
Pro MySQL
NDB Cluster

Master the MySQL Cluster Lifecycle
—
Jesper Wisborg Krogh
Mikiya Okuno

Pro MySQL NDB Cluster

Jesper Wisborg Krogh

Mikiya Okuno

Pro MySQL NDB Cluster

Jesper Wisborg Krogh Mikiya Okuno
Sydney, New South Wales, Australia Tochigi, Japan

ISBN-13 (pbk): 978-1-4842-2981-1 ISBN-13 (electronic): 978-1-4842-2982-8
https://doi.org/10.1007/978-1-4842-2982-8

Library of Congress Control Number: 2017958958

Copyright © 2017 by Jesper Wisborg Krogh and Mikiya Okuno

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Charles Bell
Coordinating Editor: Jill Balzano
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484229811. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2982-8
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484227985
http://www.apress.com/source-code

Contents at a Glance

About the Authors ���xxi

About the Technical Reviewer ��xxiii

Acknowledgments ���xxv

Introduction ���xxvii

 ■Part I: The Basics �� 1

 ■Chapter 1: Architecture and Core Concepts �� 3

 ■Chapter 2: The Data Nodes �� 23

 ■Part II: Installation and Configuration �� 65

 ■Chapter 3: System Planning �� 67

 ■Chapter 4: Configuration ��� 85

 ■Chapter 5: Installation ��� 141

 ■Chapter 6: Replication ��� 175

 ■Part III: Daily Tasks and Maintenance �� 237

 ■Chapter 7: The NDB Management Client and Other NDB Utilities ���������������������� 239

 ■Chapter 8: Backups and Restores ��� 251

 ■Chapter 9: Table Maintenance ��� 283

 ■Chapter 10: Restarts �� 309

 ■Chapter 11: Upgrades and Downgrades �� 351

 ■Chapter 12: Security Considerations ��� 373

 ■Chapter 13: MySQL Cluster Manager ��� 395

iii

 ■ Contents at a GlanCe

iv

 ■Part IV: Monitoring and Troubleshooting �� 439

 ■Chapter 14: Monitoring Solutions and the Operating System ��������������������������� 441

 ■Chapter 15: Sources for Monitoring Data �� 457

 ■Chapter 16: Monitoring MySQL NDB Cluster �� 519

 ■Chapter 17: Typical Troubles and Solutions��� 551

 ■Part V: Development and Performance Tuning ������������������������������� 569

 ■Chapter 18: Developing Applications Using SQL with MySQL NDB Cluster�������� 571

 ■Chapter 19: MySQL NDB Cluster as a NoSQL Database ������������������������������������� 611

 ■Chapter 20: MySQL NDB Cluster and Application Performance Tuning ������������� 655

Index ��� 681

Contents

About the Authors ���xxi

About the Technical Reviewer ��xxiii

Acknowledgments ���xxv

Introduction ���xxvii

 ■Part I: The Basics �� 1

 ■Chapter 1: Architecture and Core Concepts �� 3

Terminology �� 3

Characteristics and Features ��� 6

Architecture �� 6

Features �� 6

Limitations �� 8

Use Cases ��� 10

Node Types ��� 11

Management Nodes�� 12

Data Nodes ��� 14

API and SQL Nodes ��� 15

Built-In High Availability ��� 16

Shared Nothing Architecture �� 16

Heartbeats �� 18

Data Node Failure Handling and Arbitration ��� 19

Summary �� 21

v

 ■ Contents

vi

 ■Chapter 2: The Data Nodes �� 23

Single-Threaded Versus Multi-Threaded Data Nodes �� 23

Thread Types��� 23

Performance Considerations �� 26

Replicas �� 26

Primary and Backup Replicas ��� 26

MySQL NDB Cluster 7�5: Read from Backup Replica �� 27

Node Groups ��� 29

Partitions �� 30

Automatic Partitioning �� 31

User-Defined Partitioning ��� 32

MySQL NDB Cluster 7�5: Partition Balancing �� 32

MySQL NDB Cluster 7�5: Fully Replicated Tables �� 33

Case Study: Partition Distribution ��� 33

D for Durability ��� 40

Duplication of Data ��� 41

Local Checkpoints (LCPs) ��� 42

The Redo Logs �� 42

Global Checkpoints (GCPs)�� 43

Restarts and Processes �� 43

Data Node Internals �� 44

Memory Usage �� 44

Kernel Blocks �� 45

Signals �� 49

Job Buffer ��� 49

Send and Receive Buffers �� 50

Triggers ��� 51

Epochs �� 51

Master Node ��� 52

 ■ Contents

vii

Data and Indexes �� 52

Data Memory and Index Memory ��� 52

On-Disk Data �� 53

BLOB, TEXT, and JSON Columns ��� 55

Cases Studies: Investigating the Schema Objects ��� 56

The ndb_show_tables Utility �� 57

The ndb_desc Utility ��� 58

The NDB File System �� 62

Summary �� 64

 ■Part II: Installation and Configuration �� 65

 ■Chapter 3: System Planning �� 67

Determine Your Priorities ��� 67

High Availability Requirements ��� 67

Data Node ��� 67

SQL Node �� 68

Management Node ��� 68

Prepare for Network Partitioning �� 69

Scalability ��� 70

Disaster Recovery �� 71

Typical Topologies �� 71

Number of Replicas �� 71

Maximum Number of Data Nodes ��� 71

Maximum Number of Total Nodes �� 71

Arbitration Rank �� 72

Placing the SQL Node and the Data Node on the Same Machine ��� 72

Typical Topology Examples ��� 72

Platform Considerations ��� 77

Processor Type and Operating System ��� 77

CPU Performance and Characteristics �� 77

 ■ Contents

viii

Memory Consumption �� 79

Disk Performance ��� 80

Virtual Machines ��� 80

Network Design �� 80

Network Devices ��� 80

Network Redundancy ��� 81

Direct Connection ��� 81

Security Considerations �� 81

Extending Capacity Using Disk Objects �� 81

Performance Considerations �� 82

Storage Requirements �� 82

Memory Consumption �� 82

Summary �� 82

 ■Chapter 4: Configuration ��� 85

Configuration Overview �� 85

Formatting config�ini �� 85

Restart Types �� 87

Management Node Options �� 88

Major Options for Management Node ��� 88

Vital Point for Management Node Configuration �� 91

Data Node Options �� 91

Basic Options �� 91

Memory Data Storage Options �� 93

Schema Object Options �� 96

Transaction Options �� 99

Estimate for Total Memory Consumption �� 103

Checkpoint Options ��� 104

Estimating Redo Log Size ��� 111

Multi-Threading Options ��� 112

Consideration for CPU Properties ��� 116

 ■ Contents

ix

Backup Options �� 117

Transporter Options �� 120

Disk Object Options �� 121

Heartbeat and Watchdog Options ��� 124

Logging Options �� 126

Recommended Configuration Strategy ��� 127

SQL Node Options ��� 127

Major Options for SQL Node ��� 128

Vital Point for SQL Node Configuration ��� 130

TCP Transporter Options ��� 130

Major Options for Transporter ��� 131

Transporter via Separate Network Path �� 132

Program Startup Options (my�cnf) �� 133

Common Options �� 133

Major Options for ndb_mgmd ��� 134

Options for ndbd/ndbmtd�� 136

Options for mysqld ��� 137

Location of Option Files �� 139

Summary �� 140

 ■Chapter 5: Installation ��� 141

Package Installation ��� 141

Obtaining Packages �� 141

Installation on Linux ��� 145

Installation on Windows �� 151

Installation on macOS ��� 160

Installing MySQL NDB Cluster Instances Using Auto Installer �������������������������������������� 166

Verifying Installation ��� 171

Configuration Files �� 171

Initial Startup �� 171

Checking the Status ��� 172

 ■ Contents

x

Uninstalling Packages �� 173

Tar�gz and Zip Archive Package �� 173

RPM Package �� 173

Windows Installer Package �� 173

macOS Native Package �� 174

Summary �� 174

 ■Chapter 6: Replication ��� 175

NDB Cluster Replication Overview ��� 175

Replication Architecture Overview ��� 175

Replication Channel Failover �� 178

NDB Cluster Replication Tables �� 179

Use Cases and Advantages of NDB Cluster Replication�� 179

Setting Up NDB Cluster Replication �� 181

Setting Up NDB Cluster Replication with an Empty Database �� 182

Setting Up NDB Cluster Replication with an Existing Database (Offline) �� 186

Setting Up NDB Cluster Replication with Existing Database (Online) ��� 186

Failing Over NDB Cluster Replication Channel �� 188

NDB Cluster Replication Daily Maintenance ��� 191

Monitoring NDB Cluster Replication ��� 191

Restarting Master Cluster ��� 195

NDB Cluster Replication Performance Tuning��� 196

Conflict Detection and Resolution �� 198

Multi-Master Replication �� 198

Conflicts Caused by Multi-Master Replication �� 201

Conflict Detection Methods �� 203

Conflict Detection for Read Operations �� 212

Setting Up Conflict Detection and Resolution ��� 213

Monitoring Conflict Detection ��� 219

Conflict Detection Case Study �� 221

Application Modifications Required for Conflict Detection ��� 227

 ■ Contents

xi

Cautions and Limitations of Conflict Detection ��� 228

Replication to InnoDB ��� 229

Requirements and Limitations �� 229

Setting Up Replication to InnoDB �� 231

Tips When Using InnoDB as a Slave ��� 234

MySQL Server Options Related to Cluster Replication ��� 234

Notes and Limitations of NDB Cluster Replication ��� 236

Summary �� 236

 ■Part III: Daily Tasks and Maintenance �� 237

 ■Chapter 7: The NDB Management Client and Other NDB Utilities ���������������������� 239

The NDB Management Client ��� 239

Invoking the NDB Management Client �� 240

Getting Help from Inside the Client ��� 242

Setting the Prompt�� 243

Display the Cluster Status �� 244

Single User Mode ��� 245

Create Reports �� 246

Purge Stale Sessions �� 247

Other NDB Utilities �� 247

Summary �� 249

 ■Chapter 8: Backups and Restores ��� 251

Backups and Backup Procedures ��� 251

Native NDB Cluster Online Backups ��� 252

Overview ��� 252

Implementation Details ��� 253

Starting and Aborting Backups ��� 255

Choosing the Backup ID �� 256

Backup Monitoring ��� 257

Backup Configuration ��� 260

 ■ Contents

xii

Logical Backups and Binary Logs �� 261

Consistency Considerations �� 261

Creating Logical Backups ��� 262

Logical Backups from MySQL Workbench �� 266

Backing Up Privileges ��� 268

Binary Logs ��� 269

Restores ��� 271

The ndb_restore Program ��� 271

Restore Schema ��� 272

Full Data Restores �� 273

Restore to a Different Number of Data Nodes �� 274

Partial Data Restores �� 274

Restores Using MySQL Workbench ��� 276

Point-In-Time Recovery (PITR) �� 277

Summary �� 281

 ■Chapter 9: Table Maintenance ��� 283

Schema Changes ��� 283

Distributing Schema Changes and the Global Schema Lock �� 283

Online Versus Offline Schema Changes �� 285

Offline Schema Changes �� 286

Online Schema Changes ��� 287

ALTER TABLE Algorithm ��� 288

ALTER TABLE Examples �� 290

Default Behavior ��� 290

Adding a Column with the Explicit Column Format �� 290

Specifying Algorithm and Lock Type ��� 291

Attempting Unsupported In-Place Changes �� 291

Schema Changes in Version 7�2 and Earlier ��� 292

Reorganize Partitions ��� 292

 ■ Contents

xiii

Defragmentation �� 296

Index Statistics ��� 297

Index Statistics Internals �� 299

Maintaining Index Statistics ��� 300

Options and Status Variables �� 303

Summary �� 307

 ■Chapter 10: Restarts �� 309

Restart Types �� 310

Node Restart ��� 310

Initial Node Restart ��� 310

System Restart ��� 311

Initial System Restart ��� 311

Rolling Restart �� 312

Stopping and Starting Nodes ��� 314

Management Nodes�� 315

Data Nodes ��� 317

API/SQL Nodes �� 320

Restart Related Configuration �� 320

Startup Process �� 322

Monitoring Restarts �� 325

The Management Client �� 325

The ndb_waiter Utility �� 325

The ndbinfo�restart_info Table �� 326

A Restart Seen in the Logs ��� 327

Example Restart Scenarios �� 328

Configuration Change ��� 330

Adding a Management Node �� 334

Adding Data Nodes ��� 336

Adding Data Nodes with Node Group Pre-Allocated ��� 342

Adding API/SQL Node �� 344

 ■ Contents

xiv

Recovering from a Corrupt NDB File System �� 345

Initial System Restart ��� 346

Summary �� 349

 ■Chapter 11: Upgrades and Downgrades �� 351

Upgrades �� 351

Upgrade Types �� 351

Upgrade Considerations ��� 352

Downgrades ��� 353

Performing Upgrades and Downgrades ��� 354

Online Upgrades and Downgrades ��� 357

Offline Upgrades and Downgrades ��� 358

Case Studies �� 358

Online Upgrade Using Generic Binaries �� 360

Upgrade from 7�4 to 7�5 Using RPM ��� 364

Online Downgrade �� 367

Offline Upgrade ��� 370

Summary �� 371

 ■Chapter 12: Security Considerations ��� 373

Network Security �� 373

Updates �� 375

Accounts and Privileges in the SQL Nodes ��� 376

Accounts and Password Management ��� 377

SSL/TLS Certificates ��� 381

The Access Control and Privilege System �� 382

Distributed Privileges ��� 384

Enabling Distributed Privileges ��� 387

Disabling Distributed Privileges �� 389

Special Considerations ��� 391

The Operating System and the Rest of the Infrastructure �� 393

Summary �� 394

 ■ Contents

xv

 ■Chapter 13: MySQL Cluster Manager ��� 395

Background �� 395

Terminology �� 396

Architecture �� 396

Commands �� 398

Limitations �� 400

Download, Installation, and Configuration �� 401

Downloading ��� 402

Installation on Linux ��� 404

Installation on Microsoft Windows �� 406

Upgrading ��� 409

Configuration �� 410

Starting and Stopping MySQL Cluster Manager ��� 414

The MySQL Cluster Manager Client �� 415

Managing a Cluster �� 416

Installing the Cluster Binaries ��� 416

Preparing the Cluster Through the mcm Client �� 417

Cluster Configuration: Auto Tuning ��� 420

Cluster Configuration: The set Command ��� 422

Cluster Configuration: The get Command ��� 423

Cluster Configuration: The reset Command �� 424

Starting and Stopping Processes ��� 425

Configuration of an Online Cluster �� 427

Backups �� 429

Restoring a Backup �� 431

Upgrades �� 432

Troubleshooting MySQL Cluster Manager �� 433

Error Messages and the Log ��� 433

Self-Healing Agents �� 435

Summary �� 437

 ■ Contents

xvi

 ■Part IV: Monitoring and Troubleshooting �� 439

 ■Chapter 14: Monitoring Solutions and the Operating System ��������������������������� 441

Why Monitor? ��� 441

Establish a Baseline ��� 442

Perform a Root Cause Analysis ��� 443

Perform Preventive Maintenance ��� 445

Monitoring Solutions �� 445

MySQL Monitoring Solutions �� 446

MySQL Enterprise Monitor (MEM) �� 446

Components �� 447

Installation and Upgrades ��� 448

Features �� 450

The Operating System �� 453

CPU Usage �� 453

Network Usage ��� 453

Disk Usage �� 454

Memory Usage �� 454

Logs �� 455

Summary �� 455

 ■Chapter 15: Sources for Monitoring Data �� 457

The Information Schema �� 457

Information Schema Tables �� 458

Using the Information Schema ��� 460

The Information Schema and NDB Cluster ��� 461

The Performance Schema �� 464

Performance Schema Threads ��� 465

Performance Schema Tables Overview �� 467

Setup Tables and Configuration �� 467

Event Tables �� 472

 ■ Contents

xvii

Summary Tables ��� 482

Connection and Thread Tables �� 485

Variable and Status Tables�� 489

Replication Tables ��� 490

Instance Tables ��� 491

Lock Tables ��� 493

The sys Schema ��� 493

Installation �� 494

sys Schema Objects ��� 495

sys Schema Configuration �� 504

Command-Line Usage and Examples ��� 506

MySQL Workbench Performance Reports ��� 510

SHOW Statements �� 511

MySQL Logs �� 514

SQL Node Error Logs��� 514

Audit Logs ��� 516

Summary �� 517

 ■Chapter 16: Monitoring MySQL NDB Cluster �� 519

The NDB Cluster Information Database (ndbinfo) ��� 519

Configuration �� 519

The ndbinfo Views �� 523

NDB Cluster Reports ��� 527

Memory Usage Report �� 528

Disk Page Buffer Report ��� 529

Transporters Report �� 531

Disk Write Speed Report ��� 532

Locks Report ��� 534

Log Buffers and Spaces Report �� 538

Configuration Report ��� 540

 ■ Contents

xviii

NDB Cluster Logs ��� 544

Cluster Logs �� 544

Data Node Logs �� 549

Summary �� 550

 ■Chapter 17: Typical Troubles and Solutions��� 551

Typical Problems on Data Nodes �� 551

General Information about Node Failures ��� 551

Cluster Log ��� 551

Node Log��� 552

Error Log ��� 553

Trace Files �� 553

Core Files �� 555

NDB Error Reporter Utility ��� 556

Watchdog Timeout �� 556

LCP Watchdog Timeout ��� 558

Swap Insanity ��� 558

GCP Stop ��� 560

Network Partitioning (Split Brain) ��� 561

Unplanned Shutdown of Entire System �� 562

Typical Problems on SQL Nodes ��� 563

Errors While Executing Queries �� 563

Resource Temporary Errors �� 563

Non-Temporary Errors �� 563

Connection to Data Node Is Lost ��� 564

Errors Related to Transaction Handling �� 564

Crashes ��� 565

Typical Problems on Management Nodes �� 567

Summary �� 567

 ■ Contents

xix

 ■Part V: Development and Performance Tuning ������������������������������� 569

 ■Chapter 18: Developing Applications Using SQL with MySQL NDB Cluster�������� 571

Designing Tables �� 571

Creating NDB Cluster Tables ��� 571

Supported Data Types ��� 572

Three Types of Indexes ��� 573

Defining Indexes ��� 577

The T-Tree Index ��� 580

Estimating Table Size �� 581

Estimating Required Objects per Table ��� 584

Defining Foreign Key Constraints ��� 584

Reviewing Table Definition ��� 585

Disk Data Tables ��� 588

Consideration for Normalization ��� 593

Major Limits Regarding Table Design ��� 594

Accessing Data via SQL �� 595

Connecting to SQL Node ��� 595

Transaction Handling for NDBCluster Tables �� 602

Error-Handling Techniques ��� 603

Summary �� 608

 ■Chapter 19: MySQL NDB Cluster as a NoSQL Database ������������������������������������� 611

Why NoSQL? ��� 611

Accessing Data via memcached �� 612

Why Use NDB-memcached ��� 612

Setting Up NDB-memcached �� 613

Defining Mapping to NDB Cluster Tables �� 616

Accessing Data via the NDB API ��� 622

Why Use the NDB API? �� 622

Installing Header Files and Libraries for the NDB API ��� 623

Building an Application with the NDB API ��� 623

 ■ Contents

xx

References and Examples �� 624

Typical Program Flow ��� 624

Simple Read Example ��� 626

Accessing Data Using NdbRecord �� 632

Scan Example ��� 635

Error-Handling Considerations �� 648

Accessing Data via ClusterJ ��� 650

Installing ClusterJ ��� 650

Writing a ClusterJ Application �� 651

ClusterJ Example �� 651

Summary �� 654

 ■Chapter 20: MySQL NDB Cluster and Application Performance Tuning ������������� 655

MySQL NDB Cluster Tuning��� 655

Disabling Powersave and CPU Frequency Scaling ��� 655

CPU Binding Strategy �� 657

Disk Type and File System Block Size �� 665

SQL Tuning ��� 666

Commit Sizing �� 666

Non-Transactional Batch Processing �� 667

Engine Condition Pushdown Optimization �� 667

Optimizing Joins ��� 668

Optimizing Partitioning ��� 672

Optimizing Access from SQL Node to Data Node �� 677

Adding Nodes ��� 679

Using NoSQL API in Conjunction with SQL �� 680

Summary �� 680

Index ��� 681

About the Authors

Jesper Wisborg Krogh is a member of the Oracle MySQL Support team
and has spoken on several occasions at Oracle OpenWorld. He has a
background with a Ph.D. in computational chemistry before changing to
work with MySQL and other software development in 2006. Jesper lives in
Sydney, Australia and enjoys spending time outdoors walking, traveling,
and reading. His areas of expertise include MySQL Cluster, MySQL
Enterprise Backup, and the Performance and sys schemas. He is an active
author in the Oracle Knowledge Base and regularly blogs on MySQL topics.

Mikiya Okuno is a member of the Oracle MySQL Support team based in
Japan and has written four database-related books in Japanese. He joined
the MySQL support team in 2007 when MySQL AB was an independent
company. Before joining MySQL, he worked at Sun Microsystems (which
acquired MySQL AB, then was acquired by Oracle) as a technical support
engineer. He has over 16 years of technical support experience in the
computer industry. Mikiya is a self-confessed computer geek and loves
Gentoo Linux OS and ErgoDox keyboard for his desktop. Emacs is his
preference.

xxi

About the Technical Reviewer

Dr. Charles Bell conducts research in emerging technologies. He is a
member of the Oracle MySQL Development team as a senior developer
working on a variety of database administration and high availability
projects. He lives in a small town in rural Virginia with his loving wife. He
received his Ph.D. in engineering from Virginia Commonwealth University
in 2005. His research interests include database systems, software
engineering, sensor networks, and 3D printing. He spends his limited free
time as a practicing Maker focusing on microcontroller and 3D printers
and printing projects.

xxiii

Acknowledgments

We would like to thank all of the people who made this book possible. First of all, Jonathan Gennick,
Jill Balzano, and Laura Berendson ensured its progress. Jonathan and Jill, your guidance has been
invaluable. However, the rest of the team at Apress should not be forgotten either: thank you.

A special thanks to our technical reviewer, Charles Bell. It has been great to get your feedback and learn
from your experience as an author. Our colleagues at Oracle also deserve credit for this book becoming a
reality. The discussions with the MySQL NDB Cluster developers and our direct colleagues in the MySQL
Support team were key to becoming an expert on MySQL NDB Cluster. It is hard to start mentioning names
while not forgetting any, but a definite thanks to our manager Adam Dixon for the support. Thanks to the
developers Frazer Clement and Mikael Ronström for, time and time again, explaining technical matters of
MySQL NDB Cluster, as well as Pekka Nousiainen for his feedback on the index statistics implementation. Of
course, Jon Stephens must not be forgotten for his work on the MySQL NDB Cluster chapter in the MySQL
Reference Manual.

Last but not least, a warm-hearted thanks to our wives, Ann-Margrete and Junko, as well as Mikiya’s
children, who put up with us while we were busy writing this book.

xxv

Introduction

MySQL NDB Cluster is part of the MySQL family of products. There are few databases matching as many
buzzwords as MySQL NDB Cluster: high availability, SQL, NoSQL, in-memory database, automatic failure
handling, sharding, etc. This book discusses how these properties are integrated into MySQL NDB Cluster
and how they are not just buzzwords, but real features.

Whom This Book Is For
The book has been written for database administrators who are looking into deploying MySQL NDB Cluster
or already have a cluster in production and want to increase their knowledge to be able to handle routine
administrative tasks and troubleshooting. While we have attempted to write the book assuming as little
existing knowledge as possible, it is an advantage to have at least some SQL database background.

How This Book Is Structured
The chapters have been divided into five parts, with each part covering related topics. The journey starts
with some background knowledge of how MySQL NDB Cluster works, then moves on to installation
and configuration, daily tasks and maintenance, monitoring and troubleshooting, and completes with
development and performance tuning.

Part I
The first part consists of two chapters and discusses how MySQL NDB Cluster works from a technical point
of view. There is not a lot of focus on practical tasks, but some of the theory is exemplified through case
studies. The two chapters are:

•	 Chapter 1: Architecture and Core Concepts. The first chapter goes into how the
cluster works at a high level as well as more specific details for two of the nodes
types: management and API nodes.

•	 Chapter 2: The Data Nodes. The second chapter exclusively focuses on the data
nodes, which are where the data is stored and queries are executed.

xxvii

http://dx.doi.org/10.1007/978-1-4842-2982-8_1
http://dx.doi.org/10.1007/978-1-4842-2982-8_2

 ■ IntroduCtIon

xxviii

Part II
The second part explains how to deploy MySQL NDB Cluster, starting with system considerations, then
discusses configuration, installation, and replication. The four chapters are:

•	 Chapter 3: System Planning. This chapter discusses what to consider when choosing
hardware and how to plan for network partitioning and scalability. There are also
several examples of typical topologies.

•	 Chapter 4: Configuration. This chapter shows how MySQL NDB Cluster is configured
and goes through the most important configuration options.

•	 Chapter 5: Installation. It is finally time to install MySQL NDB Cluster. The chapter
has installation instructions for Linux, Microsoft Windows, and MacOS.

•	 Chapter 6: Replication. Replication allows the data from one cluster to be replicated
to another cluster, or an InnoDB database. MySQL NDB Cluster’s conflict resolution
features for active-active replication between two clusters are also included.

Part III
The cluster is up and running, so this third part moves on to a series of practical focused chapters describing
how day-to-day tasks and maintenance are performed. There are seven chapters in this part:

•	 Chapter 7: The NDB Management Client and Other NDB Utilities. This chapter
discusses the utilities available in the MySQL NDB Cluster installation. Most of the
focus is on the NDB management client, which can be used to perform a range of
tasks such as starting, stopping, and restarting nodes as well as creating backups,
getting the cluster status, etc.

•	 Chapter 8: Backups and Restores. The data is worth no more than its ability to
be recovered in the event of a disaster. This chapter discusses the ins and outs of
backups and restores.

•	 Chapter 9: Table Maintenance. This chapter goes through the online and offline
schema change features, defragmentation, and index statistics.

•	 Chapter 10: Restarts. In a product that aims at making itself highly available, online
restarts are important. This chapter goes through the concepts of rolling restarts and
system restarts. There are also several detailed examples of tasks requiring a restart.

•	 Chapter 11: Upgrades and Downgrades. This chapter discusses and gives practical
examples of how it is possible to perform upgrades and downgrades, both online and
offline.

•	 Chapter 12: Security Considerations. Security must be a primary part of the design
decisions, starting from the initial planning and continuing through the lifetime
of the cluster. This chapter goes through the most important security aspects for
MySQL NDB Cluster.

•	 Chapter 13: MySQL Cluster Manager. This chapter provides a tutorial for the MySQL
Enterprise offering MySQL Cluster Manager (MCM), which provides an easier way
to manage a cluster. The chapter includes the main steps, from the initial installation
through an upgrade.

http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_4
http://dx.doi.org/10.1007/978-1-4842-2982-8_5
http://dx.doi.org/10.1007/978-1-4842-2982-8_6
http://dx.doi.org/10.1007/978-1-4842-2982-8_7
http://dx.doi.org/10.1007/978-1-4842-2982-8_8
http://dx.doi.org/10.1007/978-1-4842-2982-8_9
http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_11
http://dx.doi.org/10.1007/978-1-4842-2982-8_12
http://dx.doi.org/10.1007/978-1-4842-2982-8_13

 ■ IntroduCtIon

xxix

Part IV
A special part of a database’s daily routines is monitoring and troubleshooting. That is the topic of Part IV.
There are four chapters in this part:

•	 Chapter 14: Monitoring Solutions and the Operating System. This chapter goes
through how monitoring solutions, particularly MySQL Enterprise Monitor, can be
used to prevent and solve issues, and ends with considerations of what to monitor at
the operating system level.

•	 Chapter 15: Sources for Monitoring Data. This chapter goes through the traditional
sources in MySQL for collecting and monitoring data, including the Information
Schema, the Performance Schema, the sys schema, the SHOW statements, and the
MySQL error log.

•	 Chapter 16: Monitoring MySQL NDB Cluster. MySQL NDB Cluster provides
some additional monitoring sources: The ndbinfo schema and the logs on the
management and data nodes.

•	 Chapter 17: Typical Troubles and Solutions. No matter how careful a database
is managed, there will be times when something goes wrong. This chapter goes
through some general troubleshooting techniques for MySQL NDB Cluster and some
typical issues.

Part V
The last part moves on to the development part of MySQL NDB Cluster. Developing using SQL and NoSQL
and performance tuning are all discussed. The three chapters in Part V are:

•	 Chapter 18: Developing Application Using SQL with MySQL NDB Cluster. This
chapter goes through table and index creation and other considerations, such as
error handling when using SQL statements in the development.

•	 Chapter 19: MySQL NDB Cluster as NoSQL Database. MySQL NDB Cluster supports
several NoSQL APIs. This chapter discusses NDB-memcached, the C++ NDB API,
and ClusterJ. The chapter also includes several code examples.

•	 Chapter 20: MySQL NDB Cluster and Application Performance Tuning. The final
chapter of the book covers performance tuning at the system and SQL levels. The
system level, for example, includes binding data node threads to CPUs and disk
types. The SQL level includes optimizing joins and partitioning, mixing NoSQL and
SQL, and more.

Downloading the Code
The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link
can be found on the book’s information page.

http://dx.doi.org/10.1007/978-1-4842-2982-8_14
http://dx.doi.org/10.1007/978-1-4842-2982-8_15
http://dx.doi.org/10.1007/978-1-4842-2982-8_16
http://dx.doi.org/10.1007/978-1-4842-2982-8_17
http://dx.doi.org/10.1007/978-1-4842-2982-8_18
http://dx.doi.org/10.1007/978-1-4842-2982-8_19
http://dx.doi.org/10.1007/978-1-4842-2982-8_20
http://www.apress.com/

PART I

The Basics

3© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_1

CHAPTER 1

Architecture and Core Concepts

MySQL NDB Cluster is a distributed real-time database management system using a shared nothing
architecture. It excels at workloads with a high volume of small transactions, and it aims at providing
high availability with no single point of failure and duplication of data through two-phase commits and
synchronous replication. Part of the high availability implementation also includes a real-time promise; that
is, MySQL NDB Cluster looks to provide consistent response times. To avoid problems on one node causing
delays in the rest of the cluster, MySQL NDB Cluster employs a fail early strategy, which affects particularly
the data nodes and is something that users should have in mind.

The communication within the cluster is performed using the NDB API (a NoSQL API), which was
originally developed together with the rest of NDB Cluster in the 1990s. However, since NDB Cluster became
part of MySQL in 2003, a storage engine that plugs into MySQL Server using the pluggable storage engine
API has been developed. So nowadays the most commonly used method of interacting with NDB Cluster is
through SQL statements similar to other storage engines in MySQL, such as InnoDB.

 ■ Note For MySQL NDB Cluster, the term NoSQL API means an application programming interface that
allows communication with the backend storage engine while bypassing the SQL layer. The underlying storage
is identical irrespective of the API used, and the same data can be accessed concurrently using different APIs,
including the SQL API. Chapters 18 and 19 discuss the APIs in more detail.

With the ongoing development, MySQL NDB Cluster is today a general-purpose storage engine that
supports a wide range of features, including features not supported by any other storage engine in MySQL.

This chapter provides the big picture of MySQL NDB Cluster by looking at the general characteristics
and features of MySQL NDB Cluster, limitations, the various node types, and the built-in high availability.
Chapter 2 continues the discussion by focusing on the backend storage, the data nodes. First up though, a
quick overview of the terminology in MySQL NDB Cluster.

Terminology
One of the aspects that can be difficult when studying a new subject is the terminology. Each product has its
own way of naming and describing features. This section provides an overview of the most important terms
used in MySQL NDB Cluster. More details of what these terms mean will become apparent as the features
are discussed throughout this book.

Table 1-1 contains a list of several of the terms used in the description of MySQL NDB Cluster and all of
its features. The list is ordered alphabetically.

https://doi.org/10.1007/978-1-4842-2982-8_1
http://dx.doi.org/10.1007/978-1-4842-2982-8_18
http://dx.doi.org/10.1007/978-1-4842-2982-8_19
http://dx.doi.org/10.1007/978-1-4842-2982-8_2

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

4

Table 1-1. Terminology of MySQL NDB Cluster

Term Description

Angel The angel process monitors the actual ndbd/ndbmtd process (data node)
and handles node failures.

Arbitration The process of determining which data nodes can continue after the
failure of a data node.

API node A process communicating with the data nodes. This can, for example, be
part of the application, an SQL node, or a utility program.

Asynchronous replication The replication used to replicate between two clusters or MySQL Server
instances. The replication is asynchronous because it is performed after
the control is returned to the application. Thus, only the master side is
guaranteed to apply the change.

Binary log A log used to record all schema and data changes. Primarily used for
replication and point-in-time recoveries (PITR).

Cluster In this book, used for a collection of data, management, and API nodes in
MySQL NDB Cluster.

Data node The backend storage for MySQL NDB Cluster. Also known as ndbd or
ndbmtd.

High availability The ability to provide the service with “very little downtime”. What “very
little” is and what constitutes “downtime” depends on the system and
product. For MySQL NDB Cluster being available means being able to
execute transactions with consistent response times.

Kernel block The building blocks that make up the data nodes.

InnoDB The main storage engine in MySQL Server.

ndb_mgmd The binary used to start the management nodes.

ndbd The binary used to start the single threaded data nodes. See also data
node.

ndbmtd The binary used to start the multi-threaded (mt) data nodes. See also data
node.

OLAP Online analytical processing: A typical OLAP workload can be used to
generate reports.

OLTP Online transaction processing: Mostly small, quick transactions.

Management node The MySQL NDB Cluster nodes handling, for example, configuration,
connections, and arbitration.

mysqld The daemon process used for MySQL Server and the SQL nodes. See also
SQL node and API node.

MySQL Server The standard MySQL database product not including data nodes and
management nodes.

Node group A group of data nodes sharing the same data. Each node group has as
many members as there are replicas of the data. When a cluster has more
than one node group, the data is automatically sharded between the node
groups, so each node group only stores a subset of the data.

(continued)

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

5

Table 1-1. (continued)

Term Description

Partition A table may be logically split into several partitions. MySQL NDB Cluster
can use this to process data in parallel for some queries. Sharding is
performed in units of a partition (the entire partition is always in only one
shard).

NDBCluster The name of the storage engine providing the link between SQL nodes and
the data nodes.

Replica Copy of the data in the data node. It is recommended to have two replicas.

Replication The method to keep multiple copies of the data up to data. Replication
happens at two levels in MySQL NDB Cluster. There is synchronous
replication between the data nodes in the same cluster, and asynchronous
replication between two or more instances (an instance can be either be
MySQL NDB Cluster or MySQL Server). See also replication master and
replication slave.

Replication master The “active” side of an asynchronous replication setup. The replication
master can be used for writes and reads. The writes are copied to the
binary log, which is streamed to the replication slave. It is possible for a
cluster to be both a replication master and a replication slave.

Replication slave The “passive” side of an asynchronous replication setup. The replication
slave receives the updates from the replication master’s binary log.

Rolling restart The process of restarting several or all of the nodes in a cluster while being
able to process transactions while the restarts are ongoing.

Sharding Dividing data into multiple groups, so each node does not need to store
all data.

SQL node A MySQL NDB Cluster API node using mysqld from MySQL Server as the
API node. See also API node.

Storage engine MySQL supports a range of different engines to handle the underlying
storage. These are called storage engines. Examples are InnoDB and
NDBCluster.

Synchronous replication The replication used between data nodes in the same cluster. That the
replication is synchronous means the changes take effect on all affected
nodes at the same time, and that either all nodes or none accept the
change.

Transporter The connection between two nodes in a cluster. This is usually a TCP/IP
connection.

Two-phase commit Committing through a prepare phase followed by the actual commit. After
the prepare has succeeded, it is guaranteed that all participating parties
(data nodes in a cluster) can commit the change. Another use of
two-phase commit is in XA transactions (which are not supported in
MySQL NDB Cluster).

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

6

Characteristics and Features
MySQL NDB Cluster is a technology that expands the traditional standalone MySQL Server to provide a high
availability storage engine. The characteristics and feature set of a storage engine set one storage engine
apart from others. This section goes through some of the high-level characteristics, features, limitations, and
use cases.

Architecture
Some of the important architectural characteristics of MySQL NDB Cluster are:

•	 Primarily an in-memory database: In-memory data provides fast and consistent
access. On-disk data is also supported for non-indexed columns.

•	 On-disk data: On disk tablespaces can be used to allow for large volumes of data.

•	 Distributed system: The cluster is created by having nodes on one or several hosts.
This includes splitting the data across multiple processes.

•	 Shared nothing architecture: As discussed in the section entitled “Built-In High
Availability,” MySQL NDB Cluster uses a shared nothing architecture to ensure no
single point of failure (SPOF).

•	 Commodity hardware: MySQL NDB Cluster runs on commodity hardware, making
it relatively inexpensive in hardware costs.

•	 Duplication of data: The data can be duplicated to ensure that the failure of one
node does not stop access to the data. Duplication of the data is performed through
synchronous replication and two-phase commits.

Features
MySQL NDB Cluster inherits many of its features from MySQL Server, but there are also several features that
are specific to MySQL NDB Cluster. This subsection provides an overview of the most important features.
The rest of the book will go into more detail with each of these features.

ACID Compliant Transactions
ACID stands for (Atomicity, Consistency, Isolation, Durability) and is an important feature of transactional
databases. Atomicity means that a change is either fully applied or not at all, and all changes within a
transaction will be seen as one change. Consistency means that the content is always correct from a
database point of view (for example, with respect to constraints). Isolation ensures that two concurrent
transactions can only make changes that are isolated from each other (i.e., the result is the same as if they
were executed in sequence). Durability is the property that a committed transaction will not be lost if there is
a subsequent crash. How durability is ensured while storing the data in-memory is discussed in Chapter 2.

Foreign Keys
The NDBCluster storage engine supports foreign keys, including for partitioned tables. This makes
NDBCluster the only storage engine in MySQL supporting foreign keys on partitioned tables. Both tables
included in the foreign key must be NDBCluster tables and there must be an index for the referenced
columns in both the parent and child tables.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

7

High Availability Is Built-In
There are several meanings of the term “high availability”. In MySQL NDB Cluster, it means that the
cluster can execute queries and the response times are predictable. MySQL NDB Cluster has been
designed from the beginning to provide high availability instead of adding high availability on top of an
existing product.

The ability to answer queries is a result of the shared nothing architecture together with support
for multiple replicas of the data and each node type. This allows the cluster to continue operating even
if one node (or in some cases several nodes) is unavailable. The consistent response times are ensured
through several means, such as storing the data in memory, not allowing the internal job processing
in the data nodes to block for more than 10 milliseconds at a time, and shutting down nodes that are
too slow.

Overall this means that no special software is required to use the high availability features in MySQL
NDB Cluster. High availability is discussed in more detail later in this chapter.

Auto-Failover
When a node shuts down, the remaining nodes automatically handle any tasks related to the node failure.
Network partitioning is solved through arbitration and, if necessary, by shooting the other node in the head
(STONITH). Once the failover is completed, the remaining nodes can continue operating.

SQL and NoSQL Access
There is a choice between several APIs to access the data in the cluster: SQL nodes, the NDB API, ClusterJ,
Node.js, and NDB-memcached. (NDB-memcached is special in this context as it requires a daemon between
the client/application and the data nodes.) It is possible for an application to mix the use of several APIs, for
example to execute complex queries through SQL nodes and use ClusterJ for simpler queries. This provides
flexibility for the developer to use the API that provides the best features for each task.

Auto Partitioning and Auto Sharding
Distribution of the data happens automatically based on the cluster configuration. The more data nodes,
and the higher parallelism (number of threads) configured for the data nodes, the more partitions will be
chosen for the tables. The sharding is done across the data nodes, so each data node only stores a part of the
data. The automation means that the application does not need to know how the partitioning and sharding
have been done.

Horizontal Scalability
When a system is scaled horizontally, it is done by adding more nodes to the system. (On the other hand,
vertical scalability is achieved by improving the hardware of each node.) It is possible to add data nodes,
management nodes, and API nodes while the cluster is online. Additional data nodes particularly improve
the storage capacity of the cluster, but can also improve the performance for some workloads (see Chapters
3 and 20). More API/SQL nodes can be added as the requirements change to help distribute the load among
the nodes, which can improve the throughput.

http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_20

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

8

Online Operations
There is wide support for performing operations online, which is also part of the high availability story. As
already mentioned, all three node types (data nodes, management nodes, and API nodes) can be added
while the cluster is online. There is also support for making schema changes online—in fact, MySQL NDB
Cluster was the first storage engine in MySQL to support online schema changes. Finally, both upgrades and
downgrades can be performed with the cluster online. This includes both changing the patch release version
(for example, 7.5.4 to 7.5.5) and moving between major versions (for example, 7.4.14 to 7.5.5).

Geographical Replication
Geographical replication makes it possible to set up another cluster or MySQL Server instance with a copy of
the data. This is based on the standard (asynchronous) replication in MySQL Server. When a change is made
in the replication master, it is send to the replication slave using the binary log. The replication slave can be
located in the same data center, but also as far away as another continent.

There are several uses for replication slaves. They allow the application to scale out reads, which can be
used to improve the overall throughput of the system. Another use is to have a standby cluster that can be
used if the replication master is shut down—this improves the availability. Finally, some workloads are not
optimal for MySQL NDB Cluster, so the replication slave can use the InnoDB storage engine for use with, for
example, OLAP workloads.

Replication is a big topic and there are several changes for the replication to support the distributed
nature of MySQL NDB Cluster. Chapter 6 is dedicated to discussing how replication works.

Conflict Resolution in Master-Master Replication
In a geographical replication setup, it is possible to enable writes on more than one cluster. Since the
replication is asynchronous, this presents a problem that writes to different clusters may conflict. Since there
is a delay after the transaction commit until the changes have replicated, this conflict will not be detected
until after both transactions have been committed. Traditionally, it has required manual intervention to
resolve such conflicts—often requiring rebuilding one of the sides in the replication setup.

MySQL NDB Cluster has support for handling the conflicts automatically, either by making a decision
which updates win and/or log details about the conflicting updates to make it easier for the database
administrator to decide how to proceed.

Limitations
Like all other database implementations, MySQL NDB Cluster has limitations. It is important to be
familiar with both the strengths and the limitations, so it can be ensured the application is designed to
take advantage of the strengths and minimize exposure to the limitations. There are several reasons for
limitations to exist. A common reason is that it is necessary to make a choice between two features, for
example performance or a functionality. This also comes down to the design decisions made, in some cases,
two decades ago. The limitations will change over time as new development is completed and advances in
hardware and software become available. The limitations of the NDBCluster storage engine can be divided
into two categories: schema limitations and everything else.

 ■ Note The MySQL NDB Cluster limitations are well documented in the reference Manual at
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-limitations.html.

http://dx.doi.org/10.1007/978-1-4842-2982-8_6
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-limitations.html

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

9

Schema Limitations
Schema limitations have to do with tables, indexes, and other objects that are created by a database user.
Notable schema limitations include the following:

•	 All tables must have a primary key. If none is provided, MySQL NDB Cluster will add
a hidden auto-increment column as the primary key. However, this hidden primary
key introduces restrictions on the table. The hidden primary key cannot be used
for filtering, including on a replication slave for replicated statements; tables with a
hidden primary key do not have support for online schema changes; and if the table
has one or more BLOB, TEXT, or JSON columns, the table will not be included in the
binary log.

•	 No index can be wider than 3072 bytes.

•	 The only index types supported are T-Tree indexes (like B-Tree indexes but
optimized for in-memory use) for ordered indexes and hash indexes for unique
indexes. The index types are also discussed in more detail in Chapter 18.

•	 Indexes cannot be added to BLOB, TEXT, and BIT columns. BLOB and TEXT data
is stored using a secondary table (details follow in the next chapter) and several BIT
columns are combined into one storage location. This design prevents indexes on
the columns using one of these data types.

•	 There is no support for prefix indexes (that is, it indexes the first N characters/bytes
of a column).

•	 Indexed columns cannot be stored on disk; they are always stored in memory to
allow the best performance. The index implementation with T-Tree indexes for
ordered indexes assumes the indexes are stored in memory, and hash indexes are
partly stored in a dedicated memory segment (index memory).

•	 A foreign key cannot be ON DELETE CASCADE if it is a reference to the primary key in
the parent table.

•	 The maximum row size is 14000 bytes. The row size is calculated as the width of
each column with a BLOB, TEXT, and JSON data type contributing 264 bytes. Each
column’s contribution is 4-byte aligned; that is, a VARCHAR(12) using UTF8 requires
12 * 3 bytes for the content and 1 byte for storing the length, so 37 bytes. However, the
column contributes 40 bytes to the row size due to the 4-byte alignment.

•	 The sum of the number of databases, tables, and indexes in MySQL NDB Cluster is
limited to 20320.

•	 NDBCluster cannot be used for temporary tables (CREATE TEMPORARY TABLE …
statements).

Other Limitations
There are a few other limitations spread across various categories, such as transactional support and binary
logging. The most important limitations are:

•	 Only the READ COMMITTED transaction isolation level is supported. This is similar to
Oracle DB, but unlike the InnoDB storage engine.

•	 There is no support for savepoints.

http://dx.doi.org/10.1007/978-1-4842-2982-8_18

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

10

•	 Binary log events for changes to data in NDBCluster are always logged using the ROW
based format.

•	 There is no support for global transaction identifiers (GTIDs).

•	 No schema changes (DDL) can be made while a data node is restarting.

Use Cases
While historically, the main usage for MySQL NDB Cluster was for telecommunication companies, today,
particularly thanks to the improvements made over the last five years, the number of use cases has increased
significantly. The following list includes examples of use cases and actual users of MySQL NDB Cluster.

•	 Phone call routing for telecommunication companies. If you make a phone call, it is
likely that MySQL NDB Cluster is involved. Examples of users include Alcatel-Lucent
(now part of Nokia) and Telenor.

•	 Session management for web sites.

•	 Authentication services, for example FreeRADIUS and for VoIP systems.

•	 For online gaming. Examples are Big Fish and Playful Play.

•	 Metadata management for the HopsFS file system, which is for example used by
Spotify.

•	 Real-time fraud detection. An example is PayPal.

•	 Flight planning, for example for the US Navy.

 ■ Note If you are interested, https://www.mysql.com/customers/cluster/ contains more information about
the use cases as well as a list of some of the MySQL NDB Cluster users, including all of those mentioned in the
use case list.

The list of use case examples shows several workloads that consist of relatively simple queries, such as
authentication services and phone call routing. This is indeed the biggest strength of MySQL NDB Cluster.
The optimal workload is one consisting of queries that all use the primary key to access the data, and where
only a few rows are used in each transaction. While this may in general be true for databases, it is particularly
true for MySQL NDB Cluster because of the design.

The data is distributed, so accessing large amounts of data also increases the load of the network, and
all records of the current activity must be kept in memory to fulfill the real-time promise. On the other hand,
a single row picked using the primary key will allow the API node to request the row directly from the data
node storing it, and small transactions mean a small overhead of storing transactional metadata. This may
seem abstract and difficult to understand with the information available at this point, but rest assured,
throughout this book the required background will be built up to make it easier to see this relationship.
Particularly this chapter as well as Chapters 2, 3, 18, 19, and 20 will be useful in this respect, as they describe
the fundamentals, configuration, development, and performance tuning of MySQL NDB Cluster.

In short, it can be said that MySQL NDB Cluster excels at online transaction processing (OLTP)
workloads, but is less suited for online analytical processing (OLAP) workloads. Figure 1-1 shows a graph
where the workloads with the most optimal workloads are at the origin, which signifies a transaction only
accessing a single row through the primary key. The least optimal workloads are for large transactions and
large scans.

https://www.mysql.com/customers/cluster/
http://dx.doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_18
http://dx.doi.org/10.1007/978-1-4842-2982-8_19
http://dx.doi.org/10.1007/978-1-4842-2982-8_20

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

11

In the real world, most workloads are not exclusively at one end of the spectrum, and it is not a
requirement that all queries be in the optimal part of the graph. However, if most transactions are in the
least optimal part, MySQL NDB Cluster may not be the best fit—in that case, MySQL Server with the InnoDB
storage engine is likely to provide a better experience. A possibility that is discussed in Chapter 6 is to
have NDBCluster as the storage engine on a replication master and to use the InnoDB storage engine in the
replication slave. This will allow writes and small transactions to take advantage of NDBCluster’s features,
while larger read transactions such as reports use the more flexible InnoDB storage engine.

Node Types
MySQL NDB Cluster has three types of nodes, all serving their special roles. The node types are:

•	 Management nodes

•	 Data nodes

•	 API/SQL nodes

Figure 1-1. Overview of the workloads best fitted for MySQL NDB Cluster

http://dx.doi.org/10.1007/978-1-4842-2982-8_6

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

12

The relationship between the various node types is displayed in Figure 1-2, and each node type will be
discussed in more detail following the figure. For simplicity, NDB-memcached is just listed with the daemon
process and not the clients connecting to memcached.

Management Nodes
The management nodes are the most lightweight nodes of the cluster. They have five roles in a cluster and
are only required at a few specific times during the lifetime of the cluster:

•	 To handle the configuration.

•	 To allow other nodes to connect to the cluster.

•	 To maintain the cluster log with messages from all nodes.

•	 For arbitration in case of a potential split-brain scenario.

•	 For administrative tasks initiated by the database administrator, such as starting a
backup or restarting a data node.

Figure 1-2. Overview of the various nodes participating in a cluster and the relationship between them

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

13

In a high availability setup, it is common to have two management nodes, so there is one remaining in
case the other is shut down.

Handling the Configuration
The management nodes are responsible for taking care of the configuration. The configuration is created
in an INI style formatted configuration file typically named config.ini. The configuration file includes the
configuration for all nodes in the cluster, though the API/SQL nodes may additionally have their own local
configuration file. For example, SQL nodes also read the usual my.cnf or my.ini configuration file known
from a standalone MySQL Server installations. If there are multiple management nodes in the cluster, each
management node has its own configuration file, but they must be identical. When the management node is
started, it can optionally read the configuration file and apply it. The parsed configuration is then stored in a
local cache.

Listing 1-1 shows an example of an INI style formatted config.ini file. In production systems, the
configuration will typically include more options and configuration sections than in the example, but the
overall structure will be the same. Chapter 4 goes into detail about the MySQL NDB Cluster configuration.

Listing 1-1. Example Cluster Configuration File (config.ini)

[ndb_mgmd default]
DataDir = /cluster/

[ndbd default]
NoOfReplicas = 2
DataMemory = 20G
IndexMemory = 2G
MaxNoOfConcurrentTransactions = 400K
DataDir = /cluster/

[ndbd]
NodeId = 1
HostName = 192.168.56.103

[ndbd]
NodeId = 2
HostName = 192.168.56.104

[ndb_mgmd]
NodeId = 49
HostName = 192.168.56.101

[ndb_mgmd]
NodeId = 50
HostName = 192.168.56.102

[mysqld]
NodeId = 51
HostName = 192.168.56.103

[mysqld]
NodeId = 52
HostName = 192.168.56.104

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

14

[api]
NodeId = 53
HostName = 192.168.56.101

[api]
NodeId = 54
HostName = 192.168.56.102

Connection Handling
Whenever a node wants to join the cluster, it must first contact a management node. The management node
will check whether the node is allowed to join the cluster; if the joining node is allowed to connect, the
management node provides the configuration to the joining node. This also means that no nodes can join
the cluster if there are no management nodes online or reachable.

Logging
The management nodes maintain the cluster log that receives messages from the whole cluster. The
messages range from informational messages about the memory usage to critical errors of unintended node
shutdowns. This means the cluster log is a good place to look for the initial overview of the status of the
cluster.

Arbitration
Arbitration is the task of deciding which data nodes should stay online in case of a split-brain scenario where
at most half of the data nodes can see each other. All other data nodes will be instructed to shut down.
The arbitration process is discussed in more detail in the section on “Built-In High Availability”.

Administrative Tasks
Using the ndb_mgm management client to connect to the data nodes, it is possible to perform several
administrative tasks such as creating backups, starting and stopping nodes, controlling log levels, etc. For
more details, see Chapter 7.

Data Nodes
The data nodes comprise the very core of MySQL NDB Cluster, as they are where the actual data is stored.
There are two types of data nodes:

•	 ndbd: The original single-threaded version of the data node

•	 ndbmtd: The multi-threaded version for modern hardware

From a functional perspective, the two are the same, but there are differences in terms of performance.
In most cases, a production system should be using the multi-threaded binary.

Since data nodes play a very important role in a cluster, Chapter 2 is dedicated to discussing data nodes
in greater detail.

http://dx.doi.org/10.1007/978-1-4842-2982-8_7
http://dx.doi.org/10.1007/978-1-4842-2982-8_2

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

15

API and SQL Nodes
The API nodes are where queries are submitted. Each API node is connected to all the data nodes and has
access to all of the data without any extra consideration. For instance, even though the data is sharded, it is
not necessary for the application or user to know anything about the sharding, which allows for simpler logic
in the application.

It is also possible to execute one query through one API node and the next through another node,
as long as they are not in the same transaction. Due to MySQL NDB Cluster’s exclusive use of the READ
COMMITTED transaction isolation level and the synchronous replication between the data nodes, as soon as a
transaction is committed, all the API nodes can use the committed data.

MySQL NDB Cluster supports several APIs:

•	 NDB API: This is the original API and what all other APIs use under the hood to talk
to the data nodes. It is only supported in C++.

•	 SQL Node: This is a MySQL Server (mysqld) instance. This is the most common API
node. Since this is the most common API node type, API nodes are also commonly
known as SQL nodes. SQL nodes can also optionally be used for arbitration. The
application connects to the SQL node using any of the available connectors or APIs
that also can be used to connect to MySQL Server and InnoDB tables.

•	 ClusterJ: Java applications can use the ClusterJ API to bypass the SQL nodes.

•	 Node.js: For Node.js (JavaScript) applications, there is an API that can be used
directly as well.

•	 NDB-memcached: Using the NDB-memcached API allows an application to access
the data using memcached, which is a distributed in-memory caching system.
NDB-memcached is a special build that can use the data nodes for its backend
storage. The homepage of memcached is https://memcached.org/.

When using mysqld as an API node, a special version compiled with support for MySQL NDB Cluster
must be used. Even though SQL nodes can store data on their own by using other storage engines such as
InnoDB, no SQL node stores any data where the table is created using the NDBCluster storage engine. Every
time data is changed in the table, the data is sent to the data nodes, and every time data is fetched from the
table, the data is sent from the data nodes to the SQL nodes and then back to the application. Thus, an SQL
node not only needs to perform relatively expensive parsing of the query, there is also an extra hop between
the application and the data nodes.

This means it can be an advantage to use an API that talks directly with the data nodes, as that will
reduce the overhead on two fronts:

•	 The parsing of the SQL statements is avoided.

•	 One level of network communication is removed.

For this reason, the general performance of the API types in order of best performing to the least
performing is:

•	 NDB API: This is the only API that can communicate directly with the data nodes. All
the other API node types eventually use the NDB API, although it is hidden from the
developer.

•	 Other NoSQL APIs: ClusterJ, Node.js, NDB-memcached.

•	 SQL nodes.

Several of the APIs are discussed in more detail in Chapters 18 and 19.

https://memcached.org/
http://dx.doi.org/10.1007/978-1-4842-2982-8_18
http://dx.doi.org/10.1007/978-1-4842-2982-8_19

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

16

Built-In High Availability
One of the main reasons MySQL NDB Cluster is chosen over other database systems is its built-in design
for high availability. You may have seen that MySQL NDB Cluster can get 99.999% (five nines) uptime
(or at most around 5 minutes 15 seconds of downtime each year). Five nines is a classical threshold for
considering a system highly available and this has become a bit of the magic number that high availability
databases strive to achieve.

High availability can mean a number of things. For MySQL NDB Cluster, the emphasis is on being
able to avoid a total cluster outage and being able to provide consistent response times to the queries. High
availability is achieved by means of:

•	 The shared nothing architecture.

•	 Support for no single point of failure. It is possible to have redundancy of all node
types and multiple replicas of all data.

•	 Automatic detection and handling of node failures.

•	 The fail early strategy to avoid a slow or failed node causing slow response times.

The fact that MySQL NDB Cluster is designed from the start for high availability does not mean that high
availability and particularly the five nines uptime comes for free. When you deploy a cluster, it is important
to have this in mind, or you may inadvertently reduce the availability compared to a more traditional MySQL
Server deployment using the InnoDB storage engine. Important things to keep in mind are:

•	 MySQL NDB Cluster supports no single point of failure, but the database
administrator and system administrator must ensure it is implemented. For example,
the network must be designed to ensure that the failure of a switch does not prevent
at least half the data nodes from communicating.

•	 The fail early strategy means it is important not to overload the cluster. Overloading
can happen at several levels, including the SQL nodes trying to write all data
changes to the binary logs (replication and point in time recovery logs), the network
becoming a bottleneck, the disk or CPUs or the memory not being able to keep up,
etc. One key task for the database developers and administrator is to ensure that
the queries executed on the production system are well tested to ensure they do not
contribute to an overload.

•	 While the cluster as a whole can survive single node failures, transactions executing
at the time may fail with a temporary error. Likewise, transactions may fail due to
resource exhaustion. So, the application should always be ready to retry temporary
failures.

These are things that are also discussed in more detail in Part II.

Shared Nothing Architecture
The shared nothing architecture of MySQL NDB Cluster is one of the most significant aspects of the
architecture. A shared nothing architecture means that each node shares neither disk, memory, nor any
other resource with the other nodes in the cluster. This influences how most aspects of the cluster work, for
example:

•	 Communication between the nodes

•	 Detection of whether the other nodes are online

•	 Failover

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

17

 ■ Note Failover is the process of resolving a state where one or more nodes have become unavailable. This
is handled automatically in MySQL NDB Cluster and is discussed in more detail later in the chapter.

Figure 1-3 shows how the data nodes have their own hardware resources, and no component is shared
between the nodes. The same is true for the other nodes in the cluster, but to keep focus on the important
part these are not depicted explicitly in the figure. This means that should a hard disk fail in one node, the
node can be taken offline and the rest of the cluster can continue. The advantage of this choice is that it
makes it possible to avoid single point of failure, which is the cornerstone in the strategy to achieve high
availability.

 ■ Note each hardware component may itself be redundant. For example, the disks may be forming a rAID
array, so one or more disks can fail without losing the storage altogether. This will provide an extra layer of
protection.

Figure 1-3. Shared nothing architecture

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

18

Heartbeats
An essential mechanism for the cluster to be able to auto-detect node failures of one or more of the other
nodes in the cluster is heartbeats. There are essentially three kinds of heartbeats for a cluster:

•	 Between data nodes: These heartbeats are sent in circular fashion so each data
node only receives heartbeats from one other data node and only sends to one data
node. It is said that a data node receives heartbeats from the data node to the left of
itself, and it sends to the data node to the right. Some of the messages in the logs use
this left-right terminology. A data node is responsible for detecting whether the data
node to the left of itself is still alive.

•	 Between data nodes and non-data nodes: These heartbeats are sent for all possible
combinations, i.e. a given data node sends and receives heartbeats to/from all non-data
nodes. Non-data nodes include management nodes and all types of API nodes.

•	 Between management nodes: These heartbeats are sent between the management
nodes, so a management node knows whether its peer(s) are online.

These heartbeats are also depicted in Figure 1-4.

Figure 1-4. The heartbeats between the various nodes in a cluster

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

19

Data Node Failure Handling and Arbitration

 ■ Note The discussion in this subsection assumes there are two replicas of all data (see also Chapter 2,
particularly the sections “replicas” and “Node Groups”). In cases of more replicas of the data, the rules are
stricter and can cause cluster failures where the cluster could have survived. This is one of the reasons that two
replicas, at most, are currently officially supported.

A data node may fail for several reasons such as missing too many heartbeats due to overload or network
failure, hardware problems, bugs, or other reasons. Irrespective of the reason, the remaining nodes must
determine whether they can continue or they must shut down. If the surviving data nodes as a group holds
all the data, and more than half of the data nodes are in the group, it is easy to determine the data nodes can
continue. If the group does not have all the data, it is equally easy to determine they must shut down.

A more complicated scenario occurs in the case when one or more groups of data nodes have access
to all the data, but do not have a majority of the data nodes. In this case, it is impossible for the data nodes
to know on their own whether it is safe to continue, and arbitration is required. For example, if the cluster
is split into two halves by a network failure, and both halves on their own have all the data, it is known as a
split-brain scenario. That is, in principle both halves can continue on their own. However, if the split-brain
state is allowed to stay and updates occur on both halves, the data in the two halves will start to diverge,
and API nodes will get different results depending on which half of the data nodes it happens to query. This
is something that under no circumstances is allowed to happen, so the cluster will automatically perform
arbitration to determine what should happen.

In case of a potential split brain, the data nodes will therefore only be allowed to continue operation if
they can contact the arbitrator. Most commonly one of the management nodes will act as the arbitrator, and
the arbitration is decided by letting the part of the cluster that first contacts the arbitrator win. The other
part(s) of the data nodes will then be forced to shut down to avoid the data diverging.

In short, data nodes are allowed to continue if the following conditions are true:

•	 The group of data nodes holds all the data.

•	 Either more than half the data nodes are in the group or the group has won the
arbitration process.

The process to determine whether a group of data nodes can continue after a failure of one or more of
the other data nodes is outlined in Figure 1-5.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

20

The arbitrator can be a management node or an SQL node. By default, management nodes are
configured to be available as an arbitrator, whereas SQL nodes are not. At any given time, there will be at
most one arbitrator. It is the data nodes that elect which of the eligible nodes will be the current arbitrator.

 ■ Caution The arbitrator can never be changed while handling a node failure. For this reason, it is very
important that the nodes that are allowed to become the arbitrator are accessible by all data nodes. Particularly,
do not allow a node installed on the same host as a data node to become the arbitrator. If the whole host shuts
down, the cluster can only remain online if the arbitrator is not required to determine whether the group of
surviving nodes can safely continue operations!

Figure 1-5. The data node failure handling process in case of two replicas of the data

ChAPTer 1 ■ ArChITeCTure AND Core CoNCePTS

21

Summary
This first chapter has provided an overview of MySQL NDB Cluster. Among the topics discussed were:

•	 The terminology

•	 Characteristics and features

•	 Limitations

•	 Use cases

•	 The three node types: data nodes, management nodes, and API/SQL nodes

•	 How high availability works in MySQL NDB Cluster

In the discussion of the node types, the data nodes had little coverage. This is because they are so
central to MySQL NDB Cluster that the next chapter is dedicated to discussing the data nodes.

23© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_2

CHAPTER 2

The Data Nodes

The data nodes are in many ways the heart and soul of MySQL NDB Cluster. This is where the data is stored,
the bulk of the high availability is focused, and where most of what requires special considerations is
located. There can be between 1 and 48 data nodes in a cluster, and each data node is built from 23 different
kernel blocks and can have between 1 and 98 threads. This chapter introduces the specifics of the data nodes
to give you a solid background for the later chapters that focus on the usage of the cluster.

Single-Threaded Versus Multi-Threaded Data Nodes
The data nodes come in two flavors, depending on the internal organization: single-threaded and multi-
threaded. The single-threaded binary, ndbd, is the original architecture. As the name suggests, everything
is executed within the same process thread. The multi-threaded binary, ndbmtd, was introduced in MySQL
NDB Cluster 7.0. ndbmtd allows specific parts of the data node kernel to be split into their own threads and,
in that way, takes better advantage of modern hardware. The section entitled “Performance Considerations”
covers when to use ndbd and ndbmtd.

 ■ Note Unless you use MySQL Cluster Manager (see Chapter 13), the choice of whether to use ndbd or
ndbmtd is not part of the configuration. Which one you are using is simply decided by which binary you invoke
when you start the data node.

The two data node binaries are compatible, so you can change between them with the same limitations
that apply to changing the thread configuration for the multi-threaded data nodes: it is always possible to
scale up to use more threads, but scaling down may require an initial restart and possibly restoring the data
from a backup. The default thread configuration for the ndbmtd binary is roughly equivalent to using ndbd.

Thread Types
The multi-threaded binaries can execute a number of different thread types. Each thread type has specific
tasks it performs and there can be a varying number of each type. Table 2-1 summarizes the eight thread
types available in MySQL NDB Cluster 7.5. The column number of threads specifies the range of allowed
values for that thread type. A value of 1 means the number of threads cannot be changed and there will
always be exactly one thread or pool of threads (for the I/O and watchdog threads). The thread type is listed
in lowercase as it is used with the ThreadConfig option; however, the convention when discussing the
thread type is to use uppercase. So, for example the local data manager is called ldm when specifying it in the
ThreadConfig option, but LDM when discussing the thread.

https://doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_13

Chapter 2 ■ the Data NoDeS

24

Table 2-1. The Thread Types Supported by MySQL NDB Cluster 7.5

Type Name Number of
Threads

Description

main Main thread 1 Handles the data dictionary and has a transaction
coordinator.

ldm Local
Data Manager

1, 2, 4, 6,
8, 12, 16, 24, 32

The threads contain the local query handler
(LQH). The number of LDM threads directly affects
the number of partitions each table can have, as
each LDM thread is responsible for its own set of
partitions. It also affects the parallelism queries are
executed with.

tc Transaction
coordinator

0-32 The threads that contain the state of each ongoing
transaction.

recv Receive thread 1-16 The receive threads handle the receiving end of the
socket that communicates with the other nodes in the
cluster.

send Send thread 0-16 The send thread is similar to the receive thread, but
it is at the sending end of the sockets communicating
with the other nodes in the cluster. Setting the
number of send threads to zero causes each thread
to handle its own sending. Having multiple send
threads can greatly improve throughput, but having
each thread handling its own communication
reduces latency provided the thread is not getting
overloaded.

rep Replication thread 1 The replication thread is used for asynchronously
communicating with the SQL nodes for schema
changes and binary logging.

io I/O thread 1 The I/O thread is special (together with the watchdog
thread) that it is for a pool of threads. The thread
count of 1 is used to indicate that the number of
I/O threads cannot be specified directly. Instead
there will be one I/O thread per open file. The “I/O
thread” is usually lightweight, but is also used when
compression is enabled for local checkpoints (see
the “D for Durability” section later in the chapter) or
backups.

watchdog Watchdog thread 1 The watchdog thread, like the I/O thread, covers a
pool of threads. The watchdogs are responsible for
checking that threads are progressing. This is part
of the strategy to detect whether a node is slowing
down the rest of the cluster, i.e. the fail early strategy
discussed in Chapter 1 is used.

In older versions of MySQL NDB Cluster, the thread types available and the supported number of
threads may be more restricted.

http://dx.doi.org/10.1007/978-1-4842-2982-8_1

Chapter 2 ■ the Data NoDeS

25

 ■ Note See the documentation of the ThreadConfig option in the reference Manual for details: https://dev.
mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig.

It can seem overwhelming having to consider all the thread types and determine the optimal number
of each thread for your workload. Fortunately, there is an option to let MySQL NDB Cluster automatically
distribute the threads, and all you have to do is specify the maximum number of threads you want. The
automatic distribution supports up to 72 threads according to a predetermined table and can be very useful
initially, but it will not be able to provide the optimal performance.

 ■ Note See https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html#ndbparam-
ndbmtd-maxnoofexecutionthreads for the distribution table.

The advantage, on the other hand, of manually specifying the number for each thread type explicitly is
that it allows you to tailor it for your workload. For example, if you do not need a high send throughput, you
can disable the send threads. Furthermore, when you manually configure the threads, additional options for
each thread type are available:

•	 The CPUs the threads can use. This combined with excluding other processes/
threads from the CPUs can avoid contention at the CPU level.

•	 The wait time before the thread goes to sleep1.

•	 Whether the thread should run with real-time priority (mutually exclusive with the
thread priority).

•	 The thread priority (mutually exclusive enabling real-time priority). The exact effect
of the thread priority is system dependent; for example, on Linux increasing the
thread priority lowers the niceness of the thread (how likely the thread is to give up
the CPU to another process), and on Microsoft Windows, it sets one of the THREAD_
PRIORITY_* priorities (depending on the thread priority chosen).

The actual configuration of these options is covered in Chapters 4 and 20.
It is generally safe to change the number of each thread type during the lifetime of a cluster. However,

there is one exception: the LDM threads. The number of partitions supported depends on the number
of LDM threads (see the “Partitions” section later), and the memory available for hash indexes is divided
between the LDM threads. So, changing the LDM threads may on one side improve the performance.
However, if care is not taken, it can also cause an unbalanced use of memory and in the worst case may
prevent the data node from starting.

 ■ Caution If you change the number of LDM threads, you may be necessary to re-initialize the cluster
(performing an initial system restart). See also “Data Memory and Index Memory” in the section “Data and
Indexes” later in the chapter. For an example, see the “Initial System restart” case study in Chapter 10.

1When a process thread becomes idle, it can do one of two things. It can start spinning, which means it can very quickly
resume work again, but it blocks the CPU for other processes. Alternatively, it can go to sleep and allow the CPU to do
work for other processes, but this means it will take much longer for the thread to wake up again.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
http://dx.doi.org/10.1007/978-1-4842-2982-8_4
http://dx.doi.org/10.1007/978-1-4842-2982-8_20
http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 2 ■ the Data NoDeS

26

Performance Considerations
There are several considerations when choosing whether to use the single-threaded or multi-threaded
binaries and, if the latter, what the optimal configuration is.

The first thing to consider is your hardware. If you only have a couple of CPU cores available, you may
be best off using the single-threaded binaries as effectively the multi-threaded data nodes require at least
five threads. This comes on top of the CPUs required by the operating system and other processes on the
host.

Otherwise, the tradeoff is as a rule of thumb that the single-threaded binary will provide lower latency
as there is less overhead communicating between the various parts of the data nodes; however, since
everything is running in a single thread, the throughput will be severely limited.

For the multi-threaded data nodes, having dedicated send threads can add latency compared to each
thread handling the send side of communicating with the other nodes on its own. However, the maximum
throughput will be reduced. In the end, the decision greatly varies depending on the actual workload.

In practice for most production systems, the multi-threaded data nodes should be used. On modern
hardware, the limitation in throughput of the single-threaded data node is just too restrictive. For many
workloads specifying the maximum number of threads is good enough; as a bonus, you avoid the risk of
micromanaging to the extent that you may end up hurting the stability of the cluster. When you choose the
maximum number of threads, make sure you leave room for the operating system and the other processes
on the host.

 ■ Caution If you have an apI/SQL node or other CpU intensive on the same host as a data node, it is particularly
important to take that into consideration when you configure the threads of the data node. In cases like this, it is
often worth binding the threads to specific CpUs and excluding the apI/SQL node from using those CpUs.

To summarize in a typical production environment, make your choice as follows:

•	 Use the multi-threaded data nodes unless you’re using a virtual machine with very
limited CPU resources.

•	 On a host dedicated to a single data node, set the maximum number of threads so
around two to four CPUs are left for the operating system.

•	 For high performance clusters, workloads not fitting the automated thread
distribution, or when other CPU-intensive processes such as API/SQL nodes are
executing on the same host, specifically choose the number of each thread type and
bind each thread to its dedicated CPU and exclude that from use by other processes.

Replicas
In InnoDB, all data is stored locally in a single copy. This makes a simple solution, but has the disadvantage
that if you have to shut down the instance, or it for some other reason becomes inaccessible, the data is
offline. This constitutes a single point of failure, which MySQL NDB Cluster is designed to avoid.

Primary and Backup Replicas
To avoid having just a single copy of the data, MySQL NDB Cluster supports storing all data in up to four
copies (the NoOfReplicas configuration option; see also Chapter 4). By copying the data across multiple data
nodes, it is safe to shut down one node, as the data can still be read and written to in the remaining copies.

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 2 ■ the Data NoDeS

27

 ■ Note It is recommended to use NoOfReplicas = 2. this is the most well tested configuration, including
the one most commonly used in production. the arbitration process as described in Chapter 1 is also optimized
for at most two replicas.

If the cluster has been configured to have two replicas of the data, each data node has one primary
replica and one backup replica. The backup replica is kept up to date with synchronous replication and a two-
phase commit process. This relationship between the primary and backup replicas is shown in Figure 2-1.

Figure 2-1. Two-replica configuration

 ■ Note the synchronous replication internally between the data nodes should not be confused with the
asynchronous replication (MySQL Server replication) supported between SQL nodes or for a standard MySQL
Server instance. While named similarly, the two types of replication are completely different, and MySQL NDB
Cluster supports both. For asynchronous replication between SQL nodes, see Chapter 6 for details.

MySQL NDB Cluster 7.5: Read from Backup Replica
Until MySQL NDB Cluster 7.5, the backup replica has only been used to select data when the primary replica
was offline. This is still the default behavior as it allows control to return to an API/SQL node that performs
a write as soon as the transaction has committed. The implementation details are beyond the scope of this
book, but the result is that the locks on the primary replica can be released a little earlier than for the backup
replica—at the commit stage of the transaction versus the completed stage. This means it is not safe to
attempt to read from the backup replica, as you may not see the data just written.

If you want to allow reads from the backup replica, a transaction commit cannot return until the
changes have been unlocked on the backup replica as well. This will increase the latency of commits, but has
the advantage that it can reduce the need to read from multiple data nodes and thus reduce the amount of
network traffic.

If you are migrating an existing InnoDB database to MySQL NDB Cluster, you likely will get a
performance characteristic that is closer to what you expect, if you allow reads from the backup replica. This
is particularly the case when you have two data nodes, two replicas, and two API/SQL nodes with the API/
SQL nodes located on the same hosts as the data nodes, as shown in Figure 2-2.

http://dx.doi.org/10.1007/978-1-4842-2982-8_1
http://dx.doi.org/10.1007/978-1-4842-2982-8_6

Chapter 2 ■ the Data NoDeS

28

In Figure 2-2, the solid lines are the communication links used to read from the local data node. The
dashed lines are the communication links used for reads when the local data node is offline and for the
synchronous replication between the data nodes.

As part of the new feature is an option to tell the API/SQL node which is the preferred data node to
contact. Since two data nodes means each data node has a copy of all data, the two API/SQL nodes will only
communicate with the data node on the same host as itself unless the data node is offline. Similarly, there
will be reduced network traffic between the data nodes, as it is not necessary to ask for the data from the peer
data node. Should one of the data nodes go offline, the API/SQL nodes can still connect to the remaining
online data node to access all the data.

To summarize whether to use the read from backup feature:

•	 The default behavior is optimized for write latency.

•	 The read from backup behavior is optimized for read latency.

Whether the read from backup replica feature should be enabled depends on whether the application
should be optimized for write or read latency. The effect of enabling the read from replica feature will be
reduced as more data nodes are added; this is due to the sharding, which makes each data node only have
part of the data, so it will in all cases be necessary with some network traffic.

Figure 2-2. Using the read from replica feature

Chapter 2 ■ the Data NoDeS

29

Node Groups
The number of replicas discussed in the previous section specified the number of copies of the data that
exist in the cluster. Related are the node groups. Each node group is a group of data nodes, where each data
node holds the same data. The only difference is what is considered the primary replica and what are the
backup replica(s). Looking at Figure 2-3, it depicts the same setup as discussed when primary and backup
replicas were introduced. However, it also depicts one node group consisting of two data nodes.

Figure 2-3. A node group

The number of node groups in a cluster is the total number of data nodes divided by the number of
replicas. For a typical cluster with two replicas, it means if there are eight data nodes, there will be four node
groups:

#
#

#
Node Groups

Data nodes

Replicas
.=

Except for tables that are fully replicated (see later in the next section about partitions), the data is
sharded between the node groups. Sharding means that the data is divided among the node groups in such a
way that is there is no overlap between the data stored in two different node groups. In MySQL NDB Cluster,
the sharding happens automatically based on the partitions. In case of a perfectly even data distribution,
each node group will have exactly 1/N of the data where N is the number of node groups. For example,
suppose there is a total of 10GB of data and there are four node groups, then each node group will store
2.5GB of data.

It is a requirement that each data node must belong to exactly one node group and that all node groups
have the same number of data nodes. This means you cannot create a cluster with two replicas and three
data nodes. Similarly, if you want to add data nodes to an existing cluster, you must always add a whole node
group at a time.

By default, the data nodes are distributed among the node groups automatically using the node IDs set
with the NodeId option, so the lowest node IDs go into the first node group, the next data nodes by node ID
go into the next node group, and so on. The numbering of the node groups starts with zero. Figure 2-4 shows
the two node groups arising from a typical configuration with two replicas and four data nodes.

Chapter 2 ■ the Data NoDeS

30

New node groups can be added to the cluster without downtime (see also Chapter 10). However,
moving existing data nodes between the node groups requires a re-initialization of the cluster (and thus
restoring all data from a backup).

Partitions
Partitioning is the smallest unit in the division of the data between the data nodes. All tables storing data
in NDB Cluster are partitioned by default and will have the number of partitions optimized for the size and
configuration of the cluster. MySQL NDB Cluster supports two types of partitioning:

•	 Partitioning by key

•	 Partitioning by linear key

For both partitioning schemes, MD5() is used for the hashing2. The difference between partitioning by
key and by linear key is that partitioning by key uses modulo arithmetic whereas partitioning by linear key
uses a power of two algorithm.

Figure 2-4. Two node groups, each with two data nodes

2This is different than for InnoDB, which uses a hashing function internal to MySQL Server based on the same algorithm
as the PASSWORD() function.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 2 ■ the Data NoDeS

31

The modulo arithmetic is simple:

Partition MOD MD key N# ,= ()()5

In the formula key is the column value used for the partitioning and N is the number of partitions. The
advantage of this algorithm is that, it in most cases, it gives an even data distribution.

The power of two algorithm is more complex:

V POWER CEILING LOG N

Partition MD key V

= ()()()
= () -()
2 2

5 1

,

&

,

V is a constant based on the number of partitions. If the resulting partition number is larger than the
number of partitions (N) for the table, the result is reduced in a loop until the partition number is less than
the number of partitions using:

V
V

Partition Partition V

=

= -()
2

1# # &

The main benefit of linear key is that it makes partition management such as adding, dropping,
splitting, and merging partitions faster. However, these operations are not supported for MySQL NDB
Cluster, so it is better to use partition by key, which usually gives a more even distribution of the data.

While the automatic partitioning usually works great, it is possible to override it using a custom
partitioning. Additionally, MySQL NDB Cluster 7.5 supports a greater level of fine-tuning the partition
balancing for each table as well as the option to have fully replicated tables. The following sections go into
details with the partitioning features.

Automatic Partitioning
Automatic partitioning is the default and will be used unless explicitly overwritten. The primary key will be
used as the partition key using partitioning by key. The number of partitions will be scaled according to the
number of data nodes and the number of LDM threads, i.e., the number of partitions is: # of partitions = # of
data nodes * # of LDM threads. Some examples of the number of partitions can be found in Table 2-2.

Table 2-2. Examples of the Automatically Determined Number of Partitions

Number of Data Nodes Number of LDM Threads Number of Partitions

2 1 2

2 2 4

2 8 16

2 32 64

4 8 32

6 8 48

8 8 64

48 32 1536

Chapter 2 ■ the Data NoDeS

32

User-Defined Partitioning
With user-defined partitioning, it is possible to overwrite the automatic partitioning. The advantage exists
particularly for tables with multiple columns in the primary key, as the partitioning key can be chosen to
optimize the data access. By choosing the partitioning key to match the column(s) mostly used for selecting rows
in queries, it is possible to achieve improved performance as it increases the use of local access to the data.

One example is a foreign key relationship where it is expected to perform joins between the parent
and child tables. If the child table has its data partitioned according to the foreign key column, it is possible
to perform the join locally without having to access other data nodes and thus improve the performance.
Listing 2-1 shows an example using the album and album_artist tables from a database with music albums.
The primary key of the album_artist table contains both the album_id and artist_name columns. In this
case, partitioning by just the album_id column allows for an optimized join between the two tables.

Listing 2-1. User-Defined Partitioning Example

CREATE TABLE album (
 album_id INT UNSIGNED NOT NULL,
 album_name VARCHAR(50) NOT NULL,
 PRIMARY KEY (album_id)
) ENGINE=ndbcluster;

CREATE TABLE album_artist (
 album_id INT UNSIGNED NOT NULL,
 artist_name VARCHAR(100) NOT NULL,
 PRIMARY KEY (album_id, artist_name)
) ENGINE=ndbcluster
 PARTITION BY KEY (album_id)
 PARTITIONS 4;

SELECT *
 FROM album
 INNER JOIN album_artist USING (album_id);

The following limitations apply to user-defined partitioning:

•	 The partitioning key must be part of the primary key.

•	 Only partitioning by key or linear key is supported.

•	 The maximum number of partitions supported for a table is: 8 * # LDM threads * #
Node Groups

See also Chapter 20 for more information on using user-defined partitions.

MySQL NDB Cluster 7.5: Partition Balancing
One of the new features in MySQL NDB Cluster 7.5 is the ability to specify in more details how the partition
balancing should be done for a table. Previously there was always one primary replica for each LDM thread
in each node, unless user-defined partitioning was used. The partition balancing names follows the schema
FOR_<read option>_BY_<distribution> where the read option is either RP for “read primary” or RA for “read any”.

http://dx.doi.org/10.1007/978-1-4842-2982-8_20

Chapter 2 ■ the Data NoDeS

33

The distribution can either be LDM or NODE, depending on which level the partition distribution is done.
With the new options, there are now four different partition balancing schemes:

•	 FOR_RP_BY_LDM: The default and the partitioning scheme used exclusively in
previous versions of MySQL NDB Cluster. One primary partition for each LDM
thread on each node. With two replicas, this also means one backup replica for each
LDM thread. Reads are done from the primary replica.

•	 FOR_RA_BY_LDM: One primary or backup partition per LDM thread. Reads can be
made from any of the replicas.

•	 FOR_RP_BY_NODE: One primary partition is stored in each data node. Reads are
done from the primary replica.

•	 FOR_RA_BY_NODE: Each node group has a combined single partition. That is, each
node will have one primary or one backup replica. Reads can be from any replica.

Choosing a non-default partition balance is only needed in rare cases and can only be done by setting
the table comment. For example:

mysql> CREATE TABLE t1 (
 id int unsigned NOT NULL,
 val char(36),
 PRIMARY KEY (id)
) ENGINE=NDBCluster
 COMMENT='NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_LDM';

Examples of the partition balances will be shown in the case study after the following section.

 ■ Note For more information about using table comments to set table options for NDBCluster tables, see
https://dev.mysql.com/doc/refman/5.7/en/create-table-ndb-table-comment-options.html.

MySQL NDB Cluster 7.5: Fully Replicated Tables
Another new feature in MySQL NDB Cluster 7.5 is the possibility to choose a table fully replicated to all data
nodes even in clusters with more than one node group. That is, all data nodes have all the data for the table.
The use case is primarily relatively small tables that are often used in joins, for example lookup tables. A side
effect of enabling the fully replicated feature is that reads from backup replicas are also allowed, so the same
write overhead as for the read from replica feature exists.

Fully replicated tables will use more memory than normal tables. Consider a case with two node
groups. In this case with a table that is distributed as per default, each node group will on average have half
the data. With a fully replicated table, both node groups have all the data, meaning the total memory usage
has doubled.

Case Study: Partition Distribution
The best way to understand the effect of the four partition balancing options as well as the read from backup
(any replica) and fully replicated tables features is to look at how the partitions are distributed in each case.
The case study considers a cluster with two replicas and four data nodes in two node groups. Each data node
has four LDM threads.

https://dev.mysql.com/doc/refman/5.7/en/create-table-ndb-table-comment-options.html

Chapter 2 ■ the Data NoDeS

34

Figures 2-5 through 2-8 show the distribution of partitions for each of the four partition balancing
schemes. Additionally, Figures 2-9 and 2-10 show the default partitioning scheme FOR_RP_BY_LDM with
the read from backup and fully replicated features enabled, respectively. In the figures, a P means the
partitions in that half are primary partitions; a B means partitions in that half are backup partitions. Each
figure is discussed in turn.

The actual distribution for a table may differ from table to table, but the overall distribution will be
similar. A good source for studying the distribution of the partitions and which node has the primary replica
is the ndbinfo.table_fragments table (the ndbinfo schema is discussed in Chapter 16), which is new in
MySQL NDB Cluster 7.5. Another information table that is new in version 7.5 is ndbinfo.table_info, which,
for example, includes details about the partition balancing used and which other features are enabled for
the table. Alternatively, the ndb_desc utility (see also the case studies later in this chapter) can provide
information about the partitions of the table.

Figure 2-5 is an example using the FOR_RP_BY_LDM partition balancing, which is the default
distribution. With four data nodes and four LDM threads there are 16 partitions, with one primary and one
backup partition allocated for each LDM thread. The partitions are numbered 0 through 15. The primary
replicas on node 1 are backup replicas on node 2 and vice versa; likewise for nodes 3 and 4.

Figure 2-5. The FOR_RP_BY_LDM partition balancing scheme

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 2 ■ the Data NoDeS

35

Figure 2-6. The FOR_RA_BY_LDM partition balancing scheme

Figure 2-6 shows the balancing using FOR_RA_BY_LDM. The RA (read any) part of the scheme causes
the number of partitions to be halved compared to FOR_RP_BY_LDM. With this distribution, there is either
one primary or one backup replica per LDM thread.

Figure 2-7 moves on to FOR_RP_BY_NODE, which has one primary partition and one backup partition
per data node. This leaves half the LDM threads without any partitions, which makes it likely that the load
will become unbalanced with one LDM thread being busy and the other idle. Use this partition balancing
with care and primarily for tables with only a few rows.

Chapter 2 ■ the Data NoDeS

36

Even fewer partitions exist for FOR_RA_BY_NODE, where each node group only has one partition, with
the primary partition on one node and the backup partition on the other. This is shown in Figure 2-8. Since
FOR_RA_BY_NODE allows reading from the backup partition, there is less difference in practice between a
primary and backup replica than for the RP balancing schemes. Like for FOR_RP_BY_NODE, this scheme is
mostly useful for small tables.

Figure 2-7. The FOR_RP_BY_NODE partition balancing scheme

Chapter 2 ■ the Data NoDeS

37

The final two cases examine the default partition balancing, FOR_RP_BY_LDM, with each of the two
features, read from backup and fully replicated table. Figure 2-9 shows that partition distribution does not
change when reading from the backup replicas is enabled. The distribution is the same as for the regular
FOR_RP_BY_LDM case.

Figure 2-8. The FOR_RA_BY_NODE partition balancing scheme

Chapter 2 ■ the Data NoDeS

38

Figure 2-9. The FOR_RP_BY_LDM partition balancing scheme with read from backup enabled

Enabling the fully replicated table feature, however, does change the partition distribution, as shown in
Figure 2-10. The biggest change is that the replicas are the same between the two node groups. Having fully
replicated table enabled is also the one case where partition and fragment are not synonyms (not visible
from the figure).

Chapter 2 ■ the Data NoDeS

39

To make it easier to compare the six distributions, Figures 2-5 through 2-10 are displayed side by side
in Figure 2-11. The labels below each example show the partition balancing used and whether the read
from backup or fully replicated tables feature is used. The read from any backup (any partition) feature is
indicated with + Any in the label, and the fully replicated table feature is indicated with + Full in the label.

Figure 2-10. The FOR_RP_BY_LDM partition balancing scheme with fully replicated table enabled

Chapter 2 ■ the Data NoDeS

40

D for Durability
MySQL NDB Cluster is primarily an in-memory database, but still it aims at being fully ACID compliant.
How is durability (the D in ACID) delivered while also providing real-time performance? There are several
elements to this:

•	 Duplication of the data through synchronous replication and two-phase commits

•	 Local checkpoints (LCPs)

Figure 2-11. Six examples of partition distributions

Chapter 2 ■ the Data NoDeS

41

•	 Redo logs

•	 Global checkpoints (GCPs)

The relationship between the data, local checkpoints, redo logs, and global checkpoints is shown
in Figure 2-12. The data memory (excluding the ordered indexes) is written to a local checkpoint. In the
meantime, all writes are written to the redo log buffer, which in turn is flushed to the redo log for every global
checkpoint. It is worth referring to the figure again, as the four elements are discussed in the rest of this
section.

Figure 2-12. The relationship between data, local checkpoints, redo logs, and global checkpoints

Duplication of Data
The first important part of duplicating data is to enable multiple replicas (see also the section “Replicas”
earlier). MySQL NDB Cluster uses synchronous replication as well as a two-phase commit to ensure that the
replicas and nodes in other node groups that also are affected by the transaction will either all commit or all
fail the transaction.

This means when a transaction is committed, the data is safe even if one of the data nodes crashes.
However, the data is not safe in case of a catastrophic issue that brings down the whole cluster. For the data
to survive a cluster shutdown, the data must also be on disk, which is done through a feature called local
checkpoints (LCPs).

Chapter 2 ■ the Data NoDeS

42

Local Checkpoints (LCPs)
The LCPs are MySQL NDB Cluster’s solution to keep the data safe even if the cluster shuts down as a whole.
An LCP is essentially an online backup that reads the data from end to end while writing it to disk. In fact, the
code module handling LCPs is called BACKUP (see the section “Kernel Blocks” later in the chapter) and the
same code also handles backups.

The process of creating an LCP can be compared to how MySQL Enterprise Backup (MEB) and Percona
XtraBackup copy the InnoDB tablespace files online. An LCP copies the data (but not indexes) from the data
memory as well as schema information from the data dictionary. MySQL Enterprise Backup copies the data
files from disk (the .ibd files for InnoDB tables) as well as the data dictionary files (.frm files). Because the
process is online, i.e., data changes will happen while the LCP is written, it is necessary to keep track of the
changes. This is the task of the redo logs.

The Redo Logs
The redo logs keep track of all the changes that occur while the LCPs are created. If it becomes necessary to
restore an LCP, the redo log is applied, and together the two create a consistent view of the data. This is again
similar to how InnoDB online backup programs collect the InnoDB redo log to be able to create a consistent
backup.

The redo logs are in several contexts, called fragment log files. This includes all the related configuration
options related to the size of the redo logs:

•	 NoOfFragmentLogParts: The number of sets of files per data node that together
constitute the redo log for the data node. It is a requirement that there are at
least as many fragment log parts as there are LDM threads. The default—and
minimum—number of fragment log parts is 4.

•	 NoOfFragmentLogFiles: The number of files in each fragment log part. The default is 16.

•	 FragmentLogFileSize: The size of each fragment log file. The default is 16MB.

The total amount of redo log created is:

Total redo log created = NoOfFragmentLogParts * NoOfFragmentLogFiles *
FragmentLogFileSize

However, the total amount of redo log that can be used is:

Total of usable redo log = # LDM threads * NoOfFragmentLogFiles *
FragmentLogFileSize

With the default settings for the redo log and two LDM threads, this gives:

Total redo log created = 4 * 16 * 16MB = 1024MB = 1GB

Total of usable redo log= 2 * 16 * 16MB = 512MB

At a minimum, the redo logs must be able to hold the changes occurring during the time it takes to write
two local checkpoints. However, to be able to handle an increased load, it is recommended to set the total
size so it can hold the changes for six local checkpoints. If one of the redo log parts become full, the cluster
will be in a read-only state until enough local checkpoints have been written to free up some redo log again.

The fact that at least four fragment log parts are created can seem like wasted disk space. The reason for
four parts minimum is that originally ndbmtd supported at most four LDM threads. With four fragment logs
parts, it would be possible to choose any of the supported number of LDM threads. However, the disk is by
default not used, as the redo log files are created sparse, i.e., they are basically created as empty shells with the
requested size. The section entitled “The NDB File System” at the end of the chapter gives an example of this.

Chapter 2 ■ the Data NoDeS

43

Within each set of redo log, the log is written in a circular fashion:

 1. The LDM thread will start writing to the first file.

 2. When the first file has been written to the end, the LDM thread will switch to the
next file and write to that.

 3. When reaching the end of the last file, the LDM thread will move back to the start
of the first file.

To improve performance of the redo log, the data changes are first written into an in-memory buffer,
then flushed to disk. This is where the global checkpoints come into play.

Global Checkpoints (GCPs)
Since MySQL NDB Cluster in general will have multiple data nodes in a cluster and it is a shared nothing
architecture, some mechanism is required to ensure all data nodes agree on how to restore the data. This
mechanism is the GCPs.

When the data nodes flush the redo buffer to disk, the transactions are safe even in the case of a total
cluster outage. The GCP occurs when the data nodes synchronize the flushing of the redo logs. This means
all data nodes are always able to restore the data to a given GCP.

By default, a GCP occurs every 2000 milliseconds (the TimeBetweenGlobalCheckpoints configuration
option). This means that in case of a catastrophic crash, up to two seconds of committed transactions may
be lost. Going back to the start of the section and the discussion of the D for durability in ACID, the premise
that MySQL NDB Cluster is ACID compliant only holds to the extent that there never is an event that causes
the cluster as a whole to crash.

Restarts and Processes
MySQL NDB Cluster has several ways of restarting the data nodes depending on what the status of the
cluster is and what you are trying to achieve. Other than initially starting the cluster, the most common
reason to perform a restart is to change the configuration or to recover from a node outage.

There are four main types of restart types:

•	 Node restart: The most common restart type where all of the data remains available
for the application throughout the restart.

•	 Initial node restart: This is similar to a node restart with the addition that each node
deletes all of its data as part of the restart.

•	 System restart: Like a node restart, but all data nodes are started together. The
cluster is offline during the restart.

•	 Initial system restart: Like a system restart, but all data nodes also delete their data.
Except for logfile groups and tablespaces, everything in the NDB file system (see also
“On-Disk Data” later in the chapter) is deleted, i.e., all data must be restored from a
backup.

The two node restart types allow you to restart a data node while the cluster as a whole remains online.
A restart where eventually the whole cluster is restarted using node restarts is also known as a rolling restart.
The opposite is a system restart, where all data nodes can be started at the same time. Restarts are discussed
in detail in Chapter 10.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 2 ■ the Data NoDeS

44

When a data node is started, by default there will be two processes, both using the ndbd or ndbmtd
binary: the angel process and the data node process itself. This is similar to starting MySQL Server using the
mysqld_safe script on Linux and UNIX, except the angel process is using the data node binary itself, and by
default the angel process will not automatically restart a failed data node. The role of the angel process is to
monitor and (if configured to do so) restart the data node if it has not been shut down cleanly. An example
from Linux shows the angel process as the parent of the actual data node process (see the two ndbmtd
processes):

shell$ ps axf | grep nodeid=1
 3391 pts/3 S+ 0:00 | _ grep --color=auto nodeid=1
 2421 ? Ss 0:00 ndbmtd -c 192.168.0.101 --ndb-nodeid=1
 2422 ? Sl 0:14 _ ndbmtd -c 192.168.0.101 --ndb-nodeid=1

Data Node Internals
The data nodes themselves have an internal architecture that is not entirely different from the architecture of
the cluster as a whole. As the cluster has different nodes types, a data node thread is built from kernel blocks;
and as the cluster has transporters (network connections, MySQL NDB Cluster supports several types of
transporters, but for the purpose of this discussion, the connections can be assumed to be using TCP/IP) to
allow the different nodes to talk to each other, there are signals between the kernel blocks.

Understanding the internal structure is one of the more advanced topics of MySQL NDB Cluster, and
the details are beyond the scope of this book. However, the remainder of this section gives an overview
of the memory usage, kernel blocks, signals, and related topics, as understanding the internal data node
architecture at a high level helps you understand the philosophy used in MySQL NDB Cluster and can also
help with day-to-day operations such as configuration and troubleshooting.

Memory Usage
As a primarily in-memory database, the data nodes are obviously a big user of memory. However, it is even
more so as memory is also used to reduce the fluctuations in response times, i.e., for the real-time promise
that is part of the high availability implementation. Currently there is no pooling of memory implemented
except for send buffers, so each use of memory has its own specific allocation. An important aspect is that all
memory is allocated and touched as the first thing during a restart. That the memory is touched means it is
not only requested from the operating system but also taken into use; on Linux, this means the memory will
show up as resident memory instead of only as virtual memory.

The following list includes some of the areas that require memory. The related options are noted in
parentheses; increasing the values of the options will increase the memory usage and vice versa. If the
setting is reduced, then the memory is also reduced.

•	 In-memory data and ordered indexes (DataMemory)

•	 Unique hash indexes (IndexMemory)

•	 Buffering of on-disk data (DiskPageBufferMemory)

•	 Transaction records for coordinating transactions between the data nodes
(MaxNoOfConcurrentTransactions)

•	 Transaction operations on data (MaxNoOfConcurrentOperations,
MaxNoOfLocalOperations)

•	 The internal triggers; see also the “Triggers” subsection (MaxNoOfTriggers)

Chapter 2 ■ the Data NoDeS

45

•	 The redo buffer (RedoBuffer)

•	 Send and receive buffers (TotalSendBufferMemory, SendBufferMemory,
ReceiveBufferMemory)

Chapter 4 goes into how to configure these uses of memory, and some of the areas are also discussed
later in this chapter. The important points here are that it is important to plan ahead, for example with
load tests, and consider how the cluster is used, and that the memory usage is higher (in some cases much
higher) than the memory directly allocated to data and indexes.

Kernel Blocks
The kernel blocks are the building blocks on which the data node is made. Each thread inside the ndbd and
ndbmtd binaries includes one or more kernel blocks. A little simplified, a kernel block can be compared to a
Lego block. Each kernel block is largely self-contained and is responsible for specific tasks. For example, the
BACKUP block is responsible for creating backups and local checkpoints. There are currently a total of 23
different kernel blocks, summarized in Table 2-3.

Table 2-3. The 23 Kernel Blocks

Kernel Block Name Description

BACKUP Backup Creates backups and local checkpoints (LCPs).

CMVMI Cluster Manager Virtual
Machine Interface

Handles the configuration management between the kernel
blocks and is responsible for the job queue (see the “Job
Buffers” subsection later) and the transporters.

DBACC Access Control Manages access to the data and is responsible for storing the
primary keys and the unique hash indexes. Works together
with the DBTUP block: The DBTUP block physically stores
data. It returns a pointer to the data which DBACC stores
together with the primary key. Implements part of the
checkpoint protocol. DBACC also performs undo logging.

DBDICT Data Dictionary The definition of tables, columns, indexes, etc. The only
block other than DBTC that applications can talk to directly.

DBDIH Distribution Handler Has a range of responsibilities: data distribution
management service, local and global checkpoints, and
restarts.

DBINFO Information Database Responsible for the ndbinfo schema. See also Chapter 16.

DBLQH Local Query Handler The main part of the LDM threads (which are sometimes
referred to as LQH threads for this reason). Manages data:
each LDM thread owns specific partitions. Coordinates the
two-phase commit.

DBSPJ Select Project Join Handles push down joins.

DBTC Transaction Coordinator The global counterpart to the DBLQH block.

DBTUP Tuple Manager Responsible for the physical storage of data. Implements
part of the checkpoint protocol. See also the DBACC block.

(continued)

http://dx.doi.org/10.1007/978-1-4842-2982-8_4
http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 2 ■ the Data NoDeS

46

Table 2-3. (continued)

Kernel Block Name Description

DBTUX Tuple Index Local management of ordered indexes.

DBUTIL Utilities Various internal utilities, for example for transaction and
data operations.

LGMAN Log Manager Handles the undo logs for disk data tables.

NDBCNTR NDB Controller Handles initialization and configuration when starting a
data node. Also involved in clean shutdowns.

NDBFS NDB File System Abstraction layer for the NDB file system and handles the
actual I/O and supports asynchronous I/O. See also the
section “The NDB File System” later.

PGMAN Page Manager Buffer management for disk data tables.

QMGR Logical Cluster
Management

Handles the heartbeats and node membership of the
cluster. Additionally, it is involved in the early phases of
starting a node.

RESTORE Restore Handles restoring data from backups through the ndb_
restore utility or local checkpoints.

SUMA Subscription Manager Used for event logging, reporting functions, and replication
(via the binary log on one or more SQL nodes).

THRMAN Thread Manager The thread management block. Included in all threads.

TRPMAN Transport Manager Handles signal transport. See also the next subsection.

TSMAN Tablespace Manager Manages the tablespace files for disk data tables.

TRIX Transactions and
Indexes

Handles internal triggers and unique indexes. Provides
utilities for index rebuilds and handling signals between
nodes.

 ■ Note the kernel blocks are described in more detail, including references to the source code, in the MySQL
NDB Cluster Internals Manual: https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html.

The relationship between several of the kernel blocks is shown in Figure 2-13. The large shaded
area represents the NDB kernel. Notice that in order to keep the diagram reasonably simple, not all the
connections between blocks are included.

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

Chapter 2 ■ the Data NoDeS

47

Figure 2-13. Some of the relationships between several of the kernel blocks

Chapter 2 ■ the Data NoDeS

48

The various thread types use different kernel blocks. Some blocks may be part of more than one thread
type—for example, THRMAN being the thread management block is required for all threads—whereas other
kernel blocks may be used only for a single thread type. Which blocks are used for each thread can be seen
in the out log of the data node near the start of the output of a restart. The following excerpt from the log of
data nodes provides an example:

thr: 0 tid: 22064 (main) DBTC(0) DBDIH(0) DBDICT(0) NDBCNTR(0) QMGR(0)
 NDBFS(0) CMVMI(0) TRIX(0) DBUTIL(0) DBSPJ(0)
 THRMAN(0) TRPMAN(0) THRMAN(1) ...
thr: 1 tid: 22065 (rep) BACKUP(0) DBLQH(0) DBACC(0) DBTUP(0) SUMA(0) DBTUX(0)
 TSMAN(0) LGMAN(0) PGMAN(0) RESTORE(0) DBINFO(0)
 PGMAN(2) THRMAN(2) ...
thr: 2 tid: 22066 (ldm) PGMAN(1) DBACC(1) DBLQH(1) DBTUP(1) BACKUP(1)
 DBTUX(1) RESTORE(1) THRMAN(3) ...
thr: 3 tid: 22067 (tc) DBTC(1) DBSPJ(1) THRMAN(4) ...
thr: 4 tid: 22051 (recv) THRMAN(5) TRPMAN(1) ...
thr: 5 tid: 22063 (send)

The numbers in parentheses after the kernel block name is a counter to distinguish when the same
kernel block is used in multiple threads. It is worth noting that the send thread does not include any kernel
blocks—that is not a mistake. In the listing, some information not related to the kernel blocks has been
removed, and the lines have been reformatted to make the output easier to read.

One of the places the kernel blocks show up is for data node failures. Both the error log messages and
the trace files will refer to the kernel blocks. For example, the following error message may occur:

Time: Sunday 30 October 2016 - 13:12:19
Status: Temporary error, restart node
Message: Node declared dead. See error log for details (Arbitration error)
Error: 2315
Error data: We(2) have been declared dead by 1 (via 1) reason: Heartbeat failure(4)
Error object: QMGR (Line: 4213) 0x00000002
Program: ndbmtd
Pid: 25141 thr: 0
Version: mysql-5.7.16 ndb-7.5.4
Trace file name: ndb_2_trace.log.3
Trace file path: /cluster/data/node_2/ndb_2_trace.log.3 [t1..t4]
EOM

The failure was caused by too many missed heartbeats. The Error object references the QMGR
block, which is expected given that the QMGR block is responsible for the heartbeat protocol and node
membership. Knowing the kernel block can be an important first step to determine the cause of a node
failure. (This example is trivial, as the Error data line explains exactly why the node was shut down.)

Chapter 2 ■ the Data NoDeS

49

Signals
The kernel blocks need to communicate with each other; for example, an API node may tell the DBTC block
it needs a transaction where a row with a given primary key is required. This request triggers the DBTC block
to ask for the data from the DBLQH block. The communication between the kernel blocks is done using
signals. There are two types of signals for the data nodes:

•	 Synchronous: The synchronous signals block until they have been processed. An
example of a synchronous signal is a heartbeat.

•	 Asynchronous: The asynchronous signals can be sent to:

•	 Another block in the same thread; the recipient block may be the same as the
sending block

•	 A block in another thread in the same data node

•	 A block in a thread on another data node

The asynchronous signals are the most common and can have one of two priorities: 0 or 1, where 0 is
the highest priority. There is a job buffer (see the next subsection) for each of the two priorities where the
signals are queued.

When a data node crashes, it will create a trace file for each thread. These trace files each have two
parts: a trace through specific points in the source code and a signal trace. The signals included in the signal
trace are the last received asynchronous signals. (Synchronous signals are not included in the trace as they
do not pass through the job buffer.)

Job Buffer
A job buffer in MySQL NDB Cluster is essentially a queue of signals. When a signal arrives, it is placed into
one of two job buffers, depending on the signal priority:

•	 Priority 0 signals go into job buffer A

•	 Priority 1 signals go into job buffer B

Signals are processed in the order they arrive into the job buffer—first in, first out (FIFO).
Additionally, there are job buffers C and D. Job buffer C is used exclusively during restarts and job buffer

D is used for the time queue. As the C and D job buffers are special purpose, they will not be discussed more.
For the single-threaded data nodes, each data node has one set of job buffers. For the multi-threaded

data nodes, each thread—except the send threads—has a set of job buffers. The reason send threads do not
have a job buffer is that they do not contain any kernel blocks and thus cannot receive and execute signals.
The job of the send threads is exclusively to send signals directed at other nodes.

The job buffers are a fixed size. If they get full, it is not possible to receive any more signals, which will
cause a node failure. For this reason, it is very important that the job buffers never become full. One measure
to avoid this is that no job is supposed to block for more than 10 milliseconds. (Warnings are printed in the
data node’s log when an operation blocks for more than 100 milliseconds.) If a task requires more time, it
should pause and send a signal (called CONTINUEB as in “continue a job from the B job buffer”) to itself
to continue the paused operation. The continue signal will be placed at the end of the queue, meaning the
other signals get a chance to be processed. To keep track of the time, the signal TIME_SIGNAL is sent every
10 milliseconds.

The use of the job buffers is illustrated in Figure 2-14. A signal arrives from the same thread, the
same node, or another node, and then is inserted into job buffer A or B per the signal’s priority. Then it is
processed for at most 10 milliseconds.

Chapter 2 ■ the Data NoDeS

50

Send and Receive Buffers
As MySQL NDB Cluster is a distributed system, it is necessary to incorporate support for communication
between the various parts of the cluster. By far the most commonly used mechanism is TCP/IP. There
are other options, but they are beyond the scope of this book. To ensure stable operations even during
a temporary overload of the network and to handle bursts of messages, all nodes have send and receive
buffers. As the data nodes have the most network traffic, the buffers are most important for these nodes.

Both the send and the receive buffers are always created for every possible transporter for a node. Data
nodes and management nodes will have a transporter to all other online nodes; API/SQL nodes will have
a transporter to all online management and data nodes. An important point is that the send and receive
buffers are created whether or not the transporter currently exists.

The send buffers are the ones that most likely require explicit configuration. Each node has a memory
pool reserved for send buffers, and each transporter from the node has a dedicated send buffer. By default,
the memory pool is large enough so all send buffers can grow to their maximum size. However, it is common
that at any given time some transporters are busier than others, so particularly for large clusters, it makes
sense to have the memory pool smaller than the default, as it is rare that all send buffers will require their
maximum size at the same time.

Figure 2-15 shows an example of the send buffers for the data node with NodeId = 1 in a cluster with
two data nodes (NodeIds 1 and 2), two management nodes (NodeIds 49 and 50), and five API/SQL nodes
(NodeIds 51-55). This setup gives a total of eight transporters for the node (one for each of the eight other
nodes in the cluster). There is one send buffer for each of the transporters, and each send buffer uses
memory out of the total send buffer pool.

Figure 2-14. The flow of signals through the job buffers

Chapter 2 ■ the Data NoDeS

51

The receive buffers are similar to the send buffers, but are on the receiving end of the TCP connections.
Unlike the send buffers, which are taken out of a global pool for the node, each receive buffer is always
allocated in full. This is important to have in mind when configuring extra nodes or the default size of the
receive buffers is changed.

Triggers
There are two types of triggers: the normal MySQL Server triggers and MySQL NDB Cluster triggers that are
internal to the data nodes. In MySQL Server, triggers are something that can be added to perform an action
when a row is inserted, updated, or deleted. Triggers inside the data nodes are similar; however there is one
important difference: the MySQL NDB Clusters triggers are entirely internal. The DBA should not create,
drop, or maintain these internal triggers manually. (The MySQL Server triggers can still be used.) MySQL
NDB Cluster uses triggers to monitor for changes. They are used in several places, such as for unique hash
indexes, ordered indexes, foreign keys, backups, and replication.

While the data nodes automatically handle creating, removing, and updating the triggers as needed,
the DBA should still be aware of them as the triggers can show up in the configuration, monitoring, and for
example, the output of the ndb_show_tables utility program, as shown in the case study later in the chapter.

Epochs
The epochs in MySQL NDB Cluster are not the same as those known from the UNIX and Linux operating
systems; however, it is somewhat similar in the sense that it measures time. MySQL NDB Cluster uses
epochs to track time and for grouping. The default duration for an epoch in MySQL NDB Cluster is 100
milliseconds (the TimeBetweenEpochs configuration option) and the epoch for a cluster will never decrease
during the lifetime (between complete initializations) of the cluster.

This means, given two events and the epochs in which they occurred, it is possible to determine
the order of the two events. The conflict resolution for master-master replication (see also Chapter 6) for
example uses this fact. In general, replication is using epochs not only for conflict resolution; it also groups
all transactions in one epoch into one transaction in the binary log (for performance reasons), and the
epochs are used to correlate the binary log file and position between the SQL nodes with the binary log
enabled.

The internal implementation of counting epochs depends on the platform. If you look at the epoch
number reported for example in replication, it will not be the number of 100 milliseconds periods the cluster
has been online. The main point is that the epoch number must always be increasing, and the grouping of
events will by default be in 100 millisecond periods.

Figure 2-15. The total send buffer pool with eight send buffers

http://dx.doi.org/10.1007/978-1-4842-2982-8_6

Chapter 2 ■ the Data NoDeS

52

Master Node
The cluster will choose one of the data nodes as the master node. This should in no way be compared to
the master/slave roles of traditional MySQL replication. The role of the master data node is to coordinate
some of the internal management tasks, such as the changes to the distributed data dictionary from DDL
statements, handling the joining and leaving of management nodes, etc. The master node is also known as
the president.

The master role is always assigned to one of the data nodes and reassignment only occurs when the
current master date node leaves the cluster. The reassignment is part of the node failure handling. As a
MySQL NDB Cluster DBA or user, it is not necessary to consider which data node is the master node. It
is all handled automatically and the role is only used for internal purposes. However, the term occurs in
some contexts such as viewing the cluster status through the ndb_mgm client (see Chapter 7) and in some log
messages.

Data and Indexes
Everything discussed this far in the chapter has provided the framework to store the data, which after all is
the main purpose of a database. It is now time to look at how data is handled in MySQL NDB Cluster.

There are three main parts to data storage in the data nodes:

•	 Data memory: This is where all in-memory data as well as all ordered indexes
are stored.

•	 Index memory: Used for the unique hash indexes.

•	 On-disk tablespaces: On-disk data is stored in tablespace files. Columns that are
part of an index are still stored in memory.

The decision whether data is stored in-memory or on disk is done on a per-column basis. That means
it is possible to keep the most frequently used parts of a table in-memory but store rarely used data or large
data objects in an on-disk tablespace. The only limitation in this respect is that all indexed columns must be
stored in-memory.

Data Memory and Index Memory
The data memory and index memory are always present in a cluster, and originally this was the only place to
store data. The data memory is used not only for storing data, but also the ordered indexes, while the unique
hash indexes are stored in the index memory.

The data memory is organized as one large pool that is available for all the LDM threads in the data
node. During a restart, the data is loaded from a local checkpoint, the redo log, and/or another data node in
the same node group. The indexes are recreated on each restart.

The index memory works a little different. The unique hash indexes are stored in a separate table
(not directly accessible) as a key-value store:

•	 The unique index is the primary key.

•	 The primary key of the parent (user created table) is the value.

That the unique index is used as the primary key in the hash index table has the consequence that
NULL for the indexed column cannot be stored. This again means that the unique hash index cannot be
used to look for NULL values, instead a full ordered index scan or table scan is performed. Chapter 18 has
some considerations about table design and creating indexes in MySQL NDB Cluster.

http://dx.doi.org/10.1007/978-1-4842-2982-8_7
http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 2 ■ the Data NoDeS

53

The internal organization of the index memory is also different from the data memory, as it is divided
evenly between the LDM threads. That is, if the data node has 20MB of index memory and four LDM
threads, each LDM thread will have 5MB of index memory. This may not at first sound like big difference,
but the consequences are big. If the number of LDM threads is doubled, the memory per LDM thread is
halved, but the number of partitions for existing tables is unchanged. As each partition is associated with
a specific LDM thread (per replica), the cluster may run out of index memory for some LDM threads while
other LDM threads have not used any.

 ■ Note this is the reason for the caution—that changing the number of LDM threads may require a system
initial restart—in the section Single-threaded Versus Multi-threaded Data Nodes earlier in the chapter. In
MySQL NDB Cluster version 7.6 (available as a preview in a milestone release at the time of writing), the index
memory has been removed and this limitation lifted.

On-Disk Data
Data that is stored on-disk has different requirements than the data stored in-memory. The architecture is
such that writes first go to the disk page buffer. From the disk page buffer, the data goes into tablespaces and
undo data goes into a logfile group. The tablespace files and undo log files are organized as follows:

•	 Logfile group: A logfile group contains one or more undo log files.

•	 Tablespaces: A tablespace is associated with a logfile group and contains one or
more tablespace files.

Figure 2-16 summarizes this flow of the data and shows how the on-disk data updates fit in with the
in-memory data. Notice how the writes also go to the redo buffer and redo log. The parts in the figure that
are new will be introduced in this subsection, and the process is discussed in more detail in Chapter 18.

http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 2 ■ the Data NoDeS

54

To take advantage of storing data on disk, it is necessary first to create a logfile group to store the
undo log, and to create one or more tablespaces to store the on-disk data. The undo logs are required if a
transaction is rolled back. This task is performed through an SQL node. The SQL node will automatically tell
all the data nodes to create the files. If you have multiple data nodes on the same host, it is important that the
nodes will not share tablespace or undo log files.

The logfile group and the tablespaces each consists of one or more files. It is possible to add files to an
existing logfile group or tablespace, and it is possible to remove tablespace files. One special behavior of
the on-disk data related files is that they are not removed during an initial restart (neither node nor system
restart); only the data within the on-disk tablespaces is removed.

There are a few restrictions on the creation of logfile groups and tablespaces in MySQL NDB Cluster:

•	 There can be at most one logfile group.

•	 There can be multiple tablespaces, but all must use the same logfile group.

•	 The namespace for logfile group names and tablespace names is the same. So, you
cannot for example create a tablespace with the same name as a logfile group.

The on-disk storage is on a per-column basis, though it is possible to set a default for the table. If the
table default is on-disk storage, all non-indexed columns created will be using on-disk storage. The default
for the table can be changed using the ALTER TABLE statement; however, to change the storage type for
existing columns, it must be done on a per-column basis. Chapter 18 gives examples of creating logfile
groups, tablespaces, and tables using on-disk storage.

It is easy to get started using on-disk storage. However, it is important to be aware of some of the
implementation details to avoid surprises:

•	 As mentioned earlier, only columns without indexes can be stored on disk.

•	 Each column stored on disk has an eight-byte pointer that is stored in-memory. The
pointer is used to locate the data in the tablespace.

Figure 2-16. Overview of the disk data write flow

http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 2 ■ the Data NoDeS

55

•	 TEXT, BLOB, and JSON columns (irrespective of the maximum length) store the first
256 bytes in memory (plus the eight-byte pointer).

•	 Variable length columns are stored as a fixed-width column using the space required
for the largest value possible. (BLOB, TEXT, and JSON columns are as discussed in
the next subsection stored in fixed-width chunks, so a LONGBLOB column does not
require 4GB of tablespace.)

Additionally, if the on-disk files are stored on the same disks that are used for local checkpoints and
redo logs, it can severely impact the performance and stability of the cluster. These details mean it is not
always a win to store data on disk rather than keeping it in-memory, and when using on-disk storage, it is
important to consider the data types very carefully.

Similar to the InnoDB buffer pool, on-disk tables in a cluster use a buffer (called the Disk Page Buffer).
This buffer is used to cache the data from the on-disk tablespaces to avoid re-reading frequently accessed
data. The effectiveness of the disk page buffer can be monitored through the ndbinfo schema in the
diskpagebuffer table (see also Chapter 16). Additionally, there is a buffer for the logfile group called the
undo buffer. The memory for the undo buffer is taken from a memory pool called the Shared Global Memory.

BLOB, TEXT, and JSON Columns
The BLOB and TEXT data types are treated special in the data nodes. As the JSON data type internally is
stored as a BLOB, it is also included. For all columns using one of these data types, only the first 256 bytes are
stored in the table itself. The remainder of the values is stored in an internal complementary BLOB table.

 ■ Note the complementary table is called a BLoB table irrespective of whether the column data type is
BLoB, teXt, or JSoN.

The complementary table is named NDB$BLOB_<table id>_<column number>, where the table ID is
the internal table ID of the main table, and the column number is numbered zero through N, with N being
the total number columns in the table minus 1. The table definition of the complementary table consists
of columns to identify and order the chunks (see the next paragraph) as well as a column to store chunks
of the data. The primary key of the main table is the partition key to ensure the data in the main table and
the data in the complementary table that belongs to the same row is located on the same data node. The
implementation is transparent for the application.

When data is inserted into the complementary table, it is split into chunks. The maximum size of each
chunk depends on the exact data type; for example, for BLOB or TEXT, the maximum is 2000 bytes, for JSON,
it is 8100 bytes, and for LONGBLOB or LONGTEXT, it is 13948 bytes. Consider a 6000 byte long BLOB value;
in that case the value is stored as follows:

•	 256 bytes with the row in the table itself

•	 Bytes 257 to 2256 in the first row of the complementary table

•	 Bytes 2257 to 4256 in the second row of the complementary table

•	 Bytes 4257 to 6000 in the third row of the complementary table

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 2 ■ the Data NoDeS

56

The way that BLOB, TEXT, and JSON values are implemented has a couple of side effects:

•	 Operations on BLOB, TEXT, and JSON values involve joins and multiple rows in the
complementary table for each row in the main table. This affects performance and
locking.

•	 The link between the complementary table and the main table is the primary key of
the main table. This means that if there is no explicit primary key on the main table,
it will for example not be possible to match the rows in the complementary table
with the rows in the main table on a replication slave. The reason is that the hidden
primary key will not in general have the same values on a replication master and a
replication slave. For this reason, tables without an explicit primary key and with
BLOB, TEXT, or JSON columns cannot be logged to the binary log.

Cases Studies: Investigating the Schema Objects
To get a better understanding of the objects and organization in the data nodes, it can be useful to use the
two utilities ndb_show_tables and ndb_desc to get information about the schema objects, table definitions,
and partitions directly from the data nodes. The two utilities are included with the MySQL NDB Cluster
downloads; if you use a packaging format that organizes the binaries into multiple packages, the utilities will
be in the client package.

The two case studies use a freshly initialized cluster with the logfile group, tablespace, and table and
data shown in Listing 2-2.

Listing 2-2. The Example Disk Data Objects, Table and Data Used for the Two Case Studies

CREATE LOGFILE GROUP loggroup_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 128M
 UNDO_BUFFER_SIZE 8M
 ENGINE ndbcluster;

ALTER LOGFILE GROUP loggroup_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 64M
 ENGINE ndbcluster;

CREATE TABLESPACE tblspc_1
 ADD DATAFILE 'datafile_1.dat'
 USE LOGFILE GROUP loggroup_1
 INITIAL_SIZE 128M
 ENGINE ndbcluster;

ALTER TABLESPACE tblspc_1
 ADD DATAFILE 'datafile_2.dat'
 INITIAL_SIZE 64M
 ENGINE ndbcluster;

CREATE TABLE db1.t1 (
 id INT UNSIGNED NOT NULL,
 name VARCHAR(20) NOT NULL,
 birthday date NOT NULL,
 comment TEXT STORAGE DISK,

Chapter 2 ■ the Data NoDeS

57

 PRIMARY KEY (id),
 UNIQUE INDEX (name),
 INDEX (birthday)
) ENGINE=ndbcluster TABLESPACE tblspc_1;

INSERT INTO db1.t1
VALUES (1, 'Bob' , '1980-03-21', REPEAT('a', 10000)),
 (2, 'Alice', '1977-08-08', REPEAT('b', 4400)),
 (3, 'Hanna', '1982-05-30', REPEAT('c', 2400)),
 (4, 'Mike' , '1973-11-17', REPEAT('d', 400));

The ndb_show_tables Utility
The ndb_show_tables utility can be used to list all tables, indexes, and some other objects in the data nodes.
An example output is included in Listing 2-3. The sample output has two columns—state and schema—
removed.

Listing 2-3. Example Output of the ndb_show_tables Utility

shell$ ndb_show_tables
id type logging database name
2 IndexTrigger - NDB$INDEX_19_CUSTOM
14 Datafile - datafile_1.dat
8 UserTable Yes mysql ndb_index_stat_sample
13 Tablespace - tblspc_1
11 Undofile - undo_1.log
15 Datafile - datafile_2.dat
18 OrderedIndex No sys PRIMARY
3 SystemTable Yes sys NDB$EVENTS_0
5 IndexTrigger - NDB$INDEX_21_CUSTOM
6 UserTable Yes mysql ndb_apply_status
7 UserTable Yes mysql ndb_index_stat_head
12 Undofile - undo_2.log
20 UniqueHashIndex Yes sys name$unique
10 LogfileGroup - loggroup_1
16 UserTable Yes db1 t1
1 0 - DEFAULT-HASHMAP-3840-2
0 IndexTrigger - NDB$INDEX_9_CUSTOM
5 UserTable Yes mysql NDB$BLOB_4_3
1 IndexTrigger - NDB$INDEX_18_CUSTOM
17 UserTable Yes db1 NDB$BLOB_16_3
19 OrderedIndex No sys name
9 OrderedIndex No sys ndb_index_stat_sample_x1
3 HashIndexTrigger - NDB$INDEX_20_UI
21 OrderedIndex No sys birthday
2 SystemTable Yes sys SYSTAB_0
4 UserTable Yes mysql ndb_schema
1 TableEvent - REPL$mysql/ndb_schema
2 TableEvent - NDB$BLOBEVENT_REPL$mysql/ndb_schema_3
5 TableEvent - REPL$db1/t1
3 TableEvent - REPL$mysql/ndb_apply_status

Chapter 2 ■ the Data NoDeS

58

6 TableEvent - NDB$BLOBEVENT_REPL$db1/t1_3
4 TableEvent - ndb_index_stat_head_event

NDBT_ProgramExit: 0 – OK

The example output shows how there are several “table” types (“table” should not be taken too literally
in this case, as it for example also includes the internal triggers):

•	 UserTable: These are tables that use the NDBCluster storage engine and can be
accessed through the API/SQL nodes. From the output, it can also be seen that several
user tables were created as part of the installation. Some of these will be discussed
later; for example, ndb_apply_status is part of the replication implementation
discussed in Chapter 6. Additionally, the complementary BLOB tables are also
considered user tables even though they are accessed through their parent tables.

•	 SystemTable: These are internal system tables that cannot be accessed directly.

•	 UniqueHashIndex: The hash index used for a unique index.

•	 OrderedIndex: An ordered index. Note how there is both a unique hash index and
an ordered index for the index that was added to the name column.

•	 IndexTrigger: This is an internal trigger (see Triggers in the “Data Node Internals”
section) for an ordered index. It can be determined from the name which index the
trigger belongs to. For example, for NDB$INDEX_19_CUSTOM the 19 is a reference to
the ID for the index. Looking through the list, the ordered index with id = 19 can
be seen to be the one on the name column; however, there is no clear way from the
output to link the index to the table.

•	 HashIndexTrigger: This is an internal trigger for a unique hash index. The trigger
can be associated with the index in the same way as for an index trigger.

•	 Undofile: These are the undo files that have been added to the cluster.

•	 Datafile: These are the tablespace files for the cluster.

•	 TableEvent: Internal events used for the replication streams.

The logging column shows whether a “table” will be logged as part of the local checkpoints. In general,
user and system tables are logged whereas everything else is not. For user tables, it is possible to specify
whether it should be logged or not when the table is created. An advantage of not logging a table is that the
local checkpoints become smaller, but the table will be empty after a system restart. In this sense, non-logging
tables can be compared with tables using the MEMORY storage engine in a traditional MySQL Server instance.

 ■ Tip Don’t confuse the sys database listed in the output with the sys schema that is installed as part of
MySQL Server 5.7 and MySQL NDB Cluster 7.5. the sys database referenced in the output in Listing 2-3 is an
internal database to NDBCluster.

The ndb_desc Utility
MySQL DBAs will be familiar with the SHOW CREATE TABLE command to get the table definition of a table.
In MySQL NDB Cluster, there is also another way to get information about the NDBCluster tables, the
ndb_desc utility. The advantage of ndb_desc is that it not only works as an NDB API client, so it can be used
independently of SQL nodes. It also provides more details.

http://dx.doi.org/10.1007/978-1-4842-2982-8_6

Chapter 2 ■ the Data NoDeS

59

As an example, consider the table db1.t1 from Listing 2-2:

CREATE TABLE db1.t1 (
 id INT UNSIGNED NOT NULL,
 name VARCHAR(20) NOT NULL,
 birthday date NOT NULL,
 comment TEXT STORAGE DISK,
 PRIMARY KEY (id),
 UNIQUE INDEX (name),
 INDEX (birthday)
) ENGINE=ndbcluster TABLESPACE tblspc_1;

INSERT INTO db1.t1
VALUES (1, 'Bob' , '1980-03-21', REPEAT('a', 10000)),
 (2, 'Alice', '1977-08-08', REPEAT('b', 4400)),
 (3, 'Hanna', '1982-05-30', REPEAT('c', 2400)),
 (4, 'Mike' , '1973-11-17', REPEAT('d', 400));

The default output of ndb_desc contains the information in Listing 2-4.

Listing 2-4. The Output of the ndb_desc Utility for the db1.t1 Table

shell$ ndb_desc --database=db1 t1
-- t1 --
Version: 1
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 373
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 2
FragmentCount: 2
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
id Unsigned PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
birthday Date NOT NULL AT=FIXED ST=MEMORY
comment Text(256,2000,0;latin1_swedish_ci) NULL AT=MEDIUM_VAR ST=DISK BV=2 BT=NDB$BLOB_16_3

Chapter 2 ■ the Data NoDeS

60

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
name(name) - OrderedIndex
name$unique(name) - UniqueHashIndex
birthday(birthday) - OrderedIndex

NDBT_ProgramExit: 0 - OK

The first part of the output is general table information such as the version, which is updated each time
the table definition is changed. Some of the interesting details available are:

•	 PartitionCount: The number of partitions available for the table.

•	 FragmentCount: The number of fragments available for the table. For all other tables
than fully replicated tables, the fragment count will be identical to the partition count.

•	 PartitionBalance: This is the partition balance discussed earlier in the chapter. In
this case, the default FOR_RP_BY_LDM is used.

•	 HashMap: MySQL NDB Cluster supports two hash maps for the partitioning
function. The current default of using the large (3840) hash maps is the preferred.
The smaller (240) hash map is only provided for backward compatibility, but as all
releases since MySQL NDB Cluster 7.2.7 supports the larger hash maps, backward
compatibility is no longer an issue. The -2 at the end of the HashMap value refers to
the number of partitions.

After the general table properties, there is the Attributes section. In MySQL NDB Cluster, the columns
are called attributes. For each column, the various properties for the column are listed. Some of the more
interesting properties are:

•	 For the id column, it is the primary key and the distribution key.

•	 The AT property tells whether the column is stored using the fixed or dynamic (the
%_VAR values of the AT property) column format.

•	 The ST property tells whether the column is stored in-memory or on disk.

•	 For the comment column, one interesting property is BT. Because the comment column
is a TEXT column, it has a complementary BLOB table, as discussed in the BLOB,
TEXT, and JSON Columns subsection of the previous section. The BT property tells
the name of this BLOB table. Additional information can also be seen from the data
type Text(256,2000,0;latin1_swedish_ci). The 256 means the first 256 bytes are stored
in-memory, and the 2000 means that the rest of the data is stored in chunks of up to
2000 bytes.

As mentioned for the AT property, MySQL NDB Cluster supports two columns formats: fixed and
dynamic. Fixed is, as the name suggests, used for fixed-width storage. In MySQL NDB Cluster 7.4 and earlier
the limit for fixed-width storage was 16GB per partition, but in version 7.5 this has been increased to 128TB.
The dynamic column format uses variable-width storage. The dynamic format is more flexible than the
fixed, for example it is only columns using the dynamic format that can be added online. The advantage
of the fixed format columns is that they use less memory for data that is fixed length in nature (such as
integers). The two column formats can be mixed within the same table.

Finally, the indexes are listed. Note here how there are two indexes for the primary key and the unique
key on the name column: a unique hash index and an ordered index. This is the default for all unique indexes
in MySQL NDB Cluster. The unique hash index (stored in the index memory except in the case of the
primary key) is used for matching single rows and the uniqueness check. The ordered indexes are used for
example for range comparisons.

Chapter 2 ■ the Data NoDeS

61

ndb_desc supports additional options. One commonly used option is --extra-partition-info (or -p),
which as the name suggests provides information about the partitions for the table. This option can be
combined with the --extra-node-info (-n) option to also include node information. An example is given in
Listing 2-5. The part of the output that is the same as in Listing 2-4 has been replaced with … Some columns
of the partition info have been removed.

Listing 2-5. The Output of ndb_desc -p for the db1.t1 Table

shell$ ndb_desc --database=db1 t1 -p
...
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
0 1 2 32768 32768
1 3 6 32768 32768

The partition information in Listing 2-5 has one row per partition. The row count and commit counts
are self-explanatory. More interesting are the Frag fixed memory and Frag varsized memory values. As
discussed, the column format can either be fixed or dynamic. This is what is reflected here as the data in the
id (INT data type) and birthday (DATE) columns are contributing to the Frag fixed memory value, and the
data in the comment column (TEXT) contributes to the Frag varsized memory value. The reason the usage is
32KB for each partition and storage type is due to the small amount of data in the table. The page size used
for the data is 32KB, so this shows that one page is currently used for each column format in each partition.

Another option that can provide details of the table is the --blob-info (-b) option, which as the
name suggests provides information about the complementary BLOB table. In MySQL NDB Cluster 7.4 and
earlier, it adds per partition information for the BLOB table and must be used together with the -p option;
in MySQL NDB Cluster 7.5, it displays the full details of the BLOB table like for the parent table. Listing 2-6
includes an example of part of the output. Some output, including some columns of the partition info, has
been removed. The Frag fixed memory and Frag varsized memory columns have been truncated to Frag fixed
and Frag vars, respectively.

Listing 2-6. The Output of ndb_desc -pb

shell$ ndb_desc --database=db1 t1 -pb
...

-- NDB$BLOB_16_3 –
...
-- Attributes --
id Unsigned PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
NDB$PART Unsigned PRIMARY KEY AT=FIXED ST=MEMORY
NDB$PKID Unsigned NOT NULL AT=FIXED ST=MEMORY
NDB$DATA Char(2000;binary) NOT NULL AT=FIXED ST=DISK
-- Indexes --
PRIMARY KEY(id, NDB$PART) - UniqueHashIndex
-- Per partition info for NDB$BLOB_16_3 --
Partition Row count Frag fixed Frag var Extent_space Free extent_space
0 2 32768 0 1048576 1026120
1 9 32768 0 1048576 1012036

Chapter 2 ■ the Data NoDeS

62

From the Attributes section, there are four columns in the BLOB table:

•	 id: The primary key of the parent table. This is also part of the primary key of the
BLOB table and it is the distribution key. That is, the rows in the BLOB table will be
stored in the same partition as the row in the parent table they belong to.

•	 NDB$PART: The BLOB part. This is the second part of the primary key and is
basically a counter for each row that builds up the one BLOB value. The counter
ensures the BLOB data can be put together in the correct order.

•	 NDB$PKID: This is reserved for future use.

•	 NDB$DATA: The actual data. It’s a fixed width CHAR(2000) column.

The fixed width property of the data column can also be seen from the partition info, where only Frag fixed
memory has data. Since the column is stored on disk, the partition information also includes details of the use of
tablespace extents. Each extent is 1MB and each partition uses one of these with most of the space free.

The NDB File System
The final thing to discuss about data nodes is the NDB file system, which is where the data nodes store their
files. The top level of the data directory contains various log and trace files as well as the NDB file system
directory, as shown in the following directory listing:

shell$ ls -lh
total 3.8M
-rw-r--r--. 1 mysql mysql 1.1K Nov 3 18:25 ndb_1_error.log
drwxr-x---. 9 mysql mysql 4.0K Nov 3 16:57 ndb_1_fs
-rw-r--r--. 1 mysql mysql 48K Nov 3 18:26 ndb_1_out.log
-rw-r--r--. 1 mysql mysql 5 Nov 3 18:25 ndb_1.pid
-rw-r--r--. 1 mysql mysql 974K Nov 3 18:25 ndb_1_trace.log.1
-rw-r--r--. 1 mysql mysql 997K Nov 3 18:25 ndb_1_trace.log.1_t1
-rw-r--r--. 1 mysql mysql 948K Nov 3 18:25 ndb_1_trace.log.1_t2
-rw-r--r--. 1 mysql mysql 881K Nov 3 18:25 ndb_1_trace.log.1_t3
-rw-r--r--. 1 mysql mysql 1 Nov 3 18:25 ndb_1_trace.log.next

Note how all the file and directory names are prefixed with ndb_ followed by a number. The number
is the node ID of the data node. The logs and trace files are discussed in Chapter 16. The file ndb_1.pid
stores the process ID of the data node. The directory ndb_1_fs (the d in the first column to the left tells it is
a directory) is where the redo logs and other files are stored. This is what the remainder of this section will
look at.

The content of the ndb_1_fs directory includes several directories and possibly several files. In this
example, there are seven subdirectories and four files:

shell$ ls -lh
total 385M
drwxr-x---. 4 mysql mysql 31 Nov 3 16:51 D1
drwxr-x---. 3 mysql mysql 18 Nov 3 16:50 D10
drwxr-x---. 3 mysql mysql 18 Nov 3 16:50 D11
drwxr-x---. 4 mysql mysql 31 Nov 3 16:51 D2
drwxr-x---. 3 mysql mysql 18 Nov 3 16:50 D8
drwxr-x---. 3 mysql mysql 18 Nov 3 16:50 D9
-rw-r--r--. 1 mysql mysql 129M Nov 3 18:25 datafile_1.dat

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 2 ■ the Data NoDeS

63

-rw-r--r--. 1 mysql mysql 65M Nov 3 18:25 datafile_2.dat
drwxr-x---. 4 mysql mysql 22 Nov 3 18:25 LCP
-rw-r--r--. 1 mysql mysql 128M Nov 3 18:25 undo_1.log
-rw-r--r--. 1 mysql mysql 64M Nov 3 16:56 undo_2.log

The four files are tablespace date files and logfile group files. These files were all created with relative paths,
so they have been placed in the ndb_1_fs directory and the corresponding directory for the other data nodes.

The seven directories always exist for a data node, but there may be more depending on the
configuration. The directories can be divided into three groups:

•	 Metadata: The D1 and D2 directories store metadata about the tables and the cluster.

•	 Redo log: The D8, D9, D10, and D11 directories contain the redo log. There is one
directory for each part of the redo log (see also the subsection earlier in the chapter
entitled “The Redo Log”). In this case, there are four parts.

•	 Local checkpoints: The LCP directory stores two local checkpoints.

The most interesting of these groups are the redo log directories. Each of these contains the number of
files configured by NoOfFragmentLogFiles and each file of size FragmentLogFileSize. Listing 2-7 shows this
for the D8 directory.

Listing 2-7. The Contents of the ndb_1_ fs/D8 Directory

shell$ ls -lRh D8
D8:
total 4.0K
drwxr-x---. 2 mysql mysql 4.0K Nov 3 16:51 DBLQH

D8/DBLQH:
total 8.8M
-rw-r--r--. 1 mysql mysql 16M Nov 3 20:39 S0.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S10.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S11.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S12.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:51 S13.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:51 S14.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:51 S15.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S1.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S2.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S3.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S4.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S5.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S6.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S7.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S8.FragLog
-rw-r--r--. 1 mysql mysql 16M Nov 3 16:50 S9.FragLog

First in the D8 directory, there is the DBLQH subdirectory. This shows that the files are used by the
DBLQH kernel block, which is the main part of the LDM threads. Inside the DBLQH subdirectory there are
16 (the default) files, each 16MB large (also the default). At face value, this would suggest that the total size of
the directory is 256MB, but as shown in Listing 2-8, this is not the case.

Chapter 2 ■ the Data NoDeS

64

Listing 2-8. The Actual Disk Usage of the Redo Log Files

shell$ du -shc *
1.9M S0.FragLog
548K S10.FragLog
548K S11.FragLog
548K S12.FragLog
548K S13.FragLog
548K S14.FragLog
548K S15.FragLog
548K S1.FragLog
548K S2.FragLog
548K S3.FragLog
548K S4.FragLog
548K S5.FragLog
548K S6.FragLog
548K S7.FragLog
548K S8.FragLog
548K S9.FragLog
9.9M total

Instead, each file only contributes 548KB, except S0.FragLog, which has had a few writes. This is an
example of the files being created sparse by default.

Summary
The topic of this chapter was the data nodes, which are at the heart of the cluster. The data nodes are where
the data is stored and where the bulk of the data processing is done. The topics discussed were:

•	 The single-threaded (ndbd) and multi-threaded (ndbmtd) binaries.

•	 Which thread types make up the multi-threaded binary.

•	 Replicas, which are the number of copies MySQL NDB Cluster has of the data.

•	 Node groups and partitions, which are the building blocks of horizontal scalability
and sharding.

•	 Local and global checkpoints and how they are used to ensure that the data changes
are durable.

•	 A brief overview of restart types.

•	 The internals of the data nodes, including how there are kernel blocks that use
signals to communicate with each other.

•	 Data and indexes and how they are stored and used in the data nodes.

•	 Case studies looking at database objects and the ndb_show_tables and
ndb_desc utilities.

•	 The NDB file system.

This concludes Part I, which provided an overview of what MySQL NDB Cluster is and went into some
detail of how it works. Part II goes through installation and configuration, with system planning the first area
discussed.

PART II

Installation and Configuration

67© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_3

CHAPTER 3

System Planning

In this chapter, we discuss key points for planning MySQL NDB Cluster system architecture design and
briefly discuss configuration. Since NDB Cluster has a built-in High Availability (HA) functionality, it
does not require additional clustering software. However, there are several limitations on its built-in HA
functionality, as nothing can be perfect, so the planning phase is very important for system reliability. We
should choose the proper topology, network, server machine, Operating System (OS) and so forth. It’s not
too much to say that whether the system is successfully stable or not is dependent on the planning phase.

Determine Your Priorities
The most important point upon planning NDB Cluster setup is to clarify why you want to use it. NDB Cluster
can be used for different purposes:

•	 High availability: It is important to make the entire system accessible even when
some components go offline. To achieve this ability, all components within the
system must be redundant.

•	 Scalability for access increase: One of the most important challenges for recent
database systems is to handle workload increase.

•	 Disaster recovery: A very important system may be required to be running even
when the data center experiences disruption due to a disaster.

Which factor is the most important for your application? Please consider carefully and determine your
goal. If you make a wrong choice here, you will employ the wrong configuration too.

High Availability Requirements
While NDB Cluster consists of three types of nodes—data node, SQL node, and management node—it
doesn’t have a Single Point of Failure (SPOF) on every type of node. Each type of node can be configured
so that it has fault tolerance against node failure. To make each type of node fault tolerant, the following
conditions should be met.

Data Node
The first parameter that you need to decide for data node is the number of replicas, and more than one replica is
required as spares in the event of failures. The number of replicas should be identical among all node groups. So,
the number of replicas must be a common divisor of the total number of data nodes. NDB Cluster supports one
to four replicas. Databases can survive unless all replicas within one node group fail. One replica means each

https://doi.org/10.1007/978-1-4842-2982-8_3

Chapter 3 ■ SyStem planning

68

node group has only a single copy at most, so there is no fault tolerance against node failure, because there is no
spare. Thus, configuration with one replica is not practical in production systems.

How many replicas should be configured then? In most cases, two replicas are sufficient and
recommended. In fact, configuration with three and four replicas is not officially supported at this moment.
So, configuration with two replicas is the only choice.

Theoretically, three or four replicas will provide more redundancy and improve system availability.
If you need extra availability against node failures and are ready for self-support, consider having three or
four replicas.

Please carefully choose the number of replicas. This cannot be changed after the cluster has started.
To change the number of replicas, a system initial restart (initializing the whole data) is required.

SQL Node
While SQL nodes don’t have any user data, one SQL node failure doesn’t affect other SQL nodes. SQL nodes
can be easily configured as high available. Having multiple SQL nodes is sufficient for this purpose. In the
event of failure, an application can continue its operation by simply reconnecting to another SQL node. See
Chapter 18 for more details about how an application reconnects to another SQL node.

SQL nodes don’t communicate directly each other. All communications between SQL nodes goes
through the data nodes. For example, a schema change triggered by one SQL node will be propagated as an
event via data nodes. So, clients will see identical data regardless of which SQL node they connect.

It is also a good idea to have one SQL node on every host where an application is running. In that
case, an application will connect directly to local SQL node, and that connection is very fast. In the event of
machine failure, an application and SQL node on the same machine will go down together. If application
servers are redundant (and such configuration is very common), failure of one machine isn’t a problem.

The more SQL nodes are installed, the more the cluster gets highly available. However, be careful not to
have too many SQL nodes with binary logging enabled. On NDB Cluster, binary log is generated using data
sent from data nodes. The more SQL nodes with binary logging enabled are configured, the more data is
transferred over the network, which may cause network congestion.

Management Node
Management nodes are not involved in data access at all. Management nodes are required in the following
situations:

•	 Configuration handling: Management nodes read the cluster configuration from
the configuration file and deploy the cluster configuration to other nodes when the
other nodes start.

•	 User operations: Management nodes handle various operations, such as starting
and stopping data nodes, starting backups, etc.

•	 Logging: Management nodes collect events from all data nodes and write to a
centralized log file called the cluster log.

•	 Arbitration: When network partitioning happens, MySQL NDB Cluster must decide
which operational cluster should survive. MySQL NDB Cluster employs a technique
called arbitration for this purpose.

•	 Status monitoring: Management nodes have several commands to display the status
of running nodes.

It is not necessarily required to configure multiple management nodes for high availability purposes.
If you prefer extra safety, having two management nodes is sufficient.

http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 3 ■ SyStem planning

69

Prepare for Network Partitioning
Network partitioning is a well-known problem for cluster systems, and it may happen on NDB Cluster, too.
Network partitioning is also known as split brain. Network partitioning is a situation whereby a network
between data nodes is disconnected evenly so that one data node within each node group is running and
connected. That way, more than one working cluster is formed by chance. Figure 3-1 depicts a typical
network partitioning situation on four data nodes.

Arbitration is a mechanism implemented on NDB Cluster to resolve network partitioning. An arbitrator
is picked from candidates (management nodes or SQL nodes) by a representative data node called the
president. At any time, only the arbitrator is configured and running. When the network partition happens,
all data nodes try to access an arbitrator to get approval to carry on its operation. Only one partition will win
on every arbitration process. If a data node is “lost” or timed out on arbitration, it is forcibly shut down. This
type of shutdown operation, done by the other surviving cluster, is called STONITH (Shoot The Other Node
In The Head). Refer to Chapter 1 for more details on the arbitration process.

 ■ Caution Do not place an arbitrator and a data node on the same server machine. if they are placed on the
same machine, an arbitrator and a data node can be lost at the same time when the server machine faces an
unplanned outage. So, an arbitrator should be placed on a separate machine from any data nodes.

Figure 3-1. Network partitioning

http://dx.doi.org/10.1007/978-1-4842-2982-8_1

Chapter 3 ■ SyStem planning

70

From the nature of arbitration, it is desirable to configure separate network paths; one is to interconnect
the data nodes, the other is to communicate between data nodes and arbitrators. Network partitioning
happens upon network problems between data nodes, but at least one surviving cluster should reach the
arbitrator to avoid whole system shutdown. Because both of the surviving clusters will be shut down if both
clusters lose arbitration.

Arbitration is required on the data nodes only. SQL node and management node don’t require
arbitration, because they don’t store any data.

Scalability
One big reason to use NDB Cluster is to achieve high performance. NDB Cluster is good at gaining better
performance by processing data access requests using computer machines in parallel. This strategy is called
scaling out.

It is important to know what types of data access are scalable in proportion to the number of data
nodes. For example, the following types of data access are scalable.

•	 Lookup reads: Row lookup in equality comparison using primary key or secondary
unique hash index. Only the data node where the row resides will be involved in the
lookup operation.

•	 Insert: Also known as write scale-out where a high number of writes is spread over
several nodes.

•	 Range scan using user defined partition: With user defined partitioning, only a
specific data node will be involved in the scan operation when partition pruning is
possible.

•	 Range scan which returns a lot of rows: Since the scan is done in parallel, the time
taken to scan will be reduced in proportion to the number of data nodes.

•	 Join with pushdown algorithm: When a join is pushed down to the data nodes, it is
done in parallel.

In contrast, the following types of data access are not scalable against the number of data nodes.

•	 Range scan that returns a few rows: When data nodes return only a few rows,
overhead to involve data nodes will dominate over the advantage of parallelism.

•	 Join without using pushdown algorithm: When join is not pushed down to the data
nodes, lots of network round-trips are required to access inner tables.

Scalability is not a silver bullet and it does not solve all performance problems. For example, a range
scan query that returns a lot of rows is inefficient anyway even if many data nodes can handle range
scanning in parallel. In fact, resource consumption per data node caused by a such query will be reduced
in inverse proportion to the number of data nodes, and total throughput will be increased in proportion to
the number of data nodes. So, it scales automatically. However, it remains inefficient anyway. If the system
has throughput that can execute an inefficient query X 4 times per second, after increasing data nodes twice,
it will be able to execute the same query X 8 times per second. The number of queries per seconds remains
small anyway. So, such queries cannot be executed frequently, even though execution of such queries is
parallelized among data nodes. Otherwise, the entire cluster will easily slow down.

Chapter 3 ■ SyStem planning

71

Disaster Recovery
MySQL NDB Cluster has a functionality to replicate data from one cluster to another, which is called NDB
Cluster Replication or Geographic Replication. NDB Cluster Replication is done via the SQL node just like
standard MySQL replication. All modifications are written to the binary log on the master SQL node. The
master SQL node sends events in the binary log to the slave, and the slave SQL node applies events in the
binary log. This way, the whole data is synchronized from the master cluster to the slave cluster.

Since standard MySQL replication is very efficient, it is possible to configure NDB Cluster Replication so
that the master cluster and the slave cluster are located at geographically separated sites. With this setup, the
slave cluster can be used as a stand-by for disaster recovery. When the site of the master cluster faces outage,
but the site of the slave cluster is alive, the slave can take over the data service.

See Chapter 6 for more details about NDB Cluster Replication.

Typical Topologies
In this section, we describe the typical topology of NDB Cluster. Although the topology of NDB Cluster is
flexible, there are some restrictions and considerations discussed in the following subsections.

Number of Replicas
As described earlier in this chapter, the number of replicas is the first thing to consider. Since copies of data
also consume memory for data storage (and disk for LCP; see Chapter 1 for more details about LCP), the
more replicas you have, the smaller the total data size. The following formula calculates the total amount of
data size.

(Number_of_data_nodes × Memory_per_node) ÷ Number_of_replicas

Do not choose one replica in a production system, because there is no redundancy. One replica
configuration is valid only for benchmarking purposes, etc. Choose two in most cases.

Maximum Number of Data Nodes
NDB Cluster can have up to 48 data nodes in total per cluster. If you plan to set up a huge cluster, be careful
not to exceed this limit. When you need a huge capacity, you may consider a huge cluster like 40+ data nodes.
However, using many server machines will increase the probability of machine failures. Consider using server
machines with larger memory size over increasing data nodes to avoid increasing the probability of machine
failures, if you need only more capacity.

Maximum Number of Total Nodes
NDB Cluster can have up to 255 nodes per cluster, including all types of nodes. We can configure 48 data
nodes at most, and we do not need many management nodes in general. So, this limitation practically affects
the maximum number of SQL nodes only. For example, if you have 20 data nodes and 2 management nodes,
you can have at most 233 SQL nodes.

The SQL node is often placed on the same machine as the application server. Such configuration is not
a bad idea, because an application will connect to the local SQL node via a UNIX domain socket except for
Windows machines, where the connection is very fast. However, this configuration is likely to hit an upper
limit for maximum number of total SQL nodes, when you want to increase the number of application servers

http://dx.doi.org/10.1007/978-1-4842-2982-8_6
http://dx.doi.org/10.1007/978-1-4842-2982-8_1

Chapter 3 ■ SyStem planning

72

for scale-out purposes, because the number of SQL nodes is same as the number of application servers in
this configuration. For example, if you have 20 data nodes and 2 management nodes, you can have at most
233 SQL nodes and 233 application servers.

Arbitration Rank
By default, only the management node is configured to be an arbitrator. But an SQL node can be an
alternative arbitrator by configuring the ArbitrationRank option. The ArbitrationRank option specifies
the likelihood of being an arbitrator. The range for this parameter is 0, 1, and 2. Setting it to 1 means it’s most
likely to be an arbitrator, which is a management node default. 2 is less likely than 1. 0 disables the arbitrator,
which is an SQL node default.

If you want to make an arbitrator highly available, making some of SQL nodes candidates instead
of adding management nodes is a good option. If an SQL node is configured as a candidate arbitrator,
management nodes are not required in the event of network partitioning. It will save one node slot for the
total number of nodes limitation and one host machine.

Placing the SQL Node and the Data Node on the Same Machine
If the SQL node is not placed on the same server machine as an application server, it can be placed on the
same machine as the data node. However, such a topology is not optimal, thus we do not encourage you to
do so. Here are several reasons why:

•	 SQL node also consumes a certain amount of CPU and memory resources. Parsing
SQL and optimizing an execution plan often consume more resources than
expected.

•	 Resource consumption may not be even among SQL nodes. This will cause a
bottleneck on data nodes, because the available resource per data node is not even.

•	 The distance between an SQL node and each data node (the network hops) is not
even. This will also cause a bottleneck on the data nodes.

If performance is not your top priority and a certain amount of performance degradation is acceptable,
you may place the SQL node and data node on the same machine. Otherwise, do not do this.

Typical Topology Examples
This section describes several example topologies from minimum to large configurations. Note that this
section shows just examples. You do not need to follow the identical configurations here, but can employ
any configuration as you see fit.

Minimum Configuration: Three Hosts
To run NDB Cluster as a highly available database system, at least three server machines are needed. Two
server machines are needed for data node redundancy. It is possible to place an SQL node and a data node
on a same host if performance isn’t the highest priority. An additional host computer is needed for the
management node, because it should be placed on a separate host computer from the data nodes. This
constraint is required because the arbitrator will go offline together with the data node if it is placed on the
same host as the data node. Since the management node doesn’t require lots of computer resources, using
an inexpensive machine for the management node is fine and recommended.

Chapter 3 ■ SyStem planning

73

Figure 3-2 depicts the minimum configuration for three hosts. In this case, the system has a dedicated
network or subnet for NDB Cluster, separated from the applications.

Alternative Minimum Configuration: Four Hosts
As it is not recommended to place the SQL node and the data node on the same server machine, we often
need to place them on separate machines. In such cases, the minimum number of required host computers
is four, as SQL node also requires redundancy. Figure 3-3 depicts an alternative minimum configuration with
four hosts. This setup is far more practical compared to the three-node setup, because placing the SQL node
and the data node on separate hosts will avoid contention of computer resources between them.

Figure 3-2. Minimum configuration (three hosts)

Chapter 3 ■ SyStem planning

74

Aside: Cluster Using Minimum Computer
In this chapter, we have shown the minimum topology in the sense of the number of host computers. What
about the minimum computer hardware then? There is no definition for the minimum requirements for
computer resources. Of course, less powerful computer hardware cannot provide good performance. So, you
need to choose the appropriate computer hardware to achieve the required performance.

Figure 3-4 shows a mobile NDB Cluster concept on a demo machine. It houses six Beagle Bone Black
Single Board Computers (SBC) for the cluster nodes and one Raspberry Pi for the console.

Figure 3-3. Alternative minimum configuration (four hosts)

Chapter 3 ■ SyStem planning

75

One can carry this machine by housing all the components inside the case. To use this machine, all
you need to do is to open the case and connect the power plug. Unfortunately, it does not have batteries for
mobile use.

Each computer has 512MB RAM, a single core ARM® Cortex®-A8 32-Bit RISC processor, and a 16GB
micro-SD card. You see that these computers have very poor resources. NDB Cluster can run on small
computers like this for experimentation and demonstration purposes.

 ■ Tip When it comes to the sysbench benchmark, it reveals the best score when four SQl nodes and two
data nodes are configured. the benchmark score is the sum of scores on all SQl nodes. this means that the
parsing SQl statement and the optimizing execution plan are very resource-intensive processes.

Medium Configuration: 10 Hosts
One of the most significant features of NDB Cluster is its outstanding scalability. It is not very often that NDB
Cluster is configured as its minimum possible configuration. Instead, a large number of cluster nodes are
often configured for better performance.

Figure 3-4. NDB Cluster running on single board computers

Chapter 3 ■ SyStem planning

76

Figure 3-5 depicts a typical topology of an NDB Cluster system, which involves 10 computer hosts.
In this case, the application servers are placed on the same hosts as the SQL nodes. In addition, the
management nodes are placed on the same hosts as the SQL node. Placing the management node and the
SQL node on a same host is not a problem, because SQL nodes don’t require arbitration.

Large Configuration: 50 Hosts
Of course, you can configure larger configurations until you reach the node number limitation. If you need
extra capacity and/or performance, you can configure many nodes until your requirements are satisfied.
Capacity increases and write performance scales in proportion to the number of data nodes.

Figure 3-6 depicts a 50 hosts configuration, which is very large. Note that MGM in Figure 3-6 indicates
management node.

Figure 3-5. Medium 10 hosts configuration

Chapter 3 ■ SyStem planning

77

Platform Considerations
So far, the chapter has discussed the high-level perspective of MySQL NDB Cluster topologies. It’s now time
to discuss details for each computer machine in this section.

Processor Type and Operating System
You can use any type of processor and operating system for your MySQL NDB Cluster installation if they are
supported by Oracle. You can verify whether the desired combination of processor and operating system is
supported or not on the following page:

https://www.mysql.com/support/supportedplatforms/cluster.html

Even if your platform is not supported and binary packages are not provided for the platform, it could
be technically possible to run MySQL NDB Cluster on those platforms by compiling MySQL NDB Cluster
from source, because MySQL NDB Cluster is designed so that it runs on commonly used POSIX systems,
which is why we were able to run it on the BBB. This would be a good choice if you don’t need official
support and you need to run MySQL NDB Cluster on a specific platform.

CPU Performance and Characteristics
CPU performance is important for MySQL NDB Cluster, because CPU is the most important resource for in-
memory database systems in general. (One of other important resources for MySQL NDB Cluster is network
throughput, because it is a distributed system.) What characteristics of CPU are the most important then?
CPU has many characteristics, such as:

•	 Clock speed

•	 Number of cores

•	 Number of threads per core

Figure 3-6. Large 50 hosts configuration

https://www.mysql.com/support/supportedplatforms/cluster.html

Chapter 3 ■ SyStem planning

78

•	 L2/L3 cache size

•	 Memory type

•	 NUMA vs. UMA

This section covers what type of CPU resource is important for each type of node in order to achieve
optimal performance.

Desirable Processor Characteristics for Data Nodes
The most important thing for CPU selection is to use identical CPUs among all data nodes. Due to its shared-
nothing architecture, workload against data nodes is distributed to all data nodes evenly. In other words, all
data nodes will handle approximately the same volume of workloads. So, if one data node can handle less
workload than the others, that data node will be a bottleneck of the entire cluster, because other data nodes
cannot handle more workloads than that data node.

CPU is the most important component for the performance of a data node. Choose the right CPU
according to the following criteria:

•	 High clock speed CPUs for minimizing response time

•	 Many core CPUs for maximizing throughput

If your application doesn’t issue many queries in parallel, but response time is important, choose a CPU
model with a very high clock speed. If your application needs very high throughput, choose a CPU model
with many cores. However, there is a limitation to the maximum number of CPU cores that a data node can
use. Table 3-1 shows the maximum number of threads that every data node process can spawn, configured
by the MaxNoOfExecutionThreads option.

Having more than 72 CPU cores on one machine (not within one CPU chip) doesn’t make sense at this
moment, because no versions of MySQL NDB Cluster can utilize so many cores unless you are using the
MaxNoOfExecutionThreads option. The ThreadConfig option, introduced in 7.2.3, allows you to use more
CPU cores. (Up to 100 threads. See Chapter 4 for more details about these options.) Anyway, you need to
increase the number of data nodes if throughput is not sufficient.

Desirable Processor Characteristics for SQL Nodes
If your application accesses the database via SQL nodes, CPU performance on the SQL node is also
important. Since SQL nodes do not store any data, they don’t require much memory or a fast disk, but they
need fast CPU. All of the activities done by SQL nodes, such as parsing SQL statements and optimizing
execution plans, are CPU-intensive workloads. SQL nodes require more CPU performance than data nodes
in total. If your cluster has sufficient data nodes with powerful CPUs, but has insufficient CPU resources for
SQL nodes, it is not possible to utilize the CPU resources fully on the data nodes even when the SQL nodes
are 100% busy.

Table 3-1. MaxNoOfExecutionThreads by Version

MySQL NDB Cluster Versions Range of MaxNoOfExecutionThreads

7.2.0 2 – 8

7.2.5, 7.3.0 2 – 36

7.3.3, 7.4.1, 7.5.0 2 – 72

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 3 ■ SyStem planning

79

Desirable Processor Characteristics for Management Node
Since management nodes do very few tasks, they don’t require fast CPU. The less powerful CPU model is
just fine.

Key Points When Choosing the Most Suitable CPU
To increase total memory size and the total number of CPU cores, server machines may have more than one
CPU chip (sockets). Recent x86_64 CPUs have memory controllers inside, and each memory controller has a
maximum memory capacity. So, the server machine must have multiple CPU chips to increase memory size.

This approach is good for memory size and CPU processing power, but not very good for memory
access speed. Memory access speed isn’t homogeneous on such server machines. Memory access speed
varies depending on to which CPU the target memory is connected. If the target memory is connected to
the same CPU as the one trying to accesses the target memory, then access speed is optimal. Otherwise,
memory access speed gets slow because data is transferred to the CPU that has the target memory under the
memory controller.

Systems that don’t have homogeneous memory access speed are called Non-Uniform Memory Access
(NUMA) machines. Since NUMA machines have small disadvantages on memory access speed, choose
non-NUMA machines if possible. Having many CPU cores within a single CPU chip is preferable to having
multiple CPU chips with a few cores within each CPU chip. Likewise, having a large memory capacity under
a single CPU chip is preferable to having multiple CPUs with smaller memory capacity per CPU chip.

L2/L3 cache memory is yet another important factor when selecting a good CPU. The larger the L2/L3
cache memory size, the better its memory access performance. NUMA systems also have a disadvantage
on L2/L3 memory access, because content of cache memory should be synchronized on all CPU chips to
ensure data integrity. The cost of cache synchronization isn’t negligible.

As a rule of thumb, follow this criteria:

•	 If performance is the highest priority, choose a server machine with a single CPU
that has many cores and large memory.

•	 If capacity is the highest priority, choose a server machine with several CPUs with
large memory.

 ■ Caution While it is possible to mix different CpU architectures or OSs in the same cluster, CpU endianness
should be same. the nDB api protocol, which is used for communication between SQl nodes and data nodes,
is a raw binary protocol and not portable between machines with different endian. if you use little endian
machines for SQl nodes, you should use little endian machines for data nodes, too. So, for example, it is not
possible to employ x86_64 (little endian) machines for SQl nodes and SparC (big endian) machines for data
nodes. By contrast, mySQl protocol, which is used for communication between client applications and SQl
nodes, is an endian-aware protocol. you can employ any types of CpU or OSs for application servers regardless
of the CpU types employed for the mySQl nDB Cluster.

Memory Consumption
RAM modules are getting cheaper and cheaper; however, they are still expensive components nevertheless.
So, it is not a good idea to install more memory than required.

Chapter 3 ■ SyStem planning

80

Data nodes require lots of memory. Prepare sufficient memory modules according to the required data
capacity. Other node types don’t require much memory. Management nodes require only several dozen
megabytes of memory. Several gigabytes of memory are sufficient for SQL nodes in most cases, if you don’t
use InnoDB on it.

Disk Performance
Even though MySQL NDB Cluster is mainly used as an in-memory database, disk performance is still
important for data nodes. On the data node, disk performance is required in the following situations:

•	 Storing checkpoint data on disk: The data node continuously writes its data in
DataMemory to disk as a local checkpoint (LCP). If LCP delays, the redo log is filled up
and cannot write more data.

•	 Redo logging: The data node writes modifications to the redo log for persistence of
data. Redo log entries are generated upon transaction commits.

•	 Taking a backup: The back up is saved on disk.

•	 Reading data on restart: Whole data for the in-memory table is read from disk upon
restart of the data node.

•	 Reading/writing disk data tables: Disk speed is critical for performance of disk data
tables.

Except for disk data tables, reads and writes are handled sequentially. So, you can use inexpensive
Hard Disk Drive (HDD) for systems that are not too busy. If your application requires maximum write
performance, consider using Solid State Drive (SSD). When using SSD, it’s best to avoid models that employ
Triple-Level Cell (TLC) NAND flash memory. TLC has much less lifecycle compared to other types of NAND
flash memory, such as Single-Level Cell (SLC) or Multi-Level Cell (MLC).

Management nodes and SQL nodes don’t require high disk performance. Inexpensive disks are just fine
unless you use InnoDB on the SQL node.

Virtual Machines
Compared to physical machines, virtual machines have inferior performance to run MySQL NDB Cluster.
If you need a database system with maximum performance, do not employ virtual machines such as cloud
services. Certainly, virtual machines are handy in general, but they fall behind physical machines in terms of
performance.

Network Design
Network is one of the most important components for MySQL NDB Cluster, because it is a distributed
system that exchanges lots of data across the network. So, network tends to be a bottleneck if it doesn’t have
sufficient bandwidth compared to computer hardware.

Network Devices
Ethernet is the most commonly used because it has good cost performance ratio. However, in most cases,
Gigabit Ethernet (GbE) is not sufficient for interconnect between cluster nodes. At the least, consider
employing 10GbE network cards and switches. Otherwise, network will be a bottleneck and sufficient
throughput cannot be achieved.

Chapter 3 ■ SyStem planning

81

MySQL NDB Cluster supported Scalable Coherent Interface (SCI) protocol in versions prior to MySQL
NDB Cluster 7.2, but has not supported this in recent releases. However, it is possible to use SCI devices
as the interconnect, because SCI devices also support TCP/IP connection over the SCI protocol, called
SuperSockets. SuperSockets is handy because it doesn’t require recompiling the cluster binaries. SCI devices
have up to 20 Gbps throughput, which is twice 10GbE. Since SCI has lower latency than 10GbE, it might
be possible to achieve higher performance than the MySQL NDB Cluster setup with 10GbE. The most
significant drawback of SCI is that the SCI switch supports up to eight computers only; it is much less than
the maximum number of total cluster nodes.

InfiniBand is a good alternative to Ethernet and SCI. Even though MySQL NDB Cluster doesn’t
support InfiniBand native API called InfiniBand Verbs, it is possible for cluster nodes to communicate using
InfiniBand using the IP over InfiniBand (IPoIB) protocol, which cluster nodes see as usual TCP/IP sockets
regardless of the underlying layers.

Network Redundancy
MySQL NDB Cluster is not fault tolerant against network failures. In the worst case, an entire cluster
shutdown may happen due to a network failure. To improve the availability of the MySQL NDB Cluster
system, it is important to make the network redundant beforehand.

On Linux systems, a bonding driver is widely used. The bonding driver defines a pseudo-network
interface over multiple physical network interfaces for redundancy. In the event of failure of one network
route, traffic is redirected to other network interfaces.

Other OSs have similar functionalities. For example, Solaris has IP Multi-Pathing (IPMP) and Windows
has NIC Teaming.

Direct Connection
To minimize network latency and maximum network bandwidth, direct connection using Ethernet cross-
cable is useful. Even when connecting directly via Ethernet cross-cable, network redundancy is required.
Each host machine needs to have multiple network interface cards to connect to each other. To connect four
data nodes redundantly to each other, six network interface ports are required.

Direct connection is a good choice when the number of nodes is small. It does not require a network
switch device in between, so you can save a certain amount of money. However, separate network interface
cards are still required for direct connection even if there are no network switches between the host
machines.

Security Considerations
NDB API protocol cannot be secured by encryption. So, network between SQL nodes and data nodes should
be physically secured to prevent unauthorized data access. Do not allow unauthorized people to access
computer hardware that runs cluster nodes.

If you must use a cloud environment for some reason, you need to connect virtual computers using
Virtual Private Cloud (VPC). Otherwise, your cluster will be at some risk of data interception.

See Chapter 12 for more information about security.

Extending Capacity Using Disk Objects
The last thing discussed in this chapter is whether to use disk data tables or not. MySQL NDB Cluster
supports disk data tables as of version MySQL 5.1.6 (MySQL Server and MySQL NDB Cluster were not
separate products at that time).

http://dx.doi.org/10.1007/978-1-4842-2982-8_12

Chapter 3 ■ SyStem planning

82

Disk data tables need additional file and buffer memories—data files, undo log files, disk page buffers,
and undo buffers. These objects have a big impact on the MySQL NDB Cluster configuration. It is important
to decide whether to use disk data tables or not at the planning phase.

See Chapter 2 for more details of disk data tables.

Performance Considerations
Disk data tables get a bigger capacity by storing data on relatively cheap disks (file system) instead of
expensive memory. So, disk access speed could be a potential bottleneck, because disks are slower than
memory. If rows on disk data tables are often accessed, consider using high-speed storage such as SSD with
a high-speed interface like PCI Express and Non-Volatile Memory Express (NVMe).

Using many data nodes is a good alternative strategy. Since MySQL NDB Cluster employs shared
nothing architecture, disk access workloads are split and distributed to data nodes evenly. Theoretically,
total I/O throughput for disk data tables on the cluster would be increased in proportion to the number of
data nodes. Increasing the data nodes will also increase capacity. Consider using many data nodes by way of
performance and capacity.

Storage Requirements
Unfortunately, disk data tables don’t support variable length columns, so all the columns have a fixed length
that can store the maximum data size for that column. For example, the VARCHAR(10) column with the utf8
character set will always require 30 bytes, which is not efficient. For this reason, the data size on the file
system will be much larger than the actual data size.

When using a variable length size column with in-memory tables, actual data (rounded to four bytes
alignment), headers, and fragmentation all consume storage. So, the required storage size is proportional to
the average data size of the column. On the other hand, when using disk data tables, where only fixed size
column format is supported, the largest possible space is always allocated for each column per row. As a
result, the disk data tables usually consume several times more storage than in-memory tables.

Memory Consumption
Despite storing data on disk, disk data table also requires a certain amount of cache memory for speeding up
data access, just like InnoDB requires a large buffer pool memory. So, you need to allocate sufficient memory
to the disk page buffer and the undo buffer. This means you need to reduce memory for DataMemory and
IndexMemory instead. So, take extra care when planning the memory size of the server machine when you
use disk data tables.

Summary
This chapter discussed the strategy to determine the big picture of cluster setup, according to your
application needs. The main aspects be considered when planning the cluster are:

•	 Priority of application needs: MySQL NDB Cluster is a highly available but scalable
database management system. It also provides disaster recovery. Determine which
aspects of the product are most important for your application.

•	 Topology: MySQL NDB Cluster is flexible and can configure various topologies.
Determine which type of topology is suitable for your application needs.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 3 ■ SyStem planning

83

•	 Platform: Determine which type of server machine is suitable for each node
according to your application needs.

•	 Network design: Network design is important to maximize performance and
availability of the cluster. Since MySQL NDB Cluster is a distributed database
management system, lots of packets are exchanged over the network.

•	 Whether to use disk data tables for capacity: Disk data table can provide far more
capacity than in-memory tables because the disk storage medium is less expensive
than memory. However, when using disk data tables, extra care must be taken due to
limitations and resource consumption.

The planning phase is very important, because characteristics of the system are decided. It is possible to
adjust the details later, but the overall direction cannot be changed easily.

In the next chapter, we discuss the detailed configuration of the MySQL NDB Cluster. Detailed
configuration is as important as an overview, discussed in this chapter. The former is a top-down approach,
whereas the latter is a bottom-up approach.

85© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_4

CHAPTER 4

Configuration

Before installing MySQL NDB Cluster software packages on your system, this chapter discusses the
configuration of MySQL NDB Cluster. You can perform the configuration or package installation first, as
you like. However, the configuration must be done before starting the cluster the first time. Although most
options can be changed later using a rolling restart, the initial configuration must be at least practical
enough. Since a rolling restart is a time-consuming operation, it is a good idea to mitigate the necessity of a
configuration change by reviewing the options carefully as much as possible.

Configuration Overview
On MySQL NDB Cluster, there are two types of configurations:

•	 config.ini: Mainly used to define installation layout and resource allocation.
This file is read by management node and distributed to other types of nodes.
This configuration file defines the topology of the cluster.

•	 Command-line options and my.cnf: Mainly used to define the startup behavior
of each process and fine-tune the SQL node. All types of processes have their
own command-line options and read options from my.cnf. SQL node has variety
of command-line options to customize various aspects of SQL.

When using the MySQL Cluster Manager (MCM), the way to configure the cluster is different and these
files are not edited directly. See Chapter 13 for more information about MCM.

Defining a big picture of cluster installation is an important process, because it’s not changed easily
afterward. Fine-tuning the SQL node and startup options is less important than config.ini, because changes
on my.cnf can be applied by restarting the SQL node, so they can be changed casually.

The following sections explain details about the major configuration options. Since this chapter is a bit
long, you can skip the details now and then return to this chapter later, when you need a one-stop reference
for the major options.

Formatting config.ini
Before discussing the details of each configuration option, we cover the content of config.ini; how it’s are
organized and how to write options correctly. config.ini consists of sections starting with the section name
enclosed in square brackets. There are two types of sections:

•	 Configuration for individual node or connection. Typically, one section corresponds
to one node. The section name is the same as the node type, e.g., NDBD. Table 4-1
shows the available section names.

https://doi.org/10.1007/978-1-4842-2982-8_4
http://dx.doi.org/10.1007/978-1-4842-2982-8_13

Chapter 4 ■ Configuration

86

•	 Default configuration for one node type. This type of section must precede all
individual node sections. The section name is the node type plus the DEFAULT string,
e.g., NDBD DEFAULT.

In this book, we do not discuss the following sections.

•	 SCI: Support for SCI is outdated. In addition, this section is not required when using
SuperSockets.

•	 COMPUTER: Not often used.

•	 SHM: Shared memory connection is experimental at this time.

Typically, config.ini begins with several default sections followed by individual sections. Each section
consists of the option name and value. In contrast to my.cnf, config.ini cannot include duplicate options.
Each option should be specified only once.

Listing 4-1 shows an example of config.ini for a small system.

Listing 4-1. An config.ini example for a Small System

[MGM]
NodeId = 255
HostName = mgmhost
DataDir = /var/lib/mysql-cluster

[NDBD DEFAULT]
NoOfReplicas = 2
DataDir = /var/lib/mysql-cluster
DataMemory = 4G
IndexMemory = 512M

[NDBD]
NodeId = 1
HostName = host1

[NDBD]
NodeId = 2
HostName = host2

Table 4-1. Section Names in config.ini

Section Name Description

MGM or NDB_MGMD Configuration of management node.

NDBD Configuration of data node.

API or MYSQLD Configuration of SQL node or NDB API client application.

TCP Configuration of node interconnect.

SCI Configuration of SCI connection.

COMPUTER Naming each node different than its hostname or IP address.

SHM Configuration of shared memory connection.

Chapter 4 ■ Configuration

87

[MYSQLD]
NodeId = 49
HostName = host1

[MYSQLD]
NodeId = 50
HostName = host2

In this example, only five nodes are configured—one management node, two data nodes, and two SQL
nodes. Hostnames for data nodes and SQL nodes overlap, so they are placed on the same hosts (host1,
host2). A management node is placed on a separate host (mgmnost), so three hosts are involved in total.

The configuration is distributed to each data node and each SQL node when it connects to the
management server. When a node connects to the management node, the management node identifies
which slot is matched for the connecting node by comparing the hostname of the connecting node and
the HostName option under each section. For example, if ndbmtd connects to the management node from
host2, its node ID is identified as 2, because there is one NDBD section that has configuration with NodeId = 2
and HostName = host2. If one more ndbmtd attempts to connect to the management node from host2, the
connection will fail because there is no available free slot for data node that connects from host2. However,
mysqld can connect to the management node from host2 even if the slot for the data node is occupied,
because there is one available slot for SQL node on host2.

Restart Types
To apply the configuration after starting the cluster, node restarts are required. In the following sections,
every option is explained with restart types, which is how the target node is restarted. On MySQL NDB
Cluster, four restart types are defined:

•	 Node Restart (N): One node is restarted at a time, without specifying additional
instructions. In order to apply configuration changes to an entire cluster, every node
should be restarted in turn. This operation is also known as a rolling restart. During
a rolling restart, the cluster is running and applications can access data. It is not
possible to perform a node restart when NoOfReplicas = 1, because no surviving
data nodes exist within the same node group.

•	 System Restart (S): All nodes are stopped (the cluster is entirely shutdown), then
the cluster starts again. During system restart, applications cannot access data
because the cluster completely stops.

•	 Initial Node Restart (IN): This is a similar restart type to the node restart, but each
data node is restarted with the --initial option. This option instructs the target
data node to wipe its data, then copy the whole data from another node within the
same node group. This restart type is required when file related options are changed,
for example.

•	 Initial System Restart (IS): This is a similar restart type to the system restart, but
all data nodes are restarted using the --initial option. This results in the all the
data being cleared and lost. If you need existing data after restart, take a full backup
before performing a system initial restart.

Details of restart types and operations are discussed in Chapter 10.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 4 ■ Configuration

88

Management Node Options
This section covers the management node options. There are not many options for management node. In
this section, only the major options are listed.

Major Options for Management Node

NodeId

Default Automatic

Range 1 – 255

Section [MGM]

Restart Type Node restart

Identifier for each node. In previous versions, the Id option had the same meanings as NodeId, but it has
been removed in MySQL NDB Cluster 7.5. It is possible to configure each section without specifying NodeId,
because its value is automatically assigned if it’s not specified explicitly. However, it is not a good idea to
omit this parameter, because it causes ambiguity of configuration.

HostName

Default None (accept connection from any host)

Range Arbitrary hostname or IP address

Section [MGM]

Restart Type System restart

Hostname or IP address where the node resides. You may wonder “why management nodes should know
management node’s hostname by itself?” The hostname is required when multiple management nodes are
installed.

DataDir

Default Current directory where the process is started

Range Arbitrary directory pathname

Section [MGM] or [MGM DEFAULT]

Restart Type Node restart

In this directory, data generated by management node is stored, such as log files and PID file.

Chapter 4 ■ Configuration

89

PortNumber

Default 1186

Range Arbitrary port number

Section [MGM] or [MGM DEFAULT]

Restart Type Node restart

This is the port number where the management node listens. In most cases, it is not necessary to change
this value. When the default port number (1186) is occupied by another program, you should change it to a
different value to avoid port collision. For example, if you installed more than one cluster inside your local
network, you may want to consolidate management nodes to a single host to save on the number of hosts.
Such configuration is practical because management node requires very few computer resources. Be careful
not to mistake the port number on the connectstring for each node. If the wrong connectstring is specified,
the node will connect to a different management node.

ArbitrationRank

Default 1

Range 0 – 2

Section [MGM] or [MGM DEFAULT]

Restart Type Node restart

This option specifies the likelihood of being an arbitrator. The range for this parameter is 0, 1, and 2. Each
value has the following meanings:

•	 0: The node will never be used as an arbitrator.

•	 1: The node has high priority; that is, it will be preferred as an arbitrator over low-
priority nodes.

•	 2: Indicates a low-priority node that will be used as an arbitrator only if all nodes
with a higher priority are not available.

If you have multiple management nodes and you have some preference for which node should be an
arbitrator, set this option to 2 against less preferable management nodes. Note that not only management node,
but also SQL node can become an arbitrator. Even if you have only one management node available, arbitrator
can be fault tolerant using SQL nodes as additional arbitrators. Be careful not to use an SQL node that resides
on the same host as the data node, because the arbitrator should reside in a separate host as any data node.

LogDestination

Default FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6

Range CONSOLE|SYSLOG|FILE with additional parameters

Section [MGM] or [MGM DEFAULT]

Restart Type Node restart

Chapter 4 ■ Configuration

90

This option specifies the output destination of the cluster log. The cluster log is the centralized event log file
for MySQL NDB Cluster, whereby all event reports are aggregated as a single continuous log. Destination has
the following three types:

•	 CONSOLE: Log entries are directed to the standard output ndb_mgmd process.

•	 SYSLOG: Log entries are sent to a syslog facility.

•	 FILE: Log entries are written to a log file. Log files are reused in a circular fashion.

SYSLOG and FILE need additional parameters to specify the details of log specification.
For SYSLOG output, the facility should be specified. Facility indicates what component generated the

log message. Facility is not an arbitrary string, but is defined as part of syslog protocol in RFC 3164. Defined
facilities are listed in Table 4-2. Facility is specified using a keyword as in Listing 4-2.

Listing 4-2. LogDestination Using SYSLOG

LogDestination = SYSLOG:facility=local0

Facility is commonly used for log filtering. It is a good practice to specify a facility that does not overlap
with other applications, system programs, or the kernel. local0 ~ local7 are suitable for that purpose. They
are so called custom log messages and not used by the operating system. The default facility is user.

It is possible to store log messages with a specific facility to a separate log file. In that case, you can
customize log filename, log rotation, and so forth, as you like.

Table 4-2. Syslog Facilities

Numerical Code Keyword Facility

0 kern Kernel messages

1 user User level messages

2 mail Mail system

3 daemon System daemons

4 auth Security/authorization messages

5 syslog Messages generated internally by syslogd

6 lpr Line printer subsystem

7 news Network news subsystem

8 uucp UUCP subsystem

9 Clock daemon

10 authpriv Security/authorization messages

11 ftp FTP daemon

12 NTP subsystem

13 Log audit

14 Log alert

15 cron Clock daemon (scheduling daemon)

16 ~ 23 local0 ~ local7 Local use 0 ~ 7

Chapter 4 ■ Configuration

91

It is even possible to direct the cluster log to a remote host (log server) using the syslog capability. Such
configuration is useful when you have multiple cluster installations. You can monitor all clusters using a
single log entity. For more information, refer to the syslog manual. There are several implementations of
syslog. Configuration depends on implementation.

For FILE output, the following three parameters exist:

•	 filename: Log filename

•	 maxsize: Maximum size for each log file

•	 maxfiles: Maximum number of log files kept

Default values for the FILE output are shown in Listing 4-3.

Listing 4-3. LogDestination Using FILE

LogDestination = FILE:filename=ndb_{node_id}_cluster.log,maxsize=1024000,maxfiles=6

{node_id} in Listing 4-2 indicates the Node ID for the management server. You do not necessarily
specify all parameters, but you specify every combination of parameters. For example, you can specify only
maxsize, and leave filename and maxfiles unchanged.

I recommend that you increase the size of cluster log about 10 times. The default size is too small and
logs are rotated too quickly.

Vital Point for Management Node Configuration
Management node doesn’t have many options. The vast majority of options can be omitted in the config.ini
file. However, I recommend setting at least the following three options for a robust setup:

•	 NodeId: Node ID is automatically assigned by default; however, it will result in
assigning different identifier afterward.

•	 HostName: If the hostname is not specified explicitly, the management node can be
connected from any host.

•	 DataDir: The default data directory is the current directory where the management
node is started. It is subject to change when the management node process is started
from a shell.

Explicitly setting these options will eliminate ambiguity of management node configuration.

Data Node Options
We begin to discuss the data node options. As discussed in Chapter 2, data node is the very core of MySQL
NDB Cluster. Configuring data node is one of the most difficult phases when setting up MySQL NDB Cluster,
because lots of options exist. However, if you change your perspective, configuration of data node is one of
the most challenging and exciting tasks during MySQL NDB Cluster lifecycle.

Since data node options are very actively developed, they are subject to change or be newly introduced
frequently. The sections indicate the effective version numbers if they have changed or were introduced in
version 7.2 or newer.

Basic Options
The following options are mandatory in the configuration of data node. Set these options explicitly for a
robust installation.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 4 ■ Configuration

92

NodeId

Default Automatic

Range 1 – 48

Section [NDBD]

Restart Type Node restart

This is the identifier for the node, which has the same meaning as NodeId for other node types. However, the
possible range of values is 1 – 48, because the maximum number of data nodes should be less than or equal
to 48. So, it is good practice to let other node types have a NodeId greater than 48.

HostName

Default None (accept connection from any host)

Range Arbitrary hostname or IP address

Section [NDBD]

Restart Type System restart

Hostname or IP address where the node resides. You can leave this option unset, but I do not recommend
you do so. To make the data node configuration robust, you need to set this option and make the hostname
exclusive to the slot.

HostName and NodeId are used for identifying the slot when a node connects. So, these options are
unique for each slot and cannot be written in the [NDBD DEFAULT] section, because they cannot be shared
among more than one slot.

ServerPort

Default None (automatically assigned)

Range 1 – 64K

Section [NDBD] or [NDBD DEFAULT]

Restart Type System restart

This option is specified by the port number to accept connections from other nodes. By default, data the
node asks the OS to assign the port number to ephemeral port numbers. For example, the bind(2) system
call does it on POSIX systems.

Chapter 4 ■ Configuration

93

DataDir

Default Current directory where the process is started

Range Arbitrary directory pathname

Section [NDBD] or [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies the directory where the data resides.
Since data node handles various kinds of data, it is possible to specify separate directories depending on

data type. DataDir is treated as a default value for specific directory path options such as FileSystemPath.
Log files (not transaction log files, but log files for the ndbd or ndbmtd process) are also stored under

DataDir and cannot be specified separately.
DataDir is not necessarily identical for all data nodes.

NoOfReplicas

Default 2

Range 1 – 4 (practically, 2 is the only choice)

Section [NDBD DEFAULT]

Restart Type Initial system restart

This option specifies the number of copies of data. Theoretically, the more replicas there are, the more
robust the cluster is. However, three or four replicas are not officially tested and supported yet. One replica
means no redundancy; a single node failure immediately results in system failure. You should choose two for
the time being. Future releases may support three or four replicas, but it’s not certain at this time.

Refer to Chapters 2 and 3 for more information about replicas.

Memory Data Storage Options
The following options are related to memory sizing. Strategy for memory sizing is not difficult; allocate
memory as much as the system has unless the system causes memory swapping. Note that objects for
schema and transaction processing also consume a certain amount of memory. It is important not to
allocate memory to buffers in this section too much. Leave a margin for them.

DataMemory

Default 80M

Range 1M – 1024M (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

http://dx.doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_3

Chapter 4 ■ Configuration

94

This option specifies the size of the memory area that stores row data and ordered index data. This
option decides the upper limit of data size. It is often misunderstood that ordered indexes are stored in
IndexMemory, but they are actually stored in DataMemory. Technically speaking, it is possible to write this
option under [NDBD] section, however, it doesn’t make sense. Data is split evenly across all data nodes and
every data node has approximately the same amount of data. Similar reasoning applies to the following
options in this chapter to which only the [NDB DEFAULT] section is written in the list.

The total available memory size for the entire cluster is calculated as in the following formula:

DataMemory × number_of_node_group

The number of the node group is the number of data nodes divided by NoOfReplicas. So, the theoretical
maximum available data memory for the entire cluster without SPOF is 24TB (48 data nodes, 1TB per data
node, and 2 replicas). The amount of DataMemory also has an impact on the size of LCP, GCP, and backup.
Memory size has a big impact on storage requirements, too.

IndexMemory

Default 18M

Range 1M – 1024M (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the memory size for hash indexes, which is used for primary key and unique hash
indexes. Key data and extra overhead (including pointer to row data) is stored on IndexMemory. The amount
of required IndexMemory size approximately depends on the number of rows. Some other overhead exists,
but they are negligible unless you have tons of small tables. Data size per row is approximated using the
following formula:

Number_of_Rows * 18 * NoOfReplicas

The calculated value indicates the total amount of required memory for the entire cluster. So, the
required memory per one node is calculated by dividing it by the number of data nodes. For example, if the
table has 1,000,000,000 rows, the cluster has 10 data nodes and NoOfReplicas = 2, required IndexMemory size
per data node for this table is as follows:

1000000000 * 18 * 2 / 10 = 3.6GB

This formula is only an approximation, and the real amount of allocated memory is likely to be less than
the calculated value. On MySQL NDB Cluster 7.5 series or later, you can query the exact allocated memory size
using ndbinfo.memory_per_fragment table. Refer to Chapter 16 for more information about ndbinfo schema.

StringMemory

Default 25

Range 1 – 100 (percent) or 101 – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type System restart

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 4 ■ Configuration

95

This option specifies memory for object names. When the value is less than 100, it means percentage
against theoretical maximum required memory size calculated by options indicating the number of
objects that require names, such as MaxNoOfTables, MaxNoOfAtrributes, MaxNoOfOrderedIndexes,
MaxNoOfUniqueHashIndexes, and MaxNoOfTriggers. These options are described later in this chapter. In
most cases, the default is sufficient.

When StringMemory is short, you will see the following message when you create new tables or add
columns:

Got error 773 'Out of string memory, please modify StringMemory config parameter' from
NDBCLUSTER

In this case, you need to increase StringMemory.

SharedGlobalMemory

Default 128M

Range 0 – 64T

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the size of the shared global memory, which is used for various purposes:

•	 Undo log buffer for disk data tables

•	 Metadata for logfile group and tablespaces

•	 Pushdown joins

•	 Schema transactions

Increase this option when you use disk data tables and/or lots of pushdown joins in parallel. The actual
required size of SharedGlobalmemory is often larger than expected.

LockPagesInMainMemory

Default 0

Range 0 – 2

Section [NDBD DEFAULT]

Restart Type Node restart

This option controls whether memory is locked using mlock(2) or not. When memory is locked, the data
node process is unlikely to be swapped out when system memory is short. Memory shortage is likely to
happen when lots of files are copied and large file system cache is consumed, for example.

Chapter 4 ■ Configuration

96

This option takes one of these values:

•	 0: Do not lock memory.

•	 1: Lock memory after required memory areas are allocated.

•	 2: Set locking mode before allocating memory.

The difference between 1 and 2 is trivial. Sufficient system memory is required anyway.

Numa

Default 1 (True)

Range 0, 1 (Boolean)

Section [NDBD DEFAULT]

Restart Type Node restart

This option causes memory allocation interleaved on Linux systems.
As stated in Chapter 3, recent x86_64 CPUs have memory controller inside, and each memory controller

owns memory. If the server has more than one CPU chip, each CPU has it has non-uniform memory access speed
depending on which CPU has target memory. Such architecture is called Non-Uniform Memory Access (NUMA).
By default, Linux tries to allocate memory in the same CPU where the thread is running. This strategy works well
for small programs because local memory access is faster than remote memory access, which program runs in
single threaded requires small memory. However, it will cause problems on the server program, which requires
many threads and huge memory, because memory is allocated non-uniform among NUMA nodes.

This option causes memory allocation interleaved, which means memory is allocated from all NUMA
nodes evenly. The default value enables NUMA interleave, and you usually don’t have to change it. An
unusual case would be if you run more than one data nodes on single NUMA machine and bind each data
node to separate NUMA node.

Schema Object Options
On MySQL NDB Cluster, metadata of schema objects is stored in fixed size arrays that are allocated at the
startup of the data node. The maximum allowable number of various objects is configured by the following
options. It is important to allocate a required size for each schema objects beforehand. Schema object design
is covered in Chapter 18.

MaxNoOfTables

Default 128

Range 8 – 20320

Section [NDBD DEFAULT]

Restart Type Node restart

http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 4 ■ Configuration

97

This option specifies the maximum number of tables allowed in the cluster. Note that it includes system
tables such as ndb_schema, ndb_apply_status, and so forth. The unique hash index creates an internal
support table, so it consumes one table object and determines the optimal number of tables from
application needs.

MaxNoOfAttributes

Default 1000

Range 32 – 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of attributes. An attribute is an element that belongs to a table, such as a
column or index. The number of attributes consumed per object varies depending on the type of object, as
described:

•	 Non-BLOB column: 1

•	 BLOB (TEXT) column: 5

•	 Hash index in PRIMARY key: 0

•	 Unique hash index: 1 plus the number of columns in the index

•	 Ordered index: 1 plus the number of columns in the index

You may wonder why hash index in PRIMARY key doesn’t consume an attribute. It doesn’t consume
MaxNoOfAttributes; it consumes MaxNoOfTables instead.

Note that the ordered index is created along with primary key and unique hash index unless USING
HASH keyword is specified in the DDL statement.

Since the attribute data should be shared among all data nodes, it is not divided by node groups like row
data. The MaxNoOfAttributes value should be decided according to the total amount of schema objects.

The number of attributes actually consumed by each table can be shown using the ndb_desc command.
However, information about BLOB columns and the unique hash index is not included in output of
ndb_desc command by default. You need to specify the --blob-info option to see information about BLOB
columns. Rows for a BLOB column are stored in a separate support table, which consumes four attributes.
Unique hash indexes are also stored in a separate support table, but there’s no way to see the number of
attributes assigned to unique hash indexes.

MaxNoOfOrderedIndexes

Default 128

Range 0 - 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

Chapter 4 ■ Configuration

98

This option specifies the number of ordered indexes, which are used for secondary indexes, primary keys,
and unique keys. As the name suggests, an ordered index is used for ordered index scans. Practically,
everything but full table scans and primary or unique key lookups are handled as an ordered index scan.
Ordered index is a key object for various types of queries.

The number of required ordered indexes are dependent on the schema design. You can determine the
number of ordered indexes using the following rule:

•	 Non-unique secondary index: 1

•	 Unique secondary index without USING HASH clause: 1

•	 Primary key without USING HASH clause: 1

Each ordered index also consumes one MaxNoOfAttributes.

MaxNoOfUniqueHashIndexes

Default 64

Range 0 - 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of unique hash indexes. As the name suggests, every unique index
consumes this object by 1. Increase this option according to your application needs.

Each unique hash index also consumes one MaxNoOfTables and several MaxNoOfAttributes according
to the number of columns that make up the index.

MaxNoOfTriggers

Default 768

Range 0 - 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of internal triggers used inside data node. Note that trigger in this context
isn’t the same one as the one in SQL. In the data node, an internal trigger is used in various processes:

•	 Updating ordered index entries

•	 Updating unique hash index entries

•	 Updating BLOB columns

•	 Foreign key checks and updates for parents and children

•	 Backing up

•	 Replication (binary log generation)

•	 Table reorganization

Chapter 4 ■ Configuration

99

During normal operations, it is not necessary to modify this value, because it’s automatically adjusted
if it is too small. The number of required triggers is calculated internally using the following options:
MaxNoOfTables, MaxNoOfOrderedIndexes, and MaxNoOfUniqueHashIndexes.

Transaction Options
Since MySQL NDB Cluster is a real-time database system, it doesn’t allocate memory on the fly. Instead, it
allocates memory at startup. It includes various types of buffers used by transactions and data operations.

MaxNoOfConcurrentTransactions

Default 4096

Range 32 - 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of transaction records allocated in each data node. A transaction record is a
memory buffer used by Transaction Coordinator (TC). As stated in Chapter 2, one TC on a certain data node
takes care of each transaction throughout its lifecycle. Every data node has TC on it. So, the entire cluster has
(MaxNoOfConcurrentTransactions * number_of_data_nodes) transaction records in total.

Despite its name, MaxNoOfConcurrentTransactions doesn’t represent the number of transactions. It
represents the number of transaction records instead. They are logically different. A transaction record is an
object consumed in TC to process transactions. TC consumes transaction records according to the following rule:

•	 One per each active transaction

•	 One per table accessed by the transaction

So the number of required transaction records for the entire cluster would be calculated using the
following formula:

max_connections *
 (average_number_of_tables_accessed_per_transaction + 1) *
 number_of_sql_nodes

The average number of tables accessed per transaction varies depending on the queries used in the
application. So it is not possible to estimate it without examining the application.

MaxNoOfConcurrentTransactions specifies the number of transaction records per data node. Its value
should be a value calculated by the formula divided by the number of data nodes. However, in the event of
node failure, surviving node(s) in the same node group must handle transactions instead of a failed node. It
is a good practice to divide the value by the number of node groups instead of by the number of data nodes:

MaxNoOfTransactions =
 max_connections *
 (average_number_of_tables_accessed_per_transaction + 1) *
 number_of_sql_nodes / number_of_node_groups

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 4 ■ Configuration

100

MaxNoOfConcurrentOperations

Default 32K

Range 32 - 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of operation records. One operation record is required per one row
updated, deleted, inserted, or locked within a transaction. This option puts an upper limit on the number
of rows operated per data node. So, it is possible to operate (MaxNoOfConcurrentOperations * number_
of_data_nodes) rows on the entire cluster. Just like MaxNoOfTransactions, use the number of node groups
instead of the number of data nodes to estimate the value for this option with consideration for node
failures.

Note that rows in the support tables created with unique hash indexes and BLOB columns also
consume operation records. For example, when a non-key value for a row in a main table with unique hash
index is updated, then a row in its support table is shared-locked.

MaxNoOfConcurrentScans

Default 256

Range 2 – 500

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of scan records per data node. A scan record is required for each scan
operation. As discussed in the section of MaxNoOfOrderedIndexes, all operations but primary or unique key
lookups are scan operations. In addition, a scan record is also required for full table scans. For the entire
cluster, it can handle the number of scans calculated by the following formula:

MaxNoOfConcurrentScans * number_of_data_nodes

Of course, estimates of this option should take node failure into account.
In most cases, more scan record is required than expected. So, I recommend you increase it to the

maximum value from the beginning. Even if you increased it to 500 and get “Too many active scans”
errors frequently, consider adding more data nodes.

MaxNoOfLocalScans

Default Automatic

Range 32 - 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

Chapter 4 ■ Configuration

101

This option specifies the number of local scan records. In contrast to scan record, which is used for taking care
of scan accessing the entire cluster, local scan record is responsible for accessing data in its own data node.

By default, this option is calculated automatically using the following formula:

MaxNoOfCuncurrentScans * number_of_data_nodes * 4 + 2

In most cases, the default automatic value is sufficient and you don’t have to change it. However, in
old versions (< 7.2), the formula is different and the calculated value is much less than the current version.
Increase this option when “Too many active scans” errors are observed in old versions.

MaxParallelScansPerFragment

Default 256

Range 1 - 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the maximum number of scans per fragment. If scan accesses from applications are
concentrated in certain tables, consider increasing this value for more efficient CPU utilization.

TransactionDeadlockDetectionTimeout

Default 1200

Range 50 – 4294967039 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies periods in milliseconds that elapses from when a given transaction is blocked and
when it’s determined as timed out. Despite its name, it doesn’t indicate a timeout for deadlock, but lock wait
timeout. So, this option is equivalent to the innodb_lock_wait_timeout option for the InnoDB storage engine.

However, MySQL NDB Cluster doesn’t have a deadlock detection functionality. So, deadlocks are
detected as lock wait timeouts instead, because transactions under deadlock cannot proceed anyway.

By increasing this option, transactions become less likely to be aborted due to lock wait timeout.
However, an overly large value is not recommended, because transactions under deadlock will also last very
long time as well. Transactions under deadlock may block other innocent transactions, which may result
in degrading the system throughput badly. On a very busy system, consider shortening timeout to avoid
performance degradation due to deadlocks.

RedoBuffer

Default 32M

Range 1M - 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

Chapter 4 ■ Configuration

102

This option specifies the size of the redo buffer, which is used to temporarily store the redo log content before
committing the transaction. All changes should be held on the redo buffer before writing to the redo log. So,
the size of the redo buffer should be calculated from size of the data changes by concurrent transactions. If
you increased MaxNoOfConcurrentOperations, you need to increase the size of the redo buffer too.

Note that the redo buffer is allocated for each LDM thread with the size of RedoBuffer. So, the total size
of the redo buffers is RedoBuffer * number_of_ldm_threads.

RedoOverCommitLimit

Default 20

Range 0 – 4294967039 (seconds)

Section [NDBD DEFAULT]

Restart Type Node restart

MySQL NDB Cluster has a mechanism to allow certain delay for write and sync operations against the redo
log. It prevents performance degradation in the event of disk I/O delays.

Of course, redo logging is crucial for MySQL NDB Cluster not to lose committed transactions, so it
should not delay. If redo logging is slower than updates done by transactions, the volume of unflushed the
redo log data would increase continuously. The transaction cannot proceed faster than the redo logging
speed. However, disk I/O speed caps the redo logging speed. So, disk I/O can be a bottleneck in the event of
sudden load spikes.

To solve this problem, MySQL NDB Cluster implements overcommitting against the redo log. It allows
unfinished disk flush operations to proceed. Since MySQL NDB Cluster is fault tolerant against a node
failure, data included in the unflushed redo log will not be lost upon node failure, because the other node in
the same node group has the same data.

Even though redo logging is fault tolerant, it is not a good idea to allow unlimited delays of the
flush operation, because the longer value increases the chance of losing data while the other data node
is unavailable. RedoOverCommitLimit defines the timeout in seconds against the disk flush operation
for the redo log. This option is used conjunction with RedoOverCommitCounter. If the redo log flush
operation takes longer than RedoOverCommitLimit seconds RedoOverCommitCounter times, the pending
transactions will be aborted. Upon redo logging timeout, the API node will take an action as defined by
DefaultOperationRedoProblemAction, which is described later in this chapter.

RedoOverCommitCounter

Default 3

Range 0 – 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of timeouts for the redo log flush operation. See the explanation of
RedoOverCommitLimit for more information.

Chapter 4 ■ Configuration

103

Estimate for Total Memory Consumption
It is an important that a DBA be able to estimate total memory size allocated to the database server. On the
MySQL NDB Cluster data node process, the following types of memory are allocated:

•	 Memory for program image

•	 Global buffers

•	 Array of schema objects and transaction objects

•	 Various buffers

The next sections explain the details of each type of memory area.

Memory for Program Image
As usual, ndbd and ndbmtd allocate memory for program executable file, shared libraries, and stack memory.
The total memory size for program image is typically less than 20MB, which is negligible. You can confirm
the memory size for this purpose using the /proc file system on Linux. See VmExe, VmLib, and VmStk.

Global Buffers
Global buffers are large chunks of memory allocated for specific purposes. The types of global memory
buffers and allocated memory sizes are listed in Table 4-3.

Some of the global buffer memory might be over-allocated when more memory is required.
As allocation is done from the shared global memory, the total memory size of the data node process will
not increase during normal operation.

Be sure that the job buffer is a large memory area when lots of threads are configured. It consumes
approximately 5GB when the maximum number of threads (72) is configured.

Table 4-3. Global Memory Buffer Types and Memory Sizes

Buffer Type Memory Size Over Allocate

Data buffer DataMemory + IndexMemory No

Job buffer (number_of_threads)2 + 1MB No

Transporter buffer SendBufferMemory * (number_of_
nodes -1) or TotalSendBufferMemory +
ExtraSendBufferMemory

Yes

File buffer RedoBuffer + 1MB per each log part No

Disk page buffer DiskPageBufferMemory No

Undo buffer Defined in the CREATE LOGFILE GROUP statement Yes

Schema transaction memory 2MB Yes

Shared global memory SharedGlobalMemory No

Chapter 4 ■ Configuration

104

Array of Schema and Transaction Objects
MySQL NDB Cluster has a fixed sized memory area for various purposes. Sizes of those buffers are not trivial,
so you should take those memory sizes into account to avoid memory over-allocation. Table 4-4 shows list of
fixed size arrays and memory size per unit (memory size increase for one increment of each option).

Memory sizes in Table 4-4 are actual measured values from running the ndbd process and changing the
option values step-by-step. The observed version is 7.5.4.

Various Buffers
Some more buffers exist, such as LongMessageBuffer, UndoDataBuffer, and so forth. It is messy to sum up
those buffers for estimation. It’s better to determine the actual memory size from the running process as a
starting point. You can estimate memory sizes from options to be modified.

Checkpoint Options
Checkpointing is a very important process for MySQL NDB Cluster, because it makes data durable against entire
system shutdown regardless of whether the shutdown is planned. It is also important from a performance point
of view, because it caps throughput against write transactions. Clients cannot commit transactions faster than
checkpointing. So, options for checkpointing are very important for write-intensive clusters.

As discussed in Chapter 2, there are two types of checkpoints:

•	 LCP (Local Checkpoint): Entire cluster data at certain point of time.

•	 GCP (Global Checkpoint): History of all changes.

See Chapter 2 for more information about the checkpoints done in MySQL Cluster. This chapter covers
how to tune options for checkpoints later.

Table 4-4. Memory Size Increase by Option

Option Memory Size Per Unit

MaxNoOfConcurrentTransactions 1.6KB

MaxNoOfConcurrentOperations 873 bytes

MaxNoOfConcurrentIndexOperations 160 bytes

MaxNoOfTriggers 381 bytes

MaxNoOfFiredTriggers 68 bytes

MaxNoOfConcurrentScans 70KB

MaxNoOfAttributes 4.3KB

MaxNoOfTables 11KB

MaxNoOfOrderedIndexes 11KB

MaxNoOfUniqueHashIndexes 11KB

http://dx.doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 4 ■ Configuration

105

FileSystemPath

Default DataDir

Range Arbitrary directory pathname

Section [NDBD] or [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies a directory where checkpoints, backups, and disk data table files are stored. Except for
checkpoints, additional options exist for fine-tuning the directory layout.

NoOfFragmentLogFiles

Default 16

Range 3 – 4294967039

Section [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies the number of redo log files. The redo log is written in a circular fashion. See Chapter 2
for more information about the redo log.

The total file size of the redo log is calculated using the following formula:

NoOfFragmentLogFiles * NoOfFragmentLogParts * FragmentLogFileSize

The default values for these options are 16, 4, and 16M. 16 * 4 * 16M = 1G is the default for total size
of the redo log.

FragmentLogFileSize

Default 16M

Range 4M – 1G (bytes)

Section [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies size of each redo log file. See NoOfFragmentLogFiles for more information. If you need
more redo log space, consider increasing this option first, because each log file needs a memory buffer.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 4 ■ Configuration

106

NoOfFragmentLogParts

Default 4

Range 4 – 32 (only multiples of 4 are allowed)

Section [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies the number of redo log files within a group. See NoOfFragmentLogFiles for more
information.

InitFragmentLogFiles

Default SPARSE

Range SPARSE, FULL

Section [NDBD] or [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies how the redo log files are initialized. The default is SPARSE, which means the redo log
files are created as a sparse file. A sparse file is a mechanism to save unnecessary I/O operations and file
spaces. If redo logs are created as a sparse file, each file size looks the same as FragmentLogFileSize, but
data blocks aren’t actually allocated. If a program reads from a sparse area, data padded with zeroes is read
up to the length of the file. Data blocks are allocated when data is written to a sparse area.

The main drawback to the sparse file is that size of file system free space decreases only when data is
actually written to it. So, you might notice file system shortage during normal operation, not initialization
time. Be 100% sure that your file system has sufficient free space.

FULL means the redo log files are really initialized and data blocks are actually allocated. You will not see
a “file system full” error for the redo logging afterward.

This option does have any effect on the first startup of the data node. Changing the value for this option
upon restart doesn’t make sense.

CompressedLCP

Default 0

Range 0, 1 (Boolean)

Section [NDBD DEFAULT]

Restart Type Node restart

When this option is true, it causes LCP to be stored in compressed format. It saves certain disk space, but
consumes more CPU time upon LCP and restart. It is better not to compress LCP on a busy system. CPU
resources should be reserved for transaction processing.

It is not recommended to set this option different per data node. Available resources should be the same
among all data nodes to avoid bottlenecks.

Chapter 4 ■ Configuration

107

ODirect

Default 0

Range 0, 1 (Boolean)

Section [NDBD DEFAULT]

Restart Type Node restart

When this option is true, it causes write operations for checkpoints to be done in O_DIRECT mode, which
means direct I/O. As the name suggests, direct I/O is an I/O operation done directly without routing file
system cache. It may save certain CPU resources. It is best to set this option to true on Linux systems using
kernel 2.6 or later.

DiskCheckpointSpeed

Default 10M

Range 1M – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

Effective Versions 7.2.0 – 7.4.0

This option determines the speed of the write operation for checkpoints in amount of data written per
seconds. This option is deprecated on 7.4.1 and removed in the 7.5 series. Use MinDiskWriteSpeed and
MaxDiskWriteSpeed instead on the 7.4.1 or newer series. On the 7.4 series, which is newer than or equal to
7.4.1, this option can be set, but it has no effect.

DiskCheckpointSpeedInRestart

Default 100M

Range 1M – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

Effective Versions 7.2.0 – 7.4.0

This option determines the speed of write operation for checkpoints in the amount of data written per
second during a local checkpoint as part of a restart operation. This option is deprecated on 7.4.1 and
removed on the 7.5 series. Use MaxDiskWriteSpeedOtherNodeRestart and MaxDiskWriteSpeedOwnRestart
instead on the 7.4.1 or newer series. On the 7.4 series, which is newer than or equal to 7.4.1, this option can
be set but it has no effect.

Chapter 4 ■ Configuration

108

MinDiskWriteSpeed

Default 10M

Range 1M – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

Effective Versions 7.4.1 and 7.5.0 or newer

This option is added in MySQL NDB Cluster 7.4.1. This option determines the lower bound of I/O speed of
LCP and backup. The I/O speed of redo logging is not affected by this option.

Data node adjusts I/O speed of LCP and backup under the following conditions:

•	 Slows down if the redo logging delays (> 2 seconds)

•	 Speeds up if CPU usage is lower than 90%

•	 Slows down if CPU usage is higher than 95%

•	 Slows down even more if CPU usage is higher than 97% or 99%

Adjustment of speed is done gradually every cycle (approximately 1 second). LCP will not be slower
than MinDiskWriteSpeed and will not be faster than MaxDiskWriteSpeed. Within this range, a backup may
take up to BackupDiskWriteSpeedPct percent of I/O speed.

MaxDiskWriteSpeed

Default 20M

Range 1M – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

Effective Versions 7.4.1 and 7.5.0 or newer

This option determines the upper bound of I/O speed of LCP and backup. See MinDiskWriteSpeed for more
information.

MaxDiskWriteSpeedOtherNodeRestart

Default 50M

Range 1M – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

Effective Versions 7.4.1 and 7.5.0 or newer

Chapter 4 ■ Configuration

109

This option determines the I/O speed when another data node is restarting. The I/O for LCP must have
higher priority when other data nodes are restarting, because the data node performs LCP as part of restart
process. LCP on restarting data node will not start until the ongoing LCP is completed. So, ongoing LCP on
surviving node must be urged and have more I/O speed than usual.

MaxDiskWriteSpeedOwnRestart

Default 200M

Range 1M – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

Effective Versions 7.4.1 and 7.5.0 or newer

This option determines the I/O speed for LCP done as part of the restart process. Since the data node does
not need to do GCP during restart, all I/O bandwidth can be allocated to LCP. Thus, this option will have a
higher value than other MaxDiskWriteSpeed options.

TimeBetweenLocalCheckpoints

Default 20

Range 0 – 31 (words of data written in base-2 logarithm)

Section [NDBD DEFAULT]

Restart Type Node restart

This option determines the minimum size of data written between LCPs. Despite its name, this option
doesn’t specify time between LCPs.

The size of data in this option is specified in a base-2 logarithm of the number of words. The size of each
word is four bytes. So, the default value 20 means 4 * 220 bytes = 4MB. This means new LCP won’t start if
very few updates are done on the cluster after the previous LCP and written data size is less than 4MB.

Setting large value to this option will prevent unnecessary LCPs when the cluster is not busy. It is
preferable, especially when SSD is used as its data disk, because SSD has a smaller write limit compared to
HDD. If you set this option very large, you must accommodate sufficient redo log space. On busy systems, a
new LCP will start right after the previous LCP anyway.

TimeBetweenGlobalCheckpoints

Default 2000

Range 20 – 32000 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

Chapter 4 ■ Configuration

110

This option specifies the time between one GCP and another. Unlike TimeBetweenLocalCheckpoints, this
option specifies the time in milliseconds. During GCP, the redo log is written and synchronized to disk so it
becomes durable.

TimeBetweenEpochs

Default 100

Range 0 – 32000 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the time between micro-GCPs. Micro-GCP is a unit of the redo log written to a file
at a time, which is committed simultaneously at a certain period. A set of transactions included in one
micro-GCP is called an epoch. In other words, epochs are generated every TimeBetweeEpochs milliseconds.
Content of every epoch is ensured to be synchronized among all data nodes. So, they call micro-GCP as data
synchronization process in alias. Since epoch is synchronized among all data nodes, it’s safe to write to the
redo log and can be used for crash recovery.

As the name suggests, micro-GCP is done more frequently than GCP. Micro-GCP is used for binary log
generation on SQL nodes. This makes the data node send data for binary log generation to SQL nodes more
frequently and more quickly than GCP. It results in less replication lag.

Micro-GCP is kept on the redo buffer until GCP is done, so it’s not durable upon node failure. The
content of the redo buffer that’s not written to disk by GCP will be lost after a crash. Although micro-GCP
is not durable, it’s fault tolerant if NoOfReplicas is 2 or more. Even if one data node crashes, and any node
within a node group where a crashed node belongs survives, no committed transactions will be lost.
However, micro-GCP will be truly lost during an entire cluster failure if it’s not flushed to disk by GCP.

TimeBetweenEpochsTimeout

Default 0

Range 0 – 256000 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the timeout in milliseconds between one micro-GCP and another. 0, the default
value, means that timeout is disabled. Once micro-GCP starts, new transactions cannot be committed until
ongoing micro-GCP completes. So, the stuck micro-GCP will slow down system write throughput badly.

Since micro-GCP may get stuck for various reasons (faulty NIC), MySQL NDB Cluster has functionality
to prevent slowness due to micro-GCP lag by cutting a data node that cannot complete the micro-GCP on
time. A data node that misses this timeout will be forcibly shut down.

If your application need a good response time, consider setting this option to a non-zero value.
However, do not set this option too small. If it’s too small, it causes unnecessary data node shutdown upon
incidental slowness. Do not set this option to a non-zero value for a cluster running on virtual machines,
because the response frequently lags on virtual machines due to limitation of CPU schedulers.

In previous releases (7.1 series or older), the default value was 4000.

Chapter 4 ■ Configuration

111

Estimating Redo Log Size
Choosing an optimal redo log file size is an important task for MySQL NDB Cluster, because new
transactions cannot commit when the redo log is running out. The bigger redo log is, the less likely it will
run out. However, it is not a good idea to have an unnecessarily big redo log, because wasting valuable file
system space should be avoided. So, you need to determine an optimal redo log size. When determining an
optimal redo log size, consider the following factors.

•	 Data size

•	 I/O speed

The redo log is required for crash recovery, which is applied against LCP. LCP shows a full data snapshot
at a certain time, and the redo log shows incremental differences in time series. So, all redo log entries
after the latest LCP are flawlessly required. So, existing redo log entries cannot be freed until the next LCP
completes. This means the maximum size of the required redo log file is equal to the total size of the redo log
entries generated between one LCP and another. To calculate it, the following instructions are needed.

Calculate Theoretical Maximum Time Between Two LCPs
The time between two LCPs approximately equals the time taken to complete one LCP. It can be calculated
using the following formula:

data_size / average_disk_write_speed_for_lcp

Average disk I/O speed will be a value intermediate between MinDiskWriteSpeed and
MaxDiskWriteSpeed, unless disk speed is insufficient. As you need to prepare for the worst-case scenario,
you should take MinDiskWriteSpeed for calculation. Since I/O speed is shared among LCP and backup, LCP
can consume up to BackupDiskWriteSpeedPct percent of the bandwidth. Data size is capped by DataMemory.
So, the time taken to complete LCP is:

DataMemory / (MinDiskWriteSpeed * BackupDiskWriteSpeedPct / 100)

Calculate Theoretical Maximum Size of Redo Log Entries
There is no upper limit for I/O speed when writing the redo log. The amount of data written by GCP depends
on the volume of write requests. You can determine the amount data written by GCP using the disk_write_
speed_aggregate table under the ndbinfo schema, which was added in 7.4.1. It is best to run some write
benchmark and monitor this ndbinfo table to see the I/O speed of the redo logging.

Once you determine the speed of redo logging, then you can calculate the theoretical maximum size of
the redo log entries using this formula:

time_taken_to_complete_lcp * io_speed_of_redo_logging

Alternatively, amount of data written per second can be assumed as physical disk I/O speed as the
worst case. However, physical disk speed is often too fast and unrealistic. Actual values retrieved from the
live system is preferable after all.

Chapter 4 ■ Configuration

112

Calculate Redo Log Size Options
As discussed in earlier in this chapter, the total size of the redo log is calculated using the following formula.
How do you determine the value of these options?

NoOfFragmentLogFiles * NoOfFragmentLogParts * FragmentLogFileSize

Theoretical maximum size of the redo log entries calculated in the previous section must match this
total size of the redo log. It is best to have some margin of safety. If this condition is met, you can choose an
arbitrary value for these options.

Calculation Example
For example, assume DataMemory is 18GB and MinDiskWriteSpeed is 32M. The time taken to complete one
LCP is 10 minutes in the worst case. If the redo logging speed is 80M/sec, 48GB of the redo log entries will
be generated during one LCP. With 33% margin, the required size of the redo log is approximately 64GB.
Assume that NoOfFragmentLogParts is set to 32, which is required to run as many as LDM threads. Then, the
following combination of option values meet the requirement.

FragmentLogFileSize = 500M
NoOfFragmentLogFiles = 4
NoOfFragmentLogParts = 32

Multi-Threading Options
By Moore's Law, the number of transistors within a single CPU chip is still increasing. However, performance
per CPU core isn't being improved recently because:

•	 Clock speed is not increasing

•	 Single core performance does not improve by increasing the number of transistors

Thus, recent high-end CPU chips have many cores per chip. To achieve high performance, software
must utilize many CPU cores. So, a program must run in parallel. From a parallel programming point of view,
there are two choices—multi-threading or multi-processing. MySQL NDB Cluster employs the former, multi-
threading. To achieve high performance as much as possible, optimizing multi-threading options is key.

MaxNoOfExecutionThreads

Default 2

Range 2 – 8 (7.2.0 – 7.2.4)
2 – 36 (7.2.5 – 7.3.2)
2 – 72 (7.3.3 – latest)

Section [NDBD DEFAULT]

Restart Type Initial system restart

This option specifies the number of threads used for data processing for the multithreaded version of data
node, ndbmtd. Multithreaded data node has the following types of threads.

Chapter 4 ■ Configuration

113

•	 LDM thread: A thread for actual data access, such as key look up and scan.

•	 TC thread: A thread for transaction handling.

•	 Send thread: Sending signals to other data nodes.

•	 Receive thread: Receiving signals from other data nodes.

•	 Main thread: This thread handles various tasks such as checkpointing, arbitration,
failover, etc.

•	 Rep thread: This thread sends changes from micro-GCP to specific SQL nodes for
binary log generation.

•	 I/O thread: This thread handles file I/O requests.

•	 Watchdog thread: This thread determines if each thread is running well.

This option specifies the total number of these types of threads, and the number of each thread is
automatically adjusted. Of course, the automatic value might be suboptimal while it is handy for DBA. If you
want to achieve the highest possible performance, use ThreadConfig instead.

Note that NoOfFragmentLogParts must be increased altogether if a big value is set to this option. The
number of LDM threads must not be larger than NoOfFragmentLogParts. Table 4-5 shows acceptable
NoOfFragmentLogParts values against MaxNoOfExecutionThreads. Note that Table 4-5 has several variations
for MaxNoOfExecutionThreads values, because thread assignment has changed as of 7.4.2.

LockExecuteThreadToCPU

Default None

Range Comma-separated list of CPUs
Each CPU has an identifier from 0 – 64K

Section [NDBD] or [NDBD DEFAULT]

Restart Type Node restart

This option specifies the CPUs to bind execution threads in a comma-separated list of CPUs. The target
thread types are all but I/O thread and watchdog thread.

Table 4-5. NoOfFragmentLogParts Required for MaxNoOfExecutionThreads

MaxNoOfExecutionThreads NoOfFragmentLogParts

2 – 8 4

9 – 23 (< 7.4.2)
9 – 19 (>= 7.4.2)

8

24 – 32 (< 7.4.2)
20 – 31 (>= 7.4.2)

12

32 – 47 (< 7.4.2)
32 – 39 (>= 7.4.2)

16

40 – 47 (>= 7.4.2) 20

48 – 63 24

64 – 72 32

Chapter 4 ■ Configuration

114

You can specify several CPUs to bind in range using dashes when the target CPUs have sequence
identifiers without missing numbers. For example, 2-5 is identical to 2,3,4,5. It is not possible to fine-tune
using this option. For example, you cannot specify which thread is bound to which CPU. If you want to
specify things like that, use ThreadConfig instead.

It is not a good idea to bind threads to CPUs on virtual environments, because CPUs seen from virtual
machines are virtual cores and are subject to change anyway.

LockMaintThreadsToCPU

Default None

Range Comma-separated list of CPUs
Each CPU has an identifier from 0 – 64K

Section [NDBD] or [NDBD DEFAULT]

Restart Type Node restart

This option specifies CPUs to bind the I/O thread and watchdog thread in a comma-separated list format. It
is not possible to fine-tune using this option. If you want to specify which thread is bound to which CPU, use
ThreadConfig instead.

ThreadConfig

Default None

Range See below

Section [NDBD] or [NDBD DEFAULT]

Restart Type Initial system restart

Affected Versions 7.3.0 – latest

This option allows fine-tuning of thread configurations. You can specify the number of threads and
their CPU affinity altogether for each thread type. Values of this option consist of a comma-separated
list of attributes with thread_type={property=val[,property=val...]} format. Defined thread types
are ldm, tc, recv, send, io, watchdog, main, and rep. Thread types are the same ones as described in
MaxNoOfExecutionThreads. Properties in Table 4-6 can be set for each thread type.

Chapter 4 ■ Configuration

115

By default, the number of threads is minimal, no threads are bound to any CPUs, no thread doesn’t
spin, and all threads have the same priorities. The default value for the reatime property is the value set to
the RealTimeScheduler option.

Table 4-7 shows the range of threads per each type. You can adjust the number of threads within this
range. Take care not to assign threads in an imbalanced way. Too many of one type of threaad compared to
others will cause some threads to be idle while others are very busy. Ideally, threads must be configured so
that the CPU cores are evenly loaded.

Listing 4-4 shows a sample configuration on a 32 core system. Assume that the system has two CPU
chips with 16 cores each and hyperthreading is disabled.

Table 4-6. Thread Properties in ThreadConfig

Property Name Range Description

count Number Number of threads for each type of thread. See Table 4-7
for more information.

cpubind, cpuset,
cpubind_exclusive,
cpuset_exclusive

List of CPUs List of CPUs in comma-separated list, the same as
LockExecuteThreadToCPU and LockMaintThreadsToCPU.
cpubind causes each thread is bound to one CPU. cpuset
causes each thread is bound to set of CPUs. Exclusive
variation, which is available on Solaris only, disallows
other threads or processes to be bound to the same CPUs.

spintime Time in microseconds Time to spin before sleep when there’s no signal to handle.
Once the thread sleeps, it cannot respond quickly. Spin
can improve response in exchange of CPU time.

realtime 0 or 1 When set to 1, a real-time scheduler is used. It may
improve performance.

thread_prio 0 – 10 10 is the highest priority. This property makes sense when
more than one thread shares the same CPUs.

Table 4-7. Number of Threads Per Each Type

Thread Type Range

ldm 1, 2, 4, 6, 8, 12, 16 (< 7.3.3)
1, 2, 4, 6, 8, 12, 16, 24, 32 (>= 7.3.3)

tc 1 – 16 (< 7.3.3)
1 – 32 (>= 7.3.3)

send 0 – 8 (< 7.3.3)
0 – 16 (>= 7.3.3)

recv 1 – 8 (< 7.3.3)
1 – 16 (>= 7.3.3)

main 1 only

rep 1 only

io 1 only

watchdog 1 only

http://dx.doi.org/10.1007/978-1-4842-2982-8_4#Tab7

Chapter 4 ■ Configuration

116

Listing 4-4. Sample ThreadConfig Configuration on a 32 Core System

ThreadConfig = ldm={count=16,cpubind=1-4,9-12,17-20,25-28,realtime=1,spintime=1},tc={count=6,
cpubind=5,6,13,21,22,29,realtime=1,},send={count=2,cpubind=7,23},recv={count=4,cpubind=8,15,
24,31},main={cpubind=14},io={cpubind=14},watchdog={cpubind=16,realtime=1},rep={cpubind=30}
NoOfFragmentLogParts = 16

In the example of Listing 4-4, CPU 0 is not bound to any thread. It is intended to make some room for
tasks executed by OS and other system processes. Note that ThreadConfig in Listing 2-2 is written in one line
without the newline character, while it looks like multiple lines. It is not possible to write this very long line
in a single page of a book.

It is very difficult to determine the optimal setting. You may need to do benchmarking repeatedly and
determine the best setting by trial and error. As a rule of thumb, the following configuration is a good starting
point:

 1. Assign half the available CPU cores to the ldm threads.

 2. Assign a quarter of the ldm threads to tc threads.

 3. Assign a quarter of the ldm threads to recv and send threads. If the number of
available threads is odd, assign more to recv thread.

 4. Assign other CPU cores to other types of threads respectively.

 5. Leave at least one CPU core unused for system use.

 6. Bind each thread to a certain CPU, which enables it to monitor how busy each
thread is by determining CPU usage.

Consideration for CPU Properties
Since the CPU must respond to a variety of requests, some tuning is required to use its potential
performance. For MySQL NDB Cluster, performance is the most significant requirement.

Power Saving
It is best to turn power saving facilities off, such as cpuspeed on Linux systems. With power saving features,
the OS will drop CPU frequency depending on the workload. It is reasonable for systems that have hubby
workloads, such as desktop computers. However, it has a negative impact for busy server machines. When
CPU frequency is low, it is not possible to handle sudden workloads quickly, because there is a lag until the
CPU frequency goes back to the original. It harms data access responsiveness.

On Windows, choose the High Performance power plan from the Power Options settings.

Interrupts
Interrupts from devices are nonnegligible in most cases. For example, network interface cards will cause lots
of interrupts when there is a lot of data traffic. By default, on most operating systems, interrupts are handled
on specific CPUs. It makes some CPUs busy compared to others. This is a good choice in terms of power
saving. However, it can cause performance bottlenecks. In the worst case, a single CPU core will be 100%
busy due to interrupts. If the system has many devices, then that CPU core cannot do any other tasks.

One option to prevent this issue is to spread workloads due to interrupts to all CPUs evenly. The
capability to reassign interrupts to other CPUs is so called interrupt affinity. To achieve this, irqbalance for
Linux systems is the choice. It reassigns interrupt requests to other CPUs if interrupts are concentrated to
only specific CPUs. This prevents specific CPUs from being a bottleneck.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2#Par226

Chapter 4 ■ Configuration

117

Another option is to reassign interrupt requests to specific, but more than one CPUs. This strategy is
good especially when threads are bound to specific CPUs using ThreadConfig, LockExecuteThreadToCPU, or
LockMaintThreadsToCPU options. Assign interrupts to CPUs that are not bound by threads in data node, so
that interrupts do not drain CPU resources from the data node threads. In this case, irqbalance is the choice
for Linux. It can rebalance interruption workloads within specific CPUs.

On Windows, it is necessary to edit the Registry to configure interrupt affinity. On Solaris, pcitool is the
tool to configure it. See the manuals for the given OSs for more information.

Hyperthreading
In general, hyperthreading increases overall throughput in exchange for responsiveness. When it is enabled,
more than one logical core shares the same physical core. If hyperthreading is not available, some CPU
cycles will be wasted in the following scenario, for example:

 1. A thread issues load (read data from memory) instruction.

 2. Data is mandatory for following instructions.

 3. CPU cannot execute more instructions until memory responds and load
instruction completes.

Hyperthreading aims to improve performance under such scenarios. With hyperthreading, it might be
possible to execute instructions for another thread that’s running on another logical core, then the CPU core
is fully utilized.

There are several main drawbacks to hyperthreading:

•	 Single thread performance may degrade: As more logical cores share the same
physical core, one thread cannot execute new instructions while the other thread is
executing instructions.

•	 Efficiency of CPU cache memory may be decayed: One instance of physical cache
memory must store data from multiple threads. This is the same problem as when
multiple threads are running on one CPU core using context switches. However, the
data node doesn’t rely on context switches. It is preferable for each thread on the
data node to have a monopoly on a bound CPU core.

•	 CPU usage indicator is fooled: While OS doesn’t see usage of physical cores,
capacity of the CPU resource is likely to be shorter than expected.

So, should you use hyperthreading after all? The answer is “it depends.” It depends on various factors
such as type of application load and hardware specs. So, it is best to run benchmarks while changing the
hyperthreading setting. You can turn it on or off from the BIOS setup.

If you feel that turning it off is bothersome, don’t use more than one logical core per physical core. In
that case, it is possible to configure thread assignment so that some types of thread use hyperthreading and
others don’t. For example, the ldm thread tends to perform better without hyperthreading, but the recv and
send threads perform better with hyperthreading.

Backup Options
It is needless to say that backing up is one of the most important tasks for database management systems.
Any storage medium can fail. Even without hardware failures, important data could be lost due to operation
mistake or bugs in the application. To protect important data, it is necessary to take a backup frequently.
MySQL NDB Cluster has native backup functionality, which is the only way to take online backups. However,
online backups are resource-consuming processes, because they handle lots of data. The default settings
are just fine, but sometimes you need to fine-tune them for better performance. See Chapter 8 for more
information about backups.

http://dx.doi.org/10.1007/978-1-4842-2982-8_8

Chapter 4 ■ Configuration

118

BackupDataDir

Default FileSystemPath

Range Arbitrary directory pathname

Section [NDBD] or [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies the directory to store the backup data. Backups are large, so they are often stored on separate
non-expensive disks from the primary data. Separate disks are preferable in terms of I/O bandwidth, too.

BackupDiskWriteSpeedPct

Default 50

Range 0 – 90 (percent)

Section [NDBD DEFAULT]

Restart Type Node restart

Effective Versions 7.4.8 – latest

This option specifies the rate of I/O bandwidth for LCP and backup. They share the same I/O bandwidth
specified by MinDiskWriteSpeed and MaxDiskWriteSpeed. This means that speed of LCP will be throttled
during backup. A smaller value should be specified for this option on busy systems.

See the sections covering these options described earlier in this chapter for more information.

CompressedBackup

Default 0

Range 0, 1 (Boolean)

Section [NDBD DEFAULT]

Restart Type Node restart

When this option is true, backup is stored in compressed format. It saves disk space, but consumes more
CPU resources. Do not enable this option on busy systems.

BackupWriteSize

Default 256K

Range 2K – 4294967039 (bytes) (< 7.4.8)
32K – 4294967039 (bytes) (>= 7.4.8)

Section [NDBD DEFAULT]

Restart Type Node restart

Chapter 4 ■ Configuration

119

This option specifies the default size of the write unit for the backup data and log. A larger write unit size
reduces I/O operations. The write size will be expanded automatically up to BackupMaxWriteSize when
more room is needed.

BackupMaxWriteSize

Default 1M

Range 2K – 4294967039 (bytes) (< 7.4.8)
256K – 4294967039 (bytes) (>= 7.4.8)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the maximum size of the write unit for the backup data and log.

BackupDataBufferSize

Default 16M

Range 0 – 4294967039 (bytes) (< 7.4.8)
2M – 4294967039 (bytes) (7.4.8 – 7.4.10, 7.5.0)
512K – 4294967039 (bytes) (7.4.11 – latest, 7.5.1 – latest)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the buffer size of the backup data. The data node uses two types of backup buffers. One
is for data and the other is for the log. The ldm thread sends data for backing up this buffer. Once the buffer
is filled larger than BackupWriteSize, data is written to file. A backup process can continue while writing to
file, and it continues to fill the buffer in parallel.

BackupLogBufferSize

Default 16M

Range 0 – 4294967039 (bytes) (< 7.4.8)
2M – 4294967039 (bytes) (>= 7.4.8)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the buffer size of the backup log. The backup log keeps track of all changes made to the
data during backup.

Chapter 4 ■ Configuration

120

BackupMemory

Default 32M

Range 0 – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

Effective Versions – 7.2 series
Deprecated on 7.3

This option is deprecated on the 7.3 series and removed on the 7.5 series. This option is just a sum of
BackupDataBufferSize and BackupLogBufferSize. In older versions, this option must be adjusted when
one of these options changes.

BackupReportFrequency

Default 0

Range 0 – 4294967039 (seconds)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies how often the backup progress is reported to the cluster log. The default value 0 means
no backup reports are made. Don’t set it to be too frequent, because the cluster log will be filled with backup
reports. If you want to check just whether there are backup delays or not, the ALL REPORT BACKUP command
from the ndb_mgm client can be used as an alternative.

Transporter Options
Basically, properties of transporter are configured per the individual transporter. However, there are a few
options set per data node. Note that the data node usually has multiple transporters.

TotalSendBufferMemory

Default 0

Range 0, 256K – 4294967039 (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the total memory size of the send buffer for all transporters. One transporter is
required per one node regardless of node type. The send buffer is allocated for each transporter, by default.
So, the total memory size required for the send buffer increases in proportion to (number_of_nodes – 1).
It results in large memory consumption when many nodes are configured.

Chapter 4 ■ Configuration

121

This option caps memory consumption and causes the send buffer memory to be allocated on demand.
Consider setting this option when lots of non-busy API nodes or SQL nodes are connected.

ExtraSendBufferMemory

Default 0

Range 0, 32G (bytes)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the size of memory additionally allocated when transporter send buffers are running
out. Having extra send buffer memory makes the data node stable. Currently, there is no difference in how
memory is used by TotalSendBufferMemory and ExtraSendBufferMemory. The sum of these options is
allocated to one buffer.

Disk Object Options
If you decide to use disk data tables, it is important to set options for objects used by disk data tables. For
more information about disk data tables, see Chapter 2.

FileSystemPathDD

Default FileSystemPath

Range Arbitrary directory pathname

Section [NDBD] or [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies default values for the FileSystemPathDataFiles and FileSystemPathUndoFiles
options.

FileSystemPathDataFiles

Default FileSystemPathDD

Range Arbitrary directory pathname

Section [NDBD] or [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies the directory path where data files for disk data tables are stored. This option enables
you to place disk data tables and checkpoint data on separate disks. It is a good practice to use separate disks
so that checkpoint is performed smoothly without interference by disk data tables.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 4 ■ Configuration

122

It is highly recommended to use disks with good random I/O performance. Do not use hard disk drives
for this purpose, because they are bad at random I/O.

FileSystemPathUndoFiles

Default FileSystemPathDD

Range Arbitrary directory pathname

Section [NDBD] or [NDBD DEFAULT]

Restart Type Initial node restart

This option specifies the directory path where undo log files for disk data tables are stored. It is even possible
to use separate disks for data files and undo log files for disk data tables. Of course, it has the benefit to use
separate disks because it increases the total disk I/O bandwidth.

InitialLogFileGroup

Default None

Range String to specify logfile group

Section [NDBD DEFAULT]

Restart Type Initial system restart

This option specifies properties of logfile group that are automatically created upon system startup. The
option consists of three or more parts separated by semicolon. In the following example, the logfile group
named LG1 is configured with two 5GB undo log files and 1GB undo log buffer. These undo log files are
created under FileSystemPathUndoFiles.

InitialLogFileGroup = name=LG1; undo_buffer_size=1G; undo1.log:5G; undo2.log:5G

The name and undo_log_buffer properties are optional. Their default values are DEFAULT-LG and 64M.
Undo log files can be listed using semicolon, if more than one undo log files are configured. The number of
undo log files doesn’t matter as long as sufficient capacity is allocated. So, you do not need to list the small files.

This option is a handy way to set up a logfile group needed for disk data tables. This option affects only
when the cluster is started the first time. You can set up logfile groups using DDL statements such as CREATE
LOGFILE GROUP. See Chapter 18 for more information.

InitialTableSpace

Default None

Range String to specify logfile group

Section [NDBD DEFAULT]

Restart Type Initial system restart

http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 4 ■ Configuration

123

This option specifies the properties of tablespace for disk data tables automatically created upon system
startup. The option consists of two or more parts separated by semicolons. In the following example,
the tablespace named TS1 is configured with four 16GB data files. These data files are created under
FileSystemPathDataFiles.

InitialTablespace = name=TS1; data1.dat:16G; data2.dat:16G; data3.dat:16G; data4.dat:16G

While tablespace must be associated with the logfile group, the tablespace created by this option needs
the logfile group created by the InitialLogFileGroup option.

This option is a handy way to set up tablespaces needed for disk data tables. This option must be used
together with InitialLogFileGroup. This option affects only when the cluster is started the first time. You can
set up the logfile group using DDL statements such as CREATE TABLESLACE. See Chapter 18 for more information.

DiskPageBufferMemory

Default 64M

Range 4M – 1T

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies memory size allocated for the disk page buffer. This buffer is used for caching row data
on disk data tables. If you use disk data tables heavily, you need to allocate a large amount of memory for
this buffer. On the other hand, if you do not use disk data tables, you can reduce this option to its minimum
value to save memory.

DiskIOThreadPool

Default 2

Range 0 – 4294967039

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of threads used for disk I/O against tablespace and undo log files. The
main reason you should use many threads is that disk I/O is very time consuming task and file operation
system calls will not respond immediately. When a thread is waiting for a response from a system call, it
cannot process other tasks. Thus, a thread cannot issue file operation system calls when it’s working on other
tasks. This wastes CPU time.

Accessing files using the proper number of threads may ease this problem. If more than one I/O request
is issued from a user process, requests are queued within the kernel and/or disk controller. I/O requests are
processed in the order decided by I/O scheduler in the kernel and/or disk controller. This maximizes disk
I/O performance.

http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 4 ■ Configuration

124

This option may have to be increased in the following scenarios:

•	 Spreading I/O loads among separate disks: Tablespace and undo log files are
placed on multiple disks. In this case, more threads can be utilized to increase I/O
parallelism.

•	 Using high performance disks: High performance disks are used as underlying
storage. More I/O parallelism will be required to fill up I/O bandwidth.

You may know that this kind of problem can be solved using asynchronous I/O such as epoll on Linux.
But there is no option associated with asynchronous I/O, because MySQL NDB Cluster has not implemented
it yet. It uses many numbers of threads for disk I/O.

Heartbeat and Watchdog Options
As described in Chapter 1, MySQL NDB Cluster employs a fail-early strategy, which forcibly stops an
unresponsive data node to avoid slowdown of the entire cluster. To detect unresponsive data nodes, MySQL
NDB Cluster utilizes heartbeat and watchdog.

HeartbeatIntervalDbDb

Default 5000

Range 10 – 4294967039 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the time between heartbeats. The data node sends heartbeat signal (CM_HEARTBEAT) to
another data node and checks if the heartbeat signal has arrived every HeartbeatIntevalDbDb milliseconds.
The data node has two separate timers for heartbeat signal send and check, but their intervals are the
same. If a data node detects that heartbeat signals from another data node have been missed four times
consecutively, the other data node is marked as dead, and it will cause failover or system shutdown
depending on whether there are sufficient surviving nodes to continue cluster operation.

Increase this option slightly when your cluster is running on freaky network. If your application needs
the best response time and it uses dedicated high-speed network, consider decreasing this option to 1500,
which is a default value in older versions (< 7.2.0).

HeartbeatIntervalDbApi

Default 1500

Range 100 – 4294967039 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

http://dx.doi.org/10.1007/978-1-4842-2982-8_1

Chapter 4 ■ Configuration

125

This option specifies time between heartbeat checks sent from API (SQL) nodes. All API nodes send heartbeat
(API_REGREQ) signals every 100 milliseconds. The data node checks if heartbeat signals have arrived every
HeartbeatIntervalDbApi milliseconds. If an API node misses four heartbeat signals consecutively, the API node
is marked as dead. Then, the API node will be disconnected and all ongoing transactions will be aborted.

Increase this option slightly when your cluster is running on freaky network.

HeartbeatOrder

Default 0

Range 100 – 4294967039

Section [NDBD]

Restart Type System restart

This option defines the order in which heartbeat signals are sent. Heartbeat signals are sent in circular fashion.
This means each data node receives heartbeat signals from only one node, and at the same time, a data node
sends heartbeat signals to only one node. When the number of data nodes is more than two, the source node (left
node) and destination node (right node) of heartbeat signals are different. Otherwise, they are the same.

The order of heartbeat signals is specified as an integer value in each [NDBD] section, not just [NDBD
DEFAULT] section. Heartbeat signals are sent from one node to the other data node which has the next big
number of this option. The data node with the highest HeartbeatOrder value sends heartbeat signals to the
data node with the lowest value.

In most cases, you don’t need to change this option. When the network topology is asymmetric and
there is some difference of stability for each transporter, the unstable network is more likely to miss a
heartbeat. In such cases, configure the heartbeat order so that at least one data node within every node
group must have a stable heartbeat source to avoid entire system shutdown due to node group failure.

TimeBetweenWatchDogCheck

Default 6000

Range 70 – 4294967039 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the time between every watchdog check. Watchdog is a mechanism to check if the data
node is frozen. If the watchdog thread observes a job thread that remains in the same state during three
consecutive check periods, it shuts down the node immediately.

ArbitrationTimeout

Default 7500

Range 10 – 4294967039 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

Chapter 4 ■ Configuration

126

This option specifies timeout in milliseconds for arbitration. As described in Chapters 1 and 3, arbitration
is performed when the cluster gets into network partitioning. If data node cannot get a reply from the
arbitrator for more than ArbitrationTimeout milliseconds, it terminates immediately.

StartPartialTimeout

Default 30000

Range 0 – 4294967039 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of seconds to wait until all other nodes become ready. 0 means it waits
indefinately. Once StartPartialTimeout milliseconds have passed while one or more data nodes are
missing, the cluster forcibly continues the startup process without waiting for the missing nodes.

StartPartitionedTimeout

Default 60000

Range 0 – 4294967039 (milliseconds)

Section [NDBD DEFAULT]

Restart Type Node restart

This option specifies the number of seconds to wait until the network partition is resolved. 0 means it waits
indefinately. Once StartPartitionedTimeout milliseconds have passed while any data nodes are missing
and the cluster gets into network partitioning, the cluster forcibly continues the startup process even if the
potential network partitioning issue is not resolved.

I recommend setting this option to 0 or to a very large value. Starting with a potential network
partitioning is very dangerous. It is very likely to cause network partitioning, because arbitration isn’t
performed upon this timeout. Thus, two separate clusters can start at the same time when timeout occurs.
This must be avoided to protect data from corruption.

Logging Options
While the management node records the cluster log, the source of its content (such as its events) is
generated on the data nodes. There are several options related to event reporting on the data node. For more
information about log levels, refer to Chapter 16.

MemReportFrequency

Default 0

Range 0 – 4294967039 (seconds)

Section [NDBD DEFAULT]

Restart Type System restart

http://dx.doi.org/10.1007/978-1-4842-2982-8_1
http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 4 ■ Configuration

127

When this option is set to a non-zero value, the cluster log records memory usage periodically. If periodical
usage is not activated, the cluster log reports when memory usage reaches 80%, 90%, and 100%.

StartupStatusReportFrequency

Default 0

Range 0 – 4294967039 (seconds)

Section [NDBD DEFAULT]

Restart Type System restart

When this option is set to a non-zero value, the cluster log records the progress of the Startup Phase 4 of the
initial start. This phase can take very long if the size of the redo log is large, because the redo logs must be
initialized during this phase.

Recommended Configuration Strategy
The most important thing when configuring the cluster is that you should choose appropriate server
machines based on requirements. Don’t determine your requirements based on server machine
specs. Application needs are roughly classified into the following categories—capacity, performance,
responsiveness, and availability.

For example, in terms of capacity, it is not possible to set DataMemory larger than the physical memory size of
the server machine. You shouldn’t choose a server machine before determining how much memory is required.

Configuration of the data node should follow these steps:

 1. Estimate required computer resources such as memory size, disk space for the
redo logs, I/O speed, network speed, and CPU speed.

 2. Choose an appropriate computer hardware within certain margins.

 3. Fine tune data node configuration so that data node can fully utilize computer
resources.

 4. Get ready for data node addition upon future capacity expansion.

When estimating memory size, the number of threads is very important, because it’s the most
significant indirect factor to increase the required memory size. Multi-threading is mandatory for
modern computer hardware. Well-defined TheadConfig may double performance compared to handy
MaxNoOfExecutionThreads.

Carefully estimate the LCP speed and the redo log file size. They are the main factors to define the upper
limit of overall write speed done by transactions.

Configuration and system planning are not disjointed processes. I recommend reading through
Chapters 3 and 4.

SQL Node Options
This section discusses the major options for SQL nodes and API nodes. The section name can be either of
MYSQLD or API. Sections are identified as identical node types, whichever section name is specified. In the
following descriptions, MYSQLD is used for convenience.

http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 4 ■ Configuration

128

Major Options for SQL Node

NodeId

Default Automatic

Range 1 – 255

Section [MYSQLD]

Restart Type Node restart

Identifier for the node, which has the same meaning of NodeId as the other node types.

HostName

Default None (accept connection from any host)

Range Arbitrary hostname or IP address

Section [MYSQLD]

Restart Type System restart

Hostname or IP address where the node resides. You can leave this option unset, which means the slot
allows connecting from any host. If you don’t want unprivileged node to connect, set this option explicitly.

ArbitrationRank

Default 0

Range 0 – 2

Section [MYSQLD] or [MYSQLD DEFAULT]

Restart Type Node restart

ArbitrationRank option specifies the likelihood of being an arbitrator. The range for this parameter is 0,
1 and 2. The default value for SQL node is 0, which means SQL node will not be an arbitrator by default.
To make SQL node an additional arbitrator, set a non-zero value. 1 has higher priority than 2. Note
that the arbitrator should not be placed on the same host as the data node. Refer to the explanation of
ArbitrationRank earlier in this chapter, as well as to Chapters 1 and 3, for more information.

DefaultOperationRedoProblemAction

Default QUEUE

Range ABORT or QUEUE

Section [MYSQLD] or [MYSQLD DEFAULT]

Restart Type System restart

Effective Versions 7.2.10 or newer

http://dx.doi.org/10.1007/978-1-4842-2982-8_1
http://dx.doi.org/10.1007/978-1-4842-2982-8_3

Chapter 4 ■ Configuration

129

This option defines how aborted transactions are handled due to the redo overcommit limit exceedance.
Each value has the following meaning:

•	 ABORT: Any pending operations from aborted transactions are also aborted. This is
suitable when you want to handle retries in your application.

•	 QUEUE: Pending operations from aborted transactions are queued for retry.

See the explanation of RedoOverommitLimit and RedoOvercommitCounter earlier in this chapter.

BatchSize

Default 64 (7.2.0)
256 (>= 7.2.1)

Range 1 – 992 (records)

Section [MYSQLD] or [MYSQLD DEFAULT]

Restart Type Node restart

This option specifies the batch size for a scan operation in the number of records. Since the scan operation
returns many rows, it is important to pack records into properly sized batches in terms of performance.
Batch size is capped by this option and BatchByteSize, which is described next.

BatchByteSize

Default 32K (7.2.0)
16K (>= 7.2.1)

Range 1K – 1M (bytes)

Section [MYSQLD] or [MYSQLD DEFAULT]

Restart Type Node restart

This option specifies the batch size for the scan operation in bytes.

MaxScanBatchSize

Default 256K

Range 32K – 16M (bytes)

Section [MYSQLD] or [MYSQLD DEFAULT]

Restart Type Node restart

This option specifies total data size that one SQL node can receive from the data nodes at a time. It is
possible that SQL node receives too many records from the data nodes at a time and consumes excessive
memory. This option is aimed to protect the SQL node from such excessive memory consumption.

Chapter 4 ■ Configuration

130

TotalSendBufferMemory

Default 0

Range 0, 256K – 4294967039 (bytes)

Section [MYSQLD] or [MYSQLD DEFAULT]

Restart Type Node restart

This option specifies the total memory size of the send buffer for all transporters. One transporter is required
per one node regardless of the node type. The send buffer is allocated for each transporter, by default. So, the
total memory size required for the send buffer increases in proportion to (number_of_nodes – 1).
Note that the SQL nodes don’t connect to each other. However, even though the SQL node connects to data
nodes and management nodes, it results in large memory consumption when a large number of data nodes
are configured. See the explanation of TotalSendBufferMemory earlier in this chapter.

ExtraSendBufferMemory is also defined for SQL node. Memory configured by these options is allocated
to the identical buffer, and the buffer usage is not distinguished by option.

Vital Point for SQL Node Configuration
In most cases, default values for SQL node options are just fine. It is not necessary to change them very often.
If the server machine for SQL node has high-speed CPU and large memory, consider increasing batch sizes
to maximize performance. While there aren’t many options for SQL node in config.ini, lots of options exist
on mysqld.

Note that SQL node will have more than one NDB API connection when the --ndb-cluster-
connection-pool option is set to more than 1. In such cases, the total size of buffers also increases in
proportion to the number of connections.

TCP Transporter Options
On MySQL NDB Cluster, it is possible to fine-tune an individual transporter, a network path between two
nodes. The following pattern of transporters can be configured:

•	 Two data nodes

•	 Data node and SQL (API) node

Note that the SQL (API) node doesn’t connect each other. The transporter for the management node
cannot be configured.

In most cases, individual transporters are configured when they connect using dedicated network
paths, such as a direct connection using a cross-over Ethernet cable.

The total number of transporters will increase drastically with an increase in the number of nodes.
Transporter exists per each combination of arbitrary two data nodes or each combination of data node and
SQL node. The number of transporters between two data nodes can be calculated by

n
C
2
, where n stands

for the number of data nodes. The maximum number of data nodes is 48, so the maximum number of
transporters is

48
C
2
 = 1128. The maximum number of transporters between the data node and the SQL node

is 48 * (255 – 48 – 1) = 9888. (In this case, there are 48 data nodes, one management node, and 206 SQL
nodes.) So, the maximum number of transporters is 1128 + 9888 = 11016, which is a lot. You can see that
defining individual transporters is a tough task on a large cluster installation.

Chapter 4 ■ Configuration

131

Major Options for Transporter

NodeId1, NodeId2

Default None

Range 1 – 255

Section [TCP]

Restart Type Node restart

These two options identify the transporter using node IDs. There is exactly one transporter per arbitrary
combination of two nodes. In other words, you need to list the [TCP] sections for each combination of two nodes.

HostName1, HostName2

Default None

Range Hostname or IP address appearing in NDBD, API, or MYSQLD sections

Section [TCP]

Restart Type Node restart

These options specify the hostname or IP address to be used. If a server machine has more than one
network interface, they should have more than two IP addresses along with hostnames. So, it is possible
to separate the network path with respect to each node type, for example. Such configuration is discussed
later this section.

SendBufferMemory

Default 2M

Range 256K – 4294967039 (bytes)

Section [TCP] or [TCP DEFAULT]

Restart Type Node restart

This option specifies the size of memory to buffer data for each transporter. Signal data is stored in this
buffer before sending to other nodes, thus this buffer is called the send buffer. When the send buffer becomes
full, the data node fails to write signals onto the buffer and the signals are lost. That situation is critical for
data nodes, so the node will shut down.

In most cases, the default value is sufficient.

Chapter 4 ■ Configuration

132

ReceiveBufferMemory

Default 2M

Range 16K – 4294967039 (bytes)

Section [TCP] or [TCP DEFAULT]

Restart Type Node restart

This option specifies the size of memory to receive data for each transporter. Signal data received from other data
nodes is stored in this buffer before dispatching to NDB kernel blocks. This buffer is called receive buffer.

In most cases, the default value is sufficient.

OverloadLimit

Default 0

Range 0 – 4294967039 (bytes)

Section [TCP] or [TCP DEFAULT]he

Restart Type Node restart

When there are unsent signals in send buffer more than this option, DBLQH kernel block will abort more
requests with error 1218. It is a reasonable implementation to reject more requests when the send buffer
is almost full. Setting this option to approximately 80% of the send buffer size will reduce tprobability of
shutdown due to a send buffer shortage. The default value is 0, which means DBLQH doesn’t check the
overload status. I recommend setting this option appropriately in the [TCP DEFAULT] section.

Transporter via Separate Network Path
Without explicit configurations, nodes communicate with each other using the network interface specified
on the HostName option. However, it is possible to specify other network interfaces in the [TCP] section than
HostName. Then, you can achieve following scenarios:

•	 Separate network allows the data node to access an arbitrator in the event of a
network failure. It may avoid entire system shutdown.

•	 Spread workload among low-cost switches for better throughput and low cost.

•	 Redirect communication between data nodes that belong to the same node group to
direct connection of physical servers for a quicker response.

•	 Redirect communication between all data nodes to dedicated fast network switch.

Although defining lots of [TCP] sections is a messy task, it’s worth it, because the network is most likely
to be a source of failures and performance bottlenecks.

Chapter 4 ■ Configuration

133

Program Startup Options (my.cnf)
This section describes the major startup options for each program, and which options are specified as
command-line options. Just like with conventional MySQL programs, MySQL NDB Cluster programs also
read options in my.cnf.

Options in the my.cnf file and command line are the same thing except for their format. The former
doesn’t have dashes. Another difference is that it is not possible to use the abbreviation in my.cnf.

It is possible to have more than one my.cnf file in different directories. You can see which files are read
by the programs using these --help --verbose options:

shell$ ndbmtd --help --verbose | grep /my.cnf
/etc/my.cnf /etc/mysql/my.cnf /usr/local/mysql/etc/my.cnf ~/.my.cnf

Common Options
There are several options commonly used on NDB programs, including mysqld. Table 4-8 shows these
common options.

Table 4-8. Common Options for NDB Programs

Option Name Abbrev Default Description

--ndb-
connectstring=string
--connect-string=string

-c localhost:1186 Specify connect string, which is used to
connect the management node(s).

--ndb-nodeid=num 0 (Automatic) Node ID for this node. When more than one
node is running on the same host, node ID
must be explicitly specified.

--connect-retries=num 12 Number of retries when connection to
management server fails.

--connect-retry-
delay=seconds

5 Interval between retries in seconds.

--ndb-mgmd-
host=host[:port]

localhost:1186 Specify management server host and port.

--ndb-optimized-node-
selection=num

3 for mysqld
TRUE for others

Determines how to choose the data node that
works as TC upon data access.

--character-sets-dir=path None Directory that contains character set
information. This option is practically valid on
mysqld only.

--core-file FALSE When it’s true, the core file is written upon
crash.

--debug=options d:t:O,/tmp/*.
trace

This option is available on the debug version
only.

--help -? FALSE Print the help message.

--version -V FALSE Print the version.

Chapter 4 ■ Configuration

134

Connect String
Except for offline utilities such as ndb_print_file, all NDB programs connect to the management server at
startup. So, the connect string is a crucial, common option.

When a node attempts to connect, the management server compares the client’s hostname and
HostName option on each slot. If any matching slot is available, the connection is accepted. To connect to the
cluster, you specify the connect string that matches at least one available slot. No authentication or other
things are required.

 ■ Note a slot that doesn’t have HostName option will accept connection from any host.

Connect string is a string that represents the location of the management node(s). The option to
specify the connect string is --ndb-connectstring (or --connect-strong). Although it is possible to specify
the hostname of management server using --ndb-mgmd-host, I don’t recommend you use it. Because it
has bad limitations, the option cannot specify a port number, for example. I recommend using --ndb-
connectstring. The format of the connect string is as follows:

[nodeid=#,]{hostname_or_ipaddr[:port][hostname_or_ipaddr[:port], ...]}

Note that parameters enclosed in brackets are optional and can be omitted. For example, if management
server runs on a host named mgm1 with the default port and without the desired node ID, connect string is:

mgm1

If management servers run on hosts named mgm1 and mgm2 with network port 1188 and the desired node
ID is 20, the connect string is:

nodeid=20,mgm1:1188,mgm2:1188

Major Options for ndb_mgmd
There are several options to control the startup behavior of the ndb_mgmd daemon. Table 4-9 shows the
frequently used options for ndb_mgmd.

Chapter 4 ■ Configuration

135

Configuration Cache
The management node has a mechanism to cache configuration data in binary format instead of reading
and parsing the config.ini file. This feature is called a configuration cache. It stabilizes the configuration of
cluster against changes. It is convenient feature, but requires some attention.

Configuration cache is enabled by default. Upon startup, ndb_mgmd reads the latest configuration cache
entry without reading config.ini, even if config.ini is updated. To let config.ini be read, the --reload option must
be specified. This option causes ndb_mgmd to read the config.ini file and compare the content with the latest
configuration cache entry. If there are any changes, a new cache entry is created from the content of config.ini.

Configuration cache entry has the following filename format:

ndb_node-id_config.bin.seq-number

For example, the third configuration cache entry on management node with node ID 255 is ndb_255_
config.bin.3. Since the files have sequence numbers, it is easy to identify the latest cache entry. If you face
a problem after changing the configuration, you can revert to the previous configuration by deleting the
latest cache entry file and restarting the management node.

The --initial option will erase all cache entries. It is handy when you migrate cluster installation to
another environment and you want to refresh the configuration from beginning.

Note that the configuration cache entry is read if one exists, even though --skip-configuration-cache
is specified. To disable to configuration cache completely, you must delete all cache entries and specify the
--skip-configuration-cache option.

Table 4-9. Major Options for ndb_mgmd

Option Name Abbrev Default Description

--config-file=file -f ./config.ini Path to configuration file.

--configdir=dir
--config-dir=dir

Installation
directory

Directory to store configuration cache.

--initial No arguments When this option is specified, all configuration
cache entries are cleared and a new cache
entry is created.

--reload No arguments When this option is specified, config.ini is read
and a new cache entry is created.

--config-
cache[=TRUE|FALSE]
or --skip-config-cache

TRUE This option specifies whether configuration
cache is used or not.

--bind-
address=host[:port]

None This option limits hosts where management
client to connect from.

--print-full-config -P FALSE Prints effective configuration and exits.

Chapter 4 ■ Configuration

136

Reading New Configuration with Multiple Management Nodes
When there is more than one management node, a special procedure is required upon restart with
configuration changes, because the management server reads the configuration from a running
management node if one exists. A simple rolling restart will fail, which restarts management nodes one by
one. Restart of ndb_mgmd must be done using the following steps:

 1. Modify config.ini.

 2. Stop all management nodes, one at a time.

 3. Start one ndb_mgmd with the --initial or --reload option.

 4. If you started the first ndb_mgmd with the --initial option, start the remaining
ndb_mgmd processes using --initial.

 5. If you started the first ndb_mgmd with the --reload option, start the remaining
ndb_mgmd processes without specifying the --initial or --reload options. They
will read the configuration from the first ndb_mgmd.

Options for ndbd/ndbmtd
Options for the data node control the behavior of startup processes. Table 4-10 lists the frequently used
options for ndbd and ndbmtd.

Initial Start
As described in Chapter 2, data node has a start type called initial start. Upon initial start, the data node
wipes all the data at startup. Initial start the following types: initial node restart and initial system restart. The
difference between these two initial restart types is whether data nodes are restarted in turn (the former)
or the cluster is restarted after whole system shutdown (the latter). See the explanation of restart types
described earlier in this chapter.

Table 4-10. Major Options for ndbd and ndbmtd

Option Name Abbrev Default Description

--initial -i FALSE This option causes an initial start when specified.

--nostart -n FALSE When this option is TRUE, the data node will not start
after connecting to management server.

--nowait-nodes=list None This option specifies missing data nodes and lets the data
node perform a partial restart.

--initial-start FALSE This option causes the data node to perform initial
partial restart. This option is used with the –nowait-
nodes option.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 4 ■ Configuration

137

Partial Start
Sometimes it is necessary to start the cluster with some missing data nodes due to hardware failures and so
forth. Even if some data nodes are missing, it is possible to start the cluster as long as every node group has
at least one available data node. This kind of start is called a partial start.

When performing a partial start, the --nowait-nodes option must be specified. Its argument is a
comma-separated list of node IDs for missing nodes. For example, if data nodes with node ID 3, 5, and 7 are
missing and the cluster is runnable using remaining data nodes, you start all the remaining data nodes using
the --nowait-nodes=3,5,7 option. If it is initial system restart, the --initial-start option is also required.

No Automatic Start
Personally, I recommend this feature. When the --nostart option is specified, the data node pauses its
execution after connecting to management node. To resume startup process, the START command must be
issued from the ndb_mgm client.

By default, data node automatically starts after connecting to the data node. Upon system start, all data
nodes must be started at a time. If some data nodes are missing and are not ready to start, all starting data
nodes wait for the missing ones. Starting data nodes will continue the startup process when all data nodes
(except for data nodes specified by the --nowait-nodes option) are ready or when StartPartialTimeout
milliseconds has passed. If the missing data nodes can form a runnable cluster, in other words, if at least one
data node is missing from each node group, it is possible that the cluster might get into network partitioning.
In such cases, the starting data node will wait for the StartPartitionedTimeout milliseconds.

Taking care of all the data nodes that started after automatic start is a waste of effort. I recommend
disabling auto start using the --nostart option, then seeing if all data nodes are connected and startting
them one at a time using the following command from the ndb_mgm client.

ndb_mgm> ALL START

Options for mysqld
SQL node, mysqld, has lots of options, because its functionality is complex. For example, since it executes a
query, it needs performance options to tune up query execution time. Table 4-11 shows options for mysqld,
except for replication related options, which are discussed in Chapter 6. Many options in Table 4-11 are also
discussed in Chapters 10, 18, and 20.

http://dx.doi.org/10.1007/978-1-4842-2982-8_6
http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_18
http://dx.doi.org/10.1007/978-1-4842-2982-8_20

Chapter 4 ■ Configuration

138

Table 4-11. Major NDB Related Options for mysqld

Option Name Default Description

--ndbcluster TRUE Enable or disable NDB Cluster storage engine.
Don’t change from default.

--ndb-cluster-connection-pool=# 1 Number of NDB API connections to data
nodes. One connection consumes one MYSQLD
slot. Range is 1 – 63.

--ndb-cluster-connection-pool-nodeids=# None Comma-separated list of node IDs for
connection pool. This option is introduced in
the 7.5 series.

--ndb-optimized-node-selection=# 3 Strategy to choose data node as TC. Range is
0 – 3.

--ndb-data-node-neighbor=# 0 Defines nearest data node from the given SQL
node. Used with optimized node selection.
Range is 0 – 255. This option is introduced in
the 7.5 series.

--ndb-autoincrement-prefetch-sz=# 32 Auto-increment column values are reserved
for the given SQL node in a batch to reduce
access to data node. Range is 1 – 256.

--ndb-batch-size=bytes 32K Transaction batch size.

--ndb-force-send=[0|1] TRUE If set to true, requests to data nodes are sent
immediately.

--ndb-blob-read-batch-bytes=bytes 64K Batch size of blob data read from data nodes.

--ndb-blob-write-batch-bytes=bytes 64K Batch size of blob data written to data nodes.

--ndb-default-column-format=name FIXED Default column format upon table creation.

--engine-condition-pushdown TRUE Enable or disable engine condition pushdown
optimization.

--ndb-join-pushdown TRUE Enable or disable join pushdown
optimization.

--ndb-index-stat-enable=[0|1] FALSE Enable or disable table statistics functionality.

--ndb-index-stat-option=string None Comma-separated list of parameters of index
statistics functionality.

--ndb-allow-copying-alter-table=[0|1] TRUE If true, COPY algorithm of ALTER TABLE is
allowed. This option is introduced in the 7.5
series.

--ndb-deferred-constraints=[0|1] FALSE Whether unique key constraint check is
deferred until commit instead of each
statement.

--ndb-distribution=method KEYHASH Distribution method of tables. Acceptable
values are KEYHASH and LINEARHASH.

--ndb-optimization-delay=milliseconds 10 Time delay inserted between every round of
operation during OPTIMIZE TABLE.

(continued)

Chapter 4 ■ Configuration

139

Location of Option Files
Conventionally, MySQL programs may read more than one option file if they exist. It can specify the same
option multiple times on separate option files. If the same option is specified more than once, the last-read
value is accepted. So, the order of how programs read option files is important.

Locations and order of option files read by MySQL program vary depending on compilation time
configuration. You can confirm locations and order of option files using the program binary on your system
with the --help option regardless of whether the program is a client or server. The following command
output is an example of mysql CLI on UNIX-like systems.

shell$ mysql --help | grep /my.cnf
/etc/my.cnf /etc/mysql/my.cnf /usr/local/mysql/etc/my.cnf ~/.my.cnf

On Windows PowerShell, you can do the same thing.

PS C:\Program Files\MySQL\MySQL Cluster 7.5\bin> ./mysql --help –verbose | Select-String
"my.ini"

C:\WINDOWS\my.ini C:\WINDOWS\my.cnf C:\my.ini C:\my.cnf C:\Program Files\MySQL\MySQL Cluster
7.5\my.ini C:\Program Files\MySQL\MySQL Cluster 7.5\my.cnf

The MySQL programs accept two types of configuration filenames on Windows—my.cnf and my.ini. You
can choose the filename as you like.

In addition to the configuration file, MySQL programs read options from command line after reading
all option files. So, commandline options, which are specified as arguments of the command line, have the
highest precedence.

Additionally, there are several options that influence how option files are read, as described:

•	 --no-defaults: No option files are read and only command-line options are
accepted.

•	 --defaults-file: Only the option file given as an argument of this option is read.
Any other option files are ignored.

•	 --defaults-extra-file: The option file given as an argument is read in addition to
option files.

These options are mutually exclusive, so you can specify only one of them at a time. These options must
be specified as the first command-line options. No other options can precede these options.

Table 4-11. (continued)

Option Name Default Description

--ndb-fully-replicated=[0|1] FALSE If true, new tables without explicit
specifications are created as fully replicated
style. This option is introduced in the 7.5
series.

--ndb-read-backup=[0|1] FALSE If true, new tables without explicit specifications
are created as read from any replica style. This
option is introduced in the 7.5 series.

--ndb-extra-logging=level 0 The lager this option is, the more information
is logged. Range is 0 – 20.

Chapter 4 ■ Configuration

140

On UNIX-like systems, MySQL Server also reads an option file under a directory specified by an
environment variable $MYSQL_HOME. If the variable is not set, mysqld --help --verbose will not show it. The
rule of reading option file is rather complicated. Table 4-12 shows list of option file locations. Option files are
read in the order from top to bottom. I intentionally omit the .cnf files for Windows from Table 4-12, because
they are redundant and have similar precedence (.cnf files are read just after .ini files). The exception is
.mylogin.cnf, because there is no .ini variant.

SYSCONFDIR in Table 4-12 is a compile-time option. By default, it is the same as CMAKE_INSTALL_PREFIX
option for CMake, which default value is /usr/local/mysql. .my.cnf and .mylogin.cnf are only applicable for
the current user who is going to execute the program. Other option files are read by any users, if ones exist.

Summary
This chapter discussed major options for management node, data node, and SQL node. This chapter can be
used as a reference when you’re reviewing the configuration of your cluster.

MySQL NDB Cluster has many options, as you saw in this chapter. It is a hard task to configure that
many options. The data node especially has many options and configuration of the data node is very
important. Not all data node options are necessarily configured in a production system. There are several
vital categories in data node configurations, as discussed in this chapter:

•	 Memory consumption: It is important to cleverly use up to the available memory
on the server machine. Memory is used for storage as well as to buffer the processing
data during operations on MySQL NDB Cluster. Memory sizing is the most crucial
configuration for MySQL NDB Cluster.

•	 Redo log sizing: MySQL NDB Cluster requires relatively large redo logs on busy
systems, because it has to hold all modifications done during two consecutive local
checkpoints. If redo log space runs out, clients cannot commit new transactions until
the ongoing local checkpoint completes.

•	 Checkpoint speed: Checkpoint speed is important to finish a local checkpoint in a
reasonable time. Speeding up the checkpoint will save space required for redo logs.

•	 Multi-threading: Without properly configuring multi-threading on data nodes, it is
not possible to achieve good performance no matter how many CPU cores the server
machine has.

Generally, configuration must be done in top-down manner. Fine-tuning can be done later, but the
right direction must be chosen at first.

In the next chapter, we discuss the architecture of NDB Cluster Replication and how to use it. NDB Cluster
Replication involves more than one clusters and they both must be well configured, as shown in this chapter.

Table 4-12. Option Files for MySQL Programs

Windows UNIX-Like

%PROGRAMDATA%\MySQL\MySQL Server 5.7\my.ini /etc/my.cnf

%WINDIR%\my.ini /etc/mysql/my.cnf

C:\my.ini SYSCONFDIR/my.cnf

BASEDIR\my.ini $MYSQL_HOME/my.cnf (MySQL Server only)

--defaults-extra-file --defaults-extra-file

%APPDATA%\MySQL\.mylogin.cnf (client only) ~/.my.cnf

~/.mylogin.cnf (client only)

141© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_5

CHAPTER 5

Installation

In this chapter, we discuss the installation process of MySQL NDB Cluster. This discussion assumes that you
have acquired target machines and completed the initial configuration for the hardware. If you have not
done this, review Chapters 3 and 4 for the system planning and configuration tasks.

Package Installation
The installation process of MySQL NDB Cluster is not difficult. It is a straightforward process. It consists of
two steps for all types of nodes, plus one step for the SQL node, described here:

 1. Obtain package files

 2. Install packages

 3. Initialize data directory for only SQL node

Obtaining Packages
To install packages, you must first obtain the package files. Oracle Corporation distributes MySQL NDB
Cluster binary packages for officially supported platforms. You can verify if your platform is supported or not
on the supported platforms page, as described in Chapter 3.

https://www.mysql.com/support/supportedplatforms/cluster.html

There are two types of packages depending on the license—free software/open source license and the
commercial license. They are called Community Edition and Carrier Grade Edition, respectively. They are
distributed on separate sites, as described next.

Community Edition
The Community Edition is a free software/open source version of MySQL NDB Cluster. Everyone can
download, install, execute, and redistribute the program per its license, GNU General Public License
Version 2 (GPLv2). It is distributed on the MySQL download site:

http://dev.mysql.com/downloads/cluster/

https://doi.org/10.1007/978-1-4842-2982-8_5
http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_4
http://dx.doi.org/10.1007/978-1-4842-2982-8_3
https://www.mysql.com/support/supportedplatforms/cluster.html
http://dev.mysql.com/downloads/cluster/

Chapter 5 ■ InstallatIon

142

The download site shows the download page in Figure 5-1.

By default, the download page automatically detects the platform from information sent by the browser,
which you use to access the page, and shows packages for that platform. Click the Download button to
download the desired package. If you want to change the target platform, click the pull-down menu at the
left-top side of the download menu.

If you want to install previous GA versions such as 7.4, click the link at the top-right of the download
menu. By default, the previous GA versions page shows 7.4 packages. You can download even older versions
by selecting the desired version from the pull-down menu at the top-left of the download menu.

If you have signed in to the MySQL developer site using an Oracle account, the download will begin
right after you click the Download button. Otherwise, you will see a screen that prompts you to sign in to the
site or create a new Oracle account. I personally recommend that you create an account if you don’t have
the one, because you must to sign in to the MySQL developer site to achieve some tasks such as filing a new
bug. If you are in a hurry and just want to download the package files, click the No Thanks, Just Start My
Download link, as shown in Figure 5-2.

Figure 5-1. Community downloads screen

Chapter 5 ■ InstallatIon

143

Carrier Grade Edition (CGE)
The MySQL Cluster Carrier Grade Edition (CGE) is a commercial licensed version of MySQL NDB Cluster.
You need to purchase the license to use this version of the software. CGE includes some additional features
compared to the Community Edition. You can see features of CGE at a glance on the following page:

http://www.mysql.com/products/

CGE package files can be obtained from My Oracle Support (MOS) or from the Oracle Software Delivery
Cloud. On both sites, you need an Oracle account to sign in. So, you can use a common account on the
MySQL community download site, My Oracle Support, and the Oracle Software Delivery Cloud.

On My Oracle Support, you can obtain all versions of MySQL NDB Cluster except for very old versions.
If your desired version of the package is missing from the site, contact Oracle support service. Figure 5-3
shows the tab menu at the top of MOS after signing in.

Figure 5-2. Additional download page when you are not logged in

Figure 5-3. Top tab menu on MOS

http://www.mysql.com/products/

Chapter 5 ■ InstallatIon

144

To obtain CGE packages, click the Patches & Updates tab. Then, you will see the Patch Search screen
shown in Figure 5-4.

Enter MySQL Cluster into the Product textbox. Then, check the Include All Products in a Family
checkbox, select a desired version from the Release dropdown menu, and select a desired platform. Finally,
click the Search button and you will see list of packages to download. If you choose Linux x86-64 as the
platform, several package files per version are listed because there are various Linux distributions that
officially support MySQL NDB Cluster. Take care to select the appropriate package.

On the Oracle Software Delivery Cloud, only the latest versions of the packages are available. Once
signing in to the Oracle Software Delivery Cloud, you will see the package search menu shown in Figure 5-5.
Enter MySQL Cluster into the textbox. Then, several candidates are shown in a pull-down menu. MySQL
Cluster Carrier Grade Edition is a product name, and it includes not only MySQL NDB Cluster packages, but
also auxiliary packages such as drivers. If you need only the server package, select the software name with
the version number, such as “MySQL Cluster 7.5.5”. The next step is to select an appropriate platform. Once
a platform is selected, the software is added to the download queue. Finally, click the Continue button and
proceed to the download screen.

Figure 5-4. Patch search screen on MOS

Figure 5-5. Software search screen on the Oracle Software Delivery Cloud

Chapter 5 ■ InstallatIon

145

On the download screen, you will see a software license notification. The license notification
indicates that the trial license is applicable to packages on the Oracle Software Delivery Cloud, in addition
to commercial license. The trial license is limited to 30 days for evaluation purposes. The body of the
agreement is found in the license notification. If you don’t have a commercial license and want to evaluate
the commercial version of MySQL NDB Cluster, read the license notification carefully before you download
the software. If you don’t need commercial features and/or support, the Community Edition is a good
alternative because it’s licensed under GPLv2, which will not expire.

If you want to obtain an old version, you need to access MOS instead of the Oracle Software
Delivery Cloud.

Installation on Linux
On Linux systems, two types of packages are available. One is the compressed tar ball (tar.gz) package, and
the other is the installer package for package managers such as the RPM package and Debian package.
Although many other types of packages exist, only the RPM and Debian packages are officially distributed.

Tar.gz Archive Package Installation
Tar.gz is a compressed file format that’s archived using tar (tape archive), then compressed by gzip (GNU
zip). In the tar.gz archive package, all MySQL NDB Cluster programs and related files are included in a single
file. Installation of the package is very easy; you just extract the archive. The typical target directory is
/usr/local or /opt, but you can extract the tar.gz file to anywhere as you need. Listing 5-1 shows example of
tar.gz archive installation command.

Listing 5-1. Installing the tar.gz Archive to the /opt Directory

shell$ su
shell# mv mysql-cluster-gpl-7.5.5-linux-glibc2.5-x86_64.tar.gz /opt
shell# cd /opt && tar xf mysql-cluster*tar.gz
shell# ln -s mysql-cluster*64 mysql-cluster

In this example, the last command creates a symbolic link to the extracted directory for easy access.
When upgrading or downgrading the cluster, it is necessary to install more than one version on the same
host. Making a symbolic link to the extracted directory is preferable over renaming the installation directory
itself. Extracted directory entries are described in Listing 5-2.

Listing 5-2. Contents of the tar.gz Archive Package

shell# ls -lh
total 56K
drwxr-xr-x 2 root root 4.0K Jan 13 22:18 bin
-rw-r--r-- 1 7161 31415 18K Oct 13 19:59 COPYING
drwxr-xr-x 2 root root 4.0K Jan 13 22:18 docs
drwxr-xr-x 4 root root 4.0K Jan 13 22:18 include
drwxr-xr-x 4 root root 4.0K Jan 13 22:18 lib
drwxr-xr-x 4 root root 4.0K Jan 13 22:18 man
drwxr-xr-x 10 root root 4.0K Jan 13 22:18 mysql-test
-rw-r--r-- 1 7161 31415 2.5K Oct 13 19:59 README
drwxr-xr-x 31 root root 4.0K Jan 13 22:18 share
drwxr-xr-x 2 root root 4.0K Jan 13 22:18 support-files

Chapter 5 ■ InstallatIon

146

All programs are installed in the bin subdirectory. You can add /opt/mysql-cluster/bin to your PATH
environment variable (the executable search path) for easy access.

On typical setup, you need to create a dedicated user account to run the server daemons. Although it is
possible to run server daemons using the root user, it is not preferable from a security point of view, because
the root user has extra privileges that are unnecessary to run NDB Cluster programs and will harm the
system if the account is hijacked by attackers. Listing 5-3 shows a command example of creating an OS user
account for MySQL Server.

Listing 5-3. Creating a User Account

Shell$ su
shell# mkdir /var/lib/mysql
shell# groupadd mysql
shell# useradd -g mysql -s /bin/false -d /var/lib/mysql mysql
shell# chown mysql:mysql /var/lib/mysql && chmod 700 /var/lib/mysql
shell# passwd mysql

In Listing 5-3, the login shell for mysql user is set to /bin/false. This prohibits the mysql user from
logging in to the system, but mysql can still be used as the effective user for server processes.

In addition to creating a user account, you need to initialize the data directory by hand on the SQL
node. On MySQL NDB Cluster 7.5, which is combined with MySQL Server 5.7, the data directory is initialized
using mysqld --initialize. On older MySQL NDB Cluster versions, which are combined with older MySQL
versions, the data directory is initialized using the mysql_install_db command. Although mysql_install_db
is still available for MySQL Server 5.7, it’s been deprecated and will be removed in future releases.

Listing 5-4 shows a typical command example of initializing the data directory on MySQL NDB Cluster 7.5.
All you need to do is start mysqld, the MySQL Server daemon program, with the --initialize option.
This will create necessary system tables with the user account, which is set to the --user option for mysqld.
The default username for this option is mysql. You don’t have to change the owner of the generated files.

Listing 5-4. Initializing the Data Directory on MySQL NDB Cluster 7.5

shell$ su
shell# mysqld --initialize

On MySQL NDB Cluster 7.4 or older, you need to initialize using the mysql_install_db script. Listing 5-5
shows a typical command example of this script. The script doesn’t change the owner automatically, so
you need to change the file owner manually after initializing the data directory.

Listing 5-5. Initializing the Data Directory on MySQL NDB Cluster 7.4 or Older

shell$ su
shell# cd /opt/mysql-cluster
shell# bin/mysql_install_db --defaults-file=/etc/my.cnf
shell# chown -R mysql:mysql /var/lib/mysql

Whether mysqld --initialize or mysql_install_db is used, it is recommended that you complete
the MySQL Server configuration file, such as /etc/my.cnf, before initializing the data directory, because
several options for InnoDB cannot be changed after initialization is done. For example, the innodb_undo_
tablespaces and innodb_undo_directory options for separate undo tablespace cannot be changed after
initialization of the data directory.

Chapter 5 ■ InstallatIon

147

Optionally, you can configure your system so that MySQL Server starts or stops automatically upon
system startup and shutdown. There are two choices for MySQL Server—SysV style init and systemd. Check
your operating system manual to see which init system is used. It is even possible to set up automatic start
and shutdown on other init systems, such as OpenRC and upstart, but only SysV style init and systemd
are officially supported. The procedures for other init systems are beyond the scope of this book.

To set up automatic startup and shutdown using SysV style init, you copy the mysql.server script to
/etc/init.d and register it to each run level. Listing 5-6 shows the procedure of setting up the init script for
SysV style init, which uses the chkconfig command.

Listing 5-6. Setting Up Automatic Startup and Shutdown Using SysV Style Init

shell$ su
shell# cp mysql.server /etc/init.d/mysqld
shell# chmod +x /etc/init.d/mysqld
shell# chkconfig --add mysqld

For further details of the chkconfig command, consult with the manual of your operating system.
To set up automatic startup and shutdown using systemd, you need to create the systemd configuration

file by hand or copy it from elsewhere. The easiest way to obtain the systemd configuration file is to copy
it from the RPM package. You can extract the RPM file using the rpm2cpio and cpio commands. The
RPM package also includes an auxiliary script called mysqld_pre_systemd. This script initializes the data
directory, if it was not initialized before starting MySQL Server. This script is optional. It is not required if the
data directory has been initialized. These configuration files and auxiliary script assume that the installation
target is the /usr directory. If you extract files under a different directory, such as /opt/mysql-cluster, paths in
these files must be adjusted. You also need to create the /var/run/mysqld directory, which is owned by the
user, to run MySQL Server. The procedure to set up automatic startup and shutdown using systemd is shown
in Listing 5-7.

Listing 5-7. Setting Up Automatic Startup and Shutdown Using Systemd

shell$ rpm2cpio mysql-cluster-community-server-7.5.5-1.el7.x86_64.rpm\
> | cpio -id
shell$ sed -i -e 's#/usr/s\?bin/my#/opt/mysql-cluster/bin/my#'\
> usr/lib/systemd/system/mysqld.service
shell$ sed -i -e 's#/usr/s\?bin/my#/opt/mysql-cluster/bin/my#'\
> usr/bin/mysqld_pre_systemd
shell$ su
shell# cp usr/lib/systemd/system/mysqld.service /usr/lib/systemd/system
shell# cp usr/bin/mysqld_pre_systemd /opt/mysql-cluster/bin
shell# mkdir /var/run/mysqld && chown mysql:mysql /var/run/mysqld
shell# systemctl start mysqld.service
shell# systemctl enable mysqld.service

This example assumes that the RPM and tar.gz packages have been downloaded into the current
working directory. The rpm2cpio command and piped cpio command extract files under the current
working directory with the directory structure intact. For example, the program binaries are extracted to the
usr/bin directory, which is relative to the current working directory. The sed command is invoked using the
non-standard character # as field delimiter to avoid escape characters for the path delimiter /.

Chapter 5 ■ InstallatIon

148

RPM Package Installation
RPM is used by Red Hat Enterprise Linux and its variants, including Oracle Enterprise Linux and SUSE and
its variants. Installation of the RPM package is straightforward; it can be achieved using the rpm command.
The overall MySQL NDB Cluster distribution is separated into several RPM packages by component. So, you
need to install the appropriate package(s) into the target host.

On MySQL NDB Cluster 7.4 or older, types of RPM packages are the same as the standard (non-NDB)
MySQL Server, as described in Listing 5-8. NDB Cluster related files are included in the server, devel, and test
packages.

Listing 5-8. List of RPM Packages for MySQL NDB Cluster 7.4

shell$ tar tf MySQL-Cluster-gpl-7.4.13-1.el7.x86_64.rpm-bundle.tar
MySQL-Cluster-shared-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-devel-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-test-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-shared-compat-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-embedded-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-client-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-server-gpl-7.4.13-1.el7.x86_64.rpm

The server package includes all the programs, shared libraries, and data files required to run NDB
Cluster. Auto installer is also included in this package. Server daemon programs are installed into /usr/sbin,
client programs are installed into /usr/bin, and libraries are installed into /usr/lib. So, you need to install
the server package to run data node, management node, and NDB client programs such as ndb_restore.
The server package is also required when you want to run your NDB API client application, which links
libndbclient.

The devel package includes header files and static libraries required to build MySQL C API and NDB API
programs. So, you need to install it on your development machine, if applicable.

The test package includes additional test cases for MySQL NDB Cluster. The test package is required
for debugging MySQL programs created by MySQL developers. So, it’s usually unnecessary in a production
system.

In short, for MySQL NDB Cluster 7.4 or older, you need to install the server package to run NDB Cluster
daemons and link the NDB API shared library, the devel package to develop NDB API programs as well as
MySQL C API programs, and other packages just like with the standard MySQL Server.

On MySQL NDB Cluster 7.5, packages are split into smaller pieces, as listed in Table 5-1.

Chapter 5 ■ InstallatIon

149

Package division for MySQL NDB Cluster 7.5 has precedence over one for 7.4 or older. On MySQL NDB
Cluster 7.4 or older, it often becomes a problem that all MySQL NDB Cluster related programs are included in
the server package. This means all of management server, data node, and SQL node programs are installed or
removed at the same time. This makes difficult to roll upgrades or downgrades when more than one type of
nodes is installed in one host. For more details about upgrade and downgrade operations, see Chapter 11.

Unfortunately, the Yum (Yellowdog Updater Modified) repository is not available for MySQL NDB
Cluster for the time being. You need to install, upgrade, or downgrade packages without using the Yum
repository.

Unlike the tar.gz package, some RPM packages modify your system and perform administrative tasks for
you. The server package does the following tasks upon installation (not upgrade):

•	 Creates the mysql user and group

•	 Creates a data directory

Table 5-1. List of RPM Packages for MySQL NDB Cluster 7.5

Component Description

auto-installer The Auto Installer package. Discussed later in this chapter.

client NDB client programs for MySQL Server and MySQL NDB Cluster, such as mysql,
mysqldump, ndb_mgm, ndb_restore and so forth.

common Common package for MySQL Server (not MySQL NDB Cluster). The package
includes character set information and error messages.

data-node ndbd and ndbmtd program executables.

devel Header files, static libraries, and shared libraries required to develop MySQL
client C/C++ programs.

embedded Embedded (library) version of MySQL Server (libmysqld). This package
includes a shared library version of libmysqld.

embedded-compat Backward compatible libmysqld.

embedded-devel Header files, static libraries, and shared libraries required to develop embedded
MySQL Server application programs.

java JAR (Java Archive) files required for ClusterJ applications.

libs MySQL C API client library (libmysqlclient). This package includes a shared
library version of libmysqlclient.

libs-compat Backward compatible libmysqlclient.

management-server This package includes ndb_mgmd.

memcached Memcached related binaries.

ndbclient NDB API shared library (libndbclient).

ndbclient-devel Header files and libraries required to develop NDB API client programs.

nodejs A driver for Node.js application.

server MySQL Server and related programs. This version of MySQL Server includes
NDBCluster storage engine support.

server-minimal Minimal installation of the database server and related tools. Available as of
MySQL NDB Cluster 7.5.7.

test MySQL Test Suite package.

http://dx.doi.org/10.1007/978-1-4842-2982-8_11

Chapter 5 ■ InstallatIon

150

•	 Initializes the data directory (MySQL NDB Cluster 7.3 and 7.4 only)

•	 Sets up automatic startup and shutdown for mysqld (for systemd or SysV style init)

The shared package invokes the ldconfig command to set up symbolic links, which are necessary to
link the installed shared library. See the man page of ldconfig for more information.

The server RPM package also sets up automatic startup and shutdown. On old systems, which use
SysV style init, automatic startup and shutdown is enabled by just installing the server RPM package.
You can verify this using the chkconfig command. For further details of this command, refer to the man
page. MySQL Server will be started automatically upon the next restart of the system. To start the service
immediately, execute the service command as root:

shell$ su
shell# service mysqld start

The service name may differ depending on the OS; it might be mysqld or mysql. The service name can
be confirmed by inspecting the contents of the /etc/init.d directory.

On recent systems, which have systemd, the configuration file for the systemd is also installed with the
server RPM package. However, the service is not enabled by default. You need to explicitly enable it using
systemctl:

shell$ sudo systemctl enable mysqld.service

This command lets MySQL Server start automatically upon the next OS restart. However, the MySQL
Server has not started at this stage. If you want to start it immediately, execute systemctl:

shell$ sudo systemctl start mysqld.service

The Tar.gz Package vs. the RPM Package
Which type of package should be used for your system? This depends. Package Manager actually eases some
operational tasks. It is useful especially on SQL nodes. So, I generally recommend RPM package.

However, there are some reasons not to use RPM package. For example, RPM packages for MySQL NDB
Cluster 7.4 or older have some drawbacks; the package is not separated per node type. It is not possible
to install more than two versions for one RPM package. So, RPM package may not be suitable when more
than one type of node is installed on a single host, because it might be a problem upon rolling upgrades or
downgrades.

DEB Package Installation
DEB is a package format used by Debian and its variants, such as Ubuntu, KNOPPIX, and LMDE. However,
Debian and Ubuntu are the only Linux distributions supported by MySQL NDB Cluster. See the supported
platforms page for more information about supported Linux distributions.

MySQL NDB Cluster 7.5.5 or older including series older than 7.5, the DEB package for MySQL NDB
Cluster is all in one type, and available only for Debian. All program binaries and related files are included in
a single package. All that you need to do is run the dpkg command with the -i option:

shell# dpkg -i mysql-cluster-gpl-7.5.5-debian8-x86_64.deb

This all in one package doesn’t run a script upon installation. So, you need to set up a user account,
initialize the data directory, and run automatic startup and shutdown just like with the tar.gz package. So,
the benefit of using the all in one type DEB package is just that it’s managed by the package manager.

Chapter 5 ■ InstallatIon

151

As of MySQL NDB Cluster 7.5.6, the DEB package organization has been changed and Ubuntu is also
supported. It has been changed to identical to RPM package of MySQL NDB Cluster 7.5 series. Refer to
Table 5-1 for more details of the RPM package organization of MySQL NDB Cluster 7.5 series. So, you can
install only required packages for the host like the 7.5 RPM package.

There are several differences the RPM package organization and the new DEB package organization.

•	 The server DEB package has systemd related files: It is possible to configure
automatic start of SQL node upon system restart. The service name is mysql.service.

•	 MySQL NDB Cluster dedicated packages for some functionalities are not
available: You need to install packages derived from MySQL Server for mysql-
common, mysql-client, and libmysqlclient. I recommend you to download DEB
Bundle tar file.

•	 Debugging symbols are stored in separate package: For Debian packages,
debugging symbols are stored in separate package with -dbgsym suffix in its name.
No debugging symbols are available for Ubuntu.

•	 Minimal server package is not available: It might be added in the future release,
but it's currently unavailable.

Installation on Windows
On Windows systems, two types of packages are available. One is the ZIP archive package, and the other is
the Windows Installer (MSI) package. Since there are no other distributions than those released by Microsoft
Corporation, the installer package format is Windows Installer only.

The Zip Archive Package Installation
Zip is a well-known file compression format. Recent versions of Windows include compress and decompress
functionality for Zip files. The process for installing a Zip archive on Windows is similar to the process for
installing the tar.gz archive on Linux systems. Installation can be done by extracting the archive anywhere on
the system. For example, you can extract it into C:\MySQL. You can use Explorer to extract the archive.

Create an option file and put it in a directory where MySQL Server reads option files, such as
C:\Windows\my.ini. You can place an option file in an arbitrary directory if you start the server with the
--defaults-file option.

Create data directories for installed node(s). For management and data nodes, the data directory can be
left empty. The installation process ends here.

For an SQL node, the data directory must be initialized after completing an option file. On Windows,
the mysql_install_db script doesn’t work. So, the data directory should be initialized using other methods.
As of MySQL 5.7 and MySQL NDB Cluster 7.5, it is possible to initialize the data directory using mysqld
--initialize:

PS C:\> C:\mysql-cluster-gpl-7.5.5-winx64\bin\mysqld.exe --defaults-file=C:\MySQL\my.ini
--initialize

On MySQL NDB Cluster 7.4 or older, it is not possible to initialize the data directory on Windows, because
mysqld doesn’t have the --initialize option and mysqld_install_db doesn’t work on Windows. The Zip
archive package includes a directory named data. Copy the contents of this directory to the target data directory,
or you can copy the directory itself so that the name of the directory is the same as the target data directory.

Finally, you can start the SQL node. If the data nodes are not ready yet, temporarily disable the
NDBCluster storage engine (e.g., comment out the NDB related options), and start SQL node to verify
installation. When you start the SQL node the first time on Windows, specify the --console option to see

Chapter 5 ■ InstallatIon

152

if any problems are reported. The --console option lets error logs be printed on the console. You can see
errors followed by the command execution, if any errors are reported. Listing 5-9 shows example output of
the first startup on Windows systems.

Listing 5-9. Starting MySQL NDB Cluster on Windows the First Time

PS C:\> C:\mysql-cluster-gpl-7.5.5-winx64\bin\mysqld.exe --defaults-file=C:\MySQL\my.ini
--console
2017-02-09T11:53:37.224242Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see documentation for more
details).
2017-02-09T11:53:37.224242Z 0 [Note] --secure-file-priv is set to NULL. Operations related
to importing and exporting data are disabled
2017-02-09T11:53:37.224242Z 0 [Note] C:\mysql-cluster-gpl-7.5.5-winx64\bin\mysqld.exe
(mysqld 5.7.17-ndb-7.5.5-cluster-gpl) starting as process 1184 ...
... snip ...
2017-02-09T11:53:37.640424Z 0 [Note] C:\mysql-cluster-gpl-7.5.5-winx64\bin\mysqld.exe: ready
for connections.
Version: '5.7.17-ndb-7.5.5-cluster-gpl' socket: '' port: 3306 MySQL Cluster Community
Server (GPL)
2017-02-09T11:53:37.640424Z 0 [Note] Executing 'SELECT * FROM INFORMATION_SCHEMA.TABLES;' to
get a list of tables using the deprecated partition engine. You may use the startup option
'--disable-partition-engine-check' to skip this check.
2017-02-09T11:53:37.640424Z 0 [Note] Beginning of list of non-natively partitioned tables
2017-02-09T11:53:37.702924Z 0 [Note] End of list of non-natively partitioned tables

Optionally, you can configure installed server daemon programs, MySQL Server, data nodes, and
management nodes, as Windows Services, which start up and shut down processes automatically upon system
startup and shutdown. To install a daemon program as a Windows service, run it with the --install option. This
option needs Administrator privilege to manipulate a Windows service. The way to specify options for MySQL
Server and NDB daemons (ndbd, ndbmtd, ndb_mgmd) differ. We discuss the MySQL Server installation first.

To install MySQL Server as a service, if you want to use an option file that’s placed in a non-standard
location, use the --defaults-file option with the --install option:

PS C:\> C:\mysql-cluster-gpl-7.5.5-winx64\bin\mysqld.exe --install NDB75 --defaults-file=C:\
MySQL\my.ini
Service successfully installed.

Unlike normal MySQL program invocation, the --install option must be specified as the first
argument. It even precedes standard first options; --no-defaults, --defaults-file, and --defaults-
extra-file. The second argument, NDB75 in the example, is a service name to register. Note that an equals
sign is not required between --install and the service name. The command results in an error if an equals
sign exists. Take care so that the service name doesn’t collide with other services. The service name can be
omitted if no additional options are specified. If it’s omitted, the service name will be MySQL. The following
option after the service name is used as a command line option when the mysqld is invoked as the service.
Only one additional option is allowed. So, you usually need to specify --defaults-file here. This is
required when installing more than one service with different configurations on a single host.

MySQL Server does not automatically start after the service is installed. If you want, you can start
the installed MySQL Server using the Services interface of Windows. It can be accessed via Computer
Management or by entering services.msc at the Start menu. The way to open Computer Management varies
depending on Windows versions. Figure 5-6 shows a popup menu when right-clicking the Windows Start
menu. You can see Computer Management in the middle of the menu.

Chapter 5 ■ InstallatIon

153

Figure 5-6. Popup menu displayed when right-clicking the Windows Start menu

Chapter 5 ■ InstallatIon

154

Figure 5-7 is a screenshot of the Services screen within Computer Management. You can find NDB75
there. The service is not running.

You can start, stop, disable, or configure the service just like with other standard Windows services. To
configure it, right-click the target service (NDB75 in this case) and select Properties from the popup menu.

For NDB daemon programs—ndbd, ndbmtd, and ndb_mgmd—although you need to specify --install
first, the way to specify the --install option differs from mysqld. An equals sign is required between
--install and the service name. If it’s missing, the command will result in an error. The default service
names are “ndbd” for ndbd and ndbmtd, and “ndb_mgmd” for ndb_mgmd. You can remove the service using
the --remove option just like mysqld. An equals sign is also required when uninstalling the service with the
--remove option.

Windows Installer Package Installation
On Windows, packages for Microsoft Windows Installer are available. Its file extension is .msi, so a package
for Microsoft Windows Installer is also called an MSI package or MSI file. Installation using MSI is very easy.
You can install MySQL NDB Cluster using the GUI installation wizard.

Figure 5-7. Windows Services management interface

Chapter 5 ■ InstallatIon

155

Figure 5-8. Welcome screen of MySQL Cluster 7.5 setup wizard

To begin installation, double-click the saved MSI package in Windows Explorer. Figure 5-8 show the
welcome screen of the installation wizard. Click Next to proceed with the installation.

Chapter 5 ■ InstallatIon

156

Then, you will see the license agreement screen, as shown in Figure 5-9. Read the license agreement,
and if you can accept them, check the agreement checkbox. Click Next to proceed.

Figure 5-9. License agreement during MSI package installation

Chapter 5 ■ InstallatIon

157

Figure 5-10. Setup Type selection screen

Then, choose a setup type from the three choices. Figure 5-10 is a setup type selection screen. When you
choose Typical, everything but the documentation will be installed. When you choose Complete, everything
will be installed. You can choose what to install by choosing Custom.

Chapter 5 ■ InstallatIon

158

Figure 5-11 shows a custom setup screen to choose components to be installed. You can omit
unnecessary components to save disk space. For example, if you need to install only a data node, make all
but the Cluster Storage Engine component under the MySQL Cluster menu unavailable.

Click Next to proceed. You will see the UAC (User Account Control) screen after completing the wizard
choices. Click Yes on the UAC screen.

Program binaries are installed into directory under C:\Program Files\MySQL; e.g., C:\Program Files\
MySQL\MySQL Cluster 7.5. If you like, add the bin subdirectory under the installation directory to the Path
environment variable, which is your program search path so that the MySQL programs can be started easily
from the command prompt or the Windows PowerShell. You can change the environment variables on
System Properties, which can be accessed from the System submenu in the System and Security menu in the
Control Panel. Figure 5-12 shows the System submenu in the Control Panel.

Figure 5-11. Choosing components to install

Chapter 5 ■ InstallatIon

159

Figure 5-13. Windows System Properties screen

Figure 5-12. System submenu in the Control Panel

Click Advanced System Settings. You will see the System Properties screen, as shown in Figure 5-13.

Chapter 5 ■ InstallatIon

160

Click the Environment Variables button at the bottom-side of the window. Then, you will see a list
of environment variables for the current user and the system wide settings. Edit the Path environment
variables and add C:\Program Files\MySQL\MySQL Cluster 7.5\bin, for example.

The MSI package doesn’t set up Windows Service for MySQL NDB Cluster daemons. So, you need to
do this by hand, just like with the Zip package installation. As of MySQL NDB Cluster 7.5, the MSI package
doesn’t initialize the data directory for an SQL node either. On the other hand, the initial data directory is
included in older versions.

Installation on macOS
On macOS (also known as OS X or mac OS X), two types of packages are available. One is the compressed tar
ball (tar.gz) package, just like on Linux. The other is the native installer package installation.

The Tar.gz Archive Package Installation
Installing the tar.gz package on macOS is just like the Linux process. See the section “Tar.gz Archive Package
Installation” described earlier in this chapter.

However, the way to set up automatic startup and shutdown for MySQL Server as a service differs.
macOS employs launchd for this purpose. To set up a service on launchd, place the service configuration
file under the /Library/LaunchDaemons directory. The content of the configuration file is an XML file called
property list (or plist in short). The format of the property list is pre-defined. The easiest way to make a
desired launchd configuration file is to copy the one from the native package, described in the next section.
Listing 5-10 is a property list file included in the macOS native package (com.oracle.oss.mysql.mysqld.
plist).

Listing 5-10. Contents of MySQL Property List for Launchd on macOS

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key> <string>com.oracle.oss.mysql.mysqld</string>
 <key>ProcessType</key> <string>Interactive</string>
 <key>Disabled</key> <false/>
 <key>RunAtLoad</key> <true/>
 <key>KeepAlive</key> <true/>
 <key>SessionCreate</key> <true/>
 <key>LaunchOnlyOnce</key> <false/>
 <key>UserName</key> <string>_mysql</string>
 <key>GroupName</key> <string>_mysql</string>
 <key>ExitTimeOut</key> <integer>600</integer>
 <key>Program</key> <string>/usr/local/mysql/bin/mysqld</string>
 <key>ProgramArguments</key>

Chapter 5 ■ InstallatIon

161

Figure 5-14. MySQL NDB Cluster DMG file is mounted

 <array>
 <string>/usr/local/mysql/bin/mysqld</string>
 <string>--user=_mysql</string>
 <string>--basedir=/usr/local/mysql</string>
 <string>--datadir=/usr/local/mysql/data</string>
 <string>--plugin-dir=/usr/local/mysql/lib/plugin</string>
 <string>--log-error=/usr/local/mysql/data/mysqld.local.err</string>
 <string>--pid-file=/usr/local/mysql/data/mysqld.local.pid</string>
 </array>
 <key>WorkingDirectory</key> <string>/usr/local/mysql</string>
</dict>
</plist>

If required, fix the program path and arguments written in the plist file. Automatic startup and
shutdown is enabled at this stage. The OS reads every configuration file for a launch daemon if the
configuration file exists. While the server will start MySQL Server upon the next OS restart, it has not started
yet. To start the server immediately, run launchctl:

shell$ su
shell# launchctl load /Library/LaunchDaemons/com.oracle.oss.mysql.mysqld.plist

You can stop MySQL Server by running launchctl unload, instead of launchctl load. To disable
automatic startup and shutdown, modify the plist file and set the value of RunAtLoad to false.

macOS Native Package Installation
The native package for macOS has a suffix of .pkg. Installation using the native (.pkg) package is very simple
and easy and completed using the GUI wizard. The package is distributed in the Apple Disk Image, which
has the .dmg suffix and can be mounted as a file system as if it were an ordinal disk. To mount it, double-
click the DMG file. Figure 5-14 shows the Finder, which mounts the MySQL NDB Cluster package.

Chapter 5 ■ InstallatIon

162

To begin installation, double-click the .pkg file. The installer wizard is displayed, as shown in Figure 5-15.
Click Continue to proceed.

The next screen is a license agreement. If you’re using the Community version, the license is GPLv2.
Otherwise, it will be Oracle Corporation’s proprietary license. When you click Continue on the license
agreement screen, a dialog box is displayed. If you agree to the license, click Agree to proceed.

The next screen is Installation Type, as shown in Figure 5-16.

Figure 5-15. Introduction page of MySQL NDB Cluster installer on macOS

Chapter 5 ■ InstallatIon

163

Initially, Destination Select is skipped. When you click the Change Install Location button, the wizard
goes back to Destination Select, but you cannot change it from the default.

When you click Customize, you will see the screen like the one in Figure 5-17. On this screen, you can
select or deselect the installed components. Each component includes the following contents:

•	 MySQL Server: Main body of the MySQL NDB Cluster program, including all types
of server daemons and client programs. At the least, you need to install this package.

•	 Preference Pane: This package adds the MySQL preference pane in the System
Preferences in macOS.

•	 Launchd Support: Configuration information for launchd, which manages
automatic startup and shutdown on macOS.

Figure 5-16. Installation type on MySQL NDB Cluster installer on macOS

Chapter 5 ■ InstallatIon

164

Figure 5-17. Component selection screen on MySQL NDB Cluster installer on macOS

By default, all components are installed, and I recommend installing all of them. Click Install to
proceed.

At the beginning of the installation process, a dialog to input the current OS user password is displayed.
It is required to gain superuser (root) privilege to write files into the file system. Once installation completes,
a password for root@localhost for the installed MySQL Server is displayed, as shown in Figure 5-18. The
password is generated randomly. So, you will see a different password on this screen. (Don’t worry that the
actual password is displayed in Figure 5-18. I don’t use this password anymore.) Do not close the window
until you copy your password elsewhere. If you like, press Command+Shift+3 to take a screenshot. The
screenshot will be saved onto your desktop.

Chapter 5 ■ InstallatIon

165

The server is installed in a subdirectory under the /usr/local directory, and the installer creates a
symbolic link called /usr/local/mysql to the installation directory. Add /usr/local/mysql/bin to your PATH
environment variable for easy access to MySQL programs.

On the macOS native package setup, it is very easy to configure automatic startup and shutdown. To
configure that, open System Preferences and find MySQL at the bottom. When you click the MySQL icon,
you will see a configuration dialog like the one in Figure 5-19. You can stop or start the server and enable or
disable automatic startup and shutdown.

 ■ Note once configuration is changed using the MysQl preferences pane, the launch daemon configuration
file under /Library/LaunchDaemons is converted to the binary plist format. to revert back to the XMl format, run
plutil -convert xml1 com.oracle.oss.mysql.mysqld.plist against the plist file.

Figure 5-18. Summary screen on MySQL NDB Cluster installer on macOS

Chapter 5 ■ InstallatIon

166

Installing MySQL NDB Cluster Instances Using Auto Installer
MySQL NDB Cluster Auto Installer (Auto Installer, in short) is a supplemental tool to set up MySQL NDB
Cluster instances from the Web GUI interface. Auto Installer isn’t a package installation tool, but a tool to set
up node instances easily. This means that packages should be installed in advance.

To start Auto Installer, run ndb_setup.py installed together with the MySQL NDB Cluster package. As
the filename suggests, ndb_setup.py is a Python program. So, you need Python interpreter installed on your
target system. The required Python interpreter version is 2.6 or higher. In addition, two Python libraries—
Paramko 1.7.7.1 or higher and Pycypto 2.6 or higher—are required. Install these programs in your target
system preliminarily.

Since ndb_setup.py executes commands on remote hosts via SSH protocol, the SSH server must be
running on remote hosts. It is also necessary to set up users to log in to remote servers. Remote logins via
SSH are made using the user who executes ndb_setup.py unless the username is explicitly specified in the
username/password pair, as described later in this section. So, basically you need to create remote users
with the same name as the local user. Instances will be initialized and started using that user. If you want to
run MySQL NDB Cluster programs using the mysql user, allow the user to log in. (Usually, mysql user login is
disabled for security reasons.) Listing 5-11 is example output when ndb_setup.py runs from command line.

Listing 5-11. Running ndb_setup.py from the Command Line

shell$./ndb_setup.py
Running out of install dir: /opt/mysql-cluster/bin
Starting web server on port 8081
deathkey=787953
Press CTRL+C to stop web server.
The application should now be running in your browser.
(Alternatively you can navigate to http://localhost:8081/welcome.html to start it)

See that the program listens to TCP/IP port 8081 as a default port. You can change it by specifying the
--port option in the command line. The command automatically opens your browser and shows the screen
in Figure 5-20.

Figure 5-19. MySQL preference pane on macOS

Chapter 5 ■ InstallatIon

167

Figure 5-20. Initial screen of MySQL Cluster Auto Installer

Figure 5-21. The Define Cluster screen on Auto Installer

Click Create New MySQL Cluster to set up the new installation. A wizard style setup screen is displayed,
as shown in Figure 5-21.

Chapter 5 ■ InstallatIon

168

The first task is to define the overall cluster configuration. On Auto Installer, it is not possible to
fine-tune individual parameters, but a brief configuration is defined on this screen. Each input box
stands for the following parameters:

•	 Cluster name: Name of the cluster to be installed.

•	 Host list: Comma-separated list of hosts where cluster instances reside.

•	 Application area: Type of application to use the cluster from the following selection:

•	 Simple testing: Minimum resource configuration for testing

•	 Web: Maximum resource configuration for given hardware

•	 Real-time: Minimize response time

•	 Write load: Amount of write transactions (choose one from Low, Medium, and High).

•	 SSH credentials: If Key Based SSH is checked, SSH authentication is made using
a public key, which is registered beforehand. Otherwise, specify the username and
password for authentication.

Click Next to proceed. The next screen is a configuration screen for host details, as shown in Figure 5-22.

In this screen, you need to specify the number of CPU cores and the amount of memory for the given
hosts, as well as a path for the MySQL NDB Cluster package and the data directory. If Auto Installer fails to
find the programs in these directories or if the programs don’t have sufficient permissions to access these
data directories, the installation will fail later. Make sure that the package installation directory is correct and
that the owner, group, and permission of data directories are correct. Click Next to proceed.

Figure 5-22. Details of host definition in Auto Installer

Chapter 5 ■ InstallatIon

169

Figure 5-23. Process definition in Auto Installer

The next screen is a process definition, as shown in Figure 5-23.

On this screen, you define which host will have which types of nodes. Click Add Process to add a new
node to the host. You can move a node by drag and drop it onto another host. Click Next to proceed. The
next step is to define the parameters, as shown in Figure 5-24.

Chapter 5 ■ InstallatIon

170

You can change basic parameters such as the data directory, the socket, and the port number for SQL
node. Again, it is not possible to fine-tune detailed parameters on Auto Installer. Click Next to proceed.
The next screen is the final installation step, as shown in Figure 5-25.

Figure 5-24. Defining the process parameters in Auto Installer

Figure 5-25. Deploy, start, and stop a cluster in Auto Installer

Chapter 5 ■ InstallatIon

171

As you can see, Auto Installer’s functionality is very limited. It is not feasible for daily use. For example,
it is possible to start and stop the entire cluster, but it’s not possible to stop or start an individual node.
Rolling restarts are not possible, either. Try Auto Installer if you want to set up MySQL NDB Cluster quickly
for evaluation purposes. It might still be a good starting point for further fine-tuning as well.

Verifying Installation
Once all the installation steps have finished, verify that the installation was successful.

Configuration Files
Before starting the cluster, make sure that the configuration files, such as config.ini and my.cnf, are
completed and the intended options are set. For the MySQL Server daemon mysqld (and other non-NDB
programs), you can easily verify if the options are read and set to their desired values. Run mysqld with the
--print-defaults option:

shell$ mysqld --print-defaults
mysqld would have been started with the following arguments:
--character-set-server=utf8 --user=mysql --port=3306 ...

It lists all the options specified in the command line or the option file (my.cnf).
For NDB programs, --print-defaults doesn’t work. The management server daemon, ndb_mgmd,

requires a path to the configuration file as a command line option. You don’t need to worry about which
option files are actually read by the program. While ndb_mgmd has an option named --print-full-config,
it prints all the options, including the unchanged ones for all available slots. It is not handy to check quickly
whether the option values are set correctly. Instead, it is useful to check if the configuration file is formed
properly. When --print-full-config is specified, ndb_mgmd parses the given configuration file as if it were a
usual startup, so it ensures that the option names are correct and that the values are in range.

Initial Startup
Once the configuration has completed, the next step is to start the cluster. At the very first startup, the
cluster initializes its data directory and creates data files on the management node and data node. So, some
configurations, such as FragmentLogFileSize, cannot be changed without re-initializing the data once
initialization has been done. In other words, before you store any data on your cluster, you can wipe the
whole data and restart the cluster as many times as you need.

Listing 5-12 shows an example command to start the management node. While it is an initial startup,
the --initial option can be omitted.

Listing 5-12. Starting Management Node at the First Time

shell$ /opt/mysql-cluster/bin/ndb_mgmd -f /etc/mysql-cluster/config.ini\
 --configdir=/var/lib/mysql-cluster
MySQL Cluster Management Server mysql-5.7.17 ndb-7.5.5

Once all the management nodes have been started, the next step is starting the data nodes. Listing 5-13
is a typical command to start a data node. Start all the data nodes using the command shown in Listing 5-13.
In this example, a multi-threaded version of the data node (ndbmtd) is employed.

Chapter 5 ■ InstallatIon

172

Listing 5-13. Starting a Data Node the First Time

shell$ /opt/mysql-cluster/bin/ndbd -c nodeid=1,host3:1186
2017-01-30 16:56:09 [ndbd] INFO -- Angel connected to host3:1186'
2017-01-30 16:56:09 [ndbd] INFO -- Angel allocated nodeid: 1

It will take some time to complete the startup of the data nodes. To verify if the data nodes have started,
issue an ALL STATUS command from the ndb_mgm CLI, as shown in Listing 5-14.

Listing 5-14. Checking the Data Node Status from ndb_mgm CLI

shell$ ndb_mgm
-- NDB Cluster -- Management Client --
Connected to Management Server at: 127.0.0.1:1186
ndb_mgm> all status
Node 1: started (mysql-5.7.17 ndb-7.5.5)
Node 2: started (mysql-5.7.17 ndb-7.5.5)

The final step is to start the SQL nodes. The command to start the SQL node is the same as the standard
MySQL Server. For example, if the server package is installed using RPM on the RHEL7 system, you can start
the SQL node using the systemctl command like so:

shell$ sudo systemctl start mysqld.service

Checking the Status
The most basic operation to verify if the cluster is running properly is to see its status. First, connect the
cluster using ndb_mgm CLI and issue the SHOW command, as shown in Listing 5-15. Check if all the nodes are
connected and their status is okay.

Listing 5-15. Sample SHOW Command Output

shell$ ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 127.0.0.1:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @host1 (mysql-5.7.17 ndb-7.5.5, Nodegroup: 0, *)
id=2 @host2 (mysql-5.7.17 ndb-7.5.5, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=255 @host3 (mysql-5.7.17 ndb-7.5.5)

[mysqld(API)] 7 node(s)
id=50 @host1 (mysql-5.7.17 ndb-7.5.5)
id=51 @host1 (mysql-5.7.17 ndb-7.5.5)
id=52 @host2 (mysql-5.7.17 ndb-7.5.5)
id=53 @host2 (mysql-5.7.17 ndb-7.5.5)

Chapter 5 ■ InstallatIon

173

For more details about the procedure to start or stop the cluster, refer to Chapter 10.
After all the nodes are ready, run the queries against on the SQL node to check if the cluster is running

properly. Create a test database and a test table using the NDBCluster storage engine, then insert some rows
and query the table. If the commands work without any problems, your installation is successful.

Uninstalling Packages
If you have stopped using MySQL NDB Cluster and you do not need the packages anymore, you should
uninstall them from your system. To uninstall MySQL NDB Cluster, first shut down the cluster. Optionally,
remove data files and configuration files if you don’t need them anymore.

The uninstallation steps vary depending on package type, as described in the following sections.

Tar.gz and Zip Archive Package
These types of packages can be uninstalled by removing installed files. If you installed the package into
/opt/mysql-cluster on Linux, for example, just run the rm command as follows:

shell$ su
shell# rm -rf /opt/mysql-cluster

On Windows, remove the installation directory using Windows Explorer.
Make sure that the installed services are removed, too.
On Linux, services are removed using chkconfig --del or systemctl disable. Both commands require

a service name as the last argument. Consult with the operating system manuals for more details. You also
need to remove the installed script file, such as /etc/init.d/mysql, and the systemd configuration file such
as /usr/lib/systemd/system/mysql.service.

On Windows, run daemon programs using the --remove option. This should be done before removing
the package files. Alternatively, you can remove the service using sc.exe. This can be done after uninstalling
the package.

PS C:\> sc.exe delete NDB75
[SC] DeleteService SUCCESS

Note that sc is aliased for Set-Content on Windows PowerShell. So, sc.exe should be executed with
the .exe suffix. Otherwise, a file named delete with content NDB75 is created under the current working
directory.

On macOS, run launchctl unload to stop the server. This command requires a plist file as the last
argument. Then, delete the plist file.

RPM Package
You can uninstall the package using the rpm command with the -e option. No extra steps are needed.

Windows Installer Package
You can delete a Windows Installer package from the Windows Settings. Click System, then Apps & Features
to open list of installed application packages. Choose MySQL Cluster from the list of applications, which is
sorted alphabetically. Click Uninstall to uninstall the package.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 5 ■ InstallatIon

174

macOS Native Package
Before you begin, make sure that the service has stopped. You can stop the service from the system
preferences or using the launchctl unload command.

Unfortunately, macOS doesn’t have command to uninstall a native package. This surely is very
inconvenient. This means that installed files must be removed manually. The first step is to inspect which
packages are installed on your system, like so:

shell$ pkgutil --pkgs | grep mysql
com.mysql.launchd
com.mysql.mysql
com.mysql.prefpane

You can see three MySQL related packages. These are the MySQL launch daemon, MySQL NDB Cluster
main package, and MySQL System Preference Pane. The following commands remove all files included in
these packages as the root user:

shell# rm -rf /usr/local/mysql*
shell# rm -rf /Library/LaunchDaemons/com.oracle.*.mysqld.plist
shell# rm -rf /Library/PreferencePanes/MySQL.prefPane

 ■ Note You can identify the location where the files are installed using pkgutil --info, and which files are
installed using pkgutil --files.

Then, remove the package information from the package manager.

shell# pkgutil --forget com.mysql.launchd
shell# pkgutil --forget com.mysql.mysql
shell# pkgutil --forget com.mysql.prefpane

Summary
This chapter discussed the installation types available for each platform and how to install MySQL NDB
Cluster packages on each system. Installation is not a difficult process, but it’s very important. Installation
must be always perfect in the production system. Without appropriate installation, your system will not
function correctly.

Each installation type has its pros and cons. Determine which installation type is most suitable for your
system and perform the installation smoothly. Care must be taken, especially when installing non-installer
packages.

175© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_6

CHAPTER 6

Replication

Replication is one of the most popular features of MySQL. It allows one or more slaves to have an identical
data copy of the master. It is a very useful feature; thus, it has a variety of applications. MySQL NDB Cluster
also has a replication facility, called NDB Cluster Replication. This chapter explains how to use it and what it
can be used for.

NDB Cluster Replication Overview
Before discussing how to use NDB Cluster replication, this section contains an overview of NDB Cluster
replication.

Replication Architecture Overview
On standard MySQL replications, the master records all modifications into a special log file called the binary
log, and the log contents are sent to the slave immediately after each event is ready. Binary log contents are
written when a transaction is committed for transactional storage engine, and after each query for non-
transactional storage engine. Each content of the binary log is a unit of modification against the database
in a “replayable” format. Binary log content can be executed so that it causes the identical modification as
the originating transaction or query. Thus, it is possible to replay identical data changes as on the master by
applying a series of binary log contents continuously.

Figure 6-1 is a schematic view of standard MySQL replication. On the master, the master thread sends
contents of binary log to the slave. This thread is also known as the binlog sender thread. The binlog sender
thread is just a normal connection thread, but the command being executed is different from the norm. The
command is COM_BINLOG_DUMP, which continuously sends binlog contents to the slave connected as a client.

https://doi.org/10.1007/978-1-4842-2982-8_6

Chapter 6 ■ repliCation

176

The slave has two types of threads. One for receiving binary log contents and writing them into relay log,
the other for replaying relay log contents. The former is called the slave I/O thread and the latter is called the
slave SQL thread.

The slave I/O thread receives binary log contents continuously, then stores them into an intermediate
log called the relay log. Once writes to the relay log are completed, the slave SQL thread executes the content
and apply the modification to its underlying database. In Figure 6-1, database is depicted as the storage
engine, as the true entity holding data is the storage engine.

All relevant threads in Figure 6-1 are not synchronized by default. Since the master doesn’t wait until
the slaves applies the modifications, the slave data will in general lag slightly compared to the master data.
This type of replication is called asynchronous replication. However, the slave data is catching up on master
data closely all the time, because every step depicted in Figure 6-1 is performed very quickly.

 ■ Note MySQl replication has a special mode called semi-synchronous replication, which lets the
connection thread on the master wait until the slave i/o thread has written the binlog content to its relay log
and synced to disk. Semi-synchronous replication ensures that there is not data loss on the slave in the event
of the master crashing. this feature is useful when implementing failover topology on 1:N replication setup. on
standard MySQl replication, it is possible to connect multiple slaves for one master. With 1:n replication setup,
one slave is promoted to the master when existing master crashes. Since MySQl replication is asynchronous,
there is a small chance you’ll lose the latest modifications when the master crashes. Semi-synchronous
replication solves this problem. however, semi-synchronous replication is not supported on MySQl nDB Cluster,
thus it’s out of the scope of this book.

Figure 6-1. Standard MySQL replication (with InnoDB) architecture overview

Chapter 6 ■ repliCation

177

MySQL NDB Cluster implements asynchronous replication over standard MySQL replication. An SQL
node collects all modifications done on the cluster and records them into its local binary log. Such an SQL
node can work as a master to send modifications to slaves. Figure 6-2 shows an overview of NDB Cluster
Replication.

The key architecture of NDB Cluster Replication is that modifications done on data nodes are sent to
an SQL node where binary log is enabled. Without this mechanism, the master SQL node cannot keep track
of modifications done on other SQL nodes. On a standard MySQL Server, all modifications done within the
server can be tracked by the server, then serialized and written to the binary log. On an SQL node of MySQL
NDB Cluster, such implementation is impossible because changes will be made on other SQL nodes and
other types of API nodes as well. On MySQL NDB Cluster, the actual data modification is made in the data
nodes. Thus, data nodes continuously send all modifications to SQL nodes where the binary log is enabled.
Modification data is sent upon every micro-GCP.

Although the micro-GCP is a data source of the redo log on the data node, the micro-GCP is not
written to disk unlike usual the GCP (Global checkpoint). Micro-GCP is a mechanism to synchronize
data among data nodes. A set of transactions included in one micro-GCP is called an epoch, which are
committed simultaneously at a certain period. So, the contents of every epoch, called events, is ensured to be
synchronized among all data nodes. Micro-GCP is executed more often than GCP. By default, micro-GCP is
done every 100 milliseconds and GCP is done every two seconds. This allows a data node to send the events
to the SQL node much quicker than if the data node had been sending the events every GCP.

On the SQL node, events from the data nodes are handled by a dedicated thread called binlog injector
thread. It receives all events and serializes them, then writes them to the binary log. Thus, the binary log is a
serialized history of all modifications made on the cluster, just like standard MySQL replication.

 ■ Note Since binlog injector receives all events from data nodes, the SQl node becomes very busy
especially when the cluster has many data nodes. this is one of the reasons we recommend having dedicated
SQl nodes to handle the binary logging.

Figure 6-2. NDB Cluster Replication architecture overview

Chapter 6 ■ repliCation

178

Replication Channel Failover
Since the data node can send events and the source of binary log content to an arbitrary SQL node, more
than one SQL node can have the binary log at the same time, and we strongly recommend you do this. Since
the SQL node cannot receive events while it’s offline, we need spare SQL nodes with binary logging enabled
for redundancy. When the active master SQL node crashes or is shut down, the replication must be resumed
using an alternative SQL node, because the binary log contents are completely lost while the SQL node is
offline. This is a very important concept for NDB Cluster Replication.

If you are familiar with standard MySQL replication, a question may arise. “What binary log filename and
position will resume on the alternative SQL node?” The binary log is local to each SQL node, so the filename
and binlog position varies based on server restart and server local table updates. The key components to solve
this problem are two system tables—ndb_binlog_index and ndb_apply_status. The former is local to each
SQL node, and the latter is an NDB table accessed by all SQL nodes. These tables exist under the mysql system
database. Figure 6-3 depicts how these two tables work with NDB Cluster Replication.

The binlog injector thread records the correspondence between epochs and binary log positions into
the ndb_binlog_index table. Since the unit of modification on MySQL NDB Cluster is an epoch, the unit
of binary log events is an epoch as well. This means that the slave can apply an epoch as if it were a single
inseparable chunk of modification, that is a transaction. So, the binlog injector records the beginning of each
epoch within the binary log.

Then, the binlog injector thread generates an original record within each binlog event, which updates
ndb_apply_status table. The event keeps track of which epoch is included in the binary log event. Since
the modification of the ndb_apply_status table is included in the same event, the slave SQL thread updates
ndb_apply_status along with the original modification for target tables within the same transaction. Thus,
you can find the very latest epoch applied to the slave cluster in the ndb_apply_status table.

So, when you switch to an alternative replication channel, you need to read the latest epoch from the
ndb_apply_status table on a slave SQL node, then find the corresponding binary log filename and position
based on the retrieved epoch. We’ll discuss details of the failover procedure later in this chapter.

Figure 6-3. Function of ndb_binlog_index and ndb_apply_status system tables

Chapter 6 ■ repliCation

179

NDB Cluster Replication Tables
Table 6-1 summarizes system tables related to NDB Cluster Replication. Note that all the tables in Table 6-1
reside in the mysql system database.

The ndb_schema table isn’t involved in NDB Cluster Replication itself; however, the table is monitored
using the same mechanism of NDB Cluster Replication.

You might notice that this table cannot be found on the mysql system database using the SHOW TABLES
command and information schema. The table is hidden, but it exists. You can query the content of ndb_
schema table using the SELECT statement. This table stores the definition of all tables, tablespaces, and logfile
groups for NDBCluster storage engine. This table is updated upon DDL statements on the SQL node where
the statement is issued. On all SQL nodes, binlog injector monitors this table. So, other SQL nodes can detect
if any changes are detected on this table. Then, an SQL node updates local data dictionary, as we say the .frm
file, according to the definition in ndb_schema table. Even if binary logging is disabled, the binlog injector
thread runs and monitors only the ndb_schema table, because the schema changes cannot be detected
without monitoring this table. The ndb_schema table is also described in Chapter 9.

The ndb_replication table is used to configure conflict detection and resolution. This table doesn’t
exist initially. So, the table must be created in order to configure conflict detection and resolution. Details of
the table are covered later in this chapter.

Use Cases and Advantages of NDB Cluster Replication
The way NDB Cluster Replication is implemented, in that it uses the same mechanism as standard MySQL
replication, is a great decision in my opinion. As discussed in the previous section, data is synchronized
without using a special communication channel, but synchronized using the binary log and the MySQL
protocol. It has definitive advantages like these:

•	 It is possible to configure NDB Cluster Replication between two MySQL NDB
Clusters as well as between MySQL NDB Cluster and a standard MySQL server
(InnoDB).

•	 For existing MySQL users, it is possible to manage NDB Cluster Replication in a
familiar way. This reduces learning costs for new NDB Cluster Replication users.

•	 It is possible to configure NDB Cluster Replication in various topologies just like
standard MySQL replication.

Table 6-1. List of NDB Cluster Replication Tables

Name Used On Description

ndb_binlog_index Master Binlog injector records correspondence between binary log position
and epoch into this table.

ndb_apply_status Slave Binlog injector generates a dummy event to update of this table even
though update is not really done on master cluster. On the slave side,
slave SQL thread updates this table as part of replication. The content
of this table indicates the latest epoch on the master cluster where the
slave cluster catches up.

ndb_schema Both Synchronize schema information among SQL nodes using this table.

ndb_replication Depends Configuration table for conflict detection and resolution.

http://dx.doi.org/10.1007/978-1-4842-2982-8_9

Chapter 6 ■ repliCation

180

NDB Cluster replication is very flexible. There are thousands of ways to use it. The following use cases
are well known:

•	 Disaster recovery: Make the data service available on alternative sites even when
a disaster occurred, and the whole data center becomes unusable, as depicted in
Figure 6-4. Data is transferred over the Internet using secure connection (TSL) or via
a private network.

•	 Stand-by cluster for maintenance: Used for various maintenance tasks such as
taking a backup to avoid workload on primary cluster, planned switch over for heavy
maintenance tasks like redistributing partitions for adding data nodes, and copying
schema changes.

•	 Read scaling: 1:N topology for scaling purposes just like standard MySQL replication
is also applicable for MySQL NDB Cluster. Although MySQL NDB Cluster has good
scalability, it is not good at some types of queries. Replicating from MySQL NDB
Cluster to InnoDB will solve such read scalability problems, as depicted in Figure 6-5.

Figure 6-4. Disaster recovery configuration using NDB Cluster Replication

Chapter 6 ■ repliCation

181

To make your NDB Cluster Replication setup productive, make it clear what the replication is used
for. In other words, clarify the application needs and recognize why NDB Cluster Replication is required.
Without such a definitive purpose, your system will not be utilized well.

Setting Up NDB Cluster Replication
In this section, we discuss how to set up NDB Cluster Replication. As the architecture of NDB Cluster
Replication is close to the standard MySQL replication, the setup procedure is close as well. While they are
close, they are somewhat different.

When it comes to setting up NDB Cluster Replication, consider the following scenarios:

•	 Set up fresh cluster instances with replication. As instances are newly installed,
clusters don’t have any data in advance.

•	 Install a new cluster instance as a replication slave for an existing cluster instance.

•	 Set up alternative replication channel upon replication failure.

Let’s see detailed procedures of these scenarios.

Figure 6-5. Read scaling by replicating from MySQL NDB Cluster to InnoDB

Chapter 6 ■ repliCation

182

Setting Up NDB Cluster Replication with an Empty Database
In the scenario to set up NDB Cluster Replication with empty database, the procedure to set up replication
is identical to standard MySQL servers, except for options specific to MySQL NDB Cluster. To complete the
NDB Cluster Replication setup, use the following instructions.

Set Up Master and Slave Clusters
You need at least two clusters to set up replication—one master cluster and one or more slave clusters.
Set up the clusters with required configuration per application needs. See Chapters 3, 4, and 5 for setup
procedures and configurations.

Configure Master SQL Node for Replication
Configure the server_id option and enable the binary log with the ROW format. Listing 6-1 shows an example
configuration for the master SQL node.

Listing 6-1. Example Configuration for the Master SQL Node

[mysqld]
server_id = 1
log_bin = mysql-bin
binlog_format = ROW

Since NDB Cluster Replication only supports the ROW binary log format, the binlog_format option
should be set to a value other than STATEMENT. As of MySQL Server 5.7 and MySQL NDB Cluster 7.5, the
default value for binlog_format is ROW. So, explicit setting of binlog_format is optional on MySQL NDB
Cluster 7.5 or newer.

Ensure that every SQL node has a unique, specific, separate server_id and no combinations of SQL
node have the same server_id within all SQL nodes on all clusters, including slaves. This is a common
requirement with standard MySQL replication.

 ■ Note Do not enable GtiD, which is not yet supported for MySQl nDB Cluster.

If the SQL node is already running, you need to restart mysqld to enable the binary log and the
other related changes. If the SQL node has not stated yet, start it at this stage. The following command
is an example command to start the server on a Linux host with the old style init script. Start the server
according to your system procedures.

shell$ su
shell# service mysqld start

Create a User for Replication on Master
Just like with standard MySQL replication, a slave connects to its master as a client. So, a user account for the
slave is required on the master. Listing 6-2 shows an example command to create the user account with the
appropriate privilege. The required privilege for the slave user account is REPLICATION SLAVE.

http://dx.doi.org/10.1007/978-1-4842-2982-8_3

Chapter 6 ■ repliCation

183

Listing 6-2. Creating a Replication User on the Master SQL Node

mysql> CREATE USER repl@slavehost IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.* TO repl@slavehost;

Currently, MySQL replication doesn’t support authentication plugins other than the native password
and sha256_password. Don’t create a slave user with an unsupported plugin.

Configure Slave SQL Node for Replication
The only configuration option required for the slave is server_id. Other options can be left unchanged.
Since server_id doesn’t have a default value, it must be specified explicitly. Listing 6-3 is an example
configuration for slave SQL node. Suppose that other required options for NDBCluster storage engine are
omitted in this listing.

Listing 6-3. Example Configuration for the Slave SQL Node

[mysqld]
server_id = 101
skip_slave_start

You can find yet another option, skip_slave_start, in Listing 6-3. This option is necessary if the
replication setup has more than one replication channel, which is discussed later in this chapter.

Since server_id is a dynamic variable, you can change the value using the SET GLOBAL command if you
have already started the slave SQL node. If you haven’t started the slave, start it to continue the replication setup.

 ■ Caution Don’t change the server_id once you have configured replication, because MySQl replication
assumes that server_id is immutable throughout the replication lifecycle.

Configure Replication
Now configure the SQL node as a replication slave. Since we assume that no data is written on the cluster, it
is not necessary to specify the binlog filename and position. Listing 6-4 shows an example command to set
up a new slave using the CHANGE MASTER TO command.

Listing 6-4. CHANGE MASTER TO Command to Set Up a New Slave

mysql> CHANGE MASTER TO
 -> MASTER_HOST='masterhost',
 -> MASTER_USER='repl,
 -> MASTER_PASSWORD='PASSWORD',
 -> MASTER_PORT=3306;

 ■ Tip Since the replication connection in basically a normal client connection, the MASTER_HOST, MASTER_
USER, MASTER_PASSWORD, and MASTER_PORT options are equivalent to the --host, --user, --password, and
--port options for the mysql command-line client.

Chapter 6 ■ repliCation

184

Secure the Connection for Replication (Optional)
If you like, it is possible to protect network communication between master and slave using a secure
connection. To enable TLS connection for replication, you need to configure both master and slave properly.
See Chapter 12 for details about how to set up secure connection in general. It is particularly necessary to set
up certificates on the master to enable secure connection.

On the slave, you need to specify MASTER_SSL=1 on the CHANGE MASTER TO command, as shown in
Listing 6-5.

Listing 6-5. Enabling TLS Connection for Replication

mysql> STOP SLAVE;
mysql> CHANGE MASTER TO MASTER_SSL=1;
mysql> START SLAVE;

A secure connection is enabled in just this much of the procedure. The connection between master and slave
is ensured to be encrypted. However, there is still some room to improve security. At this stage, slaves can connect
whether connections are encrypted or not. To enforce encrypted connection for all slaves, make TLS connection
mandatory for the replication user. This can be achieved using the following command on the master.

mysql> ALTER USER repl@slavehost REQUIRE SSL;

This requires the user repl@slavehost to log in using an encrypted connection only. This makes
replication much safer than unencrypted connection. However, some risks still remain in this setup. The
problem is that the server allows connections to any accounts from any hosts only if the given credentials are
valid. It sounds flawless that an authentication works properly; however, credential authentication cannot
avoid the following two problems:

•	 If a credential for replication user is stolen or identified by brute force attack, an
attacker may receive binary log events by using a fake slave server which pretends to be
a real slave. This allows an attacker to steal important data from the replication setup.

•	 A slave may connect to a fake master that pretends to be a real master, because a
master only accepts or rejects authentication from slaves and no authentication is
required for a master itself. This allows an attacker to send fake malicious data to a
slave to malfunction the victim application.

To prevent such problems, TLS has a mechanism to identify a connection peer using certificates. If a
connection peer doesn’t have a valid certificate, a connection is established. Otherwise, the connection fails.
A valid certificate must be signed by a known certification authority (CA), whether it is public or private.
Generally, public CA is employed for public connections over the internet such as web sites. So, a private CA
is suitable for private database connection which must be hidden from public.

 ■ Note the mysql_ssl_rsa_setup command creates a private Ca as a part of the setup. thus, certificates
generated by mysql_ssl_rsa_setup are self-signed certificates.

To enforce the slave to specify certificates upon connection, change the user definition on the master
using the following command:

mysql> ALTER USER repl@slavehost REQUIRE X509;

http://dx.doi.org/10.1007/978-1-4842-2982-8_12

Chapter 6 ■ repliCation

185

To verify that a slave is an authorized client, a slave must have a valid client certification. Copy
ca.pem, client-cert.pem, and client-key.pem to the slave host. Then, specify these files in the CHANGE MASTER
TO command. Assume that the files are copied into the /var/lib/mysql-cert directory, then use the CHANGE
MASTER TO command to set up a secure connection. See Listing 6-6.

Listing 6-6. Setting Up a Secure Connection on the Slave

mysql> CHANGE MASTER TO
 -> MASTER_SSL_CA = 'ca.pem',
 -> MASTER_SSL_CERT = 'client-cert.pem',
 -> MASTER_SSL_KEY = 'client-key.pem',
 -> MASTER_SSL_CAPATH = '/var/lib/mysql-cert';

On the other hand, it also makes sense for the slave to verify if the master is really an authorized server.
To achieve this, a slave must specify the MASTE_SSL_VERIFY_SERVER_CERT=1 option in the CHANGE MASTER TO
command. When this option is set, a slave checks if a common name included in the master certificate is the
same as the master’s hostname. The client accepts the master only if they are the same. Otherwise, the client
aborts connection.

 ■ Note Unfortunately, a common name included in certificates generated by mysql_ssl_rsa_setup isn’t a
hostname and cannot be changed manually using command-line options. So, you need to generate certificates
by hand if you want to use this feature. the procedure to generate certificates is a little bit complicated, and is
beyond coverage of this book.

As you see, the procedure to set up replication for cluster is very close to standard MySQL replication.
However, note again that the procedure in this section is applicable only when no data is stored on the
cluster. When you have been running the cluster already, and the cluster stores data to be replicated,
additional instructions are required, as shown in the next section.

Start Replication
Finally, start the replication using the START SLAVE command and check if the replication has really started
using the SHOW SLAVE STATUS command.

mysql> START SLAVE;
mysql> SHOW SLAVE STATUS\G

Check if both Slave_IO_Running and Slave_SQL_Running are “Yes”. Details about SHOW SLAVE STATUS
command fields is described later in this chapter. Be aware that a special delimiter \G follows the SHOW SLAVE
STATUS command. This makes the output style vertical instead of the usual table style. Since SHOW SLAVE
STATUS output has many fields, the vertical style is much easier to view than the standard table style.

Chapter 6 ■ repliCation

186

Setting Up NDB Cluster Replication with an Existing Database
(Offline)
Even with existing data, the procedure to set up NDB Cluster Replication is close to standard MySQL
replication if it is possible to secure a maintenance window. During a maintenance window, the applications
must not access the cluster even if the cluster is up and running. So, you need to ensure that your
applications are offline during setup. You can also achieve this goal by making the cluster single user mode
and allowing access only from the SQL node, which cannot be accessed from your application. See Chapter 8
for more information about single user mode.

To add a slave cluster to an existing cluster during a maintenance window, follow the instructions in the
following sections.

Install the New Cluster Used as a Slave
The first thing to do is to set up a cluster to be used as a slave. Be careful so that the slave cluster has
capacity to store the same data as the master. Although it is often ideal to have slave cluster with identical
configuration to the master, the configuration of the slave cluster is not necessarily identical to the master.
The only prerequisite is that the slave must have sufficient capacity. If the slave cannot store the same data as
the master, replication cannot be configured.

If replication filters are employed, the slave may have less data than the master. Only in such cases is it
possible to employ system layout with less capacity on the slave.

Copy Master Data to Slave
Take a backup from master and restore it on the slave. Make sure that master and slave have identical data at
this point. Refer to Chapter 8 for details of the backup and restore procedures.

If you use a replication filter, you can omit filtered tables from backing up and/or restoration.

Set Up Replication in the Same Way as an Empty Cluster
Continue the setup procedure from Step 2 of the previous section. If binary logging has been already enabled on
the master, you can issue a RESET MASTER command before starting the replication if you like. This command
clears all existing binary logs. Since there is no binary log to be applied, you don’t have to specify binary log
filename and position in CHANGE MASTER TO command if you issued RESET MASTER command on the master.

On the other hand, if you want to preserve binary logs on the master, note the current binary log
filename and position using SHOW MASTER STATUS command. Since master and slave have identical data at
this point, old binary logs must not be applied on slave. So, you have to specify the binary log filename and
position in the CHANGE MASTER TO command. Find an example CHANGE MASTER TO command with the binary
log filename and position in the next section.

Then, start the replication using the START SLAVE command and monitor the status using the SHOW
SLAVE STATUS command.

Setting Up NDB Cluster Replication with Existing Database (Online)
In practice, it is not easy to secure a maintenance window in production systems, because applications are
often used 24x7. Don’t panic. MySQL NDB Cluster has a capability to add a new slave cluster to an existing
cluster while the cluster is up and running and the applications are accessing or modifying data on the cluster.

To set up NDB Cluster Replication on a live system, some tricks are needed that are not seen in the
offline procedures, as shown next.

http://dx.doi.org/10.1007/978-1-4842-2982-8_8
http://dx.doi.org/10.1007/978-1-4842-2982-8_8

Chapter 6 ■ repliCation

187

Install New Cluster Used as Slave
Install a new cluster used as a slave just like offline procedure in the previous section. The prerequisites for
slave cluster are the same as for the offline procedure.

Configure Master SQL Node for Replication
Enable the binary log and set the server_id on the master. See Listing 6-1 for more details.

Take Native Backup from Master
The only available online backup method for MySQL NDB Cluster is native backup. From the management
client, execute the START BACKUP command to take a full backup of the master cluster.

Restore the Backup to Slave Cluster
To set up a new slave cluster with existing data, it is necessary to identify the binary log filename and
position of the backup. The key concept used here is epoch, as discussed earlier in this chapter. A full backup
taken from the master is a snapshot of data at a certain moment. Any native backup has an epoch that
represents the moment when the backup was taken. It is possible to restore information about the epoch
using the ndb_mgm command with the --restore-epoch (or -e, in short) option. An example command to
restore the epoch along with data restoration is shown in Listing 6-7.

Listing 6-7. Restoring Metadata, Data, and Epoch to the Slave Cluster

shell$ ndb_restore --ndb-connectstring=mgmhost --restore_meta\
 --restore_data --restore_epoch --nodeid=1 --backupid=1 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-1 \
 --disable-indexes

As a consequence of this option, the epoch is stored in the mysql.ndb_apply_status table on the
restored cluster.

 ■ Note Upon the offline procedure in the previous section, epoch and binary log position information is
not required because no data is modified during the setup and the existing binary logs are not used. on the
other hand, upon online procedure, data is modified and binary logs are continuously generated every second.
therefore, replication cannot be started from the binary log position where the full backup was taken without
retrieving the epoch from a backup.

on standard MySQl replication, it is possible to include the required position information within a backup. For
example, the mysqldump command has the --master-data option for this purpose. however, this option cannot be
used for MySQl nDB Cluster, because it is a distributed database and an SQl node cannot take an online backup.

Chapter 6 ■ repliCation

188

Identify Binary Log Filename and Position
The first thing you must do is retrieve an epoch from the slave cluster using the following query.

mysql> SELECT MAX(epoch) AS latest FROM mysql.ndb_apply_status;

This query can be executed from any SQL node on the slave cluster, because the mysql.ndb_apply_
status table is defined with the ndbcluster storage engine, which can be accessible from any SQL node.

Then, log in to an SQL node on the master cluster, which will work as a new replication master. Then
issue the query in Listing 6-8 with an epoch value determined by the previous query.

Listing 6-8. Determining Binary Log Filename and Position from mysql.ndb_binlog_index Table

mysql> SET @epoch := 2101677821788177;
mysql> SELECT
 -> SUBSTRING_INDEX(File, '/', -1) AS binlog_file,
 -> Position AS binlog_position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch > @epoch
 -> ORDER BY epoch ASC LIMIT 1;

Configure Replication
Go back to the slave cluster and log in to an SQL node, which will work as a new slave. Then, configure
replication using the CHANGE MASTER TO command just like in Listing 6-9. Specify the binary log filename
and position retrieved from the previous step.

Listing 6-9. Configuring Replication with Binary Log Filename and Position

mysql> CHANGE MASTER TO
 -> MASTER_HOST='masterhost',
 -> MASTER_USER='repl',
 -> MASTER_PASSWORD='PASSWORD',
 -> MASTER_PORT=3306,
 -> MASTER_LOG_FILE='mysql-bin.000123',
 -> MASTER_LOG_POS=1234567;

Substitute each parameter properly according to your system configuration and status. This CHANGE
MASTER TO command looks the same as with the standard MySQL replication without GTID enabled. There
is no difference on the CHANGE MASTER TO command. Only difference between the procedure to set up NDB
Cluster Replication and standard MySQL replication is how to identify the binary log position, which is a
preliminary step of this stage.

Optionally, you can secure a network connection between master and slave using TLS, as discussed
earlier in this chapter.

Finally, you can start the replication using the START SLAVE command as usual. Verify if the replication
setup is successful with the SHOW SLAVE STATUS command.

Failing Over NDB Cluster Replication Channel
It is recommended to have multiple replication channels when using NDB Cluster Replication.

Chapter 6 ■ repliCation

189

As discussed earlier in this chapter, an SQL node can receive modification from the data nodes only
while it’s running. While offline, a certain amount of binary log events will be missed on the master SQL
node. Except for a complete cluster shutdown, unavailability of master SQL node will break replication due
to missing data. To avoid this problem, it is necessary to make the master SQL node redundant. To achieve
this, the binary log must be enabled on more than one SQL node on the master. Then, it is possible to switch
replication channel to another master SQL node and continue replication with minimal downtime when a
master stops working for some reason. This scenario is shown in Figure 6-3 earlier in this chapter.

When to Failover
When a master SQL node has restarted, the binlog injector thread writes a special event called LOST_EVENTS
to the binary log. This event indicates that binary log events may be missed. The event is written upon restart
no matter if data is actually lost or not, because it is unknown to the SQL node whether cluster data has been
modified and events has been missed while the master SQL node has been offline.

In addition to a server crash, there are several scenarios that cause a LOST_EVENTS event. If the
connection between the master SQL node and the data nodes is lost, the binlog injector cannot receive
events until the connection is recovered. If the progress of the binlog injector thread is too slow to catch up
to the modifications made on the cluster, then events cannot be queued inside data node, the data node
consider the SQL node is lagging behind and disconnects it. In these cases, the LOST_EVENT event is written
to the binary log.

On the slave cluster, the slave SQL thread forcibly stops when it reads a LOST_EVENTS event from
the relay log. The slave SQL thread will not recover from stop due to LOST_EVENTS event without human
intervention. The error can be skipped using the sql_slave_skip_counter system variable; however, we
should not do so in general, because it will leave missing data as it is and will cause data master and slave
out of sync. Of course, this is the most significant symptom for time to start a failover.

Failover must be performed whenever replication stops and cannot be recovered. Of course, replication
failure due to LOST_EVENTS is a green signal to begin failover. This means that failover is mandatory when the
master SQL node restarts. What if the slave SQL node crashes? I recommend performing failover, because
the NDB Cluster Replication slave isn’t crash safe.

Still in other cases, failover must be done whenever replication slave threads are not working.
Monitor the replication status with SHOW SLAVE STATUS and see if two replication threads (Slave_IO_

Running and Slave_SQL_Running fields) are working fine. If not, begin failover of the replication channel.

 ■ Note MySQl Server has an ability to avoid inconsistency between master and slave upon slave crash. this
feature is called crash-safe slave. the implementation of crash-safe slave relies on transaction of InnoDB. With
crash-safe slave, user tables and the system table called mysql.slave_relay_log_info (defined as InnoDB
storage engine) are updated within the same transaction. this ensures that the binary log position and user data
in InnoDB tables are synchronized even upon crashes. however, it doesn’t ensure synchronization of binary log
position and NDBCluster tables.

Number of SQL Nodes with Binary Logging
Although the binary log is enabled on more than one SQL node, how many SQL nodes must have binary log
enabled then? The more SQL nodes have binary log, the more redundant replication will be. So, you might want
to enable binary log on many SQL nodes. However, the matter is not that simple, because there exists some
overhead on the data nodes, SQL node, and interconnect network to generate binary log on each SQL node.

Chapter 6 ■ repliCation

190

Too many SQL nodes with binary log enabled may harm system performance and/or system stability
badly, in the worst case. So, it is a good practice to enable binary log on adequate number of SQL nodes. In my
opinion, two or three is sufficient in most cases. Do not enable binary log on more SQL nodes than is necessary.

Failover Procedure
To failover a replication channel, follow these steps:

 1. Ensure the current slave SQL node has stopped completely.

 2. Determine the current epoch on the slave cluster using the mysql.ndb_apply_
status table.

 3. Determine the binary log filename and position using the mysql.ndb_binlog_
index table on new master SQL node.

 4. Configure replication using the CHANGE MASTER TO command on either the
current or a new slave SQL node.

 5. Start replication using the START SLAVE command.

Actually, the procedure itself is the same as Steps 5 and 6 in the previous section (online NDB Cluster
Replication setup procedure with existing database) except for the first step described previously. So, refer to
the previous section for more details about the procedure.

To ensure the current slave has stopped completely, issue the STOP SLAVE command if the slave SQL
node is running. If the slave SQL node is offline, do not start the slave SQL node unless the skip_slave_
start option is set. Do not issue the RESET SLAVE command unless the current epoch is identified on the
slave, because it clears the mysql.ndb_apply_status table. As of the MySQL NDB Cluster 7.3 series, the
ndb_clear_apply_status option is added. When a value of this option is OFF, RESET SLAVE will not clear the
mysql.ndb_apply_status table.

Additional Configuration for NDB Cluster Replication Channel Failover
I suggest two configuration options on the slave cluster with replication channel failover.

The first thing is to have more than one candidate slave SQL node on the slave cluster. Even though the
main purpose of the channel failover is to avoid losing binary log events while master SQL node is offline,
it is not possible to continue replication while the slave SQL node is offline as well. Since the MySQL Server
instance can be offline somehow, you need to get prepared for the scenario that slave SQL node become
offline by accident. Explicitly set server_id on all of the candidate slave SQL nodes in advance. Be careful
that no duplicates of server_id occur.

The second thing is to ensure replication is running on at most one slave SQL node. It is not possible
to start replication on more than one slave SQL node. It may cause problems during replication such as
data inconsistency or replication stops. By default, MySQL Server including SQL node for MySQL NDB
Cluster starts replication after the process has restarted if the replication is configured using the CHANGE
MASTER TO command. Once replication is unconfigured using the RESET SLAVE ALL command, replication
will not be started upon restart of slave SQL node. Alternatively, the skip_slave_start option suppresses
starting replication upon restart, too. Ensure that replication doesn’t start upon restart on all of slave SQL
nodes. I recommend adding the skip_slave_start option to all the SQL nodes, because it is not possible to
unconfigure replication upon crashes. Upon restart caused by crash, the only way to suppress replication is
using the skip_slave_start option.

Chapter 6 ■ repliCation

191

NDB Cluster Replication Daily Maintenance
To make NDB Cluster Replication stable, daily careful maintenance is important. Without appropriate
care, no software can be executed successfully. In this section, we discuss how to maintain NDB Cluster
Replication during a day-to-day business.

Monitoring NDB Cluster Replication
The most important part of maintenance is monitoring. Regularly check if the status is healthy and report
issues if one is detected. The command to monitor replication status is SHOW SLAVE STATUS just like with
standard MySQL replication. Listing 6-10 shows example output of the SHOW SLAVE STATUS command on
MySQL NDB Cluster 7.5.

Listing 6-10. Example Output of the SHOW SLAVE STATUS Command

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: masterhost1
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000010
 Read_Master_Log_Pos: 154
 Relay_Log_File: relay-bin.000004
 Relay_Log_Pos: 355
 Relay_Master_Log_File: mysql-bin.000007
 Slave_IO_Running: Yes
 Slave_SQL_Running: No
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 1590
 Last_Error: The incident LOST_EVENTS occured on the master. Message:

mysqld startup
 Skip_Counter: 0
 Exec_Master_Log_Pos: 154
 Relay_Log_Space: 3296
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: Yes
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: NULL

Chapter 6 ■ repliCation

192

Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 1590
 Last_SQL_Error: The incident LOST_EVENTS occured on the master. Message: mysqld

startup
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_UUID: a20a9ded-25cd-11e7-bcb2-3c970ec815c3
 Master_Info_File: /var/lib/mysql-cluster/master.info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Slave_SQL_Running_State:
 Master_Retry_Count: 86400
 Master_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp: 170420 23:43:38
 Master_SSL_Crl:
 Master_SSL_Crlpath:
 Retrieved_Gtid_Set:
 Executed_Gtid_Set:
 Auto_Position: 0
 Replicate_Rewrite_DB:
 Channel_Name:
 Master_TLS_Version:
1 row in set (0.00 sec)

The number of fields in the SHOW SLAVE STATUS command increases as the version goes up. Many fields
are informative; however, it doesn’t have good visibility. It is not necessary to monitor all fields. Instead,
monitor the most significant fields, which are discussed next.

Slave_IO_Running
This field indicates if the slave IO thread is running. The value of this field is Yes or No. The state of slave
IO thread roughly reflects state of network connection between master and slave. If the network has any
problems, the value of this field should be No. In Listing 6-10, the value of this field is Yes, so the network
connection must be good.

Slave_IO_State
While the value of Slave_IO_Running is Yes or No, value of this field is variety of string which indicates the
state of slave IO thread. The state indicates what slave IO thread is doing, such as Waiting for master to
send event, Connecting to master, or Queueing master event to the relay log.

Slave_SQL_Running
This field indicates if the slave SQL thread is running. The value of this field is Yes or No. The slave SQL
thread stops running if an error occurs when applying events in the relay log.

Chapter 6 ■ repliCation

193

Seconds_Behind_Master
This field shows a period of time indicating how long replication is behind. Each event in the binary log has
a timestamp of event generation, which indicates roughly time when the binlog injector thread receives
event from data nodes. Seconds_Behind_Master is calculated by taking a difference between the current
time and the timestamp of the currently executed event on slave. If all events in the relay log have been
executed, and no more events to execute are left, the value of this field is 0. Note that the value of this field is
an approximation and exact delay cannot be determined, because the master and slave are separate hosts.
Even if the network between the master and slave delays, it cannot be detected by this field.

Master_Log_File
The filename of the master binary log that the slave IO thread is currently reading.

Read_Master_Log_Pos
The position at the beginning of the event of master binary log where the slave IO thread is currently reading,
or the position of the end of the last event of master binary log where the slave IO thread has read.

Relay_Master_Log_File
The filename of master binary log which the slave SQL thread is currently executing.

Exec_Master_Log_Pos
The position at the beginning of an event of master binary log where the slave SQL thread is currently
executing, or the position of the end of the last event of master binary log where the slave SQL thread has
executed.

The pair of Relay_Master_Log_File and Exec_Master_Log_Pos is more important than the pair of
Master_Log_File and Read_Master_Log_Pos, because the former indicates the current position where the
slave data catches up to. When a slave encounters trouble, replication can be resumed using the current data
and the current values of Relay_Master_Log_File and Exec_Master_Log_Pos.

Last_*Errno*, and Last_*Error*
These fields indicate error information for the latest occurring errors. If no errors have happened since the
slave threads started, these fields are empty. Table 6-2 shows a list of the fields in the SHOW SLAVE STATUS
output with names starting with the Last prefix.

Chapter 6 ■ repliCation

194

Last_IO_Error_Timestamp and Last_SQL_Error_Timestamp were added on MySQL Server 5.6.3. Thus,
these fields are available MySQL NDB Cluster 7.3 series or later.

Values for Last_errno/Last_Error are the same as Last_IO_Errno/Last_IO_Error or Last_SQL_
Errno/Last_SQL_Error. So, these fields are essentially redundant, but handy to recognize the very latest
error that happened on the slave.

As of MySQL NDB Cluster 7.5, replication related tables are added on performance schema. These
performance schema tables can be used to monitor the replication status in addition to the SHOW SLAVE
STATUS command. Information equivalent to SHOW SLAVE STATUS command is split into several tables. While
SHOW SLAVE STATUS shows mixture of configuration and status for both slave IO thread and slave SQL thread,
performance schema tables are separated by thread type by whether configuration or status. Table 6-3 shows
a list of replication related performance schema tables.

Table 6-2. List of SHOW SLAVE STATUS Fields Indicating Error Information

Field name Description

Last_Errno Indicates the code of the error that happened the last
time either on the slave IO thread or slave SQL thread.

Last_Error A string representation of the last error happened either
on the slave IO thread or slave SQL thread. This field is
more informative than Last_Errno, because additional
information is added to the error string.

Last_IO_Errno Indicates the code of the error that happened the last
time on the slave IO thread.

Last_IO_Error A string representation of the last error happened on the
slave IO thread.

Last_IO_Error_Timestamp Indicates a timestamp when the last error happened on
the slave IO thread.

Last_SQL_Errno Indicates code of the error that happened the last time on
the slave SQL thread.

Last_SQL_Error A string representation of the last error happened on the
slave SQL thread.

Last_SQL_Error_Timestamp Indicates a timestamp when the last error happened on
the slave SQL thread.

Chapter 6 ■ repliCation

195

Since MySQL NDB Cluster doesn’t support multi-thread slave and group replication, four tables out of
eight in Table 6-3 are irrelevant for NDB Cluster Replication. When it comes to monitoring, configuration
is unimportant. So, you need to monitor two tables—replication_applier_status and replication_
connection_status. Note that information equivalent to Seconds_Behind_Master is missing from
performance schema, because it is considered buggy. Since no alternative information has been added, use
the SHOW SLAVE STATUS command if you want to monitor the replication lag.

 ■ Note Design decisions for replication related performance schema tables are found in Worklog 7374:
https://dev.mysql.com/worklog/task/?id=7374.

Restarting Master Cluster
Care must be taken when restarting the cluster because restarting the master SQL node will lose some
events while offline and will cause a LOST_EVENTS event. On the other hand, no special care is required when
restarting slave cluster, because replication can be resumed safely after a restart of the slave SQL node.

There are two types of restart procedures: system restarts and rolling restarts. This section shows
precaution upon restart for these two restart types.

 ■ Note MySQl nDB Cluster has yet another restart type called initial system restart. it should not be
performed upon nDB Cluster replication setup, because it will wipe all data and break replication. refer to
Chapter 10 for further details of restart procedures.

Table 6-3. List of Replication Related Performance Schema Tables on MySQL NDB Cluster 7.5

Table Name Description

replication_applier_configuration Configuration for slave the SQL thread.

replication_applier_status Status for slave the SQL thread.

replication_applier_status_by_coordinator Status for the coordinator thread for a multi-threaded
slave.

replication_applier_status_by_worker Status for worker threads for a multi-threaded slave.

replication_connection_configuration Configuration for the slave IO thread.

replication_connection_status Status for the slave IO thread.

replication_group_member_stats This table shows network and status information for
replication group members.

replication_group_members Statistical information for MySQL Group Replication
members.

https://dev.mysql.com/worklog/task/?id=7374
http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 6 ■ repliCation

196

System Restart on the Master Cluster
Upon a system restart, a LOST_EVENTS event is inevitable. Even if the SQL node is kept online, the connection
between the SQL node and data nodes will be lost while the cluster is offline. However, a LOST_EVENTS event
due to system restart can be ignored, because no data can be modified while the cluster is offline. When you
perform a system restart on the master cluster, follow these instructions:

 1. Stop the replication using the STOP SLAVE command from the slave SQL node.

 2. Stop applications and ensure no data access is made.

 3. Stop the master SQL nodes.

 4. Shut down the cluster (SHUTDOWN command from the ndb_mgm client).

 5. Perform the system restart.

 6. Start the master SQL nodes.

 7. Start replication using the START SLAVE command from the slave SQL node.

 8. You will see that slave SQL thread stops due to LOST_EVENTS. Confirm that the
error is caused by a LOST_EVENTS event. If the error is another type, stop this
procedure and investigate the problem.

 9. Stop replication using the STOP SLAVE command.

 10. Issue SET GLOBAL sql_slave_skip_counter=1 on the slave SQL node.

 11. Start replication again using the START SLAVE command from slave SQL node.

 12. See if replication is running healthy using the SHOW SLAVE STATUS command.

In this scenario, no replication channel failover is required. Rather, channel failover has no meaning,
because the occurrence of LOST_EVENTS event is inevitable on all SQL nodes. So, the LOST_EVENTS event due
to a system restart can be ignored as long as no data can be modified while the master cluster is offline.

Rolling Restart on Master Cluster
Upon a rolling restart of the master cluster, applications will continue writing, updating, and deleting data.
So, modifications will be made but not written to the binary log while the master SQL node is restarted as
part of the rolling restart. Overall the procedure of rolling restart is like this on the master cluster:

 1. Restart management nodes and data nodes just like usual rolling restart.

 2. Restart the SQL nodes in turn except for the one that acts as the current master.

 3. Failover the replication to an alternative channel.

 4. Restart the SQL node that was the previous master.

 5. Optionally, switch replication back to the original channel.

NDB Cluster Replication Performance Tuning
Performance is an important topic also for NDB Cluster Replication. If the performance of replication is
insufficient, the slave will start lagging behind and won’t catch up to the master. Such out-of-sync replica is
less useful in most cases. So, you should avoid unnecessary delays on the NDB Cluster Replication.

Chapter 6 ■ repliCation

197

Explicit Primary Keys
It is highly recommended to have explicit primary keys on all tables. If there is no explicit primary key, a
table must be scanned to find out the target rows by slave SQL thread. A table scan is a heavy-loaded task,
and should be avoided as much as possible. If a table has an explicit primary key, the row to be updated or
deleted can be accessed by primary key lookup.

Hardware Considerations
It is often misunderstood that a slave cluster can have less powerful hardware than the master cluster. Of
course, it’s wrong. If slave cluster has hardware with poor performance, it cannot write the same amount of
updates as the master cluster. So, the slave cluster must have hardware with a similar performance to master
cluster; equivalent CPUs, disks, network switches.

If you plan to add slave cluster to existing cluster, consider upgrading hardware of the existing cluster to
better hardware. As we discussed earlier in this chapter, more than one master SQL nodes will have binary
log, while only one SQL node tends to have binary log for point-in-time recovery purpose on non-replication
setup. The more SQL node have binary log, the more tasks arises on data node, SQL node, and interconnect
network. Especially, high-speed network is most important.

Dedicated Master SQL Node
It is best to dedicate SQL nodes to binary logging on the master cluster. Binary logging is a somewhat heavy
task. Ordinary queries may scramble resources and/or cause lock contention with binary logging.

It is ideal to dedicate SQL nodes to binary logging on separate server machines. However, it is very
costly. Having dedicated SQL node instances on the same server machines as the existing SQL nodes is a
reasonable alternative. It can avoid lock contention within the mysqld process at least.

Minimizing Binary Log Size on Master
Do not change two options from default; ndb_log_updated_only and ndb_log_update_as_write. If the ndb_
log_updated_only option is set to ON, which is the default, only changes for updated columns are written to
the binary log. If the ndb_log_update_as_write option is set to ON, which is the default, updates are written
as writes. This suppresses old row values to be written to the binary log. These options must be changed
when using conflict detection and resolution, otherwise, do not change them from default.

Batching Update on Slave
On the slave SQL node, enabling the slave_allow_batching option may improve performance of the slave
SQL thread. This option is only effective for NDB Cluster Replication. The same option exists on standard
MySQL Server, but it has no effect at all. When enabled, as the option name suggests, events are not
executed one by one, but executed together in batches. It is best to set this option to ON in busy NDB Cluster
Replication setups.

Maximum batch size for this option is 32KB. Batching is done per epoch. So, the batch size can be
smaller than 32KB if the total size of the transactions belonging to one epoch is smaller than 32KB.

Chapter 6 ■ repliCation

198

Reducing Synchronization of Binary Log to Disk
As the master and slave SQL nodes for NDB Cluster Replication aren’t crash-safe, setting sync_binlog=1
doesn’t make sense. It is recommended to set sync_binlog=1000 or similar on master SQL node. If the
binary log is enabled on slave (with log_slave_updates=ON), set sync_binlog=1000 on slave SQL node, too.

As of MySQL Server 5.7 and MySQL NDB Cluster 7.5, the default value for sync_binlog option is
changed to 1. This change makes sense for standard MySQL Server with InnoDB, but isn’t suitable for MySQL
NDB Cluster. Do not forget to set sync_binlog=1000 on MySQL NDB Cluster 7.5.

Event Buffering
On a busy cluster, it is possible that modifications are too fast and the event queue inside the data node gets
full. In such cases, the data node disconnects the lagging SQL node and continues its operation. A LOST_
EVENTS event is caused by disconnection. When a lagging SQL node is disconnected, a message like this one
is written in the cluster log.

Disconnecting node 52 because it has exceeded MaxBufferedEpochs (100 > 100), epoch 63612/1

Then, the following message is written on the disconnected SQL node.

[ERROR] cluster disconnect An incident event has been written to the binary log which will
stop the slaves.

This is not a desired situation. In such cases, increasing MaxBufferedEpochs and
MaxBufferedEpochBytes under [NDBD DEFAULT] section in config.ini will allow more room before
disconnecting lagging SQL nodes.

Conflict Detection and Resolution
MySQL NDB Cluster has a special ability to detect conflicts happening on a multi-master replication setup,
when more than one cluster acts as a master. In multi-master replication, data inconsistency can occur
because replication is asynchronous. Conflict of modification is a specific issue to multi-master replication.
It won’t happen on standalone cluster or master-slave replication instances. So, generally speaking,
maintaining multi-master replication is more difficult than master-slave replication. An ability to detect
conflicts that happened during the multi-master replication can ease development and operation of multi-
master NDB Cluster Replication. Since conflict detection is a little bit advanced topic and it’s not necessary
unless multi-master replication is used, you can skip this section for now if you like.

Multi-Master Replication
In MySQL replication, it is possible to configure a slave so it also acts as a master to other slaves. In such
topology, the intermediate MySQL Server relays updates from its master. Such relaying replication topology
is also known as cascading.

Chapter 6 ■ repliCation

199

It is also possible that the head of the cascading becomes the tail slave of the cascading. In that case, the
flow of replication forms a circuit. That type of replication is called circular replication. Figure 6-6 depicts
circular replication with four sets of MySQL NDB Cluster.

Figure 6-6. Circular NDB Cluster Replication with four clusters

Chapter 6 ■ repliCation

200

Figure 6-7 is a special case of circular replication, whereby two clusters make up circular replication;
one cluster is master and slave of another cluster. This type of replication is called multi-master replication.

By default, the slave doesn’t write binary logs for modification made by replication. Since modifications
are propagated only when they are written to the binary log, modifications from an upstream master won’t
be propagated to the downstream slaves by default. To allow binary logging for modifications done by
replication, set log_slave_updates to ON. This type of configuration is depicted in Figure 6-8.

When log_slave_updates is enabled in circular NDB Cluster Replication, all slave SQL nodes also
act as master; one SQL node applies modifications from master, and the same SQL node also writes events
produced by replication to its own binary log, which will be sent to the next slave, as depicted on the left side
of Figure 6-8. The overall topology of this type of circular replication is depicted on the right side of Figure 6-8.

Figure 6-7. Multi-master NDB Cluster Replication

Figure 6-8. One SQL node acts as both master and slave

Chapter 6 ■ repliCation

201

Alternatively, it is possible to configure circular replication on MySQL NDB Cluster without enabling log_
slave_updates. Figure 6-9 shows circular NDB Cluster Replication without enabling log_slave_updates.

In this case, every slave doesn’t store the binary log locally, but the other SQL node in the same cluster
stores the binary log instead.

Currently, only two types of circular topologies are supported:

•	 All slaves act as master, too, as shown in Figure 6-8.

•	 All slaves don’t store the binary log, and alternative SQL nodes become the master,
as shown in Figure 6-9.

It is not okay to mix both types of setup within the same circular replication setup. The latter is not yet
tested well, so I recommend configuring circular replication with log_slave_updates=1.

Conflicts Caused by Multi-Master Replication
The most significant problem with circular or multi-master replication is conflicts (or data inconsistencies
in other words). This section describes how conflicts happen in multi-master replication. In this section, we
discuss using examples with two sets of clusters.

Figure 6-10 is a simplified, abstracted, minimalized mode of the sequence of a conflict. Each cylinder
indicates a table stored in MySQL NDB Cluster. A square in each cylinder indicates the same row where the
value of id (which is a primary key of the table) is 1.

Figure 6-9. One SQL node acts as master, the other acts as slave

Chapter 6 ■ repliCation

202

At the initial state, the row with id=1 has identical values on both clusters. Then, the row is updated
to different values. This is possible because they are separate clusters running independently. Then, both
clusters start shipping the event in the binary log to the other cluster. Note that the values included in the
events are different. This causes binary log events with different values to be applied on each cluster. Thus,
the row values on both cluster become different eventually.

Of course, having different values for the same row on each cluster is a serious problem. Such a situation
is a data inconsistency. While data inconsistency should be avoided, it cannot be completely avoided on
standard MySQL replication, because it is asynchronous. On the other hand, MySQL NDB Cluster has a
functionality to detect such conflicts and resolve them automatically. We discuss how to configure conflict
detection and resolution on NDB Cluster Replication later in this section.

Figure 6-10. Conflict happens due to simultaneous updates on both clusters

Chapter 6 ■ repliCation

203

 ■ Caution Conflict detection and resolution of nDB Cluster replication certainly eases application
development using multi-master replication. however, it is still much more difficult than an application that
updates one cluster only, because the latter can utilize power of transactions, but the former cannot. resolving
inconsistencies after committing transactions is far more difficult than avoiding inconsistencies before
committing transactions, because transactions by definition can ensure data consistency. Conflict resolution is
essentially not a transactional operation, so it may break data consistency in certain scenarios. So, extra care
must be taken to use conflict detection and resolution.

Conflict Detection Methods
There are several types of methods to detect conflicts on NDB Cluster Replication. Each method has pros
and cons. So, you need to choose an appropriate one depending on application needs. Roughly speaking,
two categories of methods exist. One is timestamp-based and the other is epoch-based.

All methods detect if modifications are in conflict by comparing data row by row. On the other hand,
resolution will be done per row or per transaction depending on the method. The method can be chosen per
table. So, different tables may have different conflict detection methods.

The agent to detect and resolve the conflict is the slave SQL thread. So, all conflict detection and
resolution is done on the slave side only. An application can execute and commit transactions on
NDBCluster tables in the same way whether conflict detection is configured or not, because conflict is not
detected at commit time. Conflicts will be detected on the other cluster, which is slave of the cluster where
transactions are committed, if there is a conflict.

NDB$OLD(column_name)
Conflict detection and resolution method name begin with prefix NDB$ and end with parentheses with an
optional argument. In this case, NDB$OLD is a method name, and it takes one argument of column name.

NDB$OLD is a timestamp-based method. To use a timestamp-based method, a special column called
timestamp is required on the target table. A timestamp column in context of conflict detection isn’t a
TIMESTAMP data type in SQL. The column is called timestamp because it indicates the oldness of the row. The
actual data type for the timestamp column must be either INT UNSIGNED or BIGINT UNSIGNED. They should
also be defined as NOT NULL, because the timestamp column value is required every time when detecting
conflict. If the table has a suitable column already, it is not necessary to add a timestamp column explicitly.
Otherwise, you should.

The NDB$OLD method detects conflict if the current timestamp value in the target table is different from
what is included in the binary log event that’s going to be applied.

Once a conflict is detected with the NDB$OLD method, updates for the target row are rejected even if
conflicted rows are only some part of one transaction. This breaks atomicity of transaction, in other words.

 ■ Caution as a result of the conflict resolution, the state of the database may be inconsistent in terms of
transaction theory.

Chapter 6 ■ repliCation

204

Figure 6-11 illustrates how conflicts are detected using the NDB$OLD method.

Note that every time the target table is updated, timestamp column must be updated, too. This is
typically done by incrementing the timestamp column using this statement:

UPDATE tbl_name SET ... ts = ts+1;

Figure 6-11. Detecting conflicts using the NDB$OLD method

Chapter 6 ■ repliCation

205

Every time the conflicts are detected, updates against the same data should have been made on both
cluster at the same time. In other words, if the slave SQL thread on cluster2 detects a conflict, the target row
must be updated on cluster2 as well. This indicates that the binary log event due to the update on cluster2
should have shipped to cluster1, which will result in a conflict on cluster1, too. Thus, conflicts must be
detected and the application of the binary log event is rejected on both clusters when this method is used.

Note that the values of col column on Step 3 of Figure 6-11 have different values on both clusters. This
surely is an inconsistent state. Resolving this inconsistency is up to your application; your application must
determine which value is correct and will be preserved. In Figure 6-11, a table named t1$EX is depicted
at the bottom. This table is called the exceptions table, where information about conflict and resolution is
stored. Your application can use the information stored in this table when resolving inconsistencies. Details
of the exception table are described later in this chapter.

NDB$MAX(column_name)
This method detects when the timestamp value has changed like NDB$OLD method, but it resolves conflicts
by preserving the row value that has the higher timestamp value. So, value of the timestamp column is very
important when using this method.

Although it is possible to maintain the timestamp column value by incrementing the timestamp
column using statement like UPDATE tbl_name SET ... ts = ts+1 for this method, it will result in the same
timestamp value on both clusters. In that case, the conflict will be detected on both clusters and the conflict
won’t be resolved automatically. In this case, the behavior of NDB$MAX is identical to the NDB$OLD method. So,
there is no advantage to using the NDB$MAX method when the timestamp column is incremented upon each
update.

To overcome this problem, an external program is required, such as a sequence generator. Formerly,
snowflake developed by Twitter was popular for this purpose. However, the snowflake project has now
been discontinued, and is not maintained anymore. There are succeeding open source projects inspired by
snowflake. So, using one of them as a number generator for the timestamp column used by NDB$MAX method
is a good option.

Another option is to use lightweight, high-throughput NoSQL database software for sequence
generation, such as Riak, Redis, or memcached. Sequence generation must be extremely quick, so using SQL
for this purpose is not suitable for this purpose. So, using MySQL NDB Cluster via NDB API is a good option.
However, the application must access only a single instance of the cluster. Retrieving sequence number from
both cluster of multi-master replication is nonsense, because such sequence numbers can conflict as well.
Figure 6-12 illustrates multi-master replication using an external sequence generator.

Using wall-clock time is yet another option. It is not a perfect sequence generator in terms of the
possibility of duplicate values. The following expression generates sufficiently practical timestamp values,
although there is a possibility of generating values that are not arranged in chronological order within the
microsecond range.

FLOOR(unix_timestamp(now(6)) * 10000000000) + @@server_id;

This expression assumes that server_id is at most 9999. It is also acceptable to use arbitrary unique
identifiers instead of server_id.

Chapter 6 ■ repliCation

206

When using an external sequence generator, the location of the generator is an issue. Since multi-
master NDB Cluster Replication is often used for disaster recovery, the clusters reside in geographically
distant locations. That is, a certain level of network latency must exist between them. So, if the sequence
generator resides on one site, access from the other site will be slow in response. The network latency must
be taken into account when using external sequence generator over the network. It is also possible that the
sequence generator will go offline.

Figure 6-13 illustrates the general process flow of updates made on both clusters, which causes a conflict.

Figure 6-12. Multi-master NDB Cluster Replication with external sequence generator

Chapter 6 ■ repliCation

207

Figure 6-13. Conflict is detected and resolved with the NDB$MAX method

Chapter 6 ■ repliCation

208

On cluster2 in Figure 6-13, updates from cluster1 are rejected because timestamp in the table (1002)
is greater than what is included in the update from cluster1 (1001).

NDB$MAX_DELETE_WIN(column_name)
This method is identical to the NDB$MAX method, except for delete handling. In the NDB$MAX method, conflict
detection and resolution for DELETE statements is done just like NDB$OLD method. This means that rows
will be deleted only when the timestamp value in the binary log event is the same as the one in the table.
Otherwise, a conflict is detected. This design decision is because there is no new timestamp value for the
delete operation.

On the other hand, NDB$MAX_DELETE_WIN method has another strategy for delete handling. Delete
operations always have a higher priority than other operations. If the slave SQL thread attempts to delete
rows, the operation will be done even if a conflict occurs.

NDB$EPOCH()
This method is supported only in multi-master replication with exactly two clusters—one cluster is defined
as primary, the other is defined as secondary. In addition, each slave SQL node must be configured as
a master SQL node, just like the replication depicted in Figure 6-7 described earlier in this chapter. It is
repeated to avoid having to go back several pages. With this method, conflict detection and resolution are
asymmetric. This means modifications done on the primary always win when a conflict occurs. So, your
application can assume that committed transactions on the primary cluster will never be changed later by
conflict resolution.

With this method, no timestamp column is required. So you don’t have to modify your application so
that timestamp column is updated every time a row is updated. As the name suggests, this method uses
epoch to detect conflicts.

The epoch used by NDB$EPOCH is the master SQL node’s own epoch, which is sent to the slave and
returns through circular replication later. As shown in Figure 6-3, the master SQL node creates an event that
updates the mysql.ndb_apply_status table even though mysql.ndb_apply_status isn’t actually modified
on the master SQL node. This event is used to keep track of the epoch applied on slave SQL node, then
identify the binary log filename and position on master SQL node. So, on the slave SQL node, the mysql.
ndb_apply_status table is updated by the slave SQL thread as usual. Usually, updates against mysql.ndb_
apply_status aren’t recorded in the binary log, as the event is ignored by the binlog injector thread even if
the binary log is enabled and log_slave_updates is ON.

Chapter 6 ■ repliCation

209

Only when ndb_log_apply_status is enabled in addition to log_slave_updates, are updates against
mysql.ndb_apply_status table written to the binary log in addition to virtually generated updates against
the mysql.ndb_apply_status table. Thus, the master SQL node will receive a binary log event to update the
mysql.ndb_apply_status generated by itself. Figure 6-14 depicts event generation and transmission when
log_slave_updates and ndb_log_apply_status are ON. With this setup, the master SQL node can detect the
latest epoch, which boomerangs back via replication. Thus, these two options, ndb_log_apply_status and
log_slave_updates, are required for NDB$EPOCH and its variants.

Figure 6-15 depicts conflict detection and resolution using the NDB$EPOCH method.

Figure 6-14. Binary log event generation required for the NDB$EPOCH method

Chapter 6 ■ repliCation

210

Figure 6-15. Conflict is detected and resolved by the NDB$EPOCH method

Chapter 6 ■ repliCation

211

Note that the epoch is handled inside the data node. Epoch values are stored in the replication tables,
mysql.ndb_binlog_index and mysql.ndb_apply_status, for replication purposes. In Figure 6-15, the epoch
value inside of cluster1 indicates the current epoch value inside the data nodes of cluster1. For example,
epoch value is x at the initial state. The epoch value inside of cluster2 indicates the epoch value of cluster1
derived via mysql.ndb_apply_status table. The epoch value is also stored in each row, described as a row
epoch in Figure 6-14. At the initial state, the epoch values are described using constant x and y, assuming
they are old. Assume too that one-way replication will take approximately 200 milliseconds.

In Step 1 of Figure 6-15, the same row is updated on both clusters. A row has epoch E on cluster1.
I omitted the epoch value in the row on cluster2, because it’s not relevant to conflict detection and
resolution with the NDB$EPOCH method. We assume that the replication takes 200 milliseconds, so the current
epoch value in mysql.ndb_apply_status on cluster2 could be E - 2, because the epoch is generated every
TimeBetweenEpochs milliseconds, which is 100 by default. At this time, an update to mysql.ndb_apply_
status with epoch value E - 2 has already been written to the binary log on cluster2.

In Step 2 of Figure 6-15, the binary log events are sent to each other. Focus on the epoch values included
in the binary log events, which are actually values in the mysql.ndb_apply_status table. Since the epoch
value E included in a row on cluster1 is bigger than the epoch value E - 2 returned from cluster2, an update
by replication is identified as a conflict and resolved by ignoring it on the master SQL node of cluster1 in
Step 3 of Figure 6-16. Then, cluster1 sends an additional binary log event to fix the conflict on the slave. So,
inconsistency between the two clusters will be fixed on cluster2 after applying this event in Step 4.

NDB$EPOCH_TRANS()
This method is similar to the NDB$EPOCH method in the sense that conflict detection is done using epochs. On
the other hand, the way to conflict resolution is different, as it’s handled per transactions, not per row. The
NDB$EPOCH_TRANS method has advantages over NDB$EPOCH because transactions executed on the secondary
cluster are atomic with the NDB$EPOCH_TRANS method. With the NDB$EPOCH_TRANS method, a whole
transaction may be ignored on the primary cluster, and reverted later on the secondary cluster in the event
of a conflict. On the other hand, with the NDB$EPOCH method, only rows in conflict are ignored and reverted,
thus the transaction on the secondary cluster will be non-atomic. In addition to the transaction in conflict,
transactions dependent on the conflicted transactions also are reverted as a result of resolution.

NDB$EPOCH2() and NDB$EPOCH2_TRANS()
These methods are improved versions of NDB$EPOCH and NDB$EPOCH_TRANS, added to the MySQL NDB
Cluster 7.4 series. Even though the NDB$EPOCH2 method is available, there is no practical difference between
the previous method, NDB$EPOCH, even though its implementation and configuration procedure are different.
Only NDB$EPOCH2_TRANS makes sense compared to the old version.

The difference between NDB$EPOCH_TRANS and NDB$EPOCH2_TRANS is delete-delete handling. There is a
small chance that the primary and secondary clusters will go into inconsistent states after deleting the same
row on both clusters, because no epoch is stored for deleted rows so the program cannot compare epochs
for deleted rows. Listing 6-11 shows a scenario that causes this kind of inconsistency. Note that slave SQL
thread cannot apply modification until the transaction locking the target row is committed. Assume that
mysqlP> stands for the prompt on the primary, mysqlS> stands for the prompt on the secondary, and the
sessions are not closed or reopened during this example.

Chapter 6 ■ repliCation

212

Listing 6-11. An Example Scenario Where the Secondary Wins on the NDB$EPOCH_TRANS Method

mysqlP> INSERT INTO t VALUES (1, ... omit ...);
mysqlP> BEGIN;
mysqlP> DELETE FROM t WHERE id=1;

mysqlS> BEGIN;
mysqlS> DELETE FROM t WHERE id=1; -- delete-delete situation

mysqlP> COMMIT;
mysqlP> INSERT INTO t SET id=1 ...;
mysqlP> DELETE FROM t WHERE id=1; -- delete same row by chance

mysqlS> COMMIT; INSERT INTO t SET id=1 ...; -- the row is unlocked

mysqlP> SELECT COUNT(*) FROM t WHERE id=1;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec)

mysqlS> SELECT COUNT(*) FROM t WHERE id=1;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec)

According to the “primary always wins” policy, the row with id=1 must be deleted on both clusters.
However, it’s not deleted on the primary! Note that the INSERT following COMMIT on the secondary is
executed immediately after COMMIT, as they are executed within a single line, which should be quicker than
TimeBetweenEpochs. The NDB$EPOCH2_TRANS method can avoid this type of divergence, and the INSERT
following COMMIT on the secondary will be marked as a conflict. The example in Listing 6-11 is not 100%
reproducible, because of timing matters.

With the NDB$EPOCH2 and NDB$EPOCH2_TRANS methods, the binary log events caused by modifications done
on the secondary will be executed on the primary, then sent back to the secondary. These returning events are
called reflected operations, and will be re-executed on the secondary. Note that the binary log on SQL nodes
within the primary cluster grows very fast, because reflected operations are written to the binary log.

Due to the divergence that will occur right after the delete-delete conflict, it is better to route all delete
operations to one cluster unless NDB$EPOCH2_TRANS is used. It will require extra effort for the application
development. On the other hand, no divergence will happen but the secondary will occasionally win due to
reflected operations when using the NDB$EPOCH2_TRANS method.

Conflict Detection for Read Operations
As of the MySQL NDB Cluster 7.4 series, it is possible to detect conflicts for read operations that hold
exclusive row locks. An exclusive row lock is acquired by querying rows with the SELECT ... FOR UPDATE
statement.

Chapter 6 ■ repliCation

213

To enable conflict detection and resolution for read operations, the ndb_log_exclusive_reads option
must be set to ON on the SQL nodes. When this option is ON, reads with exclusive row locks are written to the
binary log as if they are UPDATE statements without modifying the rows. This is done by setting the row values
to the same values as the current ones, thus the row values are unchanged on the slave. The UPDATE events
written in the binary log will trigger conflict detection and resolution as usual, whether the conflict caused
by a real UPDATE or a read operation with an exclusive row lock. Thus, the conflict detection method to be
used for read operations is the same as with write operations.

Note that the size of the binary log will increase when ndb_log_exclusive_reads is set to ON. Extra CPU
resources will be required to handle the conflict detection and resolution. The statement must be exactly
SELECT ... FOR UPDATE. A SELECT ... LOCK IN SHARE MODE isn’t subject to conflict detection and resolution.

Setting Up Conflict Detection and Resolution
In this section, we discuss how to set up conflict detection and resolution. We assume that NDB Cluster
Replication is already configured and running. Conflict detection and resolution must be configured per
table. If you want to detect/resolve conflicts on 10 tables, you must configure it 10 times. The following is a
typical procedure to set up conflict detection and resolution for a newly created table.

 1. Configure the options required for conflict detection.

 2. Add an entry to the mysql.ndb_replication table.

 3. Create an exceptions table.

 4. Create a target table.

Step 1 is common for all tables. So, it is sufficient to do it once per cluster. Repeat Steps 2-4 for each
target table.

 ■ Note it is also possible to set up conflict detection and resolution for existing tables only if method used is
timestamp-based. however, this is not recommended, as all SQl nodes involving replication must be restarted
after adding an entry to the mysql.ndb_replication table and creating the exceptions table.

Let’s see the details of each step next.

Configure Options Required for Conflict Detection and Resolution
Some options for the SQL node are required for conflict detection and resolution in addition to what is
required for usual NDB Cluster Replication. The required options vary depending on the conflict detection
and resolution method described in the previous section. Table 6-4 shows a list of options required for
conflict detection and resolution. Set all options required for your desired conflict detection method
properly before proceeding to the next step. Some options cannot be changed online, and they require a
restart of the SQL nodes. Details of each option follow.

Chapter 6 ■ repliCation

214

When log_slave_updates is set to ON, the slave SQL thread writes the binary log for modifications
derived from the master, which is required for a cascading replication topology. As discussed earlier in this
section, there are two choices to configure multi-master NDB Cluster Replication, which is with or without
log_slave_updates, as shown in Figures 6-8 and 6-9. The former is the well tested and recommended.
Especially for the NDB$EPOCH method and its variants, log_slave_updates must be set to ON with exactly two
clusters set up. This means that only one SQL node behaves as both master and slave on each cluster, as
shown in Figure 6-14.

The default value for ndb_log_update_as_write is ON, which causes updates to be recorded as writes
in the binary log. This means that old row values are not written to the binary log, thus it saves the space
required for the binary log. Since a write event is treated like the REPLACE command for the NDBCluster
storage engine, this saves space well. However, this behavior isn’t suitable for conflict detection and
resolution, because it needs the old row values to detect and/or resolve conflicts. So, this option must be set
to OFF when using conflict detection and resolution.

The default value for ndb_log_updated_only is ON, which causes only the modified part of the row
values and the primary key value to be stored in the binary log. This saves the extra space required for the
binary log. However, this behavior is not suitable for conflict detection and resolution, because it requires
the old row image. This option must be set to OFF when using conflict detection and resolution.

As discussed earlier in this section, ndb_log_apply_status must be set to ON for the NDB$EPOCH method
and its variants. The default value for this option is OFF. When it’s set to ON, updates for the mysql.ndb_
apply_status table of the immediate master are written to the binary log on the slave SQL node. Of course,
to make this option effective, log_slave_updates must be set to ON as well.

For the NDB$EPOCH_TRANS and NDB$EPOCH2_TRANS methods, two options—log_bin_use_v1_row_events
and ndb_log_transaction_id—must be configured. The former must be set to OFF, and the latter must be
set to ON. This is required because transaction IDs must be tracked to resolve conflicts per transaction. When
these options are set to OFF and ON respectively, the transaction ID and optional flags are stored in each
binary log event. The size required for this extra information is 12 bytes when flags are not set, or 14 bytes
when flags are set.

When using the NDB$EPOCH2 or NDB$EPOCH2_TRANS methods, ndb_slave_conflict_role must be
explicitly set on both clusters. Valid values for this option are PRIMARY, SECONDARY, NONE, and PASS. Set this
option to PRIMARY or SECONDARY depending on the desired configuration. When this option is set to NONE
with these methods, the slave will stop due to an error. When this option is set to PASS, conflict detection is
not performed even if the tables are configured for conflict resolution using the NDB$EPOCH2 or NDB$EPOCH2_
TRANS methods.

Table 6-4. List of Options for Conflict Detection and Resolution

Option Name Value To Be Set Method

log_slave_updates ON Mandatory for all epoch-based methods:
NDB$EPOCH, NDB$EPOCH_TRANS, NDB$EPOCH_TRANS,
NDB$EPOCH2_TRANS

ndb_log_update_as_write OFF All

ndb_log_updated_only OFF All

ndb_log_apply_status ON Mandatory for NDB$EPOCH and its variants.

log_bin_use_v1_row_events OFF NDB$EPOCH_TRANS and NDB$EPOCH2_TRANS

ndb_log_transaction_id ON NDB$EPOCH_TRANS and NDB$EPOCH2_TRANS

ndb_slave_conflict_role PRIMARY or SECONDARY NDB$EPOCH2 and NDB$EPOCH2_TRANS

ndb_log_exclusive_reads ON or OFF All

Chapter 6 ■ repliCation

215

ndb_log_exclusive_reads must be set to ON when you want to detect and resolve conflicts for SELECT
... FOR UPDATE executed on both clusters. When this option is ON, SELECT ... FOR UPDATE is written as if
UPDATE command, which will update row values to the same values as before. Then, exclusive reads will be
subject to conflict detection and resolution.

Add Entry to mysql.ndb_replication Table
The mysql.ndb_replication system table plays a role in the configuration for conflict detection and
resolution. By default, this table doesn’t exist, so you must create it first when you use conflict detection and
resolution. To create the mysql.ndb_replication system table, execute the statement in Listing 6-12.

Listing 6-12. Creating mysql.ndb_replication System Table

CREATE TABLE mysql.ndb_replication (
 db VARBINARY(63),
 table_name VARBINARY(63),
 server_id INT UNSIGNED,
 binlog_type INT UNSIGNED,
 conflict_fn VARBINARY(128),
 PRIMARY KEY USING HASH (db, table_name, server_id)
) ENGINE=NDB
PARTITION BY KEY(db, table_name);

Note that the CREATE TABLE statement for the mysql.ndb_replication table is replicated to other
clusters, because circular NDB Cluster Replication is configured. So, it is sufficient to execute this command
on one SQL node only.

Configuration is done by inserting rows into this table.
The db and table_name columns specify the target table for conflict detection and resolution.
The server_id column specifies the server_id of slave SQL node where conflict detection and

resolution is done. If it’s specified as 0, then all SQL nodes will do conflict detection and resolution. If you
want to let conflict detection and resolution be done only on specific SQL nodes, insert one row per server_
id. A specific server_id is required for the NDB$EPOCH and NDB$EPOCH_TRANS methods. In this case, you need
to add one row to the mysql.ndb_replication table per server_id.

The binlog_type specifies the binary log image format. This column overrides the binary log generation
options such as the ndb_log_update_as_write and ndb_log_updated_only options on the master SQL node.
When it’ set to 0 or NULL, the server options are employed. The format is specified as a number, as described
in Table 6-5. Usually, you can set it to 0 or NULL to use the server default. If you have not changed ndb_log_
update_as_write and ndb_log_updated_only from the default (ON) to OFF, set this column to 7.

Chapter 6 ■ repliCation

216

The conflict_fn column specifies the conflict detection and resolution method to be used. The
method takes an argument depending on the method type.

Timestamp-based methods—NDBOLD, NDBMAX, and NDB$MAX_DELETE_WIN—take the timestamp
column name as an argument. If a timestamp column name is ts and a method to be used is NDB$OLD, then
this column should be set to NDB$OLD(ts). You cannot omit the argument when using timestamp-based
methods.

Epoch-based methods—NDB$EPOCH, NDB$EPOCH_TRANS, NDB$EPOCH2, and NDB$EPOXH2_TRANS—take a
number of extra bits to be stored per row. The argument can be omitted. If it’s omitted, the default value 6 is
employed, which is sufficient for the default configuration. The number of required bits varies depending on
the values of TimeBetweenEpochs and TimeBetweenGlobalCheckpoints.

By default, each row stores a 32-bit number, which indicates the global checkpoint ID, while the epoch
consists of a 64-bit number. This is because only the upper 32-bit part of epoch is required for recovery and
restart. An epoch actually consists of two 32-bit numbers. The upper is incremented upon each GCP (Global
Check Point), and the lower is incremented upon each micro-GCP and reset upon GCP. So, the lower part
will not grow bigger than the following value:

TimeBetweenGlobalCheckpoints / TimeBetweenEpochs - 1

Recall that the redo log is written to disk upon every GCP, not micro-GCP. So, the lower part which is
incremented upon every micro-GCP and reset every GCP isn’t required for recovery. However, it’s required
for epoch-based conflict methods. The lower part is very small usually. By default, it’s at most 19, which
requires 5 bits. The default value 6 is sufficient for the default GCP and micro-GCP settings. If you change
TimeBetweenEpochs and TimeBetweenGlobalCheckpoints from the default, you may have to change this
value from the default. Make sure sufficient bits are secured. Otherwise, false positives and negatives can
happen upon conflict detection.

Due to this reason, for epoch-based methods, a target table must be created after configuring conflict
detection and resolution by adding the required entries to the mysql.ndb_replication table. Otherwise, a
table cannot store the lower part of the epoch, and conflict cannot be detected at all.

Table 6-5. binlog_type Column Values

Value Label Description

0 NBT_DEFAULT Use the server default.

1 NBT_NO_LOGGING Do not log this table in the binary log.

2 NBT_UPDATED_ONLY Only updated columns are logged.

3 NBT_FULL All columns are logged whether they are updated or not.

4 NBT_USE_UPDATE Updates are logged as update. (Equivalent to ndb_log_
update_as_write=0.) This value isn’t typically used.
Specify 6 or 7 instead.

5 Not used

6 NBT_UPDATED_ONLY_USE_UPDATE Only updated columns are logged. Updates are logged as
update (not write).

7 NBT_FULL_USE_UPDATE All columns are logged whether they are updated or not.
Updates are logged as update (not write).

Chapter 6 ■ repliCation

217

Create an Exceptions Table
An exceptions table is a supplemental table used by conflict detection. Various kinds of information are
recorded in this table when conflicts are detected. An exceptions table can be used regardless of the method
employed. Even though this table is optional, I highly recommend creating it along with conflict detection,
because the information stored in this table is absolutely useful to your application. The definition of an
exceptions table varies depending on the target table. The table definition looks like Listing 6-13.

Listing 6-13. Definition of an Exception Table

CREATE TABLE target_table$EX (
 NDB$server_id INT UNSIGNED,
 NDB$master_server_id INT UNSIGNED,
 NDB$master_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,

 [NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,]
 [NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,]
 [NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,]

 target_table_pk_columns,

 target_table_non_pk_columns,

 PRIMARY KEY (NDB$server_id, NDB$master_server_id,
 NDB$master_epoch, NDB$count)
) ENGINE = NDBCluster;

The name of an exceptions table is the same as the target table plus the $EX suffix, and the exceptions
table should be located in the same database as the target table.

The definition of an exceptions table looks a bit complex. Columns with an NDB$ prefix and the
primary key at the bottom have fixed definitions. The former four columns are always required, whereas the
following three columns are optional. These columns have the meanings described in Table 6-6.

Table 6-6. Column Definition for the Exceptions Table

Column Name Description

NDB$server_id The server_id where the conflict was detected.

NDB$master_server_id The master’s server_id that sent the binary log to the slave where the conflict
was detected.

NDB$master_epoch The epoch value corresponding to the binary log that caused the conflict.

NDB$count A counter per target table. It’s reset upon restart of the slave SQL node.

NDB$OP_TYPE An optional column. Type of operation that caused a conflict.

NDB$CFT_CAUSE An optional column. Reason of conflict.

NDB$ORIG_TRANSID An optional column. A transaction ID that caused a conflict. This column is
useful with the NDB$EPOCH_TRANS or NDB$EPOCH2_TRANS methods, which may
write multiple rows into an exception per conflict.

Chapter 6 ■ repliCation

218

The optional NDB$ columns can be used as of the MySQL NDB Cluster 7.4 series. Since these columns
are informative, I recommend using them.

target_table_pk_columns is a list of columns that consists of the primary key of the target table. All
primary-key columns must have identical data types of the target table. Ensure that the columns have
identical character set and collation to ones in the target table if the data type is a string type. Since any
column included in the primary key must be NOT NULL, they must be set to NOT NULL in an exception table,
too. The order of the columns is not significant. You can list the columns included in the primary key in
any order. However, target_table_pk_columns must be placed before any of non-primary-key columns
of the target table and after NDB$count. Actually, you can place optional NDB$ columns and target_table_
pk_columns in any order. However, I recommend placing optional NDB$ columns before target_table_pk_
columns to avoid confusion.

As of MySQL NDB Cluster 7.4 series, if the table has multi-column primary key, it is not necessary to
include all primary-key columns of the target table into the exceptions table. You can specify only a part of
primary-key columns if you like.

target_table_non_pk_columns is a list of non-primary-key columns of the target table. A new value or
an old value of the column is stored upon conflict; for insert and update, a new value is stored, for delete, an
old value is stored.

Beginning with the MySQL NDB Cluster 7.4 series, it is possible to let non-primary-key columns have a
suffix of $OLD, $NEW, or both. As the name suggests, a non-primary-key column with an $OLD suffix will have
a new value, and a non-primary-key column with a $NEW suffix will have an old value upon conflict. It is
possible to have two columns with both an $OLD and a $NEW suffix per non-primary-key column. In this case,
both old and new values will be stored in these columns upon conflict of update. Since it is very useful to
compare a new value and an old value upon conflict of update, I recommend having both the $OLD and $NEW
columns. Upon conflict of an insert or delete, one of the $OLD or $NEW columns will not have a value. So, the
non-primary-key columns in an exceptions table must be nullable. Of course, it is not necessary to include
all non-primary-key columns in an exceptions table. Include only the columns of interest.

If a target table t1 has a primary-key column id and non-primary-key columns col1, col2, and col3,
then the exceptions table will look like Listing 6-14 for the MySQL NDB Cluster 7.4 series or newer.

Listing 6-14. Example Exceptions Table

CREATE TABLE t1$EX (
 NDB$server_id INT UNSIGNED,
 NDB$master_server_id INT UNSIGNED,
 NDB$master_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,

 id INT not null,

 col1$OLD INT,
 col1$NEW INT,
 col2$OLD VARCHAR(10) CHARACTER SET utf8mb4,
 col2$NEW VARCHAR(10) CHARACTER SET utf8mb4,
 col3$OLD DATETIME,
 col3$NEW DATETIME,

Chapter 6 ■ repliCation

219

 PRIMARY KEY (NDB$server_id, NDB$master_server_id,
 NDB$master_epoch, NDB$count)
) ENGINE = NDBCluster;

An exception table is populated only on the slave side where a conflict is detected. You can query it to
find information required to fix inconsistencies. Once you have read the rows from an exceptions table, you
can delete the rows using the DELETE statement. While rows are stored on one cluster, you don’t have to take
special care when deleting rows. Manipulation against an exceptions table will not be replicated.

 ■ Caution Do not truncate exceptions table. truncate table isn’t a DMl query on MySQl series. it’s treated
as DDl, and it recreates the table internally. it will break the dependency of the target table and the exceptions
table, and replication will fail when a conflict is detected. if you happen to truncate an exceptions table, restart
the slave SQl node to fix the problem.

Create a Target Table of Conflict Detection
Create the target table as intended. Once the table is created, conflict detection and resolution is activated.

Monitor the error log of the SQL nodes. If any problem happens, error messages will be written to
the error log at this point, because entries in the mysql.ndb_replication table won’t be checked and the
definition of the relevant exceptions table won’t be checked until the target table is created. If you find any
problem, review the configuration of the mysql.ndb_replication table and the definition of the exceptions
table. Then, fix the problem and start over.

Monitoring Conflict Detection
It is important to monitor if conflicts happen when using conflict detection. There are two ways to monitor
the status, as described next.

Monitoring Status Variables
When a conflict is detected, the status variables in Table 6-7 is updated. All the status variables listed in
Table 6-7 can be retrieved using SHOW GLOBAL STATUS LIKE 'Ndb_conflict%' on all versions, or SELECT *
FROM performance_schema.global_status WHERE variable_name LIKE 'Ndb_conflict%' on MySQL NDB
Cluster 7.5 or newer.

Chapter 6 ■ repliCation

220

Table 6-7. Status Variables Relevant to Conflict Detection and Resolution

Status Variable Description

Ndb_conflict_fn_max Number of times that a conflict is detected using the
NDB$MAX method.

Ndb_conflict_fn_old Number of times that a conflict is detected using the
NDB$OLD method.

Ndb_conflict_fn_max_del_win Number of times that a conflict is detected using the
NDB$MAX_DELETE_WIN method.

Ndb_conflict_fn_epoch Number of times that a conflict is detected using the
NDB$EPOCH method.

Ndb_conflict_fn_epoch_trans Number of times that a conflict is detected using the
NDB$EPOCH_TRANS method.

Ndb_conflict_fn_epoch2 Number of times that a conflict is detected using the
NDB$EPOCH2 method.

Ndb_conflict_fn_epoch2_trans Number of times that a conflict is detected using the
NDB$EPOCH2_TRANS method.

Ndb_conflict_trans_row_conflict_count Number of rows identified as conflicted by transaction
unit methods NDB$EPOCH_TRANS and NDB$EPOCH2_TRANS.

Ndb_conflict_trans_row_reject_count Number of rows reverted back due to conflict by
transaction unit methods. The value of this status
variable includes the value of Ndb_conflict_trans_row_
conflict_count.

Ndb_conflict_trans_reject_count Number of transactions reverted back due to conflict by
transaction unit methods.

Ndb_conflict_trans_detect_iter_count Number of iterations to detect dependencies of conflict
by transaction unit methods.

Ndb_conflict_trans_conflict_commit_count Number of committed transactions after resolving
conflict by transaction unit methods.

Ndb_conflict_epoch_delete_delete_count Number of times that a delete-delete conflict is detected.

Ndb_conflict_reflected_op_prepare_count Number of rows modified on the secondary when using
the NDB$EPOCH2 or NDB$EPOCH2_TRANS method.

Ndb_conflict_reflected_op_discard_count Number of rows modified on the secondary, then sent to
the primary via the binary log, applied on the primary,
and sent back to the secondary but discarded when
using the NDB$EPOCH2 or NDB$EPOCH2_TRANS method.

Ndb_conflict_refresh_op_count Number of operations executed on the secondary to
resolve inconsistency by overwriting data in the primary.
This status variable may increase only when using the
epoch-based method.

Ndb_conflict_last_conflict_epoch Last local epoch when conflict is detected.

Ndb_conflict_last_stable_epoch Last local epoch when modification is made but no
conflict is detected.

Chapter 6 ■ repliCation

221

To detect the occurrence of conflicts from your application, monitor the Ndb_conflict_fn* status
variables depending on the method used.

Monitoring Exceptions Tables
Another way to monitor conflict is to query the exceptions table. One or more rows will be inserted only
if conflicts occur. If the number of target tables is not huge, monitoring the exceptions table will not be an
expensive, high-load operation.

This strategy has some advantages over monitoring status variables. When a conflict happens, you’ll
often need to take further action in your application, because some data is reverted back silently due to
automatic resolution. For example, it might be necessary to notify the user that modification done by that
user was canceled; the user will have to do the operation again. With this strategy, you can write additional
code along with the monitoring code.

Conflict Detection Case Study
This section shows an example of the procedure to set up conflict detection and resolution using the
NDB$EPOCH_TRANS and NDB$EPOCH2 methods. The name of the example table for the conflict detection and
resolution is test.t_conflict with the following definition.

CREATE TABLE t_conflict (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 col1 VARCHAR(64),
 col2 DATETIME,
 INDEX ix1 (col1, col2)
) ENGINE=NDBCluster CHARACTER SET utf8;

Set Up Conflict Detection Using the NDB$EPOCH_TRANS Method
This example assumes that two clusters have already been installed and have been running with multi-
master replication. One SQL node per cluster acts as both master and slave. The server_ids assigned to
SQL nodes for replication are 1001 for cluster1 and 2001 for cluster2. Figure 6-16 illustrates the assumed
configuration.

Chapter 6 ■ repliCation

222

Additional SQL nodes or API nodes might exist in addition to those SQL nodes depicted in Figure 6-16.
They are just omitted for simplicity. With this setup, log_slave_updates should have been set already.

The first thing to do is add extra configuration to my.cnf on both clusters. Listing 6-15 shows an example
configuration of cluster1.

Listing 6-15. Example Configuration for the NDB$EPOCH_TRANS Method

[mysqld]
ndbcluster
ndb_connectstring = mgmhost
log_bin = mysql-bin
log_slave_updates
server_id = 1001
... snip ...
Additional configurations for NDB$EPOCH_TRANS method
ndb_log_update_as_write = OFF
ndb_log_updated_only = OFF
ndb_log_apply_status = ON
log_bin_use_v1_row_events = OFF
ndb_log_transaction_id = ON

To affect changes, SQL nodes must be restarted, because some of the options are not dynamic and
cannot be changed without restarting the server. After restarting both SQL nodes, restart the replication
again using the START SLAVE command. Recall that restarting the master SQL node will cause it to miss
receiving events during offline. To prevent this problem, you have two choices—restart the SQL nodes while
your applications are offline to ensure that no updates are made during restart, or configure SQL nodes on
the alternative replication channel first, and then switch replication to the alternative channel. Note that
replication will be stopped due to a LOST_EVENT event in the former case. You can safely ignore the error by
SET GLOBAL sql_slave_skip_counter = 1, if no modifications are actually done during the restart.

Figure 6-16. An example multi-master NDB Cluster Replication configuration for the NDB$EPOCH_TRANS
method

Chapter 6 ■ repliCation

223

The next step is to add entries to the mysql.ndb_replication table to configure conflict detection and
resolution. Assume that an alternative replication channel is configured with server_ids 1002 and 2002,
in addition to the SQL nodes with server_ids 1001 and 2001. In this case, conflict detection and resolution
must be done only on the primary side; SQL nodes with server_ids 1001 and 1002. This is because the
NDB$EPOCH_TRANS method is asymmetric, and the primary always wins. Listing 6-16 shows an example that
adds entries to the mysql.ndb_replication table. If you have not created the table yet, create it first.

Listing 6-16. Adding Entries to mysql.ndb_replication Table Required for the NDB$EPOCH_TRANS Method

mysql> INSERT INTO mysql.ndb_replication VALUES ('test', 't_conflict', 1001, NULL,
'NDB$EPOCH_TRANS()');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO mysql.ndb_replication VALUES ('test', 't_conflict', 1002, NULL,
'NDB$EPOCH_TRANS()');
Query OK, 1 row affected (0.00 sec)

Since one entry is required per server_id for the NDB$EPOCH and NDB$EPOCH_TRANS methods, two entries
are required in this case. Note that the argument against NDB$EPOCH_TRANS() is omitted in Listing 6-16. The
default value 6 is used in this case.

Create the exceptions table prior to the target table. The table name must be t_conflict$EX in this case.
The definition of an exceptions table varies depending on choices—whether each non-primary-column is
included or not, and whether optional columns are used or not. Listing 6-17 shows an example exceptions
table for the t_conflict target table.

Listing 6-17. Example Exceptions Table with Optional Columns and One Non-Primary-Key Column

CREATE TABLE t_conflict$EX (
 NDB$server_id INT UNSIGNED,
 NDB$master_server_id INT UNSIGNED,
 NDB$master_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,

 id BIGINT UNSIGNED not null,
 col1$OLD VARCHAR(64) CHARACTER SET utf8,
 col1$NEW VARCHAR(64) CHARACTER SET utf8,

 PRIMARY KEY (NDB$server_id, NDB$master_server_id,
 NDB$master_epoch, NDB$count)
) ENGINE = NDBCluster;

Finally, create the target table, as shown in Listing 6-18.

Chapter 6 ■ repliCation

224

Listing 6-18. Creating the Target Table for Conflict Detection and Resolution with the NDB$EPOCH_TRANS
Method

mysql> CREATE TABLE t_conflict (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 col1 VARCHAR(64),
 col2 DATETIME,
 INDEX ix1 (col1, col2)
) ENGINE=NDBCluster CHARACTER SET utf8;
Query OK, 0 rows affected (0.47 sec)

You’ll find messages like Listing 6-19 in the SQL node’s error log.

Listing 6-19. Example Messages Appear in the Error Log When Creating Tables

2017-05-06T03:28:22.329499Z 10 [Note] NDB Binlog: CREATE TABLE Event: REPLF$test/t_
conflict$EX
2017-05-06T03:28:22.778946Z 10 [Note] NDB Slave: Table test.t_conflict logging exceptions to
test.t_conflict$EX
2017-05-06T03:28:22.778965Z 10 [Note] NDB Slave: Table test.t_conflict using conflict_fn
NDB$EPOCH_TRANS.
2017-05-06T03:28:22.779511Z 10 [Note] NDB Binlog: CREATE TABLE Event: REPLF$test/t_conflict
2017-05-06T03:28:22.793209Z 10 [Note] NDB Binlog: logging ./test/t_conflict (FULL,USE_UPDATE)

Now you can test for conflict detection and resolution. Listing 6-20 shows an example of conflict
detection and resolution with the NDB$EPOCH_TRANS method. Assume that mysqlP> stands for the prompt
on the primary (session for the SQL node with server_id = 1001 on cluster1) and mysqlS> stands for the
prompt on the secondary (session for the SQL node with server_id = 2001 on cluster2).

Listing 6-20. Testing Conflict Detection and Resolution with the NDB$EPOCH_TRANS Method

PRIMARY
mysqlP> INSERT INTO t_conflict VALUES (1, 'Sun', NOW());
Query OK, 1 row affected (0.00 sec)

mysqlP> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysqlP> UPDATE t_conflict SET col1 = 'Moon';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

SECONDARY
mysqlS> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysqlS> UPDATE t_conflict SET col1 = 'Jupiter';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

PRIMARY
mysqlP> COMMIT;

Chapter 6 ■ repliCation

225

Query OK, 0 rows affected (0.00 sec)

SECONDARY
mysqlS> COMMIT;
Query OK, 0 rows affected (0.00 sec)

PRIMARY
mysqlP> SELECT * FROM t_conflict;
+----+------+---------------------+
| id | col1 | col2 |
+----+------+---------------------+
| 1 | Moon | 2017-05-06 12:37:50 |
+----+------+---------------------+
1 row in set (0.00 sec)

mysqlP> SELECT * FROM t_conflict$EX\G
*************************** 1. row ***************************
 NDB$server_id: 1
NDB$master_server_id: 1001
 NDB$master_epoch: 1835213755777034
 NDB$count: 3
 NDB$OP_TYPE: UPDATE_ROW
 NDB$CFT_CAUSE: TRANS_IN_CONFLICT
 NDB$ORIG_TRANSID: 1279907607296
 id: 1
 col1$OLD: Sun
 col1$NEW: Jupiter
1 row in set (0.00 sec)

SECONDARY
mysqlS> SELECT * FROM t_conflict;
+----+------+---------------------+
| id | col1 | col2 |
+----+------+---------------------+
| 1 | Moon | 2017-05-06 12:37:50 |
+----+------+---------------------+
1 row in set (0.00 sec)

mysqlS> SELECT * FROM t_conflict$EX;
Empty set (0.01 sec)

Note the following facts from this test example:

•	 The table on both clusters have identical row values even though they are updated to
different values. This means the conflict was resolved and the modification from the
primary won when the row was updated from both clusters at the same time.

•	 Only the exceptions table on cluster1 has an entry that indicates a conflict has
occurred. This means the conflict detection and resolution is done on the primary
cluster only, as defined in the mysql.ndb_replication table.

If you want to test further, try the following procedures as a lesson.

Chapter 6 ■ repliCation

226

•	 Inspect the binary logs using the mysqlbinlog command with the -vv option. See
which events are written on both clusters. Note that verbosity level increases every
time the option is specified. Row values are printed if the verbosity is 1 or larger.
Extra information is printed if the verbosity is 2 or larger.

•	 Delete rows from the exceptions table.

•	 Truncate the exceptions table and insert new rows. See what happens.

•	 Test delete-delete conflict handling.

Set Up Conflict Detection Using the NDB$EPOCH2 Method
The procedure to set up the NDB$EPOCH2 method, added to the MySQL NDB Cluster 7.4 series, is similar
to the NDB$EPOCH_TRANS method. The way to configure it is slightly different from the way you configure
NDB$EPOCH and NDB$EPOCH_TRANS.

The first difference is the server configuration. Listing 6-21 shows an example configuration of the SQL
node that acts as master and slave on cluster1.

Listing 6-21. Example Configuration of SQL Node for the NDB$EPOCH2 Method

[mysqld]
ndbcluster
ndb_connectstring = mgmhost
log_bin = mysql-bin
log_slave_updates
server_id = 1001
... snip ...
Additional configurations for NDB$EPOCH_TRANS method
ndb_log_update_as_write = OFF
ndb_log_updated_only = OFF
ndb_log_apply_status = ON
ndb_slave_conflict_role = PRIMARY

Note that the role of this SQL node is defined using the ndb_slave_conflict_role option instead of
entries in the mysql.ndb_replication table. On the other hand, don’t forget to specify ndb_slave_conflict_
role = SECONDARY for SQL nodes on the secondary cluster. The role must be explicitly set on both clusters.

The configuration does not include log_bin_use_v1_row_events = OFF and ndb_log_transaction_id = ON,
which were included in the example configuration of the NDB$EPOCH_TRANS method, because the method is
NDB$EPOCH2, which is not a transaction unit method.

The next step is to add an entry to the mysql.ndb_replication table, as shown in Listing 6-22.

Listing 6-22. Adding an Entry to the mysql.ndb_replication Table Required for the NDB$EPOCH2 Method

mysql> INSERT INTO mysql.ndb_replication VALUES ('test', 't_conflict', 0, NULL, 'NDB$EPOCH2(7)');
Query OK, 1 row affected (0.00 sec)

Note that the server_id column is set to 0. This indicates that conflict detection and resolution is
done on all SQL nodes that are configured as replication slaves. The asymmetry of the NDB$EPOCH2 method
is guaranteed by the ndb_slave_confict_role option, not the server_id column in the mysql.ndb_
replication table.

Create the exceptions table and the target table just like in the NDB$EPOCH_TRANS example. Then, conflict
detection and resolution is activated for the target test.t_conflict table.

Chapter 6 ■ repliCation

227

Application Modifications Required for Conflict Detection
While the conflict detection and resolution feature of circular NDB Cluster Replication is handy when you
want to update the same data from two clusters, it is not available without cost. You need to modify your
application so that it fits the conflict detection and resolution. In this section, we discuss how to adopt your
application so that fits with conflict detection and resolution.

Choosing the Right Conflict Detection Method
The first step to fitting your application into conflict detection and resolution is to choose the appropriate
method. As discussed in this chapter, there are two categories of methods—timestamp-based methods and
epoch-based methods. Table 6-8 lists the significant differences between the timestamp-based and epoch-
based methods.

When you decide to use one of the epoch-based methods, I recommend the newer versions,
NDB$EPOCH2 and NDB$EPOCH2_TRANS (over NDB$EPOCH and NDB$EPOCH_TRANS), because the newer methods are
easy to configure and have delete-delete handling.

Updating Timestamp Columns
With timestamp-based conflict detection and resolution, populating the timestamp column is the
application’s responsibility. The application must update the timestamp column anytime it updates the
table. Otherwise, conflicts cannot be detected. This requires extra effort to develop applications.

Even more, an external sequence generator is required for the NDB$MAX and NDB$MAX_DELETE_WIN
methods. This requires additional development and operational cost.

Triggers are useful to populate or update timestamp values. For the NDB$OLD method, it is sufficient to
implement a trigger that increments the timestamp column upon UPDATE. The INSERT trigger is not required,
because it is possible to specify a default column value when the CREATE TABLE is executed. For the NDB$MAX
and NDB$MAX_DELETE_WIN methods, it is a good idea to develop a user-defined function to retrieve the new
timestamp value from an external sequence generator, because it can be called from the UPDATE triggers.

Table 6-8. Major Differences Between Timestamp-Based and Epoch-Based Methods

Characteristics Timestamp-Based Method Epoch-Based Method

Number of clusters supported Any number of clusters in a
circular NDB Cluster Replication.

Two

Symmetry of clusters Symmetric; conflicts may be
detected on both clusters.

Asymmetric; a cluster will
have a primary or secondary
role. Primary always wins.

Table change Required; need to add a
timestamp column.

Not required, but tables
internally store extra bits.

Unit of conflict resolution Row; only conflicted rows
are resolved. It may break
transactional consistency.

Row or transaction;
transaction unit methods
can ensure transactional
consistency.

Is conflict resolution automatic? Yes for NDB$MAX and NDB$MAX_
DELETE_WIN. No for NDB$OLD.

Yes.

Chapter 6 ■ repliCation

228

Monitoring Conflict Detection
Unless your application can ignore all resolved conflicts silently, you need to monitor the status of conflicts
as discussed earlier in this section. Since push style notification is not available when conflicts are detected,
your application must monitor conflicts periodically.

Fixing Conflicts
In some cases, automatic conflict resolution isn’t sufficient for your application, and your application needs
to take further actions, such as:

•	 Notifying users that their updates may be canceled.

•	 Querying another cluster to ensure modification isn’t identified as a conflict.

•	 Verifying if the database is consistent and no constraints are violated. Readjusting
the data if necessary.

Information stored in the exceptions table is useful when taking further actions against conflicts. Once
you have done for conflicts, you can delete the rows in the exceptions table. If you like, you can keep the rows
in the exceptions table for later review.

Cautions and Limitations of Conflict Detection
Although conflict detection is a handy functionality, there are some drawbacks and limitations. So, extra
care and effort is required when using multi-master NDB Cluster Replication even if conflict detection and
resolution is available.

Binary Log Size
When conflict detection and resolution is employed, more space will be needed for the binary log. It is
therefore necessary to prepare more disk space and network bandwidth than what is required for NDB
Cluster Replication without conflict detection.

Setting ndb_log_update_as_write to OFF increases the binary log to approximately twice for update
operations. This is significant.

Since timestamp-based methods require a timestamp column in the target tables, it increases table size
as well as the binary log size.

Epoch-based methods require setting the ndb_log_apply_status option to ON, which will require extra
space per event in the slave’s binary log. When a transaction unit method is used, make sure that log_bin_use_
v1_row_events are set to OFF, and ndb_log_transaction_id is set to ON, which requires extra bytes per event.

Performance Overhead
Every time the binary log is applied on the slave SQL node, the slave SQL thread and data nodes check if a
conflict occurs. This requires extra CPU resources compared to what is required for NDB Cluster Replication
without conflict detection. You may have to upgrade the CPU on the SQL node that acts as a slave.

Chapter 6 ■ repliCation

229

Delay Is Critical
When using conflict detection and resolution, replication delay becomes more critical than NDB Cluster
Replication without conflict detection. The longer it delays, the higher chance that a conflict could arise. So
it is important to apply replication as quickly as possible when using conflict detection and resolution.

Transaction Handlings
Transactions must be atomic; all modifications are applied or nothing’s done at all. However, with the
row unit conflict resolution methods, only rows causing conflicts will be modified after the transaction is
committed. This breaks the atomicity, which is the “A” of ACID property, of the transaction. The database
will enter an inconsistent state.

With epoch-based methods, a transaction will be canceled after it is committed on the secondary. This
means durability, the “D” of ACID, isn’t ensured on the secondary cluster.

So, it is not possible to enjoy the power of transactions on NDB Cluster Replication with conflict
detection and resolution. It will make application development much more difficult than development on
the usual MySQL NDB Cluster, which is fully transactional. Due to this, I don’t generally recommend using
multi-master NDB Cluster Replication even if conflicts can be detected and resolved. Use it only if you are
prepared for the extra work caused by violations of the transaction model.

Replication to InnoDB
Standard MySQL replication supports replication from one storage engine to another with some limitations.
It is also possible to configure replication from MySQL NDB Cluster to InnoDB. Even though MySQL NDB
Cluster is a highly scalable system, there is a need for this type of replication to improve scalability. There are
some problems that cannot be solved with standalone MySQL NDB Cluster setup, such as:

•	 Access to the same set of data cannot scale, because MySQL NDB Cluster employs
shared-nothing architecture and data is horizontally distributed per row.

•	 Ordered index scans don’t scale well, unless user-defined partitioning is employed,
because the scans must involve all data nodes to complete.

•	 Analytic queries on InnoDB are often faster than on MySQL NDB Cluster.

Replication to InnoDB is a handy way to overcome these performance problems.

Requirements and Limitations
Since InnoDB and NDBCluster are different storage engines, there are requirements to replicate from a
NDBCluster master to an InnoDB slave. While they are different storage engines, note that not all functions
are supported upon replication.

Use mysqld Bundled with MySQL NDB Cluster
It is highly recommended that you use identical binaries for both master and slave. The InnoDB storage
engine is also included in the mysqld bundled with MySQL NDB Cluster. So, you can use it not only as an
SQL node but also as a slave MySQL Server. The mysqld program bundled with MySQL NDB Cluster has
some additional functionality compared to the one included with the standard MySQL Server package. Since
the slave must reproduce identical modifications as the master, differences in functionality may produce
problems.

Chapter 6 ■ repliCation

230

Binary Log Format Requirements
In NDB Cluster Replication, the master SQL node stores the binary log in a special format, which can be
handled by a MySQL NDB Cluster slave only. It is necessary to let the master MySQL NDB Cluster make its
binary log match InnoDB. On MySQL NDB Cluster, updates are recorded as writes in the binary log, when
ndb_log_update_as_write is set to ON, which is default for MySQL NDB Cluster. On the slave side, MySQL
NDB Cluster can handle such a binary log, and doesn’t report errors. However, InnoDB cannot. To replicate
from MySQL NDB Cluster to InnoDB, ndb_log_update_as_write = OFF must be set on the master SQL node.

On the master SQL node, duplicate entries are occasionally recorded into the binary log due to
architectural reasons, which results in an ER_DUP_ENTRY error upon insert or an ER_KEY_NOT_FOUND error
upon delete. To prevent issues on the slave SQL node, you must set slave_exec_mode = IDEMPOTENT. The
default value for this option is STRICT, whereby these errors are handled as actual errors. When this option is
set to IDEMPOTENT, the slave SQL thread simulates the behavior of NDB Cluster Replication slave. It ignores
these errors, and write row events (row-based format version of “inserts”) are handled as if they are REPLACE
commands.

MySQL NDB Cluster System Tables
There are several system tables in mysql database. As discussed these in this chapter, the master SQL
node generates events to update the mysql.ndb_apply_status table. When index statistics functionality is
enabled, two system tables mysql.ndb_index_stat_head and ndb_index_stat_sample are updated with the
ANALYZE TABLE command. These tables are created when the SQL node connects to the cluster. So, it will
not be created automatically on an InnoDB slave. You have to create them by hand or set a replication filter
to filter them out. However, I recommend not filtering the mysql.ndb_apply_status table out. The table is
required when you switch to an alternative replication channel.

Circular Replication and Conflict Detection
It might be technically possible to configure circular replication involving both MySQL NDB Cluster and
InnoDB. However, such a configuration is not supported. I do not recommend using inter-storage engine
circular replication.

In addition, conflict detection isn’t available for InnoDB. It’s a unique feature of MySQL NDB Cluster. So,
there’s no way to detect or avoid potential conflicts caused by circular topology.

Foreign Keys
A foreign key is a useful feature when ensuring referential constraints among multiple tables. However, how
foreign keys are implemented is left to the storage engine, and the implementation is different between
InnoDB and NDBCluster. For example, timing is different when a foreign key constraint is checked; commit
time on NDBCluster storage engine, and per statement on InnoDB. This may cause replication failure.

To prevent this problem, remove the foreign keys from the slave InnoDB tables. When foreign keys are
removed from the slave, no constraint checks are performed on the slave. However, checks should have
been performed on the master already. Modifications propagated to the slave must be free from constraint
violation.

The only remaining problem is cascading updates and deletes done by foreign keys. Cascading updates
and deletes are done inside the storage engine. So, modifications caused by cascading are not written to the
binary log. This assumes that the same cascading must be executed on the slave, as was done on the master.
This causes a problem when the table has a foreign key on the master, not on the slave. Do not use foreign
key cascading updates and deletes if you replicate from MySQL NDB Cluster to InnoDB.

Chapter 6 ■ repliCation

231

Unique Keys
NDB Cluster Replication avoids potential constraint violations against unique keys by deferring constraint
checks until the transaction commits. Unique key constraints broke replication on very old versions, but it
isn’t a problem on recent versions. However, it is still a problem when replicating to InnoDB, because unique
key constraints are checked upon every statement on InnoDB. So, remove unique key constraints on the slave
side, since you can assume all modifications derived from the master do not violate unique key constraints
upon every transaction commit.

Row Size Limitations
While MySQL NDB Cluster has row capacity up to 14KB, InnoDB has 8KB by default. This is may cause a
problem when the table has a row larger than 8KB. In such cases, use 32KB or 64KB innodb_page_size.

Setting Up Replication to InnoDB
In this section, we discuss how to set up replication from MySQL NDB Cluster to InnoDB.

Configure Master SQL Node and Create a Replication User
You need to enable the binary log and set server_id explicitly. Do not forget to set ndb_log_update_as_
write = OFF, which is required for replication from a NDBCluster master to other storage engine slaves.
Listing 6-23 shows an example configuration of the master SQL node.

Listing 6-23. Example Configuration for Master SQL Node When Replicating to InnoDB

[mysqld]
ndbcluster
... snip ...
server_id = 1001
log_bin = mysql-bin
binlog_format = ROW
ndb_log_update_as_write = OFF

Create a slave user if no suitable user exists. Refer back to Listing 6-2 for an example.

Configure Slave for Replication
On the slave side, an explicit server_id must be set, and slave_exec_mode must be changed from the
default. Listing 6-24 shows an example configuration of an InnoDB slave.

Listing 6-24. Example Configuration for Slave MySQL Server When Replicating from MySQL NDB Cluster
Master

[mysqld]
server_id = 2001
slave_exec_mode = IDEMPOTENT
replicate_wild_ignore_table = mysql.ndb_index%

You can set additional replication filters if you like. Then, start the slave MySQL Server or restart it if it’s
already running.

Chapter 6 ■ repliCation

232

Take a Backup from Master
Execute the START BACKUP command to take a native online backup on the master cluster. Refer to Chapter 8
for more information about native backups. The native backup is the only way to take a backup from online
MySQL NDB Cluster unless it’s ensured that no modifications are made while taking a backup. Listing 6-25
shows example output of a native backup.

Listing 6-25. Example Output of a Native Backup

ndb_mgm> START BACKUP
Connected to Management Server at: mgmhost
Waiting for completed, this may take several minutes
Node 1: Backup 1 started from node 255
ndb_mgm> Node 1: Backup 1 started from node 255 completed
 StartGCP: 527473 StopGCP: 527476
#Records: 18444 #LogRecords: 112
 Data: 575936 bytes Log: 4536 bytes

Note that StopGCP printed in the console when the backup completes. This value is required in the later
step. StopGCP is 527476 in this example.

I recommend taking another backup for schemas using the mysqldump command, because SQL based
DDL is easy to restore on the InnoDB slave. Specify the --no-data option with the mysqldump command to
suppress data backup. Listing 6-26 shows an example that takes a schema backup from the master SQL node.

Listing 6-26. Taking Schema Backup from Master SQL Node

shell$ mysqldump -h masterhost -uroot -p db_name --no-data > dump.sql

Restore Schemas to Slave
Restore the schemas using the dump taken by the mysqldump command. Before restoring to the slave SQL
node, change the storage engine in the dump file. This can be done using the sed command on UNIX-like
systems as follows:

shell$ sed -i 's/ENGINE=ndbcluster/ENGINE=InnoDB/g' dump.sql

Then, restore the dump file as usual to the MySQL Server; for example, use the SOURCE command from
the mysql CLI:

mysql> SOURCE dump.sql

Check if all tables are created on the slave.

Restore Data to Slave
This is the trickiest step of this procedure. A native NDB backup consists of two parts: the data and log. Both
parts must be restored to recover a consistent snapshot at a certain point of time. There are two ways to
restore the backup to the InnoDB slave.

One way is to use an intermediate temporary cluster. Restore a native backup to the temporary cluster
first, ensure no modifications are done, then take a backup using the mysqldump command from the
temporary cluster. The dump taken using mysqldump can be restored just like with a standard MySQL Server.

http://dx.doi.org/10.1007/978-1-4842-2982-8_8

Chapter 6 ■ repliCation

233

The other way is to convert the data part into tab-separated files, then restore it using the LOAD DATA
INFILE command. Conversion can be done using the ndb_restore command. The required options are
--print-data, --tab, and --append. The --print-data option dictates the ndb_restore command to print the
data instead of restoring it to a running cluster. The --tab option specifies the target directory where the tab-
separated files are created; a tab-separated file is created per table under this directory. The --append option
indicates that tab-separated files are not overwritten and new data is appended when they already exist.

Listing 6-27 shows an example of converting a backup into tab-separated files.

Listing 6-27. Converting a Native Backup into Tab-Separated Files Using the ndb_restore Command

shell$ ndb_restore -n 1 -b 1 --print-data --tab=/backup/tab-files --append \
 /path/to/backup

Since a native backup is created per data node, repeat the same command for all the data nodes.
The -n option in ndb_restore command specifies a node ID where the backup is generated and the -b
option specifies a backup ID assigned to each backup. Refer to Chapter 8 for more information about
the ndb_restore command. Then, restore the tab-separated files into the InnoDB slave using the
LOAD DATA INFILE command. Make sure a data part is restored completely prior to restoration of a log part.

The next step is to restore the log file included in the native backup. As of MySQL NDB Cluster 7.5.4, the
ndb_restore command can generate SQL statements that can be directly executed on MySQL Server.
To generate the executable SQL log, specify the --print-sql-log option. Even when this option is specified,
unnecessary header and footer lines are printed as well. To suppress these lines, execute the ndb_restore
command, as shown in Listing 6-28.

Listing 6-28. Converting a Native Backup Log into SQL Format

shell$ ndb_restore -n 1 -b 1 --print-sql-log /path/to/backup \
 | egrep '^INSERT|^DELETE|^UPDATE' >> dump-log.sql

Repeat the same command for all data nodes. Then, execute the generated SQL file on the slave server.
Since the ndb_restore command can be used against a backup taken from older versions, you can convert
backup logs into SQL format using the ndb_restore command bundled with 7.5.4 or newer.

Create System Tables
Create the mysql.ndb_apply_status table identical to the master except for the storage engine. Create it
using the InnoDB storage engine instead of NDBCluster.

Set Up Replication
Finally, set up replication using the CHANGE MASTER TO command. The first step is to retrieve binary log
filename and position from the mysql.ndb_binlog_index table on the master SQL node. The required
information is the StopGCP value retrieved when the backup was taken. Listing 6-29 shows an example query
that retrieves the binary log filename and position.

Listing 6-29. Retrieving Binary Log Filename and Position from the mysql.ndb_binlog_index Table Using
StopGCP

mysql> SET @stopgcp = 527476;
mysql> SELECT
 -> SUBSTRING_INDEX(File, '/', -1) AS binlog_file,

http://dx.doi.org/10.1007/978-1-4842-2982-8_8

Chapter 6 ■ repliCation

234

 -> Position AS binlog_position
 -> FROM mysql.ndb_binlog_index
 -> WHERE gci > @stopgcp
 -> ORDER BY epoch ASC LIMIT 1;

Specify the filename and position retrieved by this query in the CHANGE MASTER TO command. Then,
execute the START SLAVE command to start replication, and check the replication status using the SHOW
SLAVE STATUS command.

Tips When Using InnoDB as a Slave
There are several tips when using InnoDB as a slave of MySQL NDB Cluster.

Resume Replication from Alternative Channel
It is also true for the master SQL node that data can be missing from the binary log for various reasons, such
as the master SQL node being offline even if the slave is InnoDB. So, redundancy is required for the master
SQL node. In the event of an unrecoverable replication failure such as LOST_EVENTS event, switch to an
alternative master SQL node using the epoch information stored in the mysql.ndb_apply_status table, just
like for NDB Cluster to NDB Cluster replication.

Speed Up Updates by Skipping Log Synchronization
In general, the write speed of MySQL NDB Cluster is faster than InnoDB. This will cause unnecessary
replication delay on the InnoDB slave. To prevent delays on the InnoDB slave, I recommend setting innodb_
flush_log_at_trx_commt to 0 or 2 on the slave. This will skip synchronizing InnoDB log to disk upon
transaction commit. This setting is not recommended in general, because the last committed transactions
that have not synchronized to disk may be lost upon machine failures.

Since the mysql.ndb_apply_status table is updated within the same transaction to other tables, you
can safely restart replication using the epoch in the table in the event of crash. Even if replication cannot
be restarted for some reason, you can set up InnoDB slave again using the master data. Even more, it is also
possible to clone a slave using the mysqldump command with the --dump-slave option as well as other
standard method such as MySQL Enterprise Backup, if you have multiple slave servers.

MySQL Server Options Related to Cluster Replication
For your reference, the MySQL Server options related to NDB Cluster Replication are listed in Table 6-9.

Chapter 6 ■ repliCation

235

Table 6-9. List of NDB Cluster Replication Related Options in mysqld

Option Name Default Description

log_bin None Enables the binary log when specified. The argument
of this option is used as a base name of binary log files.

sync_binlog 0 (<= 7.4)
1 (>= 7.5)

Synchronizes the binary log to disk after handling the
number of events specified by this option. Set this
option to a larger value such as 1000 on MySQL NDB
Cluster.

log_slave_updates OFF When enabled on slave, all modifications propagated
from the master are recorded in the slave’s binary log.

ndb_log_bin ON Start the binlog injector thread.

server_id None The server identifier assigned to the server.

server_id_bits 32 Effective bits of server_id. The range of this option is
7 ~ 32.

binlog_format STATEMENT (<= 7.4)
ROW (>= 7.5)

Format of binary log. NDB Cluster Replication only
supports row format.

expire_logs_days None Binary logs are automatically deleted after the number
of days specified with this option.

ndb_log_updated_only ON When enabled, only the modified part within a row is
recorded in the binary log. Must be OFF when using
conflict detection or InnoDB slaves.

ndb_log_update_as_write ON When enabled, updates against NDB tables are
recorded as write in the binary log. Must be OFF when
using conflict detection or InnoDB slaves.

ndb_log_apply_status OFF When enabled, modifications against the ndb_apply_
status table from a direct master are written to the
binary log. Must be OFF when using the epoch-based
conflict detection method.

ndb_log_binlog_index ON Mapping between epoch and binary log position is
written to the ndb_binlog_index table.

slave_allow_batching OFF When enabled, updates are applied in batches on the
slave. This will improve the slave performance.

log_bin_use_v1_row_
events

OFF When disabled, version 2 of binary log format is used.
Required for ndb_log_transaction_id option.

ndb_log_transaction_id OFF When enabled, the transaction ID of the NDBCluster
storage engine is written to each binary log entry.
Needed for epoch-based conflict detection method.

ndb_slave_conflict_role None Specifies the role of the server as PRIMARY or
SECONDARY. Required for the NDB$EPOCH2 and
NDB$EPOCH2_TRANS conflict detection methods.

ndb_log_exclusive_reads OFF When enabled, exclusive reads are written to
the binary log so that they are subject to conflict
detection.

Chapter 6 ■ repliCation

236

Notes and Limitations of NDB Cluster Replication
There are several limitations on NDB Cluster Replication. The following features are unavailable on NDB
Cluster Replication. If you want to use these features, consider using InnoDB and the standard MySQL
replication instead of NDB Cluster Replication.

•	 GTID (Global Transaction Identifier)

•	 Multi-thread slave

•	 Multi-source replication

•	 Group Replication

Ensure that all tables have explicit primary keys when using replication, because an error might occur
on replication in the event of node failures if there’s no explicit primary key on some tables. It is also a
problem when a table is scanned when applying modification if the table doesn’t have explicit primary key.
In general, having a primary key on all tables is highly recommended from a development point of view as
well as from a replication point of view.

Summary
NDB Cluster replication is powerful feature to complement several aspects of MySQL NDB Cluster. Such as,

•	 Disaster recovery or standby cluster;

•	 Read scaling for same data set;

•	 Inter-storage engine replication;

This makes MySQL NDB Cluster more useful in various cases.
From the next section, we'll discuss daily tasks and maintenance related topics. To keep the database

cluster healthy, it should be maintained well on a daily basis. The first topic of maintenance tasks is client
and utilities for MySQL NDB Cluster.

PART III

Daily Tasks and Maintenance

239© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_7

CHAPTER 7

The NDB Management Client
and Other NDB Utilities

MySQL NDB Cluster comes with a range of utilities for managing, obtaining information from, and
troubleshooting the cluster. The most commonly used utility is the NDB management client, ndb_mgm, which
connects to the management nodes and can be used to get status information, create backups, etc. This
chapter goes into detail about the management client and provides an overview of the other utilities.

The NDB Management Client
The NDB management client is special, as it is the only utility that exclusively communicates with the
management nodes. Whereas all the data nodes, management nodes, and API/SQL nodes require a node ID
in order to connect, the NDB management client does not require a node ID. This means it is always possible
to connect to the cluster using the management client even if all configured API node IDs have been used.
Some of the tasks that can be performed by the management client are:

•	 Start data nodes that are in the “no start” status. See Chapter 10 for an example.

•	 Stop a single management or data node, all data nodes, or all management and data
nodes. See Chapter 10 for details.

•	 Restart management or data nodes. See Chapter 10 for examples.

•	 Start and abort online NDB backups. See Chapter 8 for details.

•	 Display information about the status of the cluster in terms of which nodes are
online and from which hosts connections are accepted.

•	 Manage the cluster log. See Chapter 16 for details.

•	 Create reports.

•	 Create or drop node groups. See Chapter 10 for an example of creating a new node
group.

•	 Enter and exit single user mode.

•	 Purge stale sessions.

•	 Set the text used for the prompt.

https://doi.org/10.1007/978-1-4842-2982-8_7
http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_8
http://dx.doi.org/10.1007/978-1-4842-2982-8_16
http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

240

The rest of this section discusses the most common uses of the ndb_mgm client, excluding cases
discussed in other chapters, such as creating backups.

Invoking the NDB Management Client
There are only a few options available when starting the management client, of which the most important
are the following (ordered alphabetically according to the long version of the option name):

•	 --defaults-extra-file=.... Read configuration options from this file in addition to the
default configuration file. See also the --defaults-file option.

•	 --defaults-file=.... This works the same as for all other MySQL programs. ndb_mgm
will read the [mysql_cluster] and [ndb_mgm] groups. Reading a configuration file
can be useful to set the ndb-connectstring option.

•	 --execute=.../-e. A command to execute. This works the same way as for the mysql
command line client. All commands that can be executed interactively through the
management client can also be executed directly using the -e or --execute=...
command line option. If the command consists of more than one word, the
command must be quoted or the spaces escaped with a backslash (\). For example:
ndb_mgm -e "START BACKUP". An advantage of executing commands this way is that
the output can be redirected to another program or a file.

•	 --help. Display information about the available options and the defaults.

•	 --ndb-connectstring=.../-c. A semicolon-separated list of the hostname and port of
the management nodes. The format for each management node is hostname:port.
The default is localhost:1186. See Chapter 4 for details.

•	 --no-defaults. Do not read any configuration files. See also --defaults-file.

•	 --prompt=.../-p. Specify the text used for the prompt. The default is ndb_mgm>. This
feature is new in MySQL NDB Cluster 7.5. The use is similar to setting the prompt of
the mysql command-line client with the exception that there is no support for special
sequences such as \c to add a counter.

To get additional information about the command line, including options not mentioned here, use the
--help argument, as shown in Listing 7-1.

Listing 7-1. Output of ndb_mgm --help

shell$ ndb_mgm --help
Usage: ./mysql/bin/ndb_mgm [OPTIONS] [hostname [port]]
MySQL distrib mysql-5.7.18 ndb-7.5.6, for linux-glibc2.5 (x86_64)

Default options are read from the following files in the given order:
/etc/my.cnf /etc/mysql/my.cnf /usr/local/mysql/etc/my.cnf ~/.my.cnf
The following groups are read: mysql_cluster ndb_mgm
The following options may be given as the first argument:
--print-defaults Print the program argument list and exit.
--no-defaults Don't read default options from any option file,
 except for login file.
--defaults-file=# Only read default options from the given file #.

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

241

--defaults-extra-file=# Read this file after the global files are read.
--defaults-group-suffix=# Also read groups with concat(group, suffix)
--login-path=# Read this path from the login file.

 -?, --usage Display this help and exit.
 -?, --help Display this help and exit.
 -V, --version Output version information and exit.
 -c, --ndb-connectstring=name
 Set connect string for connecting to ndb_mgmd. Syntax:
 "[nodeid=<id>;][host=]<hostname>[:<port>]". Overrides
 specifying entries in NDB_CONNECTSTRING and my.cnf
 --ndb-mgmd-host=name same as --ndb-connectstring
 --ndb-nodeid=# Set node id for this node. Overrides node id specified in
 --ndb-connectstring.
 --ndb-optimized-node-selection
 Select nodes for transactions in a more optimal way
 (Defaults to on; use --skip-ndb-optimized-node-selection to disable.)
 -c, --connect-string=name
 same as --ndb-connectstring
 --core-file Write core on errors.
 --character-sets-dir=name
 Directory where character sets are.
 --connect-retry-delay=#
 Set connection time out. This is the number of seconds
 after which the tool tries reconnecting to the cluster.
 --connect-retries=# Set connection retries. This is the number of times the
 tool tries connecting to the cluster.
 -e, --execute=name execute command and exit
 -p, --prompt=name Set prompt to string specified
 -v, --verbose=# Control the amount of printout
 -t, --try-reconnect=#
 Same as --connect-retries

Variables (--variable-name=value)
and boolean options {FALSE|TRUE} Value (after reading options)
--------------------------------- --
ndb-connectstring (No default value)
ndb-mgmd-host (No default value)
ndb-nodeid 0
ndb-optimized-node-selection TRUE
connect-string (No default value)
core-file FALSE
character-sets-dir (No default value)
connect-retry-delay 5
connect-retries 12
execute (No default value)
prompt (No default value)
verbose 1
try-reconnect 12

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

242

Getting Help from Inside the Client
The documentation of the commands supported by the management client is in the MySQL Reference
Manual at https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-mgm-client-commands.html. An easier
way to get a quick reference is to use the HELP command inside the management client. The overview of the
help is shown in Listing 7-2. This is not the same help as in the previous subsection using ndb_mgm --help,
but rather provides help on the available commands.

Listing 7-2. The HELP Command in ndb_mgm

ndb_mgm> HELP

 NDB Cluster -- Management Client -- Help

HELP Print help text
HELP COMMAND Print detailed help for COMMAND(e.g. SHOW)
SHOW Print information about cluster
CREATE NODEGROUP <id>,<id>... Add a Nodegroup containing nodes
DROP NODEGROUP <NG> Drop nodegroup with id NG
START BACKUP [NOWAIT | WAIT STARTED | WAIT COMPLETED]
START BACKUP [<backup id>] [NOWAIT | WAIT STARTED | WAIT COMPLETED]
START BACKUP [<backup id>] [SNAPSHOTSTART | SNAPSHOTEND] [NOWAIT | WAIT STARTED | WAIT
COMPLETED]
 Start backup (default WAIT COMPLETED,SNAPSHOTEND)
ABORT BACKUP <backup id> Abort backup
SHUTDOWN Shutdown all processes in cluster
PROMPT [<prompt-string>] Toggle the prompt between string specified
 or default prompt if no string specified
CLUSTERLOG ON [<severity>] ... Enable Cluster logging
CLUSTERLOG OFF [<severity>] ... Disable Cluster logging
CLUSTERLOG TOGGLE [<severity>] ... Toggle severity filter on/off
CLUSTERLOG INFO Print cluster log information
<id> START Start data node (started with -n)
<id> RESTART [-n] [-i] [-a] [-f] Restart data or management server node
<id> STOP [-a] [-f] Stop data or management server node
ENTER SINGLE USER MODE <id> Enter single user mode
EXIT SINGLE USER MODE Exit single user mode
<id> STATUS Print status
<id> CLUSTERLOG {<category>=<level>}+ Set log level for cluster log
PURGE STALE SESSIONS Reset reserved nodeid's in the mgmt server
CONNECT [<connectstring>] Connect to management server (reconnect if already

connected)
<id> REPORT <report-type> Display report for <report-type>
QUIT Quit management client

<severity> = ALERT | CRITICAL | ERROR | WARNING | INFO | DEBUG
<category> = STARTUP | SHUTDOWN | STATISTICS | CHECKPOINT | NODERESTART | CONNECTION | INFO
| ERROR | CONGESTION | DEBUG | BACKUP | SCHEMA
<report-type> = BACKUPSTATUS | MEMORYUSAGE | EVENTLOG
<level> = 0 - 15
<id> = ALL | Any database node id

For detailed help on COMMAND, use HELP COMMAND.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-mgm-client-commands.html

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

243

 ■ Tip Unlike the mysql command-line client, there is no support for multi-line statements, so there is no
need for a delimiter. this means you can execute a command in the management client without specifying a
semicolon (;) at the end. like for sQl statements, commands are case insensitive.

As the description of the HELP COMMAND command states, it is also possible to get more detailed help for
a given command. For example, to learn more about the START BACKUP command, use this command:

ndb_mgm> HELP START BACKUP

 NDB Cluster -- Management Client -- Help for START BACKUP command

START BACKUP Start a cluster backup

START BACKUP [<backup id>] [SNAPSHOTSTART | SNAPSHOTEND] [NOWAIT | WAIT STARTED |
WAIT COMPLETED]
 Start a backup for the cluster.
...

Using the inline help is a very useful way to verify syntax and use of the commands.

Setting the Prompt
In MySQL NDB Cluster 7.5 and later, it is possible to change the prompt. The default prompt is ndb_mgm>.
However, if you manage more than one cluster, it is useful to set the prompt to different values to reduce the
risk of executing commands on the wrong cluster.

To change the prompt, use the PROMPT command followed by the string you want to use. The string
should not be quoted. For example, to set the prompt to mgm - production>, use the following command:

ndb_mgm> PROMPT mgm - production>
Prompt set to mgm - production>
mgm - production>

There is no need for a space at the end, as that will be added automatically after all whitespace at the
end of the prompt text has been trimmed.

To reset the prompt to the default, execute the PROMPT command without an argument:

mgm - production> PROMPT
Returning to default prompt of ndb_mgm>
ndb_mgm>

In MySQL NDB Cluster 7.5, the prompt can also be set on the command line and thus through the
MySQL configuration file:

shell$ ndb_mgm --prompt="mgm - production>"
Connected to Management Server at: localhost:1186
Prompt set to mgm - production>
-- NDB Cluster -- Management Client --
mgm - production>

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

244

Display the Cluster Status
One of the most commonly used commands in the management client is the SHOW command. It gives an
overview of the cluster’s status. Additionally, the STATUS command gives a simpler output and only includes
the data nodes. The SHOW command does not take any arguments, so its usage is very simple:

ndb_mgm> SHOW
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)

[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.7.16 ndb-7.5.4)
id=50 @192.168.56.102 (mysql-5.7.16 ndb-7.5.4)

[mysqld(API)] 6 node(s)
id=51 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4)
id=52 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4)
id=53 (not connected, accepting connect from 192.168.56.101)
id=54 (not connected, accepting connect from 192.168.56.102)
id=55 (not connected, accepting connect from any host)
id=56 (not connected, accepting connect from any host)

For the online nodes, the information includes the following data:

•	 The node ID allocated for the node.

•	 The host the node is connected from.

•	 The version used.

•	 For the data nodes, which node group the data node is part of.

•	 For the data nodes, there is an asterisk (*) next to the current master (president)
node. In the example, id = 1 is the master node.

•	 If the data node is restarting, this will be reflected but without any details of the last
completed start phase (see Chapter 10).

For currently unused slots, the information includes:

•	 The node ID available. If a node has been configured without an explicit NodeId, the
management node(s) will still assign a node ID to the slot.

•	 Where connections are allowed from. If no HostName has been configured, the text
will show that connections are allowed from any host.

Examples of the SHOW command are available in Chapters 10 and 11. Chapter 10 covers restart
operations and Chapter 11 covers upgrades and downgrades.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_11
http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_11

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

245

The STATUS command is useful to get a quick overview of the status of one or all the data nodes. The
command requires one argument—added before the STATUS keyword—and the argument must be either
ALL or a node ID. As the status information includes information about the latest restart phase, it can be
useful to monitor a restart of a data node. For example, to get the status of node 2:

ndb_mgm> 2 STATUS
Node 2: starting (Last completed phase 4) (mysql-5.7.16 ndb-7.5.4)

To get the status of all data nodes:

ndb_mgm> ALL STATUS
Node 1: started (mysql-5.7.16 ndb-7.5.4)
Node 2: starting (Last completed phase 100) (mysql-5.7.16 ndb-7.5.4)

Single User Mode
Single user mode is used for some maintenance situations where it is important that the application is not
connected to the data nodes, or it is only connected through a single API node. In single user mode, only
one API/SQL node will be allowed to connect. This also means that if an SQL node has been configured with
ndb_cluster_connection_pool set to a value greater than one, it will not be able to connect as it requires all
of the requested slots to be available. If the SQL nodes are configured to use a connection pool larger than
one, and the single user mode maintenance window requires using an SQL node, the solution is either to
use a spare SQL node available for cases like this, or restart one of the existing SQL nodes with ndb_cluster_
connection_pool = 1.

The command to initialize single user mode is ENTER SINGLE USER MODE, and the command takes the
node ID that will be allowed to connect to the cluster. For example, to allow node ID 54 to connect but no
other API/SQL nodes, use this command:

ndb_mgm> ENTER SINGLE USER MODE 54;
Single user mode entered
Access is granted for API node 54 only.

The command may take a little while to complete while the other nodes are disconnected. While in
single user mode, the SHOW and STATUS commands reflects the status, for example:

ndb_mgm> ALL STATUS
Node 1: single user mode (mysql-5.7.16 ndb-7.5.4)
Node 2: single user mode (mysql-5.7.16 ndb-7.5.4)

Once the maintenance window has completed, use the EXIT SINGLE USER MODE command to return to
normal:

ndb_mgm> EXIT SINGLE USER MODE
Exiting single user mode in progress.
Use ALL STATUS or SHOW to see when single user mode has been exited.

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

246

Create Reports
The management client can be used to create a range of reports, thereby providing useful information for
the cluster. A report can either be generated for one data node or for all data nodes. There are currently three
report types available:

•	 MemoryUsage: The data memory and index memory usage for the data node(s).

•	 BackupStatus: The status of backups for the data node(s).

•	 EventLog: Messages from the event log on the data nodes.

The MemoryUsage report is the most commonly used report and provides information about the current
memory usage both for data and (unique hash) indexes:

ndb_mgm> ALL REPORT MemoryUsage
Node 1: Data usage is 55%(7070 32K pages of total 12800)
Node 1: Index usage is 43%(4459 8K pages of total 10304)
Node 2: Data usage is 55%(7072 32K pages of total 12800)
Node 2: Index usage is 43%(4460 8K pages of total 10304)

The memory usage information is in percentage and in number of pages.
The BackupStatus report will either report that a backup is not in progress or give information of the

progress of an ongoing backup. For example, when no backups are in progress and you’re requesting the
backup information for all data nodes:

ndb_mgm> ALL REPORT BackupStatus
Node 1: Backup not started
Node 2: Backup not started

The status for data node 1 during a backup:

ndb_mgm> 1 REPORT BackupStatus
Node 1: Local backup status: backup 5 started from node 49
 #Records: 556508 #LogRecords: 0
 Data: 18873520 bytes Log: 0 bytes

See Chapter 8 for more information about backups.
The last of the three reports is the EventLog report. This can be used to get information about the

activity of the data nodes in greater detail than the out logs (see Chapter 16) and without having to log in to
the data nodes. The event log is a circular buffer, so there is a limited number of events available. Listing 7-3
shows an example of the report. If events from all the data nodes are chosen, the events will be interleaved.

Listing 7-3. The EventLog Report

ndb_mgm> ALL REPORT EventLog
2016-12-18 16:24:13 Node 1: Node 50 Connected
2016-12-18 16:24:13 Node 1: Communication to Node 2 opened
2016-12-18 16:24:14 Node 2: Node 50 Connected
2016-12-18 16:24:14 Node 2: Communication to Node 1 opened
2016-12-18 16:24:14 Node 1: Node 2 Connected
2016-12-18 16:24:14 Node 2: Node 1 Connected
2016-12-18 16:24:17 Node 1: Node 2: API mysql-5.7.16 ndb-7.5.4
2016-12-18 16:24:17 Node 2: Node 1: API mysql-5.7.16 ndb-7.5.4

http://dx.doi.org/10.1007/978-1-4842-2982-8_8
http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

247

...
2016-12-18 16:38:39 Node 1: Backup 5 started from node 49
2016-12-18 16:39:28 Node 1: Backup 5 started from node 49 completed. StartGCP: 3596 StopGCP:
3600 #Records: 2423505 #LogRecords: 0 Data: 74515992 bytes Log: 0 bytes
2016-12-18 16:39:31 Node 1: LDM(1): Completed LCP, #frags = 34 #records = 1211469, #bytes =
60693392
2016-12-18 16:39:31 Node 1: LDM(2): Completed LCP, #frags = 34 #records = 1212045, #bytes =
60759696
2016-12-18 16:39:33 Node 2: LDM(1): Completed LCP, #frags = 34 #records = 1211469, #bytes =
60693392
2016-12-18 16:39:33 Node 2: LDM(2): Completed LCP, #frags = 34 #records = 1212045, #bytes =
60759696
...
2016-12-18 16:43:33 Node 2: Trans. Count = 0, Commit Count = 0, Read Count = 0, Simple Read
Count = 0, Write Count = 0, AttrInfo Count = 0, Concurrent Operations = 0, Abort Count = 0
Scans = 0 Range scans = 0, Local Read Count = 0 Local Write Count = 0
2016-12-18 16:43:33 Node 1: Operations=0
2016-12-18 16:43:33 Node 1: Global checkpoint 3718 started
2016-12-18 16:43:33 Node 1: Global checkpoint 3718 completed
2016-12-18 16:43:34 Node 1: Trans. Count = 0, Commit Count = 0, Read Count = 0, Simple Read
Count = 0, Write Count = 0, AttrInfo Count = 0, Concurrent Operations = 0, Abort Count = 0
Scans = 0 Range scans = 0, Local Read Count = 0 Local Write Count = 0
2016-12-18 16:43:35 Node 1: Global checkpoint 3719 started
2016-12-18 16:43:35 Node 1: Global checkpoint 3719 completed
2016-12-18 16:43:37 Node 1: Global checkpoint 3720 started
2016-12-18 16:43:37 Node 1: Global checkpoint 3720 completed

Purge Stale Sessions
This command is only very rarely needed. It can happen after a node failure that the node ID is not released,
which means the node cannot rejoin the cluster. In a case like that, the PURGE STALE SESSIONS command
can be used to check whether any of the node IDs can be released and, if so, release them. There are no
arguments for the command. An example of using the command is:

ndb_mgm> PURGE STALE SESSIONS
No sessions purged

Other NDB Utilities
There are several utilities included in the MySQL NDB Cluster downloads. These are all installed in the
bin directory. If you install MySQL NDB Cluster using RPM packages, the utilities are included in the client
RPM for version 7.5, for example mysql-cluster-community-client-7.5.4-1.el7.x86_64.rpm, whereas for earlier
versions the utilities are included with the server RPM. The source code for some of the utilities also serve as
useful examples of using the NDB API.

Table 7-1 contains an overview of the utilities included with version 7.5.6. Throughout the book there
are examples of using several of these utilities.

 ■ Tip For more information about the utilities, see https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-
programs.html, which includes information about all NDB Cluster programs.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs.html

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

248

Table 7-1. Overview of Client Utilities Included with MySQL NDB Cluster 7.5.6

Utility Description

ndb_blob_tool Can be used to check and repair BLOB tables. The BLOB tables were
discussed in Chapter 2.

ndb_config Get information about the current configuration and description of
configuration options. Chapter 10 contains an example of using ndb_
config.

ndb_delete_all Delete all rows from a table. The equivalent of DELETE FROM <table
name> without a WHERE clause in an SQL node but implemented using the
NDB API. Warning: All data in the table will be deleted.

ndb_desc Provide details of a table, including columns, indexes, partition info, and
information about the BLOB tables. Chapter 2 includes several examples.

ndb_drop_index Drop an index from a table. Warning: Never use this for a table that is
used from SQL nodes—the table will become inaccessible from SQL
nodes after using ndb_drop_index!

ndb_drop_table Drop a table. It will in general be faster to use the ndb_drop_table utility
than a DROP TABLE statement from an SQL node.

ndb_error_reporter Collect the logs and trace files from the management and data nodes. This
is a Perl script and requires ssh access to the nodes. See also Chapter 17.

ndb_index_stat Enable, disable, and update index statistics. See also Chapter 9.

ndbinfo_select_all Query information from the ndbinfo schema using the NDB API. See also
Chapter 16 for information about the ndbinfo schema.

ndb_mgm The NDB management client.

ndb_move_data Move data between two tables using the NDB API.

ndb_print_backup_file Print information about backup files. This utility does not connect to the
management node(s).

ndb_print_file Output information about on-disk data files. This utility does not connect
to the management node(s).

ndb_print_frag_file Output information about the fragment list files (the S*.FragList files in
the DBDIH subdirectory of the D1 and D2 directories in the NDB file
system). This utility does not connect to the management node(s).

ndb_print_schema_file Output information about the NDB schema files (the P0.SchemaLog file
in DBDICT subdirectory of the D1 and D2 directories in the NDB file
system). This utility does not connect to the management node(s).

ndb_print_sys_file Output information about the NDB schema files (the P0.sysfile file in
DBDIH subdirectory of the D1 and D2 directories in the NDB file system).
This utility does not connect to the management node(s).

ndb_redo_log_reader Output the contents of the redo log files (the S*.FragLog files in the D8
though D39 directories in the NDB file system) in a human readable
format. This utility does not connect to the management node(s).

ndb_restore Restore backups. For details see Chapter 8.

ndb_select_all Select all the data in a table using the NDB API.

(continued)

http://dx.doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_10
http://dx.doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_17
http://dx.doi.org/10.1007/978-1-4842-2982-8_9
http://dx.doi.org/10.1007/978-1-4842-2982-8_16
http://dx.doi.org/10.1007/978-1-4842-2982-8_8

Chapter 7 ■ the NDB MaNageMeNt ClieNt aND Other NDB Utilities

249

Summary
In this chapter, the uses of the NDB management client have been discussed. The client can be used for a
wide array of administrative tasks, ranging from getting reports of the current memory usage to restarting
nodes and managing node groups. MySQL NDB Cluster also includes several other client utilities. These
were briefly discussed as well. The rest of the book uses the management client and other utilities, with
examples of their use and output. The next chapter on backups and restores is no exception.

Table 7-1. (continued)

Utility Description

ndb_select_count Get the number of rows in one or more tables using the NDB API.

ndb_setup.py Python script that starts a web daemon, thereby allowing you to set up a
cluster using a web browser. See also Chapter 5.

ndb_show_tables List the tables in the cluster. See Chapter 2 for an example and description
of the output.

ndb_size.pl Perl script that generates an estimate of the configuration options
required based on an existing non-NDB Cluster database. There is an
example of its usage in Chapter 18.

ndb_waiter Wait for the cluster to reach a given status. It is commonly used in script.
Chapter 10 includes an example.

http://dx.doi.org/10.1007/978-1-4842-2982-8_5
http://dx.doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_18
http://dx.doi.org/10.1007/978-1-4842-2982-8_10

251© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_8

CHAPTER 8

Backups and Restores

For any database product, backups and restores are two very important parts of ensuring the data can be
recovered in case of human errors, hardware failures, natural disasters, and the like. MySQL NDB Cluster
offers two types of backups: native backups and logical backups. Both types have their uses, and in most
cases, both should be used. This chapter goes through the two options, discusses when to use them, and
covers how to restore the backups. First, the chapter discusses what a backup and backup procedure are.

Backups and Backup Procedures
It may sound trivial to answer the question: “What is a backup?” The definition in the Merriam-Webster
dictionary (https://www.merriam-webster.com/dictionary/backup) is:

A copy of computer data (such as a file or the contents of a hard drive)

This definition is correct and is also used in MySQL NDB Cluster—creating a backup creates a copy of
the data in the cluster. However, database administrators who are used to other database systems may have
something more complex in mind.

Oracle Database administrators may think of a backup of something involving Oracle Recovery
Manager (RMAN; see http://www.oracle.com/technetwork/database/features/availability/
rman-overview-096633.html), which handles all of the details of creating a backup and integrates with
Oracle Secure Backup and other solutions to write the backup to tape. MySQL Enterprise Backup (MEB) has
some of the same features in the sense that it supports working with Oracle Secure Backup and third-party
tape backup solutions.

In MySQL NDB Cluster, on the other hand, the native backup solution is built into the data nodes, and
backups are started from a management node. This does not make the backup quality inferior to backups
made with Oracle Recovery Manager or MySQL Enterprise Backup—all are professional grade backups.
However, there is no support for saving the backup directory to tape or streaming it to a remote host. It is up
to the database administrator to ensure that the backups are transferred to a remote location for safekeeping.

When designing backup procedures, it is important to keep in mind that a backup is worth no more
than the ability to restore it. The backup procedures should not just include how to create the backup, but
the whole cycle back to restoring it. This includes being able to retrieve the backup even if the whole data
center is out due to a disaster (human or natural). Do not take the step of transferring the backups to a
remote host or tape station lightly. The best way to confirm that the backups work is to restore them to a test
system and verify that it is possible to bring back all of the data.

With the definition of a backup and backup procedures in place, it is time to look closer at how the
native NDB Cluster backups work.

https://doi.org/10.1007/978-1-4842-2982-8_8
https://www.merriam-webster.com/dictionary/backup
http://www.oracle.com/technetwork/database/features/availability/rman-overview-096633.html
http://www.oracle.com/technetwork/database/features/availability/rman-overview-096633.html

Chapter 8 ■ BaCkups and restores

252

Native NDB Cluster Online Backups
The main method of backing up the NDBCluster tables is to use the native backup. This is to the NDBCluster
tables what MySQL Enterprise Backup is to the InnoDB storage engine. The main features of the native NDB
Cluster backup include:

•	 It is online. That is, it is possible to change data and schema while the backup is in
progress.

•	 It is built into MySQL NDB Cluster (no additional binaries or packages are required).

•	 It supports creating a snapshot (the point in time where the backup is consistent)
either at the start or the end of the backup; the default is to have the snapshot at the
end like MySQL Enterprise Backup.

•	 The restore of the native backups supports parallel restores, restores to a different
cluster configuration, and partial restores. Restoring backups is discussed in the
section entitled “Restores”.

•	 It uses the same underlying mechanism as the local checkpoints.

 ■ Note neither MysQL enterprise Backup nor percona XtraBackup can be used to back up MysQL ndB
Cluster, as they only work at the file system level of the local host and have no means to connect to the cluster.

Overview
Backups are started from the NDB management client or from the MySQL Cluster Manager (MCM) client
(see also Chapter 13). The simplest way to start a backup is:

shell$ ndb_mgm -e "START BACKUP"
Connected to Management Server at: localhost:1186
Waiting for completed, this may take several minutes
Node 1: Backup 1 started from node 49
Node 1: Backup 1 started from node 49 completed
StartGCP: 91 StopGCP: 94
 #Records: 107373 #LogRecords: 2946
 Data: 20499388 bytes Log: 400956 bytes

The section entitled “Starting and Aborting Backups” discusses controlling backups in more detail.
There are several points to note from the backup command and its output, which is discussed in the rest of
this subsection.

In the example, control (the prompt) is not returned until the backup has completed. This is the default
behavior. Waiting for the completion of the backup is also the only way for the invoker of the command to
get the return value of the backup—whether the backup succeeded or not. Backup Monitoring discusses
how to get the return code and what the meaning is.

http://dx.doi.org/10.1007/978-1-4842-2982-8_13

Chapter 8 ■ BaCkups and restores

253

The Backup 1 strings in the output refer to the backup ID. Each backup has an ID which is also used
when restoring the backup. By default, the first backup will be number 1, the next number 2, and so forth.
However, it is also possible to specify a custom backup ID. Backup IDs must be an integer with a value
between 1 and 4294967294 (both inclusive). An automatically generated backup ID is always the largest
previously used backup ID number, plus one.

The text Backup 1 started from node 49 means that node 49 (a management node) told node 1 (the
master data node) to start the backup. Node 1 also informs when the backup has completed (the next line).
However, all online data nodes will take part in the backup.

The StartGCP and StopGCP values refer to the global checkpoints that were current at the time the
backup started and completed. Remember that global checkpoints is the mechanism to synchronize the
flushing of the redo log to disk across the data nodes. It is possible to choose whether the backup will be
consistent at the StartGCP or the StopGCP (see the next subsection, “Implementation Details”).

Finally, the last two lines have statistics about the size of the backup in terms of records and rows. The
“Log” part of the lines refer to collection of the transactions committed while the backup is in progress. This
is discussed in the next subsection about the inner workings of the backup.

Implementation Details
The backup runs in parallel on all online data nodes, so each data node will have a part of the backup.
Each node will back up the part of the data that is in its primary partitions. If a node is offline, its primary
partitions are handled by another data node in the same node group. This means that the data is only
backed up once—unlike local checkpoints, where each data node writes out all the data it has.

There are three parts to a backup, each using its own file. Table 8-1 shows the three parts of a backup
and the filename used for each. <backup_id> means the backup ID chosen for the backup (see the two next
subsections) and <node_id> means the NodeId for the node that writes the backup. The three files are written
to the directory BACKUP/BACKUP-<backup_id>, below the path specified with the BackupDataDir option
(in config.ini). For example, if BackupDataDir = /cluster and the backup ID is 1, the path to the three files
is /cluster/BACKUP/BACKUP-1/. The overall backup process is depicted in Figure 8-1. See the following
discussion for more detail.

Table 8-1. Filenames for Each Part of a Backup

Part Filename

Metadata BACKUP-<backup_id>.<node_id>.ctl

Table data BACKUP-<backup_id>-0.<node_id>.data

Transaction log BACKUP-<backup_id>.<node_id>.log

Chapter 8 ■ BaCkups and restores

254

The metadata includes the table definitions of the tables using the NDBCluster storage engine. It is
important to remember that no other schema objects—including views and stored programs—are included
in the backup. All data nodes back up a full copy of the metadata. It is the DBDICT kernel module that
delivers the table metadata to the backup.

The table data is the actual data stored in the tables. Each data node only writes the data for the
fragments it is the current primary node for. If a data node is offline, the other data node in the node group
becomes the primary node of the fragments previously handled by the now offline node. This means that
the data node handles both its own fragments and the fragments from its offline peer and will write roughly
twice as much data as the rest of the data nodes. So, it is best to do backups when all the data nodes are
online.

The transaction log records the changes made during the backup. This ensures that you get a consistent
backup whereby all data corresponds to the same point in time. Depending on whether the backup is
using a snapshot at the start or end, the log is used to roll back (an undo log) or roll forward (a redo log)
the transactions committed during the backup. The transaction log is collected through internal triggers;
when the DBTUP kernel block checks which triggers to execute, it sends the required before and/or after
image of the row(s) affected to the BACKUP kernel block. Table 8-2 shows the transaction log type and the
INSERT/UPDATE/DELETE data logged in the transaction log for a snapshot at the start and end of the backup;
the primary key is denoted PK. It is clear from the table that a snapshot at the start of the backup requires
storing more data in the transaction log.

Figure 8-1. The overall backup process

Chapter 8 ■ BaCkups and restores

255

Additionally, for snapshots at the start of the backup, the transaction log is never compressed, even if
the CompressedBackup option is enabled. Compression is not supported, as the log must be read in reverse
order when applying it as an undo log. For these reasons, it is generally recommended to use a snapshot at
the end of the backup, which is also the default.

Starting and Aborting Backups
There are two operations available for controlling the native online backups: starting and aborting. These
actions can be performed through three different means:

•	 The NDB management client: Using the START BACKUP and ABORT BACKUP
commands.

•	 The NDB API: Using the ndb_mgm_start_backup() and ndb_mgm_abort_backup()
functions. The NDB API is discussed in Chapter 19.

•	 MySQL Cluster Manager (MCM): Using the BACKUP CLUSTER and ABORT BACKUP
commands. MCM is discussed in Chapter 13.

The NDB management client and MCM both use the NDB API functions as the underlying way of
controlling backups. The rest of this section focuses on using the NDB management client for starting and
aborting backups.

To start a backup, use the START BACKUP command. The command takes several optional arguments:

•	 Backup ID: The ID to use for the backup. Each backup is identified by a numeric ID
between 1 and 4294967294 (inclusive). The default is to use the highest previous ID,
plus one. See the subsection “Choosing the Backup ID” later in the chapter.

•	 Snapshot time: The snapshot time can take two values, which are mutually
exclusive: SNAPSHOTSTART and SNAPSHOTEND: The default is SNAPSHOTEND. With the
snapshot at the start of the backup, transactions committed during the backup will
be rolled back when restoring the backup. On the other hand, with the snapshot at
the end of the backup, the restored backup will include the transactions committed
during the backup.

•	 Client behavior: This specifies how long the client should wait before returning
to the user. The available values are NOWAIT, WAIT STARTED, and WAIT COMPLETED.
NOWAIT will make the management client return immediately to the user; WAIT
STARTED will return when the backup has started; and WAIT COMPLETED will not
return until the backup has completed. The default is to wait until the backup has
completed (WAIT COMPLETED).

Table 8-2. The Data Stored in the Backup Transaction Log

Event Snapshot: Start Snapshot: End

INSERT PK + after image PK + after image

UPDATE PK + before and after image PK + after image

DELETE PK + before image PK

http://dx.doi.org/10.1007/978-1-4842-2982-8_19
http://dx.doi.org/10.1007/978-1-4842-2982-8_13

Chapter 8 ■ BaCkups and restores

256

For all three arguments, the value should be specified without an option name. However, the
arguments that are specified must be included in the order they are listed. That is (line breaks added
for readability purposes):

START BACKUP
 [backup id]
 [SNAPSHOTSTART|SNAPSHOTEND]
 [NOWAIT|WAIT STARTED|WAIT COMPLETED]

Note that there should not be any newlines when executing the command. For example, to create a
backup with the next available backup ID with the snapshot at the start of the backup, and with the client
waiting until the end of the backup before returning, use:

ndb_mgm> START BACKUP SNAPSHOTSTART
Waiting for completed, this may take several minutes
Node 1: Backup 5 started from node 49
Node 1: Backup 5 started from node 49 completed
 StartGCP: 49332 StopGCP: 49337
 #Records: 2398587 #LogRecords: 0
 Data: 73818288 bytes Log: 0 bytes

Another example is to create a backup with the ID 1612291604, with the snapshot at the end of the
backup and return when the backup has started, as follows:

ndb_mgm> START BACKUP 1612291604 SNAPSHOTEND WAIT STARTED
Waiting for started, this may take several minutes
Node 1: Backup 1612291604 started from node 49

When the client returns immediately or when the backup has started, the status information will still
be written as it becomes available, provided the management client is still connected. So NOWAIT and WAIT
STARTED are mostly useful if the management client disconnects when the backup command has returned.

Ongoing backups can be aborted using the ABORT BACKUP command. The command takes a single
argument: the backup ID to abort. For example, to abort the backup with ID 6, use:

ndb_mgm> ABORT BACKUP 6
Abort of backup 6 ordered
Node 1: Backup 6 started from 49 has been aborted. Error: 1321

Choosing the Backup ID
All backups must have a backup ID. The simplest solution is to let MySQL NDB Cluster choose the ID
automatically, which uses the next higher ID in the sequence. If the previously highest used backup ID
was 20, for example, then the next automatically generated ID will be 21. This is simple, but it has the
disadvantage that the backup ID does not carry any meaning.

An alternative is to generate the backup IDs manually or in the backup script. One option is to make the
backup reflect the time the backup is started, for example, to include the year, month, day, hour, and minute
in the format %y%m%d%H%M. The meaning of each format control is as follows:

•	 %y: The year using two digits.

•	 %m: The month using two digits.

Chapter 8 ■ BaCkups and restores

257

•	 %d: The day of the month using two digits.

•	 %H: The hour of the day using two digits and a 24-hour clock.

•	 %M: The minutes using two digits.

To start a backup with the backup ID generated using this format on Linux, the date command can be
used:

shell$ ndb_mgm -e "START BACKUP $(date +'%y%m%d%H%M')"
Connected to Management Server at: localhost:1186
Waiting for completed, this may take several minutes
Node 1: Backup 1612291612 started from node 49
Node 1: Backup 1612291612 started from node 49 completed
 StartGCP: 49988 StopGCP: 49992
 #Records: 2398587 #LogRecords: 0
 Data: 73818288 bytes Log: 0 bytes

On Windows, the Get-Date command in PowerShell is the best option to create a backup ID. For
example (keep the command on one line; it is split across two here to fit within the width of the page):

PS C:\> & 'C:\Program Files\MySQL\MySQL Cluster 7.5\bin\ndb_mgm.exe' -e
 "START BACKUP $(get-date -Format yyMMddHHmm)"
Connected to Management Server at: localhost:1186
Waiting for completed, this may take several minutes
Node 1: Backup 1707111936 started from node 49
Node 1: Backup 1707111936 started from node 49 completed
 StartGCP: 5469 StopGCP: 5472
 #Records: 7367 #LogRecords: 0
 Data: 497756 bytes Log: 0 bytes

The format string uses the following specifiers:

•	 yy: The last two digits of the year.

•	 MM: The month using two digits.

•	 dd: Day of month using two digits.

•	 HH: The hour of the day using two digits and a 24-hour clock.

•	 MM: The minutes using two digits.

An alternative is to use the %DATE% and %TIME% variables in the command prompt; however, note that
the format of these variables depends on the locale set for Windows, and thus they are harder to use.

Backup Monitoring
MySQL NDB Cluster does not offer much in terms of monitoring backups. The NDB management client
allows you to get a report for the status of an ongoing backup, but there is no built-in functionality to get the
status of completed backups.

Chapter 8 ■ BaCkups and restores

258

For completed backups, the best solution is to check the cluster log. In the cluster log, there is a log
message at the start and completion of the backup:

2016-12-29 17:16:02 [MgmtSrvr] INFO -- Node 1: Backup 9 started from node 49
2016-12-29 17:16:11 [MgmtSrvr] INFO -- Node 1: Backup 9 started from node 49 completed.
StartGCP: 51829 StopGCP: 51834 #Records: 2398587 #LogRecords: 0 Data: 73818288 bytes Log:
0 bytes

The completion of the backup includes statistics of the backup. If the backup fails, this will also be
available in the cluster log, for example:

2016-12-29 17:15:59 [MgmtSrvr] ALERT -- Node 1: Backup 8 started from 49 has been
aborted. Error: 1350

It is possible to get progress information for an ongoing backup using the BACKUPSTATUS report in the
NDB management client:

ndb_mgm> ALL REPORT BACKUPSTATUS
Node 1: Local backup status: backup 7 started from node 49
 #Records: 1080791 #LogRecords: 0
 Data: 33553460 bytes Log: 0 bytes
Node 2: Local backup status: backup 7 started from node 49
 #Records: 354437 #LogRecords: 0
 Data: 11342376 bytes Log: 0 bytes

When no backup is in progress, the report states this:

ndb_mgm> ALL REPORT BACKUPSTATUS
Node 1: Backup not started
Node 2: Backup not started

Like for other similar commands in the management client, it is possible to get the report for all data
nodes using the ALL keyword, or to specify a single node ID. See Chapter 7 for more information about
generating reports in the NDB command-line client.

A backup shares I/O with the local checkpoints, so the I/O usage can be monitored through the ndbinfo
schema. Additionally, it is possible to monitor the CPU usage. The views particularly relevant for backups are:

•	 The cpustat% tables: These views provide per thread information about the CPU
usage either for the last second—the cpustat view—or the last 20 measurements
at 50 milliseconds, 1 second, or 20 seconds separation—the cpustat_50ms,
cpustat_1sec, and cpustat_20sec views. These views can be used to detect to
what extent the CPUs are used during periods with backups executing compared to
periods without ongoing backups. The views were introduced in version 7.5.2.

•	 The disk_write_speed_% tables: These views show the disk write speeds for the
backup/local checkpoint data and logs. The views also include the current target
write speed, so it is possible to determine whether the target can be met. There is
one view (disk_write_speed_base) with the raw data, and two views (disk_write_
speed_aggregate and disk_write_speed_aggregate_node) with aggregate data. The
views were added in version 7.4.1.

http://dx.doi.org/10.1007/978-1-4842-2982-8_7

Chapter 8 ■ BaCkups and restores

259

An example of checking the disk I/O is shown in Listing 8-1.

Listing 8-1. Example Content of the ndbinfo.disk_write_speed_aggregate_node View

mysql> SELECT * FROM ndbinfo.disk_write_speed_aggregate_node\G
*************************** 1. row ***************************
 node_id: 1
 backup_lcp_speed_last_sec: 7252000
 redo_speed_last_sec: 260000
backup_lcp_speed_last_10sec: 2821118
 redo_speed_last_10sec: 78243
backup_lcp_speed_last_60sec: 470000
 redo_speed_last_60sec: 64000
*************************** 2. row ***************************
 node_id: 2
 backup_lcp_speed_last_sec: 6047000
 redo_speed_last_sec: 195000
backup_lcp_speed_last_10sec: 1493014
 redo_speed_last_10sec: 71798
backup_lcp_speed_last_60sec: 248000
 redo_speed_last_60sec: 63000
2 rows in set (0.01 sec)

As the same kernel block handles backups and local checkpoints, it is not possible to get details about
how much of the I/O is caused by an ongoing backup and how much is from an ongoing local checkpoint.
See Chapter 16 for details about the ndbinfo schema.

To get information about whether a backup succeeded, there are a few options:

•	 Check the return code when the backup is created using the NDB management
client or the NDB API ndb_mgm_start_backup() function.

•	 For MySQL Cluster Manager (MCM), use the LIST BACKUPS command. This returns
all the successful backups or can list a single backup based on the backup ID.

•	 Check the cluster log as mentioned at the beginning of this subsection.

For example, to check the return code of a backup in bash, use this command:

shell$ ndb_mgm -e "START BACKUP 8"
Connected to Management Server at: localhost:1386
Waiting for completed, this may take several minutes
Backup failed
* 3001: Could not start backup
* Backup failed: file already exists (use 'START BACKUP <backup id>'): Temporary

error: Temporary Resource error
shell$ echo $?
255

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 8 ■ BaCkups and restores

260

In Windows PowerShell, use the $LastExitCode special variable to get the exit code:

PS C:\> & 'C:\Program Files\MySQL\MySQL Cluster 7.5\bin\ndb_mgm.exe' -e
 "START BACKUP 1"
Connected to Management Server at: localhost:1186
Waiting for completed, this may take several minutes
Backup failed
* 3001: Could not start backup
* Backup failed: file already exists (use 'START BACKUP <backup id>'): Temporary

error: Temporary Resource error
PS C:\> echo $LastExitCode
255

A return code of 0 means the command was successful, a non-zero return code means the command
failed. To get the overall status of the backup, it is necessary to use WAIT COMPLETED (the default), because
the return code reflects the status at the time the command returns to the user.

Backup Configuration
There are a few configuration options to consider for optimal backup performance. The options are also
discussed in Chapter 4. There are eight options specifically related to backups:

•	 BackupDataDir: Where to store the backups. Having the backups stored on a
separate disk system from the local checkpoints can greatly improve the backup
performance or reduce the cost of the storage by storing backups on less expensive
disks than those used for local checkpoints. Storing the backups on a separate file
system also provides redundancy, so the backup is still available even if the disk
system with the local checkpoints is lost. The default for BackupDataDir is the value
of FileSystemPath, which in turn defaults to DataDir.

•	 BackupDiskWriteSpeedPct: This option is new as of MySQL NDB Cluster 7.4.8 and
specifies the percentage of the I/O bandwidth specified with MinDiskWriteSpeed
and MaxDiskWriteSpeed to use for backups.

•	 CompressedBackup: When enabled, the backups will be compressed, trading disk
I/O for increased CPU usage. When compressing backups, it may be necessary to
give additional CPU resources to the I/O threads using the ThreadConfig option. The
transaction log will only be compressed if the snapshot is created at the end of the
backup.

•	 BackupWriteSize: The default write size for backups. The write size can be
automatically increased up to the value of BackupMaxWriteSize.

•	 BackupMaxWriteSize: The maximum write size allowed.

•	 BackupDataBufferSize: The size of the in-memory buffer for buffering the writes of
the data.

•	 BackupLogBufferSize: The size of the in-memory buffer for buffering the writes of
the transaction log.

•	 BackupReportFrequency: How often to report backup progress to the cluster log.

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 8 ■ BaCkups and restores

261

 ■ Note additionally, there is the option called BackupMemory, which is deprecated in MysQL ndB Cluster 7.4
and later. In earlier versions, it was set to the sum of BackupDataBufferSize and BackupLogBufferSize.

All the options can be changed through a rolling restart (or an initial rolling restart in case of
BackupDataDir), so it is not necessary to lock into specific values at install time. There is no one size fits all
solution for the backup options. It is important to monitor the performance (see the previous subsection
as well as Chapters 14 and 16) and adjust according to the conclusions made based on the data collected.
For example, if it is found that disk I/O is a bottleneck during backups, but there are spare CPU resources, a
solution may be to enable compressed backups. This is also an example of why it is important to have good
monitoring in place, as it is then possible to compare the monitoring data before and after the configuration
change and verify the effect of the change.

Logical Backups and Binary Logs
The native (online) backup feature is great, as it provides a way to create the backups while the cluster
remains available for application reads and writes. However, it has three limitations:

•	 The backups are mainly meant to be restored to another MySQL NDB Cluster
installation.

•	 The backups only include the table definition and data of NDBCluster tables. Tables
using other storage engines, views, stored programs, etc., are not included.

•	 The backups are not human readable.

While the backups can be converted to CSV files, if it is known the backup will be restored to another
storage engine, it is in general better to create a logical backup. Additionally, a logical backup of the schema
is good to have in case a native backup will be restored to a cluster with a different configuration than the
cluster the backup is made on; this is discussed further in the next section about restores.

A logical backup is a backup that exports the data in a portable way. In MySQL, this means either as
SQL statements (CREATE TABLE, INSERT, etc.) or as a CSV file. This makes it easier to restore the backup, for
example, to an InnoDB replication slave. On the flip side, there is no support for online backups. In fact, as
discussed next, in order to ensure a consistent backup, the cluster must be read only during the backup. It
also takes longer to create the backup and even more time to restore it.

Consistency Considerations
The main advantage of logical backups is that they are portable. However, this comes at a price when it
comes to ensuring a consistent backup is created. The difficulties arise from the architecture and limitations
of MySQL NDB Cluster:

•	 MySQL NDB Cluster only supports the READ COMMITTED transaction isolation level.
So, it is not possible to create a read view in the same way it is achieved in the InnoDB
storage engine. The InnoDB read view allows for an online snapshot of the data while
other connections keep updating the data.

•	 MySQL NDB Cluster supports several API/SQL nodes and LOCK TABLES is not global
among all of those nodes.

http://dx.doi.org/10.1007/978-1-4842-2982-8_14
http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 8 ■ BaCkups and restores

262

This means that it is not possible to create a consistent backup unless the cluster is read only which is
easiest to ensure by putting the cluster into single user mode. There are a couple of ways to avoid affecting
the application while creating a logical backup:

•	 Replication slave: If there is a read-only replication slave, it is possible to create the
backup there. The replication slave will not be able to apply replication events while
the backup is made, so this must be taken into account. However, the replication
slave can still save the replication events to the relay log to ensure it is possible to
catch up to the replication master should the replication master crash while the
backup is in progress.

•	 Temporary cluster: For one-off logical backups, a native backup can be restored
to a temporary cluster and the logical backup can be made without impacting the
production cluster.

For backups of the schema, these considerations may not be important if schema changes occur only
rarely. In that case, it may be sufficient to ensure the schema backup is made while no schema changes are
executed.

Creating Logical Backups
To create a logical backup, it is necessary to execute a series of SQL statements to extract the schema and/
or data. That is, a logical backup that includes tables and data will essentially be created using the following
queries for each of the tables:

•	 SHOW CREATE TABLE ... to get the table definition.

•	 SELECT * FROM ... to get the data.

In practice, the implementation details may be different.
MySQL NDB Cluster (and MySQL Server) ships with two client programs for creating logical backups.

Additionally, there is a standalone GUI program that also supports creating backups. The three programs are
as follows:

•	 mysqlpump: This is a new utility included with MySQL Server 5.7 and MySQL NDB
Cluster 7.5 and later. It is meant to be a replacement of mysqldump and includes
support for creating the backup in parallel, as well as adding the index definition
after restoring the data (to avoid maintaining the indexes during the data restore).

•	 mysqldump: This is the utility traditionally used for logical MySQL backups and is
included with all available versions.

•	 MySQL Workbench: The MySQL Workbench program adds a GUI to execute queries,
manage SQL nodes, etc. It also includes an interface to control mysqldump.

 ■ Note the commercial version of MysQL Workbench also supports backups through MysQL enterprise
Backup. however, as mentioned in the beginning of the chapter, MysQL enterprise Backup is not supported for
MysQL ndB Cluster.

Chapter 8 ■ BaCkups and restores

263

Both mysqlpump and mysqldump support creating the backup either locally or from a remote server. In
MySQL NDB Cluster 7.5 and later, it is recommended to use mysqlpump unless the limitations require the use
of mysqldump. The mysqlpump limitations related to MySQL NDB Cluster are:

•	 The backup generated is not guaranteed to be compatible with older versions of
MySQL Server and MySQL NDB Cluster.

•	 The privilege tables are not included in the backup. However, the CREATE USER and
GRANT statements required to recreate the users can be included with the --users
option; this will be discussed in the next subsection.

•	 There is no feature to lock all tables during the backup.

•	 There is no support to include the SQL statements to recreate the logfile group and
tablespace files.

•	 There is no support to get the replication coordinates (binary log file and position).

•	 There is no support for backing up to tab delimited files.

 ■ Caution due to the lack of an option to lock all tables during the backup, mysqlpump does not guarantee
a consistent backup where all tables are current with respect to the same point in time for any other storage
engine than InnoDB. It is up to the administrator creating the backup to ensure that no changes are made to the
schema or data during the backup.

There are several use cases for creating a logical backup. Some of the more common cases are:

•	 Schema backup: By creating a logical backup of the schema, it is possible to
include all schema objects: table definitions, stored program definitions, etc.
Additionally, when a native NDB Cluster backup is restored in version 7.4 and
earlier, the NDBCluster tables will be restored with the same number of partitions
as the tables had when the backup was made. A logical schema backup allows the
tables to be restored to a cluster with a different number of data nodes or a different
configuration, and have the restored tables use the default number of partitions for
the cluster the backup is restored to. It is also possible to restore the logical schema
backup using a different storage engine; for example, if there is a need to have
replication slave using InnoDB for complex reporting queries.

•	 Full backup: The native NDB backups only include the NDBCluster tables. InnoDB
tables, stored programs (including triggers for NDBCluster tables), etc. are not
included. A full backup can ensure that there is a single backup that includes
everything.

•	 Partial backup: While native NDB backups support a partial restore, there is no
support for partial backups. This may make the backups unnecessarily big if the aim
is to copy a single table to a different system. A partial backup can also include all
non-NDBCluster tables and objects. A schema backup is a special case of a partial
backup.

Chapter 8 ■ BaCkups and restores

264

 ■ Tip It is recommended to create a logical schema backup after each schema change. this will ensure it is
possible to take advantage of the additional flexibility of logical backups and that schema objects that are not
synchronized between the sQL nodes are backed up.

To create a consistent full logical backup, the cluster must first be in single user mode:

shell$ ndb_mgm -e "ENTER SINGLE USER MODE 51"
Connected to Management Server at: localhost:1186
Single user mode entered
Access is granted for API node 51 only.

In this case, the node ID allowed is 51. To avoid changes being made during the backup and to get the
binary log file and position (if the SQL node has the binary logs enabled), it is necessary to lock all the tables:

mysql> FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.10 sec)

-- If binary logging is enabled for the SQL node:
mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: binlog.000003
 Position: 217047
 Binlog_Do_DB:
 Binlog_Ignore_DB:
Executed_Gtid_Set:
1 row in set (0.00 sec)

Note the File and Position values in the SHOW MASTER STATUS output and store them together with the
backup. Keep the connection open while the backup itself is created. Next create the actual backup using
mysqlpump:

shell$ mysqlpump --user=root --password --all-databases \
 --hex-blob --triggers --routines --events > full_backup.sql

 ■ Tip the option --hex-blob is recommended for both mysqlpump and mysqldump. the option ensures that
the binary data is always exported correctly.

Finally, unlock the tables and exit single user mode:

mysql> UNLOCK TABLES;
Query OK, 0 rows affected (0.00 sec)

shell$ ndb_mgm -e "EXIT SINGLE USER MODE"
Connected to Management Server at: localhost:1186
Exiting single user mode in progress.
Use ALL STATUS or SHOW to see when single user mode has been exited.

Chapter 8 ■ BaCkups and restores

265

shell$ ndb_mgm -e "ALL STATUS"
Connected to Management Server at: localhost:1186
Node 1: started (mysql-5.7.16 ndb-7.5.4)
Node 2: started (mysql-5.7.16 ndb-7.5.4)

Creating full backups with mysqldump is similar to using mysqlpump. The main difference is that it
is better to add the --lock-all-tables option, which together with the single user mode, guarantees
that no changes are made to any tables during the backup. Additionally, for binary logging SQL nodes,
add the --master-data option to include the binary log file and position near the top of the backup as a
CHANGE MASTER TO statement. By setting the option value to 2, it will be included as a comment, so it is not
automatically applied when the backup is restored:

--
-- Position to start replication or point-in-time recovery from
--

-- CHANGE MASTER TO MASTER_LOG_FILE='binlog.000003', MASTER_LOG_POS=217047;

To apply the CHANGE MASTER TO command, either comment it out before restoring the backup or
execute it manually.

The mysqldump command then becomes the following command:

shell$ mysqldump --user=root --password --lock-all-tables --master-data=2 \
 --all-databases --hex-blob \
 --triggers --routines --events > full_backup.sql

The mysqldump backup will by default include the SQL statements to recreate the logfile group and
tablespace files used for on-disk data. If these are not to be included, add the --no-tablespaces option.

When mysqldump is used, an alternative is to create the backup of the data as tab delimited files. The
advantage is that there will be one SQL script with the schema definition and one tab delimited file (with
the .txt filename extension) with the data. This makes it easier to perform partial restores and it makes it
possible to restore the data in parallel. The disadvantage is that it is only possible to back one database up at
a time. For example, to create a tab delimited backup of the world sample database use a command like the
following example:

shell$ mysqldump --user=root --password \
 --hex-blob --triggers --routines --events \
 --tab=/backup/world world > /backup/world_programs.sql

The --tab option uses the SELECT ... INTO OUTFILE ... statement, which means that the following
requirements apply:

•	 The mysqld process must be allowed to write into the directory specified in the --tab
option.

•	 MySQL must be allowed by the --secure_file_priv option to use the directory as a
destination for SELECT ... INTO OUTFILE The value for --secure_file_priv
can be a parent directory; for example, /backup in this case.

•	 The user who creates the backup must have the FILE privilege.

Chapter 8 ■ BaCkups and restores

266

Since only one database is backed up at a time, the backup process should loop over all databases to
be backed up. There is no gain by using the --lock-all-table option. Instead the backup process should
ensure that all databases are backed up while no changes are being made to the data. For the example
backup, the /backup/world directory contains an .sql and a .txt file for each table as well as a .sql file for
each view. The .sql file also includes any triggers for the table. mysqldump writes the backup for stored
functions, stored procedures, and events to stdout, which in the example is redirected to the /backup/
world_programs.sql file.

 ■ Note the --single-transaction option for both mysqlpump and mysqldump requires the REPEATABLE
READ transaction isolation level. since NDBCluster uses the READ COMMITTED transaction isolation level,
--single-transaction cannot be used to back up data with NDBCluster tables.

Partial backups are in most respects the same as full backups other than adding or removing options to
get the desired parts of the database included in the backup. One special case that is worth considering is the
schema backup, which is a partial backup that includes all table definitions, but no data. An example where
this becomes useful is given in the “Initial System Restart” case study in Chapter 10. To create a backup
that includes all table definitions, triggers, stored routines, and stored functions with mysqlpump, use the
command:

shell$ mysqlpump --user=root --password --all-databases \
 --skip-dump-rows --skip-defer-table-indexes \
 --triggers --routines --events > schema_backup.sql

For mysqldump, the command is:

shell$ mysqldump --user=root --password --no-data --all-databases \
 --triggers --routines --events > schema_backup.sql

The command does not lock the tables during the backup; this is not required assuming there are no
schema changes made during the backup.

Logical Backups from MySQL Workbench
MySQL Workbench provides a GUI interface to create backups using mysqldump. There is no new
functionality compared to executing mysqldump on the command line, but it can make it simpler to set up a
backup. It is also possible to get the mysqldump command that MySQL Workbench uses, so it can be executed
directly on the command line in the future. Figure 8-2 shows the Data Export screen for exporting the world
sample database. To export, choose the Data Export option under Management in the Navigator to the left
(highlighted). There are two types of backups available:

•	 Export to dump project folder: This creates one SQL script per table and one per
schema with the stored programs, events, and views.

•	 Export to self-contained file: This is similar to what a single mysqldump command for
the selected objects creates. All object definitions and data are written to the same file.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 8 ■ BaCkups and restores

267

It is recommended to enable the hex-blob option in the Advanced Options page; see the highlighted
option in Figure 8-3. There is currently no support in MySQL Workbench for using mysqlpump for data exports.

Figure 8-2. MySQL Workbench: The Data Export screen

Figure 8-3. MySQL Workbench: The Advanced Options page of the Data Export screen

Chapter 8 ■ BaCkups and restores

268

Backing Up Privileges
It is recommended that you have a separate backup of the privileges to simplify restoring users and their
privileges. This can be particularly useful when multiple SQL nodes exist and distributed privileges (where
the user privileges are stored in the data nodes—see also Chapter 12) are not in use. Three options to export
the privileges are:

•	 mysqlpump

•	 Manual export using the SHOW CREATE USER and SHOW GRANTS FOR SQL statements.
It is necessary to execute the commands once for each user.

•	 mysqldump of the privilege stables.

Each option is discussed in more detail.
In MySQL NDB Cluster 7.5, it is easy to create a backup of the users and their privileges using the

mysqlpump backup program with the --users option:

shell$ mysqlpump --user=root --password --users \
 --exclude-databases=% > users_backup.sql
Enter password:
Dump completed in 4847 milliseconds

In the mysqlpump backup command, the --exclude-databases=% option excludes all databases, leaving
just the CREATE USER and GRANT statements.

For older versions of MySQL NDB Cluster, there is no direct way to export the SQL statements
provided with the MySQL NDB Cluster distribution. It is possible to get the required CREATE USER and
GRANT statements to recreate the users using the SHOW CREATE USER and SHOW GRANTS statements. For
example, using bash, this can be scripted as in Listing 8-2. The script first defines the SQL used to get a space
separated list of all accounts in the format user@host. Then the SQL is used to set the variable USERS with
this list, and finally there is a loop over the users. In the loop, SHOW CREATE USER and SHOW GRANTS FOR is
executed for the current user.

Listing 8-2. Example of Using bash to Export users and Their Privileges

shell$ SQL="SELECT GROUP_CONCAT(
 CONCAT('''', User, '''@''', Host, '''') SEPARATOR ' '
) AS Users FROM mysql.user;"
shell$ USERS=$(mysql --user=root --password --skip-column-names \
 --execute="${SQL}")
shell$ for USER in ${USERS}; do
 echo "-- CREATE USER and GRANT for: ${USER}"
 mysql --user=root --password --skip-column-names --batch \
 --execute="SHOW CREATE USER ${USER};
 SHOW GRANTS FOR ${USER};"
 done

The various options to export the privileges produce similar outputs. Listing 8-3 shows an example
of the SQL statements generated by the example in Listing 8-2. Note that these statements do not have a
semicolon at the end to indicate the end of the statement.

http://dx.doi.org/10.1007/978-1-4842-2982-8_12

Chapter 8 ■ BaCkups and restores

269

Listing 8-3. Example Output of the Privileges

-- CREATE USER and GRANT for: 'mysql.sys'@'localhost'
Enter password:
CREATE USER 'mysql.sys'@'localhost' IDENTIFIED WITH 'mysql_native_password' AS
'*THISISNOTAVALIDPASSWORDTHATCANBEUSEDHERE' REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT LOCK
GRANT USAGE ON *.* TO 'mysql.sys'@'localhost'
GRANT TRIGGER ON `sys`.* TO 'mysql.sys'@'localhost'
GRANT SELECT ON `sys`.`sys_config` TO 'mysql.sys'@'localhost'
-- CREATE USER and GRANT for: 'root'@'localhost'
Enter password:
CREATE USER 'root'@'localhost' IDENTIFIED WITH 'mysql_native_password' AS
'*13430255D7D10DD8DCD27A6AE669F2CA263AB5EA' REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT
UNLOCK
GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION
GRANT PROXY ON ''@'' TO 'root'@'localhost' WITH GRANT OPTION

It is also possible to use mysqldump to create a logical backup of the privilege tables. There are a few
limitations for that method. The backup can in general only be restored to the same version of MySQL
NDB Cluster (more specifically the MySQL Server version included must be the same). If the CREATE TABLE
statements are included in the backup, it is possible to restore the privileges to the next major version,
provided that mysql_upgrade is executed after the restore. It also requires more work if only some users
need to be restored compared to a backup that returns the CREATE USER and GRANT statements. Due to these
limitations, it is in general best to use one of the other options discussed.

The mysqldump command to back up all the privilege tables, including the CREATE TABLE statements, is:

shell$ mysqldump --user=root --password --tables mysql \
 columns_priv db procs_priv proxies_priv tables_priv user

If the CREATE TABLE statements should not be included, add the --no-create-info option:

shell$ mysqldump --user=root --password --no-create-info --tables mysql \
 columns_priv db procs_priv proxies_priv tables_priv user

In either case, after restoring the backup, you must execute FLUSH PRIVILEGES to make the restored
privileges take effect.

Binary Logs
As discussed in Chapter 6, the binary logs are an essential component for replication between clusters. They
can also be used for point-in-time recoveries (PITR). Essentially the binary logs are logs that record all data
and schema changes. So, it is essential to back up the binary logs.

The simplest way to back up the binary logs is to copy them. An effective way to copy the binary logs is
to use rsync, Robocopy (https://technet.microsoft.com/en-us/library/cc733145(v=ws.11).aspx), or a similar
program. The binary logs are only appended to. After a file has reached the maximum size, it will not be
modified again. So rsync will be able to minimize the amount of data copied.

The main disadvantage with rsync and Robocopy is that the binary logs are not continuously copied.
Additionally, Robocopy skips open files, so only old binary logs are included. Even if the sync is made every
minute, on busy systems significant amount of changes can be missing if the server goes down.

http://dx.doi.org/10.1007/978-1-4842-2982-8_6
https://technet.microsoft.com/en-us/library/cc733145(v=ws.11).aspx

Chapter 8 ■ BaCkups and restores

270

An alternative in MySQL NBD Cluster 7.3 and later is to use the mysqlbinlog utility to stream the binary
log changes to a remote server. mysqlbinlog is included together with the other MySQL client programs.
This minimizes the number of the binary log events that are not backed up in case of a catastrophic failure.
For example, to stream the binary log starting with binlog.000001 from the SQL node on 192.168.56.1 on port
3306, the following command can be used:

shell$ mysqlbinlog --read-from-remote-server --raw --stop-never \
 --result-file=/backup/binlog/ --host=192.168.56.101 \
 --user=backup –password binlog.000001

The specified options have the following functions:

•	 --read-from-remote-server: Tells mysqlbinlog to copy the binary logs from a
remote server.

•	 --raw: By default, mysqlbinlog converts the binary log events to text. The --raw
option keeps it the raw events.

•	 --stop-never: Do not stop streaming when reaching the end of the latest binary
log file.

•	 --result-file: The prefix for storing the streamed binary log files. In this case a
directory is given, so the binary log files will be saved into this directory with the
same name as where they are copied from.

•	 binlog.000001: The first file to copy. This file must have the same name as is used on
the server from which the binary logs are copied. The SHOW BINARY LOGS command
can be used to get a list of the currently available binary logs on a given SQL node.

The remaining arguments are the standard connection options. The user who connects must have the
REPLICATION SLAVE privilege (just like in replication) to be able to read the binary logs. If the backup user
connects from 192.168.56.102 to copy the binary logs, the user can be created using this command:

mysql> CREATE USER backup@192.168.56.102 IDENTIFIED BY '<some password>';
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT REPLICATION SLAVE ON *.* TO backup@192.168.56.102;
Query OK, 0 rows affected (0.01 sec)

As the binary logs contain all the data changes for the cluster, it is important that the user password
with mysqlbinlog is kept secure. It is also best to use SSL for the connection to ensure the data is encrypted
during the transfer.

An important part of backing up the binary logs is to also back up the mapping from the epochs used
by the data nodes to measure the progress of time to the binary log file and position. This mapping is
maintained in the mysql.ndb_binlog_index table. This table is local (using the MyISAM storage engine in
MySQL NDB Cluster 7.4 and earlier and the InnoDB storage engine in version 7.5) to the SQL nodes with
binary logs enabled and must be backed up separately from the native NDB Cluster backups. For example,
using:

shell$ mysqldump --user=root --password \
 --tables mysql ndb_binlog_index > binlog_index.sql

There is an example of using the mysql.ndb_binlog_index table later in the chapter when point-in-time
recoveries are discussed.

Chapter 8 ■ BaCkups and restores

271

Restores
The complement action to creating a backup is restoring it. This is often an underrated task. There are
several reasons it may be necessary to restore a backup, ranging from setting up a test system or a replication
slave to a disaster recovery of an important production system. In any case, knowing the right steps is critical
to get the job done as quickly and painlessly as possible. The “Initial System Restart” case study in Chapter 10
gives an example of restoring a backup.

 ■ Caution a backup is worth no more than the ability to restore it. Make sure you regularly test restoring
your backups in different scenarios and that you have the restore procedures well documented. the backup
must also be stored offsite—if the data center burns and the fire destroys the backup as well as the production
copy, the backup is no good.

The ndb_restore Program
The main tool for restoring a native NDB Cluster backup is the ndb_restore utility, which is included with
the MySQL NDB Cluster installation. If the installation is made with RPM packages, ndb_restore is included
in the client RPM in version 7.5 and in the server RPM in versions 7.4 and earlier. ndb_restore is a utility that
connects to the cluster in the same way as the SQL nodes or an NDB API application does. This means it can
be executed from any host with network access; the only requirement is that it has to read the backup files
from the file system.

 ■ Tip Because ndb_restore is an ndB apI program, it requires a mysqld or api node slot in config.ini in
order to be able to connect to the cluster. Make sure you have enough slots available to have one ndb_restore
process for each data node executing in parallel.

ndb_restore can read options from either the [mysql_cluster] or the [ndb_restore] group in a
MySQL configuration file. There are a few common options irrespective of the action to be performed:

•	 --ndb-connectstring=…. The usual connection string specifying how to connect to
the management nodes.

•	 --backupid=…. The ID of the backup to restore.

•	 --nodeid=.... The node ID of the node the backup was created with. Each node
created a part of the backup, and the node ID specified here is for the part that
ndb_restore is restoring.

•	 --backup_path=.... The path to where the backup is stored on the file system. The
path must include the directory specific to the backup. For example, if the data nodes
are configured with BackupDataDir = /backups/cluster/ and the backup with ID 1
is restored, the backup path to use is /backups/cluster/BACKUP/BACKUP-1.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 8 ■ BaCkups and restores

272

A restore where the data is restored using ndb_restore follows three high-level steps:

 1. Restore the schema. This can be a restore of a logical or NDB Cluster native backup.

 2. Restore the data.

 3. Rebuild the indexes.

The third step of rebuilding the indexes is necessary, as the data restore will in general not work if there
are any unique keys. The issue is that the restore does not replay the transaction log in the same order as the
rows were originally inserted and updated (however, it still guarantees that the overall result is the same).
This means that unique key violations may occur if the indexes are maintained during the restore. The
unique key constraints will be checked when the indexes are recreated at the end of the backup, so at the
end of the restore, the constraints are guaranteed to be valid again. The same applies for foreign keys.

Restore Schema
There are two ways to restore the schema: from the native NDB Cluster backup or from a logical backup.
The main deciding factor as to whether to use one or the other is whether it is important that the table is
repartitioned for version 7.4 and earlier. When the table is created from a logical backup, the number of
partitions and the distribution of them is determined by the number of data nodes and the configuration of
them at the time of the restore. On the other hand, creating the tables from the native NDB Cluster backup
in MySQL NDB Cluster 7.4 and earlier will restore the tables using the same partitions as they had originally.
This is something to be aware of if the number of data nodes or LDM threads has changed; in that case
restoring the schema from the native NDB Cluster backup may cause a partition imbalance, with some
data nodes and/or LDM threads not having any partition. If the number of data nodes and/or LDM threads
decreases, it may also be required to restore the tables from a logical backup. Otherwise, the number of
partitions may exceed the maximum supported for the cluster.

a change in MysQL ndB Cluster 7.5 is that ndb_restore now does partition the tables according to the cluster
the restore is made to.

A logical schema backup is a series of SQL statements, so to restore it, all that is required is to source the
backup through the mysql command-line client, for example:

mysql> warnings
Show warnings enabled.

mysql> SOURCE schema_backup.sql;

The warnings command tells the mysql command-line client to automatically show details of all
warnings encountered. This can be very useful when executing statements from a script, as otherwise it will
not be known what the reported warnings are about. It is possible to disable the automatic SHOW WARNINGS
again using the nowarning command.

 ■ Tip If the schema is restored from a logical backup and the schema includes a foreign key and a native
ndB Cluster backup is used to restore the data, as described in the next subsection, make sure to drop the
foreign keys before restoring the data. the last step of restoring the backup when the indexes are rebuilt will
add the foreign keys. If the foreign keys already exist, this will cause an error.

Chapter 8 ■ BaCkups and restores

273

To restore the schema from a native NDB Cluster backup, the --restore_meta option is used. The
schema should only be restored from one of the backup parts (the --nodeid option). For example, to restore
the schema from the part of the backup created by node ID 1 for backup ID 2, the ndb_restore command
will look like this:

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --restore_meta --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --disable-indexes

The --disable-indexes option tells ndb_restore to create the tables without any indexes other than
the primary key.

The ndb_restore --restore_meta command also recreates the log group and tablespace files by default.
The files are created irrespective of whether it is a full or partial restore. If the files already exist, the restore will
fail. To skip the process of restoring the disk data files, use the --no-restore-disk-objects option.

Full Data Restores
A full data restore is the simplest restore. In this context, a full data restore means restoring everything in the
backup. If the backup itself only contains a subset of the tables and/or data, the “full restore” will only restore
that subset of the tables/data.

For a logical backup, the backup is restored in the same way as described for restoring a schema.
The logical backup may in fact include the schema backup together with the data backup. An example of
restoring a logical backup is:

mysql> warnings
Show warnings enabled.

mysql> SOURCE full_backup.sql;

A native NDB Cluster backup is a little more complex to restore as the backup is split across all of the
data nodes that were online at the time of the backup. There is no limitation on how many parts of the
backup are restored in parallel other than the cluster must be able to keep up with the load. Typically, it is
possible to restore all parts at the same time. A common approach is to restore each part from the same host
as where the node that made the backup is installed; however, this is not required.

To restore the data backed up by node ID 1 in the backup with backup ID 2, use a command such as:

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --restore_data --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --disable-indexes

Execute ndb_restore like this for each part of the backup, setting the --nodeid option to the node ID
of the data node that created that part of the backup. The --disable-indexes option is not required if the
schema was restored using ndb_restore with the indexes disabled, but in that case, it is just a NOOP (no
operation), so it is simpler to always include the option.

Chapter 8 ■ BaCkups and restores

274

When the data has been restored from all the backup parts—that is, the ndb_restore --restore-data
commands have all completed successfully, the indexes must be rebuilt. This rebuild is triggered using the
--rebuild-indexes option with ndb_restore. The command to rebuild the indexes should be executed for
only one of the backup parts. Continuing the example, the command to rebuild the indexes looks like this:

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --rebuild-indexes

Restore to a Different Number of Data Nodes
There is no restriction on the number of data nodes required in the cluster a backup is restored to (the target
cluster) compared to the cluster where the backup was created (the source cluster). However, a different
number of data nodes in general also means the cluster has a different default and maximum number
of partitions. Because ndb_restore --restore_meta in MySQL NDB Cluster 7.4 and earlier restores the
schema with the same number of partitions, as when the backup was created, it is recommended in those
versions to restore the schema from a logical schema backup when the configuration of the target cluster
does not match the source cluster with respect to the number of data nodes and/or the number of LDM
threads.

The data of a native NDB Cluster backup is restored in the same way as when the two clusters are
identical. If the backup parts are copied to the hosts of the data nodes, it is necessary to distribute them
so some nodes get more than one backup part (if the target cluster has fewer data nodes than the source
cluster) or some hosts will not have any backup parts (if the target cluster has more data nodes than the
source cluster). When restoring the data, the data is automatically distributed according the partitioning of
the tables on the target cluster, so there is nothing special to take into consideration.

For logical backups, there is even less to consider. Since the backup is restored by replaying an SQL
script through one of the SQL nodes, the procedure is exactly the same as for restoring to a target cluster that
is identical to the source cluster.

Partial Data Restores
A partial data restore is a restore in which a subset of the backup is restored. In principle, a partial backup
can apply both to the tables and to the data restored. However, for the purpose of this discussion, the only
case considered is when a subset of the tables is restored.

For a logical backup that has all of the backups in a single SQL script, it is necessary to edit the SQL
script to remove the parts of the backup that should not be restored. This is where a backup created with
mysqldump --tab=... or a dump project folder from MySQL Workbench can be an advantage, as each table
is created in its own separate file, making it trivial to perform a partial restore.

 ■ Caution the --one-database option for the mysql command-line client cannot be used to perform a
partial restore of an sQL script. the option relies on the default database. as the sQL script changes the default
schema for each database in the backup, the result is that --one-database will not have any effect.

Chapter 8 ■ BaCkups and restores

275

ndb_restore on the other hand has built-in support for partial restores, and there is also support to
rename the database name as part of the restore. There are five command-line arguments to ndb_restore
related to partial restores:

•	 --exclude-databases=…. A comma-separated list of databases to exclude from the
restore.

•	 --exclude-tables=…. A comma-separated list of tables to exclude from the restore.
Each table must also include the database name.

•	 --include-databases=…. A comma-separated list of databases to include in the
backup.

•	 --include-tables=…. A comma-separated list of tables to include in the backup. Like
for --exclude-tables, the database name must be included for each table.

•	 --rewrite-database=…. Takes two database names separated by a comma where the
first value is the database name in the backup and the second is the database name
to restore to. Any foreign keys in tables affected by the rename are removed as part
of the rewrite. For example, to rename the world database to world_temp, you use
--rewrite-database=world,world_temp. Specify multiple times to rename more
than one database.

As an example, consider a backup that (among other databases) includes the world sample database,
and it is required to restore the data for the City table to a database named world_temp. For example,
to restore some data that was deleted by accident. In this case, the following sequence for ndb_restore
commands can be used (repeat the --restore_data step for each data node that participated in the
backup):

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --restore_meta --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --include-tables=world.City \
 --rewrite-database=world,world_temp \
 --disable-indexes

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --restore_data --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --include-tables=world.City \
 --rewrite-database=world,world_temp \
 --disable-indexes

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --include-tables=world.City \
 --rewrite-database=world,world_temp \
 --rebuild-indexes

Chapter 8 ■ BaCkups and restores

276

It is possible to combine the include and exclude options or use the options multiple times. When
multiple filters are used, the overall filter will be the combination of all of the supplied filters. In the case
of using both include and exclude options, the overall filter is evaluated in the order they are supplied.
Consider for example these filters:

shell$ ndb_restore ... --include-databases=world --exclude-tables=world.City

In this case, --include-database will include all tables in the world schema, and --exclude-tables
will then remove the world.City table, so the overall result is that all tables in the world schema, except the
City table, are restored.

Restores Using MySQL Workbench
Logical backups made with mysqldump, mysqlpump, and similar backup programs can also be restored
using MySQL Workbench. There are two options for this. The first corresponds to the data export function
described earlier. This supports importing a dump project folder or a self-contained file. While the dump
project folder works the best using a dump project folder created by MySQL Workbench’s data export
feature, the self-contained file can be from any backup software that creates an SQL file. The major
difference from a usability point of view is that a dump project folder offers the option of performing a full as
well as a partial restore, whereas a self-contained file only supports full restores. Figure 8-4 shows the data
import screen in MySQL Workbench with the options available for an import of a dump project folder.

Figure 8-4. MySQL Workbench’s data import feature

Chapter 8 ■ BaCkups and restores

277

An alternative way to restore a self-contained SQL script in MySQL Workbench is to open the script
in a query tab. The advantage is that it is possible to edit the contents of the script before executing it. The
disadvantage is that it is difficult to handle large backups this way. A script is loaded by choosing a query tab
and choosing Open SQL Script under File in the menu. This is illustrated in Figure 8-5. It is also possible to
execute the script using Run SQL Script under File in the menu; this is similar to executing a self-contained
SQL file from the data import screen.

Point-In-Time Recovery (PITR)
One of the more advanced restore procedures is a point-in-time recovery (PITR). As the name suggests,
it consists of restoring the data to a specific point in time. There are two general cases for point-in-time
recoveries:

•	 Restoring to just before a specific event occurred. For example, if a user has dropped
a table by mistake, it is necessary to restore to just before this happened.

•	 Restore to the latest possible time. This can for example happen after a crash of the
host where MySQL is installed.

A special case is setting up a replication slave, as that largely follows the same steps as for a point-in-
time recovery.

Figure 8-5. Open SQL Script in the menu in MySQL Workbench

Chapter 8 ■ BaCkups and restores

278

The point-in-time recovery procedure consists of two high-level steps:

 1. A regular restore of a backup, as described earlier in the chapter.

 2. Replaying the binary logs from the point in time where the backup was made
up to the point in time the restore should conclude. It may in some cases be
necessary to skip selected events while applying the binary logs. For setting up a
replication slave, replaying the binary logs will in principle never end.

At a high level, there is no difference between performing a point-in-time recovery for a logical backup
and a native NDB Cluster backup as the two steps just mentioned are the same. There is however one main
difference: determining the binary log file and position where the backup was created. When a backup is
made with mysqldump, the backup will directly include the binary log file and position if the --master-data
option was given. However, for a native NDB Cluster backup, it is not possible to have this directly in the
backup, as the binary logging does not occur on the data nodes where the backup is created. Additionally,
there may be several SQL nodes with binary logs enabled and the backup will not correspond to the same
point in the binary logs for each SQL node.

There are two parts to determining the correct binary log file and position:

•	 The mysql.ndb_apply_status table: This table is normally only used on a replication
slave. However, if the --restore_epoch option is added when restoring the data with
ndb_restore, it will be populated during the restore.

•	 The mysql.ndb_binlog_index table: This is the table that was discussed as part of
the backups of the binary log. It contains the mapping from the NDB Cluster epochs
to the binary log file and position on that SQL node.

By combining these two tables, it is possible to determine the correct starting point to replay the binary
log from. This is also required when setting up a replication slave.

Putting everything together, the steps for a point-in-time recovery are to first ensure the database has
been cleanly initialized, and then restore the native NDB Cluster backup:

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --restore_meta --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --disable-indexes

For each data node:
shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --restore_data --restore_epoch --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --disable-indexes

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --rebuild-indexes

The next step is to restore the backup of the mysql.ndb_binlog_index table:

mysql> warnings
Show warnings enabled.

mysql> use mysql;
Database changed

Chapter 8 ■ BaCkups and restores

279

mysql> SOURCE binlog_index.sql
Query OK, 0 rows affected (0.00 sec)
...

The --restore_epoch option, when used for restoring the data, populates the mysql.ndb_apply_status
table similar to how it is done on a replication slave when applying the binary log. The content will be like in
following output:

mysql> SELECT * FROM mysql.ndb_apply_status;
+-----------+--------------+----------+-----------+---------+
| server_id | epoch | log_name | start_pos | end_pos |
+-----------+--------------+----------+-----------+---------+
| 0 | 455266533375 | | 0 | 0 |
+-----------+--------------+----------+-----------+---------+
1 row in set (0.01 sec)

The data shows the latest applied epoch per server_id. Since the epoch originates from ndb_restore,
the server ID is 0. In principle, there may be more than one row in which case it is the highest value of the
epoch column that is of interest; in practice after a restore there is only one row. This epoch should be
compared with the epochs column in the mysql.ndb_binlog_index table, which records the epoch that
corresponds to binary log files and positions. The position that is of interest for a point-in-time recovery
or when determining where to start replication from, is the position for the first epoch larger than the one
found in mysql.ndb_apply_status. The binary log file and position can now be determined as follows:

mysql> SELECT i.File, i.Position
 FROM (SELECT MAX(epoch) AS MaxEpoch
 FROM mysql.ndb_apply_status) AS e
 INNER JOIN mysql.ndb_binlog_index i ON i.epoch > e.MaxEpoch
 ORDER BY i.epoch
 LIMIT 1;
+------------------------------+----------+
| File | Position |
+------------------------------+----------+
| /var/lib/mysql/binlog.000003 | 216567 |
+------------------------------+----------+
1 row in set (0.00 sec)

The binary log can now be applied using the mysqlbinlog utility. There are four options to control
which part of binary log(s) are extracted:

•	 --start-position=.... The start position as found in the previous step. If multiple
binary log files are specified, the position only applies to the first file.

•	 --stop-position=.... The counterpart to --start-position. It specifies where to stop
replaying the binary logs. If multiple binary log files are specified, the position only
applies to the last file.

•	 --start-datetime=.... Specifies the date and time using the format 2016-12-29
16:04:44. This option is most useful with --stop-datetime to determine the stop
position for a point-in-time recovery.

Chapter 8 ■ BaCkups and restores

280

•	 --stop-datetime=.... Like --start-datetime, but specifies when to stop replaying
the binary logs. It is not recommended to use this as part of a point-in-time recovery.
The reason is that the timestamp logged with the binary log events is when the
transaction started, but the events are logged in the order the transactions are
committed. So, the timestamps will in general not be in order. If --stop-datetime
is used, then replaying the binary log stops when the first event with a more recent
timestamp than the value specified with --stop-datetime is encountered. However,
the option can be useful for manually investigating the binary logs, for example, to
determine the correct binary log position to use with --stop-position.

As an example, consider a point-in-time recovery where it is necessary to replay the binary log up to an
event that dropped a table around 16:00 on December 29, 2016. First inspect the binary logs to determine
the position of the event where the table was logged. This will look like:

shell$ mysqlbinlog --start-datetime='2016-12-29 15:55:00' \
 --stop-datetime='2016-12-29 16:05:00' \
 binlog.000005
...
at 6432260
#161229 16:03:59 server id 57163508 end_log_pos 213382 CRC32
0x3da16db3 Query thread_id=6 exec_time=1 error_code=0
SET TIMESTAMP=1487066639/*!*/;
/*!\C utf8 *//*!*/;
SET @@session.character_set_client=33,@@session.collation_connection=33,@@session.collation_
server=8/*!*/;
DROP TABLE `world`.`City` /* generated by server */
/*!*/;

 ■ Tip If you need to find an event manipulating a row, use the arguments --base64-output=decode-rows
--verbose to convert the hexadecimal encoding of the row events into human readable form. note that the
binary log does not contain any character set information, so string data types such as varchar may be affected
when displayed.

The DROP TABLE event starts at position 6432260, so this is the stop position to use when replaying the
binary logs:

shell$ mysqlbinlog --start-position=216567 --stop-position=6432260 \
 binlog.000003 binlog.000004 binlog.000005 | \
 mysql --user=root --password

Chapter 8 ■ BaCkups and restores

281

Summary
This chapter discussed backups and restores. Backups can be made using native NDB Cluster online
backups or logical backups. Often a combination of the two is used. A native NDB Cluster backup is created
directly by the data nodes using the same underlying code as for local checkpoints. On the other hand,
a logical backup is created using regular SQL statements to export the schema objects and data. It is also
important to include backups of users, privileges, and binary logs.

Restoring backups are used for everything from setting up a test server to disaster recovery. It is
important to test the restore procedures regularly to ensure familiarity with all the steps and to ensure the
backups can be restored. A restore may be combined with replaying the binary logs to perform a point-in-
time recovery (PITR), which for example can be useful to recover after accidentally dropping a table. Related
to point-in-time recoveries is the process of setting up a replication slave.

The topic of the next chapter is the maintenance of the NDBCluster tables.

283© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_9

CHAPTER 9

Table Maintenance

Part II covered the tasks needed to install and configure a cluster, and this part has been focusing on tools
and procedures that are used on a day-to-day basis in order to maintain the cluster. An important task for the
database administrator is table maintenance. This includes relatively infrequent tasks, such as adding new
columns to existing tables over maintaining a good set of indexes, to more frequent tasks like defragmenting
tables and updating index statistics. All of these tasks are discussed throughout this chapter.

Schema Changes
No matter how carefully a schema is planned, eventually some schema changes are required. It may be
due to new requirements from the application or it may be that the schema design did not work out as well
as initially planned. Schema changes in production environments are generally a painpoint for database
systems; however, for NDBCluster tables, the change can in several cases be made while the table is online
and the application can continue to both read and write to the table that is being changed. The rest of this
section explains how to make schema changes.

Distributing Schema Changes and the Global Schema Lock
When a schema change is made for an NDBCluster table, the change must be distributed to all of the SQL
nodes, and it is necessary to have a mechanism to avoid conflicting schema changes to occur concurrently.
The details of the implementation of the global schema lock is beyond the scope of this book; however, some
high-level information is good to know. This is the topic of this subsection.

MySQL NDB Cluster uses the hidden mysql.ndb_schema table to keep track of schema changes. It is an
NDBCluster table, so all API nodes have the same view of the table. It is hidden, so it will not show up in a
SHOW TABLES statement or when querying the Information Schema tables—although it is visible in the data
node data dictionary using the ndb_show_tables utility or the ndbinfo.dict_obj_info view:

shell$ ndb_show_tables | grep ' ndb_schema$'
7 UserTable Online Yes mysql def ndb_schema

mysql> SELECT type_name, id AS TableID, fq_name
 FROM ndbinfo.dict_obj_info
 INNER JOIN ndbinfo.dict_obj_types ON type_id = type
 WHERE fq_name = 'mysql/def/ndb_schema';

https://doi.org/10.1007/978-1-4842-2982-8_3

Chapter 9 ■ table MaintenanCe

284

+------------+---------+----------------------+
| type_name | TableID | fq_name |
+------------+---------+----------------------+
| User table | 7 | mysql/def/ndb_schema |
+------------+---------+----------------------+
1 row in set (0.02 sec)

It is also possible to query the table directly, which can be useful when debugging. It will, for example,
show the last query to modify the table and the schema version of the table. Listing 9-1 shows an example for
the db1.t1 table.

Listing 9-1. The Information in mysql.ndb_schema for the db1.t1 Table

mysql> SELECT * FROM mysql.ndb_schema WHERE db = 'db1' AND name = 't1'\G
*************************** 1. row ***************************
 db: db1
 name: t1
 slock:
 query: ALTER TABLE t1 ADD INDEX (val)
node_id: 51
 epoch: 0
 id: 10
version: 100663299
 type: 7
1 row in set (0.08 sec)

Figure 9-1 shows the high-level design of the schema changes being distributed between the SQL nodes
through the mysql.ndb_schema table.

Figure 9-1. Schema distribution through the mysql.ndb_schema table

Chapter 9 ■ table MaintenanCe

285

When two SQL nodes attempt to change the schema for the same table at the same time, the second
statement to start will be blocked until the first has completed. This can for example be seen from the output
of SHOW PROCESSLIST, as demonstrated in Listing 9-2, where the query is waiting for the global schema lock
to be granted. A global schema lock should be treated like any other lock—the solution is to wait for the
lock to be released or kill the query holding the lock. Should the lock not be released (this would be a bug),
typically it will help to restart the SQL node holding the lock.

Listing 9-2. ALTER TABLE Query Waiting for the Global Schema Lock

mysql> SHOW PROCESSLIST\G
...
 *************************** 2. row ***************************
 Id: 4
 User: root
 Host: localhost:49501
 db: db1
Command: Query
 Time: 1
 State: Waiting for ndbcluster global schema lock
 Info: ALTER TABLE t1 ADD INDEX (val)
...

With some of the background of how MySQL NDB Cluster handles the distribution of schema changes
and how two conflicting schema changes avoid being executed at the same time, it is possible to move on to
discuss the schema changes themselves.

Online Versus Offline Schema Changes
Schema changed in MySQL NDB Cluster can be divided into two categories: Those that can be performed
online and those that require the table to be offline. Online schema changes have the advantage that they
provide minimal interruption of the ongoing activities of the application. This is possible for several types of
schema changes of NDBCluster tables. Table 9-1 summarizes the characteristics of online and offline schema
changes. The next two sections go into more detail, and later in the chapter there are several examples of
online and offline schema changes.

Chapter 9 ■ table MaintenanCe

286

As the comparison of the two schema change methods shows, online and offline schema changes are
fundamentally different, and offline schema changes are much more intrusive than online schema changes.

Offline Schema Changes
It is worth discussing the recommendation to enable single user mode for offline schema changes in more
detail. There is no transaction log keeping track of the changes to the table while the data is copied to the
new table. For this reason, changes made to the part of the table that is already copied (including inserting
new rows) will be lost when the old table is replaced with the new table at the end of the procedure. If it
is guaranteed that only reads will occur, it is possible to keep the other nodes online during the schema
change, but in practice it is better to use the single mode feature and, if necessary, redirect queries to other
tables to the SQL node performing the schema change.

 ■ Caution Do not insert, update, or delete data in the table undergoing an offline schema change. the
changes may be lost. it is recommended to use the single user mode feature discussed in Chapter 7 to avoid
inadvertently losing data.

Table 9-1. Online vs. Offline Schema Changes

Online Offline

Implementation The schema change is pushed
down to the data nodes and
performed in-place, i.e., without
creating a new table and copying
the data.

The SQL node is handling the
schema change by creating a new
table with the new schema and
copying the data across. At the
end, the old table is removed and
the new table is renamed.

On the SQL node performing the
change

An exclusive lock is required for
the table.

An exclusive table level lock
is taken. This applies even
if LOCK=SHARED is specified.
(Whether a shared or exclusive
lock is requested affects whether
the concurrent queries blocks
for a metadata lock or a table
lock.) Furthermore, executing
concurrent queries with
LOCK=SHARED will cause a deadlock
when the new tale is renamed at
the end of the ALTER TABLE.

On other API nodes Both reads and writes are allowed
and are safe to do.

No locking occurs for DML
statements, but these are not safe
to use and any data changes made
during the schema change may
be lost. It is thus recommended
to put the cluster in single user
mode, as discussed in Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-2982-8_7
http://dx.doi.org/10.1007/978-1-4842-2982-8_7

Chapter 9 ■ table MaintenanCe

287

Performing a schema change requires resources irrespective of which algorithm is used. However,
as copying schema changes requires an extra table while the change is applied, it will also require more
attributes, memory, and/or disk usage during this period. As a rule of thumb, the number of attributes
required for the table is three times larger than that of the original table while the schema change is ongoing.

Chapter 4 discussed how to calculate the number of attributes used for a table. To allow some spare
room, MaxNoOfAttributes should be configured to allow for at least six times as many attributes. If the value
of MaxNoOfAttributes is too small, an error like the one shown in Listing 9-3 is returned. In that case, it is
necessary to increase the value of MaxNoOfAttributes, which requires a rolling restart of the data nodes (see
Chapter 10).

Listing 9-3. Error Due to MaxNoOfAttributes Being Too Small

mysql> ALTER TABLE t1 ALGORITHM=COPY, ADD INDEX (val);
ERROR 1025 (HY000): Error on rename of './db1/t1' to './db1/#sql2-361e-5' (errno: 708 - Unknown
error 708)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1296
Message: Got error 708 'No more attribute metadata records (increase MaxNoOfAttributes)'
from NDB
*************************** 2. row ***************************
 Level: Error
 Code: 1025
Message: Error on rename of './db1/t1' to './db1/#sql2-361e-5' (errno: 708 - Unknown error 708)
2 rows in set (0.01 sec)

Online Schema Changes
Online schema changes are clearly preferred: they allow the application to continue being fully online and
the schema changes to happen in-place. This means the amount of work is much less and thus the schema
change completes quicker. However, there is one caveat: not all schema changes can be made online. The
general limitations of online schema changes are:

•	 The table must have an explicit primary key. When a hidden primary key is used, a
copying offline schema change must always be used.

•	 It is only possible to do one of the following changes at a time: add an index, drop an
index, or add columns. If several of these changes are required, do them in sequence.

•	 The schema change takes an exclusive lock on the table, which affects connections
to the same SQL node. So, concurrent queries using the tables are blocked. For this
reason, it can be worth having an additional SQL node reserved for administrative
tasks such as table maintenance.

There are also more specific limitations for each of the operations that do support in-place changes.
The supported online operations and their limitations are listed in Table 9-2.

http://dx.doi.org/10.1007/978-1-4842-2982-8_4
http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 9 ■ table MaintenanCe

288

By default, the in-place algorithm will be chosen if it is supported; otherwise, a copying schema change
will be made. The next section discusses how to specify which algorithm to use with the ALTER TABLE
statement.

ALTER TABLE Algorithm
The syntax to perform schema changes depends somewhat on the version of MySQL NDB Cluster. In MySQL
NDB Cluster 7.2 and earlier, the ONLINE and OFFLINE keywords to ALTER TABLE were used to specify whether
an online or offline schema change should be performed. In MySQL NDB Cluster 7.3 and later, the InnoDB
storage engine also supports online schema changes and the syntax was changed to use the ALGORITHM
attribute and the ONLINE and OFFLINE keywords were deprecated (and removed in MySQL NDB Cluster 7.5).
The ALGORITHM option takes one of three values:

•	 INPLACE: This will perform the schema change within the existing copy of the
table. This in general is preferred as it is faster than creating a copy of the table. For
NDBCluster tables, this is a synonym for an online schema change.

•	 COPY: This makes a copy of the table with the new table definition. For NDBCluster
tables, this is a synonym for an offline schema change.

•	 DEFAULT: Will choose INPLACE if possible, otherwise COPY. Specifying DEFAULT is the
same as not specifying the ALGORITHM option.

Table 9-2. Limitations of the Schema Changes Supporting the In-Place Algorithm

Schema Change Limitations and Notes

ADD INDEX Cannot be used together with DROP INDEX or ADD COLUMN.
Only one index can be created at a time. It applies to the ALTER TABLE
... ADD INDEX and ADD INDEX statements.

DROP INDEX Cannot be used together with ADD INDEX or ADD COLUMN.
Only one index can be dropped at a time. It applies to the ALTER
TABLE ... DROP INDEX and DROP INDEX statements.

ADD COLUMN The column must use the dynamic column format. If the column
format is not specified explicitly, MySQL NDB Cluster will
automatically choose dynamic and return a warning.
TEXT and BLOB data types are not supported.
The column must be DEFAULT NULL and allow null values.
The column must follow all existing columns in the table definition1.

REORGANIZE PARTITIONS For use after adding more data nodes to the cluster or increasing the
number of LDM threads.

OPTIMIZE TABLE This is not an ALTER TABLE operation. Its use will be discussed in the
defragmentation section.

RENAME (table) It applies both to the ALTER TABLE ... RENAME ... and RENAME TABLE
statements. Only the table name can be renamed online. Renaming an
index or a column requires an offline copying ALTER TABLE.

Set the READ_BACKUP attribute The feature is new in MySQL NDB Cluster 7.5. The read from backup
replicas feature was discussed in Chapter 2.

1Remember, the columns are ordered in SQL databases even if they are not in relational theory

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 9 ■ table MaintenanCe

289

 ■ Note the terms online and offline are interchangeable with in-place and copy respectively. So, there is no
change in concept between the old and new syntax.

In version 7.3 and later, it is additionally possible to set the lock type using the LOCK option to ALTER
TABLE. The lock type only applies to the local SQL node executing the ALTER TABLE. It is of limited use with
MySQL NDB Cluster as online schema changes always require an exclusive lock, although for offline schema
changes it is, in principle, possible to choose between using a shared or an exclusive lock. (As mentioned, it
is not recommended to attempt using a shared lock.)

 ■ Caution Using ALGORITHM=COPY, LOCK=SHARED to make an offline schema change will cause a deadlock
if concurrent queries using the table on the same SQl node is attempted.

The following ALTER TABLE statement is an example of an online/in-place schema change:

•	 MySQL NDB Cluster 7.3 and later.

mysql> ALTER TABLE t1 [ALGORITHM=INPLACE,]
 [LOCK=EXCLUSIVE,]
 <schema change specification>;

•	 MySQL NDB Cluster 7.2 and earlier.

mysql> ALTER [ONLINE] TABLE <schema change specification>;

Here, the parts of the statement inside the square brackets ([...]) are optional, a vertical bar (|)
between the two words means that one word must be chosen, and the actual schema change should go
where <schema change specification> is.

An example ALTER TABLE statement for offline/copying schema change is (the same syntax is used as
for online schema changes):

•	 MySQL NDB Cluster 7.3 and later.

mysql> ALTER TABLE t1 [ALGORITHM=COPY,]
 [LOCK=SHARED|EXCLUSIVE,]
 <schema change specification>;

•	 MySQL NDB Cluster 7.2 and earlier.

mysql> ALTER [OFFLINE] TABLE <schema change specification>;

Note the comma after the ALGORITHM and LOCK options. There are examples later in the chapter of
various schema changes.

To maintain backward compatibility, the ONLINE and OFFLINE keywords can also be used in MySQL
NDB Cluster 7.3 and 7.4; however it is recommended to start using the new syntax, and in version 7.5 and
later the ALGORITHM option is the only supported syntax to specify whether the schema change should be
made in-place or as a copying ALTER TABLE. Using the ONLINE and OFFLINE keywords will also cause a
deprecation warning in versions 7.3 and 7.4.

This concludes the theory behind online and offline schema changes. Before moving on to partition
reorganization, a series of ALTER TABLE examples are discussed.

Chapter 9 ■ table MaintenanCe

290

ALTER TABLE Examples
It is worth looking at some examples, as the syntax can be difficult at first. The examples in this section use
the following table as the table definition before the schema change:

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `id` int(10) unsigned NOT NULL,
 `val` varchar(10) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.02 sec)

Do not take the timings in the examples literally, as they are from a virtual machine on a relatively old
laptop. The time it takes to perform the schema change will also depend on the amount of data. However,
the relative times between in-place and copying schema changes are of relevance.

Default Behavior
By default, the INPLACE algorithm is used if this is supported, otherwise COPY is used. For example, adding a
column that accepts nulls as the last column without specifying any modifiers will be made online:

mysql> ALTER TABLE t1 ADD COLUMN rank int unsigned;
Query OK, 0 rows affected, 1 warning (2.62 sec)
Records: 0 Duplicates: 0 Warnings: 1

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'rank' to DYNAMIC to enable online ADD COLUMN
1 row in set (0.00 sec)

Notice the warning. It is presented because, by default, an integer column will use the fixed column
format, but for an online schema change to occur, the dynamic column format must be used. It is possible to
be more explicit about the behavior and at the same time avoid the warning. That is the next example.

Adding a Column with the Explicit Column Format
As shown in the previous example, MySQL NDB Cluster will automatically choose the dynamic column
format for an in-place schema change even for data types that by default use the fixed column format,
but it raises a warning. It is preferable to avoid this warning, as it may cause more important issues to be
overlooked. To avoid this warning, the solution is to specify the column format explicitly:

mysql> ALTER TABLE t1
 ADD COLUMN rank int unsigned COLUMN_FORMAT DYNAMIC;
Query OK, 0 rows affected (2.26 sec)
Records: 0 Duplicates: 0 Warnings: 0

Chapter 9 ■ table MaintenanCe

291

 ■ Tip it is best practice to write the queries so they do not cause any warnings. this way it is easier to
identify queries that may cause problems, for example, because they are using deprecated features. Warnings
can be seen with the SHOW WARNINGS statement like in the previous example or by enabling warnings
automatically in the mysql command-line client using the warnings command.

What do you do, if it is not desirable to have MySQL NDB Cluster choosing the algorithm, or if it is
important that the schema change is made only if it can be done using the in-place algorithm? The next two
examples cover that.

Specifying Algorithm and Lock Type
It is not possible to see which algorithm will be chosen without executing the ALTER TABLE statement. This
can cause surprises, if the copying algorithm is chosen where it was expected to be an in-place change. To
avoid this issue, set the algorithm explicitly using the ALGORITHM option:

mysql> ALTER TABLE t1 ALGORITHM=INPLACE, ADD INDEX (val);
Query OK, 0 rows affected (8.29 sec)
Records: 0 Duplicates: 0 Warnings: 0

The same change can be made by setting the locking type for the local SQL mode explicitly. Since it is
an online schema change, the lock type must be set to exclusive:

mysql> ALTER TABLE t1 ALGORITHM=INPLACE, LOCK=EXCLUSIVE, ADD INDEX (val);
Query OK, 0 rows affected (8.25 sec)
Records: 0 Duplicates: 0 Warnings: 0

The same example, but here the index is added using offline copying schema change, uses
ALGORITHM=COPY:

mysql> ALTER TABLE t1 ALGORITHM=COPY, LOCK=EXCLUSIVE, ADD INDEX (val);
Query OK, 131072 rows affected (2 min 23.23 sec)
Records: 131072 Duplicates: 0 Warnings: 0

Notice how much longer it takes to add the index through a table copy.
What happens if ALGORITHM=INPLACE is chosen, but the change does not support it? That is the next

thing to discuss.

Attempting Unsupported In-Place Changes
If an in-place algorithm is requested, but the schema change in question does not support it, MySQL will
return an error. For example, dropping a column can only be done using the copying algorithm:

mysql> ALTER TABLE t1 ALGORITHM=INPLACE, DROP COLUMN rank;
ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Detected unsupported change.
Try ALGORITHM=COPY.

Chapter 9 ■ table MaintenanCe

292

 ■ Tip One advantage of specifying ALGORITHM=INPLACE explicitly is that it ensures that a copying ALTER
TABLE is not executed by mistake. if the INPLACE algorithm is not supported, the statement will fail with an error.

The last case to consider is schema changes in MySQL NDB Cluster 7.2 and earlier where the ALGORITHM
and LOCK keywords are not supported.

Schema Changes in Version 7.2 and Earlier
In MySQL NDB Cluster 7.2 and earlier, the OFFLINE and ONLINE keywords are used instead of the ALGORITHM
keyword to specify how the schema change must be executed. It is not possible to set the lock type; an
exclusive lock is always taken on the SQL node where the ALTER TABLE is executed.

For example, to add an index online (in-place), use:

mysql> ALTER ONLINE TABLE t1 ADD INDEX (val);

An example of an offline (copying) schema change is to add a column using the fixed column format:

mysql> ALTER OFFLINE TABLE t1
 ADD COLUMN rank int unsigned COLUMN_FORMAT FIXED DEFAULT NULL;

This concludes the ALTER TABLE examples for making schema changes. However, ALTER TABLE is
also used to reorganize the partitions; for example, after changing the number of data nodes and/or LDM
threads. This is the topic of the next section.

Reorganize Partitions
A special case of making a schema change is reorganizing the partitions. By default, NDBCluster tables are
created with the number of partitions based on the number of data nodes and the number of LDM threads
per data node. When the configuration of the cluster changes, it is necessary to redistribute the data to take
advantage of the new cluster configuration. Table 9-3 shows the various cluster configuration changes and
discusses how to reorganize the partitions for each case. The overview shows that scaling up can be done
with an online schema change, whereas scaling down requires an offline schema change.

Table 9-3. Requirements to Reorganize the Partitions After a Cluster Configuration Change

Configuration Change Reorganize Partition Method

Increase the number of data
nodes

ALTER TABLE t1 REORGANIZE PARTITION can be used. This is an online
operation. See Chapter 10 for an example.

Decrease the number of data
nodes

It is necessary to recreate the table. A null ALTER TABLE can be used:
ALTER TABLE t1 ENGINE=NDBCluster. This is an offline operation.

Increase the number of LDM
threads

ALTER TABLE ... REORGANIZE PARTITION can be used. This is an online
operation, but it can first be performed after two rolling restarts (where
the first rolling restart changes the number of LDM threads) or a system
restart.

Decrease the number of LDM
threads

It is necessary to recreate the table. A null ALTER TABLE can be used:
ALTER TABLE t1 ENGINE=NDBCluster. This is an offline operation.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 9 ■ table MaintenanCe

293

 ■ Note REORGANIZE PARTITION only supports tables using automatic partitioning. in order to repartition
tables using a custom partitioning, it is necessary to rebuild the table specifying the new number of partitions,
for example:
mysql> ALTER TABLE t1 ALGORITHM=COPY

 PARTITION BY KEY (id) PARTITIONS 8;

An online reorganization of the partitions is an expensive operation even though it is performed
in-place. The data must be moved around while keeping track of where it is located to be able to serve
concurrent queries. Additionally, it leaves the original partitions fragmented. In general, an offline copying
null ALTER TABLE will be faster and will defragment the table at the same time. A null ALTER TABLE
rebuilds the table and (except that the new copy of the table is created with the number of partitions that
is the default for the current cluster configuration), it makes no change to the table. A null ALTER TABLE is
always a copying operation and must be done offline. The remainder of this section includes examples of
reorganizing the partitions online versus rebuilding the table and discussion of defragmentation of tables.

An example of reorganizing the partitions online using REORGANIZE PARTITION is:

mysql> ALTER TABLE t1 ALGORITHM=INPLACE, REORGANIZE PARTITION;
Query OK, 0 rows affected (22 min 57.51 sec)
Records: 0 Duplicates: 0 Warnings: 0

To use a null ALTER TABLE instead—either after reducing the number of data nodes or LDM threads, or
to fully defragment the table (see also the next section)—use:

mysql> ALTER TABLE t1 ALGORITHM=COPY, LOCK=EXCLUSIVE, ENGINE=NDBCluster;
Query OK, 131072 rows affected (3 min 41.43 sec)
Records: 131072 Duplicates: 0 Warnings: 0

Note that the time this table rebuild takes compared to the online REORGANIZE PARTITION statement.
This is one case where the copying schema change is faster than the online approach.

 ■ Tip When it is necessary to reorganize the partitions, it is better to do it by performing a null ALTER
TABLE if the downtime is acceptable. this is generally faster than the online REORGANIZE PARTITION and fully
defragments the table at the same time.

Listing 9-4 shows an example of a query that can be used to find tables that are candidates to have the
partitions reorganized. It requires all data nodes to be online. The MySQL NDB Cluster version must be at
least 7.5. A table is included, if the current number of partitions is different from the number, a new table
will be created given the current cluster configuration. It also indicates whether the table was created using
automatic partitioning or manual partitioning. The query is explained after the listing.

Chapter 9 ■ table MaintenanCe

294

Listing 9-4. Finding Tables That Are Candidates to Have the Partitions Reorganized

mysql> SELECT tds.table_id AS TableId, tbl.TableSchema, tbl.TableName,
 tds.tab_partitions AS TablePartitions,
 (
 CASE ti.partition_balance
 WHEN 'FOR_RA_BY_LDM'
 THEN thr.NumLdmThreads/cfg.NoOfReplicas
 WHEN 'FOR_RP_BY_NODE'
 THEN n.NumDataNodes
 WHEN 'FOR_RA_BY_NODE'
 THEN n.NoOfNodeGroups
 ELSE thr.NumLdmThreads
 END / IF(ti.fully_replicated, n.NoOfNodeGroups, 1)
) AS DefaultNumPartitions,
 IF(ti.partition_balance = 'SPECIFIC',
 'YES',
 'NO'
) AS HasCustomPartitions
 FROM (SELECT COUNT(*) AS NumLdmThreads
 FROM ndbinfo.threads
 WHERE thread_name = 'ldm'
) thr
 CROSS JOIN (
 SELECT COUNT(*) AS NumDataNodes,
 COUNT(DISTINCT group_id) AS NoOfNodeGroups
 FROM ndbinfo.membership
) n
 CROSS JOIN (
 SELECT config_value AS NoOfReplicas
 FROM ndbinfo.config_params p
 INNER JOIN ndbinfo.config_values v
 ON v.config_param = p.param_number
 WHERE p.param_name = 'NoOfReplicas'
 LIMIT 1 /* NoOfReplicas must be the same on all nodes */
) cfg
 INNER JOIN ndbinfo.table_distribution_status tds
 INNER JOIN ndbinfo.table_info ti ON ti.table_id = tds.table_id
 INNER JOIN (
 SELECT id AS table_id,
 SUBSTRING_INDEX(fq_name, '/', 1) AS TableSchema,
 SUBSTRING_INDEX(fq_name, '/', -1) AS TableName
 FROM ndbinfo.dict_obj_info doi
 INNER JOIN ndbinfo.dict_obj_types dot
 ON dot.type_id = doi.type
 WHERE dot.type_name = 'User table'
) tbl ON tbl.table_id = tds.table_id

Chapter 9 ■ table MaintenanCe

295

 WHERE NOT ((tbl.TableSchema = 'mysql' AND tbl.TableName LIKE 'NDB$%')
 OR (tbl.TableSchema = 'sys'
 AND (tbl.TableName LIKE 'NDB$%'
 OR tbl.TableName LIKE 'SYSTAB_%'
)
)
)
 HAVING TablePartitions <> DefaultNumPartitions
 ORDER BY TableSchema, TableName;

Since the query is quite complex, it is worth taking a look at the various parts that make it up. The CASE
statement in the SELECT part calculates the expected number of partitions based on the partition distribution
and whether the partitions are fully replicated. If custom partitioning is used, the partition balance is set to
SPECIFIC.

The first subquery in the FROM clause uses the ndbinfo.threads view to determine the number of LDM
threads in the cluster. The second subquery uses the ndbinfo.membership view to find the number of data
nodes and node groups. The third subquery checks the configuration through the ndbinfo.config_params
and ndbinfo.config_values views to get the value of the NoOfReplicas configuration option. Each of these
three subqueries returns exactly one row, so a CROSS JOIN can be used and overall there will still be one row.

The next join is on the ndbinfo.table_distribution_status view and it contains information about
the number of partitions for the table. Further, the join on ndbinfo.table_info provides the partition
balance for the table and whether the partitions are fully replicated. Finally, a subquery uses the two
dictionary ndbinfo views—ndbinfo.dict_obj_info and ndbinfo.dict_obj_types—to get the schema and
table name from the fully qualified NDB Cluster name (fq_name).

The WHERE clause filters out system tables and other internal tables that cannot be reorganized.
The ndbinfo.table_distribution_status table that is used in Listing 9-4 can also be used to

determine whether a REORGANIZE PARTITION is in progress, as shown in Listing 9-5. The subquery in the
INNER JOIN part is the same as the one used in Listing 9-4 to get the table schema and table name for each
table undergoing a partition reorganization.

Listing 9-5. Finding Tables Currently Having the Partition Reorganized

mysql> SELECT tds.table_id AS TableId, tbl.TableSchema, tbl.TableName
 FROM ndbinfo.table_distribution_status tds
 INNER JOIN (
 SELECT id AS table_id,
 SUBSTRING_INDEX(fq_name, '/', 1) AS TableSchema,
 SUBSTRING_INDEX(fq_name, '/', -1) AS TableName
 FROM ndbinfo.dict_obj_info doi
 INNER JOIN ndbinfo.dict_obj_types dot
 ON dot.type_id = doi.type
 WHERE dot.type_name = 'User table'
) tbl ON tbl.table_id = tds.table_id
 WHERE tds.is_reorg_ongoing = 1;
+---------+-------------+-----------+
| TableId | TableSchema | TableName |
+---------+-------------+-----------+
| 4 | office | employee |
+---------+-------------+-----------+
1 row in set (1.98 sec)

Chapter 9 ■ table MaintenanCe

296

The null ALTER TABLE discussed earlier in this section also has a second use to reorganizing partitions:
the table rebuild also defragments the table. Defragmentation—both in-place (online) and copying
(offline)—is the next topic to discuss.

Defragmentation
Over time as data is inserted, deleted, and updated, the tables will end up with gaps in the data storage and
data that logically belongs together (stored in the same table) may not be in contiguous memory regions.
This is known as fragmentation, and it causes the amount of storage used to be larger than necessary.
Fragmentation can, for example, occur after the reorganization of partitions that follows adding more data
nodes to a cluster.

 ■ Tip Fragmentation of the table data is not entirely different from file system fragmentation. See for
example https://en.wikipedia.org/wiki/File_system_fragmentation for an in-depth discussion.

The free space that arises from the various changes to the data still counts toward the total data used
in DataMemory or the on-disk tablespace data file. While the memory can be used for new data for the same
table, it cannot be used for other tables stored in the cluster. This means that is it possible to encounter a
table is full error while there is in principle still free memory. To reclaim any memory that is assigned to the
table but otherwise free, you must defragment the table so the data is moved around to reduce or eliminate
the gaps.

Figure 9-2 shows an example of how fragmentation can occur inside the data as well as the result of a
defragmentation process. The example is not specific to MySQL NDB Cluster and is meant for illustrative
purposes only. The light gray space between Rows 2 and 3 after updating Row 2 as well as between Rows 3
and 5 after deleting Row 4 is all empty space; that is fragmentation. The defragmentation at the end moves
Rows 3 and 5 to consolidate the free space. However, note that defragmentation is an expensive and slow
operation, particularly when it requires a table rebuild.

Figure 9-2. Fragmentation and defragmentation

https://en.wikipedia.org/wiki/File_system_fragmentation

Chapter 9 ■ table MaintenanCe

297

For NDBCluster tables, defragmentation can be achieved in one of three ways:

•	 Using the OPTIMIZE TABLE statement

•	 Restarting the data nodes

•	 Rebuilding the table (a copying null ALTER TABLE)

The simplest method and the one with the least impact is the OPTIMIZE TABLE statement:

mysql> OPTIMIZE TABLE t1;
+--------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------+----------+----------+----------+
| db1.t1 | optimize | status | OK |
+--------+----------+----------+----------+
1 row in set (1 min 37.88 sec)

OPTIMIZE TABLE is an online operation in NDBCluster. However, only the variable sized memory
(dynamic) will be defragmented.

A rolling restart (see Chapter 10) will also defragment the variable sized data and has the advantage that
the indexes are rebuilt from scratch, so it will provide a better defragmentation than OPTIMIZE TABLE. For
fixed-width memory, the only way to reclaim the fragmented memory is to rebuild the table. A table rebuild
can be achieved using a null ALTER TABLE operation:

mysql> ALTER TABLE t1 ALGORITHM=COPY, LOCK=EXCLUSIVE, ENGINE=NDBCluster;
Query OK, 131072 rows affected (3 min 41.43 sec)
Records: 131072 Duplicates: 0 Warnings: 0

This is the same as was discussed earlier for repartitioning a table when an online REORGANIZE
PARTITION does not work. This will rebuild the table offline, but otherwise will make no changes other than
potentially repartitioning the table if the number of data nodes or LDM threads has changed since the last
time the table was rebuild or created.

The chapter has been discussing the schema and storage of data and indexes. However, there is also
another aspect related to day-to-day table maintenance: index statistics. This is the last topic of the chapter.

Index Statistics
When a query is executed through an SQL node, the statement is sent to the optimizer, which will determine
the query plan to use for the actual execution. While the optimizer in general is beyond the scope of this
book, one aspect related to the determination of the query plan is important to discuss: index statistics.

Index statistics provide an estimate of the number of unique values for the indexes in a table. As an
example, consider the table, data, and index statistics in Listing 9-6. The table has three indexes—the primary
key, an index spanning the two columns Surname and FirstName, and one on the IsManager column. The
query with the COUNT() aggregate function on the table itself shows the actual number of unique values per
index and part of the index for the Name index. Finally, the last query shows the same number of unique values
as per the index statistics. The number of unique values is also known as the cardinality.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 9 ■ table MaintenanCe

298

 ■ Note the index statistics for NDBCluster tables also includes a records in range estimate—for example,
how many rows have a value of x between 5 and 10. these estimates are not exposed directly and can
sometimes cause non-optimal query plans. When that happens, use index hints (https://dev.mysql.com/
doc/refman/5.7/en/index-hints.html) to get a better index. records in range estimates will not be discussed
further in this book.

Listing 9-6. Example of a Table with Its Data and Index Statistics

mysql> SHOW CREATE TABLE office.employee\G
*************************** 1. row ***************************
 Table: employee
Create Table: CREATE TABLE `employee` (
 `EmployeeID` int(10) unsigned NOT NULL,
 `FirstName` varchar(20) DEFAULT NULL,
 `Surname` varchar(20) DEFAULT NULL,
 `IsManager` enum('No','Yes') NOT NULL,
 PRIMARY KEY (`EmployeeID`),
 KEY `Name` (`Surname`,`FirstName`),
 KEY `IsManager` (`IsManager`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

mysql> SELECT COUNT(*), COUNT(DISTINCT EmployeeID),
 COUNT(DISTINCT Surname), COUNT(DISTINCT Surname, FirstName),
 COUNT(DISTINCT IsManager)
 FROM office.employee\G
*************************** 1. row ***************************
 COUNT(*): 10000
 COUNT(DISTINCT EmployeeID): 10000
 COUNT(DISTINCT Surname): 372
COUNT(DISTINCT Surname, FirstName): 8543
 COUNT(DISTINCT IsManager): 2
1 row in set (0.05 sec)

mysql> SELECT INDEX_NAME, NON_UNIQUE, COLUMN_NAME, CARDINALITY
 FROM information_schema.STATISTICS
 WHERE TABLE_SCHEMA = 'office' AND TABLE_NAME = 'employee';
+------------+------------+-------------+-------------+
| INDEX_NAME | NON_UNIQUE | COLUMN_NAME | CARDINALITY |
+------------+------------+-------------+-------------+
PRIMARY	0	EmployeeID	10000
Name	1	Surname	391
Name	1	FirstName	9204
IsManager	1	IsManager	2
+------------+------------+-------------+-------------+
4 rows in set (0.00 sec)

https://dev.mysql.com/doc/refman/5.7/en/index-hints.html
https://dev.mysql.com/doc/refman/5.7/en/index-hints.html

Chapter 9 ■ table MaintenanCe

299

Looking at the cardinalities in Listing 9-6, there are a few points to note:

•	 The primary key has a cardinality that is equal to the number of rows. This is by
definition as the primary key requires all values to be unique and null values are not
allowed. The same applies to all unique indexes where the columns are defined as
NOT NULL.

•	 The cardinality of the Name index (Surname and FirstName) does not equal the
number of unique values. There is a cardinality listed both for the Surname (391)
and FirstName (9204). The cardinality for the FirstName is for the combination with
Surname, so the total cardinality of the index. This is due to NDBCluster not doing
exact statistics when calculating the cardinalities. Instead, an estimate is found by
scanning random index fragments to get a sample of the values in the index. For an
index like Name that has many distinct values, the estimate will not be exact. In this
case, it is roughly seven percent off, which will only rarely cause the wrong query
plan to be found.

•	 The cardinality of the IsManager index is found to be two. That is not surprising as
the column accepts exactly two values (No and Yes). In this case, the index statistics
comes out exactly as the distinct count because the scanned fragments are enough
to make it clear that it is unlikely the unexamined values will contain anything else
other than one of these two values.

For the employee table, the Name index is very valuable for queries searching for an employee by name.
It will reduce the query to only examine a few rows instead of all 10000 rows in the table. However, the
IsManager index is of little use as it on average only can filter out 50% of the rows, so a table scan will anyway
be the most efficient. That means the IsManager index only adds overhead: memory is used in DataMemory,
and there is an overhead to maintain the index when data is inserted, updated, or deleted.

The remainder of this section discusses what options there are to affect index statistics as well as the
utilities and statements used to recalculate them.

Index Statistics Internals
Before going into detail about updating index statistics and how to configure the behavior, it is worth taking
a brief look at the internals of how index statistics are implemented in MySQL NDB Cluster. This is only an
overview as the deeper level details are beyond the scope of this book.

The index statistics are stored internally on the data nodes in two system tables. These two tables are
also exposed on the SQL nodes as the following tables in the mysql schema:

•	 ndb_index_stat_head: Meta information for the index statistics. There is one row
per index where the statistics have been calculated.

•	 ndb_index_stat_sample: Actual sample data for the indexes.

These tables use the NDBCluster storage engine, so they are in sync between the SQL nodes. However,
on each SQL node the statistics are loaded into a cache. This cache is updated in two ways:

•	 When an execution of ANALYZE TABLE completes. This occurs even if the statement
was executed on a different SQL node.

•	 A background index statistics thread.

The background thread answers queries from the optimizer and makes sure that if the index statistics
are updated directly on the data nodes (using the ndb_index_stat utility that is discussed later), the cache
on the SQL node is updated. The cache update by the background thread will not happen immediately but
rather as scheduled by the thread. The configuration of this is discussed later in the chapter.

Chapter 9 ■ table MaintenanCe

300

The cache itself is split into several instances, which can be one of the following types:

•	 Query: This is the cache instance currently used to answer queries.

•	 Build: This is a cache currently being populated.

•	 Clean: There can be several instances of the type clean. These are old cache
instances that can be deleted.

An overview of the index statistics implementation is depicted in Figure 9-3.

Maintaining Index Statistics
It is important that the index statistics reflect the data distribution in the table. Otherwise the query plans
will not be optimal. In complex queries with several tables joined together, the wrong query plan may in the
worst case cause the query to be as much as a factor 100 slower or worse compared to the optimal query
plan. There are three ways that index statistics are updated for NDBCluster tables:

•	 Executing ANALYZE TABLE explicitly.

•	 Using the ndb_index_stat utility. This can also be used for other tasks such as
creating and deleting the system tables storing the index statistics.

•	 Automatic updates occurring in the background.

These three methods all fundamentally work the same way; however, for the user there are some
differences that are worth discussing in more detail.

Figure 9-3. Overview of the index statistics implementation

Chapter 9 ■ table MaintenanCe

301

ANALYZE TABLE is an SQL node specific statement that calculates the index statistics for the table. It
works for tables of all storage engines that support indexes. This is the most common way to update index
statistics. Listing 9-7 shows examples of updating the index statistics for one and two tables. More tables
can be analyzed in the same statement by adding them to the list, separating each table by a comma. If the
schema name is not specified, the current schema will be used.

The first statement updates the index statistics for the employee table in the current schema, whereas
the second updates the statistics for the employee and address tables in the office schema. An ANALYZE
TABLE statement triggers an event at the end that ensures that the cache is updated as soon as possible;
effectively it will seem like the cache is updated as part of the ANALYZE TABLE statement.

Listing 9-7. Examples of Using ANALYZE TABLE

mysql> ANALYZE TABLE employee;
+-----------------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+-----------------+---------+----------+----------+
| office.employee | analyze | status | OK |
+-----------------+---------+----------+----------+
1 row in set (0 min 56.85 sec)

mysql> ANALYZE TABLE office.employee, office.address;
+-----------------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+-----------------+---------+----------+----------+
| office.employee | analyze | status | OK |
| office.address | analyze | status | OK |
+-----------------+---------+----------+----------+
2 rows in set (1 min 53.20 sec)

 ■ Note Updating the index statistics may take a while depending on the number of rows and indexes in
the tables; however, the work is performed with the table online and the gain in query performance can be
significant.

The MySQL NDB Cluster distribution also includes the ndb_index_stat utility, which can perform a
range of operations related to the index statistics. The utility uses the following options for performing the
supported actions:

•	 --delete: Delete index statistics for the specified table. Provide the --database
option and the table name to specify the table.

•	 --update: Create or update the index statistics for the specified table. Provide the
--database option and the table name to specify the table.

•	 --dump: Dumps the index statistic metadata and samples for the specified table.
Provide the --database option and the table name to specify the table. This is similar
to querying the ndb_index_stat_head and ndb_index_stat_sample tables and is
useful for debugging purposes.

Chapter 9 ■ table MaintenanCe

302

•	 --sys-drop: Delete the underlying system tables (ndb_index_stat_head and ndb_
index_stat_sample) that store the index statistics. This will also delete all existing
index statistics. Dropping and subsequent creating the system tables can be useful
should the index statistics become corrupt. When the system index statistics tables
are gone, MySQL will continue to work as normal except that there will be no index
statistics for the NDBCluster tables and attempts to generate the index statistics will
fail with an error.

•	 --sys-create: Create the underlying system tables (ndb_index_stat_head and ndb_
index_stat_sample) that store the index statistics. There are two alternate versions
of the –sys-create option: --sys-create-if-not-exist and --sys-create-if-
not-valid, which creates the system tables if they do not exist or after dropping any
invalid objects, respectively.

 ■ Tip the full help for ndb_index_stat can be obtained executing it with the --help option or in the MySQl
reference Manual at https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-
index-stat.html.

Listing 9-8 shows an example of updating the index statistics for the office.employee table. Adding the
--verbose option makes the command return additional information that can be useful for debugging.

Listing 9-8. Updating the Index Statistics Using the ndb_index_stat Utility

shell$ ndb_index_stat --ndb_connectstring=192.168.56.101,192.168.56.102 \
 --update --database=office employee
table:employee index:PRIMARY fragCount:4
sampleVersion:2 loadTime:1500782413 sampleCount:2513 keyBytes:10052
query cache: valid:1 sampleCount:2513 totalBytes:35182
times in ms: save: 7.435 sort: 2.228 sort per sample: 0.000
table:employee index:Name fragCount:4
sampleVersion:2 loadTime:1500782414 sampleCount:2344 keyBytes:35103
query cache: valid:1 sampleCount:2344 totalBytes:67919
times in ms: save: 9.483 sort: 2.744 sort per sample: 0.001
table:employee index:IsManager fragCount:4
sampleVersion:2 loadTime:1500782414 sampleCount:2 keyBytes:2
query cache: valid:1 sampleCount:2 totalBytes:20
times in ms: save: 1.818 sort: 0.004 sort per sample: 0.002

NDBT_ProgramExit: 0 - OK

An advantage of using ndb_index_stat over ANALYZE TABLE is that it is easier to script—for example, to
execute it through a cron script or the Windows Task Scheduler.

Finally, MySQL NDB Cluster has support for auto updating the index statistics. Inside the DBDICT
block, the index will be flagged for update when the number of operations exceeds a threshold. A
background loop detects this later and updates the index statistics, similar to what ANALYZE TABLE and ndb_
index_stat do. However, by the time the automatic update kicks in, the index statistics may be severely out
of date and poor query plans may result.

There is also another more limited version of automatic updates of the index statistics working at the
SQL node level. This works based on the existing statistics giving the behavior for inserts, updates, and
deletes shown in Table 9-4.

https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-index-stat.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-programs-ndb-index-stat.html

Chapter 9 ■ table MaintenanCe

303

This behavior, together with the lag of the proper background update of the index statistics, means
you should force an update of the index statistics whenever a table has changed significantly since the
index statistics were last updated. This forced update can be triggered with ANALYZE TABLE or with the
ndb_index_stat utility.

Options and Status Variables
There are two options for the SQL nodes to control the index statistics for NDBCluster tables:

•	 ndb_index_stat_enable: Enables or disabled whether index statistics are calculated
and whether they are used when determining the query plan. The default is ON.

•	 ndb_index_stat_option: Specifies a range of options for updating the index statistics
cache. The default values are included in Table 9-5.

It is recommended to have index statistics enabled for most systems. The only exception is systems that
only query single tables with the WHERE clauses only matching one index. In that case, the index statistics are
not required to determine the optimal query plan.

The ndb_index_stat_option deserves some attention as it is a relatively complex option. It consists of
multiple key-value pairs, each of which is a setting on their own, but combined into one compound setting
at the user facing level. Table 9-5 lists all the available settings, their default values, the allowed values, and
what the settings do. The settings are listed in the order they appear in the ndb_index_stat_option option.

Table 9-4. The Behavior of Auto Updates of Index Statistics

Operation Behavior

INSERT The cardinalities are increased with the percentage of rows added. For example, doubling
the number of rows will double the cardinalities.

UPDATE The cardinalities are not changed.

DELETE The cardinalities are decreased with the percentage of rows deleted. For example, deleting
half the rows will halve the cardinalities.

Table 9-5. The Settings of the ndb_index_stat_option Variable

Setting Default Value Allowed Values Comments

loop_enable 1000ms 0ms- 4294967295ms The amount of time to wait before checking
whether the calculation of index statistics have
been enabled when ndb_index_stat_enable
= OFF.

loop_idle 1000ms 0ms- 4294967295ms The amount of time to sleep before starting
to update the cache again when the last batch
was not fully used.

loop_busy 100ms 0ms- 4294967295ms The amount of time to sleep before starting
to update the cache again when the last batch
was fully used.

update_batch 1 1- 4294967295 The batch size when updating the cache. If all
loops are executed, the status is set to busy.

read_batch 4 1- 4294967295 The batch size when reading index statistics. If
all loops are executed, the status is set to busy.

(continued)

Chapter 9 ■ table MaintenanCe

304

Table 9-5. (continued)

Setting Default Value Allowed Values Comments

idle_batch 32 1- 4294967295 The batch size for maintenance of the index
statistics performed when the status is idle.
This never sets the status to busy.

check_batch 8 1- 4294967295 The batch size when checking whether the
index statistics should be updated. If all loops
are executed, the status is set to busy.

check_delay 10m 0s- 4294967295s The time between checking whether any of the
index statistics should be updated.

delete_batch 8 1- 4294967295 The batch size when deleting index statistics. If
all loops are executed, the status is set to busy.

clean_delay 1m 0s- 4294967295s Used when the status is idle. The minimum
time between reading index statistics from
a cache instance now of the type clean and
being allowed to delete the cache instance.

error_batch 4 1- 4294967295 The batch size when checking for errors in the
index statistics. This never sets the status to
busy.

error_delay 1m 0s- 4294967295s The minimum time to wait before checking for
errors after the previous batch found errors.

evict_batch 8 1- 4294967295 Specifies the batch size for evicting index
statistics from the cache using a least recently
used (LRU) list. Statistics are evicted when
more than cache_lowpct percent of the cache
is used. If all loops are executed, the status is
set to busy.

evict_delay 1m 0s- 4294967295s The minimum delay between evicting index
statistics from the cache since the last time the
statistics were read.

cache_limit 32M 0- 4294967295 The size of the index statistics cache. Increase
the size if there is a large amount of index
statistics. The unit is the number of bytes to
allocate for the cache, and the following units
can be used: K, M, G (and no unit identifier to
specify bytes).

cache_lowpct 90 0-100 The percentage of the index statistics cache
to be in use before starting to evict the least
recently used statistics from the cache. The
unit is percent.

zero_total 0 0 and1 When setting zero_total to 1, the counters in
the Ndb_index_stat_status status variable
are reset to 0.

Chapter 9 ■ table MaintenanCe

305

For timing values for the loop_enable, loop_idle, and loop_busy settings, the value is specified in
milliseconds with the ms unit optional when assigning the value. The delay timing settings take a unit of s,
m, or h (seconds, minutes, or hours—the default unit is s). For the batches, the unit is the number of loops to
execute; if all loops are executed, the status is set to busy.

The default values in ndb_index_stat_option work well for most deployments, and it is rarely necessary
to fine-tune the settings. It is possible to set one or several of the settings in one SET statement. For example:

mysql> SET GLOBAL ndb_index_stat_option = 'loop_enable=1500ms,zero_total=1';

This sets loop_enable to 1500 milliseconds and resets the statistics in Ndb_index_stat_status. It is
important that there is no whitespace in the value. Settings that are not included in the SET statement keep
their current value.

The complete list of values for ndb_index_stat_option can be obtained using SHOW GLOBAL VARIABLES
or by selecting the value, such as:

mysql> SELECT @@global.ndb_index_stat_option\G
*************************** 1. row ***************************
@@global.ndb_index_stat_option: loop_enable=1000ms,loop_idle=1000ms,loop_busy=100ms,update_
batch=1,read_batch=4,idle_batch=32,check_batch=8,check_delay=10m,delete_batch=8,clean_
delay=1m,error_batch=4,error_delay=1m,evict_batch=8,evict_delay=1m,cache_limit=32M,cache_
lowpct=90,zero_total=0
1 row in set (0.01 sec)

The return value in the example is also the default.
It is possible to monitor the status of the index statistics through three status variables in the SQL nodes:

•	 Ndb_index_stat_status: A range of values related to the ndb_index_stat_option
setting.

•	 Ndb_index_stat_cache_query: The number of bytes currently used in the query
instance of the index statistics cache. This is the same value as the query value in the
cache list in Ndb_index_stat_status.

•	 Ndb_index_stat_cache_clean: The number of bytes currently used in clean
instances. This is the same value as the clean value in the cache list in Ndb_index_
stat_status.

The Ndb_index_stat_status status variable is similar to ndb_index_stat_option, not only that the
status variable has several statistics related to the ndb_index_stat_option option, but also that it is a
compound status variable with multiple statistics. The values included in Ndb_index_stat_status are listed
in Table 9-6.

Chapter 9 ■ table MaintenanCe

306

Listing 9-9 shows an example of the statistics in Ndb_index_stat_status as well as Ndb_index_stat_
cache_query and Ndb_index_stat_cache_clean after several ANALYZE TABLE statements and queries using
the indexes have been executed. An ANALYZE TABLE updating the index statistics on four tables is in progress
while the output was generated. This is reflected in the values in the analyze field in Ndb_index_stat_
status.

Listing 9-9. Example of the Statistics in the Index Statistics Index Variables

mysql> SHOW GLOBAL STATUS LIKE 'Ndb_index_stat_%'\G
*************************** 1. row ***************************
Variable_name: Ndb_index_stat_status
 Value: allow:1,enable:1,busy:1,loop:100,list:(new:0,update:3,read:0,idle:5,check:0,d
elete:0,error:0,total:8),analyze:(queue:3,wait:1),stats:(nostats:0,wait:0),total:(analyze:(a
ll:43,error:0),query:(all:22,nostats:16,error:0),event:(act:0,skip:0,miss:0),cache:(refresh:
45,clean:8,pinned:0,drop:1,evict:0)),cache:(query:145667,clean:247816,drop:0,evict:0,usedpc
t:1.17,highpct:1.17)
*************************** 2. row ***************************
Variable_name: Ndb_index_stat_cache_query
 Value: 145667
*************************** 3. row ***************************
Variable_name: Ndb_index_stat_cache_clean
 Value: 247816
3 rows in set (0.00 sec)

Table 9-6. The Statistics Included in Ndb_index_stat_status

Name Description

allow Whether queries are allowed. This will usually be the same value as ndb_index_stat_enable,
but may be 0 if the index statistics have not yet been initialized.

enable 0 or 1 depending on whether ndb_index_stat_enable is off or on, respectively.

busy Whether the statistics thread is currently busy.

loop The current wait for the statistics thread. The unit is milliseconds.

list Statistics about the various lists (shares). The entries in each list represent the work to be done
by the index statistics thread in the loops that are limited by the corresponding batch size.

analyze Statistics for ANALYZE TABLE for the number of tables queued and waiting to have the index
statistics calculated.

stats Special counters.

total Total counters. For example, the value for all in analyze corresponds to the number of
ANALYZE TABLE statements and the value for all in query the number of times the query
statistics for an index have been looked up. The query values may both increase from regular
queries requiring an index or inspecting the index statistics.

cache Various statistics for the index statistics cache. The query value is the number of bytes
currently used in the cache (the same as Ndb_index_stat_cache_query), usedpct is the
same as a percentage of the available cache, and highpct is the highest usage since the
statistics were last reset. These values are useful for determining whether the cache has the
right size.

Chapter 9 ■ table MaintenanCe

307

Summary
It is important to keep in mind that setting up a database system is never a one-off task. Instead it’s an
ongoing project. In this chapter, several of the daily maintenance tasks related to NDBCluster tables were
discussed. The topics discussed include:

•	 Online and offline schema changes

•	 Repartitioning a table

•	 Defragmentation

•	 Maintaining index statistics and the significance of them

Several schema changes can be made online with relatively little impact on the system. This allows the
cluster to remain online in most situations. However, for some changes, an offline copying schema change is
required; this also applies if a thorough defragmentation of the table is required.

The index statistics are important for the optimizer to be able to determine the optimal query plan. It
was discussed how the index statistics work for NDBCluster tables and how to keep them up to date.

The next chapter covers restarting the nodes in the cluster, including several examples.

309© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_10

CHAPTER 10

Restarts

One of the more common routine tasks for a MySQL NDB Cluster DBA is restarting cluster nodes. As MySQL
NDB Cluster is designed for high availability, most restarts can be performed with the cluster remaining
online as a whole. This means that restarts play a special role in MySQL NDB Cluster and deserve special
attention.

Restarts are used for several reasons in MySQL NDB Cluster, for example:

•	 Configuration changes

•	 Adding management, data, or API/SQL nodes

•	 Recovering from crashes

•	 Upgrades (discussed in Chapter 11)

For the duration of this chapter, the cluster is assumed to have the configuration shown in Listing 10-1
unless otherwise noted.

Listing 10-1. The Cluster Configuration Used in this Chapter

[ndb_mgmd default]
DataDir = /cluster/

[ndbd default]
NoOfReplicas = 2
DataDir = /cluster/

[ndbd]
NodeId = 1
HostName = 192.168.56.103

[ndbd]
NodeId = 2
HostName = 192.168.56.104

[ndb_mgmd]
NodeId = 49
HostName = 192.168.56.101

[ndb_mgmd]
NodeId = 50
HostName = 192.168.56.102

https://doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_11

Chapter 10 ■ restarts

310

[mysqld]
NodeId = 51
HostName = 192.168.56.103

[mysqld]
NodeId = 52
HostName = 192.168.56.104

[api]
NodeId = 53
HostName = 192.168.56.101

[api]
NodeId = 54
HostName = 192.168.56.102

Restart Types
As discussed in Chapter 2, MySQL NDB Cluster has four types of restarts:

•	 Node restart

•	 Initial node restart

•	 System restart

•	 Initial system restart

For the two node restart types (node restart and initial node restart), the cluster is online for the
duration of the restart, whereas the system restart types require the cluster to be offline. The rest of this
section provides more information about the four restart types.

Node Restart
A node restart is when one or more nodes are restarted together in such a way that the remaining online
nodes at any time have all the data. That is, there is always at least one data node from each node group
online. When the whole cluster is restarted in this way, it is also known as a rolling restart (see the next
section).

The advantage of a rolling restart is that you can restart the whole cluster while it remains online.
A typical use case for a rolling restart is to change the configuration of the data nodes. A node restart is
only possible when you have more than one replica of the data (NoOfReplicas is greater than one), as at
least one node per node group must remain online.

Initial Node Restart
An initial node restart—or an initial rolling restart if it includes the entire cluster—is a variant of the node
restart. The difference is that each data node will discard all its data at the start of the restart, then recover
the data from another node in the same node group during the restart. The redo log files are always
recreated as part of an initial restart.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 10 ■ restarts

311

 ■ Note While all data for the data node is deleted at the start of an initial restart, the undo log and
tablespace files used for on-disk data are preserved. If you want these files recreated as well, you must delete
them manually before starting the data node again.

The advantage of an initial node restart is that it is possible to make some configuration changes that
otherwise would not be possible. For example, the only way to change the settings for the redo log is to
have the data node start from scratch. Another use of initial rolling restarts is to recover from file system
corruption. The disadvantage is that the restart will take longer, because all the data must be copied from the
other node(s) in the same node group.

System Restart
A system restart happens when all the data nodes have been shut down and requires at least one data node
from each node group to participate in the restart. Some configuration changes—for options where the data
nodes must all agree of the current value—require a system restart.

One advantage of a system restart over a rolling restart is that it is faster as all data nodes will be able to
start in parallel. If it is not a problem that the cluster is offline during the restart, a system restart can be used
to reduce the overall duration of the maintenance window compared to a rolling start.

Initial System Restart
Recall that an initial node restart is a specialized case of a node restart where all the data for the data node
is discarded at startup. In the same way, an initial system restart is a similar special case of a system restart.
First, all data nodes discard their data. This means that at the end of the restart, the state of the data nodes
is like after the cluster has been started for the very first time. In fact, the very first start of the cluster is an
initial system restart. The only difference between the very first start and subsequent initial system restarts is
that the tablespace and undo log files for on disk tables are not deleted; the tables and the data in them are
however still deleted.

Other than for the first start of the cluster, an initial system restart is only required for a few
configuration changes, such as moving a data node to another node group. Additionally, it can be
convenient to use, if it has been decided to restore from a backup, for example in case of rebuilding a
replication slave.

Since an initial system restart deletes all the data in the cluster, it is extremely important to create a
backup right before the restart.

 ■ Caution always ensure that there is a backup and the backup can be restored before performing an initial
system restart. all data will be deleted as part of the initial system restart!

Chapter 10 ■ restarts

312

Rolling Restart
A rolling restart is the act of restarting the whole cluster by never restarting more nodes concurrently than
the cluster needs to remain online. It is only possible to perform a rolling restart if there is more than one
replica of the data. The rolling restart can either be done using regular or initial node restarts. The steps of a
rolling restart are:

 1. If necessary, update the cluster configuration file (config.ini) with the new
configuration.

 2. Shut down the management nodes. If there is more than one management node,
they must all be shut down.

 3. Start the management nodes. To read the configuration file (config.ini), use
the --reload (recommended in most cases) or --initial command-line
options. An initial restart should only be done when it is necessary or preferred
to completely clear the history of the management nodes. This includes when
adding management nodes or when re-initializing the whole cluster. The use of
--reload versus --initial is also discussed later in the section.

 4. Restart the data nodes. Up to (NoOfReplicas – 1) nodes from each node group
can be restarted concurrently. However, a restart adds load (both disk, CPU, and
network) particularly to the hosts where the restarting nodes are installed, so be
careful not to overload the system. As a rule of thumb, restart only one node on
each host at a time. Restart each data node with the --initial option if required.

 5. Restart the API/SQL nodes. Avoid restarting all at once so the application can use
the remaining online nodes. If the changes do not affect the API/SQL nodes, this
step is optional.

 ■ Tip the step of restarting the apI/sQL nodes can be performed either before or after restarting the data
nodes.

The process of a rolling restart is also summarized in Figure 10-1.

Chapter 10 ■ restarts

313

Before moving on to the actual processes of starting and stopping the nodes, it is worth going through
the steps of a rolling restart in more detail. First of all, a rolling restart is only possible when NoOfReplicas
is greater than one. If there is only one replica, taking a data node offline means that some of the data will
become unavailable, which will require the other data nodes to also become offline.

Between Steps 2 and 3, where the management nodes are offline, it is only the management nodes that
can join the cluster. Data nodes and API/SQL nodes require the management nodes to be online to get the
configuration before they can connect to the cluster.

When the data nodes are restarted in Step 4, it is necessary to ensure that at least one data node remains
online for each node group at all times. The reason is the same as why NoOfReplicas must be greater
than one: if there is not at least one data node online in the node group, the data in that node group is not
available, and thus the whole cluster must go offline.

Figure 10-1. The steps of a rolling restart

Chapter 10 ■ restarts

314

While the API/SQL nodes are listed as the last node type to be restarted in Step 5, they can also be
restarted before the data nodes. If there are no configuration changes made as part of the rolling restart, it is
not necessary to restart the management nodes. Restarts without configuration changes may for example be
done to defragment the data or in some cases to work around a bug. Upgrades also in general do not require
configuration changes, but will still require restarting the management nodes. In case of an upgrade without
a configuration change, the API/SQL nodes can even be restarted before the management nodes.

 ■ Caution While there is a great degree of flexibility of when the apI/sQL nodes are restarted, this does not
apply to the data nodes. For configuration changes and upgrades, the management nodes must be restarted
before the data nodes.

Stopping and Starting Nodes
The acts of stopping and starting nodes in a cluster is one of the most fundamental tasks of a database
administrator. There are several ways to do this and the methods available depend on the node type. This
section goes through the options and discusses the differences. For examples of starting and stopping nodes,
see the case studies later in the chapter as well.

All the binaries shipped with MySQL NDB Cluster (with the exception of the ndb_index_stat utility)
support reading its arguments from a my.cnf/my.ini file. This has the advantage that options that never
change between invocations can be set once and for all. The disadvantage is that the command-line
arguments cannot be seen from the process list. All the binaries that need to connect to the management
nodes (including mysqld) read the [mysql_cluster] group in the configuration file, so by adding the
ndb_connectstring option here, it can be shared by all processes and can eliminate the need to duplicate
the value within the same host. Each binary also reads its own specific section. Executing the binary with the
--help option will tell which sections are read, for example:

shell$ ndbmtd –help
...
Default options are read from the following files in the given order:
/etc/my.cnf /etc/mysql/my.cnf /usr/local/mysql/etc/my.cnf ~/.my.cnf
The following groups are read: mysql_cluster ndbd
...

This shows both which files are read by default and which groups (sections) are read.
The command-line commands to start nodes in this section list all options. However, in most cases it is

preferable to use a my.cnf/my.ini file with all the options used for all restarts. This will simplify starting the
nodes and reduce the potential for typos.

On Microsoft Windows, all node types can be installed as a Service. An example of starting a node using
a Microsoft Windows service is given for the management nodes. The procedure is similar for the other node
types. When using a service, it is recommended you provide the startup options from a my.cnf/my.ini file, as
this will allow a reconfiguration of the node without having to recreate the service.

Chapter 10 ■ restarts

315

Management Nodes
A management node is started by executing the ndb_mgmd binary. Five commonly used arguments are:

•	 --config-file=...: This option is used to specify the path to the cluster configuration
file (config.ini). Remember that there are two types of configuration files in MySQL
NDB Cluster: the my.cnf/my.ini file for the SQL nodes and the config.ini file that is
used with management nodes. It is config.ini that should be used with the --config-
file option. The option is required for the first start and when either the --initial
or --reload option is given.

•	 --config-dir=...: This option specifies where the cached configuration is stored. The
option is mandatory unless the --skip-config-cache option is given.

•	 --ndb-nodeid=...: The node ID to use for the process.

•	 --initial: Deletes all cached configurations in the directory specified with the
--config-dir option and will set the new configuration as generation 1. It is
mutually exclusive with the --reload option.

•	 --reload: This is the counterpart to --initial. Instead of clearing all configuration
history, the management node checks if there is a difference in the current config.ini
with the previously cached configuration. If there is a difference, the management
node will increment the configuration generation, log the difference to the cluster log
(see the “Configuration Change” case study later in the chapter), and store the new
configuration in the configuration directory in binary format.

 ■ Tip to see all startup options for ndb_mgmd, see https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-
programs-ndb-mgmd.html.

Unless you must use --initial (see the “Adding Management Node” case study for a rare example), it
is better to use --reload over --initial for three reasons:

•	 Having the difference between the old and new configuration logged to the cluster
log makes it easier to follow the history of the cluster. This can be very useful when
troubleshooting.

•	 It is less likely to mix up using --initial with a management node with --initial
for a data node (which could cause total data loss).

•	 While only used extremely rarely, it is possible to restore an older generation
configuration as long as the binary copy of it exists. --initial deletes all existing
cached configurations.

An example of starting the management node using NodeId = 49 on Linux is:

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=49 --reload

The sudo in the command here is used to change to the mysql user before starting the management
node. This allows the management node to execute using a non-privileged operating system account that
cannot log in directly. The ndb_mgmd process will be started as a daemon by default. To start the management
node as a foreground process, use the --nodaemon option.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndb-mgmd.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndb-mgmd.html

Chapter 10 ■ restarts

316

To start the management node using Microsoft Windows services, ensure that the service has
been installed as described in Chapter 5, then either use the command prompt or the Services desktop
application to start the node. To start ndb_mgmd as a Microsoft Windows service from the command prompt,
use this command:

C:\>net start "MySQL Cluster Management Server"
The MySQL Cluster Management Server service is starting.
The MySQL Cluster Management Server service was started successfully.

Figure 10-2 shows the Services desktop application in Windows 10. You can start the management node
by clicking on Start the Service to the left of the list of services. Alternatively, you can start the service by
right-clicking on the service name, then choosing Start.

Figure 10-2. Starting the management node through the Windows Services GUI

The preferred way to stop a management node is to connect using the ndb_mgm management client and
use the STOP command to stop the node:

shell$ ndb_mgm -e "49 STOP"

This works for all platforms. Stopping the management node in this way ensures that the shutdown is
communicated to the rest of the cluster. Alternative ways to stop a management node are:

•	 Send a SIGTERM signal, for example using kill -15.

•	 On Microsoft Windows, if the management node is started as a service, it can be
stopped though the Services desktop application or the command prompt similarly
to how it was started.

It is not recommended to use a SIGKILL signal (kill -9) to shut down a management node.

 ■ Caution Killing a management node with SIGKILL does not allow the node to perform a clean shutdown.
this for example means that the data nodes do not know the management node has stopped until it is detected
through missed heartbeats. this can cause arbitration not to work as expected and thus could cause a complete
cluster outage where it could have been avoided.

http://dx.doi.org/10.1007/978-1-4842-2982-8_5

Chapter 10 ■ restarts

317

Data Nodes
Starting a data node is relatively simple. All that is required is to choose whether to start a single-threaded
or multi-threaded data node and to specify where the management node(s) can be found. The rest of the
supported arguments are optional, although it is recommended to specify the node ID. The two binaries are:

•	 ndbd: The single-threaded binary.

•	 ndbmtd: The multi-threaded binary.

As discussed in Chapter 2, for production system it is for most systems best to use the multi-threaded
binary.

Commonly used command-line arguments for the data nodes (irrespective of the binary used) include:

•	 --ndb_connectstring=...: The host and port numbers of the management nodes.
As the default is localhost:1186, it is almost always necessary to specify this
option for all clusters other than test setups. A management node is specified with
the hostname or IP address optionally followed by a colon and the port number.
Multiple management nodes are separated by commas.

•	 --ndb-nodeid=...: The node ID to use for the node. It is recommended to always
include this option. If it is not set explicitly, it is assigned based on what IDs are
available for that host.

•	 --initial: Perform an initial restart. Only use this option when it is required, as all
data will be deleted from the node.

•	 --nostart: With this option, the data node will only go through the very early phase
of the start and connect to the management node. It will then wait for the START
command from the management node to continue the restart. This can be useful
when restarting several nodes to ensure that all nodes restart in parallel.

•	 --nowait-nodes=...: By default, the data nodes will wait for the other offline data nodes
to start up together, which saves time overall. The --nowait-nodes option tells the data
node to proceed without waiting for the data node ids specified. The data nodes not to
wait for are specified by their node ID in a comma-separated list. An example is given
in the “Adding Data Nodes with Node Group Pre-Allocated” case study.

 ■ Tip to see all the command-line arguments for the data nodes, see https://dev.mysql.com/doc/
refman/5.7/en/mysql-cluster-programs-ndbd.html. this also works for ndbmtd.

Here is an example of starting a data node using the multi-threaded binary:

shell$ sudo -u mysql ndbmtd \
 --ndb_connectstring=192.168.56.101,192.168.56.102 \
 --ndb-nodeid=1

http://dx.doi.org/10.1007/978-1-4842-2982-8_2
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndbd.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndbd.html

Chapter 10 ■ restarts

318

When the data node is started with the --nostart option, the node will show up in the status output
from the management node client as connected, but not started. For example, in the case NodeId = 2 has
been started with the --nostart option:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4 , not started)
...

The node can be started using the <id> START command from the management client:

shell$ ndb_mgm -e "2 START"
Connected to Management Server at: 192.168.56.101:1186
Database node 2 is being started.

If multiple data nodes are connected but waiting to be started using the START command, it is also
possible to use ALL instead of a node ID to start all eligible data nodes, for example:

shell$ ndb_mgm -e "ALL START"
Connected to Management Server at: 192.168.56.101:1186
NDB Cluster is being started.
NDB Cluster is being started.

To shut down a data node, it is best to stop the node using the STOP command in the management
client, or if the management nodes are also to be shut down, the SHUTDOWN command. For example, to shut
down NodeId= 1:

shell$ ndb_mgm -e "1 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 1 has shutdown.

The STOP command will by default refuse to shut down a node, if it is the last in a node group; i.e., it will
prevent a total cluster shutdown by mistake:

shell$ ndb_mgm -e "2 STOP"
Connected to Management Server at: 192.168.56.101:1186
Shutdown failed.
* 2002: Stop failed
* Node shutdown would cause system crash: Permanent error: Application error

If you intend to shut down all data nodes, instead either use ALL STOP or SHUTDOWN:

shell$ ndb_mgm -e "ALL STOP"
Connected to Management Server at: 192.168.56.101:1186

Chapter 10 ■ restarts

319

Executing STOP on all nodes.
NDB Cluster has shutdown.

ALL STOP only stops the data nodes. If the management nodes should be included in the shutdown, use
the SHUTDOWN command instead:

shell$ ndb_mgm -e SHUTDOWN
Connected to Management Server at: 192.168.56.101:1186
4 NDB Cluster node(s) have shutdown.
Disconnecting to allow management server to shutdown.

It may be tempting to use a SIGTERM signal (kill -15) to stop the data nodes; however, this is not
recommended. There are two major differences for a data node between stopping the node using the STOP
command in the management client and a SIGTERM signal:

•	 Using the STOP command tells the data node to shut down gracefully and to cause as
little interruption to the rest of the cluster as possible; for example, reducing (but not
eliminating) failed transactions that will obtain a temporary error and be required
to retry. On the other hand, a SIGTERM signal will cause a faster shutdown, but will
also cause more failed transactions.

•	 A SIGTERM signal does not offer any protection against causing a cluster outage by
shutting the node down.

Both the STOP command and the SIGTERM signal are considered “clean” shutdowns. That can,
however, not be said of a SIGKILL signal (kill -9). Do not use a SIGKILL signal to shut down a data node
unless the urgency is so great that corrupting the NDB file system of the node is an acceptable risk. A
SIGKILL signal will not allow any kind of shutdown handling; the process simply stops immediately and it
may for example cause partial writes of a local checkpoint.

 ■ Caution Do not stop a data node using a SIGKILL signal unless data loss is more acceptable than waiting.
Be prepared to delete all data for the node to be able to restart (using the --initial option).

If the goal is to restart the data node immediately after the shutdown, an easy way to accomplish this is
through the RESTART command in the management client, for example:

shell$ ndb_mgm -e "1 RESTART"
Connected to Management Server at: 192.168.56.101:1186
Node 1 is being restarted

The command returns once the shutdown has completed and the restart has begun. The RESTART
command cannot be used for upgrades where the binary is replaced between shutdown and restart.

Chapter 10 ■ restarts

320

API/SQL Nodes
MySQL NDB Cluster does not offer any special means for starting and stopping API and SQL nodes. Whether
on Linux, UNIX, or Windows, it is common to start and stop at least SQL nodes using some kind of service
script, for example through systemd or Microsoft Windows services.

When starting an API/SQL node, it is important to remember that it cannot join the cluster until the
cluster is online, and that there is at least one data node in each node group online. If an API/SQL node
attempts to join the cluster before that is the case, an error similar to the following snippet will be logged in
the cluster log:

2016-11-19 15:54:20 [MgmtSrvr] WARNING -- Failed to allocate nodeid for API at
192.168.56.103. Returned error:
'No free node id found for mysqld(API).'

Starting an SQL node before the data nodes are ready will also cause a delay in starting the SQL node.
It is generally recommended to shut down the API/SQL nodes as the first nodes for a complete cluster

shutdown. This ensures that the ongoing queries get a chance to complete. In MySQL NDB Cluster 7.4 and
earlier, it was also necessary to be able to contact the management node to perform a clean shutdown. Still
in MySQL NDB Cluster 7.5, messages will be reported in the mysqld error log if the management and data
nodes are shut down before the SQL node:

2016-11-19 16:00:00 [NdbApi] INFO -- Management server closed connection early. It is
probably being shut down (or has problems). We will
retry the connection. 1006 Illegal reply from
server line: 3058

2016-11-19 16:00:05 [NdbApi] INFO -- Management server closed connection early. It is
probably being shut down (or has problems). We
will retry the connection. 110 Time out talking to
management server Error line: 528

These are just info messages and can be ignored if you know the cluster is offline.

Restart Related Configuration
Several of the configuration options available for the data nodes relate to restarts. The options fall primarily
into three categories—parallelism for rebuilding ordered indexes, timeouts for waiting for other nodes,
and disk write speeds for local checkpoints. Table 10-1 summarizes the most important options related to
restarts.

Chapter 10 ■ restarts

321

Table 10-1. Important Options Related to Restarts

Option Name Description

BuildIndexThreads When rebuilding ordered indexes during a restart (and when
using ndb_restore), BuildIndexThreads specifies how many
threads to use. It can help to increase the value up to the
maximum number of partitions per data node. Default is one
partition per LDM thread, so using the default partitioning
BuildIndexThreads can be set up to the number of LDM
threads. Default is 0 (meaning single-threaded). See the
TwoPassInitialNodeRestartCopy option.

MaxLCPStartDelay During a restart, a local checkpoint is created in start phase 5
(see the next section). Sometimes some of the nodes starting
together will be ready to start the local checkpoint before other
nodes. Only one local checkpoint can be in progress at a time,
so a data node will have to wait for ongoing local checkpoints
to complete before starting its own. MaxLCPStartDelay
can be used to let the nodes wait for each other and avoid
serialization of the local checkpoints.
Default is 0 seconds, which means no delay waiting for
other nodes. It is mostly worth considering increasing
MaxLCPStartDelay on clusters with a relative low write
workload, so there are not constantly local checkpoints being
created.

MaxDiskWriteSpeedOtherNodeRestart The maximum disk write speed for local checkpoints and
backups (combined) when another node is restarted. Default
is 50 MB/s. Increasing this can help restarting data nodes
complete their local checkpoints faster, but make sure not to
increase the value so much the data node gets overloaded.

MaxDiskWriteSpeedOwnRestart The maximum disk write speed for local checkpoints and
backups (combined) for node being restarted. Default is 200
MB/s. This option should be set as close to the maximum
throughput as the disk system for the restarting data node can
sustain.

StartPartialTimeout How long to wait for other nodes with a node group configured
before proceeding. See the --nowait-nodes command-
line argument for the data nodes. The default is 30000
milliseconds.

StartPartitionedTimeout How long time to wait for other nodes if going ahead can
potentially cause a partitioned cluster. See the discussion
in the “Startup Process” section later in the chapter and the
--nowait-nodes command-line argument for the data nodes.
The default is 60000 milliseconds.

(continued)

Chapter 10 ■ restarts

322

 ■ Tip all the options are described in more detail in https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-
ndbd-definition.html.

The two options—MaxDiskWriteSpeedOtherNodeRestart and MaxDiskWriteSpeedOwnRestart—
should be considered together with the other disk write speed options: MinDiskWriteSpeed
and MaxDiskWriteSpeed. These options define the lower (MinDiskWriteSpeed) and upper
(MaxDiskWriteSpeedOtherNodeRestart, MaxDiskWriteSpeedOwnRestart, and MaxDiskWriteSpeed) bounds
of the disk write speed for various stages, as indicated by the maximum settings. They go to the minimum
if a delay is detected for writing the redo log or CPU usage is too high. During restarts, a higher write speed
is allowed to complete the restarts faster. In MySQL NDB Cluster 7.4 and later, the disk write speed can be
monitored through the disk_write_speed_aggregate, disk_write_speed_aggregate_node, and disk_
write_speed_base views in the ndbinfo schema.

Startup Process
When you start a data node, it will go through several start phases numbered -1 through 9 and a start phase
101. (The missing start phases are currently not in use.) Each start phase includes specific tasks; for example
start phase 5 includes creating a local checkpoint to ensure that the node can take over without data loss
should the other node(s) in the node group fail immediately after the node has started. With the exception
of start phase -1, the start phases can be seen from both the cluster log and the data node’s out log (see the
“Monitoring Restarts” section later in the chapter). This section discusses the startup process, but will not go
into detail with each start phase.

 ■ Tip an overview of the start phases can be found in the MysQL reference Manual (https://dev.mysql.
com/doc/refman/5.7/en/mysql-cluster-start-phases.html) and more detail in the NDB Cluster Internals Manual
(https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html)

For further reading about the start phases, there is a lengthy comment starting at line 431 (for release 7.5.4) of
the storage/ndb/src/kernel/blocks/ndbcntr/NdbcntrMain.cpp file in the source code. the latest source code can
be downloaded from https://dev.mysql.com/downloads/cluster/.

Table 10-1. (continued)

Option Name Description

StartNoNodegroupTimeout How long time to wait without a node group. See the “Adding
Data Nodes with Node Group Pre-Allocated” case study
later in the chapter and the --nowait-nodes command-
line argument for the data nodes. The default is 15000
milliseconds.

TwoPassInitialNodeRestartCopy If BuildIndexThreads is greater than zero, enabling
TwoPassInitialNodeRestartCopy allows for a multi-threaded
rebuild of ordered indexes during an initial restart, which can
in some cases reduce the time it takes to rebuild the ordered
indexes.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbd-definition.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-start-phases.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-start-phases.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html
https://dev.mysql.com/downloads/cluster/

Chapter 10 ■ restarts

323

At two points during the startup process, there are synchronization points where data nodes starting
together may wait for each other:

•	 Start phase 1: Starting data nodes will wait for offline data nodes to join. This has
two purposes: to allow multiple data nodes to start together to save time, and to
avoid a partitioned restart (more on this later). This is controlled by three options:
StartPartialTimeout, StartPartitionedTimeout, and StartNoNodegroupTimeout.
See Table 10-1 in the previous section.

•	 Start phase 5: Data nodes starting together can wait for each other before starting
the local checkpoint. As only one local checkpoint can be in progress at the same
time, having the data nodes do the local checkpoint together can save time for the
overall restart. The default is not to wait for each other. How long to wait is set with
the MaxLCPStartDelay option. See Table 10-1.

It is worth considering the StartPartitionedTimeout a little more. Consider as an example the cluster
with two data nodes and two management nodes:

...
[ndbd]
NodeId = 1
HostName = 192.168.56.103

[ndbd]
NodeId = 2
HostName = 192.168.56.104

[ndb_mgmd]
NodeId = 49
HostName = 192.168.56.101

[ndb_mgmd]
NodeId = 50
HostName = 192.168.56.102
...

Additionally, assume there is a network partition such that data node 1 can see management node 49
and data node 2 can see management node 50, but there is no connection otherwise between the two pairs,
as shown in Figure 10-3.

Chapter 10 ■ restarts

324

If the network fails (also called a network partition) while all nodes are online, the normal arbitration
process described in Chapter 1 will handle the potential split-brain scenario. However, during a restart it is
different as there is no arbitrator; the arbitrator is elected by the data nodes as a group, so it cannot be done
early enough to resolve a network partition at the beginning of a startup. The arbitrator is chosen in start
phase 7 during a restart. The only options in case of a network partition at startup are to deny the restart or
go ahead with the risk of a partitioned cluster.

In the example shown in Figure 10-3, it will be possible to start both halves; however, it is up to the DBA
to avoid starting the cluster during a network partition, or at least ensure that only one cluster group starts
up. MySQL NDB Cluster handles a network partition at start up by making the starting nodes wait for the
other nodes:

•	 First for StartPartialTimeout milliseconds to allow as many data nodes as possible
to start together.

•	 Then another StartPartitionedTimeout milliseconds to avoid a partitioned startup
in case it is possible for another group of nodes to start concurrently.

The default for StartPartitionedTimeout is 60000 milliseconds (one minute). If a partitioned startup
is about to go ahead, messages like the following example are written to in the cluster log during the period
added by StartPartitionedTimeout:

2016-11-20 11:35:52 [MgmtSrvr] INFO -- Node 1: Waiting 60 sec for non partitioned start, nodes
[all: 1 and 2 connected: 1 missing: 2 no-wait:]

2016-11-20 11:35:55 [MgmtSrvr] INFO -- Node 1: Waiting 57 sec for non partitioned start, nodes
[all: 1 and 2 connected: 1 missing: 2 no-wait:]

...
2016-11-20 11:36:49 [MgmtSrvr] INFO -- Node 1: Waiting 3 sec for non partitioned start, nodes

[all: 1 and 2 connected: 1 missing: 2 no-wait:]
2016-11-20 11:36:52 [MgmtSrvr] INFO -- Node 1: Start potentially partitioned with nodes 1

[missing: 2 no-wait:]

Figure 10-3. A cluster with a network partition

http://dx.doi.org/10.1007/978-1-4842-2982-8_1

Chapter 10 ■ restarts

325

A safer solution is not to allow partitioned starts. Setting StartPartitionedTimeout to 0 is supposed to
accomplish this; however, until the bug in https://bugs.mysql.com/bug.php?id=83893 has been fixed, the best
that can be done is to configure StartPartitionedTimeout to 4294962295 milliseconds (49.7 weeks). This is
particularly important if the data nodes are started automatically, for example using a service script. When it is
known that a partitioned restart is required, instead use the --nowait-nodes command-line argument for the
data nodes to explicitly allow restarting without waiting for the nodes that are known to be offline.

Monitoring Restarts
A restart can take a while to complete and it can be useful to monitor the progress. This information can also
be used to determine what can be done to improve the restart performance. There are four main places to
monitor the restarts:

•	 The ndb_mgm management client

•	 The ndb_waiter utility

•	 The ndbinfo.restart_info table

•	 The logs

Examples of each of the four places are listed in the following subsections.

The Management Client
The primary way to see the progress of a restart through the management client is to use the STATUS
command. The command can be used either for all data nodes or for a single data node. For example, to get
the status of all data nodes during a restart:

shell$ ndb_mgm -e "ALL STATUS"
Connected to Management Server at: 192.168.56.101:1186
Node 1: starting (Last completed phase 3) (mysql-5.7.16 ndb-7.5.4)
Node 2: starting (Last completed phase 3) (mysql-5.7.16 ndb-7.5.4)

This shows that both data nodes are restarting and the last completed start phase was number 3. This
indicates the current start phase is number 4. There are no details beyond that.

The ndb_waiter Utility
If the purpose of monitoring the restart is to detect when the data nodes are online, it is possible to use the
ndb_waiter utility. An example of a use case is for a script to wait for the data nodes to be ready, then start
the API/SQL nodes.

The ndb_waiter utility is simple as it just requires a connection string, a timeout in seconds, and the
status for the data nodes to reach. The default timeout is 120 seconds and the default is to wait for all data
nodes to become online. For example:

shell$ ndb_waiter --ndb_connectstring=192.168.56.101,192.168.56.102
Connected to Management Server at: 192.168.56.101:1186
Node 1: STARTED
Node 2: SHUTTING_DOWN

https://bugs.mysql.com/bug.php?id=83893

Chapter 10 ■ restarts

326

[16:43:18] Waiting for cluster enter state STARTED
Node 1: STARTED
Node 2: SHUTTING_DOWN
...
[16:43:23] Waiting for cluster enter state STARTED
Node 1: STARTED
Node 2: NO_CONTACT
...
[16:43:27] Waiting for cluster enter state STARTED
Node 1: STARTED
Node 2: STARTING
...
[16:44:32] Waiting for cluster enter state STARTED
Node 1: STARTED
Node 2: STARTED

NDBT_ProgramExit: 0 – OK

The status of all data nodes is printed several times per second, so the output is quite verbose. At the
end the exit status can be checked. If the data nodes have not all become online by the timeout, ndb_waiter
will retry 15 times before failing:

shell$ ndb_waiter --ndb_connectstring=192.168.56.101,192.168.56.102
Connected to Management Server at: 192.168.56.101:1186
...
waitNodeState(STARTED, -1) timeout after 15 attempts

NDBT_ProgramExit: 1 - Failed

 ■ Tip For more information about the ndb_waiter utility, see https://dev.mysql.com/doc/refman/5.7/en/
mysql-cluster-programs-ndb-waiter.html.

The ndbinfo.restart_info Table
One of the new features in MySQL NDB Cluster 7.4 was the possibility to monitor restarts through the
ndbinfo schema using the restart_info table. The advantage is that the data is readily available through
the SQL nodes, so any tool that can execute SQL queries can get the information. The disadvantage is the
information is not available for system restarts and it requires an SQL node to be online.

The main use of the ndbinfo.restart_info table is to monitor node restarts. The table will include data
for the latest node restart, and the information will be truncated at the start of the node shutdown, and then
become available when the node has completed the shutdown. An example is shown in Listing 10-2.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndb-waiter.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndb-waiter.html

Chapter 10 ■ restarts

327

Listing 10-2. Example Output from ndbinfo.restart_info

mysql> SELECT * FROM ndbinfo.restart_info\G
*************************** 1. row ***************************
 node_id: 2
 node_restart_status: Restart completed
 node_restart_status_int: 19
 secs_to_complete_node_failure: 0
 secs_to_allocate_node_id: 2
 secs_to_include_in_heartbeat_protocol: 1
 secs_until_wait_for_ndbcntr_master: 0
 secs_wait_for_ndbcntr_master: 0
 secs_to_get_start_permitted: 0
 secs_to_wait_for_lcp_for_copy_meta_data: 0
 secs_to_copy_meta_data: 0
 secs_to_include_node: 2
secs_starting_node_to_request_local_recovery: 0
 secs_for_local_recovery: 35
 secs_restore_fragments: 13
 secs_undo_disk_data: 0
 secs_exec_redo_log: 0
 secs_index_rebuild: 21
 secs_to_synchronize_starting_node: 0
 secs_wait_lcp_for_restart: 17
 secs_wait_subscription_handover: 6
 total_restart_secs: 66
1 row in set (0.01 sec)

The timings are all in seconds. The node_restart_status column is useful to monitor the current status
of the restart; some possible values are: “Node failure handling complete”, “Restore fragments ongoing”,
“Build indexes ongoing”, and “Restart completed”. The node_restart_status_int column is an integer value
corresponding to the restart status.

 ■ Tip For more information about the ndbinfo.restart_info table, see https://dev.mysql.com/doc/
refman/5.7/en/mysql-cluster-ndbinfo-restart-info.html.

A Restart Seen in the Logs
Both the cluster log and the out logs for the data nodes include detailed information about the restarts. As an
example, Listing 10-3 contains part of the restart information included in the out log for a data node that has
been restarted.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbinfo-restart-info.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbinfo-restart-info.html

Chapter 10 ■ restarts

328

Listing 10-3. Data Node Out Log Excerpt

2016-11-19 16:58:25 [ndbd] INFO -- Angel reconnected to '192.168.56.101:1186'
2016-11-19 16:58:28 [ndbd] INFO -- Angel reallocated nodeid: 2
2016-11-19 16:58:28 [ndbd] INFO -- Angel pid: 31415 started child: 32134
2016-11-19 16:58:28 [ndbd] INFO -- Normal start of data node using checkpoint and log

info if existing
2016-11-19 16:58:28 [ndbd] INFO -- Configuration fetched from '192.168.56.101:1186',
generation: 7
2016-11-19 16:58:28 [ndbd] INFO -- Changing directory to '/cluster'
ThreadConfig: input: LockExecuteThreadToCPU: => parsed: main,ldm,recv,rep
2016-11-19 16:58:28 [ndbd] INFO -- MaxNoOfTriggers set to 1400
NDBMT: MaxNoOfExecutionThreads=4
NDBMT: workers=1 threads=1 tc=0 send=0 receive=1
2016-11-19 16:58:28 [ndbd] INFO -- NDB Cluster -- DB node 2
2016-11-19 16:58:28 [ndbd] INFO -- mysql-5.7.16 ndb-7.5.4 --
2016-11-19 16:58:28 [ndbd] INFO -- Memory Allocation for global memory pools Starting
2016-11-19 16:58:28 [ndbd] INFO -- numa_set_interleave_mask(numa_all_nodes) : OK
2016-11-19 16:58:28 [ndbd] INFO -- Ndbd_mem_manager::init(1) min: 507Mb initial: 527Mb
2016-11-19 16:58:28 [ndbd] INFO -- Touch Memory Starting, 2180 pages, page size = 32768
2016-11-19 16:58:28 [ndbd] INFO -- Touch Memory Completed
...
2016-11-19 16:58:29 [ndbd] INFO -- Start phase 0 completed
...
2016-11-19 16:59:32 [ndbd] INFO -- Start phase 101 completed
2016-11-19 16:59:32 [ndbd] INFO -- Phase 101 was used by SUMA to take over
responsibility for sending some of the asynchronous change events
2016-11-19 16:59:32 [ndbd] INFO -- Node started

The start of the log snippet shows the angel process connecting to the management node and
getting the node ID assigned. The following message mentions the restart type (“Normal start of data
node using checkpoint and log info if existing” in this case), and the configuration is fetched from the
management node. As part of fetching the configuration, the thread configuration is expanded, in this case
MaxNoOfExecutionThreads = 4 is expanded to a ThreadConfig of main,ldm,recv,rep.

At this point the restart continues as described in the “Startup Process” section. First memory is
allocated and, as can be seen, also touched. For more information about memory usage, see Chapter 2. The
rest of the restart follows with a note each time a restart phase has completed.

 ■ Tip an easy way to get to near the top of a restart logged messages is to search for “fetched”.

Example Restart Scenarios
The remainder of this chapter goes through several case studies where restarts are demonstrated. The
examples include:

•	 Configuration Change: Making a simple configuration change to increase the value
of MaxNoOfConcurrentOperations.

•	 Adding Management Node: Increasing the number of management nodes in a
cluster from one to two.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 10 ■ restarts

329

•	 Adding Data Nodes: Adding a node group to an existing cluster.

•	 Adding Data Nodes with Node Group Pre-Allocated: Adding a new node group to
an existing cluster without having to restart any of the existing nodes.

•	 Adding API/SQL Node: Adding a new API/SQL node to an existing cluster.

•	 Recovering from Corrupt NDB File system: Restarting a data node after its NDB file
system has become corrupt, for example after a hard crash of the host.

•	 Initial System Restart: Performing an initial system restart to increase the number
of threads for the data node and redistribute the partitions to take advantage of the
extra threads.

With the exception of the “Initial System Restart” case study, all of the other changes are performed
online.

To make the commands less verbose, it is assumed that there exists a /etc/my.cnf configuration file (or
in a similar location depending on the platform) with the connection string defined:

[mysql_cluster]
ndb_connectstring = 192.168.56.101,192.168.56.102

All programs but ndb_mgmd require this connection string to work. As an alternative, the connection
string can be given as a command-line option for each command.

As a reminder, the configuration in config.ini is repeated in Listing 10-4.

Listing 10-4. The Cluster Configuration Used for the Example Restart Scenarios

[ndb_mgmd default]
DataDir = /cluster/

[ndbd default]
NoOfReplicas = 2
DataDir = /cluster/

[ndbd]
NodeId = 1
HostName = 192.168.56.103

[ndbd]
NodeId = 2
HostName = 192.168.56.104

[ndb_mgmd]
NodeId = 49
HostName = 192.168.56.101

[ndb_mgmd]
NodeId = 50
HostName = 192.168.56.102

[mysqld]
NodeId = 51
HostName = 192.168.56.103

Chapter 10 ■ restarts

330

[mysqld]
NodeId = 52
HostName = 192.168.56.104

[api]
NodeId = 53
HostName = 192.168.56.101

[api]
NodeId = 54
HostName = 192.168.56.102

Configuration Change
A configuration change is the most common reason to perform a restart as any change to the configuration
in config.ini requires a restart. For most changes, it will be a normal rolling restart. This example will start
by using the default value for MaxNoOfConcurrentOperations (32768) and increase it to 65536. The current
value can be seen from the ndbinfo.config_values and ndbinfo.config_params tables, such as:

mysql> SELECT param_name, param_default, node_id, config_value
 FROM ndbinfo.config_params
 INNER JOIN ndbinfo.config_values
 ON config_params.param_number = config_values.config_param
 WHERE param_name = 'MaxNoOfConcurrentOperations';
+-----------------------------+---------------+---------+--------------+
| param_name | param_default | node_id | config_value |
+-----------------------------+---------------+---------+--------------+
| MaxNoOfConcurrentOperations | 32768 | 1 | 32768 |
| MaxNoOfConcurrentOperations | 32768 | 2 | 32768 |
+-----------------------------+---------------+---------+--------------+
2 rows in set (0.02 sec)

Alternatively—and the only option in MySQL NDB Cluster 7.4 and earlier—you can use the ndb_config
utility:

shell$ ndb_config --type=ndbd --fields=': ' --rows='\n' \
 --query=NodeId,MaxNoOfConcurrentOperations
1: 32768
2: 32768

The options given to ndb_config are:

•	 --type: The node type to return the result for, in this case data nodes (“ndbd” covers
both single- and multi-threaded data nodes).

•	 --fields: The separator to use between the fields.

•	 --rows: The separator to use between the rows.

•	 --query: What to ask for, in this case the NodeId and the value of
MaxNoOfConcurrentOperations.

Chapter 10 ■ restarts

331

The ndb_config utility has an additional trick up its sleeve: it is possible to specify a data node to get
the configuration from instead of asking the management nodes. This can be useful when a configuration
change is only partly applied, as you will see later in this example.

The first step of the configuration change is to update the cluster configuration file to include the new
value for MaxNoOfConcurrentOperations:

[ndbd default]
NoOfReplicas = 2
DataDir = /cluster/
MaxNoOfConcurrentOperations = 65536

Then stop both management nodes—otherwise if only one management node is restarted at a time, it
will read the current configuration from the remaining online management node when restarting.

shell$ ndb_mgm -e "49 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 49 has shutdown.
Disconnecting to allow Management Server to shutdown

shell$ ndb_mgm -e "50 STOP"
Connected to Management Server at: 192.168.56.101:1186
Connected to Management Server at: 192.168.56.102:1186
Node 50 has shutdown.
Disconnecting to allow Management Server to shutdown

Note how the second execution of ndb_mgm first tried to connect to 192.168.56.101, then changed to
the other node. This happened because the management node on 192.168.56.101 (node 49) was not able to
handle the request, so the next management node was used instead.

When both management nodes have completed the shutdown, they can be restarted again using the
--reload option to tell the management nodes to read the new configuration file:

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=49 --reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=50 --reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

An interesting thing can be observed in the cluster log after the restart:

2016-11-17 18:02:20 [MgmtSrvr] INFO -- Detected change of /etc/config.ini on disk, will
try to set it. This is the actual diff:
[ndbd(DB)]
NodeId=1
-MaxNoOfConcurrentOperations=32768
+MaxNoOfConcurrentOperations=65536

[ndbd(DB)]
NodeId=2
-MaxNoOfConcurrentOperations=32768
+MaxNoOfConcurrentOperations=65536

Chapter 10 ■ restarts

332

2016-11-17 18:02:20 [MgmtSrvr] INFO -- Starting configuration change, generation: 5
2016-11-17 18:02:20 [MgmtSrvr] INFO -- Node 1: Node 50: API mysql-5.7.16 ndb-7.5.4
2016-11-17 18:02:20 [MgmtSrvr] INFO -- Node 2: Node 50: API mysql-5.7.16 ndb-7.5.4
2016-11-17 18:02:20 [MgmtSrvr] INFO -- Configuration 6 commited
2016-11-17 18:02:20 [MgmtSrvr] INFO -- Config change completed! New generation: 6

The cluster log includes the difference of the change (called diff in the log), and the configuration
generation is incremented from 5 to 6. This is an advantage of using the --reload option over the --initial
option when restarting a management node: the log will include details of the changes made to the
configuration.

It can be interesting to check the effect of the configuration change as the rolling restart progresses. At
this stage, the management nodes know of the new configuration, so how is that reflected using the previous
methods to get the current values? First using the ndbinfo schema:

mysql> SELECT param_name, param_default, node_id, config_value
 FROM ndbinfo.config_params
 INNER JOIN ndbinfo.config_values
 ON config_params.param_number = config_values.config_param
 WHERE param_name = 'MaxNoOfConcurrentOperations';
+-----------------------------+---------------+---------+--------------+
| param_name | param_default | node_id | config_value |
+-----------------------------+---------------+---------+--------------+
| MaxNoOfConcurrentOperations | 32768 | 1 | 32768 |
| MaxNoOfConcurrentOperations | 32768 | 2 | 32768 |
+-----------------------------+---------------+---------+--------------+
2 rows in set (0.04 sec)

This is as expected—the data nodes are not yet aware of the configuration change. This is also reflected
in the ndbinfo.nodes table:

mysql> SELECT * FROM ndbinfo.nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
| 1 | 561 | STARTED | 0 | 5 |
| 2 | 581 | STARTED | 0 | 5 |
+---------+--------+---------+-------------+-------------------+
2 rows in set (0.02 sec)

The config_generation column is the same as the management node reported in the cluster log during
the restart. So here the config generation is 5, the old generation. However, using ndb_config utility at first
sight produces an unexpected result:

shell$ ndb_config --type=ndbd --fields=': ' --rows='\n' \
 --query=NodeId,MaxNoOfConcurrentOperations
1: 65536
2: 65536

Chapter 10 ■ restarts

333

Why is that? The reason is that ndb_config can ask either the management nodes or any of the data
nodes about the configuration. The default is to ask the management nodes, so that explains the new value for
MaxNoOfConcurrentOperations. To ask data node 1 for the configuration, add the --config-from-node option:

shell$ ndb_config --type=ndbd --fields=': ' --rows='\n' \
 --query=NodeId,MaxNoOfConcurrentOperations \
 --config-from-node=1
1: 32768
2: 32768

This possibility to get the configuration from various nodes can be very useful to investigate issues
where the configuration does not appear to be the expected. Going systematically through first the
management nodes, then each data node will reveal which nodes have applied a configuration change and
which have not.

All that remains now is to restart each of the remaining nodes. The data nodes can be restarted using
the management client:

shell$ ndb_mgm -e "1 RESTART"
Connected to Management Server at: 192.168.56.101:1186
Node 1 is being restarted

At this point, it is necessary to wait for the restart to complete before restarting the second data node.
Once the restart of the first node has completed, begin the restart of the second one:

shell$ ndb_mgm -e "2 RESTART"
Connected to Management Server at: 192.168.56.101:1186
Node 2 is being restarted

Finally restart each of the API/SQL nodes. Since this step is platform dependent, it is left as an exercise
for the reader. Technically it is not necessary to restart the API/SQL nodes for a configuration change like this
that does not affect the API/SQL nodes. However, by always including all nodes as part of the rolling restart,
it is also ensured that none are forgotten.

Going back to check the configuration, looking at the ndbinfo schema, it can now be seen that both
data nodes use the new configuration:

mysql> SELECT * FROM ndbinfo.nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
| 1 | 430 | STARTED | 0 | 6 |
| 2 | 247 | STARTED | 0 | 6 |
+---------+--------+---------+-------------+-------------------+
2 rows in set (0.01 sec)

Chapter 10 ■ restarts

334

mysql> SELECT param_name, param_default, node_id, config_value
 FROM ndbinfo.config_params
 INNER JOIN ndbinfo.config_values
 ON config_params.param_number = config_values.config_param
 WHERE param_name = 'MaxNoOfConcurrentOperations';
+-----------------------------+---------------+---------+--------------+
| param_name | param_default | node_id | config_value |
+-----------------------------+---------------+---------+--------------+
| MaxNoOfConcurrentOperations | 32768 | 1 | 65536 |
| MaxNoOfConcurrentOperations | 32768 | 2 | 65536 |
+-----------------------------+---------------+---------+--------------+
2 rows in set (0.04 sec)

The configuration generation has increased to 6, and the value for MaxNoOfConcurrentOperations has
increased to 65536.

Adding a Management Node
This example starts with a slightly different configuration than the other case studies in this chapter. The
setup is the same as in Listing 10-4 except that the management node on 192.168.0.102 is not included. The
task of this example is to add the management node on 192.168.0.102.

The steps to add a management node are:

 1. Update the cluster configuration file (config.ini) by adding the details for the new
management node.

 2. Update the ndb_connectstring option for all data and API/SQL nodes (this
includes utility programs such as ndb_desc).

 3. Shut down the existing management node(s).

 4. Restart the existing management nodes as well as the new management node
with --initial.

 5. Restart the data and API/SQL nodes as in a rolling restart.

The example starts with the cluster up and running:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=49 @192.168.56.101 (mysql-5.7.16 ndb-7.5.4)

[mysqld(API)] 6 node(s)
id=51 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4)
id=52 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4)
id=53 (not connected, accepting connect from 192.168.56.101)
id=54 (not connected, accepting connect from 192.168.56.102)

Chapter 10 ■ restarts

335

The first step is to update config.ini to add the new management node. This requires adding an extra
[ndb_mgmd] section setting the NodeId and HostName options. In the example, the new management node
will be executing on 192.168.56.102 and otherwise using the option in [ndb_mgmd default] and the default
configuration. The section added is as follows:

[ndb_mgmd]
NodeId = 50
HostName = 192.168.56.102

The resulting config.ini file is the one in Listing 10-4. The configuration file also must be copied to the
new node.

With the new configuration file in place, the next step is to ensure that all nodes will include the new
management node when they are restarted in the future. Client programs connecting to the management
nodes (such as ndb_mgm and ndb_desc) should also refer to both management nodes. To achieve this, the
--ndb_connectstring option must be updated. If the option is set in the my.cnf/my.ini configuration file, it
can be updated there:

[mysql_cluster]
ndb_connectstring = 192.168.56.101,192.168.56.102

It is now time for the actual restart. As with other configuration changes, the first part of the restart is to
shut down the management node(s). The operation can be done from any of the nodes using the ndb_mgm
management client:

shell$ ndb_mgm -e "49 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 49 has shutdown.
Disconnecting to allow Management Server to shutdown

Once the management node has shut down, the existing as well as the new management nodes must
be restarted. Since a new management node necessarily will use first generation for the configuration, this
is one of the rare cases where the management nodes must be started with the --initial flag to reset the
management node.

 ■ Tip It is only the management nodes that must be restarted with --initial in this case. the data nodes
can perform a normal node restart.

To start the management node on 192.168.56.101:

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=49 –initial
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

And on 192.168.56.102:

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=50 --initial
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

Chapter 10 ■ restarts

336

The fact that there are now two management nodes can be confirmed using the SHOW command:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
...
[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.7.16 ndb-7.5.4)
id=50 @192.168.56.102 (mysql-5.7.16 ndb-7.5.4)

All that remains now is to restart the data nodes and API/SQL nodes one by one, and they will pick
up the new configuration when rejoining the cluster. To ensure that the data nodes are aware of the new
connection string, stop the data nodes, then manually start them again. First node ID 1:

shell$ ndb_mgm -e "1 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 1 has shutdown.

shell$ sudo -u mysql ndbmtd --ndb-nodeid=1

Then node ID 2:

shell$ ndb_mgm -e "2 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 2 has shutdown.

shell$ sudo -u mysql ndbmtd --ndb-nodeid=2

Finally, the two API/SQL nodes can be restarted. How this restart is performed depends on the
platform, whether it is SQL nodes or custom API nodes, and how they are installed. So, shut down one of the
API and SQL node using the method appropriate for the installation, then start it again. Continue with the
rest of the API and SQL nodes.

Adding Data Nodes
During the life time of a cluster, it may be necessary to increase the number of data nodes. Examples of
why it may be required to add more data nodes are to add more storage capacity or for more parallelism for
scans.

Adding extra data nodes to a cluster requires a few more steps than the previous examples:

 1. Update the cluster configuration file (config.ini) with the details of the new
data nodes. You must add a complete new node group, so for example with
NoOfReplicas = 2, two new data nodes must be added.

 2. Perform a rolling restart of the existing nodes in the cluster. It is important to
remember to include the API/SQL nodes in this rolling restart.

 3. Start the new nodes; this will be an initial restart since it is the first they are
started.

 4. Create a new node group for the new data nodes.

Chapter 10 ■ restarts

337

 5. Reorganize the partitions for existing tables to move some of the existing data
into the new data nodes.

 6. Optimize the reorganized tables to reclaim variable width memory. Reorganizing
the partitions is equivalent to inserting part of the data on the new nodes and
deleting it on the old nodes. The deletion of data will cause fragmentation of
which the memory used for variable data can be reclaimed online.

The start of this example has the configuration in Listing 10-4 and the following management and data
nodes online:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)

[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.7.16 ndb-7.5.4)
id=50 @192.168.56.102 (mysql-5.7.16 ndb-7.5.4)

[mysqld(API)] 6 node(s)
...

In this case, the new data nodes are added on the existing hosts. One point to be careful of when there
are multiple data nodes on the same host is to ensure that the data nodes are not in the same node group;
that could introduce a single point of failure. Since there already is one node group and the new data nodes
will constitute a second node group, the new node group is automatically spread across the two hosts, so in
this case the new nodes will not introduce a single point of failure.

The first step is to update the config.ini file on the two management nodes to add the new data nodes.
This is done adding two [ndbd] sections:

[ndbd]
NodeId = 3
HostName = 192.168.56.103

[ndbd]
NodeId = 4
HostName = 192.168.56.104

At this point a normal rolling restart can be performed. First shut down both management nodes:

shell$ ndb_mgm -e "49 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 49 has shutdown.
Disconnecting to allow Management Server to shutdown

shell$ ndb_mgm -e "50 STOP"
Connected to Management Server at: 192.168.56.102:1186
Node 50 has shutdown.
Disconnecting to allow Management Server to shutdown

Chapter 10 ■ restarts

338

Then restart the management nodes using the --reload option:

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=49 –reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=50 --reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

The cluster log shows the new configuration:

...
2016-11-07 18:15:50 [MgmtSrvr] INFO -- Detected change of /etc/config.ini on disk, will
try to set it. This is the actual diff:
[ndbd(DB)]
NodeId=3
Node removed

[ndbd(DB)]
NodeId=4
Node removed

[TCP]
NodeId1=1
NodeId2=3
Connection removed
...

The “diff” looks a bit odd when adding new nodes as it mentions the nodes have been removed.
However, in reality all of the changes have been added. This includes the [TCP] sections. As discussed in
Chapter 2, transporters are set up between all the possible node pairs whether the nodes are online or not.
The cluster uses all defaults for the TCP/IP transporter settings, so that part has been hidden until now, but
adding new nodes will make the management node also “discover” the new transporter settings.

At this point, restart the two existing data nodes; no special consideration has to be taken here either.
First node ID 1:

shell$ ndb_mgm -e "1 RESTART"
Connected to Management Server at: 192.168.56.101:1186
Node 1 is being restarted

Wait for the restart to complete, then restart the data node with node ID 2:

shell$ ndb_mgm -e "2 RESTART"
Connected to Management Server at: 192.168.56.101:1186
Node 2 is being restarted

Once the second data node has completed its restart, restart each of the API/SQL nodes as appropriate
for the platform and the API node type (SQL node or application). It is important that all nodes that were
online at the start of the process have either been shut down or restarted. This is required so that they are all
aware of the new nodes that are about to be added and there are transporters ready for them.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 10 ■ restarts

339

The status is now:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 4 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)
id=3 (not connected, accepting connect from 192.168.56.103)
id=4 (not connected, accepting connect from 192.168.56.104)
...

This shows that nodes 3 and 4 are part of the cluster, but not yet started. So finally, it is time to get the
new data nodes online. Since it is the first time the new data nodes are started, it must be an initial restart.
The initial start of the two new nodes is done concurrently. First node ID 3:

shell$ sudo -u mysql ndbmtd --ndb-nodeid=3 --initial
2016-11-07 18:35:46 [ndbd] INFO -- Angel connected to '192.168.56.101:1186'
2016-11-07 18:35:46 [ndbd] INFO -- Angel allocated nodeid: 3

Next, node id 4:

shell$ sudo -u mysql ndbmtd --ndb-nodeid=4 --initial
2016-11-07 18:35:48 [ndbd] INFO -- Angel connected to '192.168.56.101:1186'
2016-11-07 18:35:48 [ndbd] INFO -- Angel allocated nodeid: 4

Once the restart has completed, the status is:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 4 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)
id=3 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, no nodegroup)
id=4 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, no nodegroup)
...

One point to note here is that the new data nodes are started and part of the cluster, but there is no node
group associated with them. That means tables will not have any partitions and thus not any data stored in
the new data nodes. To actually store data in the new notes, it is necessary to create a new node group. This
can be done using the management client:

shell$ ndb_mgm -e "CREATE NODEGROUP 3,4"
Connected to Management Server at: 192.168.56.101:1186
Nodegroup 1 created

Chapter 10 ■ restarts

340

The arguments to the CREATE NODEGROUP command are the node IDs in a comma-separated list to add
to the new node group. The finale status is:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 4 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)
id=3 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 1)
id=4 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 1)
...

The last task is to ensure that data is also added to the new nodes. This will happen automatically for
all new tables, but existing tables must be redistributed first. Like the previous steps, redistributing the data
is an online operation. Consider a table, such as db1.t1, that existed before the new nodes were added.
Looking at the table using the ndb_desc utility shows the current distribution among the partitions (some
information has been removed for clarity):

shell$ ndb_desc --database=db1 t1 -pn
...
-- Per partition info --
Partition Row count Frag fixed memory Frag varsized memory Nodes
0 62992 2031616 3112960 1,2
1 63392 2064384 3145728 2,1

Alternatively, the ndbinfo schema can be used:

mysql> SELECT node_id, fragment_num,
 SUM(fixed_elem_alloc_bytes) AS FixedMem,
 SUM(var_elem_alloc_bytes) AS VarMem
 FROM ndbinfo.memory_per_fragment
 WHERE fq_name = 'db1/def/t1'
 GROUP BY node_id, fragment_num;
+---------+--------------+----------+---------+
| node_id | fragment_num | FixedMem | VarMem |
+---------+--------------+----------+---------+
1	0	2031616	3112960
1	1	2064384	3145728
2	0	2031616	3112960
2	1	2064384	3145728
+---------+--------------+----------+---------+
4 rows in set (0.05 sec)

To reorganize the data in existing tables, use the ALTER TABLE statement like:

mysql> ALTER TABLE db1.t1 ALGORITHM=INPLACE, REORGANIZE PARTITION;
Query OK, 0 rows affected (13.42 sec)
Records: 0 Duplicates: 0 Warnings: 0

Chapter 10 ■ restarts

341

 ■ Note It is not possible to perform any other DDL statements while the partitions are being reorganized.

The new data distribution is:

mysql> SELECT node_id, fragment_num,
 SUM(fixed_elem_alloc_bytes) AS FixedMem,
 SUM(var_elem_alloc_bytes) AS VarMem
 FROM ndbinfo.memory_per_fragment
 WHERE fq_name = 'db1/def/t1'
 GROUP BY node_id, fragment_num;
+---------+--------------+----------+---------+
| node_id | fragment_num | FixedMem | VarMem |
+---------+--------------+----------+---------+
1	0	2031616	3112960
1	1	2064384	3145728
2	0	2031616	3112960
2	1	2064384	3145728
3	2	1015808	1572864
3	3	1048576	1572864
4	2	1015808	1572864
4	3	1048576	1572864
+---------+--------------+----------+---------+
8 rows in set (0.09 sec)

The only thing that is missing is to free up the extra space still used in the old partitions. This can be
done online using OPTIMIZE TABLE for each table. Listing 10-5 shows an example with the db1.t1 table and
how this reclaims some of the variable width (dynamic) memory.

Listing 10-5. Defragmenting the Data

mysql> OPTIMIZE TABLE db1.t1;
+--------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------+----------+----------+----------+
| db1.t1 | optimize | status | OK |
+--------+----------+----------+----------+
1 row in set (3.35 sec)

mysql> SELECT node_id, fragment_num,
 SUM(fixed_elem_alloc_bytes) AS FixedMem,
 SUM(var_elem_alloc_bytes) AS VarMem
 FROM ndbinfo.memory_per_fragment
 WHERE fq_name = 'db1/def/t1'
 GROUP BY node_id, fragment_num;

Chapter 10 ■ restarts

342

+---------+--------------+----------+---------+
| node_id | fragment_num | FixedMem | VarMem |
+---------+--------------+----------+---------+
1	0	2031616	1638400
1	1	2064384	1638400
2	0	2031616	1638400
2	1	2064384	1638400
3	2	1015808	1572864
3	3	1048576	1572864
4	2	1015808	1572864
4	3	1048576	1572864
+---------+--------------+----------+---------+
8 rows in set (0.07 sec)

As it can be seen, OPTIMIZE TABLE only reclaimed the memory for the variable sized memory (dynamic
column format). The non-reclaimed fixed memory is still available for new rows. The only way to completely
reclaim the memory is to recreate the table, for example using a null ALTER TABLE:

mysql> ALTER TABLE db1.t1 ENGINE=NDBCluster;
Query OK, 126384 rows affected (38.18 sec)
Records: 126384 Duplicates: 0 Warnings: 0

Adding Data Nodes with Node Group Pre-Allocated
An alternative way to add new data nodes, which avoids restarting any of the existing nodes, is to configure
the cluster to include future data nodes ahead of time. This can be achieved by setting the node group for the
future nodes to 65536 (the maximum allowed value). For example:

[ndbd]
NodeId = 3
NodeGroup = 65536
HostName = 192.168.56.103

[ndbd]
NodeId = 4
NodeGroup = 65536
HostName = 192.168.56.104

[ndbd]
NodeId = 5
NodeGroup = 65536
HostName = 192.168.56.105

[ndbd]
NodeId = 6
NodeGroup = 65536
HostName = 192.168.56.106

This configuration supports adding data nodes either to the two existing hosts or to two new hosts.

Chapter 10 ■ restarts

343

One caveat about having extra nodes configured for future use is that the current data nodes will by
default wait for the future ones during a restart. This can be seen from the cluster log:

2016-11-12 13:07:48 [MgmtSrvr] INFO -- Node 1: Initial start,
 waiting 13 for 3, 4, 5 and 6 to connect,
 nodes [all: 1, 2, 3, 4, 5 and 6
 connected: 1 and 2 missing: 3, 4, 5 and 6
 no-wait:
 no-nodegroup: 3, 4, 5 and 6]
...
2016-11-12 13:08:01 [MgmtSrvr] INFO -- Node 1: Initial start
 with nodes 1 and 2 [missing: 3, 4, 5 and 6 no-wait:]

The log example has been reformatted to make it easier to read. It tells that this is an initial restart, and
the first note (at 13:07:48) in the second line says the cluster is waiting another 13 seconds for nodes 3, 4,
5, and 6 (i.e., the node IDs that have been reserved for future nodes) to connect. The last four lines of the
first message show a summary of the nodes, a list of all known data nodes, which are connected, which the
cluster will not wait for, and which do not have a node group. This shows two interesting features:

•	 The no-wait part refers to the possibility to tell the data node not to wait for certain
nodes at startup. This can be used to skip the waiting stage.

•	 The no-nodegroup part shows that MySQL NDB Cluster considers NodeGroup =
65536 as not having a node group. This is what allows us to include the data nodes in
the configuration even though they are not intended to be part of the cluster for the
time being.

The option to avoid waiting for nodes that are known not to participate in the restart is --nowait-nodes,
as discussed earlier in the chapter. To skip waiting for all of the four future nodes, start the nodes as follows:

shell$ sudo -u mysql ndbmtd --ndb-nodeid=1 --nowait-nodes=3,4,5,6

This is equivalent for node 2. An alternative is to set the StartNoNodeGroupTimeout option, which
defaults to 15000 milliseconds (15 seconds). Reducing the timeout makes the nodes wait a shorter time for
the nodes without a node group.

At this point, the cluster is online with two data nodes, and it is decided to add a node on each of the
hosts 192.168.56.103 and 192.168.56.104, just like in the previous example. However, as the nodes already
have been added to the configuration, it is not necessary this time to perform any restarts other than getting
the new nodes online. First check the status of the cluster:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 6 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)
id=3 (not connected, accepting connect from 192.168.56.103)
id=4 (not connected, accepting connect from 192.168.56.104)
id=5 (not connected, accepting connect from 192.168.56.105)
id=6 (not connected, accepting connect from 192.168.56.106)
...

Chapter 10 ■ restarts

344

Then start the two new data nodes:

shell$ sudo -u mysql ndbmtd --ndb-nodeid=3 --initial

shell$ sudo -u mysql ndbmtd --ndb-nodeid=4 --initial

The cluster is now in the equivalent state as the previous example where the new nodes were started:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 6 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)
id=3 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, no nodegroup)
id=4 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, no nodegroup)
id=5 (not connected, accepting connect from 192.168.56.105)
id=6 (not connected, accepting connect from 192.168.56.106)
...

Note how the new nodes (id=3 and id=4) show up without a node group after they have been started.
This is exactly what NodeGroup = 65536 in the configuration file at the beginning of the example meant.

 ■ Tip the cluster will function correctly even with the NodeGroup = 65536 setting left in the configuration
for the newly added nodes. however, it makes the configuration more clear if it is removed.

With the new data nodes online, a new node group can be created:

shell$ ndb_mgm -e "CREATE NODEGROUP 3,4"
Connected to Management Server at: 192.168.56.101:1186
Nodegroup 1 created

Finally, reorganize the partitions for each table. For example, for the db1.t1 table:

mysql> ALTER TABLE db1.t1 ALGORITHM=INPLACE, REORGANIZE PARTITION;
Query OK, 0 rows affected (13.42 sec)
Records: 0 Duplicates: 0 Warnings: 0

Adding API/SQL Node
The simplest of the procedures to add extra nodes is to add new API/SQL nodes. From the point of view of
the existing nodes, this is no different than making any other configuration change:

 1. Update the cluster configuration file (config.ini) adding the new nodes.

 2. Perform a rolling restart as discussed earlier.

 3. Install, configure, and start the new API/SQL nodes.

Chapter 10 ■ restarts

345

The main point to consider when adding additional API/SQL nodes is that the management and data
nodes will allocate send and receive buffers for the new nodes. If TotalSendBufferMemory has not been
configured, the extra send buffer will cause the total memory usage to increase with the size of the send
buffer (the SendBufferMemory option for the TCP sections or 2MB by default). If TotalSendBufferMemory
has been configured, it is necessary to consider whether the new nodes require the total send buffer memory
pool to be increased. For the receive buffer, the memory usage increases with the size of the receive buffer
(the ReceiveBufferMemory option for the TCP sections or 2MB by default).

Recovering from a Corrupt NDB File System
The NDB file system of one of the data nodes can become corrupt. This is most likely to happen for one of
the files created for a local checkpoint, and it typically happens after the host has crashed, the node has
been killed with a SIGKILL signal, or due to a disk failure. However, it can also occur for other reasons. The
symptom is that attempting to restart the data node fails. An example of the failed restart may be a message
in the cluster log:

2016-11-16 16:41:40 [MgmtSrvr] ALERT -- Node 2: Forced node shutdown completed. Occured
during startphase 5. Caused by error 2341: 'Internal program error (failed ndbrequire)
(Internal error, programming error or missing error message, please report a bug). Temporary
error, restart node'.

In this example, the corresponding error log message is:

Time: Wednesday 16 November 2016 - 16:42:11
Status: Temporary error, restart node
Message: Internal program error (failed ndbrequire) (Internal error, programming error or
missing error message, please report a bug)
Error: 2341
Error data: restore.cpp
Error object: RESTORE (Line: 507) 0x00000002 Check len < 8192 failed
Program: ndbmtd
Pid: 18633 thr: 2
Version: mysql-5.7.16 ndb-7.5.4
Trace file name: ndb_2_trace.log.3_t2
Trace file path: /cluster//ndb_2_trace.log.3 [t1..t4]
EOM

Recall that start phase 5 is where the local checkpoint is restored, which involves the RESTORE kernel
block. In cases like this, it is necessary to recreate the NDB file system. That is, you need to perform an initial
restart of the data node.

An initial restart of a data node deletes all the data nodes files in the NDB file system, with the exception
of logfile group file or tablespace files. This means:

•	 You must make sure there is another node in the same node group online. If that
is not the case, the node you are restarting will either fail to restart or restart in a
partitioned mode with no data!

•	 If there are logfile group files or tablespace files that must be deleted, it is necessary
to do it manually. If the files are missing, they will be recreated during the restart.

See the discussion of restart types at the beginning of this chapter.

Chapter 10 ■ restarts

346

Initial System Restart
An initial system restart is fortunately a rare event. The following example will change the configuration from
using MaxNoOfExecutionThreads = 2 (the default) that has one LDM threads to MaxNoOfExecutionThreads
= 8 with four LDM threads. As discussed in Chapter 2, the index memory is divided among the LDM threads,
so increasing the number of LDM threads from 2 to 8 means each LDM thread only has a quarter the amount
of index memory available. This means that if more than 23.75% of the index memory is in use for any of the
LDM threads (the threshold for considering all the index memory used is at 95% of IndexMemory), it will not
be possible to even restart the data nodes with the new configuration. So in the end, to be able to increase
the LDM threads, it is often necessary to re-initialize the cluster and restore the data from a backup.

The steps this example uses to do this are:

 1. Make the cluster read-only.

 2. Create a data backup.

 3. Create a schema backup.

 4. Perform the restart.

 5. Restore the schema.

 6. Restore the data.

Because there can be multiple API/SQL nodes connected to the data nodes, it can be difficult to ensure
that no one changes any data while the cluster is being backed up in Steps 2 and 3. To make this easier,
MySQL NDB Cluster supports enabling a single user mode:

shell$ ndb_mgm -e "ENTER SINGLE USER MODE 51"
Connected to Management Server at: 192.168.56.101:1186
Single user mode entered
Access is granted for API node 51 only.

The command tells the cluster that the only API/SQL node that is allowed to be connected is node 51.

 ■ Tip If the sQL nodes are using the ndb_cluster_connection_pool option to have multiple connections,
either restart with ndb_cluster_connection_pool = 1 or have a spare sQL node for maintenance use with
just one connection.

Combining this with enabling the super_read_only mode on SQL node 51, it is guaranteed that no
changes will happen:

mysql> SET GLOBAL super_read_only = ON;
Query OK, 0 rows affected (0.00 sec)

If this is a replication slave, make sure also to stop the replication as the super_read_only flag does not
apply to the SQL thread in replication.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 10 ■ restarts

347

 ■ Note In MysQL 7.4 and earlier, the super_read_only option did not exist. Instead it is necessary to use
the read_only option, but be aware the users with the SUPER privilege (including replication) in that case are
still allowed to make changes to the data.

At this point the backups can be made. In this example, it is assumed that the only user created schema
with NDBCluster tables just consists of the world database. The data can be backed up using the native NDB
backup, and the schema can be backed up using mysqldump:

shell$ ndb_mgm -e "START BACKUP"
Connected to Management Server at: 192.168.56.101:1186
Waiting for completed, this may take several minutes
Node 1: Backup 1 started from node 49
Node 1: Backup 1 started from node 49 completed
 StartGCP: 638 StopGCP: 641
 #Records: 7370 #LogRecords: 0
 Data: 498424 bytes Log: 0 bytes

shell$ mysqldump --no-data world > backup_world_schemaonly.sql

For production data, it is best to confirm the backup is valid by restoring it to a different cluster before
proceeding. When the backup has been verified, the configuration change can be made to config.ini and the
cluster can be shut down:

shell$ ndb_mgm -e "SHUTDOWN"
Connected to Management Server at: 192.168.56.101:1186
4 NDB Cluster node(s) have shutdown.
Disconnecting to allow management server to shutdown.

As usual, the restart begins with the management nodes. These can be started with the --reload flag
even though the data nodes will go through an initial system restart:

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=49 --reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=50 --reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

When the management nodes have started, it is time to start the data nodes. This is done using the
--initial option. If there are any logfile group files and tablespace files, it is fine to leave those as they can
be reused. To start the two data nodes:

shell$ sudo -u mysql ndbmtd --ndb-nodeid=1 –initial

shell$ sudo -u mysql ndbmtd --ndb-nodeid=2 –initial

Finally, restart the API/SQL nodes.

Chapter 10 ■ restarts

348

 ■ Note the single user and read only mode enabled before the restart does not persist after the restart. If
the status must persist after the restart, enable single user mode after restarting the management nodes, and
add the super read only mode to the sQL node’s configuration file.

To restore the backup, use the mysqldump backup of the schema to restore the table definitions. That
ensures that the tables are created using the new default number of partitions. If necessary, first create
the database. This will in general not be required unless the data directory of the SQL node was also re-
initialized, so the IF NOT EXISTS added to the CREATE SCHEMA statement and the sql_notes session variable
is disabled to avoid false errors and warnings. (Technically, with IF NOT EXISTS, a note will be created if the
schema exists, not a warning. However, the note is shown through the warnings mechanism.) Then restore
the table definitions:

mysql> SET SESSION sql_notes = OFF;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE SCHEMA IF NOT EXISTS world;
Query OK, 1 row affected (0.05 sec)

mysql> SET SESSION sql_notes = ON;
Query OK, 0 rows affected (0.00 sec)

mysql> use world;
Database changed
mysql> SOURCE backup_world_schemaonly.sql
Query OK, 0 rows affected (0.00 sec)

You must remove any foreign keys; this does not affect the data integrity and the foreign keys are
restored when rebuilding the indexes at the end of the restore.

Restore the data using the ndb_restore utility. This can be done in parallel for all the data nodes:

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --backupid=1 --backup-path=/cluster/BACKUP/BACKUP-1 \
 --restore-data --disable-indexes --nodeid=1

shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --backupid=1 --backup-path=/cluster/BACKUP/BACKUP-1 \
 --restore-data --disable-indexes --nodeid=2

The --disable-indexes option used with ndb_restore disables the indexes, so when all data has been
restored, the indexes must be rebuilt. This is done with a single command and only mentioning one node
ID:

shell$ ndb_restore --backupid=1 --backup-path=/cluster/BACKUP/BACKUP-1 \
 --rebuild-indexes --nodeid=1

For more information about restoring backups, see Chapter 8.
At this point, the cluster is back ready for use. The restored tables will have the data using the four LDM

threads for the partitions.

http://dx.doi.org/10.1007/978-1-4842-2982-8_8

Chapter 10 ■ restarts

349

Summary
This chapter covered the processes for starting, stopping, and restarting the nodes in MySQL NDB Cluster.
Restarts are important, as the rolling restarts allow the database administrator to make changes to the cluster
without causing downtime. These changes include, for example, configuration changes and adding more
nodes. You also learned how restarts can be monitored.

The second half of the chapter was dedicated to example use cases where restarts play a central role.
The examples started with a simple configuration change to one of the options for the data nodes, then went
through adding management, data, and API/SQL nodes. The two final examples required an initial restart
for one or all of the data nodes.

One example of using a rolling restart that has not been included in this chapter is an upgrade.
Performing upgrades is a large enough topic of its own to cover a whole chapter—and this is exactly the topic
of the next chapter.

351© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_11

CHAPTER 11

Upgrades and Downgrades

In many database deployments, upgrades and downgrades are painpoints, as they require an outage. For
this reason, the ability to perform online upgrades and downgrades is one of the important features of
MySQL NDB Cluster. Online upgrades and downgrades are supported both for patch release changes (for
example 7.5.4 to 7.5.5) as well as for major version changes (for example 7.4.13 to 7.5.4). From a technical
perspective, there is little difference between an upgrade and a downgrade, so for the most part these can be
treated the same.

The support for online upgrades also makes it more feasible to stay up to date with the latest releases.
Having the latest release installed also means having all the latest bug fixes, which increases the stability of
the cluster.

 ■ Tip In most cases, it is recommended to use the latest patch release for a given MySQL NDB Cluster. This
will ensure that all the available bug fixes—including for security bugs—have been applied.

This chapter discusses upgrades and downgrades in detail, including the considerations of when to
upgrade and how to do it.

Upgrades
An upgrade is the process of replacing the current binaries of the MySQL NDB Cluster installation with new
binaries of a more recent version. Upgrades can be divided into two main types: patch release upgrades
and major version upgrades. These two upgrade types and upgrade considerations are discussed in the
following sections. The actual steps required for an upgrade are covered later in this chapter in the section
“Performing Upgrades and Downgrades”.

Upgrade Types
MySQL version numbers have three components: x.y.z. For example, 7.5.4. The x-component of the MySQL
NDB Cluster version numbers have not changed in several years, so for the discussion in this chapter, it is
assumed only the y- and z-components change. This leaves two upgrade types:

•	 Patch release upgrades: This is an upgrade where only the z-component changes.

•	 Major version upgrades: This is an upgrade where the y-component changes.

https://doi.org/10.1007/978-1-4842-2982-8_11

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

352

A patch release upgrade will usually only include bug fixes, although there can occasionally be new
features included. This means that, in general, patch release upgrades cause only a few problems. It is of
course still important to test and read the release notes before upgrading the production system.

A major release upgrade, on the other hand, includes significant new features or changes to existing
features. Examples of some of the major changes introduced in the latest major versions of MySQL NDB
Cluster are:

•	 Version 7.3: Foreign keys and the MySQL Server version (for the SQL nodes) was
upgraded to version 5.6.

•	 Version 7.4: Rework of restarts and writing of local checkpoints and backups.

•	 Version 7.5: Partition balancing, read from backup replicas, and the MySQL Server
version was upgraded to version 5.7.

These changes are just examples to illustrate the scope of the changes that can be expected in major
release upgrades. Because there are significant changes to the data nodes and in some cases to the SQL
nodes, it is important to be thorough when evaluating the upgrade and during the test phase. Another
consideration that is particularly important for major release upgrades is compatibility between the old and
new release.

Since the upgrades can be performed online, there will be a period where there will be nodes still using
the old version while other nodes have been upgraded to the new version. This means you must be careful
not to start using new features until the upgrade is complete. In some cases, it is up to the DBA and database
developers to ensure that the new features are not used, before the whole cluster is available. An example of
this is the introduction of foreign keys in version 7.3.

In other cases, there is a configuration option available, such as the create_old_temporals option for
SQL nodes in 7.3.10, 7.4.7, and later (removed again in 7.5). The create_old_temporals option ensured that
columns using temporal data types such as TIMESTAMP were created using the format from MySQL Server
5.5 (used in MySQL NDB Cluster 7.2). Considering backward compatibility is not restricted to the duration
of the upgrade; if downgrades are also required, it is important to not make any changes that prevent a
downgrade until it is known that it will not be required.

Upgrade Considerations
There are primarily two reasons for upgrading: to get bug fixes and new features. The motivation differs for
each upgrade, and there is not a fixed rule that can be applied across all systems to decide when an upgrade
is required. Some of the considerations to decide whether the benefits of an upgrade outweigh the cost are:

•	 In general, for each patch release within a major version, it becomes more stable due
to the bug fixes.

•	 New monitoring and debugging information (typically through the ndbinfo
schema—see Chapter 16) is added over time, both in patch releases and major
release upgrades.

•	 The more often upgrades are performed, the fewer changes in each upgrade and
thus the less chance of having to learn to adjust/configure new features.

•	 Each upgrade requires testing, which may favor less frequent upgrades.

•	 Despite extensive regression testing for each patch release, there is always a potential
for regressions. This can, in some cases, favor working around a known bug rather
than chasing all the latest bug fixes.

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

353

•	 When a new major version is released, introduction into production environments
will always turn up bugs that have slipped through the testing performed during
development. This can favor waiting a little before upgrading to a new major version
or doing more frequent patch release upgrades in the time after the upgrade to the
new major version.

•	 The newer the major version is, the more bug fixes it will see. That is, some bugs will
not be fixed in older versions. For this reason, it is important not to lag too far behind
the latest major version. For example, at the time of writing this book, versions
7.2, 7.3, 7.4, and 7.5 are under active maintenance. In that case for most users, it is
recommended to be using version 7.4 or 7.5.

It is also worth noting that during the development period of a new major version, the opportunity is
taken to perform refactoring, which helps fixing bugs that otherwise would be hard to fix. Bugs that have a
relatively high potential to introduce regressions are also usually fixed during the development phase of a
new major version to allow extra time for testing before they are introduced into production systems. This
means that sometimes the only way to get a bug fix is to perform a major version upgrade.

On the downside of upgrading, is the requirement to evaluate the upgrade, including extensive testing.
In the end, it is necessary for the DBA to consider each system and decide what the right balance of fixing
bugs and get new features is compared to the test and preparation requirements.

Downgrades
From a basic point of view, a downgrade is the same as an upgrade except that the version number decreases
rather than increases. That said, there are a few additional considerations regarding feature compatibility. As
MySQL NDB Cluster supports online upgrades, it is a requirement that no feature be removed between two
major versions unless an alternative was provided in the pre-upgrade version. However, new features will
in general have been introduced for at least major version upgrades. Once one of the new versions has been
used, it will in general not be possible to downgrade online any longer.

As an example, consider a cluster that is currently using MySQL NDB Cluster 7.5.4. Assume a new table
is created using the fully replicated tables feature described in Chapter 2:

mysql> CREATE TABLE t1 (
 id int unsigned NOT NULL,
 val varchar(10) NOT NULL,
 PRIMARY KEY (id)
) ENGINE=ndbcluster COMMENT='NDB_TABLE=FULLY_REPLICATED=1';

If one attempts to downgrade to version 7.4.13 with this table, the restart will fail when trying to restore
the schema:

2016-12-08 21:50:51 [MgmtSrvr] ALERT -- Node 1: Forced node shutdown completed. Occurred
during startphase 5. Caused by error 2355:
'Failure to restore schema(Resource configuration
error). Permanent error, external action needed'.

This is expected, and it is the responsibility of the DBA and database developers not to use any new
features, until it has been confirmed that a downgrade is not required. If it is necessary to downgrade after
incorporating new features, it is usually necessary to restore the data from a backup.

Another factor to consider are the other storage engines for the SQL nodes. Particularly, InnoDB does
not generally allow in-place downgrades between major versions of MySQL Server. This means it may be
necessary to reinitialize the SQL nodes as part of a downgrade. The “Online Downgrade” case study later in
this chapter gives an example.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

354

 ■ Caution There are usual differences for the privilege tables between major versions of MySQL Server. For
this reason, it is in general easier to restore the users and privileges using CREATE USER and GRANT statements
than attempting to restore the actual content of the privilege tables.

Performing Upgrades and Downgrades
MySQL NDB Cluster supports two methods for performing an upgrade or downgrade: online or offline. The
difference is whether the cluster will be available for the application during the procedure or whether the
cluster will be shut down. The advantage of an online upgrade or downgrade is obviously that the impact
on the application is less significant. On the other hand, the advantage of an offline upgrade or downgrade
is that it will take less time and it is simpler, particularly if you have several nodes on the same host and use
RPM for MySQL NDB Cluster 7.4 or earlier or Debian packages. Additionally, in a few rare cases, an online
procedure may not be possible due to a bug (at the time of writing, the latest occurrence was for downgrades
from version 7.2.14 or later to 7.2.13 and earlier).

 ■ Note online upgrades are by far the most commonly used type of upgrade and downgrade procedures.
For this reason, offline upgrades and downgrades are more likely to encounter unexpected problems.

Most of the steps to perform an upgrade or downgrade are the same, whether the procedure will be
online or offline:

 1. Check the MySQL Reference manual to determine if there are any special
considerations for the upgrade or downgrade at https://dev.mysql.com/doc/
refman/5.7/en/mysql-cluster-upgrade-downgrade.html. (Use the version selector
at the top-right of the page to choose a different version.) This information
includes whether an online upgrade or downgrade is possible.

 2. Check the release notes. An important point to remember with MySQL NDB
Cluster upgrades is that there are two upgrades taking place: both of MySQL
Server (for the SQL nodes) and NDB Cluster. The release notes can be found
at https://dev.mysql.com/doc/ in the upper-right area of the page. The direct
links to the MySQL Server 5.7 release notes is https://dev.mysql.com/doc/
relnotes/mysql/5.7/en/ and for MySQL NDB Cluster 7.5 it is https://dev.mysql.
com/doc/relnotes/mysql-cluster/7.5/en/. For major version upgrades, it is also
recommended to check the “What Is New” sections of the manual—for example
https://dev.mysql.com/doc/refman/5.7/en/mysql-nutshell.html and https://dev.
mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new.html for MySQL NDB
Cluster 7.5.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-upgrade-downgrade.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-upgrade-downgrade.html
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/
https://dev.mysql.com/doc/relnotes/mysql-cluster/7.5/en/
https://dev.mysql.com/doc/relnotes/mysql-cluster/7.5/en/
https://dev.mysql.com/doc/refman/5.7/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new.html

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

355

 3. Test the upgrade and downgrade. This is a very important step and should be
used to ensure that you have the action plan ready both for an upgrade and
rolling back the upgrade (downgrading). Without good testing, the potential
for problems during the actual upgrade or downgrade is much more likely. The
exact testing necessary very much depends on the system, but make sure that
both functionality testing and performance testing is done. The functionality
testing must, for example, ensure that no warnings and errors occur—this
could happen because the application uses deprecated or removed features.
The performance testing must include a workload that reflects the production
workload; this will ensure that, for example, optimizer changes do not cause a
query plan that is worse for the application workload.

 4. Perform a backup for the cluster. If the cluster also includes data for other storage
engines other than NDBCluster, make sure to back those up as well.

 5. Perform the actual upgrade or downgrade. This step is different whether using
the online or offline procedure. The two subsections at the end of this section go
into the details.

 6. Verify whether everything is working as expected after the upgrade or downgrade
has been completed.

Steps 1-3 should be done in advance of the time of the upgrade or downgrade, whereas Steps 4-6
constitute the upgrade or downgrade maintenance window itself. Figure 11-1 shows an overview of the
procedure to upgrade a cluster for both the online and offline cases. The following two subsections discuss
the specific details of the online and offline procedures.

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

356

 ■ Caution while upgrading SQL nodes using distributed privileges (see Chapter 12) works, downgrades
between major versions will not. It is important to disable the distributed privileges while the downgrade is in
progress.

Figure 11-1. The overview of the online and offline procedures

http://dx.doi.org/10.1007/978-1-4842-2982-8_12

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

357

Online Upgrades and Downgrades
The steps to perform an online upgrade or downgrade are the same as performing a rolling restart with the
addition that the binaries are replaced while the node is shut down:

 1. If necessary, update the cluster configuration file (config.ini) with the new
configuration.

 2. Shut down the management nodes. If there is more than one management node,
they should all be shut down.

 3. Replace the binaries of the management nodes. How this is done is platform
dependent and depends on whether an installer (for example, Microsoft
Windows Installer .MSI file or an RPM package) or a self-contained file (.zip or
.tar download) is used. The step will be similar to the installation discussed in
Chapter 5.

 4. Start the management nodes. To read the configuration file (config.ini), use
either the --reload (recommended in most cases) or --initial command-line
options.

 5. Shut down one or more of the data nodes in such a way that there is at least one
data node left online in each node group. Like for a normal rolling restart, it is
recommended not to restart more than one data node on each host at a time.

 6. Replace the binaries of the data node(s) that were shut down in Step 5.

 7. Start the offline data node(s).

 8. Repeat Steps 5-7 until all data nodes have been restarted.

 9. Shut down one or more of the API/SQL nodes in such a way that at least one
node is online at all times.

 10. Replace the binaries of the API/SQL node(s) shut down in Step 9.

 11. For SQL nodes when downgrading, reinitialize the data directory if necessary.

 12. Start the offline API/SQL node(s).

 13. For SQL nodes when downgrading, restore a backup of all non-NDBCluster
tables if the node was reinitialized.

 14. For SQL nodes when upgrading, execute the mysql_upgrade script to upgrade
any tables requiring it.

 15. Repeat Steps 9-12 until all of the API/SQL nodes have been restarted.

 ■ Tip The apI/SQL nodes can be upgraded or downgraded at any stage through the procedure (although if
configuration changes are made that affect the apI/SQL nodes, the management nodes must be restarted first).
This is particularly useful if the apI/SQL nodes are co-hosted with other node types, as in that case the apI/SQL
can be upgraded or downgraded at the same time as the other node on the host.

During the rolling upgrade or downgrade, it is important not to use features that only some of the nodes
can handle; particularly do not use features that only the newer version nodes know about.

http://dx.doi.org/10.1007/978-1-4842-2982-8_5

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

358

The case studies section at the end of this chapter include an example of an online upgrade and
downgrade.

Offline Upgrades and Downgrades
Offline upgrades and downgrades are simpler than the online procedure. It consists of shutting down the
cluster, replacing the binaries, and performing a system restart. The steps are as follows:

 1. Shut down all API/SQL nodes.

 2. Shut down the management and SQL nodes. The best way to do this is to use the
SHUTDOWN command in the management client:

mcm> SHUTDOWN
Connected to Management Server at: 192.168.56.101:1186
4 NDB Cluster node(s) have shutdown.
Disconnecting to allow management server to shutdown.

 3. Replace all the binaries.

 4. Perform a system restart of the management and data nodes.

 5. For SQL nodes when downgrading, reinitialize the data directory if necessary.

 6. Start the API/SQL nodes.

 7. For SQL nodes when downgrading, restore a backup of all non-NDBCluster
tables if the node was reinitialized.

 8. For SQL nodes when upgrading, execute the mysql_upgrade script to upgrade
any tables requiring it.

There is an example of an offline upgrade at the end of this chapter.

Case Studies
This section goes through four examples of performing upgrades and downgrades:

•	 Online upgrade from MySQL NDB Cluster 7.4.13 to 7.5.4 using the generic binaries.
The generic binaries will in this discussion refer to the tarball or Zip file download
that does not use any kind of installer.

•	 Online upgrade from MySQL NDB Cluster 7.4.13 to 7.5.4 using RPMs.

•	 Online downgrade from MySQL NDB Cluster 7.5.4 to 7.4.13.

•	 Offline upgrade from MySQL NDB Cluster 7.4.13 to 7.5.4.

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

359

All of the examples use the same configuration as in Chapter 10; see Listing 11-1.

Listing 11-1. The Cluster Configuration Used in This Chapter

[ndb_mgmd default]
DataDir = /cluster/

[ndbd default]
NoOfReplicas = 2
DataDir = /cluster/

[ndbd]
NodeId = 1
HostName = 192.168.56.103

[ndbd]
NodeId = 2
HostName = 192.168.56.104

[ndb_mgmd]
NodeId = 49
HostName = 192.168.56.101

[ndb_mgmd]
NodeId = 50
HostName = 192.168.56.102

[mysqld]
NodeId = 51
HostName = 192.168.56.103

[mysqld]
NodeId = 52
HostName = 192.168.56.104

[api]
NodeId = 53
HostName = 192.168.56.101

[api]
NodeId = 54
HostName = 192.168.56.102

It is also assumed that all hosts have the ndb_connectstring configured in /etc/my.cnf so it is not
necessary to specify it on the command line:

[mysql_cluster]
ndb_connectstring = 192.168.56.101,192.168.56.102

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

360

 ■ Tip In a real cluster installation, it is recommended to have the NodeId option configured in my.cnf or
my.ini as well.

Online Upgrade Using Generic Binaries
In this example, the cluster starts out using 7.4.13 and will be upgraded online to 7.5.4. It is assumed 7.4.13 is
already installed and online:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.6.34 ndb-7.4.13, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.6.34 ndb-7.4.13, Nodegroup: 0)

[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.6.34 ndb-7.4.13)
id=50 @192.168.56.102 (mysql-5.6.34 ndb-7.4.13)

[mysqld(API)] 6 node(s)
id=51 @192.168.56.103 (mysql-5.6.34 ndb-7.4.13)
id=52 @192.168.56.104 (mysql-5.6.34 ndb-7.4.13)
id=53 (not connected, accepting connect from 192.168.56.101)
id=54 (not connected, accepting connect from 192.168.56.102)

The first step is to unpack the binaries for MySQL NDB Cluster 7.5.4:

shell$ cd /opt/cluster
shell$ tar -zxf mysql-cluster-gpl-7.5.4-linux-glibc2.5-x86_64.tar.gz

This should be done on all the hosts. To make the paths shorter, rename the directory:

shell$ mv mysql-cluster-gpl-7.5.4-linux-glibc2.5-x86_64 7.5.4

Before performing the actual upgrade, ensure you have a backup of all of your data.
At this stage, all that is required is a rolling restart where the restart is performed using the new binaries.

In this example, the nodes will be upgraded in the following order:

 1. Management nodes

 2. Data nodes

 3. SQL nodes

The first step of the rolling upgrade is to shut down both of the management nodes:

shell$ ndb_mgm -e "49 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 49 has shutdown.
Disconnecting to allow Management Server to shutdown

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

361

shell$ ndb_mgm -e "50 STOP"
Connected to Management Server at: 192.168.56.102:1186
Node 50 has shutdown.
Disconnecting to allow Management Server to shutdown

Wait for the two management nodes to shut down, then restart with the upgraded binary:

shell$ sudo -u mysql /opt/cluster/7.5.4/bin/ndb_mgmd \
 --config-file=/etc/config.ini --config-dir=/cluster/config \
 --ndb-nodeid=49 --reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

shell$ sudo -u mysql /opt/cluster/7.5.4/bin/ndb_mgmd \
 --config-file=/etc/config.ini --config-dir=/cluster/config \
 --ndb-nodeid=50 –reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

The --reload option is not required if there are no configuration changes, but it does not hurt either
as it is a NOOP (no operation) if the configuration has not changed. Checking the new status shows that the
management nodes are now using version 7.5.4, whereas the rest of the cluster is still using 7.4.13:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.6.34 ndb-7.4.13, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.6.34 ndb-7.4.13, Nodegroup: 0)

[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.7.16 ndb-7.5.4)
id=50 @192.168.56.102 (mysql-5.7.16 ndb-7.5.4)
...

Now restart each data node in turn. The RESTART command in the command-line client cannot be used
here as it does not replace the binary. So first stop one node:

shell$ ndb_mgm -e "1 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 1 has shutdown.

Then start it with the new binary:

shell$ sudo -u mysql /opt/cluster/7.5.4/bin/ndbmtd --ndb-nodeid=1
2016-11-26 19:19:10 [ndbd] INFO -- Angel connected to '192.168.56.101:1186'
2016-11-26 19:19:10 [ndbd] INFO -- Angel allocated nodeid: 1

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

362

Wait for the node to complete the restart, at which time the status is:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)
id=2 @192.168.56.104 (mysql-5.6.34 ndb-7.4.13, Nodegroup: 0, *)

[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.7.16 ndb-7.5.4)
id=50 @192.168.56.102 (mysql-5.7.16 ndb-7.5.4)
...

The cluster can still be used by the application despite the two data nodes using different versions, but it
is very important to ensure that no new features are used at this stage. Then repeat for the other data node:

shell$ ndb_mgm -e "2 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 2 has shutdown.

shell$ sudo -u mysql /opt/cluster/7.5.4/bin/ndbmtd --ndb-nodeid=2
2016-11-26 19:21:37 [ndbd] INFO -- Angel connected to '192.168.56.101:1186'
2016-11-26 19:21:37 [ndbd] INFO -- Angel allocated nodeid: 2

At this point, all that remains is to upgrade the two SQL nodes in turn. First:

shell$ /opt/cluster/7.4.13/bin/mysqladmin --host=127.0.0.1 shutdown

shell$ /opt/cluster/7.5.4/bin/mysqld &
[1] 9227

Make sure to execute mysql_upgrade once the SQL node is back online. This must be done for each SQL
node, and it is important to use mysql_upgrade for the new version.

shell$ /opt/cluster/7.5.4/bin/mysql_upgrade --host=127.0.0.1
Checking if update is needed.
Checking server version.
Running queries to upgrade MySQL server.
Checking system database.
mysql.columns_priv OK
mysql.db OK
...
mysql.user OK
Upgrading the sys schema.
Checking databases.
sys.sys_config OK
world.City OK
world.Country OK

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

363

world.CountryLanguage OK
Upgrade process completed successfully.
Checking if update is needed.

As everything returns OK, there is nothing more to do. The first tables checked are the system tables in
the mysql schema. These includes the privilege tables, which are the ones that most often require upgrading.
The sys schema is new in MySQL Server 5.7 and thus in MySQL NDB Cluster 7.5, so it will be installed
by mysql_upgrade. Chapter 15 includes examples of using the sys schema. Finally, all the user tables are
checked.

The last step is to upgrade the last SQL node:

shell$ /opt/cluster/7.4.13/bin/mysqladmin --host=127.0.0.1 shutdown

shell$ /opt/cluster/7.5.4/bin/mysqld &
[1] 8189

shell$ /opt/cluster/7.5.4/bin/mysql_upgrade --host=127.0.0.1
Checking if update is needed.
Checking server version.
Running queries to upgrade MySQL server.
Checking system database.
mysql.columns_priv OK
mysql.db OK
...
mysql.user OK
Found empty sys database. Installing the sys schema.
Upgrading the sys schema.
The sys schema is already up to date (version 1.5.1).
Checking databases.
sys.sys_config OK
world.City OK
world.Country OK
world.CountryLanguage OK
Upgrade process completed successfully.
Checking if update is needed.

Note here how the sys database is reported empty. When the sys schema was installed on the first SQL
node, the schema was also created on the second SQL node through the automatic schema distribution.
However, as none of the sys schema objects are NDBCluster tables, the database will be empty on the
subsequent SQL nodes to be upgraded. mysql_upgrade ensures that the sys schema still gets installed.

The final status after the upgrade is:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)

http://dx.doi.org/10.1007/978-1-4842-2982-8_15

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

364

[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.7.16 ndb-7.5.4)
id=50 @192.168.56.102 (mysql-5.7.16 ndb-7.5.4)

[mysqld(API)] 6 node(s)
id=51 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4)
id=52 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4)
id=53 (not connected, accepting connect from 192.168.56.101)
id=54 (not connected, accepting connect from 192.168.56.102)

Upgrade from 7.4 to 7.5 Using RPM
In MySQL NDB Cluster 7.4 and earlier, one difficulty of performing upgrades and downgrades on systems
using RPMs to install MySQL NDB Cluster is that all of the binaries used for the cluster nodes are in the same
RPM. The server RPM includes mysqld, ndb_mgmd, ndbd, and ndbmtd. This makes it harder to upgrade only
some of the nodes in the case where one host has several nodes installed. This has changed for version 7.5,
where each node type has its own RPM package. The RPMs available in the 7.4.13 RPM bundle are:

shell$ ls -1
MySQL-Cluster-client-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-devel-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-embedded-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-server-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-shared-compat-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-shared-gpl-7.4.13-1.el7.x86_64.rpm
MySQL-Cluster-test-gpl-7.4.13-1.el7.x86_64.rpm

Compare this with the RPMs available in the 7.5.4 RPM bundle:

shell$ ls -1
mysql-cluster-community-auto-installer-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-client-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-common-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-data-node-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-devel-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-embedded-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-embedded-compat-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-embedded-devel-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-java-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-libs-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-libs-compat-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-management-server-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-memcached-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-ndbclient-devel-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-server-7.5.4-1.el7.x86_64.rpm
mysql-cluster-community-test-7.5.4-1.el7.x86_64.rpm

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

365

This example starts out with the following RPMs installed:

shell$ rpm -qa | grep MySQL-Cluster
MySQL-Cluster-client-gpl-7.4.13-1.el7.x86_64
MySQL-Cluster-shared-compat-gpl-7.4.13-1.el7.x86_64
MySQL-Cluster-server-gpl-7.4.13-1.el7.x86_64
MySQL-Cluster-shared-gpl-7.4.13-1.el7.x86_64
MySQL-Cluster-devel-gpl-7.4.13-1.el7.x86_64

If a straightforward attempt to upgrade is employed, the upgrade will fail due to the changes to the RPMs:

shell$ yum upgrade \
 mysql-cluster-community-auto-installer-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-client-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-common-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-data-node-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-devel-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-java-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-libs-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-libs-compat-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-management-server-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-ndbclient-devel-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-server-7.5.4-1.el7.x86_64.rpm
Loaded plugins: langpacks, ulninfo
Examining mysql-cluster-community-auto-installer-7.5.4-1.el7.x86_64.rpm: mysql-cluster-
community-auto-installer-7.5.4-1.el7.x86_64
Package mysql-cluster-community-auto-installer not installed, cannot update it. Run yum
install to install it instead.
...
Package mysql-cluster-community-server not installed, cannot update it. Run yum install to
install it instead.
No packages marked for update

Since MySQL NDB Cluster 7.4.13 is already installed, it will not work either to follow the suggestion
in the error message to install the RPMs instead of performing an upgrade. Instead it is necessary to first
uninstall the old RPMs, which requires the --nodeps option for the rpm command:

shell$ rpm -e --nodeps \
 MySQL-Cluster-client-gpl-7.4.13-1.el7.x86_64 \
 MySQL-Cluster-shared-compat-gpl-7.4.13-1.el7.x86_64 \
 MySQL-Cluster-server-gpl-7.4.13-1.el7.x86_64 \
 MySQL-Cluster-shared-gpl-7.4.13-1.el7.x86_64 \
 MySQL-Cluster-devel-gpl-7.4.13-1.el7.x86_64

 ■ Note Uninstalling the server rpM renames the /etc/my.cnf file to /etc/my.cnf.rpmsave. If you reinstall the
server rpM, make sure to restore the old configuration.

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

366

Then it is possible to install the new RPMs required for the host. For example, for a data node:

shell$ yum localinstall \
 mysql-cluster-community-data-node-7.5.4-1.el7.x86_64.rpm \
 mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64.rpm
Loaded plugins: langpacks, ulninfo
Examining mysql-cluster-community-data-node-7.5.4-1.el7.x86_64.rpm: mysql-cluster-community-
data-node-7.5.4-1.el7.x86_64
Marking mysql-cluster-community-data-node-7.5.4-1.el7.x86_64.rpm to be installed
Examining mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64.rpm: mysql-cluster-community-
ndbclient-7.5.4-1.el7.x86_64
Marking mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64.rpm to be installed
...
 Installing : mysql-cluster-community-data-node-7.5.4-1.el7.x86_64 1/2
 Installing : mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64 2/2
 Verifying : mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64 1/2
 Verifying : mysql-cluster-community-data-node-7.5.4-1.el7.x86_64 2/2

Installed:
 mysql-cluster-community-data-node.x86_64 0:7.5.4-1.el7
 mysql-cluster-community-ndbclient.x86_64 0:7.5.4-1.el7

Complete!

An alternative is to install using the rpm command directly. This has the advantage that it is possible
to use the --noscripts option so the RPM scriptlets are not executed. Avoiding executing the scriptlets
can particularly be an advantage with version 7.4 and earlier for SQL nodes installed on the same host as a
management or data node as it avoids automatic starts of the SQL node.

The rest of the procedure for upgrading using RPMs is the same as for the generic binaries in the
previous case study.

One of the issues that can occur with RPMs is that the new version of MySQL NDB Cluster depends on
libraries other than the old version. In that case, attempting to install the new RPM packages might produce
errors like the following:

shell$ yum remove mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64.rpm
Loaded plugins: langpacks, ulninfo
No Match for argument: mysql-cluster-community-ndbclient-7.5.4-1.el7.x86_64.rpm
No Packages marked for removal
[root@ol7 rpm]# yum localinstall mysql-cluster-community-server-7.5.4-1.el7.x86_64.rpm
Loaded plugins: langpacks, ulninfo
Examining mysql-cluster-community-server-7.5.4-1.el7.x86_64.rpm: mysql-cluster-community-
server-7.5.4-1.el7.x86_64
Marking mysql-cluster-community-server-7.5.4-1.el7.x86_64.rpm to be installed
Resolving Dependencies
--> Running transaction check
---> Package mysql-cluster-community-server.x86_64 0:7.5.4-1.el7 will be installed
--> Processing Dependency: mysql-cluster-community-common(x86-64) = 7.5.4-1.el7 for package:
mysql-cluster-community-server-7.5.4-1.el7.x86_64
--> Processing Dependency: mysql-cluster-community-client(x86-64) >= 5.7.9 for package:
mysql-cluster-community-server-7.5.4-1.el7.x86_64
--> Finished Dependency Resolution

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

367

Error: Package: mysql-cluster-community-server-7.5.4-1.el7.x86_64 (/mysql-cluster-community-
server-7.5.4-1.el7.x86_64)
 Requires: mysql-cluster-community-client(x86-64) >= 5.7.9
Error: Package: mysql-cluster-community-server-7.5.4-1.el7.x86_64 (/mysql-cluster-community-
server-7.5.4-1.el7.x86_64)
 Requires: mysql-cluster-community-common(x86-64) = 7.5.4-1.el7
 You could try using --skip-broken to work around the problem

The same issue is reported slightly differently if the rpm command is used instead of yum:

shell$ rpm -ivh mysql-cluster-community-server-7.5.4-1.el7.x86_64.rpm
error: Failed dependencies:
 mysql-cluster-community-client(x86-64) >= 5.7.9 is needed by mysql-cluster-

community-server-7.5.4-1.el7.x86_64
 mysql-cluster-community-common(x86-64) = 7.5.4-1.el7 is needed by mysql-cluster-

community-server-7.5.4-1.el7.x86_64

In this case, it is because the MySQL NDB Cluster server RPM has been split into multiple RPMs to
make it possible to choose to a greater degree which binaries to install. In other cases, it may be that a new
library or a newer version of an existing library is required. In all cases, read the error message to see which
dependency is not fulfilled. Then include the package that provides the missing dependency in the yum or
rpm command.

Online Downgrade
The downgrade that will be performed in this example is the opposite of the upgrade perform in the first
case study. That is, the cluster will start out using version 7.5.4 and be downgraded to version 7.4.13:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4, Nodegroup: 0)

[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.7.16 ndb-7.5.4)
id=50 @192.168.56.102 (mysql-5.7.16 ndb-7.5.4)

[mysqld(API)] 6 node(s)
id=51 @192.168.56.103 (mysql-5.7.16 ndb-7.5.4)
id=52 @192.168.56.104 (mysql-5.7.16 ndb-7.5.4)
id=53 (not connected, accepting connect from 192.168.56.101)
id=54 (not connected, accepting connect from 192.168.56.102)
id=55 (not connected, accepting connect from any host)
id=56 (not connected, accepting connect from any host)

It is assumed that the 7.4.13 binaries are already ready on all of the hosts.
As usual, it is best practice to start out creating a backup. As it is more likely that complications will

be encountered during a downgrade than an upgrade, it is particularly important to ensure backups are

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

368

available. Since the SQL nodes will be reinitialized as part of the downgrade, it is essential to have a backup
of all of the non-NDBCluster data. It is also worth having a list of CREATE DATABASE statements for the
schemas containing NDBCluster tables. This list can be created using the query:

mysql> SELECT DISTINCT
 CONCAT('CREATE SCHEMA IF NOT EXISTS `', SCHEMA_NAME, '`;')
 FROM information_schema.SCHEMATA
 INNER JOIN information_schema.TABLES ON
 TABLES.TABLE_SCHEMA = SCHEMATA.SCHEMA_NAME
 WHERE TABLES.ENGINE = 'ndbcluster'
 AND SCHEMATA.SCHEMA_NAME <> 'mysql';
+--+
| CONCAT('CREATE SCHEMA IF NOT EXISTS `', SCHEMA_NAME, '`;') |
+--+
| CREATE SCHEMA IF NOT EXISTS `world`; |
+--+
1 row in set (0.02 sec)

With the backups in place, the downgrade of the management nodes and data nodes follow the same
steps as for an upgrade. First shut down both management nodes, then restart them using the 7.4.13
binaries:

shell$ ndb_mgm -e "49 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 49 has shutdown.
Disconnecting to allow Management Server to shutdown

shell$ ndb_mgm -e "50 STOP"
Connected to Management Server at: 192.168.56.102:1186
Node 50 has shutdown.
Disconnecting to allow Management Server to shutdown

On the host with the management node with NodeId = 49:

shell$ sudo -u mysql /opt/cluster/7.4.13/bin/ndb_mgmd \
 --config-file=/etc/config.ini --config-dir=/cluster/config \
 --ndb-nodeid=49 –reload

And similar for NodeId = 50:

shell$ sudo -u mysql /opt/cluster/7.4.13/bin/ndb_mgmd \
 --config-file=/etc/config.ini --config-dir=/cluster/config \
 --ndb-nodeid=50 –reload

With the management nodes downgraded, move on to the data nodes. First downgrade the data node
with NodeId = 1:

shell$ ndb_mgm -e "1 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 1 has shutdown.

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

369

shell$ sudo -u mysql /opt/cluster/7.4.13/bin/ndbmtd --ndb-nodeid=1
2016-12-17 18:21:32 [ndbd] INFO -- Angel connected to '192.168.56.101:1186'
2016-12-17 18:21:32 [ndbd] INFO -- Angel allocated nodeid: 1

And for NodeId = 2:

shell$ ndb_mgm -e "2 STOP"
Connected to Management Server at: 192.168.56.101:1186
Node 2 has shutdown.

shell$ sudo -u mysql /opt/cluster/7.4.13/bin/ndbmtd --ndb-nodeid=2
2016-12-17 18:55:42 [ndbd] INFO -- Angel connected to '192.168.56.101:1186'
2016-12-17 18:55:42 [ndbd] INFO -- Angel allocated nodeid: 2

The final part of the downgrade is the SQL nodes, which are also the most difficult. MySQL NDB
Cluster 7.5.4 will include some InnoDB tables, as MySQL Server 5.7 (which is used for NDB Cluster 7.5)
requires those. InnoDB between MySQL Server 5.7 and MySQL Server 5.6 (used for NDB Cluster 7.4) are not
compatible. While MySQL knows how to handle this for an upgrade, there is no support for a downgrade of
InnoDB. For this reason, the SQL nodes must be reinitialized.

To downgrade the first SQL node, first shut it down:

shell$ /opt/cluster/7.5.4/bin/mysqladmin --host=127.0.0.1 shutdown

To reinitialize the SQL node, first delete all the content in the data directory as well as any InnoDB (or
files for other storage engines) located outside the data directory. For example, if datadir = /var/lib/
mysql and all files are stored inside this directory, the reinitialization can be done as follows:

shell$ rm -rf /var/lib/mysql
shell$ mkdir /var/lib/mysql
shell$ chown mysql:mysql /var/lib/mysql
shell$ /opt/cluster/7.4.13/scripts/mysql_install_db \
 --basedir=/opt/cluster/7.4.13 --datadir=/var/lib/mysql \
 --user=mysql
Installing MySQL system tables...
...

It is then possible to start the node again:

shell$ /opt/cluster/7.4.13/bin/mysqld &

Restore the non-NDBCluster data for the SQL node—including setting up the privileges again. Finally
repeat for the other SQL node.

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

370

Offline Upgrade
The fourth and last example will be an offline upgrade. Like the previous upgrade examples, it will be from
version 7.4.13 to 7.5.4. At the start of the example, MySQL NDB Cluster 7.4.13 is installed and online:

shell$ ndb_mgm -e "SHOW"
Connected to Management Server at: 192.168.56.101:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @192.168.56.103 (mysql-5.6.34 ndb-7.4.13, Nodegroup: 0, *)
id=2 @192.168.56.104 (mysql-5.6.34 ndb-7.4.13, Nodegroup: 0)

[ndb_mgmd(MGM)] 2 node(s)
id=49 @192.168.56.101 (mysql-5.6.34 ndb-7.4.13)
id=50 @192.168.56.102 (mysql-5.6.34 ndb-7.4.13)

[mysqld(API)] 6 node(s)
id=51 @192.168.56.103 (mysql-5.6.34 ndb-7.4.13)
id=52 @192.168.56.104 (mysql-5.6.34 ndb-7.4.13)
id=53 (not connected, accepting connect from 192.168.56.101)
id=54 (not connected, accepting connect from 192.168.56.102)

As usual start out creating a backup. Then as the first step of the shutdown, stop the SQL nodes. The
exact method of shutting down the SQL nodes depends on the platform and which binaries are used. Once
the SQL nodes are offline, shut down the management and data nodes using the SHUTDOWN command in the
management client:

shell$ ndb_mgm -e "SHUTDOWN"
Connected to Management Server at: 192.168.56.101:1186
4 NDB Cluster node(s) have shutdown.
Disconnecting to allow management server to shutdown.

Wait for the shutdown to complete, then replace all the binaries and restart the cluster using the
upgraded binaries. First start the management nodes:

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=49 –reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

shell$ sudo -u mysql ndb_mgmd --config-file=/etc/config.ini \
 --config-dir=/cluster/config --ndb-nodeid=50 --reload
MySQL Cluster Management Server mysql-5.7.16 ndb-7.5.4

ChapTer 11 ■ UpgraDeS aND DowNgraDeS

371

The next step is to start the data nodes. Do this with both data nodes in parallel to reduce the time the
restart takes:

shell$ sudo -u mysql ndbmtd --ndb-nodeid=1
2016-12-17 20:13:25 [ndbd] INFO -- Angel connected to '192.168.56.101:1186'
2016-12-17 20:13:25 [ndbd] INFO -- Angel allocated nodeid: 1

And for the other data node:

shell$ sudo -u mysql ndbmtd --ndb-nodeid=2
2016-12-17 20:13:35 [ndbd] INFO -- Angel connected to '192.168.56.101:1186'
2016-12-17 20:13:35 [ndbd] INFO -- Angel allocated nodeid: 2

When the data nodes have completed their restart, start the SQL nodes one by one as required by your
platform. After the start of each SQL node, make sure to execute mysql_upgrade to check and upgrade the
tables:

shell$ mysql_upgrade --host=127.0.0.1
Checking if update is needed.
Checking server version.
Running queries to upgrade MySQL server.
...
Upgrade process completed successfully.
Checking if update is needed.

Summary
Upgrades and downgrades are at the best of times non-trivial undertakings and if a change of major version
is also included, there can be a significant amount of work involved. In some environments, an upgrade is
prepared over a period of several months. MySQL NDB Cluster provides some relief as the upgrade—and a
possible downgrade—can be performed online.

This chapter discussed the upgrade and downgrade steps for the online and offline procedures.
Additionally, four case studies of various upgrade and downgrade scenarios were provided.

The next chapter discusses security considerations in MySQL NDB Cluster.

373© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_12

CHAPTER 12

Security Considerations

Back in the early days of the Internet, not a lot of thought was given to the security of the software installed
around the world. Network connections were not encrypted, so the network traffic, including passwords,
could be seen in plain text (remember telnet, anyone?). Even today, it is common for software or hardware
devices to be delivered with standard default passwords or no password on the administration account. That
level of security does not meet today’s standards. This chapter discusses security from a MySQL NDB Cluster
perspective. Several of the issues and solutions are by no means unique to MySQL NDB Cluster; others are
very specific.

Some of the topics discussed equally belong in Chapters 3, 4, and 5 (the phases where the cluster is
initially planned and set up). However, it would be wrong to think of security—including the security of the
network configuration—as a one-and-done task. It should be part of the initial design and the daily tasks to
evaluate and maintain the security of the cluster.

 ■ Note This chapter focuses on the software side. The physical security of the hardware is also important, as
well as the risk posed by disgruntled or dishonest employees. It does very little to secure your servers and leave
your server room door unlocked for anyone to walk in. Likewise, you do not want an employee who has access
to your data as part of their daily work to sell the data to the highest bidder.

Network Security
The various nodes in a cluster usually communicate with each other through a TCP/IP network. As low
latencies and high throughput are of great importance to NDB Cluster, some compromises have been made
that require careful consideration when setting up the network, preferably using a dedicated network for
communication between the cluster nodes. To add minimal overhead on network traffic, the internode
communication is performed in clear text (it is non-encrypted). Additionally, there is no authentication
when a node joins the cluster. In short, this means that a client that is able to connect to the data nodes will
also be able to retrieve the data stored in the data nodes. Thus, it is paramount to have security in mind
when configuring the network.

To illustrate how the data is visible in clear text in the network traffic, the data passing through the
network was captured while inserting a row of data:

mysql> INSERT INTO employee (EmployeeID, FirstName, Surname, IsManager)
 VALUES (101, 'Jane', 'Doe', 'Yes');
Query OK, 1 row affected (0.00 sec)

https://doi.org/10.1007/978-1-4842-2982-8_12
http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_4
http://dx.doi.org/10.1007/978-1-4842-2982-8_5

ChapTer 12 ■ SeCurITy ConSIderaTIonS

374

The resulting file with the network capture can retrieve the data (only a single network packet displayed):

shell$ xxd /tmp/insert.dump
0000000: 2420 0040 3c01 1008 f702 f704 7c08 6d00 $.@<.......|.m.
0000010: 0400 0000 0000 0000 5ba1 9712 00c4 50a8 [.....P.
0000020: 0200 f500 1400 0100 0100 0000 e314 0000
0000030: 0033 8000 0000 0000 0000 0000 3300 0880 .3..........3...
0000040: 4400 0000 0816 0000 0000 0000 0000 0000 D...............
0000050: 0100 0000 0900 0000 6500 0000 0400 0000 e.......
0000060: 6500 0000 0500 0100 044a 616e 6500 0000 e........Jane...
0000070: 0400 0200 0344 6f65 0100 0300 0200 0000 Doe........

The last two lines are those of most interest for this example. Notice how Jane Doe can be read from
the ASCII output on the right side. The other values in the row are also visible, but not quite as easy to see
for a human. For example, the EmployeeId is 101, which in hexadecimal is 65, which is the first byte in the
second-to-last line. So, while the packet format is efficient (and relatively easy to debug), the task from a
security point of view is to prevent unauthorized users from listening in on the traffic.

The simplest and most effective way to protect the cluster from unauthorized access is to have two
network levels: an internal one between the MySQL NDB Cluster nodes and an external one to access the
SQL nodes or the application. This has the additional advantage that the internal network can be dedicated
to the communication between the cluster nodes, which can improve the stability. Remember that MySQL
NDB Cluster is a fail-early system, so network congestion can be interpreted as a network failure, making the
cluster shut down one or more nodes.

Figure 12-1 illustrates how a cluster with two SQL nodes, two data nodes, and two management nodes
is connected through an internal network, and the SQL nodes can be reached from the outside through
the firewall. There are other options for setting up the network, but in order to ensure a secure setup, they
should all use the same principle of having the insecure communication completely physically separate
from the network that is external to the cluster.

 ■ Caution If the SQL nodes are installed on the same host as management nodes or data nodes, make sure
that connections are only allowed to the SQL nodes.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

375

Updates
An important part of keeping the cluster secure is to keep it updated. This does not only apply to MySQL
NDB Cluster, but also to the operating system, the firmware of the network devices, etc. The whole stack
should be kept up to date to ensure that not only are all of the user-level bugs fixed, but also any security
bugs are fixed.

Different software vendors treat security bugs in different ways. This means you need to verify the policy
of each vendor related to your cluster installation, including the infrastructure part. It is recommended that
you document the policies and keep them in a central place together with all relevant references, so it is easy
to look up the details. In some cases, there may also be scheduled releases of information about security bug
fixes that should be incorporated into the maintenance schedule of the cluster.

Figure 12-1. Example of a secure network setup for a cluster

ChapTer 12 ■ SeCurITy ConSIderaTIonS

376

Oracle Corporation, the vendor for MySQL NDB Cluster, has a policy of making quarterly updates for
the security fixes made in Oracle products. These updates are called Critical Patch Updates (CPU), and they
are released in January, April, July, and October on the Tuesday closest to the 17th of the month. The details
about the release schedule and references to the individual releases can be found at https://www.oracle.
com/technetwork/topics/security/alerts-086861.html.

 ■ Caution It can sometimes be acceptable to skip updates for normal bug fixes if the bug does not affect the
application or if there is a workaround. however, be careful ignoring patches for security bugs. The information
available to determine whether a system is affected by a given security bug may be minimal. So, in general, the
safest approach is always to ensure all security patches are applied.

Accounts and Privileges in the SQL Nodes
The main ongoing security-related work other than keeping the system up to date with critical bug fixes is
the user management. The SQL nodes come with the same built-in privilege system as MySQL Server with
the addition that there is support for distributing the privileges. That is, storing them in NDBCluster tables
instead of the usual MyISAM tables. Using distributed privileges means all SQL nodes have the same users
and privileges defined.

 ■ Note MySQL Server 8.0 changes the privilege tables to use the InnoDB storage engine for local stored
privileges. however, at the time of writing there is no MySQL ndB Cluster version available—even as a
preview—that is affected by that change.

There are several aspects for the database developer and administrator to keep in mind. Some of
these are:

•	 Ensure users are given the minimal privileges required.

•	 Remove privileges that are no longer needed.

•	 Remove users no longer in use.

•	 Keep the privileges in sync between the SQL nodes.

•	 Document and review the privileges on a regular basis.

The remainder of this section goes through these topics, except for distributed privileges, which is a
large topic on its own and is discussed in its own section later in the chapter.

 ■ Note It is important that the database developer and administrator work together to ensure that the users
and their privileges are set up correctly.

https://www.oracle.com/technetwork/topics/security/alerts-086861.html
https://www.oracle.com/technetwork/topics/security/alerts-086861.html

ChapTer 12 ■ SeCurITy ConSIderaTIonS

377

Accounts and Password Management
The job of managing users may seem trivial. After all, it is easy to create new users when they are required.
However, there are a couple of pitfalls to be aware of with respect to keeping the system secure. Creating and
maintaining users in a secure way is covered in more detail in the following discussion.

 ■ Note There is no difference between managing users, passwords, and privileges for an SQL node in MySQL
ndB Cluster and in MySQL Server. however, the topic is very important so an overview is provided. you can study
this topic in more detail in the MySQL reference Manual: https://dev.mysql.com/doc/refman/5.7/en/privilege-
system.html and https://dev.mysql.com/doc/refman/5.7/en/account-management-sql.html.

MySQL supports several statements to manage users, passwords, and privileges as well as statements to
view user and privilege information. The statements available as of MySQL NDB Cluster 7.5 are summarized
in Table 12-1. If the statement is not supported in all versions of MySQL NDB Cluster 7.2 or later, the Versions
column displays which versions support the statement.

Table 12-1. Statements to Manage Users, Passwords, and Privileges

Statement Versions Description

ALTER USER 7.3+ Modifies an existing user account. In versions 7.3 and 7.4, it is
limited to expiring the password for the user. In version 7.5, it
supports all options that can be set by CREATE USER.

CREATE USER Creates a new user account. In version 7.4 and earlier, this is limited
to creating the user and specifying the password and authentication
plugin. In MySQL NDB Cluster 7.5, all account properties can be set.

DROP USER Deletes an existing user.

GRANT Grants privileges to a user. It can also be used to create a new user,
change the password, set authentication options, and set resource
options. In version 7.5 it is recommended only to use it for granting
privileges. In version 7.4 and earlier, GRANT is required for most of
these tasks. It is recommended never to use GRANT to create users;
use CREATE USER instead.

RENAME USER Renames a user.

REVOKE Revokes privileges from a user.

SET PASSWORD Changes the password for a user. In version 7.5, the new password
is expected in plain text, whereas in version 7.4 and earlier a hashed
password is expected.

SHOW CREATE USER 7.5+ Displays the details of a given user account, including the password
hash, authentication options, etc.

SHOW GRANTS Displays the privileges granted to a user account. In version 7.4
and earlier, it also includes the information that SHOW CREATE USER
returns in version 7.5.

https://dev.mysql.com/doc/refman/5.7/en/privilege-system.html
https://dev.mysql.com/doc/refman/5.7/en/privilege-system.html
https://dev.mysql.com/doc/refman/5.7/en/account-management-sql.html

ChapTer 12 ■ SeCurITy ConSIderaTIonS

378

A new user can be created using the CREATE USER or GRANT statement. In MySQL NDB Cluster 7.5, it is
preferable to use CREATE USER as it has the full functionality required to set up the user and specify not only
the password, but also SSL/TLS requirements, resource limitations, passwords, and account lock options.
The ALTER USER statement can be used to modify an existing user account. The features supported by
CREATE USER and ALTER USER in older MySQL NDB Cluster versions are considerably more limited, and it is
necessary to use the GRANT statement for anything other than creating the user, setting the initial password,
or expiring a password for an existing user.

Listing 12-1 provides an example of a series of account management statements in MySQL NDB Cluster
7.5 for a user through the user’s lifetime. The steps will typically not be executed all at once, but rather over
a period of time. The statements are a good starting point for discussing some best practices regarding user
accounts and how they are set up. The MySQL privilege system is discussed after the example.

Listing 12-1. Examples of Managing a User Account

mysql> CREATE USER 'appadmin'@'192.168.56.101' IDENTIFIED WITH sha256_password BY
'cxon9Fr*egAj$2P!' REQUIRE SSL PASSWORD EXPIRE;
Query OK, 0 rows affected (0.37 sec)

mysql> GRANT SELECT ON appdb.* TO 'appadmin'@'192.168.56.101';
Query OK, 0 rows affected (0.14 sec)

mysql> GRANT ALL PRIVILEGES ON 'appdb_common'.* TO 'appadmin'@'192.168.56.101';
Query OK, 0 rows affected (0.19 sec)

mysql> SHOW GRANTS FOR 'appadmin'@'192.168.56.101';
+---+
| Grants for appadmin@192.168.56.101 |
+---+
| GRANT USAGE ON *.* TO 'appadmin'@'192.168.56.101' |
| GRANT SELECT ON 'appdb'.* TO 'appadmin'@'192.168.56.101' |
| GRANT ALL PRIVILEGES ON 'appdb_common'.* TO 'appadmin'@'192.168.56.101' |
+---+
3 rows in set (0.01 sec)

mysql> SHOW CREATE USER 'appadmin'@'192.168.56.101'\G
*************************** 1. row ***************************
CREATE USER for appadmin@192.168.56.101: CREATE USER 'appadmin'@'192.168.56.101' IDENTIFIED
WITH 'sha256_password' AS '5L<aLh)CU/LO:fx$ue6Lyk8tkqljAnJ..rjQrMHzWLBHjIrPxUVpgWQcGp0'
REQUIRE SSL PASSWORD EXPIRE ACCOUNT UNLOCK
1 row in set (0.01 sec)

mysql> REVOKE SELECT ON 'appdb_common'.* FROM 'appadmin'@'192.168.56.101';
Query OK, 0 rows affected (0.11 sec)

mysql> SET PASSWORD FOR 'appadmin'@'192.168.56.101' = 'rabFun[Fryn2#8D%s';
Query OK, 0 rows affected (0.26 sec)

mysql> ALTER USER 'appadmin'@'192.168.56.101' IDENTIFIED WITH sha256_password BY
'rabFun[Fryn2#8D%s' PASSWORD EXPIRE;
Query OK, 0 rows affected (0.20 sec)

ChapTer 12 ■ SeCurITy ConSIderaTIonS

379

mysql> ALTER USER 'appadmin'@'192.168.56.101' ACCOUNT LOCK;
Query OK, 0 rows affected (0.18 sec)

mysql> DROP USER 'appadmin'@'192.168.56.101';
Query OK, 0 rows affected (0.13 sec)

Note that when the user is created, there are several parts to the statement:

•	 The account name: The account name consists of a username and a hostname. User
and hostnames are discussed in more detail in “The Access Control and Privilege
System” section.

•	 The authentication plugin: MySQL supports several authentication plugins. The
IDENTIFIED WITH clause specifies which one.

•	 The password: This is also known as the authentication string. Choose a strong
password that cannot easily be guessed! The password is specified after the
IDENTIFIED BY clause; when the authentication plugin is also specified, those two
are combined as IDENTIFIED WITH <plugin name> BY <password>. The password
must be quoted.

•	 SSL/TLS options: It is recommended to ensure all communication between the
SQL node and clients/applications is encrypted. MySQL supports several options to
specify the requirements.

•	 Initial password is expired: For new accounts that are meant to be used by
interactive users—like a database administrator—it is recommended to expire the
password when the account is created.

For the authentication plugin, the sha256_password plugin provides the most secure hash supported
and this the recommended unless an external authentication is used. External authentication against for
example LDAP servers is beyond the scope of this book. If this topic is of interest, https://dev.mysql.com/
doc/refman/5.7/en/pluggable-authentication.html and the references therein provide a good starting point.

The simplest SSL/TLS option is REQUIRE SSL and it simply means that the connection must be
encrypted, but there are no limitations on the encryption method itself or on which certificate is used by the
client. There are several additional clauses that can be used to restrict the cipher, issuer, and subject of the
SSL/TLS certificate used by the client for the connection.

If MySQL NDB Cluster 7.5 is compiled to use OpenSSL (this is the case for the commercial builds—
MySQL Cluster Carrier Grade Edition—but not the Community Edition), MySQL is automatically set up to
have self-signed certificates created when initializing the data directory of the SQL node. For extra security,
a certificate signed by a trusted authority can be used. This is discussed in more detail in the next section,
including an example of generating self-signed certificates using the mysql_ssl_rsa_setup utility that is
included with MySQL NDB Cluster 7.5 and later.

When a user is created with an expired password, it forces the user to change the password the first
time the account is used. Listing 12-2 illustrates how the user cannot perform any other action until the
SET PASSWORD statement has been executed. Another observation from Listing 12-2 is that the connection
is created with the option --ssl-mode=REQUIRE. This is the client-side equivalent to the REQUIRE SSL option
that the account was created with. Setting the SSL mode to REQUIRE ensures that the connection will be
made only if the SQL node can provide an encrypted connection.

https://dev.mysql.com/doc/refman/5.7/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/5.7/en/pluggable-authentication.html

ChapTer 12 ■ SeCurITy ConSIderaTIonS

380

Listing 12-2. Connecting the First Time After a User Is Created with PASSWORD EXPIRE

shell$ mysql --user=appadmin –password --ssl-mode=REQUIRE
Enter password:
...
mysql> SHOW SCHEMAS;
ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing
this statement.
mysql> SET PASSWORD = 'Fid.Gourt^Ob9*H3b';
Query OK, 0 rows affected (0.16 sec)

mysql> SHOW SCHEMAS;
+--------------------+
| Database |
+--------------------+
| information_schema |
| appdb |
| appdb_common |
+--------------------+
3 rows in set (0.01 sec)

Continuing with the example in Listing 12-1, it is important to provide the minimal privileges required
for the account. The ALL PRIVILEGES privilege can be used to provide all available privileges (except the
privilege to use the GRANT statement) at the scope specified, but make sure to use it sparingly. Be aware that
granting all privileges at the global (*.*) level will also allow changes to the data on the mysql schema (or
any other schema).

The currently assigned privileges can be checked with the SHOW GRANTS statement or by querying the
privilege tables in the mysql schema directly. If an account is found to have privileges that are no longer
required, they can be revoked using the REVOKE statement. Likewise, it is possible to check the account
settings using the SHOW CREATE USER statement.

It is possible for the database administrator to force a change of the password. This can be done by
using the SET PASSWORD statement and adding the account to change it for. Changing the password can be
combined with expiring the password by using ALTER USER like it was done when the password was first
set. ALTER USER in MySQL NDB Cluster 7.5 is a very powerful statement to administrate users, as it can set
or change all of the options that are also available for CREATE USER. Options not specified in an ALTER USER
statement are left at their existing values.

A useful feature that is new in version 7.5 is the ability to lock an account. This can be used for several
purposes, such as temporarily preventing an account from connecting or to create an account dedicated as
the definer for stored programs and views. An example of the latter is the mysql.sys@localhost user, which
is used for the sys schema. In the example, the ALTER USER 'appadmin'@'192.168.56.101' ACCOUNT LOCK
statement is used to lock the 'appadmin'@'192.168.56.101' account while it is for example determined
whether it is still needed.

Finally, but not least important, it is best practice to remove users who are no longer needed. Unused
accounts still provide access to the system. If it is not possible to determine whether an account is not
required or it is merely a rarely used account, one option is initially to lock it.

Regarding this last point about removing accounts that are no longer required as well as revoking
privileges that are not necessary, it is also important to document and review accounts and privileges as
well as other aspects of security. By regularly auditing the accounts and their privileges, you can be sure that
accounts and privileges that are no longer required are removed. Documenting the outcome of the audit will
help during the next audit as well.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

381

The example of account management in Listing 12-1 uses several features that are only available
in version 7.5. Over the last few MySQL Server versions, Oracle Corporation committed much work in
improving the default security of MySQL and in providing better tools for managing security related features.
This is particularly evident in account management when upgrading from MySQL Server 5.6 to 5.7 or MySQL
NDB Cluster 7.4 to 7.5. This is another example of how keeping the system up to date can provide better
security.

SSL/TLS Certificates
In order to enable encrypted connections to access the SQL nodes, it is necessary to use a protocol that
handles data encryption and decryption. The technology for secure communication between connections
in MySQL is called TLS (Transport Layer Security), although the term SSL (Secure Socket Layer) is used for
the MySQL options by tradition.

To enable encryption, it is required to have SSL/TLS certificates available. One option is to purchase
certificates signed by a trusted third-party certification authority (CA). A trusted third-party CA is useful
when a server must prove its identity to an unknown user; for example, an Internet bank where the customer
must be sure that the web site belongs to the bank where the customer has her account.

When an application connects to an SQL node, it is often sufficient to use a self-signed certificate or a
certificate signed by the company’s own certification authority. The steps involved in creating a
self-signed certificate can seem a little daunting at first; however, MySQL NDB Cluster 7.5 and later
includes the command line utility mysql_ssl_rsa_setup, which automates the entire process. The drawback
is that the certificates are generic and do not include anything that can validate that the application is
connecting to the correct SQL node. Listing 12-3 shows an example of using the mysql_ssl_rsa_setup utility
to generate the files required to enable SSL/TLS encryption in MySQL.

Listing 12-3. Creating the SSL/TLS Certificates for the SQL Nodes

shell$ mysql_ssl_rsa_setup --datadir=/var/lib/mysql --uid=mysql
Generating a 2048 bit RSA private key
...............+++
.+++
writing new private key to 'ca-key.pem'

Generating a 2048 bit RSA private key
...........................+++
.................................+++
writing new private key to 'server-key.pem'

Generating a 2048 bit RSA private key
...+++
...............+++
writing new private key to 'client-key.pem'

 ■ Note The mysql_ssl_rsa_setup command first creates a private Ca certificate. The server certificate
generated by mysql_ssl_rsa_setup is then self-signed using that private Ca certificate.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

382

In MySQL NDB Cluster 7.5, the SSL/TLS files are automatically discovered by the mysqld process
provided they are located in the data directory and the filenames are the same as when created by the mysql_
ssl_rsa_setup utility. The generated certificates are not specific to MySQL NDB Cluster 7.5 and can thus
also be used with older versions of MySQL; however, in that case, the SQL node must be explicitly configured
using the options ssl_ca, ssl_cert, and ssl_key. An example of the configuration found in my.cnf is:

[mysqld]
ssl_ca = /var/lib/mysql/ca-cert.pem
ssl_cert = /var/lib/mysql/server-cert.pem
ssl_key = /var/lib/mysql/server-key.pem

This setup will support encryption of all communication between the client/application and the SQL
node; however, two issues still exist—knowing who really connects and man in the middle attacks.

The first issue is that the SQL node still only relies on the user knowing the correct username and
password combination in order to connect from a given host. To solve this issue, it is necessary for the client/
application to use its own certificates, which are checked by the SQL node. Recall that an account can be
created with restrictions on the SSL/TLS certificates that can be used with the connection.

The second issue is that the client/application does not know whether it really connected to the SQL
node specified by the hostname and port when the connection was created. For example, it is possible to
have a “man in the middle” situation, whereby a process intercepts the connection and decrypts all the
communication before it is forwarded again.

In order to handle these two cases, it is necessary to have the certificates signed by a known certification
authority. This does not have to be a third-party commercial provider, but it must be a certificate authority
that is trusted by both the cluster and the client/application. For example, the IT department in the company
deploying the cluster may be able to sign the certificates.

 ■ Note If the certificates are created manually, make sure that all of the Ca certificates, server certificates,
and client certificates are created with a unique common name for each certificate. If any two certificates share
the common name, they cannot be used to encrypt the connections.

The Access Control and Privilege System
MySQL uses a four-tiered access control and privilege system. This provides fine-grained control of who can
connect, from where, and what the user is allowed to do once connected. The four tiers are as follows:

•	 Username: This is the username that is specified for example with the --user option
for MySQL client programs. A user or application needs to know the appropriate
username to able to connect. It is recommended to use a username that makes it
easy to understand who owns the account. For example, if it is a real person, the
username should reflect the name of the person. If it is an application user, choose
a username that reflects the application name. That way, it is easier to determine
which users can be removed after staff changes or when a new version of the
application has been released.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

383

•	 Hostname: The hostname limits from where the user can connect. It is possible
to use wildcards in the hostname, but it is important to be careful not to grant
access from other hosts than where the user has a need to connect. It is possible
to configure the same username to be allowed to connect from different hosts, but
since the combination of username and hostname defines the account, the accounts
will in general have different privileges. For example, a user may have permission to
change the schema when connected from the localhost, but is only allowed to select
data when connected from a remote host.

•	 Password: The password is used to verify the user’s identity. To provide additional
strength to the authentication step, the password can be supplemented with
requirements from the SSL/TLS certificate used.

•	 Privileges: These are the actions the account is allowed to perform. The privileges
are tied to the combination of username and the hostname where the user has
connected from. A privilege can be assigned to one of the following scopes: global,
schema/database, table/view/procedure/function, or column. The global scope
either covers all schemas or indicates a global level privilege. Examples of global
level privileges are SHUTDOWN and SUPER.

There are more than 30 privileges to choose from in MySQL NDB Cluster 7.5. Determining the minimal
set of privileges to grant to an account can seem like a large task. This makes it tempting to just use the ALL
PRIVILEGES synonym which—as the name suggest—grants all known privileges for the specified scope to
the account except the WITH GRANT OPTION privilege. Granting all privileges to accounts is a bad idea for
several reasons.

When an account has all privileges to the global level or the mysql schema, this also includes access to
manipulate other users, grant access (by directly manipulating the grant tables) to the data to new users, etc.
Furthermore, it removes a safeguard. For example, if the application user has all privileges and a developer
by mistake adds a query that deletes data from a table that the application should not be allowed to delete
from, the privilege system can no longer prevent the application from proceeding. A similar issue can occur
if the application is susceptible to SQL injection. Another potential threat to have in mind are disgruntled
employees. Minimizing the privileges can reduce the amount of damage that can be wrought in those cases.

The SUPER privilege itself is worth a little extra attention. The privilege really covers a group of actions,
ranging from being able to configure the replication settings on the slave side to killing queries run by
other users.

 ■ Note While SUPER is a very powerful privilege that should only be given to cluster-wide administration
users, it is not the same as all privileges.

There are also a couple of special behaviors related to users with the SUPER privilege. First, the read_
only option does not apply. A consequence of this is that the user can make changes, for example, to a
replication slave that is meant to be read only. In MySQL NDB Cluster 7.5, a workaround is to use the new
super_read_only option instead. Second, when all of the connections configured with max_connections
are in use, there is one extra connection reserved for a user with the SUPER privilege, so the database
administrator can log in to investigate and resolve the issue. Granting the SUPER privilege to the application
user will defeat this functionality.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

384

 ■ Tip MySQL enterprise Monitor uses persistent connections, which allow it to continue monitoring an
SQL node even if all connections have been used. The monitoring capability includes a report that returns the
process list, similar to SHOW PROCESSLIST. other monitoring solutions may provide similar functionalities.

Distributed Privileges
One challenge for a distributed system like MySQL NDB Cluster with several SQL nodes is keeping the
accounts and privileges in sync between all of the SQL nodes. Additionally, if a password changes on one
node, it is not automatically updated on the other nodes. This can cause subtle failures. The application
seems to be working fine, but when the connection is routed to one specific SQL node, it fails.

The answer to this is a feature called distributed privileges. As the name suggests, it is a method of telling
MySQL that the privileges must be the same on all nodes. In practice, this is implemented by converting the
grant tables that store all of the account, password, and privilege information to use the NDBCluster storage
engine. This way, the privilege data is stored inside the data nodes and, like other NDBCluster tables, all the
connected SQL nodes have the same view of the data.

 ■ Caution do not convert the grant tables manually, as that may break MySQL. distributed privileges should
only be enabled and disabled using the stored procedures, as described in this section.

To use distributed privileges, it is necessary to import the stored programs that are required to
manipulate the grant tables. These stored programs are included as source code in a file named ndb_dist_
priv.sql. The location of the ndb_dist_priv.sql script is in the share directory below the MySQL base directory.
If MySQL has been installed into a global directory—such as when using the RPM management system—the
ndb_dist_priv.sql script is in the mysql directory below the share directory. Examples of the full path to the
file are shown in Table 12-2.

To install these stored programs, simply source the file with the mysql schema as the default schema
using the SOURCE command. Verify that no errors occur and that all of the stored procedures are present at
completion. Listing 12-4 shows an example of importing the script and verifying that all procedures have
been installed. As stored procedures are not distributed among the SQL nodes, it is necessary to perform
these steps on all SQL nodes. Notice how warnings are enabled to ensure any warnings incurred are
expanded, so it is possible to inspect them. When the stored programs are created the first time, a number
of warnings will occur as the ndb_dist_priv.sql script uses DROP PROCEDURE IF EXISTS and DROP FUNCTION
IF EXISTS to remove old versions of the stored programs. These warnings can be ignored.

Table 12-2. Examples of the Location of the ndb_dist_priv.sql Script

Installation Type basedir Full Path

Linux - RPM /usr /usr/share/mysql/ndb_dist_priv.sql

Linux/UNIX - Tarball /opt/mysql /opt/mysql/share/ndb_dist_priv.sql

Windows – Install GUI C:\Program Files\MySQL\MySQL
Cluster 7.5

C:\Program Files\MySQL\MySQL Cluster
7.5\ share\ndb_dist_priv.sql

ChapTer 12 ■ SeCurITy ConSIderaTIonS

385

Listing 12-4. Importing the ndb_dist_priv.sql Script

mysql> use mysql;
Database changed

mysql> warnings
Show warnings enabled.

mysql> SOURCE /usr/share/mysql/ndb_dist_priv.sql
Query OK, 0 rows affected, 1 warning (0.13 sec)

Note (Code 1305): FUNCTION mysql.mysql_cluster_privileges_are_distributed does not exist
Query OK, 0 rows affected, 1 warning (0.15 sec)

Note (Code 1305): PROCEDURE mysql.mysql_cluster_backup_privileges does not exist
Query OK, 0 rows affected, 1 warning (0.10 sec)

Note (Code 1305): PROCEDURE mysql.mysql_cluster_move_grant_tables does not exist
Query OK, 0 rows affected, 1 warning (0.07 sec)

Note (Code 1305): PROCEDURE mysql.mysql_cluster_restore_privileges_from_local does not exist
Query OK, 0 rows affected, 1 warning (0.09 sec)

Note (Code 1305): PROCEDURE mysql.mysql_cluster_restore_privileges does not exist
Query OK, 0 rows affected, 1 warning (0.09 sec)

Note (Code 1305): PROCEDURE mysql.mysql_cluster_restore_local_privileges does not exist
Query OK, 0 rows affected, 1 warning (0.09 sec)

Note (Code 1305): PROCEDURE mysql.mysql_cluster_move_privileges does not exist
Query OK, 0 rows affected (0.14 sec)

Query OK, 0 rows affected (0.12 sec)

Query OK, 0 rows affected (0.11 sec)

Query OK, 0 rows affected (0.07 sec)

Query OK, 0 rows affected (0.07 sec)

Query OK, 0 rows affected (0.13 sec)

Query OK, 0 rows affected (0.10 sec)

mysql> SELECT ROUTINE_NAME, ROUTINE_TYPE
 FROM information_schema.ROUTINES
 WHERE ROUTINE_SCHEMA = 'mysql'
 AND ROUTINE_NAME LIKE 'mysql_cluster_%';

ChapTer 12 ■ SeCurITy ConSIderaTIonS

386

+---+--------------+
| ROUTINE_NAME | ROUTINE_TYPE |
+---+--------------+
mysql_cluster_backup_privileges	PROCEDURE
mysql_cluster_move_grant_tables	PROCEDURE
mysql_cluster_move_privileges	PROCEDURE
mysql_cluster_privileges_are_distributed	FUNCTION
mysql_cluster_restore_local_privileges	PROCEDURE
mysql_cluster_restore_privileges	PROCEDURE
mysql_cluster_restore_privileges_from_local	PROCEDURE
+---+--------------+
7 rows in set (0.22 sec)

The installation includes six stored procedures and one stored function. Table 12-3 lists each of these and
discusses what they do. For briefness, the mysql_cluster_ prefix that applies to all of the seven stored programs
has been removed from the name; for example, the full name of the procedure listed as backup_privileges is
mysql_cluster_backup_privileges. All of the stored programs are used without any arguments.

Table 12-3. The Seven Stored Programs for Use with Distributed Privileges

Name Type Description

backup_privileges Procedure Creates MyISAM backup tables of the grant tables, if they
do not exist. The backup table names have the _backup
suffix added to their original name.
Creates NDBCluster backup tables similar to the
MyISAM backup tables. The tables have the ndb_ prefix
and the _backup suffix.
Copies the account and privilege data into the backup
tables.

move_grant_tables Procedure Enables distributed privileges. Execute FLUSH
PRIVILEGES on the SQL nodes not calling this
procedure after the procedure has been executed.

move_privileges Procedure Combines backup_privileges and move_grant_tables.
Execute FLUSH PRIVILEGES on the SQL nodes not calling
this procedure after the procedure has been executed.

privileges_are_distributed Function Returns 0 or 1 (Boolean), depending on whether the
stored procedures are enabled.

restore_local_privileges Procedure Deletes the distributed privileges and restores the
MyISAM backup. This procedure in turn calls the
restore_privileges_from_local procedure.

cluster_restore_privileges Procedure If distributed privileges are used, it creates the grant
tables using NDBCluster if they do not exist and copies
the privileges from the NDBCluster backup tables. If
distributed privileges are not used, it calls restore_
privileges_from_local.

restore_privileges_from_local Procedure Creates the grant tables using MyISAM if they do not
exist. Copies the privileges from the MyISAM backup
tables. FLUSH PRIVILEGES is required for the restore to
take effect.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

387

The examples that demonstrate how the distributed privileges are enabled and disabled use a view
to show the backup tables. This view is defined in Listing 12-5 and can be installed in any schema; for the
purpose of these examples, it is assumed to be installed in ndbutil. The view returns four columns with
information about the grant tables:

•	 Grant_Table: The name of the main grant table.

•	 Engine: The storage engine currently used for the table.

•	 MyISAM_Backup: The name of the MyISAM backup table if it exists.

•	 NDBCluster_Backup: The name of the NDBCLuster backup table if it exists.

Listing 12-5. The ndbcluster_dist_priv_tables View

CREATE SCHEMA IF NOT EXISTS ndbutil;
CREATE OR REPLACE
 SQL SECURITY INVOKER
 VIEW ndbutil.ndbcluster_dist_priv_tables
 AS
SELECT g.TABLE_NAME AS Grant_Table, g.ENGINE AS Engine,
 IFNULL(gm.TABLE_NAME, '') AS MyISAM_Backup,
 IFNULL(gn.TABLE_NAME, '') AS NDBCluster_Backup
 FROM information_schema.TABLES g
 LEFT OUTER JOIN information_schema.TABLES gm
 ON gm.TABLE_SCHEMA = 'mysql'
 AND gm.TABLE_NAME = CONCAT(g.TABLE_NAME, '_backup')
 LEFT OUTER JOIN information_schema.TABLES gn
 ON gn.TABLE_SCHEMA = 'mysql'
 AND gn.TABLE_NAME = CONCAT('ndb_', g.TABLE_NAME, '_backup')
 WHERE g.TABLE_SCHEMA = 'mysql'
 AND g.TABLE_NAME IN ('user', 'db', 'tables_priv', 'columns_priv',
 'procs_priv', 'proxies_priv')
 ORDER BY g.TABLE_NAME;

Enabling Distributed Privileges
The steps to enable distributed privileges are straightforward using the mysql_cluster_move_privileges
procedure discussed in Table 12-3. Additionally, it is best to create a logical backup of the privileges before
converting them. The overall procedure for enabling the distributed privileges is:

 1. Create a backup of the grant tables using mysqldump or mysqlpump. This step is
not strictly required, but is recommended to ensure there is a backup should it
be necessary to restore the original accounts and privileges at some point.

 2. On each SQL node, back up the existing grant tables using the mysql_cluster_
backup_privileges procedure. It is important to only create the backup on one
node at a time.

 3. Convert the grant tables to store the accounts and privileges in the data nodes.
This step is performed using the mysql_cluster_move_grant_tables procedure.
Do only execute this step on one SQL node.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

388

 4. Execute FLUSH PRIVILEGES on all other SQL nodes than the one used in Step 3.
This will ensure that any differences in the accounts and privileges are applied
after the conversion.

 ■ Tip If you get this rather cryptic error:

ERROR 1534 (HY000): Writing one row to the row-based binary log failed

when converting the privileges in Step 3, it is likely due to the Timestamp columns in any of the tables_priv,
columns_priv, or procs_priv tables containing a zero date (0000-00-00 00:00:00) while the NO_ZERO_DATE
and NO_ZERO_IN_DATE SQL mode is enabled. The workaround is to either disable the SQL modes or update the
timestamps to a non-zero value. The issue is most likely to occur if the grant tables have been manipulated
directly rather than through the dedicated statements discussed earlier in the chapter.

Listing 12-6 shows an example of performing the first three steps using mysqlpump for the logical backup.
The example uses the ndbutil.ndbcluster_dist_priv_tables view that was defined in Listing 12-5.
It is worth noticing how the call to the mysql_cluster_move_privileges procedure causes a MyISAM
backup of the grant tables to be created.

Listing 12-6. Enabling Distributed Privileges

Create a logical backup
shell$ mysqlpump --user=root --password --users \
 --exclude-databases=% > users_backup.sql
Enter password:
Dump completed in 4847 milliseconds

-- Check status of the grant tables
mysql> SELECT * FROM ndbutil.ndbcluster_dist_priv_tables;
+--------------+--------+---------------+-------------------+
| Grant_Table | Engine | MyISAM_Backup | NDBCluster_Backup |
+--------------+--------+---------------+-------------------+
columns_priv	MyISAM		
db	MyISAM		
procs_priv	MyISAM		
proxies_priv	MyISAM		
tables_priv	MyISAM		
user	MyISAM		
+--------------+--------+---------------+-------------------+
6 rows in set (0.37 sec)

-- On each SQL node create the backup grant tables
mysql> warnings
Show warnings enabled.
mysql> CALL mysql.mysql_cluster_backup_privileges();
Query OK, 1 row affected (2.48 sec)

ChapTer 12 ■ SeCurITy ConSIderaTIonS

389

mysql> SELECT * FROM ndbutil.ndbcluster_dist_priv_tables;
+--------------+--------+---------------------+-------------------------+
| Grant_Table | Engine | MyISAM_Backup | NDBCluster_Backup |
+--------------+--------+---------------------+-------------------------+
columns_priv	MyISAM	columns_priv_backup	ndb_columns_priv_backup
db	MyISAM	db_backup	ndb_db_backup
procs_priv	MyISAM	procs_priv_backup	ndb_procs_priv_backup
proxies_priv	MyISAM	proxies_priv_backup	ndb_proxies_priv_backup
tables_priv	MyISAM	tables_priv_backup	ndb_tables_priv_backup
user	MyISAM	user_backup	ndb_user_backup
+--------------+--------+---------------------+-------------------------+
6 rows in set (1.34 sec)

-- Convert the grant tables to NDBCluster – execute only on one SQL node
mysql> CALL mysql.mysql_cluster_move_grant_tables();
Query OK, 1 row affected (6.62 sec)

-- On the other SQL Nodes
mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.21 sec)

mysql> SELECT * FROM ndbutil.ndbcluster_dist_priv_tables;
+--------------+------------+---------------------+-------------------------+
| Grant_Table | Engine | MyISAM_Backup | NDBCluster_Backup |
+--------------+------------+---------------------+-------------------------+
columns_priv	ndbcluster	columns_priv_backup	ndb_columns_priv_backup
db	ndbcluster	db_backup	ndb_db_backup
procs_priv	ndbcluster	procs_priv_backup	ndb_procs_priv_backup
proxies_priv	ndbcluster	proxies_priv_backup	ndb_proxies_priv_backup
tables_priv	ndbcluster	tables_priv_backup	ndb_tables_priv_backup
user	ndbcluster	user_backup	ndb_user_backup
+--------------+------------+---------------------+-------------------------+
6 rows in set (0.39 sec)

mysql> SELECT mysql.mysql_cluster_privileges_are_distributed();
+--+
| mysql.mysql_cluster_privileges_are_distributed() |
+--+
| 1 |
+--+
1 row in set (0.04 sec)

Disabling Distributed Privileges
If it is necessary to disable the distributed privileges, the stored procedures in Table 12-3 can be used to
convert the grant tables back to the SQL nodes (MyISAM). There may be various reasons for moving back
to using grant tables that are local to each SQL node. For example, you may have to convert the privileges
back because you are performing a downgrade, or requirements have changed, and it is better not to have
identical privileges on all SQL nodes.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

390

The steps to disable distributed privileges are similar to enabling them:

 1. Create a logical backup of the accounts and their privileges. The backup can be
made with mysqldump or mysqlpump.

 2. On each SQL node, update the backups of the grant tables to ensure all the
changes to the privileges that have been made while they were distributed are
included when restoring the local tables.

 3. On one SQL node, execute the mysql_cluster_restore_local_privileges
procedure. This drops the grant tables and recreates them from the MyISAM
backup.

 4. On all other SQL nodes than the one used in Step 3, execute the mysql_cluster_
restore_privileges_from_local procedure. This is required as the local
version of the grant tables restored in Step 3 only applies to the SQL node where
the step was executed.

 5. On all the SQL nodes, execute FLUSH PRIVILEGES.

Listing 12-7 shows an example of disabling the distributed privileges feature.

Listing 12-7. Disabling Distributed Privileges

Create a logical backup
shell$ mysqlpump --user=root --password --users \
 --exclude-databases=% > users_backup.sql
Enter password:
Dump completed in 4847 milliseconds

-- Refresh the backup grant tables – do on all SQL nodes
mysql> warnings
Show warnings enabled.
mysql> CALL mysql.mysql_cluster_backup_privileges();
Query OK, 1 row affected (2.96 sec)

-- Disable distributed privileges on first SQL node
mysql> CALL mysql_cluster_restore_local_privileges();
Query OK, 1 row affected (2.33 sec)

-- Restore local tables on remaining SQL nodes
mysql> CALL mysql_cluster_restore_privileges_from_local();
Query OK, 1 row affected (0.20 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.30 sec)

ChapTer 12 ■ SeCurITy ConSIderaTIonS

391

mysql> SELECT * FROM ndbutil.ndbcluster_dist_priv_tables;
+--------------+--------+---------------------+-------------------------+
| Grant_Table | Engine | MyISAM_Backup | NDBCluster_Backup |
+--------------+--------+---------------------+-------------------------+
columns_priv	MyISAM	columns_priv_backup	ndb_columns_priv_backup
db	MyISAM	db_backup	ndb_db_backup
procs_priv	MyISAM	procs_priv_backup	ndb_procs_priv_backup
proxies_priv	MyISAM	proxies_priv_backup	ndb_proxies_priv_backup
tables_priv	MyISAM	tables_priv_backup	ndb_tables_priv_backup
user	MyISAM	user_backup	ndb_user_backup
+--------------+--------+---------------------+-------------------------+
6 rows in set (0.48 sec)

mysql> SELECT mysql.mysql_cluster_privileges_are_distributed();
+--+
| mysql.mysql_cluster_privileges_are_distributed() |
+--+
| 0 |
+--+
1 row in set (0.05 sec)

Special Considerations
There are a few special considerations to keep in mind when using distributed privileges. These include
downgrades, restoring backups, and recovering should the password for the root@localhost account be lost.

Downgrades
The MySQL grant tables are specific to the major version of the SQL nodes. One of the main reasons you
must execute the mysql_upgrade script as part of an upgrade of the SQL nodes is to ensure that the grant
tables are upgraded to work with the new version. In order to support upgrades while leaving the data—and
grant tables—in place, each version of the SQL nodes can also read the grant tables of the previous version.

Downgrades are different, however. The older version of the SQL node will not be able to read the
newer version of the grant tables. As it was discussed in Chapter 11, even without distributed privileges,
downgrading to another major version requires you to reinitialize the SQL nodes. The reinitialization step
does not work with distributed privileges, as the grant tables in the data nodes will override the local tables
and thus still be the new version. For this reason, it is necessary to disable distributed privileges while the
downgrade is performed.

Restoring a Backup
When a full restore is performed of a native NDB Cluster backup, it is necessary to explicitly tell ndb_restore
to also restore the privilege tables. Otherwise, these are left out. The option to include the privileges in
the restore is --restore-privilege-tables and the option must be specified for all of the ndb_restore
commands. Listing 12-8 shows an example of a full restore.

http://dx.doi.org/10.1007/978-1-4842-2982-8_11

ChapTer 12 ■ SeCurITy ConSIderaTIonS

392

Listing 12-8. A Full Restore Including Distributed Privileges with ndb_restore

Restore the schema – for one node
shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --restore_meta --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --restore-privilege-tables --disable-indexes

Restore the data – for each data node that was included in the backup
shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --restore_data --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --restore-privilege-tables --disable-indexes

Rebuild the indexes – for one node
shell$ ndb_restore --ndb-connectstring=192.168.56.101,192.168.56.102 \
 --nodeid=1 --backupid=2 \
 --backup_path=/backups/cluster/BACKUP/BACKUP-2 \
 --restore-privilege-tables --rebuild-indexes

Recovering the root@localhost Password
The two usual methods to recover, if the database administrator is locked out of the SQL node, are to use
the skip-grant-tables or init-file option. The skip-grant-tables option will disable the privilege
system, so it is possible to connect without using a password, and the init-file option tells the SQL node to
execute the statements in the specified file at startup. However, there is a caveat when distributed privileges
are enabled—skip-grant-tables is ignored and init-file cannot be used as the statements are executed
before the NDBCluster tables have become available.

This means the only option is to forcefully remove the grant tables from the data nodes. After this, it is
possible to recover the root@localhost password. The steps are as follows:

 1. Drop the six grant tables (columns_priv, db, procs_priv, proxies_priv,
tables_priv, and user) using the ndb_drop_table utility. Listing 12-9 includes
an example of dropping the columns_priv table. Add the --ndb-connectstring
option if you are executing from a host without a management node and the
option is not included in the MySQL configuration file.

 2. Make sure the SQL node that will be used to regain access is stopped.

 3. Restore the MyISAM version of the grant tables. This can be done in several ways,
for example, you can copy each of the MyISAM backup tables back at the file
system level, reinitialize the data directory (this will delete all non-NDBCluster
tables!), or copy the grant tables from another installation. Listing 12-9 shows
how to restore the columns_priv table from the MyISAM backup table created with
the mysql_cluster_backup_privileges procedure. The cp commands assume
the current working directory is the datadir of the SQL node.

 4. Start the SQL node. Use the skip-grant-tables option if a backup copy of the
grant tables was used; otherwise, start normally and use the password from the
initialization.

 5. Restore the privileges and set up distributed privileges again.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

393

Listing 12-9. Dropping and Restoring the columns_priv Table

Drop the table in the data nodes
shell$ ndb_drop_table --database=mysql columns_priv
Dropping table columns_priv...OK

NDBT_ProgramExit: 0 - OK

Shutdown the SQL node

Restore the backup table
shell$ cp mysql/columns_priv_backup.frm mysql/columns_priv.frm
shell$ cp mysql/columns_priv_backup.MYD mysql/columns_priv.MYD
shell$ cp mysql/columns_priv_backup.MYI mysql/columns_priv.MYI

The Operating System and the Rest of the Infrastructure
In the discussion about keeping the system up to date with bug fixes, it was mentioned that it is important
to keep the whole stack in mind. The same applies to all aspects of securing the system. As the general
infrastructure is very diverse, it is not possible to give specific advice beyond keeping all components up to
date and working with the vendor to ensure that the components are configured correctly.

Security at the operating system level deserves a little more attention though. There are a few general
points that should be considered when securing the operating system, for example:

•	 Only install services that are required.

•	 Ensure services—including MySQL NDB Cluster processes—are not run as the root/
system administrator user.

•	 Disable login for users created to run services.

•	 Use strong passwords.

•	 Keep the operating system and all third-party software up to date.

•	 Monitor the system.

•	 Review the logs.

•	 Limit who can log in to the server and what privileges they have.

•	 Limit physical access to the hardware (including networking equipment) to the
trusted custodians.

These items are similar to the considerations made for MySQL NDB Cluster.
All (well almost all) software has bugs, most of which do not cause big problems. The more software

installed on a server, the more likely it is that some piece of software contains some bug that can be used to
cause an outage, denial of service, gain privileges that the user is not supposed to have, or get access to data
that is supposed to be restricted. Limiting the amount of software installed makes it is easier to ensure that
all parts are up to date with the latest bug fixes. That is, in itself, a major step toward securing the data.

ChapTer 12 ■ SeCurITy ConSIderaTIonS

394

When a service—such as mysqld or ndbmtd—starts on a host, it will be running under a user account.
The simplest approach is just to use root (on Linux/UNIX) or the System Administrator account (on
Windows), as it solves all problems with privileges. It is, on the other hand, also a great way for privileges
to become misused. Instead, ensure that services only have the privileges required. An example is that the
mysqld process must be able to read the MySQL configuration file, but should not be able to write to it.
Similarly, mysqld requires read and write access to the data directory, but it should not be allowed to read
and write any random file on the system—such as the security logs. It may be that some logging must be
done to files that a process is not allowed to write to directly. In that case, the writing must be done through
a service that ensures that it is possible to append to the log, but deletion is prevented. These considerations
are all equivalent to granting privileges to MySQL users.

 ■ Note By convention, MySQL services uses the mysql user on Linux and unIX. For example, when installing
MySQL using rpM packages, the mysql user is automatically created as a no-login user. There is, however, no
requirement for which username is actually used.

There are also steps that can be taken to detect if an attempt (successful or not) has been made to gain
access to the system. These steps are beyond to scope of this discussion, but one point is worth mentioning—
any kind of monitoring is only helpful if you actually pay attention to the alerts that the monitoring system
generates! This applies to the monitoring discussed in Chapter 14 for MySQL NDB Cluster as well as other
kinds of monitoring, such as intrusion detection software. If alerts are dismissed as not being important,
sooner or later an important alert will be missed. The system administrator must ensure that alerts from the
security software are categorized correctly, so that all events are handled with the appropriate urgency.

Summary
Security is an important topic in today’s world and it cannot be stressed enough that it should be at the top of
the list for everyone involved in software deployment. The work to secure a MySQL NDB Cluster installation
starts at the planning phase, includes the initial installation, and continues with daily maintenance. It is a
never-ending task.

Some of the important aspects to implement are as follows:

•	 Use a separate network that is shielded from the rest of the network for the
communication between MySQL NDB Cluster nodes.

•	 Have external access to the SQL nodes and/or application protected by a firewall.

•	 Keep all software and firmware up to date.

•	 Limit the privileges given to the operating system users and to the MySQL users.

•	 Use encrypted connections for all external connections.

•	 Review logs and monitoring alerts regularly.

•	 At a regular basis, document and audit the accounts, privileges, and the security in
general.

•	 Make security part of the daily routine.

Thus far, Parts II and III have been focused on how to do all installation and maintenance tasks
manually. The next chapter is about MySQL Cluster Manager, which will help you automate many of these
tasks.

http://dx.doi.org/10.1007/978-1-4842-2982-8_14

395© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_13

CHAPTER 13

MySQL Cluster Manager

The chapters thus far have described the internals of MySQL NDB Cluster and how to manage it by directly
working with the binaries, configuration files, etc. There is another way to manage clusters though—by using
MySQL Cluster Manager, which is also often abbreviated MCM. MySQL Cluster Manager is an enterprise
offering that makes it considerably simpler to manage a cluster. It is only available with the MySQL Cluster
Carrier Grade Edition subscription as well as a 30-day trial (see https://www.mysql.com/trials/). This
chapter provides a tutorial to MySQL Cluster Manager.

 ■ Note Even if you plan to use MySQL Cluster Manager in production, it is a good idea to try managing a
cluster manually on a test system first, as described in the previous chapters, in order to get experience with
the processes used to manage a cluster.

Background
Before starting on the tutorial, it is worth looking a bit into the terminology and architecture of MySQL
Cluster Manager to have some background understanding of the command names and how they work. This
section discusses the terms used for MySQL Cluster Manager, the architecture, the available commands, and
limitations.

 ■ Note There will be no difference in the application, whether the cluster is managed manually or by using
MySQL Cluster Manager.

https://doi.org/10.1007/978-1-4842-2982-8_13
https://www.mysql.com/trials/

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

396

Terminology
There are a few terms that are important to know, as they are reflected in the commands and command
options. Sites, hosts, packages, clusters, and processes are related, as described in Table 13-1.

Table 13-1. Important Terms for MySQL Cluster Manager

Term Description

Site A collection of hosts. All hosts used by a cluster must be in the same site. A host cannot be
included in more than one site.

Host A host where one or more processes is installed or is planned to be installed.

Package The MySQL NDB Cluster files. Use the generic tarball or Zip file downloads. All processes in
a cluster use the same package except while an upgrade is in progress.

Cluster A MySQL NDB Cluster installation consisting of multiple processes.

Process The individual processes (nodes) in a cluster. There are five supported process types:
ndb_mgmd, ndbapi, ndbd, ndbmtd, and mysqld. All processes are explicitly tied to a specific
host, except for the ndbapi and mysqld processes, which also support anonymous hosts.
Table 13-14 includes more information about the process types.

Architecture
For MySQL Cluster Manager to be able to monitor the processes, you must have an agent installed on each
host where a process is running or is about to be installed. In the same way, a package must be installed on
all hosts for which there are processes defined. The agents communicate with each other using the XCom
protocol on a dedicated port. This architecture is illustrated in Figure 13-1.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

397

Figure 13-1. The MySQL Cluster Manager architecture

The communication between the MySQL NDB Cluster nodes is left out, but keep in mind that the
inter-node communication will be no different whether a cluster is deployed manually or using MySQL
Cluster Manager. The communication between the MySQL Cluster Manager agents is shown with solid
lines and uses the XCom protocol connecting to the port specified by the xcom-port option. The agents
make outbound connections to the management and SQL nodes in order to configure the cluster nodes
and monitor them. The MySQL Cluster Manager client (the mcm client) can be used to connect to either of
the agents in order to execute commands. The mcm client uses the standard MySQL protocol (the same used
by the mysql command-line client when connecting to SQL nodes) when communicating to the agent. The
connection from the mcm client connects to the port specified by the manager-port option. The mcm client
may be executed from the same host as the agent or on another host.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

398

Table 13-2. Information Commands Available in MySQL Cluster Manager 1.4.2

Command Description

list commands Lists the available commands.

<command> --help The --help option can be used with any command for a detailed help of the
command.

Table 13-3. Site and Agent Commands Available in MySQL Cluster Manager 1.4.2

Command Description

add hosts Adds one or more hosts to a site.

remove hosts Removes one or more hosts from a site.

list hosts Lists all hosts for a site and the status and version of the agent on the hosts.

change log-level Changes the verbosity of agent log(s). See the “Troubleshooting MySQL Cluster
Manager” section at the end of this chapter for details.

rotate log Rotates the agent log(s).

collect logs Collects the logs from the agents and all the cluster nodes as well as the
configuration files. Useful to get all of the logs in one place, for example, to upload
to MySQL Support.

create site Creates a new site.

delete site Deletes a site.

list sites Lists all sites and which hosts are in each site.

show settings Lists the agent settings or the details of the host where the agent is installed.

stop agents Stops one or more agents.

version Returns the agent version.

show warnings Lists the latest warnings that occurred on the agent.

Commands
MySQL Cluster Manager is command driven. It does not provide any new features to MySQL NDB Cluster,
but rather provides an interface to manage a cluster performing tasks ranging from the initial installation
through configuration, backups and restores, to upgrades. A command may cover several steps for a
standalone cluster. For example, an upgrade is performed with a single command after making the new
package available. Each command can be classified as information, site and agent, package, cluster,
configuration, process, backup and restore, or import. Examples from each of these categories except import
are explained in the tutorial. Imports greatly depend on the initial setup and platform of the cluster, so
imports are beyond the scope of this chapter. Tables 13-2 through 13-9 give an overview of the commands
available for each of these categories. Commands to start and stop a cluster or its processes are also
discussed in more detail in Table 13-15.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

399

Table 13-4. Package Commands in MySQL Cluster Manager 1.4.2

Command Description

add package Adds a package to one or more hosts.

delete package Deletes a package from one or more hosts.

list packages Lists all packages for a site.

Table 13-5. Cluster Commands in MySQL Cluster Manager 1.4.2

Command Description

create cluster Creates a new cluster.

delete cluster Deletes a cluster.

list clusters Lists clusters and which package they are using for a given site.

list nextnodeids Lists the node IDs that will be used if another data node and other nodes are
added.

restart cluster Performs a rolling restart of a cluster.

show status Shows the status of a cluster, the operation executed for a cluster, or the
processes of a cluster.

start cluster Starts all nodes in a cluster.

stop cluster Stops all nodes in a cluster.

autotune Auto tunes a cluster based on the usage template and write load. Only supports
MySQL NDB Cluster 7.4 and later. An example is given when configuring the
cluster in the tutorial later in this chapter.

upgrade cluster Upgrades or downgrades a cluster to use a different package.

Table 13-6. Configuration Commands in MySQL Cluster Manager 1.4.2

Command Description

get Gets the configuration of one or more nodes in a cluster based on the filters
specified.

reset Resets one or more configuration options of one or more nodes in a cluster to the
option’s default value.

set Sets a value for one or more configuration options of one or more nodes in a cluster.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

400

Table 13-7. Process Commands in MySQL Cluster Manager 1.4.2

Command Description

add process Adds one or more processes to a cluster.

change process Changes an ndbd process to an ndbmtd process or vice versa.

list processes Lists the processes and which host they are installed on for a cluster.

start process Starts a process in a cluster.

stop process Stops a process in a cluster.

update process Updates a process in a cluster.

remove process Removes a process from a cluster.

Table 13-8. Backup and Restore Commands in MySQL Cluster Manager 1.4.2

Command Description

abort backup Aborts an ongoing backup.

backup cluster Backs up the data and schema for a cluster.

list backups Lists the available backups for a cluster.

restore cluster Restores a backup to a cluster.

backup agents Backs up the agents’ configuration data.

Table 13-9. Import Commands in MySQL Cluster Manager 1.4.2

Command Description

import cluster Imports a cluster not currently managed by MySQL Cluster Manager. Second
stage of an import after the import config command.

import config Imports the configuration of a cluster not currently managed by MySQL
Cluster Manager. The first stage of an import.

Limitations
There are some limitations of MySQL Cluster Manager to be aware of. The list of supported platforms is a
subset of the one for MySQL NDB Cluster. The list of supported platforms can be seen at https://www.mysql.
com/support/supportedplatforms/cluster-manager.html. Additionally, the latest release at the time of writing
of MySQL Cluster Manager (release 1.4.2) only support MySQL NDB Cluster 7.3, 7.4, and 7.5. On the user
side, be aware that only one command other than checking the status should be executed at a time. This
is the responsibility of the user, as MySQL Cluster Manager will not prevent conflicting commands to be
executed in parallel.

https://www.mysql.com/support/supportedplatforms/cluster-manager.html
https://www.mysql.com/support/supportedplatforms/cluster-manager.html

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

401

 ■ Caution There is no locking between client sessions. It is the responsibility of the database administrator
to ensure that no conflicting operations are executed concurrently. The recommendation is that other than
checking the status, never execute more than one command at a time.

Download, Installation, and Configuration
The installation of MySQL Cluster Manager itself is straightforward. The following steps are required:

 1. Download MySQL Cluster Manager if a copy of the latest release is not already
downloaded.

 2. Install the software.

 3. Configure the software.

 4. Start MySQL Cluster Manager.

The steps are discussed in the remainder of this section. The installation includes two examples: using
the generic binaries on Linux and the Microsoft Windows MSI installer. Other platforms either support
installing from the tarball like the Linux example or support a native packaging format such as the MSI
installer or RPM.

MySQL Cluster Manager is available in two distributions:

•	 Standalone: This distribution just contains MySQL Cluster Manager itself. This is
what will be used in this chapter. When downloading, the download will be labeled
MySQL-Cluster-Manager, plus the patch release number and platform information.
For example, MySQL Cluster Manager 1.4.2 MSI for Windows x86 (64bit).

•	 Bundled: This distribution includes the most recent MySQL NDB Cluster release
at the time the downloaded release of MySQL Cluster Manager was prepared. For
example, MySQL Cluster Manager 1.4.2 is bundled with MySQL NDB Cluster 7.5.5.
When downloading, the download will be labeled MySQL-Cluster-Manager, followed
by the patch release number, the label +Cluster, and finally the platform information.
For example, MySQL Cluster Manager 1.4.2+Cluster MSI for Windows x86 (64bit).

 ■ Note The terms standalone and bundled are not official terms (in fact there are no official names for
the two variations of how MySQL Cluster Manager is distributed). The terms are used here as they are most
frequently used in MySQL Support’s communication with customers and they describe the content of the
downloaded files.

As MySQL Cluster Manager is released less frequently than MySQL NDB Cluster, the bundled distribution
will in general not include the latest MySQL NDB Cluster release. For this reason, it is in general best to use
the standalone distribution of MySQL Cluster Manager and download MySQL NDB Cluster separately. This
tutorial uses the standalone MySQL Cluster Manager with MySQL NDB Cluster 7.5.5 and upgrades it to 7.5.6.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

402

Downloading
The 30-day trial version of MySQL Cluster Manager can be downloaded from the Oracle Software Delivery
Cloud (https://edelivery.oracle.com/). The trial version is identical to the download offered to paying
customers. The download procedure is similar to downloading MySQL NDB Cluster, as described in
Chapter 5, and requires a (free) Oracle account.

 ■ Note Downloading software from https://edelivery.oracle.com/ is subject to u.S. Export administration
regulations (Ear) and other export laws. Thus, all accounts must be validated before access to the software is
allowed.

The first step, once you are signed in to the Oracle Software Delivery Cloud, is to search for MySQL
Cluster Manager in the search box, as shown in Figure 13-2. The available version is displayed next to
MySQL Cluster Manager in the Release area. There is only one version available at any one time, so the
version displayed will change over time.

Figure 13-2. Search by product or release name

https://edelivery.oracle.com/
http://dx.doi.org/10.1007/978-1-4842-2982-8_5
https://edelivery.oracle.com/

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

403

 ■ Tip For customers who purchased MySQL Cluster Carrier grade Edition, it is best to download MySQL
Cluster Manager (and MySQL nDB Cluster) from the Patches & Updates tab in My Oracle Support (MOS),
because all releases since 2011 are available there, whereas Oracle Delivery Cloud only includes one release—
typically the latest.

After you choose the release, choose one or more platforms, as shown in Figure 13-3. In this example,
MySQL Cluster Manager will be downloaded for the 64-bit Linux and Microsoft Windows platforms.

Continue by following the screens, including the Oracle Standard Terms and Restrictions. Make sure to
read these in full and only check the checkbox if you agree with the terms and restrictions. At the end, there
is the file download screen, as displayed in Figure 13-4. The figure shows the files available. There are two
files available for each supported combination of platform and installation format corresponding to the two
distributions. For example, “V860722-01.zip MySQL Cluster Manager 1.4.2 MSI for Windows x86 (64bit)” is
the standalone version, and “V860723-01.zip MySQL Cluster Manager 1.4.2+Cluster MSI for Windows x86
(64bit)” is the bundled distribution. The standalone version is a much smaller download than the bundled
version. A typical difference for Microsoft Windows files is around 35MB compared to 1GB. Choose the
standalone distribution for this tutorial: V860730-01.zip for Linux and V860722-01.zip for Microsoft Windows
(or the equivalent files available—the filenames change in each new release).

Figure 13-3. Choose the platforms

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

404

As you can see in Figure 13-4, there are several options for the Linux downloads. For example, there
are dedicated TAR and RPM downloads for Oracle Linux/RHEL 5+6. If there is a dedicated download for the
Linux distribution in use, it is best to use that instead of the generic download.

 ■ Note Support for Oracle Linux 5 and rhEL 5 was declared end of life as of april 30, 2017 (https://www.
mysql.com/support/eol-notice.html). MySQL Cluster Manager 1.4.2 is the last release to support these Linux
distributions.

Once the download has completed, continue with the installation. The two next subsections provide
examples of installing on Linux and Windows.

Installation on Linux
The installation example on Linux for this tutorial will use the file V860730-01.zip that was downloaded
from Oracle Software Delivery Cloud as shown in Figure 13-4. The file can be used on all recent Linux
distributions.

Figure 13-4. Choose the files to download

https://www.mysql.com/support/eol-notice.html
https://www.mysql.com/support/eol-notice.html

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

405

 ■ Note The filename changes for each new version made available from Oracle Software Delivery Cloud.

MySQL Cluster Manager must be installed on all hosts that will be used with a management, data, or
SQL node. The installation can be made into any directory; for this example, the files from V860730-01.zip
will be installed into /opt/mysql/mcm-1.4.2.

The first step is to unzip the files included in V860730-01.zip:

shell$ mkdir -p /opt/mysql/mcm-1.4.2
shell$ cd /opt/mysql/mcm-1.4.2
Copy V860730-01.zip into /opt/mysql/mcm-1.4.2
shell$ unzip V860730-01.zip
Archive: V860730-01.zip
 extracting: mcm-1.4.2-linux-glibc2.5-x86-64bit.tar.gz
 extracting: mcm-1.4.2-linux-glibc2.5-x86-64bit.tar.gz.asc
 extracting: mcm-1.4.2-linux-glibc2.5-x86-64bit.tar.gz.md5
 extracting: README.txt

The mcm-1.4.2-linux-glibc2.5-x86-64bit.tar.gz.asc and mcm-1.4.2-linux-glibc2.5-x86-64bit.tar.gz.md5
files contain a Pretty Good Privacy (PGP) signature and an md5 sum of the .tar.gz file. The README.txt file
includes the release notes.

The MySQL Cluster Manager files themselves are included in mcm-1.4.2-linux-glibc2.5-x86-64bit.tar.gz:

shell$ tar -zxf mcm-1.4.2-linux-glibc2.5-x86-64bit.tar.gz
shell$ mv mcm-1.4.2-linux-glibc2.5-x86-64bit/mcm1.4.2 .
shell$ rmdir mcm-1.4.2-linux-glibc2.5-x86-64bit/

MySQL Cluster Manager has now been installed. Some of the important files included are listed in
Table 13-10. The path is relative to the directory where MySQL Cluster Manager was installed (/opt/mysql/
mcm-1.4.2).

Table 13-10. Some of the Important MySQL Cluster Manager Files on Linux

File Description

bin/mcm The MySQL Cluster Manager client.

bin/mcmd The MySQL Cluster Manager agent (daemon). This is the long running agent
process that manages the cluster.

etc/init.d/mcmd A System V init script that can be used to automate the startup of MySQL Cluster
Manager.

etc/mcmd.ini A template for the configuration file for bin/mcmd.

Before moving on to the configuration and starting MySQL Cluster Manager, it is important to ensure
that the mysql command-line client is also installed on all hosts, and that the mysql binary is in the program
search path (explanation follows in the MySQL Cluster Manager Client subsection). To check whether the
mysql binary is in the program search path, use this command:

shell$ which mysql
/usr/bin/mysql

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

406

If the which command indicates that the command is not found, be sure to install it before proceeding.
An example where the mysql command-line client is not installed is:

shell$ which mysql
/usr/bin/which: no mysql in (/usr/lib64/qt-3.3/bin:/usr/local/bin:/usr/local/sbin:/usr/bin:/
usr/sbin:/bin:/sbin:/home/jmyuser/.local/bin:/home/myuser/bin)

Installation on Microsoft Windows
For Microsoft Windows, there is only one option for installing MySQL Cluster Manager. The installation
is done using the Microsoft Windows MSI installer, as the one downloaded in the example shown in
Figures 13-2 to 13-4. The installation is straightforward. The only choice during the installation is the
destination directory and, in most cases, the default (C:\Program Files (x86)\MySQL\MySQL Cluster
Manager\mcm1.4.2 for version 1.4.2) is fine. See Figure 13-5.

When the installation is complete, the whole installation will be available in the destination folder you
chose during the installation. Some of the important files in the installation are listed in Table 13-11.

Figure 13-5. Choose the destination directory

Table 13-11. Some of the Important MySQL Cluster Manager Files on Microsoft Windows

File Description

bin\mcm.exe The MySQL Cluster Manager client.

bin\mcmd.exe The MySQL Cluster Manager agent (daemon). This is the long running agent
process that manages the cluster.

etc\mcmd.ini A template for the configuration file for bin\mcmd.exe.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

407

You must have the mysql command-line client installed as well and this is not included in the MySQL
Cluster Manager standalone distribution. The mysql client must be in the paths searched by Windows
when a command is executed without a full path. This is the Path environmental variable. Alternatively,
the mysql.exe file from a Zip file download of MySQL Server or MySQL NDB Cluster can be copied into the
same directory as the mcm client (C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm1.4.2\bin in
this example).

Assuming the mysql command-line client has been installed into C:\MySQL_Cluster\Packages\
cluster_7.5\bin, then Path can be configured as follows for Microsoft Windows 10; other versions will have
similar procedures. Click on the Windows icon and type “settings: path”, then click on Edit Environment
Variables For Your Account, as shown in Figure 13-6. This brings up the Environment Variables dialog box,
where the variables can be added.

There are two ways to add a new path to the Path environmental variable: for the user or for the system
(all users). Choose the option that best suits the system. To add the path at the user level, click on Path in the
User variables list at the top and then click on the topmost Edit… button, as shown in Figure 13-7.

Figure 13-6. Getting to the account environmental variables

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

408

Figure 13-8 shows you how to add a new path. First click on the New button, then enter the path. After
adding the path to the mysql.exe binary, click OK.

Figure 13-7. Environmental variables

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

409

 ■ Note The new Path setting will only affect new command-line prompt processes, not the existing ones.
you may have to restart any open command windows to use the new path.

Upgrading
An upgrade of MySQL Cluster Manager is essentially the same as an installation, just with the addition that
then MySQL Cluster Manager agent is restarted using the new binary. So, download the new version, shut
down all of the existing agents, install the new version, and start the agents again using the new version.
Make sure that, after the upgrade, the same values for the manager-directory, manager-username, and
manager-password are used as before the upgrade. For this reason, it is best to use a mcmd.ini file that is
located outside of the MySQL Cluster Manager installation directory.

 ■ Caution Do not have MySQL Cluster Manager agents of different versions online at the same time. Shut
down all agents before starting the agents using the upgraded binaries. It is also important to ensure that the
configuration is not inadvertently changed during the upgrade.

Figure 13-8. Adding new path to the Path environmental variable

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

410

Configuration
The configuration of MySQL Cluster Manager is very similar to the configuration of other MySQL programs.
It uses a configuration file in the same format as my.cnf/my.ini and config.ini discussed in Chapter 4. All
settings are added under the mcmd group. Some of the most important options are described in Table 13-12.
The full list of options can be found in the MySQL Cluster Manager Reference Manual at https://dev.
mysql.com/doc/mysql-cluster-manager/en/mcm-using-mcmd.html. On Windows, there are some extra
requirements for the paths; for example for the log-file and manager-directory options. These
requirements are:

•	 The path must be absolute.

•	 Use forward slashes (/) instead of backslashes (\), including on Microsoft Windows.

•	 No spaces are allowed in the path. For example, replace spaces with underscores (_).

Table 13-12. Some Important Options for the MySQL Cluster Manager Daemon

Option Default Value Description

agent-uuid Auto
generated

An UUID identifying the agent. It is only necessary to specify this
manually when there is more than one MySQL Cluster Manager
agent installed on the same host. The default value is auto-
generated based on information from the host.

daemon true Whether to execute mcmd as a foreground or daemon process. The
default is to execute as a daemon process, but using a foreground
process can be useful when debugging an issue. This only applies to
Linux and UNIX platforms.

log-file mcmd.log The log file for mcmd. The default directory is the installation
directory (/opt/mysql/mcm-1.4.2 in this tutorial). On Microsoft
Windows, an absolute path must be used. On Linux and UNIX, the
path is relative to the installation directory unless an absolute path is
used. It is best to use an absolute path.

log-level message The log level to use. Supported values are (in increased verbosity
level): critical, error, warning, message, info, and debug. The
default is message. See the subsection entitled “Error Messages and
the Log” in the “Troubleshooting MySQL Cluster Manager” section
later in the chapter.

log-use-syslog true When enabled, log messages are written to the syslog.

manager-directory ../mcm_data The location where MySQL Cluster Manager will store its data.
When a MySQL NDB Cluster node is installed without specifying
the data directory explicitly, the node data directory will be in the
manager directory path as well.
The default is the ../mcm_data directory relative to the installation
directory. If MySQL Cluster Manager is installed in /opt/mysql/
mcm-1.4.2, then the default manager directory is /opt/mysql/mcm_
data.
The value must be an absolute path. On Linux and UNIX, the directory
must exist or the user executing mcmd must have permission to create it.
On Microsoft Windows, the directory must exist.

(continued)

http://dx.doi.org/10.1007/978-1-4842-2982-8_4
https://dev.mysql.com/doc/mysql-cluster-manager/en/mcm-using-mcmd.html
https://dev.mysql.com/doc/mysql-cluster-manager/en/mcm-using-mcmd.html

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

411

Table 13-12. (continued)

Option Default Value Description

manager-password super Dual use: Used when connecting with the mcm client to the agent,
and the password used when the agent connects to the SQL nodes.
You are strongly encouraged to change the password.

manager-port 1862 The port mcmd will listen to for connections from the MySQL Cluster
Manager client.

manager-username mcmd Dual use: Used when connecting with the mcm client to the agent,
and the username used when the agent connects to the SQL nodes.

xcom-port 18620 The port used for the internal communication between the agents
(the XCOM communication).

 ■ Tip It is best to use the same configuration on all hosts with the exception of agent-uuid (which must
have a unique value for all mcmd processes). In particular, the xcom-port setting must be the same for all hosts.

The user and password used to connect to the SQL nodes are in general configured in mcmd.ini, which
means that MySQL Cluster Manager will refuse to start if the file system level permissions allow everyone to
read the file. On Linux and UNIX, the permissions must be u=rw,g=rw,o= (0660) or stricter (fewer privileges
given). If the permissions are not strict enough, mcmd will return an error like the following one when it starts:

2017-05-11 09:27:55.059: (critical) Failed to open given defaults-file '/etc/mcmd.ini':
permissions of /etc/mcmd.ini aren't secure (0660 or stricter required)

One way to ensure that only the root user can write to the configuration file, while MySQL Cluster
Manager still is able to read it, is:

shell$ chown root.mysql /etc/mcmd.ini
shell$ chmod u=rw,g=r,o= /etc/mcmd.ini
shell$ ls -l /etc/mcmd.ini
-rw-r-----. 1 root mysql 321 May 6 17:52 /etc/mcmd.ini

The permission u=rw,g=r,o= is 0640 using the octal notation. This assumes that it will be the mysql user
executing mcmd.

On Microsoft Windows, there are no requirements regarding the permissions of the configuration file.
However, it is still best to limit access—particularly write, but also read if there are any passwords in the
file—to as few users as possible. The permissions can be accessed by right-clicking on the mcmd.ini file in
File Explorer and going to the Security tab, as shown in in Figure 13-9.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

412

For the rest of this tutorial, the configuration in Listing 13-1 is used.

Listing 13-1. The Example MySQL Cluster Manager Configuration File

[mcmd]
Log file and level
log-file = /var/log/mcmd.log
log-level = message

Toplevel directory for manager plugins information stored on disk
manager-directory = /var/lib/mcm_data

Username and password connecting to the manager and for the SQL Nodes
manager-username = mcmd
manager-password = cjhf*jc32FH@

Figure 13-9. Changing file permissions in Microsoft Windows

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

413

To ensure MySQL Cluster Manager can use the manager directory and the log file, create them ahead of
time and set the file system permissions. Listing 13-2 shows an example of this process on Linux.

Listing 13-2. Creating the Manager Directory and Log File on Linux

The manager directory
shell$ mkdir /var/lib/mcm_data
shell$ chown mysql.mysql /var/lib/mcm_data
shell$ chmod u=rwx,g=rx,o= /var/lib/mcm_data

The log file
shell$ touch /var/log/mcmd.log
shell$ chown mysql.mysql /var/log/mcmd.log
shell$ chmod u=rw,g=r,o= /var/log/mcmd.log

After the agent has been started (see the next subsection), the configuration can be checked using the
mcm client. You use the show settings command, as shown in Listing 13-3.

Listing 13-3. The Output of the show settings Command

mcm> show settings;
+-------------------+-------------------+
| Setting | Value |
+-------------------+-------------------+
copy-port	0
log-file	/var/log/mcmd.log
log-level	message
log-use-syslog	FALSE
manager-directory	/var/lib/mcm_data
manager-username	mcmd
manager-password	********
manager-port	1862
xcom-port	18620
+-------------------+-------------------+
9 rows in set (0.00 sec)

mcm> show settings --hostinfo;
+-----------------+-----------------------------------+
| Property | Value |
+-----------------+-----------------------------------+
Hostname	ol7
Platform	Linux 4.1.12-37.4.1.el7uek.x86_64
Processor cores	1
Total memory	992 Mb
+-----------------+-----------------------------------+
4 rows in set (0.00 sec)

With the configuration set up, it is time to start MySQL Cluster Manager.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

414

Starting and Stopping MySQL Cluster Manager
MySQL Cluster Manager can be started and stopped either executing and stopping the process directly
or by using a service management system such as System V init scripts, systemd, and Windows Services.
Using a service management system to control mcmd is no different from using it for the MySQL NDB Cluster
daemons and will not be discussed in more detail. Instead, the focus is on starting and stopping the mcmd
process directly.

Here is an example that starts the mcmd process on Linux with the configuration file located in
/etc/mcmd.ini:

shell$ sudo -u mysql nohup /opt/mysql/mcm1.4.2/bin/mcmd \
 --defaults-file=/etc/mcmd.ini > /dev/null 2>&1 &

To start the agent on Microsoft Windows from the command prompt, the command is similar, for
example:

C:>START /B "" "C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm1.4.2\bin\mcmd.exe"
--defaults-file="C:\MySQL_Cluster\mcmd.ini"

MySQL Cluster Manager 1.4.2 (64bit) started
Connect to MySQL Cluster Manager by running "C:\Program Files (x86)\MySQL\MySQL Cluster
Manager\mcm1.4.2\bin\mcm" -a WIN-LAPTOP:1862

The recommended way to shut down an mcmd process is to use the stop agents command in the mcm
client, which applies to all platforms. It is possible to shut down a single agent or multiple agents, including
all the agents in a site. If the stop agents command is used without any arguments, only the agent that the
mcm client is connected to is shut down:

mcm> stop agents;
+-----------------------------+
| Command result |
+-----------------------------+
| Agents stopped successfully |
+-----------------------------+
1 row in set (0.02 sec)

To shut down all hosts in a site, add the site name to the command:

mcm> stop agents test_site;
+-----------------------------+
| Command result |
+-----------------------------+
| Agents stopped successfully |
+-----------------------------+
1 row in set (0.18 sec)

If the agent is shut down using a signal on UNIX or Linux, make sure to use the SIGTERM signal or kill the
process from the Microsoft Windows process list manager without a forced shutdown.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

415

 ■ Caution as for other MySQL nDB Cluster processes, do not use the SIGKILL signal except in critical
situations, where it is not possible to get the mcmd process to stop using SIGTERM. Stopping the process with
SIGKILL may cause corruption of the management directory.

The MySQL Cluster Manager Client
The MySQL Server product and SQL nodes have the mysql command-line client that can be used to
manipulate the schema and data from the command line. In the same way, MySQL Cluster Manager uses
the mcm command-line client to send commands to the mcmd process.

The client is started using the mcm binary in the bin directory of the MySQL Cluster Manager installation.
With the installation directory being /opt/mysql/mcm1.4.2, the full path is /opt/mysql/mcm1.4.2/bin/mcm.
Assuming the mcm command is in the path and the default value is used for manager-port, it is possible to
connect, as shown in Listing 13-4. The username and password are the ones defined using the manager-
username and manager-password options. The mcm client is the only way to interact with MySQL Cluster
Manager.

Listing 13-4. Starting the mcm Command-Line Client

shell mcm --user=mcmd --password
MySQL Cluster Manager client started.
This wrapper will spawn the mysql client to connect to mcmd

Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 1.4.2 MySQL Cluster Manager

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mcm>

If the output seems familiar and directs the thoughts toward the mysql command-line client, it is
because the mcm binary only is a wrapper for the mysql binary. This is also the reason during the installation,
it was required to have the mysql command-line client installed and in the path. Because it is the mysql
command-line client that is used under the hood, commands must be terminated by a semicolon (;) as for
SQL statements. The commands are case insensitive, but the convention is to use all lowercase. It is also
possible to execute commands using the --execute or -e option. Listing 13-5 shows an example where
mcm --execute is used to get help about the create site command. The same command can be run on
Microsoft Windows by invoking mcm.exe instead of mcm.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

416

Listing 13-5. Executing a Command Directly from the Linux Shell

shell$ mcm --user=mcmd --password --execute="create site --help;"
MySQL Cluster Manager client started.
This wrapper will spawn the mysql client to connect to mcmd

Enter password:
+--+
| Help |
+--+
| |
| create site [options] <sitename> |
| |
| Creates a site from the hosts listed in --hosts. |
| |
| Required options: |
| --hosts|-h Comma separated list of hostnames. |
| Format: --hosts = <host>[,<host>]*. |
| |
+--+

This also shows that the MySQL Cluster Manager commands take the argument --help, which will
provide a short summary of how the command works. The next section shows you how to manage a cluster
and at the same time demonstrates several of the most important commands.

Managing a Cluster
With MySQL Cluster Manager installed, it is time to use it to install and manage a cluster. This section first
covers installing and configuring the cluster, then discusses starting and stopping the cluster, performing
configuration changes to an online cluster, performing backups and restores, and finally upgrading the
cluster.

Installing the Cluster Binaries
Before you can actually install the cluster, you must download MySQL NDB Cluster separately. If the
bundled distribution of MySQL Cluster Manager is used, this is not required, but this tutorial uses the
standalone distribution to allow for any supported MySQL NDB Cluster version. When it is used with MySQL
Cluster Manager, you must download a tarball distribution for Linux and UNIX or the Zip file distribution for
Windows. The download is done as discussed in Chapter 5.

With MySQL NDB Cluster downloaded, the file should be extracted. In this example, version 7.5.5 will
be extracted into /opt/mysql/packages/7.5.5. For example:

shell$ mkdir /opt/mysql/packages
shell$ cd /opt/mysql/packages/

Copy the downloaded .tar.gz file to /opt/mysql/packages
shell$ tar -zxf mysql-cluster-gpl-7.5.5-linux-glibc2.5-x86_64.tar.gz
shell$ mv mysql-cluster-gpl-7.5.5-linux-glibc2.5-x86_64 7.5.5

With the MySQL NDB Cluster binaries in place, the rest of the installation is completed in the mcm client.

http://dx.doi.org/10.1007/978-1-4842-2982-8_5

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

417

Preparing the Cluster Through the mcm Client
The steps to prepare the new cluster are the same irrespective of the operating system, although the paths
used to link to the binaries, to the data directories for the cluster nodes, etc., of course depend on the
platform and how the hardware has been set up.

It does not matter which of the MySQL Cluster Manager agents is used. You do not even have to use the
same one for all of the steps, although usually it is better to keep it simple and see what has already been
done.

 ■ Caution MySQL Cluster Manager does not set a password for the root@localhost user for mysqld nodes.
Make sure to set a strong password for the account using the SET PASSWORD command.

The cluster that will be installed uses the same configuration as the one used to demonstrate restarts
in Chapter 10 with the addition of adding two API nodes that can connect from any host. Table 13-13
summarizes the eight nodes and how they are distributed on the four hosts.

By convention, MySQL Cluster Manager reserves the first 48 node IDs for data nodes. This is because all
data nodes must have a node ID between 1 and 48. Management, SQL, and API nodes get consecutive IDs
starting at number 49.

The first step is to define the site in which to install the cluster. This is done using the create site
command. The site name can be anything that is meaningful for the installation. In this case, the name
test_site will be used. When creating the site, you must specify the hosts that are included on the site.
Additional hosts can be added later. The complete command for this tutorial looks like this:

mcm> create site --hosts=192.168.56.101,192.168.56.102,192.168.56.103,192.168.56.104
test_site;
+---------------------------+
| Command result |
+---------------------------+
| Site created successfully |
+---------------------------+
1 row in set (3.21 sec)

Table 13-13. The Cluster Nodes That Will Be Installed

Node ID Node Type Host

1 Data node (ndbmtd) 192.168.56.103

2 Data node (ndbmtd) 192.168.56.104

49 Management node (ndb_mgmd) 192.168.56.101

50 Management node (ndb_mgmd) 192.168.56.102

51 SQL node (mysqld) 192.168.56.103

52 SQL node (mysqld) 192.168.56.104

53 API node (not mysqld) Any host

54 API node (not mysqld) Any host

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

418

The sites that MySQL Cluster Manager is aware of can be listed using the list sites command:

mcm> list sites\G
*************************** 1. row ***************************
 Site: test_site
 Port: 1862
Local: Local
Hosts: 192.168.56.101,192.168.56.102,192.168.56.103,192.168.56.104
1 row in set (0.07 sec)

Now that the site has been created, it is possible to define the package. This is the same as assigning a
name to the path where the MySQL NDB Cluster binaries were unpacked:

mcm> add package --basedir=/opt/mysql/packages/7.5.5 cluster_7.5.5;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (4.19 sec)

By default, the same basedir is used for all of the defined hosts. It is possible to use the path for a subset
of hosts by adding the --host option. However, it is best to have the same configuration for all hosts. The
available packages can be listed using the list packages command:

mcm> list packages test_site\G
*************************** 1. row ***************************
Package: cluster_7.5.5
 Path: /opt/mysql/packages/7.5.5
 Hosts: 192.168.56.101,192.168.56.102,192.168.56.103,192.168.56.104
1 row in set (0.11 sec)

It is now possible to start defining the cluster, which you do using the create cluster command.
There are two required arguments: the package to use and the processes to have in the cluster. Additional
processes can also be added later. The format of the processes is <processname>@<host>. The supported
values of <processname> are listed in Table 13-14.

Table 13-14. Supported Process Types

Process Name Description

ndb_mgmd A management node.

ndbapi Any API node that is not an SQL node. Includes additional API node slots for use with
the ndb_cluster_connection_pool option on SQL nodes.

ndbd A single-threaded data node.

ndbmtd A multi-threaded data node.

mysqld An SQL node. For SQL nodes with ndb_cluster_connection_pool larger than 1, add
only one mysqld node and use ndbapi for the rest of the connections in the pool.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

419

Notice how MySQL Cluster Manager distinguishes between the single-threaded and multi-threaded
data nodes when you set up the cluster by the name. This is also the case when you specify the process type
when configuring the data nodes.

Except for the mysqld and ndbapi nodes, all nodes must be tied to a specific host. For the mysqld and
ndbapi nodes, a host name * (asterisk) can be used to denote any host.

The create cluster command becomes the following command (all of the --processhosts
arguments must be on one line without any spaces):

mcm> create cluster --package=cluster_7.5.5 --processhosts=ndbmtd@192.168.56.103,ndbmtd@192.
168.56.104,ndb_mgmd@192.168.56.101,ndb_mgmd@192.168.56.102,mysqld@192.168.56.103,mysqld@192.
168.56.104,ndbapi@*,ndbapi@* test_cluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster created successfully |
+------------------------------+
1 row in set (3.69 sec)

The clusters that are available in the test_site site can be listed using the list clusters command:

mcm> list clusters test_site;
+--------------+---------------+
| Cluster | Package |
+--------------+---------------+
| test_cluster | cluster_7.5.5 |
+--------------+---------------+
1 row in set (0.14 sec)

More interesting is the show status command. It can be used in two main ways to get the status of
a cluster. Listing 13-6 returns the overall status of the test_cluster cluster as well as a detailed view that
includes all processes.

Listing 13-6. Getting the Cluster Status

mcm> show status test_cluster;
+--------------+---------+---------+
| Cluster | Status | Comment |
+--------------+---------+---------+
| test_cluster | created | |
+--------------+---------+---------+
1 row in set (0.09 sec)

mcm> show status --process test_cluster;
+--------+----------+----------------+--------+-----------+---------------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------------+--------+-----------+---------------+
49	ndb_mgmd	192.168.56.101	added		cluster_7.5.5
50	ndb_mgmd	192.168.56.102	added		cluster_7.5.5
1	ndbmtd	192.168.56.103	added	n/a	cluster_7.5.5
2	ndbmtd	192.168.56.104	added	n/a	cluster_7.5.5

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

420

51	mysqld	192.168.56.103	added		cluster_7.5.5
52	mysqld	192.168.56.104	added		cluster_7.5.5
53	ndbapi	*	added		
54	ndbapi	*	added		
+--------+----------+----------------+--------+-----------+---------------+
8 rows in set (0.09 sec)

There are several other modes for show status. Listing 13-7 shows the complete output of the help text
for the command. The output has been reformatted to reduce the width of the text.

Listing 13-7. The Help for the show status Command

mcm> show status --help;
+--+
| Help |
+--+
| |
| show status [options] <clustername> |
| |
| Shows cluster, process, operation, progress or backup status for the |
| specified cluster. |
| Defaults to --cluster if no option specified. |
| |
| Valid options: |
--backup	-k Show backup details.
--cluster	-c Show cluster details.
--operation	-o Show operation details.
--process	-r Show process details.
--progress	-g Show progress details.
--progressbar	-b Show progress bar.
+--+
14 rows in set (0.02 sec)

If all nodes should have all options set to their default values, this is all there is to it. However, in practice
that will not be the case, so the next topic covers how to make configuration changes.

Cluster Configuration: Auto Tuning
A feature unique to MySQL Cluster Manager is the autotune command. This can be a very useful way to get
a good base configuration which then can be fine-tuned as required. The autotune command requires a
template and optionally a write workload. The template defines the general workload, and there are three
available templates:

•	 web: For web-based production workloads. MySQL Cluster Manager will attempt to
maximize the performance given the available hardware.

•	 realtime: As for the web-based workload, it is aimed at maximizing the performance
given the available workload. Additionally, the time to detect failures will be reduced.

•	 test: For test setups. The resource usage will be reduced compared to the web and
realtime workloads.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

421

The --writeload option can be used to set the write load to low, medium, or high. The definition of each
write load is as follows:

•	 low: Fewer than 100 write transactions per second.

•	 medium: Between 100 and 1000 write transactions per second. This is the default if
the --writeload option is omitted.

•	 high: More than 1000 write transactions per second.

The auto tuning feature issues several set commands. As will be discussed shortly, the set command
changes the configuration of the cluster. If the --dryrun option is specified, MySQL Cluster Manager will
generate the set commands and output them to a file rather than applying them. This is an excellent way
to inspect the suggested changes before applying them. Optionally, the set commands can be applied
manually with the possibility of making changes to them to fine-tune the configuration.

Since this is a test cluster, the test template will be used. Only a small number of write transactions are
expected, so the low writeload value is appropriate. A dry run of the autotune command gives the following
result:

mcm> autotune --dryrun --writeload=low test test_cluster\G
*************************** 1. row ***************************
Command result: Autotuning calculation complete. Please check /var/lib/mcm_data/clusters/
test_cluster/tmp/autotune.31b68d15_85_1.mcm on host 192.168.56.102 for settings that will be
applied.
1 row in set (4.35 sec)

Listing 13-8 contains the content of /var/lib/mcm_data/clusters/test_cluster/tmp/autotune.
31b68d15_85_1.mcm, showing the suggested set commands to tune the cluster.

Listing 13-8. The Configuration Changes Suggested by the autotune Command

The following will be applied to the current cluster config:
set HeartbeatIntervalDbDb:ndbmtd=15000 test_cluster;
set HeartbeatIntervalDbApi:ndbmtd=15000 test_cluster;
set RedoBuffer:ndbmtd=32M test_cluster;
set SendBufferMemory:ndbmtd+ndbmtd=2M test_cluster;
set ReceiveBufferMemory:ndbmtd+ndbmtd=2M test_cluster;
set SendBufferMemory:ndb_mgmd+ndbmtd=2M test_cluster;
set ReceiveBufferMemory:ndb_mgmd+ndbmtd=2M test_cluster;
set SendBufferMemory:mysqld+ndbmtd=2M test_cluster;
set ReceiveBufferMemory:mysqld+ndbmtd=2M test_cluster;
set SendBufferMemory:ndbapi+ndbmtd=2M test_cluster;
set ReceiveBufferMemory:ndbapi+ndbmtd=2M test_cluster;
set SharedGlobalMemory:ndbmtd=20M test_cluster;
set FragmentLogFileSize:ndbmtd=64M test_cluster;
set NoOfFragmentLogFiles:ndbmtd=16 test_cluster;

As the content of autotune.31b68d15_85_1.mcm shows, configuration changes are made using the set
command. The syntax in its symbolic form is as follows:

mcm> set <option name>:<process(es)>[:NodeId]=<value> <cluster name>;

The <option name> is the name of the option, for example HeartbeatIntervalDbDb. Then you indicate
what to apply the option to. For most options, this is a single process (as opposed to a pair of processes); for
example, HeartbeatIntervalDbDb applies to the ndbtmd process. If an option should be applied to a single

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

422

process only, the node ID can be added. Finally, you specify the value and which cluster to apply the change
to. It is possible to set more than one option in one command; in that case, the options are combined as a
comma-separated list. Some options, noticeably TCP-related options, require two processes. For example,
the SendBufferMemory option specifies the size of the send buffer when sending from one node to another;
this buffer is specific to each pair of nodes. The autotune.31b68d15_85_1.mcm file includes examples of
single-process and dual-process options.

The settings look fine for this cluster, so they can be applied with the autotune command without the
--dryrun option:

mcm> autotune --writeload=low test test_cluster;
+---+
| Command result |
+---+
| Cluster successfully autotuned to template test |
+---+
1 row in set (4.44 sec)

Cluster Configuration: The set Command
The test cluster has the SQL nodes located on the same hosts as the data nodes. It was also determined that
the write load will be low. That is a good use case for enabling ndb_read_backup, which reduces the latency
for read operations by always reading from the data node on the same host as the SQL node. Additionally,
enable the binary log on NodeId = 51, but not on NodeId = 52. These two changes can be combined into
one set command, like so:

mcm> set ndb_read_backup:mysqld=ON,log_bin:mysqld:51=binlog test_cluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (3.79 sec)

Another change that will be made for the test cluster (overwriting one of the settings of the auto tuning)
is to increase the send buffers for communication between the two data nodes:

mcm> set SendBufferMemory:ndbmtd+ndbmtd=4M test_cluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (4.88 sec)

To ensure that the backups for the cluster are not deleted if the data administrator deletes the data directory
before an initial system restart, configure the backup directory to be outside the /var/lib/mcm_data path. First
create the directory and set the ownership on each host that will have a data node:

shell$ mkdir /backups
shell$ mkdir /backups/ndbmtd /backups/mysqld
shell$ chown -R mysql:mysql /backups

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

423

Then execute the configuration change:

mcm> set BackupDataDir:ndbmtd=/backups/ndbmtd test_cluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (5.03 sec)

mcm> set backupdatadir:mysqld=/backups/mysqld test_cluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (3.25 sec)

The backupdatadir option for the SQL nodes is a MySQL Cluster Manager specific option that defines
where the schema backup made during backup will be stored.

MySQL Cluster Manager verifies the option name and the value. If the validation fails, an error will be
returned:

mcm> set ndb_batch_sizes:mysqld=64K test_cluster;
ERROR 6003 (00MGR): No such configuration parameter ndb_batch_sizes for process mysqld

mcm> set ndb_batch_size:mysqld=64M test_cluster;
ERROR 6002 (00MGR): Value 64M is outside legal range [0 - 31536000] for configuration
parameter ndb_batch_size

One side effect of this validation is that new options introduced for the cluster processes cannot be
used until MySQL Cluster Manager also has been upgraded. This is particularly required for a major version
upgrade of MySQL NDB Cluster, which usually includes several new options and/or new ranges of valid
values.

Cluster Configuration: The get Command
The counterpart to the set command is the get command. It retrieves the value(s) of one or more options.
It is possible to filter the options and processes in the same way as for the set command. Listing 13-9 shows
how to get the value of the log_bin option for all mysqld processes, and the value of SendBufferMemory for
sending from the data node with NodeId = 1 to the data node with NodeId = 2.

Listing 13-9. Getting the Values of Two Configuration Options

cm> get log_bin:mysqld test_cluster\G
*************************** 1. row ***************************
 Name: log_bin
 Value: binlog
Process1: mysqld
 NodeId1: 51
Process2:

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

424

 NodeId2:
 Level:
 Comment:
1 row in set (0.15 sec)

mcm> get SendBufferMemory:ndbmtd:1+ndbmtd:2 test_cluster\G
*************************** 1. row ***************************
 Name: SendBufferMemory
 Value: 4M
Process1: ndbmtd
 NodeId1: 1
Process2: ndbmtd
 NodeId2: 2
 Level: Process
 Comment:
1 row in set (0.21 sec)

In the output of the log_bin option, notice how there is only a row for NodeId = 51 despite the
command asking for all mysqld processes. Why is that? By default, the get command only returns the
options that are set to non-default values. To include options using the default value, add the --include-
defaults or -d option (removing the Process2 and NodeId2 columns to reduce the width of the output):

mcm> get --include-defaults log_bin:mysqld test_cluster;
+---------+--------+----------+---------+...+---------+---------+
| Name | Value | Process1 | NodeId1 |...| Level | Comment |
+---------+--------+----------+---------+...+---------+---------+
| log_bin | binlog | mysqld | 51 |...| | |
| log_bin | OFF | mysqld | 52 |...| Default | |
+---------+--------+----------+---------+...+---------+---------+
2 rows in set (0.19 sec)

A special use of the get command is to not add any filter other than the cluster name. This will return
all options. Be aware that if the --include-defaults option is added, even this small test cluster returns
1896 rows.

Cluster Configuration: The reset Command
If it turns out that you made a mistake and you need to reset an option to its default value, you can use the
reset command. Listing 13-10 disables binary logging from NodeId = 51 and checks the settings after
running the reset command.

Listing 13-10. Resetting the log_bin Option

mcm> reset log_bin:mysqld:51 test_cluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (5.21 sec)

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

425

mcm> get --include-defaults log_bin:mysqld test_cluster;
+---------+-------+----------+---------+...+---------+---------+
| Name | Value | Process1 | NodeId1 |...| Level | Comment |
+---------+-------+----------+---------+...+---------+---------+
| log_bin | OFF | mysqld | 51 |...| Default | |
| log_bin | OFF | mysqld | 52 |...| Default | |
+---------+-------+----------+---------+...+---------+---------+
2 rows in set (0.27 sec)

With the cluster configuration set, it is time to start the cluster.

Starting and Stopping Processes
The test cluster is ready to be started. MySQL Cluster Manager has four commands to control whether
a cluster and its processes are started or stopped, as well as a restart cluster command. The five
commands are summarized in Table 13-15. The cluster name is mandatory for all four commands. The
Options column shows the options for performing an initial restart and the options required to specify the
nodes to start. Additional options exist for the commands; see the help text or documentation for details.

Since the test cluster is completely shut down, start it using the start cluster command:

mcm> start cluster test_cluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster started successfully |
+------------------------------+
1 row in set (2 min 25.02 sec

The command takes a while to complete. The progress can be followed using the show status
command in another mcm client. Listing 13-11 shows the status using various options at the time when
the two data nodes are starting. The --progressbar output can be particularly useful in a command that
refreshes automatically; an example is the watch command on Linux.

Table 13-15. The Commands to Start and Stop a Cluster or Its Processes

Command Options Description

restart cluster Perform a rolling restart. Initial rolling restarts are not
supported.

start cluster [--initial] Starts all processes in the cluster.

stop cluster Shuts down the entire cluster. Equivalent to stopping the
SQL nodes followed by the SHUTDOWN command in the
ndb_mgm client.

start process [--initial]
Node ID or --added

Starts a single process or all nodes added (but not yet started)
with the add process command (not discussed in this book).

stop process Node ID Stops a single process.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

426

Listing 13-11. The Status While Starting the Cluster

mcm> show status --cluster test_cluster;
+--------------+-----------------+---------+
| Cluster | Status | Comment |
+--------------+-----------------+---------+
| test_cluster | non-operational | |
+--------------+-----------------+---------+
1 row in set (0.06 sec)

mcm> show status --process test_cluster;
+--------+----------+----------------+----------+-----------+---------------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------------+----------+-----------+---------------+
49	ndb_mgmd	192.168.56.101	running		cluster_7.5.5
50	ndb_mgmd	192.168.56.102	running		cluster_7.5.5
1	ndbmtd	192.168.56.103	starting	n/a	cluster_7.5.5
2	ndbmtd	192.168.56.104	starting	n/a	cluster_7.5.5
51	mysqld	192.168.56.103	added		cluster_7.5.5
52	mysqld	192.168.56.104	added		cluster_7.5.5
53	ndbapi	*	added		
54	ndbapi	*	added		
+--------+----------+----------------+----------+-----------+---------------+
8 rows in set (1.81 sec)

mcm> show status --operation test_cluster;
+---------------+-----------+--------------+
| Command | Status | Description |
+---------------+-----------+--------------+
| start cluster | executing | <no message> |
+---------------+-----------+--------------+
1 row in set (0.06 sec)

mcm> show status --progress test_cluster;
+---------------+-----------+----------+
| Command | Status | Progress |
+---------------+-----------+----------+
| start cluster | executing | 62% |
+---------------+-----------+----------+
1 row in set (0.10 sec)

mcm> show status --progressbar test_cluster;
+---------------+-----------+----------------------------+
| Command | Status | Progress |
+---------------+-----------+----------------------------+
| start cluster | executing | 62% [############] |
+---------------+-----------+----------------------------+
1 row in set (0.12 sec)

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

427

When the start cluster command returns, the status of the cluster is fully operational:

mcm> show status --cluster test_cluster;
+--------------+-------------------+---------+
| Cluster | Status | Comment |
+--------------+-------------------+---------+
| test_cluster | fully operational | |
+--------------+-------------------+---------+
1 row in set (0.07 sec)

Starting and stopping individual nodes is performed similarly. For example, to stop the SQL node with
NodeId = 51:

mcm> stop process 51 test_cluster;
+------------------------------+
| Command result |
+------------------------------+
| Process stopped successfully |
+------------------------------+
1 row in set (10.51 sec)

To start the node again:

mcm> start process 51 test_cluster;
+------------------------------+
| Command result |
+------------------------------+
| Process started successfully |
+------------------------------+
1 row in set (14.48 sec)

There are essentially three ways to trigger a rolling restart of a cluster—use the restart cluster
command, perform a configuration change that requires a restart, or upgrade the cluster. Performing a
configuration change is the next topic discussed, whereas upgrading the cluster is the last topic in this section.

Configuration of an Online Cluster
When the configuration of an online cluster changes, a restart is sometimes required. For changes to mysqld
options where it is possible to make the change dynamic with a SET GLOBAL statement, this method will be
used. The configuration file is also updated to persist the change when the node is restarted the next time.
An example is to change the value of sort_buffer_size:

mcm> set sort_buffer_size:mysqld=32768 test_cluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (0.87 sec)

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

428

If a restart is required, MySQL Cluster Manager will automatically perform it. This means it is preferable
to combine all of the changes into one single set command when the cluster is online. The automatic restart
is made as a rolling restart, where up to half the data nodes (one data node from each node group) restart
in parallel to minimize the time it takes to perform the restart. However, to avoid overloading a host, no two
data nodes on the same host will be restarted at the same time.

 ■ Tip If multiple configuration changes are required of an online cluster, combine the changes into a single
set command to avoid multiple rolling restarts.

As an example, consider changing the value of DataMemory for the data nodes:

mcm> set DataMemory:ndbmtd=100M test_cluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (2 min 22.02 sec)

If the progress of the set command is monitored using the show status --process command, it is
possible to see how the nodes are restarted as part of the rolling restart:

mcm> show status --process test_cluster;
+--------+----------+----------------+----------+-----------+---------------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------------+----------+-----------+---------------+
49	ndb_mgmd	192.168.56.101	running		cluster_7.5.5
50	ndb_mgmd	192.168.56.102	running		cluster_7.5.5
1	ndbmtd	192.168.56.103	starting	0	cluster_7.5.5
2	ndbmtd	192.168.56.104	running	0	cluster_7.5.5
51	mysqld	192.168.56.103	running		cluster_7.5.5
52	mysqld	192.168.56.104	running		cluster_7.5.5
53	ndbapi	*	added		
54	ndbapi	*	added		
+--------+----------+----------------+----------+-----------+---------------+
8 rows in set (0.08 sec)

The temporary configuration difference during the restart can also be seen in the ndbinfo.memoryusage
view (the timing of the following query must be just right to see both data nodes online with different
DataMemory sizes) on the SQL node using the mysql command-line client:

mysql> SELECT node_id, total
 FROM ndbinfo.memoryusage
 WHERE memory_type = 'Data memory';
+---------+-----------+
| node_id | total |
+---------+-----------+
| 1 | 104857600 |
| 2 | 83886080 |
+---------+-----------+
2 rows in set (0.02 sec)

The ndbinfo schema is discussed in more detail in Chapter 16.

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

429

Backups
MySQL Cluster Manager creates two backups—a full backup using the native NDB Cluster backup and a
schema backup using mysqldump. Backups are created using the backup cluster command and both backups
are always created. It is not possible to ensure that the native NDB Cluster backup and the schema backup are
consistent with each other unless no schema changes are made during the period the backup is executing.

 ■ Note MySQL Cluster Manager does not provide any service to back up the binary logs. use the techniques
described in Chapter 8 instead.

The backup cluster command supports the same backup options as the START BACKUP command in
the ndb_mgm client, but specified in the same way as other optional parameters in MySQL Cluster Manager.
Table 13-16 lists the options available with the backup cluster command. The options are available both
with a long name and a single letter, with the former displayed in the first column and the latter in the
second. Additionally, the cluster name must be specified.

As an example of creating a backup with the backup ID set to 170511211, the following command can
be used:

mcm> backup cluster --backupid=1705112111 test_cluster;
+-------------------------------+
| Command result |
+-------------------------------+
| Backup completed successfully |
+-------------------------------+
1 row in set (55.27 sec)

Table 13-16. The Backup Cluster Options

Long Option Shortcut Description

--background -B Execute the backup in the background. The mcm client will
return control immediately.

--backupid -I The backup ID for the backup. This behaves the same way as
when the backup is started through the ndb_mgm client, i.e., it
must be an integer between 1 and 4294967294 (both inclusive).
By default, the next in sequence from the previous highest used
backup ID will be used.

--snapshotend -E Create the backup with a snapshot at the end of the backup.
This is the default.

--snapshotstart -S Create the backup with a snapshot at the start of the backup.

--waitcompleted -W MySQL Cluster Manager will keep the connection to the
management node open until the backup has completed. This
is the default.

--waitstarted -w MySQL Cluster Manager will only keep the connection to the
management node open until the backup has started.

http://dx.doi.org/10.1007/978-1-4842-2982-8_8

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

430

While the backup is in progress, the show status command with the --backup option will show the
following status:

mcm> show status --backup test_cluster;
+--+
| Command result |
+--+
| BackupId 1705112111 currently active in test_cluster |
+--+
1 row in set (0.13 sec)

The completed backups can be listed with the list backups command. By default, only the native
NDB Cluster backups will be listed. This can be changed by adding the --all option. If only one backup is of
interest, the --backupid option can be used to filter the list. Listing 13-12 shows examples of using the list
backups command. The timestamps are around the time the backup completed.

Listing 13-12. Listing the Completed Backups

mcm> list backups test_cluster;
+------------+--------+----------------+----------------------+---------+
| BackupId | NodeId | Host | Timestamp | Comment |
+------------+--------+----------------+----------------------+---------+
1705112054	1	192.168.56.103	2017-05-11 10:55:56Z	
1705112054	2	192.168.56.104	2017-05-11 10:55:56Z	
1705112103	1	192.168.56.103	2017-05-11 11:04:03Z	
1705112103	2	192.168.56.104	2017-05-11 11:04:03Z	
1705112111	1	192.168.56.103	2017-05-11 11:12:00Z	
1705112111	2	192.168.56.104	2017-05-11 11:12:00Z	
+------------+--------+----------------+----------------------+---------+
6 rows in set (0.28 sec)

mcm> list backups --backupid=1705112111 --all test_cluster;
+------------+--------+----------------+----------------------+---------+
| BackupId | NodeId | Host | Timestamp | Comment |
+------------+--------+----------------+----------------------+---------+
1705112111	1	192.168.56.103	2017-05-11 11:12:00Z	
1705112111	2	192.168.56.104	2017-05-11 11:12:00Z	
1705112111	51	192.168.56.103	2017-05-11 11:12:11Z	Schema
1705112111	52	192.168.56.104	2017-05-11 11:12:18Z	Schema
+------------+--------+----------------+----------------------+---------+
4 rows in set (0.32 sec)

The backup files can be found in the backup data directories that were configured when the test cluster
was first set up. The directory structure is the same as for native NDB Cluster backups created through the
ndb_mgm client. For example, on NodeId = 1 and NodeId = 51:

shell$ ls /backups/ndbmtd/BACKUP/BACKUP-1705112111/
BACKUP-1705112111-0.1.Data BACKUP-1705112111.1.ctl BACKUP-1705112111.1.log

shell$ ls /backups/mysqld/BACKUP/BACKUP-1705112111/
BACKUP-1705112111.51.schema.sql

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

431

 ■ Tip as always, make sure the backups are copied off the hosts and that there is a copy of the backups
outside the data center as well.

With the backups in place, it is possible to simulate a disaster where it is necessary to restore the backup.

Restoring a Backup
In order to simulate a situation where it is necessary to restore the backup made in the previous step,
perform an initial system restart of the test cluster. This will delete all the data from the cluster, so the only
way to recover is to restore the data from a backup. MySQL Cluster Manager uses the ndb_restore program
to restore a backup. As it is possible for the agent to communicate with the agents on the other hosts, it is
possible to perform the restore with a single command from any of the MySQL Cluster Manager agents.

 ■ Caution Do not perform an initial system restart of a production cluster unless it is absolutely necessary
and then only after verifying that a backup exists and it is possible to restore the backup!

The first step of the initial system restart is to stop the cluster:

mcm> stop cluster test_cluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster stopped successfully |
+------------------------------+
1 row in set (34.13 sec)

Then perform the initial system restart:

mcm> start cluster --initial test_cluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster started successfully |
+------------------------------+
1 row in set (1 min 19.63 sec)

For the restore in this example, the backup with the 170511211 ID will be used. The MySQL Cluster
Manager command to execute the restore is restore backup. As with ndb_restore, there are a number of
options to affect the restore, such as to specify which tables to restore. One important difference to executing
ndb_restore directly is that MySQL Cluster Manager will by default restore the metadata (the schema
definition) from the native NDB Cluster backup. So, the simplest way to perform a restore that restores both
the schema and data is as follows:

mcm> restore cluster --backupid=1705112111 test_cluster;
+--------------------------------+
| Command result |
+--------------------------------+
| Restore completed successfully |
+--------------------------------+
1 row in set (2 min 31.16 sec)

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

432

Upgrades
Remember the steps used when the upgrade was performed manually? MySQL Cluster Manager completes
the upgrade in four simple steps. This makes upgrades much simpler to execute, and simpler procedures
lead to fewer errors.

The four steps are:

 1. Download the new version to upgrade to.

 2. Unpack the downloaded file on each host.

 3. Add a package for the new version in MySQL Cluster Manager.

 4. Tell MySQL Cluster Manager to execute the upgrade.

Under the hood, the same steps are required compared to the manual upgrade. It is just that in this
case, MySQL Cluster Manager will keep track of what has to be done and when.

For this example, the upgrade is to version 7.5.6 with the downloaded file unpacked into /opt/mysql/
packages/7.5.6 in the same way as it was done for version 7.5.5 used for the initial installation:

shell$ cd /opt/mysql/packages/
shell$ tar -zxf mysql-cluster-gpl-7.5.6-linux-glibc2.5-x86_64.tar.gz
shell$ mv mysql-cluster-gpl-7.5.6-linux-glibc2.5-x86_64 7.5.6

This must be done on all hosts.
The new version can then be added as a package in MySQL Cluster Manager:

mcm> add package --basedir=/opt/mysql/packages/7.5.6 cluster_7.5.6;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (7.80 sec)

All that remains now is to execute the upgrade using the upgrade cluster command:

mcm> upgrade cluster --package=cluster_7.5.6 test_cluster;
+-------------------------------+
| Command result |
+-------------------------------+
| Cluster upgraded successfully |
+-------------------------------+
1 row in set (9 min 7.22 sec)

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

433

As usual, the show status command can provide information about the progress, for example:

mcm> show status --process test_cluster;
+--------+----------+----------------+----------+-----------+---------------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------------+----------+-----------+---------------+
49	ndb_mgmd	192.168.56.101	running		cluster_7.5.6
50	ndb_mgmd	192.168.56.102	running		cluster_7.5.6
1	ndbmtd	192.168.56.103	running	0	cluster_7.5.6
2	ndbmtd	192.168.56.104	starting	0	cluster_7.5.6
51	mysqld	192.168.56.103	running		cluster_7.5.5
52	mysqld	192.168.56.104	running		cluster_7.5.5
53	ndbapi	*	added		
54	ndbapi	*	added		
+--------+----------+----------------+----------+-----------+---------------+
8 rows in set (0.08 sec)

Notice how the management nodes as well as the data node with NodeId = 1 have already been
upgraded and restarted, while the data node with NodeId = 2 is in the process of restarting with the
upgraded version. The SQL nodes are still waiting for their turn and are still using version 7.5.5.

This concludes the MySQL Cluster Manager tutorial. The remainder of the chapter is an introduction
to troubleshooting MySQL Cluster Manager problems.

Troubleshooting MySQL Cluster Manager
The main sources of information to perform troubleshooting in MySQL Cluster Manager are the error
messages and the log file specified with the log-file option. It is also worth keeping in mind that MySQL
Cluster Manager is self-healing, so in most cases a restart of an agent that crashed will recover on its own; in
a worst-case scenario, whereby it is impossible to start an agent, the agent can be recovered by deleting the
agent repository. The error messages, the log, and the self-healing process are all discussed in this section.

Error Messages and the Log
Often the error message will be enough for you to diagnose the issue. Consider for example the following error:

mcm> set log_bin:mysqld:51=binlog test_cluster;
ERROR 1002 (00MGR): Agent on host 192.168.56.101:18620 is unavailable

The error indicates that there is a communication problem between the agent where the command
is executed and the agent on 192.168.56.101. In that case, investigate whether the agent is online on
192.168.56.101, whether the firewall permits the agents to communicate, etc.

If more information is required, it is necessary to look in the log file. It is possible to control the verbosity
of the log by setting the log-level option. Table 13-17 lists the log levels in order of increased verbosity. The
info and debug levels can generate a fair bit of log messages, the message somewhat less but still enough
to be able to start investigating most cases. The message level for example includes all commands executed
through the mcm client. The warning, error, and critical levels will, in general, not produce enough
information to be used for an investigation. It is best to use the message level during normal operations and
increase to the debug level when troubleshooting.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

434

The log level can be changed dynamically at runtime using the change log-level command. The
change can be applied to the agent on which the command is executed, to a list of hosts, or to a site. For
example, to change the log level to debug for the test_site site:

mcm> change log-level debug test_site;
+--------------------------------+
| Command result |
+--------------------------------+
| Log-level changed successfully |
+--------------------------------+
1 row in set (0.02 sec)

In the previous example, where the set command failed because the agent could not communicate
with the agent on host 192.168.56.101, it will not work to set the log level for the whole site. That will require
telling the agents on all the other hosts about the change. In a case like that, it is useful to change the log
level on the agent where the error is returned:

mcm> change log-level debug;
+--------------------------------+
| Command result |
+--------------------------------+
| Log-level changed successfully |
+--------------------------------+
1 row in set (0.00 sec)

When the log level is set to debug, the log file will contain messages like those shown in Listing 13-13.
Notice how each message includes the log level in parentheses after the timestamp. From the log snippet, it
can be seen that message level messages include the executed commands (the first message in the sample
output) and that an error was returned to the client (the last message). The highest severity message in this
example is a warning that it was not possible to deliver a message to the agent on host 192.168.56.101 port
18620 (the Xcom port). The debug messages include a confirmation that the cluster test_cluster exists and
the parsed components of the command.

Table 13-17. The MySQL Cluster Manager Log Levels

Log Level Description

critical The most severe errors. This could include a corrupted repository for the agent.

error Still a severe level for the agent. This could include configuration errors.

warning For conditions that may require a corrective action. A warning level message while
executing a command will cause the command to fail.

message Messages about the operation of the agent. This includes the commands executed through
the mcm client. This is the default and recommended log level.

info Informational messages. These generally do not require any action.

debug Additional information that can be required to debug errors.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

435

Listing 13-13. Example of the MySQL Cluster Manager Log

2017-05-16 21:07:50.520: (message) [T0x14eb320 chass] Received command: set log_
bin:mysqld:51=binlog test_cluster
2017-05-16 21:07:50.520: (debug) [T0x14eb320 chass@commands.c:1474] Verifying that cluster
exists
2017-05-16 21:07:50.520: (debug) [T0x14eb320 chass@commands.c:3993] Getting existing config
for test_cluster
2017-05-16 21:07:50.520: (debug) [T0x14eb320 chass@commands.c:3757] Sec='', key='log_bin',
proc1='mysqld', pid1='51', proc2='', pid2='', val='binlog'
2017-05-16 21:07:50.520: (info) [T0x14eb320 chass@manager-api-util.c:391] Appended: sec=''
key='log_bin' proct1='mysqld' pid1='51' proct2='' pid2='' val='binlog' pri=1 readonly=0
...
2017-05-16 21:07:50.612: (info) [T0x1572450 CMGR @cluster-manager.c:10199] First unavailable
host in view is 192.168.56.101:1
8620
2017-05-16 21:07:50.612: (warning) [T0x1572450 CMGR] Message delivery failed: err->
message='Agent on host 192.168.56.101:186
20 is unavailable' mgr_set_configvalues
2017-05-16 21:07:50.612: (info) [T0x1572450 CMGR @reply.c:161] Error reply to client
127.0.0.1:50173 req_id 6 { 1002, 'Agent
on host 192.168.56.101:18620 is unavailable' }
2017-05-16 21:07:50.613: (debug) [T0x14eb320 chass@message_broker.c:418] Updating last
replied req_id 5 -> 6
2017-05-16 21:07:50.613: (message) [T0x14eb320 chass] Returning error to client : 1002 Agent
on host 192.168.56.101:18620 is unavailable

Self-Healing Agents
One of the features of MySQL Cluster Manager is that it is self-healing. So, when a MySQL Cluster Manager
agent has been down, it will try to recover itself by getting the information it is missing from one of the other
agents. In rare cases—such as after a host crash—the state of the agent repository may become so bad that
a recovery is not possible. In those cases, one solution is to delete the agent repository and then start the
agent. First ensure the agent is not running by checking the process list on the host for the mcmd process. For
example:

shell$ ps auxf | grep mcmd | grep -v grep

This command should not return anything. In Microsoft Windows, check the Task Manager for the
existence of the mcmd process, as shown in Figure 13-10. In the figure, the mcmd process is there, so you must
first stop it.

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

436

With the agent down, remove everything in the repository directory together with the repository
checksum file. The repository is the rep directory under the path specified with the manager-directory
option, and the checksum file is the repchksum file in manager-directory. Using the configuration used
for the tutorial in the previous sections, the full paths on Linux are /var/lib/mcm_data/rep and /var/lib/
mcm_data/repchksum:

shell$ rm -f /var/lib/mcm_data/rep/* /var/lib/mcm_data/repchksum

For Microsoft Windows, the default paths are C:\Program Files (x86)\MySQL\MySQL Cluster Manager\
mcm_data\rep and C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\repchksum.
Assuming the default paths are used (otherwise substitute with the actual paths), delete them either through
File Explorer or from the command prompt:

C:\Users\wisborg>del /s "C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\rep"
"C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\repchksum"
C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\rep*, Are you sure (Y/N)? y
Deleted file - C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\rep\clustat.
test_cluster.8005fafe_10_0
Deleted file - C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\rep\config.test_
cluster.8005fafe_10_0
Deleted file - C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\rep\opstat.test_
cluster.8005fafe_10_0
Deleted file - C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\rep\site.test_
site.8005fafe_1_0
Deleted file - C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\rep\sitepackage.
cluster_7.5.5.8005fafe_8_0
Deleted file - C:\Program Files (x86)\MySQL\MySQL Cluster Manager\mcm_data\repchksum

Finally, start the agent again.

Figure 13-10. The mcmd process in the Microsoft Windows Task Manager

ChapTEr 13 ■ MySQL CLuSTEr ManagEr

437

Summary
This chapter provided a tour of MySQL Cluster Manager, which is a product included in the commercial
offering of MySQL NDB Cluster. After downloading, installing, and configuring MySQL Cluster Manager
itself, a test cluster was set up and several of the same tasks discussed earlier in the book were performed:

•	 Installing the cluster.

•	 Configuring the cluster.

•	 Starting and stopping the cluster and single processes.

•	 Making subsequent configuration changes.

•	 Backing up and restoring the data and schema.

•	 Updating the cluster.

The chapter also discussed how to troubleshoot issues that pop up while using MySQL Cluster Manager.
This completes the daily tasks and maintenance for MySQL NDB Cluster, and it is time to move on

to monitoring and troubleshooting. The next chapter looks at monitoring solutions and monitoring the
operating system.

PART IV

Monitoring and Troubleshooting

441© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_14

CHAPTER 14

Monitoring Solutions and
the Operating System

An often-forgotten part of maintaining a database is that it must be monitored. There are two sources of
data to monitor—data collected by an external monitoring solution or the database administrator and logs
written by the processes running on the operating system. Irrespective of the source of the data, monitoring
has a threefold purpose. This chapter, together with the next three chapters, will go through the various parts
of monitoring from the high-level monitoring solutions to the actual troubleshooting using the collected
data and logs.

The journey through the world of monitoring and troubleshooting will start in this chapter with a
discussion about monitoring at the high level and going through monitoring solutions and the reasons
that you need to monitor. The chapter concludes with considerations of how to monitor the operating
system. The next two chapters go through MySQL data sources and MySQL specific logs, with an emphasis
in Chapter 15 on the sources and logs that are also available for MySQL Server installations. Chapter 16 is
devoted to the data sources and logs exclusive to MySQL NDB Cluster. Chapter 17 discusses troubleshooting,
including examples of using the logs.

Why Monitor?
Monitoring might seem like a boring task that does not provide any direct improvement to a MySQL NDB
Cluster installation. However, the importance of having a good monitoring in place cannot be stressed
enough. It is the best line of defense to avoid issues in the first place and is invaluable to investigate issues.

This section covers the three main reasons to monitor a cluster:

•	 Establish a baseline: Makes it possible to see the effect of making changes. This is
primarily useful for performance issues and to help predict when maintenance is
required.

•	 Perform a root cause analysis: Something went wrong, but what and why?

•	 Perform preventive maintenance: Prevent issues from happening.

Since MySQL NDB Cluster is often used for high-availability systems, the importance of monitoring is
even more important than in some other cases.

https://doi.org/10.1007/978-1-4842-2982-8_14
http://dx.doi.org/10.1007/978-1-4842-2982-8_15
http://dx.doi.org/10.1007/978-1-4842-2982-8_16
http://dx.doi.org/10.1007/978-1-4842-2982-8_17

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

442

Figure 14-2 shows some more metrics for the same index addition, but at the cluster level. The increase
of the number of statements per second reflects the increase in the number of executions of the query. Is that
expected? Or does that show that the query is executed more often than it should be? It might also be that
the change simply allowed the cluster to handle all of the queries expected now that the index was added.

Establish a Baseline
When monitoring data is recorded over time, the historical data can be used as a baseline. That is, for comparison
with newly collected data to see the differences. This is particularly useful for determining whether a change
made to the system was successful, such as whether the performance or availability has been improved.

Consider the following use case: One of the users of the application complains about the time it takes to
perform some action, for example, the time to load a web page. The investigation concludes that the solution will
be to add an index to a table to reduce the number of rows examined. How can monitoring be used to determine
whether the issue has been resolved after adding the index? This is where the baseline comes into play.

 ■ Note Sometimes a solution may be found, but it turns out that the change does not improve the situation
or even makes it worse. a good baseline combined with data comparisons ensure that the investigation does
not end before the issue is really resolved.

Figure 14-1 shows metrics of the query in question for the period before and after the index was added
to improve the query. The index was added around 12:57, which is obvious from the change to the data.
The execution time improves by almost an order of magnitude and the number of executions increases by
around the same factor. So, from the perspective of the query, it is mission accomplished. There is a little
more to the story, though.

Figure 14-1. The query metrics before and after the index was added

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

443

Figure 14-2. The overall metrics before and after adding an index

It is also worth noting the network throughput on the cluster. The Row Accesses graph shows that the
work went from being table scans to index scans and lookups. This was the aim of the schema change, so
that is good. However, despite each query now accessing fewer rows, the increase in number of queries has
caused the overall network usage to increase. Does that warrant an upgrade of the network infrastructure?
The send throughput peaks at around 10 mbit (1.25 MB/s), so if that is the maximum supported throughput
of the network, an upgrade is required. The network utilization is also useful to investigate through
preventive maintenance, as described later.

Perform a Root Cause Analysis
Another common use case of monitoring is to determine the root cause of an issue. As an example, users
complain that they are getting a “table is full” error. The following shows the query and the error returned:

mysql> INSERT INTO t1 (val) VALUES (UUID());
ERROR 1114 (HY000): The table 't1' is full

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1296
Message: Got error 827 'Out of memory in Ndb Kernel, table data (increase DataMemory)' from NDB

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

444

*************************** 2. row ***************************
 Level: Error
 Code: 1114
Message: The table 't1' is full
2 rows in set (0.00 sec)

The output of SHOW WARNINGS reveals that there is no more room in the data memory. A monitoring
graph is very helpful in a case like this. The graph must display the amount of memory used out of
DataMemory over time. This makes it possible to determine how quickly the memory has been used. For
example, if it was a gradual change over several years, it is likely just showing regular growth of the data. On
the other hand, if the growth happened over a few minutes, it suggests a change to the use of the cluster or
even a bug in the application. Figure 14-3 shows the data memory usage graph, together with the queries
that may have caused an increase in the data used.

Figure 14-3. The data memory usage together with the relevant queries

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

445

Figure 14-3 is from the Query Analyzer in MySQL Enterprise Monitor. The graph displays the total
amount of DataMemory (the horizontal line at the top) and the increasing line shows the memory used out of
DataMemory. This makes the amount of free memory the difference between the two lines. The graph shows
that the amount of free memory gradually decreased over 25 minutes until 95% of the memory was used
(with the last 5% reserved for restarts).

The lower part of the screenshot shows that there can only be one source of the increased data memory
usage: the INSERT INTO 't1' ('id', 'val') VALUES (...) query. This query was executed more than
250,000 times in the half hour that was selected. There is also a CREATE TABLE statement for the table, so this
suggests that some kind of batch job storing data in the table or a data import job or similar was executed.
With this information, it is time to determine whether the issue should be resolved by avoiding the data in
the t1 table or whether it is necessary to increase the value of DataMemory. The section entitled “MySQL
Enterprise Monitor” later in the chapter covers the Query Analyzer in more detail.

It would have been even better if the issue had been discovered before all of the data memory had been
exhausted and the database started to return errors. How to use monitoring to avoid these potential issues is
the next topic.

Perform Preventive Maintenance
The best kind of issues are the ones that are resolved before they become a problem. Monitoring is the best
place to look for potential issues. The two examples in this section show how preventive maintenance can be
used to avoid a problem.

The baseline example saw the network usage of the cluster increase after a new index made it possible
to increase the number of queries per second on the cluster. This may cause the network to become a
bottleneck, so the usage should be monitored. If it is determined that the current network configuration will
not be able to sustain the workload, corrective actions in the form of changes to the workload or improving
the capacity of the network must be taken.

The root cause analysis example had the data memory usage increase over a period of time. Typically
for these kind of issues, it is a slow change that occurs over several months. With a monitoring system such
as MySQL Enterprise Monitor that alerts of potential issues before they become critical, it is possible to make
the required changes ahead of time. In this case, either add data memory or stop the job that loaded all of
the data into the table.

Analyzing the monitoring data is among the database administrators’ and system administrators’ most
important tasks. Having a good monitoring system installed with alert events configured appropriately is an
important step to simplify this work.

Monitoring Solutions
It will become apparent in this and the two next chapters that there is a vast amount of data that can be
collected for monitoring purposes. Any attempt to manually keep on top of the raw data and detect potential
issues is bound to fail, and investigations of ongoing issues and root cause analysis will take longer than they
should. This is where monitoring solutions show their strength.

A monitoring solution is software dedicated to collect and display monitoring data. Additionally,
the most useful solutions either send notifications of problems on their own or can be combined with
notification software. The exact way monitoring solutions are implemented varies and there are different
opinions as to which solution is the best. In that respect, the important thing is to find a product that
provides the necessary monitoring and become familiar with it.

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

446

 ■ Tip treat the monitoring solution as a production system. With the requirements that applications are
available 24 hours a day, monitoring becomes increasingly important. So make sure the monitoring system is
itself monitored, the required availability has been defined, etc.

MySQL Monitoring Solutions
MySQL provides two monitoring solutions. Both solutions are part of the MySQL Enterprise Edition and
MySQL Cluster Carrier Grade Edition subscriptions, but like MySQL Cluster Manager, they are available in a
30-day trial version (https://www.mysql.com/trials/). The solutions are as follows:

•	 MySQL Enterprise Monitor: A standalone monitoring solution written by the
MySQL team. Often abbreviated MEM.

•	 Oracle Enterprise Manager for MySQL: A plugin for monitoring MySQL Server
instances from within Oracle Enterprise Manager (OEM).

The same development team works on both solutions. However, since Oracle Enterprise Manager for
MySQL is part of a larger monitoring solution from Oracle Corporation, it does not have all of the features
included in MySQL Enterprise Monitor. Specifically, there are no MySQL NDB Cluster specific metrics
included in Oracle Enterprise Manager for MySQL. For this reason, it is better to use MySQL Enterprise
Monitor, and this is the only one of the two solutions discussed in more detail in this book. The next section
provides a brief overview of MySQL Enterprise Monitor.

 ■ Tip to monitor MySQl ndB Cluster, MySQl enterprise Monitor is preferred over oracle enterprise Manager
for MySQl.

MySQL Enterprise Monitor (MEM)
MySQL Enterprise Manager was first released more than 10 years ago. At the time of writing, the latest
version is version 3.4, but version 4.0 has later been released. It is written by the MySQL developer
team specifically to monitor MySQL and the hosts MySQL is installed on. This section goes through the
components of MySQL Enterprise Monitor, how to install and upgrade it and its most important features.

 ■ Tip new versions of MySQl enterprise Monitor are released frequently. each new version includes new
features. For example, version 3.2 included a new replication dashboard, version 3.3 included a dashboard for
monitoring backups, version 3.4 included support for group replication, and version 4.0 includes improved
monitoring of MySQl ndB Cluster and a new user interface as some of the new features. Make sure to use the
latest version to have all the monitoring features available. the manual at https://dev.mysql.com/doc/mysql-
monitor/en/ includes a description of the latest features and has a link to the release notes.

https://www.mysql.com/trials/
https://dev.mysql.com/doc/mysql-monitor/en/
https://dev.mysql.com/doc/mysql-monitor/en/

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

447

Components
MySQL Enterprise Monitor consists of several components. The database administrator can choose to
install the components required for the system that should be monitored. Table 14-1 lists the four types of
components that are available.

Table 14-1. Types of MySQL Enterprise Monitor Components

Component Description

MySQL Enterprise Service Manager This is the main component where the collected data is
stored and can be viewed. There are three subcomponents to
the MySQL Enterprise Service Manager: Apache Tomcat, Java
Runtime Environment (JRE), and MySQL Server (optional).
The user interface is accessed through a web browser.

MySQL Enterprise Monitor Agent The MySQL Enterprise Monitor Agent collects the data and
sends it to the MySQL Enterprise Service Manager.

MySQL Enterprise Monitor Proxy and
Aggregator

The MySQL Enterprise Monitor Proxy and Aggregator can be
used to collect query information for the Query Analyzer. In
MySQL NDB Cluster 7.3 and later the source of this data will
usually be the Performance Schema. The MySQL Enterprise
Monitor Proxy and Aggregator are not required when the
data is colelcted from the Performance Schema.

MySQL Enterprise Plugin for Connector/PHP
MySQL Enterprise Plugin for Connector/J
MySQL Enterprise Plugin for Connector/Net

There are plugins available for PHP, .Net, and Java. The
plugins can send query data directly to the MySQL
Enterprise Service Manager (.Net and Java) or via the MySQL
Enterprise Monitor Aggregator (PHP).

In most setups, only the MySQL Enterprise Service Manager and the MySQL Enterprise Monitor Agent
are used, so these are the only components that are discussed in more detail.

A MySQL Enterprise Monitor Agent is responsible for collecting data and sending it to the MySQL
Enterprise Service Manager for storage and analysis. An agent can collect data by executing queries against
an SQL node either on the same host or a remote host. Additionally, the agent can collect host level data
such as CPU statistics, memory usage metrics, disk utilization, and network throughput from the host it is
installed on. So, in order to collect all data, you must install an agent on all hosts in a cluster.

The MySQL Enterprise Monitor Service Manager stores the data in a MySQL Server instance called the
repository. It is possible to use either a bundled repository or an existing MySQL Server instance. It is in most
cases best to use the bundled repository as it ensures that all requirements are met and the repository is
upgraded when the MySQL Enterprise Service Manager is upgraded.

 ■ Caution never choose the repository to be one of the MySQl instances that MySQl enterprise Monitor is
set up to monitor. doing so will prevent the detection of problems with the cluster, for example, if the SQl node
becomes unavailable.

The MySQL Enterprise Service Manager includes an agent. This allows MySQL Enterprise Monitor
to automatically set up monitoring of its own repository and the host on which the MySQL Enterprise
Service Manager is installed. Since the agent can monitor remote MySQL instances, in principle the MySQL
Enterprise Service Manager is all that is required if host-level monitoring of remote hosts is not required.

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

448

Installation and Upgrades
The installation and upgrade of the MySQL Enterprise Service Manager and the MySQL Enterprise Monitor
Agent are straightforward. The downloads include two binaries, one of which is for new installations and the
other that is for upgrades. Each installer includes everything required to install the component. Table 14-2
includes examples of the filenames from version 3.4.0 for the installers on Linux and Microsoft Windows.

Table 14-2. Installer Binaries

Action Installer Filename

New install mysqlmonitor-3.4.0.4144-linux-x86_64-installer.bin
mysqlmonitor-3.4.0.4144-windows64-installer.exe

Upgrade mysqlmonitor-3.4.0.4144-linux-x86_64-update-installer.bin
mysqlmonitor-3.4.0.4144-windows64-update-installer.exe

Notice how the binaries for new installations end with installer (plus the file extension) and for
upgrades, they end in update-installer (plus the file extension). The exact filenames will depend on the
release installed, as the version numbers and build numbers (4144 in this case) are included in the filename.

An installation or upgrade can be performed in one of three modes:

•	 GUI: A GUI-based installation with dialogs to set up MySQL Enterprise Monitor.

•	 Text: The text mode provides the same functionality as the GUI mode, but all the
dialogs are in text mode. This is useful when no graphical user interface is installed
on the target server.

•	 Unattended: All options are provided on the command line. This is great for
scripting installs.

It is best the first time to use either the GUI or text mode to get familiar with the configuration options.
Later installations, particularly of the agents, can be automated using the unattended installation. When
the installer is executed with root or administrator rights, it will attempt to add the component as a service
(for example as System V init script on Linux or as a Microsoft Windows Service), so MySQL Enterprise
Monitor is automatically started and stopped together with the operating system. Figure 14-4 shows one
of the screens in GUI mode for the MySQL Enterprise Service Manager, where the settings for the bundled
repository are configured.

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

449

Figure 14-4. Configuring the repository during the installation

Remember the discussion in Chapter 12 about giving the minimum required privileges to the users?
This also applies to the users involved in monitoring. The MySQL Enterprise Monitor Agent supports using
three different users: an administrator account, a general account, and a limited account. When all accounts
are present, MySQL Enterprise Monitor will choose the account with the fewest privileges that can perform
the task. This also ensures that the extra login that is reserved in addition to max_connections for a user with
the SUPER privilege is not used by the monitoring system.

The installer for the agent supports creating the general and limited accounts automatically, provided
the administrator account has been configured with the WITH GRANT privilege. Figure 14-5 shows the setup
screen in the GUI installer for MySQL Enterprise Monitor Agent that enables you to set up the less privileged
accounts.

http://dx.doi.org/10.1007/978-1-4842-2982-8_12

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

450

 ■ Tip the MySQl enterprise Monitor agent installer supports adding two users with fewer privileges than
the administrator account used for the installation. it is strongly recommended that you choose this option by
checking the Auto-Create Less Privileges Users checkbox.

Features
MySQL Enterprise Monitor has a range of features, most of which are similar to those offered by other
monitoring solutions. Additionally, there are some features that are unique. These features fit into four
groups, as shown in Table 14-3. Some of the features are discussed in more detail.

Figure 14-5. Adding less privileged users while installing the agent

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

451

Figure 14-6. The MySQL NDB Cluster advisors

Table 14-3. MySQL Enterprise Monitor Feature Groups

Feature Group Description

Dashboards The dashboards provide an overview of instances, replication, etc.

Events Events are triggered when some condition is met. The rules that decide which
metrics are outside the normal range are called advisors.

Query Analyzer The Query Analyzer shows statistics of the queries executed in MySQL. It is
possible to display a time series graph together with the query statistics.

Reports & Graphs There is a range of reports and time series graphs; for example, a snapshot of the
process list, the number of queries per second, etc.

The events are the mechanism for MySQL Enterprise Monitor to alert the database administrator
and system administrator that some metric is outside the expected operational range. It may range from a
catastrophic event indicating that a MySQL instance can no longer be reached (for example, because the
host has crashed) to informational messages that the disk will be out of space a month from now if no action
is taken. The rules used to decide whether an event should be triggered are called advisors. As of version
3.4.0, there are over 230 preconfigured advisors in 14 categories. Figure 14-6 shows a subset of the advisors
(the MySQL NDB Cluster specific advisors).

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

452

There are four severity levels for events:

•	 Notice: This is a heads up that the metrics are getting outside the expected range.
The issue is not expect to be severe enough to impact the performance or availability,
so no immediate action is required. For example, it could be that the amount of
data memory used has reached a level where it is time to start considering whether
archiving should be implemented or additional memory should be added to the hosts.

•	 Warning: The situation is not yet impacting performance or availability, but an
investigation should not be held off for long.

•	 Critical: Performance or availability is assumed to be affected or will very soon be
affected. Investigate and take action immediately.

•	 Emergency: The service is unavailable or so slow that it is essentially an outage.
Immediate action is required.

The threshold for each advisor can be set per severity level. When an event triggers, it is possible to have
emails sent or Simple Network Management Protocol (SNMP) traps triggered to alert the relevant people
in the organization. The alerts can be sent based on the affected system, the advisor, and the severity. For
example, an alert may be sent to the system administrator if the disk is running out of space, but a warning
that replication has stopped will be sent to the database administrator.

Make sure to configure the notification of events and the thresholds for triggering the events, so the
urgency is correctly reflected. For example, if an alert arrives as a text message and wakes the database
administrator up at 2:00 am, it better be important enough to get out of bed. Once notifications are
dismissed with, “oh, it can wait,” sooner or later an important event will be missed. If the event being alerted
by 2:00 am by text message is not worth getting out of bed for, then send it as an email or a text message at
the start of the next business day. This advice applies to all monitoring solutions.

 ■ Tip if notifications can be dismissed more than once, it is a sign that the thresholds or notification setup
should be changed.

The Query Analyzer is one of the main features in MySQL Enterprise Monitor. Query statistics are
collected and the Query Analyzer allows the user to compare the queries executed in a given time frame
with the other data collected. An example of this was shown in the root cause analysis example in the
“Why Monitor?” section. Additionally, the Query Analyzer can be used to find badly tuned queries, the
most frequently executed queries, etc. The data for the Query Analyzer is by default collected from the
Performance Schema (covered in the next chapter), but it is also possible to use one of the connector plugins
or the proxy plugin.

The reports and graphs feature includes various ways to display collected data. This ranges from
traditional time series graphs, as those shown in the graphs earlier in the chapter, to ad hoc reports that
show a snapshot of the current process list.

 ■ Note the monitoring graphs included in this chapter originate from MySQl enterprise Monitor.

 ■ Note third-party monitoring and alerting solutions commonly used with MySQl include Cacti, nagios,
and Zabbix. each solution works in different ways and has its strengths and weaknesses, so it is important to
become familiar with your specific monitoring solution.

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

453

The Operating System
Database management systems are resource hungry processes, and MySQL NDB Cluster is no exception.
This means that it is important to monitor the usage and availability of resources at the operating system
level. As will be seen in the two next chapters, the SQL nodes have some data about CPU, network, and disk
usage; however, it is no way a substitute for monitoring the hosts directly through the operating system.

The details of monitoring operating system metrics depend entirely on the operating system and
version. Even different flavors of Linux and UNIX have different ways of obtaining the same metrics. For this
reason, it is beyond the scope of this book to provide information on how to collect the data. Instead, the
focus is on what kind of data to collect.

 ■ Note if MySQl is deployed in virtual machines, make sure to monitor the host system and the hypervisor
(virtual machine platform) as well as the virtual machine. the performance of the host system may impact the
processes inside the virtual machine.

The fail early strategy of the data nodes also means that overloads of any part of the operating system—
down to contention on a single CPU thread—can cause problems. This makes monitoring the operating
system on the hosts with data nodes particularly important. Do also ensure that hardware related to the
cluster but not necessarily with nodes installed is monitored; this for example includes network components
between the nodes.

The data nodes start warning about stalls after 100 milliseconds and the watchdog shuts down a data
node after 18 seconds if a thread is unresponsive. A typical sampling interval for a monitoring solution
may be one minute. It is likely with one minute between measurements that the contention leading to a
watchdog shutdown will not be detected. In fact, the one-minute average may be lower than normal, as the
data node stops using resources once it is shut down. In general, the data collection must be done more
frequently on hosts with data nodes than for other hosts, while still taking care to avoid the overhead of
monitoring becoming a problem.

This section continues going through the most important metrics to monitor at the operating system
level. The discussion focuses on the data node requirements, but also in general applies to other hosts.

CPU Usage
The data nodes primarily have an in-memory workload. This means the data nodes are typically CPU bound
(as opposed to I/O bounds from reading data from disk). The ndbinfo schema (see Chapter 16) has excellent
CPU metrics for the data node threads, but it does not include information about the CPU usage of other
processes on the machine, including SQL nodes. So, the monitoring should fill in this gap.

Each data node thread may have very different CPU usages, so if possible collect CPU usage data for
each virtual CPU. The ndbinfo.threadstat view includes the operating system thread ID for each data
node thread. Combining the monitoring data for each virtual CPU with the data collected from ndbinfo.
threadstat will allow the database and system administrators to correlate the data to determine whether
data node performance issues are related to the CPU usage.

Network Usage
Given that MySQL NDB Cluster is a distributed system relying on the network for the inter-node
communication, it comes as no surprise that network monitoring is important. Even a 10Gbit dedicated
network between the data nodes can get saturated for high performance clusters.

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

454

As for the CPU usage, the ndbinfo schema can provide details for the network usage for the data nodes
through the ndbinfo.transporters view. The SQL nodes similarly have status variables providing the
amount of data sent and received. So, the operating system monitoring must collect data for the overall
usage and if possible the network usage of other processes.

An example that could cause cluster problems is a process that copies large amounts of data through
the same network interfaces that the data node uses. One scenario is the backups being copied off the host.
It may even be a host that is not related to the cluster that causes problems, if it is using the same network
infrastructure as the cluster nodes.

Disk Usage
It is easy to forget about the disks when it comes to monitoring MySQL NDB Cluster. After all, it is primarily
an in-memory database. However, all in-memory data is persisted through local checkpoints, the redo logs,
and backups. There is also support for on-disk data tablespaces, which also demands a high performing disk
system.

In the example with the ndbinfo log space report in Chapter 16, you learn that the longer it takes to
write out the data to the local checkpoints, the more data must be stored in the redo logs. That means
bottlenecks in the disk performance can directly affect how much disk space is required for the redo logs.
Changing the size of the redo logs requires an initial rolling restart, so this is a relatively major change.

The disk_write_speed_% views in ndbinfo provide inside information about the disk write speeds that
the data nodes achieves. The operating system monitoring needs to collect information that can be used to
investigate if the data nodes cannot achieve the expected throughput—or prevent the disk system from being
saturated by making changes to the storage ahead of time. If possible, also collect data that shows the disk
usage per process. For a disk system with a battery backed write cache (https://en.wikipedia.org/wiki/Disk_
buffer#Write_acceleration), the battery status can also greatly affect the performance. If a battery becomes
faulty or goes through a relearning procedure, the disk system will enter a degraded mode. The same issue
can occur if a disk in a raid-array becomes faulty or is being rebuilt.

Aside from the disk throughput used for the processes, the amount of disk space used is also important
to monitor. As the amount of data in the data nodes increases, the local checkpoints and backups become
larger, so they take up more disk space. It may also be that more tablespace and/or undo log files are added
for on-disk data.

A surprising culprit of running out of disk may also be the redo logs. The size of the redo logs will in
principle not change, except if the fragment log file options are changed through an initial (rolling) restart.
However, by default, the files are created sparse, so they do not consume much disk space at first. No part of
the redo log can be reused until all the files have been used, so it may take a while before all of the disk space
reserved for the redo logs will actually be used. If the monitoring does not watch the free disk space, this can
cause the data nodes to run out of disk (failing to write the redo log may cause data loss).

Memory Usage
Memory usage is typically not a problem for the data nodes. When a data node starts, it not only requests
all the memory it has been configured to use, it also writes to (touches) all of the memory to ensure the
operating system really allocates it. So, it is rare for a data node to run out of memory unless another process
is the culprit. That said, monitoring should still collect memory usage statistics.

Do not rely on the memory instrumentation in the Performance Schema (see Chapter 15) to monitor
the overall memory usage of the SQL nodes. While the memory instrumentation is very useful, it does not
have 100% coverage. So even if the performance overhead of permanently enabling the memory instruments
is acceptable, supplement the monitoring by collecting data at the operating system level.

http://dx.doi.org/10.1007/978-1-4842-2982-8_16
https://en.wikipedia.org/wiki/Disk_buffer#Write_acceleration
https://en.wikipedia.org/wiki/Disk_buffer#Write_acceleration
http://dx.doi.org/10.1007/978-1-4842-2982-8_15

Chapter 14 ■ Monitoring SolutionS and the operating SySteM

455

Logs
It is important to keep an eye on the logs. The operating system logs include a wide range of message types,
from recording execution of jobs through the task scheduler over general operating system messages to
audit logs. It may not be possible to automate the monitoring of the logs, in which case a manual inspection
of the logs must be part of the routine. Even if fully automated monitoring is not possible, it may be possible
to monitor for certain events and strings in the logs and notify the system administrator when the test is
positive.

Log monitoring should focus on detecting hardware problems, out of memory issues, intrusions, etc.
The system logs can also be very valuable for root cause analysis, so be sure that there is a retention policy in
place that ensures the logs are kept for a period and possibly backed up to another host.

Summary
This chapter covered monitoring at a high level as well as what to be aware of when monitoring at the
operating system level. The topics discussed in this chapter are:

•	 Why monitoring is important, with three examples of using monitoring for baseline
monitoring, root cause analysis, and preventive maintenance.

•	 Monitoring solutions, including MySQL’s enterprise solution, MySQL Enterprise
Monitor.

•	 At the operating system level, the most important things to monitor are the network,
CPU, disk, and memory.

•	 Watch the logs. This includes the operating system level logs.

The next chapter dives into the data sources and logs available in general for both MySQL Server and
MySQL NDB Cluster.

457© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_15

CHAPTER 15

Sources for Monitoring Data

Monitoring data can be collected from a variety of sources. No matter how good a monitoring solution is, it
is important not only to know where the data comes from, but also how it is collected, the units of measure,
the limitations of the data source, and how it can be used for analysis. That helps you understand what can be
read out of the data. Additionally, it may be necessary to collect some data manually while performing a test
or investigating an issue, whereas other data is more geared toward manual use. An example of the latter is
the process list.

There are numerous ways to collect data. The five main areas that are available on both MySQL Server
and MySQL NDB Cluster are:

•	 The Information Schema

•	 The Performance Schema

•	 The sys schema

•	 SHOW statements

•	 The MySQL error log

This chapter goes through all of these areas and provides several examples of how to use the sources.

The Information Schema
The Information Schema was introduced to MySQL in version 5.0. It is a common feature across several
relational database management systems (though not all). MySQL aims to follow the SQL:2003 standard for
F021 Basic information schema with some changes to reflect the specific nature of MySQL (for example, the
standard does not take into account that there are several storage engines).

The Information Schema was the first metadata schema in MySQL, so it has also ended up being
the home for many tables that do not really belong there. Recently work has been started to make the
Information Schema focused on relatively static data such as schema information, which plugins are
available, etc. The first step was to move the tables with configuration variables and status counters to the
Performance Schema; this was done in MySQL Server 5.7.6 (a development milestone release) and MySQL
NDB Cluster 7.5 (all releases). The work is continuing, and some deprecation warnings may be encountered
in MySQL NDB Cluster 7.5 and later.

This section introduces the Information Schema tables and explains how to use them. At the end, the
tables that have data that is specific to NDB Cluster will be discussed, with examples.

https://doi.org/10.1007/978-1-4842-2982-8_15

Chapter 15 ■ SourCeS for Monitoring Data

458

Information Schema Tables
The list of available Information Schema tables varies with the version and the features that have been
enabled. Tables 15-1 through 15-4 show all the Information Schema tables in a default MySQL NDB Cluster
7.5 SQL node, except for the tables specific to InnoDB. The tables are split into four groups:

•	 System information such as available character sets, storage engines, etc.

•	 Schema information such as the schemata, tables, etc.

•	 Privilege information

•	 Configuration and performance monitoring metrics

InnoDB is required for the SQL nodes to work in MySQL NDB Cluster 7.5 and adds another 30 tables, but
for brevity these are not included here.

Except for OPTIMIZER_TRACE (introduced in version 7.3), all tables are available in at least MySQL NDB
Cluster version 7.2 and later. The convention is that Information Schema table names are in all uppercase
(an exception is ndb_transid_mysql_connection_map, which is lowercase).

Table 15-1 lists the Information Schema tables with information about the system such as character
sets, plugins, etc. These can be useful for verifying which features are available.

Table 15-2 goes through the tables that provide information about the schemas, tables, columns, stored
routines, etc. These are often used to answer questions such as which tables have a foreign key to a specific
table and what are the index statistics for an index.

Table 15-1. The Information Schema: MySQL System Information Tables

Table Description

CHARACTER_SETS The available character sets. All char, varchar, and text
columns have a character set associated with them.

COLLATIONS The available collations. Each collation belongs to a character
set and defines the comparison and sorting rules.

COLLATION_CHARACTER_SET_APPLICABILITY The mapping of each collation to a character set. This is the
same as the first two columns of the COLLATIONS table.

ENGINES Information about the storage engines.

PLUGINS Available plugins, including status. Plugins are for example
storage engines and authentication plugins.

Chapter 15 ■ SourCeS for Monitoring Data

459

The privilege information tables are listed in Table 15-3. The privileges are stored in tables in the
mysql schema, and the four Information Schema privilege tables are views into the cached privileges (i.e.,
if the mysql privilege tables are updated directly using INSERT, UPDATE, DELETE, etc., then the Information
Schema privilege tables will not show the change until after the execution of FLUSH PRIVILEGES). The table
definitions of the Information Schema tables are not the same as for the mysql tables. The tables are, for
example, useful for finding users with a specific privilege or access to a given schema, table, or column.

There are several tables related to monitoring in the Information Schema. These are included in
Table 15-4. Some of these tables already have new implementations in the Performance Schema. The ndb_
transid_mysql_connection_map table is of particular interest to MySQL NDB Cluster and will be used in
examples later in this chapter and in the next chapter.

Table 15-2. The Information Schema: Schema Information

Table Description

COLUMNS The column definitions for the tables.

EVENTS Information about events defined on the SQL node (remember that events are
not automatically distributed among the SQL nodes).

FILES Information about tablespace and log group files created by MySQL. Before
MySQL Server 5.7/MySQL NDB Cluster 7.5, this was an NDB Cluster specific
table. It, for example, includes information about the amount of free space in
the files.

KEY_COLUMN_USAGE Information about the columns used in referential constraints (primary keys,
unique keys, and foreign keys).

PARAMETERS Information about the parameters in stored programs.

PARTITIONS Information about each partition in the tables.

REFERENTIAL_CONSTRAINTS Information about foreign keys.

ROUTINES Details including the full definition of stored procedures and stored functions.

SCHEMATA Schema (database) information.

STATISTICS The equivalent of SHOW INDEXES.

TABLES Information of all tables. The equivalent of SHOW TABLE STATUS.

TABLESPACES Tablespace information.

TABLE_CONSTRAINTS Summary of the primary, unique, and foreign keys.

TRIGGERS Details for all user-level table triggers (not the internal NDB Cluster triggers).

VIEWS Details of the views.

Table 15-3. The Information Schema: Privilege Information

Table Description

COLUMN_PRIVILEGES Contains the column-level privileges given to users.

SCHEMA_PRIVILEGES Contains the schema-level privileges given to users.

TABLE_PRIVILEGES Contains the table-level privileges given to users.

USER_PRIVILEGES Contains the global-level privileges granted to users.

Chapter 15 ■ SourCeS for Monitoring Data

460

Using the Information Schema
The Information Schema tables can be used and joined as user-defined tables. They can also be combined
in queries with tables from other schemata, such as the Performance Schema and ndbinfo. For example, you
can get the number of columns per table in the world sample database, as shown in the following output:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COUNT(*) AS NumColumns
 FROM information_schema.TABLES
 INNER JOIN information_schema.COLUMNS
 USING (TABLE_SCHEMA, TABLE_NAME)
 WHERE TABLE_SCHEMA = 'world'
 GROUP BY TABLE_SCHEMA, TABLE_NAME;
+--------------+-----------------+------------+
| TABLE_SCHEMA | TABLE_NAME | NumColumns |
+--------------+-----------------+------------+
world	City	5
world	Country	15
world	CountryLanguage	4
+--------------+-----------------+------------+
3 rows in set (0.07 sec)

Table 15-4. The Information Schema: Monitoring Related Data

Table Description

GLOBAL_STATUS The same as the output of SHOW GLOBAL STATUS. This table is disabled by default
in MySQL NDB Cluster 7.5 and later and has been removed in version MySQL
Server 8.0. Use the performance_schema.global_status table instead.

GLOBAL_VARIABLES The same as the output of SHOW GLOBAL VARIABLES. This table is disabled by
default in MySQL NDB Cluster 7.5 and later and has been removed in version
MySQL Server 8.0. Use the performance_schema.global_variables table
instead.

ndb_transid_mysql_
connection_map

Provides a mapping between an NDB transaction ID and the SQL node ID and
connection ID that uses the transaction. Examples are provided later.

OPTIMIZER_TRACE Can be used to get detailed information about the decision process made by the
optimizer when a query is executed.

PROCESSLIST The same as SHOW FULL PROCESSLIST. In MySQL NDB Cluster 7.3 and later it is
better to use the performance_schema.threads table instead.

PROFILING The same information as in using SHOW PROFILE after profiling a query. The
table has been deprecated in favor of the Performance Schema in MySQL NDB
Cluster 7.5 and later.

SESSION_STATUS The same as the output of SHOW SESSION STATUS. This table is disabled by
default in MySQL NDB Cluster 7.5 and later and has been removed in MySQL
Server 8.0. Use the performance_schema.session_status table instead.

SESSION_VARIABLES The same as the output of SHOW SESSION VARIABLES. This table is disabled by
default in MySQL NDB Cluster 7.5 and has been removed in MySQL Server 8.0.
Use the performance_schema.session_variables table instead.

Chapter 15 ■ SourCeS for Monitoring Data

461

Queries involving schema information will in general be relatively slow, particularly if the tables are not
in the table cache. The reason is that the information is stored in the .frm files in the file system in MySQL
Server 5.7 and earlier, and reading data from one file at a time to get the schema information is slow. So,
be careful with queries against tables, columns, indexes, etc. that are not limited by a WHERE clause and the
schema and/or table name. There is no support for indexes in the Information Schema until MySQL Server
8.0 where a new data dictionary is available. However, for tables like TABLES there is limited support for
pushing down the restrictions on the schema and table name.

Another performance issue to consider when using the Information Schema is the mutex required by
the PROCESSLIST table (and SHOW [FULL] PROCESSLIST). In extreme cases, this can impact the performance
of MySQL and it has in the past effectively caused outages. For this reason, it is recommended to use the
performance_schema.threads table or one of the sys schema views derived from it. Additionally, the
threads table provides more information and flexibility. The Performance Schema threads table is available
in MySQL NDB Cluster 7.3 and later.

The Information Schema and NDB Cluster
Two of the tables are of particular interest for MySQL NDB Cluster are the FILES and the ndb_transid_
mysql_connection_map tables. The FILES table was exclusively used for NDB Cluster until version 7.5
(where InnoDB also started to use it with the introduction of the general tablespaces). Both tables are MySQL
extensions to the SQL standard for the Information Schema.

The Information Schema FILES Table
The FILES table provides detailed information about the logfile group and tablespace files, such as the size
and amount of free space. Listing 15-1 shows an example where a log group is added with one undo log
file and a tablespace with one data file. The output from the FILES table has two parts—three rows for the
tablespace files and three rows for the logfile group. There is one row for each file on each node as well as a
row for the logfile group and tablespace themselves.

Listing 15-1. Using the information_schema.FILES Table

mysql> CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDBCLUSTER;
Query OK, 0 rows affected (1.48 sec)

mysql> CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDBCLUSTER;
Query OK, 0 rows affected (9.51 sec)

mysql> CREATE TABLE db1.t1 (
 id int unsigned NOT NULL auto_increment,
 val varchar(36) NOT NULL,
 PRIMARY KEY (id)
) ENGINE=NDBCluster

Chapter 15 ■ SourCeS for Monitoring Data

462

 TABLESPACE ts_1
 STORAGE DISK;
Query OK, 0 rows affected (0.22 sec)

mysql> INSERT INTO db1.t1 (val)
 VALUES (UUID()), (UUID()), (UUID()), (UUID()), (UUID());
Query OK, 5 rows affected (0.00 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> INSERT INTO db1.t1 (val)
 SELECT UUID()
 FROM db1.t1 a
 CROSS JOIN db1.t1 b;
Query OK, 25 rows affected (0.01 sec)
Records: 25 Duplicates: 0 Warnings: 0

mysql> INSERT INTO db1.t1 (val)
 SELECT UUID()
 FROM db1.t1 a
 CROSS JOIN db1.t1 b;
Query OK, 900 rows affected (0.06 sec)
Records: 900 Duplicates: 0 Warnings: 0

mysql> SELECT FILE_NAME, FILE_TYPE, LOGFILE_GROUP_NAME, ENGINE, FREE_EXTENTS,
 TOTAL_EXTENTS, EXTENT_SIZE, INITIAL_SIZE, MAXIMUM_SIZE, EXTRA
 FROM information_schema.FILES
 WHERE ENGINE='NDBCluster'\G
*************************** 1. row ***************************
 FILE_NAME: data_1.dat
 FILE_TYPE: DATAFILE
LOGFILE_GROUP_NAME: lg_1
 ENGINE: ndbcluster
 FREE_EXTENTS: 30
 TOTAL_EXTENTS: 32
 EXTENT_SIZE: 1048576
 INITIAL_SIZE: 33554432
 MAXIMUM_SIZE: 33554432
 EXTRA: CLUSTER_NODE=1
*************************** 2. row ***************************
 FILE_NAME: data_1.dat
 FILE_TYPE: DATAFILE
LOGFILE_GROUP_NAME: lg_1
 ENGINE: ndbcluster
 FREE_EXTENTS: 30
 TOTAL_EXTENTS: 32
 EXTENT_SIZE: 1048576
 INITIAL_SIZE: 33554432
 MAXIMUM_SIZE: 33554432
 EXTRA: CLUSTER_NODE=2
*************************** 3. row ***************************

Chapter 15 ■ SourCeS for Monitoring Data

463

 FILE_NAME: NULL
 FILE_TYPE: TABLESPACE
LOGFILE_GROUP_NAME: lg_1
 ENGINE: ndbcluster
 FREE_EXTENTS: NULL
 TOTAL_EXTENTS: NULL
 EXTENT_SIZE: 1048576
 INITIAL_SIZE: NULL
 MAXIMUM_SIZE: NULL
 EXTRA: NULL
*************************** 4. row ***************************
 FILE_NAME: undo_1.log
 FILE_TYPE: UNDO LOG
LOGFILE_GROUP_NAME: lg_1
 ENGINE: ndbcluster
 FREE_EXTENTS: NULL
 TOTAL_EXTENTS: 4194304
 EXTENT_SIZE: 4
 INITIAL_SIZE: 16777216
 MAXIMUM_SIZE: 16777216
 EXTRA: CLUSTER_NODE=1;UNDO_BUFFER_SIZE=2097152
*************************** 5. row ***************************
 FILE_NAME: undo_1.log
 FILE_TYPE: UNDO LOG
LOGFILE_GROUP_NAME: lg_1
 ENGINE: ndbcluster
 FREE_EXTENTS: NULL
 TOTAL_EXTENTS: 4194304
 EXTENT_SIZE: 4
 INITIAL_SIZE: 16777216
 MAXIMUM_SIZE: 16777216
 EXTRA: CLUSTER_NODE=2;UNDO_BUFFER_SIZE=2097152
*************************** 6. row ***************************
 FILE_NAME: NULL
 FILE_TYPE: UNDO LOG
LOGFILE_GROUP_NAME: lg_1
 ENGINE: ndbcluster
 FREE_EXTENTS: 4121268
 TOTAL_EXTENTS: NULL
 EXTENT_SIZE: 4
 INITIAL_SIZE: NULL
 MAXIMUM_SIZE: NULL
 EXTRA: UNDO_BUFFER_SIZE=2097152
6 rows in set (0.01 sec)

From a monitoring perspective, the number of free extents are of particular interest. These show how
much space is left. Multiplying by the extent size gives the amount of free space in bytes. When using on-disk
data, it is important to monitor the free space, so in case space is running out, either more space can be
allocated or the existing data can be purged. Listing 15-2 shows an example of checking the data files and the
undo log for free space.

Chapter 15 ■ SourCeS for Monitoring Data

464

Listing 15-2. Determining the Amount of Free Space for the On-Disk Data Files and Undo Log

mysql> SELECT FILE_NAME, FILE_TYPE,
 (FREE_EXTENTS*EXTENT_SIZE) AS FreeBytes,
 ROUND(100*FREE_EXTENTS/TOTAL_EXTENTS, 2) AS FreePct,
 EXTRA
 FROM information_schema.FILES
 WHERE ENGINE='NDBCluster' AND FREE_EXTENTS IS NOT NULL;
+------------+-----------+-----------+---------+--------------------------+
| FILE_NAME | FILE_TYPE | FreeBytes | FreePct | EXTRA |
+------------+-----------+-----------+---------+--------------------------+
data_1.dat	DATAFILE	31457280	93.75	CLUSTER_NODE=1
data_1.dat	DATAFILE	31457280	93.75	CLUSTER_NODE=2
NULL	UNDO LOG	16485072	NULL	UNDO_BUFFER_SIZE=2097152
+------------+-----------+-----------+---------+--------------------------+
3 rows in set (0.01 sec)

The Information Schema ndb_transid_mysql_connection_map Table
The ndb_transid_mysql_connection_map table provides a mapping of connections in SQL nodes and the
NDB transaction IDs. This is used to filter the cluster locks, transactions, and operations in the ndbinfo
tables cluster_locks, cluster_operations, and cluster_transactions to create the corresponding tables
at the server level. Listing 15-3 shows the SELECT statement used in the definition of the ndbinfo.server_
transactions view (reformatted and slightly rewritten), where the ndb_transid_mysql_connection_map table
is used to get the transactions for the SQL node. The ndb_transid_mysql_connection_map table is in general
not required for manual use, but an example will be provided when investigating locks in the next chapter.

Listing 15-3. The Definition of the ndbinfo.server_transactions View

SELECT map.mysql_connection_id, t.node_id, t.block_instance,
 t.transid, t.state, t.count_operations, t.outstanding_operations,
 t.inactive_seconds, t.client_node_id, t.client_block_ref
 FROM information_schema.ndb_transid_mysql_connection_map map
 INNER JOIN ndbinfo.cluster_transactions t
 ON map.ndb_transid >> 32 = t.transid >> 32;

The ndbinfo schema used in the previous example is a schema specific to MySQL NDB Cluster and will
be discussed in the next chapter.

Whereas the future aim for the Information Schema is to provide relatively static data, the opposite is
true for the Performance Schema, which is the next data source to discuss.

The Performance Schema
Since 2010 there has been an ongoing effort to improve the possibility to monitor MySQL and investigate
performance issues through the Performance Schema. This is a collection of tables using the Performance_
Schema storage engine which stores all data in-memory. The data is not persistent, so the overhead with
the default settings is in general low. The downside from a MySQL NDB Cluster perspective is that only the
mysqld process is instrumented, so there is no information in the Performance Schema related to the data
nodes. This section provides an introduction to the Performance Schema.

MySQL Server 5.6 and thus MySQL NDB Cluster 7.3 and later have seen some major changes for
the Performance Schema compared to MySQL Server 5.5 and MySQL NDB Cluster 7.2. Only the current
implementation is discussed.

Chapter 15 ■ SourCeS for Monitoring Data

465

As mentioned, the data in the Performance Schema is not persistent, so it will be lost when restarting the
SQL nodes. Additionally, the table size is limited to cap the memory usage and once the tables become full,
old data will either be purged to make room for new, or additionally data will be grouped in an “overfill bin”.

Performance Schema Threads
Before discussing the details of using the Performance Schema, it is necessary to first discuss threads: The
Performance Schema refers to threads and uses a thread ID to uniquely identify each thread. A thread can
either be a foreground thread, which is the same as the connections showing in SHOW PROCESSLIST or a
background thread. This can be the main thread listening for new connections or internal InnoDB threads.

Listing 15-4 shows a typical example of the threads available using the performance_schema.threads
table compared with the process list output from the Information Schema (same as SHOW PROCESSLIST
but here only including select columns). The ID column of the performance_schema.threads query
corresponds to the ID column of the information_schema.PROCESSLIST query. The two threads with the
name thread/sql/one_connection are normal connections (thread IDs 29 and 31).

Listing 15-4. Example of Performance Schema Threads

mysql> SELECT THREAD_ID, NAME, TYPE, PROCESSLIST_ID AS ID
 FROM performance_schema.threads;
+-----------+--+------------+------+
| THREAD_ID | NAME | TYPE | ID |
+-----------+--+------------+------+
1	thread/sql/main	BACKGROUND	NULL
2	thread/sql/thread_timer_notifier	BACKGROUND	NULL
3	thread/innodb/io_ibuf_thread	BACKGROUND	NULL
4	thread/innodb/io_log_thread	BACKGROUND	NULL
5	thread/innodb/io_read_thread	BACKGROUND	NULL
6	thread/innodb/io_read_thread	BACKGROUND	NULL
7	thread/innodb/io_read_thread	BACKGROUND	NULL
8	thread/innodb/io_read_thread	BACKGROUND	NULL
9	thread/innodb/io_write_thread	BACKGROUND	NULL
10	thread/innodb/io_write_thread	BACKGROUND	NULL
11	thread/innodb/io_write_thread	BACKGROUND	NULL
12	thread/innodb/io_write_thread	BACKGROUND	NULL
13	thread/innodb/page_cleaner_thread	BACKGROUND	NULL
15	thread/innodb/srv_lock_timeout_thread	BACKGROUND	NULL
16	thread/innodb/srv_error_monitor_thread	BACKGROUND	NULL
17	thread/innodb/srv_monitor_thread	BACKGROUND	NULL
18	thread/innodb/srv_master_thread	BACKGROUND	NULL
19	thread/innodb/srv_purge_thread	BACKGROUND	NULL
20	thread/innodb/srv_worker_thread	BACKGROUND	NULL
21	thread/innodb/srv_worker_thread	BACKGROUND	NULL
22	thread/innodb/buf_dump_thread	BACKGROUND	NULL
23	thread/innodb/srv_worker_thread	BACKGROUND	NULL
24	thread/innodb/dict_stats_thread	BACKGROUND	NULL
25	thread/sql/signal_handler	BACKGROUND	NULL
26	thread/sql/compress_gtid_table	FOREGROUND	3
29	thread/sql/one_connection	FOREGROUND	7
31	thread/sql/one_connection	FOREGROUND	8
+-----------+--+------------+------+
27 rows in set (0.00 sec)

Chapter 15 ■ SourCeS for Monitoring Data

466

mysql> SELECT ID, USER, COMMAND, STATE
 FROM information_schema.PROCESSLIST
 ORDER BY ID;
+----+-------------+---------+-----------------------------------+
| ID | USER | COMMAND | STATE |
+----+-------------+---------+-----------------------------------+
1	system user	Daemon	Waiting for event from ndbcluster
7	root	Sleep	
8	root	Query	executing
+----+-------------+---------+-----------------------------------+
3 rows in set (0.00 sec)

Notice that thread ID 26 is a foreground thread, but this particular one does not show up in the process
list output and is thus an example of a kind of in-between thread that is not fully a background neither a
foreground thread. On the other hand, the process list row with ID = 1 does not show up in the performance_
schema.threads output. This is the NDB binlog thread waiting for events from the data nodes.

As the example shows, it is possible to convert between the process list ID and the Performance Schema
thread ID using the performance_schema.threads table. An alternate way is to use the sys.ps_thread_id()
function if the sys schema is installed. sys.ps_thread_id() only supports converting from the process list
ID to the Performance Schema thread ID. These two ways of converting the ID are illustrated in Listing 15-5.
The CONNECTION_ID() function gets the process list ID for the current connection. The sys.ps_thread_id()
function can also take NULL as an argument, in which case it returns the Performance Schema thread ID for
the current connection.

Listing 15-5. Converting the Process List ID to the Performance Schema Thread ID

mysql> SELECT CONNECTION_ID();
+-----------------+
| CONNECTION_ID() |
+-----------------+
| 7 |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT THREAD_ID
 FROM performance_schema.threads
 WHERE PROCESSLIST_ID = 7;
+-----------+
| THREAD_ID |
+-----------+
| 29 |
+-----------+
1 row in set (0.00 sec)

mysql> SELECT sys.ps_thread_id(7);
+---------------------+
| sys.ps_thread_id(7) |
+---------------------+
| 29 |
+---------------------+
1 row in set (0.00 sec)

Chapter 15 ■ SourCeS for Monitoring Data

467

mysql> SELECT sys.ps_thread_id(NULL);
+------------------------+
| sys.ps_thread_id(NULL) |
+------------------------+
| 29 |
+------------------------+
1 row in set (0.00 sec)

 ■ Note unfortunately, the term thread is overloaded in MySQL and is in some places used as a synonym
for connection. in this chapter, a connection refers to a user connection and a thread refers to a performance
Schema thread, i.e., it can either be a background or foreground (including connections) thread.

Performance Schema Tables Overview
As of MySQL NDB Cluster 7.5.6, there is a total of 87 tables in the Performance Schema. Most table names are
self-descriptive. For example, the tables used to configure the Performance Schema have the prefix setup_
and the summary table names include _summary_ and what data they group and how. All of the Performance
Schema tables are listed in tables throughout this section and are grouped according to the following groups:

•	 Setup tables: Tables that are used for configuring the Performance Schema and get
information related to the Performance Schema configuration.

•	 Event tables: Tables with details for the events that have been recorded.

•	 Summary tables: Report tables with the data from the events tables grouped
according to the purpose of the table.

•	 Connection and thread tables: Data related to foreground and background threads.

•	 Variable and status tables: The system variables and status variables at the global or
session/thread level.

•	 Replication tables: Tables showing information related to replication.

•	 Instance tables: Tables with data about instances that range from mutexes to
prepared statements.

•	 Lock tables: Tables about table level and metadata locks.

The remainder of this section goes through these tables and provides examples of using the most
important of them.

Setup Tables and Configuration
The setup tables in Table 15-5 allow the database administrator to change the settings of the Performance
Schema dynamically. There are five setups tables. The most commonly used of these are the setup_
consumers and setup_instruments tables. Additionally, there is performance_timers, which is a reference
table.

Chapter 15 ■ SourCeS for Monitoring Data

468

The rest of this section discusses the setup tables as well as provides an introduction to the terms.

Instruments
Instruments are the code points where the measurements are done. It is possible to count and time an
instrument. For memory related instruments, counting means summing the memory allocation and
deallocation size. The instrument names are self-descriptive and follow the convention that forward slashes
(/) separate group levels. An example of an instrument name is statement/sql/select. As the name
suggests, it instruments a SELECT SQL statement. By enabling it, each SELECT statement will be counted
and optionally timed. All instruments for SQL statements have the prefix statement/sql/ followed by the
statement type.

The data generated by the instruments must be consumed in order for the data to be available in the
Performance Schema tables. This is done by consumers.

Consumers
The setup_consumers table defines what can consume the instruments. The consumers form a hierarchy, as
shown in Figure 15-1. For the events consumers in the two lowest levels, the % can be stages, statements,
transactions (version 7.5 and later only), or waits.

Table 15-5. Performance Schema Setup Tables

Table Name Description

performance_timers Overview of the timers available for the setup_timers table.

setup_actors Configure which accounts should be instrumented and timed by default.

setup_consumers Configure which consumers are enabled to consume the data generated by the
instruments.

setup_instruments Configure which instrumentation points should be enabled.

setup_objects Configure which tables, triggers, stored procedures, stored functions, and stored
events should be instrumented.

setup_timers Configure which timers should be used for the different event types.

Figure 15-1. The Performance Schema consumers

Chapter 15 ■ SourCeS for Monitoring Data

469

For a consumer to be effectively enabled, not only must the consumer itself be enabled, but also
all of the ancestor consumers in the hierarchy must be enabled. For example, for events_statements_
history to be consuming instruments, the events_statements_current, thread_instrumentation, and
global_instrumentation consumers must also be enabled. When the sys schema is installed, the sys.
ps_is_consumer_enabled() function can be used to take the hierarchy into consideration. Listing 15-6 lists
all of the consumers in version 7.5 and the default values for whether they are enabled in setup_consumers
and whether they also have all of the ancestor consumers enabled. In versions 7.3 and 7.4, the events_
statements_history consumer was not enabled by default.

Listing 15-6. The Consumers in MySQL NDB Cluster 7.5.

mysql> SELECT NAME, ENABLED, sys.ps_is_consumer_enabled(NAME) AS Collects
 FROM performance_schema.setup_consumers;
+----------------------------------+---------+----------+
| NAME | ENABLED | Collects |
+----------------------------------+---------+----------+
events_stages_current	NO	NO
events_stages_history	NO	NO
events_stages_history_long	NO	NO
events_statements_current	YES	YES
events_statements_history	YES	YES
events_statements_history_long	NO	NO
events_transactions_current	NO	NO
events_transactions_history	NO	NO
events_transactions_history_long	NO	NO
events_waits_current	NO	NO
events_waits_history	NO	NO
events_waits_history_long	NO	NO
global_instrumentation	YES	YES
thread_instrumentation	YES	YES
statements_digest	YES	YES
+----------------------------------+---------+----------+
15 rows in set (0.00 sec)

The statement_digest consumer is responsible for collecting statistics about normalized queries. The
digest name comes from the digest that is calculated for each of the normalized queries. The data can be found
in the events_statements_summary_by_digest table—an example of the data collected will be shown later.

There is an events table for each of the events consumers. The name of the table is the same as for the
consumer. The details of the events consumers and tables as well as the relationship between the event types
is discussed in the next section about the event tables.

Actors, Objects, and Timers
The setup_actors and setup_objects tables define which accounts (user@hostname) and which schema
objects (tables, stored programs, etc.) are instrumented. By default, everything is instrumented except for
schema objects in the information_schema, mysql, and performance_schema schemas. The setup_timers
table define the timers are used for different event types. The timers are set up automatically based on how
expensive they are to use and how accurate they are. The default timers chosen are system dependent, and
usually there is no need to change them. Details of the available timers and the overhead for them can be
found in the performance_timers table.

Chapter 15 ■ SourCeS for Monitoring Data

470

Configuration Recommendations and How to Change Settings
The default settings are a good starting point and usually only minor changes are required if at all any except
when investigating specific issues. An example of a change that may be worth considering is to enable the
events_transactions_current consumer and the transaction instrument. This will allow additional
details of transactions, such as finding all statements executed in a transaction, to be available. An example
is shown later when discussing the events tables. To enable the consumer and instrument dynamically, use
the statements in Listing 15-7. Optionally the last 10 transactions for each current connection can be kept by
also enabling the events_transactions_history consumer.

 ■ Note none of the examples in this chapter requires enabling anything beyond the defaults unless explicitly
noted.

Listing 15-7. Enabling Transaction Monitoring

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME = 'events_transactions_current';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME = 'transaction';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

It is also possible to enable instruments and consumers in the MySQL Server configuration file
(my.cnf/my.ini). To enable the transaction consumer and instrument like it was done dynamically in
Listing 15-7, add the settings:

[mysqld]
performance_schema_consumer_events_transactions_current = ON
performance_schema_instrument = transaction=ON

The performance_schema_instrument option supports the % wildcard and the option can be specified
multiple times.

 ■ Caution Do not be tempted to enable all consumers and instruments in production. Monitoring does have
overhead, and enabling everything will have a major impact on the performance! particularly the wait/synch/%
instruments and events_waits_% consumers add overhead. as a rule of thumb, the more fine grained the
monitoring is, the more overhead it adds.

There are several other configuration options for the Performance Schema. The complete list of the
variables available in MySQL NDB Cluster 7.5.6 can be seen in Listing 15-8 together with their default values.
A value of -1 means the option is auto-sized. For more details, see https://dev.mysql.com/doc/refman/5.7/
en/performance-schema-options.html.

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-options.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-options.html

Chapter 15 ■ SourCeS for Monitoring Data

471

Listing 15-8. The Performance Schema Variables

mysql> SHOW GLOBAL VARIABLES LIKE 'performance_schema%';
+--+-------+
| Variable_name | Value |
+--+-------+
performance_schema	ON
performance_schema_accounts_size	-1
performance_schema_digests_size	10000
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_transactions_history_long_size	10000
performance_schema_events_transactions_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	-1
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	-1
performance_schema_max_digest_length	1024
performance_schema_max_file_classes	80
performance_schema_max_file_handles	32768
performance_schema_max_file_instances	-1
performance_schema_max_index_stat	-1
performance_schema_max_memory_classes	320
performance_schema_max_metadata_locks	-1
performance_schema_max_mutex_classes	210
performance_schema_max_mutex_instances	-1
performance_schema_max_prepared_statements_instances	-1
performance_schema_max_program_instances	-1
performance_schema_max_rwlock_classes	40
performance_schema_max_rwlock_instances	-1
performance_schema_max_socket_classes	10
performance_schema_max_socket_instances	-1
performance_schema_max_sql_text_length	1024
performance_schema_max_stage_classes	150
performance_schema_max_statement_classes	193
performance_schema_max_statement_stack	10
performance_schema_max_table_handles	-1
performance_schema_max_table_instances	-1
performance_schema_max_table_lock_stat	-1
performance_schema_max_thread_classes	50
performance_schema_max_thread_instances	-1
performance_schema_session_connect_attrs_size	512
performance_schema_setup_actors_size	-1
performance_schema_setup_objects_size	-1
performance_schema_users_size	-1
+--+-------+
42 rows in set (0.00 sec)

The events consumers discussed before are closely related to the event tables, which is the next group of
Performance Schema tables to look at.

Chapter 15 ■ SourCeS for Monitoring Data

472

Event Tables
The event tables are directly related to the event consumers with one event table per event consumer. There
are four event types and for each there are three scopes. This and the relationship between the event types is
discussed in this section.

Table 15-6 shows the 12 event tables available in MySQL NDB Cluster 7.5. The table names follow the
scheme events_{type}_{scope}. The type is one of stages, statements, transactions, and waits, and the
scope is current, history, or history_long.

For the events consumers, the current consumers monitor the current or last event. The history
consumers keep the last 10 (by default) events for each connection, but the data is purged when the
connection disconnects. On the other hand, the history_long consumers by default keep the last 10000
events irrespective of the connection and the events persist when the connection disconnects; when all
events are used, the oldest are purged.

The event types are summarized in Table 15-7 with the relationship between them depicted in
Figure 15-2. The transactions are the highest level including one or more statements. A statement goes
through stages while being executed. At the bottom are the wait events that are low-level interactions such
as I/O or mutex waits. Other than I/O waits for example for the binary logs, the wait events are not very
interesting for an SQL node in a cluster given the bulk of the work query is performed on the data nodes.
The columns available in the event table only depend on the event type, for example events_statements_
current, events_statements_history, and events_statements_history_long all have the same columns.

Table 15-6. Performance Schema Event Tables

Table Name Description

events_stages_current Current or latest stage event for each existing thread.

events_stages_history Up to the last 10 stage events for each existing thread.

events_stages_history_long Up to the last 10000 stage events for the SQL node.

events_statements_current Current or latest statement for each existing thread.

events_statements_history Up to the last 10 statements for each existing thread.

events_statements_history_long Up to the last 10000 statements for the SQL node.

events_transactions_current Current or latest transaction for each existing thread.

events_transactions_history Up to the last 10 transactions for each existing thread.

events_transactions_history_long Up to the last 10000 transactions for the SQL node.

events_waits_current Current or latest wait event for each existing thread.

events_waits_history Up to the last 10 wait events for each existing thread.

events_waits_history_long Up to the last 10000 wait events for the SQL node.

Chapter 15 ■ SourCeS for Monitoring Data

473

The event scopes specify how many and which records are kept. A prerequisite for the history scopes
to collect data is that the current scope is also collected. The history can either be collected per connection
(history) or per SQL node (history long). The current event is always per connection though it is in some
cases possible to have more than one event per connection. The current and history events are purged as
soon as the connection is closed. The three scopes are summarized in Table 15-8.

Table 15-7. Performance Schema Event Types in Order of Increased Details

Event Type Description

Transactions The highest level (fewest details). Includes details such as the transaction isolation level
requested (but not necessarily the transaction isolation level used as NDBCluster tables
always use READ-COMMITTED), transaction status, etc. This event type was added in MySQL
NDB Cluster 7.5. None of the event scopes for transaction events are enabled by default.

Statements This is the most commonly used event type. It records data for each statement. There are
a lot of useful information such as the duration; how many rows were examined, returned,
and affected; whether internal temporary tables were used; whether indexes where used;
and more. The current scope is enabled by default in version 7.3 and later and the history
scope is also enabled in 7.5

Stages This roughly corresponds to the states reported by SHOW PROCESSLIST. These are not
enabled by default.

Waits The lowest level (most details). The wait events for example includes I/O and waiting for
mutexes. These are very specific and very useful for low level performance tuning, but they
are also the most expensive. None of the wait events consumers are enabled by default.

Figure 15-2. The relationship between the event types

Chapter 15 ■ SourCeS for Monitoring Data

474

One event can be the parent of another event. So, each of the event tables have two columns to
essentially define a (virtual) foreign key to one of the events in the other tables:

•	 NESTING_EVENT_ID: The event ID for the parent event.

•	 NESTING_EVENT_TYPE: Whether the parent ID is a transaction, statement, stage or
wait event.

Since in general not all events are captured and the events may not be purged in the order they are
captured, this relationship is not complete. However, it is in most cases not a problem.

A simple example of using the nesting columns is to find the statements executed in a transaction.
Listing 15-9 shows how to find up to the last 10 statements for the current or last transaction for THREAD_ID
= 35 and return the queries in the order they were executed with the oldest first and the most recent at
the bottom. This example requires the events_transactions_current consumer and the transaction
instrument to be enabled. The details of the events_statements_% tables are discussed later as well as
timing values in the Performance Schema.

Listing 15-9. Find the Latest Statements in a Transaction

mysql> SELECT s.EVENT_ID, s.SQL_TEXT,
 sys.format_time(s.TIMER_WAIT) AS QueryTime
 FROM performance_schema.events_transactions_current t
 INNER JOIN performance_schema.events_statements_history s
 ON s.NESTING_EVENT_ID = t.EVENT_ID

Table 15-8. Performance Schema Event Scopes

Event Scopt Description

Current Currently ongoing events. If a connection does not have a currently ongoing event, the last
event is returned. For statement events, the current scope is similar to SHOW PROCESSLIST
but including the last executed statement for currently idle connections. The sys schema
uses this to provide a much more detailed process list as it is shown in the next section.
The current scope only includes threads that exist at the time the events are queried.

History Keeps the last 10 (by default) events for each connection and background thread.
This is most useful for the higher-level event types as lower level events often have
so short duration that 10 events only represent the last few fractions of a second. The
history scope only includes threads that exist at the time the events are queried. The
number of events stored per thread can be changed with the following options in the
MySQL configuration file: performance_schema_events_transactions_history_size,
performance_schema_events_statements_history_size, performance_schema_
events_stages_history_size, and performance_schema_events_waits_history_size.

History long Keeps the last 10000 (by default) events irrespective of the thread triggering the event.
Events in the history long scope are kept even if the thread is closed. This makes the
events_%_history_long tables useful for examining the most recent history across
all connections. The number of events to store can be changed using the following
options in the MySQL configuration file: performance_schema_events_transactions_
history_long_size, performance_schema_events_statements_history_long_size,
performance_schema_events_stages_history_long_size, and performance_schema_
events_waits_history_long_size.

Chapter 15 ■ SourCeS for Monitoring Data

475

 WHERE t.THREAD_ID = 35
 AND s.NESTING_EVENT_TYPE = 'transaction'
 ORDER BY s.EVENT_ID\G
*************************** 1. row ***************************
 EVENT_ID: 202
 SQL_TEXT: UPDATE queue SET status = 1, locked_by = 23 WHERE status = 0 AND locked_by IS
NULL LIMIT 1
QueryTime: 3.30 ms
*************************** 2. row ***************************
 EVENT_ID: 203
 SQL_TEXT: SELECT id, val FROM queue WHERE locked_by = 23
QueryTime: 1.08 ms
*************************** 3. row ***************************
 EVENT_ID: 204
 SQL_TEXT: UPDATE queue SET status = 2, locked_by = NULL WHERE locked_by = 23
QueryTime: 2.60 ms
*************************** 4. row ***************************
 EVENT_ID: 205
 SQL_TEXT: COMMIT
QueryTime: 966.89 us
4 rows in set (0.00 sec)

In general, the nesting level may be deeper. The following sets up a test, then executes a transaction
that calls a stored procedure to add an employee and finally commits the transaction. At the same time as
the transaction is executing, another connection monitors the event tables (actually the history long event
tables) using the sys schema stored procedure sys.ps_trace_thread(). The procedure saves its output
in a DOT graph description language file (see https://en.wikipedia.org/wiki/DOT_(graph_description_
language)) with the filename given as one of the arguments (/mysql/out/trace.dot in this case). The
arguments to sys.ps_trace_thread() are:

•	 The thread is to monitor (28).

•	 The file to save the output to ('/mysql/out/trace.dot').

•	 How many seconds to monitor for (10 seconds).

•	 How frequently to poll the events tables—in seconds (0.1 second).

•	 Whether to truncate the Performance Schema tables before starting to monitor
(TRUE). Enabling this avoids including old events in the trace, but also discards all
existing data in the tables. So enabling the option is mostly useful on test systems.

•	 Whether to automatic enable Performance Schema settings (FALSE). When enabled,
the settings are restored at the end of the procedure. Setting up the Performance
Schema manually allows a more fine-grained control of what is included in the trace.

•	 Whether to add the file and line number of the events in the trace (FALSE).

The events_transactions_current, events_transactions_history_long, and events_statements_
history_long consumers as well as the transaction instrument must be enabled in addition to the default
settings for this example to work.

 ■ Tip in recent versions of MySQL Server and MySQL nDB Cluster, it is only possible to save data to a file
from inside MySQL if the target directory is below the directory specified by the secure_file_priv option.

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)

Chapter 15 ■ SourCeS for Monitoring Data

476

The test execution is shown in Listing 15-10.

Listing 15-10. A Test Used to Trace a Transaction

-- Setup the test
mysql> CREATE TABLE employee (
 id char(36) PRIMARY KEY,
 Name varchar(40) NOT NULL
) ENGINE=NDBCluster;
Query OK, 0 rows affected (2.46 sec)

mysql> DELIMITER $$
mysql> CREATE PROCEDURE AddEmp(IN in_name varchar(40), OUT out_uuid char(36))
 BEGIN
 SET out_uuid = UUID();
 SELECT
 out_uuid AS id;
 INSERT
 INTO employee
 VALUES (out_uuid, in_name);
 END$$
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

-- Enable consumers and instrument
mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME IN ('events_transactions_current',
 'events_transactions_history_long',
 'events_statements_history_long');
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES',
 TIMED = 'YES'
 WHERE NAME = 'transaction';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

-- Determine the Performance Schema thread ID
mysql> SELECT sys.ps_thread_id(NULL);
+------------------------+
| sys.ps_thread_id(NULL) |
+------------------------+
| 28 |
+------------------------+
1 row in set (0.01 sec)

Chapter 15 ■ SourCeS for Monitoring Data

477

-- Start the data collection in another connection using the thread id
-- from the previous statement.
Other Connection> CALL sys.ps_trace_thread(28, '/mysql/out/trace.dot',
 10, 0.1, TRUE, FALSE, FALSE);

-- Execute the test in the connection with Performance Schema thread id = 28
mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL AddEmp
 ('John Doe', @id);
+--------------------------------------+
| id |
+--------------------------------------+
| 17ecdc78-5265-11e7-a0a3-080027fa42a9 |
+--------------------------------------+
1 row in set (0.00 sec)

Query OK, 1 row affected (0.00 sec)

mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)

-- Optionally reset the Performance Schema settings to the defaults.
mysql> CALL sys.ps_setup_reset_to_default(FALSE);
Query OK, 0 rows affected (0.07 sec)

The DOT formatted file can be converted into a graphical representation using software such as the dot
program included in the Graphviz toolset (http://www.graphviz.org/). Graphviz is available from several
Linux package repositories and for download from Graphviz’s homepage for Linux, Oracle Solaris, Microsoft
Windows, and macOS. An example of converting the DOT file to a PNG file is:

shell$ dot -Tpng -o trace.png /mysql/out/trace.dot

Figure 15-3 shows the resulting graph. Two modifications have been made to make the data easier to
read: The graph has been cropped so only the edge of the box with the BEGIN statement is visible to the far
left of the figure, and the color scheme has been changed to work better in a black and white book.

http://www.graphviz.org/

Chapter 15 ■ SourCeS for Monitoring Data

478

There are some interesting observations to make from the image in Figure 15-3:

•	 The details of each event are included in a box with one box per event. For the BEGIN
statement, all metrics are either 0 or FALSE.

•	 The trace includes one transaction (the second column, darker grey) and six
statements in four levels.

Figure 15-3. Trace of nested events

Chapter 15 ■ SourCeS for Monitoring Data

479

•	 The transaction event includes information such as whether GTIDs are used
(not supported for NDB Cluster), the state (COMMITTED), the transaction isolation
mode, etc. Notice that the transaction isolation level is listed as REPEATABLE READ,
which is what was requested (as it is the default). However, MySQL NDB Cluster
only supports READ COMMITTED. So, for MySQL NDB Cluster, the listed and actual
transaction isolation level may not be the same.

•	 The overall time it took to execute the transaction was 7.02 milliseconds.

•	 The parent of the transaction is the BEGIN statement. The transaction itself is parent
of two statements of which the CALL statement again is parent of another three
statements.

•	 For each statement except the SET statement inside the stored procedure, there is
a long list of details. These include the execution time (also included for the SET
statement), whether errors or warnings occurred, the number of rows affected/sent/
examined, index use, etc.

•	 The events for the statements (see the string next to the time the event took, for
example sql/call_procedure for the CALL statement) differ whether the statement
is executed directly or through the stored procedure. Events for statements executed
directly starts with sql/, whereas events for statements executed through the
procedure starts with sp/.

The only source of all of the details in Figure 15-3 is the events tables, which show how useful they can
be for collecting information.

While the number of tables and amount data can seem overwhelming at first, there is a high degree
of similarity between data showing similar data, and the names used for tables and columns are quite
consistent. For example, the events tables all have similar columns describing the event at a high level, then
specific columns based on whether it is a wait, stage, statement, or transaction event. The current, history,
and history long tables for the same event type, all have the same columns. Summary tables for an event
type will have columns that are easy to relate to the per event tables. The next example will use the events_
statements_current table to illustrate how to read the raw data.

Listing 15-11 shows the example of the raw output for the most recent query for thread ID 31 from the
events_statements_current table. The details are similar to what was seen in the trace graph, but a couple
of things warrant a bit more consideration.

Listing 15-11. Example Output from performance_schema.events_statements_current

mysql> SELECT *
 FROM performance_schema.events_statements_current
 WHERE THREAD_ID = 31\G
*************************** 1. row ***************************
 THREAD_ID: 31
 EVENT_ID: 35
 END_EVENT_ID: 36
 EVENT_NAME: statement/sql/select
 SOURCE: socket_connection.cc:101
 TIMER_START: 7030638806624000
 TIMER_END: 7030640657767000
 TIMER_WAIT: 1851143000
 LOCK_TIME: 224000000
 SQL_TEXT: SELECT * FROM world.City WHERE CountryCode = 'AUS' ORDER BY
Population DESC
 DIGEST: d21ff2e30ed268303522831878e8e1d6

Chapter 15 ■ SourCeS for Monitoring Data

480

 DIGEST_TEXT: SELECT * FROM `world` . `City` WHERE `CountryCode` = ? ORDER BY
`Population` DESC
 CURRENT_SCHEMA: db1
 OBJECT_TYPE: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 OBJECT_INSTANCE_BEGIN: NULL
 MYSQL_ERRNO: 0
 RETURNED_SQLSTATE: NULL
 MESSAGE_TEXT: NULL
 ERRORS: 0
 WARNINGS: 0
 ROWS_AFFECTED: 0
 ROWS_SENT: 14
 ROWS_EXAMINED: 28
CREATED_TMP_DISK_TABLES: 0
 CREATED_TMP_TABLES: 0
 SELECT_FULL_JOIN: 0
 SELECT_FULL_RANGE_JOIN: 0
 SELECT_RANGE: 0
 SELECT_RANGE_CHECK: 0
 SELECT_SCAN: 0
 SORT_MERGE_PASSES: 0
 SORT_RANGE: 1
 SORT_ROWS: 14
 SORT_SCAN: 0
 NO_INDEX_USED: 0
 NO_GOOD_INDEX_USED: 0
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 NESTING_EVENT_LEVEL: 0
1 row in set (0.00 sec)

TIMER_START, TIMER_END, TIMER_WAIT, and LOCK_TIME all have huge values. All timings in the
Performance Schema are in picoseconds (10-12 second). The reason for choosing this unit is performance (it
ensures no division is required, and divisions are computational more expensive than multiplication). When
software consumes the timing values, this choice of unit is not a problem, but it makes it hard for humans to
read the values. The sys schema includes several formatting functions, one of which is format_time(). This
function can be used to convert the picoseconds into human readable units:

mysql> SELECT EVENT_ID, sys.format_time(TIMER_START) AS TimeStart,
 sys.format_time(TIMER_END) AS TimeEnd,
 sys.format_time(TIMER_WAIT) AS TimeWait,
 sys.format_time(LOCK_TIME) AS LockTime
 FROM performance_schema.events_statements_current
 WHERE THREAD_ID = 31;
+----------+-----------+---------+----------+-----------+
| EVENT_ID | TimeStart | TimeEnd | TimeWait | LockTime |
+----------+-----------+---------+----------+-----------+
| 35 | 1.95 h | 1.95 h | 1.85 ms | 224.00 us |
+----------+-----------+---------+----------+-----------+
1 row in set (0.00 sec)

Chapter 15 ■ SourCeS for Monitoring Data

481

The meaning of the four timing values are:

•	 TimeStart: The amount of time in hours since the timer was last reset until the start
of the event. The reset happens when MySQL is restarted or the timer overflows
(which happens after 264 picoseconds or approximately 30.5 weeks).

•	 TimeEnd: The amount of time in hours since the timer was last reset until the end of
the event.

•	 TimeWait: The total duration of the event in milliseconds. This is the same as the
difference between TIMER_END and TIMER_START.

•	 LockTime: The time spent waiting for table locks in microseconds. This value is not
very useful for NDBCluster tables as they use row-level locks.

Since different events use different timers as noted in the description of the setup_timers table, the
TIMER_START and TIMER_END values of different events cannot in general be compared. Instead always use
the EVENT_ID columns to compare the order of events.

Another interesting detail are the DIGEST and DIGEST_TEXT columns:

 SQL_TEXT: SELECT * FROM world.City WHERE CountryCode = 'AUS' ORDER BY
Population DESC
 DIGEST: d21ff2e30ed268303522831878e8e1d6
 DIGEST_TEXT: SELECT * FROM `world` . `City` WHERE `CountryCode` = ? ORDER BY
`Population` DESC

The DIGEST_TEXT column is the normalized version of the query. The Performance Schema
normalization of a query is similar to what the mysqldumpslow script can do for the slow query log to
allow grouping queries that are the same except for the parameters used. In the example, the value for
CountryCode is replaced with a question mark (?), so if the query is repeated for a different country, the
digest text will be the same:

 SQL_TEXT: SELECT * FROM world.City WHERE CountryCode = 'USA' ORDER BY
Population DESC
 DIGEST: d21ff2e30ed268303522831878e8e1d6
 DIGEST_TEXT: SELECT * FROM `world` . `City` WHERE `CountryCode` = ? ORDER BY
`Population` DESC

The DIGEST is an MD5 hash based on the normalized query (although not as simple as MD5(DIGEST_
TEXT)). Having the digest hash makes it simpler to query for similar queries. For example:

mysql> SELECT sys.format_time(TIMER_WAIT) AS TimeWait,
 CONCAT(LEFT(SQL_TEXT, 56), ' ...') AS 'SQL'
 FROM performance_schema.events_statements_history
 WHERE DIGEST = 'd21ff2e30ed268303522831878e8e1d6';
+----------+--+
| TimeWait | SQL |
+----------+--+
| 1.85 ms | SELECT * FROM world.City WHERE CountryCode = 'AUS' ORDER ... |
| 1.61 ms | SELECT * FROM world.City WHERE CountryCode = 'USA' ORDER ... |
+----------+--+
2 rows in set (0.00 sec)

Chapter 15 ■ SourCeS for Monitoring Data

482

However, the digests are even more useful than this. They are also used internally in the Performance
Schema to generate a summary of the queries on the SQL node. Summary tables is the next group of tables
to look at.

Summary Tables
The events tables that were the topic of the previous section contains the raw data. This is very useful for
inspecting specific events like one query that is slow. However, particularly on SQL nodes with a high
number of queries per second, the events tables are not always useful as the events are evicted too quickly.
This is where the summary tables enter the picture.

MySQL NDB Cluster 7.5 has 36 summary tables as listed in Table 15-9 through Table 15-14. The naming
convention is {what}_summary_by_{group by}, where {what} is which data is summarized and {group
by} is what the data is grouped by. For some summary tables the “by_{group by}” pattern is repeated to
signify that the data is grouped by more than one thing. A “global_” is also added after “summary_” for some
summary tables to make it explicit that there is only one grouping level.

Table 15-9 shows the summary tables for stage events. As most stage events are disabled by default,
most of the summary values in these tables are 0.

The statement event summary tables listed in Table 15-10 are the summary tables used most often. An
example using the events_statements_summary_by_digest table is discussed after Table 15-14.

Table 15-9. The Stage Events Summary Tables

Table Name Description

events_stages_summary_by_account_by_event_name Stages grouped by account and event name.

events_stages_summary_by_host_by_event_name Stages grouped by host and event name.

events_stages_summary_by_thread_by_event_name Stages grouped by thread and event name.

events_stages_summary_by_user_by_event_name Stages grouped by use and event name.

events_stages_summary_global_by_event_name Stages grouped only by event name.

Table 15-10. The Statement Events Summary Tables

Table Name Description

events_statements_summary_by_account_by_
event_name

Statements grouped by account and event name.

events_statements_summary_by_digest Statements grouped by digest.

events_statements_summary_by_host_by_event_
name

Statements grouped by host and event name.

events_statements_summary_by_program Statements grouped by stored procedure, stored
function, stored event, or trigger.

events_statements_summary_by_thread_by_
event_name

Statements grouped by thread and event name.

events_statements_summary_by_user_by_event_
name

Statements grouped by user and event name.

events_statements_summary_global_by_event_
name

Statements grouped only by event name.

Chapter 15 ■ SourCeS for Monitoring Data

483

Table 15-11 lists the transaction events summary tables. Transactions are not instrumented by default,
so the summary data will be all zeros.

The final category of events summary tables is for wait events. These are summarized in Table 15-12.

Table 15-13 shows the memory summary tables. Memory instrumentation is only enabled by default
for the Performance Schema memory events, so by default the summary tables only have non-zero data for
these events. If instrumentation has been enabled for all memory events, these summary tables are very
useful to determine where the SQL nodes uses its memory.

Table 15-11. The Transaction Events Summary Tables

Table Name Description

events_transactions_summary_by_account_by_event_
name

Transactions grouped by account and event
name.

events_transactions_summary_by_host_by_event_
name

Transactions grouped by host and event name.

events_transactions_summary_by_thread_by_event_
name

Transactions grouped by thread and event
name.

events_transactions_summary_by_user_by_event_
name

Transactions grouped by user and event name.

events_transactions_summary_global_by_event_name Transactions grouped only by event name.

Table 15-12. The Wait Events Summary Tables

Table Name Description

events_waits_summary_by_account_by_event_
name

Wait events grouped by account and event name.

events_waits_summary_by_host_by_event_
name

Wait events grouped by host and event name.

events_waits_summary_by_instance Wait events grouped by instance. See the instance tables
later.

events_waits_summary_by_thread_by_event_
name

Wait events grouped by thread and event name.

events_waits_summary_by_user_by_event_
name

Wait events grouped by user and event name.

events_waits_summary_global_by_event_name Wait events grouped only by event name.

Chapter 15 ■ SourCeS for Monitoring Data

484

The last set of summary tables are for files, objects, sockets, and tables. These are summarized in
Table 15-14.

The summary tables are essentially reports on their own, making them very useful for investigating issues.
One summary table that is particularly worth considering in more detail is the events_statements_summary_
by_digest table. This table uses the digests discussed in the previous section to group the statement events.
The statistics are aggregated for the combination of the default schema and the digest (to allow distinguishing
the same query executed for two different schemas). The result is similar to the report generated by the
mysqldumpslow script on the slow query log, but being automatically kept up to date for all instrumented queries
and available using the SELECT statement which makes it very easy to filter and order the data as required.

The events_statements_summary_by_digest table can, by default, hold 10000 combinations of the
default schema and the digest. The size can be changed using the performance_schema_digests_size
option (requires a restart of the SQL node). When the last available row in the table is taken into use, the
default schema and digest will both be set to NULL and all queries not matching an existing row will be
combined in this NULL row.

 ■ Note the events_statements_summary_by_digest table is also the default source for the MySQL
enterprise Monitor Query analyzer.

Table 15-13. The Memory Summary Tables

Table Name Description

memory_summary_by_account_by_event_name Memory usage grouped by account and event name.

memory_summary_by_host_by_event_name Memory usage grouped by host and event name.

memory_summary_by_thread_by_event_name Memory usage grouped by thread and event name.

memory_summary_by_user_by_event_name Memory usage grouped by user and event name.

memory_summary_global_by_event_name Memory usage grouped only by event name.

Table 15-14. Summary Tables for Files, Objects, Sockets, and Tables

Table Name Description

file_summary_by_event_name Files grouped by event name. This includes I/O latencies
and amount of data read and written.

file_summary_by_instance Files grouped by file instance and event name. This includes
I/O latencies and amount of data read and written.

objects_summary_global_by_type The number of times tables, stored procedures, stored
functions, stored events, and triggers have been used and
the amount of time spent in them.

socket_summary_by_event_name Statistics based on connection type (TCP/IP, UNIX socket,
etc.)

socket_summary_by_instance Statistics grouped by the socket instances.

table_io_waits_summary_by_index_usage Table I/O wait events grouped by index.

table_io_waits_summary_by_table Table I/O wait events grouped by table.

table_lock_waits_summary_by_table Table lock wait events grouped by table.

Chapter 15 ■ SourCeS for Monitoring Data

485

As an example, consider a request to find the most often executed queries. Listing 15-12 gives an
example of this using a requirement that the queries must have been executed at least 500 times.

Listing 15-12. Summary of Queries Executed at Least 500 Times

mysql> SELECT SCHEMA_NAME, DIGEST, DIGEST_TEXT, COUNT_STAR,
 sys.format_time(SUM_TIMER_WAIT) AS TotalTime,
 sys.format_time(AVG_TIMER_WAIT) AS AvgTime,
 SUM_ROWS_AFFECTED, SUM_ROWS_SENT, SUM_ROWS_EXAMINED
 FROM performance_schema.events_statements_summary_by_digest
 WHERE COUNT_STAR >= 500
 ORDER BY COUNT_STAR DESC\G
*************************** 1. row ***************************
 SCHEMA_NAME: world
 DIGEST: 127979ff01aa4392cc363ae5c71177d5
 DIGEST_TEXT: SELECT * FROM `City` WHERE `ID` = ?
 COUNT_STAR: 1000
 TotalTime: 552.40 ms
 AvgTime: 552.40 us
SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 1000
SUM_ROWS_EXAMINED: 1000
*************************** 2. row ***************************
 SCHEMA_NAME: world
 DIGEST: 22a2a36f23374320e7a9739086957192
 DIGEST_TEXT: UPDATE `City` SET `Population` = `Population` + ? WHERE `ID` = ?
 COUNT_STAR: 1000
 TotalTime: 1.62 s
 AvgTime: 1.62 ms
SUM_ROWS_AFFECTED: 1000
 SUM_ROWS_SENT: 0
SUM_ROWS_EXAMINED: 1000
2 rows in set (0.00 sec)

The output shows that SUM_ROWS_EXAMINED is the same as COUNT_STAR (the total number of executions)
for the two statements, so on average each execution only needs to examine one row. That is a good as it gets
(and comes from using the primary key to locate the rows).

Another very useful summary table is the table_io_waits_summary_by_index_usage table. This makes
it possible to check whether indexes are used or not. Unused indexes cause an overhead both storage and
performance wise. So, it is useful to monitor whether indexes are used, and if not investigate whether it is
possible to remove it. For an example of checking for unused indexes, see the example with the sys.schema_
index_statistics view in the next section about the sys schema.

The table_io_waits_summary_by_index_usage table can also be used to find tables with many rows
found using table scans. This is done by filtering with the INDEX_NAME set to NULL. An example of this will also
be provided in the discussion of the sys schema—see the example with the sys.schema_tables_with_full_
table_scans view in the next section.

The next group of tables to consider are the connection and thread tables.

Connection and Thread Tables
The connection and threat tables give access to statistics and metadata for the connections made to the SQL
node and which threads exist. There are a total of seven tables, all listed in Table 15-15.

Chapter 15 ■ SourCeS for Monitoring Data

486

The threads table is the most interesting for general usage. This was the table that was used earlier
to link connection IDs with the Performance Schema thread IDs and to show that both foreground and
background threads are instrumented. It includes various metadata for each thread as well as the same
information as the process list for user connections. Listing 15-13 shows an example for a user connection.

Listing 15-13. The performance_schema.threads Table

mysql> SELECT * FROM performance_schema.threads WHERE THREAD_ID = 12595\G
*************************** 1. row ***************************
 THREAD_ID: 12595
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 12572
 PROCESSLIST_USER: app_user
 PROCESSLIST_HOST: ol7
 PROCESSLIST_DB: db1
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 12
 PROCESSLIST_STATE: Sending data
 PROCESSLIST_INFO: SELECT * FROM t1 INNER JOIN t2 USING (val)
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: TCP/IP
 THREAD_OS_ID: 14131
1 row in set (0.00 sec)

It is preferred to use the threads table over the SHOW PROCESSLIST statement or the information_
schema.PROCESSLIST table as those requires a mutex on the executing queries to generate the process list.
The mutex is required as SHOW PROCESSLIST and an query on information_schema.PROCESSLIST requires
fetching the status from each thread. The Performance Schema works the other way around that the threads
update the Performance Schema when the status changes, so a table lock on the threads table is enough
to give a consistent result. Additionally, the threads table offer more details and can be joined with the
events_statements_current table to provide even more information including sub second precision on the
execution time. The sys schema views processlist and session, which are discussed in the next section,
will give an example of this.

Table 15-15. Performance Schema Connection Tables

Table Name Description

accounts Number of current and total threads grouped by username and
hostname.

host_cache Details for TCP/IP connections from non-loopback interfaces.

hosts Number of current and total threads grouped by hostname.

session_account_connect_attrs Session attributes for the same account querying the table.

session_connect_attrs Session attributes for all connections.

threads Details for all threads, including similar information as the process list.

users Number of current and total threads grouped by username.

Chapter 15 ■ SourCeS for Monitoring Data

487

The accounts, hosts, and users tables all show the number of current threads and total threads but
grouped by the account, host, and user, respectively. Listing 15-14 shows examples of this. The NULL users
and hosts are for the background threads and system users. Notice that the column names uses the word
"connection", however it is really threads.

Listing 15-14. Getting the Number of Threads

mysql> SELECT * FROM performance_schema.accounts;
+----------+-----------+---------------------+-------------------+
| USER | HOST | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+----------+-----------+---------------------+-------------------+
NULL	NULL	25	12952
root	localhost	2	21
app_user	ol7	1	254
+----------+-----------+---------------------+-------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM performance_schema.hosts;
+-----------+---------------------+-------------------+
| HOST | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+-----------+---------------------+-------------------+
NULL	25	12956
localhost	2	21
ol7	1	254
+-----------+---------------------+-------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM performance_schema.users;
+----------+---------------------+-------------------+
| USER | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+----------+---------------------+-------------------+
NULL	25	12962
root	2	21
app_user	1	254
+----------+---------------------+-------------------+
3 rows in set (0.00 sec)

The host_cache table can be used to get details of the TCP connections from non-loopback interfaces
(but not UNIX socket connections and for example 127.0.0.1). Listing 15-15 provides an example. This can
be used to find out where connection errors are originating from and whether any hosts are close to being
blocked due to too many protocol handshake errors. A host is blocked if SUM_CONNECT_ERRORS for a host
reached the value of the max_connect_errors configuration option.

Listing 15-15. Details of the Host Cache

mysql> SELECT * FROM host_cache\G
*************************** 1. row ***************************
 IP: 192.168.56.101
 HOST: ol7
 HOST_VALIDATED: YES
 SUM_CONNECT_ERRORS: 3
 COUNT_HOST_BLOCKED_ERRORS: 0

Chapter 15 ■ SourCeS for Monitoring Data

488

 COUNT_NAMEINFO_TRANSIENT_ERRORS: 0
 COUNT_NAMEINFO_PERMANENT_ERRORS: 0
 COUNT_FORMAT_ERRORS: 0
 COUNT_ADDRINFO_TRANSIENT_ERRORS: 0
 COUNT_ADDRINFO_PERMANENT_ERRORS: 0
 COUNT_FCRDNS_ERRORS: 0
 COUNT_HOST_ACL_ERRORS: 0
 COUNT_NO_AUTH_PLUGIN_ERRORS: 0
 COUNT_AUTH_PLUGIN_ERRORS: 0
 COUNT_HANDSHAKE_ERRORS: 3
 COUNT_PROXY_USER_ERRORS: 0
 COUNT_PROXY_USER_ACL_ERRORS: 0
 COUNT_AUTHENTICATION_ERRORS: 8
 COUNT_SSL_ERRORS: 0
 COUNT_MAX_USER_CONNECTIONS_ERRORS: 0
COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS: 0
 COUNT_DEFAULT_DATABASE_ERRORS: 0
 COUNT_INIT_CONNECT_ERRORS: 0
 COUNT_LOCAL_ERRORS: 0
 COUNT_UNKNOWN_ERRORS: 0
 FIRST_SEEN: 2017-06-17 18:58:38
 LAST_SEEN: 2017-06-17 19:03:16
 FIRST_ERROR_SEEN: 2017-06-17 18:58:38
 LAST_ERROR_SEEN: 2017-06-17 19:03:17
1 row in set (0.00 sec)

The last two tables—session_account_connect_attrs and session_connect_attrs—both show
attributes for the user connections. The attributes are provided by the client and thus which attributes are
available depends on how the connection was made. The difference between the two tables is that session_
account_connect_attrs only includes attributes for connections for the same account as the account of the
connection executing the query, whereas session_connect_attrs includes the attributes for all accounts.
By having this separation, it is possible to grant the SELECT privilege on the session_account_connect_
attrs to users who should be allowed to check the attributes for its own connections without showing
information for other accounts. Listing 15-16 shows an example of the attributes for two connections.

Listing 15-16. Session Attributes

mysql> SELECT PROCESSLIST_ID AS ID, ATTR_NAME, ATTR_VALUE, ORDINAL_POSITION
 FROM session_connect_attrs;
+-------+------------------+----------------------+------------------+
| ID | ATTR_NAME | ATTR_VALUE | ORDINAL_POSITION |
+-------+------------------+----------------------+------------------+
9	_os	linux-glibc2.5	0
9	_client_name	libmysql	1
9	_pid	1959	2
9	_client_version	5.7.18-ndb-7.5.6	3
9	_platform	x86_64	4
9	program_name	mysql	5
26106	_runtime_version	1.8.0_111	0
26106	_client_version	5.1.42	1
26106	_client_name	MySQL Connector Java	2
26106	_client_license	GPL	3

Chapter 15 ■ SourCeS for Monitoring Data

489

| 26106 | _runtime_vendor | Oracle Corporation | 4 |
+-------+------------------+----------------------+------------------+
11 rows in set (0.00 sec)

The connection with connection ID 9 is using the mysql command-line client from version 5.7.18-ndb-
7.5.6 connecting from a Linux system. Connection ID 26106 is, on the other hand, a Java application using
Connector/J version 5.1.42. One of the advantages of these attributes is that it is easy to check the version of
the client and connectors used; this can be used to verify that all instances of the application are using the
appropriate version.

The attributes tables expose variables for the client side of the connection. Next are the variable and
status tables that provide information from the server side.

Variable and Status Tables
The Performance Schema provides a range of tables to get the values of variables (options) and status variables.
There are both global and session level tables as well as status variables grouped by account, host, thread, and
user. The tables are listed in Table 15-16. The global_status, global_variables, session_status, and session_
variables have replaced the corresponding tables from the Information Schema in MySQL NDB Cluster 7.5 as
part of the effort to move tables that are more about performance and are more dynamic into the Performance
Schema.

The variables_by_thread table is a more general version of session_variables. Whereas session_
variables includes the variables for the connection querying the table, the variables_by_thread table has
data for all of the connections. However, there is one additional difference: variables_by_thread strictly only
includes session level variables, whereas session_variables adds the global variables that do not have a session
counterpart. For example, tls_version is included in session_variables but not in variables_by_thread.

Listing 15-17 shows an example of how variables_by_thread can be used together with global_
variables to detect when a client connection has changed any of the configuration options.

Table 15-16. Performance Schema Variable and Status Tables

Table Name Description

global_status The global status variables. The same as SHOW GLOBAL STATUS except for
variables starting with Com_.

global_variables The global configuration variables. The same as SHOW GLOBAL VARIABLES.

session_status The session status variables. The same as SHOW SESSION STATUS except for
variables starting with Com_.

session_variables The session configuration variables. The same as SHOW SESSION VARIABLES.

status_by_account The status variables grouped by username and hostname.

status_by_host The status variables grouped by hostname.

status_by_thread The status variables grouped by thread.

status_by_user The status variables grouped by username.

user_variables_by_thread The user variables (for example @id) for each current connection.

variables_by_thread The session-level configuration variables for each current connection.

Chapter 15 ■ SourCeS for Monitoring Data

490

Listing 15-17. Determining Connections Using Non-Global Variable Values

mysql> SELECT t.THREAD_ID, VARIABLE_NAME,
 t.VARIABLE_VALUE AS SessionValue,
 g.VARIABLE_VALUE AS GlobalValue
 FROM performance_schema.variables_by_thread t
 INNER JOIN performance_schema.global_variables g
 USING (VARIABLE_NAME)
 WHERE t.VARIABLE_VALUE <> g.VARIABLE_VALUE
 AND VARIABLE_NAME NOT IN ('character_set_database',
 'collation_database');
+-----------+------------------+--------------+-------------+
| THREAD_ID | VARIABLE_NAME | SessionValue | GlobalValue |
+-----------+------------------+--------------+-------------+
| 32412 | sort_buffer_size | 2097152 | 262144 |
+-----------+------------------+--------------+-------------+
1 row in set (0.02 sec)

The database character set and collation is filtered out as they depend on how the current schema for
the connection was created rather than what the connection have set. Similarly, it may be necessary to filter
out other options that are known to be changed. In this case, the sort buffer has been increased to 2MB by
one of the connections. Large buffers can cause performance issues and too high memory usage, so if this
value is not expected for the connection, it may warrant further investigation.

The next group of tables to look at are the replication tables.

Replication Tables
Until MySQL Server 5.7 and MySQL NDB Cluster 7.5, the only way to get information about the replication
status and configuration was to use the SHOW SLAVE STATUS statement. In MySQL NDB Cluster 7.5, the eight
tables in Table 15-17 has been added to make some of the information available through the Performance
Schema. The tables were also discussed in Chapter 6, and will not be discussed further here.

Table 15-17. Performance Schema Replication Tables

Table Name Description

replication_applier_configuration Configuration for slave the SQL thread.

replication_applier_status Status for slave the SQL thread.

replication_applier_status_by_
coordinator

Status for the coordinator thread for a multi-threaded
slave.

replication_applier_status_by_worker Status for worker threads for a multi-threaded slave.

replication_connection_configuration Configuration for the slave IO thread.

replication_connection_status Status for the slave IO thread.

replication_group_member_stats This table shows network and status information for
replication group members. Group Replication is not
supported for MySQL NDB Cluster.

replication_group_members Statistical information for MySQL Group Replication
members. Group Replication is not supported for MySQL
NDB Cluster.

http://dx.doi.org/10.1007/978-1-4842-2982-8_6

Chapter 15 ■ SourCeS for Monitoring Data

491

Instance Tables
There are a number of instances that are tracked. These range from mutexes to prepared statements.
Table 15-18 lists the six tables available for these instances. Most of the tables are not often required, but can
be useful in some debugging situations.

One table stands out as being somewhat different that the others: the prepared_statements_instances
table. This is very similar to the events_statements_current table, except it is for prepared statements.
There are no tables equivalent of the events history or history long tables, so only current existing prepared
statements (i.e. existing in the prepared statement cache) can be viewed.

Listing 15-18 shows an example where there are two prepared statements in the cache. Notice how the
statement name and SQL text are the same for the two prepared statements—this is not an error. The scope
of the prepared statement is the connection, so two connections are free to create prepared statements with
the same name.

Listing 15-18. The Prepared Statement Instances

mysql> SELECT * FROM prepared_statements_instances\G
*************************** 1. row ***************************
 OBJECT_INSTANCE_BEGIN: 140468851714864
 STATEMENT_ID: 1
 STATEMENT_NAME: stmt_city
 SQL_TEXT: SELECT * FROM world.City WHERE ID = ?
 OWNER_THREAD_ID: 32412
 OWNER_EVENT_ID: 10
 OWNER_OBJECT_TYPE: NULL
 OWNER_OBJECT_SCHEMA: NULL
 OWNER_OBJECT_NAME: NULL
 TIMER_PREPARE: 230446000
 COUNT_REPREPARE: 0
 COUNT_EXECUTE: 4
 SUM_TIMER_EXECUTE: 3560169000

Table 15-18. Performance Schema Instance Tables

Table Name Description

cond_instances The condition synchronization instances. Includes just the instance
name and memory address.

file_instances File instances. Includes filename, event name, and the number of
open file descriptors to the file.

mutex_instances Mutex instances. Includes the memory address and which thread (if
any) holds a lock on the mutex.

prepared_statements_instances Prepared statement statistics similar to events_statements_current.

rwlock_instances Read and write lock instances. Includes the memory address, which
thread (if any) holds a write lock, and how many read locks that exits
for the instance.

socket_instances Each of the TCP/IP socket, UNIX socket, etc. Includes the memory
address, thread ID using the socket, socket ID, IP address, port
number, and state.

Chapter 15 ■ SourCeS for Monitoring Data

492

 MIN_TIMER_EXECUTE: 671388000
 AVG_TIMER_EXECUTE: 890042000
 MAX_TIMER_EXECUTE: 1107494000
 SUM_LOCK_TIME: 504000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0
 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 4
 SUM_ROWS_EXAMINED: 4
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 0
 SUM_SELECT_FULL_JOIN: 0
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 0
 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 0
 SUM_NO_GOOD_INDEX_USED: 0
*************************** 2. row ***************************
 OBJECT_INSTANCE_BEGIN: 140469259951328
 STATEMENT_ID: 1
 STATEMENT_NAME: stmt_city
 SQL_TEXT: SELECT * FROM world.City WHERE ID = ?
 OWNER_THREAD_ID: 35411
 OWNER_EVENT_ID: 3
 OWNER_OBJECT_TYPE: NULL
 OWNER_OBJECT_SCHEMA: NULL
 OWNER_OBJECT_NAME: NULL
 TIMER_PREPARE: 313392000
 COUNT_REPREPARE: 0
 COUNT_EXECUTE: 1
 SUM_TIMER_EXECUTE: 1281026000
 MIN_TIMER_EXECUTE: 1281026000
 AVG_TIMER_EXECUTE: 1281026000
 MAX_TIMER_EXECUTE: 1281026000
 SUM_LOCK_TIME: 165000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0
 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 1
 SUM_ROWS_EXAMINED: 1
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 0
 SUM_SELECT_FULL_JOIN: 0
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 0

Chapter 15 ■ SourCeS for Monitoring Data

493

 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 0
 SUM_NO_GOOD_INDEX_USED: 0
2 rows in set (0.00 sec)

Lock Tables
Lock wait issues are typical issues that database administrators will have to investigate. Locks can occur at
several levels from the global level in the SQL node over metadata and table level locks to row level locks.
The Performance Schema includes two tables listed in Table 15-19 that can be used to investigate metadata
locks and table locks.

Given that these will only be an issue for NDBCluster tables while schema changes are being made, and
the NDBCluster storage engine does not support concurrent queries for the table on the same SQL node,
the Performance Schema lock tables will not be discussed in more detail here. In the next chapter, it will be
shown how to investigate lock contention at the row level for NDBCluster tables.

This concludes the tour of the Performance Schema. As it can be seen, there is a lot of data available, and
each new version of MySQL Server adds more tables and instruments. It is easy to become overwhelmed and it
can be hard to remember all of the queries in the heat of the battle. This is where the sys schema comes into play.

 ■ Tip there is much more to know about the performance Schema. the full documentation can be found in
the MySQL reference Manual at https://dev.mysql.com/doc/refman/en/performance-schema.html.

The sys Schema
The sys schema is the brainchild of Mark Leith, one of the managers for MySQL Enterprise Monitor. He
started the ps_helper project to experiment with monitoring ideas and to showcase what the Performance
Schema was able to do while making it simpler at the same time. The project was later renamed to the sys
schema and moved into MySQL. There have since been contributions from several other people, including
one of the authors of this book.

This section looks at the installation process for the sys schema as well as demonstrates some use cases
including the Performance Reports in MySQL Workbench.

Table 15-19. Performance Schema Lock Tables

Table Name Description

metadata_locks Metadata lock information. One row per metadata lock currently in use or being waited for.

table_handles Information about table locks. Rows may be returned even if no lock currently exists or
is being requested.

https://dev.mysql.com/doc/refman/en/performance-schema.html

Chapter 15 ■ SourCeS for Monitoring Data

494

Installation
The sys schema is available for MySQL Server 5.6 and later, which means MySQL NDB Cluster 7.3 and later.
Starting with MySQL Server 5.7/MySQL NDB Cluster 7.5, it is installed by default in the same way as the
other system schemas such as the mysql schema. For users of MySQL NDB Cluster 7.3 and 7.4, it is necessary
to install it manually from the GitHub repository, MySQL Workbench, or MySQL Enterprise Monitor. Should
the sys schema become corrupted or there is an upgrade available, it is possible for all MySQL NDB Cluster
versions to reinstall using the GitHub downloads.

The sys schema GitHub repository is available at https://github.com/mysql/mysql-sys. The repository is
administrated by the MySQL development team in the same way as the server (which includes MySQL NDB
Cluster) GitHub repository. From the front page of the repository, choose the branch to download. In most
cases, it is recommended to choose the master branch, which is the same as is installed with MySQL. Then
click on the green Clone or Download button followed by Download ZIP to download the installation files.
This is also shown in Figure 15-4.

After the downloaded Zip file has been extracted, go into the mysql-sys-master directory (if another
branch than master was downloaded, the directory name will be different) where the installation files are
located. There is one SQL script per supported version:

•	 sys_56.sql: For MySQL Server 5.6 and MySQL NDB Cluster 7.3 and 7.4.

•	 sys_57.sql: For MySQL Server 5.7 and MySQL NDB Cluster 7.5 and 7.6.

Connect to an SQL node using the mysql command-line client with the current directory being
mysql-sys-master and execute (using the appropriate installation file for the MySQL NDB Cluster version):

mysql> SOURCE sys_56.sql
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Figure 15-4. Downloading the sys schema from GitHub

https://github.com/mysql/mysql-sys

Chapter 15 ■ SourCeS for Monitoring Data

495

Query OK, 1 row affected (0.45 sec)

Database changed
Query OK, 0 rows affected (0.04 sec)
...

It is also possible to install the sys schema using a GUI using either MySQL Enterprise Monitor or
MySQL Workbench. Figure 15-5 shows the install screen in the Performance Reports in MySQL Workbench.
Do note that MySQL Workbench only supports installing the sys schema if it is not already there; there is no
support for upgrades.

With the sys schema installed, it is time to look close at what it provides.

sys Schema Objects
At its core, the sys schema is a collection of views, stored functions, and stored procedures. Additionally,
there is one table with two triggers for the configuration. While originally it was aimed at providing an
interface to the Performance Schema, it has evolved to include the Information Schema and provide some
general utilities.

One of the main goals of the sys schema is ease of use. For this reason, the views in most cases include
an ORDER BY clause. Additionally, the columns including Performance Schema timings, paths, byte values,
or statements are formatted to make it easier for humans to read and to make it more likely for the output
to fit inside a screen width. The formatting may not always be wanted, for example if a custom ordering
is required or software needs to analyze the data. To accommodate that, each view that uses formatting
functions also exist in a version with x$ prefixed to the view name. These views return the unformatted data.

Figure 15-5. Installing the sys schema from the MySQL Workbench Performance Reports

Chapter 15 ■ SourCeS for Monitoring Data

496

The remainder of this section lists all of the sys schema objects and provides a brief description.

 ■ Note for the full documentation of the sys schema objects, see the reference Manual at https://dev.
mysql.com/doc/refman/5.7/en/sys-schema-reference.html or the github reaDMe file at https://github.com/
mysql/mysql-sys/blob/master/README.md.

The sys schema only includes one table for the configuration. The table has two triggers to set who
updates the configuration. The table and triggers are listed in Table 15-20. The sys schema configuration in
discussed in the next section.

Table 15-21 lists the views providing summaries grouped by hostname. The hostname is where the
users are connecting from, so the views can, for example, be used to determine whether the workload from
multiple application hosts is even.

There are a few views specific for the InnoDB storage engine. These are listed in Table 15-22. In MySQL
NDB Cluster, these are most often useful when replicating to an InnoDB instance.

Table 15-20. sys Schema Configuration Table and Triggers

Table/Trigger Name Description

sys_config Table with the sys schema configuration.

sys_config_insert_set_user Trigger that sets the username of the user inserting new configuration
options.

sys_config_update_set_user Set the username of the user updating configuration options.

Table 15-21. sys Schema Host Summary Views

View Name Description

host_summary
x$host_summary

Overall host summary grouped by the hostname.

host_summary_by_file_io
x$host_summary_by_file_io

File I/O latencies grouped by the hostname.

host_summary_by_file_io_type
x$host_summary_by_file_io_type

File I/O latencies grouped by the hostname and event name.

host_summary_by_stages
x$host_summary_by_stages

Latencies grouped by the hostname and stage event name.

host_summary_by_statement_latency
x$host_summary_by_statement_latency

Statement statistics grouped by the hostname.

host_summary_by_statement_type
x$host_summary_by_statement_type

Statement statistics grouped by the hostname and statement type.

https://dev.mysql.com/doc/refman/5.7/en/sys-schema-reference.html
https://dev.mysql.com/doc/refman/5.7/en/sys-schema-reference.html
https://github.com/mysql/mysql-sys/blob/master/README.md
https://github.com/mysql/mysql-sys/blob/master/README.md

Chapter 15 ■ SourCeS for Monitoring Data

497

Investigating issues related to disk I/O can be difficult to track down. However, the sys schema includes
several views that can tell what is causing I/O from within the SQL node. These views are summarized in
Table 15-23.

In MySQL NDB Cluster 7.5 and later, it is possible to enable instrumentation of when memory is
allocated and deallocated. This can be used to investigate what is contributing to the overall memory usage
of the SQL node. The views available for this are listed in Table 15-24.

Table 15-22. sys Schema InnoDB Views

View Name Description

innodb_buffer_stats_by_schema
x$innodb_buffer_stats_by_schema

InnoDB buffer pool allocations grouped by schema.

innodb_buffer_stats_by_table
x$innodb_buffer_stats_by_table

InnoDB buffer pool allocations grouped by table.

innodb_lock_waits
x$innodb_lock_waits

Information about ongoing InnoDB lock contention.

Table 15-23. sys Schema I/O Views

View Name Description

io_by_thread_by_latency
x$io_by_thread_by_latency

I/O latencies grouped by thread.

io_global_by_file_by_bytes
x$io_global_by_file_by_bytes

I/O amounts grouped by file.

io_global_by_file_by_latency
x$io_global_by_file_by_latency

I/O latencies grouped by file.

io_global_by_wait_by_bytes
x$io_global_by_wait_by_bytes

I/O amounts grouped by event name.

io_global_by_wait_by_latency
x$io_global_by_wait_by_latency

I/O latencies grouped by event name.

latest_file_io
x$latest_file_io

The latest file I/O events.

Chapter 15 ■ SourCeS for Monitoring Data

498

For the memory views, note that memory usage is only instrumented from the time the corresponding
memory instruments are enabled. This means that memory usages are in general only accurate if memory
instrumentation is enabled in the MySQL configuration file, so the instruments are enabled from the time
MySQL starts. By default, only memory instrumentation of the Performance Schema is enabled.

There are several views to investigate the schema. The groupings are at the table and index levels. These
views are useful for investigating whether the indexes are optimal, whether a table is running out of auto-
increment values, etc. The section entitled “Command-Line Usage and Examples” includes examples of
using some of these views. The views are summarized in Table 15-25.

Table 15-25. sys Schema Schema Views

View Name Description

schema_auto_increment_columns Information about auto-increment columns, including
data type and used values.

schema_index_statistics
x$schema_index_statistics

Information about the usage of the indexes.

schema_object_overview Overview of the number of tables, indexes, etc. grouped
by schema.

schema_redundant_indexes Finds indexes where there are two indexes covering the
same uses and provides suggestions as to which to drop.

schema_table_lock_waits
x$schema_table_lock_waits

Lists current table metadata lock contentions.

schema_table_statistics
x$schema_table_statistics

Table usage statistics, including latencies and amount of
data read.

schema_table_statistics_with_buffer
x$schema_table_statistics_with_buffer

The same as the schema_table_statistics view, but
also including the InnoDB buffer pool allocation statistics.

schema_tables_with_full_table_scans
x$schema_tables_with_full_table_scans

Shows information about table scans.

schema_unused_indexes Lists unused indexes.

x$schema_flattened_keys Helper view for schema_redundant_indexes.

Table 15-24. sys Schema Memory Usage Views

View Name Description

memory_by_host_by_current_bytes
x$memory_by_host_by_current_bytes

Current memory usage grouped by host.

memory_by_thread_by_current_bytes
x$memory_by_thread_by_current_bytes

Current memory usage grouped by thread.

memory_by_user_by_current_bytes
x$memory_by_user_by_current_bytes

Current memory usage grouped by user.

memory_global_by_current_bytes
x$memory_global_by_current_bytes

Current memory usage grouped by event name.

memory_global_total
x$memory_global_total

The total current memory usage.

Chapter 15 ■ SourCeS for Monitoring Data

499

One of the strengths of the Performance Schema is the ability to look for queries that fulfills certain
criteria such as it uses sorting, internal temporary tables, no use of index, etc. To make it easier to look
for such queries, the sys schema has the views in Table 15-26. All the statement views are grouped by the
default schema and digest.

Similar to the views grouping by hostname, there are summaries grouped by the username. These are
particularly useful for systems with several users, for example, multiple applications using the same cluster
for storage. The user views are listed in Table 15-27.

Table 15-26. sys Schema Statement Views

View Name Description

statement_analysis
x$statement_analysis

General statement statistics.

statements_with_errors_or_warnings
x$statements_with_errors_or_warnings

Statements returning error and/or warnings.

statements_with_full_table_scans
x$statements_with_full_table_scans

Information about statements using full table
scans.

statements_with_runtimes_in_95th_percentile
x$statements_with_runtimes_in_95th_percentile

Statements with their average runtime in the 95th
percentile.

statements_with_sorting
x$statements_with_sorting

Statements that sort the result set.

statements_with_temp_tables
x$statements_with_temp_tables

Statements using internal temporary tables.

x$ps_digest_95th_percentile_by_avg_us Helper view for statements_with_runtimes_
in_95th_percentile.

x$ps_digest_avg_latency_distribution Helper view for x$ps_digest_95th_percentile_
by_avg_us

Table 15-27. sys Schema User Views

View Name Description

user_summary
x$user_summary

Overall user summary grouped by the username.

user_summary_by_file_io
x$user_summary_by_file_io

File I/O latencies grouped by the username.

user_summary_by_file_io_type
x$user_summary_by_file_io_type

File I/O latencies grouped by the username and event name.

user_summary_by_stages
x$user_summary_by_stages

Latencies grouped by the username and stage event name.

user_summary_by_statement_latency
x$user_summary_by_statement_latency

Statement statistics grouped by the username.

user_summary_by_statement_type
x$user_summary_by_statement_type

Statement statistics grouped by the username and statement
type.

Chapter 15 ■ SourCeS for Monitoring Data

500

The views grouped by the wait events can be used if low level events are investigated. These are not
used very often, particularly for MySQL NDB Cluster. The wait event views are summarized in Table 15-28.

The last group of views are for the general status. These range from the version of the sys schema and
the SQL node over metrics including the global status variables to a modern implementation of the process
list. Table 15-29 lists the views.

Table 15-28. sys Schema Wait Views

View Name Description

wait_classes_global_by_avg_latency
x$wait_classes_global_by_avg_latency

Latency statistics grouped by the wait classes (the first three
components separated by / of the event name) order by
average latency.

wait_classes_global_by_latency
x$wait_classes_global_by_latency

Latency statistics grouped by the wait classes (the first three
components separated by / of the event name) ordered by
total latency.

waits_by_host_by_latency
x$waits_by_host_by_latency

Wait latencies grouped by the event name and hostname.

waits_by_user_by_latency
x$waits_by_user_by_latency

Wait latencies grouped by the event name and username.

waits_global_by_latency
x$waits_global_by_latency

Wait latencies grouped by the event name.

Table 15-29. sys Schema General Status Views

View Name Description

metrics The global status variables, the InnoDB metrics (the INNODB_METRICS
table in the Information Schema), overall memory usage, and the time
of the query.

processlist
x$processlist

An advanced process list view based on several Performance Schema
tables such as threads and events_statements_current. Both
foreground and background threads are included.

ps_check_lost_instrumentation Checks whether any instrumentation has been lost due to the
Performance Schema sizing being too small.

session
x$session

The same as the processlist view, but filtered so only connections
are included.

session_ssl_status SSL information for connections.

version The sys schema and MySQL version.

Chapter 15 ■ SourCeS for Monitoring Data

501

There are several functions in the sys schema. Most of these are helper functions of one sort or another.
The first group can be used to format the bytes, paths, statements, and timings found in the Performance
Schema. These are listed in Table 15-30.

The second group of functions can be used to manipulate information, for example, to extract the
schema or table name from a filename, or manipulating lists. Table 15-31 lists these utility functions.

Table 15-30. sys Schema Formatting Functions

Function Name Description

format_bytes Formats bytes to include units.

format_path Formats a path to replace parts of the path with configuration options, for example
datadir.

format_statement Truncates a statement to statement_truncate_len (see the “sys Schema
Configuration” section) characters while preserving both the start and end of the
statement.

format_time Converts picoseconds into a human-readable format including units.

Table 15-31. sys Schema Utility Functions

Function Name Description

extract_schema_from_file_name Extracts the schema name from a filename.

extract_table_from_file_name Extracts the table name from a filename.

list_add Adds an element to a comma separated list if the element is not
already in the list.

list_drop Removes an element from a comma separated list.

quote_identifier Quotes a MySQL identifier using backticks (`).

sys_get_config Retrieve a sys schema configuration option. See the “sys Schema
Configuration” section.

version_major Returns the major version for MySQL Server (for example returns 5
for 5.7.18).

version_minor Returns the minor version for MySQL Server (for example returns 7
for 5.7.18).

version_patch Returns the patch release version for MySQL Server (for example
returns 18 for 5.7.18).

Chapter 15 ■ SourCeS for Monitoring Data

502

The third and last group of functions directly uses the Performance Schema tables. These can for
example be used to determine what is enabled, convert a connection ID to a Performance Schema thread
ID, etc. The functions are listed in Table 15-32.

The stored procedures in the sys schema can also be divided into three groups. The first group contains
the procedures aimed at making it easier to make configuration changes to the Performance Schema.
Table 15-33 lists all of these.

Table 15-32. sys Schema Performance Schema Functions

Function Name Description

ps_is_account_enabled Returns whether an account has instrumentation enabled.

ps_is_consumer_enabled Returns whether a consumer will collect data (based on the
hierarchy).

ps_is_instrument_default_enabled Returns whether an instrument is enabled by default based
on the MySQL version.

ps_is_instrument_default_timed Returns whether an instrument is timed by default based on
the MySQL version.

ps_is_thread_instrumented Returns whether a given thread is instrumented.

ps_thread_account Returns username@hostname for a thread ID.

ps_thread_id Returns the Performance Schema thread ID for a
connection ID.

ps_thread_stack Generates a JSON-formatted stack for a given thread.

ps_thread_trx_info Generates a JSON object with details of the current
transaction for a thread.

Chapter 15 ■ SourCeS for Monitoring Data

503

Table 15-33. sys Schema Performance Schema Setup Procedures

Procedure Name Description

ps_setup_disable_background_threads Disables instrumentation of all background threads.

ps_setup_disable_consumer Disables all consumers that have the provided string as part of
the name.

ps_setup_disable_instrument Disables all instruments that have the provided string as part
of the name.

ps_setup_disable_thread Disables instrumentation for the connection with the provided
connection ID.

ps_setup_enable_background_threads Enables instrumentation for all background threads.

ps_setup_enable_consumer Enables all consumers that have the provided string as part of
the name.

ps_setup_enable_instrument Enables all instruments that have the provided string as part of
the name.

ps_setup_enable_thread Enables instrumentation for the connection with the provided
connection ID.

ps_setup_reload_saved Restores the Performance Schema setup that was previously
saved with the ps_setup_save() procedure in the same
session.

ps_setup_reset_to_default Resets the Performance Schema settings to the default. This
was the one used for the trace example earlier in the chapter.

ps_setup_save Saves the current Performance Schema settings.

ps_setup_show_disabled Shows all disabled Performance Schema related settings.

ps_setup_show_disabled_consumers Shows all disabled consumers.

ps_setup_show_disabled_instruments Shows all disabled instruments.

ps_setup_show_enabled Shows all enabled Performance Schema settings.

ps_setup_show_enabled_consumers Shows all enabled consumers.

ps_setup_show_enabled_instruments Shows all enabled instruments.

Chapter 15 ■ SourCeS for Monitoring Data

504

The second group of stored procedures is useful for investigating statements or group of statements.
The ps_trace_thread procedure used in the discussion of the Performance Schema to trace a transaction is
among them. The statement and trace procedures are listed in Table 15-34.

The third group of sys schema objects includes a few utility procedures that make it easy to collect
diagnostics data, execute one-off dynamically created statements, etc. These are described in Table 15-35.

sys Schema Configuration
The sys schema comes with its own configuration management since it must also work as an add-on to
older versions of MySQL, where it is not included as part of the normal installation. The configuration
consists of two parts—the persisted part which is stored in the sys_config table and a temporary part using
user variables. The default configuration can be seen from Listing 15-19.

Listing 15-19. The Default sys Schema Configuration

mysql> SELECT * FROM sys.sys_config;
+--------------------------------------+-------+---------------------+--------+
| variable | value | set_time | set_by |
+--------------------------------------+-------+---------------------+--------+
diagnostics.allow_i_s_tables	OFF	2017-06-11 12:30:17	NULL
diagnostics.include_raw	OFF	2017-06-11 12:30:17	NULL
ps_thread_trx_info.max_length	65535	2017-06-11 12:30:17	NULL

Table 15-34. sys Schema Statement and Trace Procedures

Procedure Name Description

ps_statement_avg_latency_histogram Generates a histogram based on the average digest latencies.

ps_trace_statement_digest Tracks the occurrence of statements with a given digest for a
period of time.

ps_trace_thread Generates a DOT formatted trace file. Used earlier in the
Performance Schema section.

ps_truncate_all_tables Truncates all Performance Schema tables (resets the statistics to
the same as after a restart of the SQL node).

Table 15-35. sys Schema Utility Procedures

Procedure Name Description

create_synonym_db Creates a schema with the specified name containing views to the original schema.
Can be used to for example have ps as a synonym for performance_schema.

diagnostics Collects diagnostics data for a given period of time. This includes data from the
ndbinfo views.

execute_prepared_stmt Executes an SQL query passed in the argument by using a prepared statement
and deallocate the prepared statement after use. Useful for dynamically
generated queries.

table_exists Returns whether a table exists and if so whether it is a base table, temporary
table, or a view.

Chapter 15 ■ SourCeS for Monitoring Data

505

statement_performance_analyzer.limit	100	2017-06-11 12:30:17	NULL
statement_performance_analyzer.view	NULL	2017-06-11 12:30:17	NULL
statement_truncate_len	64	2017-06-11 12:30:17	NULL
+--------------------------------------+-------+---------------------+--------+
6 rows in set (0.00 sec)

The set_time column is updated automatically unless set explicitly as the column is defined as DEFAULT
CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP and the set_by user is updated by a trigger to reflect
the username executing the INSERT or UPDATE. A set_by that is set to NULL means the configuration was
inserted as part of the sys schema installation.

For each of the variables in the sys_config table, it is possible to override the value at the session
level using a user variable with the name @sys. as a prefix concatenated on the option name. Listing 15-20
shows an example where the format_statement() function is used to format a query. The function uses the
statement_truncate_len option to decide where to truncate the query.

Listing 15-20. Example of Using sys Schema Session Level Settings

mysql> SELECT sys.format_statement('SELECT * FROM world.City INNER JOIN world.Country on
Country.Code = City.CountryCode') AS FormattedQuery\G
*************************** 1. row ***************************
FormattedQuery: SELECT * FROM world.City INNER ... ountry.Code = City.CountryCode
1 row in set (0.00 sec)

mysql> SET @sys.statement_truncate_len = 128;
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT sys.format_statement('SELECT * FROM world.City INNER JOIN world.Country on
Country.Code = City.CountryCode') AS FormattedQuery\G
*************************** 1. row ***************************
FormattedQuery: SELECT * FROM world.City INNER JOIN world.Country on Country.Code = City.
CountryCode
1 row in set (0.00 sec)

mysql> SET @sys.statement_truncate_len = NULL;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT sys.format_statement('SELECT * FROM world.City INNER JOIN world.Country on
Country.Code = City.CountryCode') AS FormattedQuery\G
*************************** 1. row ***************************
FormattedQuery: SELECT * FROM world.City INNER ... ountry.Code = City.CountryCode
1 row in set (0.00 sec)

By setting @sys.statement_truncate_len the truncation point can be change. Setting the value of the
user variable to NULL resets the option, so the sys schema will use the value from sys_config again.

Some features, such as the diagnostics() procedure, support additional custom settings. The
Reference Manual contains the details of these custom settings.

With the sys schema installed and configured, it is time to look at some examples of using it.

Chapter 15 ■ SourCeS for Monitoring Data

506

Command-Line Usage and Examples
One of the main goals of the sys schema is ease of use. For this reason, the views are in general created so
no joins, or ORDER BY clauses are required to use them. A plain SELECT * FROM <view name> possibly with
a WHERE and/or LIMIT clause is the typical use case. The Performance Schema sections have already shown
several examples of using the sys schema, and more examples will follow in the next chapter when using the
ndbinfo schema. So, this section will be limited to a couple of complementary use cases.

A view that already has been mentioned is the session view. It will also be used to find details for the
connections in the ndbinfo locks report in the next chapter. The session view is an advanced version of the
SHOW PROCESSLIST statement. Listing 15-21 shows an example where there are two connections.

Listing 15-21. Using the sys.session View

mysql> SELECT * FROM sys.session\G
*************************** 1. row ***************************
 thd_id: 32
 conn_id: 9
 user: root@localhost
 db: NULL
 command: Sleep
 state: NULL
 time: 3
 current_statement: NULL
 statement_latency: NULL
 progress: NULL
 lock_latency: 3.19 ms
 rows_examined: 1
 rows_sent: 1
 rows_affected: 0
 tmp_tables: 0
 tmp_disk_tables: 0
 full_scan: NO
 last_statement: SELECT * FROM world.City WHERE ID = 130
last_statement_latency: 3.88 ms
 current_memory: 0 bytes
 last_wait: NULL
 last_wait_latency: NULL
 source: NULL
 trx_latency: 641.43 us
 trx_state: COMMITTED
 trx_autocommit: YES
 pid: 29378
 program_name: mysql
*************************** 2. row ***************************
 thd_id: 28
 conn_id: 5
 user: root@localhost
 db: db1
 command: Query
 state: Sending data
 time: 0
 current_statement: SELECT * FROM sys.session

Chapter 15 ■ SourCeS for Monitoring Data

507

 statement_latency: 1.37 ms
 progress: NULL
 lock_latency: 852.00 us
 rows_examined: 0
 rows_sent: 0
 rows_affected: 0
 tmp_tables: 4
 tmp_disk_tables: 1
 full_scan: YES
 last_statement: NULL
last_statement_latency: NULL
 current_memory: 0 bytes
 last_wait: NULL
 last_wait_latency: NULL
 source: NULL
 trx_latency: 564.17 us
 trx_state: ACTIVE
 trx_autocommit: YES
 pid: 4246
 program_name: mysql
2 rows in set (0.05 sec)

The first row (thd_id: 32) shows an idle connection. Because the session view join on the performance_
schema.events_statements_current table, the previous statement can be included. The second row
(thd_id: 28) is an example of a connection executing the query. In both cases, detailed information is available.

There is a sibling view to the session view: the processlist view. The difference is that the
processlist view not only includes the connections, but also the background threads.

A common consideration for database administrators is which indexes are required. Table scans are
a killer for performance and may also affect other queries. Too many indexes will also hurt performance
as they must be maintained when data is changed, and the optimizer has to consider more options when
deciding on the query plan. To review whether the correct indexes are in place, the sys schema includes
three views that can be used.

Listing 15-22 uses the schema_redundant_indexes view to look for redundant indexes.

Listing 15-22. Finding Redundant Indexes

mysql> SELECT * FROM sys.schema_redundant_indexes\G
*************************** 1. row ***************************
 table_schema: world
 table_name: City
 redundant_index_name: Name
 redundant_index_columns: Name
redundant_index_non_unique: 1
 dominant_index_name: Name_2
 dominant_index_columns: Name,District
 dominant_index_non_unique: 1
 subpart_exists: 0
 sql_drop_index: ALTER TABLE `world`.`City` DROP INDEX `Name`
*************************** 2. row ***************************
 table_schema: world
 table_name: CountryLanguage
 redundant_index_name: CountryCode
 redundant_index_columns: CountryCode

Chapter 15 ■ SourCeS for Monitoring Data

508

redundant_index_non_unique: 1
 dominant_index_name: PRIMARY
 dominant_index_columns: CountryCode,Language
 dominant_index_non_unique: 0
 subpart_exists: 0
 sql_drop_index: ALTER TABLE `world`.`CountryLanguage` DROP INDEX `CountryCode`
2 rows in set (0.03 sec)

mysql> SHOW CREATE TABLE world.CountryLanguage\G
*************************** 1. row ***************************
 Table: CountryLanguage
Create Table: CREATE TABLE `CountryLanguage` (
 `CountryCode` char(3) NOT NULL DEFAULT '',
 `Language` char(30) NOT NULL DEFAULT '',
 `IsOfficial` enum('T','F') NOT NULL DEFAULT 'F',
 `Percentage` float(4,1) NOT NULL DEFAULT '0.0',
 PRIMARY KEY (`CountryCode`,`Language`),
 KEY `CountryCode` (`CountryCode`),
 CONSTRAINT `countryLanguage_ibfk_1` FOREIGN KEY (`CountryCode`) REFERENCES `Country`
(`Code`) ON DELETE NO ACTION ON UPDATE NO ACTION
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

mysql> ALTER TABLE world.CountryLanguage DROP INDEX CountryCode;
ERROR 1553 (HY000): Cannot drop index 'CountryCode': needed in a foreign key constraint

The result shows that the world.City table both has an index covering the Name and District columns
as well as one just covering the Name column. The index just on the Name column is redundant as the Name
column is a left prefix of the Name_2 index on (Name, District). So, the Name_2 index can be used for
queries just requiring an index on the Name column. There is a catch, as can be seen for the redundant index
on the world.CountryLanguage table. When trying to drop the redundant index, the statement fails because
the foreign key requires the index.

After checking for redundant indexes, it is time to check for unused indexes. The schema_unused_
indexes view is included for this purpose. An example of using the view is:

mysql> SELECT * FROM sys.schema_unused_indexes;
+---------------+-----------------+-------------+
| object_schema | object_name | index_name |
+---------------+-----------------+-------------+
world	City	CountryCode
world	City	Name
world	CountryLanguage	CountryCode
+---------------+-----------------+-------------+
3 rows in set (0.00 sec)

The view automatically excludes indexes that are primary keys or on a table in the mysql schema (as
those tables should not be changed). As with the redundant index check, indexes that exist for a foreign
key cannot be dropped. Another thing to remember is that since the statistics come from the Performance
Schema, they only cover the period since the statistics were last reset (no longer back than the last restart of
the SQL node). This means that while the index at the time of the query shows up as unused, it may just not
have been used yet. It may, for example, be that the index is essential for a weekly or monthly batch job. So,
make sure that the statistics covers a long enough time to include all uses.

Chapter 15 ■ SourCeS for Monitoring Data

509

Finally, it is time to look for tables where indexes are required. The schema_tables_with_full_table_
scans view can be used to find tables where table scans are performed. The result includes the number of
rows scanned and how long time it has taken to scan these rows. Before going ahead and adding an index,
remember that some queries cannot possible use an index, and a table scan may be more efficient in some
cases even if an index can be used—Chapter 18 will include some discussions of this. For example:

mysql> SELECT * FROM sys.schema_tables_with_full_table_scans;
+---------------+-------------+-------------------+---------+
| object_schema | object_name | rows_full_scanned | latency |
+---------------+-------------+-------------------+---------+
| world | City | 2370382 | 32.35 s |
+---------------+-------------+-------------------+---------+
1 row in set (0.00 sec)

While it is now known that the world.City table are subject to table scans, it is not known which queries are
causing them, and which columns may benefit from an index. Listing 15-23 shows how to use the statements_
with_full_table_scans view to find queries using full table scans. For clarity, a filter on the db column has been
added, but in general be careful as that filters on the default schema for the connection executing the query.

Listing 15-23. Finding queries in the world Schema by Doing Full Table Scans

mysql> SELECT *
 FROM sys.statements_with_full_table_scans
 WHERE db = 'world'\G
*************************** 1. row ***************************
 query: SELECT * FROM `world` . `City` WHERE `Population` > ?
 db: world
 exec_count: 10000
 total_latency: 33.85 s
 no_index_used_count: 10000
no_good_index_used_count: 0
 no_index_used_pct: 100
 rows_sent: 2370000
 rows_examined: 2370000
 rows_sent_avg: 237
 rows_examined_avg: 237
 first_seen: 2017-06-18 17:35:50
 last_seen: 2017-06-18 17:36:26
 digest: e2842f4964f77841445bae18495f9dfe
1 row in set (0.00 sec)

The output shows that the query causing the table scans has a filter on the Population column. If the
query is commonly executed, it may be worth adding the index.

The observant reader may note that the statistics in Listing 15-23 shows the number of rows sent to be
the same as rows examined. This would normally indicate that a table scan is required as all rows are required
from the table. However, there is a catch here. The EXPLAIN plan for the query shows that despite the fact there
is not any index on the Population column, the condition is still pushed down to the storage engine:

mysql> EXPLAIN SELECT * FROM world.City WHERE Population > 1000000\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE

http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 15 ■ SourCeS for Monitoring Data

510

 table: City
 partitions: p0,p1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4079
 filtered: 33.33
 Extra: Using where with pushed condition (`world`.`City`.`Population` > 1000000)
1 row in set, 1 warning (0.00 sec)

This means the filtering is done on the data node, so for the SQL node it looks like all rows in the table
are required which makes the statistics in performance_schema.events_statements_summary_by_digest
(that is the source for sys.statements_with_full_table_scans) somewhat deceiving.

To conclude the discussion about the sys schema, the performance reports in MySQL Workbench will
be demonstrated.

MySQL Workbench Performance Reports
MySQL Workbench is the desktop client GUI tool from MySQL. In addition to allowing the user to execute
queries and manage the schema, MySQL Workbench includes various reports for monitoring the MySQL
instance it is connected to. One group of these reports are known as the Performance Reports.

The source for the Performance Reports is the sys schema views with one report per view. Figure 15-6
shows an example of using one of the reports. The Performance Reports use the views with the unformatted
data (those with the x$ prefix), so it is possible to change the sorting order and the unit used. In Figure 15-6,
the unit for the Total Time column has been changed to milliseconds.

Chapter 15 ■ SourCeS for Monitoring Data

511

At the bottom of the report there are four buttons. The Export … button makes it possible to save the
result in a CSV file. The Copy Selected button performs a similar export, but copies the selected rows as well
as the heading line to the clipboard—also using the CSV format. The Copy Query button copies the query
used for the report to the clipboard. In this example, the query is:

select * from sys.`x$statement_analysis`

Finally, the Refresh button refreshes the report.
This concludes the tour of the sys schema. The final data source to consider from inside MySQL is the

SHOW statements.

SHOW Statements
Traditionally—going back to the days before MySQL 5.0—the only way to get to get performance and status data
was to use SHOW statements. While increasingly more of the data provided by the SHOW statements is now available
from other sources such as the Information Schema, ndbinfo, the Performance Schema, and the sys schema, it
is still not all information that can be obtained from the new sources. Additionally, the SHOW statements can be
handy at the command line as they are typically shorter to type than querying the other sources.

There is a total of 40 SHOW statements in MySQL NDB Cluster 7.5 ranging from queries like SHOW TABLES
to SHOW SLAVE STATUS and SHOW BINLOG EVENTS. Table 15-36 summarizes the most important SHOW
statements from a MySQL NDB Cluster monitoring perspective. A keyword in square brackets indicates an
optional keyword.

Figure 15-6. The MySQL Workbench Performance Reports

Chapter 15 ■ SourCeS for Monitoring Data

512

Table 15-36. Common SHOW Statements for NDB Cluster Monitoring

SHOW Statement Description

SHOW BINARY LOGS Lists all of the binary logs. Useful to verify the amount of binary log
stored for the SQL node.

SHOW ENGINE NDBCluster STATUS Shows statistics for the NDBCluster storage engine.

SHOW [FULL] PROCESSLIST; Returns one row per connection to the SQL node with details of
the user, query being executed, etc. It is recommended to use
performance_schema.threads, sys.processlist, or sys.session
instead for MySQL NDB Cluster 7.3 and later.

SHOW PROFILE Returns profiling for a query with details for each thread state
used. Requires profiling to be enabled before executing the query.
This feature has been deprecated and will be removed in a later
version. Use the Performance Schema instead.

SHOW PROFILES Lists all query profiles that can be used with SHOW PROFILE.
Deprecated together with SHOW PROFILE.

SHOW SLAVE HOSTS Lists replication slaves connected to the SQL node that is acting as
a replication master.

SHOW SLAVE STATUS Lists details for the replication status on a replication slave.
Some of this information is available from the Performance
Schema replication tables in MySQL NDB Cluster 7.5, but some
information is still only available in SHOW SLAVE STATUS.

SHOW [GLOBAL|SESSION] STATUS Shows session or global status variables. The same as querying
the Information Schema status tables in MySQL NDB Cluster 7.4
and earlier and the Performance Schema status tables in version
7.5. If neither GLOBAL nor SESSION is specified, the session status is
returned.

SHOW TABLE STATUS The same as querying the information_schema.TABLES table.

SHOW [GLOBAL|SESSION] VARIABLES Shows session or global configuration variables. The same as
querying the Information Schema variables tables in MySQL NDB
Cluster 7.4 and earlier and the Performance Schema variables
tables in version 7.5. If neither GLOBAL nor SESSION is specified, the
session variables is returned.

SHOW WARNINGS Not directly monitoring. Returns the warnings and errors
generated by the previous statement. It is important to watch for
warnings and errors both when executing queries directly in the
mysql command-line client and through the application.

Chapter 15 ■ SourCeS for Monitoring Data

513

As an NDB Cluster specific statement, consider the SHOW ENGINE statement for NDBCluster. An example
output is shown in Listing 15-24.

Listing 15-24. SHOW ENGINE NDBCluster STATUS

mysql> SHOW ENGINE NDBCluster STATUS\G
*************************** 1. row ***************************
 Type: ndbcluster
 Name: connection
Status: cluster_node_id=52, connected_host= 192.168.56.101, connected_port=1186, number_of_
data_nodes=2, number_of_ready_data_nodes=2, connect_count=0
*************************** 2. row ***************************
 Type: ndbcluster
 Name: NdbTransaction
Status: created=2, free=0, sizeof=368
*************************** 3. row ***************************
 Type: ndbcluster
 Name: NdbOperation
Status: created=4, free=4, sizeof=944
*************************** 4. row ***************************
 Type: ndbcluster
 Name: NdbIndexScanOperation
Status: created=1, free=1, sizeof=1152
*************************** 5. row ***************************
 Type: ndbcluster
 Name: NdbIndexOperation
Status: created=0, free=0, sizeof=952
*************************** 6. row ***************************
 Type: ndbcluster
 Name: NdbRecAttr
Status: created=8, free=8, sizeof=88
*************************** 7. row ***************************
 Type: ndbcluster
 Name: NdbApiSignal
Status: created=16, free=16, sizeof=144
*************************** 8. row ***************************
 Type: ndbcluster
 Name: NdbLabel
Status: created=0, free=0, sizeof=200
*************************** 9. row ***************************
 Type: ndbcluster
 Name: NdbBranch
Status: created=0, free=0, sizeof=32
*************************** 10. row ***************************
 Type: ndbcluster
 Name: NdbSubroutine
Status: created=0, free=0, sizeof=72
*************************** 11. row ***************************
 Type: ndbcluster
 Name: NdbCall
Status: created=0, free=0, sizeof=24

Chapter 15 ■ SourCeS for Monitoring Data

514

*************************** 12. row ***************************
 Type: ndbcluster
 Name: NdbBlob
Status: created=0, free=0, sizeof=496
*************************** 13. row ***************************
 Type: ndbcluster
 Name: NdbReceiver
Status: created=2, free=0, sizeof=128
*************************** 14. row ***************************
 Type: ndbcluster
 Name: NdbLockHandle
Status: created=0, free=0, sizeof=48
*************************** 15. row ***************************
 Type: ndbcluster
 Name: binlog
Status: latest_epoch=1319821975224330, latest_trans_epoch=1309823291359243, latest_received_
binlog_epoch=1319821975224330, latest_handled_binlog_epoch=1319821975224330, latest_applied_
binlog_epoch=1307057332420613
15 rows in set (0.03 sec)

The information returned includes details of the connection to the rest of the cluster, the number of
various objects created and the size of each object as well as details of the epochs related the binary log.
These metrics are not easily accessible from other sources.

This concludes the tour of the general data sources for monitoring inside the SQL nodes. One important
source of information has not been discussed yet: the MySQL log files.

MySQL Logs
The final piece of the monitoring puzzle to be considered in this chapter is the MySQL logs. MySQL provides
a number of logs ranging from logs meant for auditing to the general-purpose error log on the SQL nodes. It
is important to review the error logs at regular bases to spot potential issue before they occur, and all logs are
in play when investigating incidents. Depending on the application and certification requirements, it may
also be required to analyze the audit logs. This section goes through the logs available on the SQL nodes.

SQL Node Error Logs
The error log on the SQL nodes—also often referred to as the MySQL error log—should be familiar to any
database administrator who is used to working with MySQL Server. If it is not, now is a good time to make it
part of your daily routine.

The MySQL error log is a simple style log with messages appended to the end of it. There are a number
of options that can be used to control the logging. These are summarized in Table 15-37.

Chapter 15 ■ SourCeS for Monitoring Data

515

Of the available options, the only one that is recommended to always set explicitly is log_error unless
logging is only done to a syslog facility. Setting the path and filename of the error log ensures it is well known
where the error log is and that it is not written to stderr. In case of an emergency, it is important to be able to
locate the error log quickly.

As mentioned in the start of the discussion about the MySQL error log, checking the log should be part
of the daily routine. This will allow the database administrator to get early warnings of issues. An example is
that during restarts, all deprecated options in use will be listed with a warning.

Three examples of warnings from the MySQL NDB Cluster 7.5 error log are:

2017-06-20T06:45:42.986780Z 0 [Warning] The syntax '--log_warnings/-W' is deprecated and
will be removed in a future release. Please use '--log_error_verbosity' instead.
2017-06-20T06:45:42.986844Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see documentation for more
details).
2017-06-20T06:45:42.988522Z 0 [Warning] Insecure configuration for --secure-file-priv:
Location is accessible to all OS users. Consider choosing a different directory.

Table 15-37. Options for the SQL Node Error Log

Option Versions Default Description

log_error All (stderr) The path/filename of the error log.

log_error_verbosity 7.5+ 3 The log verbosity level. Has replaced log_
warnings in MySQL NDB Cluster 7.5. Level 1 is
errors only, level 2 adds warnings, and level 3
adds notes. As startup and shutdown messages
are notes, it is recommended to use level 3.

log_syslog 7.5+ OFF Whether to log to a syslog facility.

log_syslog_facility 7.5+ daemon The syslog facility to use if log_syslog is set
to ON.

log_syslog_include_pid 7.5+ ON Whether to include the process ID of the SQL
node when logging to a syslog facility.

log_syslog_tag 7.5+ An optional tag to add to the SQL node identifier
when writing to the syslog.

log_timestamps 7.5+ UTC Whether to use UTC or the SYSTEM time zone for
the timestamps used in the log messages.

log_warnings 7.4 and earlier 1 Takes a value of 0 or higher, but effectively only
0, 1, and 2 have distinct logging verbosities. A
value of 2 primarily adds connections related
messages. Due to the lack of clear distinction
what the levels do, the option has been
deprecated in version 7.5 and replaced with
log_error_verbosity.

Chapter 15 ■ SourCeS for Monitoring Data

516

These are three of the first messages during the restart. The first message is caused by having the log_
warnings option in the configuration and tells to use the log_error_verbosity option instead. The second is
another deprecation warning. This one is interesting as it says to use the explicit_defaults_for_timestamp
option to avoid using the deprecated behavior. However, explicit_defaults_for_timestamp is itself deprecated,
as it is meant as for a transitional period where there are two defaults behavior supported for columns using the
timestamp data type. In both cases, it is a heads up to the database administrator that changes are on the way.
Paying attention to these deprecation warnings can greatly improve future upgrade experiences.

The third message warns that the secure-file-priv option points to a path that can be accessed by
all operating system users. It is not very safe, if other than the administrators can access the host. This is an
example of how the warning provides instructions on how to improve the security of the SQL node.

Audit Logs
The final logs to discuss are logs that in some way can be used for auditing. These logs ranges from the
traditional slow query log and general query log to the enterprise level audit log. Table 15-38 lists the four
audit logs available in MySQL. All of the logs are per SQL node.

To what extent audit logs are required depends on the system. However, in all cases being able to go
back and inspect what activity there has been on the node is an invaluable resource for a postmortem
analysis. An example of this was shown in the previous chapter where the Query Analyzer in MySQL
Enterprise Monitor was used to determine the reason the data memory was exhausted.

Table 15-38. Logs with Auditing Capabilities

Log Description

Audit log plugin The audit log plugin is part of the Enterprise Edition and MySQL Cluster Carrier
Grade Edition subscriptions as MySQL Enterprise Audit. It can log all or a subset
of the executed queries as well as events such as connections and server startup
and shutdown. There are options to control performance, filtering, auto-rotation,
etc. Details of MySQL Enterprise Audit can be found at https://dev.mysql.com/doc/
refman/en/audit-log.html.

Query Analyzer While not a traditional log, the MySQL Enterprise Monitor Query Analyzer discussed
in the previous chapter does log the queries in intervals which can be used to audit
what type of queries are executed. It can also possible to aggregate queries from all of
the SQL nodes in the cluster.

Slow query log Logs queries based on the execution time and optionally if no indexes are used. The
mysqldumpslow script that is included with the SQL nodes can be used to aggregate
statistics for the queries in the slow query log.

General query log Logs all queries and connections. This makes it very useful to determine the
statements and connections, but it comes at a high-performance overhead, big disk
space consumption, and there are no filtering options.

Binary log The primary purposes of the binary log are replication and point-in-time recoveries.
However, as it records all data and schema changes, it is also an excellent audit log for
changes. Additionally, as the only one of the logs, it records events from all nodes. The
mysqlbinlog program can be used to read the events from the binary logs.

https://dev.mysql.com/doc/refman/en/audit-log.html
https://dev.mysql.com/doc/refman/en/audit-log.html

Chapter 15 ■ SourCeS for Monitoring Data

517

Auditing logs can also be used proactively. If the Query Analyzer shows increasing response times or the
rate queries are added to the slow query log increases, it may be a sign that changes are required. Optimally
this is picked up before the increased response times become a problem. It may be that the amount of data
has increased, so queries using a table scan are starting to suffer and it is necessary to look at improved
indexing—for example using the techniques described in the sys schema section. It may also be that the
query rate is increasing and starting to put a strain on the SQL node or cluster, so it is necessary to add more
SQL nodes or scale out with a read-replica to be able to spread the load.

The Performance Schema digest summary table may seem to obsolete the slow query log. Particularly
with the Query Analyzer built on top. However, the slow query log has some advantages: it logs query at the
time they complete, and unlike the Performance Schema the data is persisted to disk. The slow query log
also records the actual queries executed whereas the Performance Schema stores the normalized queries.

 ■ Caution auditing logs are great, but there are two caveats. they have an overhead. they not only provide
the administrator with auditing capabilities, but they can also be used by intruders to get access to data. Be
sure to test the performance before deploying auditing solutions and protect the logs.

Summary
MySQL Server includes several sources of monitoring data as well as several logs. This chapter has gone through
and discussed how the available tables, views, statements, and logs can be useful in MySQL NDB Cluster.

The Information Schema is the grand old lady of monitoring schemas in MySQL. It has been around
for over a decade and is still the central place to get schema information and information about plugins,
character set, privileges, etc. The newer Performance Schema provides a way to get information of
transactions to mutexes and almost anything in between. The number of tables and amount of data available
in the Performance Schema can seem overwhelming, so the sys schema has been developed to provide
views that can work as reports, and stored programs to manipulate the data. Finally, there are still the SHOW
statements that is a classic MySQL tool to get monitoring information. The logs can easily be forgotten
among all of the other information, but those are also very important to review regularly.

This concludes the whirlwind tour of the resources generally available in MySQL. However, for MySQL
NDB Cluster there are additional data sources and logs to be aware of. These are discussed in the next chapter.

519© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_16

CHAPTER 16

Monitoring MySQL NDB Cluster

Thus far the discussion about monitoring and logs has, with a couple of exceptions, included information
that is not specific to MySQL NDB Cluster, but rather also for standalone MySQL Server installations. Just like
there are information schema tables that are specific to InnoDB, there are tables and views with monitoring
data that is specific to the data nodes and NDBCluster tables.

The data that the data nodes make available through the SQL nodes can be found in the NDB Cluster
Information Database—better known as the ndbinfo schema, which is the main topic of this chapter. The
discussion first goes through the configuration of the ndbinfo schema and the available views, then provides
several examples of generating reports using the ndbinfo views. The third part of the chapter goes through
the log and trace files available on the management and data nodes.

The NDB Cluster Information Database (ndbinfo)
Originally the only data that could be extracted from the data nodes had to be found in the cluster log and
the data node out logs. In MySQL NDB Cluster 7.1.1, the NDB Cluster Information Database was introduced.
This is also commonly called the ndbinfo schema after the default schema name. It has since been
expanded several times with more data. As of MySQL NDB Cluster 7.5.6, there are 41 views plus 43 hidden
tables. The tables use the NDBInfo storage engine.

The advantage of the ndbinfo schema over the logs is that it consists of tables and views that can
be queried using the SELECT statement. In many ways, it resembles the Information Schema and the
Performance Schema, but with information specific to MySQL NDB Cluster.

This section discusses the configuration of the ndbinfo schema and its available views. The next
section goes through a series of examples using the views.

Configuration
There are seven configuration options and variables that are related to the ndbinfo schema. These are listed
in Table 16-1. In practice, it is uncommon to change any of these values, although the ndbinfo_offline and
ndbinfo_show_hidden views have some good use cases, as discussed later.

https://doi.org/10.1007/978-1-4842-2982-8_16

Chapter 16 ■ Monitoring MySQL nDB CLuSter

520

The current settings can be found using SHOW GLOBAL VARIABLES on the SQL node, as demonstrated in
Listing 16-1.

Listing 16-1. Retrieving the ndbinfo Related Variables

mysql> SHOW GLOBAL VARIABLES LIKE 'ndbinfo%';
+----------------------+---------+
| Variable_name | Value |
+----------------------+---------+
ndbinfo_database	ndbinfo
ndbinfo_max_bytes	0
ndbinfo_max_rows	10
ndbinfo_offline	OFF
ndbinfo_show_hidden	OFF
ndbinfo_table_prefix	ndb$
ndbinfo_version	460038
+----------------------+---------+
7 rows in set (0.00 sec)

ndbinfo_offline
The ndbinfo_offline option can be useful for avoiding errors while the data nodes are offline. As
Listing 16-2 shows, if ndbinfo is used while the data nodes are offline, it will result in an error that says the
connection to the data nodes to failed. However, with ndbinfo_offline = ON, a warning and an empty
result set are returned instead.

Table 16-1. ndbinfo Configuration Options

Option Default Value Description

ndbinfo_database ndbinfo The name of the schema used for the NDB Cluster
Information Database. While a different value can be set at
restart (for example, in the MySQL configuration file), the
actual value can only be changed at compile time.

ndbinfo_max_bytes 0 For debugging purposes only.

ndbinfo_max_rows 10 For debugging purposes only.

ndbinfo_offline OFF Put the ndbinfo schema into offline mode. This will avoid
errors if the underlying tables and views do not actually
exist (such as if the data nodes are offline). Instead, the
tables will always appear empty. Listing 16-2 shows an
example.

ndbinfo_show_hidden OFF Whether to show the hidden tables that contain the actual
data from the data nodes. Listing 16-3 shows an example.

ndbinfo_table_prefix ndb$ The table name prefix used for the hidden tables. This can
be changed at start up, but the actual value used can only be
changed at compile time.

ndbinfo_version N/A The ndbinfo version. This is a read-only variable and for
information only.

Chapter 16 ■ Monitoring MySQL nDB CLuSter

521

Listing 16-2. Using the ndbinfo_offline Mode

mysql> SELECT * FROM ndbinfo.table_info;
ERROR 1296 (HY000): Got error 157 'Connection to NDB failed' from NDBINFO

mysql> SET GLOBAL ndbinfo_offline = ON;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM ndbinfo.table_info;
Empty set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1
Message: 'NDBINFO' has been started in offline mode since the 'NDBCLUSTER' engine is
disabled or @@global.ndbinfo_offline is turned on - no rows can be returned
1 row in set (0.00 sec)

ndbinfo_show_hidden
By default, all of the tables using the NDBInfo storage engine are hidden and the data is exposed through
views. In a few cases, such as when debugging, it can be useful to see the underlying tables; for example, the
table definitions of the underlying NDBInfo tables have comments explaining what the data means. Only the
references to the table names are hidden—it is still possible to query the underlying tables even if they are
hidden.

Listing 16-3 shows an example of the nodes view that uses the ndb$info table as the source of the data.
Both the view and table can be used even with ndbinfo_show_hidden set to OFF, but SHOW TABLES (and
the information_schema.TABLES table) only includes the ndb$info table when ndbinfo_show_hidden is
set to ON. The output of SHOW CREATE TABLE ndbinfo.ndb$nodes have been reformatted to improve the
readability.

Listing 16-3. The ndbinfo.nodes View and Its Underlying Table

mysql> SELECT @@session.ndbinfo_show_hidden;
+-------------------------------+
| @@session.ndbinfo_show_hidden |
+-------------------------------+
| 0 |
+-------------------------------+
1 row in set (0.00 sec)

mysql> SHOW TABLES FROM ndbinfo LIKE '%nodes%';
+-----------------------------+
| Tables_in_ndbinfo (%nodes%) |
+-----------------------------+
| nodes |
+-----------------------------+
1 row in set (0.00 sec)

Chapter 16 ■ Monitoring MySQL nDB CLuSter

522

mysql> SHOW CREATE VIEW ndbinfo.nodes\G
*************************** 1. row ***************************
 View: nodes
 Create View: CREATE ALGORITHM=UNDEFINED DEFINER='root'@'localhost' SQL SECURITY

INVOKER VIEW 'nodes' AS select 'ndb$nodes'.'node_id' AS 'node_id',
'ndb$nodes'.'uptime' AS 'uptime',(case 'ndb$nodes'.'status' when 0
then 'NOTHING' when 1 then 'CMVMI' when 2 then 'STARTING' when 3 then
'STARTED' when 4 then 'SINGLEUSER' when 5 then 'STOPPING_1' when 6
then 'STOPPING_2' when 7 then 'STOPPING_3' when 8 then 'STOPPING_4'
else '<unknown>' end) AS 'status','ndb$nodes'.'start_phase' AS
'start_phase','ndb$nodes'.'config_generation' AS 'config_generation'
from 'ndb$nodes'

character_set_client: latin1
collation_connection: latin1_swedish_ci
1 row in set (0.01 sec)

mysql> SHOW CREATE TABLE ndbinfo.ndb$nodes\G
*************************** 1. row ***************************
 Table: ndb$nodes
Create Table: CREATE TABLE `ndb$nodes` (
 `node_id` int(10) unsigned DEFAULT NULL,
 `uptime` bigint(20) unsigned DEFAULT NULL
 COMMENT 'time in seconds that node has been running',
 `status` int(10) unsigned DEFAULT NULL
 COMMENT 'starting/started/stopped etc.',
 `start_phase` int(10) unsigned DEFAULT NULL
 COMMENT 'start phase if node is starting',
 `config_generation` int(10) unsigned DEFAULT NULL
 COMMENT 'configuration generation number'
) ENGINE=NDBINFO DEFAULT CHARSET=latin1 COMMENT='node status'
1 row in set (0.00 sec)

mysql> SELECT * FROM ndbinfo.nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
| 1 | 2000 | STARTED | 0 | 1 |
| 2 | 2000 | STARTED | 0 | 1 |
+---------+--------+---------+-------------+-------------------+
2 rows in set (0.02 sec)

mysql> SELECT * FROM ndbinfo.ndb$nodes;
+---------+--------+--------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+--------+-------------+-------------------+
| 1 | 2005 | 3 | 0 | 1 |
| 2 | 2005 | 3 | 0 | 1 |
+---------+--------+--------+-------------+-------------------+
2 rows in set (0.01 sec)

Chapter 16 ■ Monitoring MySQL nDB CLuSter

523

mysql> SET SESSION ndbinfo_show_hidden = ON;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW TABLES FROM ndbinfo LIKE '%nodes%';
+-----------------------------+
| Tables_in_ndbinfo (%nodes%) |
+-----------------------------+
| ndb$nodes |
| nodes |
+-----------------------------+
2 rows in set (0.01 sec)

Notice how the SHOW CREATE TABLE ndbinfo.ndb$nodes output includes a comment for most of the
columns documenting the column. This can be a useful way to get information about the contents of the
views without looking up the view in the MySQL Reference Manual.

The ndbinfo Views
The 41 views are listed in Tables 16-2 through 16-5, with one table for each of these four categories:

•	 Cluster configuration and overall status: These views provide information about
the configuration of the cluster and the status.

•	 Ongoing locks, operations, and transactions: These views give insight into where
the operational and transactional resources are used and where the locks are held.

•	 Performance metrics: Various performance metrics such as the disk write speed,
CPU usage, etc.

•	 Objects and memory usage: Information about the overall memory usage, per
fragment memory usage, log buffers and spaces, etc.

The four tables include the table name as well as the version or versions where the table was first
included and a description of the table. The first version is only specified when the view has been introduced
after version 7.1.1. As you can see, new views are often added; additionally, new columns are sometimes
added to existing views. In some cases, views have been added to existing general available (GA) versions
and not just to the latest development release. In those cases, there will be more than one first version listed.
Since the ndbinfo views are a great source of monitoring information, it is a reason in itself to consider
upgrading to the latest version.

 ■ Tip a detailed description of each table can be found in the MySQL reference Manual at https://dev.mysql.
com/doc/refman/5.7/en/mysql-cluster-ndbinfo.html.

The first group of views is for the cluster configuration and overall status. These views are listed in
Table 16-2. The views are useful for extracting general information such as the value of a configuration
option or for monitoring the status of the cluster.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbinfo.html

Chapter 16 ■ Monitoring MySQL nDB CLuSter

524

Table 16-3 includes the views that provide information about ongoing locks, operations, and
transactions. These views can for example be great for investigating issues about where the cluster is running
out of concurrent operations (the MaxNoOfConcurrentOperations option) and lock contention.

Table 16-2. The ndbinfo Views: Cluster Configuration and Overall Status

Table First Version Description

arbitrator_validity_detail 7.0.37
7.1.26
7.2.10

Details of the arbitration status as seen by each of the
data nodes.

arbitrator_validity_summary 7.0.37
7.1.26
7.2.10

Summary of the arbitration status. This should only
contain one line indicating which node is the active
arbitrator. If there is more than one line, it suggests
that the data nodes do not agree.

blocks Mapping between kernel block numbers and names.
This is a reference table that can be used to resolve
block numbers in other views.

config_nodes 7.5.7
7.6.2

The nodes that are in the cluster. The output is similar
to information provided by the SHOW command in the
NDB management client.

config_params Includes the configuration options available for the
data nodes (those that can be specified in config.ini).
Before version 7.5.0, this only included the parameter
number and name, but since 7.5.0 several other
columns have been added with the default value,
minimum and maximum values, etc.

config_values 7.5.0 The configuration value for each option in the
config_params table.

membership 7.0.37
7.1.26
7.2.10

Detailed information about the data node
memberships, including which nodes are considered
the left and right nodes and arbitrator information.

nodes Summary of the data nodes status.

processes 7.5.7
7.6.2

Information about the nodes connected to the cluster,
including the process ID.

threadblocks 7.1.17
7.2.2

Mapping of kernel blocks to threads and block
instances.

threads 7.5.2 Overview of the threads configured.

Chapter 16 ■ Monitoring MySQL nDB CLuSter

525

There are both cluster-level and server-level views showing the current locks, operations, and
transactions. The server-level views show just the locks, operations, or transactions from that SQL node,
whereas the cluster-level views include all nodes. The server-level views are derived from the cluster-level
views using the information_schema.ndb_transid_mysql_connection_map table, as shown in Listing 15-3
in the previous chapter. For reference, here is a listing again with the definition of the ndbinfo.server_
transactions view (reformatted and slightly rewritten):

SELECT map.mysql_connection_id, t.node_id, t.block_instance,
 t.transid, t.state, t.count_operations, t.outstanding_operations,
 t.inactive_seconds, t.client_node_id, t.client_block_ref
 FROM information_schema.ndb_transid_mysql_connection_map map
 INNER JOIN ndbinfo.cluster_transactions t
 ON map.ndb_transid >> 32 = t.transid >> 32;

Table 16-4 lists the views that are related to performance monitoring. The views range from the simple
counters view to detailed views for disk, CPU, and network usage. These views are among the most useful
for investigating performance issues. Chapter 20 gives examples of using the cpustat and threadstat views.

Table 16-3. The ndbinfo Views: Ongoing Locks, Operations, and Transactions

Table First Version Description

cluster_locks 7.5.3 Details of all locks held or waited for in the cluster.

cluster_operations 7.1.17
7.2.2

Details of all operations (see also the
MaxNoOfConcurrentOperations and
MaxNoOfLocalOperations configuration options) in the
cluster as seen from the DBLQH kernel block.

cluster_transactions 7.1.17
7.2.2

Details of all transactions in the cluster.

locks_per_fragment 7.5.3 Details of locks and which fragments they are in.

operations_per_fragment 7.4.3 Details of the operations grouped by the fragments.

server_locks 7.5.3 The equivalent to the cluster_locks table but filtered to
only show locks originating from the SQL node issueing
the query.

server_operations 7.1.17
7.2.2

The equivalent to the cluster_operations table but
filtered to only show operations originating from the SQL
node issueing the query.

server_transactions 7.1.17
7.2.2

The equivalent to the cluster_transactions table but
filtered to only show transactions originating from the SQL
node issueing the query.

http://dx.doi.org/10.1007/978-1-4842-2982-8_20

Chapter 16 ■ Monitoring MySQL nDB CLuSter

526

Views that give information about the objects and memory use are listed in Table 16-5. Objects include
user tables, system tables, indexes, the internal NDB triggers, etc. The memory tables (including logbuffers
and logspaces) are important to monitor over time to be able to identify trends and peak uses.

Table 16-4. The ndbinfo Views: Performance Metrics

Table(s) First Version Description

counters Includes metrics for events in the kernel blocks
such as the number of scan slowdowns, number of
reads, etc.

cpustat
cpustat_1sec
cpustat_20sec
cpustat_50ms

7.5.2 CPU usage information for each thread in the data
nodes. The cpustat view contains data for the previous
second. The other views contain 20 measurements
per the time interval indicated by the table name. For
example, cputstat_1sec includes a total of 20 seconds
of data sampled every second.
Chapter 20 has an example of using the cpustat
table.

disk_write_speed_aggregate
disk_write_speed_aggregate_node
disk_write_speed_base

7.4.1 Information about the I/O performance of local
checkpoints, backups, and redo (fragment) logs,
including the current write speed and whether it has
been necessary to slow down. disk_write_speed_
base includes the raw data, disk_write_speed_
aggregate groups by thread and disk_write_
speed_aggregate_node groups by data node.

resources Various metrics such as query memory.

restart_info 7.4.2 Detailed timing information for the last node restart
(system restarts are not included).

tc_time_track_stats 7.4.9 Time-tracking statistics from the DBTC kernel
block. This includes scan, primary, and unique key
operations.

threadstat 7.1.17
7.2.2

Information for each threat about number of signals
sent, CPU time, context switches, etc. Chapter 20
includes an example of using the table.

transporters Information about the transporters such as number
of bytes sent and received, slowdowns, overloads, etc.

http://dx.doi.org/10.1007/978-1-4842-2982-8_20
http://dx.doi.org/10.1007/978-1-4842-2982-8_20

Chapter 16 ■ Monitoring MySQL nDB CLuSter

527

The ndbinfo views are important to monitor for all of the three reasons discussed in the “Why
Monitor?” section of Chapter 14—to establish a baseline, to perform a root cause analysis, and to perform
preventive maintenance. The next section includes examples of using the views. Additional examples have
been presented throughout the book.

NDB Cluster Reports
Just like for the Performance Schema discussed in the previous chapter, the ndbinfo schema can seem
overwhelming at first. However, with a little practice, it becomes easier to retrieve information. This section
will show several examples of how to generate reports using the ndbinfo schema. These reports are useful
on their own, but also serve as an introduction on writing queries against the views, so additional reports
can be created.

Table 16-5. The ndbinfo Views: Objects and Memory Use

Table First Version Description

dict_obj_info 7.5.4 Information for various kinds of objects such as tables,
indexes, foreign keys, internal data node triggers, etc. The
type for each object can be found in the dict_obj_types
table. The information includes the ID, parent object, and
the fully qualified name.

dict_obj_types 7.4.1 The object types available. For example, used with the
dict_obj_info view.

diskpagebuffer Metrics about the disk page buffer (the cache for on-disk
data).

logbuffers Information about the use of the redo and disk data undo
log buffer.

logspaces Information about the use of the redo and disk data undo
log files.

memory_per_fragment 7.4.1 Details of the memory usage grouped per fragment.

memoryusage Information about the use of DataMemory, IndexMemory,
and LongMessageBuffer (included in 7.1.31, 7.2.16, 7.3.5,
and later).

table_distribution_status 7.5.4 Various information about tables such as number of
partitions and fragments, the status of local checkpoints,
whether a partition reorganization is ongoing, etc.

table_fragments 7.5.4 Detailed status of the fragments for each table, for example
on which data node the primary replicate and the backups
are located.

table_info 7.5.4 Information about tables such as whether the read_backup
flag is set, the default storage, etc.

table_replicas 7.5.4 Information about the distribution of tables such as latest
global and local checkpoints.

http://dx.doi.org/10.1007/978-1-4842-2982-8_14

Chapter 16 ■ Monitoring MySQL nDB CLuSter

528

Memory Usage Report
The memoryusage view can be used to monitor how much DataMemory, IndexMemory, and
LongMessageBuffer memory has been allocated and how much is currently used. There is one row
per data node and memory type. Listing 16-4 shows the plain output from the view.

Listing 16-4. The ndbinfo.memoryusage View

mysql> SELECT * FROM ndbinfo.memoryusage;
+---------+---------------------+---------+------------+----------+-------------+
| node_id | memory_type | used | used_pages | total | total_pages |
+---------+---------------------+---------+------------+----------+-------------+
1	Data memory	3309568	101	41943040	1280
1	Index memory	638976	78	15990784	1952
1	Long message buffer	524288	2048	67108864	262144
2	Data memory	3309568	101	41943040	1280
2	Index memory	638976	78	15990784	1952
2	Long message buffer	393216	1536	67108864	262144
+---------+---------------------+---------+------------+----------+-------------+
6 rows in set (0.02 sec)

This output is great for machine usage—such as in monitoring systems—but for human reading, the
query in Listing 16-5 may be better suited. The query uses the sys.format_bytes() function from the sys
schema to add units to the number of bytes.

Listing 16-5. Formatted Output from the ndbinfo.memoryusage View

mysql> SELECT node_id, memory_type, sys.format_bytes(used) AS UsedBytes,
 sys.format_bytes(total) as TotalBytes,
 sys.format_bytes(total-used) AS FreeBytes,
 ROUND(100*used/total, 2) AS UsedPct
 FROM ndbinfo.memoryusage;
+---------+---------------------+------------+------------+-----------+---------+
| node_id | memory_type | UsedBytes | TotalBytes | FreeBytes | UsedPct |
+---------+---------------------+------------+------------+-----------+---------+
1	Data memory	3.16 MiB	40.00 MiB	36.84 MiB	7.89
1	Index memory	624.00 KiB	15.25 MiB	14.64 MiB	4.00
1	Long message buffer	512.00 KiB	64.00 MiB	63.50 MiB	0.78
2	Data memory	3.16 MiB	40.00 MiB	36.84 MiB	7.89
2	Index memory	624.00 KiB	15.25 MiB	14.64 MiB	4.00
2	Long message buffer	384.00 KiB	64.00 MiB	63.62 MiB	0.59
+---------+---------------------+------------+------------+-----------+---------+
6 rows in set (0.02 sec)

Now the three bytes columns have the values in KiB and MiB units. The units will depend on the actual
values and can be up to GiB as of MySQL NDB Cluster 7.5. Additionally, a UsedPct column was added to
make it easier to see how close the cluster is to exhausting the memory.

Chapter 16 ■ Monitoring MySQL nDB CLuSter

529

Disk Page Buffer Report
The disk page buffer is used to cache the disk data in memory. Like the InnoDB buffer pool, the disk page
buffer improves performance by keeping disk data in memory, so subsequent queries using the same data
can retrieve the data from memory instead of requiring expensive disk operations. This is explained in more
detail in Chapter 18. The effectiveness of the disk page buffer is important to the performance of on-disk
data. Two columns in the ndbinfo.diskpagebuffer view are of particular interest when determining the
effectiveness:

•	 page_requests_direct_return: Pages returned from the cache. These contribute to
improving the hit rate.

•	 page_requests_wait_io: Pages returned from disk. These contribute to lowering the
hit rate.

The sum of the two is the total number of page requests. So, using these two columns, the cache hit
rate for the disk page buffer can be calculated, as shown in Listing 16-6. Some of the columns have been
renamed in the output to reduce the width of the result. The IF(...) clause is there to avoid dividing by
zero if there have been no page requests yet.

Listing 16-6. Querying the Disk Page Buffer Hit Rate

mysql> SELECT node_id, block_instance,
 page_requests_direct_return AS PageDirectReturn,
 page_requests_wait_io AS PageWaitIo,
 IF(page_requests_direct_return+page_requests_wait_io = 0,
 NULL,
 ROUND(100*page_requests_direct_return/
 (page_requests_direct_return+page_requests_wait_io),
 2)
) AS CacheHitPct
 FROM ndbinfo.diskpagebuffer;
+---------+----------------+------------------+------------+-------------+
| node_id | block_instance | PageDirectReturn | PageWaitIo | CacheHitPct |
+---------+----------------+------------------+------------+-------------+
1	1	10488	17	99.84
1	2	1	1	50.00
2	1	10408	17	99.84
2	2	1	1	50.00
+---------+----------------+------------------+------------+-------------+
4 rows in set (0.02 sec)

The block_instance column is the instance of the PGMAN kernel block used. Listing 16-7 shows how
to find the threads where the block instances exist.

 ■ Note the number of PGMAN block instances depends on the configuration of MaxNoOfExecutionThreads
and ThreadConfig.

http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 16 ■ Monitoring MySQL nDB CLuSter

530

Listing 16-7. Getting Information About the PGMAN Kernel Block Instances

mysql> SELECT node_id, thr_no, tb.block_instance, t.thread_name
 FROM ndbinfo.threadblocks tb
 INNER JOIN ndbinfo.threads t USING (node_id, thr_no)
 WHERE tb.block_name = 'PGMAN'
 ORDER BY node_id, block_instance;
+---------+--------+----------------+-------------+
| node_id | thr_no | block_instance | thread_name |
+---------+--------+----------------+-------------+
1	1	0	rep
1	2	1	ldm
1	1	2	rep
2	1	0	rep
2	2	1	ldm
2	1	2	rep
+---------+--------+----------------+-------------+
6 rows in set (0.03 sec)

So, in this case the LDM threads used for queries have a cache hit rate of 99.84%, which is good. The low
hit rate of the replication thread is not a concern, given the low number of pages returned. The two queries
in Listings 16-6 and 16-7 can be combined, as shown in Listing 16-8.

Listing 16-8. Combined Query to Determine the Disk Page Buffer Hit Rate per Thread

mysql> SELECT node_id, block_instance, t.thread_name,
 dpb.page_requests_direct_return AS PageDirect,
 dpb.page_requests_wait_io AS PageWait,
 IF(dpb.page_requests_direct_return+page_requests_wait_io = 0,
 NULL,
 ROUND(100*dpb.page_requests_direct_return/
 (dpb.page_requests_direct_return+
 dpb.page_requests_wait_io),
 2)
) AS HitPct
 FROM ndbinfo.diskpagebuffer dpb
 INNER JOIN ndbinfo.threadblocks tb
 USING (node_id, block_instance)
 INNER JOIN ndbinfo.threads t USING (node_id, thr_no)
 WHERE tb.block_name = 'PGMAN'
 ORDER BY node_id, block_instance;
+---------+----------------+-------------+------------+----------+--------+
| node_id | block_instance | thread_name | PageDirect | PageWait | HitPct |
+---------+----------------+-------------+------------+----------+--------+
1	1	ldm	10488	17	99.84
1	2	rep	1	1	50.00
2	1	ldm	10408	17	99.84
2	2	rep	1	1	50.00
+---------+----------------+-------------+------------+----------+--------+
4 rows in set (0.05 sec)

Chapter 16 ■ Monitoring MySQL nDB CLuSter

531

Transporters Report
The network is one of the parts of the cluster infrastructure that most easily can become a bottleneck. The
ndbinfo.transporters view provides an easy way to monitor for overloaded transporters and identify which
node-to-node connections contribute most to overall data use.

 ■ Note the transporter metrics reset every time the status of the transporter changes to connected.
however, the metrics will be retained after a disconnect until the connection is re-established.

There are two thresholds that are considered when determining the status of a transporter:

•	 Overloaded: This occurs when the send buffer use is more than OverloadLimit
bytes. By default, OverloadLimit is 80% of SendBufferMemory for the transporter.

•	 Slowdown: This occurs at 60% of the overload limit.

If a transporter tends to become overloaded, it is necessary to look into improving the network or
increasing the size of the send buffer. The ndbinfo.transporters view has four columns related to overload
and slowdown situations:

•	 overloaded: Whether the transporter is currently overloaded.

•	 overload_count: The number of times the transporter has been overloaded.

•	 slowdown: Whether the transporter is currently in the slowdown state.

•	 slowdown_count: The number of times the transporter has been in the
slowdown state.

The overload and slowdown states often only last for a short period of time, so the counts are in general
more useful from a monitoring point of view.

Listing 16-9 shows an example of querying the ndbinfo.transporters view to get the status of the
transporter between two data nodes with NodeId = 1 and NodeId = 2. The data is shown in both directions.

Listing 16-9. The Transporters Data and Metrics Between Two Data Nodes

mysql> SELECT * FROM transporters WHERE (node_id = 1 AND remote_node_id = 2) OR (node_id = 2
AND remote_node_id = 1)\G
*************************** 1. row ***************************
 node_id: 1
remote_node_id: 2
 status: CONNECTED
remote_address: 192.168.56.104
 bytes_sent: 139508260
bytes_received: 117712512
 connect_count: 1
 overloaded: 0
overload_count: 0
 slowdown: 0
slowdown_count: 0

Chapter 16 ■ Monitoring MySQL nDB CLuSter

532

*************************** 2. row ***************************
 node_id: 2
remote_node_id: 1
 status: CONNECTED
remote_address: 192.168.56.103
 bytes_sent: 117712512
bytes_received: 139508260
 connect_count: 1
 overloaded: 0
overload_count: 0
 slowdown: 0
slowdown_count: 0
2 rows in set (0.02 sec)

In this case, the data is symmetric, but for the four overload and slowdown columns, this is not always
the case. The bytes_sent and bytes_received columns can optionally be formatted using the sys.format_
bytes() function, like it was done for the memory usage report. If the overload or slowdown counters
increase, it is an indication of problems. Similarly, if the connect_count increases without a deliberate
restart of one of the nodes, it may mean there are network problems.

Disk Write Speed Report
In MySQL NDB Cluster 7.4 and later, it is possible to monitor the disk write speed of local checkpoints
(LCPs), backups, and redo logs. Since local checkpoints and backups are handled by the same code, their
disk write metrics are combined.

The ndbinfo.disk_write_speed_base view has the raw metrics recorded. An example of one of the
rows in the view is as follows:

mysql> SELECT * FROM disk_write_speed_base LIMIT 1\G
*************************** 1. row ***************************
 node_id: 1
 thr_no: 0
 millis_ago: 0
 millis_passed: 1001
backup_lcp_bytes_written: 0
 redo_bytes_written: 131072
 target_disk_write_speed: 20971520
1 row in set (0.01 sec)

The data is for the reporting period that ended millis_ago milliseconds ago, and data collection lasted
millis_passed milliseconds. The target_disk_write_speed value is the number of bytes per second that
the LDM thread aims to be writing per second. This target will vary according to the MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, MaxDiskWriteSpeedOwnRestart, and MinDiskWriteSpeed options
for the data node.

The base table has 61 rows per LDM thread and each period is close to a second. As one record for each
LDM thread is always completed 0 milliseconds ago, the oldest period finished around a minute ago. The
one-second intervals are also what the LDM threads uses for the internal monitoring of the disk write speed,
and the target disk write speed may be adjusted after each of these periods.

The raw data is great for a monitoring system, as it allows one to calculate any statistics it may support.
However, for a manual inspection, one of the ndbinfo.disk_write_speed_aggregate and ndbinfo.
disk_write_speed_aggregate_node views is usually preferred. The two views aggregate the data for the

Chapter 16 ■ Monitoring MySQL nDB CLuSter

533

last second, last 10 seconds, and last minute. Additionally, the ndbinfo.disk_write_speed_aggregate
view calculates the standard deviations1 and whether any of the following conditions applied (with the
corresponding column name):

•	 slowdowns_due_to_io_lag: The I/O was slowed down due the I/O subsystem being
the bottleneck.

•	 slowdowns_due_to_high_cpu: The I/O was slowed down due to high CPU.

•	 disk_write_speed_set_to_min: The disk write speed was set to MinDiskWriteSpeed.

•	 current_target_disk_write_speed: The target write speed that the LDM thread is
currently attempting to achieve.

These columns are great to troubleshoot performance issues, and the slowdown columns cannot be
derived from the base data without also considering other metrics.

The ndbinfo.disk_write_speed_aggregate view groups the aggregate data per LDM thread, whereas
the ndbinfo.disk_write_speed_aggregate_node view groups the data per data node. Listing 16-10 shows
an example output of the ndbinfo.disk_write_speed_aggregate view.

Listing 16-10. The ndbinfo.disk_write_speed_aggregate View

mysql> SELECT * FROM ndbinfo.disk_write_speed_aggregate\G
*************************** 1. row ***************************
 node_id: 1
 thr_no: 0
 backup_lcp_speed_last_sec: 134000
 redo_speed_last_sec: 0
 backup_lcp_speed_last_10sec: 13479
 redo_speed_last_10sec: 65261
std_dev_backup_lcp_speed_last_10sec: 40000
 std_dev_redo_speed_last_10sec: 65000
 backup_lcp_speed_last_60sec: 26000
 redo_speed_last_60sec: 65000
std_dev_backup_lcp_speed_last_60sec: 179000
 std_dev_redo_speed_last_60sec: 65000
 slowdowns_due_to_io_lag: 5
 slowdowns_due_to_high_cpu: 0
 disk_write_speed_set_to_min: 0
 current_target_disk_write_speed: 20971520
*************************** 2. row ***************************
 node_id: 2
 thr_no: 0
 backup_lcp_speed_last_sec: 1061000
 redo_speed_last_sec: 0
 backup_lcp_speed_last_10sec: 106169
 redo_speed_last_10sec: 65209
std_dev_backup_lcp_speed_last_10sec: 318000
 std_dev_redo_speed_last_10sec: 65000
 backup_lcp_speed_last_60sec: 42000
 redo_speed_last_60sec: 65000

1https://en.wikipedia.org/wiki/Standard_deviation

https://en.wikipedia.org/wiki/Standard_deviation

Chapter 16 ■ Monitoring MySQL nDB CLuSter

534

std_dev_backup_lcp_speed_last_60sec: 198000
 std_dev_redo_speed_last_60sec: 64000
 slowdowns_due_to_io_lag: 6
 slowdowns_due_to_high_cpu: 0
 disk_write_speed_set_to_min: 0
 current_target_disk_write_speed: 20971520
2 rows in set (0.01 sec)

The view has the data per thread. The write speeds are available for the last one, 10, and 60 seconds for
backup/LCP writes, redo writes, and their standard deviation. (There is no standard deviation for the one
second data as it is a single measurement.) The 10 and 60 seconds values are per second.

There are also statistics for slowdowns, such as how many seconds the write speed has been set to
MinDiskWriteSpeed since the last node restart, and the current target speed. In the example, notice that
there were six occasions where a slowdown was detected due to I/O lag.

Listing 16-11 shows an example of the ndbinfo.disk_write_speed_aggregate_node view.

Listing 16-11. The ndbinfo.disk_write_speed_aggregate_node View

mysql> SELECT * FROM disk_write_speed_aggregate_node\G
*************************** 1. row ***************************
 node_id: 1
 backup_lcp_speed_last_sec: 75000
 redo_speed_last_sec: 130000
backup_lcp_speed_last_10sec: 7540
 redo_speed_last_10sec: 65235
backup_lcp_speed_last_60sec: 1000
 redo_speed_last_60sec: 65000
*************************** 2. row ***************************
 node_id: 2
 backup_lcp_speed_last_sec: 74000
 redo_speed_last_sec: 129000
backup_lcp_speed_last_10sec: 7537
 redo_speed_last_10sec: 65209
backup_lcp_speed_last_60sec: 1000
 redo_speed_last_60sec: 65000
2 rows in set (0.01 sec)

In this case the aggregation is per node, and it only includes the 1, 10, and 60 second values with no
standard deviation. It may at first seem that this view is not very useful, but consider a cluster with multiple
LDM threads (there can be up to 32). In that case, the ndbinfo.disk_write_speed_aggregate view will have
one row per LDM thread per data node, so the one row per node in ndbinfo.disk_write_speed_aggregate_
node can be useful to get an overview of how the nodes work.

Locks Report
A common issue in transactional systems is that two transactions fight for the same locks. In a
worst-case scenario, the two transactions may hold locks that the other transaction require. This is
called a deadlock. Lock waits and deadlocks are handled the same way in MySQL NDB Cluster: after
TransactionDeadlockDetectionTimeout milliseconds, a transaction gives up waiting and fails with a
lock wait timeout error.

Chapter 16 ■ Monitoring MySQL nDB CLuSter

535

 ■ Note the locks discussed here are at the NDBCluster level (that is, inside the storage engine in the
data nodes). the locks discussed with the performance Schema in the previous chapter were for tables and
metadata (but only within the one SQL node).

The challenge is to determine which transactions wait for which locks, and what the transactions
that holds the blocking lock is doing. The three ndbinfo views—cluster_locks, locks_per_fragment,
and cluster_transactions—can be used to get this information. Listing 16-12 shows an example of
determining the blocking and waiting locks as well as finding information about the two conflicting
connections.

Listing 16-12. Investigating Locks

-- Find information about conflicting locks
mysql> SELECT lb.tableid, lb.fragmentid, lpf.fq_name,
 lpf.parent_fq_name, lpf.type,
 '-----------------' AS '-----------------------',
 lb.transid AS BlockingTransId, lb.op AS BlockingOp,
 lb.duration_millis AS BlockingMilliSeconds,
 tb.state AS BlockingState,
 tb.count_operations AS BlockingOperations,
 tb.inactive_seconds AS BlockingInactiveSeconds,
 tb.client_node_id AS BlockingNodeId,
 '-----------------' AS '-----------------------',
 lw.transid AS WaitingTransId, lw.op AS WaitingOp,
 lw.duration_millis AS WaitingMilliSeconds,
 tw.state AS WaitingState,
 tw.count_operations AS WaitingOperations,
 tw.inactive_seconds AS WaitingInactiveSeconds,
 tw.client_node_id as WaitingNodeId
 FROM ndbinfo.cluster_locks lw
 INNER JOIN ndbinfo.cluster_locks lb
 ON lb.lock_num = lw.waiting_for
 INNER JOIN ndbinfo.cluster_transactions tb
 ON tb.transid = lb.transid
 INNER JOIN ndbinfo.cluster_transactions tw
 ON tw.transid = lw.transid
 INNER JOIN ndbinfo.locks_per_fragment lpf
 ON lpf.table_id = lb.tableid
 AND lpf.fragment_num = lb.fragmentid
 AND lpf.node_id = lb.node_id\G
*************************** 1. row ***************************
 tableid: 12
 fragmentid: 1
 fq_name: world/def/City
 parent_fq_name: NULL
 type: User table
-----------------------: -----------------

Chapter 16 ■ Monitoring MySQL nDB CLuSter

536

 BlockingTransId: 36084872111980557
 BlockingOp: READ
 BlockingMilliSeconds: 2028919
 BlockingState: Started
 BlockingOperations: 2
BlockingInactiveSeconds: 2009
 BlockingNodeId: 51
-----------------------: -----------------
 WaitingTransId: 40588471739351055
 WaitingOp: READ
 WaitingMilliSeconds: 3323
 WaitingState: Started
 WaitingOperations: 1
 WaitingInactiveSeconds: 3
 WaitingNodeId: 51
1 row in set (0.28 sec)

-- Blocking connection information
mysql> SELECT session.*
 FROM information_schema.ndb_transid_mysql_connection_map map
 INNER JOIN sys.session
 ON session.conn_id = map.mysql_connection_id
 WHERE (map.ndb_transid >> 32) = (36084872111980557 >> 32)\G
*************************** 1. row ***************************
 thd_id: 134
 conn_id: 111
 user: root@localhost
 db: world
 command: Sleep
 state: NULL
 time: 2038
 current_statement: NULL
 statement_latency: NULL
 progress: NULL
 lock_latency: 159.54 ms
 rows_examined: 1
 rows_sent: 0
 rows_affected: 1
 tmp_tables: 0
 tmp_disk_tables: 0
 full_scan: NO
 last_statement: UPDATE world.City SET Population = Population + 1 WHERE ID = 130
last_statement_latency: 163.07 ms
 current_memory: 0 bytes
 last_wait: NULL
 last_wait_latency: NULL
 source: NULL
 trx_latency: NULL
 trx_state: NULL

Chapter 16 ■ Monitoring MySQL nDB CLuSter

537

 trx_autocommit: NULL
 pid: 26941
 program_name: mysql
1 row in set (0.05 sec)

-- Waiting connection information
mysql> SELECT session.*
 FROM information_schema.ndb_transid_mysql_connection_map map
 INNER JOIN sys.session
 ON session.conn_id = map.mysql_connection_id
 WHERE (map.ndb_transid >> 32) = (40588471739351055 >> 32)\G
*************************** 1. row ***************************
 thd_id: 141
 conn_id: 118
 user: root@localhost
 db: world
 command: Query
 state: updating
 time: 21
 current_statement: UPDATE world.City SET Population = Population + 1 WHERE ID = 130
 statement_latency: 20.38 s
 progress: NULL
 lock_latency: 146.00 us
 rows_examined: 0
 rows_sent: 0
 rows_affected: 0
 tmp_tables: 0
 tmp_disk_tables: 0
 full_scan: NO
 last_statement: NULL
last_statement_latency: NULL
 current_memory: 0 bytes
 last_wait: NULL
 last_wait_latency: NULL
 source: NULL
 trx_latency: NULL
 trx_state: NULL
 trx_autocommit: NULL
 pid: 26986
 program_name: mysql
1 row in set (0.05 sec)

The query to find the blocking and waiting transactions looks large, but is a straightforward joining
of tables. For the blocking and waiting transactions, there is a pair of cluster_locks and cluster_
transactions views, and the locks_per_fragment view is used to retrieve additional information about the
table and/or index where the lock is registered. The dashed columns are there to make it easier to see the
three groups of data—the table, blocking, and waiting information.

The two queries to find additional information must be executed on the SQL node where the
connection originates. The node ID can be found from the ndbinfo query. The connection information is
found using the sys.session view.

Chapter 16 ■ Monitoring MySQL nDB CLuSter

538

The locks views can also be used to determine which tables and fragments constitute hot spots. The
ndbinfo.locks_per_fragment view is excellent for this purpose. Listing 16-13 shows an example row of this
view. The numbers are somewhat exaggerated compared to the expected values of a production system,
as they were obtained using an artificially large value of TransactionDeadlockDetectionTimeout to make
testing easier.

Listing 16-13. The ndbinfo.locks_per_fragment View

mysql> SELECT *
 FROM ndbinfo.locks_per_fragment
 WHERE node_id = 2 AND table_id = 12 AND fragment_num = 1\G
*************************** 1. row ***************************
 fq_name: world/def/City
 parent_fq_name: NULL
 type: User table
 table_id: 12
 node_id: 2
 block_instance: 1
 fragment_num: 1
 ex_req: 2008
 ex_imm_ok: 1998
 ex_wait_ok: 1
 ex_wait_fail: 9
 sh_req: 0
 sh_imm_ok: 0
 sh_wait_ok: 0
 sh_wait_fail: 0
 wait_ok_millis: 2360
wait_fail_millis: 550811
1 row in set (0.04 sec)

The columns prefixed with ex_ are for exclusive locks, whereas the sh_ prefix is for shared locks. In
this example, there has been 2008 requests for exclusive locks (ex_req), of which 1998 have been granted
immediately (ex_imm_ok), one was granted after waiting for it (ex_wait_ok), and nine were waiting but did
not get granted (ex_wait_fail). If a fragment or table (by aggregating the data) has many lock requests
waiting or failing, it suggests that there is contention in that area. Better indexing or different query patterns
may help to resolve this issue, or possibly increasing TransactionDeadlockDetectionTimeout can be used
to resolve or mitigate the issues.

Log Buffers and Spaces Report
Chapter 2 discussed how the changes made by transactions are written into the redo buffer on commit, then
flushed to the redo log during a global checkpoint. The redo log is used to persist committed transactions
until the changes are included in a local checkpoint. Figure 16-1 shows an overview of this mechanism.
There is a similar mechanism for on-disk data where there is an undo log and undo log buffer for
transactions that need to be rolled back (see also Chapter 18).

http://dx.doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_18

Chapter 16 ■ Monitoring MySQL nDB CLuSter

539

Monitoring the redo and undo buffers as well as the redo and undo logs is very important to avoid
aborted transactions and the cluster becoming read-only. The ndbinfo schema has two views for this
purpose: logbuffers to monitor the buffers, and logspaces to monitor the logs. Listing 16-14 shows an
example of querying the usage of both the buffers and logs.

Listing 16-14. Querying the ndbinfo.logbuffers and ndbinfo.logspaces Views

mysql> SELECT node_id, log_type, log_id, log_part,
 sys.format_bytes(total) AS total,
 sys.format_bytes(used) AS used,
 ROUND(100*used/total, 2) AS UsedPct
 FROM ndbinfo.logbuffers;
+---------+----------+--------+----------+-----------+------------+---------+
| node_id | log_type | log_id | log_part | total | used | UsedPct |
+---------+----------+--------+----------+-----------+------------+---------+
1	REDO	0	1	16.00 MiB	320.00 KiB	1.95
1	DD-UNDO	20	0	2.00 MiB	5.08 KiB	0.25
2	REDO	0	1	16.00 MiB	320.00 KiB	1.95
2	DD-UNDO	20	0	2.00 MiB	31.48 KiB	1.54
+---------+----------+--------+----------+-----------+------------+---------+
4 rows in set (0.01 sec)

Figure 16-1. Overview of the local checkpoint and redo log mechanism

Chapter 16 ■ Monitoring MySQL nDB CLuSter

540

mysql> SELECT node_id, log_type, log_id, log_part,
 sys.format_bytes(total) AS total,
 sys.format_bytes(used) AS used,
 ROUND(100*used/total, 2) AS UsedPct
 FROM ndbinfo.logspaces;
+---------+----------+--------+----------+------------+----------+---------+
| node_id | log_type | log_id | log_part | total | used | UsedPct |
+---------+----------+--------+----------+------------+----------+---------+
1	REDO	0	0	256.00 MiB	2.00 MiB	0.78
1	REDO	0	1	256.00 MiB	2.00 MiB	0.78
1	REDO	0	2	256.00 MiB	0 bytes	0.00
1	REDO	0	3	256.00 MiB	0 bytes	0.00
1	DD-UNDO	20	0	16.00 MiB	2.05 MiB	12.80
2	REDO	0	0	256.00 MiB	2.00 MiB	0.78
2	REDO	0	1	256.00 MiB	2.00 MiB	0.78
2	REDO	0	2	256.00 MiB	0 bytes	0.00
2	REDO	0	3	256.00 MiB	0 bytes	0.00
2	DD-UNDO	20	0	16.00 MiB	1.95 MiB	12.17
+---------+----------+--------+----------+------------+----------+---------+
10 rows in set (0.02 sec)

In this example, the redo log is less than 1% full, but that could be because a local checkpoint has just
completed. What is usage just before the completion? Having the usage logged regularly in a monitoring
system with graphs makes it easy to see if for example the redo logs are getting close to full before the local
checkpoints complete. This is an issue that can happen as the amount of data grows and thus the local
checkpoints become larger and larger.

Configuration Report
In MySQL NDB Cluster 7.4 and earlier, the only way to query the configuration of the data nodes was to
use the ndb_config utility. This was a cumbersome way to get the configuration values—for example it was
necessary to know the exact spelling of the option name. To recap the ndb_config usage from Chapter 10,
to use ndb_config to get the value of DataMemory from each of two data nodes, it is necessary to use two
requests. For example:

shell$ ndb_config --type=ndbd --fields=': ' --rows='\n' \
 --query=NodeId,DataMemory \
 --config-from-node=1 --nodeid=1
1: 41943040

shell$ ndb_config --type=ndbd --fields=': ' --rows='\n' \
 --query=NodeId,DataMemory \
 --config-from-node=2 --nodeid=2
2: 41943040

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 16 ■ Monitoring MySQL nDB CLuSter

541

It is even more difficult to get information about the option using ndb_config. To do this, use the
--config-info option. However, there are no filtering options, so information for all options is always
returned:

shell$ ndb_config –configinfo
...
IndexMemory (Non-negative Integer)
Number bytes on each ndbd(DB) node allocated for storing indexes
Default: 18874368 (Min: 1048576, Max: 1099511627776)

DataMemory (Non-negative Integer)
Number bytes on each ndbd(DB) node allocated for storing data
Default: 83886080 (Min: 1048576, Max: 1099511627776)

UndoIndexBuffer (Non-negative Integer)
Number bytes on each ndbd(DB) node allocated for writing UNDO logs for index part
Default: 2097152 (Min: 1048576, Max: 4294967039)
...

As of MySQL NDB Cluster 7.5, you can use the ndbinfo schema with the config_params and
config_values views.

The config_params view has information about the configuration options and includes a description,
the data type, the default value, minimum and maximum values, and whether the option is mandatory.
For example, for the DataMemory parameter:

mysql> SELECT *
 FROM ndbinfo.config_params
 WHERE param_name = 'DataMemory'\G
*************************** 1. row ***************************
 param_number: 112
 param_name: DataMemory
param_description: Number bytes on each ndbd(DB) node allocated for storing data
 param_type: unsigned
 param_default: 83886080
 param_min: 1048576
 param_max: 1099511627776
 param_mandatory: 0
 param_status:
1 row in set (0.01 sec)

The config_params view also exists in older versions of MySQL NDB Cluster, but it only includes the
param_number and param_name columns.

Being able to query information about the configuration options is nice, but joining the param_values
view is what makes it really interesting. Listing 16-15 shows how to get the value of a single configuration
option—DataMemory.

Chapter 16 ■ Monitoring MySQL nDB CLuSter

542

Listing 16-15. Configuration Information for the DataMemory Option

mysql> SELECT v.node_id, p.param_name, v.config_value, p.param_default,
 IF(v.config_value = p.param_default, 'YES', 'NO') AS IsDefault
 FROM ndbinfo.config_params p
 INNER JOIN ndbinfo.config_values v
 ON v.config_param = p.param_number
 WHERE p.param_name = 'DataMemory';
+---------+------------+--------------+---------------+-----------+
| node_id | param_name | config_value | param_default | IsDefault |
+---------+------------+--------------+---------------+-----------+
| 1 | DataMemory | 41943040 | 83886080 | NO |
| 2 | DataMemory | 41943040 | 83886080 | NO |
+---------+------------+--------------+---------------+-----------+
2 rows in set (0.02 sec)

By comparing the actual value (the config_value column) to the default value (the param_default
column), it is possible to determine whether the option is using the default value. Listing 16-16 uses this to
return a report containing all configuration options that are set to non-default values.

Listing 16-16. Finding All Options with Non-Default Values

mysql> SELECT v.node_id, p.param_name, v.config_value
 FROM ndbinfo.config_params p
 INNER JOIN ndbinfo.config_values v
 ON v.config_param = p.param_number
 WHERE v.config_value <> p.param_default;
+---------+-------------------------------+-------------------------+
| node_id | param_name | config_value |
+---------+-------------------------------+-------------------------+
1	NodeId	1
1	DataDir	/cluster/node_1
1	MaxNoOfTables	130
1	MaxNoOfAttributes	1009
1	MaxNoOfTriggers	1400
1	MaxNoOfConcurrentTransactions	1024
1	MaxNoOfConcurrentOperations	5120
1	DataMemory	41943040
1	IndexMemory	15728640
1	FileSystemPath	/cluster/node_1
1	BackupDataBufferSize	4194304
1	BackupLogBufferSize	4194304
1	Arbitration	1
1	RedoBuffer	16777216
1	BackupDataDir	/backups/cluster/node_1
1	DiskPageBufferMemory	16777216
1	Nodegroup	0
1	SharedGlobalMemory	20971520
2	NodeId	2
2	DataDir	/cluster/node_2
2	MaxNoOfTables	130
2	MaxNoOfAttributes	1009

Chapter 16 ■ Monitoring MySQL nDB CLuSter

543

2	MaxNoOfTriggers	1400
2	MaxNoOfConcurrentTransactions	1024
2	MaxNoOfConcurrentOperations	4096
2	DataMemory	41943040
2	IndexMemory	15728640
2	FileSystemPath	/cluster/node_2
2	BackupDataBufferSize	4194304
2	BackupLogBufferSize	4194304
2	Arbitration	1
2	RedoBuffer	16777216
2	BackupDataDir	/backups/cluster/node_2
2	DiskPageBufferMemory	16777216
2	Nodegroup	0
2	SharedGlobalMemory	20971520
+---------+-------------------------------+-------------------------+
36 rows in set (0.03 sec)

 ■ Note not all options have a default value defined. an example is FileSystemPath. these options will
always end up being included in the report to find all options with a non-default value.

Finally, the configuration views can be used to detect when the data nodes do not have the same
configuration. This is an issue that, for example, can occur if a node was missed during a rolling restart
where a configuration change was made. When the data nodes have diverting configurations, it can cause
subtle issues that appear to happen at random, and thus are hard to debug. Listing 16-17 shows an example
of detecting parameters where the data nodes do not have the same settings.

Listing 16-17. Finding Options with Different Values on the Data Nodes

mysql> SELECT p.param_name, v.node_id, v.config_value
 FROM (SELECT config_param
 FROM ndbinfo.config_values
 GROUP BY config_param
 HAVING COUNT(DISTINCT config_value) > 1
) t
 INNER JOIN ndbinfo.config_params p
 ON p.param_number = t.config_param
 INNER JOIN ndbinfo.config_values v
 ON v.config_param = t.config_param
 WHERE param_name NOT IN ('BackupDataDir', 'DataDir',
 'FileSystemPath', 'NodeId', 'Nodegroup')
 ORDER BY p.param_name, v.node_id;
+-------------------------------------+---------+--------------+
| param_name | node_id | config_value |
+-------------------------------------+---------+--------------+
| MaxNoOfConcurrentOperations | 1 | 5120 |
| MaxNoOfConcurrentOperations | 2 | 4096 |
+-------------------------------------+---------+--------------+
2 rows in set (0.04 sec)

Chapter 16 ■ Monitoring MySQL nDB CLuSter

544

A few options that are expected to be different. To avoid having data returned that may hide real issues,
these options are explicitly removed using the WHERE clause. The list of excluded options will vary from
cluster to cluster depending on the expected configuration.

This concludes the example reports for the NDB Cluster Information Database. While these reports
are great for accessing data, they cannot replace the logs. The logs have additional information and
the messages remain even after an event has completed. The logs in MySQL NDB Cluster are the next
monitoring source to discuss.

NDB Cluster Logs
Like SQL nodes, the management and data nodes have their own log files. The management nodes maintain
the cluster log, which is an overall log for cluster. On the data nodes, there are three log types: a general log,
an error log, and trace logs (files). This section provides an overview of the logs, as well as discuses how to
configure them.

Cluster Logs
The cluster logs are the best place to get an overview of what is going on in the cluster as a whole. The
logs are maintained by the management nodes, with one set of logs per management node, but it records
messages related to all nodes in the cluster—thus the name.

Since the management nodes control the cluster logs, messages will only be written to them while
at least one of the management nodes is online. Given that each management node writes to its own log,
there may be gaps while a node is offline, so it is in general necessary to check the cluster log for each
management node.

 ■ Tip the cluster log messages are documented in https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-
logs-cluster-log.html.

The default is that the cluster logs are written to files, with each cluster log consisting of a set of files
(more on the configuration shortly, including how to change the destination, filenames, maximum file
size, and maximum number of files). The file currently written to will not have a suffix, whereas the old files
have a suffix, including a number. For the sake of illustration, assume that the currently active cluster log
file is ndb_49_cluster.log (the default for a management node with NodeId = 49). This filename is the base
filename for the cluster log.

When the cluster is installed, the cluster log will just consist of ndb_49_cluster.log. Log messages are
then written to the file and at the time it reaches its maximum size, it is renamed to ndb_49_cluster.log.1
and a new file called ndb_49_cluster.log will be created. When the new file also has reached its maximum
size, it is renamed ndb_49_cluster.log.2 and so forth. At some point, there are as many old cluster log files
as the configuration allows. At that time, ndb_49_cluster.log.1 is reused. So, the cluster log is a circular log,
but always with ndb_49_cluster.log as the most recent file, and either of the archived log files being the next
oldest, then the rest following in order.

This is illustrated in Figure 16-2 for a configuration with at most four files. For brevity, the base name
of the files in the figure is cluster.log, but for production systems, it is strongly recommended to include the
node ID of the management node in the base filename—for example, the ndb_error_reporter script that is
discussed in Chapter 17 requires unique cluster log base names to collect all cluster log file sets.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-logs-cluster-log.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-logs-cluster-log.html
http://dx.doi.org/10.1007/978-1-4842-2982-8_17

Chapter 16 ■ Monitoring MySQL nDB CLuSter

545

 ■ Tip always have unique base filenames for the cluster logs across all management nodes.

Table 16-6 contains the configuration options related to the cluster log. It is best to keep the settings the
same on all nodes except for the cluster log base filename. More details about the options as well as how to
control what is logged is discussed in the rest of this section.

Table 16-6. The Cluster Log Configuration Options

Option Nodes Default Description

LogDestination Management See text Where the cluster log is written, the
maximum number of files, and file
size.

MemReportFrequency Data 0 How many seconds between reporting
the DataMemory and IndexMemory
usage.

StartupStatusReportFrequency Data 0 How frequently progress of creating
the fragment log files during initial
node restarts.

Figure 16-2. The circular nature of the cluster log

Chapter 16 ■ Monitoring MySQL nDB CLuSter

546

Log Destination
The cluster log is configured with the LogDestination option. The value is a semicolon-separated list where
each part configures a log destination. There is support for three log destinations:

•	 FILE: Write to a log file as described earlier. This is the default and most common log
destination.

•	 SYSLOG: Send the log to a syslog facility.

•	 CONSOLE: Write the log to the console. This is rarely used except for debugging
purposes.

The FILE and SYSLOG destinations support additional arguments. These are listed in Table 16-7.

For FILE where several options can be specified, the options are separated with a comma. The default
value for LogDestination is FILE:filename=ndb_<NodeId>_cluster.log,maxsize=1000000,maxfiles=6
where <NodeId> is the node ID of the management node. The default size is good for test systems, but it is in
most cases recommended to increase the size for production systems.

When deciding on the size and number of files for the FILE destination, make the file size as large as it
is practical – for example it must still be possible to review the log file and search it. Exactly what this means
in terms of file size depends on the tools used to read log files. For example, the less command on Linux
can large files of several gigabytes. Dealing with a large file is mainly an issue of how long it takes to search
and read it. Other tools such as Notepad++ may have maximum file sizes. In practice, a size of at most 10-20
megabytes works well.

Then increase maxfiles so the total size (maxsize * maxfiles) is large enough to include at least a
week of log data. Be aware that restarts include data for each table and index, so a single rolling restart for
clusters with a large number of tables, indexes, and/or data nodes can use a couple of megabytes of log
space.

Memory Report Frequency
Setting the MemReportFrequency to a value greater than 0 will cause the data nodes to generate a report
for its DataMemory and IndexMemory usage every MemReportFrequency seconds. The report looks like the
following report excerpt.

Table 16-7. Additional Arguments for Log Destinations

Option Log Destination Description

filename FILE The base filename. It is recommended to include the node ID of the
management node in the filename.

maxsize FILE The maximum size in bytes of each cluster log files.

maxfiles FILE The maximum number of cluster log files (per data node).

facility SYSLOG The syslog facility to use. Supported values for the facility are auth,
authpriv, cron, daemon, ftp, kern, lpr, mail, news, syslog, user,
uucp, local0, local1, local2, local3, local4, local5, local6, and
local7.

Chapter 16 ■ Monitoring MySQL nDB CLuSter

547

2017-06-19 20:26:02 [MgmtSrvr] INFO -- Node 1: Data usage is 13%(174 32K pages of total 1280)
2017-06-19 20:26:02 [MgmtSrvr] INFO -- Node 1: Index usage is 5%(113 8K pages of total 1952)
2017-06-19 20:26:03 [MgmtSrvr] INFO -- Node 2: Data usage is 13%(174 32K pages of total 1280)
2017-06-19 20:26:03 [MgmtSrvr] INFO -- Node 2: Index usage is 5%(113 8K pages of total 1952)

The same data can be obtained from ndbinfo.memoryusage, which is better for monitoring purposes,
although having occasional memory usage reports in the log can be useful to correlate with other log
messages.

Memory usage reporting is not entirely turned off even when MemReportFrequency = 0. There will still
be messages if the memory threshold crosses the thresholds of 80% and 90% in either direction for the data
or index memory. Listing 16-18 shows an example of the memory increasing through 80% and 90%, and then
reducing back below 80% again.

Listing 16-18. Messages About Increasing and Decreasing Memory Usage

2017-06-19 21:12:39 [MgmtSrvr] INFO -- Node 1: Data usage increased to 81%(1044 32K pages
of total 1280)

2017-06-19 21:12:40 [MgmtSrvr] INFO -- Node 2: Data usage increased to 81%(1045 32K pages
of total 1280)

2017-06-19 21:12:51 [MgmtSrvr] INFO -- Node 2: Data usage increased to 90%(1153 32K pages
of total 1280)

2017-06-19 21:12:52 [MgmtSrvr] INFO -- Node 1: Data usage increased to 90%(1160 32K pages
of total 1280)

2017-06-19 21:18:36 [MgmtSrvr] INFO -- Node 2: Data usage decreased to 88%(1132 32K pages
of total 1280)

2017-06-19 21:18:37 [MgmtSrvr] INFO -- Node 1: Data usage decreased to 88%(1132 32K pages
of total 1280)

2017-06-19 21:22:08 [MgmtSrvr] INFO -- Node 2: Data usage decreased to 79%(1013 32K pages
of total 1280)

2017-06-19 21:22:09 [MgmtSrvr] INFO -- Node 1: Data usage decreased to 79%(1013 32K pages
of total 1280)

Startup Status Report Frequency
The final cluster log configuration option is StartupStatusReportFrequency. This option is only used
during initial data node restarts when the redo logs are recreated. Particularly, if the logs are created in full
(as opposed to sparse) this can take a long time, so it can be useful to have progress reports logged.

The default (StartupStatusReportFrequency = 0) only logs information of the redo log file generation
at the start and completion. When the value is set to a non-zero value, a progress report will be logged every
StartupStatusReportFrequency seconds.

Controlling What Is Logged
It is possible to some degree to control what is logged to the cluster log through the CLUSTERLOG command
in the ndb_mgm command-line client. There are eight log categories and each is set to a log threshold. The
categories are:

•	 CHECKPOINT: For messages created during execution of local and global checkpoints.

•	 CONNECTION: For messages created when connections are made between cluster
nodes.

Chapter 16 ■ Monitoring MySQL nDB CLuSter

548

•	 ERROR: Messages related to errors that do not cause node failures. This includes
missed heartbeats.

•	 INFO: For informational messages such as when sending a heartbeat.

•	 NODERESTART: Similar to STARTUP and SHUTDOWN but for data node restarts.

•	 STARTUP: For messages created during the startup of data nodes.

•	 STATISTICS: Various statistics such as number of transaction, current operations, etc.

•	 SHUTDOWN: For messages created during the shutdown of data nodes.

The default threshold is 7 for all categories except ERROR, which has a default threshold of 15. The
allowed range for the threshold is 0 through 15 where 0 only includes the most important messages and 15
includes all messages.

Each log message has a priority which is compared to the threshold. If the priority is less than or equal
to the threshold, then the message is logged. For example, a message with priority 12 will be logged if the
threshold is 12 or higher. In other words, the higher the configured threshold, the more log messages there are.

The threshold is set by specifying which data node to apply it to followed by the CLUSTERLOG command
and the category with the threshold. For example, to set the STATISTICS category to 15 for the data node with
NodeId = 1, use this command:

ndb_mgm> 1 CLUSTERLOG STATISTICS=15
Executing CLUSTERLOG STATISTICS=15 on node 1 OK!

To make the same change to all data nodes, use this command:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15
Executing CLUSTERLOG STATISTICS=15 on node 1 OK!
Executing CLUSTERLOG STATISTICS=15 on node 2 OK!

 ■ Note the threshold is set for a given management and data node pair (or one management node to all
data nodes). if there are several management nodes and the threshold should apply to all cluster logs, the
CLUSTERLOG command must be executed while connected to each management node.

In older versions of MySQL NDB Cluster, it was more common to use increased thresholds to get
information. For example, for the statistics, it is in general better to get the data from ndbinfo.

In addition to the priority, each log message has a severity. It is possible to filter messages by their
severity using the CLUSTERLOG command with slightly different arguments. For example, you can toggle the
logging of INFO level messages by using:

ndb_mgm> CLUSTERLOG FILTER INFO;
INFO disabled

Execute again to re-enable:

ndb_mgm> CLUSTERLOG FILTER INFO;
INFO enabled

Chapter 16 ■ Monitoring MySQL nDB CLuSter

549

There are six severity levels which, in order of decreasing severity, are:

•	 ALERT: The most severe issues that must be corrected immediately. This includes
information about network partitioning, node failures, failed backups, etc.

•	 CRITICAL: This level is currently not used.

•	 ERROR: Still very important events that must be handled urgently. An example is a
transporter error.

•	 WARNING: Important messages such as missed heartbeats (but where the node has
not yet been declared dead). These messages generally require attention.

•	 INFO: Informational messages that in general do not require any action. An example
is a backup that has started or completed.

•	 DEBUG: Very detailed messages, for example, that a transporter has received an end-
of-file message. These messages are mostly useful when working with the source code.

By default, all but the DEBUG severity level is enabled.

 ■ Tip Details of the cluster log events, how to control what is logged, and classification of the events
including their priorities and severities are documented in https://dev.mysql.com/doc/refman/5.7/en/mysql-
cluster-event-reports.html and in the subpages listed near the top of the page.

Data Node Logs
While the cluster log provides a good overview of the cluster activity, it is at times necessary to get more
information. Each data node has three log types that cover general messages, unscheduled shutdown
details, and trace logs. All data node log files are located in the path specified with DataDir. Table 16-8
summarizes the three logs.

<NodeId> is a placeholder for the NodeId for the data node and <count> is a placeholder for a counter
that increments for each unscheduled shutdown. The MaxNoOfSavedMessages option sets the limit to the
number of message blocks in the error log and the sets of trace files. It defaults to 25.

Chapter 17 is dedicated to troubleshooting and includes more information about the data node logs.

Table 16-8. Data Node Log Files

Log Filename Description

Out log ndb_<NodeId>_out.log General log messages. Similar to the MySQL Server
error log but for data nodes.

Error log ndb_<NodeId>_error.log One message block per unscheduled shutdown with
details of why the node was shut down.

Trace log ndb_<NodeId>_trace.log.<count> One set of log files for each unscheduled shutdown.
Each set has one file per data node thread.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-event-reports.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-event-reports.html
http://dx.doi.org/10.1007/978-1-4842-2982-8_17

Chapter 16 ■ Monitoring MySQL nDB CLuSter

550

Summary
This chapter covered the ndbinfo schema, including several examples of creating reports that can be used
for monitoring purposes. Additionally, the logs and trace files available on the management and data nodes
were discussed. It also concludes the tour of monitoring, the sources of monitoring, and the logs available in
MySQL NDB Cluster setups. As you can see in this and the previous two chapters, monitoring is a very large
topic for which an entire book can be written on its own. Implementing good monitoring on MySQL NDB
Cluster is not something that is done in a single day—instead it is an ongoing process.

There is one topic related to monitoring and logs that still needs to be discussed: troubleshooting.
This is the topic of the next chapter.

551© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_17

CHAPTER 17

Typical Troubles and Solutions

This chapter discusses problems that may occur on MySQL NDB Cluster. Since nothing is perfect, your
MySQL NDB Cluster installation may face some troubles. It is important for your service quality to minimize
downtime due to these troubles. You need to be prepared for troubles and fix them as quickly as possible.
In this chapter, learn how to cope with troubles using typical examples of problems.

Typical Problems on Data Nodes
Since the data node is a heart of MySQL NDB Cluster, troubles on data nodes can affect the entire database
cluster system. Even though data nodes are usually redundant, and the absence of a single data node doesn’t
lead to an entire system outage, it can happen because of multiple node failures. So, it is important to
minimize the probability of multiple node failures. To achieve this goal, it is necessary to identify problems
and resolve them quickly.

 ■ Tip When you face a problem, be sure to search the bug database, as the same problem might have been
reported. If you cannot find the identical problem, file a new bug at https://bugs.mysql.com/. Contact Oracle
Corporation for support if you have a support license. Commercial support is a good way to save time and cost
required for investigation.

General Information about Node Failures
A data node can crash for various reasons. Since MySQL NDB Cluster has a fail-early strategy, a data node
will shut down by itself when something goes wrong. The strategy expects data nodes to have redundancy,
which can prevent an entire system outage when you have single node failures. A single node failure is not
a fatal problem for MySQL NDB Cluster. Take the appropriate actions against node failures. It is rather likely
that you will face node failures at some point if you run the cluster with many data nodes for a long time.

This section discusses how to collect the information required to investigate node failures.

Cluster Log
The first thing you must check upon node failure is the cluster log, which is a centralized consolidated log
of the entire cluster. It’s stored on each management node. The content of the cluster log varies depending
on its filtering configuration. See Chapter 16 for more details of the cluster log, and see Chapter 4 for more

https://doi.org/10.1007/978-1-4842-2982-8_17
https://bugs.mysql.com/
http://dx.doi.org/10.1007/978-1-4842-2982-8_16
http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 17 ■ typICal trOubles and sOlutIOns

552

details of configuration of the cluster log. The cluster log has a filename such as ndb_NODEID_cluster.log by
default, where NODEID is the NodeId for the management node that writes the cluster log.

Upon a node failure, the data node reports why it’s going to be abnormally shut down, before it shuts
down completely. There could be some sign in the cluster log before the node failure, which leads a node
to crash. Carefully examine the cluster log and see what happened prior to crash. Listing 17-1 shows an
example cluster log when a node failed due to a heartbeat failure. In this example, Node 1 was forced to shut
down because Node 2, the “left” node of Node 1, detected that heartbeat signal didn’t arrive for a certain
period. See Chapter 1 for more information about heartbeats and the “left” node.

Listing 17-1. Cluster Log When a Data Node Failed Due to Missed Heartbeat

2017-05-13 17:27:09 [MgmtSrvr] WARNING -- Node 2: Node 1 missed heartbeat 2
2017-05-13 17:27:14 [MgmtSrvr] WARNING -- Node 2: Node 1 missed heartbeat 3
2017-05-13 17:27:19 [MgmtSrvr] WARNING -- Node 2: Node 1 missed heartbeat 4
2017-05-13 17:27:19 [MgmtSrvr] ALERT -- Node 2: Node 1 declared dead due to missed

heartbeat
... snip ...
2017-05-13 17:27:22 [MgmtSrvr] ALERT -- Node 1: Forced node shutdown completed. Caused by

error 2315: 'Node declared dead. See error log
for details(Arbitration error). Temporary error,
restart node'.

Node Log
As the name suggests, the node log is a node specific log stored locally on each node. It may have more
detailed messages compared to the cluster log, and may be useful for debugging purposes. The node log has
a filename such as ndb_NODEID_out.log, where NODEID is the NodeId for the data node. Listing 17-2 shows
an example node log when the data node was shut down due to a missed heartbeat.

Listing 17-2. Example Node Log When a Data Node Was Marked as Dead Due to Missed Heartbeats

2017-05-13 17:27:22 [ndbd] WARNING -- thr: 1: Overslept 23577 ms, expected ~10ms
2017-05-13 17:27:22 [ndbd] WARNING -- thr: 2: Overslept 23572 ms, expected ~10ms
2017-05-13 17:27:22 [ndbd] WARNING -- thr: 0: Overslept 23572 ms, expected ~10ms
2017-05-13 17:27:22 [ndbd] WARNING -- timerHandlingLab, expected 10ms sleep, not scheduled

for: 23572 (ms)
2017-05-13 17:27:22 [ndbd] WARNING -- thr: 3: Overslept 23571 ms, expected ~10ms
2017-05-13 17:27:22 [ndbd] INFO -- Watchdog: User time: 93 System time: 681
2017-05-13 17:27:22 [ndbd] WARNING -- Watchdog: Warning overslept 23669 ms, expected 100 ms.
2017-05-13 17:27:22 [ndbd] INFO -- We(1) have been declared dead by 2 (via 2) reason:

Heartbeat failure(4)
2017-05-13 17:27:22 [ndbd] INFO -- QMGR (Line: 4213) 0x00000002
2017-05-13 17:27:22 [ndbd] INFO -- Error handler shutting down system
2017-05-13 17:27:22 [ndbd] INFO -- Error handler shutdown completed - exiting
2017-05-13 17:27:22 [ndbd] ALERT -- Node 1: Forced node shutdown completed. Caused by

error 2315: 'Node declared dead. See error log for
details(Arbitration error). Temporary error, restart
node'.

You can see that the threads in the data node overslept a long time, so watchdog warnings were reported.
A thread in data node intentionally sleeps for a certain period when there are no more signals to process.

http://dx.doi.org/10.1007/978-1-4842-2982-8_1

Chapter 17 ■ typICal trOubles and sOlutIOns

553

However, a thread may oversleep (fail to wake up) longer than planned for various reasons;
for example, the OS failed to allocate CPU time to the thread due to a high load. In this example, the threads
overslept because I paused the ndbmtd process using a debugger (GDB) for a while. It prevented data
node 1 from sending the heartbeat signal to data node 2, thus data node 2 marked data node 1 as dead due to
these missed heartbeats. While this is an artificial failure, similar log content can happen by chance on your
production system, too.

Error Log
The data node writes an event in its error log when it encounters an unplanned shutdown. The information
written to the error log includes when the error happened, the error code, where the error happened, and so
forth. The error log has a filename such as ndb_NODEID_error.log, where NODEID indicates the NodeId for
the data node. Listing 17-3 shows an example of the error log when a data node was marked as dead due to
missed heartbeats.

Listing 17-3. Example Error Log When a Data Node Was Marked as Dead Due to Missed Heartbeats

Time: Saturday 13 May 2017 - 17:27:22
Status: Temporary error, restart node
Message: Node declared dead. See error log for details (Arbitration error)
Error: 2315
Error data: We(1) have been declared dead by 2 (via 2) reason: Heartbeat failure(4)
Error object: QMGR (Line: 4213) 0x00000002
Program: ndbmtd
Pid: 29262 thr: 0
Version: mysql-5.7.18 ndb-7.5.6
Trace file name: ndb_1_trace.log.1
Trace file path: /var/lib/mysql-cluster/ndb_1_trace.log.1 [t1..t4]
EOM

In this error log, you can see that the error number was 2315; data node 2 marked this node as dead
due to four contiguous heartbeat failures. Then, the QMGR block forcibly shut down this node. You can also
see that the version of MySQL NDB Cluster is 7.5.6. For this case, the error log is informative enough and no
more investigation is required. However, further information is often required in various cases. The source of
information required for further investigation is the trace file, which is described in next section.

Trace Files
Upon a node failure, a special log file called a trace file is generated under the DataDir of the failed data
node. Don’t confuse the trace file in this section with the one retrieved from the debug version of mysqld.
The trace file in this section is a facility of the NDB kernel, which is enabled by default on non-debug
binaries of ndbd and ndbmtd. The trace file has a filename such as ndb_NODEID_trace.log.N, where NODEID
indicates the NodeId for the data node and N indicates the ID of the trace file. The ID is increased up to
MaxNoOfSavedMessages and reset to 1 if it has reached MaxNoOfSavedMessages.

 ■ Note Increase MaxNoOfSavedMessages if the data node crashes frequently, so that the new trace files do
not overwrite the existing ones. the size of each trace file is trivial, so you don’t have to worry about the file
system consumption due to the trace file. the default value for this option is 25.

Chapter 17 ■ typICal trOubles and sOlutIOns

554

The trace file is the most significant data source when investigating crashes. One or more trace files are
created per each crash. Listings 17-4 and 17-5 show examples of the trace file content. Listing 17-4 shows the
beginning of an example trace file. Listing 17-5 shows the middle of an example trace file.

Listing 17-4. Example Content of Trace File at its Beginning

$ head -20 ndb_1_trace.log.1
JAM CONTENTS up->down left->right
SOURCE FILE LINE LINE LINE LINE LINE LINE LINE LINE LINE

QmgrMain.cpp 02804 02821 02989 02828 02926 00050 00051 00052 00053
 00255
---> signal
DbdihMain.cpp 00359 00530 27209 16403 16492 16492 16492 16492
---> signal
DbdihMain.cpp 16857
---> signal
DbdihMain.cpp 16497 16510
---> signal
DbdihMain.cpp 17581 17527 17527 17527 17527 17527 17527 17527 17527
 17527 17527 17527 17527 17527 17527 17527 17527 17527
 17527 17527 17527 17527 17527 17527 17527 17527 17527
 17527 17527 17527 17527 17527 17527 17527 17527 17527
 17527 17527 17527 17527 17527 17527 17527 17527 17527
 17527 17527 17527 17527 17562
DbtcMain.cpp 05571
Ndbfs.cpp 01593 01426

Listing 17-5. Example Content in the Middle of the Trace File

$ head -461 ndb_1_trace.log.1 | tail -12
---> signal
QmgrMain.cpp 00220 04130
SimulatedBlock.cpp 02018

--------------- Signal ----------------
r.bn: 252 "QMGR", r.proc: 1, r.sigId: 146516 gsn: 254 "FAIL_REP" prio: 0
s.bn: 252 "QMGR", s.proc: 2, s.sigId: 96525 length: 3 trace: 0 #sec: 0 fragInf: 0
 FailedNode: 1, FailCause: 4
--------------- Signal ----------------
r.bn: 246 "DBDIH", r.proc: 1, r.sigId: 146515 gsn: 164 "CONTINUEB" prio: 0
s.bn: 246 "DBDIH", s.proc: 1, s.sigId: 146502 length: 1 trace: 0 #sec: 0 fragInf: 0
 Check GCP Stop

If you have not seen it before, this can look like garbage, despite its importance. The content of the trace
file consists of two parts. One is a program trace like Listing 17-4; the other is a dump of recently executed
signals, like the latter half of Listing 17-5.

The program trace is required to investigate problems on a data node, because the unit of the job in the
data node is a signal. Usual lock based multi-threaded programs implement a complex algorithm by calling
functions in a nested manner, which solve race conditions using locks. So, it is possible to figure out what
the thread was doing when it crashed by examining the stack trace; it’s a history indicating which function

Chapter 17 ■ typICal trOubles and sOlutIOns

555

is called by which function. Since mysqld is a lock based multi-threaded program, the stack trace is a good
starting point to investigate the cause of crashes.

However, this is not true for ndbmtd and ndbd. In these processes, complex algorithms are broken into
signals, where a signal is a unit of tasks in these processes. An algorithm that handles each signal is designed
to be very small and simple. If a signal needs further processing, it is done by one or more additional signals,
which is sent to the kernel blocks, either its own or others, instead of the calling functions. The stack trace
of ndbmtd and ndbd is fairly small and it doesn’t include sufficient data to figure out the history of program
execution. Thus, when it comes to crash analysis, you need the trace file instead of the stack trace.

The first part of the trace file indicates on which line of which source file the thread in question
executed. For example, Listing 17-4 indicates that ndbmtd executed line 2804 of QmgrMain.cpp, then lines
2821, 2989, 2828, and so forth of same file. The signal processing ended at line 255, then it switched to the
next signal, which started from line 359 of DbdihMain.cpp.

The second half of the trace file is a list of signals in the order from newest to oldest. As discussed in
Chapter 2, signals are stored in two job buffers depending on the priority of the signals. Since the job buffers
are fixed-sized arrays used in a circular fashion, old signals already executed remain in the job buffer for
a while. When each signal is executed, a monotonically increasing identifier is assigned to the signal. So,
signals in job buffers can be sorted in the order they were executed, using this identifier even though two
buffers exist.

Review Listing 17-5, which shows the boundary of jam buffer content and job buffer content. Since the
jam buffer content is sorted from oldest to newest, and job buffer content is sorted from newest to oldest,
newest data is located around the boundary. So, it is possible to figure out what was going on at the very
moment when the data node crashed by examining the data around the boundary. The first thing to do
when analyzing a trace file is to scroll down to the boundary. Then, grab the source code around the latest
job buffer along with the signal data.

Note that the multi-threaded version of data node, ndbmtd, has multiple sets of job buffers and jam
buffers; one set per thread. So, one trace file is created per instance, and each trace file has the suffix _tN
where N indicates thread number. To write trace files, all execution threads must be stopped in advance.
A thread that’s not the cause of the crash is stopped by the STOP_FOR_CRASH signal. So, investigate a trace file
that doesn’t include the STOP_FOR_CRASH signal first. Note that the error log entry also tells you which thread
it believes is the culprit.

Core Files
Even though the data node is designed using a signal processing architecture, it is sometimes required to
analyze the core file to access values in memory. Information that can be retrieved from the trace file is
mainly line numbers and signal data. If you need to examine more data that’s not seen in the trace file, such
as the global variables, a core file is required just like for usual programs.

You can retrieve a core file upon a crash on UNIX-like systems by using the following instructions:

•	 Make sure your program binary includes debugging symbols. Binaries officially
shipped from Oracle Corporation include debugging symbols. Be careful when
you’re using binaries compiled from source.

•	 Ensure sufficient free space is available on your file system. Since the data node
process consumes a large amount of memory, the same amount of free disk space is
required to store a core file.

•	 Use the ulimit command to allow the process to generate sufficiently large core files
before starting ndbmtd and ndbd. Specify unlimited to generate the whole process
memory image.

•	 Specify the --core-file option when starting ndbmtd and ndbd.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 17 ■ typICal trOubles and sOlutIOns

556

To analyze a core file, a debugger such as GDB, LLDB, dbx, or mdb is required.

 ■ Note Currently, data nodes don’t generate core files on Windows. refer to the bug report for details of the
problem on Windows: https://bugs.mysql.com/bug.php?id=86358.

NDB Error Reporter Utility
When a data node crashes, we need to examine the various kinds of files including the configuration file
and logs. The NDB Error Reporter Utility, the ndb_error_reporter command, collects various files required
for investigation. It logs in to remote host using SSH and copies files to the local host. The following files are
collected from data nodes and management nodes:

•	 config.ini

•	 PID file

•	 Cluster log

•	 Error log

•	 Node log

•	 Trace file

•	 Data files under FileSystemPath (optional)

The command takes the configuration file as its argument. A typical command is:

$ ndb_error_reporter ./config.ini

Then, it generates a compressed archive file under the current working directory named ndb_
error_report_DATETIME.tar.bz2, where DATETIME indicates the current timestamp in numeric format
(YYYYMMDDhhmmss). The command may take additional arguments to specify a username for a remote
login. See ndb_error_reporter --help for more details.

I recommend running this command for testing purposes once you have set up the cluster. If you face
any problems, solve them in advance before you need to use this utility for collecting information about a
crash.

Since the command is written in the Perl script, you need to install the Perl interpreter on your system
in advance.

 ■ Tip MysQl Cluster Manager can also collect configuration files and logs. see Chapter 13 for more details
of MysQl Cluster Manager.

Watchdog Timeout
On a data node, all threads that handle signals are monitored by the watchdog thread. The watchdog thread
wakes up every TimeBetweenWatchDogCheck milliseconds and checks if the watchdog counter has been
changed by the monitored thread to a non-zero value, then resets the counter to zero. If the watchdog counter
remains zero, then the watchdog thread thinks that the monitored thread is stuck and not proceeding.

https://bugs.mysql.com/bug.php?id=86358
http://dx.doi.org/10.1007/978-1-4842-2982-8_13

Chapter 17 ■ typICal trOubles and sOlutIOns

557

Since MySQL NDB Cluster is designed to be a real-time database system, which responds within a guaranteed
period, being stuck on one signal is a critical problem. Recall that MySQL NDB Cluster takes a fail-early
strategy. The stuck data node is forcibly shut down when the watchdog timeout is detected. Listing 17-6 shows
an error log whereby the data node died due to a watchdog timeout.

Listing 17-6. An Error Log Caused by a Data Node That Died Due to a Watchdog Timeout

Time: Thursday 18 May 2017 - 15:53:34
Status: Temporary error, restart node
Message: WatchDog terminate, internal error or massive overload on the machine running this
node (Internal error, programming error or missing error message, please report a bug)
Error: 6050
Error data: Job Handling
Error object: /srctopdir/storage/ndb/src/kernel/vm/WatchDog.cpp
Program: ndbmtd
Pid: 2082
Version: mysql-5.7.18 ndb-7.5.6
Trace file name: ndb_2_trace.log.1
Trace file path: /var/lib/mysql-cluster/ndb_2_trace.log.1 [t1..t4]
EOM

You can see that the Error Data in Listing 17-6 is “Job Handling”, which indicates the state when the
thread got stuck. This status indicates that the data node was stuck when processing signals. Table 17-1
shows a list of possible thread status.

A watchdog timeout is likely to be caused for the following reasons:

•	 A data node is overloaded.

•	 A data node process is swapped out due to memory shortage.

•	 Unnecessary delay is caused when using a virtual machine.

Table 17-1. List of Possible Thread Status on Data Node

Status Description

Job Handling Execution thread is handling signals.

Scanning Timers Execution thread is detecting if the clock has ticked backward.

External I/O A send thread is releasing local memory.

Print Job Buffers at crash A thread is dumping the jam buffer and signal memory upon crash.

Checking connections A receiver thread is checking the connection status.

Performing Send A send thread is performing a send operation.

Polling for Receive A receiver thread is polling the socket.

Performing Receive A receiver thread is performing a receive operation.

Allocating memory A thread is allocating memory. This status can be shown only at startup.

Packing Send Buffers A thread is packing send buffers to make memory available to other threads.

Chapter 17 ■ typICal trOubles and sOlutIOns

558

•	 The network interface is faulty.

•	 Something slow is happening inside the kernel, such as memory compaction.

•	 A bug in the data node, such as an infinite loop.

LCP Watchdog Timeout
When a data node encounters a disk problem, it might fail to write the Local Checkpoint (LCP) to disk for a
long time. If there is no progress on an LCP for more than LcpScanProgressTimeout seconds, which is 60
seconds by default, a data node shuts down itself due to the fail-early strategy. A stuck LCP is a problem,
because it exhausts the redo log space. Note that all redo log entries written after the last LCP must be kept
until the next LCP completes. Listing 17-7 shows an example error log in which a data node died due to an
LCP watchdog timeout.

Listing 17-7. An Error Log Caused by a Data Node That Died Due to an LCP Watchdog Timeout

Time: Thursday 18 May 2017 - 18:32:57
Status: Temporary error, restart node
Message: LCP fragment scan watchdog detected a problem. Please report a bug. (Internal
error, programming error or missing error message, please report a bug)
Error: 7200
Error data: Please report this as a bug. Provide as much info as possible, especially
all the ndb_*_out.log files, Thanks. Shutting down node due to lack of LCP fragment scan
progress
Error object: DBLQH (Line: 25454) 0x00000002
Program: ndbmtd
Pid: 30777 thr: 2
Version: mysql-5.7.18 ndb-7.5.6
Trace file name: ndb_3_trace.log.1_t2
Trace file path: /var/lib/mysql-cluster/ndb_3_trace.log.1 [t1..t4]
EOM

This problem was most likely caused by faulty and/or overloaded disks. You would need to monitor the
I/O activity of the disks and replace any faulty ones.

Swap Insanity
As discussed in Chapters 3 and 4, recent CPUs often have built-in memory controllers for faster memory
access. RAM is connected directly to each CPU. Because of this, memory access speed varies depending on
which CPU has the target memory to be accessed. This type of system architecture is called Non-Uniform
Memory Access (NUMA). Figure 17-1 shows a conceptual view of NUMA system with two CPUs. Each CPU
and its local memory is called a NUMA node. If CPU0 accesses the RAM under CPU1, which is in a different
NUMA node, data must be transferred via the bus between the two CPUs, which is a much slower process
than when accessing the local RAM.

http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 17 ■ typICal trOubles and sOlutIOns

559

Recent Linux kernels attempt to allocate memory from the same NUMA node that’s running the thread
allocating the memory. If free space is running out on the current NUMA node, the memory is allocated
from the other NUMA node. This strategy works well with programs that allocate small amounts of memory,
because memory access within the same NUMA node is fast. However, it doesn’t work well for programs
that require memory larger than the RAM size of one NUMA node. Figure 17-2 depicts a situation in which
memory runs out on one NUMA node.

Figure 17-1. The NUMA concept

Chapter 17 ■ typICal trOubles and sOlutIOns

560

In Figure 17-2, CPU0 cannot allocate more memory from its local RAM module. In such a case, the OS
kernel will allocate memory from the remote NUMA node for user processes. This is not a problem from a
functionality point of view, even though memory access is slow. However, some kernel modules occasionally
require allocating memory from the same NUMA node on which the thread is currently running. In such
cases, memory is short even though free memory exists on the remote NUMA node. Then, some processes
are swapped out. This is called swap insanity. Of course, swapping will cause various negative effects on the
running program, such as slowdowns, which then may cause other critical problems for the data nodes, such
as watchdog timeouts, for example.

As of MySQL NDB Cluster 7.2, the Numa option is introduced for Linux binaries. When the option is set to
1, which is the default, memory allocation is performed evenly from all NUMA nodes using the functionality
of libnuma. Do not disable this option. If you are using older versions, consider upgrading to MySQL NDB
Cluster 7.2 or newer. If you don’t want to upgrade, run the data node via the numactrl command as shown:

$ numactrl --interleave all ndbmtd -c mgmhost

GCP Stop
On versions prior to the 7.2 series, the Global Checkpoint (GCP) stop was a major problem. Due to the
fail-early strategy, a data node was designed to separate a lagging node to keep the entire system stable.
As part of the strategy, a data node that caused GCP lag was forcibly shut down, and this was called a GCP
stop. GCP may take time for various reasons, and excessive lag will result in GCP stop.

A GCP stop is detected when the micro-GCP doesn’t finish within TimeBetweenEpochsTimeout
milliseconds. A micro-GCP usually finishes quickly, because it’s an operation on memory. However, it may
take a long time on (non-micro) GCP because the data node writes the redo log to disk, which is done every
TimeBetweenGlobalCheckpoints milliseconds. A GCP stop is most likely to happen due to the slowness of
disks. Disk gets slow for various reasons:

•	 Faulty disks.

•	 Disk I/O is overloaded due to read/write against disk data tables.

•	 Other processes using the disks including copying a backup off the server.

•	 Too many writes to the redo log.

Figure 17-2. Memory is short even if free space exists

Chapter 17 ■ typICal trOubles and sOlutIOns

561

As of MySQL NDB Cluster 7.2, the default value for TimeBetweenEpochsTimeout has changed to 0, which
disables the timeout for micro-GCP completely. In very old versions (older than 7.0.21 and 7.1.10), the timeout
cannot be disabled and the default value of this option was four seconds. As of MySQL NDB Cluster 7.0.21 and
7.1.10, the maximum value was increased from 32 seconds to 256 seconds, and it was made possible to disable
the micro-GCP timeout. (Actually, a setting of 32 seconds wasn’t enough in some cases.) This change improved
the availability of the data node by avoiding data node failure due to the fail-early strategy. However, there is a
trade-off that the response of transaction processing may become slow when disks become slow due to reasons
like those discussed previously. Any active transactions cannot be committed until the on-going micro-GCP
finishes. So, it will take a very long time to complete these transactions when GCP stop is disabled.

To overcome this problem, yet another feature was added to the MySQL NDB Cluster 7.2 series—
the redo overcommit. As the name suggests, writes to the redo log are tentatively assumed to progress
even if they actually do not. This can prevent slowness of transaction processing upon sudden slowness
of disks. There is no problem if writing to the redo log catches up later. If disk is too slow so that redo
log flush operation takes longer than RedoOverCommitLimit seconds RedoOverCommitCounter times,
then pending transactions will be aborted. This is better than shutting down data nodes from a stability
point of view. Then, NDB API clients, including SQL node, will take further actions defined by the
DefaultOperationRedoProblemAction option. One drawback of a redo overcommit is that it will increase
the chances of losing data upon complete system outage, because it may enlarge the period in which redo
logging has not actually completed.

Thus, GCP stop isn’t a major problem on recent versions. However, it still makes sense to configure the
data node with a non-zero TimeBetweenEpochsTimeout value, so that it intentionally causes GCP stop upon
disk slowness if you prefer the fail-early strategy to aborting transactions. It will maximize performance
instead of sacrificing stability.

Network Partitioning (Split Brain)
As discussed elsewhere in this book, such as in Chapters 1 and 3, a problem called network partitioning (also
known as split brain) can happen with MySQL NDB Cluster data nodes. Network partitioning is when the
network the between data nodes is disconnected evenly so that one data node within each node group can
run and connect. In such case, more than one cluster can continue operating. Since they are disconnected,
writes to one cluster can cause data inconsistency in another, which is a fatal situation for a database system,
since consistency of data is crucial.

To prevent network partitioning, MySQL NDB Cluster performs arbitration to determine which cluster
will survive. When arbitration is performed and one cluster wins, the other cluster is forcibly shut down. This
process is so called STONITH (Shoot The Other Node In The Head). Network partitioning will not happen if
arbitration works properly. Network partitioning will not happen even if arbitration is not working, because
all data nodes will be shut down due to arbitration failure. The entire cluster shutdown is also a bad problem
that should be avoided.

Make sure that the arbitrator is reachable from all data nodes even when the network connection
between the data nodes is lost. Use separate network switches for connections between data nodes and
make the network connection redundant using a network layer such as a bonding driver, as discussed in
Chapter 3.

The only way that network partitioning can become an actual problem is at startup, because no
arbitration is performed upon startup even if network partitioning happens. Make sure that network
partitioning will never happen during startup. I strongly recommend setting StartPartitionedTimeout to a
very large value to prevent network partitioning at startup.

http://dx.doi.org/10.1007/978-1-4842-2982-8_1
http://dx.doi.org/10.1007/978-1-4842-2982-8_3
http://dx.doi.org/10.1007/978-1-4842-2982-8_3

Chapter 17 ■ typICal trOubles and sOlutIOns

562

If you find network partitioning is happening by chance, resolve the problem using the following
instructions:

 1. Stop your application as soon as possible.

 2. Decide which partition should survive. If you are uncertain, choosing arbitrarily
is okay.

 3. Shut down one partition.

 4. Solve the network problems.

 5. Reconnect the stopped data nodes using the --initial option, one by one.

 6. Solve the data inconsistency if possible. Otherwise, consider restoring the
latest successful backup. In the former case, you will partially lose the latest
modifications. In the latter case, you will lose whole recent modifications.

 7. Restart your application.

Unplanned Shutdown of Entire System
The entire system could go offline even if the system is fault tolerant; it can happen for the following reasons:

•	 Upon data node failure, a surviving data node within the same node group may also
go down before the failed node comes back online. If no data nodes within one node
group are available, the entire database cluster system goes down.

•	 Power outage of the whole data center where the cluster is running. To prevent a
catastrophic situation, a UPS (Uninterruptible power supply) is often employed.

•	 A serious bug that causes a failure on multiple data nodes.

When you face a complete system failure, you must restart the cluster. Consider these tips when you
restart the cluster:

•	 Make a complete copy of the NDB file system for a backup. This is typically a file
system under the FileSystemPath subdirectory.

•	 It is not necessary to perform further operations upon restart, because the data will
be automatically recovered.

•	 Some of the most recent committed transactions may be lost when there is an
unplanned entire system shutdown, because the redo log is not written to disk upon
transaction commit. The redo log is written to disk upon every GCP.

•	 Determine if the hardware machines are okay. See if all the CPUs are running, if the
RAM size is identical to before, and if all the file systems are mounted.

•	 Check the network connectivity to prevent unnecessary network partitioning.
The ping command is sufficient for this purpose.

•	 If some machines cannot be recovered anyway, consider starting the cluster without
them. The MySQL NDB Cluster can start with missing data nodes if at least one data
node is available per node group. Such a start type is also known as a partial start. If
you perform a partial start, specify the --nowait-nodes option when starting ndbmtd
or ndbd. See Chapter 10 for more information about restart operations.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 17 ■ typICal trOubles and sOlutIOns

563

Typical Problems on SQL Nodes
The SQL node is yet another important component of the MySQL NDB Cluster, because applications often
access data via an SQL node, and it is required for daily operations such as monitoring, table maintenance,
replication, and so forth. It is important to quickly solve problems raised on an SQL node. Note that the
examples in this section show typical problems. Not all the problems are shown, and you may encounter
further problems in your production system.

Errors While Executing Queries
The SQL node is the primary source of error while executing queries, because it reports to its client if an
error happens in the course of a query execution. It is important for the application to retrieve the error
information to handle an error properly. We discuss how to handle errors (exceptions) in the next chapter.
It is necessary to implement an error-handling mechanism in your application to prepare for errors. An
application will retry transactions or execute other error-handling algorithms, depending on the content of
errors, as discussed in the following subsections.

Resource Temporary Errors
The error ER_GET_TEMPORARY_ERRMSG (Errno = 1297) raised from mysqld during query execution indicates a
resource temporary error, which means some resource is temporarily short. When an application receives
this error, follow these steps to handle the error:

 1. Explicitly roll back the current transaction. (Reconnect to mysqld if you like.)

 2. Let the program wait for a while. (A few seconds are sufficient in most cases.)

 3. Retry the same transaction.

Don’t forget to close the session upon error handling, because abandoned connections cause problems
such as connection shortages and unplanned disconnection of sessions.

As the name suggests, temporary resource errors happen due to a resource shortage. Increase resources
sufficiently so that temporary resource errors are less likely to happen. The parameter to be increased is
written in the error message like so:

Out of operation records in transaction coordinator (increase MaxNoOfConcurrentOperations)

In this case, MaxNoOfConcurrentOperations should be increased if the same error happens frequently.

Non-Temporary Errors
The SQL node may report non-temporary errors as ER_GET_ERRMSG (Errno = 1296). In this case, the cluster is
not working properly. The problem on the SQL node might be non-recoverable. An example error message
for ER_GET_ERRMSG is:

ERROR 1296 (HY000): Got error 157 'Unknown error code' from NDBCLUSTER

In this case, human intervention is required to recover from the problem. You may need to recover data
nodes first, for example.

Chapter 17 ■ typICal trOubles and sOlutIOns

564

Connection to Data Node Is Lost
One of most serious problems the SQL node can encounter is a lost connection to the data nodes. Since
all data is stored in the data nodes, the SQL node can do nothing when it loses the connection to the
data nodes. While the SQL node is disconnected from the data nodes, an ER_GET_ERRMSG will happen, as
discussed in the previous subsection.

Disconnection happens due to:

•	 The entire cluster being shut down.

•	 Network device failures.

•	 Slow networks (due to overload etc.).

Disconnection caused by a slow network may be an automatically recoverable error. It might be caused
by a heartbeat error or a lagging event transmission. The former is easy to understand, but the latter requires
some explanation.

In a data node, epochs used for event generation for binary logging are buffered for a while, because
network communication does not complete immediately. So, data transmission for event generation should
be done in the background. To make it in the background, a sufficient buffer is required to store data for
a while. If the data transmission of such events lags behind, this buffer may get full. In such cases, it is not
possible to keep more data in the buffer, so some events will be lost. It will make it difficult for queries to be
executed on the SQL node. So, lagging SQL nodes are disconnected.

The buffer size is determined by two options: MaxBufferedEpochs and MaxBufferedEpochBytes.
MaxBufferedEpochs specifies the buffer size in number of epochs. The default is 100. So, 100 unsent epochs
can be stored in the buffer at most. Since epochs are generated every 100 milliseconds by default, the buffer
can store epochs for 10 seconds in total. However, 10 seconds of delay in network communication is too
strict. The default value might be set to a smaller value because MySQL NDB Cluster is a real-time database
system and takes a fail-early strategy. MaxBufferedEpochBytes specifies the buffer size in bytes.

When the buffer is running out, the data node disconnects the SQL node with a message in the cluster log:

2017-05-21 13:28:05 [MgmtSrvr] INFO -- Node 3: Disconnecting lagging nodes
'0010000000000000',

If the SQL node is disconnected frequently due to this problem, consider increasing MaxBufferedEpochs
and/or MaxBufferedEpochBytes twice. If the problem still happens, increase them twice again until it’s
resolved.

As discussed in Chapter 6, LOST_EVENTS are written to the binary log upon disconnection. The event
indicates possible data loss from the binary log, and it will cause replication failure.

After the SQL node is disconnected from the data nodes, all tables become read-only for a while even if
the connection is resumed. This is because there might be possible schema changes while the SQL node was
disconnected. Once the connection resumes, the NDB binary log injector thread restarts and all schemas are
checked. Then the tables are writable with the following message in the error log of the SQL node.

2017-05-21 13:42:09 9047 [Note] NDB Binlog: ndb tables writable

Errors Related to Transaction Handling
An SQL node may raise various errors to its client when something goes wrong. Some errors are specific to
the NDBCluster storage engine, but others are not. For example, the duplicate key error is not specific to the
NDBCluster storage engine. It happens on any storage engine that supports unique constraints. We discuss
the details of such error handling in the next chapter.

http://dx.doi.org/10.1007/978-1-4842-2982-8_6

Chapter 17 ■ typICal trOubles and sOlutIOns

565

Crashes
The mysqld process faces crashes for various reasons just like other programs. When the process faces a
crash, it is important to identify the cause of the crash to prevent further crashes. In this section, we discuss
how to cope with mysqld crashes.

Error Log
When mysqld crashes, it prints relevant information to the error log. It also prints a stack trace when it
crashes. Stack traces may not be printed for various reasons; for example, due to corrupted stack memory,
hardware failure, and so forth. The stack trace for mysqld is much more informative than the one for ndbd or
ndbmtd, because mysqld is a multi-threaded (lock based) program. So, the stack trace for mysqld indicates
the history of function calls.

The error log might also include information that can help you investigate the cause of the crash. The
mysqld might report some symptoms before it crashes, which can help you determine the cause.

Core File
Even though the stack trace is useful for mysqld, further information is often required, such as a core file.
The stack trace included in the error log lacks the following information:

•	 The stack trace in error log is one for the thread that caused the crash. The stack trace
for other threads is not available in the error log.

•	 Local variables are not printed in the stack trace even though they are stored in a
stack.

•	 Global variables and heap memory aren’t stored in a stack.

 ■ Note the core file is not generated by default. you need to specify the --core-file option to retrieve a
core file.

If you need such information, retrieve a core file and open it using a debugger. To retrieve a core file on
Linux, follow these instructions:

 1. Allow the operating system to dump the core. Set the --core-file-size
option to unlimited for myqld_safe. If mysqld is started using systemd, set the
LimitCORE option to infinity in the mysqld.service configuration file.

 2. Enable the --core-file option for mysqld.

 3. Set the fs.suid_dumpable kernel parameter to 1.

 4. Restart MySQL Server and wait until it crashes.

The fs.suid_dumpable kernel parameter is required when retrieving a core file from a process that
changes the effective user by calling the setuid(2) system call by itself. Also change the kernel.core_
pattern kernel parameter if you like. You can change the kernel parameters online using the sysctl -w
command, as shown:

sysctl -w fs.suid_dumpable = 1

Chapter 17 ■ typICal trOubles and sOlutIOns

566

However, settings changed with the sysctl -w command will be lost after an OS reboot. To make the
changes persistent, edit /etc/sysctl.conf or create a new file with a two-digit prefix and .conf suffix under the
/etc/sysctl.d directory.

The core file of mysqld can be retrieved on Windows, too. You simply specify the --core-file option for
mysqld.

The process for examining the data in the core file is dependent on the debugger. Consult with the
manual of the debugger for more information about how to use it.

 ■ Tip you will often see the <optimized out> string when you examine a core file. this indicates that the
variable in question is stored only in the register, and not stored in memory. In such cases, you cannot retrieve
the value of the variable from the core file directly.

OOM Killer
If you find the mysqld disappears without printing anything to the error log, the mysqld process was likely
killed by someone else. The most common thing that kills mysqld on Linux machines is the OOM killer,
where OOM stands for out-of-memory.

Since the Linux kernel allows overcommits for memory allocation, it may cause memory shortages after
the process has acquired a pointer to heap memory returned by the allocator. At this stage, the kernel may
allocate only virtual memory space, and mapping to physical memory may not have been done yet. Physical
memory is allocated when the process accesses the memory area. This behavior is known as deferred page
allocation or optimistic memory allocation. This process saves memory in certain cases, because not all
memory is necessarily used and a process may end up accessing only part of the allocated memory. This
saves CPU time, too, because physical memory allocation is a heavy task. This also improves availability of
processes because the out-of-memory error isn’t detected until the process accesses the allocated memory
area, even if the size of the allocated memory is bigger than the actual free memory. On the other hand, the
kernel returns an out-of-memory error if the kernel expects that memory will short. Thus, deferred page
allocation works fine in most cases.

The main drawback of deferred page allocation is that memory shortage might become obvious
afterward, even if the kernel returns an okay for memory allocation, because it’s optimistic. In such cases,
the system may not be able to continue its execution due to the memory shortage. The OOM killer is a
program that solves such problematic situations by killing one of the running processes. The mysqld process,
as well as ndbmtd and ndbd, are likely to be victims of the OOM killer, because these processes consume
large amounts of memory.

To prevent the OOM killer from killing them, adjust the score of likelihood to be killed by the OOM
killer. Write -17 to the /proc/[pid]/oom_adj file, where [pid] is the actual PID of the target process. Then the
OOM killer will not kill the processes. The following example helps adjust the score for the mysqld process:

$ su
cd /proc/`pidof mysqld`
echo -17 > oom_adj

Do this every time you start the process that must not be killed by OOM killer. It is also important to
monitor memory usage so that memory will not be running out.

Chapter 17 ■ typICal trOubles and sOlutIOns

567

 ■ Tip Windows doesn’t have OOM killer, because OOM situations will never happen on Windows. since
Windows doesn’t overcommit memory allocation, an error for memory shortage is detected at the memory
allocation stage.

 ■ Note Various types of problems may happen on an sQl node, which will also happen on standard MysQl
server. see the following page for more details about example problems and solutions for MysQl server:

https://dev.mysql.com/doc/refman/en/problems.html

Typical Problems on Management Nodes
The management node is less important from an availability point of view, because the data nodes and
SQL nodes can run without the management node if no management tasks are required (such as rejoining
a failed data node to the cluster). So, we will not dive into the details of management troubles in this book.
Whatever the type of the problem is, there are common actions that must be taken when facing a problem:

•	 Stop all management nodes, one at a time. Then restart them one by one.

•	 Clear the configuration cache and restart.

•	 Start the management server with the --verbose option.

Summary
In this chapter, we discussed general data collection methods for dealing with troubles and the typical
problems that data nodes and SQL nodes encounter. Since data nodes and SQL nodes have different
architectures, different types of data are required to investigate their problems.

It is important to quickly collect the necessary information about the issues, because you must identify
the cause of problems as quickly as possible to keep the database up and running. Prompt data collection
is required even when you have a support license. Be prepared for troubles and take the necessary actions
promptly once an issue occurs.

https://dev.mysql.com/doc/refman/en/problems.html

PART V

Development and Performance
Tuning

571© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_18

CHAPTER 18

Developing Applications Using
SQL with MySQL NDB Cluster

This chapter discusses various topics regarding application development using SQL with MySQL NDB
Cluster. While MySQL NDB Cluster can be used as relational database system via SQL nodes, it can be used
as NoSQL storage via the native NDB API. This chapter covers the former topic, accessing MySQL NDB
Cluster via an SQL node. Even though it is possible to access MySQL NDB Cluster just like other relational
databases, it is important to understand the techniques specific to MySQL NDB Cluster.

Designing Tables
The first step when developing a database application is to design its tables. Although it is possible to use
the NDBCluster storage engine just like others, important aspects such as access performance and space
efficiency will vary depending on their designs. The maximum load the cluster can handle is dependent
on the table design.

We discuss the basic concepts of table objects using the NDBCluster storage engine. We do not discuss
application specific matters such as what data should be included in each table. For example, we do not
discuss about what kinds of tables are required and what types of columns must be included in each table
when developing financial application.

Creating NDB Cluster Tables
You create a new table the same way you do using the standard MySQL Server. The only difference is the
storage engine name. The storage engine name should be NDBCluster or NDB like in following listing. The
storage engine name is case insensitive, and NDBCluster and NDB are synonyms. You can specify either of
them as you like.

mysql> CREATE TABLE tbl (id SERIAL, col VARCHAR(100)) ENGINE NDBCluster;

CREATE TABLE can be executed from an arbitrary SQL node. Tables using the NDBCluster storage
engine is automatically propagated through the hidden mysql.ndb_schema system table to all SQL nodes.
Figure 18-1 shows a conceptual view of schema propagation. So, you don’t have to take care of which SQL
node should be used to create a table. It is possible to issue other DDL statements from any SQL node;
however, you should keep in mind that a table lock is acquired on a local SQL node for an online ALTER
TABLE statement. So, you need to take care of which SQL node is used for the online ALTER TABLE. Further
care must be taken for the offline ALTER TABLE. See Chapter 9 for more information about schema changes.

https://doi.org/10.1007/978-1-4842-2982-8_18
http://dx.doi.org/10.1007/978-1-4842-2982-8_9

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

572

Supported Data Types
Any data type supported by standard MySQL Server is supported in MySQL NDB Cluster. So, you can design
a table using the NDBCluster storage engine just like when using the standard MySQL Server.

As a limitation of MySQL NDB Cluster, the space required for each column is a multiple of four bytes. If
the space required to store some variable length data is 13 bytes, 16 bytes is allocated anyway. BLOB and its
variants including TEXT are implemented using hidden support tables. The first 256 bytes of a BLOB column
is stored in the main table. If the column value is larger than 256 bytes, the rest of the value is stored in the
hidden table. Each row in the hidden table is 2000 bytes. A single BLOB value may consume multiple rows in
the hidden table.

 ■ Caution since this space requirement is not efficient, the use of BLOB columns must be avoided as much
as possible.

Although the standard MySQL Server has efficient data types for small numeric data types, such as
TINYINT, SMALLINT, and MEDIUMINT, they consume four bytes per row in the NDBCluster storage engine. So,
using such small numeric data types on NDBCluster storage engine is not as efficient as with the standard
MySQL Server.

Similarly, the space for BIT column is allocated four bytes at a time. So, a BIT(1) column consumes four
bytes. However, unlike other data types, multiple BIT columns are stored in one place per row. So, no extra
four bytes are required unless the total size exceeds 32 bits. Thus, 32 BIT(1) columns and a single BIT(32)

Figure 18-1. Schema definition is propagated via mysql.ndb_schema table

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

573

column require same space. Note that a nullable column also requires a bit to indicate if the column is NULL
or not, and it’s stored in the same space as the BIT columns.

As of the MySQL NDB Cluster 7.5 series, JSON columns and generated columns are supported. If you
want to use these features, install MySQL NDB Cluster 7.5 or later. Spatial columns are supported, but spatial
indexes are not supported in MySQL NDB Cluster.

Three Types of Indexes
When designing tables on relational database systems, the index is one of the most important factors. It
is very important to understand its characteristics and uses. You need to understand what type of index is
available on MySQL NDB Cluster, and the architecture of each type of index. That is the first step of table
design. The structure of an index in MySQL NDB Cluster is a little bit different from the other storage engines
such as InnoDB.

In MySQL NDB Cluster, you can use three types of indexes:

•	 Unique hash index: This type of index is used for the primary key only. The only
capable search operation is equality comparison.

•	 Ordered index: This type of index is used for non-unique secondary index. This
index can be used for general purposes, just like B-Tree index in InnoDB.

•	 Secondary unique hash index: This type of index is used for a secondary
unique index. This type of index is essentially the same as the primary index, but
implemented using hidden support tables.

The following sections go into detail about each index type.

Unique Hash Index for Primary Key
A unique hash index is an index type for the primary key. As the name suggests, it ensures uniqueness of
individual key value. It’s also called a hash index in short. We call it the hash index throughout this chapter.

Just like a general hash index, hash indexes in MySQL NDB Cluster can be used for equality comparison
only. It is not possible to use it for range or inequality comparisons. A query like the one in Listing 18-1 can
use the hash index.

Listing 18-1. Querying a Table Using Equality Comparison

mysql> EXPLAIN SELECT Name, CountryCode FROM City WHERE Id = 100\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p0,p1,p2,p3
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

574

Note that type is eq_ref, so the table is accessed through an equality comparison using PRIMARY KEY.
A hash index is also used for joins even if the key is not compared to a constant value directly in the WHERE
clause. Listing 18-2 shows an example query execution plan where two tables are joined using the primary
key of the inner table. Note that the City table (inner table) is accessed with the eq_ref access type.

Listing 18-2. Example Execution Plan for a Join of Two Tables

mysql> EXPLAIN SELECT Country.Name, City.Name FROM Country INNER JOIN City ON Country.
Capital = City.Id WHERE Country.Code LIKE 'J%'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: Country
 partitions: p0,p1,p2,p3
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 3
 ref: NULL
 rows: 11
 filtered: 100.00
 Extra: Parent of 2 pushed join@1; Using where with pushed condition
((`world`.`Country`.`Code` like 'J%') and (`world`.`Country`.`Capital` is not null));
Using MRR
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p0,p1,p2,p3
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: world.Country.Capital
 rows: 1
 filtered: 100.00
 Extra: Child of 'Country' in pushed join@1
2 rows in set, 1 warning (0.01 sec)

At most one hash index can be created for each table internally. If a table doesn’t have an explicit
primary key, the NDBCluster storage engine automatically creates a hidden primary key defined as BIGINT
UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY USING HASH. So, every table has a primary key whether
it’s explicit or not. So, the cluster as a whole can at most have MaxNoOfTables hash indexes.

It is highly recommended to have an explicit primary key, because the hidden one is created if it’s
not explicitly defined. Hidden primary keys cannot be accessed using SQL. If a primary key is not defined
explicitly, a table is scanned on the slave SQL node in an NDB Cluster Replication setup.

Hash indexes are stored in IndexMemory, and they are the only objects stored in IndexMemory. They
consume 21 to 25 bytes per row for hash value and pointer to the row. Consumption of IndexMemory is
quite small.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

575

Ordered Index
As the name suggests, an ordered index is an index that has all the index rows sorted in the order of key
values. An ordered index can be used just like usual B+tree index. It can be used for:

•	 Equality comparison (=): Comparing a value to a key using equals sign.

•	 Inequality comparison (!=, <>): Not equal.

•	 Range scan (<, <=, >, >=, and combination of these): Less than, less than or equal,
greater than, greater than or equal, or between.

•	 Full index scan: This execution plan is chosen when there is no condition to filter
rows using this index, but the query can be solved by accessing only columns
included in the index.

•	 Sorting: Sort can be solved by reading rows in index order.

Note that an ordered index is local to the partition. This means that an ordered index cannot search rows
in other partitions, thus it cannot search rows in other node groups. Recall that rows on NDBCluster tables are
partitioned horizontally. See Chapter 2 for more information about partition balancing. This makes equality
comparison using ordered index more expensive than a primary key lookup in default partition balancing.

Figure 18-2 shows a conceptual flow of an ordered index scan. TC in Figure 18-2 stands for transaction
coordinator, which is selected at the beginning of each transaction. Note that all data nodes must be
accessed to find rows that match the specified key value or value range when using default partition
balancing, because all partitions may have rows that match the given key value or value range.

Figure 18-2. Ordered index scan process flow

There are two exceptions to this scenario:

•	 User-defined partitioning: The table is partitioned by user-defined partitioning and
equality comparison against partition key is included in the search criteria. In this
case, only partitions that have the given partition key value are searched.

•	 Fully-replicated table: The table is a fully-replicated table, whereby all data nodes
have an identical whole copy of the table. In this case, ordered index lookup can be
solved by accessing an arbitrary data node.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

576

A lookup using an ordered index has more overhead than a primary key lookup in general. So it will
not be as quick as a primary key lookup in average. The overhead of a lookup increases in proportion to the
number of data nodes, and the overhead may have more impact if size of query result is small. On the other
hand, if the query result is big, many rows are matched against the given range. In other words, an ordered
index scan is very efficient because all data nodes are searched in parallel. In such cases, a range scan using
ordered index will be faster if there are more data nodes in the cluster.

Note that ordered index is stored on DataMemory, not IndexMemory, even though it’s an index. This is
a mistake many people make. Only hash indexes are stored in IndexMemory on MySQL NDB Cluster. Each
index row in an ordered index consumes 10 bytes. It is possible to create up to MaxNoOfOrderedIndexes
ordered indexes.

Unique Hash Index for Secondary Index
Hash indexes have similar but different structures when they are used for secondary indexes. The only
object that can ensure uniqueness of key values in MySQL NDB Cluster is a hash index. However, a hash
index can essentially be an implementation of the primary key itself. How does MySQL NDB Cluster ensures
uniqueness of key values on secondary indexes?

 ■ Note if a table doesn’t have an explicit primary key, but has unique keys, the first defined non-nullable
unique key is chosen as a primary key of the table.

The answer is that MySQL NDB Cluster creates an internal hidden support table to ensure uniqueness
of secondary unique key values. The support table is not directly accessible from SQL nodes. The support
table is defined so that columns in the unique index of the main table consist the primary key of the support
table, and columns of the primary key values of the main table are stored as non-key column in the support
table. Figure 18-3 depicts the conceptual flow of secondary unique index lookups. The support table is
accessed first and the primary key value is retrieved. Then, the actual row data is retrieved by looking up the
retrieved primary key value.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

577

A unique index lookup is more efficient than an ordered index lookup, because the ordered index on
all data nodes must be accessed unless the partition distribution is changed from the default. Of course, a
secondary unique index lookup is slower than a primary key lookup, because it requires accessing two tables
to solve the query. In addition, the secondary unique index lookup may require an extra network hop.

In general, secondary indexes and primary keys have irrelevant values even if the secondary index
is defined as a unique index. So, the target row might be stored on a different data node than the data
node where the unique index row is stored, because they should have different hash values. Of course, the
query will be quick if the secondary unique index row and the target row are stored on a same data node.
Otherwise, unique index lookup requires one extra network hop to complete, which is slower than the
former case. The probability that they are stored in the same data node decreases in inverse proportion to
the number of data nodes.

Note that updating rows on support table consumes operation records. So, MaxNoOfConcurrentOperations
may have to be increased when using a secondary hash index.

A secondary hash index consumes both IndexMemory and DataMemory, because the support table has
its own hash index and non-key columns representing primary key column values of the main table. It is
possible to create up to MaxNoOfUniqueHashIndexes secondary hash indexes.

Defining Indexes
It is important to understand how to use the three types of indexes properly. The most significant point is
that two indexes are created internally for the PRIMARY KEY and the UNIQUE secondary by default. This is
because the hash index cannot be used for any operations except for the equality comparison. In general,
indexes are also used for other purposes such as range scans and sorting. Listing 18-3 shows an example
CREATE TABLE statement that defines a table with an explicit primary key.

Figure 18-3. A unique key lookup using the secondary hash index

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

578

Listing 18-3. Defining a Table with an Explicit Primary Key

CREATE TABLE City (
 ID int(11) NOT NULL AUTO_INCREMENT,
 Name char(35) NOT NULL DEFAULT '',
 CountryCode char(3) NOT NULL DEFAULT '',
 District char(20) NOT NULL DEFAULT '',
 Population int(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (ID),
 KEY CountryCode (CountryCode)
) ENGINE=NDBCluster;

In this case, two indexes—a hash index and an ordered index—are created internally. This can be
confirmed by the ndb_desc command, as shown in Listing 18-4.

Listing 18-4. Showing Actual Table Structure Using the ndb_desc Command

shell$ ndb_desc -c mgmhost -d world City
-- City --
Version: 16777217
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 5
Number of primary keys: 1
Length of frm data: 338
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 4
FragmentCount: 4
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-4
-- Attributes --
ID Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
Name Char(35;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY DEFAULT ""
CountryCode Char(3;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY DEFAULT ""
District Char(20;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY DEFAULT ""
Population Int NOT NULL AT=FIXED ST=MEMORY DEFAULT 0
-- Indexes --
PRIMARY KEY(ID) - UniqueHashIndex
PRIMARY(ID) - OrderedIndex
CountryCode(CountryCode) - OrderedIndex

NDBT_ProgramExit: 0 - OK

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

579

Find that there are two indexes—PRIMARY KEY and PRIMARY—in the output of the ndb_desc command in
Listing 18-4. The former is the hash index, the latter is the ordered index. Note that the hash index is printed
as UniqueHashIndex. If the query is an equality comparison, the hash index is used. Otherwise, the ordered
index is used. If the application requires equality comparisons only on the given table, you can prevent the
ordered index from being created by specifying the USING HASH keyword in the DDL, as shown in Listing 18-5.

Listing 18-5. Creating a Table Without an Ordered Index in the Primary Key

CREATE TABLE City (
 ID int(11) NOT NULL AUTO_INCREMENT,
 Name char(35) NOT NULL DEFAULT '',
 CountryCode char(3) NOT NULL DEFAULT '',
 District char(20) NOT NULL DEFAULT '',
 Population int(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (ID) USING HASH,
 KEY CountryCode (CountryCode)
) ENGINE=NDBCluster;

Note that the USING HASH keyword is included in the primary key definition. When the table is created
by this statement, the index part of the ndb_desc command looks like following listing.

-- Indexes --
PRIMARY KEY(ID) - UniqueHashIndex
CountryCode(CountryCode) - OrderedIndex

I recommend initially creating tables with the USING HASH keyword for the primary key, because the
equality comparison is the most used operation for the primary key. It is worth saving memory for the
ordered index, because memory is not free. If you later find your application actually requiring an ordered
index, you can add the ordered index as a secondary index online at any time. Functionality of ordered
indexes doesn’t change whether they are a part of primary key or an independent secondary index.

Just like the primary key, both hash index and ordered index are created for the secondary UNIQUE
index underneath. If you don’t need an ordered index, you can skip it with USING HASH keyword in the same
way as with the primary key. Hash index is a support table, but it’s printed as UniqueHashIndex just like the
primary key. You need to identify if it’s a primary key or not by checking the index name. Listing 18-6 shows
an example of the ndb_desc command output for a table that has a primary key and one unique secondary
index. Note that the table in Listing 18-6, Country, isn’t what is shown in previous examples in this chapter,
because the City table didn’t have a suitable set of columns for a secondary unique index.

Listing 18-6. Index Structure of a Table with one Secondary Unique Index

shell$ ndb_desc -c mgmhost -d world Country
-- Country –
... snip ...
-- Indexes --
PRIMARY KEY(Code) - UniqueHashIndex
PRIMARY(Code) - OrderedIndex
Name(Name) - OrderedIndex
Name$unique(Name) - UniqueHashIndex

NDBT_ProgramExit: 0 - OK

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

580

If you want to create a non-unique secondary index, just create it as usual.

ALTER TABLE City ADD INDEX (Name);

Adding indexes is an in-place (online) operation for MySQL NDB Cluster. Refer to Chapter 9 for more
details about online schema changes.

Table 18-1 lists the combinations of index types for the NDBCluster storage engine. Keep in mind that
you need to pick one index type. To pick an appropriate index type, you must understand the characteristics
of each index type and your application needs.

Table 18-1. Possible Combinations of Index Types

Index Type Operation Storage Data Size Per Row

PRIMARY KEY Various IndexMemory + DataMemory 21 to 25 bytes in
IndexMemory
10 bytes in DataMemory

PRIMARY KEY with USING
HASH

Equality comparisons IndexMemory 21 to 25 bytes in
IndexMemory

UNIQUE Various IndexMemory + DataMemory 21 to 25 bytes in
IndexMemory
size of primary key value
of main table + 10 bytes
in DataMemory

UNIQUE with USING HASH Equality comparisons IndexMemory + DataMemory 21 to 25 bytes in
IndexMemory
size of primary key
value of main table in
DataMemory

Non-unique secondary
index

Various DataMemory 10 bytes in DataMemory

The T-Tree Index
The structure of an ordered index in MySQL NDB Cluster is not a B+tree index, which is widely used on
relational database systems (and in MySQL in particular). MySQL NDB Cluster employs T-tree index instead.
T-tree can be used just like B+tree index, however, its structure is different from a B+tree index. Figure 18-4
depicts the conceptual view of several nodes in a T-tree index. The term “node” here indicates a unit of data
consisting the tree, not nodes in the cluster. Be aware that the shape of each node in the figure looks like the
letter T. The name of T-tree index is named after the shape of a node. Of course, you could draw the same
thing differently. The shape of a node in the original paper of T-tree index looks like the letter T.

http://dx.doi.org/10.1007/978-1-4842-2982-8_9

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

581

The T-tree index is optimized for in-memory database systems. Unlike the B+tree index, the T-tree
index itself doesn’t have index data. It has pointers to the data instead. Storing pointers is sufficient for the
T-tree index used for in-memory database system, because key values always exist on memory. T-tree can
also save CPU resources because it requires less comparison when searching, inserting, or deleting rows on
the index.

Each node has an array of pointers to the row data in a sorted state. L is a pointer to a subtree where all
values are smaller than all values in this node. R value is a pointer to a subtree where all values are larger
than all values in this node.

Search starts from the root node of the tree. When searching a node, firstly it checks if the key value
is included in the range of the array in the current node. If the given key value is included in the range of
the current node, the node is called a bounding node. If the row is found in the bounding node, the row is
returned. Otherwise, the search fails. If the given key value is smaller than all values in the current node,
the left subtree is searched in the same manner. Likewise, if the given key value is larger, the right subtree is
searched.

Estimating Table Size
When you design a table on MySQL NDB Cluster, you may want to know how much memory or disk is
consumed per row, because capacity is an important topic for database systems. There are two options
available; one is ndb_size.pl, which is bundled in the official package, the other is sizer, which is
developed by a third party.

Figure 18-4. Overview of the T-tree structure

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

582

The ndb_size.pl Command
If you don’t care about details too much, ndb_size.pl command is a good choice, because data size for each
data type has not changed drastically and the ndb_size.pl command is bundled with MySQL NDB Cluster
package. It is included in the client package if you are using RPM packages.

To use the ndb_size.pl command, Perl interpreter must be installed onto your system, because it is
written in Perl. In addition, MethodMaker, Perl DBI, and MySQL driver for Perl (DBD::mysql) are required to
use this command. Refer to the following page for information about DBD::mysql.

http://search.cpan.org/dist/DBD-mysql/lib/DBD/mysql.pm

The ndb_size.pl command calculates the required resources for existing non-NDB tables when the
storage engine for the given tables is NDBCluster. The storage engine for the existing tables is arbitrary. To
calculate the required resources, create the tables using another storage engines such as InnoDB, then run
the ndb_size.pl command, as shown in Listing 18-7.

Listing 18-7. Calculating Required Resources for World Database

shell$ ndb_size.pl --database=world --hostname=sqlnode1 --user=msandbox --password=msandbox
ndb_size.pl report for database: 'world' (3 tables)

Connected to: DBI:mysql:host=sqlnode1

Including information for versions: 4.1, 5.0, 5.1

world.Country

DataMemory for Columns (* means varsized DataMemory):
... snip ...
Parameter Minimum Requirements

* indicates greater than default

 Parameter Default 4.1 5.0 5.1
 NoOfOrderedIndexes 128 6 6 6
 IndexMemory (KB) 18432 368 176 176
 NoOfTriggers 768 39 39 39
NoOfUniqueHashIndexes 64 3 3 3
 DataMemory (KB) 81920 672 672 736
 NoOfTables 128 6 6 6
 NoOfAttributes 1000 32 32 32

The ndb_size.pl command prints the resource consumption for each table. (Output for each table is
omitted in Listing 18-10.) Then, it prints a summary of required resources at the end. As you can see, the
version numbers printed there (such as 4.1, 5.0, and 5.1) are outdated. However, you can still use this command
as an estimation for resource consumption because there’s not a huge difference in the latest version.

The sizer Command
If you want to estimate the data size based on the version you are using, sizer is a good option. It is an NDB
API application developed by severalnines. The sizer command is shipped with a simple Makefile as a
source code. You can get the source code from GitHub. To build a sizer command, you need the libraries

http://search.cpan.org/dist/DBD-mysql/lib/DBD/mysql.pm

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

583

(libmysqlclient_r.so and libndbclient.so) and the relevant header files. Set the MYSQL_BASEDIR variable for
the Makefile to point to the directory where the libraries and header files are installed. The default value for
the MYSQL_BASEDIR variable is /usr, which is suitable for OS native package installation such as RPM. If you
installed the package to another directory such as /usr/local/mysql-cluster, then run the make command as
described in the following command example. The binary is created under the source top directory. Move it
to any directory if you like.

shell$ git clone https://github.com/severalnines/sizer.git
shell$ cd sizer
shell$ make MYSQL_BASEDIR=/usr/local/mysql-cluster

The use of sizer is similar to ndb_size.pl, but it connects to the management node and data nodes as
in Listing 18-8; it doesn’t connect to an SQL node like ndb_size.pl. You need to install MySQL NDB Cluster
and populate the tables with sample data before executing the sizer command.

Listing 18-8. The sizer Command Example

shell$ export LD_LIBRARY_PATH=/usr/local/mysql-cluster
shell$ sizer -c mgmhost -d world
... snip ...
Record size (incl OH):
 #Rows found=239 records
 #OrderedIndexes=2
 #UniqueHashIndexes=2
 #blob/text=0
 #attributes=15
 DataMemory=440 bytes
 IndexMemory=40 bytes
 Diskspace=0 bytes

Appending the following to world.csv
world,Country,239,1,2,2,0,15,40,440,0,0,0

The sizer command generates a CSV file with a filename like database_name.csv. Each column
indicates following data (data in parentheses indicates the example value for world.Country table in the
example of Listing 18-8.):

•	 Database name (world)

•	 Table name (Country)

•	 Number of rows in the table (239)

•	 Number of table objects (always 1)

•	 Number of ordered indexes in the table (2)

•	 Number of unique hash index, including primary and secondary (2)

•	 Number of BLOB/TEXT columns (0)

•	 Number of attributes (15)

•	 Size of consumed IndexMemory per row (40)

•	 Size of consumed DataMemmory per row (440)

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

584

•	 Size of consumed disk space for disk tables (0)

•	 If variable length column is used in this table (0)

•	 If variable length column is used in the support table of secondary unique hash
index (0)

Refer to the following page for more information about sizer: https://github.com/severalnines/sizer.

Estimating Required Objects per Table
It is also important to estimate the number of required objects for every table, because the number of
objects is manually defined by user in the configuration file (config.ini). If you have the table definitions,
the ndb_size.pl command does the job for you. Review Listing 18-7 in the previous section for example
outputs of these commands. Note that the sizer command just displays the number of columns instead of
consumed attributes.

If you have not completed designing your table yet, you can estimate the number of required attributes
using the table in the following list:

•	 Non-BLOB column: 1

•	 BLOB (TEXT) column: 5

•	 Hash index in the primary key: 0

•	 Secondary unique hash index: 1 + number of columns consisting the index

•	 Ordered index: 1 + number of columns consisting the index

For example, the number of attributes for the world.Country table is calculated as:

•	 Non-BLOB column: 1 * 15 = 15

•	 BLOB (TEXT) column: 5 * 0 = 0

•	 Hash index in the primary key: 0 * 1 = 0

•	 Secondary unique hash index: (1 + 0) * 0 = 0

•	 Ordered index: 1 + 1 (for primary key if not specifying USING HASH) = 2

•	 Total: 17

Defining Foreign Key Constraints
As of MySQL NDB Cluster 7.3, foreign keys are supported. You can use foreign keys to keep tje integrity of
reference relationship between two tables by specifying a set of referencing columns on a child table and a
set of referenced columns on a parent table. Any inserts or updates to the child table are rejected if there are
no matching rows on the parent table. It is also possible to define actions when rows are updated or deleted
on the parent table.

The following list shows a typical definition of a foreign key with actions upon update and delete:

mysql> ALTER TABLE Country ADD CONSTRAINT fk_capital FOREIGN KEY (Capital) REFERENCES
City(ID) ON UPDATE SET NULL ON DELETE SET NULL;
Query OK, 0 rows affected (2.74 sec)
Records: 0 Duplicates: 0 Warnings: 0

https://github.com/severalnines/sizer

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

585

A foreign key constraint is checked on the data node every time a row is inserted, updated, or deleted
on the child or parent table. To define a foreign key on a child table, the referenced column or set of columns
on a parent table must be a set of columns that constitutes a primary key or secondary unique index. Every
referenced column must have identical data type to referencing column. For example, you cannot define a
foreign key that references the BIGINT column from an INT column. Referencing columns must be listed in
the same order of definition as the referenced primary key or secondary unique index. These requirements
are a little bit stricter than InnoDB. Referenced columns must be indexed, but not necessarily be unique on
InnoDB. Referenced columns and referencing columns must have similar data types, but not necessarily be
identical.

Table 18-2 lists actions for the ON UPDATE and ON DELETE clauses supported by the SQL standard and its
status in MySQL NDB Cluster.

Table 18-2. Actions for Modifications on Parent Table of Foreign Key Constraint

Action Supported on NDBCluster Description

RESTRICT Yes Rejects update or delete on a parent table if matching rows
exist on a child table. If this action is specified, you must
modify the child table first so that no rows reference the
rows to be updated or deleted on the parent table.

CASCADE Limited Updates or deletes on the parent table are propagated to
matching rows on the child table. MySQL NDB Cluster
doesn’t support the CASCADE action for ON UPDATE if the
referenced set of columns is a primary key of a parent table.

SET NULL Yes Referencing columns for matching rows on the child table
are set to NULL upon update or delete of rows on the parent
table.

NO ACTION Same as RESTRICT On MySQL Server and MySQL NDB Cluster, it is defined
the same as RESTRICT. Some database systems implement
NO ACTION as a deferred check, but MySQL doesn’t support
it.

SET DEFAULT No Setting a default value upon update or delete of rows on the
parent table. MySQL doesn’t support this action.

Reviewing Table Definition
You can review the definition of a table in various ways. Specifically, the SHOW CREATE TABLE statement, just
like usual tables on MySQL Server, the ndb_desc command, and ndbinfo tables are all useful to review the
table definition precisely. Listing 18-9 shows an example of the SHOW CREATE TABLE command output.

Listing 18-9. Example of the SHOW CREATE TABLE Command Output

mysql> SHOW CREATE TABLE City\G
*************************** 1. row ***************************
 Table: City
Create Table: CREATE TABLE `City` (
 `ID` int(11) NOT NULL AUTO_INCREMENT,
 `Name` char(35) NOT NULL DEFAULT '',
 `CountryCode` char(3) NOT NULL DEFAULT '',
 `District` char(20) NOT NULL DEFAULT '',

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

586

 `Population` int(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (`ID`),
 KEY `CountryCode` (`CountryCode`),
 CONSTRAINT `fk_countrycode` FOREIGN KEY (`CountryCode`) REFERENCES `Country` (`Code`) ON
DELETE SET NULL ON UPDATE SET NULL
) ENGINE=ndbcluster AUTO_INCREMENT=4080 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

The SHOW CREATE TABLE command is useful in the sense that the value of the Create Table field can be
reused as an executable SQL command. You can modify the SQL command printed by SHOW CREATE TABLE
and create a similar table.

The ndb_desc command is a dedicated tool for MySQL NDB Cluster. It prints a table definition with
some extra information specific to MySQL NDB Cluster. Listing 18-10 shows an example of ndb_desc
command output for the same table as Listing 18-9.

Listing 18-10. Example of ndb_desc Command Output

shell$ ndb_desc -c mgmhost -d world City
-- City --
Version: 67108865
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 5
Number of primary keys: 1
Length of frm data: 338
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 4
FragmentCount: 4
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-4
-- Attributes --
ID Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
Name Char(35;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY DEFAULT ""
CountryCode Char(3;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY DEFAULT ""
District Char(20;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY DEFAULT ""
Population Int NOT NULL AT=FIXED ST=MEMORY DEFAULT 0

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

587

-- Indexes --
PRIMARY KEY(ID) - UniqueHashIndex
PRIMARY(ID) - OrderedIndex
CountryCode(CountryCode) - OrderedIndex
-- ForeignKeys --
27/24/fk_countrycode CountryCode (CountryCode) REFERENCES world.Country/PRIMARY KEY () on
update set null on delete set null

NDBT_ProgramExit: 0 - OK

The ndb_desc command is useful when you want to review the internal structure of a table such as
partitioning definitions and number of extra bits, which is not printed in SHOW CREATE TABLE.

As of the MySQL NDB Cluster 7.5 series, various useful tables to retrieve metadata and status of tables
are added on ndbinfo database. Especially, table_fragments, table_info, and table_replicas are useful
for the table metadata and status. These table don’t have any columns to directly identify table names. You
need to refer to the dict_obj_info table to identify table identifiers from table names. Listing 18-11 shows
an example query to retrieve table metadata from the ndbinfo.table_info table.

Listing 18-11. Retrieving Table Metadata from the ndbinfo.table_info Table

mysql> SELECT * FROM dict_obj_info d JOIN table_info t ON d.id = t.table_id WHERE fq_name
LIKE 'world/def/City'\G
*************************** 1. row ***************************
 type: 2
 id: 24
 version: 67108865
 state: 4
 parent_obj_type: 0
 parent_obj_id: 0
 fq_name: world/def/City
 table_id: 24
 logged_table: 1
 row_contains_gci: 1
row_contains_checksum: 1
 read_backup: 0
 fully_replicated: 0
 storage_type: MEMORY
 hashmap_id: 1
 partition_balance: FOR_RP_BY_LDM
 create_gci: 0
1 row in set (0.02 sec)

See Chapter 16 for more details about the ndbinfo database.
You can also use other tools to review the table definitions just like you do on standard MySQL Server,

such as DESC, EXPLAIN, SHOW FULL FIELDS, and the Information Schema. Listing 18-12 shows an example
output of the DESC command for the world.City table.

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

588

Listing 18-12. DESC Command Output for world.City Table

mysql> DESC City;
+-------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------+------+-----+---------+----------------+
ID	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
CountryCode	char(3)	NO	MUL		
District	char(20)	NO			
Population	int(11)	NO		0	
+-------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

Disk Data Tables
MySQL NDB Cluster supports disk data tables (or disk based tables) as an option to use less expensive
storage medium for big storage size with a reasonable performance penalty. It has been supported as of
MySQL NDB Cluster 6.2 series.

I strongly recommend using SSD when you employ disk data tables. In the past when SSD was not
available, disk data tables were very slow because the storage medium was a hard disk drive (HDD). It
takes a very long time to move the header and seek the target sector on HDD, because it’s mechanically
controlled. So, disk data tables can be used only for very specific purposes such as archiving. In these
days, we can choose solid state drive (SSD) with reasonable costs in the sense that it is cheaper than RAM.
It doesn’t have mechanical components, thus has much better read/write performance in both response
and throughput. In addition, SSD products with very fast interface such as PCIe and NVMe are available
on the market recently. With such fast SSDs, disk data tables are a realistic choice for general use with
little performance penalty.

Disk Data Tables Architecture
Since disk data tables are stored differently, the way tables are updated is different from in-memory tables.
Figure 18-5 depicts the conceptual flow when writing to disk data tables.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

589

When writing to disk data tables, all modification is done on a disk page buffer just like all modifications
on InnoDB tables are done in the InnoDB buffer pool. Old row values are copied to the undo log in order to
be used for rollback; old rows values are restored from undo log upon rollback and crash recovery. Redo
logging is still required for disk data tables, because the redo log is used for crash recovery and micro-GCP is
required for replication even if the modified tables are disk data tables.

When crash recovery is performed on the disk data tables, the state of the tablespace is reverted to the
time when the latest LCP was performed so that tablespace for the disk data tables and the data memory
for in-memory tables are synchronized. Then, you apply the redo logs together with in-memory tables. This
means that sufficient redo log space is still needed for disk data tables. To synchronize tablespace and LCP,
all changes done before the LCP must be flushed to disk before the next LCP.

Known Limitations for Disk Data Tables
When using disk data tables, you must keep in mind the following limitations to prevent problems. Major
limitations for disk data tables are:

•	 It is not possible to store indexes and indexed columns on disk: The complete disk
data table is not supported in MySQL NDB Cluster yet. The primary key columns are
stored in memory even for disk data tables.

•	 Disk data tables don’t improve data durability: Durability is assured by
checkpointing in MySQL NDB Cluster. To recover the latest data, the redo log is
required anyway.

•	 A large buffer is required to improve performance of disk data tables: The larger
the disk page buffer that is allocated, the faster table access is. To allocate large
memory to a disk page buffer, it is necessary to reduce the data memory instead.
A disk data table is slower than an in-memory table even if ample disk page buffer is
allocated and fast SSD is employed.

Figure 18-5. Overview of disk data table architecture: write transactions

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

590

•	 Space efficiency is not optimal: More space is required when using disk data tables than
when using in-memory tables. Since the required storage medium is disk, not memory, it
may be possible to store much larger data if the system has a lot of disk space.

•	 Space reusability is not optimal: It is not possible to reclaim disk area using
OPTIMIZE TABLE. Once the disk space is allocated to a table, the space will not be
deallocated until the table is dropped.

•	 Each column in a disk data table requires an 8-byte pointer: It consumes more
memory than an in-memory table if the column is small.

•	 Response time is not predictable: Response time against an in-memory table is
predictable. But this is not true for disk data tables, because the response time largely
differs whether the target data is cached on memory or not.

Configuration Options for Disk Data Tables
As in other types of tables, it is necessary to configure options to make exhibit performance of disk data
tables. In this section, we discuss the options for disk data tables to be adjusted. Refer to Chapter 4 for more
information about configuration options.

•	 DiskPageBufferMemory: This option determines how much memory is allocated
to the disk page buffer. The larger the buffer is, the more it can save disk I/O. Allocate
as much memory as possible when you need better performance on disk data tables.
The default is 64MB.

•	 SharedGlobalMemory: This option is not dedicated to disk data tables, but the undo
log buffer is allocated from this memory. The maximum size of the undo log buffer is
600MB per data node. The default is 128MB.

•	 DiskIOThreadPool: This option specifies the number of IO threads for disk data
tables. If fast SSDs are employed, or multiple disks are used to spread IO among
them, you should consider increasing threads. The default is 2.

•	 FileSystemPathDD, FileSystemPathDataFiles, FileSystemPathUndoFiles:
These options specify directories where disk data objects are stored.
FileSystemPathDD is the default value for the two others, when they are not
specified. FileSystemPathDataFiles specifies a directory for tablespace data files.
FileSystemPathUndoFiles specifies a directory for undo logs. These options are
required when multiple disks per data node host are employed to spread the IO load.
The default value for FileSystemPathDD is FileSystemPath.

•	 InitialLogFileGroup, InitialTablespace: When these options are specified upon
initial system restart, undo logs and tablespace are created. Otherwise, these disk
data objects must be created manually, as described in the next section. These
options do not have default values.

Preparing the Logfile Group
To use disk data tables, you must create the disk data objects in advance. The required objects are logfile
group (undo log) and tablespace (data file).

The logfile group is created using the CREATE LOGFILE GROUP command from an arbitrary SQL node.
The following listing shows an example command to create the logfile group. Currently, it is possible to
create only one logfile group per cluster.

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

591

mysql> CREATE LOGFILE GROUP lg1 ADD UNDOFILE 'undo1.log' INITIAL_SIZE = 10G UNDO_BUFFER
_SIZE = 600M ENGINE NDB;
Query OK, 0 rows affected (35 min 17.13 sec)

This command takes quite a long time to complete, because the undo logfile must be initialized. Each
clause in the CREATE LOGFILE GROUP command has the following meanings:

•	 ADD UNDOFILE ‘filename’: This clause adds an undo logfile to the logfile group.
With the CREATE LOGFILE GROUP command, only one undo log file can be specified
and an undo log file is mandatory.

•	 INITIAL_SIZE = size: This clause specifies the size of the undo log file. As the name
implies, it’s not only an initial size, but also the size throughout the lifecycle of the
undo log file. It cannot be changed later. If you find that the undo log is too small, you
can add more undo log files later using the ALTER LOGFILE GROUP command. This
clause can be omitted. The default size for the undo file is 128MB.

•	 UNDO_BUFFER_SIZE = size: This clause specifies the size of the undo buffer, a
buffer to store undo data temporarily before writing it to the undo log files. Larger
undo buffers may improve writing performance. Be careful because the buffer size
cannot be changed later. The maximum size for the undo log buffer is 600MB. This
clause can be omitted. The default value for the undo buffer is 8MB.

Note that the default sizes for the undo log file and undo buffer are too small in most cases. If you use
disk data tables under a high volume of load, the sizes must be increased properly. Since the undo buffer
size cannot be changed later, be very careful when determining the size. It is highly recommended to do
benchmarks on test systems before creating the logfile group in the production systems.

The undo log file size can be estimated just like the redo log. The undo log is used to revert data in a
tablespace back to the time when the latest LCP completed. To revert back to the latest LCP, undo log entries
must be kept until the next LCP completes. Thus, you can calculate the theoretical maximum size of the
undo log entries using this formula:

time_taken_to_complete_lcp * io_speed_of_undo_logging

This formula is identical to what is used to calculate the redo log size. See Chapter 4 for more
information about redo log size estimation.

Preparing Tablespace
Once you have created a logfile group, it’s time to create the tablespace to store disk data tables using the
CREATE TABLESPACE command. The following command output shows an example command that creates
a tablespace. Note that the logfile group must be created before the tablespace, because each tablespace is
linked to a certain logfile group. Unlike the logfile group, it is possible to create multiple tablespaces in one
cluster.

mysql> CREATE TABLESPACE ts1 ADD DATAFILE 'ts1-1.dat' USE LOGFILE GROUP lg1 EXTENT_SIZE =
256K INITIAL_SIZE = 8G ENGINE NDB;
Query OK, 0 rows affected (33 min 6.03 sec)

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

592

Each clause in the CREATE TABLESPACE command has the following meanings:

•	 ADD DATAFILE ‘filename’: This clause adds a data file to the tablespace to be
created. This clause cannot be omitted, and only one data file can be added in the
CREATE TABLESPACE command.

•	 USE LOGFILE GROUP lg_name: This clause specifies the associated logfile group
for this tablespace.

•	 EXTENT_SIZE = size: This clause specifies the size of an extent, the allocation unit
for each disk data table partition. The minimum size is 32KB, the maximum size is
2G. This clause can be omitted. The default value is 1MB. Be cautious because an
extent that’s too big will reduce the number of extents within a data file, because
extent is an allocation unit that cannot be shared among multiple tables. An extent
that’s too big results in inefficient disk space utilization. The default is fine in most
cases. Do not set it to too small or too large.

•	 INITIAL_SIZE = size: This clause specifies the size of data file. Just like with the
undo log file, it is not possible to change file size. If you find that the tablespace is too
small, you need to add a data file using the ALTER TABLESPACE command.

You need to be careful about the extent size and data file size. Each data file can have up to 64K extents.
The recommended maximum extents per data file is 32K. So, you can create up to a 32GB data file with
the default extent size. In Listing 18-18, the extent size is set to 256KB, which is four times smaller than the
default, and the size of the data file is set to 8GB, which is four times smaller than the maximum size with
32KB extents.

If you need a larger tablespace, add more data files or enlarge the extent. Alternatively, you can create
more than one tablespace.

Creating Disk Data Tables
To create disk data tables, you must specify the STORAGE DISK clause and the TABLESPACE clause in the
CREATE TABLE statement. Listing 18-13 shows an example command that creates a disk data table.

Listing 18-13. Creating a Disk Data Table

mysql> CREATE TABLE ddCity (
 -> ID int(11) NOT NULL AUTO_INCREMENT,
 -> Name char(35) NOT NULL DEFAULT '',
 -> CountryCode char(3) NOT NULL DEFAULT '',
 -> District char(20) NOT NULL DEFAULT '',
 -> Population int(11) NOT NULL DEFAULT '0',
 -> PRIMARY KEY (ID),
 -> KEY CountryCode (CountryCode)
 ->) ENGINE=NDB STORAGE DISK TABLESPACE ts1;
Query OK, 0 rows affected (5.79 sec)

In this example, the whole table is defined as disk data. It is also possible to store only certain
columns to be stored on disk. Since it’s not possible to store indexes and indexed columns on disk, they are
automatically defined as in-memory data. You can review which storage is actually used for each column
with the ndb_desc command. The following command output is an excerpt from the ndb_desc command
output for the ddCity table in Listing 18-13.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

593

-- Attributes --
ID Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
Name Char(35;latin1_swedish_ci) NOT NULL AT=FIXED ST=DISK DEFAULT ""
CountryCode Char(3;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY DEFAULT ""
District Char(20;latin1_swedish_ci) NOT NULL AT=FIXED ST=DISK DEFAULT ""
Population Int NOT NULL AT=FIXED ST=DISK DEFAULT 0

You can see that the ID and CountryCode columns are stored in memory as ST=MEMORY is displayed. The
other columns are stored on disk as ST=DISK is displayed.

It is possible to specify the storage per column. Although Population column is stored on disk, it is
inefficient because it requires an 8-byte pointer on memory for four bytes of column data. Listing 18-14 shows an
example CREATE TABLE statement that defines the same table as in Listing 18-13, but with storage preferences.

Listing 18-14. Defining a Table with Disk Data for Specific Columns

mysql> CREATE TABLE ddCity (
 -> ID int(11) NOT NULL AUTO_INCREMENT,
 -> Name char(35) NOT NULL DEFAULT '' STORAGE DISK,
 -> CountryCode char(3) NOT NULL DEFAULT '',
 -> District char(20) NOT NULL DEFAULT '' STORAGE DISK,
 -> Population int(11) NOT NULL DEFAULT '0',
 -> PRIMARY KEY (ID),
 -> KEY CountryCode (CountryCode)
 ->) ENGINE=NDB TABLESPACE ts1;
Query OK, 0 rows affected (1.35 sec)

As you can see, STORAGE DISK is not specified on the last line of the table definition. Instead, STORAGE
DISK is specified in the column definitions. This causes only the specified columns to be stored on disk. You
can confirm this point by using the ndb_desc command like in the following command output, which is an
excerpt from the ndb_desc output.

-- Attributes --
ID Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
Name Char(35;latin1_swedish_ci) NOT NULL AT=FIXED ST=DISK DEFAULT ""
CountryCode Char(3;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY DEFAULT ""
District Char(20;latin1_swedish_ci) NOT NULL AT=FIXED ST=DISK DEFAULT ""
Population Int NOT NULL AT=FIXED ST=MEMORY DEFAULT 0

You can see that the ID, CountryCode, and Population columns are stored in memory. The Name and
District columns are stored on disk, as specified in CREATE TABLE statement.

Monitoring Disk Data Tables
When you are using disk data tables, monitor the metadata and status for the disk data tables using the following
schema and ndbinfo database information. See Chapter 16 for more information about these ndbinfo tables.

Consideration for Normalization
As a database practitioner, I insist that normalization still makes sense for MySQL NDB Cluster, because
it is a relational database management system. When a table is not normalized, the tables may include
duplicates. If only some part of the duplicated rows is updated by chance, it results in an anomaly, because
updated rows and rows not updated will be different, even though logically they must be same.

http://dx.doi.org/10.1007/978-1-4842-2982-8_16

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

594

A table that’s not normalized is a result of a join of more than one table. The process of normalization is
decomposing such a table into multiple tables without losing data. This eliminates potential duplicate data
within a table. The original table can be reconstructed by joining those tables.

A major drawback of normalization is that more joins are needed. It was a big problem for MySQL NDB
Cluster in older versions, because joins were very slow. However, recent versions of MySQL NDB Cluster
have good join algorithms, pushdown joins, and batched-key-access joins, even though InnoDB still usually
beats NDB. Since joins are reasonably fast in recent versions of MySQL NDB Cluster, you do not have to
worry so much about joining tables.

Major Limits Regarding Table Design
Table 18-3 describes the major limits when you design tables in MySQL NDB Cluster.

Table 18-3. Major Limits Regarding Table Design

Item Description of limits

Total number of database objects You can create up to a total of 20320 database objects. This
hard limit includes databases, tables, and indexes.

Total number of tables Capped by the MaxNoOfTables setting.

Total number of indexes Capped by the MaxNoOfOrderedIndexes and
MaxNoOfUniqueHashIndexes settings.

Data size per index 3072 bytes

Number of attributes per table 512. Attribute is an element that belongs to a table, such
as a column or index. See Chapter 4 for more information
about attributes.

Number of columns per index 32

Supported index types Hash index and ordered index. (Spatial index and full-text
index are not supported.) Index prefix is not supported.

Indexable column types All but for BLOB including TEXT and BIT.

Maximum row size 14000 bytes. Note that each BLOB column contributes 264
bytes to this total.

Supported partitioning type KEY or HASH

Maximum number of partitions Eight per node group

Total number of tablespaces for disk data
tables

232

Data file per tablespace for disk data tables 216

Extents per data file for disk data tables 215

Maximum recommended data file size for
disk data tables

32GB

Auto-increment column values Values are non-monotonical between SQL nodes, because
each SQL node reserves some range of values in advance.

Use as temporary table Not supported

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

595

Accessing Data via SQL
Once the tables are ready, it’s time to manipulate the data in them. Since MySQL NDB Cluster is a relational
database management system, SQL is the primary method for the job, even though it has NoSQL style
methods. In this section, we discuss how to access the database in MySQL NDB Cluster using SQL from
applications.

Connecting to SQL Node
An application can connect to an SQL node just like for standard MySQL Server, although the storage engine
is different. The only question for the application is which SQL node to connect to. As discussed in elsewhere
in this book, MySQL NDB Cluster can have multiple SQL nodes. An application can access identical data
from any SQL node. There are three typical choices to solve this problem:

•	 An application has multiple instances, each application instance always connects
to the same SQL node. In this case, an application instance and SQL node typically
reside on the same host.

•	 Use the load balancing facility of Connector/J for Java applications.

•	 Spread the load using an external load balancers.

Each method has pros and cons. Carefully choose a method suitable for your application.

One SQL Node per Application Instance
This is the most promising method. If the number of application servers is not too big, deploying one SQL
node per application server instance is a good choice, because there is no extra program required for this
topology. Figure 18-6 is a conceptual view of the topology where each application server connects to the SQL
node within the same host. Since they reside in the same host, an application server can connect via a UNIX
domain socket. A connection through a UNIX domain socket has very little overhead compared to a remote
network connection, so this topology has an advantage in terms of performance as well as simplicity.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

596

Load Balancing with Connector/J
If you are developing an application using Java, it is possible to solve this problem by just using Connector/J.
Connector/J has a load balancing facility against MySQL NDB Cluster and 1:N MySQL replication setup.
To enable load balancing, you simply adjust the connection parameters. There are two parameters to be
adjusted, the connection URL and loadBalanceStrategy. The connection URL for load balancing has the
following format:

jdbc:mysql:loadbalance://{comma separated list of servers}/{database name}

Listing 18-15 shows an example configuration of Connector/J to enable load balancing.

Listing 18-15. Setting URL and Properties for Load Balancing with Connector/J

Class.forName("com.mysql.jdbc.Driver");
String url = "jdbc:mysql:loadbalance://host1,host2,host3/db";
Properties props = new Properties();
props.setProperty("user", "username");
props.setProperty("password", "my password");
props.setProperty("loadBalanceStrategy", "random");
Connection conn = DriverManager.getConnection(url, props);

Figure 18-6. Each application server connects to the SQL node that resides in the same host

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

597

With this setup, the connections to SQL node are spread across multiple servers, as depicted in
Figure 18-7.

An acceptable value for loadBalanceStrategy is random or bestResponseTime. When random is set, the
connection is retrieved randomly from the server list. When bestResponseTime is set, the driver picks the
server that had the best response time in the previous transaction. The default value is random.

Using Load Balancers
There are many load balancers on the market. The type of load balancer is roughly categorized into
following three types:

•	 Hardware load balancer: Load balancing is done by dedicated hardware. It looks like
a network switch.

•	 TCP/IP level load balancer: Load balancing is done by software that can be generally
used for TCP/IP connection, such as LVS and HAProxy.

Figure 18-7. Load balancing database access using Connector/J

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

598

•	 MySQL protocol load balancer: Load balancing is done by software at the MySQL
protocol level. This type of load balancer can only be used by MySQL or other
databases that support the MySQL protocol. (See the following descriptions for
specific product names.) In this book, only this one is discussed in more detail.

Figure 18-8 depicts an overview of the connection from an application to an SQL node using a load balancer.
If the load balancer is software based, it is highly possible that it runs on the same host as the application server.

Figure 18-8. Load balancing connection from application to SQL nodes using a load balancer

Unfortunately, there is no suitable load balancer released from Oracle Corporation that can be used
with MySQL NDB Cluster for the time being. MySQL Router was a potential candidate in its development
stage. However, it has become a dedicated software for InnoDB Cluster, which is a HA solution based on
standard MySQL replication. So, it cannot be used for MySQL NDB Cluster.

There are several third-party software programs that can be used for load balancing with MySQL NDB
Cluster. I personally recommend ProxySQL, because it is practical to use and has a free software licensed
under GPLv3. The source code of ProxySQL is released on GitHub:

https://github.com/sysown/proxysql

https://github.com/sysown/proxysql

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

599

ProxySQL is not just a load balancer, it also has rich features such as query rewriting, query routing,
query caching, a firewall, and so forth. In this book, only the load balancing feature is discussed.

Currently, there is no detailed manual page for ProxySQL, so refer to the wiki page of the GitHub
repository, and the doc directory included in the source code. Since the configuration of ProxySQL is a bit
confusing, we will discuss typical usage of ProxySQL.

Firstly, install ProxySQL onto your host. You can download the source code or binary (RPM and DEB)
packages from GitHub. Unlike general open source projects, it doesn’t have an automatic configuration
facility such as a configure script or a cmake configuration file. Just run make from the source top directory.
Listing 18-16 shows a typical command that builds it from source.

Listing 18-16. Building ProxySQL from Source Code

shell$ git clone https://github.com/sysown/proxysql.git
shell$ cd proxysql
shell$ make
shell$ sudo make install

This will install the systemd service, proxysql.service, and the default configuration file, /etc/proxysql.
conf, together with the proxysql command. You can either start it from systemd or from the command line.

The configuration system for ProxySQL is puzzling. There are four layers within the configuration
system of ProxySQL; RUNTIME, MEMORY, DISK, and CONFIG FILE. Figure 18-9 shows a screenshot of the wiki
page of ProxySQL GitHub repository. RUNTIME is the only effective configuration to control the behavior
of ProxySQL. MEMORY is an in-memory SQLite database, and DISK is an on-disk SQLite database. Any
configuration is first loaded to MEMORY, then applied to RUNTIME. It is not possible to load the configuration
from DISK or CONFIG FILE into RUNTIME directly. As the name suggests, configurations in MEMORY are not
persistent and will be lost upon restart. You must save changes to DISK to be persistent. CONFIG FILE is a
supplemental source of configuration. Use it only if you prefer a file-based configuration style.

Figure 18-9. Four configuration layers for ProxySQL

The initial configuration is empty except for some basic configuration and comments. If you prefer
to configure it using the configuration file, comment out, copy, and edit some configurations in it before
starting the proxysql daemon. This step can be skipped when you configure using the administrative
interface.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

600

The admin interface for ProxySQL is built on top of the MySQL protocol. So, the runtime configuration
is done by connecting to ProxySQL using the mysql command and issuing SQL statements over it. The
default port for the admin interface is 6032, and the default username and password are both admin. You
must change the credentials in your production system. Listing 18-17 shows an example command output
when connecting to the admin interface.

Listing 18-17. Connecting ProxySQL Admin Interface Using the mysql Command

shell $ mysql -h 127.0.0.1 -P 6032 -uadmin -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.5.30 (ProxySQL Admin Module)

Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Be aware that the server version is printed as “Proxy Admin Module”. There are several databases and
tables to configure in ProxySQL, as shown in Listing 18-18.

Listing 18-18. Listing Administrative Databases and Tables in the Main Database

mysql> SHOW DATABASES;
+-----+---------+-------------------------------+
| seq | name | file |
+-----+---------+-------------------------------+
0	main	
2	disk	/var/lib/proxysql/proxysql.db
3	stats	
4	monitor	
+-----+---------+-------------------------------+
4 rows in set (0.00 sec)

mysql> SHOW TABLES;
+--------------------------------------+
| tables |
+--------------------------------------+
| global_variables |
| mysql_collations |
| mysql_query_rules |
| mysql_replication_hostgroups |
| mysql_servers |
| mysql_users |
| runtime_global_variables |
| runtime_mysql_query_rules |

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

601

| runtime_mysql_replication_hostgroups |
| runtime_mysql_servers |
| runtime_mysql_users |
| runtime_scheduler |
| scheduler |
+--------------------------------------+
13 rows in set (0.00 sec)

The output looks like MySQL, but a little bit different. (The SHOW DATABASES command in the actual
MySQL Server has only one field in its result set.) We don’t discuss the details of each table in this book.
Refer to the documentation and the wiki for more details about these tables.

To set up load balancing in ProxySQL, you simply set up monitoring and add the MySQL servers (the
SQL nodes) to connect to.

ProxySQL monitors the target MySQL servers. ProxySQL must log in to the monitored servers, and you
must create a monitoring user on each monitored MySQL Server. The monitoring user requires the USAGE
privilege only. The following command output shows an example command that creates a monitoring user.
Run these commands using the root user on each monitored MySQL Server.

mysql> CREATE USER proxysqlmon@proxyhost IDENTIFIED BY 'proxypassword';
Query OK, 0 rows affected (0.26 sec)

mysql> GRANT USAGE ON *.* TO proxysqlmon@proxyhost;
Query OK, 0 rows affected (0.00 sec)

Be sure to substitute the password in this example with a stronger one in the production system. Then,
configure ProxySQL so that it logs in using this credential. Listing 18-19 shows an example command that
sets up the monitoring user and password in the ProxySQL admin interface.

Listing 18-19. Configuring Monitoring User on the ProxySQL Admin Interface

mysql> UPDATE global_variables SET variable_value='proxysqlmon' WHERE variable_name =
'mysql-monitor_username';
Query OK, 1 row affected (0.00 sec)

mysql> UPDATE global_variables SET variable_value='proxypassword' WHERE variable_name =
'mysql-monitor_password';
Query OK, 1 row affected (0.00 sec)

mysql> LOAD MYSQL VARIABLES TO RUNTIME;
Query OK, 0 rows affected (0.00 sec)

mysql> SAVE MYSQL VARIABLES TO DISK;
Query OK, 74 rows affected (0.02 sec)

Note that the UPDATE statements in Listing 18-19 only modify the configuration in the MEMORY layer. It
must be applied to the running ProxySQL instance using the LOAD command, then must be saved to DISK
using the SAVE command for persistence.

Add the servers to be connected for load balancing, as shown in Listing 18-20. The LOAD and SAVE
commands are required, just like in the previous step.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

602

Listing 18-20. Configuring MySQL Servers to Be Connected

mysql> INSERT INTO mysql_servers (hostgroup_id, hostname, port) VALUES(0, 'sqlnode1', 3306);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO mysql_servers (hostgroup_id, hostname, port) VALUES(0, 'sqlnode2', 3306);
Query OK, 1 row affected (0.00 sec)

mysql> LOAD MYSQL SERVERS TO RUNTIME;
Query OK, 0 rows affected (0.00 sec)

mysql> SAVE MYSQL SERVERS TO DISK;
Query OK, 0 rows affected (0.01 sec)

Now you can connect to the backend SQL nodes through ProxySQL. The default port number is 6033,
with the digits in a reverse sequence from the default MySQL port number 3306. Listing 18-21 shows an
example command that connects SQL node via ProxySQL. Be aware that the server version string is printed
as “ProxySQL”. The connected MySQL Server is chosen randomly per query or per an explicitly started
transaction from the list of servers configured in Listing 18-20. This means that the connected backend
server may change even without reconnecting to ProxySQL.

Listing 18-21. Connecting to SQL Node via ProxySQL

shell$ mysql -h proxyhost -P 6033 -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 9
Server version: 5.5.30 (ProxySQL)

Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> SELECT VERSION();
+------------------+
| VERSION() |
+------------------+
| 5.7.18-ndb-7.5.6 |
+------------------+
1 row in set (0.00 sec)

Transaction Handling for NDBCluster Tables
In most aspects, NDBCluster tables can be accessed in the same manner as InnoDB. You can write
transactions just like InnoDB. However, there are some big differences between the transaction handling of
NDBCluster and InnoDB. You must keep in mind some characteristics of the transaction handling in MySQL
NDB Cluster when you develop transactional applications.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

603

•	 Only the READ-COMMITTED isolation level is supported: The NDBCluster
storage engine supports only the READ-COMMITTED isolation level. REPEATABLE-READ
or SERIALIZABLE are not supported. If these isolation levels are required for your
application, NDBCluster may not be a good choice.

•	 No deadlock detection is available: MySQL NDB Cluster doesn’t have the ability to
detect deadlocks caused by conflicting row-level locks like InnoDB does. So, any lock
problems are detected as lock-wait-timeout, instead of deadlock.

•	 Commit is not durable on disk: While all data is replicated among the node group,
committed transactions are not durable until the redo log entries are written by a
GCP. This means transactions are not durable upon entire cluster failures.

•	 Savepoints are not supported: MySQL NDB Cluster does not support savepoints.
You must always roll back the whole transaction when you want to revert
uncommitted changes.

•	 The LOCK TABLES command doesn’t block access from other SQL nodes: The
LOCK TABLES statement is effective for the same SQL node only where the statement
is issued. So, it is not possible to block transactions executed on other SQL nodes
using the LOCK TABLES statement.

•	 It’s not possible to disable binary logging temporarily: If binary logging is enabled
in an SQL node, it is not possible to disable binary logging for individual statements
by setting the sql_log_bin system variable to OFF.

Error-Handling Techniques
It is important to prepare for errors when you develop transactional database applications, because
transaction theory does not ensure that transactions can complete successfully. It only ensures that the state
of all transactions become either COMMIT or ABORT. This simplifies application development, because it is not
necessary to consider the possibility of an unfinished, halfway state.

This property is so called atomicity; one of four important properties of transactions called ACID. Thus,
all changes done by a transaction are rolled back when the transaction fails. The state of the database reverts
as if the failed transaction wasn’t executed at all. So, the only error-handling needed for a transactional
application is to retry a failed transaction from the beginning. However, in other words, error handling is
mandatory for transactional applications even though its algorithm is simple.

The error-handling flow varies depending on the type of programming language. When using a
procedural programming language, it judges if an error happens or not by examining the return code from
functions. When using an object oriented programming language, an error is often detected by exceptions.
Listing 18-22 shows conceptual code of a transaction, including a retry algorithm using C API. Note that
the code is just a concept, so many things are omitted and represented in an abbreviated form. You cannot
compile it. Read the comments in Listing 18-22 to understand what this program is doing. When retrying a
transaction, be sure that all the read values within a failed transaction are obsolete. Don’t reuse a read value
even if it still exists in memory.

Listing 18-22. Conceptual Transaction Handling Code with Retry Algorithm in C

int do_transaction1(...) {
 /* Variable declaration */
 MYSQL *mysql;
 MYSQL_RES *res;
 MYSQL_ROW row;

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

604

 int status;
 int exit_code;
 int retry_count = 5;
 useconds_t retry_delay = 100000;

loop:
 /* Get connection */
 mysql = mysql_init(NULL);
 if (!mysql_real_connect(mysql, ...)) {
 goto err;
 }

 /* Execute transaction */
 if(mysql_autocommit(mysql, 0))
 goto err;
 ...
 status = mysql_real_query(mysql, ...);
 if(status) {
 if(transaction is retriable) {
 goto retry;
 } else {
 goto err;
 }
 }
 ...

 goto end;

retry:
 /* Retry transaction for recoverable error */
 status = mysql_rollback();
 if(retry_count++ > 0) {
 usleep(retry_delay);
 goto loop;
 }

err:
 /* Critical error */
 exit_code = THE_ERROR_CODE;

end:
 /* Closing connection */
 mysql_close(mysql);

 return exit_code;
}

A program to do same thing can be written differently in an object oriented programming language
such as Java. Listing 18-23 shows example source code for a Java program to execute a transaction. This Java
program is shorter than the C program in Listing 18-22, as Java is more compact than C.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

605

Listing 18-23. Conceptual Transaction Handling Code with Retry Algorithm in Java

public void doTransaction1() throws SQLException {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 int retryCount = 5;
 int sleepDelay = 100;

 do {
 try {
 // Get connection
 conn = getConnection();
 conn.setAutoCommit(false);

 // Execute transaction
 stmt = conn.createStatement();

 String query = "SELECT ... FROM tbl WHERE ...";
 rs = stmt.executeQuery(query);
 ...

 retryCount = 0;
 } catch (SQLException sqlEx) {
 String sqlState = sqlEx.getSQLState();

 // Determine if transaction is retryable
 if (transaction is retryable) {
 Thread.sleep(sleepDelay);
 retryCount--;
 } else {
 retryCount = 0;
 }
 } finally {
 try {
 if (rs != null) rs.close();
 if (stmt != null) stmt.close();
 if (conn != null) conn.close();
 } catch (SQLException sqlEx) {
 // Write log etc
 ...
 }
 }
 } while (retryCount > 0);
}

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

606

The key point when writing a program to execute a transaction is how to determine if a transaction
is retriable. It is determined by what error is reported from the server via the driver. So, an application
must retrieve the error information from the driver first. MySQL drivers provide the following type of error
information:

•	 Errno: MySQL specific error code assigned to each error type. You can find the list of
error codes at https://dev.mysql.com/doc/refman/5.7/en/error-messages-server.html
and https://dev.mysql.com/doc/refman/5.7/en/error-messages-client.html.

•	 Error message: A description of the error in text format. You may find additional
information in the error message such as location of syntax error, a table name
causing duplicate rows, etc.

•	 SQLSTATE: The five-character code that represents an error type, which is defined in
the SQL standard.

Errno (or error code) and SQLSTATE are used to judge if the transaction is retriable, and what further
action is required. Note that errno also has a text label that represents the type of error. You can find the label
in the reference manual. The error message is a human readable error information. The error message is
mainly used for logging to be reviewed later by the DBA.

The way to retrieve error information varies depending on the programming language and the driver
implementation. Table 18-4 lists how to retrieve error information when an error occurs.

Table 18-4. Retrieving Error Information for Each Programming Language

Language/Driver Error Detected By Methods to Retrieve Error Information

Connector/J SQLException SQLException#getSQLState()
SQLException#getErrorCode()
SQLException#getMessage()

Connector/Python mysql.connector.Error mysql.connector.Error#sqlstate
mysql.connector.Error#errno
mysql.connector.Error#msg

C API Return code mysql_sqlstate()
mysql_errno()
mysql_error()

PHP, mysqli Return code mysqli_sqlstate()/mysqli->sqlstate()
mysqli_errno()/mysqli->errno()
mysqli_error()/mysqli->error()

PHP, PDO PDOException PDOException::$errInfo[0] … SQLSTATE
PDOException::$errInfo[1] … Errno
PDOException::$errInfo[2] … Error

Perl, DBD::mysql Exception or return code depends
on RaiseError setting

$dbh->state
$dbh->err
$dbh->errstr

Ruby/MySQL Mysql::Error Mysql::Error#sqlstate
Mysql::Error#errno
Mysql::Error#error

https://dev.mysql.com/doc/refman/5.7/en/error-messages-server.html
https://dev.mysql.com/doc/refman/5.7/en/error-messages-client.html

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

607

The simplest way to implement a retry routine is to retry blindly against all types of errors. This works
fine in most cases, because the retry itself is harmless unless the transaction is committed. Do not forget to
roll back the transaction before retrying. Otherwise, the retry will not succeed.

If you prefer a cleverer choice, consider implementing a routine that judges if the transaction is retriable
according to the SQLSATE and error code before retrying it. There are not many kinds of retriable errors,
because most errors are fatal for the application. For example, errno 1146 has a label ER_NO_SUCH_TABLE,
it means “the table referenced by statement does not exist”. A table that does not exist is highly unlikely to
appear upon retry. So, it’s not a retriable error. In such cases, human intervention is required anyway. A DBA
may need to fix the schema problem or fix a bug in the application code. Anyway, retrying transaction is
effective only when an error is temporary.

The information that must be checked first is SQLSTATE. While SQLSTATE consists of five characters, the
first two characters stand for the error class, and the following three characters stand for the error subclass.
Table 18-5 lists the major error classes of SQLSTATE.

Table 18-5. Major Error Classes Defined in SQLSTATE

Class Class Text Retriable? Description

00 Successful completion No (No need to retry) No error.

01 Warning No (No need to retry) The statement was executed
successfully, but some
warnings were raised.

02 No data No (Used in Procedures) No more data exists.

08 Connection exception Yes Connection related error.

22 Data exception No (Used in Procedures) Data is invalid for data type.

23 Integrity constraint violation No (Used in Procedures) Constraint is violated.

25 Invalid transaction state No Tried to transit invalid state of
transaction.

28 Invalid authorization specification No Authorization failed.

40 Transaction rollback Yes Transaction was rolled back
for some reason. Currently,
not available for MySQL NDB
Cluster. (Happens with InnoDB.)

42 Syntax error or access rule violation No Parser detected syntax error.

HY General error Depends Vendor specific.

XA XA transaction error Depends XA transactions are not
supported in MySQL NDB
Cluster.

As you see in Table 18-5, the only SQLSTATE classes to be retried are 08 and in some cases HY. An
application needs to reconnect to SQL node when the SQLSTATE class is 08. Temporary errors discussed in
Chapter 15 are included in the HY class. Note that 40 or XA can be raised from InnoDB, but it will not happen
with the NDBCluster storage engine.

http://dx.doi.org/10.1007/978-1-4842-2982-8_15

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

608

 ■ Caution if you get a syntax error (SQLSTATE class = 42), it might be a symptom of an sQl injection
attack. syntax errors could be the result of an attacker altering the sQl syntax. even if they are not due to
an attack, syntax errors indicate a potential risk of sQl injection attack, so they should be fixed as soon as
possible.

When the SQLSTATE class is HY, an application must examine the error code retrieved from the driver. In
MySQL NDB Cluster, the error codes listed in Table 18-6 are worth a retry.

There is one corner case that cannot be retried without inspecting further. That is, the connection
failure (SQLSTATE class = 08) when executing commit, because an application itself cannot determine
if the COMMIT was successful or not by only inspecting the error information retrieved from the driver.
An application knows only the fact that it issued COMMIT to SQL node, but its result is unknown due to a
network problem. Such a problem can be handled properly by an XA transaction; however, it has not been
implemented on MySQL NDB Cluster yet. An application must inspect the table data to judge if changes
made by the transaction are available or not, or raise an error for human intervention.

Summary
This chapter discussed how to develop applications in MySQL NDB Cluster as a usual relational database
using SQL. It covered the following topics:

•	 Creating tables and indexes, and the various types of database objects.

•	 Understanding what types of indexes are available in MySQL NDB Cluster.

Table 18-6. List of Error Codes to Retry for MySQL NDB Cluster

Error Code Label Description

1028 ER_FILSORT_ABORT Sort is aborted for various reasons. This is not specific to
the NDBCluster storage engine.

1036 ER_OPEN_AS_READONLY An accessed table is opened in read-only mode. This can
happen before the binlog injector is ready.

1038 ER_OUT_OF_SORTMEMORY Memory is short when sorting rows. This is not specific to
the NDBCluster storage engine.

1041 ER_OUT_OF_RESOURCES Memory is short in the SQL node. This is not specific to
the NDBCluster storage engine.

1180 ER_ERROR_DURING_COMMIT An error happened during commit.

1181 ER_ERROR_DURING_ROLLBACK An error happened during rollback.

1135 ER_CANT_CREATE_THREAD Thread creation failed for some reason such as memory
shortage. This is not specific to the NDBCluster storage
engine.

1205 ER_LOCK_WAIT_TIMEOUT A transaction cannot acquire lock due to lock-wait-
timeout.

1297 ER_GET_TEMPORARY_ERRMSG Resource temporary error.

Chapter 18 ■ Developing appliCations Using sQl with MysQl nDB ClUster

609

•	 Estimating table sizes and their required objects.

•	 Using disk data tables.

•	 Connecting to the SQL node from an application

•	 Employing transaction and error-handling techniques.

SQL is a good old, but actively used, data manipulation language. SQL is easy to use and is commonly
used in real world database application development. Since MySQL NDB Cluster can be accessed via SQL,
you can enjoy the power of SQL when developing applications on it.

The next chapter discusses how to develop applications on MySQL NDB Cluster using NoSQL APIs.
While SQL is very powerful programming language, there are still some problem areas that SQL cannot
address. In such cases, NoSQL APIs may come in handy.

611© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_19

CHAPTER 19

MySQL NDB Cluster as a
NoSQL Database

This chapter discusses various ways to develop applications using MySQL NDB Cluster as a NoSQL database.
MySQL NDB Cluster has several types of NoSQL protocols, and they can access the same data as SQL but
without the overhead of using an SQL query interface. Being able to access the same data via different
protocols is one of the best things about MySQL NDB Cluster when developing practical applications.

Why NoSQL?
SQL is a perfect, self-contained language in the sense that it can do everything that a relational database
provides. However, it’s sometimes imperfect from a performance point of view. In some cases, a simpler and
faster access method is preferred. MySQL NDB Cluster has a native NDB API that accesses data nodes. It also
supports several NoSQL APIs built on top of the NDB API.

This chapter discusses the following major NoSQL APIs supported by MySQL NDB Cluster.

•	 memcached API: A well-known, simple, fast, and easy to use API over well-defined
network protocol. MySQL NDB Cluster package bundles memcached server, which
can access data nodes. While memcached protocol is very simple, it provides far less
functionality compared to SQL. You can find details of the protocol at https://github.
com/memcached/memcached/blob/master/doc/protocol.txt

•	 NDB API: An application can access the data node directly using the NDB API
protocol. Since the NDB API is a C++ API, an application must be written using C++.
This makes implementing an algorithm to access data using the NDB API more
difficult than with SQL. For example, joins, subqueries, stored routines, GROUP
BY, and ORDER BY, etc. are all very powerful and easy to use operations in SQL.
However, it is very cumbersome task to implement these same operations using the
NDB API.

•	 ClusterJ: Java wrapper of the NDB API. The application can invoke NDB API
functions via the Java Native Interface (JNI). Developing Java applications is less
difficult than with C++, but they have more performance overhead.

Each protocol can access the same data as SQL with less performance overhead than SQL. However,
SQL is the most powerful API available for MySQL NDB Cluster, so every NoSQL protocol has its own
drawbacks in exchange for performance advantages. So, it is not practical to develop a whole application
using NoSQL protocols only. The best strategy is to combine SQL and NoSQL. Complex algorithms are
implemented using SQL, and simple but fast algorithms are implemented using NoSQL.

https://doi.org/10.1007/978-1-4842-2982-8_19
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

612

Accessing Data via memcached
memcached is the name of the software that stores (caches) data in memory. Data is stored in the form of
key-value pairs. This kind of data storage software is called a key-value store (KVS).

As of the MySQL NDB Cluster 7.2 series, the memcached server is bundled as part of the package.
The bundled memcached has a special version that can use MySQL NDB Cluster as its underlying storage
engine.

Why Use NDB-memcached
The memcached protocol is well-known, simple, easy to use, and fast. Many readers may have worked with
memcached before. Although there are more advanced KVS products in the market, memcached is still a
good choice for caching purposes.

Figure 19-1 shows an overview architecture of memcached working with MySQL NDB Cluster. The
memcached server directly connects to data nodes using the NDB API. So, it acts as a kind of API node just
like an SQL node. An application accesses data via the memcached protocol via memcached server, then
memcached server accesses actual data on the data nodes using the NDB API. We call functionality of the
memcached server that can use MySQL NDB Cluster as its storage engine NDB-memcached for convenience
throughout this chapter. Note that the process name is still memcached, even though we call it NDB-
memcached as a product name. NDB-memcached and memcached without the prefix indicate the same
thing, and we use these terms interchangeably in this chapter.

Figure 19-1. Overview architecture of memcached working with MySQL NDB Cluster

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

613

When the data is modified in NDB-memcached, row data inside data nodes is directly modified. On the
other hand, NDB-memcached can see the latest row data modified from the SQL node. So, there is no need
to synchronize data between memcached and the relational database. This makes application development
easier than if memcached is used only as a cache and the standard MySQL Server is used as persistent
storage. In addition, data on data nodes will survive even if memcached crashes. Unlike sharding, where the
overall data is split into smaller shards, every memcached server in NDB-memcached can access all data in
the data nodes. Thus, NDB-memcached has clear advantages compared to the standard memcached.

The most important aspect of memcached is its performance in terms of both response time and
throughput. Since the memcached protocol is much simpler than SQL, it is more efficient than SQL. When
processing SQL, it is necessary to parse the SQL, check privileges, optimize the query execution plans,
and so forth. SQL processing has much more overhead than accessing data via memcached. However,
memcached cannot handle complex queries such as joins. So, it is possible to take on different access
method based on these requirements:

•	 Use NDB-memcached for simple and fast data access.

•	 Use SQL for complex queries.

This strategy brings both flexibility and performance to your application.

Setting Up NDB-memcached
In this section, we discuss how to set up NDB-memcached.

Installing NDB-memcached
Install the package that includes the memcached binary and related files.

When you are using the RPM or DEB package manager on Linux, memcached is included in a
separate dedicated package in the MySQL NDB Cluster 7.5 series or newer. The package name is mysql-
cluster-community-memcached-7.5.6-1.el7.x86_64.rpm or mysql-cluster-community-memcached_7.5.6-
1ubuntu16.04_amd64.deb, for example. In MySQL NDB Cluster 7.4 or older, memcached is included in the
server RPM package or in one DEB package. For other package formats, the package is all-in-one and it’s not
separated by functionality regardless of the operating system type. Refer to Chapter 5 for more information
about installation.

 ■ Note NDB-memcached is not currently available for Windows packages, because memcached doesn’t
officially support the Windows platform. Consider using uNIX-like operating systems.

Preparing the ndbmemcache Schema
Then, set up the system schema required for NDB-memcached; the schema name is ndbmemcache. To create
the ndbmemcache schema and the tables in it, execute the SQL statements included in ndb_memcache_
metadata.sql. It’s located in the /usr/share/mysql/memcached-api/ directory for MySQL NDB Cluster 7.5
or newer RPM and the DEB package. It’s located in the share/mysql/memcached-api/ subdirectory of the
installation directory for other package types. Load the SQL file as shown in Listing 19-1. You can see 11
tables under the ndbmemcache database.

http://dx.doi.org/10.1007/978-1-4842-2982-8_5

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

614

Listing 19-1. Creating the ndbmemcache Schema and Tables

mysql> source /usr/share/mysql/memcached-api/ ndb_memcache_metadata.sql
Query OK, 1 row affected (1.87 sec)

Database changed
Query OK, 0 rows affected (0.81 sec)
...
mysql> use ndbmemcache
Database changed
mysql> SHOW TABLES;
+-----------------------+
| Tables_in_ndbmemcache |
+-----------------------+
| cache_policies |
| containers |
| demo_table |
| demo_table_large |
| demo_table_tabs |
| external_values |
| key_prefixes |
| last_memcached_signon |
| memcache_server_roles |
| meta |
| ndb_clusters |
+-----------------------+
11 rows in set (0.00 sec)

Starting the memcached Server
Make sure that there is a free [API] or [MYSQLD] slot in your config.ini file, because memcached connects to
the cluster as an API node. One memcached process will consume up to four slots. If there is no free slot
available, add at least one API node before you start the memcached server. Refer to Chapter 10 for the
procedure to add API nodes.

To start the memcached server, run the memcached command, as shown in Listing 19-2.

Listing 19-2. Starting the memcached Server

shell$ memcached -E /usr/lib64/mysql/ndb_engine.so \
 -e "connectstring=mgmhost;role=db-only"

As you can see, two options are explicitly specified in Listing 19-2. These options are specific to NDB-
memcached. Each option has the meaning listed here.

•	 -E: Specifies a shared library that implements the storage engine to be used.

•	 -e: Specifies options passed to the storage engine. Options are specified in text
separated by semicolons..

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

615

The configuration for the scheduler is a little bit complex. There are schedulers other than the
S-scheduler (scheduler names are 73, stockholm, trondheim), but S-scheduler is the most tested and
sufficient in most cases. The parameters to the S-scheduler are represented in a comma-separated string
without spaces, each string begins with one letter followed by one digit. Each parameter has the following
meanings.

•	 c: Specify the number of connections to the cluster just like --ndb-cluster-
connection-pool in mysqld. Possible range is 0 – 4. The default is 0, which means
automatic.

•	 f: Specify if force send is used. The default is 0 (false). This option has the same effect
of --force-send option in mysqld.

•	 t: Set send thread timer in milliseconds. The possible range is 1 – 10. The default is 1.

Other options for memcached are also available, just like for the standard memcached. See the output
of memcached -h for a complete list of available options. By default, memcached is listening on port 11211.
You can test NDB-memcached using the telnet command, as shown in Listing 19-3. If you don’t have the
telnet command on your operating system, as it’s an outdated command, try the memclient command
shipped with memcached in the package.

Listing 19-3. Connecting to NDB-memcached and Running Some Tests

shell$ telnet localhost 11211
Trying ::1...
Connected to localhost.
Escape character is '^]'.
set love 0 0 5
peace
STORED
set b:big 0 0 5
small
STORED
^]
telnet> quit
Connection closed.

Table 19-1. Engine Specific Options Passed to ndb_engine.so

Option Description

connectstring=string The connection string. Specify in the same format as for common NDB
programs. The default value is localhost:1186.

role=string The role assigned to this memcached server. The default value is default_role.
See the next section.

scheduler=string Specify the scheduler properties in the format name:configuration. The
default is "S:c0,f0,t1", which indicates that the scheduler name is S, and
options for S-scheduler are c0,f0,t1.

reconf={true|false} Specify if online reconfiguration is allowed. The default value is true.

debug={true|false} Set to true if you want to debug NDB-memcached. The default value is false.

The engine-specific options passed via -e option are listed in Table 19-1.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

616

shell$ memclient -a
Memclient 1.0 using Term::ReadLine::Stub
Attempting ASCII connection to localhost:11211 ...
Connected.
memcache > get love
 KEY | FLAGS |Value
love | 0 |peace

You can see that the values are stored in NDBCluster tables, as shown in Listing 19-4.

Listing 19-4. Accessing the Same Data from the SQL Node as NDB-memcached

mysql> SELECT * FROM ndbmemcache.demo_table;
+------+------------+-------+-------------+--------------+
| mkey | math_value | flags | cas_value | string_value |
+------+------------+-------+-------------+--------------+
| love | NULL | 0 | 83214991362 | peace |
+------+------------+-------+-------------+--------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM ndbmemcache.demo_table_large;
+------+-------+-------------+--------------+--------+----------+
| mkey | flags | cas_value | string_value | ext_id | ext_size |
+------+-------+-------------+--------------+--------+----------+
| big | 0 | 83214991365 | small | NULL | NULL |
+------+-------+-------------+--------------+--------+----------+
1 row in set (0.00 sec)

As you see in Listing 19-4, values are stored in demo_table and demo_table_large. Why are they stored
in these tables? Is it possible to access arbitrary tables via NDB-memcached? That is a next topic.

Defining Mapping to NDB Cluster Tables
You see that two keys, love and b:big, are stored in separate tables in Listing 19-4. This is because the latter
key has a prefix b:. NDB-memcached can access different tables depending on the prefix values. A prefix b:
is predefined by default. This functionality is very important, because it is useless if it is just accessing the
demo table.

To understand mappings to tables, the following concepts are the key points:

•	 Role: A role assigned to each memcached server. Defined in the memcache_server_
roles table and specified in the -e option upon startup of the memcached process.

•	 Prefix: A prefix of each key.

•	 Policy: Caching policy mapped to each value.

•	 Container: Defines which table or tables are used to store key-value pairs in the
NDBCluster storage engine.

In short, the pair of role and prefix determines which pair of policy and container is used.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

617

Defining Containers
Container defines table and columns to be accessed from NDB-memcached. Of course, the target table must
be an NDB Cluster table. The key part mapped to the table can consist of up to four columns. The set of key
columns must consist either of a primary key or secondary unique index on the target table. The value part
mapped to the table can consist of up to 16 columns. If the key part or value part consists of more than one
column, it must be specified in tab-delimited format in the memcached client.

Once the target table is ready, insert an entry into the containers table under the ndbmemcache
database. The containers table has the columns listed in Table 19-2.

Table 19-2. Columns in the containers Table

Column Nullable Description

name No Name of the container.

db_schema No Database name of the target table.

db_table No The target table name.

key_columns No Comma-delimited list of columns used as the key of memcached
operation. Can be specified with up to four columns. If multiple
columns are specified in this table, values must be specified in tab-
separated format in memcached API.

value_columns Yes Comma-delimited list of columns used as the value stored/read by
memcached. Can be specified with up to 16 columns. If multiple
columns are specified in this table, values must be specified or
retrieved in tab-separated format in memcached API.

flags No Currently not used.

increment_column Yes Column to store the numeric value used in memcached INCR and
DECR operations. If set, the column must be defined as BIGINT
UNSIGNED in the target table.

cas_column Yes Column used for Compare and Swap (CAS) operations on
memcached. If set, the column must be defined as BIGINT UNSIGNED
on the target table.

expire_time_column Yes Column used to determine if the row is expired or not. If set, the
column must be defined as TIMESTAMP in the target table. A row is
deleted from the target table when accessed from memcached if the
column value is older than the current time.

large_values_table Yes Table used to store large data like BLOB data.

The following SQL command inserts an entry to access the world.City table via NDB-memcached. The
container is named world_city in this example. Two of the non-primary-key columns in the world.City
table are listed in the value_columns value.

mysql> INSERT INTO containers VALUES('world_city', 'world', 'City', 'ID',
'Name,CountryCode', 0, NULL, NULL, NULL, NULL);
Query OK, 1 row affected (0.00 sec)

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

618

If large_values_table is not empty, the table to store large values must have a definition, as shown in
Listing 19-5.

Listing 19-5. Definition of a Table to Store Large Values

CREATE TABLE IF NOT EXISTS `external_values` (
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `part` SMALLINT NOT NULL,
 `content` VARBINARY(13950) NOT NULL,
 PRIMARY KEY (id,part)
) ENGINE = NDBCluster;

Review Policies
NDB-memcached can store data inside memcached as well as in the NDBCluster tables. The preference
of whether to store the data in memcached or an NDBCluster table is defined in the cache_policies table
under the ndbmemcache database. There are six predefined policies in the cache_policies table, as shown in
Listing 19-6.

Listing 19-6. Displaying Predefined Cache Policies

mysql> SELECT * FROM cache_policies\G
*************************** 1. row ***************************
 policy_name: memcache-only
 get_policy: cache_only
 set_policy: cache_only
delete_policy: cache_only
flush_from_db: false
*************************** 2. row ***************************
 policy_name: caching-with-local-deletes
 get_policy: caching
 set_policy: caching
delete_policy: cache_only
flush_from_db: false
*************************** 3. row ***************************
 policy_name: ndb-read-only
 get_policy: ndb_only
 set_policy: disabled
delete_policy: disabled
flush_from_db: false
*************************** 4. row ***************************
 policy_name: ndb-test
 get_policy: ndb_only
 set_policy: ndb_only
delete_policy: ndb_only
flush_from_db: true
*************************** 5. row ***************************
 policy_name: ndb-only
 get_policy: ndb_only
 set_policy: ndb_only
delete_policy: ndb_only
flush_from_db: false

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

619

*************************** 6. row ***************************
 policy_name: caching
 get_policy: caching
 set_policy: caching
delete_policy: caching
flush_from_db: false
6 rows in set (0.00 sec)

Each column in cache_policies has the meaning listed in Table 19-3.

Table 19-3. Description of Columns in the cache_policies Table

Column Description

policy_name Name of the policy. The name is used for mapping with role and prefixes.

get_policy Policy applied to the get operation of memcached.

set_policy Policy applied to the set operation of memcached.

delete_policy Policy applied to the delete operation of memcached.

flush_from_db Specifies if all rows in the table are deleted upon the flush_all operation of
memcached.

Acceptable values for the three policy columns in cache_policies table are described in the
following list:

•	 cache_only: Data is get, set, and deleted in the in-memory storage of memcached
itself only.

•	 ndb_only: Data is get, set, and deleted in the associated container table only.

•	 caching: Data is stored in both the in-memory storage of memcached and the
associated container table. Storage of memcached is used as a cache for the
container table. The cache is searched first upon a get operation, any further search
is skipped if data is found in in-memory data storage of memcached. Upon the set
and delete operation, data in both the in-memory storage of memcached and the
associated container table is updated or deleted.

•	 disabled: The operation is not allowed.

Review the predefined policies and pick the one that’s suitable for your application. If you simply want
to access the same data as a NDB Cluster table via memcached protocol, ndb-only is the choice. Or choose
ndb-read-only if you want to allow read only access to a NDB Cluster table from memcached. The ndb-test
policy is very much like the ndb-only policy, except for the flush_from_db setting. Since deleting all rows
upon flush_all operation is a somewhat dangerous operation, I recommend not using this policy.

With caching policies, caching and caching-with-local-deletes, of course it is possible that data
in the in-memory storage of memcached and the container table will be out of sync if only one of them is
updated. Be careful when you use caching policies. The memcache-only policy doesn’t access the container
tables. Data is not durable nor synchronized to other memcached instances.

If there is no policy that exactly matches your needs, you can add your own policy to the cache_
policies table.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

620

Define Server Roles
Each memcached server has a role assigned to it. The role itself is just a label defined in the memcache_
server_roles table under the ndbmemcache database. Listing 19-7 shows an example memcached_server_
roles table that includes the predefined roles.

Listing 19-7. Example Content of the memcached_server_roles Table

mysql> SELECT * FROM memcache_server_roles;
+--------------+---------+---------+---------------------+
| role_name | role_id | max_tps | update_timestamp |
+--------------+---------+---------+---------------------+
large	4	100000	2017-06-11 17:13:35
default_role	0	100000	2017-06-11 17:13:35
db-only	1	100000	2017-06-11 17:13:35
ndb-caching	3	100000	2017-06-11 17:13:35
mc-only	2	100000	2017-06-11 17:13:35
+--------------+---------+---------+---------------------+
5 rows in set (0.00 sec)

As you can see, each role has a numeric identifier, as shown in the role_id column. This value is used
to define the mappings between the prefix and the pair of caching policy and container.

You can use predefined roles if you like or you can add your own. Since each memcached server
instance will behave differently depending on the assigned role, define as many roles as if you want to run
memcached servers with different behaviors.

Define Mappings
Now, you can define mappings between role and prefix pairs and caching policy and container pairs. The
definition is done by adding entries to the key_prefixes table under the ndbmemcache database. Table 19-4
lists the columns in the key_prefixes table.

Table 19-4. Columns in the key_prefixes Table

Column Description

server_role_id Specify the role using a value from the role_id column in the memcached_server_
roles table.

key_prefix Prefix of the key specified for memcached operations.

cluster_id Specify the identifier for cluster to be accessed. Set 0 when accessing to the default
cluster. Use of multiple clusters with NDB-memcached isn’t dealt with this book,
because it is not a common usage.

policy The policy name to be applied. The value of this column must be defined in the
policy_name column of the cache_policies table.

container The container name to be stored. The value of this column must be defined in the
name column of the containers table. This column can be NULL if the policy doesn’t
require table access like memcache-only.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

621

The following SQL command is an command that adds an entry to the key_prefixes table. With this
example, rows in the world.City table via the world_city container are accessed without caching using the
prefix wc: on the memcached servers with the db-only (role_id is 1) role.

mysql> INSERT INTO key_prefixes VALUES(1, 'wc:', 0, 'ndb-only', 'world_city');

Apply Settings to a Running memcached Instance
Prefix mappings are read when the memcached server starts. So, you can apply settings to the memcached
server by restarting it. This is the simplest and safest way to apply settings.

If you want to apply changes without stopping the memcached server, update the update_timestamp
column of the memcache_server_roles table to the current timestamp, as in the following example.

mysql> UPDATE memcache_server_roles SET update_timestamp = NOW() WHERE role_name = 'db-
only';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The memcached process will then reconfigure the mappings by reading the configuration from tables
under the ndbmemcache database. Now, you can access world.City table with the prefix wc:, as in Listing 19-8.
Notice that the retrieved value includes many spaces. It’s a trailing space caused by the CHAR data type plus
the tab character to separate two column values.

Listing 19-8. Accessing the world.City Table from memcached

memclient -a
Memclient 1.0 using Term::ReadLine::Stub
Attempting ASCII connection to localhost:11211 ...
Connected.
memcache > get wc:1532
 KEY | FLAGS |Value
wc:1532 | 0 |Tokyo JPN

When you use NDB-memcached in a production system, I recommend truncating the key_prefixes
table before defining mappings. The predefined mappings are useless in most cases other than for
demonstration purposes. You can also drop demo tables in the ndbmemcache database.

Accessing NDBCluster Tables via the memcached Protocol in Your
Application
To access NDBCluster tables via the memcached protocol in your application, you must install the
memcached client library suitable for your programming language. Client libraries to access memcached
aren’t bundled in the MySQL NDB Cluster packages, so you must get them by yourself. Since memcached is
well-known, commonly-used software, there are many choices for client libraries in the market.

For example, the following client libraries are available:

•	 Java: https://github.com/gwhalin/Memcached-Java-Client

•	 .NET: https://github.com/enyim/EnyimMemcached

•	 PHP: memcached (libmemcached binding) and memcached (original
implementation) available on PECL

https://github.com/gwhalin/Memcached-Java-Client
https://github.com/enyim/EnyimMemcached

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

622

•	 Python: https://github.com/linsomniac/python-memcached, https://github.com/
pinterest/pymemcache

•	 Ruby: https://github.com/arthurnn/memcached

•	 Perl: Cache::Memcached CPAN module

Performance Tuning
There are several parameters to be tuned for NDB-memcached.

•	 Scheduler: Scheduler settings can be adjusted via the scheduler part of the -e
option, as described earlier in this section. Consider increasing the number of
connections to data nodes (c parameter) and send thread timer (t parameter) if
you prefer to have better throughput. Turn on force send (set 1 to f parameter) if you
prefer to have better response time.

•	 Number of NDB objects used in memcached: Adjust the max_tps column value in
the memcache_server_roles table and the microsec_rtt column value in the ndb_
clusters table. The more max_tps or microsec_rtt, the more NDB objects are used
in memcached. More NDB objects are required to handle more access to the cluster
in parallel to the expense of increased memory usage.

Accessing Data via the NDB API
While NDB-memcached is a powerful choice to get better performance using the handy memcached API, it still
lacks some capabilities and has some performance overhead. To meet the stringent requirements, a native
NoSQL access method, the NDB API, is the last resort.

Why Use the NDB API?
While the NDB API is a great method to access tables in MySQL NDB Cluster, it’s not a panacea for application
development. Of course, there are pros and cons to using the NDB API just like with any other software.

Pros of the NDB API are:

•	 An application linked with the NDB API client library connects directly to the data
nodes. There is no relay point between them, which causes overhead. So, the NDB
API is the best choice for performance in terms of response time and throughput.

•	 It is a transactional API like SQL. While memcached is handy, its operations are non-
transactional.

•	 It can do everything that the data node provides. While the memcached is handy, its
functionality is very limited; it can do look-up based operations against predefined
tables only. The NDB API can do not only lookups, but also scans, conditional
searches, and parameterized queries against any tables in the cluster.

Cons of the NDB API are:

•	 It is a very low-level API so it requires more work to implement. While it can
do everything on the cluster theoretically, many lines of codes are required to
implement the same functionality as with SQL. For example, JOIN is a common
operation in SQL, and theoretically it can be implemented using NDB API; however,
it requires a lot of code.

https://github.com/linsomniac/python-memcached
https://github.com/pinterest/pymemcache
https://github.com/pinterest/pymemcache
https://github.com/arthurnn/memcached

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

623

•	 It targets C++ applications. While there are bindings for other programming
languages, there is some overhead when using such bindings. Developing a
C++ application is more difficult than writing an application using popular web
programming languages such as Java, PHP, Python, and Ruby.

Consider carefully if the NDB API is suitable for your application needs. SQL is sufficient for common
application development in terms of functionality. NDB-memcached is available when better performance
is required. Although it is slower than the NDB API and doesn’t provide transactions, using NDB-
memcached is much easier.

Installing Header Files and Libraries for the NDB API
To develop applications using the NDB API, header files and libraries must be installed on your
development machine. In MySQL NDB Cluster 7.5 series or newer, the required files are included in the
following packages:

•	 RPM: The ndbclient-devel package includes the header files and static library. The
ndbclient package includes the shared library.

•	 DEB: The ndbclient-dev package includes the header files and static library. The
ndbclient package includes the shared library.

•	 All-in-one package: Required files are bundled in the package.

In MySQL NDB Cluster 7.4 series or older, the required files are included in the following packages:

•	 RPM: The devel package includes the header files and static library. The server
package includes the shared library.

•	 DEB: Only the deb package is not separated per functionality. The only available
package type is an all-in-one DEB package.

•	 All in one package: Required files are bundled in the package.

Since only all-in-one packages are available for Windows and macOS, the required library is bundled
in the package. However, it appears that the Windows MSI package doesn’t have a dynamic link version of
ndbclient library (ndbclient.dll). Use the Zip archive package for now.

Building an Application with the NDB API
To build an application with the NDB API, you need a C++ compiler. So, install a compiler on your
development machine beforehand. To compile your program and link it to the libndbclient library, the
appropriate options must be passed to the compiler and linker.

The compiler option can be retrieved using the mysql_config command. The mysql_config command
shows the required compiler options according to the installation layout of your package. The general
compiler options can be retrieved with the --cflags option, as shown in the following command. Note that
the second line of this example is the result displayed by this command.

shell$ mysql_config --cflags
-I/usr/include/mysql -g -fno-strict-aliasing -DNDEBUG

The options to specify the location of the include files are also required. The options can be retrieved
using the mysql_config command with the --include option. The include files are placed in the storage/
ndb, storage/ndb/ndbapi, and storage/ndb/mgmapi subdirectories under the include path retrieved by

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

624

the mysql_config --include command. So, you can set the CXXFLAGS compiler option as shown in the
following command.

shell$ CXXFLAGS="`mysql_config --cflags` \
 `mysql_config --include`/storage/ndb \
 `mysql_config --include`/storage/ndb/ndbapi \
 `mysql_config --include`/storage/ndb/mgmapi"
shell$ export CXXFLAGS

If you want to pass these options to the compiler via an environment variable, you can export them, like
this example. If you also use the standard MySQL C API as well, add the output of mysql_config --include
command without any subdirectories to the compiler option.

The linker option must be set in addition to the compiler option. To retrieve the linker options, run
the mysqld_config command with the --libs_r option. The linker also requires a list of libraries to be
linked. The required library for NDB API applications is libndbclient. Add -lndbclient to the linker option
according to the convention of the library name specification. The following command sets the linker
option. If you also use the standard MySQL C API as well, add -lmysqlclient to the option too.

shell$ LDFLAGS="`mysql_config --libs_r` -lndbclient"

Then, you can compile your application using a compiler, as shown in the following command example.
In this example, g++, a C++ compiler from the GNU Compiler Collection is used to compile the program
source file example.cc.

shell$ g++ $CXXFLAGS $LDFLAGS example.cc -o example

References and Examples
This section discusses how to write NDB API applications. We will discuss only a simplified flow of the NDB
API programs to let you understand the overview. Refer to the MySQL NDB Cluster API Developer Guide at
https://dev.mysql.com/doc/ndbapi/en/ for a complete reference to NDB API programming.

In this book, we discuss the native NDB API and Java binding of it, ClusterJ. We’ll discuss ClusterJ in
the next section. There is a yet another binding of the NDB API for JavaScript. You can find the details of
JavaScript binding in the MySQL NDB Cluster API Developer Guide.

The source code of MySQL NDB Cluster also includes good examples. You can browse the source code
online at GitHub at https://github.com/mysql/mysql-server/tree/cluster-7.5/storage/ndb/ndbapi-examples.

Of course, these examples are included in the downloaded or cloned source code, too. These examples
are useful for understanding how to write NDB API programs. I recommend reviewing all of these example
programs before you write any NDB API programs.

Typical Program Flow
You need include NdbApi.hpp at the beginning of the program. Call ndb_init() to initialize the NDB API
right after the program begins. Call ndb_end(0) to clean up before the program exits.

Even when developing NDB API programs, the MySQL C API (or MySQL C++ driver if you like) is often
used alongside. These two API libraries are used depending on the situation:

•	 An application accesses SQL node using MySQL C API to create, drop, or examine
database objects. It is worth it to execute complex queries such as joins via SQL node.

•	 An application accesses data nodes directly using the NDB API for data access.

https://dev.mysql.com/doc/ndbapi/en/
https://github.com/mysql/mysql-server/tree/cluster-7.5/storage/ndb/ndbapi-examples

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

625

If you want to use the MySQL C API, you need to include mysql.h as well as NdbApi.hpp, as shown in
Listing 19-9. Don’t forget to adjust the compiler option so that the path to mysql.h is added in addition to
the NDB API header files. Make sure ndb_exit(0) is called when the program exits in error. A program is
likely to end without calling ndb_exit(0) if terminating using the exit() function. I recommend writing a
function to perform the necessary cleanup and exit that’s called when the program exits upon error.

Listing 19-9. Typical Structure of a Program That Uses the NDB API and the MySQL C API

#include <NdbApi.hpp>
#include <mysql.h>
... snip ...
int main(int argc, char *argv[])
{
 ndb_init();
 ... snip ...
 ndb_end(0);
 return 0;
}

Since the NDB API is written in C++, a typical object-oriented programming language, functionalities
are implemented as various classes. Table 19-5 lists the major classes used in NDB API programs.

Table 19-5. Classes Often Used in NDB API Programs

Class Description

Ndb_cluster_
connection

This class manages the connection to the cluster. The connect string is passed to
its constructor.

Ndb A handle to access the data node. There is an upper limit to the number of Ndb
objects within a single program. A program can create up to 4711 Ndb objects.

NdbDictionary A class to work with the metadata required to specify the target objects. This
class has various child classes to handle dedicated objects, such as Dictionary,
Table, Column, Index, and Event.

NdbTransaction A class to execute transactions and record-based operations.

NdbOperation A class to specify the operation to be executed. There are several subclasses
to handle specific operations: NdbIndexOperation class for secondary
unique index lookups, NdbScanOperation class for table scans, and
NdbIndexScanOperation class for index scans. The NdbOperation class itself is
used for operations based on primary-key lookups.

NdbScanFilter A class to define filters applied to scans on data node.

NdbRecAttr A class to manipulate data per each attribute.

NdbRecord A class to manipulate data per each row record.

NdbBlob A class to manipulate blob data.

NdbInterpretedCode A class represents interpreted code, which is directly executed on data nodes.
This class is used with NdbRecord.

NdbEventOperation A class to work with events that are notified upon modification of each table
through micro-GCP.

NdbError A class to retrieve error information.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

626

Figure 19-2 depicts the typical workflow of an NDB API program. In this workflow, the program utilizes
the classes listed in Table 19-6.

Figure 19-2. Semantic diagram for the typical flow of an NDB API program

Simple Read Example
As they say, “seeing is believing”. So, this section shows you a working example in Listing 19-11. Review the
comments in the code of the example. To run the example program in this section, you need to set up the
world example database in your cluster. Then drop foreign keys and change storage engine to NDBCluster.
To set up the world example database, refer to the manual at https://dev.mysql.com/doc/world-setup/en/
world-setup-installation.html Listing 19-10 shows an example command that sets up the world database
using the NDB Cluster storage engine.

https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html
https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

627

Listing 19-10. Setting Up the world Database Using the NDB Cluster Storage Engine

 mysql> source /path/to/world.sql
... snip ...

mysql> use world
Database changed
mysql> ALTER TABLE City DROP FOREIGN KEY city_ibfk_1;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE CountryLanguage DROP FOREIGN KEY countryLanguage_ibfk_1;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE Country ENGINE NDBCluster;
Query OK, 239 rows affected (1.61 sec)
Records: 239 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE City ENGINE NDBCluster;
Query OK, 4079 rows affected (2.42 sec)
Records: 4079 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE CountryLanguage ENGINE NDBCluster;
Query OK, 984 rows affected (1.87 sec)
Records: 984 Duplicates: 0 Warnings: 0

Listing 19-11. Sample NDB API Program That Reads a Row from a Table

#include <NdbApi.hpp>
#include <iostream>
#include <string>

const char *connectstring = "mgmhost";
const char *db = "world";

class NdbApiExample1 {
public:
 NdbApiExample1() : cluster_connection(NULL), myNdb(NULL),
 myDict(NULL), myTable(NULL) {};
 ~NdbApiExample1();
 int doTest();

private:
 void print_error(const NdbError &e, const char *msg)
 {
 std::cerr << msg << ": Error code (" << e.code << "): "
 << e.message << "." << std::endl;
 }

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

628

 Ndb_cluster_connection *cluster_connection;
 Ndb *myNdb;
 const NdbDictionary::Dictionary* myDict;
 const NdbDictionary::Table *myTable;
 NdbTransaction *myTransaction;
 NdbOperation *myOperation;
};

int NdbApiExample1::doTest()
{
 // Step 1. Initialize NDB API
 ndb_init();

 // Step 2. Connecting to the cluster
 cluster_connection = new Ndb_cluster_connection(connectstring);
 if (cluster_connection->connect(4 /* retries */,
 5 /* delay between retries */,
 1 /* verbose */)) {
 std::cerr << "Could not connect to MGMD." << std::endl;
 return 1;
 }

 if (cluster_connection->wait_until_ready(30,0) < 0) {
 std::cerr << "Could not connect to NDBD." << std::endl;
 return 2;
 }

 // Step 3. Connect to 'world' database
 myNdb = new Ndb(cluster_connection, db);
 if (myNdb->init()) {
 print_error(myNdb->getNdbError(),
 "Could not connect to the database object.");
 return 3;
 }

 // Step 4. Get table handle
 myDict= myNdb->getDictionary();
 myTable= myDict->getTable("Country");

 if (myTable == NULL) {
 print_error(myDict->getNdbError(), "Could not retrieve a table.");
 return 4;
 }

 // Step 5. Start transaction
 myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL) {
 print_error(myNdb->getNdbError(), "Could not start transaction.");
 return 5;
 }

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

629

 // Step 6. Get operation handle
 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) {
 print_error(myTransaction->getNdbError(),
 "Could not retrieve an operation.");
 return 6;
 }

 // Step 7. Specify type of operation and search condition
 myOperation->readTuple(NdbOperation::LM_Read);
 myOperation->equal("Code", "JPN");

 // Step 8. Get buffers for results
 NdbRecAttr *Name = myOperation->getValue("Name", NULL);
 NdbRecAttr *Capital = myOperation->getValue("Capital", NULL);
 if (Name == NULL || Capital == NULL) {
 print_error(myTransaction->getNdbError(),
 "Could not allocate attribute records.");
 return 7;
 }

 // Step 9. Send a request to data nodes
 if (myTransaction->execute(NdbTransaction::Commit) == -1) {
 print_error(myTransaction->getNdbError(), "Transaction failed.");
 return 8;
 }

 // Step 10. Retrieve values
 std::cout << " Name: "
 << std::string(Name->aRef(),
 Name->get_size_in_bytes())
 << std::endl;
 std::cout << " Capital Code: "
 << Capital->u_32_value()
 << std::endl;

 return 0;
}

NdbApiExample1::~NdbApiExample1()
{
 // Step 11. Cleanup
 if (myTransaction) myNdb->closeTransaction(myTransaction);
 if (myNdb) delete myNdb;
 if (cluster_connection) delete cluster_connection;
 ndb_end(0);
}

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

630

int main(int argc, char *argv[])
{
 NdbApiExample1 ex;
 return ex.doTest();
}

This code is straightforward and simple. All jobs are done in the doTest() function of the
NdbApiExample1 class. Let’s examine each step in this program.

Step 1. Initialize the NDB API
ndb_init() must be called at the beginning of the program.

Step 2. Connect to the Cluster
The connect string is passed to the constructor of the Ndb_cluster_connection class. After an instance of
the class is created successfully, the code calls the connect() member function to connect to the cluster.

Step 3. Connect to the world Database
Connect to the world database using an Ndb class instance. Since the Ndb class is not thread-safe, you must
create an Ndb class instances dedicated to each thread. Don’t share Ndb class instances among threads. There
can be up to 4177 Ndb class instances per process.

Step 4. Get the Table Handle
A handle is retrieved to access the Country table. When accessing objects, you retrieve an instance of the
NdbDictionary::Dictionary class. Then ask the retrieved dictionary to get more objects.

You can reuse objects retrieved from the dictionary.

Step 5. Start the Transaction
Transactions must be started explicitly.

Step 6. Get the Operation Handle
Retrieve the operation handle objects from an instance of the NdbTransaction class, which is retrieved when
a transaction starts. Since this example is for a primary-key lookup, an instance of NdbOperation class is
retrieved using the NdbTransaction::getNdbOperation() function. Call the appropriate function from the
following functions to get a suitable operation handle:

•	 NdbTransaction::getNdbOperation()

•	 NdbTransaction::getNdbIndexOperation()

•	 NdbTransaction::getNdbScanOperation()

•	 NdbTransaction::getNdbIndexScanOperation()

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

631

Step 7. Specify the Type of Operation and Search Condition
In this step, declare the type of operation that’s going to be executed. In this case, read is specified as the
operation by calling the NdbOperation::readTuple() function. The name of this function is confusing in
the sense that the name of the function gives an impression that the read operation is performed when this
function is called. However, the function just declares the type of the upcoming operation. The operation
will be executed a little bit later.

In the NdbOperation class, the following five operations are defined:

•	 readTuple: A row is read based on the primary key value.

•	 insertTuple: A row is inserted.

•	 updateTuple: A row is updated where the primary key value is matched.

•	 writeTuple: A row is updated if a matching row already exists, or inserted if there is
no matching row.

•	 deleteTuple: A row is deleted where the primary key value is matched.

Note that NdbOperation::readTuple() takes one argument, NdbOperation::LM_Read. The argument
specifies a lock mode, and it’s a shared lock in this case. You can specify the lock mode using the following
four modes:

•	 LM_Read: Shared lock is held on the row throughout the transaction lifecycle.

•	 LM_Exclusive: Exclusive lock is held on the row throughout the transaction lifecycle.

•	 LM_CommittedRead: No lock is acquired and read committed rows.

•	 LM_SimpleRead: Shared lock is acquired, but released right after the operation.

In the second line of this step, NdbOperation::equal() is called. This specifies a primary key name and
value to be searched. In this case, a row that has the value of the Code column matching JPN is searched. If
the primary key consists of multiple key parts (columns), call the NdbOperation::equal() function multiple
times, so that values are given for all key parts.

Step 8. Get Buffers for Results
In this step, buffers to store fetched values are allocated by calling NdbOperation::getValue().
This function just prepares the buffer, and the actual operation is executed a little bit later, just like
NdbOperation::readTuple(). In this example, the column name of the fetch value is specified as the first
argument of NdbOperation::getValue(). The first argument of NdbOperation::getValue() would be:

•	 An attribute (column) name in a null terminated string (char*)

•	 Attribute identifier in Uint32

•	 Instance of NdbDictionary::Column class retrieved from a dictionary

Note that the column name in the NDB API is case-sensitive. Specify exactly what can be seen in the
table definition. The second argument is a pointer to the memory area where data will be stored. If NULL just
like in this example, memory is allocated automatically and freed later when the instance of NdbRecAttr is
deleted. So, you must copy the retrieved data before closing the transaction if you want to reuse it later.

I recommend specifying the second argument of the NdbOperation::getValue() function to avoid
unnecessary data copy for better performance. In such cases, the memory area where the fetched value is stored
will not be freed even when the NdbRecAttr instance is deleted. However, the NDB API doesn’t know whether
the buffer has sufficient space to store the data, because the argument is just a pointer. Ensure that sufficient
space is allocated. You can calculate the required size to store the column value from the table definition.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

632

Step 9. Send a Request to the Data Nodes
A request is sent to the data node by calling NdbTransaction::execute(). Then, the data node will
process the request and send the reply to the NDB API program. The NDB API sets the values according to
specification of the NdbRecAttr instances.

Note that the argument of the NdbTransaction::execute() function in this example is
NdbTransaction::Commit. This indicates that the ongoing transaction is committed as the name implies.
This function will take one of the following values as an argument:

•	 NdbTransaction::NoCommit: When this value is specified, a request is sent to data
nodes, but transaction continues. Specify this value when there are more operations
to be done within the same transaction.

•	 NdbTransaction::Commit: The ongoing transaction will be committed.

•	 NdbTransaction::Rollback: The ongoing transaction will be rolled back.

Step 10. Retrieve the Values
Values are retrieved from the NdbRecAttr instances. You can retrieve the string value by calling the
NdbRecAttr::aRef()function. However, the string value is not null terminated. You must determine the size
of the string value using NdbRecAttr::get_size_in_bytes(). Since the Capital is an UNSIGNED INT column,
you can access the value by calling NdbRecAttr::u_32_value().

Step 11. Clean Up
In this step, the necessary cleanup is performed. Note that the cleanup is done in the destructor of the
NdbApiExample1 class. It’s called when a program exits the scope where the instance of NdbApiExample1 is
declared as a local variable. Performing the necessary cleanup upon scope exit is a handy technique for a
C++ program.

Accessing Data Using NdbRecord
When working with the NdbRecAttr class, it is necessary to create instances of the class so many times,
because the NdbRecAttr class instances are retrieved from the NdbOperation class instance. It causes a
certain overhead within NDB API programs. To reduce the overhead caused by this, the NdbRecord class
was added in MySQL NDB Cluster 6.2.15.

What NdbRecord does is to define the relative memory layout to the pointer where the data is stored
or loaded from the NDB API to interact with the data nodes. When using the NdbRecord interface, data is
exchanged using a contiguous memory area per row, while NdbRecAttr binds the memory area to exchange
data per column. Other than the difference upon specifying memory layout, the flow of program is same for
the NdbRecAttr and NdbRecord programming interfaces.

Listing 19-12 shows an example program that uses the NdbRecord class to exchange data. Only the
different part is excerpted. Steps 1 to 4 and 11 are the same as in Listing 19-11. Some extra header files for
standard libraries must be included in addition to what’s included in Listing 19-11.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

633

Listing 19-12. Sample NDB API Program That Reads a Row from a Table Using NdbRecord

...
#include <stddef.h>
#include <cstdint>
#include <cstring>
...
 // Step 5. Define NdbRecord memory area for rows of City table
 struct CountryRow {
 char nullBits;
 char Code[3];
 char Name[52];
 Uint32 Capital;
 };

 NdbDictionary::RecordSpecification recordSpec[3];

 // Code
 recordSpec[0].column = myTable->getColumn("Code");
 recordSpec[0].offset = offsetof(struct CountryRow, Code);
 recordSpec[0].nullbit_byte_offset = 0; // Not nullable
 recordSpec[0].nullbit_bit_in_byte = 0;

 // Name
 recordSpec[1].column = myTable->getColumn("Name");
 recordSpec[1].offset = offsetof(struct CountryRow, Name);
 recordSpec[1].nullbit_byte_offset = 0; // Not nullable
 recordSpec[1].nullbit_bit_in_byte = 0;

 // Capital
 recordSpec[2].column = myTable->getColumn("Capital");
 recordSpec[2].offset = offsetof(struct CountryRow, Capital);
 recordSpec[2].nullbit_byte_offset =
 offsetof(struct CountryRow, nullBits);; // Nullable
 recordSpec[2].nullbit_bit_in_byte = 0;

 const NdbRecord *pkRecord =
 myDict->createRecord(myTable, recordSpec, 1, sizeof(recordSpec[0]));
 const NdbRecord *valsRecord =
 myDict->createRecord(myTable, recordSpec, 3, sizeof(recordSpec[0]));
 if (pkRecord == NULL || valsRecord == NULL) {
 print_error(myNdb->getNdbError(), "Could not create NdbRecord.");
 return 5;
 }

 // Step 6. Start transaction
 myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL) {
 print_error(myNdb->getNdbError(), "Could not start transaction.");
 return 6;
 }

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

634

 // Step 7. Specify type of operation and search condition
 CountryRow rowData;
 std::memset(&rowData, 0, sizeof rowData);
 std::memcpy(&rowData.Code, "JPN", 3);
 const NdbOperation *pop=
 myTransaction->readTuple(pkRecord,
 (char*) &rowData,
 valsRecord,
 (char*) &rowData);
 if (pop==NULL) {
 print_error(myTransaction->getNdbError(),
 "Could not execute record based read operation");
 return 7;
 }

 // Step 8. Send a request to data nodes
 if (myTransaction->execute(NdbTransaction::Commit) == -1) {
 print_error(myTransaction->getNdbError(), "Transaction failed.");
 return 8;
 }

 // Step 9. Retrieve values
 std::string nameStr = std::string(rowData.Name, sizeof(rowData.Name));
 std::cout << " Name: "
 << nameStr.substr(0, nameStr.find_last_not_of(' ') + 1)
 << std::endl;
 std::cout << " Capital Code: "
 << (rowData.nullBits & 0x01 ? std::string("NULL") :
 std::to_string(rowData.Capital))
 << std::endl;

 return 0;
}

Let’s examine each new step of this program.

Step 5. Define the NdbRecords
NdbRecord is a descriptor of the memory layout for a given set of columns per row mapped to a contiguous
memory area. The CountryRow struct represents a memory area to be accessed via the NdbRecord interface.
Typically, a struct like in this example is used as a container of data. So, the application can access the
column data in a row via the struct members. Of course, it can be a class instead of a struct.

Then, the program declares an array of NdbDictionary::RecordSpecification with three elements.
This class specifies the memory location and property of each column accessed via the NdbRecord interface.
Since this program accesses three columns, three instances of the NdbDictionary::RecordSpecification
struct are used. The column member specifies the target column. The offset member specifies the relative
offset from the beginning of the contiguous memory area to exchange row data. The nullbit_byte_offset
and nullbit_bit_in_byte members specify the location of null-bit set when a column is NULL. The former is
a relative offset of bytes where the null-bit is stored. The latter is which bit within a byte is used to indicate if
the column is NULL or not. Thus, acceptable values for the nullbit_bit_in_byte member are 0 to 7.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

635

Next, two NdbRecord class instances are created, one for the primary key value to be passed as a search
condition, and one for the column values to be fetched from the data nodes. The third argument of the Nd
bDictionary::Dictionary::createRecord() function is the number of columns mapped by the created
NdbRecord instance.

Step 6. Start the Transaction
Start a new transaction just like when you’re using the NdbRecAttr interface.

Step 7. Specify the Type of Operation and Search Condition
A variable of the CountryRow struct, rowData, is declared and initialized by 0. Then, the Code member of
rowData is set to JPN to be used as a search condition.

A pointer to the NdbOperation class is retrieved by calling the NdbTransaction::readTuple() function.
This instructs the NDB API that the type of upcoming operation is readTule, and which NdbRecord and
relevant memory area are used as containers for the search condition and result.

Recall that the same thing is done in the NdbRecAttr interface by acquiring the NdbOperation class
instance from NdbTransaction first, then specifying the operation type by calling readTuple(), specifying
the search condition by calling NdbOperation::equal(), and specifying the memory containers for each
column by calling NdbOperation::getValue().

Thus, the number of calls of NDB API functions is much fewer in the NdbRecord interface. Be aware that
number of steps in this example program is one less than the number of steps in the NdbRecAttr example
program.

Step 8. Send a Request to the Data Nodes
Execute a transaction just like when using the NdbRecAttr interface.

Step 9. Retrieve the Values
Value retrieval is very simple in NdbRecord. It can be achieved by just accessing the struct members.

Remarks About Using the NdbRecord Interface
While the code to create the NdbRecord instances is somewhat messy, it is possible to reuse the created
NdbRecord instances once they are defined. So, this code has a clear advantage in terms of performance
when implementing repeating program routines. The table access in the NDBCluster storage engine is
implemented using the NDBRecord interface.

Scan Example
A scan is much more complex operation than primary-key based lookup operations. All other operations are
scans. There are two types of scans:

•	 Table scan

•	 Ordered index scan

Due to the nature of scan operations, it is not possible to scan a unique hash index.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

636

The most powerful feature of a scan via the NDB API is that it can filter data inside the data nodes. This
will dramatically reduce size of data transferred to the NDB API client. This functionality is also known as
engine condition pushdown optimization for the NDB Cluster storage engine. Scan filtering can be used
together with ordered indexes, too. Figure 19-3 shows a typical architectural overview of scan filtering. A scan
is typically performed on all data nodes in parallel unless the table uses a non-standard distribution strategy.

Figure 19-3. Concept of search filtering on a data node

A scan is very similar to a cursor operation in SQL; a cursor is defined first, then handle the row data in
a loop, update, or delete the row if needed. Figure 19-4 shows a typical program flow for scan operations. Be
aware that the bottom-right part consists of a loop.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

637

Just like with a non-scan operation, a scan can be performed using the NdbRecAttr or NdbRecord
interface. Since there are good examples in the manual for the NdbRecAttr interface, you’ll see an example of
a scan using the NdbRecord interface. Listing 19-13 shows an example scan operation. The program includes
three scan examples—table scan, index scan, and update with table scan. Since the program is long, it’s
split into three parts for explanation. Listings 19-13 to 19-15 consist of one sample program as a whole. This
example program needs an index on the Population column of the world.City table.

Listing 19-13. Simple Example of the Scan Operation: First Part of Three

#include <NdbApi.hpp>
#include <iostream>
#include <string>
#include <stddef.h>

Figure 19-4. Typical program flow of scan operation with the NDB API

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

638

#include <cstdint>
#include <cstring>

const char *connectstring = "mgmhost";
const char *db = "world";

class NdbApiExample3 {
public:
 NdbApiExample3() : cluster_connection(NULL), myNdb(NULL),
 myDict(NULL), myTable(NULL) {};
 ~NdbApiExample3();
 int doTest();

private:
 struct CityRow {
 Int32 ID;
 char Name[35];
 char CountryCode[3];
 char District[20];
 Int32 Population;
 };

 std::string char_to_str(char *s, int max_len)
 {
 std::string str(s, max_len);
 return str.substr(0, str.find_last_not_of(" ") + 1);
 }

 void print_city(CityRow *city)
 {
 std::cout << "Id: " << city->ID
 << ", Name: " << char_to_str(city->Name, 35)
 << ", Code: " << char_to_str(city->CountryCode, 3)
 << ", District: " << char_to_str(city->District, 20)
 << ", Population: " << city->Population
 << std::endl;
 }

 int do_scan_read();
 int do_index_scan_read();
 int do_scan_update();

 void print_error(const NdbError &e, const char *msg)
 {
 std::cerr << msg << ": Error code (" << e.code << "): "
 << e.message << "." << std::endl;
 }

 Ndb_cluster_connection *cluster_connection;
 Ndb *myNdb;
 NdbDictionary::Dictionary* myDict;
 const NdbDictionary::Table *myTable;

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

639

 const NdbDictionary::Index *myIndex;
 const NdbDictionary::Column *myColumn;
 const NdbRecord *pkRecord, *valsRecord, *indexRecord;
};

int NdbApiExample3::doTest()
{
 // Step 1. Initialize NDB API
 ndb_init();

 // Step 2. Connect to the cluster
 cluster_connection = new Ndb_cluster_connection(connectstring);
 if (cluster_connection->connect(4 /* retries */,
 5 /* delay between retries */,
 1 /* verbose */)) {
 std::cerr << "Could not connect to MGMD." << std::endl;
 return 1;
 }

 if (cluster_connection->wait_until_ready(30, 0) < 0) {
 std::cerr << "Could not connect to NDBD." << std::endl;
 return 2;
 }

 // Step 3. Connect to 'world' database
 myNdb = new Ndb(cluster_connection, db);
 if (myNdb->init()) {
 print_error(myNdb->getNdbError(),
 "Could not connect to the database object.");
 return 3;
 }

 // Step 4. Get table metadata
 myDict = myNdb->getDictionary();
 myTable = myDict->getTable("City");
 myIndex = myDict->getIndex("Population", "City");
 myColumn = myTable->getColumn("CountryCode");
 if (myTable == NULL || myIndex == NULL || myColumn == NULL) {
 print_error(myDict->getNdbError(),
 "Could not retrieve database object.");
 return 4;
 }

 // Step 5. Define NdbRecord's
 NdbDictionary::RecordSpecification recordSpec[5];
 std::memset(recordSpec, 0, sizeof recordSpec);
 // Id
 recordSpec[0].column = myTable->getColumn("ID");
 recordSpec[0].offset = offsetof(struct CityRow, ID);

 // Name
 recordSpec[1].column = myTable->getColumn("Name");
 recordSpec[1].offset = offsetof(struct CityRow, Name);

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

640

 // CountryCode
 recordSpec[2].column = myTable->getColumn("CountryCode");
 recordSpec[2].offset = offsetof(struct CityRow, CountryCode);

 // District
 recordSpec[3].column = myTable->getColumn("District");
 recordSpec[3].offset = offsetof(struct CityRow, District);

 // Population
 recordSpec[4].column = myTable->getColumn("Population");
 recordSpec[4].offset = offsetof(struct CityRow, Population);

 int rssz = sizeof(recordSpec[0]);
 pkRecord = myDict->createRecord(myTable, recordSpec, 1, rssz);
 valsRecord = myDict->createRecord(myTable, recordSpec, 5, rssz);
 indexRecord = myDict->createRecord(myIndex, &recordSpec[4], 1, rssz);

 if (pkRecord == NULL || valsRecord == NULL || indexRecord == NULL) {
 print_error(myDict->getNdbError(), "Failed to initialize rssz.");
 return 5;
 }

 // Run tests. See lines of routines for details.
 int err = 0;
 if ((err = do_scan_read()) ||
 (err = do_index_scan_read()) ||
 (err = do_scan_update())) {
 std::cout << "Transaction failed due to error ("
 << err << ")." << std::endl;
 }
 return err;
}

int NdbApiExample3::do_scan_read()
{
 // Step 6. Start a new transaction
 NdbTransaction *myTransaction = myNdb->startTransaction();
 if (myTransaction == NULL) {
 print_error(myNdb->getNdbError(), "Could not start transaction.");
 return 6;
 }

 // Step 7. Prepare filter to be applied
 NdbInterpretedCode code(myTable);
 NdbScanFilter filter(&code);
 if (filter.begin(NdbScanFilter::AND) < 0 ||
 filter.cmp(NdbScanFilter::COND_LIKE,
 myColumn->getColumnNo(), "JPN", 3) < 0 ||
 filter.end() < 0) {
 print_error(myTransaction->getNdbError(), "Failed to get a filter.");
 myNdb->closeTransaction(myTransaction);
 return 7;
 }

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

641

 Uint32 scanFlags = NdbScanOperation::SF_TupScan;
 NdbScanOperation::ScanOptions options;
 options.optionsPresent =
 NdbScanOperation::ScanOptions::SO_SCANFLAGS |
 NdbScanOperation::ScanOptions::SO_INTERPRETED;
 options.scan_flags = scanFlags;
 options.interpretedCode= &code;

 // Step 8. Instruct NDB API to scan table
 NdbScanOperation *sop =
 myTransaction->scanTable(valsRecord,
 NdbOperation::LM_CommittedRead,
 NULL,
 &options,
 sizeof(NdbScanOperation::ScanOptions));
 if (sop == NULL) {
 print_error(myTransaction->getNdbError(),
 "Could not retrieve an operation.");
 myNdb->closeTransaction(myTransaction);
 return 8;
 }

 // Step 9. Send a request to data nodes
 if (myTransaction->execute(NdbTransaction::NoCommit) == -1) {
 print_error(myTransaction->getNdbError(), "Failed to prepare a scan.");
 myNdb->closeTransaction(myTransaction);
 return 5;
 }

 // Step 10. Fetch rows in a loop
 int check = 0;
 bool needToFetch = true;
 CityRow *row;
 while((check = sop->nextResult((const char**) &row,
 needToFetch, false)) >= 0) {
 if (check == 0) {
 // Row available
 needToFetch = false;
 print_city(row);
 } else if (check == 2) {
 // Need to fetch
 myTransaction->execute(NdbTransaction::NoCommit);
 needToFetch = true;
 } else if (check == 1) {
 // No more rows
 break;
 }
 }

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

642

 // Step 11. End transaction and free it
 if (check == -1) {
 print_error(myTransaction->getNdbError(), "Error during scan.");
 myNdb->closeTransaction(myTransaction);
 return 11;
 } else {
 myTransaction->execute(NdbTransaction::Commit);
 }
 myNdb->closeTransaction(myTransaction);
 return 0;
}

We skip the discussion for steps that do the same things as in the previous examples. Only parts specific
to a scan operation are explained in the following discussion.

Step 5. Define NdbRecords
The indexRecord variable is created using myIndex as the first argument of the NdbDictionary::Dictionary
::createRecord() function. This is because indexRecord is used for an index scan operation.

Step 7. Prepare the Filter To Be Applied
A variable of type NdbInterpretedCode is created from the NdbDictionary::Table instance. Then, a variable
of type NdbScanFilter is created from the NdbInterpretedCode instance. NdbScanFilter is the class to
define a filter.

The argument of the NdbScanFilter::begin() function is NdbScanFilter::AND, NdbScanFilter::OR,
NdbScanFilter::NAND, or NdbScanFilter::NOR.

This specifies the logical operator applied when there is more than one search condition defined in the
filter.

The call of the NdbScanFilter::cmp() function defines the filter to be applied. In this example,
the defined filter is used to fetch rows where the CountryCode column is JPN. The first argument of the
NdbScanFilter::cmp() function specifies the type of operation. While NdbScanFilter::COND_LIKE is
specified in this case, it is a condition type for strings. Table 19-6 lists the available condition types.

Table 19-6. Condition Types Defined in NdbScanFilter

Condition Type Data Type Description

COND_LE Numeric Less than or equal (<=)

COND_LT Numeric Less than (<)

COND_GE Numeric Greater than or equal (>=)

COND_GT Numeric Greater than (>)

COND_EQ Numeric Equal (=)

COND_NE Numeric Not equal (!=)

COND_LIKE String Like search for strings

COND_NOT_LIKE String Not like search for strings

(continuned)

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

643

When the like search is employed, you can search data in string columns using the ‘%’ or ‘_’ character
as wildcards just like in SQL. The NdbScanFilter class has other comparison functions—eq(), ne(), le(),
lt(), ge(), and gt()—as a human readable shorthand of cmp() with the specific condition type. To test if
the column is NULL or not, the NdbScanFilter class has the isnull() and isnotnull() functions, too.

NdbScanOperation::ScanOptions is a struct to options of scan. The interpreted code created by the
filter we just discussed and scan flags are passed to this struct in the example program. Scan flags specify
some additional properties of the scan, as described in Table 19-7. Although scan flags are defined in the
NdbScanOperation class, the class name is omitted in Table 19-7.

Table 19-7. Scan Flags

Flag Name Description

SF_TupScan Scan in the order of rows in the DBTUP kernel block.

SF_DiskScan Scan in the order of rows on disk.

SF_OrderBy Scan in the order of rows in the index. This is applicable to ordered index scan
operations only.

SF_OrderByFull Same as SF_OrderBy except that all key columns are added automatically to the read
bitmask.

SF_Descending Ordered index scan is done in descending order.

SF_ReadRangeNo Upon a multi-range scan, identifier of range is returned.

SF_MultiRange Multi-range scan is performed.

SF_KeyInfo Requests KeyInfo to be sent back to the caller, which is required for further
operation.

Condition Type Data Type Description

COND_AND_EQ_MASK BIT A column value equals the result of the bit operation

COND_AND_NE_MASK BIT A column value does not equal the result of the bit operation

COND_AND_EQ_ZERO BIT Result of bit operation is zero

COND_AND_NE_ZERO BIT Result of bit operation is a non-zero value

Table 19-6. (continued)

Step 8. Instruct the NDB API to Scan the Table
In this step, NdbTransaction::scanTable() is called to declare that the program is going to perform a table
scan using the NdbRecord interface. This is followed by NdbTransaction::execute() in Step 9. Be aware that
the argument is NoCommit, because scans need further operations.

Step 10. Fetch Rows in a Loop
NdbScanOperation::nextResult() fetches a row from the data nodes. A fetch from the data node is done in
a batch, then stored temporarily in a buffer in the NDB API library. When the second argument is true, the
fetch is done from the data node. Otherwise, a row is just retrieved from a buffer.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

644

When a row is fetched, NdbScanOperation::nextResult() returns 0. If fetch is done, but no more
matching rows are found, it returns 1. If it attempted to retrieve a row from the local buffer, but no rows are
available locally, it returns 2. When an error happens, it returns -1.

While it is possible to write a scan program by always specifying true for the second argument of NdbSc
anOperation::nextResult(), I do not recommend doing so. Batching is a very efficient method, and it can
improve the application performance dramatically.

This is a basic program flow of a scan operation. The scan operation is done in a similar way no matter
how complex it is. The example ordered index scan program is shown in Listing 19-14, which is continued
from Listing 19-13.

Listing 19-14. Simple Example of the Scan Operation: Second Part of Three

int NdbApiExample3::do_index_scan_read()
{
 // Step 1. Start a new transaction
 NdbTransaction *myTransaction = myNdb->startTransaction();
 if (myTransaction == NULL) {
 print_error(myNdb->getNdbError(), "Could not start transaction.");
 return 1;
 }

 // Step 2. Prepare filter to be applied
 NdbInterpretedCode code(myTable);
 NdbScanFilter filter(&code);
 if (filter.begin(NdbScanFilter::AND) < 0 ||
 filter.cmp(NdbScanFilter::COND_LIKE,
 myColumn->getColumnNo(), "JPN", 3) < 0 ||
 filter.end() < 0) {
 print_error(myTransaction->getNdbError(), "Failed to set a filter.");
 myNdb->closeTransaction(myTransaction);
 return 2;
 }

 Uint32 scanFlags =
 NdbScanOperation::SF_OrderBy | NdbScanOperation::SF_Descending;
 NdbScanOperation::ScanOptions options;
 options.optionsPresent =
 NdbScanOperation::ScanOptions::SO_SCANFLAGS |
 NdbScanOperation::ScanOptions::SO_INTERPRETED;
 options.scan_flags = scanFlags;
 options.interpretedCode= &code;

 // Step 3. Define index boundary
 CityRow low, high;
 low.Population = 1000000;
 high.Population = 2000000;
 NdbIndexScanOperation::IndexBound bound;
 bound.low_key= (char*)&low;
 bound.low_key_count = 1;
 bound.low_inclusive = true;
 bound.high_key = (char*)&high;
 bound.high_key_count =1 ;

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

645

 bound.high_inclusive = false;
 bound.range_no = 0;

 // Step 4. Instruct NDB API to scan index
 NdbIndexScanOperation *isop =
 myTransaction->scanIndex(indexRecord,
 valsRecord,
 NdbOperation::LM_Read,
 NULL,
 &bound,
 &options,
 sizeof(NdbScanOperation::ScanOptions));
 if (isop == NULL) {
 print_error(myTransaction->getNdbError(),
 "Could not retrieve an operation.");
 myNdb->closeTransaction(myTransaction);
 return 4;
 }

 // Step 5. Send a request to data nodes
 if (myTransaction->execute(NdbTransaction::NoCommit) == -1) {
 print_error(myTransaction->getNdbError(), "Failed to prepare a scan.");
 myNdb->closeTransaction(myTransaction);
 return 5;
 }

 // Step 6. Fetch rows in a loop
 int check = 0;
 bool needToFetch = true;
 CityRow *row;
 while((check = isop->nextResult((const char**) &row,
 needToFetch, false)) >= 0) {
 if (check == 0) {
 // Row available
 needToFetch = false;
 print_city(row);
 } else if (check == 2) {
 // Need to fetch rows
 myTransaction->execute(NdbTransaction::NoCommit);
 needToFetch = true;
 } else if (check == 1) {
 // No more rows
 break;
 }
 }

 // Step 7. End transaction and free it
 if (check == -1) {
 print_error(myTransaction->getNdbError(), "Error during index scan.");
 myNdb->closeTransaction(myTransaction);
 return 7;

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

646

 } else {
 myTransaction->execute(NdbTransaction::Commit);
 }
 myNdb->closeTransaction(myTransaction);
 return 0;
}

As you can see, the program in Listing 19-14 is very close to the scan program in Listing 19-13. The only
different part is the boundary definition in Step 3 and the operation type in Step 4.

Step 3. Define the Index Boundary
The NdbIndexScanOperation::IndexBound class is used to define a boundary of the index for the NdbRecord
interface. Two variables of the CityRow struct are used to specify the lower and upper bounds of the scanned
range of the index. The boundary is passed to an argument of the NdbTransaction::scanIndex() function,
as described in the next step. It is possible to apply the boundary after calling the NdbTransaction::scanIn
dex()the boundary argument as NULL. In this case, NdbIndexScanOperation::setBound() must be called to
set the boundary before calling NdbTransaction::execute().

Step 4. Instruct the NDB API to Scan the Index
In this example, NdbTransaction::scanIndex() is called to perform the ordered index scan, instead of
NdbTransaction::scanTable() in the previous example.

The last example of a scan operation involves updating rows during the scan. Listing 19-15 shows an
example program that updates rows along with the scan operation.

Listing 19-15. Simple Example of the Scan Operation: Third Part of Three

int NdbApiExample3::do_scan_update()
{
 // Step 1. Start a new transaction
 NdbTransaction *myTransaction = myNdb->startTransaction();
 if (myTransaction == NULL) {
 print_error(myNdb->getNdbError(), "Could not start transaction.");
 return 1;
 }

 // Step 2. Prepare filter to be applied
 NdbInterpretedCode code(myTable);
 NdbScanFilter filter(&code);
 if (filter.begin(NdbScanFilter::AND) < 0 ||
 filter.cmp(NdbScanFilter::COND_LIKE,
 myColumn->getColumnNo(), "JPN", 3) < 0 ||
 filter.end() < 0) {
 print_error(myTransaction->getNdbError(), "Failed to set a filter.");
 myNdb->closeTransaction(myTransaction);
 return 2;
 }

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

647

 Uint32 scanFlags = NdbScanOperation::SF_KeyInfo;
 NdbScanOperation::ScanOptions options;
 options.optionsPresent =
 NdbScanOperation::ScanOptions::SO_SCANFLAGS |
 NdbScanOperation::ScanOptions::SO_INTERPRETED;
 options.scan_flags = scanFlags;
 options.interpretedCode= &code;

 // Step 3. Instruct NDB API to scan table
 NdbScanOperation *sop =
 myTransaction->scanTable(valsRecord,
 NdbOperation::LM_Exclusive,
 NULL,
 &options,
 sizeof(NdbScanOperation::ScanOptions));
 if (sop == NULL) {
 print_error(myTransaction->getNdbError(),
 "Could not retrieve an operation.");
 myNdb->closeTransaction(myTransaction);
 return 3;
 }

 // Step 4. Send a request to data nodes
 if (myTransaction->execute(NdbTransaction::NoCommit) == -1) {
 print_error(myTransaction->getNdbError(), "Failed to prepare a scan.");
 myNdb->closeTransaction(myTransaction);
 return 4;
 }

 // Step 5. Update rows in a loop
 int check = 0;
 bool needToFetch = true;
 CityRow *row;
 while((check = sop->nextResult((const char**) &row,
 needToFetch, false)) >= 0) {
 if (check == 0) {
 // Row available
 needToFetch = false;
 CityRow newCity = *row;
 std::memcpy(&newCity.CountryCode, "ZPG", 3);
 const NdbOperation *uop =
 sop->updateCurrentTuple(myTransaction,
 valsRecord,
 (char*) &newCity);
 if (uop == NULL) {
 print_error(myTransaction->getNdbError(), "Failed update row.");
 myNdb->closeTransaction(myTransaction);
 return 5;
 }
 } else if (check == 2) {
 // Need to fetch rows

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

648

 myTransaction->execute(NdbTransaction::NoCommit);
 needToFetch = true;
 } else if (check == 1) {
 // No more rows
 break;
 }
 }

 // Step 6. End transaction and free it
 if (check == -1) {
 print_error(myTransaction->getNdbError(), "Error during scan update.");
 myNdb->closeTransaction(myTransaction);
 return 6;
 } else {
 myTransaction->execute(NdbTransaction::Commit);
 }
 myNdb->closeTransaction(myTransaction);
 return 0;
}

NdbApiExample3::~NdbApiExample3()
{
 // Step 7. Cleanup
 if (myNdb) delete myNdb;
 if (cluster_connection) delete cluster_connection;
 ndb_end(0);
}

int main(int argc, char *argv[])
{
 NdbApiExample3 ex;
 return ex.doTest();
}

The program in Listing 19-15 is mostly same as the one in Listing 19-13, except that rows are updated
inside the loop of fetching rows at Step 5. The way to update a row is very simple; you just call the NdbScanO
peration::updateCurrentTuple() function. As the name implies, it updates the latest fetched row by the
NdbScanOperation::nextResult() function by replacing the value of the row with new value. You can also
delete the current row using NdbScanOperation::deleteCurrentTuple() and lock the current row using Ndb
ScanOperation::lockCurrentTuple().

Error-Handling Considerations
The example programs in this section don’t have sufficient error-handling facilities. They are just examples;
the primary goal of these programs is ease of understanding. While the NDB API is a transactional database
manipulation API, transactions may fail for various reasons. The transaction theory guarantees that every
transaction ends in two states—COMMIT or ABORT. The former is a successful state, and the latter is a state
where the transaction is rolled back due to some error. The theory doesn’t guarantee that transaction will
succeed every time.

Thus, error handling, including a retry of the transaction, is required for NDB API applications just like with
SQL applications. To implement error-handling routines on an NDB API application, note the following points.

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

649

Acquiring Error Information
As you have seen in this section, error information can be referred using the NdbError struct instance, which
can be retrieved by calling the Ndb::getNdbError() function. Since it’s retrieved from the Ndb object, it is not
available before the Ndb object is retrieved to connect to the database. So you need separate error-handling
implementatiosn in the early stages of your application. While the getNdbError() function is implemented
on other classes than Ndb, all of them are created using the existing Ndb class object.

To implement a routine to retry transactions, it is necessary to judge if the unsuccessful transaction
is retriable. This can be done by examining the status member of the NdbError struct. If it is equal to
NdbError::TemporaryError, the transaction can be retried.

Transaction Is Automatically Rolled Back
In MySQL NDB Cluster, when a transaction failed for some reason, it is automatically rolled back and no
further operations are acceptable through the failed transaction. You need to close the transaction right
away and then retry the transaction using a new instance of NdbTransaction.

Insert Reasonable Wait Before Retry
Temporary errors won’t go away immediately, because the resources will not be available until other
transactions release their own. So, it is a good idea to insert some reasonable wait time before retrying a
transaction. Otherwise, the attempt to retry a transaction will likely to fail due to the same temporary error.

Together with the story so far in this section, you can write code to retry the transaction, as shown in
Listing 19-16. Note that this code is just conceptual. You need to write your own code to do the actual work.

Listing 19-16. Overview Concept Code to Retry Transactions on the NDB API

int exitCode = incomplete;
int retryCount = 10;
int retryDelay = 50;
while (retryCount-- > 0) {
 // Obtain a new transaction handle
 NdbTransaction myTransaction = myNdb->startTransaction();
 ... Write code to execute some operation here ...
 if (found_error) {
 const NdbError err = myNdb->getNdbError();
 // Judge if error is retriable
 if (err.status == NdbError::TemporaryError) {
 // Close transaction
 myNdb->closeTransaction(myTransaction);
 // Sleep before retry
 millisleep(retryDelay);
 continue;
 } else {
 exitCode = failure;
 break;
 }
 } else {
 exitCode = successful;
 }
}

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

650

In this section, you learned how to develop applications using the NDB API. You can modify data using
transactions on the NDB API. Transactions make development easier.

Operations described in this section, such as lookup and scan, are low-level functionalities. While
they are low-level, it is technically possible to implement high-level functionalities just like with SQL, by
combining low-level functionalities as building blocks. Even when possible, it will take more time than if
you’re developing an application using high-level APIs such as SQL. However, the effort will pay off if the
application requires superb performance.

In the next section, we discuss how to use ClusterJ, an API for the Java programming language. It is not
common to develop entire database applications in C++; it is sometimes used partially where performance
is important. Java is more widely used than C++ for database application development.

Accessing Data via ClusterJ
An official Java binding of the NDB API library, ClusterJ, has been available since the MySQL NDB Cluster 7.1
series. Although ClusterJ is a binding of the libndbclient library that calls the NDB API C++ functions through
the Java Native Interface (or JNI in short), use of ClusterJ is much different from the NDB API itself. ClusterJ
has an O/R mapper like interface. It uses ClusterJ much easier than the direct use of the NDB API.

Since Connector/J is available for Java applications to work with the SQL node, ClusterJ and
Connector/J can be used depending on the situation, just like C++ application can use the MySQL C API and
the NDB API.

A plugin for OpenJPA, a Java persistence project at The Apache Software Foundation, also exists, and
it’s called ClusterJPA. It automatically switches between the use of ClusterJ and Connector/J for the best
possible performance. We will not discuss ClusterJPA in this book, because it’s no longer supported as of
following versions of MySQL NDB Cluster: 7.2.30, 7.3.18, 7.4.16, and 7.5.7.

Installing ClusterJ
A separate package is available for the RPM and DEB package managers in the MySQL NDB Cluster 7.5
series. The package name includes the string “java”, like mysql-cluster-community-java-7.5.6-1.el7.x86_64.
rpm. In older versions, ClusterJ is included in the server RPM package, and all-in-one type package for other
package formats.

Since ClusterJ is a wrapper of the NDB API, the libndbclient library must also be installed on the same
host. Refer to the installation section of the NDB API earlier in this chapter.

To run ClusterJ programs, clusterj.jar must be added to the classpath. The clusterj.jar is typically
installed under /usr/share/mysql/java on RHEL or Debian-based operating systems, and it has a string
indicating the version number in its filename, like clusterj-7.5.6.jar. The path to the libndbclient library is
also required to be passed to JVM via the -Djava.library.path option. It is typically installed under /usr/
lib/mysql. So, the command to run a ClusterJ application looks like this:

shell$ java -classpath /usr/share/mysql/java/clusterj-7.5.6.jar:. \
> -Djava.library.path=/usr/lib/mysql ClusterJAppName

When compiling a ClusterJ application, clusterj-api.jar must be passed to the javac via the classpath.
The command to compile ClusterJ application looks like this:

shell$ javac -classpath /usr/share/mysql/java/clusterj-api-7.5.6.jar \
> ClusterJAppName.java

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

651

Writing a ClusterJ Application
To access the cluster, the first thing to do is acquire an instance of the com.mysql.clusterj.Session class.
This is the counterpart to the Ndb class of the NDB API. An instance of the Session class is retrieved from
com.mysql.clusterj.SessionFactory, which is retrieved from com.mysql.clusterj.ClusterJHelper.

You get data access via an interface with annotations. Mapping between the class member and column
is accomplished by annotations. The interface must have a getter and setter for each column. Once the getter
and setter are declared, ClusterJ identifies that the column should exist in the table. ClusterJ assumes that
column names are lowercase. If the column name includes uppercase characters, annotation must be added
just before the getter and setter declaration. It is necessary to write one interface for every table accessed by
the application.

ClusterJ Example
Listings 19-17 to 19-19 show a ClusterJ example program. While they consist of three files, the main routine
is shown in Listing 19-18 and called ClusterJSimple.java. We don’t discuss the details of what is done in this
example program. The purpose of the example program is to let you see the overall use of ClusterJ. Read the
comments in the program to understand what is done at each stage of the program.

Listing 19-17. City.java: Interface Definition for the City Table

import com.mysql.clusterj.annotation.Column;
import com.mysql.clusterj.annotation.Index;
import com.mysql.clusterj.annotation.PersistenceCapable;
import com.mysql.clusterj.annotation.PrimaryKey;

// Step 1. Define an interface
@PersistenceCapable(table="City")
public interface City {
 @PrimaryKey
 @Column(name="ID")
 int getId();
 void setId(int id);

 @Column(name="Name")
 String getName();
 void setName(String name);

 @Column(name="District")
 String getDistrict();
 void setDistrict(String district);

 @Column(name="CountryCode")
 @Index(name="CountryCode")
 String getCountryCode();
 void setCountryCode(String countryCode);

 @Column(name="Population")
 int getPopulation();
 void setPopulation(int population);
}

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

652

Listing 19-18. ClusterJSimple.java: Example ClusterJ Program

import com.mysql.clusterj.ClusterJHelper;
import com.mysql.clusterj.SessionFactory;
import com.mysql.clusterj.Session;
import com.mysql.clusterj.Query;
import com.mysql.clusterj.query.QueryBuilder;
import com.mysql.clusterj.query.QueryDomainType;

import java.io.*;
import java.util.Properties;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;

public class ClusterJSimple {

 public static void main (String[] args)
 throws java.io.FileNotFoundException,
 java.io.IOException,
 com.mysql.clusterj.ClusterJException {

 // Step 2. Load properties from file
 File propsFile = new File("clusterj.properties");
 InputStream inStream = new FileInputStream(propsFile);
 Properties props = new Properties();
 props.load(inStream);

 // Step 3. Get a session instance
 SessionFactory factory = ClusterJHelper.getSessionFactory(props);
 Session session = factory.getSession();

 // Step 4. Create a new City instance and add one row
 City newCity = session.newInstance(City.class);
 newCity.setId(4080);
 newCity.setName("Tochigi");
 newCity.setDistrict("Tochigi");
 newCity.setCountryCode("JPN");
 newCity.setPopulation(140000);
 session.persist(newCity);
 System.out.println("Saved Tochigi-shi.");

 // Step 5. Find a row with ID = 1532
 City whatsThis = session.find(City.class, 1532);
 System.out.println("Name of city where ID = 1532 is "
 + whatsThis.getName().trim() + ".");

 // Step 6. Find all rows with CountryCode = "JPN". Watch Step 9
 List<City> cities = findByCountryCode(session, "JPN");
 System.out.println("Cities in Japan.");
 int n = 1;

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

653

 for (City c: cities) {
 System.out.println((n++) + ":" + c.getName().trim());
 }

 // Step 7. Updating a row: increment population of Tokyo by 1000000
 City tokyo = whatsThis;
 tokyo.setPopulation(tokyo.getPopulation() + 1000000);
 session.updatePersistent(tokyo);

 // Step 8. Delete a row
 City tochigi = session.newInstance(City.class);
 tochigi.setId(4080);
 session.deletePersistent(tochigi);
 System.out.println("Deleted Tochigi-shi");
 }

 // Step 9. Scan example using a query builder
 static List<City> findByCountryCode(Session session, String cc)
 throws com.mysql.clusterj.ClusterJException {
 QueryBuilder builder = session.getQueryBuilder();
 QueryDomainType<City> domain =
 builder.createQueryDefinition(City.class);
 domain.where(domain.get("countryCode")
 .equal(domain.param("cc")));
 Query<City> query = session.createQuery(domain);
 query.setParameter("cc", cc);
 printExplain(query);
 return query.getResultList();
 }

 // 10. Print execution plan
 static <T> void printExplain(Query<T> q) {
 Map<String, Object> explain = q.explain();
 for (String k: explain.keySet()) {
 System.err.println(k + ":" + explain.get(k).toString());
 }
 }
}

Listing 19-19. clusterj.properties: Example Connection Properties

com.mysql.clusterj.connectstring=mgmhost
com.mysql.clusterj.database=world

Since ClusterJ uses the NDB API internally, the programming style of ClusterJ is close to the NDB API.
If you are familiar with the NDB API, you can use ClusterJ without struggling. Read the manual when you
develop an application using ClusterJ: https://dev.mysql.com/doc/ndbapi/en/mccj.html.

https://dev.mysql.com/doc/ndbapi/en/mccj.html

Chapter 19 ■ MySQL NDB CLuSter aS a NoSQL DataBaSe

654

Summary
The chapter discussed the NoSQL interface available for MySQL NDB Cluster. The major APIs covered in this
chapter were memcached, the NDB API, and ClusterJ.

As you see, development in MySQL NDB Cluster is very flexible. Such flexibility is one of the strongest
advantages of MySQL NDB Cluster. In general, a single application has various parts—one part may need
complex queries, the other part may need very fast data access. It is possible to satisfy the performance and
functionality needs using a variety of MySQL NDB Cluster APIs.

The only remaining topic to consider is performance, which is discussed in the next chapter.

655© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8_20

CHAPTER 20

MySQL NDB Cluster and
Application Performance Tuning

Performance is a very important topic for database management systems. A database management system
without sufficient performance is useless. It is also true for MySQL NDB Cluster. This chapter discusses how
to improve the performance of MySQL NDB Cluster.

MySQL NDB Cluster Tuning
To leverage computer resources, it is very important to set up the system properly, so that MySQL NDB
Cluster utilizes the underlying processor, disk, network, and so forth. This section discusses how to configure
the system so it’s optimized for MySQL NDB Cluster.

Disabling Powersave and CPU Frequency Scaling
While powersave and CPU frequency scaling are good for power consumption, they are not good in terms
of performance on MySQL NDB Cluster. They are even bad for the predictability of response time. When
powersave and/or CPU frequency scaling are enabled, the CPU clock speed is adjusted according to the
current system load. A CPU core may go into the idle state if there are not tasks to do on the CPU core.

For example, Intel CPUs have several power modes, called C-states, to save power. The name of each
state defined in the C-state is labeled with the letter C followed by one digit and an extra letter if applicable.
For example, C0, C1, C1E, C2 … and so forth. The bigger the number, the deeper the CPU core sleeps and the
more circuits are powered off. C0 indicates the core is operating and isn’t sleeping. When the system is idle
for a while, the operating system lets the CPU core go into idle C-state mode, such as C1.

The most significant problem when using the powersave mode with MySQL NDB Cluster is that it takes
a long time to wake up sleeping CPU cores. It also takes time to increase the CPU clock speed when it’s
operating in a low clock speed and determines that the CPU core is busy. These time lags greatly impact the
performance and response times of MySQL NDB Cluster.

To prevent such negative impacts due to idle states and CPU frequency scaling on Linux, use the
performance CPU governor. The way to configure CPU governor depends on the distribution. Refer to the
distribution’s manual for details of CPU governor configurations. The following command is an example of
how to set the governor to perform well on systems where the cpupower utility is installed. The command is
common among distributions in which the cpupower utility is installed.

shell$ sudo cpupower frequency-set --governor performance

https://doi.org/10.1007/978-1-4842-2982-8_20

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

656

Typically, the configuration file for the cpupower command is located at /etc/default/cpupower. Edit
the file and set governor='performance' on your hosts. The default value is ondemand in most cases, which
causes an idle CPU core to go into idle C-state.

Optionally, if you are using Intel CPUs, it is possible to disable the idle state completely by setting the
kernel parameter intel_idle.max_cstate=0. It is typically set in the line that starts with GRUB_CMDLINE_
LINUX_DEFAULT= of /etc/default/grub on systems using grub as the boot loader. (You need to create the actual
grub configuration file from using the grub-mkconfig command after editing /etc/default/grub.)

On Windows, you can choose the High Performance power plan from the Power Options screen of the
Windows Control Panel, as shown in Figure 20-1. Note that the High Performance setting is hidden initially.
You can expand the plan by clicking Show Additional Plans.

On Windows 10, you can open the Power Options screen by opening Windows Settings, then clicking on
the Systems menu. Choose Power & Sleep and then Additional Power Settings, as shown in Figure 20-2.

Figure 20-1. Setting the high performance power plan on Windows

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

657

Note that power consumption will increase when you’re using high performance mode. However, it is
a worthy cost to pay, because the performance gain by disabling powersave and CPU frequency scaling is
significant. We need more server machines to achieve the same level of performance if powersave is enabled.
Running more server machines is much more expensive than disabling powersave with fewer server machines in
terms of both money and electric power. Even when you’re running more server machines with powersave mode
enabled, the response time is usually worse than running fewer server machines with powersave mode disabled.

CPU Binding Strategy
CPU binding, or processor affinity, is the most significant factor for impacting the performance of the data
node. However, configuring CPU binding is not an easy task. Performance degrades when you improperly
bind threads to the CPUs. This section discusses how to maximize performance using CPU binding.

Hyper-Threading and CPU Binding
Hyper-threading (HT) is a commonly implemented in recent CPUs, such as Core series and Xeon series.
With HT, multiple virtual CPU cores are identified on every physical CPU core from an operating system.
A virtual CPU core behaves as if it were a physical CPU core. Since each virtual core can run a thread on it,
more than one thread runs concurrently on the one physical CPU core.

Figure 20-2. Power and sleep options on Windows 10

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

658

HT may improve throughput of an application that runs many threads in parallel by sharing CPU
hardware resources efficiently among threads. On the other hand, application response may be sacrificed by
HT as a side-effect.

Sharing one physical core between threads brings poorly affects the MySQL NDB Cluster data node,
because the number of signals that can be processed by one thread decreases when threads share one physical
core. Such slow threading can be a bottleneck of the entire cluster. Don’t bind more than one busy thread to
virtual cores sharing the same physical core. The two threads will disturb the execution of each other.

 ■ Caution Never bind more than one busy thread to a virtual code that shares the same physical core.

CPU Usage and Binding
It is important to balance the load of the CPU cores to maximize the performance of MySQL NDB Cluster.
To achieve this goal, it is necessary to monitor the CPU utilization and adjust the configuration accordingly.

While typical busy thread types are ldm and tc, other type of threads may also be busy by chance. See
Chapter 4 for further information about thread types. To identify which thread is busy, the ndbinfo.cpustat
table comes in handy. It displays CPU utilization for each thread. The table shows CPU resource utilization
bound for each thread. In other words, the table is useful only when the thread is bound to specific the CPU,
because it is nonsense to see CPU utilization for a thread that runs on an arbitrary CPU core.

Listing 20-1 shows example output from the ndbinfo.cpustat table.

Listing 20-1. Inspecting CPU Utilization Using the cpustat Table

mysql> SELECT node_id, thr_no, thread_name, OS_user, OS_system, OS_idle FROM cpustat JOIN
threads USING (node_id, thr_no) WHERE node_id=1;
+---------+--------+-------------+---------+-----------+---------+
| node_id | thr_no | thread_name | OS_user | OS_system | OS_idle |
+---------+--------+-------------+---------+-----------+---------+
1	0	main	0	1	99
1	8	send	1	3	99
1	1	rep	0	0	100
1	2	ldm	65	2	33
1	3	ldm	0	12	88
1	4	tc	0	10	90
1	5	tc	0	10	90
1	6	recv	0	7	93
1	7	recv	1	5	95
+---------+--------+-------------+---------+-----------+---------+
9 rows in set (0.08 sec)

According to this output, the data node has two ldm threads, two tc threads, two recv threads, one rep
thread, one main thread, and one send thread. Only the one ldm thread with id=2 appears to be busy; the tc
and recv threads consume CPU time. It is worth it to increase the number of ldm threads on this cluster. CPU
usage of two ldm threads differ significantly because one handles the primary fragment of one table, and
the other handles the backup fragment. Load will be balanced when the table has the READ_BACKUP=1 table
comment and workload type is read.

http://dx.doi.org/10.1007/978-1-4842-2982-8_4

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

659

While ndbinfo.cpustat displays the CPU utilization reported by the operating system, it may
sometimes be unreliable, because it will include the CPU utilization caused by other programs, including
interrupts handled inside the kernel. It will cause imbalanced CPU utilization among threads even if they
are the same types of threads. In such case, you need to verify if the CPU utilization is really caused by an
imbalanced workload within a data node.

To analyze the workload of each thread, the ndbinfo.threadstat table is useful. The table shows
statistics per thread such as a count of signals handled by each thread. Listing 20-2 is an example of a stored
procedure to see if workloads are balanced. If specific threads handle more signals than other, same types of
threads, the workload is imbalanced.

Listing 20-2. Stored Procedure to Examine Load Balance Among Threads

delimiter //
CREATE PROCEDURE sigcount(t INT)
 BEGIN
 DROP TEMPORARY TABLE IF EXISTS tmpstat;
 CREATE TEMPORARY TABLE tmpstat ENGINE MEMORY
 SELECT * FROM ndbinfo.threadstat;
 SELECT SLEEP(t) FROM DUAL;

 SELECT STRAIGHT_JOIN
 s2.node_id,
 s2.thr_no,
 s2.thr_nm,
 (s2.os_now - s1.os_now) AS time_ms,
 (s2.c_loop - s1.c_loop) AS loops,
 (s2.c_exec - s1.c_exec) AS execs,
 (s2.c_wait - s1.c_wait) AS waits,
 (s2.c_exec - s1.c_exec) / (s2.c_loop - s1.c_loop) AS spl --signals_per_loop
 FROM
 tmpstat s1 INNER JOIN
 ndbinfo.threadstat s2 USING (node_id, thr_no)
 ORDER BY
 s1.node_id, s1.thr_no;

 DROP TEMPORARY TABLE tmpstat;
END;//
delimiter ;
mysql> CALL sigcount(5);
+----------+
| SLEEP(t) |
+----------+
| 0 |
+----------+
1 row in set (5.03 sec)

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

660

+---------+--------+--------+---------+-------+--------+-------+---------+
| node_id | thr_no | thr_nm | time_ms | loops | execs | waits | spl |
+---------+--------+--------+---------+-------+--------+-------+---------+
1	0	main	5046	3412	3531	1299	1.0349
1	1	rep	5046	1780	804	951	0.4517
1	2	ldm	5046	35380	608922	1628	17.2109
1	3	ldm	5046	46202	56861	12600	1.2307
1	4	tc	5046	35006	133170	11096	3.8042
1	5	tc	5046	35935	133070	11817	3.7031
1	6	recv	5047	27803	108	0	0.0039
1	7	recv	5045	20830	108	0	0.0052
2	0	main	5026	3219	2631	1257	0.8173
2	1	rep	5026	1741	803	948	0.4612
2	2	ldm	5027	48346	56283	13616	1.1642
2	3	ldm	5027	38280	634545	1727	16.5764
2	4	tc	5027	35159	132148	11385	3.7586
2	5	tc	5026	37624	134823	12528	3.5834
2	6	recv	5026	27683	107	0	0.0039
2	7	recv	5026	20722	107	0	0.0052
+---------+--------+--------+---------+-------+--------+-------+---------+
16 rows in set (5.07 sec)

Query OK, 0 rows affected (5.07 sec)

The spl (signals per loop) column indicates the approximate business of each thread. In Listing 20-2,
the busiest thread type is ldm. Only the ldm thread with id=2 is loaded heavily; the other ldm thread is loaded
only a little. The tc threads seem somewhat busy, but not as busy as the ldm threads.

Interrupts and CPU Binding
Yet another consideration when binding threads to CPUs is whether you should avoid binding to CPUs that
are busy due to interrupts. An interrupt is a way for hardware or software to notify the CPU when immediate
action is required. Each single interrupt finishes quickly and requires very few CPU resources. However,
interrupts can add up and tons of interrupts may use lots of CPU resources. High-speed devices may cause
lots of interrupts; for example, a high-IOPS NVMe connected SSDs and high-speed 10 gigabyte network
interface card will cause a high volume of interrupts.

Linux systems are often configured so that specific CPUs handle interrupts by default. Such
configuration may cause problems like these:

•	 Execution of the user program may be impeded by busy interrupts.

•	 CPU resources are insufficient to handle all the interrupts from busy devices.

To prevent such problems, irqbalance is useful. It can spread the load caused by interrupts into all or
specific CPUs. The mechanism to bind interrupts to CPUs is called the interrupt affinity. It is important not to
bind interrupts to too few CPUs. Otherwise, the speed of interrupt handling becomes a bottleneck. Note that
not all devices support interrupt affinity being bound to multiple CPUs. The irqbalance just sets up interrupt
affinity if the device supports it. A network interface card often supports Receive Side Scaling (RSS), also known
as multi-queue receive. When RSS is enabled, interrupts caused by received packets on the network interface
card can be redirected to multiple CPUs. Otherwise, it is not possible to spread workload among multiple CPUs.

To secure good performance of MySQL NDB Cluster, it is important not to bind interrupts and busy data
node threads such as ldm and tc to the same CPU. The easiest way to avoid congestion between interrupts

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

661

and busy threads is to spread interrupts to all the CPUs. In this case, all the CPUs will share the workload for
interrupts, and the required resources needed per CPU will be small. The CPU resources required to handle
interrupts will never be short, because all CPUs are involved in handling interrupts. This configuration is
easy; however, it cannot achieve optimal performance.

Optimal performance can be achieved only when interrupts and busy threads are bound to separate
CPUs explicitly. In this case, busy threads in a data node can monopolize the whole resource of the given
CPU core. So, a bound thread can process the most signals on the given system.

When binding interrupts and threads to CPUs explicitly, you need to ensure that CPU resources bound
to interrupts is sufficient. To see CPU utilization caused by interrupts on Linux, show the content of the
/proc/stat file. The sixth column of each CPU line indicates the time taken to handle interrupts. To analyze
interrupts, the CONFIG_IRQ_TIME_ACCOUNTING configuration flag must be enabled in your kernel. To determine
if the flag is enabled, execute the following command:

shell$ gunzip -c /proc/config.gz | grep CONFIG_IRQ_TIME_ACCOUNTING

If the CONFIG_IRQ_TIME_ACCOUNTING flag is disabled, you must compile the kernel from the source
to enable it. While the way to build the Linux kernel is beyond scope of this book, it is not very difficult.
Refer your Linux distribution manuals for kernel compilation details. You might even face a problem when
executing this command if /proc/config.gz doesn’t exist. It should be because the CONFIG_IKCONFIG and
CONFIG_IKCONFIG_PROC configuration flags are disabled in your kernel. If the /proc/config.gz file doesn’t
exist, you need to recompile the kernel first.

On a macOS, users are not allowed to change interrupt settings. CPUs that handle interrupts are
automatically selected. Even worse, you cannot retrieve separate CPU usage consumed by interrupts. It is
included in the total CPU usage. To monitor system CPU time on a macOS, choose Activity Monitor and
open Window ➤ CPU History from menu. Figure 20-3 shows a screenshot of CPU History window of Activity
Monitor on two CPU core Mac machines.

Figure 20-3. CPU History screen of Activity Monitor on two CPU core Mac machines

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

662

If you don’t mind installing free software, htop works very nicely. If you have homebrew, a popular
third-party package manager for macOS, installed on your system, you can install the htop command as
follows:

shell$ brew install htop

See the following web site for more information about homebrew.

https://brew.sh/

Figure 20-4 shows example output of the htop command.

At the top-left side of the htop command output in Figure 20-4, CPU usage is displayed per CPU core.
On Windows, you can see CPU usage for interrupts per CPU core using the Performance Monitor.

Figure 20-5 shows the Performance Monitor when recording performance statistics data.

Figure 20-4. htop command output example

https://brew.sh/

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

663

To see system performance, you must record the statistics data first. To record the data, select System
Performance from the side menu under Data Collector Sets ➤ System, and then click triangular icon at
the toolbar. Wait for a while and click the square icon at the right of the triangular icon. Then, you can
see a report by choosing Reports ➤ System ➤ System Performance. Figure 20-6 shows a screenshot of
Performance Monitor displaying a report.

Figure 20-5. Recording system performance statistics data using Performance Monitor

Figure 20-6. Displaying a system performance report on Performance Monitor

Performance indicators are grouped into categories. You can find Processor Interrupts by CPU under
the CPU ➤ Process category. According to the numbers in Figure 20-6, the number of interrupts are
somewhat imbalanced. CPU 2 handles approximately eight times more interrupts than CPU 5.

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

664

It is possible to specify interrupt affinity for network interface cards on Windows if the device supports
Receive Side Scaling (RSS). In general, interrupt affinity is especially important for network interface devices.
So, enabling RSS is often sufficient for interrupt affinity purposes on Windows systems. The following
command enables RSS from a Windows shell.

PS C:\> netsh int tcp set global rss=enabledUsing Real-Time Scheduler

When using CPU binding, it is a good idea to employ the real-time scheduler and assign high priority
to the bound threads. When using the real-time scheduler, threads run uninterrupted until a thread with a
higher priority is ready to run, or until the given thread reaches sleep or wait events. This allows the real-time
thread to utilize CPU resources at a maximum.

To run a thread as a real-time thread on Linux and POSIX systems using an unprivileged user, you must
configure the resource limit. You need to edit /etc/security/limits.conf and add a line like the following:

mysql - rtprio 99

This assumes that ndbd or ndbmtd is executed using the mysql user. Substitute the username if you run a
data node using a different user. Without the appropriate resource configuration, a data node cannot start.

Alternatively, it is possible to assign a higher priority to a given thread via the thread_prio parameter
in ThreadConfig. The thread_prio parameter adjusts the niceness (the priority of process scheduling in the
UNIX world) of the given thread on Linux and UNIX systems, which needs a different resource limit than the
real-time scheduler. In the ThreadConfig option, the realtime and thread_prio parameters are mutually
exclusive. If you can use the real-time scheduler, it’s a better choice than specifying thread_prio. See
Chapter 4 for more information about the TheadConfig option.

The real-time scheduler for the ThreadConfig option is also available for Windows. Setting thread
priority is a different process from UNIX systems. It is done by calling the SetThreadPriority() Windows
API function. When a real-time scheduler is selected, the THREAD_PRIORITY_TIME_CRITICAL priority is set
for the given thread. See the following page for further details about the SetThreadPriority() Windows API
function.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686277(v=vs.85).aspx

Mix Bound Thread and Unbound Thread
Even if you want to bind some threads to certain CPUs, you can leave other threads unbound. It is not
necessary to bind all threads. Whether it is better to bind a thread depends on the type of thread. ldm and
tc are the primary candidates to be bound, because they must respond quickly and must handle as many
signals as possible. The recv and send threads are the next candidates. When they are bound to CPUs and
have a real-time scheduler, communication between the nodes will be more responsive.

In my opinion, other threads are not necessary to bind to CPUs. Optimal performance using given
hardware can be achieved by mixing bound threads and unbound threads. It is desirable to set the real-time
scheduler to bound threads. On the other hand, don’t set the real-time scheduler to unbound threads. Just
configure a sufficient number of threads when they are unbound. As discussed earlier in this section, it is
also important not to bind threads to CPUs where interrupts are handled.

It is strongly recommended to use benchmarks to monitor actual system performance. The benefit
of benchmarking is that it reveals actual data from real systems. Determine the best makeup of threads by
examining benchmark results. Observed real data is always more reliable than hypotheses formulated on
from the “armchair”.

http://dx.doi.org/10.1007/978-1-4842-2982-8_4
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686277(v=vs.85).aspx

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

665

Disk Type and File System Block Size
Using a fast disk is very important for MySQL NDB Cluster, even when only in-memory tables are used,
because logs and checkpoints are written to disk to ensure persistence of data. Writing speed to the
NDBCluster tables is limited by the redo logging speed. Local checkpoint (LCP) also limits writing speed,
because new redo log entries cannot be written to the redo log if the redo log space runs out. In such cases,
it is necessary to free space occupied by old redo log entries, but it’s not possible to free old redo log entries
until the on-going LCP completes.

Disk speed is more important when using disk data tables, because they not only write to disk but also
read data from disk. For disk data tables, it is necessary to write undo logs in addition to the data file and
redo log. Thus, you need better disk bandwidth in this case than with in-memory tables. It is very important
to employ fast disks when using disk data tables.

There are several considerations when optimizing disk I/O performance:

•	 Adjust the block size (or cluster size on NTFS) of the file system to 32KB when
formatting it. This is because the page size of data memory and disk data table is
32KB in MySQL NDB Cluster.

•	 Use the deadline or noop I/O scheduler on Linux. They perform better for database
systems than the cfq I/O scheduler, which is the default for the Linux kernel. Note
that some Linux distribution sets use deadline as the default I/O scheduler.

•	 Append the noatime mount option on Linux and UNIX systems. It will improve file
read performance, as the last access time is not recorded. This is important when
you’re restarting a data node and using disk data tables.

•	 You should leave some free space on the disk. In general, the closer the disk is filled
to capacity, the slower its performance becomes. It is recommended to leave at least
20% free space unallocated to any disk partitions.

•	 Enable the Trim command on SSDs, which is a command to mark unused area as
discarded. Trim may improve disk performance because it can omit unnecessary
disk writes.

•	 On Windows, Trim is supported since Windows 7. Trim is enabled by default. To
check if Trim is enabled, run fsutil behavior query DisableDeleteNotify
from the command prompt or a Windows shell with administrator privilege. If
the value is 1, Trim is disabled. In such cases, enable it with the fsutil behavior
set DisableDeleteNotify 0 command. If the value is not set, Trim is enabled.
For more information, see https://www.tenforums.com/tutorials/40028-enable-
disable-trim-support-solid-state-drives-windows-10-a.html.

•	 On macOS, Trim is supported only for Apple branded SSDs from mac OS X
10.6.8 (Snow Leopard). As of macOS X 10.10.4 (Yosemite), Trim is supported on
all brand SSDs. To enable Trim on third-party SSDs, execute sudo trimforce
enable.

https://www.tenforums.com/tutorials/40028-enable-disable-trim-support-solid-state-drives-windows-10-a.html
https://www.tenforums.com/tutorials/40028-enable-disable-trim-support-solid-state-drives-windows-10-a.html

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

666

•	 On Linux, Trim is supported as of Linux Kernel version 2.6.33. On Linux systems,
whether Trim is enabled by default or not depends on the distribution. For
example, Trim is enabled by default on Ubuntu as of 14.04. Before enabling it,
run hdparm -I /dev/sdX to verify if your device supports the Trim command.
To enable it on Linux systems, add discard to the mount option. If you are using
LVM, set issue_discard = 1 in the /etc/lvm/lvm.conf file. You also need to
configure the trim option for the file system in addition to LVM. If you prefer
to use periodic batched trim, use the fstrim command from cron. Otherwise,
add the discard option in the mount options. For more information, see https://
access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/
Performance_Tuning_Guide/chap-Red_Hat_Enterprise_Linux-Performance_
Tuning_Guide-Storage_and_File_Systems.html.

 ■ Note Don’t enable Trim on dm-crypt, because it increases security risks. it leaks minimal data from freed
blocks. at least it may allow attackers to extrapolate file system type in use when Trim is enabled. See the
following page for more information: http://asalor.blogspot.jp/2011/08/trim-dm-crypt-problems.html.

SQL Tuning
This section discusses how to maximize performance by tuning SQL. The previous section was all about
performance tuning on the MySQL NDB Cluster side. This section discusses performance tuning from
the application point of view. In general, writing efficient SQL statements is very important, because
performance can be many times faster if you understand the characteristics of the database management
system and write the SQL accordingly.

Commit Sizing
The most significant characteristic to be aware of is that MySQL NDB Cluster is optimized for many small
transactions. When modifying a given number of rows, it is much faster to modify them in lots of smaller
transactions in parallel, rather than modifying all the rows with one big transaction. So, if you want to update
tons of rows, separate the modifications into multiple transactions, and keep every transaction as small
as possible. Execute the small transactions in parallel, if possible. MySQL NDB Cluster will complete the
modifications much faster and will make the data nodes less busy.

Of course, separating one big modification into multiple smaller pieces may break atomicity. If
atomicity is a must, don’t break a transaction into smaller ones no matter how large. Be aware that a
transaction may fail due to the upper limit of MaxNoOfConcurrentOperations or RedoBufferSize if you
execute a large enough transaction. Even if atomicity is must, but it is not possible to raise the upper limits
of these options, you will have to separate the transaction into smaller pieces.

What is the optimal size of a transaction, then? It depends on the configuration or the table definitions.
If a transaction is for a online transaction processing (OLTP) type workload, limit the number of rows
modified in the transaction to 1,000 approximately. If it’s a batch or online analytical processing (OLAP) type
workload, limit the number of rows to 100,000.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Storage_and_File_Systems.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Storage_and_File_Systems.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Storage_and_File_Systems.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Storage_and_File_Systems.html
http://asalor.blogspot.jp/2011/08/trim-dm-crypt-problems.html

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

667

Non-Transactional Batch Processing
If you need to modify many rows at a time, but it is not necessary to be transactional, you can use
the ndb_use_transaction option on the SQL node. By default, this option is ON, and transactions are
enabled. If you set it to OFF, transaction support is disabled and modifications will be much faster. This
option can be set at the session level. So, you can disable this option on a command basis like in the
following example:

mysql> SET ndb_use_transaction = OFF;
mysql> DELETE FROM world.City;
mysql> SET ndb_use_transaction = ON;

Disabling transactions will break transaction properties such as atomicity. So, you cannot roll back an
SQL command that is only partially executed due to problems. If you disable ndb_use_transaction, the
modification must be recoverable or retrievable, like in the following situation:

•	 In a batch process, it creates a table and loads huge amounts of data into the table
from file.

•	 Deletes unused rows matching some criteria, such as certain date ranges.

In these cases, you can repeat the same query if it fails.

Engine Condition Pushdown Optimization
One of the most powerful features of MySQL NDB Cluster is the capability to filter rows at the data nodes.
It will minimize the network bandwidth usage between the data node and SQL node, and maximize the
performance because filtering is done in parallel on data nodes. Filtering can be done whether there are
suitable indexes or not. This feature is called engine condition pushdown optimization on the SQL node.
Engine condition pushdown is enabled by default.

When engine condition pushdown is used, it is indicated in the Extra field of the EXPLAIN command,
as shown in Listing 20-3. Note that pushed condition is displayed on the Extra field in parentheses.
The condition isn’t displayed in MySQL NDB Cluster 7.4 or older.

Listing 20-3. Query Execution Plan with Engine Condition Pushdown Enabled

mysql> EXPLAIN SELECT * FROM City WHERE District = 'Tochigi'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4079
 filtered: 10.00
 Extra: Using where with pushed condition (`world`.`City`.`District` = 'Tochigi')
1 row in set, 1 warning (0.00 sec)

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

668

To disable engine condition pushdown, adjust the optimizer_switch option, as shown in Listing 20-4.
In general, there is no advantage to disabling it.

Listing 20-4. Disabling Engine Condition Pushdown Optimization

mysql> set optimizer_switch='engine_condition_pushdown=off';
Query OK, 0 rows affected (0.00 sec)

mysql> EXPLAIN SELECT * FROM City WHERE District = 'Tochigi'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4079
 filtered: 10.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

Even though engine condition pushdown is fast and useful, you must be aware that all rows are
scanned on the data nodes. This skews the query statistics. For example, Rows_examined in the slow query
log indicates only rows returned to the SQL node. Rows scanned but filtered on the data nodes are excluded
from the statistics. So, when you look for candidate queries to be optimized, engine condition pushdown
may make your job more difficult.

Note that engine condition pushdown can be used together with indexes. If engine condition
pushdown is used with indexes, unmatched rows are filtered at data nodes. This is pretty much like the index
condition pushdown optimization, and more efficient than engine condition pushdown with a table scan. So,
having a good index is still very important even when engine condition pushdown takes effect.

Optimizing Joins
In very old versions of MySQL NDB Cluster, join was a glass jaw for MySQL NDB Cluster, because the SQL
node only had the nested-loop-join (NLJ) algorithm and its variant block-nested-loop join (BNLJ) algorithm.
These algorithms required many traversals between the SQL node and data nodes. So, joins were very slow
and caused tons of workload on the data nodes. In recent versions of MySQL NDB Cluster, more powerful
join algorithms became available.

Pushdown Join Optimization
A join is a reasonably fast operation for MySQL NDB Cluster, because joins can be pushed down to the data
nodes just like search criteria can be pushed down to the data nodes. With the pushdown join optimization,
a join is performed inside the data nodes, and the SQL node just receive the joined rows from the data nodes.

A pushdown join is added as of the MySQL NDB Cluster 7.2 series. It was initially called adaptive query
localization (AQL) or select-project join (SPJ). The latter name remains in the kernel block name that handles
pushdown joins. To use pushdown joins, the ndb_join_pushdown option must be enabled; it is enabled by
default.

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

669

Pushdown joins have some limitations. To enable pushdown joins, you need to satisfy these conditions:

•	 Key columns on joined tables must have identical data types.

•	 Queries must not reference BLOB or TEXT columns.

•	 Queries must not include explicit locking clauses—FOR UPDATE and LOCK IN
SHARE MODE.

•	 The access method for the child (inner) table must be ref, eq_ref, or const for inner
joins, and only eq_ref for outer joins. This means join key columns must be indexed
for inner joins, and must have unique hash indexes for outer joins.

•	 There is limited support for pushdown joins and GROUP BY queries.

•	 Experimental user-defined partitioning types (other than [LINER] KEY) are not
supported.

As you see, table design is very important when using pushdown joins. Use identical data types for
identical data across tables and define the appropriate indexes on the join key columns.

When a pushdown join is employed, the Extra field of the EXPLAIN command will display the
pushdown join, as shown in Listing 20-5. If engine condition pushdown optimization is not employed,
execute SHOW WARNINGS, which will show the reason.

Listing 20-5. Query Execution Plan with a Pushdown Join

mysql> EXPLAIN SELECT * FROM City JOIN Country ON Country.Capital = City.Id\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: Country
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 239
 filtered: 100.00
 Extra: Parent of 2 pushed join@1; Using where with pushed condition
(`world`.`Country`.`Capital` is not null)
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p0,p1,p2,p3
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: world.Country.Capital
 rows: 1
 filtered: 100.00
 Extra: Child of 'Country' in pushed join@1
2 rows in set, 1 warning (0.00 sec)

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

670

In example of Listing 20-5, the Extra field for the Country table includes information about the engine
condition pushdown in addition to the pushdown join, even though no WHERE clause exists in this query.
This is because the optimizer finds that the Country.Capital column is defined as nullable but cannot
be NULL in this query as it’s joined with a non-nullable column. In such cases, the optimizer thinks it can
efficiently filter out rows from the parent table using an additional search condition.

Batched-Key-Access Join Optimization
Batched-key access join (BKAJ) is yet another fast join algorithm available with MySQL NDB Cluster. It is
a variant of Block Nested Loop Join (BNLJ). BNLJ is an improved version of Nested Loop Join (NLJ), which
reduces the number of scans for an inner table if the table has no suitable indexes. The algorithm for BKAJ
is identical to BNLJ, except that access to the inner table is batched using the multi-range read (MRR)
optimization.

To describe the BKAJ algorithm, we will discuss the NLJ and BNLJ algorithms first. NLJ is a very simple
algorithm that performs joins like a loop. The following code is a conceptual algorithm of a join of two tables.

for each row in t1 matching where condition {
 for each row in t2 matching join key and where condition {
 send joined row to client
 }
}

If the inner table has an appropriate index to fetch rows, NLJ is very fast even if lots of rows are returned
from the outer table and the inner table must be accessed many times. Otherwise, it will be very inefficient.
Suppose that the inner table doesn’t have suitable indexes, and the query fetches 1 million rows from the
outer table, then inner table is scanned 1 million times. If the inner table is large, the query is unlikely to end
in a practical amount of time.

To overcome this performance problem, BNLJ was introduced. With BNLJ, rows fetched from an outer
table are first stored into a buffer, called the join buffer. Rows from an outer table will be fetched until the
buffer becomes full. Then, it fetches rows one by one from an inner table using the search criteria, and tests
if a fetched row can be joined to rows in the join buffer. This dramatically reduces the number of scans of the
inner table.

Figure 20-7 is a conceptual view of the BNLJ algorithm. As you see in Figure 20-7, BNLJ is only useful
when no suitable keys are available on the inner table.

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

671

BNLJ is a very strong algorithm when the inner table doesn’t have suitable indexes and a scan is
needed. However, there are some more problems to be solved. Even if the inner table has suitable indexes
for the join, accessing the inner table is not necessarily optimal. BKAJ solves the performance issue in such
cases; access to the inner table is not scanned, but not efficient enough.

In theory, the order of rows in separate tables is irrelevant. So, access to the inner table will be done in
random order with NLJ, which is often inefficient. In MySQL NDB Cluster, accessing the inner table row by
row is not efficient even if the inner table has a suitable index for the join, because row access operations
involve network traversal. To overcome this problem, BKAJ is useful.

With BKAJ, the rows are first fetched from the outer table and stored into the join buffer. Then, BKAJ
retrieves the key values from the buffered rows. Next, the rows are fetched from the inner table using the
MRR optimization. With MRR, rows are fetched using multiple key values sorted in key order. Finally, rows
fetched from the inner table are joined with the buffered rows. Since access to the inner table is batched
using multiple key values, this type of join is called a batched-key-access join.

BKAJ is disabled by default. To use BKAJ, modify the optimizer switch so that the optimizer can choose
BKAJ, as shown in Listing 20-6. Note that the pushdown join is disabled in Listing 20-6, because it’s more
efficient than BKAJ. If a pushdown join is available, the optimizer tends to choose it over BKAJ. The example
query in Listing 20-6 is identical to Listing 20-5. The only difference is the query execution plan. You can see
Using join buffer (Batched Key Access) in the Extra field of the City table in Listing 20-6.

Figure 20-7. Conceptual view of the BNLJ algorithm

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

672

Listing 20-6. Enabling BKAJ and Examining the Query Execution Plan

mysql> set optimizer_switch='batched_key_access=on';
Query OK, 0 rows affected (0.00 sec)

mysql> SET ndb_join_pushdown = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> EXPLAIN SELECT * FROM City JOIN Country ON Country.Capital = City.Id\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: Country
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 239
 filtered: 100.00
 Extra: Using where with pushed condition (`world`.`Country`.`Capital` is not null)
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p0,p1,p2,p3
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: world.Country.Capital
 rows: 1
 filtered: 100.00
 Extra: Using join buffer (Batched Key Access)
2 rows in set, 1 warning (0.00 sec)

Offloading Joins
If it is not possible to employ efficient join algorithms, consider to setup replication from MySQL NDB
Cluster to InnoDB. InnoDB generally has good join performance, and it is possible to spread read load
among multiple slaves using a 1:N topology. See Chapter 6 for more information about the procedure to set
up replication from MySQL NDB Cluster to InnoDB.

Optimizing Partitioning
Understanding and adjusting partitioning on MySQL NDB Cluster is very important. In MySQL NDB Cluster,
data is spread into data nodes row by row. Each table is split into partitions, and each partition belongs to
only one node group unless the table is fully replicated. So, it is possible to identify which data node stores
the target row. Thus, the partition key also works as a distribution key among the data nodes.

http://dx.doi.org/10.1007/978-1-4842-2982-8_6

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

673

Characteristics of Partitioning on MySQL NDB Cluster
For the time being, the only supported partitioning method by MySQL NDB Cluster is KEY partitioning, including
its variant LINER KEY partitioning. KEY partitioning is similar to HASH partitioning, except for the expression to
calculate the key value. For HASH partitioning, a user specifies a partition expression. On the other hand, for KEY
partitioning, MySQL Server provides a partition expression; MySQL NDB Cluster uses MD5() for this purpose.

There are several differences as to how partition pruning works in the NDBCluster storage engine from
InnoDB:

•	 All partitions are scanned in parallel in the NDBCluster storage engine. The scan
speed is fast even if partition pruning isn’t employed.

•	 The partitioning expression cannot be changed manually, and the number of
partitions is limited by the system configuration. See Chapter 2 for more information
about partition balancing.

User-Defined Partitioning
By default, the primary key works as a partition key. It is not a bad choice in most cases. However, in certain
cases, choosing a different column as a partition key can be a better choice. For example, the world.City
table in the world example database may have to be partitioned using CountryCode, instead of its primary
key ID, because the world.City table is often queried for a specific country.

MySQL NDB Cluster can partition a table differently than the default. This functionality is called
user-defined partitioning. User-defined partitioning is useful in the following scenario:

•	 A value for the partition key is often specified as an equality comparison for a range
scan using additional search criteria.

•	 A table is joined as the inner table using a partition key.

In these cases, partition pruning can be applied when querying user-defined partitioned tables. It
makes the query more efficient, thus it improves the scalability of your application.

For example, the query in Listing 20-7 must scan all partitions according to its execution plan. You
can see that all partitions are listed in the partitions field of the EXPLAIN output. All the data nodes will be
accessed by this query.

Listing 20-7. A Query That Scans All Partitions

mysql> EXPLAIN SELECT * FROM City
 -> WHERE CountryCode='JPN' AND Name LIKE 'T%'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p0,p1,p2,p3
 type: ref
possible_keys: CountryCode
 key: CountryCode
 key_len: 3
 ref: const
 rows: 3
 filtered: 11.11
 Extra: Using where with pushed condition (`world`.`City`.`Name` like 'T%')
1 row in set, 1 warning (0.00 sec)

http://dx.doi.org/10.1007/978-1-4842-2982-8_2

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

674

Now consider changing the table definition, as shown in Listing 20-8. In this example, the primary key
and partition definition change. The partition key for the City table has changed from the ID column to the
CountryCode column.

Listing 20-8. Changing Table Definition of the City Table

mysql> ALTER TABLE City MODIFY ID INT NOT NULL, DROP PRIMARY KEY;
Query OK, 4079 rows affected (2.27 sec)
Records: 4079 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE City ADD PRIMARY KEY (ID, CountryCode)
 -> PARTITION BY KEY (CountryCode);
Query OK, 4079 rows affected (0.88 sec)
Records: 4079 Duplicates: 0 Warnings: 0

With the table definition in Listing 20-8, the same query as in Listing 20-7 will have a different execution
plan, as shown in Listing 20-9.

Listing 20-9. An Example Execution Plan for a User-Defined Partitioned Table

mysql> EXPLAIN SELECT * FROM City
 -> WHERE CountryCode='JPN' AND Name LIKE 'T%'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p2
 type: ref
possible_keys: CountryCode
 key: CountryCode
 key_len: 3
 ref: const
 rows: 3
 filtered: 11.11
 Extra: Using where with pushed condition (`world`.`City`.`Name` like 'T%')
1 row in set, 1 warning (0.00 sec)

You can see that only p2 is scanned by the query in Listing 20-9, because it has an explicit value for the
partition key CountryCode. This query can be parallelized with the execution plan in Listing 20-9 more than
the execution plan in Listing 20-7, because less workload will be caused by the scan.

User-defined partitioning also works with joins. Listing 20-10 shows an example execution plan for a
join when the City table isn’t user-defined partitioned. You can see that all partitions must be scanned to
look for rows matching the given condition CountryCode = 'JPN'.

Listing 20-10. Execution Plan for a Join Without User-Defined Partitioning

mysql> EXPLAIN SELECT * FROM City JOIN Country ON
 -> Country.Code = City.CountryCode WHERE Country.Code = 'JPN'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: Country

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

675

 partitions: p2
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 3
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p0,p1,p2,p3
 type: ref
possible_keys: CountryCode
 key: CountryCode
 key_len: 3
 ref: const
 rows: 3
 filtered: 100.00
 Extra: NULL
2 rows in set, 2 warnings (0.00 sec)

When the City table is user-defined partitioned, the query execution plan looks like Listing 20-11.

Listing 20-11. Execution Plan for a Join with User-Defined Partitioning

mysql> EXPLAIN SELECT * FROM City JOIN Country ON
 -> Country.Code = City.CountryCode WHERE Country.Code = 'JPN'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: Country
 partitions: p2
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 3
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: p2
 type: ref

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

676

possible_keys: CountryCode
 key: CountryCode
 key_len: 3
 ref: const
 rows: 3
 filtered: 100.00
 Extra: NULL
2 rows in set, 2 warnings (0.00 sec)

Now, you can see that only p2 is accessed on both tables in Listing 20-11. This is very efficient in terms
of network traversal. When optimized node selection is enabled, the query can be solved by accessing only
one data node. We discuss optimized node selection later in this section.

Figure 20-8 depicts which partitions are accessed by this query. The left one is the case without user-
defined partitioning. The right one is the case with user-defined partitioning. The effect of user-defined
partitioning becomes more significant when the cluster has more data nodes.

The drawback to user-defined partitioning is that primary key definition must be changed in most
cases. This is due to a limitation of MySQL Server; all unique indexes must include all the columns that are
part of the partition key. This limitation is required because MySQL Server doesn’t support global indexes
for partitioned tables. Changing the primary key (or secondary unique index) may be unacceptable in most
cases, because it would loosen the unique constraints. If the unique constraint for the original unique index
is a must, user-defined partitioning cannot be used.

Figure 20-8. How tables are accessed by a join with user-defined partitioning and without it

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

677

Read from Backup Replica and Fully Replicated Tales
As of the MySQL NDB Cluster 7.5 series, it is possible to adjust the partition balancing. See Chapter 2 for
more information about partition balancing.

When a partition balance is employed and you’re reading from a backup replica, a read workload may
be spread more efficiently among data nodes than the default balance. Even though it is an interesting
feature added to MySQL NDB Cluster 7.5, I think the effect of reading from a backup replica is not significant,
except when the number of replicas is two, with the two data nodes set up and it works like fully replicated
tables.

On the other hand, the effect of fully replicated tables, also added to MySQL NDB Cluster 7.5, is
significant. When a table is fully replicated, every data node has all data of that table. So, any read query can
be solved by accessing only one data node. As a trade-off, write performance against fully-replicated tables
will be much worse than non-fully replicated tables, because modifications must be synchronized to all data
nodes. The write overhead is larger when the cluster has more data nodes.

Fully replicated tables are suitable for tables that have the following characteristics:

•	 Data that rarely changes.

•	 Tables that are read very frequently from an application.

•	 Tables that are often joined with other tables.

•	 The data is small.

Optimizing Access from SQL Node to Data Node
It is also important to optimize the access from the SQL node to data nodes to maximize the performance.
The SQL node must send requests to the data nodes and receive responses from the data nodes every time it
is executing queries.

Connection Pooling
When an SQL node is running on a machine with many CPU cores, it is worth to consider increasing the
number of connections between the SQL node and the data nodes, because a single instance of the NDB API
will cause lock contention among the threads.

To increase the number of connections between the SQL node and data nodes, configure the ndb_
cluster_connection_pool option in my.cnf. This option cannot be changed online. You need to restart the
SQL node after changing it.

The default value for this option is 1. Increasing this option may increase the throughput of SQL
handling for the given SQL node. While the maximum allowed value is 63 for this option, 4 is sufficient for
most cases. Don’t set it too big. Benchmark your application with a different ndb_cluster_connection_pool
value and find the best setting for the application and the current cluster installation.

To increase this option, sufficient free slots for SQL nodes must be secured in config.ini. In other words,
for the management and data nodes, each connection from ndb_cluster_connection_pool looks like a
different SQL node. Refer to Chapter 10 for the procedure to add SQL nodes.

Optimized Node Selection
An arbitrary data node can be used as the transaction coordinator (TC) when executing transactions on data
nodes. It is important to choose an appropriate TC to maximize performance of transactions in terms of
response and throughput.

http://dx.doi.org/10.1007/978-1-4842-2982-8_2
http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

678

To minimize the overhead required for the communication between the SQL node and data nodes,
MySQL NDB Cluster has a functionality called distribution awareness. It’s a functionality to choose the TC
based on the distribution of rows for the very first query within a transaction. If the query is looked up based
on its distribution key, choosing the TC as the same host where the target row resides is the best choice,
because no extra network communication is required to solve the query.

Figure 20-9 is a non-optimal node selection for a lookup query based on the distribution key; the TC
and the data node where the target row exists don’t match. In this case, the TC must send a signal to another
data node to request to send the row data.

 ■ Tip the distribution key can be the primary key for an implicitly partitioned table or the partition key for a
user-defined partitioned table.

Figure 20-10 shows an optimal node selection; the TC and the data node where the target row exists
match. In this case, the lookup query based on the distribution key can be solved by just accessing one
data node.

Figure 20-9. Non-optimal, distribution-unaware node selection

Figure 20-10. Optimal distribution-aware node selection

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

679

To let the SQL node select the TC based on the distribution, the ndb_optimized_node_selection option
must be set to 2 or 3. 3 is the default. This option may take a value from 0 to 3, defined as follows:

•	 0: Distribution-aware node selection is not done. TC is selected in a round-robin
fashion.

•	 1: Distribution-aware node selection is not done. TC is selected based on the
network hops between the SQL node and the data node. If the SQL node and the
data node reside in a same host, the data node is the closest to this SQL node, so it is
always chosen as the TC.

•	 2: The SQL node first attempts to choose the TC based on distribution awareness.
If the given query cannot prune the target partition, such as a scan without a
user-defined partition, it falls back to the same behavior as 0.

•	 3: Same as 2, except that it falls back to 1 instead of 0.

In most cases, you don’t have to change this option from the default. On the other hand, you need to
consider the following points when you write transactions:

•	 Execute a query that accesses only one partition at the very beginning of each
transaction. Look up or scan the partition key over a user-defined partitioned table.

•	 Apply user-defined partitioning if possible. It will increase the chances of executing
the whole transaction within only one data node.

•	 Distribution-aware node selection is done by examining the first statement of each
transaction. If a transaction includes many statements, the distribution-aware node
selection will have little effect.

•	 Distribution-aware node selection may even cause bad performance in certain
cases. For example, suppose that the first query in a given transaction accesses a
table with only one row. In such case, the same node is selected as the TC for the
given transaction. This causes imbalanced workload among data nodes if
ndb_optimized_node_selection=3. It is worth to changing it to 0 or 1.

Adding Nodes
When the hardware resources are not sufficient for the ongoing workload, it might be time to add new nodes
to the cluster. You can add any type of node online to the existing cluster. Refer to Chapter 10 for more details
about adding nodes. There are two choices—adding data nodes and/or SQL nodes. Data nodes must be
added when facing the following problems:

•	 The application needs more capacity.

•	 Accessing the table data is the major bottleneck.

Whether performance will be improved by adding data nodes or not depends on the access patterns
from your application, as described:

•	 Performance of lookups using a unique hash index is likely to be improved by adding
data nodes.

•	 Performance of scans against user-defined partitioning is likely to be improved by
adding data nodes, because such scans access only a certain data node.

http://dx.doi.org/10.1007/978-1-4842-2982-8_10

Chapter 20 ■ MySQL NDB CLuSter aND appLiCatioN perforMaNCe tuNiNg

680

•	 Performance of scans without user-defined partitioning, which return many rows,
is likely to be improved by adding data nodes, because such scans are performed in
parallel on all data nodes.

•	 Performance of scans without user-defined partitioning, which return just a few
rows, is unlikely to be improved by adding data nodes, because all nodes must be
involved to return just a few rows. This type of operation causes serious overhead.
So, adding data nodes may make the performance worse.

On the other hand, performance is often improved by just adding extra SQL node and spreading loads
among them. SQL node can be a bottleneck, because it consumes lots of CPU resources. Parsing, optimizing,
and executing queries are CPU-intensive workloads. If the performance of the data nodes is high, many SQL
nodes can be required to fully utilize the potential of data nodes.

Using NoSQL API in Conjunction with SQL
If the response of simple queries is important, consider using a NoSQL API instead of SQL. It can achieve
much quicker response times and much higher throughput than SQL. In MySQL NDB Cluster, it is possible
to access the same data from different APIs, such as memcached, NDB API, and ClusterJ.

Writing applications using only NoSQL can be very difficult, because the NoSQL API is a low-level
API with very little overhead. Mixing SQL and NoSQL can achieve a good balance between development
efficiency and performance.

Summary
This chapter discussed the key points to improving the performance at the system level and at the
application development level. Performance is always the most significant issue for database application
development, because any application without sufficient performance is useless.

When using MySQL NDB Cluster, the underlying system must be configured properly, and MySQL NDB
Cluster must be configured so that it can utilize the computer resources efficiently. The configuration of the
CPU is especially important, because the load of MySQL NDB Cluster is CPU intensive, except for the I/O
required for checkpointing and disk data tables related to I/O.

The way to write queries is also an important issue with database applications. Since database
management systems have their own characteristics, it is important to understand what the database system
is good at. MySQL NDB Cluster has various optimization algorithms and functionalities, as discussed in this
chapter. When you face a performance problem, review this chapter and find a way to improve it.

681© Jesper Wisborg Krogh and Mikiya Okuno 2017
J. W. Krogh and M. Okuno, Pro MySQL NDB Cluster, https://doi.org/10.1007/978-1-4842-2982-8

��������� A
Adaptive query localization (AQL), 666
ALTER TABLE

algorithm and lock type, 291
explicit column format, 290–291
INPLACE algorithm, 290
in-place schema change, 291
schema changes, version 7.2, 292

API and SQL nodes, 15, 320, 336
Arbitration, 69
Arbitration rank, 72
Asynchronous replication, 176
Atomicity, Consistency, Isolation,

Durability (ACID), 6, 40, 43, 229, 601
Audit logs, 514
Automatic partitioning, 31

��������� B
Backups

backup ID, 256–257
configuration, 260–261
description, 252–253
features, 252
implementation

backup process, 254
filenames, 253
metadata, 254
table data, 254
transaction log, 254

monitoring, 258–260
starting and aborting, 255–256

Batched-key access join (BKAJ) algorithm, 668–670
Binary logging, 197, 270–271, 280
Block-nested-loop join (BNLJ) algorithm, 666,

668–669

��������� C
Cardinality, 297
Certification authority, 382

Client utilities, 248–249
ClusterJ

application, 649
clusterj.properties, 651
ClusterJSimple.java, 650
installation, 648
query builder, 651

Cluster logs
configuration options

log destinations, 544
memory report frequency, 544
startup status report frequency, 545

log categories, 545–546
severity levels, 547

Configurations
command-line options and my.cnf, 85
config.ini, 85
restart types, 87
SQL node options

ArbitrationRank, 128
BatchByteSize, 129
BatchSize, 129
DefaultOperationRedoProblemAction, 129
HostName, 128
MaxScanBatchSize, 129
NodeId, 128
TotalSendBufferMemory, 130

TCP transporter options
HostName1, HostName2, 131
NodeId1, NodeId2, 131
OverloadLimit, 132
ReceiveBufferMemory, 132
SendBufferMemory, 131

Conflict detection and resolution, NDB cluster
replication

application modifications
fixing conflicts, 228
monitoring, 228
timestamp-based and epoch-based

methods, 227
updating timestamp columns, 227

cautions and limitations, 228

Index

■ INDEX

682

methods
NDB$EPOCH(), 208–210
NDB$EPOCH2() and NDB$EPOCH2_

TRANS(), 211–212
NDB$EPOCH_TRANS(), 211
NDB$MAX(column_name), 205–206, 208
NDB$MAX_DELETE_WIN(column_

name), 208
NDB$OLD(column_name), 203–205

monitoring exceptions tables, 221
monitoring status variables, 219–220
multi-master replication, 198–201
read operations, 212
setting up

binlog_type column values, 216
configure options, 213–214
epoch-based methods, 216
exceptions table, creation, 217–219
mysql.ndb_replication system table, 215
NDB$EPOCH2 Method, 226
NDB$EPOCH_TRANS Method, 221, 223–226
target table creation, 219
timestamp-based methods, 216

��������� D, E
Database accessing, SQL

error-handling techniques
Errno, 604
error codes, 606
error message, 604
retrieve error information, 604
retry algorithm in C, 601–602
retry algorithm in Java, 603
SQLSTATE, 604–605

SQL node connection
application instance, 593–594
load balancing, connector/J, 594–595
ProxySQL, 600

transaction handling, NDB cluster
tables, 600–601

Data node logs, 547
Data node options, configurations

backup options
BackupDataBufferSize, 119, 120, 260, 261
BackupDataDir, 118, 253
BackupDiskWriteSpeedPct, 118, 260
BackupLogBufferSize, 120, 260, 261
BackupMaxWriteSize, 119, 260
BackupMemory, 120, 261
BackupReportFrequency, 120, 260
BackupWriteSize, 119, 260
CompressedBackup, 118, 255, 260

Checkpointing
CompressedLCP, 106
DiskCheckpointSpeed, 107
DiskCheckpointSpeedInRestart, 107
FileSystemPath, 105, 588
FragmentLogFileSize, 42, 63, 105,

106, 112, 171
InitFragmentLogFiles, 106
MaxDiskWriteSpeed, 107, 108, 111, 118, 260
MaxDiskWriteSpeedOtherNode

Restart, 107, 109, 321, 322, 530
MaxDiskWriteSpeedOwnRestart, 107, 109,

321, 322, 530
MinDiskWriteSpeed, 107, 108, 111, 112,

118, 260, 322, 530–532
NoOfFragmentLogFiles, 42, 63, 105, 106, 112
NoOfFragmentLogParts, 42, 105, 106,

112, 113
ODirect, 107
TimeBetweenEpochs, 51, 110, 211, 212, 216
TimeBetweenEpochsTimeout,

110, 558, 559
TimeBetweenGlobalCheckpoints, 43, 110,

216, 558
TimeBetweenLocalCheckpoints, 109, 110

configuration strategy, 127
CPU properties

hyperthreading, 117
interrupts, 116
power saving, 116

DataDir, 93
disk object options

DiskIOThreadPool, 123
DiskPageBufferMemory, 123
FileSystemPathDataFiles, 121
FileSystemPathDD, 121
FileSystemPathUndoFiles, 122
InitialLogFileGroup, 122
InitialTableSpace, 123

heartbeat and watchdog options
ArbitrationTimeout, 126
HeartbeatIntervalDbApi, 18, 125
HeartbeatIntervalDbDb, 8, 124
HeartbeatOrder, 125
StartPartialTimeout, 126, 321, 323, 324
StartPartitionedTimeout, 126, 321, 323–325
TimeBetweenWatchDogCheck, 125

HostName, 92
logging options

MemReportFrequency, 126, 127, 544, 545
StartupStatusReportFrequency, 127, 543, 545

memory data storage options
DataMemory, 94
IndexMemory, 94
LockPagesInMainMemory, 95

Conflict detection and resolution,
NDB cluster replication (cont.)

■ INDEX

683

Numa, 96
SharedGlobalMemory, 95
StringMemory, 95

multi-threading
LockExecuteThreadToCPU, 113
LockMaintThreadsToCPU, 114
MaxNoOfExecutionThreads, 25, 78, 112–113
ThreadConfig, 23, 25, 114–116

NodeId, 92
NoOfReplicas, 26, 27, 93
redo log size, 111–112
schema object options

MaxNoOfAttributes, 97
MaxNoOfOrderedIndexes, 98
MaxNoOfTables, 97
MaxNoOfTriggers, 98
MaxNoOfUniqueHashIndexes, 98

ServerPort, 92
total memory consumption

array of schema, 104
buffers, 104
global buffers, 103
program image, 103
transaction objects, 104

transaction options
MaxNoOfConcurrentOperations, 100
MaxNoOfConcurrentScans, 100
MaxNoOfConcurrentTransactions, 99
MaxNoOfLocalScans, 101
MaxParallelScansPerFragment, 101
RedoBuffer, 102
RedoOverCommitCounter, 102
RedoOverCommitLimit, 102
TransactionDeadlockDetection

Timeout, 101
transporter options, 120–121

Data nodes, 14, 67
BLOB, JSON, and TEXT data types, 55
data memory and index memory, 52
durability

duplicating data, 41
GCPs, 43
LCPs, 42
redo logs, 42

internal architecture
epochs, 51, 177, 178, 211
job buffer, 49–50
kernel blocks, 45–47
master node, 52
memory usage, 44
send and receive buffers, 50
signals, 49
triggers, 51

NDB file system, 62–63
node groups, 29–30

on-disk data, 53–54, 587, 588, 590
partitions

automatic, 31
balancing, 32–33
distribution, 33–40
fully replicated tables, 33
types, 30
user-defined partitioning, 32

replicas
MySQL NDB Cluster 7.5, 27–28
primary and backup, 26

restarts and processes, 43
schema objects

ndb_desc utility, 58–61
ndb_show_tables utility, 56–58

single-threaded vs. multi-threaded, 23, 25–26
typical problems

cluster log, 549
core files, 553
error log, 551
GCP stop, 558–559
LCP watchdog timeout, 556
NDB error reporter utility, 554
network partitioning, 559–560
node failures, 549
node log, 550–551
swap insanity, 556–558
trace files, 551–552
unplanned shutdown, entire system, 560
watchdog timeout, 554–555

Defragmentation, 296–297
Designing tables

data types, 572
disk data tables

architecture, 587
configuration options, 588
CREATE TABLESPACE command, 590
creation, 590–591
limitations, 587
logfile group, 588–589
monitoring, 591

foreign key constraints, 582–583
indexes

HASH keyword, 577
ndb_desc command, 576–577
ordered index, 573
primary key, 576–577
secondary unique hash index, 574–575
unique hash index, 571–572

limits, 592
NDB cluster tables, 569–571
ndb_desc command output, 584
normalization, 591
objects requirement, 582
retrieving table metadata, 585

■ INDEX

684

SHOW CREATE TABLE command
output, 583–584

table size
ndb_size.pl command, 580
sizer command, 580–581

T-tree index, 578–579
Disaster recovery, 71
Disk data tables

memory consumption, 82
performance, 82
storage requirements, 82

Disk page buffer, 527–528
Distributed privileges

backup restoring, 391–392
disabling, 389–391
downgrades, 391
enabling, 387–389
grant tables, 387
ndbcluster_dist_priv_tables view, 387
ndb_dist_priv.sql Script, 385
root@localhost Password, recovering, 392–393
stored programs, 386

Distribution awareness, 676
Downgrades, 353

��������� F
Features, MySQL NDB Cluster

ACID compliant transactions, 6
auto-failover, 7
auto partitioning and auto sharding, 7
conflict resolution, 8
foreign keys, 6
geographical replication, 8
high availability, 7
horizontal scalability, 7
online operations, 8
SQL and NoSQL access, 7

Foreign keys, 6, 230
Fragmentation, 296
Full data restore, 273

��������� G
Geographic replication, 71
Global checkpoints (GCPs), 43

��������� H
Hardware load balancer, 595
High availability

data node, 67–68
failure handling and arbitration,

data node, 19–20

heartbeats, 18
management nodes, 68
shared nothing architecture, 16–17
SQL nodes, 68

Hyper-threading (HT), 655

��������� I, J
Index statistics

ANALYZE TABLE, 301
behavior, auto updates, 303
index variables, 306
internals, 299–300
IsManager index, 299
Name index, 299
NDBCluster tables, 300
ndb_index_stat utility, 301–302
ndb_index_stat_option variable, 303–304
ndb_index_stat_status variable, 305–306
primary key, 299
tables, 298

Information schema
FILES table, 459
monitoring related data, 458
MySQL system information tables, 458
ndb_transid_mysql_connection_map table, 462
privilege information, 457
schema information, 457

Initial node restart, 43, 87, 310–311
Initial system restart, 87, 311, 346–348
Installation verification

configuration files, 171
initial startup, 171–172
status checking, 172

��������� K
Kernel blocks, 45, 47
Key-value store (KVS), 612

��������� L
Load balancer, 596

administrative databases and
tables, 598–599

load balancing connection, 596
MySQL servers configuration, 600
ProxySQL

admin interface, 598–599
building, 597
configuration layers, 597
monitors, 599

types, 595–596
Local checkpoints (LCPs), 42
Locks report, 532

Designing tables (cont.)

■ INDEX

685

Logical backups, 273
consistency considerations, 262
creation

CHANGE MASTER TO command, 265
--lock-all-table option, 266
mysqldump, 263, 265
mysqlpump, 262, 265–266
MySQL Workbench, 263
single user mode, 264
tables and data, 262
use cases, 263

limitations, 261
MySQL Workbench, 267–268
privileges, 268–269

��������� M
MacOS native package installation

component selection screen, 164
MySQL NDB Cluster DMG file, 161
MySQL NDB Cluster installer, 162, 163
MySQL preference pane, 166

Major release upgrade, 352
Management nodes, 14, 68

configuration, 91
options

ArbitrationRank, 89
DataDir, 88
HostName, 88
LogDestination, 89–91, 544
NodeId, 88
PortNumber, 89

typical problems, 565
memcached API

mapping to NDB cluster tables
apply settings, 619
container, 615, 616
key_prefixes table, 618
NDBCluster tables, 619
performance tuning, 620
predefined cache policies, 616, 617
server roles, 618

NDB-memcached
access method, 611
architecture, 612
installation, 611
memcached server, 612–614
ndbmemcache schema, 611–612

Monitoring
baseline establishment, 442–441
MEM (see MySQL Enterprise Monitor (MEM))
NDB cluster reports

configuration report, 538, 540–542
disk page buffer, 527–528
disk write speed, 530, 532

locks, 536
log buffers and spaces report, 536, 538
memory usage, 526
transporters, 529–530

operating system, 451–453
preventive maintenance, 443
root cause analysis, 441–443
solutions

MySQL enterprise monitor, 444
Oracle enterprise manager, 444

Multi-master replication, 198–202
Multi-range read (MRR) optimization, 668
MySQL Cluster Carrier Grade Edition (CGE), 143
MySQL Cluster Manager (MCM)

architecture, 396
backups, 428–430
bundled distributions, 400
client, 252, 414–415
cluster binaries installation, 415
commands

backup and restore, 399
cluster, 398
configuration, 399
import, 399
package, 398
process, 399
site and agent, 397–398

configuration, 409–412
auto tuning, 419–422
get command, 422–423
online cluster changes, 426–427
reset command, 423

downloading, 403
installation

Linux, 403–404
Microsoft Windows, 408

limitations, 400
list sites command, 417
mcm Client

cluster nodes, 416
cluster status, 418
create cluster command, 418
list packages command, 417
process types, 417

restore, backup, 430
standalone distributions, 400
starting and stopping processes, 413, 424, 426
terminology, 395–396
troubleshooting

error messages and log, 432–434
self-healing agents, 435

upgrades, 408, 431–432
MySQL Enterprise Monitor (MEM)

components, 445
feature groups, 449–450

■ INDEX

686

installation and upgrade, 446–448
query analyzer, 450

MySQL log
audit logs, 514–515
SQL node error logs, 512, 514

MySQL NDB cluster
architectural characteristics, 6
features (see Features, MySQL NDB Cluster)
schema limitations, 9
terminology, 4–5
use cases, 10–11

MySQL NDB cluster auto installer
define cluster screen, 167
deploy, start, and stop, 170
host definition, 168
process definition, 169
process parameters, 170
run ndb_setup, 166

MySQL NDB cluster tuning
CPU binding strategy

CPU utilization, 656–657
HT, 656
htop command output, 660
interrupts, 658
mix bound thread and unbound thread, 662
recording system performance statistics

data, 661
system performance report, 661

disk type and file system block size, 663
powersave and CPU frequency scaling, 653–655

MySQL protocol load balancer, 596
MySQL Workbench

logical backups, 267
restores, 277

��������� N
NDB API

buffers, 627, 629
build application, 621
cleanup, 627, 630
cluster connection, 626, 628
cons, 620
error-handling
header files and libraries, installation, 621
NdbRecord, 633
operation and search condition, 627, 629
operation handle, 627–628
pros, 620
request send, data nodes, 630
retrieve values, 627, 630
scan

condition types defined, 640
flags, 641

NdbIndexScanOperation::IndexBound
class, 644

NdbInterpretedCode, 640
NdbRecords, 640
NdbScanOperation::nextResult(), 641
NdbTransaction::scanIndex(), 644
NdbTransaction::scanTable(), 641
operation, 635–640, 642–646
search filtering, 634
typical program flow, 635

storage engine, 625
table handle, 626, 628
transaction, 626, 628
typical program flow, 622–624
world database, 626, 628

NDB cluster information database (ndbinfo)
configuration

ndbinfo_offline option, 520
ndbinfo_show_hidden, 519, 521

memoryusage view, 526
ndbinfo views

cluster configuration and overall status, 522
objects and memory use, 525
ongoing locks, operations, and

transactions, 523
performance metrics, 524

NDB cluster replication, 71
advantages, 179
architecture, 175–177
channel failover

configuration options, 190
LOST_EVENTS, 189
ndb_binlog_index and ndb_apply_status

system tables, function, 178
procedure, 190
SQL nodes, binary logging, 189
sql_slave_skip_counter system variable, 189
threads, 189

conflict detection (see Conflict detection and
resolution, NDB cluster replication)

disaster recovery configuration, 180
limitations, 236
monitoring

Exec_Master_Log_Pos, 193
Last_*Errno*, and Last_*Error*, 193
Master_Log_File, 193
performance schema tables, 195
Read_Master_Log_Pos, 193
Relay_Master_Log_File, 193
Seconds_Behind_Master, 193
SHOW SLAVE STATUS Command, 191, 194
Slave_IO_Running, 192
Slave_IO_State, 192
Slave_SQL_Running, 192

MySQL server options, 234–235

MySQL Enterprise Monitor (MEM) (cont.)

■ INDEX

687

performance tuning
batching update, slave, 197
binary log size, 197
event buffering, 198
explicit primary keys, 197
master SQL node, 197
sync_binlog option, 198
upgrading hardware, 197

read scaling, 181
restarting master cluster, 195–196
setting up

empty database, 182, 184–185
existing database (offline), 186
existing database (online), 186–188

tables, 179
use cases, 180–181

NDB$EPOCH2() and NDB$EPOCH2_TRANS()
method, 211

NDB$EPOCH() method, 208–210
NDB$EPOCH_TRANS() method, 211
NDB management client

cluster status, 244–245
HELP command, 242
invoking, 240
PROMPT command, 243
purge stale sessions command, 247
reports creation, 246
single user mode, 245
tasks, 239

NDB$MAX method, 207
NDB-memcached, 612
ndb_restore, 272, 275
NDB$EPOCH method, 209
NDB$MAX method, 208
NDB$MAX_DELETE_WIN method, 208
NDB$OLD method, 205
Nested-loop-join (NLJ) algorithm, 666
Network design

devices, 80
direct connection, 81
network redundancy, 81
security, 81

Network partitioning, 69–70
Network security, 373–375
Node groups, 29–30
Node restart, 87, 310
Node types

API and SQL, 15
data, 14
management

administrative tasks, 14
arbitration, 14
configuration, 13
connection handling, 14
logging, 14

Non-uniform memory access (NUMA), 79, 556

��������� O
Offline downgrades, 358
Offline upgrade, 370–371
Offloading joins, 670
Online downgrades, 357, 367–369
Online upgrades, 351, 353, 354, 357, 358, 360–367
Online vs. offline schema changes, 286
Operating system

CPU usage, 451
disk usage, 452
logs, 453
memory usage, 452
network usage, 451

Oracle Enterprise Manager, 444
Ordered index scan, 633

��������� P, Q
Package installation

CGE package, 143–144
Community Edition, 141–143
Linux

DEB package, 150
RPM package, 148–150
tar.gz Archive Package, 145–147

MacOS
Tar.gz Archive Package, 160–161

Windows
MSI package (see Windows installer

package installation)
Zip Archive Package, 151–154

Partial data restore, 275–276
Patch release upgrade, 352
Performance schema

connection tables, 484
data nodes, 462
event tables

DIGEST and DIGEST_TEXT columns, 479
events consumers, 470
events_statements_% tables, 472–473
events_statements_current table, 477–478
events_statements_history_long

consumers, 473
events_transactions_current, 473
event types, 471
timing values, 479
trace, nested events, 476
transaction trace, 474–475

host_cache table, 485
instance tables, 489–491
lock tables, 491
replication tables, 488
setup tables

actors, objects, and timers, 467
configuration, 468–469

■ INDEX

688

consumers, 466–467
instruments, 466
variables, 469

summary tables
events_statements_summary_by_

digest table, 482
files, objects, sockets, and tables, 482
memory, 482
stage events, 480
statement events, 480
table_io_waits_summary_by_

index_usage, 483
transaction events, 481
wait events, 481

threads, 464, 484
variable and status tables, 487–488

Platform, NDB cluster
CPU performance and characteristics

data nodes, 78
management nodes, 79
SQL nodes, 78

disk performance, 80
processor type and operating system, 77
RAM modules, 79
virtual machines, 80

Point-in-time recovery (PITR), 278–279, 281
Program startup options (my.cnf)

connect string, 134
mysqld, 137–139
ndbd/ndbmtd

initial start, 136
--nostart option, 137
partial start, 137

ndb_mgmd
configuration cache, 135
restart, 136

option files location, 139–140
options, 133–134

Pushdown join optimization, 666–668

��������� R
Reorganize partitions

case study, 337, 340, 341, 344
ndbinfo.table_distribution_status view, 295
requirements, 292
tables finding, candidates, 293, 295

Replicas, 26–28
Replication channel failover, 178
Replication slave, 262
Replication to InnoDB

requirements and limitations, 229–230
setting up

backup, 232
CHANGE MASTER TO command, 233

configure slave, 231
master SQL node, configuration, 231
restore data, 232–233
restore schemas, 232
system tables, creation, 233

slave
resume replication, 234
skipping log synchronization, 234

Restart related configuration, 320–322
Restarts

API/SQL node adding, 344
cluster configuration, 309–310, 329
configuration change, 330–333
configuration options, 320–321
data nodes

cluster, 336
config.ini file, 337
data distribution, 341
defragmenting, 341
ndb_desc utility, 340
node group pre-allocated, 342–344
node IDs, 338, 340
--reload option, 338
status, 339

initial system, 346–348
management node adding, 334–336
monitoring

data node out log excerpt, 328
management client, 325
ndbinfo.restart_info table, 326–327
ndb_waiter utility, 326

recovering, corrupt NDB file system, 345
startup process, 322–324
types, 310–311

Restores
data nodes, 274
full data, 273
MySQL Workbench, 277
ndb_restore utility, 271–272
partial data, 275–276
Point-in-time recovery (PITR),

278–279, 281
schema, 272–273

Rolling restart, 312–314
Root cause analysis, 441–443

��������� S
Scalability, 70
Schema backup, 266
Schema changes

distribution, 283–284
global schema lock, 283
offline schema changes, 286
online schema changes, 287–288

Schema limitations, 9

Performance schema (cont.)

■ INDEX

689

Security
access control and privilege system, 382–383
accounts and password management,

377, 379–380
distributed privileges (see Distributed

privileges)
operating system and infrastructure, 393–394
SSL/TLS certificates, 381–382
updates, 375

Select-project join (SPJ), 666
Self-healing agents, 434
Shooting the other node in the head

(STONITH), 69, 559
SHOW statements, 509, 511–512
Simple network management protocol (SNMP), 450
Single point of failure (SPOF), 67
Single-threaded vs. multi-threaded data

nodes, 23–24, 26
SQL nodes, 68
Statement_digest consumer, 467
Stopping and starting nodes

API/SQL nodes, 320
data node, 317–319
management node

arguments, 315
--reload, 315
SIGKILL signal, 316
Windows Services GUI, 316

sys schema
command-line usage

EXPLAIN plan, 507
redundant indexes, 505–506
schema_tables_with_full_table_

scans view, 507
schema_unused_indexes view, 506
statements_with_full_table_scans view, 507
sys.session view, 504–505

configuration, 502–503
format_time(), 478–479
installation, 492–493
MySQL workbench performance reports, 508
ps_trace_thread(), 473
schema objects

configuration table and triggers, 494
formatting functions, 499
general status views, 498
host summary views, 494
InnoDB Views, 495
I/O views, 495
memory usage views, 496
performance schema functions, 500
schema setup procedures, 501
schema views, 496
statement and trace procedures, 502
statement views, 497

user views, 497
utility functions, 499
utility procedures, 502
wait views, 498

System restart, 87, 311

��������� T
Table scan, 633
TCP/IP level load balancer, 595
Temporary cluster, 262
Thread types, 23–24
Transaction coordinator (TC), 675
Transporter

options, 120–121
report

overloaded, 529
slowdown, 529

separate network path, 132
TCP options, 130–132

T-tree index, 579
Tuning SQL

commit sizing, 664
engine condition pushdown

optimization, 665–666
nodes adding, 677
non-transactional batch processing, 665
NoSQL API, 678
optimizing access

connection pooling, 675
distribution-unaware node selection, 676
optimal distribution-aware node

selection, 676
optimizing joins

BKAJ algorithm, 668–670
offloading joins, 670
pushdown join, 666–668

partitioning optimization
backup replica, 675
fully replicated tables, 675
MySQL NDB cluster, 671
user-defined partitioning, 671–673

Typical problems, SQL nodes
crashes

core file, 563
error log, 563
OOM killer, 564

executing queries, 561
lost connection to data nodes, 562
non-temporary errors, 561
resource temporary errors, 561
transaction handling, 562

Typical topology
ArbitrationRank option, 72
configurations

■ INDEX

690

alternative minimum, 74
large (50 hosts), 77
medium (10 hosts), 76
minimum, 73
NDB Cluster running, single board

computers, 74–75
data node, 72
maximum number of data nodes, 71
nodes types, 71
number of replicas, 71
SQL node, 72

��������� U, V
Uninstalling packages

MacOS Native Package, 174
RPM Package, 173
tar.gz and zip archive package, 173
Windows Installer Package, 173

Unique hash index, 571–572
Unique keys, 231
Upgrades

considerations, 352
generic binaries, 360–364
offline, 358
online procedure, 354–356
RPM, 364–367
types, 351–352

User-defined partitioning, 32, 671–673

��������� W, X, Y, Z
Watchdog timeout, 554–555
Windows installer package installation

components selection, 158
license agreement, 156
setup type selection screen, 157
setup wizard, 155
system properties, 159

Typical topology (cont.)

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: The Basics
	Chapter 1: Architecture and Core Concepts
	Terminology
	Characteristics and Features
	Architecture
	Features
	ACID Compliant Transactions
	Foreign Keys
	High Availability Is Built-In
	Auto-Failover
	SQL and NoSQL Access
	Auto Partitioning and Auto Sharding
	Horizontal Scalability
	Online Operations
	Geographical Replication
	Conflict Resolution in Master-Master Replication

	Limitations
	Schema Limitations
	Other Limitations

	Use Cases

	Node Types
	Management Nodes
	Handling the Configuration
	Connection Handling
	Logging
	Arbitration
	Administrative Tasks

	Data Nodes
	API and SQL Nodes

	Built-In High Availability
	Shared Nothing Architecture
	Heartbeats
	Data Node Failure Handling and Arbitration

	Summary

	Chapter 2: The Data Nodes
	Single-Threaded Versus Multi-Threaded Data Nodes
	Thread Types
	Performance Considerations

	Replicas
	Primary and Backup Replicas
	MySQL NDB Cluster 7.5: Read from Backup Replica

	Node Groups
	Partitions
	Automatic Partitioning
	User-Defined Partitioning
	MySQL NDB Cluster 7.5: Partition Balancing
	MySQL NDB Cluster 7.5: Fully Replicated Tables
	Case Study: Partition Distribution

	D for Durability
	Duplication of Data
	Local Checkpoints (LCPs)
	The Redo Logs
	Global Checkpoints (GCPs)

	Restarts and Processes
	Data Node Internals
	Memory Usage
	Kernel Blocks
	Signals
	Job Buffer
	Send and Receive Buffers
	Triggers
	Epochs
	Master Node

	Data and Indexes
	Data Memory and Index Memory
	On-Disk Data
	BLOB, TEXT, and JSON Columns

	Cases Studies: Investigating the Schema Objects
	The ndb_show_tables Utility
	The ndb_desc Utility

	The NDB File System
	Summary

	Part II: Installation and Configuration
	Chapter 3: System Planning
	Determine Your Priorities
	High Availability Requirements
	Data Node
	SQL Node
	Management Node

	Prepare for Network Partitioning
	Scalability
	Disaster Recovery
	Typical Topologies
	Number of Replicas
	Maximum Number of Data Nodes
	Maximum Number of Total Nodes
	Arbitration Rank
	Placing the SQL Node and the Data Node on the Same Machine
	Typical Topology Examples
	Minimum Configuration: Three Hosts
	Alternative Minimum Configuration: Four Hosts
	Aside: Cluster Using Minimum Computer
	Medium Configuration: 10 Hosts
	Large Configuration: 50 Hosts

	Platform Considerations
	Processor Type and Operating System
	CPU Performance and Characteristics
	Desirable Processor Characteristics for Data Nodes
	Desirable Processor Characteristics for SQL Nodes
	Desirable Processor Characteristics for Management Node
	Key Points When Choosing the Most Suitable CPU

	Memory Consumption
	Disk Performance
	Virtual Machines

	Network Design
	Network Devices
	Network Redundancy
	Direct Connection
	Security Considerations

	Extending Capacity Using Disk Objects
	Performance Considerations
	Storage Requirements
	Memory Consumption

	Summary

	Chapter 4: Configuration
	Configuration Overview
	Formatting config.ini
	Restart Types

	Management Node Options
	Major Options for Management Node
	NodeId
	HostName
	DataDir
	PortNumber
	ArbitrationRank
	LogDestination

	Vital Point for Management Node Configuration

	Data Node Options
	Basic Options
	NodeId
	HostName
	ServerPort
	DataDir
	NoOfReplicas

	Memory Data Storage Options
	DataMemory
	IndexMemory
	StringMemory
	SharedGlobalMemory
	LockPagesInMainMemory
	Numa

	Schema Object Options
	MaxNoOfTables
	MaxNoOfAttributes
	MaxNoOfOrderedIndexes
	MaxNoOfUniqueHashIndexes
	MaxNoOfTriggers

	Transaction Options
	MaxNoOfConcurrentTransactions
	MaxNoOfConcurrentOperations
	MaxNoOfConcurrentScans
	MaxNoOfLocalScans
	MaxParallelScansPerFragment
	TransactionDeadlockDetectionTimeout
	RedoBuffer
	RedoOverCommitLimit
	RedoOverCommitCounter

	Estimate for Total Memory Consumption
	Memory for Program Image
	Global Buffers
	Array of Schema and Transaction Objects
	Various Buffers

	Checkpoint Options
	FileSystemPath
	NoOfFragmentLogFiles
	FragmentLogFileSize
	NoOfFragmentLogParts
	InitFragmentLogFiles
	CompressedLCP
	ODirect
	DiskCheckpointSpeed
	DiskCheckpointSpeedInRestart
	MinDiskWriteSpeed
	MaxDiskWriteSpeed
	MaxDiskWriteSpeedOtherNodeRestart
	MaxDiskWriteSpeedOwnRestart
	TimeBetweenLocalCheckpoints
	TimeBetweenGlobalCheckpoints
	TimeBetweenEpochs
	TimeBetweenEpochsTimeout

	Estimating Redo Log Size
	Calculate Theoretical Maximum Time Between Two LCPs
	Calculate Theoretical Maximum Size of Redo Log Entries
	Calculate Redo Log Size Options
	Calculation Example

	Multi-Threading Options
	MaxNoOfExecutionThreads
	LockExecuteThreadToCPU
	LockMaintThreadsToCPU
	ThreadConfig

	Consideration for CPU Properties
	Power Saving
	Interrupts
	Hyperthreading

	Backup Options
	BackupDataDir
	BackupDiskWriteSpeedPct
	CompressedBackup
	BackupWriteSize
	BackupMaxWriteSize
	BackupDataBufferSize
	BackupLogBufferSize
	BackupMemory
	BackupReportFrequency

	Transporter Options
	TotalSendBufferMemory
	ExtraSendBufferMemory

	Disk Object Options
	FileSystemPathDD
	FileSystemPathDataFiles
	FileSystemPathUndoFiles
	InitialLogFileGroup
	InitialTableSpace
	DiskPageBufferMemory
	DiskIOThreadPool

	Heartbeat and Watchdog Options
	HeartbeatIntervalDbDb
	HeartbeatIntervalDbApi
	HeartbeatOrder
	TimeBetweenWatchDogCheck
	ArbitrationTimeout
	StartPartialTimeout
	StartPartitionedTimeout

	Logging Options
	MemReportFrequency
	StartupStatusReportFrequency

	Recommended Configuration Strategy

	SQL Node Options
	Major Options for SQL Node
	NodeId
	HostName
	ArbitrationRank
	DefaultOperationRedoProblemAction
	BatchSize
	BatchByteSize
	MaxScanBatchSize
	TotalSendBufferMemory

	Vital Point for SQL Node Configuration

	TCP Transporter Options
	Major Options for Transporter
	NodeId1, NodeId2
	HostName1, HostName2
	SendBufferMemory
	ReceiveBufferMemory
	OverloadLimit

	Transporter via Separate Network Path

	Program Startup Options (my.cnf)
	Common Options
	Connect String

	Major Options for ndb_mgmd
	Configuration Cache
	Reading New Configuration with Multiple Management Nodes

	Options for ndbd/ndbmtd
	Initial Start
	Partial Start
	No Automatic Start

	Options for mysqld
	Location of Option Files

	Summary

	Chapter 5: Installation
	Package Installation
	Obtaining Packages
	Community Edition
	Carrier Grade Edition (CGE)

	Installation on Linux
	Tar.gz Archive Package Installation
	RPM Package Installation
	The Tar.gz Package vs. the RPM Package
	DEB Package Installation

	Installation on Windows
	The Zip Archive Package Installation
	Windows Installer Package Installation

	Installation on macOS
	The Tar.gz Archive Package Installation
	macOS Native Package Installation

	Installing MySQL NDB Cluster Instances Using Auto Installer
	Verifying Installation
	Configuration Files
	Initial Startup
	Checking the Status

	Uninstalling Packages
	Tar.gz and Zip Archive Package
	RPM Package
	Windows Installer Package
	macOS Native Package

	Summary

	Chapter 6: Replication
	NDB Cluster Replication Overview
	Replication Architecture Overview
	Replication Channel Failover
	NDB Cluster Replication Tables
	Use Cases and Advantages of NDB Cluster Replication

	Setting Up NDB Cluster Replication
	Setting Up NDB Cluster Replication with an Empty Database
	Set Up Master and Slave Clusters
	Configure Master SQL Node for Replication
	Create a User for Replication on Master
	Configure Slave SQL Node for Replication
	Configure Replication
	Secure the Connection for Replication (Optional)
	Start Replication

	Setting Up NDB Cluster Replication with an Existing Database (Offline)
	Install the New Cluster Used as a Slave
	Copy Master Data to Slave
	Set Up Replication in the Same Way as an Empty Cluster

	Setting Up NDB Cluster Replication with Existing Database (Online)
	Install New Cluster Used as Slave
	Configure Master SQL Node for Replication
	Take Native Backup from Master
	Restore the Backup to Slave Cluster
	Identify Binary Log Filename and Position
	Configure Replication

	Failing Over NDB Cluster Replication Channel
	When to Failover
	Number of SQL Nodes with Binary Logging
	Failover Procedure
	Additional Configuration for NDB Cluster Replication Channel Failover

	NDB Cluster Replication Daily Maintenance
	Monitoring NDB Cluster Replication
	Slave_IO_Running
	Slave_IO_State
	Slave_SQL_Running
	Seconds_Behind_Master
	Master_Log_File
	Read_Master_Log_Pos
	Relay_Master_Log_File
	Exec_Master_Log_Pos
	Last_*Errno*, and Last_*Error*

	Restarting Master Cluster
	System Restart on the Master Cluster
	Rolling Restart on Master Cluster

	NDB Cluster Replication Performance Tuning
	Explicit Primary Keys
	Hardware Considerations
	Dedicated Master SQL Node
	Minimizing Binary Log Size on Master
	Batching Update on Slave
	Reducing Synchronization of Binary Log to Disk
	Event Buffering

	Conflict Detection and Resolution
	Multi-Master Replication
	Conflicts Caused by Multi-Master Replication
	Conflict Detection Methods
	NDB$OLD(column_name)
	NDB$MAX(column_name)
	NDB$MAX_DELETE_WIN(column_name)
	NDB$EPOCH()
	NDB$EPOCH_TRANS()
	NDB$EPOCH2() and NDB$EPOCH2_TRANS()

	Conflict Detection for Read Operations
	Setting Up Conflict Detection and Resolution
	Configure Options Required for Conflict Detection and Resolution
	Add Entry to mysql.ndb_replication Table
	Create an Exceptions Table
	Create a Target Table of Conflict Detection

	Monitoring Conflict Detection
	Monitoring Status Variables
	Monitoring Exceptions Tables

	Conflict Detection Case Study
	Set Up Conflict Detection Using the NDB$EPOCH_TRANS Method
	Set Up Conflict Detection Using the NDB$EPOCH2 Method

	Application Modifications Required for Conflict Detection
	Choosing the Right Conflict Detection Method
	Updating Timestamp Columns
	Monitoring Conflict Detection
	Fixing Conflicts

	Cautions and Limitations of Conflict Detection
	Binary Log Size
	Performance Overhead
	Delay Is Critical
	Transaction Handlings

	Replication to InnoDB
	Requirements and Limitations
	Use mysqld Bundled with MySQL NDB Cluster
	Binary Log Format Requirements
	MySQL NDB Cluster System Tables
	Circular Replication and Conflict Detection
	Foreign Keys
	Unique Keys
	Row Size Limitations

	Setting Up Replication to InnoDB
	Configure Master SQL Node and Create a Replication User
	Configure Slave for Replication
	Take a Backup from Master
	Restore Schemas to Slave
	Restore Data to Slave
	Create System Tables
	Set Up Replication

	Tips When Using InnoDB as a Slave
	Resume Replication from Alternative Channel
	Speed Up Updates by Skipping Log Synchronization

	MySQL Server Options Related to Cluster Replication
	Notes and Limitations of NDB Cluster Replication
	Summary

	Part III: Daily Tasks and Maintenance
	Chapter 7: The NDB Management Client and Other NDB Utilities
	The NDB Management Client
	Invoking the NDB Management Client
	Getting Help from Inside the Client
	Setting the Prompt
	Display the Cluster Status
	Single User Mode
	Create Reports
	Purge Stale Sessions

	Other NDB Utilities
	Summary

	Chapter 8: Backups and Restores
	Backups and Backup Procedures
	Native NDB Cluster Online Backups
	Overview
	Implementation Details
	Starting and Aborting Backups
	Choosing the Backup ID
	Backup Monitoring
	Backup Configuration

	Logical Backups and Binary Logs
	Consistency Considerations
	Creating Logical Backups
	Logical Backups from MySQL Workbench
	Backing Up Privileges
	Binary Logs

	Restores
	The ndb_restore Program
	Restore Schema
	Full Data Restores
	Restore to a Different Number of Data Nodes
	Partial Data Restores
	Restores Using MySQL Workbench
	Point-In-Time Recovery (PITR)

	Summary

	Chapter 9: Table Maintenance
	Schema Changes
	Distributing Schema Changes and the Global Schema Lock
	Online Versus Offline Schema Changes
	Offline Schema Changes
	Online Schema Changes
	ALTER TABLE Algorithm

	ALTER TABLE Examples
	Default Behavior
	Adding a Column with the Explicit Column Format
	Specifying Algorithm and Lock Type
	Attempting Unsupported In-Place Changes
	Schema Changes in Version 7.2 and Earlier

	Reorganize Partitions
	Defragmentation
	Index Statistics
	Index Statistics Internals
	Maintaining Index Statistics
	Options and Status Variables

	Summary

	Chapter 10: Restarts
	Restart Types
	Node Restart
	Initial Node Restart
	System Restart
	Initial System Restart

	Rolling Restart
	Stopping and Starting Nodes
	Management Nodes
	Data Nodes
	API/SQL Nodes

	Restart Related Configuration
	Startup Process
	Monitoring Restarts
	The Management Client
	The ndb_waiter Utility
	The ndbinfo.restart_info Table
	A Restart Seen in the Logs

	Example Restart Scenarios
	Configuration Change
	Adding a Management Node
	Adding Data Nodes
	Adding Data Nodes with Node Group Pre-Allocated
	Adding API/SQL Node
	Recovering from a Corrupt NDB File System
	Initial System Restart

	Summary

	Chapter 11: Upgrades and Downgrades
	Upgrades
	Upgrade Types
	Upgrade Considerations

	Downgrades
	Performing Upgrades and Downgrades
	Online Upgrades and Downgrades
	Offline Upgrades and Downgrades

	Case Studies
	Online Upgrade Using Generic Binaries
	Upgrade from 7.4 to 7.5 Using RPM
	Online Downgrade
	Offline Upgrade

	Summary

	Chapter 12: Security Considerations
	Network Security
	Updates
	Accounts and Privileges in the SQL Nodes
	Accounts and Password Management
	SSL/TLS Certificates
	The Access Control and Privilege System

	Distributed Privileges
	Enabling Distributed Privileges
	Disabling Distributed Privileges
	Special Considerations
	Downgrades
	Restoring a Backup
	Recovering the root@localhost Password

	The Operating System and the Rest of the Infrastructure
	Summary

	Chapter 13: MySQL Cluster Manager
	Background
	Terminology
	Architecture
	Commands
	Limitations

	Download, Installation, and Configuration
	Downloading
	Installation on Linux
	Installation on Microsoft Windows
	Upgrading
	Configuration
	Starting and Stopping MySQL Cluster Manager
	The MySQL Cluster Manager Client

	Managing a Cluster
	Installing the Cluster Binaries
	Preparing the Cluster Through the mcm Client
	Cluster Configuration: Auto Tuning
	Cluster Configuration: The set Command
	Cluster Configuration: The get Command
	Cluster Configuration: The reset Command
	Starting and Stopping Processes
	Configuration of an Online Cluster
	Backups
	Restoring a Backup
	Upgrades

	Troubleshooting MySQL Cluster Manager
	Error Messages and the Log
	Self-Healing Agents

	Summary

	Part IV: Monitoring and Troubleshooting
	Chapter 14: Monitoring Solutions and the Operating System
	Why Monitor?
	Establish a Baseline
	Perform a Root Cause Analysis
	Perform Preventive Maintenance

	Monitoring Solutions
	MySQL Monitoring Solutions

	MySQL Enterprise Monitor (MEM)
	Components
	Installation and Upgrades
	Features

	The Operating System
	CPU Usage
	Network Usage
	Disk Usage
	Memory Usage
	Logs

	Summary

	Chapter 15: Sources for Monitoring Data
	The Information Schema
	Information Schema Tables
	Using the Information Schema
	The Information Schema and NDB Cluster
	The Information Schema FILES Table
	The Information Schema ndb_transid_mysql_connection_map Table

	The Performance Schema
	Performance Schema Threads
	Performance Schema Tables Overview
	Setup Tables and Configuration
	Instruments
	Consumers
	Actors, Objects, and Timers
	Configuration Recommendations and How to Change Settings

	Event Tables
	Summary Tables
	Connection and Thread Tables
	Variable and Status Tables
	Replication Tables
	Instance Tables
	Lock Tables

	The sys Schema
	Installation
	sys Schema Objects
	sys Schema Configuration
	Command-Line Usage and Examples
	MySQL Workbench Performance Reports

	SHOW Statements
	MySQL Logs
	SQL Node Error Logs
	Audit Logs

	Summary

	Chapter 16: Monitoring MySQL NDB Cluster
	The NDB Cluster Information Database (ndbinfo)
	Configuration
	ndbinfo_offline
	ndbinfo_show_hidden

	The ndbinfo Views

	NDB Cluster Reports
	Memory Usage Report
	Disk Page Buffer Report
	Transporters Report
	Disk Write Speed Report
	Locks Report
	Log Buffers and Spaces Report
	Configuration Report

	NDB Cluster Logs
	Cluster Logs
	Log Destination
	Memory Report Frequency
	Startup Status Report Frequency
	Controlling What Is Logged

	Data Node Logs

	Summary

	Chapter 17: Typical Troubles and Solutions
	Typical Problems on Data Nodes
	General Information about Node Failures
	Cluster Log
	Node Log
	Error Log
	Trace Files
	Core Files
	NDB Error Reporter Utility
	Watchdog Timeout
	LCP Watchdog Timeout
	Swap Insanity
	GCP Stop
	Network Partitioning (Split Brain)
	Unplanned Shutdown of Entire System

	Typical Problems on SQL Nodes
	Errors While Executing Queries
	Resource Temporary Errors
	Non-Temporary Errors
	Connection to Data Node Is Lost
	Errors Related to Transaction Handling
	Crashes
	Error Log
	Core File
	OOM Killer

	Typical Problems on Management Nodes
	Summary

	Part V: Development and Performance Tuning
	Chapter 18: Developing Applications Using SQL with MySQL NDB Cluster
	Designing Tables
	Creating NDB Cluster Tables
	Supported Data Types
	Three Types of Indexes
	Unique Hash Index for Primary Key
	Ordered Index
	Unique Hash Index for Secondary Index

	Defining Indexes
	The T-Tree Index
	Estimating Table Size
	The ndb_size.pl Command
	The sizer Command

	Estimating Required Objects per Table
	Defining Foreign Key Constraints
	Reviewing Table Definition
	Disk Data Tables
	Disk Data Tables Architecture
	Known Limitations for Disk Data Tables
	Configuration Options for Disk Data Tables
	Preparing the Logfile Group
	Preparing Tablespace
	Creating Disk Data Tables
	Monitoring Disk Data Tables

	Consideration for Normalization
	Major Limits Regarding Table Design

	Accessing Data via SQL
	Connecting to SQL Node
	One SQL Node per Application Instance
	Load Balancing with Connector/J
	Using Load Balancers

	Transaction Handling for NDBCluster Tables
	Error-Handling Techniques

	Summary

	Chapter 19: MySQL NDB Cluster as a NoSQL Database
	Why NoSQL?
	Accessing Data via memcached
	Why Use NDB-memcached
	Setting Up NDB-memcached
	Installing NDB-memcached
	Preparing the ndbmemcache Schema
	Starting the memcached Server

	Defining Mapping to NDB Cluster Tables
	Defining Containers
	Review Policies
	Define Server Roles
	Define Mappings
	Apply Settings to a Running memcached Instance
	Accessing NDBCluster Tables via the memcached Protocol in Your Application
	Performance Tuning

	Accessing Data via the NDB API
	Why Use the NDB API?
	Installing Header Files and Libraries for the NDB API
	Building an Application with the NDB API
	References and Examples
	Typical Program Flow
	Simple Read Example
	Step 1. Initialize the NDB API
	Step 2. Connect to the Cluster
	Step 3. Connect to the world Database
	Step 4. Get the Table Handle
	Step 5. Start the Transaction
	Step 6. Get the Operation Handle
	Step 7. Specify the Type of Operation and Search Condition
	Step 8. Get Buffers for Results
	Step 9. Send a Request to the Data Nodes
	Step 10. Retrieve the Values
	Step 11. Clean Up

	Accessing Data Using NdbRecord
	Step 5. Define the NdbRecords
	Step 6. Start the Transaction
	Step 7. Specify the Type of Operation and Search Condition
	Step 8. Send a Request to the Data Nodes
	Step 9. Retrieve the Values
	Remarks About Using the NdbRecord Interface

	Scan Example
	Step 5. Define NdbRecords
	Step 7. Prepare the Filter To Be Applied
	Step 8. Instruct the NDB API to Scan the Table
	Step 10. Fetch Rows in a Loop
	Step 3. Define the Index Boundary
	Step 4. Instruct the NDB API to Scan the Index

	Error-Handling Considerations
	Acquiring Error Information
	Transaction Is Automatically Rolled Back
	Insert Reasonable Wait Before Retry

	Accessing Data via ClusterJ
	Installing ClusterJ
	Writing a ClusterJ Application
	ClusterJ Example

	Summary

	Chapter 20: MySQL NDB Cluster and Application Performance Tuning
	MySQL NDB Cluster Tuning
	Disabling Powersave and CPU Frequency Scaling
	CPU Binding Strategy
	Hyper-Threading and CPU Binding
	CPU Usage and Binding
	Interrupts and CPU Binding
	Mix Bound Thread and Unbound Thread

	Disk Type and File System Block Size

	SQL Tuning
	Commit Sizing
	Non-Transactional Batch Processing
	Engine Condition Pushdown Optimization
	Optimizing Joins
	Pushdown Join Optimization
	Batched-Key-Access Join Optimization
	Offloading Joins

	Optimizing Partitioning
	Characteristics of Partitioning on MySQL NDB Cluster
	User-Defined Partitioning
	Read from Backup Replica and Fully Replicated Tales

	Optimizing Access from SQL Node to Data Node
	Connection Pooling
	Optimized Node Selection

	Adding Nodes
	Using NoSQL API in Conjunction with SQL

	Summary

	Index

