised method, so you need
preclassified data in order to train a model.

Predicting the value of AdWords
Estimating the probability that a loan will default
Predicting how much a marketing campaign will
increase traffic or sales
Predicting the final price of an auction item
based on the final prices of similar products that
have been auctioned in the past

Regression —Predicting or forecasting numerical
values. Regression is also a supervised method, so
you need data where the output is known, in order
to train a model.

Finding products that are purchased together
Identifying web pages that are often visited in the
same session
Identifying successful (often-clicked) combina-
tions of web pages and AdWords

Association rules —Finding objects that tend to
appear in the data together. Association rules are
an unsupervised method; you do not need data
where you already know the relationships, but are
trying to discover the relationships within your data.

bikini, sunglasses, sunblock, flip-flops

swim trunks, sunblock

tankini, sunblock, sandals

bikini, sunglasses, sunblock

one-piece, beach towel

80% of purchases include both a
bathing suit and sunblock.

80% of purchases that include a
bathing suit also include sunblock.

So customers who buy a bathing
suit might also appreciate a

recommendation for sunblock.

Figure 6.5 Notional example of finding purchase patterns in your data
Licensed to Ajit de Silva <agdesilva@gmail.com>

170 CHAPTER 6 Choosing and evaluating models
6.2 Evaluating models
When building a model, you must be able to estimate model quality in order to ensure
that your model will perform well in the real world. To attempt to estimate future
model performance, we often split our data into training data and test data, as illus-
trated in figure 6.6. Test data is data not used during training, and is intended to give
us some experience with how the model will perform on new data.

One of the things the test set can help you identify is overfitting: building a model
that memorizes the training data, and does not generalize well to new data. A lot of
modeling problems are related to overfitting, and looking for signs of overfit is a good
first step in diagnosing models.

6.2.1 Overfitting

An overfit model looks great on the training data and then performs poorly on new
data. A model’s prediction error on the data that it trained from is called training error.
A model’s prediction error on new data is called generalization error. Usually, training
error will be smaller than generalization error (no big surprise). Ideally, though, the
two error rates should be close. If generalization error is large, and your model’s test
performance is poor, then your model has probably overfit—it’s memorized the train-
ing data instead of discovering generalizable rules or patterns. You want to avoid over-
fitting by preferring (as long as possible) simpler models which do in fact tend to

Identifying groups of customers with the same
buying patterns
Identifying groups of products that are popular in
the same regions or with the same customer
clusters
Identifying news items that are all discussing
similar events

Clustering —Finding groups of objects that are more
similar to each other than to objects in other
groups. Clustering is also an unsupervised method;
you do not need pregrouped data, but are trying to
discover the groupings within your data.

Table 6.1 From problem to approach (continued)

Example tasks Machine learning terminology

Prediction vs. forecasting
In everyday language, we tend to use the terms prediction and forecasting inter-
changeably. Technically, to predict is to pick an outcome, such as “It will rain tomor-
row,” and to forecast is to assign a probability: “There’s an 80% chance it will rain
tomorrow.” For unbalanced class applications (such as predicting credit default), the
difference is important. Consider the case of modeling loan defaults, and assume the
overall default rate is 5%. Identifying a group that has a 30% default rate is an inac-
curate prediction (you don’t know who in the group will default, and most people in
the group won’t default), but potentially a very useful forecast (this group defaults at
six times the overall rate).
Licensed to Ajit de Silva <agdesilva@gmail.com>

171Evaluating models
generalize better.1 Figure 6.7 shows the typical appearance of a reasonable model and
an overfit model.

1 Other techniques to prevent overfitting include regularization (preferring small effects from model variables)
and bagging (averaging different models to reduce variance).

Data
test/train

split
training process

test data
(simulates
new data)

training data

model

predictionsppreepp ddicctiotionsns

Figure 6.6 Schematic of model construction and
evaluation

–1

0

1

2

–0.50 –0.25 0.00 0.25 0.50
x

y

set

training data

new data

–1

0

1

2

–0.50 –0.25 0.00 0.25 0.50
x

y

set

training data

new data

A properly fit model will make about the same magnitude
errors on new data as on the training data.

An overfit model has "memorized" the training
data, and will make larger errors on new data.

The gray curves
represent the

models' predictions.

Figure 6.7 A notional illustration of overfitting
Licensed to Ajit de Silva <agdesilva@gmail.com>

172 CHAPTER 6 Choosing and evaluating models
An overly complicated and overfit model is bad for at least two reasons. First, an over-
fit model may be much more complicated than anything useful. For example, the
extra wiggles in the overfit part of figure 6.7 could make optimizing with respect to x
needlessly difficult. Also, as we mentioned, overfit models tend to be less accurate in
production than during training, which is embarrassing.

TESTING ON HELD-OUT DATA

In section 4.3.1 we introduced the idea of splitting your data into test-train or test-
train-calibration sets, as shown in figure 6.8. Here we’ll go into more detail about why
you want to split your data this way.

 Example Suppose you are building models to predict used car prices, based on vari-
ous features of the car. You fit both a linear regression model and a random forest
model, and you wish to compare the two.2

If you do not split your data, but instead use all available data to both train and evalu-
ate each model, then you might think that you will pick the better model, because the
model evaluation has seen more data. However, the data used to build a model is not
the best data for evaluating the model’s performance. This is because there’s an opti-
mistic measurement bias in this data, because this data was seen during model construc-
tion. Model construction is optimizing your performance measure (or at least
something related to your performance measure), so you tend to get exaggerated esti-
mates of performance on your training data.

2 Both these modeling techniques will be covered in later chapters of the book.

Training data Test data

Calibration
data

Training
data

Data

All data available for modeling

Training data for
model fitting

Test data for
model evaluation

Train/test split

(If needed) Train/calibration split

Training data for
model fitting

Calibration data for
setting model-fitting

parameters

Figure 6.8 Splitting data into training and test (or training, calibration, and test) sets
Licensed to Ajit de Silva <agdesilva@gmail.com>

173Evaluating models
In addition, data scientists naturally tend to tune their models to get the best possi-
ble performance out of them. This also leads to exaggerated measures of performance.
This is often called multiple comparison bias. And since this tuning might sometimes take
advantage of quirks in the training data, it can potentially lead to overfit.

A recommended precaution for this optimistic bias is to split your available data
into test and training. Perform all of your clever work on the training data alone, and
delay measuring your performance with respect to your test data until as late as possi-
ble in your project (as all choices you make after seeing your test or holdout perfor-
mance introduce a modeling bias). The desire to keep the test data secret for as long
as possible is why we often actually split data into training, calibration, and test sets (as
we’ll demonstrate in section 8.2.1).

When partitioning your data, you want to balance the trade-off between keeping
enough data to fit a good model, and holding out enough data to make good esti-
mates of the model’s performance. Some common splits are 70% training to 30% test,
or 80% training to 20% test. For large datasets, you may even sometimes see a 50–50
split.

K-FOLD CROSS-VALIDATION

Testing on holdout data, while useful, uses each example only once: either as part of
the model construction or as part of the held-out model evaluation set. This is not sta-
tistically efficient,3 because the test set is often much smaller than our whole dataset.
This means we are losing some precision in our estimate of model performance by
partitioning our data so simply. In our example scenario, suppose you were not able to
collect a very large dataset of historical used car prices. Then you might feel that you
do not have enough data to split into training and test sets that are large enough to
both build good models and evaluate them properly. In this situation, you might
choose to use a more thorough partitioning scheme called k-fold cross-validation.

The idea behind k-fold cross-validation is to repeat the construction of a model on
different subsets of the available training data and then evaluate that model only on
data not seen during construction. This allows us to use each and every example in
both training and evaluating models (just never the same example in both roles at the
same time). The idea is shown in figure 6.9 for k = 3.

In the figure, the data is split into three non-overlapping partitions, and the three
partitions are arranged to form three test-train splits. For each split, a model is trained
on the training set and then applied to the corresponding test set. The entire set of
predictions is then evaluated, using the appropriate evaluation scores that we will dis-
cuss later in the chapter. This simulates training a model and then evaluating it on a
holdout set that is the same size as the entire dataset. Estimating the model’s perfor-
mance on all the data gives us a more precise estimate of how a model of a given type
would perform on new data. Assuming that this performance estimate is satisfactory,
then you would go back and train a final model, using all the training data.

3 An estimator is called statistically efficient when it has minimal variance for a given dataset size.
Licensed to Ajit de Silva <agdesilva@gmail.com>

174 CHAPTER 6 Choosing and evaluating models
For big data, a test-train split tends to be good enough and is much quicker to imple-
ment. In data science applications, cross-validation is generally used for tuning mod-
eling parameters, which is basically trying many models in succession. Cross-
validation is also used when nesting models (using one model as input to another
model). This is an issue that can arise when transforming data for analysis, and is dis-
cussed in chapter 7.

6.2.2 Measures of model performance

In this section, we’ll introduce some quantitative measures of model performance.
From an evaluation point of view, we group model types this way:

 Classification
 Scoring
 Probability estimation
 Clustering

For most model evaluations, we just want to compute one or two summary scores that
tell us if the model is effective. To decide if a given score is high or low, we generally
compare our model’s performance to a few baseline models.

THE NULL MODEL

The null model is the best version of a very simple model you’re trying to outperform.
The most typical null model is a model that returns the same answer for all situations

Training data 1

All data available for modeling

Data

Test data 2

Test data 3

Test data 1

Training data 2

Training
data 3

Training
data 3

Split data into
3 partitions.

For each split, train a model on the training set,
and then predict on the corresponding test set.

Arrange the partitions
into 3 test-train splits.

Figure 6.9 Partitioning data for 3-fold cross-validation
Licensed to Ajit de Silva <agdesilva@gmail.com>

175Evaluating models
(a constant model). We use null models as a lower bound on desired performance.
For example, in a categorical problem, the null model would always return the most
popular category, as this is the easy guess that is least often wrong. For a score model,
the null model is often the average of all the outcomes, as this has the least square
deviation from all the outcomes.

The idea is that if you’re not outperforming the null model, you’re not delivering
value. Note that it can be hard to do as good as the best null model, because even
though the null model is simple, it’s privileged to know the overall distribution of the
items it will be quizzed on. We always assume the null model we’re comparing to is the
best of all possible null models

SINGLE-VARIABLE MODELS

We also suggest comparing any complicated model against the best single-variable
model you have available (please see chapter 8 for how to convert single variables into
single-variable models). A complicated model can’t be justified if it doesn’t outperform
the best single-variable model available from your training data. Also, business analysts
have many tools for building effective single-variable models (such as pivot tables), so if
your client is an analyst, they’re likely looking for performance above this level.

We’ll present the standard measures of model quality, which are useful in model
construction. In all cases, we suggest that in addition to the standard model quality
assessments, you try to design your own custom business-oriented metrics with your
project sponsor or client. Usually this is as simple as assigning a notional dollar value
to each outcome and then seeing how your model performs under that criterion.
Let’s start with how to evaluate classification models and then continue from there.

6.2.3 Evaluating classification models

A classification model places examples into one of two or more categories. For mea-
suring classifier performance, we’ll first introduce the incredibly useful tool called the
confusion matrix and show how it can be used to calculate many important evaluation
scores. The first score we’ll discuss is accuracy.

 Example Suppose we want to classify email into spam (email we in no way want)
and non-spam (email we want).

A ready-to-go example (with a good description) is the “Spambase Data Set”
(http://mng.bz/e8Rh). Each row of this dataset is a set of features measured for a spe-
cific email and an additional column telling whether the mail was spam (unwanted) or
non-spam (wanted). We’ll quickly build a spam classification model using logistic regres-
sion so we have results to evaluate. We will discuss logistic regression in section 7.2, but
for right now you can just download the file Spambase/spamD.tsv from the book’s
GitHub site (https://github.com/WinVector/PDSwR2/tree/master/Spambase) and
then perform the steps shown in the following listing.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/e8Rh
https://github.com/WinVector/PDSwR2/tree/master/Spambase

176 CHAPTER 6 Choosing and evaluating models

Fi
lo

regre
m

spamD <- read.table('spamD.tsv',header=T,sep='\t')

spamTrain <-
subset(spamD,spamD$rgroup >= 10)

spamTest <- subset(spamD,spamD$rgroup < 10)

spamVars <- setdiff(colnames(spamD), list('rgroup','spam'))
spamFormula <- as.formula(paste('spam == "spam"',
paste(spamVars, collapse = ' + '),sep = ' ~ '))

spamModel <- glm(spamFormula,family = binomial(link = 'logit'),
data = spamTrain)

spamTrain$pred <- predict(spamModel,newdata = spamTrain,
type = 'response')

spamTest$pred <- predict(spamModel,newdata = spamTest,
type = 'response')

The spam model predicts the probability that a given email is spam. A sample of the
results of our simple spam classifier is shown in the next listing.

sample <- spamTest[c(7,35,224,327), c('spam','pred')]
print(sample)
spam pred
115 spam 0.9903246227
361 spam 0.4800498077
2300 non-spam 0.0006846551
3428 non-spam 0.0001434345

THE CONFUSION MATRIX

The absolute most interesting summary of classifier performance is the confusion
matrix. This matrix is just a table that summarizes the classifier’s predictions against
the actual known data categories.

The confusion matrix is a table counting how often each combination of known
outcomes (the truth) occurred in combination with each prediction type. For our
email spam example, the confusion matrix is calculated by the R command in the fol-
lowing listing.

confmat_spam <- table(truth = spamTest$spam,
prediction = ifelse(spamTest$pred > 0.5,
"spam", "non-spam"))

print(confmat_spam)
prediction
truth non-spam spam
non-spam 264 14
spam 22 158

Listing 6.1 Building and applying a logistic regression spam model

Listing 6.2 Spam classifications

Listing 6.3 Spam confusion matrix

Reads in the data

Splits the data into
training and test sets

Creates a
formula that
describes
the model

ts the
gistic
ssion
odel

Makes predictions
on the training and
test sets

The first column gives the actual class label
(spam or non-spam). The second column gives
the predicted probability that an email is spam.
If the probability > 0.5, the email is labeled
“spam;” otherwise, it is “non-spam.”
Licensed to Ajit de Silva <agdesilva@gmail.com>

177Evaluating models
The rows of the table (labeled truth) correspond to the actual labels of the datums:
whether they are really spam or not. The columns of the table (labeled prediction) cor-
respond to the predictions that the model makes. So the first cell of the table (truth =
non-spam and prediction = non-spam) corresponds to the 264 emails in the test set that
are not spam, and that the model (correctly) predicts are not spam. These correct
negative predictions are called true negatives.

CONFUSION MATRIX CONVENTIONS A number of tools, as well as Wikipedia,
draw confusion matrices with the actual truth values controlling the x-axis in
the figure. This is likely due to the math convention that the first coordinate
in matrices and tables names the row (vertical offset), and not the column
(horizontal offset). It is our feeling that direct labels, such as “pred” and
“actual,” are much clearer than any convention. Also note that in residual
graphs the prediction is always the x-axis, and being visually consistent with
this important convention is a benefit. So in this book, we will plot predic-
tions on the x-axis (regardless how that is named).

It is standard terminology to refer to datums that are in the class of interest as positive
instances, and those not in the class of interest as negative instances. In our scenario,
spam emails are positive instances, and non-spam emails are negative instances.

In a two-by-two confusion matrix, every cell has a special name, as illustrated in
table 6.2.

Using this summary, we can now start to calculate various performance metrics of our
spam filter.

CHANGING A SCORE TO A CLASSIFICATION Note that we converted the numeri-
cal prediction score into a decision by checking if the score was above or below
0.5. This means that if the model returned a probability higher than 50% that
an email is spam, we classify it as spam. For some scoring models (like logistic
regression) the 0.5 score is likely a threshold that gives a classifier with reason-
ably good accuracy. However, accuracy isn’t always the end goal, and for
unbalanced training data, the 0.5 threshold won’t be good. Picking thresholds
other than 0.5 can allow the data scientist to trade precision for recall (two terms
that we’ll define later in this chapter). You can start at 0.5, but consider trying
other thresholds and looking at the ROC curve (see section 6.2.5).

Table 6.2 Two-by-two confusion matrix

Prediction=NEGATIVE
(predicted as non-spam)

Prediction=POSITIVE
(predicted as spam)

Truth mark=NEGATIVE
(non-spam)

True negatives (TN)
confmat_spam[1,1]=264

False positives (FP)
confmat_spam[1,2]=14

Truth mark=POSITIVE
(spam)

False negatives (FN)
confmat_spam[2,1]=22

True positives (TP)
confmat_spam[2,2]=158
Licensed to Ajit de Silva <agdesilva@gmail.com>

178 CHAPTER 6 Choosing and evaluating models
ACCURACY

Accuracy answers the question, “When the spam filter says this email is or is not spam,
what’s the probability that it’s correct?” For a classifier, accuracy is defined as the num-
ber of items categorized correctly divided by the total number of items. It’s simply what
fraction of classifications the classifier makes is correct. This is shown in figure 6.10.

At the very least, you want a classifier to be accurate. Let’s calculate the accuracy of the
spam filter:

(confmat_spam[1,1] + confmat_spam[2,2]) / sum(confmat_spam)
[1] 0.9213974

The error of around 8% is unacceptably high for a spam filter, but is good for illustrat-
ing different sorts of model evaluation criteria.

Before we move on, we’d like to share the confusion matrix of a good spam filter.
In the next listing, we create the confusion matrix for the Akismet comment spam fil-
ter from the Win-Vector blog.4

confmat_akismet <- as.table(matrix(data=c(288-1,17,1,13882-17),nrow=2,ncol=2))
rownames(confmat_akismet) <- rownames(confmat_spam)
colnames(confmat_akismet) <- colnames(confmat_spam)
print(confmat_akismet)
non-spam spam
non-spam 287 1
spam 17 13865

Because the Akismet filter uses link destination clues and determination from other
websites (in addition to text features), it achieves a more acceptable accuracy:

(confmat_akismet[1,1] + confmat_akismet[2,2]) / sum(confmat_akismet)
[1] 0.9987297

Listing 6.4 Entering the Akismet confusion matrix by hand

4 See http://www.win-vector.com/blog/.

true label

prediction

accuracy: (TP + TN) / (TP + FP + TN + FN)
or

fraction of correct predictions

correct
predictions

true
negatives

false
positives

false
negatives

NEGATIVE

NEGATIVE POSITIVE

POSITIVE
true

positives

Figure 6.10 Accuracy
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://www.win-vector.com/blog/

179Evaluating models
More importantly, Akismet seems to have suppressed fewer good comments. Our next
section on precision and recall will help quantify this distinction.

ACCURACY IS AN INAPPROPRIATE MEASURE FOR UNBALANCED CLASSES Suppose
we have a situation where we have a rare event (say, severe complications
during childbirth). If the event we’re trying to predict is rare (say, around 1%
of the population), the null model that says the rare event never happens is
very (99%) accurate. The null model is in fact more accurate than a useful
(but not perfect model) that identifies 5% of the population as being “at risk”
and captures all of the bad events in the 5%. This is not any sort of paradox.
It’s just that accuracy is not a good measure for events that have unbalanced
distribution or unbalanced costs.

PRECISION AND RECALL

Another evaluation measure used by machine learning researchers is a pair of num-
bers called precision and recall. These terms come from the field of information
retrieval and are defined as follows.

Precision answers the question, “If the spam filter says this email is spam, what’s the
probability that it’s really spam?” Precision is defined as the ratio of true positives to
predicted positives. This is shown in figure 6.11.

We can calculate the precision of our spam filter as follows:

confmat_spam[2,2] / (confmat_spam[2,2]+ confmat_spam[1,2])
[1] 0.9186047

It is only a coincidence that the precision is so close to the accuracy number we
reported earlier. Again, precision is how often a positive indication turns out to be
correct. It’s important to remember that precision is a function of the combination of
the classifier and the dataset. It doesn’t make sense to ask how precise a classifier is in
isolation; it’s only sensible to ask how precise a classifier is for a given dataset. The
hope is that the classifier will be similarly precise on the overall population that the

true label

prediction

precision: TP/(TP + FP)
or

TP/predicted positives

predicted
positives

true
negatives

false
positives

false
negatives

NEGATIVE

NEGATIVE POSITIVE

POSITIVE
true

positives

Figure 6.11 Precision
Licensed to Ajit de Silva <agdesilva@gmail.com>

180 CHAPTER 6 Choosing and evaluating models
dataset is drawn from—a population with the same distribution of positives instances
as the dataset.

In our email spam example, 92% precision means 8% of what was flagged as spam
was in fact not spam. This is an unacceptable rate for losing possibly important mes-
sages. Akismet, on the other hand, had a precision of over 99.99%, so it throws out
very little non-spam email.

confmat_akismet[2,2] / (confmat_akismet[2,2] + confmat_akismet[1,2])
[1] 0.9999279

The companion score to precision is recall. Recall answers the question, “Of all the
spam in the email set, what fraction did the spam filter detect?” Recall is the ratio of
true positives over all actual positives, as shown in figure 6.12.

Let’s compare the recall of the two spam filters.

confmat_spam[2,2] / (confmat_spam[2,2] + confmat_spam[2,1])
[1] 0.8777778

confmat_akismet[2,2] / (confmat_akismet[2,2] + confmat_akismet[2,1])
[1] 0.9987754

For our email spam filter, this is 88%, which means about 12% of the spam email we
receive will still make it into our inbox. Akismet has a recall of 99.88%. In both cases,
most spam is in fact tagged (we have high recall) and precision is emphasized over
recall. This is appropriate for a spam filter, because it’s more important to not lose
non-spam email than it is to filter every single piece of spam out of our inbox.

It’s important to remember this: precision is a measure of confirmation (when the
classifier indicates positive, how often it is in fact correct), and recall is a measure of
utility (how much the classifier finds of what there actually is to find). Precision and
recall tend to be relevant to business needs and are good measures to discuss with
your project sponsor and client.

true label

prediction

precision: TP/(TP + FN)
or

TP/all positives

all
positives

true
negatives

false
positives

false
negatives

NEGATIVE

NEGATIVE POSITIVE

POSITIVE
true

positives

Figure 6.12 Recall
Licensed to Ajit de Silva <agdesilva@gmail.com>

181Evaluating models
F1

 Example Suppose that you had multiple spam filters to choose from, each with differ-
ent values of precision and recall. How do you pick which spam filter to use?

In situations like this, some people prefer to have just one number to compare all the
different choices by. One such score is the F1 score. The F1 score measures a trade-off
between precision and recall. It is defined as the harmonic mean of the precision and
recall. This is most easily shown with an explicit calculation:

precision <- confmat_spam[2,2] / (confmat_spam[2,2]+ confmat_spam[1,2])
recall <- confmat_spam[2,2] / (confmat_spam[2,2] + confmat_spam[2,1])

(F1 <- 2 * precision * recall / (precision + recall))
[1] 0.8977273

Our spam filter with 0.93 precision and 0.88 recall has an F1 score of 0.90. F1 is 1.00
when a classifier has perfect precision and recall, and goes to 0.00 for classifiers that
have either very low precision or recall (or both). Suppose you think that your spam
filter is losing too much real email, and you want to make it “pickier” about marking
email as spam; that is, you want to increase its precision. Quite often, increasing the
precision of a classifier will also lower its recall: in this case, a pickier spam filter may
also mark fewer real spam emails as spam, and allow it into your inbox. If the filter’s
recall falls too low as its precision increases, this will result in a lower F1. This possibly
means that you have traded too much recall for better precision.

SENSITIVITY AND SPECIFICITY

Example Suppose that you have successfully trained a spam filter with acceptable
precision and recall, using your work email as training data. Now you
want to use that same spam filter on a personal email account that you use
primarily for your photography hobby. Will the filter work as well?

It’s possible the filter will work just fine on your personal email as is, since the nature
of spam (the length of the email, the words used, the number of links, and so on)
probably doesn’t change much between the two email accounts. However, the propor-
tion of spam you get on the personal email account may be different than it is on your
work email. This can change the performance of the spam filter on your personal
email.5

Let’s see how changes in the proportion of spam can change the performance met-
rics of the spam filter. Here we simulate having email sets with both higher and lower
proportions of email than the data that we trained the filter on.

5 The spam filter performance can also change because the nature of the non-spam will be different, too: the
words commonly used will be different; the number of links or images in a legitimate email may be different;
the email domains of people you correspond with may be different. For this discussion, we will assume that
the proportion of spam email is the main reason that a spam filter’s performance will be different.
Licensed to Ajit de Silva <agdesilva@gmail.com>

182 CHAPTER 6 Choosing and evaluating models
set.seed(234641)

N <- nrow(spamTest)
pull_out_ix <- sample.int(N, 100, replace=FALSE)
removed = spamTest[pull_out_ix,]

get_performance <- function(sTest) {
proportion <- mean(sTest$spam == "spam")
confmat_spam <- table(truth = sTest$spam,

prediction = ifelse(sTest$pred>0.5,
"spam",
"non-spam"))

precision <- confmat_spam[2,2]/sum(confmat_spam[,2])
recall <- confmat_spam[2,2]/sum(confmat_spam[2,])
list(spam_proportion = proportion,

confmat_spam = confmat_spam,
precision = precision, recall = recall)

}

sTest <- spamTest[-pull_out_ix,]
get_performance(sTest)

$spam_proportion
[1] 0.3994413
##
$confmat_spam
prediction
truth non-spam spam
non-spam 204 11
spam 17 126
##
$precision
[1] 0.919708
##
$recall
[1] 0.8811189

get_performance(rbind(sTest, subset(removed, spam=="spam")))

$spam_proportion
[1] 0.4556962
##
$confmat_spam
prediction
truth non-spam spam
non-spam 204 11
spam 22 158
##
$precision
[1] 0.9349112
##
$recall
[1] 0.8777778

Listing 6.5 Seeing filter performance change when spam proportions change

Pulls 100 emails out of
the test set at random

A convenience function to print out
the confusion matrix, precision,
and recall of the filter on a test set.

Looks at performance on a test
set with the same proportion of
spam as the training data

Adds back only additional
spam, so the test set has a

higher proportion of spam than
the training set
Licensed to Ajit de Silva <agdesilva@gmail.com>

183Evaluating models
get_performance(rbind(sTest, subset(removed, spam=="non-spam")))

$spam_proportion
[1] 0.3396675
##
$confmat_spam
prediction
truth non-spam spam
non-spam 264 14
spam 17 126
##
$precision
[1] 0.9
##
$recall
[1] 0.8811189

Note that the recall of the filter is the same in all three cases: about 88%. When the data
has more spam than the filter was trained on, the filter has higher precision, which
means it throws a lower proportion of non-spam email out. This is good! However, when
the data has less spam than the filter was trained on, the precision is lower, meaning the
filter will throw out a higher fraction of non-spam email. This is undesirable.

Because there are situations where a classifier or filter may be used on populations
where the prevalence of the positive class (in this example, spam) varies, it’s useful to
have performance metrics that are independent of the class prevalence. One such
pair of metrics is sensitivity and specificity. This pair of metrics is common in medical
research, because tests for diseases and other conditions will be used on different pop-
ulations, with different prevalence of a given disease or condition.

Sensitivity is also called the true positive rate and is exactly equal to recall. Specificity is
also called the true negative rate: it is the ratio of true negatives to all negatives. This is
shown in figure 6.13.

Adds back only non-spam, so the
test set has a lower proportion

of spam than the training set

true label

prediction

specify (true negative rate):
 TN/(TN + FP)

or
TN/all negatives

all
negatives

true
negatives

false
positives

false
negatives

NEGATIVE

NEGATIVE POSITIVE

POSITIVE
true

positives

Figure 6.13 Specificity
Licensed to Ajit de Silva <agdesilva@gmail.com>

184 CHAPTER 6 Choosing and evaluating models
Sensitivity and recall answer the question, “What fraction of spam does the spam filter
find?” Specificity answers the question, “What fraction of non-spam does the spam fil-
ter find?”

We can calculate specificity for our spam filter:

confmat_spam[1,1] / (confmat_spam[1,1] + confmat_spam[1,2])
[1] 0.9496403

One minus the specificity is also called the false positive rate. False positive rate answers
the question, “What fraction of non-spam will the model classify as spam?” You want
the false positive rate to be low (or the specificity to be high), and the sensitivity to
also be high. Our spam filter has a specificity of about 0.95, which means that it will
mark about 5% of non-spam email as spam.

An important property of sensitivity and specificity is this: if you flip your labels
(switch from spam being the class you’re trying to identify to non-spam being the class
you’re trying to identify), you just switch sensitivity and specificity. Also, a trivial classi-
fier that always says positive or always says negative will always return a zero score on
either sensitivity or specificity. So useless classifiers always score poorly on at least one
of these measures.

Why have both precision/recall and sensitivity/specificity? Historically, these mea-
sures come from different fields, but each has advantages. Sensitivity/specificity is
good for fields, like medicine, where it’s important to have an idea how well a classi-
fier, test, or filter separates positive from negative instances independently of the dis-
tribution of the different classes in the population. But precision/recall gives you an
idea how well a classifier or filter will work on a specific population. If you want to
know the probability that an email identified as spam is really spam, you have to know
how common spam is in that person’s email box, and the appropriate measure is
precision.

SUMMARY: USING COMMON CLASSIFICATION PERFORMANCE MEASURES

You should use these standard scores while working with your client and sponsor to see
which measure most models their business needs. For each score, you should ask them
if they need that score to be high, and then run a quick thought experiment with them
to confirm you’ve gotten their business need. You should then be able to write a proj-
ect goal in terms of a minimum bound on a pair of these measures. Table 6.3 shows a
typical business need and an example follow-up question for each measure.

Table 6.3 Classifier performance measures business stories.

Measure Typical business need Follow-up question

Accuracy “We need most of our deci-
sions to be correct.”

“Can we tolerate being wrong 5% of the time?
And do users see mistakes like spam marked
as non-spam or non-spam marked as spam as
being equivalent?”
Licensed to Ajit de Silva <agdesilva@gmail.com>

185Evaluating models
One conclusion for this dialogue process on spam classification could be to recom-
mend writing the business goals as maximizing sensitivity while maintaining a specific-
ity of at least 0.999.

6.2.4 Evaluating scoring models

Let’s demonstrate evaluation on a simple example.

Example Suppose you’ve read that the rate at which crickets chirp is proportional to
the temperature, so you have gathered some data and fit a model that pre-
dicts temperature (in Fahrenheit) from the chirp rate (chirps/sec) of a
striped ground cricket. Now you want to evaluate this model.

You can fit a linear regression model to this data, and then make predictions, using
the following listing. We will discuss linear regression in detail in chapter 8. Make sure
you have the dataset crickets.csv in your working directory.6

crickets <- read.csv("cricketchirps/crickets.csv")

cricket_model <- lm(temperatureF ~ chirp_rate, data=crickets)
crickets$temp_pred <- predict(cricket_model, newdata=crickets)

Precision “Most of what we marked as
spam had darn well better be
spam.”

“That would guarantee that most of what is in
the spam folder is in fact spam, but it isn’t the
best way to measure what fraction of the
user’s legitimate email is lost. We could cheat
on this goal by sending all our users a bunch of
easy-to-identify spam that we correctly identify.
Maybe we really want good specificity.”

Recall “We want to cut down on the
amount of spam a user sees
by a factor of 10 (eliminate
90% of the spam).”

“If 10% of the spam gets through, will the user
see mostly non-spam mail or mostly spam?
Will this result in a good user experience?”

Sensitivity “We have to cut a lot of spam;
otherwise, the user won’t see
a benefit.”

“If we cut spam down to 1% of what it is now,
would that be a good user experience?”

Specificity “We must be at least three
nines on legitimate email; the
user must see at least 99.9%
of their non-spam email.”

“Will the user tolerate missing 0.1% of their
legitimate email, and should we keep a spam
folder the user can look at?”

Listing 6.6 Fitting the cricket model and making predictions

6 George W. Pierce, The Song of Insects, Harvard University Press, 1948. You can find the dataset here: https://
github.com/WinVector/PDSwR2/tree/master/cricketchirps

Table 6.3 Classifier performance measures business stories. (continued)

Measure Typical business need Follow-up question
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/cricketchirps
https://github.com/WinVector/PDSwR2/tree/master/cricketchirps
https://github.com/WinVector/PDSwR2/tree/master/cricketchirps

186 CHAPTER 6 Choosing and evaluating models
Figure 6.14 compares the actual data (points) to the model’s predictions (the line).
The differences between the predictions of temperatureF and temp_pred are called
the residuals or error of the model on the data. We will use the residuals to calculate
some common performance metrics for scoring models.

ROOT MEAN SQUARE ERROR

The most common goodness-of-fit measure is called root mean square error (RMSE). The
RMSE is the square root of the average squared residuals (also called the mean
squared error). RMSE answers the question, “How much is the predicted temperature
typically off?” We calculate the RMSE as shown in the following listing.

error_sq <- (crickets$temp_pred - crickets$temperatureF)^2
(RMSE <- sqrt(mean(error_sq)))
[1] 3.564149

The RMSE is in the same units as the outcome: since the outcome (temperature) is in
degrees Fahrenheit, the RMSE is also in degrees Fahrenheit. Here the RMSE tells you
that the model’s predictions will typically (that is, on average) be about 3.6 degrees off
from the actual temperature. Suppose that you consider a model that typically pre-
dicts the temperature to within 5 degrees to be “good.” Then, congratulations! You
have fit a model that meets your goals.

Listing 6.7 Calculating RMSE

70

75

80

85

90

16 18 20

chirp_rate

te
m

pe
ra

tu
re

F

Actual and predicted temperature (F) as a function of cricket chirp rate

Points: actual
temperature as a

function of chirp rate

Line: temperature that
model predicts as a

function of chirp rate

Residuals: difference
between actual and

predicted temperature

Figure 6.14 Scoring residuals
Licensed to Ajit de Silva <agdesilva@gmail.com>

187Evaluating models
RMSE is a good measure, because it is often what the fitting algorithms you’re
using are explicitly trying to minimize. In a business setting, a good RMSE-related goal
would be “We want the RMSE on account valuation to be under $1,000 per account.”

The quantity mean(error_sq) is called the mean squared error. We will call the quan-
tity sum(error_sq) the sum squared error, and also refer to it as the model’s variance.

R-SQUARED

Another important measure of fit is called R-squared (or R2, or the coefficient of determi-
nation). We can motivate the definition of R-squared as follows.

For the data that you’ve collected, the simplest baseline prediction of the tempera-
ture is simply the average temperature in the dataset. This is the null model ; it’s not a
very good model, but you have to perform at least better than it does. The data’s total
variance is the sum squared error of the null model. You want the sum squared error
of your actual model to be much smaller than the data’s variance—that is, you want
the ratio of your model’s sum squared error to the total variance to be near zero.
R-squared is defined as one minus this ratio, so we want R-squared to be close to one.
This leads to the following calculation for R-squared.

error_sq <- (crickets$temp_pred - crickets$temperatureF)^2
numerator <- sum(error_sq)

delta_sq <- (mean(crickets$temperatureF) - crickets$temperatureF)^2
denominator = sum(delta_sq)

(R2 <- 1 - numerator/denominator)
[1] 0.6974651

As R-squared is formed from a ratio comparing your model’s variance to the total vari-
ance, you can think of R-squared as a measure of how much variance your model
“explains.” R-squared is also sometimes referred to as a measure of how well the
model “fits” the data, or its “goodness of fit.”

The best possible R-squared is 1.0, with near-zero or negative R-squareds being hor-
rible. Some other models (such as logistic regression) use deviance to report an analo-
gous quantity called pseudo R-squared.

Under certain circumstances, R-squared is equal to the square of another measure
called the correlation (see http://mng.bz/ndYf). A good statement of a R-squared business
goal would be “We want the model to explain at least 70% of variation in account value.”

6.2.5 Evaluating probability models

Probability models are models that both decide if an item is in a given class and return
an estimated probability (or confidence) of the item being in the class. The modeling
techniques of logistic regression and decision trees are fairly famous for being able to

Listing 6.8 Calculating R-squared

Calculates the squared
error terms

Sums them to get the model’s
sum squared error, or variance

Calculates the squared
error terms from the

null model

Calculates the data’s
total variance

Calculates R-squared
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/ndYf

188 CHAPTER 6 Choosing and evaluating models
return good probability estimates. Such models can be evaluated on their final deci-
sions, as we’ve already shown in section 6.2.3, but they can also be evaluated in terms
of their estimated probabilities.

In our opinion, most of the measures for probability models are very technical and
very good at comparing the qualities of different models on the same dataset. It’s
important to know them, because data scientists generally use these criteria among
themselves. But these criteria aren’t easy to precisely translate into businesses needs. So
we recommend tracking them, but not using them with your project sponsor or client.

To motivate the use of the different metrics for probability models, we’ll continue
the spam filter example from section 6.2.3.

Example Suppose that, while building your spam filter, you try several different algo-
rithms and modeling approaches and come up with several models, all of
which return the probability that a given email is spam. You want to com-
pare these different models quickly and identify the one that will make the
best spam filter.

In order to turn a probability model into a classifier, you need to select a threshold:
items that score higher than that threshold will be classified as spam; otherwise, they
are classified as non-spam. The easiest (and probably the most common) threshold
for a probability model is 0.5, but the “best possible” classifier for a given probability
model may require a different threshold. This optimal threshold can vary from model
to model. The metrics in this section compare probability models directly, without
having turned them into classifiers. If you make the reasonable assumption that the
best probability model will make the best classifier, then you can use these metrics to
quickly select the most appropriate probability model, and then spend some time tun-
ing the threshold to build the best classifier for your needs.

THE DOUBLE DENSITY PLOT

When thinking about probability models, it’s useful to construct a double density plot
(illustrated in figure 6.15).

library(WVPlots)
DoubleDensityPlot(spamTest,

xvar = "pred",
truthVar = "spam",
title = "Distribution of scores for spam filter")

The x-axis in the figure corresponds to the prediction scores returned by the spam fil-
ter. Figure 6.15 illustrates what we’re going to try to check when evaluating estimated
probability models: examples in the class should mostly have high scores, and exam-
ples not in the class should mostly have low scores.

Double density plots can be useful when picking classifier thresholds, or the
threshold score where the classifier switches from labeling an email as non-spam to
spam. As we mentioned earlier, the standard classifier threshold is 0.5, meaning that

Listing 6.9 Making a double density plot
Licensed to Ajit de Silva <agdesilva@gmail.com>

189Evaluating models
if the probability that an email is spam is greater than one-half, then we label the
email as spam. This is the threshold that you used in section 6.2.3. However, in some
circumstances you may choose to use a different threshold. For instance, using a
threshold of 0.75 for the spam filter will produce a classifier with higher precision
(but lower recall), because a higher fraction of emails that scored higher than 0.75
are actually spam.

THE RECEIVER OPERATING CHARACTERISTIC CURVE AND THE AUC
The receiver operating characteristic curve (or ROC curve) is a popular alternative to the
double density plot. For each different classifier we’d get by picking a different score
threshold between spam and not-spam, we plot both the true positive (TP) rate and
the false positive (FP) rate. The resulting curve represents every possible trade-off
between true positive rate and false positive rate that is available for classifiers derived
from this model. Figure 6.16 shows the ROC curve for our spam filter, as produced in
the next listing. In the last line of the listing, we compute the AUC or area under the
curve, which is another measure of the quality of the model.

0

5

10

15

0.00 0.25 0.50 0.75 1.00
pred

de
ns

ity spam

non–spam

spam

Distribution of scores for spam filter

Distribution of scores for items known to not be spam

Distribution of scores for items known to be spam

Figure 6.15 Distribution of scores broken up by known classes
Licensed to Ajit de Silva <agdesilva@gmail.com>

190 CHAPTER 6 Choosing and evaluating models
library(WVPlots)
ROCPlot(spamTest,

xvar = 'pred',
truthVar = 'spam',
truthTarget = 'spam',
title = 'Spam filter test performance')

library(sigr)
calcAUC(spamTest$pred, spamTest$spam=='spam')
[1] 0.9660072

The reasoning behind the AUC

At one end of the spectrum of models is the ideal perfect model that would return a
score of 1 for spam emails and a score of 0 for non-spam. This ideal model would form
an ROC with three points:

Listing 6.10 Plotting the receiver operating characteristic curve

Plots the receiver operating
characteristic (ROC) curve

Calculates the area under the
ROC curve explicitly

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

falsePositiveRate

tr
ue

P
os

iti
ve

R
at

e

Spam filter test performance
spam==spam ~ pred
AUC = 0.97

Figure 6.16 ROC curve for the email spam example
Licensed to Ajit de Silva <agdesilva@gmail.com>

191Evaluating models
 (0,0)—Corresponding to a classifier defined by the threshold p = 1: nothing
gets classified as spam, so this classifier has a zero false positive rate and a zero
true positive rate.

 (1,1)—Corresponding to a classifier defined by the threshold p = 0: everything
gets classified as spam, so this classifier has a false positive rate of 1 and a true
positive rate of 1.

 (0,1)—Corresponding to any classifier defined by a threshold between 0 and 1:
everything is classified correctly, so this classifier has a false positive rate of 0
and a true positive rate of 1.

The shape of the ROC for the ideal model is shown in figure 6.17. The area under the
curve for this model is 1. A model that returns random scores would have an ROC that
is the diagonal line from the origin to the point (1,0): the true positive rate is propor-
tional to the threshold. The area under the curve for the random model is 0.5. So you
want a model whose AUC is close to 1, and greater than 0.5.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

falsePositiveRate

tr
ue

P
os

iti
ve

R
at

e

ROC of ideal perfect model
outcome==TRUE ~ prediction
AUC = 1

Figure 6.17 ROC curve for an ideal model that classifies perfectly
Licensed to Ajit de Silva <agdesilva@gmail.com>

192 CHAPTER 6 Choosing and evaluating models
When comparing multiple probability models, you generally want to prefer models
that have a higher AUC. However, you also want to examine the shape of the ROC to
explore possible project goal trade-offs. Each point on the curve shows the trade-off
between achievable true positive and false positive rates with this model. If you share
the information from the ROC curve with your client, they may have an opinion about
the acceptable trade-offs between the two.

LOG LIKELIHOOD

Log likelihood is a measure of how well the model’s predictions “match” the true class
labels. It is a non-positive number, where a log likelihood of 0 means a perfect match:
the model scores all the spam as being spam with a probability of 1, and all the non-
spam as having a probability 0 of being spam. The larger the magnitude of the log
likelihood, the worse the match.

The log likelihood of a model’s prediction on a specific instance is the logarithm of
the probability that the model assigns to the instance’s actual class. As shown in figure
6.18, for a spam email with an estimated probability of p of being spam, the log likeli-
hood is log(p); for a non-spam email, the same score of p gives a log likelihood of
log(1 - p).

The log likelihood of a model’s predictions on an entire dataset is the sum of the indi-
vidual log likelihoods:

log_likelihood = sum(y * log(py) + (1-y) * log(1 - py))

Here y is the true class label (0 for non-spam and 1 for spam) and py is the probability
that an instance is of class 1 (spam). We are using multiplication to select the correct
logarithm. We also use the convention that 0 * log(0) = 0 (though for simplicity,
this isn’t shown in the code).

Figure 6.19 shows how log likelihood rewards matches and penalizes mismatches
between the actual label of an email and the score assigned by the model. For positive
instances (spam), the model should predict a value close to 1, and for negative instances
(non-spam), the model should predict a value close to 0. When the prediction and the

spam = 1

spam = 0

log likelihood = log(Prob(spam)) = log(p)

log likelihood = log(Prob(~spam)) = log(1-p)

Prob(spam) = p

Prob(spam) = p

Figure 6.18 Log likelihood
of a spam filter prediction
Licensed to Ajit de Silva <agdesilva@gmail.com>

193Evaluating models
class label match, the contribution to the log likelihood is a small negative number.
When they don’t match, the contribution to the log likelihood is a larger negative num-
ber. The closer to 0 the log likelihood is, the better the prediction.

The next listing shows one way to calculate the log likelihood of the spam filter’s
predictions.

ylogpy <- function(y, py) {
logpy = ifelse(py > 0, log(py), 0)

y*logpy
}

y <- spamTest$spam == 'spam'

sum(ylogpy(y, spamTest$pred) +
ylogpy(1-y, 1-spamTest$pred))

[1] -134.9478

The log likelihood is useful for comparing multiple probability models on the same test
dataset---because the log likelihood is an unnormalized sum, its magnitude implicitly
depends on the size of the dataset, so you can’t directly compare log likelihoods that
were computed on different datasets. When comparing multiple models, you gener-
ally want to prefer models with a larger (that is, smaller magnitude) log likelihood.

Listing 6.11 Calculating log likelihood

log likelihood = sum(y*log(py) + (1-y)*log(1-py)))

spam and P(spam) = 0.98 contribution : 1 * log(0.98) = -0.02

not
spam and P(spam) = 0.02 contribution : (1-0) * log(1-0.98) = -0.02

spam and P(spam) = 0.02 contribution : 1 * log(0.02) = -3.9

not
spam

and P(spam) = 0.98 contribution : (1-0) * log(1-0.98) = -3.9

y = { 1 if spam
0 if not spam

match

mismatch

match

mismatch

Figure 6.19 Log likelihood penalizes mismatches between the prediction and the
true class label.

A function to calculate y *
log(py), with the convention
that 0 * log(0) = 0

Gets the class labels of the test set
as TRUE/FALSE, which R treats as
1/0 in arithmetic operations

Calculates the log
likelihood of the model’s
predictions on the test set
Licensed to Ajit de Silva <agdesilva@gmail.com>

194 CHAPTER 6 Choosing and evaluating models
At the very least, you want to compare the model’s performance to the null model
of predicting the same probability for every example. The best observable single esti-
mate of the probability of being spam is the observed rate of spam on the training set.

(pNull <- mean(spamTrain$spam == 'spam'))
[1] 0.3941588

sum(ylogpy(y, pNull) + ylogpy(1-y, 1-pNull))
[1] -306.8964

The spam model assigns a log likelihood of -134.9478 to the test set, which is much
better than the null model’s -306.8964.

DEVIANCE

Another common measure when fitting probability models is the deviance. The devi-
ance is defined as -2*(logLikelihood-S), where S is a technical constant called “the
log likelihood of the saturated model.” In most cases, the saturated model is a perfect
model that returns probability 1 for items in the class and probability 0 for items not
in the class (so S=0). The lower the deviance, the better the model.

We’re most concerned with ratios of deviance, such as the ratio between the null
deviance and the model deviance. These deviances can be used to calculate a pseudo
R-squared (see http://mng.bz/j338). Think of the null deviance as how much varia-
tion there is to explain, and the model deviance as how much was left unexplained by
the model. You want a pseudo R-squared that is close to 1.

In the next listing, we show a quick calculation of deviance and pseudo R-squared
using the sigr package.

library(sigr)

(deviance <- calcDeviance(spamTest$pred, spamTest$spam == 'spam'))
[1] 253.8598
(nullDeviance <- calcDeviance(pNull, spamTest$spam == 'spam'))
[1] 613.7929

(pseudoR2 <- 1 - deviance/nullDeviance)
[1] 0.586408

Like the log likelihood, deviance is unnormalized, so you should only compare devi-
ances that are computed over the same dataset. When comparing multiple models,
you will generally prefer models with smaller deviance. The pseudo R-squared is nor-
malized (it’s a function of a ratio of deviances), so in principle you can compare
pseudo R-squareds even when they were computed over different test sets. When
comparing multiple models, you will generally prefer models with larger pseudo
R-squareds.

Listing 6.12 Computing the null model’s log likelihood

Listing 6.13 Computing the deviance and pseudo R-squared
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/j338

195Local interpretable model-agnostic explanations (LIME) for explaining model predictions
AIC
An important variant of deviance is the Akaike information criterion (AIC). This is equiv-
alent to deviance + 2*numberOfParameters used in the model. The more parame-
ters in the model, the more complex the model is; the more complex a model is, the
more likely it is to overfit. Thus, AIC is deviance penalized for model complexity.
When comparing models (on the same test set), you will generally prefer the model
with the smaller AIC. The AIC is useful for comparing models with different measures
of complexity and modeling variables with differing numbers of levels. However,
adjusting for model complexity is often more reliably achieved using the holdout and
cross-validation methods discussed in section 6.2.1.

So far, we have evaluated models on how well they perform in general: the overall
rates at which a model returns correct or incorrect predictions on test data. In the
next section, we look at one method for evaluating a model on specific examples, or
explaining why a model returns a specific prediction on a given example.

6.3 Local interpretable model-agnostic explanations
(LIME) for explaining model predictions
In many people’s opinion, the improved prediction performance of modern machine
learning methods like deep learning or gradient boosted trees comes at the cost of
decreased explanation. As you saw in chapter 1, a human domain expert can review
the if-then structure of a decision tree and compare it to their own decision-making
processes to decide if the decision tree will make reasonable decisions. Linear models
also have an easily explainable structure, as you will see in chapter 8. However, other
methods have far more complex structures that are difficult for a human to evaluate.
Examples include the multiple individual trees of a random forest (as in figure 6.20),
or the highly connected topology of a neural net.

If a model evaluates well on holdout data, that is an indication that the model will
perform well in the wild—but it’s not foolproof. One potential issue is that the hold-
out set generally comes from the same source as the training data, and has all the
same quirks and idiosyncrasies of the training data. How do you know whether your

It’s more difficult to
trace down a forest of trees.

It’s easy to
trace down a

single decision tree.

Figure 6.20 Some kinds of
models are easier to manually
inspect than others.
Licensed to Ajit de Silva <agdesilva@gmail.com>

196 CHAPTER 6 Choosing and evaluating models
model is learning the actual concept of interest, or simply the quirks in the data? Or,
putting it another way, will the model work on similar data from a different source?

Example Suppose you want to train a classifier to distinguish documents about
Christianity from documents about atheism.

One such model was trained using a corpus of postings from the 20 Newsgroups Dataset,
a dataset frequently used for research in machine learning on text. The resulting ran-
dom forest model was 92% accurate on holdout.7 On the surface, this seems pretty good.

However, delving deeper into the model showed that it was exploiting idiosyncra-
sies in the data, using the distribution of words like “There” or “Posting” or “edu” to
decide whether a post was about Christianity or about atheism. In other words, the
model was looking at the wrong features in the data. An example of a classification by
this model is shown in figure 6.21.8

In addition, since the documents in the corpus seem to have included the names of
specific posters, this model could also potentially be learning whether a person who
posts frequently in the training corpus is a Christian or an atheist, which is not the
same as learning if a text is Christian or atheist, especially when trying to apply the
model to a document from a different corpus, with different authors.

Another real-world example is Amazon’s recent attempt to automate resume
reviews, using the resumes of people hired by Amazon over a 10-year period as training
data.9 As Reuters reported, the company discovered that their model was discriminat-
ing against women. It penalized resumes that included words like “women’s,” and
downvoted applicants who had graduated from two particular all-women’s colleges.
Researchers also discovered that the algorithm ignored common terms that referred to

7 The experiment is described in Ribeiro, Singh, and Guestrin, “‘Why Should I Trust You?’ Explaining the Pre-
dictions of Any Classifier,” https://arxiv.org/pdf/1602.04938v1.pdf.

8 Source: https://homes.cs.washington.edu/~marcotcr/blog/lime/
9 Jeffrey Dastin, “Amazon scraps secret AI recruiting tool that showed bias against women,” Reuters, October 9,

2018, https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-
tool-that-showed-bias-against-women-idUSKCN1MK08G.

Figure 6.21 Example of a document and the words that most strongly contributed to its classification
as “atheist” by the model
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

197Local interpretable model-agnostic explanations (LIME) for explaining model predictions
specific skills (such as the names of computer programming languages), and favored
words like executed or captured that were disproportionately used by male applicants.

In this case, the flaw was not in the machine learning algorithm, but in the training
data, which had apparently captured existing biases in Amazon’s hiring practices—
which the model then codified. Prediction explanation techniques like LIME can
potentially discover such issues.

6.3.1 LIME: Automated sanity checking

In order to detect whether a model is really learning the concept, and not just data
quirks, it’s not uncommon for domain experts to manually sanity-check a model by
running some example cases through and looking at the answers. Generally, you
would want to try a few typical cases, and a few extreme cases, just to see what hap-
pens. You can think of LIME as one form of automated sanity checking.

LIME produces an “explanation” of a model’s prediction on a specific datum. That
is, LIME tries to determine which features of that datum contributed the most to the
model’s decision about it. This helps data scientists attempt to understand the behav-
ior of black-box machine learning models.

To make this concrete, we will demonstrate LIME on two tasks: classifying iris spe-
cies, and classifying movie reviews.

6.3.2 Walking through LIME: A small example

The first example is iris classification.

Example Suppose you have a dataset of petal and sepal measurements for three vari-
eties of iris. The object is to predict whether a given iris is a setosa based on
its petal and sepal dimensions.

Let’s get the data and split it into test and training.

iris <- iris

iris$class <- as.numeric(iris$Species == "setosa")

set.seed(2345)
intrain <- runif(nrow(iris)) < 0.75

train <- iris[intrain,]
test <- iris[!intrain,]

head(train)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species class
1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 1
3 4.7 3.2 1.3 0.2 setosa 1
4 4.6 3.1 1.5 0.2 setosa 1
5 5.0 3.6 1.4 0.2 setosa 1
6 5.4 3.9 1.7 0.4 setosa 1

Listing 6.14 Loading the iris dataset

Setosa is the
positive class.

Uses 75% of the data for
training, the remainder as
holdout (test data)
Licensed to Ajit de Silva <agdesilva@gmail.com>

198 CHAPTER 6 Choosing and evaluating models
The variables are the length and width of the sepals and petals. The outcome you
want to predict is class, which is 1 when the iris is setosa, and 0 otherwise. You will fit a
gradient boosting model (from the package xgboost) to predict class.

You will learn about gradient boosting models in detail in chapter 10; for now, we
have wrapped the fitting procedure into the function fit_iris_example() that takes
as input a matrix of inputs and a vector of class labels, and returns a model that pre-
dicts class.10 The source code for fit_iris_example() is in https://github.com/
WinVector/PDSwR2/tree/master/LIME_iris/lime_iris_example.R; in chapter 10, we
will unpack how the function works in detail.

To get started, convert the training data to a matrix and fit the model. Make sure
that lime_iris_example.R is in your working directory.

source("lime_iris_example.R")

input <- as.matrix(train[, 1:4])
model <- fit_iris_example(input, train$class)

After you fit the model, you can evaluate the model on the test data. The model’s pre-
dictions are the probability that a given iris is setosa.

predictions <- predict(model, newdata=as.matrix(test[,1:4]))

teframe <- data.frame(isSetosa = ifelse(test$class == 1,
"setosa",
"not setosa"),

pred = ifelse(predictions > 0.5,
"setosa",
"not setosa"))

with(teframe, table(truth=isSetosa, pred=pred))

pred
truth not setosa setosa
not setosa 25 0
setosa 0 11

Note that all the datums in the test set fall into the diagonals of the confusion
matrix: the model correctly labels all setosa examples as “setosa” and all the others as
“not setosa.” This model predicts perfectly on the test set! However, you might still
want to know which features of an iris are most important when classifying it with

10 The xgboost package requires that the input be a numeric matrix, and the class labels be a numeric vector.

Listing 6.15 Fitting a model to the iris training data

Listing 6.16 Evaluating the iris model

Loads the convenience function

The input to the model is the first
four columns of the training data,
converted to a matrix.

Makes predictions
on the test data. The

predictions are the
probability that an

iris is a setosa.

A data frame of
predictions and
actual outcome

Examines the
confusion
matrix
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/LIME_iris/lime_iris_example.R
https://github.com/WinVector/PDSwR2/tree/master/LIME_iris/lime_iris_example.R
https://github.com/WinVector/PDSwR2/tree/master/LIME_iris/lime_iris_example.R

199Local interpretable model-agnostic explanations (LIME) for explaining model predictions
your model. Let’s take a specific example from the test dataset and explain it, using
the lime package.11

First, use the training set and the model to build an explainer : a function that you
will use to explain the model’s predictions.

library(lime)
explainer <- lime(train[,1:4],

model = model,
 bin_continuous = TRUE,
n_bins = 10)

Now pick a specific example from the test set.

(example <- test[5, 1:4, drop=FALSE])
Sepal.Length Sepal.Width Petal.Length Petal.Width
30 4.7 3.2 1.6 0.2

test$class[5]
[1] 1

round(predict(model, newdata = as.matrix(example)))
[1] 1

Now explain the model’s prediction on example. Note that the dplyr package also has
a function called explain(), so if you have dplyr in your namespace, you may get a
conflict trying to call lime’s explain() function. To prevent this ambiguity, specify the
function using namespace notation: lime::explain(...).

explanation <- lime::explain(example,
explainer,
n_labels = 1,
n_features = 4)

You can visualize the explanation using plot_features(), as shown in figure 6.22.

plot_features(explanation)

11 The lime package does not support every type of model out of the box. See help(model_support) for the
list of model classes that it does support (xgboost is one), and how to add support for other types of models.
See also LIME’s README (https://cran.r-project.org/web/packages/lime/README.html) for other
examples.

Listing 6.17 Building a LIME explainer from the model and training data

Listing 6.18 An example iris datum

Listing 6.19 Explaining the iris example

Builds the explainer
from the training data

Bins the continuous variables
when making explanations

Uses 10 bins

A single row
data frame

This example is a setosa.

And the model predicts
that it is a setosa.

The number of labels to explain;
use 1 for binary classification.

The number of features to use
when fitting the explanation
Licensed to Ajit de Silva <agdesilva@gmail.com>

200 CHAPTER 6 Choosing and evaluating models
The explainer expects the model will predict that this example is a setosa (Label = 1),
and that the example’s value of Petal.Length is strong evidence supporting this
prediction.

HOW LIME WORKS

In order to better understand LIME’s explanations, and to diagnose when the expla-
nations are trustworthy or not, it helps to understand how LIME works at a high level.
Figure 6.23 sketches out the LIME procedure for a classifier at a high level. The figure
shows these points:

 The model’s decision surface. A classifier’s decision surface is the surface in variable
space that separates where the model classifies datums as positive (in our exam-
ple, as “setosa”) from where it classifies them as negative (in our example, as
“not setosa”).

 The datum we want to explain marked as the circled plus in the figure. In the fig-
ure, the datum is a positive example. In the explanation that follows, we’ll call
this point “the original example,” or example.

 Synthetic data points that the algorithm creates and gives to the model to evalu-
ate. We’ll detail how the synthetic examples come about.

 LIME’s estimate of the decision surface near the example we are trying to explain.
We’ll detail how LIME comes up with this estimate.

Case: 30
Label: 1
Probability: 0.98
Explanation Fit: 0.054

0.0 0.2 0.4 0.6

Sepal.Length <= 4.80

3.10 < Sepal.Width <= 3.20

Petal.Width <= 0.20

1.50 < Petal.Length <= 1.69

Weight

F
ea

tu
re

Supports Contradicts

Case id (from rownames(example))
The class that the explainer thinks the

model will predict (setosa)
The probability that the explainer

thinks the model will predict
How well the explainer approximated

the model near example

Strong evidence for
setosa classification

Weak evidence for
setosa classification

Weak evidence against
setosa classification

Figure 6.22 Visualize the explanation of the model’s prediction.
Licensed to Ajit de Silva <agdesilva@gmail.com>

201Local interpretable model-agnostic explanations (LIME) for explaining model predictions
The procedure is as follows:

1 “Jitter” the original example to generate synthetic examples that are similar to it.
You can think of each jittered point as the original example with the value of

each variable changed slightly. For example, if the original example is

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.1 3.5 1.4 0.2

then a jittered point might be

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.505938 3.422535 1.3551 0.4259682

To make sure that the synthetic examples are plausible, LIME uses the distribu-
tions of the data in the training set to generate the jittered data. For our discus-
sion, we’ll call the set of synthetic examples {s_i}. Figure 6.23 shows the
synthetic data as the additional pluses and minuses.

Note that the jittering is randomized. This means that running explain()
on the same example multiple times will produce different results each time. If
LIME’s explanation is strong, the results should not be too different, so that the
explanations remain quantitatively similar. In our case, it’s likely that
Petal.Length will always show up as the variable with the most weight; it’s just
the exact value of Petal.Length’s weight and its relationship to the other vari-
ables that will vary.

+

+

-

+

+

+

+

+
+

-

-

-

-

-

Model’s
decision
surface

Model classifies datums on
this side of the decision

surface as negative

Model classifies datums on
this side of the decision

surface as positive

Example we
want to explain

Synthetic
examples that

were classified
as positive

Synthetic examples that
were classified as negative

LIME’s approximation
to the decision surface

Figure 6.23 Notional sketch of how LIME works
Licensed to Ajit de Silva <agdesilva@gmail.com>

202 CHAPTER 6 Choosing and evaluating models
2 Use the model to make predictions {y_i} on all the synthetic examples.
In figure 6.23, the pluses indicate synthetic examples that the model classi-

fied as positive, and the minuses indicate synthetic examples that the model
classified as negative.

LIME will use the values of {y_i} to get an idea of what the decision surface of
the model looks like near the original example. In figure 6.23, the decision sur-
face is the large curvy structure that separates the regions where the model clas-
sifies datums as positive from the regions where it classifies datums as negative.

3 Fit an m-dimensional linear model for {y_i} as a function of {s_i}.
The linear model is LIME’s estimate of the original model’s decision surface

near example, shown as a dashed line in figure 6.23. Using a linear model
means that LIME assumes that the model’s decision surface is locally linear
(flat) in a small neighborhood around example. You can think of LIME’s esti-
mate as the flat surface (in the figure, it’s a line) that separates the positive syn-
thetic examples from the negative synthetic examples most accurately.

The R2 of the linear model (reported as the “explanation fit” in figure 6.22)
indicates how well this assumption is met. If the explanation fit is close to 0,
then there isn’t a flat surface that separates the positive examples from the neg-
ative examples well, and LIME’s explanation is probably not reliable.

You specify the value of m with the n_features parameter in the function
explain(). In our case, we are using four features (all of them) to fit the linear
model. When there is a large number of features (as in text processing), LIME
tries to pick the best m features to fit the model.

The coefficients of the linear model give us the weights of the features in the
explanation. For classification, a large positive weight means that the corre-
sponding feature is strong evidence in favor of the model’s prediction, and a
large negative weight means that the corresponding feature is strong evidence
against it.

TAKING THE STEPS AS A WHOLE

This may seem like a lot of steps, but they are all supplied in a convenient wrapper by
the lime package. Altogether, the steps are implementing a solution to a simple
counter-factual question: how would a given example score differently if it had different
attributes? The summaries emphasize what are the most important plausible variations.

BACK TO THE IRIS EXAMPLE

Let’s pick a couple more examples and explain the model’s predictions on them.

(example <- test[c(13, 24), 1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width
58 4.9 2.4 3.3 1.0
110 7.2 3.6 6.1 2.5

Listing 6.20 More iris examples
Licensed to Ajit de Silva <agdesilva@gmail.com>

203Local interpretable model-agnostic explanations (LIME) for explaining model predictions
test$class[c(13,24)]
[1] 0 0

round(predict(model, newdata=as.matrix(example)))
[1] 0 0

explanation <- explain(example,
explainer,
n_labels = 1,
n_features = 4,
kernel_width = 0.5)

plot_features(explanation)

The explainer expects that the model will predict that both these examples are not
setosa (Label = 0). For case 110 (the second row of example and the right side plot of
figure 6.24), this is again because of Petal.Length. Case 58 (the left side plot of fig-
ure 6.24) seems strange: most of the evidence seems to contradict the expected clas-
sification! Note that the explanation fit for case 58 is quite small: it’s an order of
magnitude less than the fit for case 110. This tells you that you may not want to trust
this explanation.

Let’s look at how these three examples compare to the rest of the iris data. Figure 6.25
shows the distribution of petal and sepal dimensions in the data, with the three sam-
ple cases marked.

It’s clear from figure 6.25 that petal length strongly differentiates setosa from the
other species of iris. With respect to petal length, case 30 is obviously setosa, and case

Both examples are
negative (not setosa).

The model predicts
that both examples
are negative.

Case: 58
Label: 0
Probability: 0.98
Explanation Fit: 0.00088

Case: 110
Label: 0
Probability: 0.99
Explanation Fit: 0.05316

F
ea

tu
re

Weight

Supports Contradicts

-0.04 -0.03 -0.02 -0.01 -0.00 0.0 0.1 0.2 0.3

4.80 < Sepal.Length <= 5.10

0.40 < Petal.Width <= 1.20

Sepal.Width <= 2.53

1.69 < Petal.Length <= 3.92

2.20 < Petal.Width

6.87 < Sepal.Length

3.40 < Sepal.Width <= 3.67

5.77 < Petal.Length

Evidence
contradicts the
class label

Poor explanation fit!

Figure 6.24 Explanations of the two iris examples
Licensed to Ajit de Silva <agdesilva@gmail.com>

204 CHAPTER 6 Choosing and evaluating models
110 is obviously not. Case 58 appears to be not setosa due to petal length, but as noted
earlier, the entire explanation of case 58 is quite poor, probably because case 58 sits at
some sort of kink on the model’s decision surface.

Now let’s try LIME on a larger example.

6.3.3 LIME for text classification

Example For this example, you will classify movie reviews from the Internet Movie
Database (IMDB). The task is to identify positive reviews.

For convenience, we’ve converted the data from the original archive12 into two RDS
files, IMDBtrain.RDS and IMDBtest.RDS, found at https://github.com/WinVector/
PDSwR2/tree/master/IMDB. Each RDS object is a list with two elements: a character
vector representing 25,000 reviews, and a vector of numeric labels where 1 means a

12 The original data can be found at http://s3.amazonaws.com/text-datasets/aclImdb.zip.

dimension: Petal dimension: Sepal

2 4 6 5 6 7 8

2.0

2.5

3.0

3.5

4.0

4.5

0.0

0.5

1.0

1.5

2.0

2.5

length

w
id

th

species

setosa

versicolor

virginica

Iris dimensions

case 30

case 110

case 58
setosa petal length

distribution quite distinct
from other species

Figure 6.25 Distributions of petal and sepal dimensions by species
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/IMDB
https://github.com/WinVector/PDSwR2/tree/master/IMDB
https://github.com/WinVector/PDSwR2/tree/master/IMDB
http://s3.amazonaws.com/text-datasets/aclImdb.zip

205Local interpretable model-agnostic explanations (LIME) for explaining model predictions

e

ls
el
positive review and 0 a negative review.13 You will again fit an xgboost model to classify
the reviews.

You might wonder how LIME jitters a text datum. It does so by randomly removing
words from the document, and then converting the resulting new text into the appro-
priate representation for the model. If removing a word tends to change the classifica-
tion of a document, then that word is probably important to the model.

First, load the training set. Make sure you have downloaded the RDS files into your
working directory.

library(zeallot)

c(texts, labels) %<-% readRDS("IMDBtrain.RDS")

You can examine the reviews and their corresponding labels. Here’s a positive review:

list(text = texts[1], label = labels[1])
$text
train_21317
train_21317
"Forget depth of meaning, leave your logic at the door, and have a
great time with this maniacally funny, totally absurdist, ultra-
campy live-action \"cartoon\". MYSTERY MEN is a send-up of every
superhero flick you've ever seen, but its unlikelysuper-wannabes
are so interesting, varied, and well-cast that they are memorable
characters in their own right. Dark humor, downright silliness,
bona fide action, and even a touchingmoment or two, combine to
make this comic fantasy about lovable losers a true winner. The
comedic talents of the actors playing the Mystery Men --
including one Mystery Woman -- are a perfect foil for Wes Studi
as what can only be described as a bargain-basement Yoda, and
Geoffrey Rush as one of the most off-the-wall (and bizarrely
charming) villains ever to walk off the pages of a Dark Horse
comic book and onto the big screen. Get ready to laugh, cheer,
and say \"huh?\" more than once.... enjoy!"
##
$label
train_21317
1

13 The extraction/conversion script we used to create the RDS files can be found at https://github.com/
WinVector/PDSwR2/tree/master/IMDB/getIMDB.R.

Listing 6.21 Loading the IMDB training data

Loads the zeallot library. Calls
install.packages(“zeallot”) if this fails.

The command read(IMDBtrain.RDS)
returns a list object. The zeallot
assignment arrow %<-% unpacks th
list into two elements: texts is a
character vector of reviews, and labe
is a 0/1 vector of class labels. The lab
1 designates a positive review.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/IMDB/getIMDB.R
https://github.com/WinVector/PDSwR2/tree/master/IMDB/getIMDB.R
https://github.com/WinVector/PDSwR2/tree/master/IMDB/getIMDB.R

206 CHAPTER 6 Choosing and evaluating models
Here’s a negative review:

list(text = texts[12], label = labels[12])
$text
train_385
train_385
"Jameson Parker And Marilyn Hassett are the screen's most unbelievable
couple since John Travolta and Lily Tomlin. Larry Peerce's direction
wavers uncontrollably between black farce and Roman tragedy. Robert
Klein certainly think it's the former and his self-centered performance
in a minor role underscores the total lack of balance and chemistry
between the players in the film. Normally, I don't like to let myself
get so ascerbic, but The Bell Jar is one of my all-time favorite books,
and to watch what they did with it makes me literally crazy."
##
$label
train_385
0

REPRESENTING DOCUMENTS FOR MODELING

For our text model, the features are the individual words, and there are a lot of them.
To use xgboost to fit a model on texts, we have to build a finite feature set, or the
vocabulary. The words in the vocabulary are the only features that the model will
consider.

We don’t want to use words that are too common, because common words that
show up in both positive reviews and negative reviews won’t be informative. We also
don’t want to use words that are too rare, because a word that rarely shows up in a
review is not that useful. For this task, let’s define “too common” as words that show
up in more than half the training documents, and “too rare” as words that show up in
fewer than 0.1% of the documents.

We’ll build a vocabulary of 10,000 words that are not too common or too rare,
using the package text2vec. For brevity, we’ve wrapped the procedure in the function
create_pruned_vocabulary(), which takes a vector of documents as input and
returns a vocabulary object. The source code for create_pruned_vocabulary() is in
https://github.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_example.R.

Once we have the vocabulary, we have to convert the texts (again using text2vec)
into a numeric representation that xgboost can use. This representation is called a
document-term matrix, where the rows represent each document in the corpus, and each
column represents a word in the vocabulary. For a document-term matrix dtm, the
entry dtm[i, j] is the number of times that the vocabulary word w[j] appeared in
document texts[i]. See figure 6.26. Note that this representation loses the order of
the words in the documents.

The document-term matrix will be quite large: 25,000 rows by 10,000 columns.
Luckily, most words in the vocabulary won’t show up in a given document, so each row
will be mostly zeros. This means that we can use a special representation called a sparse
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_example.R

207Local interpretable model-agnostic explanations (LIME) for explaining model predictions
matrix, of class dgCMatrix, that represents large, mostly zero matrices in a space-
efficient way.

We’ve wrapped this conversion in the function make_matrix() that takes as input a
vector of texts and a vocabulary, and returns a sparse matrix. As in the iris example,
we’ve also wrapped the model fitting into a function fit_imdb_model() that takes as
input a document term matrix and the numeric document labels, and returns an
xgboost model. The source code for these functions is also in https://github
.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_example.R.

word_1
.
.
.

word_j
.
.
.

word_10,000

vocabulary

make_matrix()

Document-term matrix
dtm

25,000
rows

(size of
corpus)

10,000 columns
(size of vocabulary)

i

j

dtm[i, j] = 2

Document_1

Document_2

…

Document_i

Document_i+1

…

…

Document_25000

document corpus

…. word_j …..
….. …… …..
…… …… word_j
…..

word_j appears in
Document_i twice

Figure 6.26 Creating a document-term matrix
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_example.R
https://github.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_example.R
https://github.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_example.R

208 CHAPTER 6 Choosing and evaluating models

Train
m

Cr
fram

tr
pr
6.3.4 Training the text classifier

After you download lime_imdb_example.R into your working directory, you can cre-
ate the vocabulary and a document-term matrix from the training data, and fit the
model. This may take a while.

source("lime_imdb_example.R")

vocab <- create_pruned_vocabulary(texts)
dtm_train <- make_matrix(texts, vocab)
model <- fit_imdb_model(dtm_train, labels)

Now load the test corpus and evaluate the model.

c(test_txt, test_labels) %<-% readRDS("IMDBtest.RDS")
dtm_test <- make_matrix(test_txt, vocab)

predicted <- predict(model, newdata=dtm_test)

teframe <- data.frame(true_label = test_labels,
pred = predicted)

(cmat <- with(teframe, table(truth=true_label, pred=pred > 0.5)))

pred
truth FALSE TRUE
0 10836 1664
1 1485 11015

sum(diag(cmat))/sum(cmat)
[1] 0.87404

library(WVPlots)
DoubleDensityPlot(teframe, "pred", "true_label",

"Distribution of test prediction scores")

Based on its performance on the test set, the model does a good, but not perfect, job
at classifying reviews. The distribution of test prediction scores (figure 6.27) shows
that most negative (class 0) reviews have low scores, and most positive (class 1) reviews
have high scores. However, there are some positive reviews that get scores near 0, and
some negative reviews get scores near 1. And some reviews have scores near 0.5, mean-
ing the model isn’t sure about them at all. You would like to improve the classifier to
do a better job on these seemingly ambiguous reviews.

Listing 6.22 Converting the texts and fitting the model

Listing 6.23 Evaluate the review classifier

Creates the vocabulary
from the training data

Creates the document-
term matrix of the
training corpus

s the
odel

Reads in the test corpus

Converts the corpus to a
document-term matrix

Makes predictions (probabilities)
on the test corpuseates a

e with
ue and
edicted

labels
Computes the

confusion matrix

Computes the accuracy

Plots the distribution
of predictions
Licensed to Ajit de Silva <agdesilva@gmail.com>

209Local interpretable model-agnostic explanations (LIME) for explaining model predictions
6.3.5 Explaining the classifier’s predictions

Try explaining the predictions for a few example reviews to get some insight into the
model. First, build the explainer from the training data and the model. For text mod-
els, the lime() function takes a preprocessor function that converts the training texts
and the synthetic examples to a document-term matrix for the model.

explainer <- lime(texts, model = model,
preprocess = function(x) make_matrix(x, vocab))

Now take a short sample text from the test corpus. This review is positive, and the
model predicts that it is positive.

casename <- "test_19552";
sample_case <- test_txt[casename]
pred_prob <- predict(model, make_matrix(sample_case, vocab))
list(text = sample_case,

label = test_labels[casename],
prediction = round(pred_prob))

Listing 6.24 Building an explainer for a text classifier

Listing 6.25 Explaining the model’s prediction on a review

Model correctly
scores these positive

reviews high

Model incorrectly
scores these positive

reviews low

Model is not confident about these reviews

Distribution of test prediction scores

true_label

0

0.00 0.25 0.50 0.75 1.00

0

1

4

8

12

pred

de
ns

ity

Figure 6.27 Distribution of test prediction scores
Licensed to Ajit de Silva <agdesilva@gmail.com>

210 CHAPTER 6 Choosing and evaluating models
$text
test_19552
"Great story, great music. A heartwarming love story that's beautiful to
watch and delightful to listen to. Too bad there is no soundtrack CD."
##
$label
test_19552
1
##
$prediction
[1] 1

Now explain the model’s classification in terms of the five most evidential words. The
words that affect the prediction the most are shown in figure 6.28.

explanation <- lime::explain(sample_case,
explainer,
n_labels = 1,
n_features = 5)

plot_features(explanation)

In listing 6.26, you used plot_features() to visualize the explanation, as you did in
the iris example, but lime also has a special visualization for text, plot_text_
explanations().

As shown in figure 6.29, plot_text_explanations() highlights the key words
within the text, green for supporting evidence, and red for contradictory. The stronger

Listing 6.26 Explaining the model’s prediction

Case: 1
Label: 1
Probability: 0.96
Explanation Fit: 0.81

delightful

bad

great

great

beautiful

F
ea

tu
re

-0.1 0.0 0.1

Weight
Supports Contradicts

Figure 6.28 Explanation of the prediction on the sample review
Licensed to Ajit de Silva <agdesilva@gmail.com>

211Local interpretable model-agnostic explanations (LIME) for explaining model predictions
the evidence, the darker the color. Here, the explainer expects that the model will pre-
dict that this review is positive, based on the words delightful, great, and beautiful, and in
spite of the word bad.

plot_text_explanations(explanation)

Let’s look at a couple more reviews, including one that the model misclassified.

casenames <- c("test_12034", "test_10294")
sample_cases <- test_txt[casenames]
pred_probs <- predict(model, newdata=make_matrix(sample_cases, vocab))
list(texts = sample_cases,

labels = test_labels[casenames],
predictions = round(pred_probs))

$texts
test_12034
"I don't know why I even watched this film. I think it was because
I liked the idea of the scenery and was hoping the film would be
as good. Very boring and pointless."
##
test_10294
"To anyone who likes the TV series: forget the movie. The jokes
are bad and some topics are much too sensitive to laugh about it.

We have seen much better acting by R. Dueringer in
\"Hinterholz 8\"".
##
$labels
test_12034 test_10294
0 0
##
$predictions
[1] 0 1

explanation <- lime::explain(sample_cases,
explainer,
n_labels = 1,
n_features = 5)

plot_features(explanation)
plot_text_explanations(explanation)

Listing 6.27 Examining two more reviews

supportssupports supports supports contradicts

Figure 6.29 Text explanation of the prediction in listing 6.26

Both these reviews are negative.

The model misclassified
the second review.
Licensed to Ajit de Silva <agdesilva@gmail.com>

212 CHAPTER 6 Choosing and evaluating models
As shown in figure 6.30, the explainer expects that the model will classify the first
review as negative, based mostly on the words pointless and boring. It expects that the
model will classify the second review as positive, based on the words 8, sensitive, and
seen, and in spite of the words bad and (somewhat surprisingly) better.

Note that according to figure 6.30, the probability of the classification of the second
review appears to be 0.51—in other words, the explainer expects that the model won’t
be sure of its prediction at all. Let’s compare this to what the model predicted in
reality:

predict(model, newdata=make_matrix(sample_cases[2], vocab))
[1] 0.6052929

The model actually predicts the label 1 with probability 0.6: not a confident predic-
tion, but slightly more confident than the explainer estimated (though still wrong).
The discrepancy is because the label and probability that the explainer returns are

supportscontradicts supports supportssupports

supports

supportssupports

contradicts

contradicts

Case: 1
Label: 0
Probability: 0.97
Explanation Fit: 0.89

Case: 2
Label: 1
Probability: 0.51
Explanation Fit: 0.90

pointless

boring

hoping

liked

idea

bad

8

better

sensitive

seen

F
ea

tu
re

-0.1 0.0 0.1 0.2 -0.2 -0.1 0.10.0 0.2

Weight
Supports Contradicts

The prediction is
highly uncertain.

Figure 6.30 Explanation visualizations for the two sample reviews in listing 6.27
Licensed to Ajit de Silva <agdesilva@gmail.com>

213Local interpretable model-agnostic explanations (LIME) for explaining model predictions
from the predictions of the linear approximation to the model, not from the model
itself. You may occasionally even see cases where the explainer and the model return
different labels for the same example. This will usually happen when the explanation
fit is poor, so you don’t want to trust those explanations, anyway.

As the data scientist responsible for classifying reviews, you may wonder about the
seemingly high importance of the number 8. On reflection, you might remember that
some movie reviews include the ratings “8 out of 10,” or “8/10.” This may lead you to
consider extracting apparent ratings out of the reviews before passing them to the text
processor, and adding them to the model as an additional special feature. You may
also not like using words like seen or idea as features.

As a simple experiment, you can try removing the numbers 1 through 10 from the
vocabulary,14 and then refitting the model. The new model correctly classifies
test_10294 and returns a more reasonable explanation, as shown in figure 6.31.

14 This involves adding the numbers 1 through 10 as strings to the stopword list in the function
create_pruned_vocabulary() in the file lime_imdb_example.R. We leave recreating the vocabulary and
document-term matrices, and refitting the review classifier, as an exercise for the reader.

supportssupports

supports

contradicts

Case: 1
Label: 0
Probability: 0.59
Explanation Fit: 0.98

bad

sensitive

better

seen

much

F
ea

tu
re

-0.1 0.0 0.1-0.2 0.2

Weight
Supports Contradicts

Figure 6.31 Explanation visualizations for test_10294
Licensed to Ajit de Silva <agdesilva@gmail.com>

214 CHAPTER 6 Choosing and evaluating models
Looking at the explanations of other reviews that the model misclassifies can lead you
to improved feature engineering or data preprocessing that can potentially improve
your model. You may decide that sequences of words (good idea, rather than just idea)
make better features. Or you may decide that you want a text representation and
model that looks at the order of the words in the document rather than just word fre-
quencies. In any case, looking at explanations of a model’s predictions on corner
cases can give you insight into your model, and help you decide how to better achieve
your modeling goals.

Summary
You now have some solid ideas on how to choose among modeling techniques. You
also know how to evaluate the quality of data science work, be it your own or that of
others. The remaining chapters of part 2 of the book will go into more detail on how
to build, test, and deliver effective predictive models. In the next chapter, we’ll actu-
ally start building predictive models.

In this chapter you have learned

 How to match the problem you want to solve to appropriate modeling
approaches.

 How to partition your data for effective model evaluation.
 How to calculate various measures for evaluating classification models.
 How to calculate various measures for evaluating scoring (regression) models.
 How to calculate various measures for evaluating probability models.
 How to use the lime package to explain individual predictions from a model.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Linear and
logistic regression
In the previous chapter, you learned how to evaluate models. Now that we have the
ability to discuss if a model is good or bad, we’ll move on to the modeling step, as
shown in the mental model (figure 7.1). In this chapter, we’ll cover fitting and
interpreting linear models in R.

This chapter covers
 Using linear regression to predict quantities

 Using logistic regression to predict probabilities or
categories

 Extracting relations and advice from linear models

 Interpreting the diagnostics from R’s lm() call

 Interpreting the diagnostics from R’s glm() call

 Using regularization via the glmnet package to address
issues that can arise with linear models.
215

Licensed to Ajit de Silva <agdesilva@gmail.com>

216 CHAPTER 7 Linear and logistic regression
Linear models are especially useful when you don’t want only to predict an outcome,
but also to know the relationship between the input variables and the outcome. This
knowledge can prove useful because this relationship can often be used as advice on
how to get the outcome that you want.

We’ll first define linear regression and then use it to predict customer income. Later,
we will use logistic regression to predict the probability that a newborn baby will need
extra medical attention. We’ll also walk through the diagnostics that R produces when
you fit a linear or logistic model.

Linear methods can work well in a surprisingly wide range of situations. However,
there can be issues when the inputs to the model are correlated or collinear. In the
case of logistic regression, there can also be issues (ironically) when a subset of the
variables predicts a classification output perfectly in a subset of the training data. The
last section of the chapter will show how to address these issues by a technique called
regularization.

7.1 Using linear regression
Linear regression is the bread and butter prediction method for statisticians and data
scientists. If you’re trying to predict a numerical quantity like profit, cost, or sales vol-
ume, you should always try linear regression first. If it works well, you’re done; if it
fails, the detailed diagnostics produced can give you a good clue as to what methods
you should try next.

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 7.1 Mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

217Using linear regression
7.1.1 Understanding linear regression

 Example Suppose you want to predict how many pounds a person on a diet and exer-
cise plan will lose in a month. You will base that prediction on other facts about that per-
son, like how much they reduce their average daily caloric intake over that month and
how many hours a day they exercised. In other words, for every person i, you want to pre-
dict pounds_lost[i] based on daily_cals_down[i] and daily_exercise[i].

Linear regression assumes that the outcome pounds_lost is linearly related to each of
the inputs daily_cals_down[i] and daily_exercise[i]. This means that the rela-
tionship between (for instance) daily_cals_down[i] and pounds_lost looks like a
(noisy) straight line, as shown in figure 7.2.1

The relationship between daily_exercise and pounds_lost would similarly be a
straight line. Suppose that the equation of the line shown in figure 7.2 is

pounds_lost = bc0 + b.cals * daily_cals_down

This means that for every unit change in daily_cals_down (every calorie reduced),
the value of pounds_lost changes by b.cals, no matter what the starting value of
daily_cals_down was. To make it concrete, suppose pounds_lost = 3 + 2 * daily_
cals_down. Then increasing daily_cals_down by one increases pounds_lost by 2, no
matter what value of daily_cals_down you start with. This would not be true for, say,
pounds_lost = 3 + 2 * (daily_cals_down^2).

Linear regression further assumes that the total pounds lost is a linear combination of
our variables daily_cals_down[i] and daily_exercise[i], or the sum of the
pounds lost due to reduced caloric intake, and the pounds lost due to exercise. This
gives us the following form for the linear regression model of pounds_lost:

pounds_lost[i] = b0 + b.cals * daily_cals_down[i] +
b.exercise * daily_exercise[i]

1 It is tempting to hope that b0J = bC0 + be0 or that b.calsJ = b.cals; however, a joint regression does
not ensure this.

daily_cals_down

pounds_lost

bc0

1

b.cals

pounds_lost ~ b.cals * daily_cals_down
(plus an offset)

Figure 7.2 The linear relationship
between daily_cals_down and
pounds_lost
Licensed to Ajit de Silva <agdesilva@gmail.com>

218 CHAPTER 7 Linear and logistic regression
The goal of linear regression is to find the values of b0, b.cals, and b.exercise so that
the linear combination of daily_cals_lost[i] and daily_exercise[i] (plus some
offset b0) comes very close to pounds_lost[i] for all persons i in the training data.

Let’s put this in more general terms. Suppose that y[i] is the numeric quantity you
want to predict (called the dependent or response variable), and x[i,] is a row of inputs
that corresponds to output y[i] (the x[i,] are the independent or explanatory vari-
ables). Linear regression attempts to find a function f(x) such that

You want numbers b[0],...,b[n] (called the coefficients or betas) such that f(x[i,])
is as near as possible to y[i] for all (x[i,],y[i]) pairs in the training data. R supplies
a one-line command to find these coefficients: lm().

The last term in equation 7.1, e[i], represents what are called unsystematic errors, or
noise. Unsystematic errors are defined to all have a mean value of 0 (so they don’t repre-
sent a net upward or net downward bias) and are defined as uncorrelated with x[i,].
In other words, x[i,] should not encode information about e[i] (or vice versa).

By assuming that the noise is unsystematic, linear regression tries to fit what is called
an “unbiased” predictor. This is another way of saying that the predictor gets the right
answer “on average” over the entire training set, or that it underpredicts about as much
as it overpredicts. In particular, unbiased estimates tend to get totals correct.

Example Suppose you have fit a linear regression model to predict weight loss based on
reduction of caloric intake and exercise. Now consider the set of subjects in
the training data, LowExercise, who exercised between zero and one hour
a day. Together, these subjects lost a total of 150 pounds over the course of
the study. How much did the model predict they would lose?

With a linear regression model, if you take the predicted weight loss for all the sub-
jects in LowExercise and sum them up, that total will sum to 150 pounds, which
means that the model predicts the average weight loss of a person in the LowExercise
group correctly, even though some of the individuals will have lost more than the
model predicted, and some of them will have lost less. In a business setting, getting
sums like this correct is critical, particularly when summing up monetary amounts.

Under these assumptions (linear relationships and unsystematic noise), linear
regression is absolutely relentless in finding the best coefficients b[i]. If there’s some
advantageous combination or cancellation of features, it’ll find it. One thing that lin-
ear regression doesn’t do is reshape variables to be linear. Oddly enough, linear regres-
sion often does an excellent job, even when the actual relation is not in fact linear.

THINKING ABOUT LINEAR REGRESSION When working with linear regression,
you’ll go back and forth between “Adding is too simple to work,” and “How is
it even possible to estimate the coefficients?” This is natural and comes from
the fact that the method is both simple and powerful. Our friend Philip Apps

y[i] ~ f(x[i,]) + e[i] = b[0] + b[1] * x[i,1] + ... + b[n] * x[i,n] + e[i]

Equation 7.1 The expression for a linear regression model
Licensed to Ajit de Silva <agdesilva@gmail.com>

219Using linear regression
sums it up: “You have to get up pretty early in the morning to beat linear
regression.”

WHEN THE ASSUMPTIONS OF LINEAR REGRESSION ARE VIOLATED

As a toy example, consider trying to fit the squares of the integers 1–10 using only a
linear function plus a constant. We’re asking for coefficients b[0] and b[1] such that

x[i]^2 nearly equals b[0] + b[1] * x[i]

This is clearly not a fair thing to ask, since we know that what we are trying to predict
is not linear. In this case, however, linear regression still does a pretty good job. It
picks the following fit:

x[i]^2 nearly equals -22 + 11 * x[i]

As figure 7.3 shows, this is a good fit in the region of values we trained on.

The example in figure 7.3 is typical of how linear regression is “used in the field”—
we’re using a linear model to predict something that is itself not linear. Be aware that
this is a minor sin. In particular, note that the errors between the model’s predictions
and the true y are not random, but systematic: the model underpredicts for specific
ranges of x and overpredicts for others. This isn’t ideal, but often the best we can do.
Note also that, in this example, the predictions veer further away from the true
outcome near the endpoints of the fit, which indicates that this model is probably not
safe to use outside the range of x that the model observed in the training data.

0

20

40

60

80

100

2 4 6 8 10
x

Fit function:
y[i]=f(x[i,])

Training data Points: (x[i,],y[i]) Residual error:
y[i] - f(x[i,])

Figure 7.3 Fit versus
actuals for y=x2
Licensed to Ajit de Silva <agdesilva@gmail.com>

220 CHAPTER 7 Linear and logistic regression
EXTRAPOLATION IS NOT AS SAFE AS INTERPOLATION In general, you should try
to use a model only for interpolation: predicting for new data that falls inside
the range of your training data. Extrapolation (predicting for new data outside
the range observed during training) is riskier for any model. It’s especially
risky for linear models, unless you know that the system that you are modeling
is truly linear.

Next we’ll work through an example of how to apply linear regression on more-
interesting real data.

INTRODUCING THE PUMS DATASET

Example Suppose you want to predict personal income of any individual in the gen-
eral public, within some relative percent, given their age, education, and
other demographic variables. In addition to predicting income, you also
have a secondary goal: to determine the effect of a bachelor’s degree on
income, relative to having no degree at all.

For this task, you will use the 2016 US Census PUMS dataset. For simplicity, we have
prepared a small sample of PUMS data to use for this example. The data preparation
steps include these:

 Restricting the data to full-time employees between 20 and 50 years of age, with
an income between $1,000 and $250,000.

 Dividing the data into a training set, dtrain, and a test set, dtest.

We can continue the example by loading psub.RDS (which you can download from
https://github.com/WinVector/PDSwR2/raw/master/PUMS/psub.RDS) into your
working directory, and performing the steps in the following listing.1

psub <- readRDS("psub.RDS")

set.seed(3454351)
gp <- runif(nrow(psub))

dtrain <- subset(psub, gp >= 0.5)
dtest <- subset(psub, gp < 0.5)

model <- lm(log10(PINCP) ~ AGEP + SEX + COW + SCHL, data = dtrain)
dtest$predLogPINCP <- predict(model, newdata = dtest)
dtrain$predLogPINCP <- predict(model, newdata = dtrain)

Listing 7.1 Loading the PUMS data and fitting a model

1 The script for preparing the data sample can be found at https://github.com/WinVector/PDSwR2/
blob/master/PUMS/makeSubSample.Rmd.

Makes a random variable to
group and partition the data

Splits 50–50 into training and test sets

Fits a linear model
to log(income)

Gets the predicted log(income)
on the test and training sets
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/raw/master/PUMS/psub.RDS
https://github.com/WinVector/PDSwR2/blob/master/PUMS/makeSubSample.Rmd
https://github.com/WinVector/PDSwR2/blob/master/PUMS/makeSubSample.Rmd
https://github.com/WinVector/PDSwR2/blob/master/PUMS/makeSubSample.Rmd

221Using linear regression
Each row of PUMS data represents a single anonymized person or household. Per-
sonal data recorded includes occupation, level of education, personal income, and
many other demographic variables.

For this example we have decided to predict log10(PINCP), or the logarithm of
income. Fitting logarithm-transformed data typically gives results with smaller relative
error, emphasizing smaller errors on smaller incomes. But this improved relative error
comes at a cost of introducing a bias: on average, predicted incomes are going to be
below actual training incomes. An unbiased alternative to predicting log(income)
would be to use a type of generalized linear model called Poisson regression. We will dis-
cuss generalized linear models (specifically, logistic regression) in section 7.2. The
Poisson regression is unbiased, but typically at the cost of larger relative errors.1

For the analysis in this section, we’ll consider the input variables age (AGEP), sex
(SEX), class of worker (COW), and level of education (SCHL). The output variable is per-
sonal income (PINCP). We’ll also set the reference level, or “default” sex to M (male); the
reference level of class of worker to Employee of a private for-profit; and the ref-
erence level of education level to no high school diploma. We’ll discuss reference
levels later in this chapter.

Now on to the model building.

7.1.2 Building a linear regression model

The first step in either prediction or finding relations (advice) is to build the linear
regression model. The function to build the linear regression model in R is lm(), sup-
plied by the stats package. The most important argument to lm() is a formula with ~
used in place of an equals sign. The formula specifies what column of the data frame

1 For a series of articles discussing these issues, please see http://www.win-vector.com/blog/2019/07/link-
functions-versus-data-transforms/.

Reference levels are baselines, not value judgments
When we say that the default sex is male and the default educational level is no high
school diploma, we are not implying that you should expect that a typical worker is
male, or that a typical worker has no high school diploma. The reference level of a
variable is the baseline that other values of the variable are compared to. So we are
saying that at some point in this analysis, we may want to compare the income of
female workers to that of male workers with equivalent characteristics, or that we
may want to compare the income of workers with a high school degree or a bachelor’s
degree to that of a worker with no high school diploma (but otherwise equivalent
characteristics).

By default, R selects the alphabetically first value of a categorical variable as the ref-
erence level.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://www.win-vector.com/blog/2019/07/link-functions-versus-data-transforms/
http://www.win-vector.com/blog/2019/07/link-functions-versus-data-transforms/
http://www.win-vector.com/blog/2019/07/link-functions-versus-data-transforms/

222 CHAPTER 7 Linear and logistic regression
is the quantity to be predicted, and what columns are to be used to make the predic-
tions.

Statisticians call the quantity to be predicted the dependent variable and the variables/
columns used to make the prediction the independent variables. We find it is easier to
call the quantity to be predicted the y and the variables used to make the predictions
the xs. Our formula is this: log10(PINCP) ~ AGEP + SEX + COW + SCHL, which is read
“Predict the log base 10 of income as a function of age, sex, employment class, and
education.”1 The overall method is demonstrated in figure 7.4.

The statement in figure 7.4 builds the linear regression model and stores the results in
the new object called model. This model is able to make predictions, and to extract
important advice from the data.

R STORES TRAINING DATA IN THE MODEL R holds a copy of the training data in
its model to supply the residual information seen in summary(model). Hold-
ing a copy of the data this way is not strictly necessary, and can needlessly run
you out of memory. If you’re running low on memory (or swapping), you can
dispose of R objects like model using the rm() command. In this case, you’d
dispose of the model by running rm("model").

7.1.3 Making predictions

Once you’ve called lm() to build the model, your first goal is to predict income. This
is easy to do in R. To predict, you pass data into the predict() method. Figure 7.5
demonstrates this using both the test and training data frames dtest and dtrain.

1 Recall from the discussion of the lognormal distribution in section 4.2 that it’s often useful to log transform
monetary quantities. The log transform is also compatible with our original task of predicting incomes with a
relative error (meaning large errors count more against small incomes). The glm() methods of section 7.2
can be used to avoid the log transform and predict in such a way as to minimize square errors (so being off
by $50,000 would be considered the same error for both large and small incomes).

model <- lm(log(PINCP,base=10) ~ AGEP + SEX + COW + SCHL, data = dtrain)

Linear regression modeling function

R object to
save result in

Data frame to
use for training

Variables available
to make prediction

Quantity we want to predict

Formula

Figure 7.4 Building a linear model using lm()
Licensed to Ajit de Silva <agdesilva@gmail.com>

223Using linear regression
The data frame columns dtest$predLogPINCP and dtrain$predLogPINCP now store
the predictions for the test and training sets, respectively. We have now both produced
and applied a linear regression model.

CHARACTERIZING PREDICTION QUALITY

Before publicly sharing predictions, you want to inspect both the predictions and
model for quality. We recommend plotting the actual y (in this case, predicted
income) that you’re trying to predict as if it were a function of your prediction. In this
case, plot log10(PINCP) as if it were a function of predLogPINCP. If the predictions are
very good, then the plot will be dots arranged near the line y=x, which we call the line
of perfect prediction (the phrase is not standard terminology; we use it to make talking
about the graph easier). The steps to produce this, illustrated in figure 7.6, are shown
in the next listing.

library('ggplot2')
ggplot(data = dtest, aes(x = predLogPINCP, y = log10(PINCP))) +

geom_point(alpha = 0.2, color = "darkgray") +
geom_smooth(color = "darkblue") +
geom_line(aes(x = log10(PINCP),

y = log10(PINCP)),
color = "blue", linetype = 2) +

coord_cartesian(xlim = c(4, 5.25),
ylim = c(3.5, 5.5))

Listing 7.2 Plotting log income as a function of predicted log income

Data to use in prediction

Linear regression model

Same operation on training data

Prediction function

Store the prediction as a new column named "predLogPINCP"

dtest$predLogPINCP <- predict(model, newdata = dtest)

dtrain$predLogPINCP <- predict(model, newdata = dtrain)

Figure 7.5 Making predictions with a linear regression model

Plots the line x=y

Limits the range of the
graph for legibility
Licensed to Ajit de Silva <agdesilva@gmail.com>

224 CHAPTER 7 Linear and logistic regression
Statisticians prefer the residual plot shown in figure 7.7, where the residual errors (in
this case, predLogPINCP - log10(PINCP)) are plotted as a function of predLogPINCP.
In this case, the line of perfect prediction is the line y=0. Notice that the points are
scattered widely from this line (a possible sign of low-quality fit). The residual plot in
figure 7.7 is prepared with the R steps in the next listing.

ggplot(data = dtest, aes(x = predLogPINCP,
y = predLogPINCP - log10(PINCP))) +

geom_point(alpha = 0.2, color = "darkgray") +
geom_smooth(color = "darkblue") +
ylab("residual error (prediction - actual)")

Listing 7.3 Plotting residuals income as a function of predicted log income

3.5

4.0

4.5

5.0

5.5

4.0 4.4 4.8 5.2

predLogPINCP

lo
g(

P
IN

C
P

, b
as

e
=

 1
0)

Ideal relation: y[i] = f(x[i,])
Average relation between
prediction (f(x[i,]) and actual y[i]

Points represent the actual data (f(x[i,]), y[i])

Figure 7.6 Plot of actual log income as a function of predicted log income
Licensed to Ajit de Silva <agdesilva@gmail.com>

225Using linear regression
When you look at the true-versus-fitted or residual graphs, you’re looking for some
specific things that we’ll discuss next.

–1

0

1

4.25 4.50 4.75 5.00

predLogPINCP

re
si

du
al

 e
rr

or
 (

pr
ed

ic
tio

n–
 a

ct
ua

l)

Average residual error

Figure 7.7 Plot of residual error as a function of prediction

Why are the predictions, not the true values, on the x-axis?
A graph that plots predictions on the x-axis and either true values (as in figure 7.6)
or residuals (as in figure 7.7) on the y-axis answers different questions than a graph
that puts true values on the x-axis and predictions (or residuals) on the y-axis. Stat-
isticians tend to prefer the graph as shown in figure 7.7. A residual graph with pre-
dictions on the x-axis gives you a sense of when the model may be under- or
overpredicting, based on the model’s output.

A residual graph with the true outcome on the x-axis and residuals on the y-axis would
almost always appear to have undesirable residual structure, even when there is no
modeling problem. This illusion is due to an effect called regression to the mean or
reversion to mediocrity.
Licensed to Ajit de Silva <agdesilva@gmail.com>

226 CHAPTER 7 Linear and logistic regression
On average, are the predictions correct?

Does the smoothing curve lie more or less along the line of perfect prediction? Ide-
ally, the points will all lie very close to that line, but you may instead get a wider cloud
of points (as we do in figures 7.6 and 7.7) if your input variables don’t explain the
output too closely. But if the smoothing curve lies along the line of perfect prediction
and “down the middle” of the cloud of points, then the model predicts correctly on
average: it underpredicts about as much as it overpredicts.

Are there systematic errors?

If the smoothing curve veers off the line of perfect prediction too much, as in figure
7.8, this is a sign of systematic under- or overprediction in certain ranges: the error is
correlated with the prediction. Systematic errors indicate that the system is not “linear
enough” for a linear model to be a good fit, so you should try one of the different
modeling approaches that we will discuss later in this book.

R-squared and RMSE

In addition to inspecting graphs, you should produce quantitative summaries of the qual-
ity of the predictions and the residuals. One standard measure of quality of a prediction
is called R-squared, which we covered in section 6.2.4. R-squared is a measure of how well
the model “fits” the data, or its “goodness of fit.” You can compute the R-squared
between the prediction and the actual y with the R steps in the following listing.

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

pred

y

model systematically
underpredicts in this

region (pred < y)

model systematically
overpredicts in this
region (pred > y)

Figure 7.8 An example of systematic errors in model predictions
Licensed to Ajit de Silva <agdesilva@gmail.com>

227Using linear regression
rsq <- function(y, f) { 1 - sum((y - f)^2)/sum((y - mean(y))^2) }

rsq(log10(dtrain$PINCP), dtrain$predLogPINCP)
[1] 0.2976165

rsq(log10(dtest$PINCP), dtest$predLogPINCP)
[1] 0.2911965

R-squared can be thought of as what fraction of the y variation is explained by the
model. You want R-squared to be fairly large (1.0 is the largest you can achieve) and
R-squareds that are similar on test and training. A significantly lower R-squared on test
data is a symptom of an overfit model that looks good in training and won’t work in
production. In this case, the R-squareds were about 0.3 for both the training and test
data. We’d like to see R-squareds higher than this (say, 0.7–1.0). So the model is of low
quality, but not overfit.

For well-fit models, R-squared is also equal to the square of the correlation between
the predicted values and actual training values.1

Another good measure to consider is root mean square error (RMSE).

rmse <- function(y, f) { sqrt(mean((y-f)^2)) }

rmse(log10(dtrain$PINCP), dtrain$predLogPINCP)
[1] 0.2685855

rmse(log10(dtest$PINCP), dtest$predLogPINCP)
[1] 0.2675129

Listing 7.4 Computing R-squared

1 See http://www.win-vector.com/blog/2011/11/correlation-and-r-squared/.

Listing 7.5 Calculating root mean square error

R-squared of the model
on the training data

R-squared of the model
on the test data

R-squared can be overoptimistic
In general, R-squared on training data will be higher for models with more input
parameters, independent of whether the additional variables actually improve the
model or not. That’s why many people prefer the adjusted R-squared (which we’ll dis-
cuss later in this chapter).

Also, R-squared is related to correlation, and the correlation can be artificially inflated
if the model correctly predicts a few outliers. This is because the increased data range
makes the overall data cloud appear “tighter” against the line of perfect prediction.
Here’s a toy example. Let y <- c(1,2,3,4,5,9,10) and pred <- c(0.5,0.5,0.5,
0.5,0.5,9,10). This corresponds to a model that’s completely uncorrelated to the
true outcome for the first five points, and perfectly predicts the last two points, which
are somewhat far away from the first five. You can check for yourself that this obvi-
ously poor model has a correlation cor(y, pred) of about 0.926, with a correspond-
ing R-squared of 0.858. So it’s an excellent idea to look at the true-versus-fitted graph
on test data, in addition to checking R-squared.

RMSE of the model
on the training data

RMSE of the model
on the test data
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://www.win-vector.com/blog/2011/11/correlation-and-r-squared/

228 CHAPTER 7 Linear and logistic regression
You can think of the RMSE as a measure of the width of the data cloud around the
line of perfect prediction. We’d like RMSE to be small, and one way to achieve this is
to introduce more useful, explanatory variables.

7.1.4 Finding relations and extracting advice

Recall that your other goal, beyond predicting income, is to find the value of having a
bachelor’s degree. We’ll show how this value, and other relations in the data, can be
read directly off a linear regression model.

All the information in a linear regression model is stored in a block of numbers
called the coefficients. The coefficients are available through the coefficients(model)
function. The coefficients of our income model are shown in figure 7.9.

REPORTED COEFFICIENTS

Our original modeling variables were only AGEP, SEX, COW (class of work), and SCHL
(schooling/education); yet the model reports many more coefficients than these four.
We’ll explain what all the reported coefficients are.

In figure 7.9, there are eight coefficients that start with SCHL. The original variable
SCHL took on these eight string values plus one more not shown: no high school
diploma. Each of these possible strings is called a level, and SCHL itself is called a cate-
gorical or factor variable. The level that isn’t shown is called the reference level ; the coeffi-
cients of the other levels are measured with respect to the reference level.

For example, in SCHLBachelor's degree we find the coefficient 0.36, which is read
as “The model gives a 0.36 bonus to log base 10 income for having a bachelor’s

The modeled values of a high school diploma
versus a bachelor’s degree

Figure 7.9 The model coefficients
Licensed to Ajit de Silva <agdesilva@gmail.com>

229Using linear regression
degree, relative to not having a high school degree.” You can solve for the income
ratio between someone with a bachelor’s degree and the equivalent person (same sex,
age, and class of work) without a high school degree as follows:

log10(income_bachelors) = log10(income_no_hs_degree) + 0.36
log10(income_bachelors) - log10(income_no_hs_degree) = 0.36

(income_bachelors) / (income_no_hs_degree) = 10^(0.36)

This means that someone with a bachelor’s degree will tend to have an income about
10^0.36, or 2.29 times higher than the equivalent person without a high school
degree.

And under SCHLRegular high school diploma, we find the coefficient 0.11. This
is read as “The model believes that having a bachelor’s degree tends to add 0.36–0.11
units to the predicted log income, relative to having a high school degree.”

log10(income_bachelors) - log10(income_no_hs_degree) = 0.36
log10(income_hs) - log10(income_no_hs_degree) = 0.11

log10(income_bachelors) - log10(income_hs) = 0.36 - 0.11
(income_bachelors) / (income_hs) = 10^(0.36 - 0.11)

The modeled relation between the bachelor’s degree holder’s expected income and
the high school graduate’s (all other variables being equal) is 10^(0.36 - 0.11), or
about 1.8 times greater. The advice: college is worth it if you can find a job (remem-
ber that we limited the analysis to the fully employed, so this is assuming you can find
a job).

SEX and COW are also discrete variables, with reference levels Male and Employee of
a private for profit [company], respectively. The coefficients that correspond to
the different levels of SEX and COW can be interpreted in a manner similar to the edu-
cation level. AGEP is a continuous variable with coefficient 0.0116. You can interpret
this as saying that a one-year increase in age adds a 0.0116 bonus to log income; in
other words, an increase in age of one year corresponds to an increase of income of
10^0.0116, or a factor of 1.027—about a 2.7% increase in income (all other variables
being equal).

The coefficient (Intercept) corresponds to a variable that always has a value of 1,
which is implicitly added to linear regression models unless you use the special 0+
notation in the formula during the call to lm(). One way to interpret the intercept is
to think of it as “the prediction for the reference subject”—that is, the subject who
takes on the values of all the reference levels for the categorical inputs, and zero for
the continuous variables. Note that this may not be a physically plausible subject.

In our example, the reference subject would be a male employee of a private for-
profit company, with no high school degree, who is zero years old. If such a person
could exist, the model would predict their log base 10 income to be about 4.0, which
corresponds to an income of $10,000.

Subtracts the
second equation
from the first
Licensed to Ajit de Silva <agdesilva@gmail.com>

230 CHAPTER 7 Linear and logistic regression
The preceding interpretations of the coefficients assume that the model has provided
good estimates of the coefficients. We’ll see how to check that in the next section.

7.1.5 Reading the model summary and
characterizing coefficient quality

In section 7.1.3, we checked whether our income predictions were to be trusted. We’ll
now show how to check whether model coefficients are reliable. This is especially
important, as we’ve been discussing showing coefficients’ relations to others as advice.

Most of what we need to know is already in the model summary, which is produced
using the summary() command: summary(model). This produces the output shown in
figure 7.10.

This figure looks intimidating, but it contains a lot of useful information and diag-
nostics. You’re likely to be asked about elements of figure 7.10 when presenting results,
so we’ll demonstrate how all of these fields are derived and what the fields mean.

We’ll first break down the summary() into pieces.

THE ORIGINAL MODEL CALL

The first part of the summary() is how the lm() model was constructed:

Call:
lm(formula = log10(PINCP) ~ AGEP + SEX + COW + SCHL,

data = dtrain)

This is a good place to double-check whether you used the correct data frame, performed
your intended transformations, and used the right variables. For example, you can
double-check whether you used the data frame dtrain and not the data frame dtest.

THE RESIDUALS SUMMARY

The next part of the summary() is the residuals summary:

Residuals:
Min 1Q Median 3Q Max

-1.5038 -0.1354 0.0187 0.1710 0.9741

Indicator variables
Most modeling methods handle a string-valued (categorical) variable with n possible lev-
els by converting it to n (or n-1) binary variables, or indicator variables. R has commands
to explicitly control the conversion of string-valued variables into well-behaved indicators:
as.factor() creates categorical variables from string variables; relevel() allows the
user to specify the reference level.

But beware of variables with a very large number of levels, like ZIP codes. The runtime
of linear (and logistic) regression increases as roughly the cube of the number of coef-
ficients. Too many levels (or too many variables in general) will bog the algorithm
down and require much more data for reliable inference. In chapter 8, we will discuss
methods for dealing with such high cardinality variables, such as effects coding or
impact coding.
Licensed to Ajit de Silva <agdesilva@gmail.com>

231Using linear regression
Recall that the residuals are the errors in prediction: log10(dtrain$PINCP) - predict
(model,newdata=dtrain). In linear regression, the residuals are everything. Most of
what you want to know about the quality of your model fit is in the residuals. You can
calculate useful summaries of the residuals for both the training and test sets, as
shown in the following listing.

(resids_train <- summary(log10(dtrain$PINCP) -
predict(model, newdata = dtrain)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.5038 -0.1354 0.0187 0.0000 0.1710 0.9741

(resids_test <- summary(log10(dtest$PINCP) -
predict(model, newdata = dtest)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.789150 -0.130733 0.027413 0.006359 0.175847 0.912646

In linear regression, the coefficients are chosen to minimize the sum of squares of the
residuals. This is why the method is also often called the least squares method. So for
good models, you expect the residuals to be small.

Listing 7.6 Summarizing residuals

Model call summary

Residuals summary

Coefficients table

Model quality summary

Figure 7.10 Model summary
Licensed to Ajit de Silva <agdesilva@gmail.com>

232 CHAPTER 7 Linear and logistic regression
In the residual summary, you’re given the Min. and Max., which are the smallest
and largest residuals seen. You’re also given the quartiles of the residuals: 1st. Qu.,
or the value that upper bounds the first 25% of the data; the Median, or the value that
upper bounds the first 50% of the data; and 3rd Qu., or the value that upper bounds
the first 75% of the data (the Max is the 4th quartile: the value that upper bounds
100% of the data). The quartiles give you a rough idea of the data’s distribution.

What you hope to see in the residual summary is that the median is near 0 (as it is
in our example), and that the 1st. Qu. and the 3rd Qu. are roughly equidistant from
the median (with neither too large). In our example, the 1st. Qu. and 3rd Qu. of
the training residuals (resids_train) are both about 0.15 from the median. They are
slightly less symmetric for the test residuals (0.16 and 0.15 from the median), but still
within bounds.

The 1st. Qu. and 3rd Qu. quantiles are interesting because exactly half of the
training data has a residual in this range. In our example, if you drew a random train-
ing datum, its residual would be in the range –0.1354 to 0.1710 exactly half the time.
So you really expect to commonly see prediction errors of these magnitudes. If these
errors are too big for your application, you don’t have a usable model.

THE COEFFICIENTS TABLE

The next part of the summary(model) is the coefficients table, as shown in figure 7.11.
A matrix form of this table can be retrieved as summary(model)$coefficients.

Each model coefficient forms a row of the summary coefficients table. The col-
umns report the estimated coefficient, the uncertainty of the estimate, how large the

Name of coefficient

Coefficient estimate

Likely error in estimate
t value: How far coefficient estimate
is from zero (in units of likely error)

p value: Probability of a t value
this large by mere chance

Figure 7.11 Model summary coefficient columns
Licensed to Ajit de Silva <agdesilva@gmail.com>

233Using linear regression
coefficient is relative to the uncertainty, and how likely such a ratio would be due to
mere chance. Figure 7.11 gives the names and interpretations of the columns.

You set out to study income and the impact that getting a bachelor’s degree has on
income. But you must look at all the coefficients to check for interfering effects.

For example, the coefficient of –0.108 for SEXF means that your model learned a
penalty of –0.108 to log10(PINCP) for being female. The ratio of female income to
male income is modeled to be 10^(-0.108): women earn 78% of what men earn, all
other model parameters being equal. Note we said “all other model parameters being
equal” not “all other things being equal.” That’s because we’re not modeling the num-
ber of years in the workforce (which age may not be a reliable proxy for) or occupa-
tion/industry type (which has a big impact on income). This model is not, with the
features it was given, capable of testing if, on average, a female in the same job with
the same number of years of experience is paid less.

Insignificant coefficients
Notice in figure 7.11 the coefficient COWSelf employed incorporated is “not sig-
nificant.” This means there is not enough evidence with respect to this model design
to determine if the coefficient is non-zero.

Some recommend stepwise regression to remove such variables, or add a useful
inductive bias of the form, “If we can’t tell it is non-zero, force it to zero.” In this case,
this wouldn’t be convenient as the variable is just a level of a categorical variable (so
it’s a bit harder to treat independently). We do not recommend stepwise regression,
as stepwise regression introduces multiple comparison problems that bias the
estimates of the remaining coefficients.a We recommend either living with the non-
significant estimates (as even replacing them with zero is still trading one uncertain
estimate for another), or prefiltering the variables for utility, or regularized methods
(such as glmnet/lasso). All of these ideas are covered throughout this book.

A point to remember: in terms of prediction (our primary goal), it’s not a problem to
have a small number of insignificant coefficients with small effects sizes. Problems
arise when we have insignificant coefficients with large coefficients/effects or a great
number of insignificant coefficients.

a See Robert Tibshirani, “Regression shrinkage and selection via the lasso.” Journal of the Royal
Statistical Society, Series B 58: 267–288, 1996.

Statistics as an attempt to correct bad experimental design
The absolute best experiment to test if there’s a sex-driven difference in income dis-
tribution would be to compare incomes of individuals who were identical in all possi-
ble variables (age, education, years in industry, performance reviews, race, region,
and so on) but differ only in sex. We’re unlikely to have access to such data, so we’d
settle for a good experimental design: a population where there’s no correlation
Licensed to Ajit de Silva <agdesilva@gmail.com>

234 CHAPTER 7 Linear and logistic regression
The p-value and significance

The p-value (also called the significance) is one of the most important diagnostic col-
umns in the coefficient summary. The p-value estimates the probability of seeing a
coefficient with a magnitude as large as you observed if the true coefficient is really
zero (if the variable has no effect on the outcome). So don’t trust the estimate of any
coefficient with a large p-value. Generally, people pick a threshold, and call all the
coefficients with a p-value below that threshold statistically significant, meaning that
those coefficients are likely not zero. A common threshold is p < 0.05; however, this is
an arbitrary level.

Note that lower p-values aren’t always “better” once they’re good enough. There’s
no reason to prefer a coefficient with a p-value of 1e-23 to one with a p-value of 1e-08
as long as both p-values are below your chosen threshold; at this point, you know both
coefficients are likely good estimates and you should prefer the ones that explain the
most variance. Also note that high p-values don’t always tell you which of the coeffi-
cients are bad, as we discuss in the sidebar.

(continued)
between any other feature and sex. Random selection can help in experimental
design, but it’s not a complete panacea. Barring a good experimental design, the
usual pragmatic strategy is this: introduce extra variables to represent effects that
may have been interfering with the effect we were trying to study. Thus a study of the
effect of sex on income may include other variables like education and age to try to
disentangle the competing effects.

Collinearity also lowers significance
Sometimes, a predictive variable won’t appear significant because it’s collinear (or
correlated) with another predictive variable. For example, if you did try to use both age
and number of years in the workforce to predict income, neither variable may appear
significant. This is because age tends to be correlated with number of years in the
workforce. If you remove one of the variables and the other one gains significance,
this is a good indicator of correlation.

If you see coefficients that seem unreasonably large (often of opposite signs), or
unusually large standard errors on the coefficients, that may indicate collinear
variables.

Another possible indication of collinearity in the inputs is seeing coefficients with an
unexpected sign: for example, seeing that income is negatively correlated with years
in the workforce.

The overall model can still predict income quite well, even when the inputs are cor-
related; it just can’t determine which variable deserves the credit for the prediction.
Licensed to Ajit de Silva <agdesilva@gmail.com>

235Using linear regression
OVERALL MODEL QUALITY SUMMARIES

The last part of the summary(model) report is the overall model quality statistics. It’s a
good idea to check the overall model quality before sharing any predictions or coeffi-
cients. The summaries are as follows:

Residual standard error: 0.2688 on 11186 degrees of freedom
Multiple R-squared: 0.2976, Adjusted R-squared: 0.2966
F-statistic: 296.2 on 16 and 11186 DF, p-value: < 2.2e-16

Let’s explain each of the summaries in a little more detail.

Degrees of freedom

The degrees of freedom is the number of data rows minus the number of coefficients fit,
in our case, this:

(df <- nrow(dtrain) - nrow(summary(model)$coefficients))
[1] 11186

The degrees of freedom is the number of training data rows you have after correcting
for the number of coefficients you tried to solve for. You want the number of datums
in the training set to be large compared to the number of coefficients you are solving
for; in other words, you want the degrees of freedom to be high. A low degree of free-
dom indicates that the model you are trying to fit is too complex for the amount of
data that you have, and your model is likely to be overfit. Overfitting is when you find
chance relations in your training data that aren’t present in the general population.
Overfitting is bad: you think you have a good model when you don’t.

Residual standard error

The residual standard error is the sum of the square of the residuals (or the sum of
squared error) divided by the degrees of freedom. So it’s similar to the RMSE (root
mean squared error) that we discussed earlier, except with the number of data rows
adjusted to be the degrees of freedom; in R, this is calculated as follows:

(modelResidualError <- sqrt(sum(residuals(model)^2) / df))
[1] 0.2687895

The residual standard error is a more conservative estimate of model performance
than the RMSE, because it’s adjusted for the complexity of the model (the degrees of
freedom is less than the number of rows of training data, so the residual standard
error is larger than the RMSE). Again, this tries to compensate for the fact that more-
complex models have a higher tendency to overfit the data.

Using regularization can be helpful in collinear situations, as we will discuss in sec-
tion 7.3. Regularization prefers small coefficients, which can be less hazardous when
used on new data.

If you want to use the coefficient values as advice as well as to make good predic-
tions, try to avoid collinearity in the inputs as much as possible.
Licensed to Ajit de Silva <agdesilva@gmail.com>

236 CHAPTER 7 Linear and logistic regression
Multiple and adjusted R-squared

Multiple R-squared is just the R-squared of the model on the training data (discussed in
section 7.1.3).

The adjusted R-squared is the multiple R-squared penalized for the number of input
variables. The reason for this penalty is that, in general, increasing the number of
input variables will improve the R-squared on the training data, even if the added vari-
ables aren’t actually informative. This is another way of saying that more-complex
models tend to look better on training data due to overfitting, so the adjusted
R-squared is a more conservative estimate of the model’s goodness of fit.

If you do not have test data, it’s a good idea to rely on the adjusted R-squared when
evaluating your model. But it’s even better to compute the R-squared between predic-
tions and actuals on holdout test data. In section 7.1.3, we showed the R-squared on
test data was 0.29, which in this case is about the same as the reported adjusted
R-squared of 0.3. However, we still advise preparing both training and test datasets;
the test dataset estimates can be more representative of production model perfor-
mance than statistical formulas.

The F-statistic and its p-value

The F-statistic is similar to the t-values for coefficients that you saw earlier in figure
7.11. Just as the t-values are used to calculate p-values on the coefficients, the F-statistic
is used to calculate a p-value on the model fit. It gets its name from the F-test, which is
the technique used to check if two variances—in this case, the variance of the residu-
als from the constant model and the variance of the residuals from the linear model—
are significantly different. The corresponding p-value is the estimate of the probability
that we would’ve observed an F-statistic this large or larger if the two variances in ques-
tion were in reality the same. So you want the p-value to be small (a common thresh-
old: less that 0.05).

In our example, the F-statistic p-value is quite small (< 2.2e-16): the model explains
more variance than the constant model does, and the improvement is incredibly
unlikely to have arisen only from sampling error.

INTERPRETING MODEL SIGNIFICANCES Most of the tests of linear regression,
including the tests for coefficient and model significance, are based on the
assumption that the error terms or residuals are normally distributed. It’s
important to examine graphically or use quantile analysis to determine if the
regression model is appropriate.

Degrees of freedom on test data
On test data (data not used during training), the degrees of freedom equal the num-
ber of rows of data. This differs from the case of training data, where, as we have
said, the degrees of freedom equal the number of rows of data minus the number of
parameters of the model.

The difference arises from the fact that model training “peeks at” the training data,
but not the test data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

237Using logistic regression
7.1.6 Linear regression takeaways

Linear regression is the go-to statistical modeling method for predicting quantities. It
is simple and has the advantage that the coefficients of the model can often function
as advice. Here are a few points you should remember about linear regression:

 Linear regression assumes that the outcome is a linear combination of the
input variables. Naturally, it works best when that assumption is nearly true, but
it can predict surprisingly well even when it isn’t.

 If you want to use the coefficients of your model for advice, you should only
trust the coefficients that appear statistically significant.

 Overly large coefficient magnitudes, overly large standard errors on the coeffi-
cient estimates, and the wrong sign on a coefficient could be indications of cor-
related inputs.

 Linear regression can predict well even in the presence of correlated variables,
but correlated variables lower the quality of the advice.

 Linear regression will have trouble with problems that have a very large number
of variables, or categorical variables with a very large number of levels.

 Linear regression packages have some of the best built-in diagnostics available,
but rechecking your model on test data is still your most effective safety check.

7.2 Using logistic regression
Logistic regression is the most important (and probably most used) member of a class
of models called generalized linear models. Unlike linear regression, logistic regression
can directly predict values that are restricted to the (0, 1) interval, such as probabili-
ties. It’s the go-to method for predicting probabilities or rates, and like linear regres-
sion, the coefficients of a logistic regression model can be treated as advice. It’s also a
good first choice for binary classification problems.

In this section, we’ll use a medical classification example (predicting whether a
newborn will need extra medical attention) to work through all the steps of produc-
ing and using a logistic regression model.1

As we did with linear regression, we’ll take a quick overview of logistic regression
before tackling the main example.

7.2.1 Understanding logistic regression

 Example Suppose you want to predict whether or not a flight will be delayed, based on
facts like the flight’s origin and destination, weather, and air carrier. For every flight i,
you want to predict flight_delayed[i] based on origin[i], destination[i],
weather[i], and air_carrier[i].

We’d like to use linear regression to predict the probability that a flight i will be
delayed, but probabilities are strictly in the range 0:1, and linear regression doesn’t
restrict its prediction to that range.

1 Logistic regression is usually used to perform classification, but logistic regression and its close cousin beta
regression are also useful in estimating rates. In fact, R’s standard glm() call will work with predicting numeric
values between 0 and 1 in addition to predicting classifications.

Licensed to Ajit de Silva <agdesilva@gmail.com>

238 CHAPTER 7 Linear and logistic regression
One idea is to find a function of probability that is in the range -Infinity:Infinity,
fit a linear model to predict that quantity, and then solve for the appropriate probabilities
from the model predictions. So let’s look at a slightly different problem: instead of predict-
ing the probability that a flight is delayed, consider the odds that the flight is delayed, or
the ratio of the probability that the flight is delayed over the probability that it is not.

odds[flight_delayed] = P[flight_delayed == TRUE] / P[flight_delayed == FALSE]

The range of the odds function isn’t -Infinity:Infinity; it’s restricted to be a non-
negative number. But we can take the log of the odds---the log-odds---to get a function
of the probabilities that is in the range -Infinity:Infinity.

log_odds[flight_delayed] = log(P[flight_delayed == TRUE] / P[flight_delayed =
= FALSE])

Let: p = P[flight_delayed == TRUE]; then
log_odds[flight_delayed] = log(p / (1 - p))

Note that if it’s more likely that a flight will be delayed than on time, the odds ratio
will be greater than one; if it’s less likely that a flight will be delayed than on time, the
odds ratio will be less than one. So the log-odds is positive if it’s more likely that the
flight will be delayed, negative if it’s more likely that the flight will be on time, and
zero if the chances of delay are 50-50. This is shown in figure 7.12.

–2

–1

0

1

2

0.0 2.5 5.0 7.5 10.0

odds

lo
gi

t

Mapping odds to log-odds

odds: [0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0]

log-odds: [-2.3, -1.6, -0.69, 0.00, 0.69, 1.6, 2.30]

In this region,
flight_delayed==TRUE
more likely

In this region,
flight_delayed==FALSE
more likely

Figure 7.12 Mapping the odds of a flight delay to log-odds
Licensed to Ajit de Silva <agdesilva@gmail.com>

239Using logistic regression
The log-odds of a probability p is also known as logit(p). The inverse of logit(p) is the sig-
moid function, shown in figure 7.13. The sigmoid function maps values in the range
from -Infinity:Infinity to the range 0:1—in this case, the sigmoid maps
unbounded log-odds ratios to a probability value that is between 0 and 1.

logit <- function(p) { log(p/(1-p)) }
s <- function(x) { 1/(1 + exp(-x))}

s(logit(0.7))
[1] 0.7

logit(s(-2))
-2

Now we can try to fit a linear model to the log-odds of a flight being delayed:

logit(P[flight_delayed[i] == TRUE]) = b0 + b_origin * origin[i] + ...

But what we are really interested in is the probability that a flight is delayed. To get that,
take the sigmoid s() of both sides:

P[flight_delayed[i] == TRUE] = s(b0 + b_origin * origin[i] + ...)

0.00

0.25

0.50

0.75

1.00

–5.0 –2.5 0.0 2.5 5.0

logit

pr
ob

Mapping log-odds to probabilities

probabilities: [0.09, 0.17, 0.33, 0.50, 0.67, 0.83, 0.91]

In this region,
flight_delayed==TRUE
more likely

In this region,
flight_delayed==FALSE
more likely

log-odds: [-2.3, -1.6, -0.69, 0.00, 0.69, 1.6, 2.30]

Figure 7.13 Mapping log-odds to the probability of a flight delay via the sigmoid function
Licensed to Ajit de Silva <agdesilva@gmail.com>

240 CHAPTER 7 Linear and logistic regression
This is the logistic regression model for the probability that a flight will be delayed. The
preceding derivation may seem ad hoc, but using the logit function to transform the
probabilities is known to have a number of favorable properties. For instance, like lin-
ear regression, it gets totals right (as we will see in section 7.2.3).

More generally, suppose y[i] is the class of object i: TRUE or FALSE; delayed or
on_time. Also, suppose that x[i,] is a row of inputs, and call one of the classes the
“class of interest ” or target class —that is, the class you are trying to predict (you want
to predict whether something is TRUE or whether the flight is in the class delayed).
Then logistic regression attempts to a fit function f(x) such that

If the y[i] are the probabilities that the x[i,] belong to the class of interest, then the
task of fitting is to find the a, b[1], ..., b[n] such that f(x[i,]) is the best possi-
ble estimate of y[i]. R supplies a one-line statement to find these coefficients: glm().1

Note that you don’t need to supply y[i] that are probability estimates to run glm();
the training method only requires y[i] that say which class a given training example
belongs to.

As we’ve shown, you can think of logistic regression as a linear regression that finds
the log-odds of the probability that you’re interested in. In particular, logistic regres-
sion assumes that logit(y) is linear in the values of x. Like linear regression, logistic
regression will find the best coefficients to predict y, including finding advantageous
combinations and cancellations when the inputs are correlated.

Now to the main example.

 Example Imagine that you’re working at a hospital. The overall goal is to design a
plan that provisions neonatal emergency equipment to delivery rooms. Newborn babies
are assessed at one and five minutes after birth using what’s called the Apgar test,
which is designed to determine if a baby needs immediate emergency care or extra medi-
cal attention. A baby who scores below 7 (on a scale from 0 to 10) on the Apgar scale
needs extra attention.

 Such at-risk babies are rare, so the hospital doesn’t want to provision extra emer-
gency equipment for every delivery. On the other hand, at-risk babies may need atten-
tion quickly, so provisioning resources proactively to appropriate deliveries can save
lives. Your task is to build a model to identify ahead of time situations with a higher
probability of risk, so that resources can be allocated appropriately.

1 Logistic regression can be used for classifying into any number of categories (as long as the categories are dis-
joint and cover all possibilities: every x has to belong to one of the given categories). But glm() only handles
the two-category case, so our discussion will focus on this case.

P[y[i] in class of interest] ~ f(x[i,]) = s(a + b[1] * x[i,1] + ... + b[n] *

x[i,n])

Equation 7.2 The expression for a logistic regression model
Licensed to Ajit de Silva <agdesilva@gmail.com>

241Using logistic regression
We’ll use a sample dataset from the 2010 CDC natality public-use data file
(http://mng.bz/pnGy). This dataset records statistics for all US births registered in
the 50 states and the District of Columbia, including facts about the mother and
father, and about the delivery. The sample has just over 26,000 births in a data frame
called sdata.1 The data is split into training and test sets, using a random grouping
column that we added, which allows for repeatable experiments with the split ratio.

load("NatalRiskData.rData")
train <- sdata[sdata$ORIGRANDGROUP <= 5 ,]
test <- sdata[sdata$ORIGRANDGROUP > 5,]

Table 7.1 lists the columns of the dataset that you will use. Because the goal is to antic-
ipate at-risk infants ahead of time, we’ll restrict variables to those whose values are
known before delivery or can be determined during labor. For example, facts about
the mother’s weight and health history are valid inputs, but post-birth facts like infant
birth weight are not. We can include in-labor complications like breech birth by rea-
soning that the model can be updated in the delivery room (via a protocol or check-
list) in time for emergency resources to be allocated before delivery.

1 Our pre-prepared file is at https://github.com/WinVector/PDSwR2/tree/master/CDC/NatalRiskData
.rData; we also provide a script file (https://github.com/WinVector/PDSwR2/blob/master/CDC/PrepNatal-
RiskData.R), which prepares the data frame from an extract of the full natality dataset. Details found at
https://github.com/WinVector/PDSwR2/blob/master/CDC/README.md.

Listing 7.7 Loading the CDC data

Table 7.1 Some variables in the natality dataset

Variable Type Description

atRisk Logical TRUE if 5-minute Apgar score < 7; FALSE otherwise

PWGT Numeric Mother’s prepregnancy weight

UPREVIS Numeric (integer) Number of prenatal medical visits

CIG_REC Logical TRUE if smoker; FALSE otherwise

GESTREC3 Categorical Two categories: <37 weeks (premature) and >=37
weeks

DPLURAL Categorical Birth plurality, three categories:
single/twin/triplet+

ULD_MECO Logical TRUE if moderate/heavy fecal staining of amniotic fluid

ULD_PRECIP Logical TRUE for unusually short labor (< three hours)

ULD_BREECH Logical TRUE for breech (pelvis first) birth position

URF_DIAB Logical TRUE if mother is diabetic

URF_CHYPER Logical TRUE if mother has chronic hypertension
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/pnGy
https://github.com/WinVector/PDSwR2/tree/master/CDC/NatalRiskData.rData
https://github.com/WinVector/PDSwR2/tree/master/CDC/NatalRiskData.rData
https://github.com/WinVector/PDSwR2/tree/master/CDC/NatalRiskData.rData
https://github.com/WinVector/PDSwR2/blob/master/CDC/PrepNatalRiskData.R
https://github.com/WinVector/PDSwR2/blob/master/CDC/PrepNatalRiskData.R
https://github.com/WinVector/PDSwR2/blob/master/CDC/README.md

242 CHAPTER 7 Linear and logistic regression
Now we’re ready to build the model.

7.2.2 Building a logistic regression model

The function to build a logistic regression model in R is glm(), supplied by the stats
package. In our case, the dependent variable y is the logical (or Boolean) atRisk; all
the other variables in table 7.1 are the independent variables x. The formula for build-
ing a model to predict atRisk using these variables is rather long to type in by hand;
you can generate the formula using the mk_formula() function from the wrapr pack-
age, as shown next.

complications <- c("ULD_MECO","ULD_PRECIP","ULD_BREECH")
riskfactors <- c("URF_DIAB", "URF_CHYPER", "URF_PHYPER",

"URF_ECLAM")
y <- "atRisk"
x <- c("PWGT",

"UPREVIS",
"CIG_REC",
"GESTREC3",
"DPLURAL",
complications,
riskfactors)

library(wrapr)
fmla <- mk_formula(y, x)

Now we’ll build the logistic regression model, using the training dataset.

print(fmla)

atRisk ~ PWGT + UPREVIS + CIG_REC + GESTREC3 + DPLURAL + ULD_MECO +
ULD_PRECIP + ULD_BREECH + URF_DIAB + URF_CHYPER + URF_PHYPER +
URF_ECLAM
<environment: base>

model <- glm(fmla, data = train, family = binomial(link = "logit"))

This is similar to the linear regression call to lm(), with one additional argument:
family = binomial(link = "logit"). The family function specifies the assumed
distribution of the dependent variable y. In our case, we’re modeling y as a binomial
distribution, or as a coin whose probability of heads depends on x. The link function

URF_PHYPER Logical TRUE if mother has pregnancy-related hypertension

URF_ECLAM Logical TRUE if mother experienced eclampsia: pregnancy-
related seizures

Listing 7.8 Building the model formula

Listing 7.9 Fitting the logistic regression model

Table 7.1 Some variables in the natality dataset (continued)

Variable Type Description
Licensed to Ajit de Silva <agdesilva@gmail.com>

243Using logistic regression
“links” the output to a linear model—it’s as if you pass y through the link function,
and then model the resulting value as a linear function of the x values. Different com-
binations of family functions and link functions lead to different kinds of general-
ized linear models (for example, Poisson, or probit). In this book, we’ll only discuss
logistic models, so we’ll only need to use the binomial family with the logit link.1

DON’T FORGET THE FAMILY ARGUMENT! Without an explicit family argument,
glm() defaults to standard linear regression (like lm).

The family argument can be used to select many different behaviors of the
glm() function. For example, choosing family = quasipoisson chooses a “log”
link, which models the logarithm of the prediction as linear in the inputs.

This would be another approach to try for the income prediction problem
of section 7.1. However, it is a subtle point to determine whether a log trans-
formation and linear model or a log-link and a generalized linear model is a
better choice for a given problem. The log-link will be better at predicting
total incomes (scoring an error of $50,000 for small and large incomes alike).
The log-transform method will be better at predicting relative incomes (a scor-
ing error of $50,000 being less dire for large incomes than for small incomes).

As before, we’ve stored the results in the object model.

7.2.3 Making predictions

Making predictions with a logistic model is similar to making predictions with a linear
model—use the predict() function. The following code stores the predictions for
the training and test sets as the column pred in the respective data frames.

train$pred <- predict(model, newdata=train, type = "response")
test$pred <- predict(model, newdata=test, type="response")

Note the additional parameter type = "response". This tells the predict() function
to return the predicted probabilities y. If you don’t specify type = "response", then
by default predict() will return the output of the link function, logit(y).

One strength of logistic regression is that it preserves the marginal probabilities of
the training data. That means that if you sum the predicted probability scores for the
entire training set, that quantity will be equal to the number of positive outcomes
(atRisk == TRUE) in the training set. This is also true for subsets of the data deter-
mined by variables included in the model. For example, in the subset of the training
data that has train$GESTREC == "<37 weeks" (the baby was premature), the sum of
the predicted probabilities equals the number of positive training examples (see, for
example http://mng.bz/j338).

1 The logit link is the default link for the binomial family, so the call glm(fmla, data = train, family
= binomial) works just fine. We explicitly specified the link in our example for the sake of discussion.

Listing 7.10 Applying the logistic regression model
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/j338

244 CHAPTER 7 Linear and logistic regression
sum(train$atRisk == TRUE)
[1] 273

sum(train$pred)
[1] 273

premature <- subset(train, GESTREC3 == "< 37 weeks")
sum(premature$atRisk == TRUE)
[1] 112

sum(premature$pred)
[1] 112

Because logistic regression preserves marginal probabilities, you know that the model
is in some sense consistent with the training data. When the model is applied to future
data with distributions similar to the training data, it should then return results consis-
tent with that data: about the correct probability mass of expected at-risk infants, dis-
tributed correctly with respect to the infants’ characteristics. However, if the model is
applied to future data with very different distributions (for example, a much higher
rate of at-risk infants), the model may not predict as well.

CHARACTERIZING PREDICTION QUALITY

If your goal is to use the model to classify new instances into one of two categories (in
this case, at-risk or not-at-risk), then you want the model to give high scores to positive
instances and low scores otherwise. As we discussed in section 6.2.5, you can check if
this is so by plotting the distribution of scores for both the positive and negative
instances. Let’s do this on the training set (you should also plot the test set, to make
sure the performance is of similar quality).

library(WVPlots)
DoubleDensityPlot(train, "pred", "atRisk",

title = "Distribution of natality risk scores")

The result is shown in figure 7.14. Ideally, we’d like the distribution of scores to be
separated, with the scores of the negative instances (FALSE) to be concentrated on
the left, and the distribution for the positive instances to be concentrated on the right.
Earlier in figure 6.15 (reproduced here as figure 7.15), we showed an example of a
classifier (the spam filter) that separates the positives and the negatives quite well.
With the natality risk model, both distributions are concentrated on the left, meaning
that both positive and negative instances score low. This isn’t surprising, since the pos-
itive instances (the ones with the baby at risk) are rare (about 1.8% of all births in the
dataset). The distribution of scores for the negative instances dies off sooner than the
distribution for positive instances. This means that the model did identify subpopula-
tions in the data where the rate of at-risk newborns is higher than the average, as is
pointed out in figure 7.14.

Listing 7.11 Preserving marginal probabilities with logistic regression

Listing 7.12 Plotting distribution of prediction score grouped by known outcome

Counts the number of at-risk
infants in the training set.

Sums all the predicted
probabilities over the
training set. Notice that
it adds to the number
of at-risk infants.Counts the number of

at-risk premature
infants in the training set

Sums all the predicted probabilities
for premature infants in the training
set. Note that it adds to the number
of at-risk premature infants.
Licensed to Ajit de Silva <agdesilva@gmail.com>

245Using logistic regression
0

40

80

120

0.0 0.2 0.4 0.6
pred

de
ns

ity atRisk

FALSE

TRUE

Distribution of natality risk scores

The threshold separates out a subset
with higher-than-average risk.

Figure 7.14 Distribution of score broken up by positive examples (TRUE) and negative
examples (FALSE)

0

5

10

15

0.00 0.25 0.50 0.75 1.00

pred

de
ns

ity

spam

non-spam

spam

Distribution of scores for spam filter

The threshold separates most
spam from most non-spam.

Figure 7.15 Reproduction of the spam filter score distributions from chapter 6
Licensed to Ajit de Silva <agdesilva@gmail.com>

246 CHAPTER 7 Linear and logistic regression

Adds
to

thre
=

In order to use the model as a classifier, you must pick a threshold; scores above the
threshold will be classified as positive, those below as negative. When you pick a
threshold, you’re trying to balance the precision of the classifier (what fraction of the
predicted positives are true positives) and its recall (how many of the true positives the
classifier finds).

If the score distributions of the positive and negative instances are well separated,
as in figure 7.15, you can pick an appropriate threshold in the “valley” between the
two peaks. In the current case, the two distributions aren’t well separated, which indi-
cates that the model can’t build a classifier that simultaneously achieves good recall
and good precision.

However, you might be able to build a classifier that identifies a subset of situations
with a higher-than-average rate of at-risk births: for example, you may be able to find a
threshold that produces a classifier with a precision of 3.6%. Even though this preci-
sion is low, it represents a subset of the data that has twice the risk as the overall popu-
lation (3.6% versus 1.8%), so preprovisioning resources to those situations may be
advised. We’ll call the ratio of the classifier precision to the average rate of positives
the enrichment rate.

The higher you set the threshold, the more precise the classifier will be (you’ll iden-
tify a set of situations with a much higher-than-average rate of at-risk births); but you’ll
also miss a higher percentage of at-risk situations, as well. When picking the threshold,
you should use the training set, since picking the threshold is part of classifier-building.
You can then use the test set to evaluate classifier performance.

To help pick the threshold, you can use a plot like figure 7.16, which shows both
enrichment and recall as functions of the threshold.

Looking at figure 7.16, you see that higher thresholds result in more-precise classi-
fications (precision is proportional to enrichment), at the cost of missing more cases;
a lower threshold will identify more cases, at the cost of many more false positives
(lower precision). The best trade-off between precision/enrichment and recall is a
function of how many resources the hospital has available to allocate, and how many
they can keep in reserve (or redeploy) for situations that the classifier missed. A
threshold of 0.02 (marked in figure 7.16 by the dashed line) might be a good trade-
off. The resulting classifier will identify a subset of the population where the rate of
risky births is 2.5 times higher than in the overall population, and which contains
about half of all the true at-risk situations.

You can produce figure 7.16 using the PRTPlot() function in WVPlots.

library("WVPlots")
library("ggplot2")
plt <- PRTPlot(train, "pred", "atRisk", TRUE,

plotvars = c("enrichment", "recall"),
thresholdrange = c(0,0.05),
title = "Enrichment/recall vs. threshold for natality model")

plt + geom_vline(xintercept = 0.02, color="red", linetype = 2)

Listing 7.13 Exploring modeling trade-offs

Calls PRTPlot() where pred is the column of predictions, atRisk is
the true outcome column, and TRUE is the class of interest

a line
 mark
shold
 0.02.
Licensed to Ajit de Silva <agdesilva@gmail.com>

247Using logistic regression
Once you’ve picked an appropriate threshold, you can evaluate the resulting classifier
by looking at the confusion matrix, as we discussed in section 6.2.3. Let’s use the test
set to evaluate the classifier with a threshold of 0.02.

(ctab.test <- table(pred = test$pred > 0.02, atRisk = test$atRisk))

atRisk
pred FALSE TRUE
FALSE 9487 93
TRUE 2405 116

(precision <- ctab.test[2,2] / sum(ctab.test[2,]))
[1] 0.04601349

(recall <- ctab.test[2,2] / sum(ctab.test[,2]))
[1] 0.5550239

(enrichment <- precision / mean(as.numeric(test$atRisk)))
[1] 2.664159

The resulting classifier is low-precision, but identifies a set of potential at-risk cases
that contains 55.5% of the true positive cases in the test set, at a rate 2.66 times higher
than the overall average. This is consistent with the results on the training set.

Listing 7.14 Evaluating the chosen model

recall

enrichment

0.00 0.01 0.02 0.03 0.04 0.05

1

2

3

4

0.4

0.6

0.8

1.0

threshold

va
lu

e

Enrichment/recall vs. threshold for natality model

Figure 7.16 Enrichment (top) and recall (bottom) plotted as functions of threshold for the training set

Builds the confusion matrix. The rows contain
predicted negatives and positives; columns

contain actual negatives and positives.
Licensed to Ajit de Silva <agdesilva@gmail.com>

248 CHAPTER 7 Linear and logistic regression
In addition to making predictions, a logistic regression model also helps you
extract useful information and advice. We’ll show this in the next section.

7.2.4 Finding relations and extracting advice from logistic models

The coefficients of a logistic regression model encode the relationships between the
input variables and the output in a way similar to how the coefficients of a linear
regression model do. You can get the model’s coefficients with the call coefficients
(model).

coefficients(model)
(Intercept) PWGT
-4.41218940 0.00376166
UPREVIS CIG_RECTRUE
-0.06328943 0.31316930
GESTREC3< 37 weeks DPLURALtriplet or higher
1.54518311 1.39419294
DPLURALtwin ULD_MECOTRUE
0.31231871 0.81842627
ULD_PRECIPTRUE ULD_BREECHTRUE
0.19172008 0.74923672
URF_DIABTRUE URF_CHYPERTRUE
-0.34646672 0.56002503
URF_PHYPERTRUE URF_ECLAMTRUE
0.16159872 0.49806435

Negative coefficients that are statistically significant1 correspond to variables that are
negatively correlated to the odds (and hence to the probability) of a positive outcome
(the baby being at risk). Positive coefficients that are statistically significant are posi-
tively correlated to the odds of the baby being at risk.

As with linear regression, every categorical variable is expanded to a set of indicator
variables. If the original variable has n levels, there will be n-1 indicator variables; the
remaining level is the reference level.

For example, the variable DPLURAL has three levels corresponding to single births,
twins, and triplets or higher. The logistic regression model has two corresponding
coefficients: DPLURALtwin and DPLURALtriplet or higher. The reference level is sin-
gle births. Both of the DPLURAL coefficients are positive, indicating that multiple births
have higher odds of being at risk than single births do, all other variables being equal.

LOGISTIC REGRESSION ALSO DISLIKES A VERY LARGE VARIABLE COUNT And as
with linear regression, you should avoid categorical variables with too many
levels.

Listing 7.15 The model coefficients

1 We’ll show how to check for statistical significance in the next section.
Licensed to Ajit de Silva <agdesilva@gmail.com>

249Using logistic regression
INTERPRETING THE COEFFICIENTS

Interpreting coefficient values is a little more complicated with logistic than with lin-
ear regression. If the coefficient for the variable x[,k] is b[k], then the odds of a pos-
itive outcome are multiplied by a factor of exp(b[k]) for every unit change in x[,k].

 Example Suppose a full-term baby with certain characteristics has a 1% probability
of being at risk. Then the risk odds for that baby are p/(1-p), or 0.01/0.99 =

0.0101. What are the risk odds (and the risk probability) for a baby with the same
characteristics, but born prematurely?

The coefficient for GESTREC3< 37 weeks (for a premature baby) is 1.545183. So for a
premature baby, the odds of being at risk are exp(1.545183)= 4.68883 times higher
compared to a baby that’s born full-term, with all other input variables unchanged.
The risk odds for a premature baby with the same characteristics as our hypothetical
full-term baby are 0.0101 * 4.68883 = 0.047.

You can invert the formula odds = p / (1 - p) to solve for p as a function of odds:

p = odds * (1 - p) = odds - p * odds
p * (1 + odds) = odds
p = odds/(1 + odds)

The probability of this premature baby being at risk is 0.047/1.047, or about 4.5%—
quite a bit higher than the equivalent full-term baby

Similarly, the coefficient for UPREVIS (number of prenatal medical visits) is about
–0.06. This means every prenatal visit lowers the odds of an at-risk baby by a factor of
exp(-0.06), or about 0.94. Suppose the mother of a premature baby had made no
prenatal visits; a baby in the same situation whose mother had made three prenatal vis-
its would have odds of being at risk of about 0.047 * 0.94 * 0.94 * 0.94 = 0.039.
This corresponds to a probability of being at risk of 3.75%.

The general advice in this case might be to keep a special eye on premature births
(and multiple births), and encourage expectant mothers to make regular prenatal visits.

7.2.5 Reading the model summary and characterizing coefficients

As we mentioned earlier, conclusions about the coefficient values are only to be
trusted if the coefficient values are statistically significant. We also want to make sure
that the model is actually explaining something. The diagnostics in the model sum-
mary will help us determine some facts about model quality. The call, as before, is
summary(model).

summary(model)

Call:
glm(formula = fmla, family = binomial(link = "logit"), data = train)
##
Deviance Residuals:
Min 1Q Median 3Q Max

Listing 7.16 The model summary
Licensed to Ajit de Silva <agdesilva@gmail.com>

250 CHAPTER 7 Linear and logistic regression
-0.9732 -0.1818 -0.1511 -0.1358 3.2641
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.412189 0.289352 -15.249 < 2e-16 ***
PWGT 0.003762 0.001487 2.530 0.011417 *
UPREVIS -0.063289 0.015252 -4.150 3.33e-05 ***
CIG_RECTRUE 0.313169 0.187230 1.673 0.094398 .
GESTREC3< 37 weeks 1.545183 0.140795 10.975 < 2e-16 ***
DPLURALtriplet or higher 1.394193 0.498866 2.795 0.005194 **
DPLURALtwin 0.312319 0.241088 1.295 0.195163
ULD_MECOTRUE 0.818426 0.235798 3.471 0.000519 ***
ULD_PRECIPTRUE 0.191720 0.357680 0.536 0.591951
ULD_BREECHTRUE 0.749237 0.178129 4.206 2.60e-05 ***
URF_DIABTRUE -0.346467 0.287514 -1.205 0.228187
URF_CHYPERTRUE 0.560025 0.389678 1.437 0.150676
URF_PHYPERTRUE 0.161599 0.250003 0.646 0.518029
URF_ECLAMTRUE 0.498064 0.776948 0.641 0.521489

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 2698.7 on 14211 degrees of freedom
Residual deviance: 2463.0 on 14198 degrees of freedom
AIC: 2491
##
Number of Fisher Scoring iterations: 7

Again, you’re likely to be asked about elements of the model summary when present-
ing results, so we’ll discuss what the fields mean, and how to use them to interpret
your model.

THE ORIGINAL MODEL CALL

The first line of the summary is the call to glm():

Call:
glm(formula = fmla, family = binomial(link = "logit"), data = train)

Here is where we check that we’ve used the correct training set and the correct for-
mula (although in our case, the formula itself is in another variable). We can also ver-
ify that we used the correct family and link function to produce a logistic model.

THE DEVIANCE RESIDUALS SUMMARY

The deviance residuals are the analog to the residuals of a linear regression model:

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9732 -0.1818 -0.1511 -0.1358 3.2641

Linear regression models are found by minimizing the sum of the squared residuals;
logistic regression models are found by minimizing the sum of the residual deviances,
which is equivalent to maximizing the log likelihood of the data, given the model
(we’ll talk about log likelihood later in this chapter).
Licensed to Ajit de Silva <agdesilva@gmail.com>

251Using logistic regression
Logistic models can also be used to explicitly compute rates: given several groups of
identical data points (identical except the outcome), predict the rate of positive out-
comes in each group. This kind of data is called grouped data. In the case of grouped
data, the deviance residuals can be used as a diagnostic for model fit. This is why the
deviance residuals are included in the summary. We’re using ungrouped data—every
data point in the training set is potentially unique. In the case of ungrouped data, the
model fit diagnostics that use the deviance residuals are no longer valid, so we won’t
discuss them here.1

THE SUMMARY COEFFICIENTS TABLE

The summary coefficients table for logistic regression has the same format as the coef-
ficients table for linear regression:

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.412189 0.289352 -15.249 < 2e-16 ***
PWGT 0.003762 0.001487 2.530 0.011417 *
UPREVIS -0.063289 0.015252 -4.150 3.33e-05 ***
CIG_RECTRUE 0.313169 0.187230 1.673 0.094398 .
GESTREC3< 37 weeks 1.545183 0.140795 10.975 < 2e-16 ***
DPLURALtriplet or higher 1.394193 0.498866 2.795 0.005194 **
DPLURALtwin 0.312319 0.241088 1.295 0.195163
ULD_MECOTRUE 0.818426 0.235798 3.471 0.000519 ***
ULD_PRECIPTRUE 0.191720 0.357680 0.536 0.591951
ULD_BREECHTRUE 0.749237 0.178129 4.206 2.60e-05 ***
URF_DIABTRUE -0.346467 0.287514 -1.205 0.228187
URF_CHYPERTRUE 0.560025 0.389678 1.437 0.150676
URF_PHYPERTRUE 0.161599 0.250003 0.646 0.518029
URF_ECLAMTRUE 0.498064 0.776948 0.641 0.521489

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The columns of the table represent

 A coefficient
 Its estimated value
 The error around that estimate
 The signed distance of the estimated coefficient value from 0 (using the stan-

dard error as the unit of distance)
 The probability of seeing a coefficient value at least as large as we observed,

under the null hypothesis that the coefficient value is really zero

This last value, called the p-value or significance, tells us whether we should trust the esti-
mated coefficient value. The common practice is to assume that coefficients with p-val-
ues less than 0.05 are reliable, although some researchers prefer stricter thresholds.

For the birth data, we can see from the coefficient summary that premature
birth and triplet birth are strong predictors of the newborn needing extra medical

1 See Daniel Powers and Yu Xie, Statistical Methods for Categorical Data Analysis, 2nd ed, Emerald Group Publish-
ing Ltd., 2008.
Licensed to Ajit de Silva <agdesilva@gmail.com>

252 CHAPTER 7 Linear and logistic regression
attention: the coefficient magnitudes are non-negligible and the p-values indicate sig-
nificance. Other variables that affect the outcome are

 PWGT—The mother’s prepregnancy weight (heavier mothers indicate higher
risk—slightly surprising)

 UPREVIS—The number of prenatal medical visits (the more visits, the lower
the risk)

 ULD_MECOTRUE—Meconium staining in the amniotic fluid
 ULD_BREECHTRUE—Breech position at birth

There might be a positive correlation between a mother’s smoking and an at-risk
birth, but the data doesn’t indicate it definitively. None of the other variables show a
strong relationship to an at-risk birth.

OVERALL MODEL QUALITY SUMMARIES

The next section of the summary contains the model quality statistics:

Null deviance: 2698.7 on 14211 degrees of freedom
Residual deviance: 2463.0 on 14198 degrees of freedom
AIC: 2491

Lack of significance could mean collinear inputs
As with linear regression, logistic regression can predict well with collinear (or cor-
related) inputs, but the correlations can mask good advice.

To see this for yourself, we left data about the babies’ birth weight in grams in the
dataset sdata. It’s present in both the test and training data as the column DBWT.
Try adding DBWT to the logistic regression model in addition to all the other variables;
you’ll see that the coefficient for baby’s birth weight will be significant, non-negligible
(has a substantial impact on prediction), and negatively correlated with risk. The coef-
ficient for DPLURALtriplet or higher will appear insignificant, and the coefficient
for GESTREC3< 37 weeks has a much smaller magnitude. This is because low birth
weight is correlated to both prematurity and multiple birth. Of the three related vari-
ables, birth weight is the best single predictor of the outcome: knowing that the baby
is a triplet adds no additional useful information, and knowing the baby is premature
adds only a little information.

In the context of the modeling goal—to proactively allocate emergency resources
where they’re more likely to be needed—birth weight isn’t very useful a variable,
because we don’t know the baby’s weight until it’s born. We do know ahead of time
if it’s being born prematurely, or if it’s one of multiple babies. So it’s better to use
GESTREC3 and DPLURAL as input variables, instead of DBWT.

Other signs of possibly collinear inputs are coefficients with the wrong sign and
unusually large coefficient magnitudes with giant standard errors.
Licensed to Ajit de Silva <agdesilva@gmail.com>

253Using logistic regression

e
e

Null and residual deviances

Deviance is a measure of how well the model fits the data. It is two times the negative
log likelihood of the dataset, given the model. As we discussed previously in section
6.2.5, the idea behind log likelihood is that positive instances y should have high
probability py of occurring under the model; negative instances should have low prob-
ability of occurring (or putting it another way, (1 - py) should be large). The log
likelihood function rewards matches between the outcome y and the predicted proba-
bility py, and penalizes mismatches (high py for negative instances, and vice versa).

If you think of deviance as analogous to variance, then the null deviance is similar to
the variance of the data around the average rate of positive examples. The residual
deviance is similar to the variance of the data around the model. As with variance, you
want the residual deviance to be small, compared to the null deviance. The model
summary reports the deviance and null deviance of the model on the training data;
you can (and should) also calculate them for test data. In the following listing we cal-
culate the deviances for both the training and test sets.

loglikelihood <- function(y, py) {
sum(y * log(py) + (1-y)*log(1 - py))

}

(pnull <- mean(as.numeric(train$atRisk)))
[1] 0.01920912

(null.dev <- -2 *loglikelihood(as.numeric(train$atRisk), pnull))
[1] 2698.716

model$null.deviance
[1] 2698.716

pred <- predict(model, newdata = train, type = "response")
(resid.dev <- -2 * loglikelihood(as.numeric(train$atRisk), pred))
[1] 2462.992

model$deviance
[1] 2462.992

testy <- as.numeric(test$atRisk)
testpred <- predict(model, newdata = test,

type = "response")
(pnull.test <- mean(testy))
[1] 0.0172713

(null.dev.test <- -2 * loglikelihood(testy, pnull.test))
[1] 2110.91

(resid.dev.test <- -2 * loglikelihood(testy, testpred))
[1] 1947.094

Listing 7.17 Computing deviance

Function to calculate the log likelihood of a dataset.
Variable y is the outcome in numeric form (1 for positive
examples, 0 for negative). Variable py is the predicted
probability that y==1.

Calculates the rate of positive
examples in the dataset

Calculates th
null devianc

Calculates the null
deviance and
residual deviance
for the test data

For training data, model deviance is
stored in the slot model$deviance.

For training data, the null deviance is
stored in the slot model$null.deviance.

Predicts probabilities
for the training data

Calculates deviance
of the model for

training data
Licensed to Ajit de Silva <agdesilva@gmail.com>

254 CHAPTER 7 Linear and logistic regression
The pseudo R-squared

A useful goodness-of-fit measure based on the deviances is the pseudo R-squared:
1 - (dev.model/dev.null). The pseudo R-squared is the analog to the R-squared
measure for linear regression. It’s a measure of how much of the deviance is
“explained” by the model. Ideally, you want the pseudo R-squared to be close to 1.
Let’s calculate the pseudo R-squared for both the test and training data.

pr2 <- 1 - (resid.dev / null.dev)

print(pr2)
[1] 0.08734674
pr2.test <- 1 - (resid.dev.test / null.dev.test)
print(pr2.test)
[1] 0.07760427

The model only explains about 7.7–8.7% of the deviance; it’s not a highly predictive
model (you should have suspected that already from figure 7.14). This tells us that we
haven’t yet identified all the factors that actually predict at-risk births.

Model significance

The other thing you can do with the null and residual deviances is check whether the
model’s probability predictions are better than just guessing the average rate of posi-
tives, statistically speaking. In other words, is the reduction in deviance from the
model meaningful, or just something that was observed by chance? This is similar to
calculating the F-test statistic and associated p-value that are reported for linear
regression. In the case of logistic regression, the test you’ll run is the chi-squared test. To
do that, you need to know the degrees of freedom for the null model and the actual
model (which are reported in the summary). The degrees of freedom of the null
model is the number of data points minus 1:

df.null = dim(train)[[1]] - 1

The degrees of freedom of the model that you fit is the number of data points minus
the number of coefficients in the model:

df.model = dim(train)[[1]] - length(model$coefficients)

If the number of data points in the training set is large, and df.null - df.model is
small, then the probability of the difference in deviances null.dev - resid.dev

being as large as we observed is approximately distributed as a chi-squared distribu-
tion with df.null - df.model degrees of freedom.

(df.null <- dim(train)[[1]] - 1)
[1] 14211

(df.model <- dim(train)[[1]] - length(model$coefficients))
[1] 14198

Listing 7.18 Calculating the pseudo R-squared

Listing 7.19 Calculating the significance of the observed fit

The null model has (number of data
points - 1) degrees of freedom.

The fitted model has (number

of data points - number of

coefficients) degrees of freedom.

Licensed to Ajit de Silva <agdesilva@gmail.com>

255Using logistic regression
(delDev <- null.dev - resid.dev)
[1] 235.724

(deldf <- df.null - df.model)
[1] 13
(p <- pchisq(delDev, deldf, lower.tail = FALSE))
[1] 5.84896e-43

The p-value is very small; it’s extremely unlikely that we could’ve seen this much
reduction in deviance by chance. This means it is plausible (but unfortunately not
definitive) that this model has found informative patterns in the data.

The AIC

The last metric given in the section of the summary is the AIC, or the Akaike informa-
tion criterion. The AIC is the log likelihood adjusted for the number of coefficients. Just
as the R-squared of a linear regression is generally higher when the number of vari-
ables is higher, the log likelihood also increases with the number of variables.

aic <- 2 * (length(model$coefficients) -
loglikelihood(as.numeric(train$atRisk), pred))

aic
[1] 2490.992

The AIC is generally used to decide which and how many input variables to use in the
model. If you train many different models with different sets of variables on the same
training set, you can consider the model with the lowest AIC to be the best fit.

FISHER SCORING ITERATIONS

The last line of the model summary is the number of Fisher scoring iterations:

Number of Fisher Scoring iterations: 7

The Fisher scoring method is an iterative optimization method, similar to Newton’s
method, that glm() uses to find the best coefficients for the logistic regression model.

Listing 7.20 Calculating the Akaike information criterion

Computes the difference in deviances
and difference in degrees of freedom

Estimates the probability of seeing the observed
difference in deviances under the null model (the

p-value) using chi-squared distribution

Goodness of fit vs. significance
It’s worth noting that the model we found is a significant model, just not a powerful
one. The good p-value tells us that the model is significant: it predicts at-risk birth in
the training data at a quality that is unlikely to be pure chance. The poor pseudo
R-squared means that the model isn’t giving us enough information to effectively dis-
tinguish between low-risk and high-risk births.

It’s also possible to have good pseudo R-squared (on the training data) with a bad
p-value. This is an indication of overfit. That’s why it’s a good idea to check both, or
better yet, check the pseudo R-squared of the model on both training and test data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

256 CHAPTER 7 Linear and logistic regression
You should expect it to converge in about six to eight iterations. If there are many
more iterations than that, then the algorithm may not have converged, and the model
may not be valid.

Separation and quasi-separation

The probable reason for non-convergence is separation or quasi-separation: one of
the model variables or some combination of the model variables predicts the outcome
perfectly for at least a subset of the training data. You’d think this would be a good
thing; but, ironically, logistic regression fails when the variables are too powerful. Ide-
ally, glm() will issue a warning when it detects separation or quasi-separation:

Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred

Unfortunately, there are situations when it seems that no warning is issued, but there
are other warning signs:

 An unusually high number of Fisher iterations
 Very large coefficients, usually with extremely large standard errors
 Residual deviances larger than the null deviances

If you see any of these signs, the model is suspect. The last section of this chapter cov-
ers one way to address the problem: regularization.

7.2.6 Logistic regression takeaways

Logistic regression is the go-to statistical modeling method for binary classification. As
with linear regression, the coefficients of a logistic regression model can often func-
tion as advice. Here are some points to remember about logistic regression:

 Logistic regression is well calibrated: it reproduces the marginal probabilities of
the data.

 Pseudo R-squared is a useful goodness-of-fit heuristic.
 Logistic regression will have trouble with problems with a very large number of

variables, or categorical variables with a very large number of levels.
 Logistic regression can predict well even in the presence of correlated variables,

but correlated variables lower the quality of the advice.
 Overly large coefficient magnitudes, overly large standard errors on the coeffi-

cient estimates, and the wrong sign on a coefficient could be indications of cor-
related inputs.

 Too many Fisher iterations, or overly large coefficients with very large standard
errors, could be signs that your logistic regression model has not converged,
and may not be valid.

 glm() provides good diagnostics, but rechecking your model on test data is still
your most effective diagnostic.
Licensed to Ajit de Silva <agdesilva@gmail.com>

257Regularization
7.3 Regularization
As mentioned earlier, overly large coefficient magnitudes and overly large standard
errors can indicate some issues in your model: nearly collinear variables in either a lin-
ear or logistic regression, or separation or quasi-separation in a logistic regression
system.

Nearly collinear variables can cause the regression solver to needlessly introduce
large coefficients that often nearly cancel each other out, and that have large standard
errors. Separation/quasi-separation can cause a logistic regression to not converge to
the intended solution; this is a separate source of large coefficients and large standard
errors.

Overly large coefficient magnitudes are less trustworthy and can be hazardous
when the model is applied to new data. Each of the coefficient estimates has some
measurement noise, and with large coefficients this noise in estimates can drive large
variations (and errors) in prediction. Intuitively speaking, large coefficients fit to
nearly collinear variables must cancel each other out in the training data to express
the observed effect of the variables on the outcome. This set of cancellations is an
overfit of the training data, if the same variables don’t balance out in exactly the same
way in future data.

Example Suppose that age and years_in_workforce are strongly correlated, and
being one year older/one year longer in the workforce increases log income by
one unit in the training data. If only years_in_workforce is in the
model, it would get a coefficient of about 1. What happens if the model
includes age as well?

In some circumstances, if both age and years_in_workforce are in the model, linear
regression might give years_in_workforce and age large counterbalancing coeffi-
cients of opposite sign; for instance a coefficient of 99 for years_in_workforce and
age a coefficient of –98. These large coefficients would “cancel each other out” to the
appropriate effect.

A similar effect can arise in a logistic model due to quasi-separation, even when
there are no collinear variables. To demonstrate this, we’ll introduce the bigger sce-
nario that we will work with in this section.

7.3.1 An example of quasi-separation

 Example Suppose a car review site rates cars on several characteristics, including
affordability and safety rating. Car ratings can be “very good,” “good,” “acceptable,”
or “unacceptable.” Your goal is to predict whether a car will fail the review: that is, get
an unacceptable rating.

For this example, you will use again use the car data from the UCI Machine Learning
Repository that you used in chapter 2. This dataset has information on 1728 makes of
auto, with the following variables:
Licensed to Ajit de Silva <agdesilva@gmail.com>

258 CHAPTER 7 Linear and logistic regression
 car_price—(vhigh, high, med, low)
 maint_price—(vhigh, high, med, low)
 doors—(2, 3, 4, 5, more)
 persons—(2, 4, more)
 lug_boot—(small, med, big)
 safety—(low, med, high)

The outcome variable is rating (vgood, good, acc, unacc).
First, let’s read in the data and split it into training and test. If you have not done

so already, download car.data.csv from https://github.com/WinVector/PDSwR2/
blob/master/UCICar/car.data.csv and make sure the file is in your working directory.

cars <- read.table(
'car.data.csv',
sep = ',',
header = TRUE,
stringsAsFactor = TRUE

)

vars <- setdiff(colnames(cars), "rating")

cars$fail <- cars$rating == "unacc"
outcome <- "fail"

set.seed(24351)
gp <- runif(nrow(cars))

library("zeallot")
c(cars_test, cars_train) %<-% split(cars, gp < 0.7)

nrow(cars_test)
[1] 499
nrow(cars_train)
[1] 1229

The first thing you might do to solve this problem is try a simple logistic regression.

library(wrapr)
(fmla <- mk_formula(outcome, vars))

fail ~ car_price + maint_price + doors + persons + lug_boot +
safety
<environment: base>

model_glm <- glm(fmla,
data = cars_train,
family = binomial)

Listing 7.21 Preparing the cars data

Listing 7.22 Fitting a logistic regression model

Gets the input variables

You want to predict whether the
car gets an unacceptable rating

Creates the grouping variable for the
test/train split (70% for training, 30% for test)

The split() function returns a list of two groups
with the group gp < 0.7 == FALSE first. The

zeallot package’s %<-% multiassignment takes
this list of values and unpacks them into the

variables named cars_test and cars_train.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/UCICar/car.data.csv
https://github.com/WinVector/PDSwR2/blob/master/UCICar/car.data.csv
https://github.com/WinVector/PDSwR2/blob/master/UCICar/car.data.csv

259Regularization

es,
rd

e,
You will see that glm() returns a warning:

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

This warning indicates that the problem is quasi-separable: some set of variables per-
fectly predicts a subset of the data. In fact, this problem is simple enough that you can
easily determine that a safety rating of low perfectly predicts that a car will fail the
review (we leave that as an exercise for the reader). However, even cars with higher
safety ratings can get ratings of unacceptable, so the safety variable only predicts a sub-
set of the data.

You can also see the problem if you look at the summary of the model.

summary(model_glm)

##
Call:
glm(formula = fmla, family = binomial, data = cars_train)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.35684 -0.02593 0.00000 0.00001 3.11185
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 28.0132 1506.0310 0.019 0.985160
car_pricelow -4.6616 0.6520 -7.150 8.67e-13 ***
car_pricemed -3.8689 0.5945 -6.508 7.63e-11 ***
car_pricevhigh 1.9139 0.4318 4.433 9.30e-06 ***
maint_pricelow -3.2542 0.5423 -6.001 1.96e-09 ***
maint_pricemed -3.2458 0.5503 -5.899 3.66e-09 ***
maint_pricevhigh 2.8556 0.4865 5.869 4.38e-09 ***
doors3 -1.4281 0.4638 -3.079 0.002077 **
doors4 -2.3733 0.4973 -4.773 1.82e-06 ***
doors5more -2.2652 0.5090 -4.450 8.58e-06 ***
persons4 -29.8240 1506.0310 -0.020 0.984201
personsmore -29.4551 1506.0310 -0.020 0.984396
lug_bootmed 1.5608 0.4529 3.446 0.000568 ***
lug_bootsmall 4.5238 0.5721 7.908 2.62e-15 ***
safetylow 29.9415 1569.3789 0.019 0.984778
safetymed 2.7884 0.4134 6.745 1.53e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1484.7 on 1228 degrees of freedom
Residual deviance: 245.5 on 1213 degrees of freedom
AIC: 277.5
##
Number of Fisher Scoring iterations: 21)

Listing 7.23 Looking at the model summary

The variables
persons4 and
personsmore have
notably large
negative magnitud
and a giant standa
error.

The variable
safetylow has a
notably large
positive magnitud
and a giant
standard error.

The algorithm ran for an
unusually large number of
Fisher scoring iterations.
Licensed to Ajit de Silva <agdesilva@gmail.com>

260 CHAPTER 7 Linear and logistic regression
The variables safetylow, persons4, and personsmore all have unusually high magni-
tudes and very high standard errors. As mentioned earlier, safetylow always corre-
sponds to an unacceptable rating, so safetylow is a strong indicator of failing the
review. However, larger cars (cars that hold more people) are not always going to pass
the review. It’s possible that the algorithm has observed that larger cars tend to be
safer (get a safety rating better than safetylow), and so it is using the persons4 and
personsmore variables to cancel out the overly high coefficient from safetylow.

In addition, you can see that the number of Fisher scoring iterations is unusually
high; the algorithm did not converge.

This problem is fairly simple, so the model may predict acceptably well on the test
set; however, in general, when you see evidence that glm() did not converge, you
should not trust the model.

For comparison with the regularized algorithms, let’s plot the coefficients of the
logistic regression model (figure 7.17).

coefs <- coef(model_glm)[-1]
coef_frame <- data.frame(coef = names(coefs),

value = coefs)

library(ggplot2)
ggplot(coef_frame, aes(x = coef, y = value)) +

geom_pointrange(aes(ymin = 0, ymax = value)) +
ggtitle("Coefficients of logistic regression model") +
coord_flip()

Listing 7.24 Looking at the logistic model’s coefficients

Gets the coefficients
(except the intercept)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

car_pricelow

car_pricemed

car_pricevhigh

doors3

doors4

doors5more

lug_bootmed

lug_bootsmall

maint_pricelow

maint_pricemed

maint_pricevhigh

persons4

personsmore

safetylow

safetymed

−20 0 20

value

co
ef

Coefficients of logistic regression model

Figure 7.17 Coefficients of the logistic regression model
Licensed to Ajit de Silva <agdesilva@gmail.com>

261Regularization
In the plot, coefficients that point to the right are positively correlated with failing the
review, and coefficients that point to the left are negatively correlated with failure.

You can also look at the model’s performance on the test data.

cars_test$pred_glm <- predict(model_glm,
newdata=cars_test,
type = "response")

library(sigr)

confmat <- function(dframe, predvar) {
cmat <- table(truth = ifelse(dframe$fail, "unacceptable", "passed"),

prediction = ifelse(dframe[[predvar]] > 0.5,
"unacceptable", "passed"))

accuracy <- sum(diag(cmat)) / sum(cmat)
deviance <- calcDeviance(dframe[[predvar]], dframe$fail)

list(confusion_matrix = cmat,
accuracy = accuracy,
deviance = deviance)

}

confmat(cars_test, "pred_glm")
$confusion_matrix
prediction
truth passed unacceptable
passed 150 9
unacceptable 17 323
##
$accuracy
[1] 0.9478958
##
$deviance
[1] 97.14902

In this case, the model seems to be good. However, you cannot always trust non-
converged models, or models with needlessly large coefficients.

In situations where you see suspiciously large coefficients with extremely large stan-
dard errors, whether due to collinearity or quasi-separation, we recommend regular-
ization.1 Regularization adds a penalty to the formulation that biases the model’s
coefficients towards zero. This makes it harder for the solver to drive the coefficients
to unnecessarily large values.

Listing 7.25 The logistic model’s test performance

1 Some people suggest using principal components regression (PCR) to deal with collinear variables: PCR uses
the existing variables to create synthetic variables that are mutually orthogonal, eliminating the collinearities.
This won’t help with quasi-separation. We generally prefer regularization.

Attaches the sigr package for
deviance calculation (sigr includes
a number of goodness-of-fit
summaries and tests)

Gets the model’s
predictions on the test set

Convenience function to
print confusion matrix,
accuracy, and deviance
Licensed to Ajit de Silva <agdesilva@gmail.com>

262 CHAPTER 7 Linear and logistic regression
7.3.2 The types of regularized regression

There are multiple types of regularized regression, each defined by the penalty that is
put on the model’s coefficients. Here we cover the different regularization
approaches.

RIDGE REGRESSION

Ridge regression (or L2-regularized regression) tries to minimize the training prediction
error, subject to also minimizing the sum of the squared magnitudes of the coeffi-
cients.1 Let’s look at ridge regularized linear regression. Remember that linear regres-
sion tries to find the coefficients b such that

f(x[i,]) = b[0] + b[1] x[i,1] + ... b[n] x[i,n]

is as close as possible to y[i] for all the training data. It does this by minimizing
(y - f(x))^2, the sum of the squared error between y and f(x). Ridge regression
tries to find the b that minimizes

(y - f(x))^2 + lambda * (b[1]^2 + ... + b[n]^2)

where lambda >= 0. When lambda = 0, this reduces to regular linear regression; the
larger lambda is, the harder the algorithm will penalize large coefficients. The expres-
sion for regularized logistic regression is similar.

1 This is called “the L2 norm of the vector of coefficients,” hence the name.

Regarding overfitting
The modeling goal is to predict well on future application data. Improving your mea-
sured performance on training data does not always do this. This is what we’ve been
discussing as overfit. Regularization degrades the quality of the training data fit, in
the hope of improving future model performance.

How ridge regression affects coefficients
When variables are nearly collinear, ridge regression tends to average the collinear
variables together. You can think of this as “ridge regression shares the credit.”

For instance, let’s go back to the example of fitting a linear regression for log income
using both age and years in workforce (which are nearly collinear). Recall that being
one year older/one year longer in the workforce increases log income by one unit in
the training data.

In this situation, ridge regression might assign both variables age and
years_in_workforce a coefficient of 0.5, which adds up to the appropriate effect.
Licensed to Ajit de Silva <agdesilva@gmail.com>

263Regularization
LASSO REGRESSION

Lasso regression (or L1-regularized regression) tries to minimize the training prediction
error, subject to also minimizing the sum of the absolute value of the coefficients.1 For
linear regression, this looks like minimizing

(y - f(x))^2 + lambda * (abs(b[1]) + abs(b[2]) + abs(b[n]))

ELASTIC NET

In some situations, like quasi-separability, the ridge solution may be preferred. In
other situations, such as when you have a very large number of variables, many of
which are correlated to each other, the lasso may be preferred. You may not be sure
which is the best approach, so one compromise is to combine the two. This is called
elastic net. The penalty of using elastic net is a combination of the ridge and the lasso
penalties:

(1 - alpha) * (b[1]^2 + ... + b[n]^2) +
alpha * (abs(b[1]) + abs(b[2]) + abs(b[n]))

When alpha = 0, this reduces to ridge regression; when alpha = 1, it reduces to lasso.
Different values of alpha between 0 and 1 give different trade-offs between sharing
the credit among correlated variables, and only keeping a subset of them.

7.3.3 Regularized regression with glmnet

All the types of regularized regression that we’ve discussed are implemented in R by
the package glmnet. Unfortunately, the glmnet package uses a calling interface that is
not very R-like; in particular, it expects that the input data is a numeric matrix rather
than a data frame. So we’ll use the glmnetUtils package to provide a more R-like
interface to the functions.

1 Or the “L1 norm of the vector of coefficients.”

How lasso regression affects coefficients
When variables are nearly collinear, lasso regression tends to drive one or more of
them to zero. So in the income scenario, lasso regression might assign
years_in_workforce a coefficient of 1 and age a coefficient of 0.a For this reason,
lasso regression is often used as a form of variable selection. A larger lambda will
tend to drive more coefficients to zero.

a As Hastie et al. point out in The Elements of Statistical Learning, 2nd ed (Springer, 2009), which
of the correlated variables get zeroed out is somewhat arbitrary.
Licensed to Ajit de Silva <agdesilva@gmail.com>

264 CHAPTER 7 Linear and logistic regression
Let’s compare the different regularization approaches on the car-ratings prediction
problem.

THE RIDGE REGRESSION SOLUTION

When reducing the number of variables is not an issue, we generally try ridge regres-
sion first, because it’s a smoother regularization that we feel retains the most interpret-
ability for the coefficients (but see the warning later in this section). The parameter
alpha specifies the mixture of ridge and lasso penalties (0=ridge, 1=lasso); so for ridge
regression, set alpha = 0. The parameter lambda is the regularization penalty.

Since you generally don’t know the best lambda, the original function glmnet::
glmnet() tries several values of lambda (100 by default) and returns the models corre-
sponding to each value. The function glmnet::cv.glmnet() in addition does the
cross-validation needed to pick the lambda that gives the minimum cross-validation
error for a fixed alpha, and returns it as the field lambda.min. It also returns a value
lambda.1se, the largest value of lambda such that the error is within 1 standard error
of the minimum. This is shown in figure 7.18.

The function glmnetUtils::cv.glmnet() lets you call the cross-validated version
in an R-friendlier way.

When using regularized regression, it’s a good idea to standardize, or center and
scale the data (see section 4.2.2). Fortunately, cv.glmnet() does this by default. If for
some reason you want to turn this off (perhaps you have already standardized the
data), use the parameter standardize = FALSE.1

library(glmnet)
library(glmnetUtils)

(model_ridge <- cv.glmnet(fmla,
cars_train,
alpha = 0,
family = "binomial"))

Listing 7.26 Fitting the ridge regression model

1 For help/documentation on glmnetUtils::cv.glmnet(), see help(cv.glmnet, package = "glmnet-
Utils"), help(cv.glmnet, package = "glmnet"), and help(glmnet, package = "glmnet").

Calling interfaces
It would be best if all modeling procedures had the same calling interface. The lm()
and glm() packages nearly do, and glmnetUtils helps make glmnet more compat-
ible with R’s calling interface conventions.

However, to use a given method correctly, you must know some things about its par-
ticular constraints and consequences. This means that even if all modeling methods
had the same calling interface, you still must study the documentation to understand
how to use it properly.

For logistic regression-style
models, use family = “binomial”.
For linear regression-style
models, use family = “gaussian”.
Licensed to Ajit de Silva <agdesilva@gmail.com>

265Regularization
Call:
cv.glmnet.formula(formula = fmla, data = cars_train, alpha = 0,
family = "binomial")
##
Model fitting options:
Sparse model matrix: FALSE
Use model.frame: FALSE
Number of crossvalidation folds: 10
Alpha: 0
Deviance-minimizing lambda: 0.02272432 (+1 SE): 0.02493991

Printing out model_ridge tells you the lambda that corresponds to the minimum
cross-validation error (the deviance)—that is, model_ridge$lambda.min. It also
reports the value of model_ridge$lambda.1se.

Remember that cv.glmnet() returns 100 (by default) models; of course, you
really only want one—the “best” one. As shown in figure 7.18, when you call a func-
tion like predict() or coef(), the cv.glmnet object by default uses the model

cva.glmnet

training data

cvgmodel

model 1

model n

model 100
crossval

error

�.1se

�.min is the���for the model with
the minimum crossval error.

�.1se corresponds to the model
with crossval error one standard

deviation above the minimum
(a conservative “near best” model).

predict(cvgmodel, …)

By default, predict()
and other functions on the
cv.glmnet model object use
the��.1se model to produce
predictions and other output.

�.min

cv.glmnet model object
is 100 models, each with

a different value of����

λ

Figure 7.18 Schematic of cv.glmnet()
Licensed to Ajit de Silva <agdesilva@gmail.com>

266 CHAPTER 7 Linear and logistic regression
corresponding to lambda.1se, as some people consider lambda.1se less likely to be
overfit than lambda.min.

The following listing examines the coefficients of the lambda.1se model. If you
want to see the model corresponding to lambda.min, replace the first line of the list-
ing with (coefs <- coef(model_ridge, s = model_ridge$lambda.min)).

(coefs <- coef(model_ridge))

22 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) 2.01098708
car_pricehigh 0.34564041
car_pricelow -0.76418240
car_pricemed -0.62791346
car_pricevhigh 1.05949870
maint_pricehigh 0.18896383
maint_pricelow -0.72148497
maint_pricemed -0.60000546
maint_pricevhigh 1.14059599
doors2 0.37594292
doors3 0.01067978
doors4 -0.21546650
doors5more -0.17649206
persons2 2.61102897
persons4 -1.35476871
personsmore -1.26074907
lug_bootbig -0.52193562
lug_bootmed -0.18681644
lug_bootsmall 0.68419343
safetyhigh -1.70022006
safetylow 2.54353980
safetymed -0.83688361

coef_frame <- data.frame(coef = rownames(coefs)[-1],
value = coefs[-1,1])

ggplot(coef_frame, aes(x = coef, y = value)) +
geom_pointrange(aes(ymin = 0, ymax = value)) +
ggtitle("Coefficients of ridge model") +
coord_flip()

Notice that cv.glmnet() does not use reference levels for categorical variables: for
instance, the coefs vector includes the variables persons2, persons4, and personsmore,
corresponding to the levels 2, 4, and “more” for the persons variable. The logistic
regression model in section 7.3.1 used the variables persons4 and personsmore, and
used the level value 2 as the reference level. Using all the variable levels when regulariz-
ing has the advantage that the coefficient magnitudes are regularized toward zero,
rather than toward a (possibly arbitrary) reference level.

You can see in figure 7.19 that this model no longer has the unusually large magni-
tudes. The directions of the coefficients suggest that low safety ratings, small cars, and

Listing 7.27 Looking at the ridge model’s coefficients

Note that all the levels of the
categorical variable persons are
present (no reference level).
Licensed to Ajit de Silva <agdesilva@gmail.com>

267Regularization
very high purchase or maintenance price all positively predict rating of unacceptable.
One might suspect that small cars correlate with low safety ratings, so safetylow and
persons2 are probably sharing the credit.

REGULARIZATION AFFECTS INTERPRETABILITY Because regularization adds an
additional term to the algorithm’s optimization function, you can’t quite
interpret the coefficients the same way you did in sections 7.1.4 and 7.2.4. For
instance, no coefficient significances are reported. However, you can at least
use the signs of the coefficients as indications of which variables are positively
or negatively correlated with the outcome in the joint model.

You can also evaluate the performance of model_ridge on the test data.

prediction <- predict(model_ridge,
newdata = cars_test,
type = "response")

cars_test$pred_ridge <- as.numeric(prediction)

confmat(cars_test, "pred_ridge")
$confusion_matrix
prediction

Listing 7.28 Looking at the ridge model’s test performance

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

car_pricehigh

car_pricelow

car_pricemed

car_pricevhigh

doors2

doors3

doors4

doors5more

lug_bootbig

lug_bootmed

lug_bootsmall

maint_pricehigh

maint_pricelow

maint_pricemed

maint_pricevhigh

persons2

persons4

personsmore

safetyhigh

safetylow

safetymed

−1 0 1 2

value

co
ef

Coefficients of ridge model

Figure 7.19 Coefficients of the ridge regression model

The prediction variable is a
1-d matrix; convert it to a
vector before adding it to
the cars_test data frame.
Licensed to Ajit de Silva <agdesilva@gmail.com>

268 CHAPTER 7 Linear and logistic regression
truth passed unacceptable
passed 147 12
unacceptable 16 324
##
$accuracy
[1] 0.9438878
##
$deviance
[1] 191.9248

To look at the predictions for the model corresponding to lambda.min, replace the
first command of the preceding listing with this:

prediction <- predict(model_ridge,
newdata = cars_test,
type="response",
s = model_ridge$lambda.min)

THE LASSO REGRESSION SOLUTION

You can run the same steps as in the previous section with alpha = 1 (the default) to
fit a lasso regression model. We leave fitting the model as an exercise for the reader;
here are the results.

22 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) -3.572506339
car_pricehigh 2.199963497
car_pricelow -0.511577936
car_pricemed -0.075364079
car_pricevhigh 3.558630135
maint_pricehigh 1.854942910
maint_pricelow -0.101916375
maint_pricemed -0.009065081
maint_pricevhigh 3.778594043
doors2 0.919895270
doors3 .
doors4 -0.374230464
doors5more -0.300181160
persons2 9.299272641
persons4 -0.180985786
personsmore .
lug_bootbig -0.842393694
lug_bootmed .
lug_bootsmall 1.886157531
safetyhigh -1.757625171
safetylow 7.942050790
safetymed .

As you see in figure 7.20, cv.glmnet() did not reduce the magnitudes of the largest
coefficients as much, although it did zero out a few variables (doors3, personsmore,
lug_boot_med, safety_med), and it selected a similar set of variables as strongly pre-
dictive of an unacceptable rating.

Listing 7.29 The lasso model’s coefficients
Licensed to Ajit de Silva <agdesilva@gmail.com>

269Regularization
The lasso model’s accuracy on the test data is similar to the ridge model’s, but the
deviance is much lower, indicating better model performance on the test data.

$confusion_matrix
prediction
truth passed unacceptable
passed 150 9
unacceptable 17 323
##
$accuracy
[1] 0.9478958
##
$deviance
[1] 112.7308

THE ELASTIC NET SOLUTION: PICKING ALPHA

The cv.glmnet() function only optimizes over lambda; it assumes that alpha, the vari-
able that specifies the mix of the ridge and lasso penalties, is fixed. The glmnetUtils
package provides a function called cva.glmnet() that will simultaneously cross-
validate for both alpha and lambda.

Listing 7.30 The lasso model’s test performance

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

car_pricehigh

car_pricelow

car_pricemed

car_pricevhigh

doors2

doors3

doors4

doors5more

lug_bootbig

lug_bootmed

lug_bootsmall

maint_pricehigh

maint_pricelow

maint_pricemed

maint_pricevhigh

persons2

persons4

personsmore

safetyhigh

safetylow

safetymed

0.0 2.5 5.0 7.5
value

co
ef

Coefficients of lasso model

Figure 7.20 Coefficients of the lasso regression model
Licensed to Ajit de Silva <agdesilva@gmail.com>

270 CHAPTER 7 Linear and logistic regression
(elastic_net <- cva.glmnet(fmla,
cars_train,
family = "binomial"))

Call:
cva.glmnet.formula(formula = fmla, data = cars_train, family = "binomial")
##
Model fitting options:
Sparse model matrix: FALSE
Use model.frame: FALSE
Alpha values: 0 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1
Number of crossvalidation folds for lambda: 10

The process of extracting the best model is a bit involved. Unlike cv.glmnet, cva.
glmnet doesn’t return an alpha.min or an alpha.1se. Instead, the field elastic_
net$alpha returns all the alphas that the function tried (11 of them, by default), and
elastic_net$modlist returns all the corresponding glmnet::cv.glmnet model
objects (see figure 7.21). Each one of these model objects is really 100 models, so for a
given alpha, we’ll choose the lambda.1se model as “the best model.”

Listing 7.31 Cross-validating for both alpha and lambda

cva.glmnet

training data cva.glmnet model object

alpha: modlist:

0
�2
�3
�4
�5
�6
�7
�8
�9
�10

1

1
1

1
1

1
1

1
1

1
1

cvgmodel
11

modlist: list of cv.glmnet
models, one per����

�

For each
cvgmodel, get

crossval error of
�.1se model

crossval
error

best_�

Figure 7.21 Schematic of using cva.glmnet to pick alpha
Licensed to Ajit de Silva <agdesilva@gmail.com>

271Regularization
The following listing implements the process sketched in figure 7.21 to get the mean
cross-validation error for each “best model,” and plot the errors as a function of alpha
(figure 7.22). You can create a similar plot using the function minlossplot(elastic_
net), but the following listing also returns the value of the best tested alpha.

get_cvm <- function(model) {
index <- match(model$lambda.1se, model$lambda)

model$cvm[index]
}

enet_performance <- data.frame(alpha = elastic_net$alpha)
models <- elastic_net$modlist
enet_performance$cvm <- vapply(models, get_cvm, numeric(1))

minix <- which.min(enet_performance$cvm)
(best_alpha <- elastic_net$alpha[minix])
[1] 0.729

Listing 7.32 Finding the minimum error alpha

●●

●

● ● ●
● ● ●

● ●0.25

0.30

0.35

0.40

0.00 0.25 0.50 0.75 1.00

alpha

cv
m

CV loss as a function of alpha

Figure 7.22 Cross-validation error as a function of alpha

A function to get the mean cross-
validation error of a cv.glmnet
lambda.1se model

Gets the alphas that
the algorithm tried

Gets the model
objects produced

Gets the errors of
each best model

Finds the minimum
cross-validation errorGets the corresponding alpha
Licensed to Ajit de Silva <agdesilva@gmail.com>

272 CHAPTER 7 Linear and logistic regression
ggplot(enet_performance, aes(x = alpha, y = cvm)) +
geom_point() +

geom_line() +
geom_vline(xintercept = best_alpha, color = "red", linetype = 2) +
ggtitle("CV loss as a function of alpha")

Remember that both cv.glmnet and cva.glmnet are randomized, so the results can vary
from run to run. The documentation for glmnetUtils (https://cran.r-project.org/
web/packages/glmnetUtils/vignettes/intro.html) recommends running cva.glmnet
multiple times to reduce the noise. If you want to cross-validate for alpha, we suggest
calculating the equivalent of enet_performance multiple times, and averaging the val-
ues of the cvm column together—the alpha values will be identical from run to run,
although the corresponding lambda.1se values may not be. After you’ve determined
the alpha that corresponds to the best average cvm, call cv.glmnet one more time with
the chosen alpha to get the final model.

(model_enet <- cv.glmnet(fmla,
cars_train,
alpha = best_alpha,
family = "binomial"))

Call:
cv.glmnet.formula(formula = fmla, data = cars_train, alpha = best_alpha,
family = "binomial")
##
Model fitting options:
Sparse model matrix: FALSE
Use model.frame: FALSE
Number of crossvalidation folds: 10
Alpha: 0.729
Deviance-minimizing lambda: 0.0002907102 (+1 SE): 0.002975509

prediction <- predict(model_enet,
newdata = cars_test,
type = "response")

cars_test$pred_enet <- as.numeric(prediction)

confmat(cars_test, "pred_enet")

$confusion_matrix
prediction
truth passed unacceptable
passed 150 9
unacceptable 17 323
##
$accuracy
[1] 0.9478958
##
$deviance
[1] 117.7701

Listing 7.33 Fitting and evaluating the elastic net model

Plots the model performances
as a function of alpha
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://cran.r-project.org/web/packages/glmnetUtils/vignettes/intro.html
https://cran.r-project.org/web/packages/glmnetUtils/vignettes/intro.html
https://cran.r-project.org/web/packages/glmnetUtils/vignettes/intro.html

273Summary
It’s also worth noting that in this case, the cross-validated loss falls off quite quickly
after alpha=0, so in practice, almost any non-zero alpha will give models of similar
quality.

Summary
Both linear and logistic regression assume that the outcome is a function of a linear
combination of the inputs. This seems restrictive, but in practice linear and logistic
regression models can perform well even when the theoretical assumptions aren’t
exactly met. We’ll show how to further work around these limits in chapter 10.

Linear and logistic regression can also provide advice by quantifying the relation-
ships between the outcomes and the model’s inputs. Since the models are expressed
completely by their coefficients, they’re small, portable, and efficient—all valuable
qualities when putting a model into production. If the model’s errors are uncor-
related with y, the model might be trusted to extrapolate predictions outside the train-
ing range. Extrapolation is never completely safe, but it’s sometimes necessary.

In situations where variables are correlated or the prediction problem is quasi-
separable, linear methods may not perform as well. In these cases, regularization
methods can produce models that are safer to apply to new data, although the coeffi-
cients of these models are not as useful for advice about the relationships between
variables and the outcome.

While learning about linear models in this chapter, we have assumed that the data
is well behaved: the data has no missing values, the number of possible levels for cate-
gorical variables is low, and all possible levels are present in the training data. In real-
world data, these assumptions are not always true. In the next chapter, you will learn
about advanced methods to prepare ill-behaved data for modeling.

In this chapter you have learned

 How to predict numerical quantities with linear regression models
 How to predict probabilities or classify using logistic regression models
 How to interpret the diagnostics from lm() and glm() models
 How to interpret the coefficients of linear models
 How to diagnose when a linear model may not be “safe” or not as reliable (col-

linearity, quasi-separation)
 How to use glmnet to fit regularized linear and logistic regression models
Licensed to Ajit de Silva <agdesilva@gmail.com>

Advanced
data preparation
In our last chapter, we built substantial models on nice or well-behaved data. In this
chapter, we will learn how to prepare or treat messy real-world data for modeling.
We will use the principles of chapter 4 and the advanced data preparation package:
vtreat. We will revisit the issues that arise with missing values, categorical variables,
recoding variables, redundant variables, and having too many variables. We will
spend some time on variable selection, which is an important step even with cur-
rent machine learning methods. The mental model summary (figure 8.1) of this
chapter emphasizes that this chapter is about working with data and preparing for
machine learning modeling. We will first introduce the vtreat package, then work
a detailed real-world problem, and then go into more detail about using the vtreat
package.

This chapter covers
 Using the vtreat package for advanced data preparation

 Cross-validated data preparation
274

Licensed to Ajit de Silva <agdesilva@gmail.com>

275The purpose of the vtreat package
8.1 The purpose of the vtreat package
vtreat is an R package designed to prepare real-world data for supervised learning or
predictive modeling. It is designed to deal with a lot of common issues, so the data sci-
entist doesn’t have to. This leaves them much more time to find and work on unique
domain-dependent issues. vtreat is an excellent realization of the concepts discussed
in chapter 4 as well as many other concepts. One of the goals of chapter 4 was to give
you an understanding of some of the issues we can run into working with data, and
principled steps to take in dealing with such data. vtreat automates these steps into a
high-performance production-capable package, and is a formally citable methodology
you can incorporate into your own work. We can’t succinctly explain everything vtreat
does with data, as it does a lot; for details please see the long-form documentation
here: https://arxiv.org/abs/1611.09477. In addition, vtreat has many explanatory
vignettes and worked examples here: https://CRAN.R-project.org/package=vtreat.

We will work through vtreat’s capabilities in this chapter using an example of pre-
dicting account cancellation (called customer churn) using the KDD Cup 2009 dataset.
In this example scenario, we will use vtreat to prepare the data for use in later mod-
eling steps. Some of the issues vtreat helps with include the following:

 Missing values in numeric variables
 Extreme or out-of-range values in numeric variables
 Missing values in categorical variables

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 8.1 Mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://arxiv.org/abs/1611.09477
https://CRAN.R-project.org/package=vtreat

276 CHAPTER 8 Advanced data preparation
 Rare values in categorical data
 Novel values (values seen during testing or application, but not during train-

ing) in categorical data
 Categorical data with very many possible values
 Overfit due to a large number of variables
 Overfit due to “nested model bias”

The basic vtreat workflow (shown in figure 8.2) is to use some of the training data to
create a treatment plan that records key characteristics of the data such as relationships
between individual variables and the outcome. This treatment plan is then used to pre-
pare data that will be used to fit the model, as well as to prepare data that the model
will be applied to. The idea is that this prepared or treated data will be “safe,” with no
missing or unexpected values, and will possibly have new synthetic variables that will
improve the model fitting. In this sense, vtreat itself looks a lot like a model.

We saw a simple use of vtreat in chapter 4 to treat missing values. In this chapter, we will
use vtreat’s full coding power on our customer churn example. For motivation, we will
solve the KDD Cup 2009 problem, and then we will discuss how to use vtreat in general.

available
training
data

random
split

treatment
design
data

model
training

data

hold-out
test data

vtreat::
designTreatments*()

treatment
plan

model
training data

used to
build models

model
training
data

hold-out
test data

hold-out test
data used
to estimate

model quality

Step 2: prepare training and
 test/evaluation

build model model

Estimate of
quality of model

on future
application data

creates
creates

creates

creates creates

creates

vtreat::
prepare()

treatment
plan

vtreat::
prepare()

3-way split

creates creates

Step 1: organize data and design
treatment plan

Figure 8.2 vtreat three-way split strategy
Licensed to Ajit de Silva <agdesilva@gmail.com>

277KDD and KDD Cup 2009
The KDD Cup 2009 provided a dataset about customer relationship management.
This contest data supplied 230 facts about 50,000 credit card accounts. From these
features, one of the contest goals was to predict account cancellation (called churn).

The basic way to use vtreat is with a three-way data split: one set for learning the
data treatment, one for modeling, and a third for estimating the model quality on new
data. Figure 8.2 shows the concept, which will serve as a good mnemonic once we have
worked an example. As the diagram shows, to use vtreat in this manner, we split the
data three ways and use one subset to prepare the treatment plan. Then we use the
treatment plan to prepare the other two subsets: one subset to fit the desired model,
and the other subset to evaluate the fitted model. The process may seem complicated,
but from the user’s point of view it is very simple.

Let’s start with a look at an example scenario using vtreat with the KDD Cup 2009
account cancellation prediction problem.

8.2 KDD and KDD Cup 2009

 Example We are given the task of predicting which credit card accounts will cancel in
a given time period. This sort of cancellation is called churn. To build our model, we
have supervised training data available. For each account in the training data, we have
hundreds of measured features and we know whether the account later cancelled. We
want to build a model that identifies “at risk of canceling” accounts in this data, as well
as for future application.

To simulate this scenario, we will use the KDD Cup 2009 contest dataset.1

1 We share the data and steps to prepare this data for modeling in R here: https://github.com/WinVector/
PDSwR2/tree/master/KDD2009.

Shortcomings of the data
As with many score-based competitions, this contest concentrated on machine learn-
ing and deliberately abstracted out or skipped over a number of important data sci-
ence issues, such as cooperatively defining goals, requesting new measurements,
collecting data, and quantifying classifier performance in terms of business goals.
For this contest data, we don’t have names or definitions for any of the independent
(or input) variablesa and no real definition of the dependent (or outcome) variables.
We have the advantage that the data comes in a ready-to-model format (all input vari-
ables and the results arranged in single rows). But we don’t know the meaning of any
variable (so we unfortunately can’t join in outside data sources), and we can’t use
any method that treats time and repetition of events carefully (such as time series
methods or survival analysis).

a We’ll call variables or columns used to build the model variously variables, independent vari-
ables, input variables, and so on to try and distinguish them from the value to be predicted
(which we’ll call the outcome or dependent variable).
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/KDD2009
https://github.com/WinVector/PDSwR2/tree/master/KDD2009
https://github.com/WinVector/PDSwR2/tree/master/KDD2009

278 CHAPTER 8 Advanced data preparation
To simulate the data science processes, we’ll assume that we can use any column we’re
given to make predictions (that all of these columns are known prior to needing a
prediction).2 We will assume the contest metric (AUC, or area under the curve as dis-
cussed in section 6.2.5) is the correct one, and the AUC of the top contestant is a good
upper bound (telling us when to stop tuning).3

8.2.1 Getting started with KDD Cup 2009 data

For our example, we’ll try to predict churn in the KDD dataset. The KDD contest was
judged in terms of AUC (area under the curve, a measure of prediction quality discussed
in section 6.2.5), so we’ll also use AUC as our measure of performance.4 The winning
team achieved an AUC of 0.76 on churn, so we’ll treat that as our upper bound on
possible performance. Our lower bound on performance is an AUC of 0.5, as an AUC
below 0.5 is worse than random predictions.

This problem has a large number of variables, many of which are categorical vari-
ables that have a large number of possible levels. As we will see, such variables are
especially liable to overfit, even during the process of creating the treatment plan.
Because of this concern, we’ll split our data into three sets: training, calibration, and
test. In the following example, we’ll use the training set to design the treatment plan,
and the calibration set to check for overfit in the treatment plan. The test set is
reserved for a final estimate of model performance. This three-way split procedure is
recommended by many researchers.5

Let’s start work as shown in the following listing, where we prepare the data for
analysis and modeling.6

d <- read.table('orange_small_train.data.gz',
header = TRUE,
sep = '\t',
na.strings = c('NA', ''))

2 Checking if a column is actually going to be available during prediction (and not some later function of the
unknown output) is a critical step in data science projects.

3 AUC is a good initial screening metric, as it measures if any monotone transformation of your score is a good
score. For fine tuning, we will use R-squared and pseudo R-squared (also defined in chapter 6) as they are
stricter, measuring if the exact values at hand are good scores.

4 Also, as is common for example problems, we have no project sponsor to discuss metrics with, so our choice
of evaluation is a bit arbitrary.

5 Normally, we would use the calibration set to design the treatment plan, the training set to train the model,
and the test set to evaluate the model. Since the focus of this chapter is on the data treatment process, we’ll
use the largest set (dTrain) to design the treatment plan, and the other sets to evaluate it.

Listing 8.1 Preparing the KDD data for analysis

6 Please either work in the KDD2009 subdirectory of the PDSwR2 support materials, or copy the relevant files
to where you are working. The PDSwR2 support materials are available from https://github.com/WinVector/
PDSwR2, and instructions for getting started can be found in appendix A.

Reads the file of independent variables. All the data is from
https://github.com/WinVector/PDSwR2/tree/master/KDD2009.

Treats both NA and the empty
string as missing data
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2/tree/master/KDD2009

279KDD and KDD Cup 2009

he
r
r

lts.

on,

fies
le()
id

 with
), if
age
churn <- read.table('orange_small_train_churn.labels.txt',
header = FALSE, sep = '\t')

d$churn <- churn$V1

set.seed(729375)
rgroup <- base::sample(c('train', 'calibrate', 'test'),

nrow(d),
prob = c(0.8, 0.1, 0.1),
replace = TRUE)

dTrain <- d[rgroup == 'train', , drop = FALSE]
dCal <- d[rgroup == 'calibrate', , drop = FALSE]
dTrainAll <- d[rgroup %in% c('train', 'calibrate'), , drop = FALSE]
dTest <- d[rgroup == 'test', , drop = FALSE]

outcome <- 'churn'
vars <- setdiff(colnames(dTrainAll), outcome)

rm(list=c('d', 'churn', 'rgroup'))

We have also saved an R workspace with most of the data, functions, and results of this
chapter in the GitHub repository, which you can load with the command
load('KDD2009.Rdata'). We’re now ready to build some models.

We want to remind the reader: always look at your data. Looking at your data is the
quickest way to find surprises. Two functions are particularly helpful for taking an ini-
tial look at your data: str() (which shows the structure of the first few rows in trans-
posed form) and summary().

Exercise: Using str() and summary()

Before moving on, please run all of the steps in listing 8.1, and then try running str(dTrain)
and summary(dTrain) yourself. We try to avoid overfit by not making modeling decisions based
on looking at our holdout data.

CHARACTERIZING THE OUTCOME

Before starting on modeling, we should look at the distribution of the outcome. This
tells how much variation there is to even attempt to predict. We can do this as follows:

outcome_summary <- table(
churn = dTrain[, outcome],
useNA = 'ifany')

knitr::kable(outcome_summary)

Reads the known
churn outcomes Adds churn as a new column By setting the seed to t

pseudo-random numbe
generator, we make ou
work reproducible:
someone redoing it will
see the exact same resu

Splits data into
train, calibrati
and test sets.
Explicitly speci
the base::samp
function to avo
name collision
dplyr::sample(
the dplyr pack
is loaded.Removes unneeded

objects from the
workspace

Subsample to prototype quickly
Often the data scientist will be so engrossed with the business problem, math, and
data that they forget how much trial and error is needed. It’s often an excellent idea
to first work on a small subset of your training data, so that it takes seconds to debug
your code instead of minutes. Don’t work with large and slow data sizes until you
have to.

Tabulates levels of
churn outcome

Includes NA values
in the tabulation
Licensed to Ajit de Silva <agdesilva@gmail.com>

280 CHAPTER 8 Advanced data preparation
outcome_summary["1"] / sum(outcome_summary)
1
0.07347764

The table in figure 8.3 indicates that churn takes on two val-
ues: –1 and 1. The value 1 (indicating a churn, or cancella-
tion of account, has happened) is seen about 7% of the
time. So we could trivially be 93% accurate by predicting
that no account ever cancels, though obviously this is not a
useful model!7

8.2.2 The bull-in-the-china-shop approach

Let’s deliberately ignore our advice to look at the data, to look at the columns, and to
characterize the relations between the proposed explanatory variables and the quan-
tity to be predicted. For this first attempt, we aren’t building a treatment plan, so we’ll
use both the dTrain and dCal data together to fit the model (as the set dTrainAll).
Let’s see what happens if we jump in and immediately try to build a model for churn
== 1, given the explanatory variables (hint: it won’t be pretty).

library("wrapr")

outcome <- 'churn'
vars <- setdiff(colnames(dTrainAll), outcome)

formula1 <- mk_formula("churn", vars, outcome_target = 1)
model1 <- glm(formula1, data = dTrainAll, family = binomial)

Error in `contrasts ...

As we can see, this first attempt failed. Some research will show us that some of the col-
umns we are attempting to use as explanatory variables do not vary and have the exact
same value for every row or example. We could attempt to filter these bad columns
out by hand, but fixing common data issues in an ad hoc manner is tedious. For exam-
ple, listing 8.3 shows what happens if we try to use just the first explanatory variable
Var1 to build a model.

7 See http://www.win-vector.com/blog/2009/11/i-dont-think-that-means-what-you-think-it-means-statistics-to-
english-translation-part-1-accuracy-measures/.

Listing 8.2 Attempting to model without preparation

Estimates the observed
churn rate or prevalence

Attaches the wrapr package for
convenience functions, such as
mk_formula()

Builds a model formula specification, asking
churn == 1 to be predicted as a function of
our explanatory variables

Asks the glm() function
to build a logistic
regression model

The attempt failed
with an error.

Figure 8.3 KDD2009
churn rate
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://www.win-vector.com/blog/2009/11/i-dont-think-that-means-what-you-think-it-means-statistics-to-english-translation-part-1-accuracy-measures/
http://www.win-vector.com/blog/2009/11/i-dont-think-that-means-what-you-think-it-means-statistics-to-english-translation-part-1-accuracy-measures/

281KDD and KDD Cup 2009
model2 <- glm((churn == 1) ~ Var1, data = dTrainAll, family = binomial)
summary(model2)
#
Call:
glm(formula = (churn == 1) ~ Var1, family = binomial, data = dTrainAll)
#
Deviance Residuals:
Min 1Q Median 3Q Max
-0.3997 -0.3694 -0.3691 -0.3691 2.3326
#
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6523837 0.1674387 -15.841 <2e-16 ***
Var1 0.0002429 0.0035759 0.068 0.946

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
(Dispersion parameter for binomial family taken to be 1)
#
Null deviance: 302.09 on 620 degrees of freedom
Residual deviance: 302.08 on 619 degrees of freedom
(44407 observations deleted due to missingness)
AIC: 306.08
#
Number of Fisher Scoring iterations: 5

dim(dTrainAll)
[1] 45028 234

We saw how to read the model summary in detail in section 7.2. What jumps out here
is the line “44407 observations deleted due to missingness.” This means the modeling
procedures threw out 44407 of our 45028 training rows, building a model on the
remaining 621 rows of data. So in addition to columns that do not vary, we have col-
umns that have damaging amounts of missing values.

The data problems do not end there. Take a look at another variable, this time the
one named Var200:

head(dTrainAll$Var200)
[1] <NA> <NA> vynJTq9 <NA> 0v21jmy <NA>
15415 Levels: _84etK_ _9bTOWp _A3VKFm _bq4Nkb _ct4nkXBMp ... zzQ9udm

length(unique(dTrainAll$Var200))
[1] 14391

Listing 8.3 Trying just one variable

Explanatory variables
Explanatory variables are columns or variables we are trying to use as inputs for our
model. In this case, the variables came to us without informative names, so they go
by the names Var# where # is a number. In a real project, this would be a possible
sign of uncommitted data-managing partners, and something to work on fixing before
attempting modeling.

This means the modeling
procedure threw out this
much (almost all) of our
training data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

282 CHAPTER 8 Advanced data preparation
The head() command shows us the first few values of Var200, telling us this column
has string values encoded as factors. Factors are R’s representation for strings taken
from a known set. And this is where an additional problem lies. Notice the listing says
the factor has 15415 possible levels. A factor or string variable with this many distinct
levels is going to be a big problem in terms of overfitting and also difficult for the
glm() code to work with. In addition, the length(unique(dTrainAll$Var200)) sum-
mary tells us that Var200 takes on only 14391 distinct values in our training sample.
This tells us our training data sample did not see all known values for this variable.
Our held-out test set contains, in addition to values seen during training, new values
not in the training set. This is quite common for string-valued or categorical variables
with a large number of levels, and causes most R modeling code to error-out when try-
ing to make predictions on new data.

We could go on. We have not yet exhausted the section 8.1 list of things that can
commonly go wrong. At this point, we hope the reader will agree: a sound systematic
way of identifying, characterizing, and mitigating common data quality issues would
be a great help. Having a good way to work though common data quality issues in a
domain-independent way leaves us more time to work with the data and work through
any domain-specific issues. The vtreat package is a great tool for this task. For the
rest of this chapter, we will work a bit with the KDD Cup 2009 data, and then master
using vtreat in general.

8.3 Basic data preparation for classification
vtreat prepares data for use by both cleaning up existing columns or variables and by
introducing new columns or variables. For our order cancellation scenario, vtreat
will address the missing values, the categorical variables with very many levels, and
other issues. Let’s master the vtreat process here.

First, we’ll use a portion of our data (the dTrain set) to design our variable
treatments.

library("vtreat")

(parallel_cluster <- parallel::makeCluster(parallel::detectCores()))

treatment_plan <- vtreat::designTreatmentsC(
dTrain,
varlist = vars,
outcomename = "churn",
outcometarget = 1,
verbose = FALSE,
parallelCluster = parallel_cluster)

Listing 8.4 Basic data preparation for classification

Attaches the vtreat package for
functions such as designTreatmentsC()

Starts up a parallel cluster
to speed up calculation. If
you don’t want a parallel
cluster, just set parallel_

cluster to NULL.

Uses designTreatmentsC() to learn
the treatment plan from the
training data. For a dataset the size
and complexity of KDD2009, this
can take a few minutes.
Licensed to Ajit de Silva <agdesilva@gmail.com>

283Basic data preparation for classification
Then, we’ll use the treatment plan to prepare cleaned and treated data. The
prepare() method builds a new data frame with the same row order as the original
data frame, and columns from the treatment plan (plus copying over the dependent
variable column if it is present). The idea is illustrated in figure 8.4. In listing 8.5, we
apply the treatment plan to the dTrain data, so we can compare the treated data to
the original data.

vtreat::prepare()treatment_plan

dTrain_treated

dTrain

creates

Figure 8.4 vtreat variable preparation
Licensed to Ajit de Silva <agdesilva@gmail.com>

284 CHAPTER 8 Advanced data preparation

e
d

dTrain_treated <- prepare(treatment_plan,
dTrain,
parallelCluster = parallel_cluster)

head(colnames(dTrain))
[1] "Var1" "Var2" "Var3" "Var4" "Var5" "Var6"
head(colnames(dTrain_treated))
[1] "Var1" "Var1_isBAD" "Var2" "Var2_isBAD" "Var3"
[6] "Var3_isBAD"

Note that the treated data both converts existing columns and introduces new col-
umns or derived variables. In the next section, we will work through what those new
variables are and how to use them.

8.3.1 The variable score frame

The vtreat process we have worked with up to now centers around design-
TreatmentsC(), which returns the treatment plan. The treatment plan is an R object
with two purposes: to be used in data preparation by the prepare() statement, and to
deliver a simple summary and initial critique of the proposed variables. This simple
summary is encapsulated in the score frame. The score frame lists the variables that will
be created by the prepare() method, along with some information about them. The
score frame is our guide to the new variables vtreat introduces to make our model-
ing work easier. Let’s take a look at the score frame:

score_frame <- treatment_plan$scoreFrame
t(subset(score_frame, origName %in% c("Var126", "Var189")))

varName "Var126" "Var126_isBAD" "Var189" "Var189_isBAD"
varMoves "TRUE" "TRUE" "TRUE" "TRUE"
rsq "0.0030859179" "0.0136377093" "0.0118934515" "0.0001004614"
sig "7.876602e-16" "2.453679e-64" "2.427376e-56" "1.460688e-01"
needsSplit "FALSE" "FALSE" "FALSE" "FALSE"
extraModelDegrees "0" "0" "0" "0"
origName "Var126" "Var126" "Var189" "Var189"
code "clean" "isBAD" "clean" "isBAD"

Listing 8.5 Preparing data with vtreat

Compares the columns of
the original dTrain data to
its treated counterpart

The name of the derived
variable or column

An indicator that this variable is not always
the same value (not a constant, which
would be useless for modeling)

The R-squared or pseudo R-squared of
the variable; what fraction of the

outcome variation this variable can
explain on its own in a linear model

The significance of th
estimated R-square

How complex the variable is; for a
categorical variable, this is related
to the number of levels.

An indicator that, when TRUE, is a warning to the
user that the variable is hiding extra degrees of
freedom (a measure of model complexity) and needs
to be evaluated using cross-validation techniques

Name of the type of transformation
used to build this variable

Name of the original column the
variable was derived from
Licensed to Ajit de Silva <agdesilva@gmail.com>

285Basic data preparation for classification
The score frame is a data.frame with one row per derived explanatory variable. Each
row shows which original variable the derived variable will be produced from (orig-
Name), what type of transform will be used to produce the derived variable (code), and
some quality summaries about the variable.

In our example, Var126 produces two new or derived variables: Var126 (a cleaned-up
version of the original Var126 that has no NA/missing values), and Var116_isBAD (an indi-
cator variable that indicates which rows of Var126 originally held missing or bad values).

The rsq column records the pseudo R-squared of the given variable, which is an
indication of how informative the variable would be if treated as a single-variable
model for the outcome. The sig column is an estimate of the significance of this
pseudo R-squared. Notice that var126_isBAD is more informative than the cleaned up
original variable var126. This indicates we should consider including var126_isBAD in
our model, even if we decide not to include the cleaned-up version of var126 itself!

Let’s look at a categorical variable. The original Var218 has two possible levels: cJvF and UYBR.

t(subset(score_frame, origName == "Var218"))

varName "Var218_catP" "Var218_catB" "Var218_lev_x_cJvF" "Var218
_lev_x_UYBR"

varMoves "TRUE" "TRUE" "TRUE" "TRUE"

rsq "0.011014574" "0.012245152" "0.005295590" "0.0019
70131"

sig "2.602574e-52" "5.924945e-58" "4.902238e-26"
"1.218959e-10"

needsSplit " TRUE" " TRUE" "FALSE" "FALSE"
extraModelDegrees "2" "2" "0" "0"
origName "Var218" "Var218" "Var218" "Var218
code "catP" "catB" "lev" "lev"

The original variable Var218 produced four derived variables. In particular, notice
that the levels cJvF and UYBR each gave us new derived columns or variables.

Level variables (lev)

Var218_lev_x_cJvF and Var218_lev_x_UYBR are indicator variables that have the
value 1 when the original Var218 had the values cJvF and UYBR respectively;8 we will

8 In a real modeling project, we would insist on meaningful level names and a data dictionary describing the
meanings of the various levels. The KDD2009 contest data did not supply such information, which is a limita-
tion of the contest data and prevents powerful methods such as using variables to join in additional informa-
tion from external data sources.

Informative missing values
In production systems, missingness is often very informative. Missingness usually
indicates the data in question was subject to some condition (temperature out of
range, test not run, or something else) and gives a lot of context in an encoded form.
We have seen many situations where the information that a variable is missing is
more informative than the cleaned-up values of the variable itself.
Licensed to Ajit de Silva <agdesilva@gmail.com>

286 CHAPTER 8 Advanced data preparation
discuss the other two variables in a bit. Recall from chapter 7 that most modeling
methods work with a categorical variable with n possible levels by converting it to n (or
n-1) binary variables, or indicator variables (sometimes referred to as one-hot encoding
or dummies). Many modeling functions in R, such as lm or glm, do this conversion
automatically; others, such as xgboost, don’t. vtreat tries to explicitly one-hot encode
categoricals when it is feasible. In this way, the data can be used either by modeling
functions like glm, or by functions like xgboost.

By default, vtreat only creates indicator variables for “non-rare” levels: levels that
appear more than 2% of the time. As we will see, Var218 also has some missing values,
but the missingness only occurs 1.4% of the time. If missingness had been more infor-
mative, then vtreat would have also created a Var218_lev_x_NA indicator, as well.

Impact variables (catB)

One-hot encoding creates a new variable for every non-rare level of a categorical
variable. The catB encoding returns a single new variable, with a numerical value
for every possible level of the original categorical variable. This value represents
how informative a given level is: values with large magnitudes correspond to more-
informative levels. We call this the impact of the level on the outcome; hence, the
term “impact variable.” To understand impact variables, let’s compare the original
Var218 to Var218_catB:

comparison <- data.frame(original218 = dTrain$Var218,
impact218 = dTrain_treated$Var218_catB)

head(comparison)
original218 impact218

1 cJvF -0.2180735
2 <NA> 1.5155125
3 UYBR 0.1221393
4 UYBR 0.1221393
5 UYBR 0.1221393
6 UYBR 0.1221393

For classification problems, the values of impact encoding are related to the predic-
tions of a logistic regression model that predicts churn from Var218. To see this, we’ll
use the simple missingness treatment that we used in section 4.1.3 to explicitly convert
the NA values in Var218 to a new level. We will also use the logit, or log-odds function
that we saw in chapter 7.

treatment_plan_2 <- design_missingness_treatment(dTrain, varlist = vars)
dtrain_2 <- prepare(treatment_plan_2, dTrain)
head(dtrain_2$Var218)

[1] "cJvF" "_invalid_" "UYBR" "UYBR" "UYBR" "UYBR"

model <- glm(churn ==1 ~ Var218,
data = dtrain_2,

 family = "binomial")

Simple treatment to turn NA into a safe string Creates the treated data

Fits the one-variable logistic
regression model
Licensed to Ajit de Silva <agdesilva@gmail.com>

287Basic data preparation for classification
pred <- predict(model,
newdata = dtrain_2,
type = "response")

(prevalence <- mean(dTrain$churn == 1))
[1] 0.07347764

logit <- function(p) {
log (p / (1-p))

}

comparison$glm218 <- logit(pred) - logit(prevalence)
head(comparison)

original218 impact218 glm218
1 cJvF -0.2180735 -0.2180735
2 <NA> 1.5155125 1.5155121
3 UYBR 0.1221393 0.1221392
4 UYBR 0.1221393 0.1221392
5 UYBR 0.1221393 0.1221392
6 UYBR 0.1221393 0.1221392

In our KDD2009 example, we see the catB impact encoding is replacing a categorical
variable with the predictions of the corresponding one-variable logistic regression
model. For technical reasons, the predictions are in “link space,” or logit space,
rather than in probability space, and are expressed as a difference from the null
model of always predicting the global probability of the outcome. In all cases this data
preparation takes a potentially complex categorical variable (that may imply many
degrees of freedom, or dummy variable columns) and derives a single numeric col-
umn that picks up most of the variable’s modeling utility.

When the modeling problem is a regression rather than a classification (the out-
come is numeric), the impact encoding is related to the predictions of a one-variable
linear regression. We’ll see an example of this later in the chapter.

The prevalence variables (catP)

The idea is this: for some variables, knowing
how often a level occurs is very informative.
For example, for United States ZIP codes, rare
ZIP codes may all be from low-population
rural areas. The prevalence variable simply
encodes what fraction of the time the
original variable takes the given level, making
these whole-dataset statistics available to
the modeling process in a convenient per-
example format.

Let’s look at what happened to another
variable that was giving us trouble: Var200.
Recall that this variable has 15415 possible
values, of which only 13324 appear in the
training data.

Makes predictions
on the data

Calculates the global
probability of churn.

A function to calculate the logit,
or log-odds of a probability

Calculates the catB
values by hand

Notice that the impact codes from
vtreat match the “delta logit”
encoded predictions from the
standard glm model. This helps
illustrate how vtreat is implemented.

Variable ethics
Note: For some applications, cer-
tain variables and inference may
be either unethical or illegal to use.
For example, ZIP code and race are
both prohibited in the United
States for credit approval deci-
sions, due to historic “red lining”
discrimination practices.

Having a sensitivity to ethical
issues and becoming familiar with
data and modeling law are critical
in real-world applications.
Licensed to Ajit de Silva <agdesilva@gmail.com>

288 CHAPTER 8 Advanced data preparation
score_frame[score_frame$origName == "Var200", , drop = FALSE]

varName varMoves rsq sig needsSplit
extraModelDegrees origName code

361 Var200_catP TRUE 0.005729835 4.902546e-28
TRUE 13323 Var200 catP

362 Var200_catB TRUE 0.001476298 2.516703e-08
TRUE 13323 Var200 catB

428 Var200_lev_NA TRUE 0.005729838 4.902365e-28
FALSE 0 Var200 lev

Note that vtreat only returned one indicator variable, indicating missing values. All
the other possible values of Var200 were rare: they occurred less than 2% of the time.
For a variable like Var200 with a very large number of levels, it isn’t practical to
encode all the levels as indicator variables when modeling; it’s more computationally
efficient to represent the variable as a single numeric variable, like the catB variable.

In our example, the designTreatmentsC() method recoded the original 230
explanatory variables into 546 new all-numeric explanatory variables that have no
missing values. The idea is that these 546 variables are easier to work with and have a
good shot of representing most of the original predictive signal in the data. A full
description of what sorts of new variables vtreat can introduce can be found in the
vtreat package documentation.9

8.3.2 Properly using the treatment plan

The primary purpose of the treatment plan object is to allow prepare() to convert
new data into a safe, clean form before fitting and applying models. Let’s see how that
is done. Here, we apply the treatment plan that we learned from the dTrain set to the
calibration set, dCal, as shown in figure 8.5.

dCal_treated <- prepare(treatment_plan,
dCal,
parallelCluster = parallel_cluster)

9 See https://winvector.github.io/vtreat/articles/vtreatVariableTypes.html.

dCal_treated

dCal

creates

vtreat::
prepare()

treatment
plan

Figure 8.5 Preparing held-out data
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://winvector.github.io/vtreat/articles/vtreatVariableTypes.html

289Basic data preparation for classification
Normally, we could now use dCal_treated to fit a model for churn. In this case, we’ll
use it to illustrate the risk of overfit on transformed variables that have needsSplit ==
TRUE in the score frame.

As we mentioned earlier, you can think of the Var200_catB variable as a single-
variable logistic regression model for churn. This model was fit using dTrain when we
called designTreatmentsC(); it was then applied to the dCal data when we called
prepare(). Let’s look at the AUC of this model on the training and calibration sets:

library("sigr")

calcAUC(dTrain_treated$Var200_catB, dTrain_treated$churn)

[1] 0.8279249

calcAUC(dCal_treated$Var200_catB, dCal_treated$churn)

[1] 0.5505401

Notice the AUC estimated in the training data is 0.83, which seems very good. How-
ever, this AUC is not confirmed when we look at the calibration data that was not
used to design the variable treatment. Var200_catB is overfit with respect to dTrain_
treated. Var200_catB is a useful variable, just not as good as it appears to be on the
training data.

DO NOT DIRECTLY REUSE THE SAME DATA FOR FITTING THE TREATMENT PLAN AND
THE MODEL! To avoid overfit, the general rule is that whenever a premodel-
ing data processing step uses knowledge of the outcome, you should not use
the same data for the premodeling step and the modeling.

The AUC calculations in this section show that Var200_catB looks “too
good” on the training data. Any model-fitting algorithm using dTrain_
treated to fit a churn model will likely overuse this variable based on its
apparent value. The resulting model then fails to realize that value on new
data, and it will not predict as well as expected.

The correct procedure is to not reuse dTrain after designing the data treatment plan,
but instead use dCal_treated for model training (although in this case, we should use
a larger fraction of the available data than we originally allocated). With enough data
and the right data split (say, 40% data treatment design, 50% model training, and
10% model testing/evaluation), this is an effective strategy.

In some cases, we may not have enough data for a good three-way split. The built-in
vtreat cross-validation procedures allow us to use the same training data both for
designing the data treatment plan and to correctly build models. This is what we will
master next.
Licensed to Ajit de Silva <agdesilva@gmail.com>

290 CHAPTER 8 Advanced data preparation
8.4 Advanced data preparation for classification
Now that we have seen how to prepare messy data for classification, let’s work through
how to do this in a more statistically efficient manner. That is, let’s master techniques
that let us safely reuse the same data for both designing the treatment plan and model
training.

8.4.1 Using mkCrossFrameCExperiment()

Safely using the same data for data treatment design and for model construction is
easy using vtreat. All we do is use the method mkCrossFrameCExperiment() instead
of designTreatmentsC(). The designTreatmentsC() method uses cross-validation
techniques to produce a special cross-frame for training instead of using prepare() on
the training data, which we review in figure 8.6.

The cross-frame is special surrogate training data that behaves as if it hadn’t been used
to build its own treatment plan. The process is shown in figure 8.7, which we can con-
trast with figure 8.6.

available
training
data

random
split

treatment
design
data

model
training

data

hold-out
test data

vtreat::
designTreatments*()

treatment
plan

model
training data

used to
build models

model
training
data

hold-out
test data

hold-out test
data used
to estimate

model quality

Step 2: prepare training
and test/evaluation

build model model

Estimate of
quality of model

on future
application data

creates
creates

creates

creates creates

creates

vtreat::
prepare()

treatment
plan

vtreat::
prepare()

3-way split

creates creates

Step 1: organize data and
design treatment plan

Figure 8.6 vtreat three-way split strategy again
Licensed to Ajit de Silva <agdesilva@gmail.com>

291Advanced data preparation for classification
The user-visible parts of the procedures are small and simple. Figure 8.7 only looks
complex because vtreat is supplying a very sophisticated service: the proper cross-
validated organization that allows us to safely reuse data for both treatment design
and model training.

The treatment plan and cross-frame can be built as follows. Here, we use all the
data that we originally allocated for training and calibration as a single training set,
dTrainAll. Then we will evaluate the data on the test set.

library("vtreat")

parallel_cluster <- parallel::makeCluster(parallel::detectCores())

cross_frame_experiment <- vtreat::mkCrossFrameCExperiment(
dTrainAll,
varlist = vars,
outcomename = "churn",
outcometarget = 1,
verbose = FALSE,
parallelCluster = parallel_cluster)

Listing 8.6 Advanced data preparation for classification

available
training

data

random
split

combined
treatment

design and
model training
data source

vtreat::
mkCrossFrame*

Experiment()

Step 2: retrieve cross-frame
and prepare test data

Step 1: organize data and perform
cross-frame experiment

build model

creates creates

creates

creates

cross-frame
model

training data

cross-frame experiment

hold-out
test data

hold-out
test data

hold-out test
data used
to estimate

model quality

model

Estimate of
quality of model

on future
application data

creates

vtreat::prepare()

treatment
plan

treatment
plan

cross-frame
model

training data

cross-frame experiment

creates

Figure 8.7 vtreat cross-frame strategy
Licensed to Ajit de Silva <agdesilva@gmail.com>

292 CHAPTER 8 Advanced data preparation

Pre
the te

so w
ca

mode
dTrainAll_treated <- cross_frame_experiment$crossFrame
treatment_plan <- cross_frame_experiment$treatments
score_frame <- treatment_plan$scoreFrame

dTest_treated <- prepare(treatment_plan,
dTest,
parallelCluster = parallel_cluster)

The steps in listing 8.6 are intentionally very similar to those of listing 8.4. Notice that
dTrainAll_treated is a value returned as part of the experiment, not something we
use prepare() to produce. This overall data treatment strategy implements the ideas
of figure 8.7.

Let’s recheck the estimated prediction quality of Var200 on both the training and
test sets:

library("sigr")

calcAUC(dTrainAll_treated$Var200_catB, dTrainAll_treated$churn)

[1] 0.5450466

calcAUC(dTest_treated$Var200_catB, dTest_treated$churn)

[1] 0.5290295

Notice that the estimated utility of Var200 on the training data is now much closer to
its future performance on the test data.10 This means decisions made on the training
data have a good chance of being correct when later retested on held-out test data or
future application data.

8.4.2 Building a model

Now that we have treated our variables, let’s try again to build a model.

VARIABLE SELECTION

A key part of building many variable models is selecting what variables to use. Each
variable we use represents a chance of explaining more of the outcome variation (a
chance of building a better model), but also represents a possible source of noise and
overfitting. To control this effect, we often preselect which subset of variables we’ll use
to fit. Variable selection can be an important defensive modeling step, even for types
of models that “don’t need it.” The large number of columns typically seen in modern
data warehouses can overwhelm even state-of-the-art machine learning algorithms.11

vtreat supplies two ways to filter variables: the summary statistics in the score
frame and also a method called value_variables_C(). The summaries in the score
frame are the qualities of the linear fits of each variable, so they may undervalue
complex non-linear numeric relationships. In general, you might want to try value_

10 Remember we are estimating performance from data subject to sampling, so all quality estimates are noisy,
and we should not consider this observed difference to be an issue.

11 See http://www.win-vector.com/blog/2014/02/bad-bayes-an-example-of-why-you-need-hold-out-testing/.

We will use the
cross-frame to train
the logistic
regression model.

pares
st set
e can
ll the

l on it
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://www.win-vector.com/blog/2014/02/bad-bayes-an-example-of-why-you-need-hold-out-testing/

293Advanced data preparation for classification
variables_C() to properly score non-linear relationships. For our example, we’ll fit a
linear model, so using the simpler score frame method is appropriate.12

We are going to filter the variables on significances, but be aware that significance
estimates are themselves very noisy, and variable selection itself can be a source of
errors and biases if done improperly.13 The idea we’ll use is this: assume some col-
umns are in fact irrelevant, and use the loosest criterion that would only allow a mod-
erate number of irrelevant columns to pass through. We use the loosest condition to
try to minimize the number of actual useful columns or variables that we may acciden-
tally filter out. Note that, while relevant columns should have a significance value
close to zero, irrelevant columns should have a significance that is uniformly distrib-
uted in the interval zero through one (this is very closely related to the definition of
significance). So a good selection filter would be to retain all variables that have a sig-
nificance of no more than k/nrow(score_frame); we would expect only about k irrel-
evant variables to pass through such a filter.

This variable selection can be performed as follows:

k <- 1
(significance_cutoff <- k / nrow(score_frame))

[1] 0.001831502
score_frame$selected <- score_frame$sig < significance_cutoff

suppressPackageStartupMessages(library("dplyr"))

score_frame %>%
group_by(., code, selected) %>%
summarize(.,

count = n()) %>%
ungroup(.) %>%
cdata::pivot_to_rowrecs(.,

columnToTakeKeysFrom = 'selected',
columnToTakeValuesFrom = 'count',
rowKeyColumns = 'code',
sep = '=')

A tibble: 5 x 3
code `selected=FALSE` `selected=TRUE`
<chr> <int> <int>
1 catB 12 21
2 catP 7 26
3 clean 158 15
4 isBAD 60 111
5 lev 74 62

The table shows for each converted variable type how many variables were selected or
rejected. In particular, notice that almost all the variables of type clean (which is the

12 We share a worked xgboost solution at https://github.com/WinVector/PDSwR2/blob/master/KDD2009/
KDD2009vtreat.md, which achieves similar performance (as measured by AUC) as the linear model. Things
can be improved, but we appear to be getting into a region of diminishing returns.

13 A good article on this effect is Freedman, “A note on screening regression equations,” The American Statistician,
volume 37, pp. 152-155, 1983.

Uses our filter significances at k / nrow
(score_frame) heuristic with k = 1

Brings in the dplyr package to
help summarize the selections
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/KDD2009/KDD2009vtreat.md
https://github.com/WinVector/PDSwR2/blob/master/KDD2009/KDD2009vtreat.md
https://github.com/WinVector/PDSwR2/blob/master/KDD2009/KDD2009vtreat.md

294 CHAPTER 8 Advanced data preparation
code for cleaned up numeric variables) are discarded as being unusable. This is possi-
ble evidence that linear methods may not be sufficient for this problem, and that we
should consider non-linear models instead. In this case, you might use value_
variables_C() (which returns a structure similar to the score frame) to select vari-
ables, and also use the advanced non-linear machine learning methods of chapter 10.
In this chapter, we are focusing on the variable preparation steps, so we will only build
a linear model, and leave trying different modeling techniques as an important exer-
cise for the reader.14

BUILDING A MULTIVARIABLE MODEL

Once we have our variables ready to go, building the model seems relatively straight-
forward. For this example, we will use a logistic regression (the topic of section 7.2).
The code to fit the multivariable model is given in the next listing.

library("wrapr")

newvars <- score_frame$varName[score_frame$selected]

f <- mk_formula("churn", newvars, outcome_target = 1)
model <- glm(f, data = dTrainAll_treated, family = binomial)
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred

EVALUATING THE MODEL

Now that we have a model, let’s evaluate it on our test data:

library("sigr")

dTest_treated$glm_pred <- predict(model,
newdata = dTest_treated,
type = 'response')

Warning message:
In predict.lm(object, newdata, se.fit, scale = 1, type = ifelse(type == :
prediction from a rank-deficient fit may be misleading

calcAUC(dTest_treated$glm_pred, dTest_treated$churn == 1)
[1] 0.7232192

14 Though we do share a worked xgboost solution here: https://github.com/WinVector/PDSwR2/blob/
master/KDD2009/KDD2009vtreat.md.

Listing 8.7 Basic variable recoding and selection

Builds a formula specifying
modeling churn == 1 as a
function of all variables

Uses the modeling formula
with R’s glm() function

Take heed of this warning: it is
hinting we should move on to a

regularized method such as glmnet.

Adds the model prediction to the
evaluation data as a new column

Again, take heed of this
warning: it is hinting we should

move on to a regularized
method such as glmnet.

Calculates the AUC of the
model on holdout data
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/KDD2009/KDD2009vtreat.md
https://github.com/WinVector/PDSwR2/blob/master/KDD2009/KDD2009vtreat.md
https://github.com/WinVector/PDSwR2/blob/master/KDD2009/KDD2009vtreat.md

295Advanced data preparation for classification
permTestAUC(dTest_treated, "glm_pred", "churn", yTarget = 1)
[1] "AUC test alt. hyp. AUC>AUC(permuted): (AUC=0.7232, s.d.=0.01535, p<1

e-05)."

var_aucs <- vapply(newvars,
function(vi) {
calcAUC(dTrainAll_treated[[vi]], dTrainAll_treated$churn == 1)

}, numeric(1))
(best_train_aucs <- var_aucs[var_aucs >= max(var_aucs)])
Var216_catB
0.5873512

The model’s AUC is 0.72. This is not as good as the winning entry’s 0.76 (on different
test data), but much better than the quality of the best input variable treated as a sin-
gle variable model (which showed an AUC of 0.59). Keep in mind that the perm-
TestAUC() calculation indicated a standard deviation of the AUC estimate of 0.015 for
a test set of this size. This means a difference of plus or minus 0.015 in AUC is not sta-
tistically significant.

Turning the logistic regression model into a classifier

As we can see from the double density plot of the model’s scores (figure 8.8), this
model only does a moderate job of separating accounts that churn from those that
don’t. If we made the mistake of using this model as a hard classifier where all individ-
uals with a predicted churn propensity above 50% are considered at risk, we would see
the following awful performance:

table(prediction = dTest_treated$glm_pred >= 0.5,
truth = dTest$churn)

truth
prediction -1 1
FALSE 4591 375
TRUE 8 1

Calculates the AUC a second time, using
an alternative method that also estimates
a standard deviation or error bar

Here we calculate the best
single variable model AUC for

comparison.

0.0

2.5

5.0

7.5

10.0

12.5

0.0 0.2 0.4 0.6
glm_pred

de
ns

ity churn
−1
1

glm prediction on test, double density plot

Figure 8.8 Distribution of the glm model’s scores on test data
Licensed to Ajit de Silva <agdesilva@gmail.com>

296 CHAPTER 8 Advanced data preparation
The model only identifies nine individuals with such a high probability, and only one
of those churn. Remember this was an unbalanced classification problem; only 7.6%
of the test examples do in fact churn. What the model can identify is individuals at an
elevated risk of churning, not those that will certainly churn. For example, what if we
ask the model for the individuals that are predicted to have double the expected
churn risk:

table(prediction = dTest_treated$glm_pred>0.15,
truth = dTest$churn)

truth
prediction -1 1
FALSE 4243 266
TRUE 356 110

Notice that in this case, using 0.15 as our scoring threshold, the model identified 466
potentially at-risk accounts, of which 101 did in fact churn. This subset therefore has a
churn rate of 24%, or about 3 times the overall churn rate. And this model identified
110 of the 376 churners, or 29% of them. From a business point of view, this model is
identifying a 10% subgroup of the population that is responsible for 29% of the
churning. This can be useful.

In section 7.2.3, we saw how to present the family of trade-offs between recall (what
fraction of the churners are detected) and enrichment or lift (how much more com-
mon churning is in the selected set) as a graph. Figure 8.9 shows the plot of recall and
enrichment as a function of threshold for the churn model.

One way to use figure 8.9 is to draw a vertical line at a chosen x-axis threshold, say 0.2.
Then the height at which this vertical line crosses each curve tells us the simultaneous
enrichment and recall we would see if we classify scores above our threshold as positive.
In this case, we would have a recall of around 0.12 (meaning we identify about 12% of
the at-risk accounts), and an enrichment of around 3 (meaning the population we

recall

enrichment

0.0 0.2 0.4 0.6

0

2

4

0.00
0.25
0.50
0.75
1.00

threshold

va
lu

e

glm prediction on test, enrichment plot

Figure 8.9 glm recall and enrichment as a function of threshold
Licensed to Ajit de Silva <agdesilva@gmail.com>

297Preparing data for regression modeling
warn about has an account cancellation rate of 3 times the general population, indicat-
ing this is indeed an enhanced-risk population).

The code to produce these charts looks like this:

WVPlots::DoubleDensityPlot(dTest_treated, "glm_pred", "churn",
"glm prediction on test, double density plot")

WVPlots::PRTPlot(dTest_treated, "glm_pred", "churn",
"glm prediction on test, enrichment plot",
truthTarget = 1,
plotvars = c("enrichment", "recall"),
thresholdrange = c(0, 1.0))

And now we have worked a substantial classification problem using vtreat.

8.5 Preparing data for regression modeling
Preparing data for regression is very similar to preparing data for classifica-
tion. Instead of calling designTreatmentsC() or mkCrossFrameCExperiment(), we
call designTreatmentsN() or mkCrossFrameNExperiment().

 Example You wish to predict automobile fuel economy stated in miles per gallon from
other facts about cars, such as weight and horsepower.

To simulate this scenario, we will use the Auto MPG Data Set from the UCI Machine
Learning Repository. We can load this data from the file auto_mpg.RDS in the direc-
tory auto_mpg/ of https://github.com/WinVector/PDSwR2/ (after downloading this
repository).

auto_mpg <- readRDS('auto_mpg.RDS')

knitr::kable(head(auto_mpg))

Take a quick look
at the data.

Figure 8.10 The first few rows of the auto_mpg data
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/

298 CHAPTER 8 Advanced data preparation
Having glanced at the data in figure 8.10, let’s take the “bull in the china shop”
approach to modeling, and directly call lm() without examining or treating the data:

library("wrapr")

vars <- c("cylinders", "displacement",
"horsepower", "weight", "acceleration",
"model_year", "origin")

f <- mk_formula("mpg", vars)
model <- lm(f, data = auto_mpg)

auto_mpg$prediction <- predict(model, newdata = auto_mpg)

str(auto_mpg[!complete.cases(auto_mpg), , drop = FALSE])

'data.frame': 6 obs. of 10 variables:
$ mpg : num 25 21 40.9 23.6 34.5 23
$ cylinders : num 4 6 4 4 4 4
$ displacement: num 98 200 85 140 100 151
$ horsepower : num NA NA NA NA NA NA
$ weight : num 2046 2875 1835 2905 2320 ...
$ acceleration: num 19 17 17.3 14.3 15.8 20.5
$ model_year : num 71 74 80 80 81 82
$ origin : Factor w/ 3 levels "1","2","3": 1 1 2 1 2 1
$ car_name : chr "\"ford pinto\"" "\"ford maverick\"" "\"renault lecar

deluxe\"" ...
$ prediction : num NA NA NA NA NA NA

Because the dataset had missing values, the model could not return a prediction for
every row. Now, we’ll try again, using vtreat to treat the data first:

library("vtreat")

cfe <- mkCrossFrameNExperiment(auto_mpg, vars, "mpg",
verbose = FALSE)

treatment_plan <- cfe$treatments
auto_mpg_treated <- cfe$crossFrame
score_frame <- treatment_plan$scoreFrame
new_vars <- score_frame$varName

newf <- mk_formula("mpg", new_vars)
new_model <- lm(newf, data = auto_mpg_treated)

auto_mpg$prediction <- predict(new_model, newdata = auto_mpg_treated)
Warning in predict.lm(new_model, newdata = auto_mpg_treated): prediction
from a rank-deficient fit may be misleading
str(auto_mpg[!complete.cases(auto_mpg), , drop = FALSE])
'data.frame': 6 obs. of 10 variables:
$ mpg : num 25 21 40.9 23.6 34.5 23
$ cylinders : num 4 6 4 4 4 4
$ displacement: num 98 200 85 140 100 151
$ horsepower : num NA NA NA NA NA NA
$ weight : num 2046 2875 1835 2905 2320 ...
$ acceleration: num 19 17 17.3 14.3 15.8 20.5
$ model_year : num 71 74 80 80 81 82
$ origin : Factor w/ 3 levels "1","2","3": 1 1 2 1 2 1

Jump into modeling without
bothering to treat the data.

Adds the model
predictions as a
new column

Notice that these cars
do not have a recorded
horsepower.

So these cars do not
get a prediction.

Try it again with vtreat
data preparation.
Licensed to Ajit de Silva <agdesilva@gmail.com>

299Mastering the vtreat package
$ car_name : chr "\"ford pinto\"" "\"ford maverick\"" "\"renault lecar
deluxe\"" ...

$ prediction : num 24.6 22.4 34.2 26.1 33.3 ...

Now, the model returns a prediction for every row, including those with missing data.

8.6 Mastering the vtreat package
Now that we have seen how to use the vtreat package, we will take some time to
review what the package is doing for us. This is easiest to see with toy-sized examples.

vtreat is designed to prepare data for supervised machine learning or predictive
modeling. The package is designed to help with the task of relating a bunch of input
or explanatory variables to a single output to be predicted or to a dependent variable.

8.6.1 The vtreat phases

As illustrated in figure 8.11, vtreat works in two phases: a design phase and an appli-
cation/prepare phase. In the design phase, vtreat learns details of your data. For
each explanatory variable, it estimates the variable’s relationship to the outcome, so
both the explanatory variables and the dependent variable must be available. In the
application phase, vtreat introduces new variables that are derived from the explana-
tory variables, but are better suited for simple predictive modeling. The transformed

Now we can make predictions, even
for items that have missing data.

some of the
training data

vtreat::
designTreatments*()

design phase

new test
or application

data

treated test
or application

data

test or application phase

creates

creates

creates

vtreat::
prepare()

treatment
plan

treatment
plan

vtreat::
mkCrossFrame*

Experiment()

Use one of

treated
model

training data

model

predictions

predict()

train
model

model

creates

creates

Figure 8.11 The two vtreat phases
Licensed to Ajit de Silva <agdesilva@gmail.com>

300 CHAPTER 8 Advanced data preparation
data is all numeric and has no missing values.15 R itself has methods for dealing with
missing values, including many missing value imputation packages.16 R also has a
canonical method to convert arbitrary data.frames to numeric data: model.matrix(),
which many models use to accept arbitrary data. vtreat is a specialized tool for these
tasks that is designed to work very well for supervised machine learning or predictive
modeling tasks.

For the treatment-design phase, call one of the following functions:

 designTreatmentsC()—Designs a variable treatment plan for a binary classi-
fication task. A binary classification task is where we want to predict if an exam-
ple is in a given category, or predict the probability that an example is in the
given category.

 designTreatmentsN()—Designs a variable treatment plan for a regression
task. A regression task predicts a numeric outcome, given example numeric
outcomes.

 designTreatmentsZ()—Designs a simple variable treatment plan that does
not look at the training data outcomes. This plan deals with missing values and
recodes strings as indicator variables (one-hot encoding), but it does not pro-
duce impact variables (which require knowledge of the training data out-
comes).

 design_missingness_treatment()—Designs a very simple treatment that
only deals with missing values, but does not one-hot encode categorical vari-
ables. Instead, it replaces NA with the token "_invalid_".

 mkCrossFrameCExperiment()—Prepares data for classification, using a
cross-validation technique so the data used to design the variable treatment can
be safely reused to train the model.

 mkCrossFrameNExperiment()—Prepares data for regression, using a cross-
validation technique so the data used to design the variable treatment can be
safely reused to train the model.

For the application or data preparation phase, we always call the prepare() method.
The vtreat package comes with a large amount of documentation and examples

that can be found at https://winvector.github.io/vtreat/. However, in addition to
knowing how to operate the package, it is critical that data scientists know what the
packages they use are doing for them. So we will discuss what vtreat actually does
here.

The concepts we need to review include these:

 Missing values
 Indicator variables

15 Remember: missing values are not the only thing that can go wrong with the data, and not the only point
vtreat addresses.

16 See https://cran.r-project.org/web/views/MissingData.html.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://cran.r-project.org/web/views/MissingData.html
https://winvector.github.io/vtreat/

301Mastering the vtreat package
 Impact coding
 The treatment plan
 The variable score frame
 The cross-frame

These are a lot of concepts, but they are key to data repair and preparation. We will
keep this concrete by working specific, but tiny, examples. Larger examples showing
the performance of these can be found at https://arxiv.org/abs/1611.09477.

8.6.2 Missing values

As we have discussed before, R has a special code for values that are missing, not
known, or not available: NA. Many modeling procedures will not accept data with miss-
ing values, so if they occur, we must do something about them. The common strate-
gies include these:

 Restricting down to “complete cases”—Using only the data rows where no columns
have missing values. This can be problematic for model training, as the com-
plete cases may not be distributed the same or representative of the actual data-
set. Also, this strategy does not give a good idea of how to score new data that
has missing values. There are some theories about how to reweight data to
make it more representative, but we do not encourage these methods.

 Missing-value imputation—These are methods that use the non-missing values to
infer or impute values (or distributions of values) for the missing values. An R
task view dedicated to these methods can be found at https://cran.r-project
.org/web/views/MissingData.html.

 Using models that tolerate missing values—Some implementations of decision trees
or random forests can tolerate missing values.

 Treating missingness as observable information—Replacing missing values with
stand-in information.

vtreat supplies an implementation of the last idea (treating missingness as observ-
able information), as this is easy to do and very suitable for supervised machine learn-
ing or predictive modeling. The idea is simple: the missing values are replaced with
some stand-in value (it can be zero, or it can be the average of the non-missing val-
ues), and an extra column is added to indicate this replacement has taken place. This
extra column gives any modeling step an extra degree of freedom, or the ability to
treat the imputed values separately from not-imputed values.

The following is a simple example showing the addition of the transformation:

library("wrapr")

d <- build_frame(
"x1" , "x2" , "x3", "y" |
1 , "a" , 6 , 10 |
NA_real_, "b" , 7 , 20 |
3 , NA_character_, 8 , 30)

Brings in the wrapr package
for build_frame and the
wrapr “dot pipe”
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://cran.r-project.org/web/views/MissingData.html
https://cran.r-project.org/web/views/MissingData.html
https://cran.r-project.org/web/views/MissingData.html
https://arxiv.org/abs/1611.09477

302 CHAPTER 8 Advanced data preparation
knitr::kable(d)

plan1 <- vtreat::design_missingness_treatment(d)
vtreat::prepare(plan1, d) %.>%

knitr::kable(.)

Notice that in figure 8.12 the x1 column has the missing value, and that value is
replaced in figure 8.13 by a stand-in value, the average of the known values. The
treated or prepared data (see figure 8.13) also has a new column, x1_isBAD, indicat-
ing where x1 was replaced. Finally, notice that for the string-valued column x2, the NA
value is replaced with a special level code.

8.6.3 Indicator variables

Many statistical and machine learning procedures expect all variables to be numeric.
Some R users may not be aware of this, as many R model implementations call
model.matrix() under the covers to convert arbitrary data to numeric data. For real-
world projects, we advise using a more controllable explicit transformation such as
vtreat.17

This transformation goes by a number of names, including indicator variables,
dummy variables, and one-hot encoding. The idea is this: for each possible value of a
string-valued variable, we create a new data column. We set each of these new columns
to 1 when the string-valued variable has a value matching the column label, and zero
otherwise. This is easy to see in the following example:

d <- build_frame(
"x1" , "x2" , "x3", "y" |
1 , "a" , 6 , 10 |
NA_real_, "b" , 7 , 20 |
3 , NA_character_, 8 , 30)

17 However, in this book, for didactic purposes, we will try to minimize the number of preparation steps in each
example when these steps are not the subject being discussed.

Using wrapr’s dot pipe instead of magrittr’s
forward pipe. The dot pipe requires the explicit
dot argument notation discussed in chapter 5.

Figure 8.12 Our simple
example data: raw

Figure 8.13 Our simple example data: treated
Licensed to Ajit de Silva <agdesilva@gmail.com>

303Mastering the vtreat package
print(d)
x1 x2 x3 y
1 1 a 6 10
2 NA b 7 20
3 3 <NA> 8 30
plan2 <- vtreat::designTreatmentsZ(d,

varlist = c("x1", "x2", "x3"),
verbose = FALSE)

vtreat::prepare(plan2, d)
x1 x1_isBAD x3 x2_lev_NA x2_lev_x_a x2_lev_x_b
1 1 0 6 0 1 0
2 2 1 7 0 0 1
3 3 0 8 1 0 0

Notice that x2_lev_x_b is 1 in the second prepared data row. This is how the trans-
formed data retains the information that the x2 variable originally had the value of b
in this row.

As we saw in the discussions of lm() and glm() in chapter 7, it is traditional statisti-
cal practice to not actually reserve a new column for one possible level of the string-
valued variable. This level is called the reference level. We can identify rows where the
string-valued variable was equal to the reference level, as all the other level columns
are zero in such rows (other rows have exactly one 1 in the level columns). For super-
vised learning in general, and especially for advanced techniques such as regularized
regression, we recommend encoding all levels, as seen here.

8.6.4 Impact coding

Impact coding is a good idea that gets rediscovered often under different names
(effects coding, impact coding, and more recently target encoding).18

When a string-valued variable has thousands of possible values or levels, producing
a new indicator column for each possible level causes extreme data expansion and
overfitting (if the model fitter can even converge in such situations). So instead we
use an impact code: replacing the level code with its effect as a single-variable model.
This is what produced derived variables of type catB in our KDD2009 credit account
cancellation example, and produced catN-style variables in the case of regression.

Let’s see the effect of a simple numeric prediction or regression example:

d <- build_frame(
"x1" , "x2" , "x3", "y" |
1 , "a" , 6 , 10 |
NA_real_, "b" , 7 , 20 |
3 , NA_character_, 8 , 30)

print(d)
x1 x2 x3 y

18 The earliest discussion we can find on effects coding is Robert E. Sweeney and Edwin F. Ulveling, “A Trans-
formation for Simplifying the Interpretation of Coefficients of Binary Variables in Regression Analysis.” The
American Statistician, 26(5), 30–32, 1972. We, the authors, have produced research and popularized the meth-
odology among R and Kaggle users, adding key cross-validation methods similar to a method called “stacking”
https://arxiv.org/abs/1611.09477.

The second value
of x2 is b.

In the second row of
the treated data,
x2_lev_x_b = 1.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://arxiv.org/abs/1611.09477

304 CHAPTER 8 Advanced data preparation
1 1 a 6 10
2 NA b 7 20
3 3 <NA> 8 30
plan3 <- vtreat::designTreatmentsN(d,

varlist = c("x1", "x2", "x3"),
outcomename = "y",
codeRestriction = "catN",
verbose = FALSE)

vtreat::prepare(plan3, d)
x2_catN y
1 -10 10
2 0 20
3 10 30

The impact-coded variable is in the new column named x2_catN. Notice that in the
first row it is -10, as the y-value is 10, which is 10 below the average value of y. This
encoding of “conditional delta from mean” is where names like “impact code” or
“effect code” come from.

The impact coding for categorical variables is similar, except they are in logarith-
mic units, just like the logistic regression in section 8.3.1. In this case, for data this
small, the naive value of x2_catB would be minus infinity in rows 1 and 3, and plus
infinity in row 2 (as the x2 level values perfectly predict or separate cases whether y ==
20 or not). The fact that we see values near plus or minus 10 is due to an important
adjustment called smoothing which says when computing conditional probabilities, add
a little bias towards “no effect” for safer calculations.19 An example of using vtreat to
prepare data for a possible classification task is given next:

plan4 <- vtreat::designTreatmentsC(d,
varlist = c("x1", "x2", "x3"),
outcomename = "y",
outcometarget = 20,
codeRestriction = "catB",
verbose = FALSE)

vtreat::prepare(plan4, d)
x2_catB y
1 -8.517343 10
2 9.903538 20
3 -8.517343 30

19 A reference on smoothing can be found here: https://en.wikipedia.org/wiki/Additive_smoothing.

Smoothing
Smoothing is a method to prevent some degree of overfit and nonsense answers on
small data. The idea of smoothing is an attempt to obey Cromwell’s rule that no prob-
ability estimate of zero should ever be used in empirical probabilistic reasoning.
This is because if you’re combining probabilities by multiplication (the most common
method of combining probability estimates), then once some term is 0, the entire
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://en.wikipedia.org/wiki/Additive_smoothing

305Mastering the vtreat package
8.6.5 The treatment plan

The treatment plan specifies how training data will be processed before using it to fit a
model, and how new data will be processed before applying the model. It is returned
directly by the design*() methods. For the mkExperiment*() methods, the treatment
plan is the item with the key treatments on the returned result. The following code
shows the structure of a treatment plan:

class(plan4)
[1] "treatmentplan"

names(plan4)

[1] "treatments" "scoreFrame" "outcomename" "vtreatVersion" "outcomeType"

[6] "outcomeTarget" "meanY" "splitmethod"

THE VARIABLE SCORE FRAME

An important item included in all treatment plans is the score frame. It can be pulled
out of a treatment plan as follows (continuing our earlier example):

plan4$scoreFrame

varName varMoves rsq sig needsSplit extraModelDegrees origName code
1 x2_catB TRUE 0.0506719 TRUE 2 x2 catB

The score frame is a data.frame with one row per derived explanatory variable. Each
row shows which original variable the derived variable was produced from (orig-
Name), what type of transform was used to produce the derived variable (code), and
some quality summaries about the variable. For instance, needsSplit is an indicator
that, when TRUE, indicates the variable is complex and requires cross-validated scor-
ing, which is in fact how vtreat produces the variable quality estimates.

8.6.6 The cross-frame

A critical innovation of vtreat is the cross-frame. The cross-frame is an item found in
the list of objects returned by the mkCrossFrame*Experiment() methods. It is an inno-
vation that allows the safe use of the same data both for the design of the variable
treatments and for training a model. Without this cross-validation method, you must
reserve some of the training data to build the variable treatment plan and a disjoint

estimate will be 0 no matter what the values of the other terms are. The most common
form of smoothing is called Laplace smoothing, which counts k successes out of n
trials as a success ratio of (k+1)/(n+1) and not as a ratio of k/n (defending against
the k=0 case). Frequentist statisticians think of smoothing as a form of regulariza-
tion, and Bayesian statisticians think of smoothing in terms of priors.
Licensed to Ajit de Silva <agdesilva@gmail.com>

306 CHAPTER 8 Advanced data preparation
set of training data to fit treated data. Otherwise, the composite system (data prepara-
tion plus model application) may suffer from severe nested model bias: producing a
model that appears good on training data, but later fails on test or application data.

THE DANGERS OF NAIVELY REUSING DATA

Here is an example of the problem. Suppose we start with some example data where
there is in fact no relation between x and y. In this case, we know that any relation we
think we find between them is just an artifact of our procedures, and not really there.

set.seed(2019)

d <- data.frame(
x_bad = sample(letters, 100, replace = TRUE),
y = rnorm(100),
stringsAsFactors = FALSE

)
d$x_good <- ifelse(d$y > rnorm(100), "non-neg", "neg")

head(d)
x_bad y x_good
1 u -0.05294738 non-neg
2 s -0.23639840 neg
3 h -0.33796351 non-neg
4 q -0.75548467 non-neg
5 b -0.86159347 neg
6 b -0.52766549 non-neg

We naively use the training data to create the treatment plan, and then prepare the
same data prior to fitting the model.

plan5 <- vtreat::designTreatmentsN(d,
varlist = c("x_bad", "x_good"),
outcomename = "y",
codeRestriction = "catN",
minFraction = 2,
verbose = FALSE)

class(plan5)
[1] "treatmentplan"

Listing 8.8 An information-free dataset

Listing 8.9 The dangers of reusing data

Sets pseudo-random number generator
seed to make the example reproducible

Builds example data
where there is no relation
between x_bad and y

x_good is a noisy prediction of
the sign of y, so it does have

some information about y.

Take a look at our synthetic example data.
The idea is this: y is related to x_good in a
noisy fashion, but unrelated to x_bad. In
this case, we know what variables should be
chosen, so we can tell if our acceptance
procedure is working correctly.

Designs a variable treatment plan
using x_bad and x_good to predict y
Licensed to Ajit de Silva <agdesilva@gmail.com>

307Mastering the vtreat package
print(plan5)
origName varName code rsq sig extraModelDegrees

1 x_bad x_bad_catN catN 4.906903e-05 9.448548e-01 24
2 x_good x_good_catN catN 2.602702e-01 5.895285e-08 1

training_data1 <- vtreat::prepare(plan5, d)

res1 <- vtreat::patch_columns_into_frame(d, training_data1)
head(res1)

x_bad x_good x_bad_catN x_good_catN y
1 u non-neg 0.4070979 0.4305195 -0.05294738
2 s neg -0.1133011 -0.5706886 -0.23639840
3 h non-neg -0.3202346 0.4305195 -0.33796351
4 q non-neg -0.5447443 0.4305195 -0.75548467
5 b neg -0.3890076 -0.5706886 -0.86159347
6 b non-neg -0.3890076 0.4305195 -0.52766549

sigr::wrapFTest(res1, "x_good_catN", "y")
[1] "F Test summary: (R2=0.2717, F(1,98)=36.56, p<1e-05)."

sigr::wrapFTest(res1, "x_bad_catN", "y")
[1] "F Test summary: (R2=0.2342, F(1,98)=29.97, p<1e-05)."

In this example, notice the sigr F-test reports an R-squared of 0.23 between x_bad_
catN and the outcome variable y. This is the technical term for checking if the frac-
tion of variation explained (itself called the R-squared) is statistically insignificant (a
common occurrence under pure chance). So we want the true R-squared to be high
(near 1) and true F-test significance low (near zero) for the good variable. We also
expect the true R-squared to be low (near 0), and the true F-test significance to be
non-vanishing (not near zero) for the bad variable.

However, notice both the good and bad variables received favorable evaluations!
This is an error, and happened because the variables we are testing, x_good_catN and
x_bad_catN, are both impact codes of high-cardinality string-valued variables. When
we test these variables on the same data they were constructed on, we suffer from over-
fitting, which erroneously inflates our variable quality estimate. In this case, a lot of
the apparent quality of fit is actually just a measure of a variable’s complexity (or ability
to overfit).

Calls prepare() on the same data used to
design the treatment plan—this is not
always safe, as we shall see.

Combines the data
frames d and

training_data1, using
training_data1 when

there are columns with
duplicate names

x_bad_catN’s F-test is inflated and falsely
looks significant. This is due to failure to

use cross-validated methods.

Uses a statistical F-test to check the
predictive power of x_good_catNNotice that the derived variable x_good_catN comes

out as having a significant signal, and x_bad_catN
does not. This is due to the proper use of cross-
validation in the vtreat quality estimates.
Licensed to Ajit de Silva <agdesilva@gmail.com>

308 CHAPTER 8 Advanced data preparation
Also notice that the R-squared and significance reported in the score frame cor-
rectly indicate that x_bad_catN is not a high-quality variable (R-squared near zero,
and significance not near zero). This is because the score frame uses cross-validation
to estimate variable significance. This matters because a modeling process involving
multiple variables might pick the variable x_bad_catN over other actual useful vari-
ables due to x_bad_catN’s overfit inflated quality score.

As mentioned in previous sections, the way to fix the overfitting is to use one por-
tion of our training data for the designTreatments*() step and a disjoint portion of
our training data for the variable use or evaluation (such as the sigr::wrapFTest()
step).

THE CROSS-FRAME TO SAFELY REUSE DATA

Another way to do this, which lets us use all of the training data both for the design of
the variable treatment plan and for model fitting, is called the cross-frame method. This is
a special cross-validation method built into vtreat’s mkCrossFrame*Experiment()
methods. All we do in this case is call mkCrossFrameNExperiment() instead of design-
TreatmentsN and get the prepared training data from the crossFrame element of the
returned list object (instead of calling prepare()). For future test or application data,
we do call prepare() from the treatment plan (which is returned as the treatments
item on the returned list object), but for training we do not call prepare().

The code is as follows.

cfe <- vtreat::mkCrossFrameNExperiment(d,
varlist = c("x_bad", "x_good"),
outcomename = "y",
codeRestriction = "catN",
minFraction = 2,
verbose = FALSE)

plan6 <- cfe$treatments

training_data2 <- cfe$crossFrame
res2 <- vtreat::patch_columns_into_frame(d, training_data2)

head(res2)
x_bad x_good x_bad_catN x_good_catN y
1 u non-neg 0.2834739 0.4193180 -0.05294738
2 s neg -0.1085887 -0.6212118 -0.23639840
3 h non-neg 0.0000000 0.5095586 -0.33796351
4 q non-neg -0.5142570 0.5095586 -0.75548467
5 b neg -0.3540889 -0.6212118 -0.86159347
6 b non-neg -0.3540889 0.4193180 -0.52766549

sigr::wrapFTest(res2, "x_bad_catN", "y")
[1] "F Test summary: (R2=-0.1389, F(1,98)=-11.95, p=n.s.)."

sigr::wrapFTest(res2, "x_good_catN", "y")
[1] "F Test summary: (R2=0.2532, F(1,98)=33.22, p<1e-05)."

Listing 8.10 Using mkCrossFrameNExperiment()
Licensed to Ajit de Silva <agdesilva@gmail.com>

309Summary
plan6$scoreFrame
varName varMoves rsq sig needsSplit

1 x_bad_catN TRUE 0.01436145 2.349865e-01 TRUE
2 x_good_catN TRUE 0.26478467 4.332649e-08 TRUE
extraModelDegrees origName code
1 24 x_bad catN
2 1 x_good catN

Notice now that sigr::wrapFTest() correctly considers x_bad_catN to be a low-value
variable. This scheme also scores good variables correctly, meaning we can tell good
from bad. We can use the cross-frame training_data2 for fitting models, with good
protection against overfit from the variable treatment.

Nested model bias

Overfit due to using the result of one model as an input to another is called nested-
model bias. With vtreat, this could be an issue with the impact codes, which are them-
selves models. For data treatments that do not look at the outcome, like design_
missingness_treatment() and designTreatmentsZ(), it is safe to use the same data
to design the treatment plan and fit the model. However, when the data treatment
uses the outcome, we suggest either an additional data split or using the mkCross-
Frame*Experiment()/$crossFrame pattern from section 8.4.1.

vtreat uses cross-validation procedures to create the cross-frame. For details, see
https://winvector.github.io/vtreat/articles/vtreatCrossFrames.html.

DESIGNTREATMENTS*() VS. MKCROSSFRAME*EXPERIMENT() For larger datasets,
it’s easier to use a three-way split of the training data and the design-
Treatments*()/prepare() pattern to design the treatment plan, fit the
model, and evaluate it. For datasets that seem too small to split three ways
(especially datasets with a very large number of variables), you may get better
models by using the mkCrossFrame*Experiment()/prepare() pattern.

Summary
Real-world data is often messy. Raw uninspected and untreated data may crash your
modeling or predicting step, or may give bad results. “Fixing” data does not compete
with having better data. But being able to work with the data you have (instead of the
data you want) is an advantage.

In addition to many domain-specific or problem-specific problems, you may find
that in your data, there are a number of common problems that should be anticipated
and dealt with systematically. vtreat is a package specialized for preparing data for
supervised machine learning or predictive modeling tasks. It can also reduce your
project documentation requirements through its citable documentation.20 However,
remember that tools are not an excuse to avoid looking at your data.

20 See https://arxiv.org/abs/1611.09477.

The F-tests on
the data and the
scoreFrame
statistics now
largely agree.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://winvector.github.io/vtreat/articles/vtreatCrossFrames.html

310 CHAPTER 8 Advanced data preparation
In this chapter you have learned

 How to use the vtreat package’s designTreatments*()/prepare() pattern
with a three-way split of your training data to prepare messy data for model fit-
ting and model application

 How to use the vtreat package’s mkCrossFrame*Experiment()/prepare() pat-
tern with a two-way split of your training data to prepare messy data for model
fitting and model application, when statistical efficiency is important
Licensed to Ajit de Silva <agdesilva@gmail.com>

Unsupervised methods
In the previous chapter, we covered using the vtreat package to prepare messy
real-world data for modeling. In this chapter, we’ll look at methods to discover
unknown relationships in data. These methods are called unsupervised methods.
With unsupervised methods, there’s no outcome that you’re trying to predict;
instead, you want to discover patterns in the data that perhaps you hadn’t previ-
ously suspected. For example, you may want to find groups of customers with simi-
lar purchase patterns, or correlations between population movement and
socioeconomic factors. We will still consider this pattern discovery to be “model-
ing,” and as such, the outcomes of the algorithms can still be evaluated, as shown in
the mental model for this chapter (figure 9.1).

This chapter covers
 Using R’s clustering functions to explore data and look for

similarities

 Choosing the right number of clusters

 Evaluating a cluster

 Using R’s association rules functions to find patterns of
co-occurrence in data

 Evaluating a set of association rules
311

Licensed to Ajit de Silva <agdesilva@gmail.com>

312 CHAPTER 9 Unsupervised methods
Unsupervised analyses are often not ends in themselves; rather, they’re ways of finding
relationships and patterns that can be used to build predictive models. In fact, we
encourage you to think of unsupervised methods as exploratory—procedures that
help you get your hands in the data—rather than as black-box approaches that myste-
riously and automatically give you “the right answer.”

In this chapter, we’ll look at two classes of unsupervised methods:

 Cluster analysis finds groups with similar characteristics.
 Association rule mining finds elements or properties in the data that tend to

occur together.

9.1 Cluster analysis
In cluster analysis, the goal is to group the observations in your data into clusters such
that every datum in a cluster is more similar to other datums in the same cluster than
it is to datums in other clusters. For example, a company that offers guided tours
might want to cluster its clients by behavior and tastes: which countries they like to
visit; whether they prefer adventure tours, luxury tours, or educational tours; what
kinds of activities they participate in; and what sorts of sites they like to visit. Such
information can help the company design attractive travel packages and target the
appropriate segments of their client base with them.

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 9.1 Mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

313Cluster analysis
Cluster analysis is a topic worthy of a book in itself; in this chapter, we’ll discuss two
approaches. Hierarchical clustering finds nested groups of clusters. An example of hier-
archical clustering might be the standard plant taxonomy, which classifies plants by
family, then genus, then species, and so on. The second approach we’ll cover is
k-means, which is a quick and popular way of finding clusters in quantitative data.

9.1.1 Distances

In order to cluster, you need the notions of similarity and dissimilarity. Dissimilarity can
be thought of as distance, so that the points in a cluster are closer to each other than
they are to the points in other clusters. This is shown in figure 9.2.

Clustering and density estimation
Historically, cluster analysis is related to the problem of density estimation: if you
think of your data as living in a large dimensional space, then you want to find the
regions of the space where the data is densest. If those regions are distinct, or nearly
so, then you have clusters.

−0.5

0.0

0.5

−0.6 −0.3 0.0 0.3

PC1

P
C

2

Figure 9.2 An example of data in three clusters
Licensed to Ajit de Silva <agdesilva@gmail.com>

314 CHAPTER 9 Unsupervised methods
Different application areas will have different notions of distance and dissimilarity. In
this section, we’ll cover a few of the most common ones:

 Euclidean distance
 Hamming distance
 Manhattan (city block) distance
 Cosine similarity

EUCLIDEAN DISTANCE

 Example Suppose you have measurements on how many minutes per day subjects
spend on different activities, and you want to group the subjects by their activity pat-
terns.

Since your measurements are numerical and continuous, Euclidean distance is a good
distance to use for clustering. Euclidean distance is the measure people tend to think
of when they think of “distance.” Optimizing squared Euclidean distance is the basis
of k-means. Of course, Euclidean distance only makes sense when all the data is real-
valued (quantitative). If the data is categorical (in particular, binary), then other dis-
tances should be used.

The Euclidean distance between two vectors x and y is defined as

edist(x, y) <- sqrt((x[1] - y[1])^2 + (x[2] - y[2])^2 + ...)

HAMMING DISTANCE

 Example Suppose you want to group your recipe box into groups of similar recipes.
One way to do that is to measure the similarity of their ingredients lists.

By this measure, pancakes, waffles, and crepes are highly similar (they have almost
identical ingredients, and vary only in proportions); they all differ somewhat from
cornbread (which uses cornmeal, rather than flour); and they all differ to a greater
degree from mashed potatoes.

For categorical variables like recipe ingredients, gender (male/female), or qualita-
tive size (small/medium/large), you can define the distance as 0 if two points are in
the same category, and 1 otherwise. If all the variables are categorical, then you can
use Hamming distance, which counts the number of mismatches:

hdist(x, y) <- sum((x[1] != y[1]) + (x[2] != y[2]) + ...)

Here, a != b is defined to have a value of 1 if the expression is true, and a value of 0 if
the expression is false.

You can also expand categorical variables to indicator variables (as we discussed in
section 7.1.4), one for each level of the variable.

If the categories are ordered (like small/medium/large) so that some categories
are “closer” to each other than others, then you can convert them to a numerical
sequence. For example, (small/medium/large) might map to (1/2/3). Then you can
use Euclidean distance or other distances for quantitative data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

315Cluster analysis
MANHATTAN (CITY BLOCK) DISTANCE

 Example Suppose you run a delivery service that caters to downtown businesses. You
want to cluster your clients so that you can place pickup/drop-off boxes that are cen-
trally located in each cluster.

Manhattan distance measures distance in the number of horizontal and vertical units
it takes to get from one (real-valued) point to the other (no diagonal moves). This is
also known as L1 distance (and squared Euclidean distance is L2 distance).

In this example, Manhattan distance is more appropriate because you want to mea-
sure distance by how far people will walk along the streets, not diagonally point-to-
point (Euclidean distance). For example, in figure 9.3, client A is 2 blocks north of
the site and 2 blocks west, while client B is 3 blocks south of the site and 1 block east.
They are equidistant from the site (4 blocks) by Manhattan distance. But client B is
further by Euclidean distance: the diagonal of a 3-by-1 rectangle is longer than the
diagonal of a 2-by-2 square.

The Manhattan distance between two vectors x and y is defined as

mdist(x, y) <- sum(abs(x[1] - y[1]) + abs(x[2] - y[2]) + ...)

COSINE SIMILARITY

 Example Suppose you represent a document as rows of a document-text matrix, as
we did in section 6.3.3, where each element i of the row vector gives the number of times
that word i appeared in the document. Then the cosine similarity between two row vec-
tors is a measure of the similarity of the corresponding documents.

B

A

Manhattan Distance: 2 + 2 = 4

Euclidean Distance:
 √4+4 = 2�2 � 2.8

Manhattan Distance:
1 + 3 = 4

Euclidean Distance:
�1 + 9 � 3.16

Figure 9.3 Manhattan vs.
Euclidean distance
Licensed to Ajit de Silva <agdesilva@gmail.com>

316 CHAPTER 9 Unsupervised methods
Cosine similarity is a common similarity met-
ric in text analysis. It measures the smallest
angle between two vectors. In our text exam-
ple, we assume non-negative vectors, so the
angle theta between two vectors is between 0
and 90 degrees. Cosine similarity is shown in
figure 9.4.

Two perpendicular vectors (theta = 90
degrees) are the most dissimilar; the cosine
of 90 degrees is 0. Two parallel vectors are
the most similar (identical, if you assume
they’re both based at the origin); the cosine
of 0 degrees is 1.

From elementary geometry, you can derive that the cosine of the angle between
two vectors is given by the normalized dot product between the two vectors:

dot(x, y) <- sum(x[1] * y[1] + x[2] * y[2] + ...)
cossim(x, y) <- dot(x, y) / (sqrt(dot(x,x) * dot(y, y)))

You can turn the cosine similarity into a pseudo distance by subtracting it from
1.0 (though to get an actual metric, you should use 1 - 2 * acos(cossim(x, y)) / pi).

Different distance metrics will give you different clusters, as will different clustering
algorithms. The application domain may give you a hint as to the most appropriate
distance, or you can try several distance metrics. In this chapter, we’ll use (squared)
Euclidean distance, as it’s the most natural distance for quantitative data.

9.1.2 Preparing the data

To demonstrate clustering, we’ll use a small dataset from 1973 on protein consump-
tion from nine different food groups in 25 countries in Europe.1 The goal is to group
the countries based on patterns in their protein consumption. The dataset is loaded
into R as a data frame called protein, as shown in the next listing.

protein <- read.table("protein.txt", sep = "\t", header=TRUE)
summary(protein)
Country RedMeat WhiteMeat Eggs
Albania : 1 Min. : 4.400 Min. : 1.400 Min. :0.500
Austria : 1 1st Qu.: 7.800 1st Qu.: 4.900 1st Qu.:2.700
Belgium : 1 Median : 9.500 Median : 7.800 Median :2.900
Bulgaria : 1 Mean : 9.828 Mean : 7.896 Mean :2.936
Czechoslovakia: 1 3rd Qu.:10.600 3rd Qu.:10.800 3rd Qu.:3.700

1 The original dataset was from the Data and Story Library, previously hosted at CMU. It is no longer online
there. A tab-separated text file with the data can be found at https://github.com/WinVector/
PDSwR2/tree/master/Protein/. The data file is called protein.txt; additional information can be found in
the file protein_README.txt.

Listing 9.1 Reading the protein data

� = 90 ➝ similarity = 0

similarity = cos(�)

� = 0 ➝ similarity = 1

�

Figure 9.4 Cosine similarity
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/Protein/
https://github.com/WinVector/PDSwR2/tree/master/Protein/
https://github.com/WinVector/PDSwR2/tree/master/Protein/

317Cluster analysis
Denmark : 1 Max. :18.000 Max. :14.000 Max. :4.700
(Other) :19
Milk Fish Cereals Starch
Min. : 4.90 Min. : 0.200 Min. :18.60 Min. :0.600
1st Qu.:11.10 1st Qu.: 2.100 1st Qu.:24.30 1st Qu.:3.100
Median :17.60 Median : 3.400 Median :28.00 Median :4.700
Mean :17.11 Mean : 4.284 Mean :32.25 Mean :4.276
3rd Qu.:23.30 3rd Qu.: 5.800 3rd Qu.:40.10 3rd Qu.:5.700
Max. :33.70 Max. :14.200 Max. :56.70 Max. :6.500
##
Nuts Fr.Veg
Min. :0.700 Min. :1.400
1st Qu.:1.500 1st Qu.:2.900
Median :2.400 Median :3.800
Mean :3.072 Mean :4.136
3rd Qu.:4.700 3rd Qu.:4.900
Max. :7.800 Max. :7.900

UNITS AND SCALING

The documentation for this dataset doesn’t mention what the units of measurement
are; we will assume all the columns are measured in the same units. This is important:
units (or, more precisely, disparity in units) affect what clusterings an algorithm will
discover. If you measure vital statistics of your subjects as age in years, height in feet,
and weight in pounds, you’ll get different distances—and possibly different clusters—
than if you measure age in years, height in meters, and weight in kilograms.

Ideally, you want a unit of change in each coordinate to represent the same degree
of difference. In the protein dataset, we assume that the measurements are all in the
same units, so it might seem that we’re okay. This may well be a correct assumption, but
different food groups provide different amounts of protein. Animal-based food sources
in general have more grams of protein per serving than plant-based food sources, so
one could argue that a change in consumption of five grams is a bigger difference in
terms of vegetable consumption than it is in terms of red meat consumption.

One way to try to make the units of each variable more compatible is to transform
all the columns to have a mean value of 0 and a standard deviation of 1. This makes
the standard deviation the unit of measurement in each coordinate. Assuming that
your training data has a distribution that accurately represents the population at
large, then a standard deviation represents approximately the same degree of differ-
ence in every coordinate.

You can scale numeric data in R using the function scale(). The output of
scale() is a matrix. For the purposes of this chapter, you can mostly think of a matrix
as a data frame with all numeric columns (this isn’t strictly true, but it’s close enough).

The scale() function annotates its output with two attributes—scaled:center

returns the mean values of all the columns, and scaled:scale returns the standard
deviations. You’ll store these away so you can “unscale” the data later.
Licensed to Ajit de Silva <agdesilva@gmail.com>

318 CHAPTER 9 Unsupervised methods
vars_to_use <- colnames(protein)[-1]
pmatrix <- scale(protein[, vars_to_use])

pcenter <- attr(pmatrix, "scaled:center")
pscale <- attr(pmatrix, "scaled:scale")

rm_scales <- function(scaled_matrix) {
attr(scaled_matrix, "scaled:center") <- NULL
attr(scaled_matrix, "scaled:scale") <- NULL
scaled_matrix

}

pmatrix <- rm_scales(pmatrix)

Figure 9.5 shows the effect of scaling on two variables, Fr.Veg and RedMeat. The raw
(unscaled) variables have different ranges, reflecting the fact that the amount of pro-
tein supplied via red meat tends to be higher than the amount of protein supplied via
fruits and vegetables. The scaled variables now have similar ranges, which makes com-
paring relative variation in each variable easier.

Now you are ready to cluster the protein data. We’ll start with hierarchical clustering.

Listing 9.2 Rescaling the dataset

Uses all the columns except
the first (Country)

Stores the scaling attributes

Convenience function to
remove scale attributes
from a scaled matrix.

Nulls out the scale attributes for safety

scaled

unscaled

−1 0 1 2

5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

0.0

0.2

0.4

0.6

protein_consumption

de
ns

ity source

fr.Veg

redMeat

Figure 9.5 Comparison of Fr.Veg and RedMeat variables, unscaled (top) and scaled (bottom)
Licensed to Ajit de Silva <agdesilva@gmail.com>

319Cluster analysis
9.1.3 Hierarchical clustering with hclust

The hclust() function takes as input a distance matrix (as an object of class dist),
which records the distances between all pairs of points in the data (using any one of a
variety of metrics). You can compute the distance matrix using the function dist().

dist() will calculate distance functions using the (squared) Euclidean distance
(method = "euclidean"), the Manhattan distance (method = "manhattan"), and
something like the Hamming distance, when categorical variables are expanded to
indicators (method = "binary"). If you want to use another distance metric, you’ll
have to compute the appropriate distance matrix and convert it to a dist object using
the as.dist() call (see help(dist) for further details).

hclust() also uses one of a variety of clustering methods to produce a tree that
records the nested cluster structure. We’ll use Ward’s method, which starts out with
each data point as an individual cluster and merges clusters iteratively so as to mini-
mize the total within sum of squares (WSS) of the clustering (we’ll explain more about
WSS later in the chapter).

Let’s cluster the protein data.

distmat <- dist(pmatrix, method = "euclidean")

pfit <- hclust(distmat, method = "ward.D")

plot(pfit, labels = protein$Country)

hclust() returns a dendrogram: a tree that represents the nested clusters. The dendro-
gram for the protein data is shown in figure 9.6. The leaves of the tree are in the same
cluster if there is a path between them. By cutting the tree at a certain depth, you dis-
connect some of the paths, and so create more, smaller clusters.

This dendrogram suggests five clusters might be an appropriate number, as shown
in figure 9.6. You can draw the rectangles on the dendrogram using the function
rect.hclust():

rect.hclust(pfit, k=5)

Listing 9.3 Hierarchical clustering

Creates the distance matrix
Does the clustering

Plots the dendrogram

F
in

la
nd

N
or

w
ay

D
en

m
ar

k
S

w
ed

en
H

un
ga

ry
U

S
S

R
P

ol
an

d
C

ze
ch

os
lo

va
ki

a
E

 G
er

m
an

y
S

w
itz

er
la

nd
A

us
tr

ia
N

et
he

rla
nd

s
Ir

el
an

d
B

el
gi

um
W

 G
er

m
an

y
F

ra
nc

e
U

K
A

lb
an

ia
B

ul
ga

ria
R

om
an

ia
Yu

go
sl

av
ia

G
re

ec
e

Ita
ly

P
or

tu
ga

l
S

pa
in0

5
15

hclust (*, "ward")
d

H
ei

gh
t

Figure 9.6 Dendrogram of countries clustered by protein consumption
Licensed to Ajit de Silva <agdesilva@gmail.com>

320 CHAPTER 9 Unsupervised methods
To extract the members of each cluster from the hclust object, use cutree().

groups <- cutree(pfit, k = 5)

print_clusters <- function(data, groups, columns) {
groupedD <- split(data, groups)

 lapply(groupedD,
function(df) df[, columns])

}

cols_to_print <- wrapr::qc(Country, RedMeat, Fish, Fr.Veg)
print_clusters(protein, groups, cols_to_print)

$`1`
Country RedMeat Fish Fr.Veg
1 Albania 10.1 0.2 1.7
4 Bulgaria 7.8 1.2 4.2
18 Romania 6.2 1.0 2.8
25 Yugoslavia 4.4 0.6 3.2
##
$`2`
Country RedMeat Fish Fr.Veg
2 Austria 8.9 2.1 4.3
3 Belgium 13.5 4.5 4.0
9 France 18.0 5.7 6.5
12 Ireland 13.9 2.2 2.9
14 Netherlands 9.5 2.5 3.7
21 Switzerland 13.1 2.3 4.9
22 UK 17.4 4.3 3.3
24 W Germany 11.4 3.4 3.8
##
$`3`
Country RedMeat Fish Fr.Veg
5 Czechoslovakia 9.7 2.0 4.0
7 E Germany 8.4 5.4 3.6
11 Hungary 5.3 0.3 4.2
16 Poland 6.9 3.0 6.6
23 USSR 9.3 3.0 2.9
##
$`4`
Country RedMeat Fish Fr.Veg
6 Denmark 10.6 9.9 2.4
8 Finland 9.5 5.8 1.4
15 Norway 9.4 9.7 2.7
20 Sweden 9.9 7.5 2.0
##
$`5`
Country RedMeat Fish Fr.Veg
10 Greece 10.2 5.9 6.5
13 Italy 9.0 3.4 6.7
17 Portugal 6.2 14.2 7.9
19 Spain 7.1 7.0 7.2

Listing 9.4 Extracting the clusters found by hclust()

A convenience function for printing
out the countries in each cluster,

along with the values for red meat,
fish, and fruit/vegetable

consumption. We’ll use this function
throughout this section. Note that

the function assumes the data is in a
data.frame (not a matrix).
Licensed to Ajit de Silva <agdesilva@gmail.com>

321Cluster analysis
There’s a certain logic to these clusters: the countries in each cluster tend to be in the
same geographical region. It makes sense that countries in the same region would
have similar dietary habits. You can also see that

 Cluster 2 is made of countries with higher-than-average red meat consumption.
 Cluster 4 contains countries with higher-than-average fish consumption, but

low produce consumption.
 Cluster 5 contains countries with high fish and produce consumption.

This dataset has only 25 points; it’s harder to “eyeball” the clusters and the cluster
members when there are very many data points. In the next few sections, we’ll look at
some ways to examine clusters more holistically.

VISUALIZING CLUSTERS USING PRINCIPAL COMPONENTS ANALYSIS

As we mentioned in chapter 3, visualization is an effective way to get an overall view of
the data, or in this case, the clusterings. The protein data is nine-dimensional, so it’s
hard to visualize with a scatter plot.

We can try to visualize the clustering by projecting the data onto the first two princi-
pal components of the data.1 If N is the number of variables that describe the data, then
the principal components describe the hyperellipsoid in N-space that roughly bounds
the data. Each principal component is an N-dimensional vector that describes an axis
of that hyperellipsoid. Figure 9.7 shows this for N = 3.

If you order the principal components by the length of the hyperellipsoid’s corre-
sponding axes (longest first), then the first two principal components describe a
plane in N-space that captures as much of the variation of the data as can be captured
in two dimensions. In other words, it describes the best 2-D projection of the data.
We’ll use the prcomp() call to do the principal components decomposition.

1 We can project the data onto any two of the principal components, but the first two are the most likely to show
useful information.

PC1

PC1

PC2PC2

PC3

Ellipsoid described by
principal components

roughly bounds the data

PC1 & PC2 describe
best projection of
data to a plane

Figure 9.7 The idea behind
principal components analysis
Licensed to Ajit de Silva <agdesilva@gmail.com>

322 CHAPTER 9 Unsupervised methods
library(ggplot2)
princ <- prcomp(pmatrix)
nComp <- 2
project <- predict(princ, pmatrix)[, 1:nComp]
project_plus <- cbind(as.data.frame(project),

cluster = as.factor(groups),
country = protein$Country)

ggplot(project_plus, aes(x = PC1, y = PC2)) +
geom_point(data = as.data.frame(project), color = "darkgrey") +
geom_point() +
geom_text(aes(label = country),

hjust = 0, vjust = 1) +
facet_wrap(~ cluster, ncol = 3, labeller = label_both)

You can see in figure 9.8 that cluster 1 (Romania/Yugoslavia/Bulgaria/Albania) and
the Mediterranean cluster (cluster 5) are separated from the others. The other three
clusters comingle in this projection, though they’re probably more separated in other
projections.

Listing 9.5 Projecting the clusters on the first two principal components

Calculates the principal
components of the data

The predict() function will rotate the data into the
coordinates described by the principal components. The
first two columns of the rotated data are the projection
of the data on the first two principal components. Creates a data frame with the

transformed data, along with the cluster
label and country label of each point

Plot it. Put each cluster in a
separate facet for legibility.

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

cluster: 4 cluster: 5

cluster: 1 cluster: 2 cluster: 3

−2 0 2 −2 0 2

−2 0 2

0

2

4

0

2

4

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

P
C

2

PC1

Albania
BulgariaRomaniaYugoslavia

Denmark

Finland

Norway

Sweden

Austria

Belgium
France

IrelandNetherlandsSwitzerland
W Germany

Greece
Italy

Portugal

Spain

Czechoslovakia

E Germany

Hungary

Poland
USSRUK

Figure 9.8 Plot of countries clustered by protein consumption, projected onto the first two principal
components
Licensed to Ajit de Silva <agdesilva@gmail.com>

323Cluster analysis
BOOTSTRAP EVALUATION OF CLUSTERS

An important question when evaluating clusters is whether a given cluster is “real”—
does the cluster represent actual structure in the data, or is it an artifact of the cluster-
ing algorithm? As you’ll see, this is especially important with clustering algorithms like
k-means, where the user has to specify the number of clusters beforehand. It’s been
our experience that clustering algorithms will often produce several clusters that rep-
resent actual structure or relationships in the data, and then one or two clusters that
are buckets that represent “other” or “miscellaneous.” Clusters of "other" tend to be
made up of data points that have no real relationship to each other; they just don’t fit
anywhere else.

One way to assess whether a cluster represents true structure is to see if the cluster
holds up under plausible variations in the dataset. The fpc package has a function
called clusterboot() that uses bootstrap resampling to evaluate how stable a given
cluster is.1 clusterboot() is an inte-
grated function that both performs the
clustering and evaluates the final pro-
duced clusters. It has interfaces to a
number of R clustering algorithms,
including both hclust and kmeans.

clusterboot’s algorithm uses the
Jaccard coefficient, a similarity measure
between sets. The Jaccard similarity
between two sets A and B is the ratio of
the number of elements in the inter-
section of A and B over the number of
elements in the union of A and B. This
is shown in figure 9.9.

The basic general strategy is as follows:

1 Cluster the data as usual.
2 Draw a new dataset (of the same size as the original) by resampling the original

dataset with replacement (meaning that some of the data points may show up
more than once, and others not at all). Cluster the new dataset.

3 For every cluster in the original clustering, find the most similar cluster in the
new clustering (the one that gives the maximum Jaccard coefficient) and
record that value. If this maximum Jaccard coefficient is less than 0.5, the origi-
nal cluster is considered to be dissolved—it didn’t show up in the new clustering.
A cluster that’s dissolved too often is probably not a “real” cluster.

4 Repeat steps 2–3 several times.

1 For a full description of the algorithm, see Christian Henning, “Cluster-wise assessment of cluster stability,”
Research Report 271, Dept. of Statistical Science, University College London, December 2006.

BA

A B = 11

A ∩ B = 6

(A B) = 6/11 × 0.55(A ∩ B)

∩

∩

Jaccard Similarity

Figure 9.9 Jaccard similarity
Licensed to Ajit de Silva <agdesilva@gmail.com>

324 CHAPTER 9 Unsupervised methods

Set
de

numb
clu
The cluster stability of each cluster in the original clustering is the mean value of its Jac-
card coefficient over all the bootstrap iterations. As a rule of thumb, clusters with a sta-
bility value less than 0.6 should be considered unstable. Values between 0.6 and 0.75
indicate that the cluster is measuring a pattern in the data, but there isn’t high cer-
tainty about which points should be clustered together. Clusters with stability values
above about 0.85 can be considered highly stable (they’re likely to be real clusters).

Different clustering algorithms can give different stability values, even when the
algorithms produce highly similar clusterings, so clusterboot() is also measuring
how stable the clustering algorithm is.

Let’s run clusterboot() on the protein data, using hierarchical clustering with
five clusters. Note that clusterboot() is randomized, so you may not get identical
results.

library(fpc)
kbest_p <- 5
cboot_hclust <- clusterboot(pmatrix,

clustermethod = hclustCBI,

method = "ward.D",
k = kbest_p)

summary(cboot_hclust$result)

Length Class Mode
result 7 hclust list
noise 1 -none- logical
nc 1 -none- numeric
clusterlist 5 -none- list
partition 25 -none- numeric
clustermethod 1 -none- character
nccl 1 -none- numeric

groups <- cboot_hclust$result$partition
print_clusters(protein, groups, cols_to_print)

$`1`
Country RedMeat Fish Fr.Veg
1 Albania 10.1 0.2 1.7
4 Bulgaria 7.8 1.2 4.2
18 Romania 6.2 1.0 2.8
25 Yugoslavia 4.4 0.6 3.2
##
$`2`
Country RedMeat Fish Fr.Veg
2 Austria 8.9 2.1 4.3
3 Belgium 13.5 4.5 4.0
9 France 18.0 5.7 6.5
12 Ireland 13.9 2.2 2.9
14 Netherlands 9.5 2.5 3.7
21 Switzerland 13.1 2.3 4.9
22 UK 17.4 4.3 3.3

Listing 9.6 Running clusterboot() on the protein data

Loads the fpc package. You
may have to install it first.s the

sired
er of
sters Runs clusterboot() with

hclust (clustermethod =
hclustCBI) using Ward’s
method (method =
"ward.D") and kbest_p
clusters (k = kbest_p).
Returns the results in an
object called cboot_hclust.

The results of the
clustering are in
cboot_hclust$result.

cboot_hclust$result
$partition returns a
vector of cluster
labels.

The clusters are the same
as those produced by a
direct call to hclust().
Licensed to Ajit de Silva <agdesilva@gmail.com>

325Cluster analysis
24 W Germany 11.4 3.4 3.8
##
$`3`
Country RedMeat Fish Fr.Veg
5 Czechoslovakia 9.7 2.0 4.0
7 E Germany 8.4 5.4 3.6
11 Hungary 5.3 0.3 4.2
16 Poland 6.9 3.0 6.6
23 USSR 9.3 3.0 2.9
##
$`4`
Country RedMeat Fish Fr.Veg
6 Denmark 10.6 9.9 2.4
8 Finland 9.5 5.8 1.4
15 Norway 9.4 9.7 2.7
20 Sweden 9.9 7.5 2.0
##
$`5`
Country RedMeat Fish Fr.Veg
10 Greece 10.2 5.9 6.5
13 Italy 9.0 3.4 6.7
17 Portugal 6.2 14.2 7.9
19 Spain 7.1 7.0 7.2

cboot_hclust$bootmean
[1] 0.8090000 0.7939643 0.6247976 0.9366667 0.7815000

cboot_hclust$bootbrd
[1] 19 14 45 9 30

The clusterboot() results show that the cluster of countries with high fish consump-
tion (cluster 4) is highly stable: the cluster stability is high, and the cluster was dis-
solved relatively few times. Clusters 1 and 2 are also quite stable; cluster 5 less so (you
can see in figure 9.8 that the members of cluster 5 are separated from the other coun-
tries, but also fairly separated from each other). Cluster 3 has the characteristics of
what we’ve been calling the “other” cluster.

clusterboot() assumes that you know the number of clusters, k. We eyeballed the
appropriate k from the dendrogram, but this isn’t always feasible with a large dataset.
Can we pick a plausible k in a more automated fashion? We’ll look at this question in
the next section.

PICKING THE NUMBER OF CLUSTERS

There are a number of heuristics and rules of thumb for picking clusters; a given heu-
ristic will work better on some datasets than others. It’s best to take advantage of
domain knowledge to help set the number of clusters, if that’s possible. Otherwise, try
a variety of heuristics, and perhaps a few different values of k.

Total within sum of squares

One simple heuristic is to compute the total within sum of squares (WSS) for different
values of k and look for an “elbow” in the curve. We'll walk through the definition of
WSS in this section.

The vector of
cluster stabilities

The count of how many
times each cluster was
dissolved. By default,
clusterboot() runs 100
bootstrap iterations.
Licensed to Ajit de Silva <agdesilva@gmail.com>

326 CHAPTER 9 Unsupervised methods
Figure 9.10 shows data with four clusters. Define the centroid of each cluster as the
point that is the mean value of all the points in the cluster. The centroid will be in the
center of the cluster, as shown in the figure. The within sum of squares (or WSS_i) for
a single cluster is the summed squared distance of each point in the cluster from the
cluster’s centroid. This is shown in the figure for cluster 4.

The total within sum of squares is the sum of the WSS_i of all the clusters. We show
the calculation in the following listing.

sqr_edist <- function(x, y) {
sum((x - y)^2)

}

wss_cluster <- function(clustermat) {
c0 <- colMeans(clustermat)
sum(apply(clustermat, 1, FUN = function(row) { sqr_edist(row, c0) }))

}

Listing 9.7 Calculating total within sum of squares

–1

0

1

–1 0 1 2

V1

V
2

cluster centroids

cluster 2cluster 1

cluster 4
cluster 3

d

WSS4:� di2

WSS = � WSSi

Figure 9.10 Cluster WSS and total WSS for a set of four clusters

Function to calculate
squared distance
between two vectors

Function to calculate the WSS for a single
cluster, which is represented as a matrix

(one row for every point) Calculates the centroid of the
cluster (the mean of all the points)

Calculates the squared
difference of every point in

the cluster from the centroid,
and sums all the distances
Licensed to Ajit de Silva <agdesilva@gmail.com>

327Cluster analysis
wss_total <- function(dmatrix, labels) {
wsstot <- 0
k <- length(unique(labels))
for(i in 1:k)

wsstot <- wsstot + wss_cluster(subset(dmatrix, labels == i))
wsstot

}

wss_total(pmatrix, groups)

[1] 71.94342

The total WSS will decrease as the number of clusters increases, because each cluster
will be smaller and tighter. The hope is that the rate at which the WSS decreases will
slow down for k beyond the optimal number of clusters. In other words, the graph of
WSS versus k should flatten out beyond the optimal k, so the optimal k will be at the
“elbow” of the graph. Let’s try calculating WSS for up to 10 clusters.

get_wss <- function(dmatrix, max_clusters) {
wss = numeric(max_clusters)

wss[1] <- wss_cluster(dmatrix)

d <- dist(dmatrix, method = "euclidean")
pfit <- hclust(d, method = "ward.D")

for(k in 2:max_clusters) {

labels <- cutree(pfit, k = k)
wss[k] <- wss_total(dmatrix, labels)

}

wss
}

kmax <- 10
cluster_meas <- data.frame(nclusters = 1:kmax,

wss = get_wss(pmatrix, kmax))

breaks <- 1:kmax
ggplot(cluster_meas, aes(x=nclusters, y = wss)) +

geom_point() + geom_line() +
scale_x_continuous(breaks = breaks)

Figure 9.11 shows the plot of WSS as a function of k. Unfortunately, in this case the
elbow of the graph is hard to see, although if you squint your eyes you might be able
to convince yourself that there is an elbow at k = 2, and another one at k = 5 or 6.
This means the best clusterings might be 2 clusters, 5 clusters, or 6 clusters.

Listing 9.8 Plotting WSS for a range of k

Function to compute the total WSS from
a set of data points and cluster labels

Extracts each cluster,
calculates the cluster’s

WSS, and sums all the values

Calculates the total WSS for
the current protein clustering

A function to get the total
WSS for a range of clusters
from 1 to max

wss[1] is just the
WSS of all the data.

Clusters
the data

For each k, calculates the cluster
labels and the cluster WSS

Plots WSS as a function of k
Licensed to Ajit de Silva <agdesilva@gmail.com>

328 CHAPTER 9 Unsupervised methods
Calinski-Harabasz index

The Calinski-Harabasz index is another commonly used measure of cluster goodness. It
tries to find the point where all the clusters are tight, and also far apart from each
other. To motivate (and calculate) the Calinski-Harabasz index (CH index, for short),
we first need to define a few more terms.

As shown in figure 9.12, the total sum of squares (TSS) of a set of points is the sum of
the squared distances of all the points from the centroid of the data. In the function
get_wss() of listing 9.8, the value wss[1] is the TSS, and it is independent of the clus-
tering. For a given clustering with total within sum of squares, we can also define the
between sum of squares (BSS):

BSS = TSS - WSS

BSS measures how far apart the clusters are from each other. A good clustering has a
small WSS (all the clusters are tight around their centers) and a large BSS. We can
compare how BSS and WSS vary as we vary the number of clusters.

●

●

●

●

●

●

●

●

●

●

50

100

150

200

1 2 3 4 5 6 7 8 9 10

nclusters

w
ss

Figure 9.11 WSS as a function of k for the protein data
Licensed to Ajit de Silva <agdesilva@gmail.com>

329Cluster analysis
total_ss <- function(dmatrix) {
grandmean <- colMeans(dmatrix)

sum(apply(dmatrix, 1, FUN = function(row) { sqr_edist(row, grandmean) }))
}

tss <- total_ss(pmatrix)
cluster_meas$bss <- with(cluster_meas, tss - wss)

library(cdata)
cmlong <- unpivot_to_blocks(cluster_meas,

nameForNewKeyColumn = "measure",
nameForNewValueColumn = "value",
columnsToTakeFrom = c("wss", "bss"))

ggplot(cmlong, aes(x = nclusters, y = value)) +
geom_point() + geom_line() +
facet_wrap(~measure, ncol = 1, scale = "free_y") +
scale_x_continuous(breaks = 1:10)

Figure 9.13 shows that as k increases, BSS increases, while WSS decreases. We want a
clustering with a good balance of BSS and WSS. To find such a clustering, we have to
look at a couple of measures related to the BSS and the WSS.

Listing 9.9 Plotting BSS and WSS as a function of k

–1

0

1

–1 0 1 2

V1

global centroid

D

V
2

TSS =� Di
2

Figure 9.12 Total sum of squares for a set of four clusters

Calculates the total
sum of squares: TSS

Reshapes
cluster_meas so

that the WSS and
the BSS are in

the same column

Loads the cdata
package to

reshape the data
Licensed to Ajit de Silva <agdesilva@gmail.com>

330 CHAPTER 9 Unsupervised methods

Calcu
t

The within cluster variance W is given by

W = WSS / (n - k)

Here, n is the number of data points and k is the number of clusters. You can think of
W as the “average” WSS.

The between cluster variance B is given by

B = BSS / (k - 1)

Again, you can think of B as the average contribution to the BSS from each cluster.
A good clustering should have a small average WSS and a large average BSS, so we

might try to maximize the ratio of B to W. This is the Calinski-Harabasz (CH) index.
Let’s calculate the CH index and plot it for up to 10 clusters.

cluster_meas$B <- with(cluster_meas, bss / (nclusters - 1))

n = nrow(pmatrix)
cluster_meas$W <- with(cluster_meas, wss / (n - nclusters))

cluster_meas$ch_crit <- with(cluster_meas, B / W)

ggplot(cluster_meas, aes(x = nclusters, y = ch_crit)) +
geom_point() + geom_line() +
scale_x_continuous(breaks = 1:kmax)

Listing 9.10 The Calinski-Harabasz index

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

wss

bss

1 2 3 4 5 6 7 8 9 10

0

50

100

150

50

100

150

200

nclusters

va
lu

e

Figure 9.13 BSS and WSS as a function of k

lates
he CH
index

Calculates the within
cluster variance W

Calculates the between
cluster variance B
Licensed to Ajit de Silva <agdesilva@gmail.com>

331Cluster analysis
Looking at figure 9.14, you see that the CH criterion is maximized at k = 2, with
another local maximum at k = 5. The k = 2 clustering corresponds to the first split of
the protein data dendrogram, as shown in figure 9.15; if you use clusterboot() to do
the clustering, you’ll see that the clusters are highly stable, though perhaps not very
informative.

●

●

●

●
●

●

●

●

●

9

10

11

12

1 2 3 4 5 6 7 8 9 10

nclusters

ch
_c

rit

Figure 9.14 The Calinski-Harabasz index as a function of k

F
in

la
nd

N
or

w
ay

D
en

m
ar

k
S

w
ed

en
H

un
ga

ry
U

S
S

R
P

ol
an

d
C

ze
ch

os
lo

va
ki

a
E

 G
er

m
an

y
S

w
itz

er
la

nd
A

us
tr

ia
N

et
he

rla
nd

s
Ir

el
an

d
B

el
gi

um
W

 G
er

m
an

y
F

ra
nc

e
U

K
A

lb
an

ia
B

ul
ga

ria
R

om
an

ia
Yu

go
sl

av
ia

G
re

ec
e

Ita
ly

P
or

tu
ga

l
S

pa
in

0
5

10
15

20

hclust (*, "ward.D")
d

H
ei

gh
t

Figure 9.15 The protein data dendrogram with two clusters
Licensed to Ajit de Silva <agdesilva@gmail.com>

332 CHAPTER 9 Unsupervised methods
9.1.4 The k-means algorithm

K-means is a popular clustering algorithm when the data is all numeric and the dis-
tance metric is squared Euclidean (though you could in theory run it with other
distance metrics). It’s fairly ad hoc and has the major disadvantage that you must pick
k in advance. On the plus side, it’s easy to implement (one reason it’s so popular) and
can be faster than hierarchical clustering on large datasets. It works best on data that
looks like a mixture of Gaussians, which the protein data unfortunately doesn’t
appear to be.

THE KMEANS() FUNCTION

The function to run k-means in R is kmeans(). The output of kmeans() includes the
cluster labels, the centers (centroids) of the clusters, the total sum of squares, total
WSS, total BSS, and the WSS of each cluster.

The k-means algorithm is illustrated in figure 9.16, with k = 2. This algorithm isn’t
guaranteed to have a unique stopping point. K-means can be fairly unstable, in that
the final clusters depend on the initial cluster centers. It’s good practice to run
k-means several times with different random starts, and then select the clustering with
the lowest total WSS. The kmeans() function can do this automatically, though it
defaults to using only one random start.

Let’s run kmeans() on the protein data (scaled to 0 mean and unit standard devia-
tion, as before). We’ll use k = 5, as shown in listing 9.11. Note that kmeans() is ran-
domized code, so you may not get exactly the results shown.

Other measures of cluster quality
There are several other measures that you can try when picking k. The gap statistica

is an attempt to automate the “elbow finding” on the WSS curve. It works best when
the data comes from a mix of populations that all have approximately Gaussian dis-
tributions (called a mixture of Gaussians). We’ll see one more measure, the average
silhouette width, when we discuss kmeans().

a See Robert Tibshirani, Guenther Walther, and Trevor Hastie, “Estimating the number of clus-
ters in a data set via the gap statistic,” Journal of the Royal Statistical Society B, 2001. 63(2),
pp. 411-423; www.stanford.edu/~hastie/Papers/gap.pdf.
Licensed to Ajit de Silva <agdesilva@gmail.com>

333Cluster analysis
kbest_p <- 5

pclusters <- kmeans(pmatrix, kbest_p, nstart = 100, iter.max = 100)
summary(pclusters)
Length Class Mode
cluster 25 -none- numeric
centers 45 -none- numeric
totss 1 -none- numeric
withinss 5 -none- numeric
tot.withinss 1 -none- numeric
betweenss 1 -none- numeric
size 5 -none- numeric
iter 1 -none- numeric
ifault 1 -none- numeric

pclusters$centers

RedMeat WhiteMeat Eggs Milk Fish Cereals
1 -0.570049402 0.5803879 -0.08589708 -0.4604938 -0.4537795 0.3181839
2 -0.508801956 -1.1088009 -0.41248496 -0.8320414 0.9819154 0.1300253
3 -0.807569986 -0.8719354 -1.55330561 -1.0783324 -1.0386379 1.7200335
4 0.006572897 -0.2290150 0.19147892 1.3458748 1.1582546 -0.8722721
5 1.011180399 0.7421332 0.94084150 0.5700581 -0.2671539 -0.6877583
Starch Nuts Fr.Veg

Listing 9.11 Running k-means with k = 5

1) Select k
cluster centers
at random.

2) Assign every
data point to the
nearest cluster
center. These
are the clusters.

3) For each
cluster,
compute its
actual center.

4) Reassign all
data points to
the nearest (new)
cluster center.

5) Repeat steps 3 and 4 until the points stop moving,
or you have reached a maximum number of iterations.

Figure 9.16 The k-means procedure. The two cluster centers are represented by the
outlined star and diamond.

kmeans() returns all the
sum-of-squares measures.

Runs kmeans() with five
clusters (kbest_p = 5), 100

random starts, and 100
maximum iterations per run

pclusters$centers is a matrix whose rows are
the centroids of the clusters. Note that
pclusters$centers is in the scaled coordinates,
not the original protein coordinates.
Licensed to Ajit de Silva <agdesilva@gmail.com>

334 CHAPTER 9 Unsupervised methods
1 0.7857609 -0.2679180 0.06873983
2 -0.1842010 1.3108846 1.62924487
3 -1.4234267 0.9961313 -0.64360439
4 0.1676780 -0.9553392 -1.11480485
5 0.2288743 -0.5083895 0.02161979

pclusters$size
[1] 5 4 4 4 8

groups <- pclusters$cluster

cols_to_print = wrapr::qc(Country, RedMeat, Fish, Fr.Veg)
print_clusters(protein, groups, cols_to_print)

$`1`
Country RedMeat Fish Fr.Veg
5 Czechoslovakia 9.7 2.0 4.0
7 E Germany 8.4 5.4 3.6
11 Hungary 5.3 0.3 4.2
16 Poland 6.9 3.0 6.6
23 USSR 9.3 3.0 2.9
##
$`2`
Country RedMeat Fish Fr.Veg
10 Greece 10.2 5.9 6.5
13 Italy 9.0 3.4 6.7
17 Portugal 6.2 14.2 7.9
19 Spain 7.1 7.0 7.2
##
$`3`
Country RedMeat Fish Fr.Veg
1 Albania 10.1 0.2 1.7
4 Bulgaria 7.8 1.2 4.2
18 Romania 6.2 1.0 2.8
25 Yugoslavia 4.4 0.6 3.2
##
$`4`
Country RedMeat Fish Fr.Veg
6 Denmark 10.6 9.9 2.4
8 Finland 9.5 5.8 1.4
15 Norway 9.4 9.7 2.7
20 Sweden 9.9 7.5 2.0
##
$`5`
Country RedMeat Fish Fr.Veg
2 Austria 8.9 2.1 4.3
3 Belgium 13.5 4.5 4.0
9 France 18.0 5.7 6.5
12 Ireland 13.9 2.2 2.9
14 Netherlands 9.5 2.5 3.7
21 Switzerland 13.1 2.3 4.9
22 UK 17.4 4.3 3.3
24 W Germany 11.4 3.4 3.8

pclusters$size returns the number of points
in each cluster. Generally (though not
always), a good clustering will be fairly well
balanced: no extremely small clusters and
no extremely large ones.

pclusters$cluster
is a vector of
cluster labels.

In this case, kmeans()
and hclust () return the
same clustering. This
won’t always be true.
Licensed to Ajit de Silva <agdesilva@gmail.com>

335Cluster analysis
THE KMEANSRUNS() FUNCTION FOR PICKING K
To run kmeans(), you must know k. The fpc package (the same package that has
clusterboot()) has a function called kmeansruns() that calls kmeans() over a range
of k and estimates the best k. It then returns its pick for the best value of k, the output
of kmeans() for that value, and a vector of criterion values as a function of k. Cur-
rently, kmeansruns() has two criteria: the Calinski-Harabasz index ("ch") and the
average silhouette width ("asw"). For either criterion, the maximum value indicates the
optimal number of clusters (for more about silhouette clustering, see
http://mng.bz/Qe15). It’s a good idea to examine the criterion values over the entire
range of k, since you may see evidence for a k that the algorithm didn’t automatically
pick. The following listing illustrates this point.

clustering_ch <- kmeansruns(pmatrix, krange = 1:10, criterion = "ch")

clustering_ch$bestk
[1] 2

clustering_asw <- kmeansruns(pmatrix, krange = 1:10, criterion = "asw")
clustering_asw$bestk
[1] 3

clustering_asw$crit
[1] 0.0000000 0.3271084 0.3351694 0.2617868 0.2639450 0.2734815 0.2471165
[8] 0.2429985 0.2412922 0.2388293

clustering_ch$crit
[1] 0.000000 14.094814 11.417985 10.418801 10.011797 9.964967 9.861682
[8] 9.412089 9.166676 9.075569

cluster_meas$ch_crit
[1] NaN 12.215107 10.359587 9.690891 10.011797 9.964967 9.506978
[8] 9.092065 8.822406 8.695065

summary(clustering_ch)

Length Class Mode
cluster 25 -none- numeric
centers 18 -none- numeric
totss 1 -none- numeric
withinss 2 -none- numeric
tot.withinss 1 -none- numeric
betweenss 1 -none- numeric
size 2 -none- numeric
iter 1 -none- numeric

Listing 9.12 Plotting cluster criteria

Runs kmeansruns() from 1–10 clusters, and the ch
criterion. By default, kmeansruns() uses 100 random
starts and 100 maximum iterations per run.

The ch criterion picks two clusters.
Runs kmeansruns() from 1–10

clusters, and the average silhouette
width criterion. The average

silhouette width picks 3 clusters.

Looks at the values of the asw
criterion as a function of k

kmeansruns() also
returns the output
of kmeans for
k = bestk.

Looks at the values of the ch
criterion as a function of k

Compares these to the
ch values for the

hclust() clustering.
They’re not quite the

same, because the two
algorithms didn’t pick

the same clusters.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/Qe15

336 CHAPTER 9 Unsupervised methods
ifault 1 -none- numeric
crit 10 -none- numeric
bestk 1 -none- numeric

The top graph of figure 9.17 compares the results of the two clustering criteria pro-
vided by kmeansruns. Both criteria have been scaled to be in compatible units. They
suggest two to three clusters as the best choice. However, if you compare the values of
the (unscaled) CH criterion for the kmeans and hclust clusterings, as shown in the
bottom graph of figure 9.17, you’ll see that the CH criterion produces different curves
for kmeans() and hclust() clusterings, but it did pick the same value (which probably
means it picked the same clusters) for k = 5 and k = 6, which might be taken as evi-
dence that either 5 or 6 is the optimal choice for k.

CLUSTERBOOT() REVISITED

We can run clusterboot() using the k-means algorithm, as well.

kbest_p <- 5
cboot <- clusterboot(pmatrix, clustermethod = kmeansCBI,

runs = 100,iter.max = 100,

Listing 9.13 Running clusterboot() with k-means

●

●
●

● ●
●

● ● ● ●

CH, kmeans vs hclust

asw versus CH (kmeans)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

0

5

10

k

sc
or

e

measure

● asw_kmeans

ch_hclust

ch_kmeans

Figure 9.17 Top: Comparison of the (scaled) CH and average silhouette width indices for
kmeans clusterings. Bottom: Comparison of CH indices for kmeans and hclust clusterings.
Licensed to Ajit de Silva <agdesilva@gmail.com>

337Cluster analysis
krange = kbest_p, seed = 15555)

groups <- cboot$result$partition
print_clusters(protein, groups, cols_to_print)
$`1`
Country RedMeat Fish Fr.Veg
1 Albania 10.1 0.2 1.7
4 Bulgaria 7.8 1.2 4.2
18 Romania 6.2 1.0 2.8
25 Yugoslavia 4.4 0.6 3.2
##
$`2`
Country RedMeat Fish Fr.Veg
6 Denmark 10.6 9.9 2.4
8 Finland 9.5 5.8 1.4
15 Norway 9.4 9.7 2.7
20 Sweden 9.9 7.5 2.0
##
$`3`
Country RedMeat Fish Fr.Veg
5 Czechoslovakia 9.7 2.0 4.0
7 E Germany 8.4 5.4 3.6
11 Hungary 5.3 0.3 4.2
16 Poland 6.9 3.0 6.6
23 USSR 9.3 3.0 2.9
##
$`4`
Country RedMeat Fish Fr.Veg
2 Austria 8.9 2.1 4.3
3 Belgium 13.5 4.5 4.0
9 France 18.0 5.7 6.5
12 Ireland 13.9 2.2 2.9
14 Netherlands 9.5 2.5 3.7
21 Switzerland 13.1 2.3 4.9
22 UK 17.4 4.3 3.3
24 W Germany 11.4 3.4 3.8
##
$`5`
Country RedMeat Fish Fr.Veg
10 Greece 10.2 5.9 6.5
13 Italy 9.0 3.4 6.7
17 Portugal 6.2 14.2 7.9
19 Spain 7.1 7.0 7.2

cboot$bootmean
[1] 0.8670000 0.8420714 0.6147024 0.7647341 0.7508333

cboot$bootbrd
[1] 15 20 49 17 32

Note that the stability numbers as given by cboot$bootmean (and the number of times
that the clusters were “dissolved” as given by cboot$bootbrd) are different for the hier-
archical clustering and k-means, even though the discovered clusters are the same.
This shows that the stability of a clustering is partly a function of the clustering algo-
rithm, not just the data. Again, the fact that both clustering algorithms discovered the
same clusters might be taken as an indication that 5 is the optimal number of clusters.

We’ve set the seed for the
random generator so the
results are reproducible.
Licensed to Ajit de Silva <agdesilva@gmail.com>

338 CHAPTER 9 Unsupervised methods
9.1.5 Assigning new points to clusters

Clustering is often used as part of data exploration, or as a precursor to other super-
vised learning methods. But you may want to use the clusters that you discovered to
categorize new data, as well. One common way to do so is to treat the centroid of each
cluster as the representative of the cluster as a whole, and then assign new points to
the cluster with the nearest centroid. Note that if you scaled the original data before
clustering, then you should also scale the new data point the same way before assign-
ing it to a cluster.

Listing 9.14 shows an example of a function that assigns a new data point, newpt
(represented as a vector), to a clustering, centers, which is represented as a matrix
where each row is a cluster centroid. This is the representation of cluster centroids that
kmeans() returns. If the data was scaled using scale() before clustering, then xcenter
and xscale are the scaled:center and scaled:scale attributes, respectively.

assign_cluster <- function(newpt, centers, xcenter = 0, xscale = 1) {
xpt <- (newpt - xcenter) / xscale
dists <- apply(centers, 1, FUN = function(c0) { sqr_edist(c0, xpt) })
which.min(dists)

}

Note that the function sqr_edist() (the squared Euclidean distance) was defined
previously, in section 9.1.1.

Let’s look at an example of assigning points to clusters, using synthetic data. First,
we’ll generate the data.

mean1 <- c(1, 1, 1)
sd1 <- c(1, 2, 1)

mean2 <- c(10, -3, 5)
sd2 <- c(2, 1, 2)

mean3 <- c(-5, -5, -5)
sd3 <- c(1.5, 2, 1)

library(MASS)
clust1 <- mvrnorm(100, mu = mean1, Sigma = diag(sd1))
clust2 <- mvrnorm(100, mu = mean2, Sigma = diag(sd2))
clust3 <- mvrnorm(100, mu = mean3, Sigma = diag(sd3))
toydata <- rbind(clust3, rbind(clust1, clust2))

tmatrix <- scale(toydata)

tcenter <- attr(tmatrix, "scaled:center")
tscale <-attr(tmatrix, "scaled:scale")
tmatrix <- rm_scales(tmatrix)

Listing 9.14 A function to assign points to a cluster

Listing 9.15 Generating and clustering synthetic data

Centers and scales
the new data point

Calculates how far the new
data point is from each of

the cluster centers

Returns the cluster
number of the
closest centroid

Sets the parameters for
three 3D Gaussian clusters

Uses the mvrnorm() function from
the MASS package to generate 3D
axis-aligned Gaussian clusters

Scales the synthetic data

Gets the scaling attributes,
then removes them from
the matrix
Licensed to Ajit de Silva <agdesilva@gmail.com>

339Cluster analysis
kbest_t <- 3
tclusters <- kmeans(tmatrix, kbest_t, nstart = 100, iter.max = 100)

tclusters$size

[1] 101 100 99

Let’s compare the centers of the found k-means clusters to the true cluster centers. To
do that, we need to unscale tclusters$centers. The scale() function works by sub-
tracting the center vector, then dividing by the scale vector. So to reverse the process,
first “unscale” the scaled matrix, then “uncenter” it.

unscaled = scale(tclusters$centers, center = FALSE, scale = 1 / tscale)
rm_scales(scale(unscaled, center = -tcenter, scale = FALSE))

[,1] [,2] [,3]
1 9.8234797 -3.005977 4.7662651
2 -4.9749654 -4.862436 -5.0577002
3 0.8926698 1.185734 0.8336977

Comparing the unscaled centers to mean1, mean2, and mean3 in listing 9.15, we see that

 The first discovered center corresponds to mean2: (10, –3, 5).
 The second discovered center corresponds to mean3: (–5, –5, –5).
 The third discovered center corresponds to mean1: (1, 1, 1).

So it appears that the discovered clusters are consistent with the true clusters.
Now we can demonstrate assigning new points to the clusters. Let’s generate a

point from each of the true clusters, and see which k-means cluster it is assigned to.

assign_cluster(mvrnorm(1, mean1, diag(sd1))
tclusters$centers,

tcenter, tscale)

3
3

assign_cluster(mvrnorm(1, mean2, diag(sd2))
tclusters$centers,

tcenter, tscale)

1
1

assign_cluster(mvrnorm(1, mean3, diag(sd3))
tclusters$centers,

tcenter, tscale)

2
2

The assign_cluster() function has correctly assigned each point to the appropriate
cluster.

Listing 9.16 Unscaling the centers

Listing 9.17 An example of assigning points to clusters

The generated clusters are
consistent in size with the
true clusters.

Clusters the synthetic data
into three clusters

This should be
assigned to cluster 3.

This should be
assigned to cluster 1.

This should be
assigned to cluster 2.
Licensed to Ajit de Silva <agdesilva@gmail.com>

340 CHAPTER 9 Unsupervised methods
9.1.6 Clustering takeaways

At this stage, you have learned how to estimate the appropriate number of clusters for a
dataset, how to cluster a dataset using both hierarchical clustering and k-means, and how
to evaluate the resulting clusters. Here’s what you should remember about clustering:

 The goal of clustering is to discover or draw out similarities among subsets of
your data.

 In a good clustering, points in the same cluster should be more similar (nearer)
to each other than they are to points in other clusters.

 When clustering, the units that each variable is measured in matter. Different
units cause different distances and potentially different clusterings.

 Ideally, you want a unit change in each coordinate to represent the same
degree of change. One way to approximate this is to transform all the columns
to have a mean value of 0 and a standard deviation of 1.0, for example, by using
the function scale().

 Clustering is often used for data exploration or as a precursor to supervised
learning methods.

 Like visualization, clustering is more iterative and interactive, and less auto-
mated, than supervised methods.

 Different clustering algorithms will give different results. You should consider
different approaches, with different numbers of clusters.

 There are many heuristics for estimating the best number of clusters. Again,
you should consider the results from different heuristics and explore various
numbers of clusters.

Sometimes, rather than looking for subsets of data points that are highly similar to
each other, you’d like to know what kinds of data (or which data attributes) tend to
occur together. In the next section, we’ll look at one approach to this problem.

9.2 Association rules
Association rule mining is used to find objects or attributes that frequently occur
together—for example, products that are often bought together during a shopping
session, or queries that tend to occur together during a session on a website’s search
engine. Such information can be used to recommend products to shoppers, to place
frequently bundled items together on store shelves, or to redesign websites for easier
navigation.

9.2.1 Overview of association rules

 Example Suppose you work in a library. You want to know which books tend to be
checked out together, to help you make predictions about book availability.

The unit of “togetherness” when mining association rules is called a transaction.
Depending on the problem, a transaction could be a single shopping basket, a single
Licensed to Ajit de Silva <agdesilva@gmail.com>

341Association rules
user session on a website, or even a single customer. The objects that comprise a trans-
action are referred to as items in an itemset: the products in the shopping basket, the
pages visited during a website session, the actions of a customer. Sometimes transac-
tions are referred to as baskets, from the shopping basket analogy.

When a library patron checks out a set of books, that’s a transaction; the books that
the patron checks out are the itemset that comprise the transaction. Table 9.1 rep-
resents a database of transactions (you run a library where fantasy is quite popular).

Mining for association rules occurs in two steps:

1 Look for all the itemsets (subsets of transactions) that occur more often than in
a minimum fraction of the transactions.

2 Turn those itemsets into rules.

Let's look at the transactions that involve the items The Hobbit (H for short) and The
Princess Bride (PB for short). The columns of table 9.2 represent transactions; the rows
mark the transactions where a given itemset appears.

Table 9.1 A database of library transactions

Transaction ID Books checked out

1 The Hobbit, The Princess Bride

2 The Princess Bride, The Last Unicorn

3 The Hobbit

4 The Neverending Story

5 The Last Unicorn

6 The Hobbit, The Princess Bride, The Fellowship of
the Ring

7 The Hobbit, The Fellowship of the Ring, The Two
Towers, The Return of the King

8 The Fellowship of the Ring, The Two Towers, The
Return of the King

9 The Hobbit, The Princess Bride, The Last Unicorn

10 The Last Unicorn, The Neverending Story

Table 9.2 Looking for The Hobbit and The Princess Bride

1 2 3 4 5 6 7 8 9 10 Total

H X X X X X 5

PB X X X X 4

{H, PB} X X X 3
Licensed to Ajit de Silva <agdesilva@gmail.com>

342 CHAPTER 9 Unsupervised methods
Looking over all the transactions in table 9.2, you find that

 The Hobbit is in 5/10, or 50% of all transactions.
 The Princess Bride is in 4/10, or 40% of all transactions.
 Both books are checked out together in 3/10, or 30% of all transactions.

We’d say the support of the itemset {The Hobbit, The Princess Bride} is 30%.

 Of the five transactions that include The Hobbit, three (3/5 = 60%) also include
The Princess Bride.

So you can make a rule: “People who check out The Hobbit also check out The Princess
Bride.” This rule should be correct (according to your data) 60% of the time. We’d say
that the confidence of the rule is 60%.

 Conversely, of the four times The Princess Bride is checked out, The Hobbit
appears three times, or 3/4 = 75% of the time.

So the rule “People who check out The Princess Bride also check out The Hobbit” has
75% confidence.

Let's formally define rules, support, and confidence.

RULES

The rule “if X, then Y” means that every time you see the itemset X in a transaction,
you expect to also see Y (with a given confidence). For the apriori algorithm (which
we’ll look at in this section), Y is always an itemset with one item.

SUPPORT

Suppose that your database of transactions is called T, and X is an itemset. Then
support(X) is the number of transactions that contain X divided by the total number
of transactions in T.

CONFIDENCE

The confidence of the rule “if X, then Y” gives the fraction or percentage of the time
that a rule is true, relative to how often you see X. In other words, if support(X) is
how often the itemset X occurs in a transaction, and support({X, Y}) is how often
both itemsets X and Y occur in a transaction, then the confidence of the rule “if X,
then Y” is support({X, Y})/support(X).

The goal in association rule mining is to find all the interesting rules in the data-
base with at least a given minimum support (say, 10%) and a minimum given confi-
dence (say, 60%).

9.2.2 The example problem

 Example Suppose you work for a bookstore, and you want to recommend books that
a customer might be interested in, based on all of their previous purchases and book
interests. You want to use historical book interest information to develop some recom-
mendation rules.

You can get information about customers’ book interests two ways: either they’ve pur-
chased a book from you, or they’ve rated a book on your website (even if they bought
Licensed to Ajit de Silva <agdesilva@gmail.com>

343Association rules
the book somewhere else). In this case, a transaction is a customer, and an itemset is
all the books that they’ve expressed an interest in, either by purchase or by rating.

The data that you’ll use is based on data collected in 2004 from the book commu-
nity Book-Crossing1 for research conducted at the Institut für Informatik, University
of Freiburg.2 The information is condensed into a single tab-separated text file called
bookdata.tsv. Each row of the file consists of a user ID, a book title (which has been
designed as a unique ID for each book), and the rating (which you won’t actually use
in this example):

token	userid	rating	title
always have popsicles	172742	0	Always Have Popsicles

The token column contains lowercase column strings; the tokens were used to iden-
tify books with different ISBNs (the original book IDs) that had the same title except
for casing. The title column holds properly capitalized title strings; these are unique
per book, so for this example you will use them as book IDs.

In this format, the transaction (customer) information is diffused through the
data, rather than being all in one row; this reflects the way the data would naturally be
stored in a database, since the customer’s activity would be diffused throughout time.
Books generally come in different editions or from different publishers. For this
example, we’ve condensed all different versions into a single item; hence, different
copies or printings of Little Women will all map to the same item ID in our data
(namely, the title “Little Women”).

The original data includes approximately a million ratings of 271,379 books from
278,858 readers. Our data will have fewer books due to the mapping that we discussed
earlier.

Now you’re ready to mine.

9.2.3 Mining association rules with the arules package

You’ll use the package arules for association rule mining. arules includes an imple-
mentation of the popular association rule algorithm apriori, as well as implementations
to read in and examine transaction data.3 The package uses special data types to hold
and manipulate the data; you’ll explore these data types as you work the example.

1 The original data repository can be found at http://mng.bz/2052. Since some artifacts in the original files
caused errors when reading into R, we’re providing copies of the data as a prepared RData object:
https://github.com/WinVector/PDSwR2/blob/master/Bookdata/bxBooks.RData. The prepared version of
the data that we’ll use in this section is at https://github.com/WinVector/PDSwR2/blob/master/Bookdata/
bookdata.tsv.gz. Further information and scripts for preparing the data can be found at https://github
.com/WinVector/PDSwR2/tree/master/Bookdata.

2 The researchers’ original paper is “Improving Recommendation Lists Through Topic Diversification,” Cai-
Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg Lausen; Proceedings of the 14th International
World Wide Web Conference (WWW ’05), May 10-14, 2005, Chiba, Japan. It can be found online at http://
mng.bz/7trR.

3 For a more comprehensive introduction to arules than we can give in this chapter, please see Hahsler, Grin,
Hornik, and Buchta, “Introduction to arules—A computational environment for mining association rules and
frequent item sets,” online at cran.r-project.org/web/packages/arules/vignettes/arules.pdf.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/7trR
http://mng.bz/7trR
http://mng.bz/7trR
http://mng.bz/2052
https://github.com/WinVector/PDSwR2/blob/master/Bookdata/bxBooks.RData
https://github.com/WinVector/PDSwR2/blob/master/Bookdata/bookdata.tsv.gz
https://github.com/WinVector/PDSwR2/blob/master/Bookdata/bookdata.tsv.gz
https://github.com/WinVector/PDSwR2/blob/master/Bookdata/bookdata.tsv.gz
https://github.com/WinVector/PDSwR2/tree/master/Bookdata
cran.r-project.org/web/packages/arules/vignettes/arules.pdf

344 CHAPTER 9 Unsupervised methods

Lo

p

READING IN THE DATA

You can read the data directly from the bookdata.tsv.gz file into the object book-
baskets using the function read.transactions().

library(arules)
bookbaskets <- read.transactions("bookdata.tsv.gz",

format = "single",
header = TRUE,
sep = "\t",
cols = c("userid", "title"),
rm.duplicates = TRUE)

The read.transactions() function reads data in two formats: the format where every
row corresponds to a single item (like bookdata.tsv.gz), and a format where each row
corresponds to a single transaction, possibly with a transaction ID, like table 9.1. To
read data in the first format, use the argument format = "single"; to read data in the
second format, use the argument format = "basket".

It sometimes happens that a reader will buy one edition of a book and then later
add a rating for that book under a different edition. Because of the way we’re repre-
senting books for this example, these two actions will result in duplicate entries. The
rm.duplicates = TRUE argument will eliminate them. It will also output some (not
too useful) diagnostics about the duplicates.

Once you’ve read in the data, you can inspect the resulting object.

EXAMINING THE DATA

Transactions are represented as a special object called transactions. You can think of
a transactions object as a 0/1 matrix, with one row for every transaction (in this
example, a customer) and one column for every possible item (in this example, a
book). The matrix entry (i, j) is 1 if the ith transaction contains item j, or if customer i
has expressed an interest in book j. There are a number of calls you can use to exam-
ine the transaction data, as the next listing shows.

class(bookbaskets)
[1] "transactions"
attr(,"package")
[1] "arules"
bookbaskets
transactions in sparse format with
92108 transactions (rows) and
220447 items (columns)
dim(bookbaskets)
[1] 92108 220447

Listing 9.18 Reading in the book data

Listing 9.19 Examining the transaction data

Specifies the file and the file format
ads the
arules

ackage

Specifies that
the input file
has a headerSpecifies the column

separator (a tab)

Tells the function to look for and remove
duplicate entries (for example, multiple

entries for “The Hobbit” by the same user)

Specifies the column of
transaction IDs and of
item IDs, respectively

The object is of class
transactions.

Printing the object tells
you its dimensions.

You can also use dim() to see
the dimensions of the matrix.
Licensed to Ajit de Silva <agdesilva@gmail.com>

345Association rules
colnames(bookbaskets)[1:5]
[1] " A Light in the Storm:[...]"
[2] " Always Have Popsicles"
[3] " Apple Magic"
[4] " Ask Lily"
[5] " Beyond IBM: Leadership Marketing and Finance for the 1990s"
rownames(bookbaskets)[1:5]
[1] "10" "1000" "100001" "100002" "100004"

You can examine the distribution of transaction sizes (or basket sizes) with the func-
tion size():

basketSizes <- size(bookbaskets)
summary(basketSizes)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 1.0 1.0 11.1 4.0 10250.0

Most customers (at least half of them, in fact) only expressed interest in one book. But
someone has expressed interest in more than 10,000! You probably want to look more
closely at the size distribution to see what’s going on.

quantile(basketSizes, probs = seq(0, 1, 0.1))
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 1 1 1 1 1 2 3 5 13 10253
library(ggplot2)
ggplot(data.frame(count = basketSizes)) +

geom_density(aes(x = count)) +
scale_x_log10()

Figure 9.18 shows the distribution of basket sizes. 90% of customers expressed interest
in fewer than 15 books; most of the remaining customers expressed interest in up to
about 100 books or so; the call quantile(basketSizes, probs = c(0.99, 1)) will
show you that 99% of customers expressed interest in 179 books or fewer. Still, a few
people have expressed interest in several hundred, or even several thousand books.

Which books are they reading? The function itemFrequency() can tell you how
often each book shows up in the transaction data.

bookCount <- itemFrequency(bookbaskets, "absolute")
summary(bookCount)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 1.000 4.638 3.000 2502.000

Listing 9.20 Examining the size distribution

Listing 9.21 Counting how often each book occurs

The columns are
labeled by book title.

The rows are labeled
by customer.

Looks at the basket size
distribution, in 10% increments

Plots the distribution to
get a better look
Licensed to Ajit de Silva <agdesilva@gmail.com>

346 CHAPTER 9 Unsupervised methods
You can also find the 10 most frequently occurring books.

orderedBooks <- sort(bookCount, decreasing = TRUE)
knitr::kable(orderedBooks[1:10])

| | x|
|:---|----:|
|Wild Animus | 2502|
|The Lovely Bones: A Novel | 1295|
|She's Come Undone | 934|
|The Da Vinci Code | 905|
|Harry Potter and the Sorcerer's Stone | 832|
|The Nanny Diaries: A Novel | 821|
|A Painted House | 819|
|Bridget Jones's Diary | 772|
|The Secret Life of Bees | 762|
|Divine Secrets of the Ya-Ya Sisterhood: A Novel | 737|

orderedBooks[1] / nrow(bookbaskets)

Wild Animus
0.02716376

Listing 9.22 Finding the 10 most frequently occurring books

0

2

4

10 1000

count

de
ns

ity

Figure 9.18 A density plot of basket sizes

Sorts the counts in
decreasing order

Displays the top 10
books in a nice format

The most popular book
in the dataset occurred
in fewer than 3% of the
baskets.
Licensed to Ajit de Silva <agdesilva@gmail.com>

347Association rules
The last observation in the preceding listing highlights one of the issues with mining
high-dimensional data: when you have thousands of variables, or thousands of items,
almost every event is rare. Keep this point in mind when deciding on support thresh-
olds for rule mining; your thresholds will often need to be quite low.

Before we get to the rule mining, let’s refine the data a bit more. As you observed
earlier, half of the customers in the data only expressed interest in a single book.
Since you want to find books that occur together in people’s interest lists, you can’t
make any direct use of people who haven’t yet shown interest in multiple books. You
can restrict the dataset to customers who have expressed interest in at least two books:

bookbaskets_use <- bookbaskets[basketSizes > 1]
dim(bookbaskets_use)
[1] 40822 220447

Now you’re ready to look for association rules.

THE APRIORI() FUNCTION

In order to mine rules, you need to decide on a minimum support level and a mini-
mum threshold level. For this example, let’s try restricting the itemsets that we’ll con-
sider to those with a minimum support of 0.2%, or 0.002. This corresponds to itemsets
that appear at least 0.002 * nrow(bookbaskets_use) times, which is about 82 trans-
actions. We’ll use a confidence threshold of 75%.

rules <- apriori(bookbaskets_use,
parameter = list(support = 0.002, confidence = 0.75))

summary(rules)
set of 191 rules
##
rule length distribution (lhs + rhs):sizes
2 3 4 5
11 100 66 14
##
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.000 3.000 3.000 3.435 4.000 5.000
##
summary of quality measures:
support confidence lift count
Min. :0.002009 Min. :0.7500 Min. : 40.89 Min. : 82.0
1st Qu.:0.002131 1st Qu.:0.8113 1st Qu.: 86.44 1st Qu.: 87.0
Median :0.002278 Median :0.8468 Median :131.36 Median : 93.0
Mean :0.002593 Mean :0.8569 Mean :129.68 Mean :105.8
3rd Qu.:0.002695 3rd Qu.:0.9065 3rd Qu.:158.77 3rd Qu.:110.0
Max. :0.005830 Max. :0.9882 Max. :321.89 Max. :238.0
##
mining info:
data ntransactions support confidence
bookbaskets_use 40822 0.002 0.75

Listing 9.23 Finding the association rules

Calls apriori() with a minimum
support of 0.002 and a

minimum confidence of 0.75The number of rules found

The distribution of rule lengths
(in this example, most rules
contain 3 items—2 on the left
side, X (lhs), and one on the
right side, Y (rhs))

A summary of rule quality measures,
including support and confidence

Some information on
how apriori() was called
Licensed to Ajit de Silva <agdesilva@gmail.com>

348 CHAPTER 9 Unsupervised methods
The quality measures on the rules include a rule’s support and confidence, the sup-
port count (how many transactions the rule applied to), and a quantity called lift. Lift
compares the frequency of an observed pattern with how often you’d expect to see
that pattern just by chance. The lift of a rule “if X, then Y” is given by support({X,
Y}) / (support(X) * support(Y)). If the lift is near 1, then there’s a good chance
that the pattern you observed is occurring just by chance. The larger the lift, the more
likely that the pattern is “real.” In this case, all the discovered rules have a lift of at
least 40, so they’re likely to be real patterns in customer behavior.

INSPECTING AND EVALUATING RULES

There are also other metrics and interest measures you can use to evaluate the rules by
using the function interestMeasure(). We’ll look at two of these measures: coverage
and fishersExactTest. Coverage is the support of the left side of the rule (X); it tells
you how often the rule would be applied in the dataset. Fisher’s exact test is a significance
test for whether an observed pattern is real or chance (the same thing lift measures;
Fisher’s test is more formal). Fisher’s exact test returns the p-value, or the probability
that you would see the observed pattern by chance; you want the p-value to be small.

measures <- interestMeasure(rules,
measure=c("coverage", "fishersExactTest"),
transactions = bookbaskets_use)

summary(measures)
coverage fishersExactTest
Min. :0.002082 Min. : 0.000e+00
1st Qu.:0.002511 1st Qu.: 0.000e+00
Median :0.002719 Median : 0.000e+00
Mean :0.003039 Mean :5.080e-138
3rd Qu.:0.003160 3rd Qu.: 0.000e+00
Max. :0.006982 Max. :9.702e-136

The coverage of the discovered rules ranges from 0.002–0.007, equivalent to a range
of about 82–286 people. All the p-values from Fisher’s test are small, so it’s likely that
the rules reflect actual customer behavior patterns.

You can also call interestMeasure() with the methods support, confidence, and
lift, among others. This would be useful in our example if you wanted to get sup-
port, confidence, and lift estimates for the full dataset bookbaskets, rather than the
filtered dataset bookbaskets_use—or for a subset of the data, for instance, only cus-
tomers from the United States.

The function inspect() pretty-prints the rules. The function sort() allows you to
sort the rules by a quality or interest measure, like confidence. To print the five most
confident rules in the dataset, you could use the following statement, which we will
expand out using pipe notation.

Listing 9.24 Scoring rules

The first argument to interestMeasure()
is the discovered rules.

The last argument is a dataset to evaluate
the interest measures over. This is usually
the same set used to mine the rules, but it
needn’t be. For instance, you can evaluate

the rules over the full dataset, bookbaskets,
to get coverage estimates that reflect all the

customers, not just the ones who showed
interest in more than one book.

The second argument is a list
of interest measures to apply.
Licensed to Ajit de Silva <agdesilva@gmail.com>

349Association rules
library(magrittr)

rules %>%
sort(., by = "confidence") %>%

head(., n = 5) %>%

inspect(.)

For legibility, we show the output of this command in table 9.3.

There are two things to notice in table 9.3. First, the rules concern books that come in
series: the numbered series of novels about bounty hunter Stephanie Plum, and the
Harry Potter series. So these rules essentially say that if a reader has read four Stepha-
nie Plum or three Harry Potter books, they’re almost sure to buy another one.

The second thing to notice is that rules 1, 4, and 5 are permutations of the same
itemset. This is likely to happen when the rules get long.

RESTRICTING WHICH ITEMS TO MINE

You can restrict which items appear in the left side or right side of a rule. Suppose
you’re interested specifically in books that tend to co-occur with the novel The Lovely

Listing 9.25 Getting the five most confident rules

Table 9.3 The five most confident rules discovered in the data

Left side Right side Support Confidence Lift Count

Four to Score
High Five
Seven Up
Two for the Dough

Three to Get
Deadly

0.002 0.988 165 84

Harry Potter and the Order
of the Phoenix
Harry Potter and the
Prisoner of Azkaban
Harry Potter and the
Sorcerer’s Stone

Harry Potter
and the
Chamber of
Secrets

0.003 0.966 73 117

Four to Score
High Five
One for the Money
Two for the Dough

Three to Get
Deadly

0.002 0.966 162 85

Four to Score
Seven Up
Three to Get Deadly
Two for the Dough

High Five 0.002 0.966 181 84

High Five
Seven Up
Three to Get Deadly
Two for the Dough

Four to
Score

0.002 0.966 168 84

Attaches magrittr to get pipe notation

Sorts rules by confidence

Gets the first five rules

Calls inspect() to pretty-print the rules
Licensed to Ajit de Silva <agdesilva@gmail.com>

350 CHAPTER 9 Unsupervised methods
Bones. You can do this by restricting which books appear on the right side of the rule,
using the appearance parameter.

brules <- apriori(bookbaskets_use,
parameter = list(support = 0.001,

confidence = 0.6),
appearance = list(rhs = c("The Lovely Bones: A Novel"),

default = "lhs"))
summary(brules)

set of 46 rules
##
rule length distribution (lhs + rhs):sizes
3 4
44 2
##
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 3.000 3.000 3.043 3.000 4.000
##
summary of quality measures:
support confidence lift count
Min. :0.001004 Min. :0.6000 Min. :21.81 Min. :41.00
1st Qu.:0.001029 1st Qu.:0.6118 1st Qu.:22.24 1st Qu.:42.00
Median :0.001102 Median :0.6258 Median :22.75 Median :45.00
Mean :0.001132 Mean :0.6365 Mean :23.14 Mean :46.22
3rd Qu.:0.001219 3rd Qu.:0.6457 3rd Qu.:23.47 3rd Qu.:49.75
Max. :0.001396 Max. :0.7455 Max. :27.10 Max. :57.00
##
mining info:
data ntransactions support confidence
bookbaskets_use 40822 0.001 0.6

The supports, confidences, counts, and lifts are lower than they were in our previous
example, but the lifts are still much greater than one, so it’s likely that the rules reflect
real customer behavior patterns.

Let’s inspect the rules, sorted by confidence. Since they’ll all have the same right
side, you can use the lhs() function to only look at the left sides.

brules %>%
sort(., by = "confidence") %>%
lhs(.) %>%

head(., n = 5) %>%
inspect(.)

items
1 {Divine Secrets of the Ya-Ya Sisterhood: A Novel,
Lucky : A Memoir}
2 {Lucky : A Memoir,
The Notebook}

Listing 9.26 Finding rules with restrictions

Listing 9.27 Inspecting rules

Relaxes the minimum
support to 0.001 and the

minimum confidence to 0.6

Only “The Lovely
Bones” is allowed to
appear on the right

side of the rules.

By default, all the
books can go into the
left side of the rules.

Gets the left-hand side
of the sorted rules
Licensed to Ajit de Silva <agdesilva@gmail.com>

351Association rules
3 {Lucky : A Memoir,
Wild Animus}
4 {Midwives: A Novel,
Wicked: The Life and Times of the Wicked Witch of the West}
5 {Lucky : A Memoir,
Summer Sisters}

Note that four of the five most confident rules include Lucky: A Memoir in the left side,
which perhaps isn’t surprising, since Lucky was written by the author of The Lovely
Bones. Suppose you want to find out about works by other authors that are interesting
to people who showed interest in The Lovely Bones; you can use subset() to filter down
to only rules that don’t include Lucky.

brulesSub <- subset(brules, subset = !(lhs %in% "Lucky : A Memoir"))
brulesSub %>%
sort(., by = "confidence") %>%
lhs(.) %>%
head(., n = 5) %>%
inspect(.)

brulesConf <- sort(brulesSub, by="confidence")

inspect(head(lhs(brulesConf), n = 5))
items
1 {Midwives: A Novel,
Wicked: The Life and Times of the Wicked Witch of the West}
2 {She's Come Undone,
The Secret Life of Bees,
Wild Animus}
3 {A Walk to Remember,
The Nanny Diaries: A Novel}
4 {Beloved,
The Red Tent}
5 {The Da Vinci Code,
The Reader}

These examples show that association rule mining is often highly interactive. To get
interesting rules, you must often set the support and confidence levels fairly low; as a
result, you can get many, many rules. Some rules will be more interesting or surprising
to you than others; to find them requires sorting the rules by different interest mea-
sures, or perhaps restricting yourself to specific subsets of rules.

9.2.4 Association rule takeaways

You've now walked through an example of using association rules to explore common
patterns in purchase data. Here’s what you should remember about association rules:

 The goal of association rule mining is to find relationships in the data: items or
attributes that tend to occur together.

 A good rule “if X then Y” should occur more often than you’d expect to observe
by chance. You can use lift or Fisher’s exact test to check if this is true.

Listing 9.28 Inspecting rules with restrictions

Restricts to the subset
of rules where Lucky is

not in the left side
Licensed to Ajit de Silva <agdesilva@gmail.com>

352 CHAPTER 9 Unsupervised methods
 When it's possible for a large number of different items to be in a basket (in
our example, thousands of different books), most events will be rare (have low
support).

 Association rule mining is often interactive, as there can be many rules to sort
and sift through.

Summary
In this chapter, you’ve learned how to find similarities in data using two different clus-
tering methods in R, and how to find items that tend to occur together in data using
association rules. You’ve also learned how to evaluate your discovered clusters and
your discovered rules.

Unsupervised methods like the ones we’ve covered in this chapter are really more
exploratory in nature. Unlike with supervised methods, there’s no “ground truth” to
evaluate your findings against. But the findings from unsupervised methods can be
the starting point for more-focused experiments and modeling.

In the last few chapters, we’ve covered the most basic modeling and data analysis
techniques; they’re all good first approaches to consider when you’re starting a new
project. In the next chapter, we’ll touch on a few more-advanced methods.

In this chapter you have learned

 How to cluster unlabeled data, using both hierarchical methods and k-means
 How to estimate what the appropriate number of clusters should be
 How to evaluate an existing clustering for cluster stability
 How to find patterns (association rules) in transaction data using apriori
 How to evaluate and sort through discovered association rules
Licensed to Ajit de Silva <agdesilva@gmail.com>

Exploring
advanced methods
In chapter 7, you learned about linear methods for fitting predictive models. These
models are the bread-and-butter methods of machine learning; they are easy to fit;
they are small, portable, and efficient; they sometimes provide useful advice; and
they can work well in a wide variety of situations. However, they also make strong
assumptions about the world: namely, that the outcome is linearly related to all the
inputs, and all the inputs contribute additively to the outcome. In this chapter, you
will learn about methods that relax these assumptions.

Figure 10.1 represents our mental model for what we'll do in this chapter: use R
to master the science of building supervised machine learning models.

This chapter covers
 Decision tree–based models

 Generalized additive models

 Support vector machines
353

Licensed to Ajit de Silva <agdesilva@gmail.com>

354 CHAPTER 10 Exploring advanced methods
 Example Suppose you want to study the relationship between mortality rates and
measures of a person’s health or fitness, including BMI (body mass index).

Figure 10.2 shows the relationship between BMI and mortality hazard ratio for a pop-
ulation of older Thais over a four-year period.1 It shows that both high and low BMI
are associated with higher mortality rates: the relationship between BMI and mortality
is not linear. So a straightforward linear model to predict mortality rates based
(partly) on BMI may not perform well.

In addition, there may be interactions between BMI and other factors, like how
active a person is. For example, for people who are highly active, BMI may affect mor-
tality rates much less than for people who are sedentary. Some interactions, such as “if-
then” relationships among variables, or multiplicative effects between variables, may
not always be expressible in linear models.2

The machine learning techniques in this chapter use a variety of methods to
address non-linearity, interactions, and other issues in modeling.

1 Data from Vapattanawong, et.al. “Obesity and mortality among older Thais: a four year follow up study,” BMC
Public Health, 2010. https://doi.org/10.1186/1471-2458-10-604.

2 One can model interactions in linear models, but it must be done explicitly by the data scientist. Instead, we’ll
focus on machine learning techniques, such as tree-based methods, that can learn at least certain types of
interactions directly.

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 10.1 Mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://doi.org/10.1186/1471-2458-10-604

355Tree-based methods
10.1 Tree-based methods
You saw an example of a basic decision tree model in chapter 1 (reproduced in figure
10.3). Decision trees are useful for both classification and regression, and they are an
attractive method for a number of reasons:

 They take any type of datums, numerical or categorical, without any distribu-
tional assumptions and without preprocessing.

 Most implementations (in particular, R) handle missing data; the method is
also robust to redundant and non-linear data.

 The algorithm is easy to use, and the output (the tree) is relatively easy to
understand.

 They naturally express certain kinds of interactions among the input variables:
those of the form “IF x is true AND y is true, THEN....”

 Once the model is fit, scoring is fast.

On the other hand, decision trees do have some drawbacks:

 They have a tendency to overfit, especially without pruning.
 They have high training variance: samples drawn from the same population can

produce trees with different structures and different prediction accuracy.
 Simple decision trees are not as reliable as the other tree-based ensemble meth-

ods we'll discuss in this chapter.3

3 See Lim, Loh, and Shih, “A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-
three Old and New Classification Algorithms,” Machine Learning, 2000. 40, 203–229; online at http://mng
.bz/qX06.

●

●

●

● ●

●

1.0

1.5

a: <18.5 b: 23.0−24.9 c: 25.0−27.4 d: 27.5−29.9 e: 30.0−34.9 f: >=35.0

bmi_range

ad
ju

st
ed

 m
or

ta
lit

y
ha

za
rd

 r
at

io

sex ● female_estimate male_estimate

Source: Vapattanawong et al. 2010
Mortality hazard ratio as function of sex and BMI range

Figure 10.2 Mortality rates of men and women as a function of body mass index
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/qX06
http://mng.bz/qX06
http://mng.bz/qX06

356 CHAPTER 10 Exploring advanced methods
For these reasons, we don't emphasize the use of basic decision trees in this book.
However, there are a number of techniques to fix these weaknesses that lead to state-
of-the-art, useful, and performant modeling algorithms. We’ll discuss some of these
techniques in this section.

10.1.1 A basic decision tree

To motivate the discussion of tree-based methods, we’ll return to an example that we
used in chapter 6 and build a basic decision tree.

 Example Suppose you want to classify email into spam (email you do not want) and
non-spam (email you want).

For this example, you’ll again use the Spambase dataset. The dataset consists of about
4,600 documents and 57 features that describe the frequency of certain keywords and
characters. Here's the process:

 First, you’ll train a decision tree to estimate the probability that a given docu-
ment is spam.

 Next, you’ll evaluate the tree’s performance according to several performance
measures, including accuracy, F1, and deviance (all discussed in chapter 7).

Recall from discussions in chapters 6 and 7 that we want accuracy and F1 to be high,
and deviance (which is similar to variance) to be low.

First, let’s load the data. As you did in section 6.2, download a copy of spamD.tsv from
https://github.com/WinVector/PDSwR2/raw/master/Spambase/spamD.tsv. Then, write
a few convenience functions and train a decision tree, as in the following listing.

Duration ≥
 34 months

Credit amt
< 2249

Credit amt
≥ 11,000

Duration ≥
 44 months

Credit amt
< 7413

BadLoan
(0.88)

BadLoan
(1.0)

GoodLoan
(0.75)

GoodLoan
(0.61)

BadLoan
(0.68)

GoodLoan
(0.56)

yes no

"yes" branches to left
"no" branches to right

Confidence scores are
for the declared class:

BadLoan (1.0) means all the
loans that land at the leaf are bad.

GoodLoan (0.75) means 75% of the
loans that land at the leaf are good.

node 1

node 3node 2

node 4

node 5

leaf 1 leaf 2 leaf 3

leaf 4

leaf 6leaf 5

Figure 10.3 Example decision tree (from chapter 1)
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/raw/master/Spambase/spamD.tsv

357Tree-based methods
spamD <- read.table('spamD.tsv', header = TRUE, sep = '\t')
spamD$isSpam <- spamD$spam == 'spam'
spamTrain <- subset(spamD, spamD$rgroup >= 10)
spamTest <- subset(spamD, spamD$rgroup < 10)

spamVars <- setdiff(colnames(spamD), list('rgroup', 'spam', 'isSpam'))
library(wrapr)
spamFormula <- mk_formula("isSpam", spamVars)

loglikelihood <- function(y, py) {
pysmooth <- ifelse(py == 0, 1e-12,

ifelse(py == 1, 1 - 1e-12, py))

sum(y * log(pysmooth) + (1 - y) * log(1 - pysmooth))
}

accuracyMeasures <- function(pred, truth, name = "model") {
dev.norm <- -2 * loglikelihood(as.numeric(truth), pred) / length(pred)
ctable <- table(truth = truth,

pred = (pred > 0.5))
accuracy <- sum(diag(ctable)) / sum(ctable)

precision <- ctable[2, 2] / sum(ctable[, 2])
recall <- ctable[2, 2] / sum(ctable[2,])
f1 <- 2 * precision * recall / (precision + recall)
data.frame(model = name, accuracy = accuracy, f1 = f1, dev.norm)

}

library(rpart)
treemodel <- rpart(spamFormula, spamTrain, method = "class")

library(rpart.plot)
rpart.plot(treemodel, type = 5, extra = 6)

predTrain <- predict(treemodel, newdata = spamTrain)[, 2]

trainperf_tree <- accuracyMeasures(predTrain,

spamTrain$spam == "spam",
name = "tree, training")

predTest <- predict(treemodel, newdata = spamTest)[, 2]
testperf_tree <- accuracyMeasures(predTest,

spamTest$spam == "spam",

Listing 10.1 Preparing Spambase data and evaluating a decision tree model

Loads the data and splits into
training (90% of data) and test
(10% of data) sets

Uses all the features and does binary
classification, where TRUE

corresponds to spam documents

A function to calculate log
likelihood (for calculating deviance)

A function to calculate and
return various measures

on the model: normalized
deviance, prediction

accuracy, and f1

Normalizes the deviance by
the number of data points so
we can compare the deviance
across training and test sets

Converts the class probability estimator
into a classifier by labeling documents that
score greater than 0.5 as spam

Loads the rpart library and
fits a decision tree model

For plotting the tree

Gets the predicted
probabilities of the

class “spam”

Evaluates the decision tree
model against the training

and test sets
Licensed to Ajit de Silva <agdesilva@gmail.com>

358 CHAPTER 10 Exploring advanced methods
The resulting decision tree model is shown in figure 10.4. The output of the two calls
to accuracyMeasures() looks like the following:

library(pander)

panderOptions("plain.ascii", TRUE)
panderOptions("keep.trailing.zeros", TRUE)
panderOptions("table.style", "simple")
perf_justify <- "lrrr"

perftable <- rbind(trainperf_tree, testperf_tree)
pandoc.table(perftable, justify = perf_justify)

##
##
model accuracy f1 dev.norm
---------------- ---------- -------- ----------
tree, training 0.8996 0.8691 0.6304
tree, test 0.8712 0.8280 0.7531

As expected, the accuracy and F1 scores both degrade on the test set, and the devi-
ance increases.

A package to make nicely
formatted ASCII tables

Sets some options globally
so we don't have to keep
setting them in every call

 < 0.08

 < 0.045

 < 0.16

 < 2.4

 < 0.075

 < 0.045

> = 0.41

> = 0.08

> = 0.045

> = 0.16

> = 2.4

> = 0.075

> = 0.045

 < 0.41

char.freq.bang

word.freq.remove

char.freq.dollar

FALSE
0.08

TRUE
0.72

TRUE
0.83

capital.run.length.average

word.freq.free

word.freq.remove

FALSE
0.18

TRUE
0.89

TRUE
0.80

word.freq.hp

FALSE
0.16

TRUE
0.93

If char.freq.bang < 0.08
go down this branch.

Else
go down
this branch.

Datums in this leaf
have a 93% probability

of being spam.

Datums in this leaf
have an 8% probability

of being spam.

Figure 10.4 Decision tree model for spam filtering
Licensed to Ajit de Silva <agdesilva@gmail.com>

359Tree-based methods
10.1.2 Using bagging to improve prediction

One way to mitigate the shortcomings of decision tree models is by bootstrap aggrega-
tion, or bagging. In bagging, you draw bootstrap samples (random samples with
replacement) from your data. From each sample, you build a decision tree model.
The final model is the average of all the individual decision trees. This is shown in fig-
ure 10.5.

4

To make this concrete, suppose that x is an input datum, y_i(x) is the output of the ith
tree, c(y_1(x), y_2(x), ... y_n(x)) is the vector of individual outputs, and y is the output
of the final model:

 For regression, or for estimating class probabilities, y(x) is the average of the
scores returned by the individual trees: y(x) = mean(c(y_1(x), ... y_n(x))).

 For classification, the final model assigns the class that got the most votes from
the individual trees.

4 Bagging, random forests, and gradient-boosted trees are variations of a general technique called ensemble
learning. An ensemble model is composed of the combination of several smaller simple models (often small
decision trees). Giovanni Seni and John Elder’s Ensemble Methods in Data Mining (Morgan & Claypool, 2010)
is an excellent introduction to the general theory of ensemble learning.

Training
data

Sample SampleSampleSample

Mean Value

Take bootstrap samples
from the training data.

Train a decision tree
from each sample.

The final bagged model prediction is the mean
of the predictions of the individual trees.

Final bagged model prediction

Figure 10.5 Bagging decision trees
Licensed to Ajit de Silva <agdesilva@gmail.com>

360 CHAPTER 10 Exploring advanced methods

Trains
decisi
retur
Note:
take a
Bagging decision trees stabilizes the final model by lowering the variance; this
improves the accuracy. A bagged ensemble of trees is also less likely to overfit the data.

Try bagging some tree models for the spam example.

ntrain <- dim(spamTrain)[1]
n <- ntrain

ntree <- 100

samples <- sapply(1:ntree,

FUN = function(iter)
{ sample(1:ntrain, size = n, replace = TRUE) })

treelist <-lapply(1:ntree,

FUN = function(iter) {
samp <- samples[, iter];
rpart(spamFormula, spamTrain[samp,], method = "class") }

)

predict.bag <- function(treelist, newdata) {

preds <- sapply(1:length(treelist),
FUN = function(iter) {

predict(treelist[[iter]], newdata = newdata)[, 2] })
predsums <- rowSums(preds)
predsums / length(treelist)

}

pred <- predict.bag(treelist, newdata = spamTrain)
trainperf_bag <- accuracyMeasures(pred,

spamTrain$spam == "spam",
name = "bagging, training")

pred <- predict.bag(treelist, newdata = spamTest)
testperf_bag <- accuracyMeasures(pred,

spamTest$spam == "spam",
name = "bagging, test")

perftable <- rbind(trainperf_bag, testperf_bag)
pandoc.table(perftable, justify = perf_justify)
##
##
model accuracy f1 dev.norm
------------------- ---------- -------- ----------
bagging, training 0.9167 0.8917 0.5080
bagging, test 0.9127 0.8824 0.5793

As you see, bagging improves accuracy and F1, and reduces deviance over both the
training and test sets when compared to the single decision tree (you’ll see a direct
comparison of the scores a little later on). There is also less degradation in the bagged
model’s performance going from training to test than there is with the decision tree.

Listing 10.2 Bagging decision trees

Uses bootstrap samples the same size
as the training set, with 100 trees

Builds the bootstrap samples by sampling the row
indices of spamTrain with replacement. Each column of
the matrix samples represents the row indices into
spamTrain that comprise the bootstrap sample.

 the individual
on trees and
ns them in a list.
 This step can
 few minutes.

predict.bag assumes the
underlying classifier returns

decision probabilities, not
decisions. predict.bag takes
the mean of the predictions

of all the individual trees

Evaluates the bagged
decision trees against the
training and test sets
Licensed to Ajit de Silva <agdesilva@gmail.com>

361Tree-based methods
You can further improve prediction performance by going from bagging to ran-
dom forests.

10.1.3 Using random forests to further improve prediction

In bagging, the trees are built using randomized datasets, but each tree is built by con-
sidering the exact same set of features. This means that all the individual trees are
likely to use very similar sets of features (perhaps in a different order or with different
split values). Hence, the individual trees will tend to be overly correlated with each
other. If there are regions in feature space where one tree tends to make mistakes,
then all the trees are likely to make mistakes there, too, diminishing our opportunity
for correction. The random forest approach tries to decorrelate the trees by random-
izing the set of variables that each tree is allowed to use.

The process is shown in figure 10.6. For each individual tree in the ensemble, the
random forest method does the following:

1 Draws a bootstrapped sample from the training data
2 For each sample, grows a decision tree, and at each node of the tree

a Randomly draws a subset of mtry variables from the p total features that are
available

b Picks the best variable and the best split from that set of mtry variables
c Continues until the tree is fully grown

The final ensemble of trees is then bagged to make the random forest predictions.
This is quite involved, but fortunately all done by a single-line random forest call.

By default, the randomForest() function in R draws mtry = p/3 variables at each
node for regression trees, and m = sqrt(p) variables for classification trees. In theory,
random forests aren’t terribly sensitive to the value of mtry. Smaller values will grow
the trees faster; but if you have a very large number of variables to choose from, of
which only a small fraction are actually useful, then using a larger mtry is better, since
with a larger mtry you’re more likely to draw some useful variables at every step of the
tree-growing procedure.

Bagging classifiers
The proofs that bagging reduces variance are only valid for regression and for esti-
mating class probabilities, not for classifiers (a model that only returns class mem-
bership, not class probabilities). Bagging a bad classifier can make it worse. So you
definitely want to work over estimated class probabilities, if they’re at all available.
But it can be shown that for CART trees (which is the decision tree implementation
in R) under mild assumptions, bagging tends to increase classifier accuracy. See Clif-
ton D. Sutton, “Classification and Regression Trees, Bagging, and Boosting,” Hand-
book of Statistics, Vol. 24 (Elsevier, 2005) for more details.
Licensed to Ajit de Silva <agdesilva@gmail.com>

362 CHAPTER 10 Exploring advanced methods
Continuing from the data in section 10.1, try building a spam model using random
forests.

library(randomForest)
set.seed(5123512)
fmodel <- randomForest(x = spamTrain[, spamVars],

y = spamTrain$spam,
ntree = 100,
nodesize = 7,
importance = TRUE)

Listing 10.3 Using random forests

Training
data

Sample

v1 v2 v3 v4

v5 v6 v7 v8

When growing a tree, for each node
of the tree select mtry variables at

random, and pick the best split
from them to grow the tree.
(mtry = 3 in this example.)

Mean Value
Bag all the trees grown in this way
to get the final model prediction.

Final random forest model prediction

Sample Sample Sample
Take bootstrap samples
from the training data.

Figure 10.6 Growing a random forest

Loads the randomForest package

Sets the pseudo-random seed to a known value
to try to make the random forest run repeatable

Calls the randomForest()
function to build the model
with explanatory variables
as x and the category to be
predicted as y

Uses 100 trees to be
compatible with our
bagging example. The
default is 500 trees.

Specifies that each node of a tree must have a minimum
of 7 elements to be compatible with the default minimum
node size that rpart() uses on this training set

Tells the algorithm to save information
to be used for calculating variable
importance (we’ll see this later)
Licensed to Ajit de Silva <agdesilva@gmail.com>

363Tree-based methods
pred <- predict(fmodel,
spamTrain[, spamVars],
type = 'prob')[, 'spam']

trainperf_rf <- accuracyMeasures(predict(fmodel,
newdata = spamTrain[, spamVars], type = 'prob')[, 'spam'],
spamTrain$spam == "spam", name = "random forest, train")

testperf_rf <- accuracyMeasures(predict(fmodel,
newdata = spamTest[, spamVars], type = 'prob')[, 'spam'],
spamTest$spam == "spam", name = "random forest, test")

perftable <- rbind(trainperf_rf, testperf_rf)
pandoc.table(perftable, justify = perf_justify)

##
##
model accuracy f1 dev.norm
---------------------- ---------- -------- ----------
random forest, train 0.9884 0.9852 0.1440
random forest, test 0.9498 0.9341 0.3011

You can summarize the results for all three of the models you’ve looked at. First, on
training:

trainf <- rbind(trainperf_tree, trainperf_bag, trainperf_rf)
pandoc.table(trainf, justify = perf_justify)
##
##
model accuracy f1 dev.norm
---------------------- ---------- -------- ----------
tree, training 0.8996 0.8691 0.6304
bagging, training 0.9160 0.8906 0.5106
random forest, train 0.9884 0.9852 0.1440

Then, on test:

testf <- rbind(testperf_tree, testperf_bag, testperf_rf)
pandoc.table(testf, justify = perf_justify)
##
##
model accuracy f1 dev.norm
--------------------- ---------- -------- ----------
tree, test 0.8712 0.8280 0.7531
bagging, test 0.9105 0.8791 0.5834
random forest, test 0.9498 0.9341 0.3011

The random forest model performed dramatically better than the other two models
on both training and test.

You can also look at performance change: the decrease in accuracy and F1 when
going from training to test, and the corresponding increase in deviance.

difff <- data.frame(model = c("tree", "bagging", "random forest"),
accuracy = trainf$accuracy - testf$accuracy,
f1 = trainf$f1 - testf$f1,
dev.norm = trainf$dev.norm - testf$dev.norm)

pandoc.table(difff, justify=perf_justify)

Reports the
model quality
Licensed to Ajit de Silva <agdesilva@gmail.com>

364 CHAPTER 10 Exploring advanced methods
##
##
model accuracy f1 dev.norm
--------------- ---------- --------- ----------
tree 0.028411 0.04111 -0.12275
bagging 0.005523 0.01158 -0.07284
random forest 0.038633 0.05110 -0.15711

The random forest’s model degraded about as much as a single decision tree when
going from training to test data, and much more than the bagged model did. This is
one of the drawbacks of random forest models: the tendency to overfit the training
data. However, in this case, the random forest model was still the best performing.

EXAMINING VARIABLE IMPORTANCE

A useful feature of the randomForest() function is its variable importance calcula-
tion. Since the algorithm uses a large number of bootstrap samples, each data point x
has a corresponding set of out-of-bag samples: those samples that don’t contain the
point x. This is shown in figure 10.7 for the data point x1. The out-of-bag samples can
be used in a way similar to N-fold cross-validation, to estimate the accuracy of each tree
in the ensemble.

Random forests can overfit!
It’s lore among random forest proponents that “random forests don’t overfit.” In fact,
they can. Hastie et al. back up this observation in their chapter on random forests in
The Elements of Statistical Learning (Springer, 2011). Seeing virtually perfect predic-
tion on training data and less-than-perfect performance on holdout data is character-
istic of random forest models. So when using random forest, it’s extremely important
to validate model performance on holdout data.

Training
data

Sample SampleSampleSample

Datum x1 is in bootstrap
samples 1 and 3.

Decision trees 2
and 4 were trained
without seeing x1

 (“out-of-bag trees”).

x1

Samples 2 and 4 are
out-of-bag samples
with respect to x1.

x1

Figure 10.7 Out-of-bag samples for datum x1
Licensed to Ajit de Silva <agdesilva@gmail.com>

365Tree-based methods
To estimate the “importance” of a variable v1, the variable’s values are randomly per-
muted. Each tree is then evaluated against its out-of-bag samples, and the correspond-
ing decrease in each tree’s accuracy is estimated. This is shown in figure 10.8.

If the average decrease over all the trees is large, then the variable is considered
important—its value makes a big difference in predicting the outcome. If the average
decrease is small, then the variable doesn’t make much difference to the outcome.
The algorithm also measures the decrease in node purity that occurs from splitting on
a permuted variable (how this variable affects the quality of the tree).

You can calculate the variable importance by setting importance = TRUE in the
randomForest() call (as you did in listing 10.3), and then calling the functions impor-
tance() and varImpPlot().

varImp <- importance(fmodel)

varImp[1:10,]
non-spam spam MeanDecreaseAccuracy
word.freq.make 1.656795 3.432962 3.067899
word.freq.address 2.631231 3.800668 3.632077
word.freq.all 3.279517 6.235651 6.137927
word.freq.3d 3.900232 1.286917 3.753238
word.freq.our 9.966034 10.160010 12.039651
word.freq.over 4.657285 4.183888 4.894526

Listing 10.4 randomForest variable importances

Evaluate each datum
against its out-of-bag trees,
(trees built without datum.)

To evaluate variable v1,
permute the values of v1 in the training data.

v1_5 v2_1 v3_1 v4_1 v6_1v5_1 v7_1 v8_1x_1

Measure the mean decrease
in accuracy of each tree to

get importance of variable v1.

v1_9 v2_2 v3_2 v4_2 v6_2v5_2 v7_2 v8_2x_2

v1_n v2_3 v3_3 v4_3 v6_3v5_3 v7_3 v8_3x_3

v1_1 v2_n v3_n v4_n v6_nv5_n v7_n v8_nx_n

…

(Regular variables: second index is actual row number.
First variable: second index is original row number,
before permutation.)

Figure 10.8 Calculating variable importance of variable v1

The importance()
function returns a
matrix of
importance
measures (larger
values = more
important).

Calls importance() on the spam model
Licensed to Ajit de Silva <agdesilva@gmail.com>

366 CHAPTER 10 Exploring advanced methods
word.freq.remove 19.172764 14.020182 20.229958
word.freq.internet 7.595305 5.246213 8.036892
word.freq.order 3.167008 2.505777 3.065529
word.freq.mail 3.820764 2.786041 4.869502

varImpPlot(fmodel, type = 1)

The result of the varImpPlot() call is shown in figure 10.9. According to the plot, the
most important variable for determining if an email is spam is char.freq.bang, or the
number of times an exclamation point appears in an email, which makes some intui-
tive sense. The next most important variable is word.freq.remove, or the number of
times the word “remove” appears in the email.

Knowing which variables are most important (or at least, which variables contribute
the most to the structure of the underlying decision trees) can help you with variable
reduction. This is useful not only for building smaller, faster trees, but also for choos-
ing variables to be used by another modeling algorithm, if that’s desired. We can
reduce the number of variables in this spam example from 57 to 30 without affecting
the quality of the final model.

Plots the variable
importance as
measured by
accuracy change

word.freq.technology
word.freq.85
word.freq.all
word.freq.650
word.freq.email
char.freq.semi
word.freq.receive
word.freq.business
char.freq.lparen
word.freq.internet
word.freq.will
word.freq.meeting
word.freq.hpl
word.freq.money
word.freq.you
word.freq.000
word.freq.re
word.freq.1999
capital.run.length.total
word.freq.george
word.freq.our
word.freq.your
capital.run.length.longest
char.freq.dollar
word.freq.edu
word.freq.free
word.freq.hp
capital.run.length.average
word.freq.remove
char.freq.bang

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 15 20

fmodel

meanDecreaseAccuracy

Figure 10.9 Plot of the most important variables in the spam model, as
measured by accuracy
Licensed to Ajit de Silva <agdesilva@gmail.com>

367Tree-based methods
sorted <- sort(varImp[, "MeanDecreaseAccuracy"],
decreasing = TRUE)

selVars <- names(sorted)[1:30]
fsel <- randomForest(x = spamTrain[, selVars],

y = spamTrain$spam,
ntree = 100,
nodesize = 7,
importance = TRUE)

trainperf_rf2 <- accuracyMeasures(predict(fsel,
newdata = spamTrain[, selVars], type = 'prob')[, 'spam'],
spamTrain$spam == "spam", name = "RF small, train")

testperf_rf2 <- accuracyMeasures(predict(fsel,
newdata=spamTest[, selVars], type = 'prob')[, 'spam'],
spamTest$spam == "spam", name = "RF small, test")

perftable <- rbind(testperf_rf, testperf_rf2)
pandoc.table(perftable, justify = perf_justify)
##
##
model accuracy f1 dev.norm
--------------------- ---------- -------- ----------
random forest, test 0.9498 0.9341 0.3011
RF small, test 0.9520 0.9368 0.4000

The smaller model performs just as well as the random forest model built using all 57
variables.

Listing 10.5 Fitting with fewer variables

Variable screening as an initial screening
Data scientist Jeremy Howard (of Kaggle and fast.ai fame) is a big proponent of using
an initial variable importance screen early in a data science project to eliminate vari-
ables that are not of interest and identify variables to discuss with business partners.

Sorts the variables by their
importance, as measured by
accuracy change

Builds a random forest
model using only the 30
most important variables

Compares the two
random forest models
on the test set

Random forest variable importance versus LIME
Random forest variable importance measures how important individual variables are
to the model’s overall prediction performance. They tell you which variables generally
affect the model’s predictions the most, or which variables the model depends on
the most.

LIME variable importances (discussed in section 6.3) measure how much different
variables affect the model’s prediction on a specific example. LIME explanations can
help you determine if the model is using its variables appropriately, by explaining spe-
cific decisions.
Licensed to Ajit de Silva <agdesilva@gmail.com>

368 CHAPTER 10 Exploring advanced methods
10.1.4 Gradient-boosted trees

Gradient boosting is another ensemble method that improves the performance of deci-
sion trees. Rather than averaging the predictions of several trees together, as bagging
and random forests do, gradient boosting tries to improve prediction performance by
incrementally adding trees to an existing ensemble. The steps are as follows:

1 Use the current ensemble TE to make predictions on the training data.
2 Measure the residuals between the true outcomes and the predictions on the

training data.
3 Fit a new tree T_i to the residuals. Add T_i to the ensemble TE.
4 Continue until the residuals have vanished, or another stopping criterion is

achieved.

The procedure is sketched out in figure 10.10.
Gradient-boosted trees can also overfit, because at some point the residuals are just

random noise. To mitigate overfitting, most implementations of gradient boosting
provide cross-validation methods to help determine when to stop adding trees to the
ensemble.

Training
data

model with N trees

Round N

plot: residual

plot: prediction

–4 0 4

–1.0

–0.5

0.0

0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

x

o
u

tp
u

t
o

u
tp

u
t

Round N + 1

model with N + 1 trees

plot: residual

plot: prediction

–4 0 4

–1.0

–0.5

0.0

0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

x

prediction

true
outcome

residuals

predict

predict

fit new tree on
residuals and
add to model

fit new tree on
residuals and
add to model

[…]

Figure 10.10 Building up a gradient-boosted tree model
Licensed to Ajit de Silva <agdesilva@gmail.com>

369Tree-based methods
You saw examples of gradient boosting when we discussed LIME in section 6.3, where
you fit the gradient-boosted tree models using the xgboost package. In this section,
we’ll go over the modeling code that you used in section 6.3 in more detail.

THE IRIS EXAMPLE

Let’s start with a small example.

 Example Suppose you have a dataset of petal and sepal measurements for three vari-
eties of iris. The object is to predict whether a given iris is a setosa based on its petal and
sepal dimensions.

iris <- iris
iris$class <- as.numeric(iris$Species == "setosa")

set.seed(2345)
intrain <- runif(nrow(iris)) < 0.75
train <- iris[intrain,]
test <- iris[!intrain,]
head(train)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species class
1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 1
3 4.7 3.2 1.3 0.2 setosa 1
4 4.6 3.1 1.5 0.2 setosa 1
5 5.0 3.6 1.4 0.2 setosa 1
6 5.4 3.9 1.7 0.4 setosa 1

input <- as.matrix(train[, 1:4])

Note that xgboost requires its input to be a numeric (no categorical variables) matrix,
so in listing 10.6, you take the input data from the training data frame and create an
input matrix.

In section 6.3, you fit the iris model by using the preprovided convenience function
fit_iris_example(); here we’ll explain the code from that function in detail. The
first step is to run the cross-validation function xgb.cv() to determine the appropri-
ate number of trees to use.

library(xgboost)

cv <- xgb.cv(input,

label = train$class,

params = list(
objective = "binary:logistic"

),
nfold = 5,
nrounds = 100,
print_every_n = 10,

Listing 10.6 Loading the iris data

Listing 10.7 Cross-validating to determine model size

setosa is the
positive class.

Splits the data into
training and test
(75%/25%)

Creates the input matrix

The input matrix

The class labels, which must also
be numeric (1 for setosa, 0 for
not setosa)

Uses the objective “binary:logistic”
for binary classification,
“reg:linear” for regression

Uses 5-fold
cross-validation

Builds an ensemble
of 100 trees Prints a message every 10th iteration

(use verbose = FALSE for no messages)
Licensed to Ajit de Silva <agdesilva@gmail.com>

370 CHAPTER 10 Exploring advanced methods
metrics = "logloss")

evalframe <- as.data.frame(cv$evaluation_log)

head(evalframe)

iter train_logloss_mean train_logloss_std test_logloss_mean
1 1 0.4547800 7.758350e-05 0.4550578
2 2 0.3175798 9.268527e-05 0.3179284
3 3 0.2294212 9.542411e-05 0.2297848
4 4 0.1696242 9.452492e-05 0.1699816
5 5 0.1277388 9.207258e-05 0.1280816
6 6 0.0977648 8.913899e-05 0.0980894
test_logloss_std
1 0.001638487
2 0.002056267
3 0.002142687
4 0.002107535
5 0.002020668
6 0.001911152

(NROUNDS <- which.min(evalframe$test_logloss_mean))
[1] 18

library(ggplot2)
ggplot(evalframe, aes(x = iter, y = test_logloss_mean)) +

geom_line() +
geom_vline(xintercept = NROUNDS, color = "darkred", linetype = 2) +
ggtitle("Cross-validated log loss as a function of ensemble size")

Figure 10.11 shows the cross-validated log loss as a function of the number of trees. In
this case, xgb.cv() estimated that 18 trees gave the best model. Once you know the
number of trees to use, you can call xgboost() to fit the appropriate model.

model <- xgboost(data = input,
label = train$class,
params = list(

objective = "binary:logistic"
),

nrounds = NROUNDS,
verbose = FALSE)

test_input <- as.matrix(test[, 1:4])
pred <- predict(model, test_input)

accuracyMeasures(pred, test$class)

model accuracy f1 dev.norm
1 model 1 1 0.03458392

Listing 10.8 Fitting an xgboost model

evalframe records the training
and cross-validated logloss as a
function of the number of trees.

Uses minimum cross-validated logloss (related
to deviance) to pick the optimum number of
trees. For regression, uses metrics = “rmse”.

Gets the performance log

Finds the number of trees that gave
the minimum cross-validated logloss

Creates the input
matrix for the test data

Makes predictions
Licensed to Ajit de Silva <agdesilva@gmail.com>

371Tree-based methods
The model predicts perfectly on the holdout data, because this is an easy problem.
Now that you are familiar with the steps, you can try xgboost on a harder problem:
the movie review classification problem from section 6.3.3.

GRADIENT BOOSTING FOR TEXT CLASSIFICATION

 Example For this example, you will classify movie reviews from the Internet Movie
Database (IMDB). The task is to identify positive reviews.

As you did in section 6.3.3, you’ll use the training and test data, IMDBtrain.RDS and
IMDBtest.RDS, found at https://github.com/WinVector/PDSwR2/tree/master/IMDB.
Each RDS object is a list with two elements: a character vector representing 25,000
reviews, and a vector of numeric labels where 1 means a positive review and 0 a nega-
tive review.

First, load the training data:

library(zeallot)
c(texts, labels) %<-% readRDS("IMDBtrain.RDS")

You have to convert the textual input data to a numeric representation. As in section
6.3.3, you’ll convert the training data into a document-term matrix, implemented as a
sparse matrix of class dgCMatrix. The convenience functions to do this conversion are

0.0

0.1

0.2

0.3

0.4

0 25 50 75 100

iter

te
st

_l
og

lo
ss

_m
ea

n

Cross-validated log loss as a function of ensemble size

Figure 10.11 Cross-validated log loss as a function of ensemble size
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/IMDB

372 CHAPTER 10 Exploring advanced methods
in https://github.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_ exam-
ple.R. Next, you’ll create the vocabulary of terms in the corpus, and then make the
document-term matrix for the training data:

source("lime_imdb_example.R")
vocab <- create_pruned_vocabulary(texts)
dtm_train <- make_matrix(texts, vocab)

The first step to fit the model is to determine the number of trees to use. This may
take a while.

cv <- xgb.cv(dtm_train,
label = labels,
params = list(

objective = "binary:logistic"
),

nfold = 5,
nrounds = 500,
early_stopping_rounds = 20,
print_every_n = 10,
metrics = "logloss")

evalframe <- as.data.frame(cv$evaluation_log)
(NROUNDS <- which.min(evalframe$test_logloss_mean))
[1] 319

Then fit the model and evaluate it:

model <- xgboost(data = dtm_train, label = labels,
params = list(

objective = "binary:logistic"
),
nrounds = NROUNDS,
verbose = FALSE)

pred = predict(model, dtm_train)
trainperf_xgb = accuracyMeasures(pred, labels, "training")

c(test_texts, test_labels) %<-% readRDS("IMDBtest.RDS")
dtm_test = make_matrix(test_texts, vocab)

pred = predict(model, dtm_test)
testperf_xgb = accuracyMeasures(pred, test_labels, "test")

perftable <- rbind(trainperf_xgb, testperf_xgb)
pandoc.table(perftable, justify = perf_justify)
##
##
model accuracy f1 dev.norm
---------- ---------- -------- ----------
training 0.9891 0.9891 0.1723
test 0.8725 0.8735 0.5955

As with random forests, this gradient-boosted model gives near-perfect performance
on training data, and less-than-perfect, but still decent performance on holdout data.
Even though the cross-validation step suggested 319 trees, you may want to examine

Stop early if
performance doesn’t
improve for 20 rounds.

Loads the test data
and converts it to a
document-term matrix
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_example.R
https://github.com/WinVector/PDSwR2/tree/master/IMDB/lime_imdb_example.R

373Tree-based methods
evalframe (as you did in the iris example), and experiment with different numbers of
trees, to see if that reduces the overfitting.

USING XGBOOST WITH CATEGORICAL VARIABLES

In the iris example, all the input variables were numeric; in the movie review example,
you converted the unstructured text input into a structured, numeric matrix represen-
tation. In many situations, you will have structured input data with categorical levels,
as in the following example.

 Example Suppose you want to predict a newborn’s birth weight as a function of sev-
eral variables, both numeric and categorical, using xgboost.

The data for this example is from the 2010 CDC natality dataset; it is similar to the
data that you used in chapter 7 for predicting at-risk births.5

load("NatalBirthData.rData")
train <- sdata[sdata$ORIGRANDGROUP <= 5,]

test <- sdata[sdata$ORIGRANDGROUP >5 ,]

input_vars <- setdiff(colnames(train), c("DBWT", "ORIGRANDGROUP"))

str(train[, input_vars])

'data.frame': 14386 obs. of 11 variables:
$ PWGT : int 155 140 151 160 135 180 200 135 112 98 ...
$ WTGAIN : int 42 40 1 47 25 20 24 51 36 22 ...
$ MAGER : int 30 32 34 32 24 25 26 26 20 22 ...
$ UPREVIS : int 14 13 15 1 4 10 14 15 14 10 ...
$ CIG_REC : logi FALSE FALSE FALSE TRUE FALSE FALSE ...
$ GESTREC3 : Factor w/ 2 levels ">= 37 weeks",..: 1 1 1 2 1 1 1 1 1 1 ...
$ DPLURAL : Factor w/ 3 levels "single","triplet or higher",..: 1 1 1 1

1 1 1 1 1 1 ...
$ URF_DIAB : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ URF_CHYPER: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ URF_PHYPER: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ URF_ECLAM : logi FALSE FALSE FALSE FALSE FALSE FALSE ...

Listing 10.9 Loading the natality data

5 The dataset can be found at https://github.com/WinVector/PDSwR2/blob/master/CDC/NatalBirthData
.rData.

Gradient boosting models vs. random forests
In our own work, we’ve found that gradient boosting models tend to outperform ran-
dom forests on most problems where we’ve tried both. However, there are occasion-
ally situations where gradient boosting models perform poorly, while random forest
models give acceptable performance. Your experiences may be different. In any case,
it’s a good idea to keep both methods in your arsenal.

Splits the data into
training and test sets

Uses all the variables in the
model. DBWT (baby's birth

weight) is the value to be
predicted, and ORIGRANDGROUP

is the grouping variable.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/CDC/NatalBirthData.rData
https://github.com/WinVector/PDSwR2/blob/master/CDC/NatalBirthData.rData
https://github.com/WinVector/PDSwR2/blob/master/CDC/NatalBirthData.rData

374 CHAPTER 10 Exploring advanced methods
As you can see, the input data has numerical variables, logical variables, and categori-
cal (factor) variables. If you want to use xgboost() to fit a gradient-boosted model for
a baby’s birth weight using all of these variables, you must convert the input to all-
numerical data. There are several ways to do this, including the base R model
.matrix() function. We recommend using vtreat, as you did in chapter 8.

For this scenario, there are three ways you can use vtreat:

 Split the data into three sets: calibration/train/test. Use the calibration set with
designTreatmentsN() to create the treatment plan; prepare() the training set to
fit the xgboost model; and then prepare() the test set to validate the model.

This is a good option when you have a large training set with either complex
variables (categorical variables that take on a large number of possible levels),
or a large number of categorical variables. It is also a good option if you want to
prune some of the variables before fitting the model (using significance prun-
ing—see section 8.4.2).

 Split the data into train/test (as we did here). Use mkCrossFrameNExperiment()
to create the treatment plan and a cross-frame for training the xgboost model;
prepare() the test set to validate the model.

This is a good option when you don’t have enough training data to split into
three groups, but you have complex variables or a large number of categorical
variables, and/or you want to prune some of the variables before fitting the
model.

 Split the data into train/test. Use designTreatmentsZ() to create a treatment
plan that manages missing values and converts categorical variables to indicator
variables. prepare() both the training and test sets to create purely numeric
input.

This solution is quite similar to calling model.matrix(), with the added
advantage that it manages missing values, and also gracefully handles situations
where some categorical levels show up in either training or test, but not both.
It’s a good solution when you only have a few categorical variables, and none of
the variables are too complex.

Since in this scenario there are only two categorical variables, and none of them are
too complex (GESTREC3 takes on two values, and DPLURAL takes on three), you can use
the third option.

library(vtreat)

treatplan <- designTreatmentsZ(train,
input_vars,
 codeRestriction = c("clean", "isBAD", "lev"),
verbose = FALSE)

Listing 10.10 Using vtreat to prepare data for xgboost

Creates the treatment plan

Creates clean numeric variables
(“clean”), missingness indicators

(“isBad”), indicator variables (“lev”),
but not catP (prevalence) variables
Licensed to Ajit de Silva <agdesilva@gmail.com>

375Tree-based methods
train_treated <- prepare(treatplan, train)
str(train_treated)

'data.frame': 14386 obs. of 14 variables:
$ PWGT : num 155 140 151 160 135 180 200 135 1

12 98 ...
$ WTGAIN : num 42 40 1 47 25 20 24 51 36 22 ...
$ MAGER : num 30 32 34 32 24 25 26 26 20 22 ...
$ UPREVIS : num 14 13 15 1 4 10 14 15 14 10 ...
$ CIG_REC : num 0 0 0 1 0 0 0 0 0 0 ...
$ URF_DIAB : num 0 0 0 0 0 0 0 0 0 0 ...
$ URF_CHYPER : num 0 0 0 0 0 0 0 0 0 0 ...
$ URF_PHYPER : num 0 0 0 0 0 0 0 0 0 0 ...
$ URF_ECLAM : num 0 0 0 0 0 0 0 0 0 0 ...
$ GESTREC3_lev_x_37_weeks : num 0 0 0 1 0 0 0 0 0 0 ...
$ GESTREC3_lev_x_37_weeks_1 : num 1 1 1 0 1 1 1 1 1 1 ...
$ DPLURAL_lev_x_single : num 1 1 1 1 1 1 1 1 1 1 ...
$ DPLURAL_lev_x_triplet_or_higher: num 0 0 0 0 0 0 0 0 0 0 ...
$ DPLURAL_lev_x_twin : num 0 0 0 0 0 0 0 0 0 0 ...

Note that train_treated is purely numerical, with no missing values, and it doesn’t
contain the outcome column, so it’s safe to use with xgboost (though you must convert
it to a matrix first). To demonstrate this, the following listing directly fits a gradient-
boosted model with 50 trees to the prepared training data (no cross-validation to pick
the best size), and then applies the model to the prepared test data. This is just for
demonstration purposes; normally you would want to call xgb.cv() to pick an appro-
priate number of trees first.

birthwt_model <- xgboost(as.matrix(train_treated),
train$DBWT,
params = list(

objective = "reg:linear",
base_score = mean(train$DBWT)

),
nrounds = 50,
verbose = FALSE)

test_treated <- prepare(treatplan, test)
pred <- predict(birthwt_model, as.matrix(test_treated))

Exercise: Try to use xgboost to solve the birth weight problem.

Try xgboost to predict DBWT, that is, set up the data and run the preceding code.

Bagging, random forests, and gradient boosting are after-the-fact improvements you
can try in order to improve decision tree models. In the next section, you’ll work with
generalized additive models, which use a different method to represent non-linear
relationships between inputs and outputs.

Listing 10.11 Fitting and applying an xgboost model for birth weight

Prepares the training data
Licensed to Ajit de Silva <agdesilva@gmail.com>

376 CHAPTER 10 Exploring advanced methods
10.1.5 Tree-based model takeaways

Here's what you should remember about tree-based models:

 Trees are useful for modeling data with non-linear relationships between the
input and the output, and potential interactions among variables.

 Tree-based ensembles generally have better performance than basic decision
tree models.

 Bagging stabilizes decision trees and improves accuracy by reducing variance.
 Both random forests and gradient-boosted trees may have a tendency to overfit

on training data. Be sure to evaluate the models on holdout data to get a better
estimate of model performance.

10.2 Using generalized additive models (GAMs)
to learn non-monotone relationships
In chapter 7, you used linear regression to model and predict quantitative output, and
logistic regression to predict class probabilities. Linear and logistic regression models
are powerful tools, especially when you want to understand the relationship between
the input variables and the output. They’re robust to correlated variables (when regu-
larized), and logistic regression preserves the marginal probabilities of the data. The
primary shortcoming of both these models is that they assume that the relationship
between the inputs and the output is monotone. That is, if more is good, than much
more is always better.

But what if the actual relationship is non-monotone? Consider the BMI example
that you saw at the beginning of the chapter. For underweight adults, increasing BMI
can lower mortality. But there’s a limit: at some point a higher BMI is bad, and mortal-
ity will increase as BMI increases. Linear and logistic regression miss this distinction.
For the data that we are working with, as figure 10.12 shows, a linear model would pre-
dict that mortality always decreases as BMI increases.

Generalized additive models (GAMs) are a way to model non-monotone responses
within the framework of a linear or logistic model (or any other generalized linear
model). In the mortality example, GAM would try to find a good “u-shaped” function
of BMI, s(BMI), that describes the relationship between BMI and mortality, as shown
in figure 10.12. GAM would then fit a function to predict mortality in terms of s(BMI).

10.2.1 Understanding GAMs

Recall that if y[i] is the numeric quantity you want to predict, and x[i,] is a row of inputs
that corresponds to output y[i], then linear regression finds a function f(x) such that

f(x[i,]) = b0 + b[1] * x[i, 1] + b[2] * x[i, 2] + ... b[n] * x[i, n]

And f(x[i,]) is as close to y[i] as possible.
In its simplest form, a GAM model relaxes the linearity constraint and finds a set of

functions s_i() (and a constant term a0) such that

f(x[i,]) = a0 + s_1(x[i, 1]) + s_2(x[i, 2]) + ... s_n(x[i, n])
Licensed to Ajit de Silva <agdesilva@gmail.com>

377Using generalized additive models (GAMs) to learn non-monotone relationships
We also want f(x[i,]) to be as close to y[i] as possible. The functions s_i() are
smooth curve fits that are built up from polynomials. The curves are called splines and
are designed to pass as closely as possible through the data without being too “wiggly”
(without overfitting). An example of a spline fit is shown in figure 10.13.

gam

lm

20 25 30 35

1.0

1.5

1.0

1.5

bmi_value

m
or

ta
lit

y_
ra

te

sex female_estimate male_estimate

Linear model predicts
that heavier people
live (slightly) longer

GAM model
approximates the
true relationship

between BMI
and mortality

Figure 10.12 The effect of BMI on mortality: linear model vs. GAM

−10

0

−2 0 2
x

y

Figure 10.13 A spline that has been fit through a series of points
Licensed to Ajit de Silva <agdesilva@gmail.com>

378 CHAPTER 10 Exploring advanced methods
Let’s work on a concrete example.

10.2.2 A one-dimensional regression example

First, consider this toy example.

 Example Suppose you want to fit a model to data where the response y is a noisy non-
linear function of the input variable x (in fact, it’s the function shown in figure 10.13).

As usual, we’ll split the data into training and test sets.

set.seed(602957)

x <- rnorm(1000)
noise <- rnorm(1000, sd = 1.5)

y <- 3 * sin(2 * x) + cos(0.75 * x) - 1.5 * (x^2) + noise

select <- runif(1000)
frame <- data.frame(y = y, x = x)

train <- frame[select > 0.1,]
test <-frame[select <= 0.1,]

Given that the data is from the non-linear functions sin() and cos(), there shouldn’t
be a good linear fit from x to y. We’ll start by building a (poor) linear regression.

lin_model <- lm(y ~ x, data = train)
summary(lin_model)

##
Call:
lm(formula = y ~ x, data = train)
##
Residuals:
Min 1Q Median 3Q Max
-17.698 -1.774 0.193 2.499 7.529
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.8330 0.1161 -7.175 1.51e-12 ***
x 0.7395 0.1197 6.180 9.74e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.485 on 899 degrees of freedom
Multiple R-squared: 0.04075, Adjusted R-squared: 0.03968
F-statistic: 38.19 on 1 and 899 DF, p-value: 9.737e-10

rmse <- function(residuals) {
sqrt(mean(residuals^2))

}

Listing 10.12 Preparing an artificial problem

Listing 10.13 Applying linear regression to the artificial example

A convenience function for calculating
root mean squared error (RMSE)
from a vector of residuals
Licensed to Ajit de Silva <agdesilva@gmail.com>

379Using generalized additive models (GAMs) to learn non-monotone relationships
train$pred_lin <- predict(lin_model, train)
resid_lin <- with(train, y - pred_lin)
rmse(resid_lin)
[1] 3.481091

library(ggplot2)

ggplot(train, aes(x = pred_lin, y = y)) +
geom_point(alpha = 0.3) +
geom_abline()

The resulting model’s predictions are plotted versus true response in figure 10.14. As
expected, it’s a very poor fit, with an R-squared of about 0.04. In particular, the errors
are not homoscedastic: there are regions where the model systematically underpredicts
and regions where it systematically overpredicts. If the relationship between x and y
were truly linear (with independent noise), then the errors would be homoscedastic: the
errors would be evenly distributed (mean 0) around the predicted value everywhere.

Now try finding a non-linear model that maps x to y. We’ll use the function gam()
in the package mgcv.6 When using gam(), you can model variables as either linear or

6 There’s an older package called gam, written by Hastie and Tibshirani, the inventors of GAMs. The gam pack-
age works fine. But it’s incompatible with the mgcv package, which ggplot already loads. Since we’re using
ggplot for plotting, we’ll use mgcv for our examples.

Calculates the RMSE
of this model on the
training data

Plots y versus prediction

−10

0

−3 −2 −1 0 1

pred_lin

y

Figure 10.14 Linear model’s predictions vs. actual response. The solid line is the line of perfect
prediction (prediction == actual).
Licensed to Ajit de Silva <agdesilva@gmail.com>

380 CHAPTER 10 Exploring advanced methods
non-linear. You model a variable x as non-linear by wrapping it in the s() notation. In
this example, rather than using the formula y ~ x to describe the model, you’d use
the formula y ~ s(x). Then gam() will search for the spline s() that best describes
the relationship between x and y, as shown in listing 10.14. Only terms surrounded by
s() get the GAM/spline treatment.

library(mgcv)
gam_model <- gam(y ~ s(x), data = train)
gam_model$converged
[1] TRUE

summary(gam_model)

Family: gaussian
Link function: identity
##
Formula:
y ~ s(x)
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.83467 0.04852 -17.2 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(x) 8.685 8.972 497.8 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
R-sq.(adj) = 0.832 Deviance explained = 83.4%
GCV score = 2.144 Scale est. = 2.121 n = 901

train$pred <- predict(gam_model, train)
resid_gam <- with(train, y - pred)
rmse(resid_gam)

[1] 1.448514

ggplot(train, aes(x = pred, y = y)) +
geom_point(alpha = 0.3) +
geom_abline()

Listing 10.14 Applying GAM to the artificial example

Loads the mgcv package
Builds the model, specifying
that x should be treated as

a non-linear variable
The converged parameter
tells you if the algorithm
converged. You should
only trust the output if
this is TRUE.

Setting family = gaussian and link = identity tells you
that the model was treated with the same distribution
assumptions as a standard linear regression.

The parametric coefficients are the linear terms
(in this example, only the constant term). This
section of the summary tells you which linear
terms were significantly different from 0.

The smooth terms are the non-linear terms. This section of the
summary tells you which non-linear terms were significantly
different from 0. It also tells you the effective degrees of freedom
(edf) used to build each smooth term. An edf near 1 indicates that
the variable has an approximately linear relationship to the output.

R-sq.(adj) is the adjusted
R-squared. “Deviance
explained” is the raw

R-squared (0.834).

Calculates the RMSE of this
model on the training data

Plots y versus prediction
Licensed to Ajit de Silva <agdesilva@gmail.com>

381Using generalized additive models (GAMs) to learn non-monotone relationships
The resulting model’s predictions are plotted versus true response in figure 10.15.
This fit is much better: the model explains over 80% of the variance (R-squared of
0.83), and the root mean squared error (RMSE) over the training data is less than half
the RMSE of the linear model. Note that the points in figure 10.15 are distributed
more or less evenly around the line of perfect prediction. The GAM has been fit to be
homoscedastic, and any given prediction is as likely to be an overprediction as an
underprediction.

Modeling linear relationships using gam()
By default, gam() will perform standard linear regression. If you were to call gam()
with the formula y ~ x, you’d get the same model that you got using lm(). More
generally, the call gam(y ~ x1 + s(x2), data=...) would model the variable x1
as having a linear relationship with y, and try to fit the best possible smooth curve to
model the relationship between x2 and y. Of course, the best smooth curve could be
a straight line, so if you’re not sure whether the relationship between x and y is lin-
ear, you can use s(x). If you see that the coefficient has an edf (effective degrees
of freedom—see the model summary in listing 10.14) of about 1, then you can try
refitting the variable as a linear term.

−10

0

−15 −10 −5 0
pred

y

Figure 10.15 GAM’s predictions vs. actual response. The solid line is the theoretical line of perfect
prediction (prediction == actual).
Licensed to Ajit de Silva <agdesilva@gmail.com>

382 CHAPTER 10 Exploring advanced methods

Calcu

resi
The use of splines gives GAMs a richer model space to choose from; this increased
flexibility brings a higher risk of overfitting. You should also check the models’ perfor-
mances on the test data.

test <- transform(test,
pred_lin = predict(lin_model, test),

 pred_gam = predict(gam_model, test))

test <- transform(test,
resid_lin = y - pred_lin,

 resid_gam = y - pred_gam)

rmse(test$resid_lin)
[1] 2.792653

rmse(test$resid_gam)
[1] 1.401399

library(sigr)
wrapFTest(test, "pred_lin", "y")$R2

[1] 0.115395

wrapFTest(test, "pred_gam", "y")$R2
[1] 0.777239

The GAM performed similarly on both training and test sets: RMSE of 1.40 on test ver-
sus 1.45 on training; R-squared of 0.78 on test versus 0.83 on training. So there’s likely
no overfit.

10.2.3 Extracting the non-linear relationships

Once you fit a GAM, you’ll probably be interested in what the s() functions look
like. Calling plot() on a GAM will give you a plot for each s() curve, so you can
visualize non-linearities. In our example, plot(gam_model) produces the top curve
in figure 10.16.

The shape of the curve is quite similar to the scatter plot we saw in figure 10.13
(which is reproduced as the lower half of figure 10.16). In fact, the spline that’s super-
imposed on the scatter plot in figure 10.13 is the same curve.

You can extract the data points that were used to make this graph by using the
predict() function with the argument type = "terms". This produces a matrix
where the ith column represents s(x[,i]). The following listing demonstrates how to
reproduce the lower plot in figure 10.16.

Listing 10.15 Comparing linear regression and GAM performance

Gets predictions from both
models on the test data.
The function transform() is
a base R version of
dplyr::mutate().lates

the
duals

Compares the RMSE of both
models on the test data

Compares the R-squared of
both models on the test
data, using the sigr package
Licensed to Ajit de Silva <agdesilva@gmail.com>

383Using generalized additive models (GAMs) to learn non-monotone relationships
−2

–3 –2 –1 0 1 2 3

x

s(
x,

8.
69

)

–10

0

–10

–15

–10

–5

0

5

0 2
x

y

Figure 10.16 Top: The non-linear function s(PWGT) discovered by gam(), as output by
plot(gam_model). Bottom: The same spline superimposed over the training data.
Licensed to Ajit de Silva <agdesilva@gmail.com>

384 CHAPTER 10 Exploring advanced methods
sx <- predict(gam_model, type = "terms")
summary(sx)
s(x)
Min. :-17.527035
1st Qu.: -2.378636
Median : 0.009427
Mean : 0.000000
3rd Qu.: 2.869166
Max. : 4.084999

xframe <- cbind(train, sx = sx[,1])

ggplot(xframe, aes(x = x)) +
geom_point(aes(y = y), alpha = 0.4) +
geom_line(aes(y = sx))

Now that you’ve worked through a simple example, you are ready to try a more realis-
tic example with more variables.

10.2.4 Using GAM on actual data

 Example Suppose you want to predict a newborn baby’s weight (DBWT) from a num-
ber of variables:

 Mother’s weight (PWGT)
 Mother’s pregnancy weight gain (WTGAIN)
 Mother’s age (MAGER)
 The number of prenatal medical visits (UPREVIS)

For this example, you’ll use data from the 2010 CDC natality dataset that you used in
section 7.2 (though this is not the risk data used in that chapter).7 Note that we’ve
chosen this example to highlight the mechanisms of gam(), not to find the best model
for birth weight. Adding other variables beyond the four we’ve chosen will improve
the fit, but obscure the exposition.

In the next listing, you’ll fit a linear model and a GAM, and compare.

library(mgcv)
library(ggplot2)
load("NatalBirthData.rData")
train <- sdata[sdata$ORIGRANDGROUP <= 5,]
test <- sdata[sdata$ORIGRANDGROUP > 5,]

form_lin <- as.formula("DBWT ~ PWGT + WTGAIN + MAGER + UPREVIS")
linmodel <- lm(form_lin, data = train)

summary(linmodel)

Call:

Listing 10.16 Extracting a learned spline from a GAM

7 The dataset can be found at https://github.com/WinVector/PDSwR2/blob/master/CDC/NatalBirthData
.rData. A script for preparing the dataset from the original CDC extract can be found at
https://github.com/WinVector/PDSwR2/blob/master/CDC/prepBirthWeightData.R.

Listing 10.17 Applying linear regression (with and without GAM) to health data

Builds a linear model
with four variables
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/CDC/NatalBirthData.rData
https://github.com/WinVector/PDSwR2/blob/master/CDC/NatalBirthData.rData
https://github.com/WinVector/PDSwR2/blob/master/CDC/NatalBirthData.rData
https://github.com/WinVector/PDSwR2/blob/master/CDC/prepBirthWeightData.R

385Using generalized additive models (GAMs) to learn non-monotone relationships
lm(formula = form_lin, data = train)
##
Residuals:
Min 1Q Median 3Q Max
-3155.43 -272.09 45.04 349.81 2870.55
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2419.7090 31.9291 75.784 < 2e-16 ***
PWGT 2.1713 0.1241 17.494 < 2e-16 ***
WTGAIN 7.5773 0.3178 23.840 < 2e-16 ***
MAGER 5.3213 0.7787 6.834 8.6e-12 ***
UPREVIS 12.8753 1.1786 10.924 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 562.7 on 14381 degrees of freedom
Multiple R-squared: 0.06596, Adjusted R-

squared: 0.0657
F-statistic: 253.9 on 4 and 14381 DF, p-value: < 2.2e-16

form_gam <- as.formula("DBWT ~ s(PWGT) + s(WTGAIN) +
s(MAGER) + s(UPREVIS)")

gammodel <- gam(form_gam, data = train)
gammodel$converged
[1] TRUE

summary(gammodel)

##
Family: gaussian
Link function: identity
##
Formula:
DBWT ~ s(PWGT) + s(WTGAIN) + s(MAGER) + s(UPREVIS)
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3276.948 4.623 708.8 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(PWGT) 5.374 6.443 69.010 < 2e-16 ***
s(WTGAIN) 4.719 5.743 102.313 < 2e-16 ***
s(MAGER) 7.742 8.428 7.145 1.37e-09 ***
s(UPREVIS) 5.491 6.425 48.423 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.0927 Deviance explained = 9.42%
GCV = 3.0804e+05 Scale est. = 3.0752e+05 n = 14386

The GAM has improved the fit, and all four variables seem to have a non-linear rela-
tionship with birth weight, as evidenced by edfs all greater than 1. You could use
plot(gammodel) to examine the shape of the s() functions; instead, let's compare
them with a direct smoothing curve of each variable against mother’s weight.

The model explains
about 6.6% of the
variance; all
coefficients are
significantly
different from 0.

Builds a GAM with
the same variablesVerifies that the

model has converged

The model explains a little
over 9% of the variance;
all variables have a non-
linear effect significantly

different from 0.
Licensed to Ajit de Silva <agdesilva@gmail.com>

386 CHAPTER 10 Exploring advanced methods

Binds
the in
variab
terms <- predict(gammodel, type = "terms")
terms <- cbind(DBWT = train$DBWT, terms)

tframe <- as.data.frame(scale(terms, scale = FALSE))
colnames(tframe) <- gsub('[()]', '', colnames(tframe))

vars = c("PWGT", "WTGAIN", "MAGER", "UPREVIS")
pframe <- cbind(tframe, train[, vars])

ggplot(pframe, aes(PWGT)) +
geom_point(aes(y = sPWGT)) +
geom_smooth(aes(y = DBWT), se = FALSE)

[...]

Figure 10.17 shows the s() splines learned by gam() as the dotted curves. These
splines are gam()’s estimate of the (joint) relationship between each variable and the
outcome, DBWT. The sum of the splines (plus an offset) is the model’s best estimate of
DBWT as a function of the input variables.

The figure also shows the smoothing curves that directly relate each variable to
DBWT. The smooth curves in each case are similar to the corresponding s() in shape,
and non-linear for all the variables. The differences in shape are because the splines
are fit jointly (which is more useful for modeling), and the smoothing curves are
merely calculated one at a time.

As usual, you should check for overfit with holdout data.

test <- transform(test,
pred_lin = predict(linmodel, test),

 pred_gam = predict(gammodel, test))

test <- transform(test,
resid_lin = DBWT - pred_lin,

 resid_gam = DBWT - pred_gam)

rmse(test$resid_lin)
[1] 566.4719

rmse(test$resid_gam)
[1] 558.2978

wrapFTest(test, "pred_lin", "DBWT")$R2
[1] 0.06143168

wrapFTest(test, "pred_gam", "DBWT")$R2
[1] 0.08832297

Listing 10.18 Plotting GAM results

Listing 10.19 Checking GAM model performance on holdout data

Gets the matrix of s() functions Binds in the birth weight (DBWT) Shifts all the columns to
be zero mean (to make
comparisons easy);
converts to a data frame

 in
put
les

Makes the column
names reference-
friendly (s(PWGT)
is converted to
sPWGT, etc.)

Compares the spline s(PWGT) to
the smoothed curve of DBWT
(baby’s weight) as a function of
mother’s weight (PWGT)Repeats for the remaining

variables (omitted for brevity)

Gets predictions from
both models on test data

Gets the residuals

Compares the RMSE of both
models on the test data

Compares the R-squared of
both models on the test
data, using sigr
Licensed to Ajit de Silva <agdesilva@gmail.com>

387Using generalized additive models (GAMs) to learn non-monotone relationships
The performance of the linear model and the GAM were similar on the test set, as
they were on the training set, so in this example, there’s no substantial overfit.

10.2.5 Using GAM for logistic regression

The gam() function can be used for logistic regression as well.

 Example Suppose you want to predict when a baby will be born underweight
(defined as DBWT < 2000), using the same input variables as the previous scenario.

The logistic regression call to do this is shown in the following listing.

form <- as.formula("DBWT < 2000 ~ PWGT + WTGAIN + MAGER + UPREVIS")
logmod <- glm(form, data = train, family = binomial(link = "logit"))

The corresponding call to gam() also specifies the binomial family with the logit link.

Listing 10.20 GLM logistic regression

0 10 20 40 50 0 25 50 75 10030

sp
lin

e
/D

B
W

T

variable value

–300

–200

–100

0

100

–500

–400

–300

–200

–100

0

MAGER

UPREVIS

PWGT

WTGAIN

–200

0

200

100

0

–100

–200

–400

50 100 200 300403020

Figure 10.17 Smoothing curves of each of the four input variables plotted against birth weight,
compared with the splines discovered by gam(). All curves have been shifted to be zero mean for
comparison of shape.
Licensed to Ajit de Silva <agdesilva@gmail.com>

388 CHAPTER 10 Exploring advanced methods
form2 <- as.formula("DBWT < 2000 ~ s(PWGT) + s(WTGAIN) +
s(MAGER) + s(UPREVIS)")

glogmod <- gam(form2, data = train, family = binomial(link = "logit"))

glogmod$converged
[1] TRUE

summary(glogmod)
Family: binomial
Link function: logit
##
Formula:
DBWT < 2000 ~ s(PWGT) + s(WTGAIN) + s(MAGER) + s(UPREVIS)
##
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.94085 0.06794 -58 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(PWGT) 1.905 2.420 2.463 0.36412
s(WTGAIN) 3.674 4.543 64.426 1.72e-12 ***
s(MAGER) 1.003 1.005 8.335 0.00394 **
s(UPREVIS) 6.802 7.216 217.631 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
R-sq.(adj) = 0.0331 Deviance explained = 9.14%
UBRE score = -0.76987 Scale est. = 1 n = 14386

As with the standard logistic regression call, we recover the class probabilities with the
call predict(glogmodel, newdata = train, type = "response"). Again, these
models are coming out with low quality, and in practice we would look for more
explanatory variables to build better screening models.

10.2.6 GAM takeaways

Here’s what you should remember about GAMs:

 GAMs let you represent non-linear and non-monotonic relationships between
variables and outcome in a linear or logistic regression framework.

 In the mgcv package, you can extract the discovered relationship from the GAM
model using the predict() function with the type = "terms" parameter.

 You can evaluate the GAM with the same measures you’d use for standard linear
or logistic regression: residuals, deviance, R-squared, and pseudo R-squared.

Listing 10.21 GAM logistic regression

Note the large p-value associated
with mother’s weight (PGWT).
That means that there’s no
statistical proof that the mother’s
weight (PWGT) has a significant
effect on the outcome.

“Deviance explained” is the pseudo
R-squared: 1 - (deviance/null.deviance).
Licensed to Ajit de Silva <agdesilva@gmail.com>

389Solving “inseparable” problems using support vector machines
The gam() summary also gives you an indication of which variables have a sig-
nificant effect on the model.

 Because GAMs have increased complexity compared to standard linear or logis-
tic regression models, there’s more risk of overfit.

GAMs extend linear methods (and generalized linear methods) by allowing variables
to have non-linear (or even non-monotone) effects on outcome. Another approach is
to form new variables from non-linear combinations of existing variables. The data sci-
entist can do this by hand, by adding interactions or new synthetic variables, or it can
be done mechanically, by support vector machines (SVMs), as shown in the next sec-
tion. The hope is that with access to enough of these new variables, your modeling
problem becomes easier.

In the next section, we’ll work with two of the most popular ways to add and man-
age new variables: kernel methods and support vector machines.

10.3 Solving “inseparable” problems
using support vector machines
Some classification problems are called inseparable: instances of one class, A, are inside
regions bounded by another class, B, so that class A can’t be separated from class B by
a flat boundary. For example, in figure 10.18, we see a number of o’s inside a triangle

x
o

x

x

x

x

x

x

o

o

o
o

o
o

o

o
o

(x)

(x)

(x)

(x)

(x)

(x)

(x)

(o)

(o)
(o)

(o)

(o)

(o)

(o)

(o)

(o)

(o)

Kernel
transform

Linearly Inseparable Data Linearly Separable Data

An o inside triangle of x’s means there is
no way to separate the x’s from the o’s using
a single straight line (or a linear separator).

Figure 10.18 Notional illustration of a kernel transform (based on Cristianini and Shawe-Taylor, 2000)
Licensed to Ajit de Silva <agdesilva@gmail.com>

390 CHAPTER 10 Exploring advanced methods
defined by x’s (and we also see the data converted to a nice separable arrangement by
a so-called kernel function phi()). The original arrangement on the left side is linearly
inseparable: there is no hyperplane that separates the x’s from the o’s. Hence, it would
be impossible for linear methods to completely separate the two classes. We could use
the tree-based methods demonstrated in section 10.1 to fit a classifier, or we could use
a technique called kernel methods. In this section, we will use SVMs and kernel methods
to build good classifiers on linearly inseparable data.

10.3.1 Using an SVM to solve a problem

Let’s start with an example adapted from R’s kernlab library documentation. Learn-
ing to separate two spirals is a famous “impossible” problem that cannot be solved by
linear methods (though it is solvable by spectral clustering, kernel methods, SVMs,
and deep learning or deep neural nets).

 Example Figure 10.19 shows two spirals, one within the other. Your task is to build
a decision procedure that cuts up the plane such that the 1-labeled examples are in one
region and the 2-labeled examples are in the complimentary region.8

Support vector machines excel at learning concepts of the form “examples that are
near each other should be given the same classification.” To use the SVM technique,
the user must choose a kernel (to control what is considered "near" or "far"), and pick
a value for a hyperparameter called C or nu (to try to control model complexity).

SPIRAL EXAMPLE

Listing 10.22 shows the recovery and labeling of the two spirals shown in figure 10.19.
You will use the labeled data for the example task: given the labeled data, recover the
1 versus 2 regions by supervised machine learning.

8 See K. J. Lang and M. J. Witbrock, “Learning to tell two spirals apart” in Proceedings of the 1988 Connectionist
Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski (eds), Morgan Kaufmann, 1988 (pp. 52–
59).

Having more than one way to do things
At this point, we have seen a number of advanced methods that give us more than
one way to handle complex problems. For example: random forests, boosting, and
SVMs can all introduce variable interactions to solve problems. It would be nice if
there were always one obvious best method. However, each of these methodologies
can dominate for different problems. So there is no one best method.

Our advice is try simple methods such as linear and logistic regression first. Then
bring in and try advanced methods such as GAMs (which can handle single-variable
reshaping), tree-based methods (which can handle many-variable interactions), and
SVMs (which can handle many-variable reshapings) to address modeling issues.
Licensed to Ajit de Silva <agdesilva@gmail.com>

391Solving “inseparable” problems using support vector machines

Plo
s

 with
library('kernlab')
data(spirals)
sc <- specc(spirals, centers = 2)
s <- data.frame(x = spirals[, 1], y = spirals[, 2],

class = as.factor(sc))

library('ggplot2')
ggplot(data = s) +

 geom_text(aes(x = x, y = y,
label = class, color = class)) +

scale_color_manual(values = c("#d95f02", "#1b9e77")) +
coord_fixed() +
theme_bw() +
theme(legend.position = 'none') +
ggtitle("example task: separate the 1s from the 2s")

Listing 10.22 Setting up the spirals data as a classification problem

2

2

1
1

2

111

2

11

2

2

11 2

2

22

2

11

2

111
1

2

2

2

1

2

1
1

2

1

2

1

2

2

11

1
12

2

2

2

2

1

2

1

2

2

111

2

2

2

2

2

1
1

2

1

2

2

21
1

2

1
1

1

2

2

2 2

1

2

1

2

1

2

2

2

2

2

2

1

2

2

111

2

111
1

2

2

2

11

2

1
1

1

2

1

2
2

2

2

11
2

2

1

22
21

2
1

2

2

2

2
2

1
11

1 1

2

2

2

11

2

1

2

2

2

1
1 1

2

1 1
1111

2

2

2

2 1

2

1

2

2

2

1

2

2

2

2

1

2

1

2

2

2

1 1

2

2

2

1 1
1

2

2

1
1
1 1 1

1
1 1

2

2

2

2 1

2

1
12

1

2

1
1

1
1
1

2

1

2

1

2

1

2
2

2

1
1
11

2

2

2

1

2

2
1
11

1
1

2

2

111
1

2

2

2

1111
11

2

2

1
1

2

2

2

2

2

2

2

1111

2

1

2

1

2
2

11
1

2

1
2

2

2

2

1
1

2

1

2

1
1
1

2

1

2

1
1

2

2

1
1
1

2

−1.0

−0.5

0.0

0.5

1.0

−1.5 −1.0 −0.5 0.0 0.5 1.0

x

y

example task: separate the 1’s from the 2’s

Figure 10.19 The spiral counterexample

Loads the kernlab kernel and SVM
package and then asks that the included
example spirals be made available

Uses kernlab’s spectral
clustering routine to
identify the two
different spirals in the
example dataset

Combines the spiral
coordinates and the
spiral label into a
data frame

ts the
pirals
 class
labels
Licensed to Ajit de Silva <agdesilva@gmail.com>

392 CHAPTER 10 Exploring advanced methods
Figure 10.19 shows the labeled spiral dataset. Two classes (represented by digits) of
data are arranged in two interwoven spirals. This dataset is difficult for methods that
don’t have a rich enough concept space (perceptrons, shallow neural nets) and easy
for more-sophisticated learners that can introduce the right new features. Support
vector machines, with the right kernel, are a way to introduce new composite features
in order to solve the problem.

SUPPORT VECTOR MACHINES WITH AN OVERSIMPLE KERNEL

Support vector machines are powerful, but without the correct kernel, they have diffi-
culty with some concepts (such as the spiral example). Listing 10.23 shows a failed
attempt to learn the spiral concept with an SVM using the identity or dot-product (lin-
ear) kernel. The linear kernel does no transformations on the data; it can work for some
applications, but in this case it does not give us the data-separating properties we want.

set.seed(2335246L)
s$group <- sample.int(100, size = dim(s)[[1]], replace = TRUE)
sTrain <- subset(s, group > 10)
sTest <- subset(s,group <= 10)

library('e1071')
mSVMV <- svm(class ~ x + y, data = sTrain, kernel = 'linear', type =

'nu-classification')
sTest$predSVMV <- predict(mSVMV, newdata = sTest, type = 'response')

shading <- expand.grid(
x = seq(-1.5, 1.5, by = 0.01),
y = seq(-1.5, 1.5, by = 0.01))

shading$predSVMV <- predict(mSVMV, newdata = shading, type = 'response')

ggplot(mapping = aes(x = x, y = y)) +
geom_tile(data = shading, aes(fill = predSVMV),

show.legend = FALSE, alpha = 0.5) +
scale_color_manual(values = c("#d95f02", "#1b9e77")) +
scale_fill_manual(values = c("white", "#1b9e77")) +
geom_text(data = sTest, aes(label = predSVMV),

size = 12) +
geom_text(data = s, aes(label = class, color = class),

alpha = 0.7) +
coord_fixed() +
theme_bw() +
theme(legend.position = 'none') +
ggtitle("linear kernel")

Listing 10.23 SVM with a poor choice of kernel

Prepares to try to learn spiral class
label from coordinates using an SVM

Builds the support vector
model using a vanilladot

kernel (not a very good kernel)

Uses the model to predict
class on held-out data

Calls the model on a grid of points to
generate background shading
indicating the learned concept

Plots the predictions on top of a grey copy
of all the data so we can see if predictions

agree with the original markings
Licensed to Ajit de Silva <agdesilva@gmail.com>

393Solving “inseparable” problems using support vector machines
This attempt results in figure 10.20. The figure shows the total dataset in a small font
and the SVM classifications of the test dataset in large text. It also indicates the
learned concept by shading. The SVM didn’t produce a good model with the identity
kernel, as it was forced to pick a linear separator. In the next section, you’ll repeat the
process with the Gaussian radial kernel and get a much better result.

SUPPORT VECTOR MACHINES WITH A GOOD KERNEL

In listing 10.24, you’ll repeat the SVM fitting process, but this time specifying the
Gaussian or radial kernel. Figure 10.21 again plots the SVM test classifications in black
(with the entire dataset in a smaller font). Note that this time the algorithm correctly
learned the actual spiral concept, as indicated by the shading.

−1

0

1

−1 0 1

x

y

linear kernel

Figure 10.20 Identity kernel failing to learn the spiral concept
Licensed to Ajit de Silva <agdesilva@gmail.com>

394 CHAPTER 10 Exploring advanced methods
mSVMG <- svm(class ~ x + y, data = sTrain, kernel = 'radial', type =
'nu-classification')

sTest$predSVMG <- predict(mSVMG, newdata = sTest, type = 'response')

shading <- expand.grid(
x = seq(-1.5, 1.5, by = 0.01),
y = seq(-1.5, 1.5, by = 0.01))

shading$predSVMG <- predict(mSVMG, newdata = shading, type = 'response')

ggplot(mapping = aes(x = x, y = y)) +
geom_tile(data = shading, aes(fill = predSVMG),

show.legend = FALSE, alpha = 0.5) +
scale_color_manual(values = c("#d95f02", "#1b9e77")) +
scale_fill_manual(values = c("white", "#1b9e77")) +
geom_text(data = sTest, aes(label = predSVMG),

size = 12) +

Listing 10.24 SVM with a good choice of kernel

−1

0

1

−1 0 1

x

y

radial/Gaussian kernel

Figure 10.21 Radial kernel successfully learning the spiral concept

This time uses the
“radial” or Gaussian

kernel, which is a nice
geometric distance

measure
Licensed to Ajit de Silva <agdesilva@gmail.com>

395Solving “inseparable” problems using support vector machines
geom_text(data = s,aes(label = class, color = class),
alpha = 0.7) +

coord_fixed() +
theme_bw() +
theme(legend.position = 'none') +
ggtitle("radial/Gaussian kernel")

Exercise: Try to use xgboost to solve the spirals problem.

As we stated, some methods work better on some problems than others. Try to use the xgboost pack-
age to solve the spirals problem. Do you find the xgboost results to be better or worse than the SVM
results? (A worked version of this example can be found here: https://github.com/WinVector/
PDSwR2/tree/master/Spirals.)

10.3.2 Understanding support vector machines

An SVM is often portrayed as a magic machine that makes classification easier.9 To dis-
pel the awe and be able to use support vector methods with confidence, we need to
take some time to learn their principles and how they work. The intuition is this: SVMs
with the radial kernel are very good nearest-neighbor-style classifiers.

In figure 10.22, in the “real space” (on the left), the data is separated by a non-
linear boundary. When the data is lifted into the higher-dimensional kernel space (on
the right), the lifted points are separated by a hyperplane. Let’s call the normal to that
hyperplane w and the offset from the origin b (not shown).

An SVM finds a linear decision function (determined by parameters w and b),
where for a given example x the machine decides x is in the class if

w %*% phi(x) + b >= 0

for some w and b, and not in the class otherwise. The model is completely deter-
mined by the function phi(), the vector w, and the scalar offset b. The idea is that
phi() lifts or reshapes the data into a nicer space (where things are linearly separa-
ble), and then the SVM finds a linear boundary separating the two data classes in this
new space (represented by w and b). This linear boundary in the lifted space can be
pulled back as a general curved boundary in the original space. The principle is
sketched out in figure 10.22.

The support vector training operation finds w and b. There are variations on the
SVM that make decisions between more than two classes, perform scoring/regression,
and detect novelty. But we’ll discuss only the SVMs for simple classification.

As a user of SVMs, you don’t immediately need to know how the training proce-
dure works; that’s what the software does for you. But you do need to have some
notion of what it’s trying to do. The model w,b is ideally picked so that

w %*% phi(x) + b >= u

for all training xs that were in the class, and

w %*% phi(x) + b <= v

for all training examples not in the class.

9 Support vector machines can also be used for regression, but we will not cover that here.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Radial kernel successfully learning the spiral concept
Radial kernel successfully learning the spiral concept
Radial kernel successfully learning the spiral concept

396 CHAPTER 10 Exploring advanced methods
Margin of Separation

(x)

(x)

(x)

(x)

(x)

(x)

(x)

(o)

(o)(o)

(o)

(o)

(o)

(o)

(o)

(o)

(o)

x

o

x

x

x

x

x

x

o

o

o
o oo

o

o
o

Linearly Inseparable Data Linearly Separated Data

x

o

x

x

x

x
x

x

o

o

o
o oo

o

o
o

Inseparable Data

o

x

Kernel
transform

"Forget a few bad points" (notional idea only—in
reality points are kept and "soft margin penalty"
adds a penalty proportional to how far the points
are on the "wrong side" of the chosen separating
decision surface).

"Support Vectors"—points that
determine the position (and shape)
of the separating margin.

Linear separator can be pulled back to original data (using Φ-1())
to give a curved decision surface over the original data

xoxx

xoxx

xoxx

Figure 10.22 Notional illustration of SVM
Licensed to Ajit de Silva <agdesilva@gmail.com>

397Solving “inseparable” problems using support vector machines
The data is called separable if u > v. The size of the separation is (u - v) / sqrt(w
%*% w), and is called the margin. The goal of the SVM optimizer is to maximize the
margin. A large margin can actually ensure good behavior on future data (good gen-
eralization performance). In practice, real data isn’t always separable even in the pres-
ence of a kernel. To work around this, most SVM implementations implement the so-
called soft margin optimization goal.

A soft margin optimizer adds additional error terms that are used to allow a limited
fraction of the training examples to be on the wrong side of the decision surface.10

The model doesn’t actually perform well on the altered training examples, but trades
the error on these examples against increased margin on the remaining training
examples. For most implementations, the model hyperparameter C or nu determines
the trade-off between margin width for the remaining data and how much data is
pushed around to achieve the margin. We will use the nu hyperparameter. nu takes
settings between zero and one; lower values allow fewer training misclassifications,
favoring more-complex models (more support vectors).11 For our example, we will
just use the function default value: 0.5.

10.3.3 Understanding kernel functions

The SVM picks which data is unimportant (left out) and which is very important (used
as support vectors). But the reshaping of the problem to make the data separable is
actually performed by what are called kernel methods or kernel functions.

Figure 10.22 illustrates12 what we hope for from a good kernel: our data being
pushed around so it’s easier to sort or classify. By using a kernel transformation, we
move to a situation where the distinction we’re trying to learn is representable by a lin-
ear separator of our transformed data.

To begin to understand SVMs, we need to take a quick look at the common math
and terminology that a user of SVMs and kernel methods should be conversant with.
First is the notion of a kernel function, which is used to implement the phi() we saw
reshaping space.

FORMAL DEFINITION OF A KERNEL FUNCTION

In our application, a kernel is a function with a very specific definition. Let u and v be
any pair of variables. u and v are typically vectors of input or independent variables (pos-
sibly taken from two rows of a dataset). A function k(,) that maps pairs (u,v) to num-
bers is called a kernel function if and only if there is some function phi() mapping (u,v)s
to a vector space such that k(u,v) = phi(u) %*% phi(v) for all u,v.13 We’ll informally

10 A common type of dataset that is inseparable under any kernel is a dataset where there are at least two exam-
ples belonging to different outcome classes with the exact same values for all input or x variables. The original
“hard margin” SVM couldn’t deal with this sort of data and was for that reason not considered to be practical.

11 For more details on SVMs, we recommend Cristianini and Shawe-Taylor’s An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.

12 Cristianini and Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods.
13 %*% is R’s notation for dot product or inner product; see help('%*%') for details. Note that phi() is allowed

to map to very large (and even infinite) vector spaces.
Licensed to Ajit de Silva <agdesilva@gmail.com>

398 CHAPTER 10 Exploring advanced methods
call the expression k(u,v) = phi(u) %*% phi(v) the Mercer expansion of the kernel (in
reference to Mercer’s theorem; see http://mng.bz/xFD2) and consider phi() the cer-
tificate that tells us k(,) is a good kernel. This is much easier to understand from a con-
crete example. In the following listing, we show an equivalent phi() / k(,) pair.

u <- c(1, 2)
v <- c(3, 4)
k <- function(u, v) {

u[1] * v[1] +
u[2] * v[2] +
u[1] * u[1] * v[1] * v[1] +
u[2] * u[2] * v[2] * v[2] +
u[1] * u[2] * v[1] * v[2]

}
phi <- function(x) {

x <- as.numeric(x)
c(x, x*x, combn(x, 2, FUN = prod))

}
print(k(u, v))
[1] 108

print(phi(u))
[1] 1 2 1 4 2
print(phi(v))
[1] 3 4 9 16 12
print(as.numeric(phi(u) %*% phi(v)))
[1] 108

Most kernel methods use the function k(,) directly and only use properties of k(,)
guaranteed by the matching phi() to ensure method correctness. The k(,) function
is usually quicker to compute than the notional function phi(). A simple example of
this is what we’ll call the dot-product similarity of documents. The dot-product docu-
ment similarity is defined as the dot product of two vectors where each vector is
derived from a document by building a huge vector of indicators, one for each possi-
ble feature. For instance, if the features you’re considering are word pairs, then for
every pair of words in a given dictionary, the document gets a feature of 1 if the pair
occurs as a consecutive utterance in the document and 0 if not. This method is the
phi(), but in practice we never use the phi() procedure. Instead, when comparing
two documents, each consecutive pair of words in one document is generated and a
bit of score is added if this pair is both in the dictionary and found consecutively in
the other document. For moderate-sized documents and large dictionaries, this direct
k(,) implementation is vastly more efficient than the phi() implementation.

THE SUPPORT VECTORS

The support vector machine gets its name from how the vector w is usually repre-
sented: as a linear combination of training examples—the support vectors. Recall we
said in section 10.3.3 that the function phi() is allowed, in principle, to map into a
very large or even infinite vector space. This means it may not be possible to directly
write down w.

Listing 10.25 An artificial kernel example

Defines a function of two
vector variables (both two
dimensional) as the sum of
various products of terms

Defines a function of a single vector variable
that returns a vector containing the original
entries plus all products of entries

Example evaluation of k (,)

Confirms phi() agrees with
k(,). phi() is the certificate
that shows k(,) is in fact a
kernel.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/xFD2

399Solving “inseparable” problems using support vector machines
Support vector machines work around the “can’t write down w” issue by restricting
to ws that are in principle a sum of phi() terms as shown here:

w = sum(a1 * phi(s1), ... , am * phi(sm))

The vectors s1, ..., sm are actually m training examples and are called the support
vectors. The preceding formulation helps because such sums are (with some math)
equivalent to sums of k(,x) kernel terms of the form we show next:

w %*% phi(x) + b = sum(a1 * k(s1, x),... , am * k(sm, x)) + b

The right side is a quantity we can compute.
The work of the support vector training algorithm is to pick the vectors s1, ...,

sm, the scalars a1, ..., am, and the offset b. All of this is called “the kernel trick.”

WHAT TO REMEMBER ABOUT A SUPPORT VECTOR MODEL A support vector
model consists of these things:

 A kernel phi() that reshapes space (chosen by the user)
 A subset of training data examples, called the support vectors (chosen by the SVM

algorithm)
 A set of scalars a1, ..., am that specify what linear combination of the support

vectors define the separating surface (chosen by the SVM algorithm)
 A scalar threshold b we compare to (chosen by the SVM algorithm)

The reason why the data scientist must be aware of the support vectors is that they’re
stored in the support vector model. For example, with too complex a model, there
can be a very large number of support vectors, causing the model to be large and
expensive to evaluate. In the worst case, the number of support vectors in the model
can be almost as large as the number of training examples, making support vector
model evaluation potentially as expensive as nearest-neighbor evaluation, and increas-
ing the risk of overfit. The user picks a good number of support vectors by picking a
good value of C or nu through cross-validation.

Exercise: Try different values of nu on the spirals problem.

nu is the important hyperparameter for SVMs. Ideally, we should cross-validate for a good value
of nu. Instead of full cross-validation, just try a few values of nu to get the landscape. (We have a
worked solution here: https://github.com/WinVector/PDSwR2/tree/master/Spirals.)

10.3.4 Support vector machine and kernel methods takeaways

Here’s what you should remember from this section:

 Support vector machines are a kernel-based classification approach where a
complex separating surface is parameterized in terms of a (possibly very large)
subset of the training examples (called the support vectors).

 The goal of “the kernel trick” is to lift the data into a space where the data is
separable, or where linear methods can be used directly. Support vector
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/Spirals

400 CHAPTER 10 Exploring advanced methods
machines and kernel methods work best when the problem has a moderate
number of variables and the data scientist suspects that the relation to be mod-
eled is a non-linear combination of variable effects.

Summary
In this chapter, we demonstrated some advanced methods to fix specific issues with
basic modeling approaches: modeling variance, modeling bias, issues with non-linearity,
and issues with variable interactions. An important additional family of methods we wish
we had time to touch on is deep learning, the improved modern treatment of neural nets.
Fortunately there is already a good book we can recommend on this topic: Deep Learning
with R, by François Chollet with J. J. Allaire, Manning, 2018.

You should understand that you bring in advanced methods and techniques to fix
specific modeling problems, not because they have exotic names or exciting histories.
We also feel you should at least try to find an existing technique to fix a problem you
suspect is hiding in your data before building your own custom technique; often the
existing technique already incorporates a lot of tuning and wisdom. Which method is
best depends on the data, and there are many advanced methods to try. Advanced
methods can help fix overfit, variable interactions, non-additive relations, and unbal-
anced distributions, but not lack of features or data.

Finally, the goal of learning the theory of advanced techniques is not to be able to
recite the steps of the common implementations, but to know when the techniques
apply and what trade-offs they represent. The data scientist needs to supply thought
and judgment and realize that the platform can supply implementations.

In this chapter you have learned

 How to bag decision trees to stabilize their models and improve prediction
performance

 How to further improve decision-tree-based models by using random forests or
gradient boosting

 How to use random forest variable importances to help with variable selection
 How to use generalized additive models to better model non-linear relationships

between inputs and outputs in the context of linear and logistic regression
 How to use support vector machines with the Gaussian kernel to model classifi-

cation tasks with complex decision surfaces, especially nearest-neighbor-style
tasks.

The actual point of a modeling project is to deliver results for production deployment
and to present useful documentation and evaluations to your partners. The next part
of this book will address best practices for delivering your results.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Part 3

Working in the real world

In part 2, we covered how to build a model that addresses the problem that
you want to solve. The next steps are to implement your solution and communi-
cate your results to other interested parties. In part 3, we conclude with the
important steps of deploying work into production, documenting work, and
building effective presentations.

 Chapter 11 covers the documentation necessary for sharing or transferring
your work to others, in particular those who will be deploying your model in an
operational environment. This includes effective code commenting practices, as
well as proper version management and collaboration with the version control
software, Git. We also discuss the practice of reproducible research using knitr.
Chapter 11 also covers how to export models you’ve built from R, or deploy
them as HTTP services.

 Chapter 12 discusses how to present the results of your projects to different
audiences. Project sponsors, project consumers (people in the organization
who’ll be using or interpreting the results of your model), and fellow data scien-
tists will all have different perspectives and interests. We also give examples of
how to tailor your presentations to the needs and interests of a specific audience.

 On completing part 3, you’ll understand how to document and transfer the
results of your project and how to effectively communicate your findings to
other interested parties.
Licensed to Ajit de Silva <agdesilva@gmail.com>

Licensed to Ajit de Silva <agdesilva@gmail.com>

Documentation
and deployment
In this chapter, we’ll survey techniques for documenting and deploying your work.
We will work specific scenarios, and point to resources for further study if you want
to master the techniques being discussed. The theme is this: now that you can build
machine learning models, you should explore tools and procedures to become
proficient at saving, sharing, and repeating successes. Our mental model (figure
11.1) for this chapter emphasizes that this chapter is all about sharing what you
model. Let’s use table 11.1 to get some more-specific goals in this direction.

This chapter covers
 Producing effective milestone documentation

 Managing project history using source control

 Deploying results and making demonstrations
403

Licensed to Ajit de Silva <agdesilva@gmail.com>

404 CHAPTER 11 Documentation and deployment
Table 11.1 Chapter goals

Goal Description

Produce effective mile-
stone documentation

A readable summary of project goals, data provenance, steps taken, and
technical results (numbers and graphs). Milestone documentation is usu-
ally read by collaborators and peers, so it can be concise and can often
include actual code. We’ll demonstrate a great tool for producing excel-
lent milestone documentation: the R knitr and rmarkdown packages,
which we will refer to generically as R markdown. R markdown is a prod-
uct of the “reproducible research” movement (see Christopher Gandrud’s
Reproducible Research with R and RStudio, Second Edition, Chapman
and Hall, 2015) and is an excellent way to produce a reliable snapshot
that not only shows the state of a project, but allows others to confirm
the project works.

Manage a complete project
history

It makes little sense to have exquisite milestone or checkpoint documen-
tation of how your project worked last February if you can’t get a copy of
February’s code and data. This is why you need good version control dis-
cipline to protect code, and good data discipline to preserve data.

Deploy demonstrations True production deployments are best done by experienced engineers.
These engineers know the tools and environment they will be deploying
to. A good way to jump-start production deployment is to have a reference
application. This allows engineers to experiment with your work, test cor-
ner cases, and build acceptance tests.

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 11.1 Mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>

405Predicting buzz
This chapter explains how to share your work—even sharing it with your future self.
We’ll discuss how to use R markdown to create substantial project milestone docu-
mentation and automate reproduction of graphs and other results. You’ll learn about
using effective comments in code, and using Git for version management and for col-
laboration. We’ll also discuss deploying models as HTTP services and applications.

For some of the examples, we will use RStudio, which is an integrated development
environment (IDE) that is a product of RStudio, Inc. (and not part of R/CRAN itself).
Everything we show can be done without RStudio, but RStudio supplies a basic editor
and some single-button-press alternatives to some scripting tasks.

11.1 Predicting buzz

 Example For our example scenario, we want to use metrics collected about the first
few days of article views to predict the long-term popularity of an article. This can be
important for selling advertising and predicting and managing revenue. To be specific:
we will use measurements taken during the first eight days of an article’s publication to
predict if the article will remain popular in the long term.

Our tasks for this chapter are to save and share our Buzz model, document the
model, test the model, and deploy the model into production.

To simulate our example scenario of predicting long term article popularity or buzz
we will use the Buzz dataset from http://ama.liglab.fr/datasets/buzz/. We’ll work with
the data found in the file TomsHardware-Relative-Sigma-500.data.txt.1 The original
supplied documentation (TomsHardware-Relative-Sigma-500.names.txt and Buzz-
DataSetDoc.pdf) tells us the Buzz data is structured as shown in table 11.2.

1 All files mentioned in this chapter are available from https://github.com/WinVector/PDSwR2/tree/master/
Buzz.

Table 11.2 Buzz data description

Attribute Description

Rows Each row represents many different measurements of the popularity of a
technical personal computer discussion topic.

Topics Topics include technical issues about personal computers such as brand
names, memory, overclocking, and so on.

Measurement types For each topic, measurement types are quantities such as the number of
discussions started, number of posts, number of authors, number of read-
ers, and so on. Each measurement is taken at eight different times.

Times The eight relative times are named 0 through 7 and are likely days (the orig-
inal variable documentation is not completely clear and the matching paper
has not yet been released). For each measurement type, all eight relative
times are stored in different columns in the same data row.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/Buzz
https://github.com/WinVector/PDSwR2/tree/master/Buzz
https://github.com/WinVector/PDSwR2/tree/master/Buzz
http://ama.liglab.fr/datasets/buzz/

406 CHAPTER 11 Documentation and deployment
In our initial Buzz documentation, we list what we know (and, importantly, admit what
we’re not sure about). We don’t intend any disrespect in calling out issues in the sup-
plied Buzz documentation. That documentation is about as good as you see at the
beginning of a project. In an actual project, you’d clarify and improve unclear points
through discussions and work cycles. This is one reason why having access to active
project sponsors and partners is critical in real-world projects.

In this chapter, we’ll use the Buzz model and dataset as is and concentrate on
demonstrating the tools and techniques used in producing documentation, deploy-
ments, and presentations. In actual projects, we advise you to start by producing notes
like those in table 11.2. You’d also incorporate meeting notes to document your actual
project goals. As this is only a demonstration, we’ll emphasize technical documenta-
tion: data provenance and an initial trivial analysis to demonstrate we have control of
the data. Our example initial Buzz analysis is found here: https://github.com/
WinVector/PDSwR2/blob/master/Buzz/buzzm.md. We suggest you skim it before we
work through the tools and steps used to produce the documents in our next section.

11.2 Using R markdown to produce milestone
documentation
The first audience you’ll have to prepare documentation for is yourself and your
peers. You may need to return to previous work months later, and it may be in an
urgent situation like an important bug fix, presentation, or feature improvement. For
self/peer documentation, you want to concentrate on facts: what the stated goals
were, where the data came from, and what techniques were tried. You assume that as
long as you use standard terminology or references, the reader can figure out any-
thing else they need to know. You want to emphasize any surprises or exceptional
issues, as they’re exactly what’s expensive to relearn. You can’t expect to share this sort
of documentation with clients, but you can later use it as a basis for building wider
documentation and presentations.

The first sort of documentation we recommend is project milestone or checkpoint
documentation. At major steps of the project, you should take some time out to
repeat your work in a clean environment (proving you know what’s in intermediate
files and you can in fact recreate them). An important, and often neglected, milestone
is the start of a project. In this section, we’ll use the knitr and rmarkdown R packages
to document starting work with the Buzz data.

Buzz The quantity to be predicted is called buzz and is defined as being true or
1 if the ongoing rate of additional discussion activity is at least 500 events
per day averaged over a number of days after the observed days. Likely buzz
is a future average of the seven variables labeled NAC (the original docu-
mentation is unclear on this).

Table 11.2 Buzz data description (continued)

Attribute Description
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/Buzz/buzzm.md
https://github.com/WinVector/PDSwR2/blob/master/Buzz/buzzm.md
https://github.com/WinVector/PDSwR2/blob/master/Buzz/buzzm.md

407Using R markdown to produce milestone documentation
Documentation scenario: Share the ROC curve for the Buzz model

Our first task is to build a document that contains the ROC curve for the example model. We
want to be able to rebuild this document automatically if we change model or evaluation data, so
we will use R markdown to produce the document.

11.2.1 What is R markdown?

R markdown is a variation of the Markdown document specification2 that allows the
inclusion of R code and results inside documents. The concept of processing a combi-
nation of code and text should be credited to the R Sweave package3 and from
Knuth’s formative ideas of literate programming.4 In practice, you maintain a master
file that contains both user-readable documentation and chunks of program source
code. The document types supported by R markdown include Markdown, HTML,
LaTeX, and Word. LaTeX format is a good choice for detailed, typeset, technical doc-
uments. Markdown format is a good choice for online documentation and wikis.

The engine that performs the document creation task is called knitr. knitr’s main
operation is called a knit: knitr extracts and executes all of the R code and then builds
a new result document that assembles the contents of the original document plus
pretty-printed code and results. Figure 11.2 shows how knitr treats documents as
pieces (called chunks) and transforms chunks into sharable results.

The process is best demonstrated by a few examples.

A SIMPLE R MARKDOWN EXAMPLE

Markdown (http://daringfireball.net/projects/markdown/) is a simple web-ready
format that’s used in many wikis. The following listing shows a simple Markdown doc-
ument with R markdown annotation blocks denoted with ```.

title: "Buzz scoring example"
output: github_document

```{r, include = FALSE}
# process document with knitr or rmarkdown.
# knitr::knit("Buzz_score_example.Rmd") # creates Buzz_score_example.md
# rmarkdown::render("Buzz_score_example.Rmd",
# rmarkdown::html_document()) # creates Buzz_score_example.html
```

Example scoring (making predictions with) the Buzz data set.

2 Markdown itself is a popular document-formatting system based on the idea of imitating how people hand-
annotate emails: https://en.wikipedia.org/wiki/Markdown.

3 See http://leisch.userweb.mwn.de/Sweave/.
4 See http://www.literateprogramming.com/knuthweb.pdf.

Listing 11.1 R-annotated Markdown

YAML (yet another markup language)
header specifying some metadata: title
and default output format

An R markdown “start code
chunk” annotation. The
“include = FALSE” directive
says the block is not shown in
the rendering.

End of the R
markdown block; all
content between the
start and end marks
is treated as R code

and executed.

Free Markdown text
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://en.wikipedia.org/wiki/Markdown
http://leisch.userweb.mwn.de/Sweave/
http://www.literateprogramming.com/knuthweb.pdf

408 CHAPTER 11 Documentation and deployment
First attach the `randomForest` package and load the model and test data.

```{r}
suppressPackageStartupMessages(library("randomForest"))

lst <- readRDS("thRS500.RDS")
varslist <- lst$varslist
fmodel <- lst$fmodel
buzztest <- lst$buzztest
rm(list = "lst")
```

Now show the quality of our model on held-out test data.

```{r}
buzztest$prediction <-

predict(fmodel, newdata = buzztest, type = "prob")[, 2, drop = TRUE]

WVPlots::ROCPlot(buzztest, "prediction",
"buzz", 1,
"ROC curve estimating quality of model predictions on held-

out data")
```

Another R code block. In
this case, we are loading
an already produced
random Forest model
and test data.

More free test

Another R code chunk

Figure 11.2 R markdown process schematic

Documentation
chunk

Documentation
chunk

Documentation
chunk

R code chunk

R execution
result

R code chunk

Initial master document
— usually .Rnw (LaTex format)
or .Rmd (Markdown format)

knitr result document — usually
.tex (LaTex format) or .md
(Markdown format)

Documentation
chunk

Documentation
chunk

Documentation
chunk

Pretty-printed
R code chunk

knitr expands master document
into result document by both
pretty-print formatting code chunks
and executing code chunks.

R execution
result

Pretty-printed
R code chunk
Licensed to Ajit de Silva <agdesilva@gmail.com>

409Using R markdown to produce milestone documentation
The contents of listing 11.1 are available in the file https://github.com/WinVector/
PDSwR2/blob/master/Buzz/Buzz_score_example.Rmd. In R we’d process it like this:

rmarkdown::render("Buzz_score_example.Rmd", rmarkdown::html_document())

This produces the new file Buzz_score_example.html, which is a finished report in
HTML format. Adding this sort of ability to your workflow (either using Sweave or
knitr/rmarkdown) is game changing.

THE PURPOSE OF R MARKDOWN

The purpose of R markdown is to produce reproducible work. The same data and
techniques should be rerunnable to get equivalent results, without requiring error-
prone direct human intervention such as selecting spreadsheet ranges or copying and
pasting. When you distribute your work in R markdown format (as we do in section
11.2.3), anyone can download your work and, without great effort, rerun it to confirm
they get the same results you did. This is the ideal standard of scientific research, but
is rarely met, as scientists usually are deficient in sharing all of their code, data, and
actual procedures. knitr collects and automates all the steps, so it becomes obvious if
something is missing or doesn’t actually work as claimed. knitr automation may seem
like a mere convenience, but it makes the essential work listed in table 11.3 much eas-
ier (and therefore more likely to actually be done).

11.2.2 knitr technical details

To use knitr on a substantial project, you need to know more about how knitr code
chunks work. In particular, you need to be clear how chunks are marked and what
common chunk options you’ll need to manipulate. Figure 11.3 shows the steps to pre-
pare an R markdown document.

Table 11.3 Maintenance tasks made easier by R markdown

Task Discussion

Keeping code in sync with
documentation

With only one copy of the code (already in the document), it’s not so
easy to get out of sync.

Keeping results in sync with
data

Eliminating all by-hand steps (such as cutting and pasting results,
picking filenames, and including figures) makes it much more likely
you’ll correctly rerun and recheck your work.

Handing off correct work to
others

If the steps are sequenced so a machine can run them, then it’s
much easier to rerun and confirm them. Also, having a container (the
master document) to hold all your work makes managing dependen-
cies much easier.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/ PDSwR2/blob/master/Buzz/Buzz_score_example.Rmd
https://github.com/WinVector/ PDSwR2/blob/master/Buzz/Buzz_score_example.Rmd
https://github.com/WinVector/ PDSwR2/blob/master/Buzz/Buzz_score_example.Rmd

410 CHAPTER 11 Documentation and deployment
KNITR BLOCK DECLARATION FORMAT

In general, a knitr code block starts with the block declaration (``` in Markdown and
<< in LaTeX). The first string is the name of the block (must be unique across the
entire project). After that, a number of comma-separated option=value chunk
option assignments are allowed.

KNITR CHUNK OPTIONS

A sampling of useful option assignments is given in table 11.4.

Table 11.4 Some useful knitr options

Option name Purpose

cache Controls whether results are cached. With cache = FALSE (the default), the
code chunk is always executed. With cache = TRUE, the code chunk isn’t exe-
cuted if valid cached results are available from previous runs. Cached chunks are
essential when you are revising knitr documents, but you should always delete the
cache directory (found as a subdirectory of where you’re using knitr) and do a
clean rerun to make sure your calculations are using current versions of the data
and settings you’ve specified in your document.

echo Controls whether source code is copied into the document. With echo = TRUE
(the default), pretty-formatted code is added to the document. With echo =
FALSE, code isn’t echoed (useful when you only want to display results).

eval Controls whether code is evaluated. With eval = TRUE (the default), code is exe-
cuted. With eval = FALSE, it’s not (useful for displaying instructions).

message Set message = FALSE to direct R message() commands to the console run-
ning R instead of to the document. This is useful for issuing progress messages to
the user, that you don’t want in the final document.

results Controls what’s to be done with R output. Usually you don’t set this option and out-
put is intermingled (with ## comments) with the code. A useful option is
results='hide', which suppresses output.

R Markdown
.Rmd

document

knitr::knit()
or

rmarkdown::render()
or

“press the knit button”

Finished document.
Markdown, HTML,

Word, or PDF
format

Step 1: user writes an
R Markdown document
that combines code to
be executed and text to
be formatted

Step 2: document
is executed or
rendered

Result: sharable
document that combines
text, code, and execution
results (including plots
and graphs)

Figure 11.3 The R markdown process
Licensed to Ajit de Silva <agdesilva@gmail.com>

411Using R markdown to produce milestone documentation
Most of these options are demonstrated in our Buzz example, which we’ll work
through in the next section.

11.2.3 Using knitr to document the Buzz data and produce the model

The model we were just evaluating itself was produced using an R markdown script:
the file buzzm.Rmd found at https://github.com/WinVector/PDSwR2/tree/
master/Buzz. Knitting this file produced the Markdown result buzzm.md and the
saved model file thRS500.RDS that drives our examples. All steps we’ll mention in this
chapter are completely demonstrated in the Buzz example directory. We’ll show
excerpts from buzzm.Rmd.

BUZZ DATA NOTES For the Buzz data, the preparation notes can be found in
the files buzzm.md and buzzm.html. We suggest viewing one of these files and
table 11.2. The original description files from the Buzz project (Toms-
Hardware-Relative-Sigma-500.names.txt and BuzzDataSetDoc.pdf) are also
available at https://github.com/WinVector/PDSwR2/tree/master/Buzz.

CONFIRMING DATA PROVENANCE

Because knitr is automating steps, you can afford to take a couple of extra steps to
confirm the data you’re analyzing is in fact the data you thought you had. For exam-
ple, we’ll start our Buzz data analysis by confirming that the SHA cryptographic hash
of the data we’re starting from matches what we thought we had downloaded. This is
done (assuming your system has the sha cryptographic hash installed) as shown in the
following listing (note: always look to the first line of chunks for chunk options such
as cache = TRUE).

```{r dataprep}
infile <- "TomsHardware-Relative-Sigma-500.data.txt"
paste('checked at', date())
system(paste('shasum', infile), intern = TRUE)
buzzdata <- read.table(infile, header = FALSE, sep = ",")
...

This code sequence depends on a program named shasum being on your execution
path. You have to have a cryptographic hash installed, and you can supply a direct
path to the program if necessary. Common locations for a cryptographic hash
include /usr/bin/shasum, /sbin/md5, and fciv.exe, depending on your actual sys-
tem configuration.

tidy Controls whether source code is reformatted before being printed. We used to set 
tidy = FALSE, as one version of knitr misformatted R comments when tidying.

Listing 11.2 Using the system() command to compute a file hash

Table 11.4 Some useful knitr options (continued)

Option name Purpose

Runs a system-installed 
cryptographic hash 
program (this program is 
outside of R’s install image)
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/Buzz
https://github.com/WinVector/PDSwR2/tree/master/Buzz
https://github.com/WinVector/PDSwR2/tree/master/Buzz
https://github.com/WinVector/PDSwR2/tree/master/Buzz


412 CHAPTER 11 Documentation and deployment
This code produces the output shown in figure 11.4. In particular, we’ve documented
that the data we loaded has the same cryptographic hash we recorded when we first
downloaded the data. Having confidence you’re still working with the exact same data
you started with can speed up debugging when things go wrong. Note that we’re using
the cryptographic hash only to defend against accident (using the wrong version of a
file or seeing a corrupted file) and not to defend against adversaries or external
attacks. For documenting data that may be changing under external control, it is criti-
cal to use up-to-date cryptographic techniques.

Figure 11.5 is the same check, rerun in 2019, which gives us some confidence we
are in fact dealing with the same data.    

RECORDING THE PERFORMANCE OF THE NAIVE ANALYSIS

The initial milestone is a good place to try to record the results of a naive “just apply a
standard model to whatever variables are present” analysis. For the Buzz data analysis,
we’ll use a random forest modeling technique (not shown here, but in our knitr docu-
mentation) and apply the model to test data.

infile <- "TomsHardware-Relative-Sigma-500.data.txt"
paste('checked at' ,date())

##[1]"checkedatFriNov815:01:392013"

system(paste('shasum' ,infile), intern=T) #write down file hash

##[1]"c239182c786baf678b55f559b3d0223da91e869cTomsHardware-Relative-Sigma-500.data.txt"

Figure 11.4 knitr documentation of Buzz data load

infile <- "TomsHardware-Relative-Sigma-500.data.txt"
paste('checked at' ,date())

##[1]"checked at Thu Apr 18 09:30:23 2019"

system(paste('shasum' ,infile), intern=T) #write down file hash

##[1]"c239182c786baf678b55f559b3d0223da91e869c  TomsHardware-
Relative-Sigma-500.data.txt"

Figure 11.5 knitr documentation of Buzz data load 2019: buzzm.md

Save your data!
Always save a copy of your training data. Remote data (URLs, databases) has a habit
of changing or disappearing. To reproduce your work, you must save your inputs.
Licensed to Ajit de Silva <agdesilva@gmail.com>



413Using R markdown to produce milestone documentation
``` {r}
rtest <- data.frame(truth = buzztest$buzz,
pred = predict(fmodel, newdata = buzztest, type = "prob")[, 2, drop = TRUE])
print(accuracyMeasures(rtest$pred, rtest$truth))
```

## [1] "precision= 0.832402234636871 ; recall= 0.84180790960452"
## pred
## truth FALSE TRUE
## 0 584 30
## 1 28 149
## model accuracy f1 dev.norm AUC
## 1 model 0.9266751 0.8370787 0.42056 0.9702102

USING MILESTONES TO SAVE TIME

Now that we’ve gone to all the trouble to implement, write up, and run the Buzz data
preparation steps, we’ll end our knitr analysis by saving the R workspace. We can then
start additional analyses (such as introducing better variables for the time-varying
data) from the saved workspace. In the following listing, we’ll show how to save a file,
and how to again produce a cryptographic hash of the file (so we can confirm work
that starts from a file with the same name is in fact starting from the same data).   

Save variable names, model, and test data.

``` {r}
fname <- 'thRS500.RDS'
items <- c("varslist", "fmodel", "buzztest")
saveRDS(object = list(varslist = varslist,

fmodel = fmodel,
buzztest = buzztest),

file = fname)
message(paste('saved', fname)) # message to running R console
print(paste('saved', fname)) # print to document
```

## [1] "saved thRS500.RDS"

``` {r}
paste('finished at', date())
```

## [1] "finished at Thu Apr 18 09:33:05 2019"

``` {r}
system(paste('shasum', fname), intern = TRUE) # write down file hash
```

## [1] "f2b3b80bc6c5a72079b39308a5758a282bcdd5bf thRS500.RDS"

Listing 11.3 Calculating model performance

Listing 11.4 Saving data
Licensed to Ajit de Silva <agdesilva@gmail.com>



414 CHAPTER 11 Documentation and deployment
KNITR TAKEAWAY

In our knitr example, we worked through the steps we’ve done for every dataset in this
book: load data, manage columns/variables, perform an initial analysis, present
results, and save a workspace. The key point is that because we took the extra effort to
do this work in knitr, we have the following:

 Nicely formatted documentation (buzzm.md)
 Shared executable code (buzzm.Rmd)

This makes debugging (which usually involves repeating and investigating earlier
work), sharing, and documentation much easier and more reliable.

11.3 Using comments and version control 
for running documentation
Another essential record of your work is what we call running documentation. Running
documentation is less formal than milestone/checkpoint documentation and is easily
maintained in the form of code comments and version control records. Undocu-
mented, untracked code runs up a great deal of technical debt (see http://mng
.bz/IaTd) that can cause problems down the road.

 Example Suppose you want to work on formatting Buzz modeling results. You need
to save this work to return to it later, document what steps you have taken, and share
your work with others.

In this section, we’ll work through producing effective code comments and using Git
for version control record keeping.

11.3.1 Writing effective comments

R’s comment style is simple: everything following a # (that isn’t itself quoted) until the
end of a line is a comment and ignored by the R interpreter. The following listing is
an example of a well-commented block of R code.

#' Return the pseudo logarithm, base 10.
#'
#' Return the pseudo logarithm (base 10) of x, which is close to

Listing 11.5 Example code comments

Project organization, further reading
To learn more about R markdown we recommend Yihui Xie, Dynamic Documents with
R and knitr (CRC Press, 2013). Some good ideas on how to organize a data project
in reproducible fashion can be found in Reproducible Research with R and RStudio,
Second Edition. 
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/IaTd
http://mng.bz/IaTd
http://mng.bz/IaTd


415Using comments and version control for running documentation
#' sign(x)*log10(abs(x)) for x such that abs(x) is large
#' and doesn't "blow up" near zero. Useful
#' for transforming wide-range variables that may be negative
#' (like profit/loss).
#'
#' See: \url{http://www.win-vector.com/blog/2012/03/modeling-trick-the-

signed-pseudo-logarithm/}
#'
#' NB: This transform has the undesirable property of making most
#' signed distributions appear bi-modal around the origin, no matter
#' what the underlying distribution really looks like.
#' The argument x is assumed be numeric and can be a vector.
#'
#' @param x numeric vector
#' @return pseudo logarithm, base 10 of x
#'
#' @examples
#'
#' pseudoLog10(c(-5, 0, 5))
#' # should be: [1] -0.7153834 0.0000000 0.7153834
#'
#' @export
#'
pseudoLog10 <- function(x) {

asinh(x / 2) / log(10)
}

When such comments (with the #' marks and @ marks ) is included in an R package,
the documentation management engine can read the structured information and use
it to produce additional documentation and even online help. For example, when we
saved the preceding code in an R package at https://github.com/WinVector/PDSwR2/
blob/master/PseudoLog10/R/pseudoLog10.R, we could use the roxygen2 R pack-
age to generate the online help shown in figure 11.6.

Good comments include what the function does, what types arguments are
expected to be used, limits of domain, why you should care about the function, and
where it’s from. Of critical importance are any NB (nota bene or note well ) or TODO
notes. It’s vastly more important to document any unexpected features or limitations
in your code than to try to explain the obvious. Because R variables don’t have types
(only objects they’re pointing to have types), you may want to document what types of
arguments you’re expecting. It’s critical to state if a function works correctly on lists,
data frame rows, vectors, and so on.

For more on packages and documentation, we recommend Hadley Wickham, R
Packages: Organize, Test, Document, and Share Your Code (O’Reilly, 2015).
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/PseudoLog10/R/pseudoLog10.R
https://github.com/WinVector/PDSwR2/blob/master/PseudoLog10/R/pseudoLog10.R
https://github.com/WinVector/PDSwR2/blob/master/PseudoLog10/R/pseudoLog10.R


416 CHAPTER 11 Documentation and deployment
11.3.2 Using version control to record history

Version control can both maintain critical snapshots of your work in earlier states and
produce running documentation of what was done by whom and when in your proj-
ect. Figure 11.7 shows a cartoon “version control saves the day” scenario that is in fact
common.

In this section, we’ll explain the basics of using Git (http://git-scm.com/) as a ver-
sion control system. To really get familiar with Git, we recommend a good book such
as Jon Loeliger and Matthew McCullough’s Version Control with Git, Second Edition,
(O’Reilly, 2012). Or, better yet, work with people who know Git. In this chapter, we
assume you know how to run an interactive shell on your computer (on Linux and OS
X you tend to use bash as your shell; on Windows you can install Cygwin—
http://www.cygwin.com).

pseudoLog10 Return the pseudo logarithm, base 10. 

 Description 

 Return the pseudo logarithm (base 10) of x, which is close to sign(x)*log10(abs(x)) 

 Usage 

    pseudoLog10(x)

Arguments 

x numeric vector 

 Details 

See: http://www.win-vector.com/blog/2012/03/modeling-trick-the-signed-pseudo-
logarithm/ 

NB: This transform has the undesirable property of making most signed distributions 
appear bi- modal around the origin, no matter what the underlying distribution really 
looks like. The argument x is assumed be numeric and can be a vector. 

Value 

pseudo logarithm, base 10 of x 

Examples 

    pseudoLog10(c(-5, 0, 5))
    # should be: [1] -0.7153834  0.0000000  0.7153834

Figure 11.6 roxygen@-generated online help
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://git-scm.com/
http://www.cygwin.com


417Using comments and version control for running documentation
WORKING IN BRIGHT LIGHT Sharing your Git repository means you’re sharing a
lot of information about your work habits and also sharing your mistakes.
You’re much more exposed than when you just share final work or status
reports. Make this a virtue: know you’re working in bright light. One of the
most critical features in a good data scientist (perhaps even before analytic
skill) is scientific honesty.

To get most of the benefit from Git, you need to become familiar with a few com-
mands, which we will demonstrate in terms of specific tasks next.

CHOOSING A PROJECT DIRECTORY STRUCTURE

Before starting with source control, it’s important to settle on and document a good
project directory structure. Reproducible Research with R and RStudio, Second Edition,

Monday

Tuesday

Wednesday

Thursday

Friday's
presentation

First try

Second try

Fourth try: failed
revision of third

With version control

Fourth try: failed
revision of third

Brilliant
third try!!!!

Fourth try: failed
revision of third

Without version control

And a vague memory 
of Wednesday

Brilliant
third try!!!!

First try

Second try

Brilliant
third try!!!!

Figure 11.7 Version control saving the day
Licensed to Ajit de Silva <agdesilva@gmail.com>



418 CHAPTER 11 Documentation and deployment
has good advice and instructions on how to do this. A pattern that’s worked well for us
is to start a new project with the directory structure described in table 11.5.

STARTING A GIT PROJECT USING THE COMMAND LINE

When you’ve decided on your directory structure and want to start a version-
controlled project, do the following:

1 Start the project in a new directory. Place any work either in this directory or in
subdirectories.

2 Move your interactive shell into this directory and type git init. It’s okay if
you’ve already started working and there are already files present.

3 Exclude any subdirectories you don’t want under source control with .gitignore
control files.

You can check if you’ve already performed the init step by typing git status. If the
init hasn’t been done, you’ll get a message similar to fatal: Not a git repository
(or any of the parent directories): .git. If the init has been done, you’ll get a
status message telling you something like on branch master and listing facts about
many files.

The init step sets up in your directory a single hidden file tree called .git and pre-
pares you to keep extra copies of every file in your directory (including subdirecto-
ries). Keeping all of these extra copies is called versioning  and what is meant by version
control. You can now start working on your project: save everything related to your
work in this directory or some subdirectory of this directory.

Again, you only need to init a project once. Don’t worry about accidentally running
git init. a second time; that’s harmless.

Table 11.5 A possible project directory structure

Directory Description

Data Where we save original downloaded data. This directory must usually be excluded 
from version control (using the .gitignore feature) due to file sizes, so you must 
ensure it’s backed up. We tend to save each data refresh in a separate subdirec-
tory named by date.

Scripts Where we store all code related to analysis of the data.

Derived Where we store intermediate results that are derived from data and scripts. This 
directory must be excluded from source control. You also should have a master 
script that can rebuild the contents of this directory in a single command (and test 
the script from time to time).

Results Similar to derived, but this directory holds smaller, later results (often based on 
derived) and hand-written content. These include important saved models, graphs, 
and reports. This directory is under version control, so collaborators can see what 
was said when. Any report shared with partners should come from this directory.
Licensed to Ajit de Silva <agdesilva@gmail.com>



419Using comments and version control for running documentation
USING ADD/COMMIT PAIRS TO CHECKPOINT WORK

GET NERVOUS ABOUT UNCOMMITTED STATE Here’s a good rule of thumb for
Git: you should be as nervous about having uncommitted changes as you
should be about not having clicked Save. You don’t need to push/pull often,
but you do need to make local commits often (even if you later squash them
with a Git technique called rebasing).

As often as practical, enter the following two commands into an interactive shell in
your project directory:

git add -A
git commit

Checking in a file is split into two stages: add and commit. This has some advantages
(such as allowing you to inspect before committing), but for now just consider the two
commands as always going together. The commit command should bring up an editor
where you enter a comment as to what you’re up to. Until you’re a Git expert, allow
yourself easy comments like “update,” “going to lunch,” “just added a paragraph,” or
“corrected spelling.” Run the add/commit pair of commands after every minor
accomplishment on your project. Run these commands every time you leave your
project (to go to lunch, to go home, or to work on another project). Don’t fret if you
forget to do this; just run the commands next time you remember.

USING GIT LOG AND GIT STATUS TO VIEW PROGRESS

Any time you want to know about your work progress, type either git status to see if
there are any edits you can put through the add/commit cycle, or git log  to see the
history of your work (from the viewpoint of the add/commit cycles).

The following listing shows the git status  from our copy of this book’s examples
repository (https://github.com/WinVector/PDSwR2).

$ git status
On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

Listing 11.6 Checking your project status

Stages results to commit (specifies 
what files should be committed)

Actually performs the commit

A “wimpy commit” is better than no commit
We’ve been a little loose in our instructions to commit often and not worry too much
about having a long commit message. Two things to keep in mind are that usually you
want commits to be meaningful with the code working (so you tend not to commit in
the middle of an edit with syntax errors), and good commit notes are to be preferred
(just don’t forgo a commit because you don’t feel like writing a good commit note).
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2


420 CHAPTER 11 Documentation and deployment
And the next listing shows a git log from the same project.

$ git log
commit d22572281d40522bc6ab524bbdee497964ff4af0 (HEAD -

> master, origin/master)
Author: John Mount <jmount@win-vector.com>
Date: Tue Apr 16 16:24:23 2019 -0700

technical edits ch7

The indented lines are the text we entered at the git commit step; the dates are
tracked automatically.

USING GIT THROUGH RSTUDIO

The RStudio IDE supplies a graphical user interface to Git that you should try. The
add/commit cycle can be performed as follows in RStudio:

 Start a new project. From the RStudio command menu, select Project > Create
Project, and choose New Project. Then select the name of the project and what
directory to create the new project directory in; leave the type as (Default), and
make sure Create a Git Repository for this Project is checked. When the new
project pane looks something like figure 11.8, click Create Project, and you
have a new project.

 Do some work in your project. Create new files by selecting File > New >
R Script. Type some R code (like 1/5) into the editor pane and then click the

Listing 11.7 Checking your project history

Figure 11.8 RStudio new project pane
Licensed to Ajit de Silva <agdesilva@gmail.com>



421Using comments and version control for running documentation
save icon to save the file. When saving the file, be sure to choose your project
directory or a subdirectory of your project.

 Commit your changes to version control. Figure 11.9 shows how to do this.
Select the Git control pane in the top right of RStudio. This pane shows all
changed files as line items. Check the Staged check box for any files you want to
stage for this commit. Then click Commit, and you’re done.

You may not yet deeply understand or like Git, but you’re able to safely check in all of
your changes every time you remember to stage and commit. This means all of your
work history is there; you can’t clobber your committed work just by deleting your
working file. Consider all of your working directory as “scratch work”—only checked-
in work is safe from loss.

Your Git history can be seen by pulling down on the Other Commands gear (shown
in the Git pane in figure 11.9) and selecting History (don’t confuse this with the

Any file that has changed
since the last time it was 
committed gets a line here.  

Choose the Git panel.

The "other commands"
gear 

Figure 11.9 RStudio Git controls
Licensed to Ajit de Silva <agdesilva@gmail.com>



422 CHAPTER 11 Documentation and deployment
nearby History pane, which is command history, not Git history). In an emergency,
you can find Git help and find your earlier files. If you’ve been checking in, then your
older versions are there; it’s just a matter of getting some help in accessing them. Also,
if you’re working with others, you can use the push/pull menu items to publish and
receive updates. Here’s all we want to say about version control at this point: commit
often, and if you’re committing often, all problems can be solved with some further research. Also,
be aware that since your primary version control is on your own machine, you need to
make sure you have an independent backup of your machine. If your machine fails
and your work hasn’t been backed up or shared, then you lose both your work and
your version repository.

11.3.3 Using version control to explore your project

Up until now, our model of version control has been this: Git keeps a complete copy
of all of our files each time we successfully enter the pair of add/commit lines. We’ll
now use these commits. If you add/commit often enough, Git is ready to help you
with any of the following tasks:

 Tracking your work over time
 Recovering a deleted file
 Comparing two past versions of a file
 Finding when you added a specific bit of text
 Recovering a whole file or a bit of text from the past (undo an edit)
 Sharing files with collaborators
 Publicly sharing your project (à la GitHub at https://github.com/, Gitlab

https://gitlab.com/, or Bitbucket at https://bitbucket.org)
 Maintaining different versions (branches) of your work

And that’s why you want to add and commit often.

GETTING HELP ON GIT For any Git command, you can type git help [command]
to get usage information. For example, to learn about git log, type git help
log.

FINDING OUT WHO WROTE WHAT AND WHEN

In section 11.3.1, we implied that a good version control system can produce a lot of doc-
umentation on its own. One powerful example is the command git blame. Look what
happens if we download the Git repository https://github.com/WinVector/PDSwR2
(with the command git clone git@github.com:WinVector/PDSwR2.git) and run
the command git blame Buzz/buzzapp/server.R (to see who “wrote” each line in
the file).

git blame Buzz/buzzapp/server.R
4efb2b78 (John Mount 2019-04-24 16:22:43 -0700 1) #

Listing 11.8 Finding out who committed what
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/
https://gitlab.com/
https://bitbucket.org
https://github.com/WinVector/PDSwR2


423Using comments and version control for running documentation
4efb2b78 (John Mount 2019-04-24 16:22:43 -0700 2)
# This is the server logic of a Shiny web application. You can run the

4efb2b78 (John Mount 2019-04-24 16:22:43 -0700 3)
# application by clicking 'Run App' above.

4efb2b78 (John Mount 2019-04-24 16:22:43 -0700 4) #

The git blame information takes each line of the file and prints the following:

 The prefix of the line’s Git commit hash. This is used to identify which commit
the line we’re viewing came from.

 Who committed the line.
 When they committed the line.
 The line number.
 And, finally, the contents of the line.

GIT BLAME DOESN’T TELL THE WHOLE STORY It is important to understand that
many of the updates that git blame reports may be mechanical (somebody
using a tool to reformat files), or somebody acting on somebody else’s behalf.
You must look at the commits to see what happened. In this particular exam-
ple, the commit message was “add Nina’s Shiny example,” so this was work
done by Nina Zumel, who had delegated checking it in to John Mount.

A famous example of abusing similar lines of code metrics was the attempt
to discredit Katie Bouman’s leadership in creating the first image of a black
hole. One of the (false) points raised was that collaborator Andrew Chael had
contributed more lines of code to the public repository. Fortunately, Chael
himself responded, defending Bouman’s role and pointing out the line count
attributed to him was machine-generated model files he had checked into the
repository as part of his contribution, not authored lines of code.

USING GIT DIFF TO COMPARE FILES FROM DIFFERENT COMMITS

The git diff command allows you to compare any two committed versions of your
project, or even to compare your current uncommitted work to any earlier version. In
Git, commits are named using large hash keys, but you’re allowed to use prefixes of
the hashes as names of commits.5 For example, the following listing demonstrates
finding the differences in two versions of https://github.com/WinVector/PDSwR2 in
a diff or patch format.

diff --git a/CDC/NatalBirthData.rData b/CDC/NatalBirthData.rData
...
+++ b/CDC/prepBirthWeightData.R
@@ -0,0 +1,83 @@
+data <- read.table("natal2010Sample.tsv.gz",
+ sep="\t", header = TRUE, stringsAsFactors = FALSE)
+
+# make a boolean from Y/N data

5 You can also create meaningful names for commits with the git tag command.

Listing 11.9 Finding line-based differences between two committed versions 
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2


424 CHAPTER 11 Documentation and deployment
+makevarYN = function(col) {
+ ifelse(col %in% c("", "U"), NA, col=="Y")
+}
...

TRY TO NOT CONFUSE GIT COMMITS AND GIT BRANCHES A Git commit rep-
resents the complete state of a directory tree at a given time. A Git branch
represents a sequence of commits and changes as you move through time.
Commits are immutable; branches record progress.

USING GIT LOG TO FIND THE LAST TIME A FILE WAS AROUND

 Example At some point there was a file named Buzz/buzz.pdf in our repository.
Somebody asks us a question about this file. How do we use Git to find when this file
was last in the repository, and what its contents had been?

After working on a project for a while, we often wonder, when did we delete a certain
file and what was in it at the time? Git makes answering this question easy. We’ll
demonstrate this in the repository https://github.com/WinVector/PDSwR2. We
remember the Buzz directory having a file named buzz.pdf, but there is no such file
now and we want to know what happened to it. To find out, we’ll run the following:

git log --name-status -- Buzz/buzz.pdf
commit 96503d8ca35a61ed9765edff9800fc9302554a3b
Author: John Mount <jmount@win-vector.com>
Date: Wed Apr 17 16:41:48 2019 -0700

fix links and re-build Buzz example

D Buzz/buzz.pdf

We see the file was deleted by John Mount. We can view the contents of this older file
with the command git checkout 96503d8^1 -- Buzz/buzz.pdf. The 96503d8 is the
prefix of the commit number (which was enough to specify the commit that deleted
the file), and the ^1 means “the state of the file one commit before the named com-
mit” (the last version before the file was deleted).

11.3.4 Using version control to share work

 Example We want to work with multiple people and share results. One way to use
Git to accomplish this is by individually setting up our own repository and sharing
with a central repository.

In addition to producing work, you must often share it with peers. The common (and
bad) way to do this is emailing zip files. Most of the bad sharing practices take exces-
sive effort, are error prone, and rapidly cause confusion. We advise using version con-
trol to share work with peers. To do that effectively with Git, you need to start using
additional commands such as git pull, git rebase, and git push. Things seem
more confusing at this point (though you still don’t need to worry about branching in
its full generality), but are in fact far less confusing and less error-prone than ad hoc
Licensed to Ajit de Silva <agdesilva@gmail.com>



425Using comments and version control for running documentation
solutions. We almost always advise sharing work in star workflow, where each worker has
their own repository, and a single common “naked” repository (a repository with only
Git data structures and no ready-to-use files) is used to coordinate (thought of as a
server or gold standard, often named origin). Figure 11.10 shows one arrangement of
repositories that allows multiple authors to collaborate.

The usual shared workflow is like this:

 Continuously—Work, work, work.
 Frequently—Commit results to the local repository using a git add/git commit

pair.
 Every once in a while—Pull a copy of the remote repository into our view with

some variation of git pull and then use git push to push work upstream.

The main rule of Git is this: don’t try anything clever (push/pull, and so on) unless
you’re in a “clean” state (everything committed, confirmed with git status).

SETTING UP REMOTE REPOSITORY RELATIONS

For two or more Git repositories to share work, the repositories need to know about
each other through a relation called remote. A Git repository is able to share its work to
a remote repository by the push command and pick up work from a remote repository
by the pull command. The next listing shows the declared remotes for the authors’
local copy of the https://github.com/WinVector/PDSwR2 repository.

$ git remote --verbose
origin git@github.com:WinVector/PDSwR2.git (fetch)
origin git@github.com:WinVector/PDSwR2.git (push)

The remote relation is set when you create a copy of a repository using the git clone
command or can be set using the git remote add command. In listing 11.10, the

Listing 11.10 git remote 

Shared “remote” repository called “origin”

git@github.com:WinVector/PDSwR2.git

(also browsable at https://github.com/WinVector/PDSwR2) 

Nina’s workstation and repository
Directory: ~/Documents/Projects/PDSwR2 

John’s workstation and repository
Directory: ~/Documents/work/PDSwR2

Push Pull Push Pull

Figure 11.10 Multiple repositories working together
Licensed to Ajit de Silva <agdesilva@gmail.com>



426 CHAPTER 11 Documentation and deployment
remote repository is called origin—this is the traditional name for a remote reposi-
tory that you’re using as your master or gold standard. (Git tends not to use the name
master for repositories because master is the name of the branch you’re usually work-
ing on.)

USING PUSH AND PULL TO SYNCHRONIZE WORK WITH REMOTE REPOSITORIES

Once your local repository has declared some other repository as remote, you can
push and pull between the repositories. When pushing or pulling, always make sure
you’re clean (have no uncommitted changes), and you usually want to pull before you
push (as that’s the quickest way to spot and fix any potential conflicts). For a descrip-
tion of what version control conflicts are and how to deal with them, see http://mng
.bz/5pTv.

Usually, for simple tasks we don’t use branches (a technical version control term),
and we use the rebase option on pull so that it appears that every piece of work is
recorded into a simple linear order, even though collaborators are actually working in
parallel. This is what we call an essential difficulty of working with others: time and
order become separate ideas and become hard to track (and this is not a needless
complexity added by using Git—there are such needless complexities, but this is not
one of them).

The new Git commands you need to learn are these:

 git push  (usually used in the git push -u origin master variation)
 git pull  (usually used in the git fetch; git merge -m pull master origin/

master or git pull --rebase origin master variations)

Typically, two authors may be working on different files in the same project at the
same time. As you can see in figure 11.11, the second author to push their results to
the shared repository must decide how to specify the parallel work that was per-
formed. Either they can say the work was truly in parallel (represented by two
branches being formed and then a merge record joining the work), or they can
rebase their own work to claim their work was done “after” the other’s work (preserv-
ing a linear edit history and avoiding the need for any merge records). Note: before
and after are tracked in terms of arrows, not time.

Merging is what’s really happening, but rebase  is much simpler to read. The general
rule is that you should only rebase work you haven’t yet shared (in our example,
Worker B should feel free to rebase their edits to appear to be after Worker A’s edits,
as Worker B hasn’t yet successfully pushed their work anywhere). You should avoid
rebasing records people have seen, as you’re essentially hiding the edit steps they may
be basing their work on (forcing them to merge or rebase in the future to catch up
with your changed record keeping).

KEEP NOTES Git commands are confusing; you’ll want to keep notes. One
idea is to write a 3 × 5 card for each command you’re regularly using. Ideally,
you can be at the top of your Git game with about seven cards.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/5pTv
http://mng.bz/5pTv
http://mng.bz/5pTv


427Using comments and version control for running documentation
For most projects, we try to use a rebase-only strategy. For example, this book itself is
maintained in a Git repository. We have only two authors who are in close proximity (so
able to easily coordinate), and we’re only trying to create one final copy of the book
(we’re not trying to maintain many branches for other uses). If we always rebase, the
edit history will appear totally ordered (for each pair of edits, one is always recorded as
having come before the other), and this makes talking about versions of the book much
easier (again, before is determined by arrows in the edit history, not by time stamp).

1

2

Worker B tries to
push work to shared

repository. Git
refuses to allow it as
B must know of A's
work to continue.

3.B

Worker B pulls from
shared repository:

git pull (merge)

3.A

Worker B pulls from
shared repository:

git pull --rebase

4.A 4.B

Worker B pushes
work to shared

repository 

Worker B pushes
work to shared

repository 

Worker A pushes
work to shared

repository 

B's edits

A's edits
B's editsA's edits

merge record

Resulting
repository
from A-path 

Resulting
repository
from B-path 

} Work done in parallel
without knowledge of
each other  

Figure 11.11 git pull: rebase versus merge
Licensed to Ajit de Silva <agdesilva@gmail.com>



428 CHAPTER 11 Documentation and deployment
DON’T CONFUSE VERSION CONTROL WITH BACKUP Git keeps multiple copies and
records of all of your work. But until you push to a remote destination, all of
these copies are on your machine in the .git directory. So don’t confuse basic
version control with remote backups; they’re complementary.

A BIT ON THE GIT PHILOSOPHY

Git is interesting in that it automatically detects and manages so much of what you’d
have to specify with other version control systems (for example, Git finds which files
have changed instead of you having to specify them, and Git also decides which files
are related). Because of the large degree of automation, beginners usually severely
underestimate how much Git tracks for them. This makes Git fairly quick except when
Git insists you help decide how a possible global inconsistency should be recorded in
history (either as a rebase or a branch followed by a merge record). The point is this:
Git suspects possible inconsistency based on global state (even when the user may not
think there is such) and then forces the committer to decide how to annotate the
issue at the time of commit (a great service to any possible readers in the future). Git
automates so much of the record keeping that it’s always a shock when you have a con-
flict and have to express opinions on nuances you didn’t know were being tracked. Git
is also an “anything is possible, but nothing is obvious or convenient” system. This is
hard on the user at first, but in the end is much better than an “everything is smooth,
but little is possible” version control system (which can leave you stranded).

11.4 Deploying models
Good data science shares a rule with good writing: show, don’t tell. And a successful
data science project should include at least a demonstration deployment of any tech-
niques and models developed. Good documentation and presentation are vital, but at
some point, people have to see things working and be able to try their own tests. We
strongly encourage partnering with a development group to produce the actual
production-hardened version of your model, but a good demonstration helps recruit
these collaborators.

 Example Suppose you are asked to make your model predictions available to other
software so it can be reflected in reports and used to make decisions. This means you
must somehow “deploy your model.” This can vary from scoring all data in a known
database, exporting the model for somebody else to deploy, or setting up your own web
application or HTTP service.

The statistician or analyst’s job often ends when the model is created or a report is fin-
ished. For the data scientist, this is just the acceptance phase. The real goal is getting
the model into production: scoring data that wasn’t available when the model was
built and driving decisions made by other software. This means that helping with
deployment is part of the job. In this section, we will outline useful methods for
achieving different styles of R model deployment.

We outline some deployment methods in table 11.6.
Licensed to Ajit de Silva <agdesilva@gmail.com>



429Deploying models
Table 11.6 Methods to deploy models

Method Description

Batch Data is brought into R, scored, and then written back out. This is essen-
tially an extension of what you’re already doing with test data.

Cross-language linkage R supplies answers to queries from another language (C, C++, Python, 
Java, and so on). R is designed with efficient cross-language calling in 
mind (in particular the Rcpp package), but this is a specialized topic we 
won’t cover here.

Services R can be set up as an HTTP service to take new data as an HTTP query 
and respond with results.

Export Often, model evaluation is simple compared to model construction. In 
this case, the data scientist can export the model and a specification 
for the code to evaluate the model, and the production engineers can 
implement (with tests) model evaluation in the language of their choice 
(SQL, Java, C++, and so on).

PMML PMML, or Predictive Model Markup Language, is a shared XML format 
that many modeling packages can export to and import from. If the 
model you produce is covered by R’s package pmml, you can export it 
without writing any additional code. Then any software stack that has an 
importer for the model in question can use your model.

Models in production
There are some basic defenses one should set up when placing a model in produc-
tion. We mention these as we rarely see these valuable precautions taken:

 All models and all predictions from models should be annotated with the
model version name and a link to the model documentation. This simple pre-
caution has saved one of the authors when they were able to show a misclas-
sification was not from the model they had just deployed, but from a human
tagger.

 Machine learning model results should never be directly used as decisions.
Instead, they should be an input to configurable business logic that makes
decisions. This allows both patching the model to make it more reasonable
(such as bounding probability predictions into a reasonable range such as
0.01 to 0.99) and turning it off (changing the business logic to not use the
model prediction in certain cases).

You always want the last stage in any automated system to be directly controllable.
So even a trivial business logic layer that starts by directly obeying a given model’s
determination is high value, as it gives a place where you can correct special cases.
Licensed to Ajit de Silva <agdesilva@gmail.com>



430 CHAPTER 11 Documentation and deployment
We’ve already demonstrated batch operation of models each time we applied a model
to a test set. We won’t work through an R cross-language linkage example as it’s very
specialized and requires knowledge of the system you’re trying to link to. We’ll
demonstrate service and export strategies.

11.4.1 Deploying demonstrations using Shiny

 Example Suppose we want to build an interactive dashboard or demo for our boss.
Our boss wants to try different classification thresholds against our Buzz score to see
what precision and recall are available at each threshold. We could do this as a graph,
but we are asked do this as an interactive service (possibly part of a larger drill-
down/exploration service).

We will solve this scenario by using Shiny, a tool for building interactive web applica-
tions in R. Here we will use Shiny to let our boss pick the threshold that converts our
Buzz score into a “will Buzz”/“won’t Buzz” decision. The entire code for this demon-
stration is in the Buzz/buzzapp directory of https://github.com/WinVector/PDSwR2.

The easiest way to run the Shiny application is to open the file server.R from that
directory in RStudio. Then, as shown in figure 11.12, there will be a button on the
upper right of the RStudio editor pane called Run App. Clicking this button will run
the application.

Press here to launch
example server and client.

Figure 11.12 Launching the Shiny server from RStudio
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2


431Deploying models
The running application will look like figure 11.13. The user can move the threshold
control slider and get a new confusion matrix and model metrics (such as precision
and recall) for each slider position.

Shiny’s program principles are based on an idea called reactive programming  where
the user specifies what values may change due to user interventions. The Shiny soft-
ware then handles rerunning and updating the display as the user uses the applica-
tion. Shiny is a very large topic, but you can get started by copying an example
application and editing it to fit your own needs.

FURTHER SHINY READING

We don’t currently have a Shiny book recommendation. A good place to start on
Shiny documentation, examples, and tutorials is https://shiny.rstudio.com.

11.4.2 Deploying models as HTTP services

 Example Our model looked good in testing, and our boss likes working with our
interactive web application. So we now want to fully “put our model in production.” In
this case, the model is considered “in production” if other servers can send data to it
and get scored results. That is, our model is to be partly deployed in production as part
of a services oriented architecture (SOA).

Our model can be used by other software either by linking to it or having the model
exposed as a service. In this case, we will deploy our Buzz model as an HTTP service.
Once we have done this, other services at our company can send data to our model
for scoring. For example, a revenue management dashboard can send a set of articles
it is managing to our model for “buzz scoring,” meaning the buzz score can be incor-
porated into this dashboard. This is more flexible than having our Buzz model score
all known articles in a database, as the dashboard can ask about any article for which it
has the details.

One easy way to demonstrate an R model in operation is to expose it as an HTTP
service. In the following listing, we show how to do this for our Buzz model (predict-
ing discussion topic popularity). Listing 11.11 shows the first few lines of the file

Move this ...

... and it changes this
Figure 11.13 Interacting 
with the Shiny application
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://shiny.rstudio.com


432 CHAPTER 11 Documentation and deployment
PDSwR2/Buzz/plumber.R. This .R file can be used with the plumber R package to
expose our model as an HTTP service, either for production use or testing.

library("randomForest")

lst <- readRDS("thRS500.RDS")
varslist <- lst$varslist
fmodel <- lst$fmodel
buzztest <- lst$buzztest
rm(list = "lst")

#* Score a data frame.
#* @param d data frame to score
#* @post /score_data
function(d) {
 predict(fmodel, newdata = d, type = "prob")
}

We would then start the server with the following code:

library("plumber")
r <- plumb("plumber.R")
r$run(port=8000)

The next listing is the contents of the file PDSwR2/Buzz/RCurl_client_example.Rmd,
and shows how to call the HTTP service from R. However, this is just to demonstrate
the capability—the whole point of setting up an HTTP service is that something other
than R wants to use the service.

library("RCurl")
library("jsonlite")

post_query <- function(method, args) {
hdr <- c("Content-Type" = "application/x-www-form-urlencoded")

 resp <- postForm(
paste0("http://localhost:8000/", method),
.opts=list(httpheader = hdr,

postfields = toJSON(args)))
fromJSON(resp)

}

data <- read.csv("buzz_sample.csv",
stringsAsFactors = FALSE,
strip.white = TRUE)

scores <- post_query("score_data",
list(d = data))

knitr::kable(head(scores))

tab <- table(pred = scores[, 2]>0.5, truth = data$buzz)
knitr::kable(tab)

Listing 11.11 Buzz model as an R-based HTTP service

Listing 11.12 Calling the Buzz HTTP service

Attaches the randomForest 
package, so we can run our 
randomForest model 

Wraps the services 
as a function
Licensed to Ajit de Silva <agdesilva@gmail.com>



433Deploying models
This produces the result PDSwR2/Buzz/RCurl_client_example.md, shown in figure
11.14 (also saved in our example GitHub repository).

For more on plumber, we suggest starting with the plumber package documenta-
tion: https://CRAN.R-project.org/package=plumber.

11.4.3 Deploying models by export

It often makes sense to export a copy of the finished model from R, instead of
attempting to reproduce all the details of model construction in another system or to
use R itself in production. When exporting a model, you’re depending on develop-
ment partners to handle the hard parts of hardening a model for production (version-
ing, dealing with exceptional conditions, and so on). Software engineers tend to be
good at project management and risk control, so sharing projects with them is a good
opportunity to learn.

The steps required depend a lot on the model and data treatment. For many mod-
els, you only need to save a few coefficients. For random forests, you need to export
the trees. In all cases, you need to write code in your target system (be it SQL, Java, C,
C++, Python, Ruby, or other) to evaluate the model.

One of the issues of exporting models is that you must repeat any data treatment.
So part of exporting a model is producing a specification of the data treatment (so it
can be reimplemented outside of R).

knitr::kable(head(scores))

tab <- table(pred = scores[, 2]>0.5, truth = data$buzz)
knitr::kable(tab)

0.998 0.002

0.350 0.650

1.000 0.000

1.000 0.000

0.748 0.252

0.008 0.992

0 1

FALSE 77 3

TRUE 4 16

Figure 11.14 Top of HTML form 
that asks server for Buzz 
classification on submit
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://CRAN.R-project.org/package=plumber


434 CHAPTER 11 Documentation and deployment
EXPORTING RANDOM FORESTS TO SQL WITH TIDYPREDICT

Exercise: Run our random forest model in SQL 

Our goal is to export our random forest model as SQL code that can be then run in a database,
without any further use of R.
The R package tidypredict6 provides methods to export models such as our random
forest Buzz model to SQL, which could then be run in a database. We will just show a
bit of what this looks like. The random forest model consists of 500 trees that vote on
the answer. The top of the first tree is shown in figure 11.15 (random forest trees tend
not to be that legible). Remember that trees classify by making sequential decisions
from the top-most node down.

Now let’s look at the model that tidypredict  converted to SQL. The conversion was
performed in the R markdown file PDSwR2/Buzz/model_export.Rmd, which pro-
duces the rendered result PDSwR2/Buzz/model_export.md. We won’t show the code
here, but instead show the first few lines of the what the first random forest tree is
translated into:

CASE
WHEN (`num.displays_06` >= 1517.5 AND

`avg.auths.per.disc_00` < 2.25 AND
`num.displays_06` < 2075.0) THEN ('0')

WHEN (`num.displays_03` >= 1114.5 AND
`atomic.containers_01` < 9.5 AND
`avg.auths.per.disc_00` >= 2.25 AND
`num.displays_06` < 2075.0) THEN ('0')

WHEN ...

6 See https://CRAN.R-project.org/package=tidypredict.

Figure 11.15 The top of the first tree (of 500) from the random forest model
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://CRAN.R-project.org/package=tidypredict


435Deploying models
The preceding code is enumerating each path from the root of the tree down.
Remember that decision trees are just huge nested if/else blocks, and SQL writes
if/else as CASE/WHEN. Each SQL WHEN clause is a path in the original decision tree.
This is made clearer in figure 11.16.

In the SQL export, each tree is written as a series of WHEN cases over all of its paths,
allowing the tree calculation to be performed in SQL. As a user, we would evaluate a
tree by tracing down from the root node and moving down nodes, and left/right
depending on the node conditions. The SQL code instead evaluates all paths from
the roots to the leaves and keeps the result from the unique path for which all the
conditions are met. It is an odd way to evaluate a tree, but it converts everything into
an all-at-once formula that can be exported to SQL.

The overall idea is this: we have exported the random forest model into a format
something else can read, SQL. Somebody else can own the finished model from that
point on.

An important export system to consider using is Predictive Model Markup Language
(PMML) which is an XML standard for sharing models across different systems.7

11.4.4 What to take away

You should now be comfortable demonstrating R models to others. Deployment and
demonstration techniques include

 Setting up a model as an HTTP service that can be experimented with by others
 Setting up micro applications using Shiny
 Exporting models so a model application can be reimplemented in a produc-

tion environment

7 See, for example, the PMML package https://CRAN.R-project.org/package=pmml.

First WHEN clause

Second WHEN clause

Predict 0 Predict 0

Figure 11.16 Annotating CASE/WHEN paths
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://CRAN.R-project.org/package=pmml


436 CHAPTER 11 Documentation and deployment
Summary
In this chapter, we worked on managing and sharing your work. In addition, we
showed some techniques to set up demonstration HTTP services and export models
for use by other software (so you don’t add R as a dependency in production). At this
point, you have been building machine learning models for some time, and you now
have some techniques for working proficiently with models over time and with collab-
orators.

Here are some key takeaways:

 Use knitr to produce significant reproducible milestone/checkpoint documen-
tation.

 Write effective comments.
 Use version control to save your work history.
 Use version control to collaborate with others.
 Make your models available to your partners for experimentation, testing, and

production deployment.

In our next chapter, we will explore how to formally present and explain your work.
Licensed to Ajit de Silva <agdesilva@gmail.com>



Producing effective
presentations
In the previous chapter, you saw how to effectively document your day-to-day proj-
ect work and how to deploy your model into production. This included the addi-
tional documentation needed to support operations teams. In this chapter, we’ll
look at how to present the results of your project to other interested parties. As we
see in the mental model (figure 12.1), this chapter is all about documentation and
presentation.

This chapter covers
 Presenting your results to project sponsors

 Communicating with your model’s end users

 Presenting your results to fellow data scientists
437

Licensed to Ajit de Silva <agdesilva@gmail.com>



438 CHAPTER 12 Producing effective presentations
We’ll continue with the example from the last chapter.

 Example Suppose your company (let’s call it WVCorp) makes and sells home elec-
tronic devices and associated software and apps. WVCorp wants to monitor topics on
the company’s product forums and discussion board to identify “about-to-buzz” issues:
topics that are poised to generate a lot of interest and active discussion. This informa-
tion can be used by product and marketing teams to proactively identify desired product
features for future releases, and to quickly discover issues with existing product features.
Your team has successfully built a model to identify about-to-buzz topics on the forum.
Now you want to explain the project results to the project sponsor, and also to the prod-
uct managers, marketing managers, and support engineering managers who will be
using the results of your model.

Table 12.1 summarizes the relevant entities in our scenario, including products that
are sold by your company and by competitors.

Table 12.1 Entities in the buzz model scenario

Entity Description

WVCorp The company you work for

eRead WVCorp’s e-book reader

Collect &
manage

data

with

Practical

Build the
model

Evaluate &
critique
model

Present
results &
document

Deploy
model

Define the
goal

Figure 12.1 Mental model
Licensed to Ajit de Silva <agdesilva@gmail.com>



439Presenting your results to the project sponsor
Let’s start with the presentation for the project sponsors.1

12.1 Presenting your results to the project sponsor
As mentioned in chapter 1, the project sponsor is the person who wants the data sci-
ence result—generally for the business need that it will fill. Though project sponsors
may have technical or quantitative backgrounds and may enjoy hearing about techni-
cal details and nuances, their primary interest is business oriented, so you should dis-
cuss your results in terms of the business problem, with a minimum of technical detail.

You should also remember that the sponsor will often be interested in “selling”
your work to others in the organization, to drum up support and additional resources
to keep the project going. Your presentation will be part of what the sponsor will share
with these other people, who may not be as familiar with the context of the project as
you and your sponsor are.

To cover these considerations, we recommend a structure similar to the following:

1 Summarize the motivation behind the project, and its goals.
2 State the project’s results.
3 Back up the results with details, as needed.
4 Discuss recommendations, outstanding issues, and possible future work.

TimeWrangler WVCorp’s time-management app

BookBits A competitor’s e-book reader

GCal A third-party cloud-based calendar service 
that TimeWrangler can integrate with

1 We provide the PDF versions of our example presentations at https://github.com/WinVector/PDSwR2/
tree/master/Buzz as ProjectSponsorPresentation.pdf, UserPresentation.pdf, and PeerPresentation.pdf. The
directory also includes handouts of these presentations with brief notes, as xxxPresentation_withNotes.pdf.

Table 12.1 Entities in the buzz model scenario (continued)

Entity Description

A disclaimer about the data and the example project
The dataset that we used for the buzz model was collected from Tom’s Hardware
(tomshardware.com), an actual forum for discussing electronics and electronic
devices. Tom’s Hardware is not associated with any specific product vendor, and the
dataset doesn’t specify the topics that were recorded. The example scenario in this
chapter was chosen to present a situation that would produce data similar to the data
in the Tom’s Hardware dataset. All product names and forum topics in our example
are fictitious.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/Buzz
https://github.com/WinVector/PDSwR2/tree/master/Buzz
https://github.com/WinVector/PDSwR2/tree/master/Buzz


440 CHAPTER 12 Producing effective presentations
Some people also recommend an “Executive Summary” slide: a one-slide synopsis of
points 1 and 2.

How you treat each point—how long, how much detail—depends on your audience
and your situation. In general, we recommend keeping the presentation short. In this
section, we’ll offer some example slides in the context of our buzz model example.

Let’s go through each point in detail.

12.1.1 Summarizing the project’s goals

This section of the presentation is intended to provide context for the rest of the talk,
especially if it will be distributed to others in the company who weren’t as closely
involved as your project sponsor was. Let’s put together the goal slides for the
WVCorp buzz model example.

In figure 12.2, we provide background for the motivation behind the project by
showing the business need and how the project will address that need. In our exam-
ple, eRead is WVCorp’s e-book reader, which led the market until our competitor
released a new version of their e-book reader, BookBits. The new version of BookBits
has a shared-bookshelf feature that eRead doesn’t provide—though many eRead users
expressed the desire for such functionality on the forums. Unfortunately, forum traf-
fic is so high that product managers have a hard time keeping up, and somehow
missed detecting this expression of user needs. Hence, WVCorp lost market share by
not anticipating the demand for the shared-bookshelf feature.

We’ll concentrate on content, not visuals
The discussion in this chapter will concentrate on the content of the presentations,
rather than the visual format of the slides. In an actual presentation, you’d likely pre-
fer more visuals and less text than the slides that we provide here. If you’re looking
for guidance on presentation visuals and compelling data visualizations for presenta-
tions, two good books are

 Michael Alley, The Craft of Scientific Presentations (Springer, 2007)
 Cole Nussbaumer Knaflic, Storytelling with Data (Wiley, 2015)

If you peruse those texts, you’ll notice that our bullet-laden example presentation vio-
lates all of their suggestions. Think of our skeleton presentations as outlines that
you’d flesh out into a more compelling visual format.

It’s worth pointing out that the visually oriented, low-text format that Alley and Knaflic
recommend is meant to be presented, not read. It’s common for presentation decks
to be passed around in lieu of reports or memos. If you’re distributing your presenta-
tion to people who won’t see you deliver it, make sure to include comprehensive
speaker’s notes. Otherwise, it may be more appropriate to go with a bullet-laden, text-
heavy presentation format.
Licensed to Ajit de Silva <agdesilva@gmail.com>



441Presenting your results to the project sponsor
In figure 12.3, we state the project’s goal, in the context of the motivation that we set
up in figure 12.2. We want to detect topics on the forum that are about to buzz so that
product managers can find emerging issues early.

Once you’ve established the project’s context, you should move directly to the proj-
ect’s results. Your presentation isn’t a thriller movie—don’t keep your audience in
suspense! 

Could We Have 
Caught This?

• eRead Forum discussions:

• Sharing a booklist with a friend, to grab from as they 
pleased

• Sharing a book with a group of friends (first-come-
first-serve)

• Whenever these questions arose, the discussion was lively

• Suggestions, work-arounds, kludges,  “me too”s

• A shared bookshelf (like BookBits) would have met these 
recurring needs

• There was Buzz around this issue! But we ignored it. Or 
didn’t find it.

• Labor intensive to continually keep up with forum activity

A Lost Opportunity

2.0

2.5

3.0

3.5

4.0

2017.1 2017.2 2017.3 2017.4 2018.1 2018.2 2018.3 2018.4 2019.1 2019.2

Year and Quarter

R
ea

de
rs

 s
ol

d 
(m

ill
io

ns
)

reader eRead BookBits

Ebook reader sales, eRead vs BookBits
eRead: Formerly best 
selling indie ebook 
reader

BookBits v.2
with shared bookshelves

introduced 

Estimated $25M
lost revenue on
product sales

Show the business need 
that motivated this project:

WVCorp lost revenue
and market share to

a competitor.

WVCorp has the 
information to help address
this need, but not enough

resources (labor) to use the
information effectively.

Blue solid curve:
WVCorp's product 
(eRead)
Green dashed curve:
Competitor's product
(BookBits)   

In a real presentation, use
a screenshot of a relevant

forum discussion.  

Figure 12.2 Motivation for project
Licensed to Ajit de Silva <agdesilva@gmail.com>



442 CHAPTER 12 Producing effective presentations
12.1.2 Stating the project’s results

This section of the presentation briefly describes what you did, and what the results
were, in the context of the business need. Figure 12.4 describes the buzz model pilot
study, and what you found.

Keep the discussion of the results concrete and nontechnical. Your audience isn’t
interested in the details of your model per se, but rather in why your model helped
solve the problem that you stated in the motivation section of the talk. Don’t talk
about your model’s performance in terms of precision and recall or other technical
metrics, but rather in terms of how it reduced the workload for the model’s end users,
how useful they found the results to be, and what the model missed. In projects where
the model is more closely tied to monetary outcomes, like loan default prediction, try
to estimate how much money your model could potentially generate, whether as earn-
ings or savings, for the company. 

Goal: Catch it Early

• Predict which topics on our product
forums will have persistent buzz

• Features customers want

• Existing features users have trouble with

• Persistent buzz:  real, ongoing customer
need

• Not ephemeral or trendy issues

State the project goal
in terms of the

business motivation.

In a real presentation, use
a screenshot of a relevant

forum discussion.

Figure 12.3 Stating the project goal
Licensed to Ajit de Silva <agdesilva@gmail.com>



443Presenting your results to the project sponsor
Pilot Study
• Collected three weeks of data from forum

• Trained model on Week 1 to identify which topics will 
buzz in Weeks 2/3

• Buzz = Sustained increase of 500+ active 
discussions in topic/day, relative to Week 1, 
Day 1

• Compared predicted results to topics that actually
buzzed

• Feedback from team of five product managers — how 
useful were the results?

0

200

400

600

flagged eliminated
Topics flagged by model

co
un

t

791 topics total; 177 generated buzz

Buzz identification: results

Pilot results promising

184 topics flagged 
by model

149 flagged topics 
generated buzz  

(84% of total buzz, 
81% of flagged)

607 topics 
eliminated by 

model:
Reduces manual 

scan of forums by 
over a factor of 4  

35 topics erroneously flagged 
(19% of flagged)

PMs: 75% of identified topics produced “valuable insight”

28 missed buzz topics
(16% of total buzz)

Briefly describe how the
project was run

State the results in terms
of how they affect the end 
users (product managers).

State the results up front.

The model reduces the
end users' workload by 
zeroing in on what they 
need to look at.  

Representative end users
thought the model's output
was useful.  

Figure 12.4 Describing the project and its results
Licensed to Ajit de Silva <agdesilva@gmail.com>



444 CHAPTER 12 Producing effective presentations
12.1.3 Filling in the details

Once your audience knows what you’ve done, why, and how well you’ve succeeded
(from a business point of view), you can fill in details to help them understand more.
As before, try to keep the discussion relatively nontechnical and grounded in the busi-
ness process. A description of where the model fits in the business process or workflow
and some examples of interesting findings would go well in this section, as shown in
figure 12.5.

The “How it Works” slide in figure 12.5 shows where the buzz model fits into a
product manager’s workflow. We emphasize that (so far) we’ve built the model using
metrics that were already implemented into the system (thus minimizing the number
of new processes to be introduced into the workflow). We also introduce the ways in

How it Works

Users contribute to forums

Buzz prediction 
model

Topics predicted 
to buzz in 
coming weeks.

Product and 
Marketing 
managers 

review 
identified topics

Exploit already 
implemented metrics
• # Authors/topic

• # Discussions/topic

• # Displays of topic to forum 
users

• etc.

Forum 
metrics

Market research for 
potential new 

features

Alert customer support or 
product engineering to 

problematic features

Example: 
Catching An Issue Early

• Topic:  TimeWrangler GCal Integration

• # discussions up since GCal v. 7 release

• GCal events not consistently showing up; mislabeled.

• TimeWrangler tasks going to wrong GCalendar

• Hot on forums before hot in customer 
support logs

• Forum activity triggered the model two days after 
GCal update

• Customer support didn’t notice for a week

Situate the model within the
end users’ overall workflow,

and within the overall process.

End users are here.

Provide interesting and
compelling examples of

the model at work.  

The model discovered
an important issue
before the currently
used process did.

In a real presentation, use
a screenshot of a relevant

forum discussion.  

Figure 12.5 Discussing your work in more detail
Licensed to Ajit de Silva <agdesilva@gmail.com>



445Presenting your results to the project sponsor
which the output from our model can potentially be used: to generate leads for poten-
tial new features, and to alert product support groups to impending problems.

The bottom slide of figure 12.5 presents an interesting finding from the project (in
a real presentation, you’d want to show more than one). In this example, Time-
Wrangler is WVCorp’s time-management product, and GCal is a third-party cloud-
based calendar service that TimeWrangler can talk to. In this slide, we show how the
model was able to identify an integration issue between TimeWrangler and GCal
sooner than the TimeWrangler team would have otherwise (from the customer sup-
port logs). Examples like this make the value of the model concrete.

We’ve also included one slide in this presentation to discuss the modeling algo-
rithm (shown in figure 12.6). Whether you use this slide depends on the audience—
some of your listeners may have a technical background and will be interested in hear-
ing about your choice of modeling methods. Other audiences may not care. In any
case, keep it brief, and focus on a high-level description of the technique and why you
felt it was a good choice. If anyone in the audience wants more detail, they can ask—
and if you anticipate such people in your audience, you can have additional slides to
cover likely questions. Otherwise, be prepared to cover this point quickly, or to skip it
altogether.

There are other details that you might want to discuss in this section. For example,
if the product managers who participated in your pilot study gave you interesting
quotes or feedback—how much easier their job is when they use the model, findings
that they thought were especially valuable, ideas they had about how the model could
be improved—you can mention that feedback here. This is your chance to get others
in the company interested in your work on this project and to drum up continuing
support for follow-up efforts. 

Buzz Model
• Random Forest Model

• Many “experts” voting

• Runs efficiently on large data

• Handles a large number of input variables

• Few prior assumptions about how variables
interact, or which are most relevant

• Very accurate

An optional slide briefly
discusses details of the

modeling method.

Figure 12.6 Optional slide on the modeling method
Licensed to Ajit de Silva <agdesilva@gmail.com>



446 CHAPTER 12 Producing effective presentations
12.1.4 Making recommendations and discussing future work

No project ever produces a perfect outcome, and you should be up-front (but optimis-
tic) about the limitations of your results. In the Buzz model example, we end the pre-
sentation by listing some improvements and follow-ups that we’d like to make. This is
shown in figure 12.7. As a data scientist, you’re of course interested in improving the
model’s performance, but to the audience, improving the model is less important
than improving the process (and better meeting the business need). Frame the discus-
sion from that perspective.

The project sponsor presentation focuses on the big picture and how your results help
to better address a business need. A presentation for end users will cover much of the
same ground, but now you frame the discussion in terms of the end users’ workflow
and concerns. We’ll look at an end user presentation for the buzz model in the next
section. 

12.1.5 Project sponsor presentation takeaways

Here’s what you should remember about the project sponsor presentation:

 Keep it short.
 Keep it focused on the business issues, not the technical ones.
 Your project sponsor might use your presentation to help sell the project or its

results to the rest of the organization. Keep that in mind when presenting back-
ground and motivation.

 Introduce your results early in the presentation, rather than building up to
them. 

Next Steps
• Further reduce PM workload, give them better customer 

intelligence.

• New metrics for better prediction

• Record if discussion activity is growing/shrinking, and 
how fast

• Why do new forum users join? What question did 
they come to ask?

• Goal: Find 98% of impending buzz, 10% false positive rate

• Efficiently route buzz info to relevant Product Managers, 
Marketing, and Customer Support groups

Discuss future work to
improve the model and

the overall process.

Improving the model 
helps the end user.  

Improving the overall 
process helps the business.

Figure 12.7 Discussing future work
Licensed to Ajit de Silva <agdesilva@gmail.com>



447Presenting your model to end users
12.2 Presenting your model to end users
No matter how well your model performs, it’s important that the people who will actu-
ally be using it have confidence in its output and are willing to adopt it. Otherwise, the
model won’t be used, and your efforts will have been wasted. Hopefully, you had end
users involved in the project—in our buzz model example, we had five product man-
agers helping with the pilot study. End users can help you sell the benefits of the
model to their peers.

In this section, we’ll give an example of how you might present the results of your
project to the end users. Depending on the situation, you may not always be giving an
explicit presentation: you may be providing a user manual or other documentation.
However the information about your model is passed to the users, we believe that it’s
important to let them know how the model is intended to make their workflow easier,
not more complicated. For the purposes of this chapter, we’ll use a presentation format.

For an end user presentation, we recommend a structure similar to the following:

1 Summarize the motivation behind the project, and its goals.
2 Show how the model fits into the users’ workflow (and how it improves that workflow).
3 Show how to use the model.

Let’s explore each of these points in turn, starting with project goals.

12.2.1 Summarizing the project goals

With the model’s end users, it’s less important to discuss business motivations and more
important to focus on how the model affects them. In our example, product managers
are already monitoring the forums to get a sense of customer needs and issues. The goal
of our project is to help them focus their attention on the “good stuff”—buzz. The
example slide in figure 12.8 goes directly to this point. The users already know that they
want to find buzz; our model will help them search more effectively.    

Our Goal:  
Catch User Needs Early
• Predict which topics on our product 

forums will have persistent buzz

• Features customers want

• Existing features users have trouble with

• Persistent buzz:  real, ongoing customer 
need 

• Not ephemeral or trendy issues

Motivate the work from
the end user’s perspective:

help them find useful
buzz faster.  

In a real presentation,
you might use a 

screenshot of a relevant
forum discussion.  

Figure 12.8 Motivation for project
Licensed to Ajit de Silva <agdesilva@gmail.com>



448 CHAPTER 12 Producing effective presentations
12.2.2 Showing how the model fits user workflow

In this section of the presentation, you explain how the model helps users do their
job. A good way to do this is to give before-and-after scenarios of a typical user work-
flow, as we show in figure 12.9.

Presumably, the before process and its minuses are already obvious to the users. The
after slide emphasizes how the model will do some preliminary filtering of forum top-
ics for them. The output of the model helps users manage their already existing
watchlists, and of course users can still go directly to the forums as well.

The Way It Is Now

Users 
contribute to 

forums

Product and Marketing 
managers monitor forum 

activity;  “interesting” 
discussions get added to 

their watchlists

Market research 
for potential new 

features

Alert customer support or 
product engineering to 

problematic features

Product 
Manager

Insight from forums can be 
used to improve our 

product offerings

• Manually monitoring forums (even with watchlists) is time-consuming.
• Hundreds of topics, new discussions added every day

With The 
Buzz Prediction Model

Users contribute 
to forums

Buzz prediction 
model

Topics predicted 
to buzz in 
coming weeks.

Product and 
Marketing 

managers review 
identified topics

Forum 
metrics

Market research for 
potential new 

features

Alert customer support or 
product engineering to 

problematic features

Based on suggestions 
from model, PM adds 
topics/discussions to 

their watchlist

• The model reduces the
effort required to
monitor the forums

Compare the end users’
day-to-day work process

before and after the
introduction of your model

After: More focused, less
time consuming

Before: Time consuming

Figure 12.9 User workflow before and after the model
Licensed to Ajit de Silva <agdesilva@gmail.com>



449Presenting your model to end users
The next slide (figure 12.10, top) uses the pilot study results to show that the model
can reduce the effort it takes to monitor the forums, and does in fact provide useful
information. We elaborate on this with a compelling example in the bottom slide of
figure 12.10 (the TimeWrangler example that we also used in the project sponsor
presentation).

You may also want to fill in more details about how the model operates. For example,
users may want to know what the inputs to the model are (figure 12.11), so that they
can compare those inputs with what they themselves consider when manually looking
for interesting information on the forums.

Once you’ve shown how the model fits into user workflow, you can explain how
users will use it. 

Example: 
Catching an Issue Early

• Topic:  TimeWrangler GCal Integration

• # discussions up since GCal v. 7 release

• GCal events not consistently showing up; mislabeled.

• TimeWrangler tasks going to wrong GCalendar

• Hot on forums before hot in customer 
support logs

• Forum activity triggered the model two days after 
GCal update

• Customer support didn’t notice for a week

Find Information 
 Faster

• Pilot Study: Reduce effort to 
monitor forums by a factor 
of 4

• Scan 184 topics — not 
791!

• Found 84% of about-to-
buzz topics

• 75% of identified topics 
produced “valuable 
insight”

Predicted 
No Buzz

Predicted
Buzz

No 
Buzz

579 35 614

Buzz 28 149 177

Total 607 184 791

# topics the PMs 
have to review

# topics the PMs 
can skip

# topics predicted 
to buzz that didn’t

# about-to-buzz 
topics that were 

missed

State the results from the
end user's perspective: 

manual effort is reduced, and
the model's suggestions
are correct and valuable.

Show interesting and
compelling examples of

the model at work.

In a real presentation,
you might use a

screenshot of a relevant
forum discussion. 

Figure 12.10 Present the model’s benefits from the users’ perspective.
Licensed to Ajit de Silva <agdesilva@gmail.com>



450 CHAPTER 12 Producing effective presentations
12.2.3 Showing how to use the model

This section is likely the bulk of the presentation, where you’ll teach users how to use
the model. The slide in figure 12.12 describes how a product manager will interact with
the Buzz model. In this example scenario, we’re assuming that there’s an existing mech-
anism for product managers to add topics and discussions from the forums to a watch-
list, as well as a way for product managers to monitor that watchlist. The model will
separately send users notifications about impending buzz on topics they’re interested in.

In a real presentation, you’d then expand each point to walk users through how
they use the model: screenshots of the GUIs that they use to interact with the model,

Metrics We Look At

• Number of authors/topic

• Number of discussions/topic

• Number of displays of topic to forum users

• Average number of contributors to a topic discussion

• Average discussion length in a topic

• How often a discussion in a topic is forwarded to 
social media

The end users will likely
be interested in the inputs
to the model (to compare

with their own mental
processes when they look

for buzz manually).

Figure 12.11 Provide technical details that are relevant to users.

In a real presentation,
each point would be

expanded with step-by-
step detailed instructions

and appropriate
screenshots.

Showing the users how to
interact with the modelUsing the Buzz Model

1. Go to https://rd.wvcorp.com/buzzmodel and register.

2. Subscribe to the product category or categories that you 
want to monitor.

3. Every day, the model will email you links to topics in your 
categories that are predicted to buzz (if there are any)

4. The links will lead you to the relevant topics on the forum

5. Explore!

6. Add topics/discussions of interest to your watchlist, as usual. 

• We will monitor which topics you mark to assess how 
effective our predictions are (how useful they are to you).

Figure 12.12 Describe how users will interact with the model.
Licensed to Ajit de Silva <agdesilva@gmail.com>



451Presenting your model to end users
and screenshots of model output. We give one example slide in figure 12.13: a screen-
shot of a notification email, annotated to explain the view to the user. By the end of
this section, the user should understand how to use the Buzz model and what to do
with the Buzz model’s output.

Finally, we’ve included a slide that asks users for feedback on the model, once
they’ve been using it in earnest. This is shown in figure 12.14. Feedback from users

Step 3: Email Notifications

Buzz Model <buzzmodel@wvcorp.com>
Jane.Smith@wvcorp.com

Links lead directly to 
topic page on forum

Summary statistics 
on each topic

An example instructional
slide: Showing the user
what the model's typical

results will look like
to them.

Screenshot of an email
notification sent by
the model

Describe what they
are looking at 

Show what they would
click on; explain where
it will go. 

Figure 12.13 An example instructional slide

Your Feedback 
Will Help

• Better ways to get the information to you

• Dashboard? Browser plugin? Is email fine?

• Additional metrics we might add to the model

• Advice on what is and isn’t valuable. How can 
we better distinguish?

• Any other insight that comes from using the 
model

Enlist the end users’ help
in improving the model

(and the overall workflow):
ask for feedback.

Figure 12.14 Ask users for feedback.
Licensed to Ajit de Silva <agdesilva@gmail.com>



452 CHAPTER 12 Producing effective presentations
can help you (and other teams that help to support the model once it’s operational)
to improve the experience for users, making it more likely that the model will be
accepted and widely adopted.

In addition to presenting your model to the project sponsors and to end users, you
may be presenting your work to other data scientists in your organization, or outside
of it. We’ll cover peer presentations in the next section. 

12.2.4 End user presentation takeaways

Here’s what you should remember about the end user presentation:

 Your primary goal is to convince users that they want to use your model.
 Focus on how the model affects (improves) end users’ day-to-day processes.
 Describe how to use the model and how to interpret or use the model’s outputs. 

12.3 Presenting your work to other data scientists
Presenting to other data scientists gives them a chance to evaluate your work and gives
you a chance to benefit from their insight. They may see something in the problem
that you missed, and can suggest good variations to your approach or alternative
approaches that you didn’t think of.

Other data scientists will primarily be interested in the modeling approach that you
used, any variations on the standard techniques that you tried, and interesting find-
ings related to the modeling process. A presentation to your peers generally has the
following structure:

1 Introduce the problem.
2 Discuss related work.
3 Discuss your approach.
4 Give results and findings.
5 Discuss future work.

Let’s go through these steps in detail.

12.3.1 Introducing the problem

Your peers will generally be most interested in the prediction task (if that’s what it is)
that you’re trying to solve, and don’t need as much background about motivation as
the project sponsors or the end users. In figure 12.15, we start off by introducing the
concept of buzz and why it’s important, then go straight into the prediction task.

This approach is best when you’re presenting to other data scientists within your
own organization, since you all share the context of the organization’s needs. When
you’re presenting to peer groups outside your organization, you may want to lead with
the business problem (for example, the first two slides of the project sponsor presen-
tation, figures 12.2 and 12.3) to provide them with some context. 
Licensed to Ajit de Silva <agdesilva@gmail.com>



453Presenting your work to other data scientists
12.3.2 Discussing related work

An academic presentation generally has a related work section, where you discuss oth-
ers who have done research on problems related to your problem, what approach
they took, and how their approach is similar to or different from yours. A related work
slide for the buzz model project is shown in figure 12.16.

You’re not giving an academic presentation; it’s more important to you that your
approach succeeds than that it’s novel. For you, a related work slide is an opportunity

Buzz Is Information
• Buzz:  Topics in a user forum with high activity — 

topics that users are interested in. 

• Features customers want

• Existing features users have trouble with

• Persistent buzz:  real, ongoing customer need 

• Not ephemeral or trendy issues

• Goal: Predict which topics on our 
product forums will have persistent buzz

A presentation to fellow data
scientists can be motivated

primarily by the modeling task.

Briefly introduce
“buzz” and
why it's useful.

Figure 12.15 Introducing the project

Related Work

• Predicting movie success through social network and 
sentiment analysis 

• Krauss, Nann, et.al. European Conference on Information System,  2008

• IMDB message boards, Box Office Mojo website

• Variables: discussion intensity, positivity

• Predicting asset value (stock prices, etc) through Twitter 
Buzz 

• Zhang, Fuehres, Gloor,  Advances in Collective Intelligence, 2011

• Time series analysis on pre-chosen keywords

Discuss previous efforts on
problems similar to yours.
What did they do? Discuss
why their approaches may

or may not work for
your problem. 

Cite who did the work,
and where you found out
about it (in this case,
conference papers).   

Figure 12.16 Discussing related work
Licensed to Ajit de Silva <agdesilva@gmail.com>



454 CHAPTER 12 Producing effective presentations
to discuss other approaches that you considered, and why they may not be completely
appropriate for your specific problem.

After you’ve discussed approaches that you considered and rejected, you can then
go on to discuss the approach that you did take. 

12.3.3 Discussing your approach

Talk about what you did in lots of detail, including compromises that you had to make
and setbacks that you had. This sets context, and builds up the audience's confidence
in you and your work. For our example, figure 12.17 introduces the pilot study that we
conducted, the data that we used, and the modeling approach we chose. It also men-
tions that a group of end users (five product managers) participated in the project;
this establishes that we made sure that the model’s outputs are useful and relevant.

After you’ve introduced the pilot study, you introduce the input variables and the
modeling approach that you used (figure 12.18). In this scenario, the dataset didn’t
have the right variables—it would have been better to do more of a time-series analy-
sis, if we had the appropriate data, but we wanted to start with metrics that were
already implemented in the product forums’ system. Be up-front about this.

The slide also discusses the modeling approach that we chose—random forest—
and why. Since we had to modify the standard approach (by limiting the model com-
plexity), we mention that, too.

Pilot Study
• Collected three weeks of data from forum

• 7900 topics, 96 variables

• 791 topics held out for model evaluation

• 22% of topics in Week 1 of the dataset buzzed in Weeks 2/3

• Trained Random Forest on Week 1 to identify which topics will 
buzz in Weeks 2/3

• Buzz = Sustained increase of 500+ active discussions in 
topic/day, relative to Week 1, Day 1 

• Feedback from team of five product managers — how useful 
were the results?

Introduce what you did.
Include more modeling-

related details than in the
other types of presentations.

The nature of the data

The nature of the model

Figure 12.17 Introducing the pilot study
Licensed to Ajit de Silva <agdesilva@gmail.com>



455Presenting your work to other data scientists
 

12.3.4 Discussing results and future work

Once you’ve discussed your approach, you can discuss your results. In figure 12.19, we
discuss our model’s performance (precision/recall) and also confirm that representa-
tive end users did find the model’s output useful to their jobs.

The bottom slide of figure 12.19 shows which variables are most influential in the
model (recall that the variable importance calculation is one side effect of building
random forests). In this case, the most important variables are the number of times
the topic is displayed on various days and how many authors are contributing to the
topic. This suggests that time-series data for these two variables in particular might
improve model performance.

Model Variables
• We started with metrics already 

monitored by system.

• # Authors/topic

• # Discussions/topic

• # Displays of topic to forum 
users

• Average #contributors to a 
discussion in the topic

• Average discussion length in a 
topic

• How often a discussion in a 
topic is forwarded to social 
media

• Obviously problematic — only 
point measurements

• Ideally, we want to measure 
evolution

• For example, are 
the number of authors 
increasing/decreasing? 
How fast?

• Time-series analysis

• How well can we do with 
what we have?

Random Forest Model

• Efficient on large data, large number of input variables

• Few prior assumptions on variable distribution/
interactions

• We limited complexity to reduce overfit

• 100 nodes/tree maximum

• Minimum node size 20

• More data would eliminate the need for these 
steps

Introduce the input variables
(and issues with them).

Introduce the model, why you
chose it, and issues with it.

Figure 12.18 Discussing model inputs and modeling approach
Licensed to Ajit de Silva <agdesilva@gmail.com>



456 CHAPTER 12 Producing effective presentations
You also want to add examples of compelling findings to this section of the talk—for
example, the TimeWrangler integration issue that we showed in the other two presen-
tations.

Once you’ve shown model performance and other results of your work, you can
end the talk with a discussion of possible improvements and future work, as shown in
figure 12.20.

Some of the points on the future work slide—in particular, the need for velocity
variables—come up naturally from the previous discussion of the work and findings.
Others, like future work on model retraining schedules, aren’t foreshadowed as
strongly by the earlier part of the talk, but might occur to people in your audience
and are worth elaborating on briefly here. Again, you want to be up-front, though
optimistic, about the limitations of your model—especially because this audience is
likely to see the limitations already. 

Results

• 84% recall, 83% precision

• Reduced manual scan of 
forums by over a factor of 4

• From 791 to 184 topics to 
inspect

• PMs: 75% of identified topics 
produced “valuable insight”

Predicted 
No Buzz

Predicted
Buzz

No 
Buzz 579 35 614

Buzz 28 149 177

Total 607 184 791

Variable Importance

• Key inputs:

• # times topic is 
displayed to user 
(num.displays)

• # authors contributing 
to topic 
(attention.level.author)

• Velocity variables for these 
two inputs could improve 
model

attention.level.contrib1
attention.level.contrib4
burstiness6
avg.auths.per.disc1
attention.level.author3
atomic.containers5
auth.increase4
avg.auths.per.disc4
avg.auths.per.disc2
attention.level.author4
num.authors.topic0
auth.increase7
contribution.sparseness6
atomic.containers7
num.displays3
num.authors.topic7
attention.level.author5
atomic.containers3
attention.level.author0
avg.auths.per.disc6
attention.level.author7
num.displays0
num.displays4
num.displays2
attention.level.author1
num.displays5
num.displays1
avg.auths.per.disc5
num.displays6
num.displays7

3 4 5 6 7 8 9 10

fmodel

MeanDecreaseAccuracy

Discuss other key findings,
like which variables were

most influential on the model.

Show your results:
model performance
and other outcomes.

Figure 12.19 Showing model performance
Licensed to Ajit de Silva <agdesilva@gmail.com>



457Summary
12.3.5 Peer presentation takeaways

Here’s what you should remember about your presentation to fellow data scientists:

 A peer presentation can be motivated primarily by the modeling task.
 Unlike the previous presentations, the peer presentation can (and should) be

rich in technical details.
 Be up-front about limitations of the model and assumptions made while build-

ing it. Your audience can probably spot many of the limitations already. 

Summary
In this chapter, you’ve seen how to present the results of your work to three different
audiences. Each of these audiences has their own perspective and their own set of
interests, and your talk should be tailored to match those interests. Organize your pre-
sentations to declare a shared goal and show how you’re meeting that goal. We’ve sug-
gested ways to organize each type of talk that will help you to tailor your discussion
appropriately.

None of our suggestions are set in stone: you may have a project sponsor or other
interested executives who want to dig down to the more technical details, or end users
who are curious about how the internals of the model work. You can also have peer
audiences who want to hear more about the business context. If you know this ahead
of time (perhaps because you’ve presented to this audience before), then you should
include the appropriate level of detail in your talk. If you’re not sure, you can also pre-
pare backup slides to be used as needed. There’s only one hard-and-fast rule: have
empathy for your audience.

Future Work

• Better input variables

• Shape and velocity variables

• How quickly # authors grows/shrinks

• How much # topic displays increases/decreases

• Information about new forum visitors

• What questions do first-time visitors come to 
ask?

• Research optimal model retraining schedule

Discuss future work.

Figure 12.20 Discussing future work
Licensed to Ajit de Silva <agdesilva@gmail.com>



458 CHAPTER 12 Producing effective presentations
In this chapter you have learned

 How to prepare a business-focused presentation for project sponsors
 How to prepare a presentation (or documentation) for end users to show them

how to use your model and convince them that they want to
 How to prepare a more technical presentation for your peers
Licensed to Ajit de Silva <agdesilva@gmail.com>



appendix A
Starting with R
and other tools

In this appendix, we’ll show how you can install tools and start working with R.
We’ll demonstrate some example concepts and steps, but you’ll want to follow up
with additional reading.

Section A.1 is something all readers should review, as it shows where to get all of
the software support materials for this book. The other sections should be consid-
ered on an as-needed basis, as they outline the details of how R works (something
the reader may already know), and some specific applications (such as using data-
bases) that may not be needed by all readers. Throughout the book we have tried
to avoid teaching things “just in case,” but here in the appendixes we supply some
things you only “might” need.

A.1 Installing the tools
The primary tool for working our examples will be R, and possibly RStudio. But
other tools (databases, version control, compilers, and so on) are also highly rec-
ommended. You may also need access to online documentation or other help to
get all of these tools to work in your environment. The distribution sites we list are
a good place to start.

A.1.1 Installing Tools

The R environment is a set of tools and software that can be installed on Unix,
Linux, Apple macOS, and Windows.

R
We recommend installing the latest version of R from the Comprehensive R
Archive Network (CRAN) at https://cran.r-project.org, or a mirror. CRAN is the
authoritative central repository for R and R packages. CRAN is supported by The R
459

Licensed to Ajit de Silva <agdesilva@gmail.com>

https://cran.r-project.org


460 APPENDIX A Starting with R and other tools
Foundation and the R Development Core Team. R itself is an official part of the Free
Software Foundation’s GNU project distributed under a GPL 2 license. R is used at
many large institutions, including the United States Food and Drug Administration.1

For this book, we recommend using at least R version 3.5.0 or newer.
To work with R, you need a text editor specialized for working with non-formatted

(or not-rich) text. Such editors include Atom, Emacs, Notepad++, Pico, Programmer’s
Notepad, RStudio, Sublime Text, text wrangler, vim, and many more. These are in
contrast to rich text editors (which are not appropriate for programming tasks) such
as Microsoft Word or Apple Text Edit. 

RSTUDIO

We suggest that when working with R, you consider using RStudio. RStudio is a popu-
lar cross-platform integrated development environment supplied by the company
RStudio, Inc. (https://www.rstudio.com). RStudio supplies a built-in text editor and
convenient user interfaces for common tasks such as installing software, rendering R
markdown documents, and working with source control. RStudio is not an official
part of R or CRAN, and should not be confused with R or CRAN.

An important feature of RStudio is the file browser and the set-directory/go-to-
directory controls that are hidden in the gear icon of the file-browsing pane, which we
point out in figure A.1.

1 Source: https://www.r-project.org/doc/R-FDA.pdf.

File pane gear control

Figure A.1 RStudio file-browsing controls
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://www.rstudio.com
https://www.r-project.org/doc/R-FDA.pdf


461Installing the tools
RStudio is not a requirement to use R or to work through the examples in this book.

GIT

Git is a source control or version management system that is very useful for preserving
and sharing work. To install Git, please follow the appropriate instructions from
https://git-scm.com.

Data science always involves a lot of tools and collaboration, so the willingness to try
new tools is a flexibility one needs to develop.

THE BOOK-SUPPORT MATERIALS

All of the book-support materials are freely available from GitHub: https://github
.com/WinVector/PDSwR2, as shown in figure A.2. The reader should download them
in their entirety either using git clone with the URL https://github.com/WinVector/
PDSwR2.git or by downloading a complete zip file by using the “Clone or Download”
control at the top right of the GitHub page.

Another way to download the book material is to use RStudio and Git. Select File >
New Project > Create Project from Version Control > Git. That will bring up a dialog
box as shown in figure A.3. You can fill in the Git URL and download the book materi-
als as a project.

Click here to download
everything as a zip file.

https://github.com/WinVector/PDSwR2

URL for “git clone” or
RStudio New Project -> Version Control -> Git 

Figure A.2 Downloading the book materials from GitHub
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://git-scm.com
https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2
https://github.com/WinVector/PDSwR2.git
https://github.com/WinVector/PDSwR2.git
https://github.com/WinVector/PDSwR2.git


462 APPENDIX A Starting with R and other tools
We will refer to this directory as PDSwR2 throughout the book, and all files and paths
we mention are either in this directory or a subdirectory. Please be sure to look in this
directory for any README or errata files.

Some features of the support directory include these:

 All example data used in the book.
 All example code used in the book. The examples from the book are available

in the subdirectory CodeExamples, and also as the zip file CodeExamples.zip.
In addition to this, the entire set of examples, rerun and rerendered, are
shared in RenderedExamples. (All paths should be relative to where you have
unpacked the book directory PDSwR2.)

R PACKAGES

A great advantage of R is the CRAN central package repository. R has standardized
package installation through the install.packages() command. An installed pack-
age is typically not fully available for use in a project until the package is also attached
for use by the library() command.2 A good practice is this: any sort of R script or
work should attach all the packages it intends to use as a first step. Also, in most cases
scripts should not call install.packages(), as this changes the R installation, which
should not be done without user supervision.

2 In R installing a package is a separate step from attaching it for use. install.packages() makes package
contents potentially available; after that, library() readies them for use. A handy mnemonic is this:
install.packages() sets up new appliances in your kitchen, and library() turns them on. You don’t
have to install things very often, however you often have to turn things back on.

GitHub clone URL

Figure A.3 Cloning the book repository
Licensed to Ajit de Silva <agdesilva@gmail.com>



463Installing the tools
INSTALLING THE REQUIRED PACKAGES

To install the set of packages required to work all the examples in this book, first
download the book repository as described previously. Then look in the first directory
or top directory of this repository: PDSwR2. In this directory, you will find the file
packages.R. You can open this file with a text editor, and it should look like the follow-
ing (though it may be more up to date than what is shown here).

# Please have an up to date version of R (3.5.*, or newer)
# Answer "no" to:
# Do you want to install from sources the packages which need compilation?
update.packages(ask = FALSE, checkBuilt = TRUE)

pkgs <- c(
"arules", "bitops", "caTools", "cdata", "data.table", "DBI",
"dbplyr", "DiagrammeR", "dplyr", "e1071", "fpc", "ggplot2",
"glmnet", "glmnetUtils", "gridExtra", "hexbin", "kernlab",
"igraph", "knitr", "lime", "lubridate", "magrittr", "MASS",
"mgcv", "pander", "plotly", "pwr", "randomForest", "readr",
"readxls", "rmarkdown", "rpart", "rpart.plot", "RPostgres",
"rqdatatable", "rquery", "RSQLite", "scales", "sigr", "sqldf",
"tidypredict", "text2vec", "tidyr", "vtreat", "wrapr", "WVPlots",
"xgboost", "xts", "webshot", "zeallot", "zoo")

install.packages(
pkgs,
dependencies = c("Depends", "Imports", "LinkingTo"))

To install everything, run every line of code in this file from R.3

Unfortunately, there are many reasons the install can fail: incorrect copy/paste, no
internet connection, improperly configured R or RStudio, insufficient permissions to
administer the R install, out-of-date versions of R or RStudio, missing system require-
ments, or no or incorrect C/C++/Fortran compiler. If you run into these problems, it
is best to find a forum or expert to help you work through these steps. Once every-
thing is successfully installed, R is a self-contained environment where things just
work.

Not all packages are needed for all examples, so if you have trouble with the overall
install, just try to work the examples in the book. Here’s a caveat: if you see a
library(pkgname) command fail, please try install.packages('pkgname') to install
the missing package. The preceding package list is just trying to get everything out of
the way in one step.

OTHER TOOLS

R’s capabilities can be enhanced by using tools such as Perl,4 gcc/clang, gfortran, git,
Rcpp, Tex, pandoc, ImageMagick, and Bash shell. Each of these is managed outside of

3 The preceding code can be found as the file packages.R at https://github.com/WinVector/PDSwR2. We
could call it PDSwR2/packages.R, which could mean the file from the original GitHub URL or from a local
copy of the GitHub repository.

4 See https://www.perl.org/get.html.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2
https://www.perl.org/get.html


464 APPENDIX A Starting with R and other tools
R, and how to maintain them depends on your computer, operating system, and sys-
tem permissions. Unix/Linux users have the easiest time installing these tools, and R
is primarily developed in a Unix environment.5 RStudio will install some of the extra
tools. macOS users may need Apple’s Xcode tools and Homebrew (https://brew.sh)
to have all the required tools. Windows users who wish to write packages may want to
research RTools (https://cran.r-project.org/bin/windows/Rtools/).

Windows users may need RTools to compile packages; however, this should not be
strictly necessary as most current packages are available from CRAN in a precompiled
form (at least for macOS and 64-bit Windows). macOS users may need to install the
Xcode compiler (available from Apple) to compile packages. All of these are steps you
probably want to skip until you need the ability to compile.

A.1.2 The R package system

R is a broad and powerful language and analysis workbench in and of itself. But one of its
real strengths is the depth of the package system and packages supplied through CRAN.
To install a package from CRAN, just type install.packages('nameofpackage'). To
use an installed package, type library(nameofpackage).6 Any time you type
library('nameofpackage') or require('nameofpackage'), you’re assuming you’re
using a built-in package or you’re able to run install.packages('nameofpackage')
if needed. We’ll return to the package system again and again in this book. To see
what packages are present in your session, type sessionInfo().

CHANGING YOUR CRAN MIRROR You can change your CRAN mirror at any
time with the chooseCRANmirror() command. This is handy if the mirror
you’re working with is slow.

A.1.3 Installing Git

We advise installing Git version control before we show you how to use R and RStudio.
This is because without Git, or a tool like it, you’ll lose important work. Not just lose
your work—you’ll lose important client work. A lot of data science work (especially the
analysis tasks) involves trying variations and learning things. Sometimes you learn
something surprising and need to redo earlier experiments. Version control keeps
earlier versions of all of your work, so it’s exactly the right tool to recover code and set-
tings used in earlier experiments. Git is available in precompiled packages from
http://git-scm.com.

5 For example, we share notes on rapidly configuring R and RStudio Server on an Amazon EC2 instance here:
www.win-vector.com/blog/2018/01/setting-up-rstudio-server-quickly-on-amazon-ec2/.

6 Actually, library('nameofpackage') also works with quotes. The unquoted form works in R because R
has the ability to delay argument evaluation (so an undefined nameofpackage doesn’t cause an error) as well
as the ability to snoop the names of argument variables (most programming languages rely only on references
or values of arguments). Given that a data scientist has to work with many tools and languages throughout the
day, we prefer to not rely on features unique to one language unless we really need the feature. But the “offi-
cial R style” is without the quotes.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://cran.r-project.org/bin/windows/Rtools/
https://brew.sh
www.win-vector.com/blog/2018/01/setting-up-rstudio-server-quickly-on-amazon-ec2/
http://git-scm.com


465Installing the tools
A.1.4 Installing RStudio

RStudio supplies a text editor (for editing R scripts) and an integrated development
environment for R. Before picking up RStudio from http://rstudio.com, you should
install both R and Git as we described earlier.

The RStudio product you initially want is called RStudio Desktop and is available pre-
compiled for Windows, Linux, and macOS.

When you’re first starting with RStudio, we strongly recommend turning off both
the “Restore .RData into workspace at startup” and “Save workspace to .RData on exit”
features. Having these settings on (the default) makes it hard to reliably “work clean”
(a point we will discuss in section A.3. To turn off these features, open the RStudio
options pane (the Global option is found by such as menus RStudio > Preferences,
Tools > Global Options, Tools > Options, or similar, depending on what operating sys-
tem you are using), and then alter the two settings as indicated in figure A.4.

A.1.5 R resources

A lot of the power of R comes from its large family of packages, available from the
CRAN repository. In this section, we’ll point out some packages and documentation.

INSTALLING R VIEWS

R has an incredibly deep set of available libraries. Usually, R already has the package
you want; it’s just a matter of finding it. A powerful way to find R packages is using
views: http://cran.r-project.org/web/views/.

Uncheck

Move to “Never”

Figure A.4 RStudio options
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://rstudio.com
http://cran.r-project.org/web/views/


466 APPENDIX A Starting with R and other tools
You can also install all the packages (with help documentation) from a view with a
single command (though be warned: this can take an hour to finish). For example,
here we’re installing a huge set of time series libraries all at once:

install.packages('ctv', repos = 'https://cran.r-project.org')
library('ctv')
# install.views('TimeSeries') # can take a LONG time

Once you’ve done this, you’re ready to try examples and code.

ONLINE R RESOURCES

A lot of R help is available online. Some of our favorite resources include these:

 CRAN—The main R site: http://cran.r-project.org
 Stack Overflow R section—A question-and-answer site: http://stackoverflow.com/

questions/tagged/r
 Quick-R—A great R resource: http://www.statmethods.net
 LearnR—A translation of all the plots from Lattice: Multivariate Data Visualiza-

tion with R (Use R!) (by D. Sarker; Springer, 2008) into ggplot2: http://learnr
.wordpress.com

 R-bloggers—An R blog aggregator: http://www.r-bloggers.com
 RStudio community—An RStudio/tidyverse–oriented company site: https://

community.rstudio.com/

A.2 Starting with R
R implements a dialect of a statistical programming language called S. The original
implementation of S evolved into a commercial package called S+. So most of R’s lan-
guage-design decisions can be traced back to S. To avoid confusion, we’ll mostly just
say R when describing features. You might wonder what sort of command and pro-
gramming environment S/R is. It’s a pretty powerful one, with a nice command inter-
preter that we encourage you to type directly into.

Work clean
In R or RStudio, it is important to “work clean”—that is, to start with an empty work-
space and explicitly bring in the packages, code, and data you want. This ensures you
know how to get into your ready-to-go state (as you have to perform or write down the
steps to get there) and you aren’t held hostage to state you don’t know how to restore
(what we call the “no alien artifact” rule).

To work clean in R, you must turn off any sort of autorestore of the workspace. In
“base R” this is done by restarting R with the --no-restore command-line flag set.
In RStudio, the Session > Restart R menu option serves a similar role, if the “Restore
.Rdata into workspace on startup” option is not checked.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://cran.r-project.org
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
http://www.statmethods.net
http://learnr.wordpress.com
http://learnr.wordpress.com
http://learnr.wordpress.com
http://www.r-bloggers.com
https://community.rstudio.com/
https://community.rstudio.com/
https://community.rstudio.com/


467Starting with R
Working with R and issuing commands to R is in fact scripting or programming. We
assume you have some familiarity with scripting (perhaps using Visual Basic, Bash, Perl,
Python, Ruby, and so on) or programming (perhaps using C, C#, C++, Java, Lisp,
Scheme, and so on), or are willing to use one of our references to learn. We don’t
intend to write long programs in R, but we’ll have to show how to issue R commands. R’s
programming, though powerful, is a bit different than many of the popular program-
ming languages, but we feel that with a few pointers, anyone can use R. If you don’t
know how to use a command, try using the help() call to get at some documentation.

Throughout this book, we’ll instruct you to run various commands in R. This will
almost always mean typing the text or the text following the command prompt > into
the RStudio console window, followed by pressing Return. For example, if we tell you
to type 1/5, you can type that into the console window, and when you press Enter,
you’ll see a result such as [1] 0.2. The [1] portion of the result is just R’s way of label-
ing result rows (and is to be ignored), and the 0.2 is the floating-point representation
of one-fifth, as requested.

HELP Always try calling help() to learn about commands. For example,
help('if') will bring up help about R’s if command.

Let’s try a few commands to help you become familiar with R and its basic data types.
R commands can be terminated with a line break or a semicolon (or both), but inter-
active content isn’t executed until you press Return. The following listing shows a few
experiments you should run in your copy of R.

1
## [1] 1
1/2
## [1] 0.5
'Joe'
## [1] "Joe"
"Joe"
## [1] "Joe"
"Joe"=='Joe'
## [1] TRUE
c()
## NULL
is.null(c())
## [1] TRUE
is.null(5)
## [1] FALSE
c(1)
## [1] 1
c(1, 2)
## [1] 1 2
c("Apple", 'Orange')
## [1] "Apple" "Orange"
length(c(1, 2))

Listing A.1 Trying a few R commands
Licensed to Ajit de Silva <agdesilva@gmail.com>



468 APPENDIX A Starting with R and other tools
## [1] 2
vec <- c(1, 2)
vec
## [1] 1 2

# IS R’S COMMENT CHARACTER The # mark is R’s comment character. It indi-
cates that the rest of the line is to be ignored. We use it to include comments,
and also to include output along with the results.

A.2.1 Primary features of R

R commands look like a typical procedural programming language. This is deceptive,
as the S language (which the language R implements) was actually inspired by func-
tional programming and also has a lot of object-oriented features.

ASSIGNMENT

R has five common assignment operators: =, <-, ->, <<-, and ->>. Traditionally, in R,
<- is the preferred assignment operator, and = is thought of as a late addition and an
amateurish alias for it.

The main advantage of the <- notation is that <- always means assignment, whereas
= can mean assignment, list slot binding, function argument binding, or case state-
ment, depending on the context. One mistake to avoid is accidentally inserting a
space in the assignment operator:

x <- 2
x < - 3
## [1] FALSE
print(x)
## [1] 2

We actually like = assignment better because data scientists tend to work in more than
one language at a time and more bugs are caught early with =. But this advice is too
heterodox to burden others with (see http://mng.bz/hfug). We try to consistently use
<- in this book, but some habits are hard to break.

MULTILINE COMMANDS IN R R is good with multiline commands. To enter a
multiline command, just make sure it would be a syntax error to stop parsing
where you break a line. For example, to enter 1+2 as two lines, add the line
break after the plus sign and not before. To get out of R’s multiline mode,
press Escape. A lot of cryptic R errors are caused by either a statement ending
earlier than you wanted (a line break that doesn’t force a syntax error on
early termination) or not ending where you expect (needing an additional
line break or semicolon).

The = operator is primarily used to bind values to function arguments (and <- can’t
be so used) as shown in the next listing.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/hfug


469Starting with R
divide <- function(numerator,denominator) { numerator/denominator }
divide(1, 2)
## [1] 0.5

divide(2, 1)
## [1] 2

divide(denominator = 2, numerator = 1)
## [1] 0.5

divide(denominator <- 2, numerator <- 1) # wrong symbol <-
, yields 2, a wrong answer!

## [1] 2

The -> operator is just a left-to-right assignment that lets you write things like x -> 5.
It’s cute, but not game changing.

The <<- and ->> operators are to be avoided unless you actually need their special
abilities. They are intended to write values outside of the current execution environ-
ment, which is an example of a side effect. Side effects seem great when you need
them (often for error tracking and logging), but when overused they make code
maintenance, debugging, and documentation much harder. In the following listing,
we show a good function that doesn’t have a side effect and a bad function that does
have one.

x<-1
good <- function() { x <- 5}
good()
print(x)
## [1] 1

bad <- function() { x <<- 5}
bad()
print(x)
## [1] 5

VECTORIZED OPERATIONS

Many R operations are called vectorized, which means they work on every element of a
vector. These operators are convenient and to be preferred over explicit code like for
loops. For example, the vectorized logic operators are ==, &, and |. The next listing
shows some examples using these operators on R’s logical types TRUE and FALSE.

c(TRUE, TRUE, FALSE, FALSE) == c(TRUE, FALSE, TRUE, FALSE)
## [1] TRUE FALSE FALSE TRUE

c(TRUE, TRUE, FALSE, FALSE) & c(TRUE, FALSE, TRUE, FALSE)
## [1] TRUE FALSE FALSE FALSE

c(TRUE, TRUE, FALSE, FALSE) | c(TRUE, FALSE, TRUE, FALSE)
## [1] TRUE TRUE TRUE FALSE

Listing A.2 Binding values to function arguments 

Listing A.3 Demonstrating side effects

Listing A.4 R truth tables for Boolean operators
Licensed to Ajit de Silva <agdesilva@gmail.com>



470 APPENDIX A Starting with R and other tools
To test if two vectors are a match, we’d use R’s identical() or all.equal() methods.

WHEN TO USE && OR || IN R && and || work only on scalars, not vectors. So
always use && and || in if() statements, and never use & or | in if() state-
ments. Similarly prefer & and | when working with general data (which may
need these vectorized versions).

R also supplies a vectorized sector called ifelse(,,) (the basic R-language if state-
ment isn’t vectorized).

R’S OBJECT SYSTEM

Every item in R is an object and has a type definition called a class. You can ask for the
type of any item using the class() command. For example, class(c(1,2)) is numeric.
R in fact has two object-oriented systems. The first one is called S3 and is closest to
what a C++ or Java programmer would expect. In the S3 class system, you can have
multiple commands with the same name. For example, there may be more than one
command called print(). Which print() actually gets called when you type print(x)
depends on what type x is at runtime. S3 is a unique object system in that methods are
global functions, and are not strongly associated with object definitions, prototypes, or
interfaces. R also has a second object-oriented system called S4, which supports more
detailed classes and allows methods to be picked based on the types of more than just
the first argument. Unless you’re planning on becoming a professional R program-
mer (versus a professional R user or data scientist), we advise not getting into the com-
plexities of R’s object-oriented systems. Mostly you just need to know that most R
objects define useful common methods like print(), summary(), and class(). We
also advise leaning heavily on the help() command. To get class-specific help, you use
a notation method.class; for example, to get information on the predict() method
associated with objects of class glm, you would type help(predict.glm).

R’S SHARE-BY-VALUE CHARACTERISTICS

In R each reference to a value is isolated: changes to one reference are not seen by
other references. This is a useful feature similar to what other languages term “call by
value semantics,” or even the immutable data types of some languages.

This means, from the programmer’s point of view, that each variable or each argu-
ment of a function behaves as if it were a separate copy of what was passed to the func-
tion. Technically, R’s calling semantics are actually a combination of references and
what is called lazy copying. But until you start directly manipulating function argument
references, you see what looks like call-by-value behavior.

Share-by-value is a great choice for analysis software: it makes for fewer side effects
and bugs. But most programming languages aren’t share-by-value, so share-by-value
semantics often come as a surprise. For example, many professional programmers rely
on changes made to values inside a function being visible outside the function. Here’s
an example of call-by-value at work.
Licensed to Ajit de Silva <agdesilva@gmail.com>



471Starting with R
a <- c(1, 2)
b <- a

print(b)

a[[1]] <- 5

print(a)

print(b)

A.2.2 Primary R data types

While the R language and its features are interesting, it’s the R data types that are
most responsible for R’s style of analysis. In this section, we’ll discuss the primary data
types and how to work with them.

VECTORS

R’s most basic data type is the vector, or array. In R, vectors are arrays of same-typed val-
ues. They can be built with the c() notation, which converts a comma-separated list of
arguments into a vector (see help(c)). For example, c(1,2) is a vector whose first
entry is 1 and second entry is 2. Try typing print(c(1,2)) into R’s command prompt
to see what vectors look like and notice that print(class(1)) returns numeric, which
is R’s name for numeric vectors.

R is fairly unique in having no scalar types. A single number such as the number 5 is
represented in R as a vector with exactly one entry (5).

R doesn’t generally expose any primitive or scalar types to the user. For example, the
number 1.1 is actually converted into a numeric vector with a length of 1 whose first
entry is 1.1. Note that print(class(1.1)) and print(class(c(1.1, 0))) are identi-
cal. Note also that length(1.1) and length(c(1.1)) are also identical. What we call
scalars (or single numbers or strings) are in R just vectors with a length of 1. R’s most
common types of vectors are these:

Listing A.5 Call-by-value effect 

Alters a. This is implemented by building an entirely 
new vector and reassigning a to refer to this new 
vector. The old value remains as it was, and any 
references continue to see the old, unaltered value.

Notice that b’s value is not changed.

Numbers in R
Numbers in R are primarily represented in double-precision floating-point. This differs
from some programming languages, such as C and Java, that default to integers. This
means you don’t have to write 1.0/5.0 to prevent 1/5 from being rounded down to
0, as you would in C or Java. It also means that some fractions aren’t represented
perfectly. For example, 1/5 in R is actually (when formatted to 20 digits by
sprintf("%.20f", 1 / 5)) 0.20000000000000001110, not the 0.2 it’s usually dis-
played as. This isn’t unique to R; this is the nature of floating-point numbers. A good
example to keep in mind is 1 / 5 != 3 / 5 - 2 / 5, because 1 / 5 - (3 / 5
- 2 / 5) is equal to 5.55e-17.
Licensed to Ajit de Silva <agdesilva@gmail.com>



472 APPENDIX A Starting with R and other tools
 Numeric—Arrays of double-precision floating-point numbers.
 Character—Arrays of strings.
 Factor —Arrays of strings chosen from a fixed set of possibilities (called enums in

many other languages).
 Logical—Arrays of TRUE/FALSE.
 NULL—The empty vector c() (which always has type NULL). Note that

length(NULL) is 0 and is.null(c()) is TRUE.

R uses square-bracket notation (and others) to refer to entries in vectors.7 Unlike
most modern programming languages, R numbers vectors starting from 1 and not 0.
Here’s some example code showing the creation of a variable named vec holding a
numeric vector. This code also shows that most R data types are mutable, in that we’re
allowed to change them:

vec <- c(2, 3)
vec[[2]] <- 5
print(vec)
## [1] 2 5

NUMBER SEQUENCES Number sequences are easy to generate with com-
mands like 1:10. Watch out: the : operator doesn’t bind very tightly, so you
need to get in the habit of using extra parentheses. For example, 1:5 * 4 + 1
doesn’t mean 1:21. For sequences of constants, try using rep().

LISTS

In addition to vectors (created with the c() operator), R has two types of lists. Lists,
unlike vectors, can store more than one type of object, so they’re the preferred way to
return more than one result from a function. The basic R list is created with the
list() operator, as in list(6, 'fred'). Basic lists aren’t really that useful, so we’ll
skip over them to named lists. In named lists, each item has a name. An example of a
named list would be created with list('a' = 6, 'b' = 'fred'). Usually the quotes
on the list names are left out, but the list names are always constant strings (not vari-
ables or other types). In R, named lists are essentially the only convenient mapping
structure (the other mapping structure being environments, which give you mutable
lists). The ways to access items in lists are the $ operator and the [[]] operator (see
help('[[') in R’s help system). Here’s a quick example.

x <- list('a' = 6, b = 'fred')
names(x)
## [1] "a" "b"
x$a
## [1] 6
x$b

7 The most commonly used index notation is []. When extracting single values, we prefer the double square-
bracket notation [[]] as it gives out-of-bounds warnings in situations where [] doesn’t.

Listing A.6 Examples of R indexing operators
Licensed to Ajit de Silva <agdesilva@gmail.com>



473Starting with R
## [1] "fred"
x[['a']]
## $a
## [1] 6

x[c('a', 'a', 'b', 'b')]
## $a
## [1] 6
##
## $a
## [1] 6
##
## $b
## [1] "fred"
##
## $b
## [1] "fred"

As you see in our example, the [] operator is vectorized, which makes lists incredibly
useful as translation maps.

Labels use case-sensitive partial match
The R list label operators (such as $) allow partial matches. For example,
list('abe' = 'lincoln')$a returns lincoln, which is fine and dandy until you
add a slot actually labeled a to such a list and your older code breaks. In general, it
would be better if list('abe'='lincoln')$a was an error, so you'd have a chance
of being signaled of a potential problem the first time you made such an error. You
could try to disable this behavior with options(warnPartialMatchDollar = TRUE),
but even if that worked in all contexts, it’s likely to break any other code that’s quietly
depending on such shorthand notation.

Selection: [[]] versus []
[[]] is the strictly correct operator for selecting a single element from a list or vector.
At first glance, [] appears to work as a convenient alias for [[]], but this is not
strictly correct for single-value (scalar) arguments. [] is actually an operator that can
accept vectors as its argument (try list(a='b')[c('a','a')]) and return nontrivial
vectors (vectors of length greater than 1, or vectors that don’t look like scalars) or
lists. The operator [[]] has different (and better) single-element semantics for both
lists and vectors (though, unfortunately, [[]] has different semantics for lists than
for vectors).

Really, you should never use [] when [[]] can be used (when you want only a single
result). Everybody, including the authors, forgets this and uses [] way more often
than is safe. For lists, the main issue is that [[]] usefully unwraps the returned val-
ues from the list type (as you’d want: compare class(list(a='b')['a']) to
class(list(a='b')[['a']])). For vectors, the issue is that [] fails to signal out-
of-bounds access (compare c('a','b')[[7]] to c('a','b')[7] or, even worse,
c('a','b')[NA]).
Licensed to Ajit de Silva <agdesilva@gmail.com>



474 APPENDIX A Starting with R and other tools
DATA FRAMES

R’s central data structure is the data frame. A data frame is organized into rows and col-
umns. It is a list of columns of different types. Each row has a value for each column.
An R data frame is much like a database table: the column types and names are the
schema, and the rows are the data. In R, you can quickly create a data frame using the
data.frame() command. For example, d = data.frame(x=c(1,2),y=c('x','y')) is
a data frame.

The correct way to read a column out of a data frame is with the [[]] or $ operators,
as in d[['x']], d$x or d[[1]]. Columns are also commonly read with the d[, 'x'] or
d['x'] notations. Note that not all of these operators return the same type (some
return data frames, and some return arrays).

Sets of rows can be accessed from a data frame using the d[rowSet,] notation,
where rowSet is a vector of Booleans with one entry per data row. We prefer to use
d[rowSet,, drop = FALSE] or subset(d,rowSet), as they’re guaranteed to always
return a data frame and not some unexpected type like a vector (which doesn’t sup-
port all of the same operations as a data frame).8 Single rows can be accessed with the
d[k,] notation, where k is a row index. Useful functions to call on a data frame
include dim(), summary(), and colnames(). Finally, individual cells in the data frame
can be addressed using a row-and-column notation, like d[1, 'x'].

From R’s point of view, a data frame is a single table that has one row per example
you’re interested in and one column per feature you may want to work with. This is, of
course, an idealized view. The data scientist doesn’t expect to be so lucky as to find
such a dataset ready for them to work with. In fact, 90% of the data scientist’s job is fig-
uring out how to transform data into this form. We call this task data tubing, and it
involves joining data from multiple sources, finding new data sources, and working
with business and technical partners. But the data frame is exactly the right abstrac-
tion. Think of a table of data as the ideal data scientist API. It represents a nice demar-
cation between preparatory steps that work to get data into this form and analysis
steps that work with data in this form.

Data frames are essentially lists of columns. This makes operations like printing
summaries or types of all columns especially easy, but makes applying batch opera-
tions to all rows less convenient. R matrices are organized as rows, so converting
to/from matrices (and using transpose t()) is one way to perform batch operations
on data frame rows. But be careful: converting a data frame to a matrix using some-
thing like the model.matrix() command (to change categorical variables into multi-
ple columns of numeric level indicators) doesn’t track how multiple columns may
have been derived from a single variable and can potentially confuse algorithms that
have per-variable heuristics (like stepwise regression and random forests).

8 To see the problem, type class(data.frame(x = c(1, 2))[1, ]), which reports the class as numeric,
instead of as data.frame.
Licensed to Ajit de Silva <agdesilva@gmail.com>



475Starting with R
Data frames would be useless if the only way to populate them was to type them in.
The two primary ways to populate data frames are R’s read.table() command and
database connectors (which we’ll cover in section A.3).

MATRICES

In addition to data frames, R supports matrices. Matrices are two-dimensional struc-
tures addressed by rows and columns. Matrices differ from data frames in that matri-
ces are lists of rows, and every cell in a matrix has the same type. When indexing
matrices, we advise using the drop = FALSE notation; without this, selections that
should return single-row matrices instead return vectors. This would seem okay,
except that in R, vectors aren’t substitutable for matrices, so downstream code that’s
expecting a matrix will mysteriously crash at run time. And the crash may be rare and
hard to demonstrate or find, as it only happens if the selection happens to return
exactly one row.

NULL AND NANA (NOT AVAILABLE) VALUES

R has two special values: NULL and NA. In R, NULL is just an alias for c(), the empty vec-
tor. It carries no type information, so an empty vector of numbers is the same type as
an empty vector of strings (a design flaw, but consistent with how most programming
languages handle so-called null pointers). NULL can only occur where a vector or list is
expected; it can’t represent missing scalar values (like a single number or string).

For missing scalar values, R uses a special symbol, NA, which indicates missing or
unavailable data. In R, NA behaves like the not-a-number or NaN seen in most floating-
point implementations (except NA can represent any scalar, not just a floating-point
number). The value NA represents a nonsignaling error or missing value. Nonsignaling
means that you don’t get a printed warning, and your code doesn’t halt (not necessar-
ily a good thing). NA is inconsistent if it reproduces. 2+NA is NA, as we’d hope, but
paste(NA,'b') is a valid non-NA string.

Even though class(NA) claims to be logical, NAs can be present in any vector, list,
slot, or data frame.

FACTORS

In addition to a string type called character, R also has a special “set of strings” type
similar to what Java programmers would call an enumerated type. This type is called a
factor, and a factor is just a string value guaranteed to be chosen from a specified set of
values called levels. The advantage of factors is they are exactly the right data type to
represent the different values or levels of categorical variables.

The following example shows the string red encoded as a factor (note how it car-
ries around the list of all possible values) and a failing attempt to encode apple into
the same set of factors (returning NA, R’s special not-a-value symbol).
Licensed to Ajit de Silva <agdesilva@gmail.com>



476 APPENDIX A Starting with R and other tools
factor('red', levels = c('red', 'orange'))
## [1] red
## Levels: red orange

factor('apple', levels = c('red', 'orange'))
## [1] <NA>
## Levels: red orange

Factors are useful in statistics, and you’ll want to convert most string values into factors
at some point in your data science process. Usually, the later you do this, the better (as
you tend to know more about the variation in your data as you work)—so we suggest
using the optional argument "StringsAsFactors = FALSE" when reading data or cre-
ating new data.frames.

Making sure factor levels are consistent

In this book, we often prepare training and test data separately (simulating the fact
that new data will usually be prepared after the original training data). For factors,
this introduces two fundamental issues: consistency of numbering of factor levels
during training, and application and discovery of new factor level values during appli-
cation. For the first issue, it’s the responsibility of R code to make sure factor number-
ing is consistent. The following listing demonstrates that lm() correctly handles
factors as strings and is consistent even when a different set of factors is discovered
during application (this is something you may want to double-check for non-core
libraries). For the second issue, discovering a new factor during application is a mod-
eling issue. The data scientist either needs to ensure this can’t happen or develop a
coping strategy (such as falling back to a model not using the variable in question).

d <- data.frame(x=factor(c('a','b','c')),
y=c(1,2,3))

m <- lm(y~0+x,data=d)
print(predict(m,

newdata=data.frame(x='b'))[[1]])
# [1] 2

print(predict(m,
newdata=data.frame(x=factor('b',levels=c('b'))))[[1]])

# [1] 2

SLOTS

In addition to lists, R can store values by name in object slots. Object slots are
addressed with the @ operator (see help('@')). To list all the slots on an object, try
slotNames(). Slots and objects (in particular the S3 and S4 object systems) are
advanced topics we don’t cover in this book. You need to know that R has object sys-
tems, as some packages will return them to you, but you shouldn’t be creating your
own objects early in your R career.

Listing A.7 R’s treatment of unexpected factor levels

Listing A.8 Confirming lm() encodes new strings correctly

Builds a data frame and linear 
model mapping a,b,c to 1,2,3

Shows that the model gets the correct
prediction for b as a factor, encoded with a
different number of levels. This shows that
lm() is correctly treating factors as strings.

Shows that the 
model gets the 
correct prediction 
for b as a string
Licensed to Ajit de Silva <agdesilva@gmail.com>



477Using databases with R
A.3 Using databases with R
Sometimes you want to use R to work with data in a database. Usually this is because
the data is already in a database, or you want to use a high-performance database
(such as Postgres or Apache Spark) to manipulate data at speed.

If your data is small enough to fit in memory (or you can spin up a large enough
computer to make this so, say on Amazon EC2, Microsoft Azure, or Google Cloud), we
suggest bringing the data over to R using DBI::dbReadTable() and then using
data.table. Except for the data transfer time, this will be very hard to beat. Note,
however, that writing large results back to a database is not fully supported on all R
database drivers (sparklyr, in particular, explicitly does not support this).

If you want to work with data in a database (which we usually do for our clients),
then we suggest using a query generator such as rquery or dbplyr. We also believe the
idea of thinking in terms of Codd relational operators (or thinking in terms of SQL
databases) is very beneficial, so playing around with one of the preceding systems can
be well worth the effort.

A.3.1 Running database queries using a query generator

 Example Ranking customer offers

We are given a table of data keyed by customer names, product names. For each of
these key pairs we have a suggested price discount fraction and a predicted discount
offer affinity (both produced by some machine learning models, of the type we have
been discussing in this book). Our task is to take this table and select the two offers
with highest predicted affinity for each customer. The business goal is this: we want to
show the customer only these two offers, and none of the others.

To simulate this task, we will take some arbitrary data and copy it from R to a Post-
gres database. To run this example, you would need your own Postgres database, and
copy in your own connection details, including host, port, username, and password.
The purpose of this exercise is to give a taste of working with databases from R and a
taste of thinking in Codd relational terms (the basis for many data processing systems,
including dplyr).9

First, we set up our database connection and copy some data into this fresh database:

library("rquery")

raw_connection <- DBI::dbConnect(RPostgres::Postgres(),
host = 'localhost',
port = 5432,
user = 'johnmount',
password = '')

dbopts <- rq_connection_tests(raw_connection)
db <- rquery_db_info(

9 The full example and worked solution are available here: https://github.com/WinVector/PDSwR2/
blob/master/BestOffers/BestOffers.md.

Uses DBI to connect to 
a database. In this case, 
it creates a new in-
memory SQLite.

Builds an rquery wrapper 
for the connection
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/BestOffers/BestOffers.md
https://github.com/WinVector/PDSwR2/blob/master/BestOffers/BestOffers.md
https://github.com/WinVector/PDSwR2/blob/master/BestOffers/BestOffers.md


478 APPENDIX A Starting with R and other tools
connection = raw_connection,
is_dbi = TRUE,
connection_options = dbopts)

data_handle <- rq_copy_to(
db,

'offers',
wrapr::build_frame(
"user_name" , "product" , "discount", "predicted_of

fer_affinity" |
"John" , "Pandemic Board Game" , 0.1 , 0.8596

|
"Nina" , "Pandemic Board Game" , 0.2 , 0.1336

|
"John" , "Dell XPS Laptop" , 0.1 , 0.2402

|
"Nina" , "Dell XPS Laptop" , 0.05 , 0.3179

|
"John" , "Capek's Tales from Two Pockets", 0.05 , 0.2439

|
"Nina" , "Capek's Tales from Two Pockets", 0.05 , 0.06909

|
"John" , "Pelikan M200 Fountain Pen" , 0.2 , 0.6706

|
"Nina" , "Pelikan M200 Fountain Pen" , 0.1 , 0.616

),
temporary = TRUE,
overwrite = TRUE)

Now we will solve the problem by thinking relationally. We work in steps, and with
experience, we would see that to solve this problem, we want to assign a per-user rank
to each offer and then filter down to the ranks we want.

We will work this example using the rquery package. In rquery, window functions
are available though the extend() method.10 extend() can calculate a new column
based both on a partition of the data (by user_name) and an ordering of columns
within these partitions (by predicted_offer_affinity). It is easiest to demonstrate
this in action.

data_handle %.>% extend(.,
simple_rank = rank(),
partitionby = "user_name",
orderby = "predicted_offer_affinity",
reverse = "predicted_offer_affinity") %.>%

execute(db, .) %.>%
knitr::kable(.)

10 The odd name “extend” was chosen out of respect for the source of these ideas: Codd’s relational algebra.

Copies some example 
data into the database

Pipes our data into the execute() method. 
Notice that we use the wrapr dot pipe.

We’ll calculate rank() or 
the order of the data rows.

The window ordering that 
controls the rank will be from 
predicted_offer_affinity, 
reversed (largest first).

The ranking will be recalculated for 
each user (our window partition).

Translates the operation plan into SQL, 
sends it to the database for execution, and 
brings the results back to R

Pretty-prints the results
Licensed to Ajit de Silva <agdesilva@gmail.com>



479Using databases with R

 
g 
# |user_name |product | discount| predicted_offer_affi
nity| simple_rank|

# |:---------|:------------------------------|--------:|---------------------
---:|-----------:|

# |Nina |Pelikan M200 Fountain Pen | 0.10| 0.6
1600| 1|

# |Nina |Dell XPS Laptop | 0.05| 0.3
1790| 2|

# |Nina |Pandemic Board Game | 0.20| 0.1
3360| 3|

# |Nina |Capek's Tales from Two Pockets | 0.05| 0.0
6909| 4|

# |John |Pandemic Board Game | 0.10| 0.8
5960| 1|

# |John |Pelikan M200 Fountain Pen | 0.20| 0.6
7060| 2|

# |John |Capek's Tales from Two Pockets | 0.05| 0.2
4390| 3|

# |John |Dell XPS Laptop | 0.10| 0.2
4020| 4|

The question is this: how did we know to use the extend method and what options to
set? That requires some experience with relational systems. There are only a few pri-
mary operations (adding derived columns, selecting columns, selecting rows, and
joining tables) and only a few options (such as the partition and order when adding a
windowed column). So the technique can be learned. The power of the theory is that
just about any common data transform can be written in terms of these few fundamen-
tal data operators.

Now, to solve our full problem, we combine this operator with a few more rela-
tional operators (again using the wrapr dot pipe). This time we’ll have the result writ-
ten into a remote table (so no data ever moves to or from R!) and then only copy the
results back after the calculation is complete.

ops <- data_handle %.>%
extend(.,

simple_rank = rank(),
partitionby = "user_name",
orderby = "predicted_offer_affinity",
reverse = "predicted_offer_affinity") %.>%
select_rows(.,

simple_rank <= 2) %.>%
orderby(., c("user_name", "simple_rank")

result_table <- materialize(db, ops)

DBI::dbReadTable(db$connection, result_table$table_name) %.>%
knitr::kable(.)

# |user_name |product | discount| predicted_offer_affinity|
simple_rank|

Defines our sequence of operations

Marks each row with its simple per-user rank

Selects the two rows with 
highest rank for each user

Orders the rows by user 
and product rank

Copies the result back to R and pretty-prints it

Runs the result in the
database, instantiatin
a new result table
Licensed to Ajit de Silva <agdesilva@gmail.com>



480 APPENDIX A Starting with R and other tools
# |:---------|:-------------------------|--------:|------------------------
:|-----------:|

# |John |Pandemic Board Game | 0.10| 0.8596|
1|

# |John |Pelikan M200 Fountain Pen | 0.20| 0.6706|
2|

# |Nina |Pelikan M200 Fountain Pen | 0.10| 0.6160|
1|

# |Nina |Dell XPS Laptop | 0.05| 0.3179|
2|

The reason we saved the operation plan in the variable ops is because we can do a lot
more than just execute the plan. For example, we can create a diagram of the planned
operations, as in figure A.5.

Also—and this is the big point—we can see the SQL that gets actually sent to the data-
base. Without a query planner (such as rquery or dbplyr), we would have to write
something like this SQL:

ops %.>%
to_sql(., db) %.>%
cat(.)

## SELECT * FROM (
## SELECT * FROM (
## SELECT
## "user_name",
## "product",
## "discount",
## "predicted_offer_affinity",
## rank ( ) OVER ( PARTITION BY "user_name" ORDER BY "predicted_offer_aff

inity" DESC ) AS "simple_rank"

table(offers;
 user_name,
 product,
 discount,
 predicted_offer_affinity)

extend(.,
 simple_rank := rank(),
 p= user_name,
 o= predicted_offer_affinity DESC)

select_rows(.,
  simple_rank <= 2)

orderby(., user_name, simple_rank) Figure A.5 rquery operation 
plan diagram
Licensed to Ajit de Silva <agdesilva@gmail.com>



481Using databases with R
## FROM (
## SELECT
## "user_name",
## "product",
## "discount",
## "predicted_offer_affinity"
## FROM
## "offers"
## ) tsql_17135820721167795865_0000000000
## ) tsql_17135820721167795865_0000000001
## WHERE "simple_rank" <= 2
## ) tsql_17135820721167795865_0000000002 ORDER BY "user_name", "simple_rank"

The issue is that relational thinking is productive, but SQL itself is fairly verbose. In
particular, SQL expresses sequencing or composition as nesting, which means we read
from the inside out. A lot of the grace of Codd’s ideas is recovered when we move to
an operator notation (such as seen in dplyr or rquery).

A longer treatment (with more references) of this example can be found here:
https://github.com/WinVector/PDSwR2/blob/master/BestOffers/BestOffers.md.

Relational data manipulation thinks in terms of operators, which we briefly
touched on here, and data organization, which is the topic of our next section.

A.3.2 How to think relationally about data

The trick to thinking relationally about data is this: for every table, classify the col-
umns into a few important themes, and work with the natural relations between these
themes. One view of the major column themes is provided in table A.1.

Table A.1 Major SQL column themes

Column theme Description Common uses and treatments

Natural key columns In many tables, one or more columns 
taken together form a natural key that 
uniquely identifies the row. Some data 
(such as running logs) doesn’t have 
natural keys (many rows may corre-
spond to a given timestamp).

Natural keys are used to sort 
data, control joins, and spec-
ify aggregations.

Surrogate key columns Surrogate key columns are key col-
umns (collections of columns that 
uniquely identify rows) that don’t have 
a natural relation to the problem. 
Examples of surrogate keys include 
row numbers and hashes. In some 
cases (like analyzing time series), the 
row number can be a natural key, but 
usually it’s a surrogate key.

Surrogate key columns can be 
used to simplify joins; they 
tend not to be useful for sort-
ing and aggregation. Surro-
gate key columns must not be 
used as modeling features, as 
they don’t represent useful 
measurements.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/blob/master/BestOffers/BestOffers.md


482 APPENDIX A Starting with R and other tools
The point is that analysis is much easier if you have a good taxonomy of column
themes for every supplied data source. You then design SQL command sequences to
transform your data into a new table where the columns are just right for analysis. In
the end, you should have tables where every row is an event you’re interested in, and
every needed fact is already available in a column (which has been called a model
matrix for a very long time, or a denormalized table in relational database terms).

Provenance columns Provenance columns are columns that 
contain facts about the row, such as 
when it was loaded. The ORIGIN-
SERTTIME, ORIGFILENAME, and 
ORIGFILEROWNUMBER columns 
added in section 2.3.1 are examples 
of provenance columns.

Provenance columns shouldn’t 
be used in analyses, except 
for confirming you’re working 
on the right dataset, selecting 
a dataset (if different datasets 
are commingled in the same 
table), and comparing data-
sets.

Payload columns Payload columns contain actual data. 
Payload columns may be data such as 
prices and counts.

Payload columns are used for 
aggregation, grouping, and 
conditions. They can also 
sometimes be used to spec-
ify joins.

Experimental design 
columns 

Experimental design columns include 
sample grouping like ORIGRANDGROUP 
from section 2.3.1, or data weights 
like the PWGTP* and WGTP* columns 
we mentioned in section 7.1.1.

Experiment design columns 
can be used to control an 
analysis (select subsets of 
data, used as weights in mod-
eling operations), but they 
should never be used as fea-
tures in an analysis.

Derived columns Derived columns are columns that are 
functions of other columns or other 
groups of columns. An example would 
be the day of week (Monday through 
Sunday), which is a function of the 
date. Derived columns can be func-
tions of keys (which means they’re 
unchanging in many GROUP BY que-
ries, even though SQL will insist on 
specifying an aggregator such as 
MAX()) or functions of payload col-
umns.

Derived columns are useful in 
analysis. A full normal form 
database doesn’t have such 
columns. In normal forms, the 
idea is to not store anything 
that can be derived, which 
eliminates certain types of 
inconsistency (such as a row 
with the date February 1, 
2014, and the day of week 
Wednesday, when the correct 
day of week is Saturday). But 
during analyses, it’s always a 
good idea to store intermedi-
ate calculations in tables and 
columns: it simplifies code 
and makes debugging much 
easier.

Table A.1 Major SQL column themes (continued)

Column theme Description Common uses and treatments
Licensed to Ajit de Silva <agdesilva@gmail.com>



483The takeaway
FURTHER DATABASE READING

Our go-to database reference is Joe Celko, SQL for Smarties, Fourth Edition (Morgan
Kauffman, 2011).

A.4 The takeaway
In our opinion, the R ecosystem is the fastest path to substantial data science, statisti-
cal, and machine learning accomplishment. Other systems may have more advanced
machine learning capabilities (such as Python’s deep learning connections), but these
are now also available to R users through an adapter called reticulate.11 No data scien-
tist should expect to work forever in just one language, or with just one system; but we
feel R is a good place for many to start.

11 For an example, please see François Chollet and J. J. Allaire, Deep Learning with R (Manning, 2018).
Licensed to Ajit de Silva <agdesilva@gmail.com>



appendix B
Important

statistical concepts

Statistics is such a broad topic that we’ve only been able to pull pieces of it into our
data science narrative. But it’s an important field that has a lot to say about what
happens when you attempt to infer from data. We’ve assumed in this book that you
already know some statistical ideas (in particular, summary statistics such as the
mean, mode, median, variance, and standard deviation). In this appendix, we’ll
demonstrate a few more important statistical concepts that relate to model fitting,
characterizing uncertainty, and experimental design.

Statistics is math, so this appendix is a bit mathematical. It’s also intended to
teach you the proper statistical nomenclature, so you can share your work with other
data scientists. This appendix covers technical terms you will hear as part of “data
science shop talk.” You’ve been doing the data science work; now, we’ll discuss tools
to talk about and criticize the work.

A statistic is any sort of summary or measure of data. An example would be the
number of people in a room. Statistics is the study of how observed summaries of
samples relate to the (unobserved) true summaries of the entire population we
hope to model. Statistics help us to describe and mitigate the variance (or varia-
tion) of estimates, uncertainty (ranges or estimated ranges of what we do not
know), and bias (systematic errors our procedures unfortunately introduce).

For example, if we are using a database of all past marketing of our company,
this is still at best a sample of all possible sales (including future marketing and
sales we are hoping to predict with our models). If we do not account for the uncer-
tainty in sampling (and also from many other causes), we will draw incorrect infer-
ences and conclusions.1

1 We like to call machine learning the optimistic view of data and statistics the pessimistic view. In our opin-
ion, you need to understand both of these viewpoints to work with data.
484

Licensed to Ajit de Silva <agdesilva@gmail.com>



485Distributions
B.1 Distributions
A distribution is a description of likelihoods of possible values in a set of data. For
example, it could be the set of plausible heights of an adult, American, 18-year-old
male. For a simple numeric value, the distribution is defined thus: for a value b, the
distribution is the probability of seeing a value x, with x <= b. This is called the cumu-
lative distribution function (CDF).

We can often summarize a set of possible outcomes by naming a distribution, and
some summary statistics. For example, we can say that if we flip a fair coin 10 times,
the number of heads we observe should be binomially distributed (defined in section
B.5.7) with an expected mean of 5 heads. In all cases, we are concerned with how val-
ues are generated, and getting a bit more detail beyond just a characterization of
mean and standard deviation, such as getting the name and shape of the distribution.

In this section, we’ll outline a few important distributions: the normal distribution,
the lognormal distribution, and the binomial distribution. As you work further, you’ll
also want to learn many other key distributions (such as Poisson, beta, negative bino-
mial, and many more), but the ideas we’ll present here should be enough to get you
started.

B.1.1 Normal distribution

The normal or Gaussian distribution is the classic symmetric bell-shaped curve, as shown
in figure B.1. Many measured quantities, such as test scores from a group of students,
or the age or height of a particular population, can often be approximated by the nor-
mal. Repeated measurements will tend to fall into a normal distribution. For example,
if a doctor weighs a patient multiple times, using a properly calibrated scale, the mea-
surements (if enough of them are taken) will fall into a normal distribution around
the patient’s true weight. The variation will be due to measurement error (the vari-
ability of the scale). The normal distribution is defined over all real numbers.

In addition, the central limit theorem says that when you’re observing the sum (or
mean) of many independent, bounded variance random variables, the distribution of
your observations will approach the normal as you collect more data. For example,
suppose you want to measure how many people visit your website every day between 9
a.m. and 10 a.m. The proper distribution for modeling the number of visitors is the
Poisson distribution; but if you have a high enough volume of traffic, and you observe
long enough, the distribution of observed visitors will approach the normal distribu-
tion, and you can make acceptable estimates about your traffic by treating the number
of visitors as if it were normally distributed.

Many real-world distributions are approximately “normal”—in particular, any mea-
surement where the notion of “close” tends to be additive. An example would be adult
heights: a 6-inch difference in height is large both for people who are 5'6" and for
those who are 6".
Licensed to Ajit de Silva <agdesilva@gmail.com>



486 APPENDIX B Important statistical concepts
The normal is described by two parameters: the mean m and the standard deviation s
(or, alternatively, the variance, which is the square of s). The mean represents the dis-
tribution’s center (and also its peak); the standard deviation represents the distribu-
tion’s “natural unit of length”—you can estimate how rare an observation is by how
many standard deviations it is from the mean. As we mention in chapter 4, for a nor-
mally distributed variable

 About 68% of observations will fall in the interval (m-s,m+s).
 About 95% of observations will fall in the interval (m-2*s,m+2*s).
 About 99.7% of observations will fall in the interval (m-3*s,m+3*s).

So an observation more than three standard deviations away from the mean can be
considered quite rare, in most applications.

Many machine learning algorithms and statistical methods (for example, linear
regression) assume that the unmodeled errors are distributed normally. Linear regres-
sion is fairly robust to violations of this assumption; still, for continuous variables, you
should at least check if the variable distribution is unimodal and somewhat symmetric.

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

x

y

Figure B.1 The normal distribution with mean 0 and standard deviation 1
Licensed to Ajit de Silva <agdesilva@gmail.com>



487Distributions
When this isn’t the case, you may wish to consider using a variable transformation,
such as the log transformations that we discuss in chapter 4.

USING THE NORMAL DISTRIBUTION IN R
In R the function dnorm(x, mean = m, sd = s) is the normal probability density func-
tion: it will return the probability of observing x when it’s drawn from a normal distri-
bution with mean m and standard deviation s. By default, dnorm assumes that mean=0
and sd = 1 (as do all the functions related to the normal distribution that we discuss
here). Let’s use dnorm() to draw figure B.1.

library(ggplot2)

x <- seq(from=-5, to=5, length.out=100) # the interval [-5 5]
f <- dnorm(x) # normal with mean 0 and sd 1
ggplot(data.frame(x=x,y=f), aes(x=x,y=y)) + geom_line()

The function rnorm(n, mean = m, sd = s) will generate n points drawn from a nor-
mal distribution with mean m and standard deviation s.

library(ggplot2)

# draw 1000 points from a normal with mean 0, sd 1
u <- rnorm(1000)

# plot the distribution of points,
# compared to normal curve as computed by dnorm() (dashed line)
ggplot(data.frame(x=u), aes(x=x)) + geom_density() +

geom_line(data=data.frame(x=x,y=f), aes(x=x,y=y), linetype=2)

As you can see in figure B.2, the empirical distribution of the points produced by
rnorm(1000) is quite close to the theoretical normal. Distributions observed from
finite datasets can never exactly match theoretical continuous distributions like the
normal; and, as with all things statistical, there is a well-defined distribution for how
far off you expect to be for a given sample size.

The function pnorm(x, mean = m, sd = s) is what R calls the normal probability
function, otherwise called the normal cumulative distribution function: it returns the prob-
ability of observing a data point of value less than x from a normal with mean m and
standard deviation s. In other words, it’s the area under the distribution curve that
falls to the left of x (recall that a distribution has unit area under the curve). This is
shown in the listing B.3.

Listing B.1 Plotting the theoretical normal density

Listing B.2 Plotting an empirical normal density
Licensed to Ajit de Silva <agdesilva@gmail.com>



488 APPENDIX B Important statistical concepts
# --- estimate probabilities (areas) under the curve ---

# 50% of the observations will be less than the mean
pnorm(0)
# [1] 0.5

# about 2.3% of all observations are more than 2 standard
# deviations below the mean
pnorm(-2)
# [1] 0.02275013

# about 95.4% of all observations are within 2 standard deviations
# from the mean
pnorm(2) - pnorm(-2)
# [1] 0.9544997

The function qnorm(p, mean = m, sd = s) is the quantile function for the normal dis-
tribution with mean m and standard deviation s. It’s the inverse of pnorm(), in that
qnorm(p, mean = m, sd = s) returns the value x such that pnorm(x, mean = m, sd
= s) == p.

Listing B.3 Working with the normal CDF

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

x

de
ns

ity

Figure B.2 The empirical distribution of points drawn from a normal with mean 0 and standard 
deviation 1. The dotted line represents the theoretical normal distribution.
Licensed to Ajit de Silva <agdesilva@gmail.com>



489Distributions
Figure B.3 illustrates the use of qnorm(): the vertical line intercepts the x axis at
x = qnorm(0.75); the shaded area to the left of the vertical line represents the area
0.75, or 75% of the area under the normal curve.

The code to create figure B.3 (along with a few other examples of using qnorm()) is
shown in the following listing.   

# --- return the quantiles corresponding to specific probabilities ---

# the median (50th percentile) of a normal is also the mean
qnorm(0.5)
# [1] 0

# calculate the 75th percentile
qnorm(0.75)
# [1] 0.6744898
pnorm(0.6744898)
# [1] 0.75

# --- Illustrate the 75th percentile ---

# create a graph of the normal distribution with mean 0, sd 1
x <- seq(from=-5, to=5, length.out=100)
f <- dnorm(x)
nframe <- data.frame(x=x,y=f)

Listing B.4 Plotting x < qnorm(0.75)

qnorm(0.75) = 0.6740.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

x

y

Figure B.3 Illustrating x < qnorm(0.75)
Licensed to Ajit de Silva <agdesilva@gmail.com>



490 APPENDIX B Important statistical concepts
# calculate the 75th percentile
line <- qnorm(0.75)
xstr <- sprintf("qnorm(0.75) = %1.3f", line)

# the part of the normal distribution to the left
# of the 75th percentile
nframe75 <- subset(nframe, nframe$x < line)

# Plot it.
# The shaded area is 75% of the area under the normal curve
ggplot(nframe, aes(x=x,y=y)) + geom_line() +

geom_area(data=nframe75, aes(x=x,y=y), fill="gray") +
geom_vline(aes(xintercept=line), linetype=2) +
geom_text(x=line, y=0, label=xstr, vjust=1)

B.1.2 Summarizing R’s distribution naming conventions

Now that we’ve shown some concrete examples, we can summarize how R names the
different functions associated with a given probability distribution. Suppose the prob-
ability distribution is called DIST. Then the following are true:

 dDIST(x, ...) is the distribution function (or PDF, see the next callout) that
returns the probability of observing the value x.

 pDIST(x, ...) is the cumulative distribution function that returns the proba-
bility of observing a value less than x. The flag lower.tail = FALSE will cause
pDIST(x, ...) to return the probability of observing a value greater than x
(the area under the right tail, rather than the left). 

 rDIST(n, ...) is the random number generator that returns n values drawn
from the distribution DIST.

 qDIST(p, ...) is the quantile function that returns the x corresponding to the
pth percentile of DIST. The flag lower.tail = FALSE will cause qDIST(p, ...)
to return the x that corresponds to the 1 - pth percentile of DIST.

R’S CONFUSING NAMING CONVENTION For some reason, R refers to the cumula-
tive distribution function (or CDF) as the short term distribution function. Be
careful to check if you want to use the probability density function or the CDF
when working with R. 

B.1.3 Lognormal distribution

The lognormal distribution is the distribution of a random variable X whose natural log
log(X) is normally distributed. The distribution of highly skewed positive data, like
the value of profitable customers, incomes, sales, or stock prices, can often be mod-
eled as a lognormal distribution. A lognormal distribution is defined over all non-
negative real numbers; as shown in figure B.4 (top), it’s asymmetric, with a long tail
out toward positive infinity. The distribution of log(X) (figure B.4, bottom) is a nor-
mal distribution centered at mean(log(X)). For lognormal populations, the mean is
generally much higher than the median, and the bulk of the contribution toward the
mean value is due to a small population of highest-valued data points.
Licensed to Ajit de Silva <agdesilva@gmail.com>



491Distributions
DON’T USE THE MEAN AS A “TYPICAL” VALUE FOR A LOGNORMAL POPULATION For
a population that’s approximately normally distributed, you can use the mean
value of the population as a rough stand-in value for a typical member of the
population. If you use the mean as a stand-in value for a lognormal popula-
tion, you’ll overstate the value of the majority of your data.

Intuitively, if variations in the data are expressed naturally as percentages or relative
differences, rather than as absolute differences, then the data is a candidate to be
modeled lognormally. For example, a typical sack of potatoes in your grocery store
might weigh about five pounds, plus or minus half a pound. The distance that a spe-
cific type of bullet will fly when fired from a specific type of handgun might be about
2,100 meters, plus or minus 100 meters. The variations in these observations are natu-
rally represented in absolute units, and the distributions can be modeled as normals.
On the other hand, differences in monetary quantities are often best expressed as per-
centages: a population of workers might all get a 5% increase in salary (not an
increase of $5,000/year across the board); you might want to project next quarter’s
revenue to within 10% (not to within plus or minus $1,000). Hence, these quantities
are often best modeled as having lognormal distributions.

0.0

0.2

0.4

0.6

0 10 20 30

u

de
ns

ity

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

log(u)

de
ns

ity

Figure B.4 Top: The lognormal distribution X such that mean(log(X)) = 0 and sd(log(X)) = 1. 
The dashed line is the theoretical distribution, and the solid line is the distribution of a random 
lognormal sample. Bottom: The solid line is the distribution of log(X).
Licensed to Ajit de Silva <agdesilva@gmail.com>



492 APPENDIX B Important statistical concepts
USING THE LOGNORMAL DISTRIBUTION IN R
Let’s look at the functions for working with the lognormal distribution in R (see also
section B.5.3). We’ll start with dlnorm() and rlnorm():

 dlnorm(x, meanlog = m, sdlog = s) is the probability density function (PDF) that
returns the probability of observing the value x when it’s drawn from a lognor-
mal distribution X such that mean(log(X)) = m and sd(log(X)) = s. By default,
meanlog = 0 and sdlog = 1 for all the functions discussed in this section.

 rlnorm(n, meanlog = m, sdlog = s) is the random number that returns n val-
ues drawn from a lognormal distribution with mean(log(X)) = m and
sd(log(X)) = s.

We can use dlnorm() and rlnorm() to produce figure 8.4, shown earlier. The follow-
ing listing demonstrates some properties of the lognormal distribution.

# draw 1001 samples from a lognormal with meanlog 0, sdlog 1
u <- rlnorm(1001)

# the mean of u is higher than the median
mean(u)
# [1] 1.638628
median(u)
# [1] 1.001051

# the mean of log(u) is approx meanlog=0
mean(log(u))
# [1] -0.002942916

# the sd of log(u) is approx sdlog=1
sd(log(u))
# [1] 0.9820357

# generate the lognormal with meanlog = 0, sdlog = 1
x <- seq(from = 0, to = 25, length.out = 500)
f <- dlnorm(x)

# generate a normal with mean = 0, sd = 1
x2 <- seq(from = -5, to = 5, length.out = 500)
f2 <- dnorm(x2)

# make data frames
lnormframe <- data.frame(x = x, y = f)
normframe <- data.frame(x = x2, y = f2)
dframe <- data.frame(u=u)

# plot densityplots with theoretical curves superimposed
p1 <- ggplot(dframe, aes(x = u)) + geom_density() +

geom_line(data = lnormframe, aes(x = x, y = y), linetype = 2)

p2 <- ggplot(dframe, aes(x = log(u))) + geom_density() +
geom_line(data = normframe, aes(x = x,y = y), linetype = 2)

# functions to plot multiple plots on one page
library(grid)

Listing B.5 Demonstrating some properties of the lognormal distribution
Licensed to Ajit de Silva <agdesilva@gmail.com>



493Distributions
nplot <- function(plist) {
n <- length(plist)
grid.newpage()
pushViewport(viewport(layout=grid.layout(n, 1)))
vplayout<-

function(x,y) { viewport(layout.pos.row = x, layout.pos.col = y) }
for(i in 1:n) {

print(plist[[i]], vp = vplayout(i, 1))
}

}

# this is the plot that leads this section.
nplot(list(p1, p2))

The remaining two functions are the CDF plnorm() and the quantile function
qlnorm():

 plnorm(x, meanlog = m, sdlog = s) is the cumulative distribution function
that returns the probability of observing a value less than x from a lognormal
distribution with mean(log(X)) = m and sd(log(X)) = s.

 qlnorm(p, meanlog = m, sdlog = s) is the quantile function that returns the
x corresponding to the pth percentile of a lognormal distribution with
mean(log(X)) = m and sd(log(X)) = s. It’s the inverse of plnorm().

The following listing demonstrates plnorm() and qlnorm(). It uses the data frame
lnormframe from the previous listing.

# the 50th percentile (or median) of the lognormal with
# meanlog=0 and sdlog=10
qlnorm(0.5)
# [1] 1
# the probability of seeing a value x less than 1
plnorm(1)
# [1] 0.5

# the probability of observing a value x less than 10:
plnorm(10)
# [1] 0.9893489

# -- show the 75th percentile of the lognormal

# use lnormframe from previous example: the
# theoretical lognormal curve

line <- qlnorm(0.75)
xstr <- sprintf("qlnorm(0.75) = %1.3f", line)

lnormframe75 <- subset(lnormframe, lnormframe$x < line)

# Plot it
# The shaded area is 75% of the area under the lognormal curve
ggplot(lnormframe, aes(x = x, y = y)) + geom_line() +

geom_area(data=lnormframe75, aes(x = x, y = y), fill = "gray") +
geom_vline(aes(xintercept = line), linetype = 2) +
geom_text(x = line, y = 0, label = xstr, hjust = 0, vjust = 1)

Listing B.6 Plotting the lognormal distribution
Licensed to Ajit de Silva <agdesilva@gmail.com>



494 APPENDIX B Important statistical concepts
As you can see in figure B.5, the majority of the data is concentrated on the left side of
the distribution, with the remaining quarter of the data spread out over a very long tail.    

B.1.4 Binomial distribution

Suppose you have a coin that has a probability p of landing on heads when you flip it
(so for a fair coin, p = 0.5). In this case, the binomial distribution models the proba-
bility of observing k heads when you flip that coin N times. It’s used to model binary
classification problems (as we discuss in relation to logistic regression in chapter 8),
where the positive examples can be considered “heads.”

Figure B.6 shows the shape of the binomial distribution for coins of different fair-
nesses, when flipped 50 times. Note that the binomial distribution is discrete; it’s only
defined for (non-negative) integer values of k

USING THE BINOMIAL DISTRIBUTION IN R
Let’s look at the functions for working with the binomial distribution in R (see also
section B.5.3). We’ll start with the probability density function dbinom() and the ran-
dom number generator rbinom():

 dbinom(k, nflips, p) is the PDF that returns the probability of observing
exactly k heads from nflips of a coin with heads probability p.

 rbinom(N, nflips,p) is the random number generator that returns N values
drawn from the binomial distribution corresponding to nflips of a coin with
heads probability p.

qlnorm(0.75) = 1.9630.0

0.2

0.4

0.6

0 5 10 15 20 25

x

y

Figure B.5 The 75th percentile of the lognormal distribution with meanlog = 1, sdlog = 0
Licensed to Ajit de Silva <agdesilva@gmail.com>



495Distributions
You can use dbinom() (as in the following listing) to produce figure B.6.

library(ggplot2)
#
# use dbinom to produce the theoretical curves
#

numflips <- 50
# x is the number of heads that we see
x <- 0:numflips

# probability of heads for several different coins
p <- c(0.05, 0.15, 0.5, 0.75)
plabels <- paste("p =", p)

# calculate the probability of seeing x heads in numflips flips
# for all the coins. This probably isn't the most elegant
# way to do this, but at least it's easy to read

flips <- NULL
for(i in 1:length(p)) {

coin <- p[i]
label <- plabels[i]

Listing B.7 Plotting the binomial distribution

0.0

0.1

0.2

0 10 20 30 40 50

number.of.heads

pr
ob

ab
ili

ty

coin.type

p = 0.05

p = 0.15

p = 0.5

p = 0.75

Figure B.6 The binomial distributions for 50 coin tosses, with coins of various fairnesses 
(probability of landing on heads)
Licensed to Ajit de Silva <agdesilva@gmail.com>



496 APPENDIX B Important statistical concepts
tmp <- data.frame(number_of_heads=x,
probability = dbinom(x, numflips, coin),
coin_type = label)

flips <- rbind(flips, tmp)
}

# plot it
# this is the plot that leads this section
ggplot(flips, aes(x = number_of_heads, y = probability)) +

geom_point(aes(color = coin_type, shape = coin_type)) +
geom_line(aes(color = coin_type))

You can use rbinom() to simulate a coin-flipping-style experiment. For example, sup-
pose you have a large population of students that’s 50% female. If students are
assigned to classrooms at random, and you visit 100 classrooms with 20 students each,
then how many girls might you expect to see in each classroom? A plausible outcome
is shown in figure B.7, with the theoretical distribution superimposed.

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

number.of.girls

nu
m

be
r 

of
 c

la
ss

ro
om

s

Figure B.7 The observed distribution of the count of girls in 100 classrooms of size 20, when the 
population is 50% female. The theoretical distribution is shown with the dashed line.
Licensed to Ajit de Silva <agdesilva@gmail.com>



497Distributions

 
l 

 
 

 

Let’s write the code to produce figure B.7.

p = 0.5 # the percentage of females in this student population
class_size <- 20 # size of a classroom
numclasses <- 100 # how many classrooms we observe

# what might a typical outcome look like?
numFemales <- rbinom(numclasses, class_size, p)

# the theoretical counts (not necessarily integral)
probs <- dbinom(0:class_size, class_size, p)
tcount <- numclasses*probs

# the obvious way to plot this is with histogram or geom_bar
# but this might just look better

zero <- function(x) {0} # a dummy function that returns only 0

ggplot(data.frame(number_of_girls = numFemales, dummy = 1),
aes(x = number_of_girls, y = dummy)) +
# count the number of times you see x heads
stat_summary(fun.y = "sum", geom = "point", size=2) +
stat_summary(fun.ymax = "sum", fun.ymin = "zero", geom = "linerange") +
# superimpose the theoretical number of times you see x heads
geom_line(data = data.frame(x = 0:class_size, y = tcount),

aes(x = x, y = y), linetype = 2) +
scale_x_continuous(breaks = 0:class_size, labels = 0:class_size) +
scale_y_continuous("number of classrooms")

As you can see, even classrooms with as few as 4 or as many as 16 girls aren’t com-
pletely unheard of when students from this population are randomly assigned to class-
rooms. But if you observe too many such classrooms—or if you observe classes with
fewer than 4 or more than 16 girls—you’d want to investigate whether student selec-
tion for those classes is biased in some way.

You can also use rbinom() to simulate flipping a single coin.

# use rbinom to simulate flipping a coin of probability p N times

p75 <- 0.75 # a very unfair coin (mostly heads)
N <- 1000 # flip it several times
flips_v1 <- rbinom(N, 1, p75)

# Another way to generate unfair flips is to use runif:
# the probability that a uniform random number from [0 1)
# is less than p is exactly p. So "less than p" is "heads".
flips_v2 <- as.numeric(runif(N) < p75)

prettyprint_flips <- function(flips) {
outcome <- ifelse(flips==1, "heads", "tails")
table(outcome)

}

Listing B.8 Working with the theoretical binomial distribution

Listing B.9 Simulating a binomial distribution

Because we didn’t call set.seed, 
we expect different results 
each time we run this line.

stat_summary is one
of the ways to contro
data aggregation 
during plotting. In 
this case, we’re using
it to place the dot and
bar, measured from 
the empirical data, in
with the theoretical 
density curve.
Licensed to Ajit de Silva <agdesilva@gmail.com>



498 APPENDIX B Important statistical concepts
prettyprint_flips(flips_v1)
# outcome
# heads tails
# 756 244
prettyprint_flips(flips_v2)
# outcome
# heads tails
# 743 257

The final two functions are the CDF pbinom() and the quantile function qbinom():

 pbinom(k, nflips, p) is the CDF that returns the probability of observing k
heads or fewer from nflips of a coin with heads probability p.

pbinom(k, nflips, p, lower.tail = FALSE) returns the probability of
observing more than k heads from nflips of a coin with heads probability p.

Note that the left tail probability is calculated over the inclusive interval
numheads <= k, while the right tail probability is calculated over the exclusive
interval numheads > k.

 qbinom(q, nflips, p) is the quantile function that returns the number of
heads k that corresponds to the qth percentile of the binomial distribution cor-
responding to nflips of a coin with heads probability p.

The next listing shows some examples of using pbinom() and qbinom().

# pbinom example

nflips <- 100
nheads <- c(25, 45, 50, 60) # number of heads

# what are the probabilities of observing at most that
# number of heads on a fair coin?
left.tail <- pbinom(nheads, nflips, 0.5)
sprintf("%2.2f", left.tail)
# [1] "0.00" "0.18" "0.54" "0.98"

# the probabilities of observing more than that
# number of heads on a fair coin?
right.tail <- pbinom(nheads, nflips, 0.5, lower.tail = FALSE)
sprintf("%2.2f", right.tail)
# [1] "1.00" "0.82" "0.46" "0.02"

# as expected:
left.tail+right.tail
# [1] 1 1 1 1

# so if you flip a fair coin 100 times,
# you are guaranteed to see more than 10 heads,
# almost guaranteed to see fewer than 60, and
# probably more than 45.

# qbinom example

nflips <- 100

Listing B.10 Working with the binomial distribution
Licensed to Ajit de Silva <agdesilva@gmail.com>



499Statistical theory
# what's the 95% "central" interval of heads that you
# would expect to observe on 100 flips of a fair coin?

left.edge <- qbinom(0.025, nflips, 0.5)
right.edge <- qbinom(0.025, nflips, 0.5, lower.tail = FALSE)
c(left.edge, right.edge)
# [1] 40 60

# so with 95% probability you should see between 40 and 60 heads

One thing to keep in mind is that because the binomial distribution is discrete,
pbinom() and qbinom() won’t be perfect inverses of each other, as is the case with con-
tinuous distributions like the normal.   

# because this is a discrete probability distribution,
# pbinom and qbinom are not exact inverses of each other

# this direction works
pbinom(45, nflips, 0.5)
# [1] 0.1841008
qbinom(0.1841008, nflips, 0.5)
# [1] 45

# this direction won't be exact
qbinom(0.75, nflips, 0.5)
# [1] 53
pbinom(53, nflips, 0.5)
# [1] 0.7579408

B.1.5 More R tools for distributions

R has many more tools for working with distributions beyond the PDF, CDF, and gen-
eration tools we’ve demonstrated. In particular, for fitting distributions, you may want
to try the fitdistr method from the MASS package. 

B.2 Statistical theory
In this book, we necessarily concentrate on (correctly) processing data, without stop-
ping to explain a lot of theory. The steps we use will be more understandable after we
review a bit of statistical theory in this section.

B.2.1 Statistical philosophy

The predictive tools and machine learning methods we demonstrate in this book get
their predictive power not from uncovering cause and effect (which would be a great
thing to do), but by tracking and trying to eliminate differences in data and by reduc-
ing different sources of error. In this section, we’ll outline a few of the key concepts
that describe what’s going on and why these techniques work.

Listing B.11 Working with the binomial CDF
Licensed to Ajit de Silva <agdesilva@gmail.com>



500 APPENDIX B Important statistical concepts
EXCHANGEABILITY

Since basic statistical modeling isn’t enough to reliably attribute predictions to true
causes, we’ve been quietly relying on a concept called exchangeability to ensure we can
build useful predictive models.

The formal definition of exchangeability is this: suppose all the data in the world is
x[i,],y[i] (i=1,...m). Then we call the data exchangeable if for any permutation
j_1, ...j_m of 1, ...m, the joint probability of seeing x[i,],y[i] is equal to the
joint probability of seeing x[j_i, ], y[j_i]. In other words, the joint probability of
seeing a tuple x[i, ], y[i] does not depend on when we see it, or where it comes in
the sequence of observations.

The idea is that if all permutations of the data are equally likely, then when we draw
subsets from the data using only indices (not snooping the x[i,],y[i]), the data in
each subset, though different, can be considered as independent and identically dis-
tributed. We rely on this when we make train/test splits (or even train/calibrate/test
splits), and we hope (and should take steps to ensure) this is true between our train-
ing data and future data we’ll encounter in production.

Our hope in building a model is that in the unknown future, data the model will be
applied to is exchangeable with our training data. If this is the case, then we’d expect
good performance on training data to translate into good model performance in pro-
duction. It’s important to defend exchangeability from problems such as overfit and
concept drift.

Once we start examining training data, we (unfortunately) break its exchangeabil-
ity with future data. Subsets that contain a lot of training data are no longer indistin-
guishable from subsets that don’t have training data (through the simple process of
memorizing all of our training data). We attempt to measure the degree of damage by
measuring performance on held-out test data. This is why generalization error is so
important. Any data not looked at during model construction should be as exchange-
able with future data as it ever was, so measuring performance on held-out data helps
anticipate future performance. This is also why you don’t use test data for calibration
(instead, you should further split your training data to do this); once you look at your
test data, it’s less exchangeable with what will be seen in production in the future.

Another potential huge loss of exchangeability in prediction is summarized is
what’s called Goodhart’s law: “When a measure becomes a target, it ceases to be a good
measure.” The point is this: factors that merely correlate with a prediction are good
predictors—until you go too far in optimizing for them or when others react to your
use of them. For example, email spammers can try to defeat a spam detection system
by using more of the features and phrases that correlate highly with legitimate email,
and changing phrases that the spam filter believes correlate highly with spam. This is
an essential difference between actual causes (which do have an effect on outcome
when altered) and mere correlations (which may be co-occurring with an outcome
and are good predictors only through exchangeability of examples). 
Licensed to Ajit de Silva <agdesilva@gmail.com>



501Statistical theory
BIAS VARIANCE DECOMPOSITION

Many of the modeling tasks in this book are what are called regressions where, for data
of the form y[i],x[i,], we try to find a model or function f() such that
f(x[i,])~E[y[j]|x[j,]~x[i,]] (the expectation E[] being taken over all examples,
where x[j,] is considered very close to x[i,]). Often this is done by picking f() to
minimize E[(y[i]-f(x[i,]))^2].2 Notable methods that fit closely to this formula-
tion include regression, k-nearest neighbors (KNN), and neural nets.

Obviously, minimizing square error is not always your direct modeling goal. But
when you work in terms of square error, you have an explicit decomposition of error
into meaningful components, called the bias/variance decomposition (see The Elements of
Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman; Springer, 2009). The
bias/variance decomposition says this:

E[(y[i] - f(x[i, ]))^2] = bias^2 + variance + irreducibleError

Model bias is the portion of the error that your chosen modeling technique will never
get right, often because some aspect of the true process isn’t expressible within the
assumptions of the chosen model. For example, if the relationship between the out-
come and the input variables is curved or nonlinear, you can’t fully model it with lin-
ear regression, which only considers linear relationships. You can often reduce bias by
moving to more complicated modeling ideas: kernelizing, GAMs, adding interactions,
and so on. Many modeling methods can increase model complexity (to try to reduce
bias) on their own, for example, decision trees, KNN, support vector machines, and
neural nets. But until you have a lot of data, increasing model complexity has a good
chance of increasing model variance.

Model variance is the portion of the error that your modeling technique gets wrong
due to incidental relations in the data. The idea is this: a retraining of the model on
new data might make different errors (this is how variance differs from bias). An
example would be running KNN with k = 1. When you do this, each test example is
scored by matching to a single nearest training example. If that example happened to
be positive, your classification will be positive. This is one reason we tend to run KNN
with larger k values: it gives us the chance to get more reliable estimates of the nature
of neighborhood (by including more examples) at the expense of making neighbor-
hoods a bit less local or specific. More data and averaging ideas (like bagging) greatly
reduce model variance.

Irreducible error is the truly unmodelable portion of the problem (given the current
variables). If we have two datums x[i, ], y[i] and x[j,], y[j] such that x[i, ] ==
x[j, ], then (y[i] - y[j])^2 contributes to the irreducible error. We emphasize
that irreducible error is measured with respect to a given set of variables; add more
variables, and you have a new situation that may have its own lower irreducible error.

2 The fact that minimizing the squared error gets expected values right is an important fact that is used in
method design again and again.
Licensed to Ajit de Silva <agdesilva@gmail.com>



502 APPENDIX B Important statistical concepts
The point is that you can always think of modeling error as coming from three
sources: bias, variance, and irreducible error. When you’re trying to increase model
performance, you can choose what to try based on which of these you are trying to
reduce.

STATISTICAL EFFICIENCY

The efficiency of an unbiased statistical procedure is defined as how much variance
there is in the procedure for a given dataset size: that is, how much the estimates pro-
duced by that procedure will vary, when run on datasets of the same size and drawn
from the same distribution. More efficient procedures require less data to get below a
given amount of variance. This differs from computational efficiency, which is about
how much work is needed to produce an estimate.

When you have a lot of data, statistical efficiency becomes less critical (which is why
we don’t emphasize it in this book). But when it’s expensive to produce more data
(such as in drug trials), statistical efficiency is your primary concern. In this book, we
take the approach that we usually have a lot of data, so we can prefer general methods
that are somewhat statistically inefficient (such as using a test holdout set, and so on)
over more specialized, statistically efficient methods (such as specific ready-made
parametric tests like the Wald test and others).

Remember: it’s a luxury, not a right, to ignore statistical efficiency. If your project
has such a need, you’ll want to consult with expert statisticians to get the advantages of
best practices. 

B.2.2 A/B tests

Hard statistical problems usually arise from poor experimental design. This section
describes a simple, good, statistical design philosophy called A/B testing that has very
simple theory. The ideal experiment is one where you have two groups—control (A)
and treatment (B)—and the following holds:

 Each group is big enough that you get a reliable measurement (this drives sig-
nificance).

Averaging is a powerful tool
Under fairly mild assumptions, averaging reduces variance. For example, for data with
identically distributed independent values, averages of groups of size n have an
expected variance of 1/n of the variance of individual values. This is one of the rea-
sons why you can build models that accurately forecast population or group rates
even when predicting individual events is difficult. So although it may be easy to fore-
cast the number of murders per year in San Francisco, you can’t predict who will be
killed. In addition to shrinking variances, averaging also reshapes distributions to
look more and more like the normal distribution (this is the central limit theorem and
related to the law of large numbers). 
Licensed to Ajit de Silva <agdesilva@gmail.com>



503Statistical theory
 Each group is (up to a single factor) distributed exactly like populations you
expect in the future (this drives relevance). In particular, both samples are run
in parallel at the same time.

 The two groups differ only with respect to the single factor you’re trying to test.

In an A/B test, a new idea, treatment, or improvement is proposed and then tested for
effect. A common example is a proposed change to a retail website that it is hoped will
improve the rate of conversion from browsers to purchasers. Usually, the treatment
group is called B and an untreated or control group is called A. As a reference, we rec-
ommend “Practical Guide to Controlled Experiments on the Web” (R. Kohavi, R.
Henne, and D. Sommerfield; KDD, 2007).

SETTING UP A/B TESTS

Some care must be taken in running an A/B test. It’s important that the A and B
groups be run at the same time. This helps defend the test from any potential con-
founding effects that might be driving their own changes in conversion rate (hourly
effects, source-of-traffic effects, day-of-week effects, and so on). Also, you need to
know that differences you’re measuring are in fact due to the change you’re propos-
ing and not due to differences in the control and test infrastructures. To control for
infrastructure, you should run a few A/A tests (tests where you run the same experi-
ment in both A and B).

Randomization is the key tool in designing A/B tests. But the split into A and B
needs to be made in a sensible manner. For example, for user testing, you don’t want
to split raw clicks from the same user session into A/B, because then A/B would both
have clicks from users that may have seen either treatment site. Instead, you’d main-
tain per-user records and assign users permanently to either the A or the B group
when they arrive. One trick to avoid a lot of record keeping between different servers
is to compute a hash of the user information and assign a user to A or B depending on
whether the hash comes out even or odd (thus, all servers make the same decision
without having to communicate). 

EVALUATING A/B TESTS

The key measurements in an A/B test are the size of effect measured and the signifi-
cance of the measurement. The natural alternative (or null hypothesis) to B being a
good treatment is that B makes no difference, or B even makes things worse. Unfortu-
nately, a typical failed A/B test often doesn’t look like certain defeat. It usually looks
like the positive effect you’re looking for is there and you just need a slightly larger
follow-up sample size to achieve significance. Because of issues like this, it’s critical to
reason through acceptance/rejection conditions before running tests.

Let’s work an example A/B test. Suppose we’ve run an A/B test about conversion
rate and collected the following data.
Licensed to Ajit de Silva <agdesilva@gmail.com>



504 APPENDIX B Important statistical concepts
set.seed(123515)
d <- rbind(

data.frame(group = 'A', converted = rbinom(100000, size = 1, p = 0.05)),
data.frame(group = 'B', converted = rbinom(10000, size = 1, p = 0.055))

)

Once we have the data, we summarize it into the essential counts using a data struc-
ture called a contingency table.3 

tab <- table(d)
print(tab)
## converted
## group 0 1
## A 94979 5021
## B 9398 602

The contingency table is what statisticians call a sufficient statistic: it contains all we
need to know about the experiment outcome. We can print the observed conversion
rates of the A and B groups.

aConversionRate <- tab['A','1']/sum(tab['A',])
print(aConversionRate)
## [1] 0.05021

bConversionRate <- tab['B', '1'] / sum(tab['B', ])
print(bConversionRate)
## [1] 0.0602

commonRate <- sum(tab[, '1']) / sum(tab)
print(commonRate)
## [1] 0.05111818

We see that the A group was measured at near 5%, and the B group was measured at
near 6%. What we want to know is this: can we trust this difference? Could such a differ-
ence be likely for this sample size due to mere chance and measurement noise? We
need to calculate a significance to see if we ran a large enough experiment (obviously,
we’d want to design an experiment that was large enough—what we call test power, which
we’ll discuss in section B.6.5). What follows are a few good tests that are quick to run.

Fisher’s test for independence

The first test we can run is Fisher’s contingency table test. In the Fisher test, the null
hypothesis that we’re hoping to reject is that conversion is independent of group, or

Listing B.12 Building simulated A/B test data

Listing B.13 Summarizing the A/B test into a contingency table

3 The confusion matrices we used in section 6.2.3 are also examples of contingency tables.

Listing B.14 Calculating the observed A and B conversion rates

Builds a data frame to store 
simulated examples

Adds 10,000 examples from the B group
simulating a conversion rate of 5.5%Adds 100,000 examples from the A group 

simulating a conversion rate of 5%
Licensed to Ajit de Silva <agdesilva@gmail.com>



505Statistical theory
that the A and B groups are exactly identical. The Fisher test gives a probability of see-
ing an independent dataset (A=B) show a departure from independence as large as
what we observed. We run the test as shown in the next listing.

fisher.test(tab)

## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 2.469e-05
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.108716 1.322464
## sample estimates:
## odds ratio
## 1.211706

This is a great result. The p-value (which in this case is the probability of observing a dif-
ference this large if we in fact had A=B) is 2.469e-05, which is very small. This is consid-
ered a significant result. The other thing to look for is the odds ratio: the practical
importance of the claimed effect (sometimes also called clinical significance, which is not
a statistical significance). An odds ratio of 1.2 says that we’re measuring a 20% relative
improvement in conversion rate between the A and B groups. Whether you consider
this large or small (typically, 20% is considered large) is an important business question. 

Frequentist significance test

Another way to estimate significance is to again temporarily assume that A and B
come from an identical distribution with a common conversion rate, and see how
likely it would be that the B group scores as high as it did by mere chance. If we con-
sider a binomial distribution centered at the common conversion rate, we’d like to see
that there’s not a lot of probability mass for conversion rates at or above B’s level. This
would mean the observed difference is unlikely if A=B. We’ll work through the calcu-
lation in the following listing.

print(pbinom(
lower.tail = FALSE,
q = tab['B', '1'] - 1,
size = sum(tab['B', ]),
prob = commonRate
))

## [1] 3.153319e-05

Listing B.15 Calculating the significance of the observed difference in rates

Listing B.16 Computing frequentist significance

Uses the pbinom() call to calculate how 
likely different observed counts are

Signals that we want the probability 
of being greater than a given q

Asks for the probability of seeing at least as 
many conversions as our observed B groups 
did. We subtract one to make the comparison 
inclusive (greater than or equal to tab['B', '1']).

Specifies the total number of 
trials as equal to what we saw 
in our B group

Specifies the conversion 
probability at the estimated 
common rate
Licensed to Ajit de Silva <agdesilva@gmail.com>



506 APPENDIX B Important statistical concepts
This is again a great result. The calculated probability is small, meaning such a differ-
ence is hard to observe by chance if A = B. 

B.2.3 Power of tests

To have reliable A/B test results, you must first design and run good A/B tests. We
need to defend against two types of errors: failing to see a difference, assuming there
is one (described as test power); and seeing a difference, assuming there is not one
(described as significance). The closer the difference in A and B rates we are trying to
measure, the harder it is to have a good probability of getting a correct measurement.
Our only tools are to design experiments where we hope A and B are far apart, or to
increase experiment size. A power calculator lets us choose experiment size.

 Example Designing a test to see if a new advertisement has a higher conver-
sion rate
 Suppose we’re running a travel site that has 6,000 unique visitors per day and a 4%
conversion rate4 from page views to purchase inquiries (our measurable goal). We’d like
to test a new design for the site to see if it increases our conversion rate. This is exactly
the kind of problem A/B tests are made for! But we have one more question: how many
users do we have to route to the new design to get a reliable measurement? How long
will it take us to collect enough data? We’re allowed to route no more than 10% of the
visitors to the new advertisement.

In this experiment, we’ll route 90% of our traffic to the old advertisement and 10% to
the new advertisement. There is uncertainty in estimating the conversion rate of the
old advertisement going forward, but for simplicity of example (and because nine
times more traffic is going to the old advertisement) we will ignore that. So our prob-
lem is this: how much traffic should we route to the new advertisement?

To solve this, we need some criteria for our experimental design:

 What is our estimate of the old advertisement’s conversion rate? Let’s say this is
0.04 or 4%.

 What is a lower bound on what we consider a big enough improvement for the
new advertisement? For the test to work, this must be larger than the old con-
version rate. Let’s say this is 0.046 or 4.5%, representing a slightly larger-than-
10% relative improvement in conversion to sale.

 With what probability are we willing to be wrong if the new ad was no better?
That is, if the new ad is in fact no better than the old ad, how often are we will-
ing to “cry wolf” and claim there is an improvement (when there is in fact no
such thing)? Let’s say we are willing to be wrong in this way 5% of the time.
Let’s call this the significance level.

4 We’re taking the 4% rate from http://mng.bz/7pT3.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/7pT3


507Statistical theory
 With what probability do we want to be right when the new ad was substantially
better? That is, if the new ad is in fact converting at a rate of at least 4.5%, how
often do we want to detect this? This is called power (and related to sensitivity,
which we saw when discussing classification models). Let’s say we want the
power to be 0.8 or 80%. When there is an improvement, we want to find it 80%
of the time.

Obviously, what we want is to be able to detect improvements at sizes close to zero, at a
significance level of zero, and at a power of 1. However, if we insist on any of these
parameters being at their “if wishes were horses value” (near zero for improvement
size, near zero for significance level, and near 1 for power), the required test size to
ensure these guarantees becomes enormous (or even infinite!). So as part of setting
expectations before a project (always a good practice), we must first negotiate these
“asks” to more achievable values such as those we just described.

When trying to determine sample size or experiment duration, the important con-
cept is statistical test power. Statistical test power is the probability of rejecting the null
hypothesis when the null hypothesis is false.5 Think of statistical test power as 1 minus
a p-value. The idea is this: you can’t pick out useful treatments if you can’t even iden-
tify which treatments are useless. So you want to design your tests to have test power
near 1, which means p-values near 0.

The standard way to estimate the number of visitors we want to direct to the new
advertisement is called a power calculation and is supplied by the R package pwr. Here is
how we use R to get the answer:

library(pwr)
pwr.p.test(h = ES.h(p1 = 0.045, p2 = 0.04),

sig.level = 0.05,
power = 0.8,
alternative = "greater")

# proportion power calculation for binomial distribution (arcsine transfo
rmation)

#
# h = 0.02479642
# n = 10055.18
# sig.level = 0.05
# power = 0.8
# alternative = greater

Notice that all we did was copy our asks into the pwr.p.test method, though we did
put the two assumed rates we are trying to distinguish through the ES.h() method,
which converts the difference of rates into a Cohen-style “effect size.” In this case.
ES.h(p1 = 0.045, p2 = 0.04) is 0.025, which is considered quite small (and there-
fore hard to measure). Effect sizes are very roughly how big an effect you are trying to

5 See B. S. Everitt, The Cambridge Dictionary of Statistics (Cambridge University Press, 2010).
Licensed to Ajit de Silva <agdesilva@gmail.com>



508 APPENDIX B Important statistical concepts
measure relative to the natural variation of individuals. So we are trying to measure a
change in the likelihood of a sale that is 1/0.025 or 40 times smaller than the individ-
ual variation in likelihood of a sale. This is unobservable for any small set of individu-
als, but observable with a large enough sample.6

The n = 10056 is the amount of traffic we would have to send to the new advertise-
ment to get a test result with at least the specified quality parameters (significance
level and power). So we would need to serve the new advertisement to 10056 visitors
to achieve our A/B test measurement. Our site receives 6,000 visitors a day, and we are
only allowed to send 10% of them, or 600, to the new advertisement each day. So it
would take us 10056/600 or 16.8 days to complete this test.7

B.2.4 Specialized statistical tests

Throughout this book, we concentrate on building predictive models and evaluating
significance, either through the modeling tool’s built-in diagnostics or through empir-
ical resampling (such as bootstrap tests or permutation tests). In statistics, there’s an
efficient correct test for the significance of just about anything you commonly calcu-
late. Choosing the right standard test gives you a good implementation of the test and
access to literature that explains the context and implications of the test. Let’s work
on calculating a simple correlation and finding the matching correct test.

We’ll work with a synthetic example that should remind you a bit of our PUMS
Census work in chapter 8. Suppose we’ve measured both earned income (money
earned in the form of salary) and capital gains (money received from investments) for
100 individuals. Further suppose that there’s no relation between the two for our indi-

6 Effect sizes are nice idea, and have a rule of thumb that 0.2 is small, 0.5 is medium, and 1.0 is large. See
https://en.wikipedia.org/wiki/Effect_size.

7 This is fact one of the dirty secrets of A/B tests: measuring small improvements of rare events such as conver-
sion of an advertisement to a sale (often called “conversion to sale”) takes a lot of data, and acquiring a lot of
data can take a lot of time.

Venue shopping reduces test power
We’ve discussed test power and significance under the assumption you’re running
one large test. In practice, you may run multiple tests trying many treatments to see
if any treatment delivers an improvement. This reduces your test power. If you run 20
treatments, each with a p-value goal of 0.05, you would expect one test to appear to
show significant improvement, even if all 20 treatments are useless. Testing multiple
treatments or even reinspecting the same treatment many times is a form of “venue
shopping” (you keep asking at different venues until you get a ruling in your favor).
Calculating the loss of test power is formally called “applying the Bonferroni correc-
tion” and is as simple as multiplying your significance estimates by your number of
tests (remember, large values are bad for significances or p-values). To compensate
for this loss of test power, you can run each of the underlying tests at a tighter p cut-
off: p divided by the number of tests you intend to run. 
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://en.wikipedia.org/wiki/Effect_size


509Statistical theory
viduals (in the real world, there’s a correlation, but we need to make sure our tools
don’t report one even when there’s none). We’ll set up a simple dataset representing
this situation with some lognormally distributed data.

set.seed(235236)
d <- data.frame(EarnedIncome = 100000 * rlnorm(100),

CapitalGains = 100000 * rlnorm(100))
print(with(d, cor(EarnedIncome, CapitalGains)))

# [1] -0.01066116

We claim the observed correlation of -0.01 is statistically indistinguishable from 0 (or
no effect). This is something we should quantify. A little research tells us the common
correlation is called a Pearson coefficient, and the significance test for a Pearson coeffi-
cient for normally distributed data is a Student’s t-test (with the number of degrees of
freedom equal to the number of items minus 2). We know our data is not normally
distributed (it is, in fact, lognormally distributed), so we research further and find the
preferred solution is to compare the data by rank (instead of by value) and use a test
like Spearman’s rho or Kendall’s tau. We’ll use Spearman’s rho, as it can track both
positive and negative correlations (whereas Kendall’s tau tracks degree of agreement).

A fair question is, how do we know which is the exact right test to use? The answer
is, by studying statistics. Be aware that there are a lot of tests, giving rise to books like
100 Statistical Tests in R by N. D. Lewis (Heather Hills Press, 2013). We also suggest that
if you know the name of a test, consult B. S.Everitt and A. Skrondal, The Cambridge Dic-
tionary of Statistics, Fourth Edition (Cambridge University Press, 2010).

Another way to find the right test is using R’s help system. help(cor) tells us that
cor() implements three different calculations (Pearson, Spearman, and Kendall) and
that there’s a matching function called cor.test() that performs the appropriate sig-
nificance test. Since we weren’t too far off the beaten path, we only need to read up
on these three tests and settle on the one we’re interested in (in this case, Spearman).
So let’s redo our correlation with the chosen test and check the significance.

with(d, cor(EarnedIncome, CapitalGains, method = 'spearman'))

# [1] 0.03083108

(ctest <- with(d, cor.test(EarnedIncome, CapitalGains, method = 'spearman')))

#
# Spearman's rank correlation rho
#
#data: EarnedIncome and CapitalGains
#S = 161512, p-value = 0.7604

Listing B.17 Building synthetic uncorrelated income

Listing B.18 Calculating the (non)significance of the observed correlation

Sets the pseudo-random seed to a known 
value so the demonstration is repeatable

The correlation is –0.01, which 
is very near 0—indicating (as 
designed) no relation.

Generates our 
synthetic data
Licensed to Ajit de Silva <agdesilva@gmail.com>



510 APPENDIX B Important statistical concepts
#alternative hypothesis: true rho is not equal to 0
#sample estimates:
# rho
#0.03083108

We see the Spearman correlation is 0.03 with a p-value of 0.7604, which means truly
uncorrelated data would show a coefficient this large about 76% of the time. So
there’s no significant effect (which is exactly how we designed our synthetic example).

In our own work, we use the sigr package to wrap up these test results for more
succinct formal presentation. The format is similar to the APA (American Psychologi-
cal Association) style, and n.s. means “not significant.”

sigr::wrapCorTest(ctest)

# [1] "Spearman's rank correlation rho: (r=0.03083, p=n.s.)."

B.3 Examples of the statistical view of data
Compared to statistics, machine learning and data science have an optimistic view of
working with data. In data science, you quickly pounce on noncausal relations in the
hope that they’ll hold up and help with future prediction. Much of statistics is about
how data can lie to you and how such relations can mislead you. We only have space
for a couple of examples, so we’ll concentrate on two of the most common issues: sam-
pling bias and missing-variable bias.

B.3.1 Sampling bias

Sampling bias is any process that systematically alters the distribution of observed data.8

The data scientist must be aware of the possibility of sampling bias and be prepared to
detect it and fix it. The most effective way is to fix your data collection methodology.

For our sampling bias example, we’ll continue with the income example we started
in section B.4. Suppose through some happenstance we were studying only a high-
earning subset of our original population (perhaps we polled them at some exclusive
event). The following listing shows how, when we restrict to a high-earning set, it
appears that earned income and capital gains are strongly anticorrelated. We get a
correlation of -0.86 (so think of the anticorrelation as explaining about (-0.86)^2 =
0.74 = 74% of the variance; see http://mng.bz/ndYf) and a p-value very near 0 (so it’s
unlikely the unknown true correlation of more data produced in this manner is in fact
0). The following listing demonstrates the calculation.

8 We would have liked to use the common term “censored” for this issue, but in statistics the phrase censored
observations is reserved for variables that have only been recorded up to a limit or bound. So it would be poten-
tially confusing to use the term to describe missing observations.
Licensed to Ajit de Silva <agdesilva@gmail.com>

http://mng.bz/ndYf


511Examples of the statistical view of data
veryHighIncome <- subset(d, EarnedIncome+CapitalGains>=500000)
print(with(veryHighIncome,cor.test(EarnedIncome,CapitalGains,

method='spearman')))
#
# Spearman's rank correlation rho
#
#data: EarnedIncome and CapitalGains
#S = 1046, p-value < 2.2e-16
#alternative hypothesis: true rho is not equal to 0
#sample estimates:
# rho
#-0.8678571

Some plots help to show what’s going on. Figure B.8 shows the original dataset with
the best linear relation line run through. Note that the line is nearly flat (indicating
change in x doesn’t predict change in y).

Listing B.19 Misleading significance result from biased observations

0

250000

500000

750000

1000000

1250000

0 250000 500000 750000 1000000 1250000

EarnedIncome

C
ap

ita
lG

ai
ns

Figure B.8 Earned income versus capital gains
Licensed to Ajit de Silva <agdesilva@gmail.com>



512 APPENDIX B Important statistical concepts
Figure B.9 shows the best trend line run through the high income dataset. It also
shows how cutting out the points below the line x+y=500000 leaves a smattering of
rare high-value events arranged in a direction that crudely approximates the slope of
our cut line (–0.8678571 being a crude approximation for –1). It’s also interesting to
note that the bits we suppressed aren’t correlated among themselves, so the effect
wasn’t a matter of suppressing a correlated group out of an uncorrelated cloud to get
a negative correlation.

0

250000

500000

750000

1000000

1250000

0 250000 500000 750000 1000000 1250000

EarnedIncome

C
ap

ita
lG

ai
ns

Figure B.9 Biased earned income vs. capital gains
Licensed to Ajit de Silva <agdesilva@gmail.com>



513Examples of the statistical view of data

)

The code to produce figures B.8 and B.9 and calculate the correlation between sup-
pressed points is shown in the following listing.

library(ggplot2)
ggplot(data=d,aes(x=EarnedIncome,y=CapitalGains)) +

geom_point() + geom_smooth(method='lm') +
coord_cartesian(xlim=c(0,max(d)),ylim=c(0,max(d)))

ggplot(data=veryHighIncome,aes(x=EarnedIncome,y=CapitalGains)) +
geom_point() + geom_smooth(method='lm') +
geom_point(data=subset(d,EarnedIncome+CapitalGains<500000),

aes(x=EarnedIncome,y=CapitalGains),
shape=4,alpha=0.5,color='red') +

geom_segment(x=0,xend=500000,y=500000,yend=0,
linetype=2,alpha=0.5,color='red') +

coord_cartesian(xlim=c(0,max(d)),ylim=c(0,max(d)))
print(with(subset(d,EarnedIncome+CapitalGains<500000),

cor.test(EarnedIncome,CapitalGains,method='spearman')))
#
# Spearman's rank correlation rho
#
#data: EarnedIncome and CapitalGains
#S = 107664, p-value = 0.6357
#alternative hypothesis: true rho is not equal to 0
#sample estimates:
# rho
#-0.05202267

B.3.2 Omitted variable bias

Many data science clients expect data science to be a quick process, where every conve-
nient variable is thrown in at once and a best possible result is quickly obtained. Statisti-
cians are rightfully wary of such an approach due to various negative effects such as
omitted variable bias, collinear variables, confounding variables, and nuisance vari-
ables. In this section, we’ll discuss one of the more general issues: omitted variable bias.

WHAT IS OMITTED VARIABLE BIAS?
In its simplest form, omitted variable bias occurs when a variable that isn’t included in
the model is both correlated with what we’re trying to predict and correlated with a
variable that’s included in our model. When this effect is strong, it causes problems, as
the model-fitting procedure attempts to use the variables in the model to both directly
predict the desired outcome and to stand in for the effects of the missing variable.
This can introduce biases, create models that don’t quite make sense, and result in
poor generalization performance.

The effect of omitted variable bias is easiest to see in a regression example, but it
can affect any type of model. 

Listing B.20 Plotting biased view of income and capital gains

Plots all of the income data 
with linear trend line (and 
uncertainty band)

Computes correlation
of suppressed data

Plots the very high income 
data and linear trend line 
(also includes cut-off and 
portrayal of suppressed data
Licensed to Ajit de Silva <agdesilva@gmail.com>



514 APPENDIX B Important statistical concepts
AN EXAMPLE OF OMITTED VARIABLE BIAS

We’ve prepared a synthetic dataset called synth.RData (download from https://
github.com/WinVector/PDSwR2/tree/master/bioavailability) that has an omitted
variable problem typical for a data science project. To start, please download
synth.RData and load it into R, as the next listing shows.

load('synth.RData')
print(summary(s))
## week Caco2A2BPapp FractionHumanAbsorption
## Min. : 1.00 Min. :6.994e-08 Min. :0.09347
## 1st Qu.: 25.75 1st Qu.:7.312e-07 1st Qu.:0.50343
## Median : 50.50 Median :1.378e-05 Median :0.86937
## Mean : 50.50 Mean :2.006e-05 Mean :0.71492
## 3rd Qu.: 75.25 3rd Qu.:4.238e-05 3rd Qu.:0.93908
## Max. :100.00 Max. :6.062e-05 Max. :0.99170
head(s)
## week Caco2A2BPapp FractionHumanAbsorption
## 1 1 6.061924e-05 0.11568186
## 2 2 6.061924e-05 0.11732401
## 3 3 6.061924e-05 0.09347046
## 4 4 6.061924e-05 0.12893540
## 5 5 5.461941e-05 0.19021858
## 6 6 5.370623e-05 0.14892154
# View(s)

This loads synthetic data that’s supposed to represent a simplified view of the kind of
data that might be collected over the history of a pharmaceutical ADME9 or bioavail-
ability project. RStudio’s View() spreadsheet is shown in figure B.10. The columns of
this dataset are described in table B.1.

Listing B.21 Summarizing our synthetic biological data

9 ADME stands for absorption, distribution, metabolism, excretion; it helps determine which molecules make
it into the human body through ingestion and thus could even be viable candidates for orally delivered drugs.

Displays a date in a 
spreadsheet-like window. View 
is one of the commands that has 
a much better implementation 
in RStudio than in basic R.

Figure B.10 View of rows from the bioavailability dataset
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/bioavailability
https://github.com/WinVector/PDSwR2/tree/master/bioavailability
https://github.com/WinVector/PDSwR2/tree/master/bioavailability


515Examples of the statistical view of data
We’ve constructed this synthetic data to represent a project that’s trying to optimize
human absorption by working through small variations of a candidate drug molecule.
At the start of the project, they have a molecule that’s highly optimized for the stand-
in criteria Caco2 (which does correlate with human absorption), and through the his-
tory of the project, actual human absorption is greatly increased by altering factors
that we’re not tracking in this simplistic model. During drug optimization, it’s com-
mon to have formerly dominant stand-in criteria revert to ostensibly less desirable val-
ues as other inputs start to dominate the outcome. So for our example project, the
human absorption rate is rising (as the scientists successfully optimize for it) and the
Caco2 rate is falling (as it started high, and we’re no longer optimizing for it, even
though it is a useful feature).

One of the advantages of using synthetic data for these problem examples is that we
can design the data to have a given structure, and then we know the model is correct if
it picks this up and incorrect if it misses it. In particular, this dataset was designed such
that Caco2 is always a positive contribution to fraction of absorption throughout the
entire dataset. This data was generated using a random non-increasing sequence of
plausible Caco2 measurements and then generating fictional absorption numbers, as
shown next (the data frame d that you also loaded from synth.RData is the published

Table B.1 Bioavailability columns

Column Description

week In this project, we suppose that a research group submits a new 
drug candidate molecule for assay each week. To keep things sim-
ple, we use the week number (in terms of weeks since the start of 
the project) as the identifier for the molecule and the data row. This 
is an optimization project, which means each proposed molecule is 
made using lessons learned from all of the previous molecules. This 
is typical of many projects, but it means the data rows aren’t mutu-
ally exchangeable (an important assumption that we often use to 
justify statistical and machine learning techniques).

Caco2A2BPapp This is the first assay run (and the “cheap” one). The Caco2 test 
measures how fast the candidate molecule passes through a mem-
brane of cells derived from a specific large intestine carcinoma (can-
cers are often used for tests, as noncancerous human cells usually 
can’t be cultured indefinitely). The Caco2 test is a stand-in or anal-
ogy test. The test is thought to simulate one layer of the small intes-
tine that it’s morphologically similar to (though it lacks a number of 
forms and mechanisms found in the actual small intestine). Think of 
Caco2 as a cheap test to evaluate a factor that correlates with bio-
availability (the actual goal of the project).

FractionHumanAbsorption This is the second assay run and is what fraction of the drug candi-
date is absorbed by human test subjects. Obviously, these tests 
would be expensive to run and subject to a lot of safety protocols. 
For this example, optimizing absorption is the actual end goal of the 
project.
Licensed to Ajit de Silva <agdesilva@gmail.com>



516 APPENDIX B Important statistical concepts
graph we base our synthetic example on). We produce our synthetic data that’s known
to improve over time in the next listing.

set.seed(2535251)
s <- data.frame(week = 1:100)
s$Caco2A2BPapp <- sort(sample(d$Caco2A2BPapp,100,replace=T),

decreasing=T)
sigmoid <- function(x) {1/(1 + exp(-x))}
s$FractionHumanAbsorption <-
sigmoid(

7.5 + 0.5 * log(s$Caco2A2BPapp) +
s$week / 10 - mean(s$week / 10) +
rnorm(100) / 3
)

write.table(s, 'synth.csv', sep=',',
quote = FALSE, row.names = FALSE)

The design of this data is this: Caco2 always has a positive effect (identical to the
source data we started with), but this gets hidden by the week factor (and Caco2 is
negatively correlated with week, because week is increasing and Caco2 is sorted in
decreasing order). Time is not a variable we at first wish to model (it isn’t something
we usefully control), but analyses that omit time suffer from omitted variable bias. For
the complete details, consult our GitHub example documentation (https://github
.com/WinVector/PDSwR2/tree/master/bioavailability). 

A SPOILED ANALYSIS

In some situations, the true relationship between Caco2 and FractionHumanAbsorption
is hidden because the variable week is positively correlated with Fraction-

HumanAbsorption (as the absorption is being improved over time) and negatively cor-
related with Caco2 (as Caco2 is falling over time). week is a stand-in variable for all the
other molecular factors driving human absorption that we’re not recording or model-
ing. Listing B.23 shows what happens when we try to model the relation between
Caco2 and FractionHumanAbsorption without using the week variable or any other
factors.

print(summary(glm(data = s,
FractionHumanAbsorption ~ log(Caco2A2BPapp),
family = binomial(link = 'logit'))))

## Warning: non-integer #successes in a binomial glm!
##
## Call:
## glm(formula = FractionHumanAbsorption ~ log(Caco2A2BPapp),
## family = binomial(link = "logit"),

Listing B.22 Building data that improves over time

Listing B.23 A bad model (due to omitted variable bias)

Builds synthetic 
examples

Adds in Caco2 to the absorption relation 
learned from the original dataset. Note 
that the relation is positive: better Caco2 
always drives better absorption in our 
synthetic dataset. We’re log transforming 
Caco2, as it has over 3 decades of range.

Adds in a mean-0 term that depends on time 
to simulate the effects of improvements as 
the project moves forward

Adds in a mean-0 noise term
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://github.com/WinVector/PDSwR2/tree/master/bioavailability
https://github.com/WinVector/PDSwR2/tree/master/bioavailability
https://github.com/WinVector/PDSwR2/tree/master/bioavailability


517Examples of the statistical view of data
## data = s)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.609 -0.246 -0.118 0.202 0.557
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.003 2.752 -3.64 0.00028 ***
## log(Caco2A2BPapp) -0.969 0.257 -3.77 0.00016 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 43.7821 on 99 degrees of freedom
## Residual deviance: 9.4621 on 98 degrees of freedom
## AIC: 64.7
##
## Number of Fisher Scoring iterations: 6

For details on how to read the glm() summary, please see section 7.2. Note that the
sign of the Caco2 coefficient is negative, not what’s plausible or what we expected
going in. This is because the Caco2 coefficient isn’t just recording the relation of
Caco2 to FractionHumanAbsorption, but also having to record any relations that
come through omitted correlated variables. 

WORKING AROUND OMITTED VARIABLE BIAS

There are a number of ways to deal with omitted variable bias, the best ways being bet-
ter experimental design and more variables. Other methods include use of fixed-
effects models and hierarchical models. We’ll demonstrate one of the simplest meth-
ods: adding in possibly important omitted variables. In the following listing, we redo
the analysis with week included.

print(summary(glm(data=s,
FractionHumanAbsorption~week+log(Caco2A2BPapp),
family=binomial(link='logit'))))

## Warning: non-integer #successes in a binomial glm!
##
## Call:
## glm(formula = FractionHumanAbsorption ~ week + log(Caco2A2BPapp),
## family = binomial(link = "logit"), data = s)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.3474 -0.0568 -0.0010 0.0709 0.3038
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.1413 4.6837 0.67 0.5024
## week 0.1033 0.0386 2.68 0.0074 **

Listing B.24 A better model
Licensed to Ajit de Silva <agdesilva@gmail.com>



518 APPENDIX B Important statistical concepts
## log(Caco2A2BPapp) 0.5689 0.5419 1.05 0.2938
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 43.7821 on 99 degrees of freedom
## Residual deviance: 1.2595 on 97 degrees of freedom
## AIC: 47.82
##
## Number of Fisher Scoring iterations: 6

We recovered decent estimates of both the Caco2 and week coefficients, but we didn’t
achieve statistical significance on the effect of Caco2. Note that fixing omitted variable
bias requires (even in our synthetic example) some domain knowledge to propose
important omitted variables and the ability to measure the additional variables (and
to try to remove their impact through the use of an offset; see help('offset')).

At this point, you should have a more detailed intentional view of variables. There
are, at the least, variables you can control (explanatory variables), important variables
you can’t control (nuisance variables), and important variables you don’t know (omit-
ted variables). Your knowledge of all of these variable types should affect your experi-
mental design and analysis. 

B.4 The takeaway
Statistics is a deep field with important implications for data science. Statistics
includes the study of what can go wrong in modeling and analysis, and if you don’t
prepare for what can go wrong, it tends to go wrong. We hope you will take this appen-
dix as an invitation for further study. A book we recommend is Statistical Models: Theory
and Practice by David Freedman (Cambridge Press, 2009).
Licensed to Ajit de Silva <agdesilva@gmail.com>



appendix C
Bibliography

 Adler, Joseph. R in a Nutshell, 2nd ed. O’Reilly Media, 2012.

 Agresti, Alan. Categorical Data Analysis, 3rd ed. Wiley Publications, 2012.

 Alley, Michael. The Craft of Scientific Presentations. Springer, 2003.

 Brooks, Jr., Frederick P. The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley, 1995.

 Carroll, Jonathan. Beyond Spreadsheets with R. Manning Publications, 2018.

 Casella, George, and Roger L. Berger. Statistical Inference. Duxbury, 1990.

 Celko, Joe. SQL for Smarties, 4th ed. Morgan Kauffman, 2011.

 Chakrabarti, Soumen. Mining the Web. Morgan Kauffman, 2003.

 Chambers, John M. Software for Data Analysis. Springer, 2008.

 Chang, Winston. R  Graphics Cookbook, 2nd ed. O’Reilly Media, 2018.

 Charniak, Eugene. Statistical Language Learning. MIT Press, 1993.

 Chollet, François, with J. J. Allaire. Deep Learning with R. Manning Publications, 2018.

 Cleveland, William S. The Elements of Graphing Data. Hobart Press, 1994.

 Cohen, J., and P. Cohen. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd 
ed. Lawrence Erlbaum Associates, Inc., 1983.

 Cover, Thomas M., and Joy A. Thomas. Elements of Information Theory. Wiley, 1991.

 Cristianini, Nello, and John Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge Press, 
2000.

 Dalgaard, Peter. Introductory Statistics with R, 2nd ed. Springer, 2008.

 Dimiduk, Nick, and Amandeep Khurana. HBase in Action. Manning Publications, 2013.

 Efron, Bradley, and Robert Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, 1993.

 Everitt, B. S. The Cambridge Dictionary of Statistics, 2nd ed. Cambridge Press, 2006.

 Freedman, David. Statistical Models: Theory and Practice. Cambridge Press, 2009.

 Freedman, David, Robert Pisani, and Roger Purves. Statistics, 4th ed. Norton, 2007.

 Gandrud, Christopher. Reproducible Research with R and RStudio, 2nd ed. CRC Press, 2015.

 Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 
Bayesian Data Analysis, 3rd ed. CRC Press, 2013.
519

Licensed to Ajit de Silva <agdesilva@gmail.com>



520 APPENDIX C Bibliography
 Gentle, James E. Elements of Computational Statistics. Springer, 2002.

 Goldberg, David. “What every computer scientist should know about floating-point arithmetic.” ACM 
Computing Surveys, Volume 23 Issue 1, pp. 5–48, March 1991.

 Good, Philip. Permutation Tests. Springer, 2000.

 Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning, 2nd ed. 
Springer, 2009.

 Hothorn, Torsten, and Brian S. Everitt. A Handbook of Statistical Analyses Using R, 3rd ed. CRC Press, 2014.

 James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learn-
ing. Springer, 2013.

 Kabacoff, Robert. R in Action, 2nd ed. Manning Publications, 2014.

 Kennedy, Peter. A Guide to Econometrics, 5th ed. MIT Press, 2003.

 Kohavi, R., R. Henne, and D. Sommerfield. “Practical Guide to Controlled Experiments on the Web.” 
KDD, 2007.

 Koller, Daphne, and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 
2009.

 Krzanowski, W. J., and F. H. C. Marriott. Multivariate Analysis, Part 1, Edward Arnold, 1994.

 Kuhn, Max, and Kjell Johnson. Applied Predictive Modeling. Springer, 2013.

 Lander, Jared P. R for Everyone. Addison-Wesley Data & Analytics Series, 2017.

 Lewis, N. D. 100 Statistical Tests in R. Heather Hills Press, 2013.

 Loeliger, Jon, and Matthew McCullough. Version Control with Git, 2nd ed. O’Reilly Media, 2012.

 Magee, John. “Operations Research at Arthur D. Little, Inc.: The Early Years.” Operations Research, 2002. 
50 (1), pp. 149–153.

 Marz, Nathan, and James Warren. Big Data. Manning Publications, 2014.

 Matloff, Norman. Statistical Regression and Classification: From Linear Models to Machine Learning. CRC 
Press, 2017.

 ———The Art of R Programming: A Tour of Statistical Software Design. No Starch Press, 2011.

 Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997.

 Nussbaumer Knaflic, Cole. Storytelling With Data. Wiley, 2015.

 Provost, Foster, and Tom Fawcett. Data Science for Business. O’Reilly Media, 2013.

 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Comput-
ing. https://R-project.org/.

 ———R Language Definition. R Foundation for Statistical Computing, 2019. https://cran.r-project.org/ 
doc/manuals/r-release/R-lang.html.

 Raymond, Erick S. The Art of Unix Programming. Addison-Wesley, 2003.

 Sachs, Lothar. Applied Statistics, 2nd ed. Springer, 1984.

 Seni, Giovanni, and John Elder. Ensemble Methods in Data Mining. Morgan and Claypool, 2010.

 Shawe-Taylor, John, and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge Press, 2004.

 Shumway, Robert, and David Stoffer. Time Series Analysis and Its Applications, 3rd ed. Springer, 2013.

 Spector, Phil. Data Manipulation with R. Springer, 2008.

 Spiegel, Murray R., and Larry J. Stephens. Schaum’s Outline of Statistics, 4th ed. McGraw-Hill, 2011.

 Sweeney, R. E., and E. F. Ulveling. “A Transformation for Simplifying the Interpretation of Coefficients 
of Binary Variables in Regression Analysis.” The American Statistician, 26(5), 30–32, 1972.

 Tibshirani, Robert. “Regression shrinkage and selection via the lasso.” Journal of the Royal Statistical Society, 
Series B 58: 267–288, 1996.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://R-project.org/
https://cran.r-project.org/doc/manuals/r-release/R-lang.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.html


521APPENDIX C Bibliography
 Tsay, Ruey S. Analysis of Financial Time Series, 2nd ed. Wiley, 2005.

 Tukey, John W. Exploratory Data Analysis. Pearson, 1977.

 Vapnik, Vladimir N. Statistical Learning Theory, Wiley-Interscience, 1998.

 ———The Nature of Statistical Learning Theory, 2nd ed. Springer, 2000.

 Wasserman, Larry. All of Nonparametric Statistics. Springer, 2006.

 ———All of Statistics. Springer, 2004.

 Wickham, Hadley. Advanced R. CRC, 2014.

 ———ggplot2: Elegant Graphics for Data Analysis (Use R!). Springer, 2009.

 ———R Packages: Organize, Test, Document, and Share Your Code. O’Reilly Media, 2015.

 Wilkinson, Leland. The Grammar of Graphics, 2nd ed. Springer, 2005.

 Xie, Yihui. Dynamic Documents with R and knitr. CRC Press, 2013.

 Zumel, Nina, and John Mount. “vtreat: a data.frame Processor for Predictive Modeling.” 2016. 
https://arxiv.org/abs/1611.09477.
Licensed to Ajit de Silva <agdesilva@gmail.com>

https://arxiv.org/abs/1611.09477


Licensed to Ajit de Silva <agdesilva@gmail.com>



index

Symbols

; (semicolons) 25
:: notation 26
.. notation 119
.() notation 127
.BY list 140
.RData 33
.RDS 33
.tsv (tab-separated values) 33
[,] indexing operator 27, 118
[[]] operator 22, 36, 472–473
@ operator 415, 476
& operator 23, 469
&& operator 23
#' marks 415
%in% operation 23
<- operator 25–26, 468
= operator 25, 468
-> operator 25, 469
| operator 23, 469
|| operator 23
$ operator 472

A

A/B tests 502–506
evaluating 503–506

Fisher's test for independence 504–505
frequentist significance test 505–506

setting up 503
accuracy evaluation measure 178–179, 184
accuracyMeasures() function 358
additive processes 105
adjusted R-squared 236
AIC (Akaike information criterion) 255
Akismet 178, 180

all.equal() method 470
alpha parameter 264, 269, 271
Apgar test 240
Apriori algorithm 169
apriori() function 347
arcsinh 106
area under the curve (AUC) 189–192, 278
arrange() command 28
arules package 343–351

apriori() function 347–348
examining data 344–347
inspecting and evaluating rules 348–349
reading in the data 344
restricting which items to mine 349–351

as.factor() function 230
as.numeric() command 25
assign_cluster() function 339
assignment operators 25
assignments, left-hand sides of 25
association rules 167–169, 340–352

example problem 342–343
mining with arules package 343–351

apriori() function 347–348
examining data 344–347
inspecting and evaluating rules 348–349
reading in the data 344
restricting which items to mine 349–351

overview 340–342
asw (average silhouette width) 332, 335
AUC (area under the curve) 278
automatic printing 21

B

bagging classifiers 361
bar areas 68
523

Licensed to Ajit de Silva <agdesilva@gmail.com>



524 INDEX
bar charts
checking distributions for single variables 66
checking relationships between two 

variables 76
with faceting 85

base error rate 17
base package 44
basic analytics 38
baskets 341
Batch method 429
beta regression 237
betas 218
between sum of squares (BSS) 328–329, 332, 415
bias 172
bias variance decomposition 501–502
bids 148
bimodal distribution 61–62
binary variables 230
BinaryYScatterPlot function 75
binomial classification 166
binomial distribution 494–499
bootstrap evaluation 323–325
BSS (between sum of squares) 328–329, 332, 415
Buzz dataset 405–406
buzz scoring 431
by keyword 127

C

C hyperparameter 397, 399
c() operator 34, 36, 471–472
calibration set 108
Calinski-Harabasz (CH) index 328, 330–332, 

335–336
call-by-value effect 471
CamelCase 24
CART trees 361
categorical variables 228, 286

bar charts for comparing 76
comparing continuous and 81
missing data in 92
using xgboost with 373–375

cbind operator 46, 142
cboot$bootmean 337
cdata::pivot_to_rowrecs() 157
cdata::unpivot_to_blocks 155
cdatapivot_to_rowrecs() function 157
cdataunpivot_to_blocks() function 152
center attribute 104, 317
centering and scaling 101–104
centroid 326
CH (Calinski-Harabasz) index 330, 335–336
char.freq.bang 366
character class 54
character types 25, 36

Character vector 472
Characterizing task 11
chi-squared test 254
chunks 407
class of interest 240
class() method 32, 470
classification 166, 169, 175–185

accuracy 178–179
classification problems 165–166
confusion matrix 176–177
data preparation for 282–297

building model 292–297
mkCrossFrameCExperiment() 290–292
properly using treatment plan 288–289
variable score frame 284–288

defined 11
F1 181
precision and recall 179–180
sensitivity and specificity 181–184

cleaning data 88–98
domain-specific data cleaning 89
missing values 91–95

in categorical variables 92
in numeric or logical variables 92
nature of 92–93
treating as information 94–95
vtreat package for automatic treatment 

of 95–98
ClevelandDotPlot function 68
client role 5
cluster analysis 167, 312–340

assigning new points to clusters 338–339
data preparation 316–318
distances 313–316

cosine similarity 315–316
Euclidean distance 314
Hamming distance 314
Manhattan (city block) distance 315

hierarchical clustering with hclust 319–332
bootstrap evaluation 323–325
picking number of clusters 325–332
principal components analysis 321–322

k-means algorithm 332–337
clusterboot() 336–337
kmeans() function 332
kmeansruns() function 335–336

cluster stability 324
clusterboot() function 323–325, 331, 335–337
clustering 11, 167, 170, 312
coalescing 121
Codd-style operators 115
coding style 20
coef() function 265
coefficient of determination 187
coefficients 218, 228, 248, 261–262
Licensed to Ajit de Silva <agdesilva@gmail.com>



525INDEX
coefficients(model) function 228, 248
coefs vector 266
collinearity 216, 234
colnames() command 36
git help 422
comma-separated values (CSV) 33
comments

comment character (#) 21
writing effective 414

complete cases 301
complete.cases() function 123–124
Comprehensive R Archive Network (CRAN) 19, 

459–460, 464, 466
concatenate operator c() 22–23
conditional transforms 99
confusion matrix 13, 175–177
continuous histograms 64
continuous variables, comparing categorical 

and 81
coord_flip() function 80
copy by value semantics 26
correlation 187
cos() function 378
cosine similarity 315–316
coverage 348
CRAN (Comprehensive R Archive Network) 19, 

459–460, 464, 466
create_pruned_vocabulary() function 206, 213
CRISP-DM (cross-industry, standard, process, for, 

data mining) 6
cross-frame 290, 305–309

dangers of naively reusing data 306–308
safely reusing data 308–309

crossFrame element 308
cross-language linkage method, to deploy 

models 429
cryptographic hash, SHA 411
CSV (comma-separated values) 33
cumsum() 23
customer churn 275, 277
customer_data2 dataset 75
cutree() function 320
cv.glmnet() function 265–266, 269–270
cva.glmnet() function 269–270

D

data architect role 6
data collection and management stage 8
data coordinates 158
data dictionary 34, 285
data directory 418
data engineering

data selection 116–128
ordering rows 124–128

removing records with incomplete data
121–124

subsetting rows and columns 116–121
data transforms 128–133

adding new columns 128–133
aggregating 134–137

multitable transforms 137–149
combining data from multiple tables

143–149
combining two or more ordered data frames 

quickly 137–143
reshaping transforms 149–158

data coordinates 158
moving data from tall to wide form 153–157
moving data from wide to tall form 149–153

data frames 474
data provenance 111, 411–412
data range problems 56
data refresh 20
data science projects

roles in 4
client 5
data architect 6
data scientist 5
operations 6
project sponsor 4

setting expectations for 16
stages of 6

data collection and management 8
defining goal 7
model deployment and maintenance 15
model evaluation and critique 12
modeling 10
presentation and documentation 14

data scientists 5
data selection 116–128

ordering rows 124–128
removing records with incomplete data

121–124
subsetting rows and columns 116–121

data shaping, reshaping transforms 149–158
data coordinates 158
moving data from tall to wide form 153–157
moving data from wide to tall form 149–153

data transformations 98, 128–133
adding new columns 128–133
aggregating 134–137
centering and scaling 101–104
log transformations 104
multitable transforms 137–149

combining data from multiple tables
143–149

combining two or more ordered data frames 
quickly 137–143

normalization 99–100
Licensed to Ajit de Silva <agdesilva@gmail.com>



526 INDEX
data transformations (continued)
reshaping 149–158

data coordinates 158
moving data from tall to wide form 153–157
moving data from wide to tall form 149–153

data tubing 474
data.frame class 28
data.frame() function 26
data.frames 24–25, 29, 114, 118, 476
data.table by argument 155
data.table class

adding new columns 130–131, 133
appending columns 142
appending rows 138
combining many rows into summary rows

135–136
full join 147
inner join 146
left join 144–145
ordering rows 125–127
removing records with incomplete data 124
splitting tables 140–141
subsetting rows and columns 119

data.table package 24, 41, 114, 116, 119–120, 152
data.table::melt.data.table() 152
databases, using with R 477

running database queries using query 
generator 477

thinking relationally about data 481
datasets package 117, 154
datatable::dcast.data.table() 157
datatable::melt.data.table() 152
DBI package 43
dbplyr package 114, 477
dcast.data.table() 157
decision surface 200
decision trees 355
degrees of freedom 235
delayed class 240
delegation, to R 29
dendrograms 319
denormalized form 158
denormalized tables 482
density estimation 313
density plots 64
dependent variables 222, 277
deploying models 15, 428

as HTTP services 431
by export 433
using Shiny 430

derived columns 482
design*() methods 305
design_missingness_treatment() function 104, 

300, 309
designTreatments*() function 308

designTreatmentsC() function 284, 288–290, 
297, 300

designTreatmentsN() function 297, 300, 308, 374
designTreatmentsZ() function 300, 309, 374
deviance evaluation measure 194
df.null - df.model 254
dgCMatrix class 207, 371
dim() function 32, 344
disparity in units 317
dissimilarity 313
dist() function 319
distributions 485–499

binomial distribution 494–499
lognormal distribution 490–494
normal distribution 485–489
other R tools for 499
R's distribution naming conventions 490

documentation 14
comments 414
predicting popularity 405
R markdown 406

documenting data and producing model 411
example 407
purpose of 409
technical details 409

version control
to explore projects 422
to record history 416
to share work 424

document-term matrix 206
domain empathy 6
domain-specific data cleaning 89
dot arrow pipe 121, 129
dot notation 24, 27
dot pipe %.>% 28
dotplots 66
dot-product similarity 398
double density plot 188–189
double-precision floating-point 471
dply::bind_rows 139
dplyr

adding new columns 131, 133
appending columns 143
appending rows 139
combining many rows into summary rows 136
full join 147
inner join 146
left join 145
ordering rows 126–128
removing records with incomplete data 124
splitting tables 141
subsetting rows and columns 120–121

dplyr::bind_cols 143
dplyr::filter 120, 124
dplyr::full_join 147
Licensed to Ajit de Silva <agdesilva@gmail.com>



527INDEX
dplyr::group_by 136
dplyr::select 120
dplyr::summarize 136
drop = FALSE argument 27, 118
dtest data frame 230
dummy variables 46, 286, 302

E

edf (effective degrees of freedom) 380–381
effects coding 303
efficiency, statistical 502
elastic net 263, 269–273
end user presentations 447–452

showing how model fits user workflow 448–449
showing how to use the model 450–452
summarizing project goals 447

end-of-statement markers 25
enrichment rate 246
ensemble learning 359
errors 22, 186
Euclidean distance 314–315
evalframe 373
evaluating models 170–195

classification models 175–185
accuracy 178–179
confusion matrix 176–177
F1 score 181
precision and recall 179–180
sensitivity and specificity 181–184

measures of model performance 174–175
overfitting 170–174

K-fold cross-validation 173–174
testing on held-out data 172–173

probability models 187–195
Akaike information criterion 195
deviance 194
double density plot 188–189
log likelihood 192–194
receiver operating characteristic curve

189–192
scoring models 185–187

root mean square error 186–187
R-squared 187

Excel Spreadsheet (XLS) 33
exchangeability 500
experimental design columns 482
explain() function 199, 201–202
explainers 199
explanatory variables 218, 281
explicit dot notation 120
exploring data for problems

summary statistics 53
data range 56
invalid values and outliers 56

missing values 55
units 57

visualization and graphics 58
checking distributions for single variables 60
checking relationships between two 

variables 70
exporting models 429
extend() method 478
eXtensible Markup Language (XML) 33–34, 435
extrapolation 220

F

F1 score 181
facets 80, 86
facet_wrap layer 80
facet_wrap() command 82
factor class 54
factor coding 45–47
factor variables 228
Factor vector 472
factors 25–26, 475–476
false negatives (FN) 177, 189
false positive rate 14, 184
false positives (FP) 177
family function 242
filled bar charts 78–79, 85
filter() function 137
Fisher scoring iterations 255–256, 260
Fisher's test for independence 504–505
Fisher’s exact test 348
fit_imdb_model() function 207
fit_iris_example() function 198, 369
fixed-width files (FWF) 33
floating-point format 22, 24
FN (false negatives) 177, 189
forecasting 170
FP (false positives) 177
fpc package 323, 335
frequentist significance test 505–506
F-statistic 236
F-test 236, 254, 307
full joins 146–147
function arguments 469
FWF (fixed-width files) 33

G

gam package 379
gam() function 379, 381, 384, 387, 389
GAMs (generalized additive models) 376–389

extracting non-linear relationships 382–384
one-dimensional regression example 378–382
overview 376–378
Licensed to Ajit de Silva <agdesilva@gmail.com>



528 INDEX
GAMs (generalized additive models) (continued)
using for logistic regression 387–388
using on actual data 384–387

gap statistic 332
Gaussian distributions 332
generalization error 170
generalized additive models. See GAMs 
generalized linear models 237
geom_hex layer 75
geom_histogram layer 63
geom_histogram() command 82
geom_line layer 60
geom_point layer 60, 71
geom_smooth function 73, 75
ggplot() function 60, 107
ggplot2 package 21, 59–60, 66–67, 116, 150
ggpubr package 59
ggstatsplot package 59
Git 428

installing 461, 464
starting project using command line 418
using git diff to compare files from different 

commits 423
using git log and git status to view progress 419
using git log to find last time file was 

around 424
using through RStudio 420

git blame command 422
git clone command 425, 461
git commit command 420
git diff command 423
git help log command 422
git log command 419
git pull command 426
git push command 424, 426
git rebase command 424
git remote add command 425
git remote command 425
git status 419, 425
git tag command 423
glm() function 166, 222, 237, 240, 242–243, 

255–256, 259, 264, 280, 282, 303
glmnet 263–273

elastic net 269–273
lasso regression 268–269
ridge regression 264–268

glmnet method 233
glmnet package 263
glmnet::cv.glmnet() function 264
glmnet::glmnet() function 264
glmnetUtils package 263, 269, 272
goal defining stage 7
gradient boosting models 373
gradient-boosted trees 359, 368–375

gradient boosting for text classification
371–373

iris example 369–371
using xgboost with categorical variables 373–

375
GROUP BY queries 482
group() function 137
group_by() command 127, 141
grouped data 251

H

Hamming distance 314
hash mark (#) 21
hashes 39
hclust() function 319–332, 334, 336

bootstrap evaluation 323–325
picking number of clusters 325–332

Calinski-Harabasz index 328–332
total within sum of squares 325–327

principal components analysis 321–322
head() command 32, 154, 282
help() command 20, 22, 49, 470
help(match) command 145
help(model_support) command 199
help(setwd) command 20, 26
hexbin plots 70, 75, 85
HexBinPlot function 75
hierarchical clustering 313, 319–332

bootstrap evaluation 323–325
picking number of clusters 325–332

Calinski-Harabasz index 328–332
total within sum of squares 325–327

principal components analysis 321–322
histograms 62–63, 70
Homebrew 464
homoscedastic errors 379
horizontal offset 177
HTML 407
HTTP services, deploying models as 431
hyperparameters 397, 399
hypothesis testing 17

I

IDE (integrated development environment) 405
identical() method 470
if statements 23
impact 286
impact coding 303–305
implicit printing 21
importance() function 365
imputed value 92
independent variables 218, 222, 277
indicator variables 90, 230, 302–303
infix scalar-valued operators 23
Licensed to Ajit de Silva <agdesilva@gmail.com>



529INDEX
inner joins 145–146
input variables 277
install.packages() command 462
integrated development environment (IDE) 405
interestMeasure() function 348
intermediate values, organizing 27–28
introducing indicators 46
invalid values 56
iris dataset 116–117, 134, 197, 369
itemFrequency() function 345
items 341

J

Jaccard coefficient 323
join command 53
JSON (JavaScript Object Notation) 33

K

k(,) function 398
kernel functions 389–390, 397–399

defined 397–398
support vectors 398–399

kernel trick 399
kernlab library 390
k-fold cross-validation 173–174
k-means algorithm 323, 332–337

clusterboot() 336–337
kmeans() function 332
kmeansruns() function 335–336

k-means clustering 168, 313
kmeans() function 332, 338
kmeansruns() function 335–336
knitr 407, 409, 412

documenting data and producing model
411–414

confirming data provenance 411–412
recording performance of naive analysis 412
using milestones to save time 413

technical details 409
block declaration format 410
chunk options 410

L

L1 distance 315
L1-regularized regression 263
L2 distance 315
L2-regularized regression 262
Laplace smoothing 305
lasso regression 263, 268–269
LaTeX 407
lattice package 59

layers 60
lazy copying 470
LearnR 466
least squares method 231
left joins 143–145
length() function 32
length-zero vector 23
lhs() function 350
library() command 26, 462, 464
library(pkgname) command 463
lift 348
LIME (local interpretable model-agnostic 

explanations) 195–214
automated sanity checking 197
example 197–204
for text classification 204–207

explaining predictions 209–214
representing documents for modeling

206–207
training text classifier 208

how LIME works 200–202
lime package 199, 202
LIME variable importances 367
lime() function 209
line breaks 24–25
line of perfect prediction 223
line plots 70, 84
line wrapping 21
linear combination 217
linear regression 216–237

building model 221
finding relations and extracting advice

228–230
making predictions 222–228
PUMS dataset 220–221
reading model summary and characterizing 

coefficient quality 230–236
coefficients table 232–235
original model call 230
overall model quality summaries 235–236
residuals summary 230–232

when assumptions of are violated 219–220
link function 243
lists 22–23, 472
lm() command 218, 221–222, 229, 242, 264, 303, 

381, 476
load() command 33
local interpretable model-agnostic explanations. 

See LIME
loess function, 73
log likelihood 192–194, 253
log transformations 104
logarithmic scale 66
logical vectors 472
Licensed to Ajit de Silva <agdesilva@gmail.com>



530 INDEX
logistic regression 11, 176, 216, 237, 240–256
building model 242
finding relations and extracting advice

248–249
making predictions 243–248
overview 237
reading model summary and characterizing 

coefficients 249–256
deviance residuals summary 250–251
Fisher scoring iterations 255–256
original model call 250
overall model quality summaries 252–255
summary coefficients table 251–252

using generalized additive models for 387–388
logit function 240
logit link 243, 387
logit space (link space) 287
logit() 239–240
lognormal distribution 490–494
lognormally distributed monetary amounts 104
log-odds, of probabilities 239
log-scaled density plot 66

M

magrittr package 27
magrittr pipe operator %>% 28, 120, 124
Manhattan (city block) distance 315
mapping problems to machine learning tasks 164

classification problems 165–166
grouping 167

association rules 168
clustering 167

problem-to-method mapping 169–170
scoring problems 166

margins 397
Markdown 407
match() method 23, 145
matrices 475
MAX() function 482
m-dimensional linear model 202
mean squared error 186–187
measurement types 405
Mercer’s theorem 398
method chaining 127
mgcv package 379, 388
Microsoft Excel workbooks 33
Microsoft Word 407
missing values 55, 301
missing-value imputation 301
mixture of Gaussians 332
mkCrossFrame*Experiment() method 305
mkCrossFrame*Experiment() methods, 

vtreat’s 308

mkCrossFrame*Experiment()/$crossFrame 
pattern 309

mkCrossFrameCExperiment() function 290–292, 
297, 300

mkCrossFrameNExperiment() function 297, 300, 
308, 374

mkExperiment*() methods 305
mk_formula() function 242, 280
mlogit package 166
model deployment and maintenance stage 15
model evaluation and critique stage 12
model matrix 158, 482
model object 222
model performance, determining lower bounds 

on 16
model.matrix() function 300, 302, 374, 474
modeling 10

evaluating models 170–195
classification models 175–185
measures of model performance 174–175
overfitting 170–174
probability models 187–195
scoring models 185–187

local interpretable model-agnostic explanations
195–214

automated sanity checking 197
example 197–204
for text classification 204–214
how LIME works 200–202

mapping problems to machine learning tasks
164–170

classification problems 165–166
grouping 167
problem-to-method mapping 169–170
scoring problems 166

sampling for 107–111
trade-offs 246

modeling algorithm 445
model_ridge$lambda.1se 265
model_ridge$lambda.min 265
MongoDB 34
multicategory classification 166
multimodal data 61
multinomial classification 166
multiple comparison bias 173
multiple comparison problems 233
multiplicative process 106
multitable transforms 137–149

combining data from multiple tables 143–149
full joins 146–147
inner joins 145–146
left joins 143–145
right joins 145
rolling joins 147–149
Licensed to Ajit de Silva <agdesilva@gmail.com>



531INDEX
multitable transforms (continued)
combining two or more ordered data frames 

quickly 137–143
appending columns 142–143
appending rows 138–139
splitting tables 139–141

multivariate data matrix 158
mutable data types 472
mutate() function 28, 90, 127, 131

N

NA (not available) values 23–24, 33, 91–95, 475
in categorical variables 92
in numeric or logical variables 92
nature of 92–93
treating as information 94–95
vtreat package for automatic treatment of

95–98
vtreat variable treatment package 301–302

na.locf() function 121, 131
na.omit() function 123
na_if() function 90
naked repositories 425
named arguments 26
named lists 33, 472
named maps 36
NaN (not a number) 106
narrow data ranges 57
natural key columns 481
NB (nota bene or note well) 415
nchar() function 23
needsSplit 305
NEGATIVE (non-spam). See truth mark
negative coefficients 248
negative R-squareds 187
newpt data point 338
n_features parameter 202
N-fold cross-validation 364
no operation (no-op) 23
non-linear combinations 389
nonsignaling 475
--no-restore command-line flag set 466
normal distribution 485–489
normalization (rescaling) 99–100
normalized form 53
not a number (NaN) 106
not available values. See NA (not available) values
nota bene or note well (NB) 415
nu hyperparameter 397, 399
null deviance 253
null model 16, 187
NULL values 23–24, 253, 475
NULL vector 472
Numeric vector 472

O

one-hot encoding 286, 300, 302
one-versus-rest classifier 166
operations role 6
operator 22–23, 114, 145, 473
order() function 28
outcome variable 277
outliers 56
out-of-bag samples 364
overfitting 170–174, 235, 255, 262, 364

K-fold cross-validation 173–174
testing on held-out data 172–173

overlaid density plot 86

P

package notation 26
payload columns 482
PCR (principal components regression) 261
peer presentations 452–457

discussing related work 453–454
discussing results and future work 455–456
discussing your approach 454–455
introducing problem 452

permTestAUC() function 295
phi() function 390, 395, 397–399
piped notation 27
pipe-separated (vertical bar) files 33
pivoting 149, 154
plot() function 382
plot(gammodel) function 385
plot_features() function 199, 210
plot_text_explanations() function 210
plumber package 432–433
PMML (Predictive Model Markup Language) 435
Poisson regression 221
POSITIVE (spam). See truth mark
prcomp() function 321
precision 14, 177, 179–181, 185, 246
predict() function 222, 243, 265, 322, 382, 388, 

470
predictions 170, 225
prepare() method 283–284, 288, 290, 292, 300, 

308, 374
presentations 14

end user presentations 447–452
showing how model fits user workflow

448–449
showing how to use the model 450–452
summarizing project goals 447

peer presentations 452–457
discussing related work 453–454
discussing results and future work 455–456
Licensed to Ajit de Silva <agdesilva@gmail.com>



532 INDEX
presentations, peer presentations (continued)
discussing your approach 454–455
introducing problem 452

project sponsor presentations 439–446
filling in details 444–445
making recommendations and discussing 

future work 446
stating project results 442
summarizing project goals 440–441

principal components analysis 321–322
principal components regression (PCR) 261
print() function 32, 470
printing 21–22
probability models 187–195

Akaike information criterion 195
deviance 194
double density plot 188–189
log likelihood 192–194
receiver operating characteristic curve

189–192
problem-to-method mapping 169–170
project sponsor presentations 439–446

filling in details 444–445
making recommendations and discussing 

future work 446
stating project results 442
summarizing project goals 440–441

project sponsors 4
provenance columns 482
PRTPlot() function 246
pseudo distance 316
pseudo R-squared 187, 194
pseudo-random sample 40
PUMS (Public Use Microdata Sample) data

38–49
curating data 39
examining and conditioning data 42
factor coding 45–47
linear regression 220–221
working with 47–49

p-value (significance) 234–236, 251, 254–255

Q

quasi-separation 256–262
query generators 477
Quick-R 466
quotes 148

R

R 19, 459, 466
installing 20, 459–460
installing tools

book-support materials 461

R package system 462, 464
required packages 463

primary data types 471
data frames 474
factors 475
lists 472
matrices 475
NULL and NA 475
slots 476
vectors 471

primary features of 468
assignment 468
object system 470
share-by-value characteristics 470
vectorized operations 469

programming basics 20
assignment operators 25
comment character 21
data.frame class 28
delegating to R 29
factors 25–26
identifiers 24
left-hand sides of assignments 25
line breaks 24–25
lists 22–23
NA value 23–24
named arguments 26
NULL value 23–24
organizing intermediate values 27–28
package notation 26
printing 21–22
semicolons 25
value semantics 26–27
vectors 22–23

relational databases 37–49
curating data 39
examining and conditioning data 42
factor coding 45–47
production-size example 38–49
working with 47–49

resources for 465
installing R views 465
online 466

structured data 29
less-structured data 34
well-structured data 29

using databases with 477
running database queries using query 

generator 477
thinking relationally about data 481

R markdown 406–414
documenting data and produce model

411–414
confirming data provenance 411–412
recording performance of naive analysis 412
using milestones to save time 413
Licensed to Ajit de Silva <agdesilva@gmail.com>



533INDEX
R markdown (continued)
example 407
purpose of 409
technical details 409

block declaration format 410
chunk options 410

RAND command 110
random forests 359, 361–367, 373

exporting to SQL with tidypredict 434–435
variable importance 364, 367

randomForest package 432
randomForest() function 361–362, 364–365
ranking tasks 11
raw (unscaled) variables 318
rbind 138
R-bloggers 466
Rcpp package 429, 463
RDF triples 153
reactive programming 431
read.table() function 26, 32–33
read.transactions() function 344
reader package 33
readr package 30
readRDS() command 33
readxl package 37
rebase 426
recall 14, 17, 177, 180–181, 185, 246
receiver operating characteristic curve (ROC)

189–192
record grouping 110–111
rect.hclust() function 319
reference level 44, 221, 228, 303
reference semantics 114
regression modeling, data preparation for

297–299
regression testing 109
regression to the mean 225
regressions 166, 169
regularization 216, 257–273

example of quasi-separation 257–262
types of 262–263

elastic net 263
lasso regression 263
ridge regression 262

with glmnet 263–273
elastic net solution 269–273
lasso regression solution 268–269
ridge regression solution 264–268

relational databases 37–49
curating data 39
examining and conditioning data 42
factor coding 45–47
production-size example 38–49
working with 47–49

relations, finding 11

relevel() function 230
remote relation 425
residual deviance 253
residual standard error 235–236
residuals 186, 231
reversion to mediocrity 225
ridge regression 262, 264–268
right joins 145
rm.duplicates = TRUE argument 344
rm() command 222
RMSE (root mean square error) 186, 226–228, 

235, 378, 380–381
ROC (receiver operating characteristic curve)

189–190
rolling joins 147–149
root mean square error (RMSE) 186–187,

226–228, 235, 378, 380–381
rownames() function 126
rows 405
roxygen2 R package 415
rquery package 41, 114, 477–478, 481
R-squared 187, 226–228

adjusted 236
multiple 236
pseudo R-squared 254

RStudio 405, 420, 430, 460
community for 466
installing 460, 465
using Git through 420

RStudio Desktop 465
RTools 464
runif() function 109

S

S programming language 466
s() function 380, 382, 386
sample_frac() function 109
sample_n() function 109
sampling 107–111

creating sample group columns 109–110
data provenance 111
record grouping 110–111
splitting data into training and test sets 108

save() command 33
saveRDS() function 32–33
scale attribute 104, 317
scale() function 102–103, 317, 338–339
scaling 317–318
scatter plots 70, 75, 84
schema documentation 34
scikit-learn, Python 46
score frame 284
scoring 11, 166
Licensed to Ajit de Silva <agdesilva@gmail.com>



534 INDEX
scoring models 185–187
root mean square error 186–187
R-squared 187

scoring problems 166
scoring residuals 186
sdata data frame 241, 252
se = FALSE argument 73
sensitivity 181, 183–185
sentinel values 56, 64
sepal measurements 197
separable data 397
separation 256
Services method 429
sessionInfo() command 464
set.seed() command 109
setorderv() function 125
setosa 198, 203
setwd() function 26, 31
shadow graphs 78
shadow histograms 86
shadow plots 78, 85
ShadowHist() function 82
ShadowPlot command 79
Shiny tool 430
side-by-side bar charts 76, 85
sigmoid function 239
signed logarithm 106
significance 251

lack of 252
testing 17
vs. goodness of fit 255

sigr package 194, 261
sigr::wrapFTest() function 308–309
silhouette clustering 335
similarity 313
sin() function 378
single-variable models 175
slotNames() 476
slots 476
smoothing 304
smoothing curves 70, 85
SOA (services oriented architecture) 431
soft margin 397
sort() function 348
spam filters 180–181
spam model 176
spam proportion 181–182
sparse matrix 207
specificity 183, 185
split() function 258
sponsor sign-off 5
SQL (Structured Query Language) 33, 434–435
SQL WHEN clause 435
sqldf package 38
sqr_edist() function 338

Stack Overflow R section 466
stack() notation 149
stacked bar charts 76, 79, 85
standard error ribbon 73
statistical efficiency 502
statistical theory 499–510

A/B tests 502–506
evaluating 503–506
setting up 503

power of tests 506–508
specialized statistical tests 508–510
statistical philosophy 499–502

bias variance decomposition 501–502
exchangeability 500
statistical efficiency 502

statistical view of data, examples of
omitted variable bias 513–518

example of 514–516
overview 513
spoiled analysis 516–517
working around 517–518

sampling bias 510–513
statistically efficient estimators 173
statistically significant thresholds 234
stats package 29, 44, 221, 242
str() function 32, 46, 279
str(dTrain) command 279
stringsAsFactors = FALSE argument 26
string-valued (categorical) variable 230
structured data 29–37

less-structured tabular data 34–37
examining 37
transforming 34

well-structured data in comma-separated values 
format 29

examining 32
loading 30

well-structured data in other data formats 33
structured values 29
subset() function 129, 351
sum(error_sq) (sum squared error) 187
summarize() function 128
summary statistics 38, 53

typical problems revealed by 54
data range issues 56
invalid values 56
missing values 55
outliers 56
units 57

summary() function 26, 32–33, 37, 45, 53–54, 
154, 230, 470

summary(customer_data$marital.stat) command
67

summary(dpus) command 47
summary(dpus$COW) command 44
Licensed to Ajit de Silva <agdesilva@gmail.com>



535INDEX
summary(dTrain) command 279
summary(model) command 222, 230, 232, 235
summary(model)$coefficients 232
supervised learning 166
support vectors 399
Surrogate key columns 481
SVMs (support vector machines) 389–390,

392–395, 397, 399–400
kernel functions 397–399

defined 397–398
support vectors 398–399

overview 395–397
problem solving with 390–395

spiral example 390–392
with good kernels 393–395
with oversimple kernels 392–393

symbol names (identifiers) 24
syntax error 25
synthetic data points 200

T

table() command 47
tab-separated values (.tsv) 33
tall data form 153
tapply() command 47–48
target class 240
test (holdout) set 108, 177
test data 170
text classification

gradient boosting for 371–373
local interpretable model-agnostic explanations 

for 204–207
explaining predictions 209–214
representing documents for modeling

206–207
training text classifier 208

text2vec package 206
the kernel trick 399
The R Foundation 460
theta angle 316
thin data form 153
tidypredict package 434–435
tidyr solution 152
tidyrgather() function 153
tidyrspread() function 157–158
Times attribute 405
title column 343
TN (true negatives) 177
token column 343
topics 405
total variance 187
TP (true positives) 189
trades 148
training error 170

training set 108, 166
training_prepared data frame 96
train_treated 375
transactions object 340, 344
transform() function 129, 382
treat package for automatic treatment of 95
treatment plans 95, 276, 278, 284
tree-based methods 11, 355–376

bagging 359–361
basic decision tree 356–358
gradient-boosted trees 368–375

gradient boosting for text classification
371–373

iris example 369–371
using xgboost with categorical variables

373–375
random forests 361–367

true negative rate 183
true outcome 225
true positive rate 183
truth mark 177
TSS (total sum of squares) 328
TSV (tab-separated values) 33
two-category classification 166
two-dimensional histograms 75
typeof() command 32

U

unbiased predictors 218
unconditioned transform 99
underscore notation 24
underscore style 24
ungroup() function 137
ungrouped data 251
unimodal distribution 62
units

cluster analysis 317–318
unit problems 57

unstack() notation 149
unsupervised learning 167
unsupervised methods

association rules 340–352
example problem 342–343
mining with arules package 343–351
overview 340–342

cluster analysis 312–340
assigning new points to clusters 338–339
data preparation 316–318
distances 313–316
hierarchical clustering 319–332
k-means algorithm 332–337

unsystematic errors 218
utils package 29, 44
utils::read.table() command 30
Licensed to Ajit de Silva <agdesilva@gmail.com>



536 INDEX
V

validation, sampling for 107–111
value semantics 26–27, 114
value.var argument 157
values 91
values in categorical variables 92
values in numeric or logical variables 92
values nature of 92
value_variables_C() method 292, 294
varImpPlot() function 365–366
vectorized operations 23
vectors 22–23, 471
version control 418

to explore projects 422
finding out who wrote what and when 422
using git diff to compare files from different 

commits 423
using git log to find last time file was around

424
to record history 416

choosing project directory structure 417
starting Git project using command line 418
using add/commit pairs to checkpoint work

419
using git log and git status to view progress

419
using Git through RStudio 420

to share work 424
setting up remote repository relations 425
using push and pull to synchronize work with 

remote repositories 426
versioning 418
vertical offset 177
View() command 31–32, 154
visualization and graphics 58

checking distributions for single variables 60
bar charts 66
density plots 64
dotplots 66
histograms 62

checking relationships between two variables
70

bar charts for two categorical variables 76
comparing continuous and categorical 

variables 81
hexbin plots 75
line plots 70
scatter plots and smoothing curves 70

overview 84

vtreat variable treatment package 95–98, 299–309
cross-frame 305–309

dangers of naively reusing data 306–308
safely reusing data 308–309

data preparation for classification 282–297
building model 292–297
properly using treatment plan 288–289
variable score frame 284–288

data preparation for regression modeling
297–299

dataset 277–282
bull-in-the-china-shop approach 280–282
characterizing outcome 279

impact coding 303–305
indicator variables 302–303
missing values 301–302
phases of 299–301
purpose of 275
treatment plan 305

W

with() function 125, 129
wrapr package 28, 242
wrapr pipe 121
wrapr::orderv() 126
WSS (within sum of squares) 319, 325–327, 332
WVPlots library 75, 246
WVPlots package 68, 79

X

xcenter attribute 338
Xcode tools 464
xgb.cv() function 369, 375
xgboost package 198–199, 205–206, 294, 369, 

373–375, 395
xgboost() function 286, 293, 370
XLS (Excel Spreadsheet) 33
XLSX 33
XML (eXtensible Markup Language) 33–34, 435
xscale attribute 338

Y

YAML (yet another markup language) 407

Z

zeallot package 205, 258
zoo package 131
Licensed to Ajit de Silva <agdesilva@gmail.com>



 

Licensed to Ajit de Silva <agdesilva@gmail.com>



Zumel ●  Mount

E
vidence-based decisions are crucial to success. Applying 
the right data analysis techniques to your carefully curated 
business data helps you make accurate predictions, iden-

tify trends, and spot trouble in advance. The R data analysis 
platform provides the tools you need to tackle day-to-day data 
analysis and machine learning tasks effi ciently and effectively.

Practical Data Science with R, Second Edition is a task-based 
tutorial that leads readers through dozens of useful data 
analysis practices using the R language. By concentrating on 
the most important tasks you’ll face on the job, this friendly 
guide is comfortable both for business analysts and data 
scientists. Because data is only useful if it can be understood, 
you’ll also fi nd fantastic tips for organizing and presenting 
data in tables, as well as snappy visualizations. 

What’s Inside
●  Statistical analysis for business pros
●  Effective data presentation
●  The most useful R tools
●  Interpreting complicated predictive models

You’ll need to be comfortable with basic statistics and have an 
introductory knowledge of R or another high-level program-
ming language.

Nina Zumel and John Mount founded a San Francisco–based 
data science consulting fi rm. Both hold PhDs from Carnegie 
Mellon University and blog on statistics, probability, and 
computer science.

To download their free eBook in PDF, ePub, and Kindle formats, 
owners of this book should visit 

manning.com/books/practical-data-science-with-r-second-edition

$49.99 / Can $65.99  [INCLUDING eBOOK]

Practical Data Science with R 
Second Edition

DATA SCIENCE

M A N N I N G

“Full of useful shared 
experience and 
practical advice. 

 Highly recommended.” 
—From the Foreword by Jeremy 

Howard and Rachel Thomas

“Great examples and an 
informative walk-through of 
 the data science process.”—David Meza, NASA 

“Offers interesting 
perspectives that cover many 

aspects of practical data 
 science; a good reference.” 

—Pascal Barbedor, BL SET

“R you ready to get 
data science done 
  the right way?”—Taylor Dolezal

Disney Studios

See first page

ISBN-13: 978-1-61729-587-4
ISBN-10: 1-61729-587-6


	Practical Data Science with R
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	What is data science?
	Roadmap
	Audience
	What is not in this book?
	Code conventions and downloads
	Working with this book
	Book forum

	about the authors
	about the foreword authors
	about the cover illustration
	Part 1  Introduction to data science
	1  The data science process
	1.1 The roles in a data science project
	1.1.1 Project roles

	1.2 Stages of a data science project
	1.2.1 Defining the goal
	1.2.2 Data collection and management
	1.2.3 Modeling
	1.2.4 Model evaluation and critique
	1.2.5 Presentation and documentation
	1.2.6 Model deployment and maintenance

	1.3 Setting expectations
	1.3.1 Determining lower bounds on model performance

	Summary

	2  Starting with R and data
	2.1 Starting with R
	2.1.1 Installing R, tools, and examples
	2.1.2 R programming

	2.2 Working with data from files
	2.2.1 Working with well-structured data from files or URLs
	2.2.2 Using R with less-structured data

	2.3 Working with relational databases
	2.3.1 A production-size example

	Summary

	3  Exploring data
	3.1 Using summary statistics to spot problems
	3.1.1 Typical problems revealed by data summaries

	3.2 Spotting problems using graphics and visualization
	3.2.1 Visually checking distributions for a single variable
	3.2.2 Visually checking relationships between two variables

	Summary

	4  Managing data
	4.1 Cleaning data
	4.1.1 Domain-specific data cleaning
	4.1.2 Treating missing values
	4.1.3 The vtreat package for automatically treating missing variables

	4.2 Data transformations
	4.2.1 Normalization
	4.2.2 Centering and scaling
	4.2.3 Log transformations for skewed and wide distributions

	4.3 Sampling for modeling and validation
	4.3.1 Test and training splits
	4.3.2 Creating a sample group column
	4.3.3 Record grouping
	4.3.4 Data provenance

	Summary

	5  Data engineering and data shaping
	5.1 Data selection
	5.1.1 Subsetting rows and columns
	5.1.2 Removing records with incomplete data
	5.1.3 Ordering rows

	5.2 Basic data transforms
	5.2.1 Adding new columns
	5.2.2 Other simple operations

	5.3 Aggregating transforms
	5.3.1 Combining many rows into summary rows

	5.4 Multitable data transforms
	5.4.1 Combining two or more ordered data frames quickly
	5.4.2 Principal methods to combine data from multiple tables

	5.5 Reshaping transforms
	5.5.1 Moving data from wide to tall form
	5.5.2 Moving data from tall to wide form
	5.5.3 Data coordinates

	Summary


	Part 2 Modeling methods
	6  Choosing and evaluating models
	6.1 Mapping problems to machine learning tasks
	6.1.1 Classification problems
	6.1.2 Scoring problems
	6.1.3 Grouping: working without known targets
	6.1.4 Problem-to-method mapping

	6.2 Evaluating models
	6.2.1 Overfitting
	6.2.2 Measures of model performance
	6.2.3 Evaluating classification models
	6.2.4 Evaluating scoring models
	6.2.5 Evaluating probability models

	6.3 Local interpretable model-agnostic explanations (LIME) for explaining model predictions
	6.3.1 LIME: Automated sanity checking
	6.3.2 Walking through LIME: A small example
	6.3.3 LIME for text classification
	6.3.4 Training the text classifier
	6.3.5 Explaining the classifier’s predictions

	Summary

	7  Linear and logistic regression
	7.1 Using linear regression
	7.1.1 Understanding linear regression
	Equation 7.1 The expression for a linear regression model

	7.1.2 Building a linear regression model
	7.1.3 Making predictions
	7.1.4 Finding relations and extracting advice
	7.1.5 Reading the model summary and characterizing coefficient quality
	7.1.6 Linear regression takeaways

	7.2 Using logistic regression
	7.2.1 Understanding logistic regression
	Equation 7.2 The expression for a logistic regression model

	7.2.2 Building a logistic regression model
	7.2.3 Making predictions
	7.2.4 Finding relations and extracting advice from logistic models
	7.2.5 Reading the model summary and characterizing coefficients
	7.2.6 Logistic regression takeaways

	7.3 Regularization
	7.3.1 An example of quasi-separation
	7.3.2 The types of regularized regression
	7.3.3 Regularized regression with glmnet

	Summary

	8  Advanced data preparation
	8.1 The purpose of the vtreat package
	8.2 KDD and KDD Cup 2009
	8.2.1 Getting started with KDD Cup 2009 data
	8.2.2 The bull-in-the-china-shop approach

	8.3 Basic data preparation for classification
	8.3.1 The variable score frame
	8.3.2 Properly using the treatment plan

	8.4 Advanced data preparation for classification
	8.4.1 Using mkCrossFrameCExperiment()
	8.4.2 Building a model

	8.5 Preparing data for regression modeling
	8.6 Mastering the vtreat package
	8.6.1 The vtreat phases
	8.6.2 Missing values
	8.6.3 Indicator variables
	8.6.4 Impact coding
	8.6.5 The treatment plan
	8.6.6 The cross-frame

	Summary

	9  Unsupervised methods
	9.1 Cluster analysis
	9.1.1 Distances
	9.1.2 Preparing the data
	9.1.3 Hierarchical clustering with hclust
	9.1.4 The k-means algorithm
	9.1.5 Assigning new points to clusters
	9.1.6 Clustering takeaways

	9.2 Association rules
	9.2.1 Overview of association rules
	9.2.2 The example problem
	9.2.3 Mining association rules with the arules package
	9.2.4 Association rule takeaways

	Summary

	10  Exploring advanced methods
	10.1 Tree-based methods
	10.1.1 A basic decision tree
	10.1.2 Using bagging to improve prediction
	10.1.3 Using random forests to further improve prediction
	10.1.4 Gradient-boosted trees
	10.1.5 Tree-based model takeaways

	10.2 Using generalized additive models (GAMs) to learn non-monotone relationships
	10.2.1 Understanding GAMs
	10.2.2 A one-dimensional regression example
	10.2.3 Extracting the non-linear relationships
	10.2.4 Using GAM on actual data
	10.2.5 Using GAM for logistic regression
	10.2.6 GAM takeaways

	10.3 Solving “inseparable” problems using support vector machines
	10.3.1 Using an SVM to solve a problem
	10.3.2 Understanding support vector machines
	10.3.3 Understanding kernel functions
	10.3.4 Support vector machine and kernel methods takeaways

	Summary


	Part 3 Working in the real world
	11  Documentation and deployment
	11.1 Predicting buzz
	11.2 Using R markdown to produce milestone documentation
	11.2.1 What is R markdown?
	11.2.2 knitr technical details
	11.2.3 Using knitr to document the Buzz data and produce the model

	11.3 Using comments and version control for running documentation
	11.3.1 Writing effective comments
	11.3.2 Using version control to record history
	11.3.3 Using version control to explore your project
	11.3.4 Using version control to share work

	11.4 Deploying models
	11.4.1 Deploying demonstrations using Shiny
	11.4.2 Deploying models as HTTP services
	11.4.3 Deploying models by export
	11.4.4 What to take away

	Summary

	12  Producing effective presentations
	12.1 Presenting your results to the project sponsor
	12.1.1 Summarizing the project’s goals
	12.1.2 Stating the project’s results
	12.1.3 Filling in the details
	12.1.4 Making recommendations and discussing future work
	12.1.5 Project sponsor presentation takeaways

	12.2 Presenting your model to end users
	12.2.1 Summarizing the project goals
	12.2.2 Showing how the model fits user workflow
	12.2.3 Showing how to use the model
	12.2.4 End user presentation takeaways

	12.3 Presenting your work to other data scientists
	12.3.1 Introducing the problem
	12.3.2 Discussing related work
	12.3.3 Discussing your approach
	12.3.4 Discussing results and future work
	12.3.5 Peer presentation takeaways

	Summary


	appendix A  Starting with R and other tools
	A.1 Installing the tools
	A.1.1 Installing Tools
	A.1.2 The R package system
	A.1.3 Installing Git
	A.1.4 Installing RStudio
	A.1.5 R resources

	A.2 Starting with R
	A.2.1 Primary features of R
	A.2.2 Primary R data types

	A.3 Using databases with R
	A.3.1 Running database queries using a query generator
	A.3.2 How to think relationally about data

	A.4 The takeaway

	appendix B  Important statistical concepts
	B.1 Distributions
	B.1.1 Normal distribution
	B.1.2 Summarizing R’s distribution naming conventions
	B.1.3 Lognormal distribution
	B.1.4 Binomial distribution
	B.1.5 More R tools for distributions

	B.2 Statistical theory
	B.2.1 Statistical philosophy
	B.2.2 A/B tests
	B.2.3 Power of tests
	B.2.4 Specialized statistical tests

	B.3 Examples of the statistical view of data
	B.3.1 Sampling bias
	B.3.2 Omitted variable bias

	B.4 The takeaway

	appendix C Bibliography
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




