

THIRD EDITION

High Performance MySQL

Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

High Performance MySQL, Third Edition
by Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko

Copyright © 2012 Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Holly Bauer
Proofreader: Rachel Head

Indexer: Jay Marchand
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

March 2004: First Edition.
June 2008: Second Edition.
March 2012: Third Edition.

Revision History for the Third Edition:
2012-03-01 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449314286 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. High Performance MySQL, the image of a sparrow hawk, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31428-6

[LSI]

1330630256

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449314286

Table of Contents

Foreword . xv

Preface . xvii

1. MySQL Architecture and History . 1
MySQL’s Logical Architecture 1

Connection Management and Security 2
Optimization and Execution 3

Concurrency Control 3
Read/Write Locks 4
Lock Granularity 4

Transactions 6
Isolation Levels 7
Deadlocks 9
Transaction Logging 10
Transactions in MySQL 10

Multiversion Concurrency Control 12
MySQL’s Storage Engines 13

The InnoDB Engine 15
The MyISAM Engine 17
Other Built-in MySQL Engines 19
Third-Party Storage Engines 21
Selecting the Right Engine 24
Table Conversions 28

A MySQL Timeline 29
MySQL’s Development Model 33
Summary 34

2. Benchmarking MySQL . 35
Why Benchmark? 35
Benchmarking Strategies 37

iii

What to Measure 38
Benchmarking Tactics 40

Designing and Planning a Benchmark 41
How Long Should the Benchmark Last? 42
Capturing System Performance and Status 44
Getting Accurate Results 45
Running the Benchmark and Analyzing Results 47
The Importance of Plotting 49

Benchmarking Tools 50
Full-Stack Tools 51
Single-Component Tools 51

Benchmarking Examples 54
http_load 54
MySQL Benchmark Suite 55
sysbench 56
dbt2 TPC-C on the Database Test Suite 61
Percona’s TPCC-MySQL Tool 64

Summary 66

3. Profiling Server Performance . 69
Introduction to Performance Optimization 69

Optimization Through Profiling 72
Interpreting the Profile 74

Profiling Your Application 75
Instrumenting PHP Applications 77

Profiling MySQL Queries 80
Profiling a Server’s Workload 80
Profiling a Single Query 84
Using the Profile for Optimization 91

Diagnosing Intermittent Problems 92
Single-Query Versus Server-Wide Problems 93
Capturing Diagnostic Data 97
A Case Study in Diagnostics 102

Other Profiling Tools 110
Using the USER_STATISTICS Tables 110
Using strace 111

Summary 112

4. Optimizing Schema and Data Types . 115
Choosing Optimal Data Types 115

Whole Numbers 117
Real Numbers 118
String Types 119

iv | Table of Contents

Date and Time Types 125
Bit-Packed Data Types 127
Choosing Identifiers 129
Special Types of Data 131

Schema Design Gotchas in MySQL 131
Normalization and Denormalization 133

Pros and Cons of a Normalized Schema 134
Pros and Cons of a Denormalized Schema 135
A Mixture of Normalized and Denormalized 136

Cache and Summary Tables 136
Materialized Views 138
Counter Tables 139

Speeding Up ALTER TABLE 141
Modifying Only the .frm File 142
Building MyISAM Indexes Quickly 143

Summary 145

5. Indexing for High Performance . 147
Indexing Basics 147

Types of Indexes 148
Benefits of Indexes 158
Indexing Strategies for High Performance 159

Isolating the Column 159
Prefix Indexes and Index Selectivity 160
Multicolumn Indexes 163
Choosing a Good Column Order 165
Clustered Indexes 168
Covering Indexes 177
Using Index Scans for Sorts 182
Packed (Prefix-Compressed) Indexes 184
Redundant and Duplicate Indexes 185
Unused Indexes 187
Indexes and Locking 188

An Indexing Case Study 189
Supporting Many Kinds of Filtering 190
Avoiding Multiple Range Conditions 192
Optimizing Sorts 193

Index and Table Maintenance 194
Finding and Repairing Table Corruption 194
Updating Index Statistics 195
Reducing Index and Data Fragmentation 197

Summary 199

Table of Contents | v

6. Query Performance Optimization . 201
Why Are Queries Slow? 201
Slow Query Basics: Optimize Data Access 202

Are You Asking the Database for Data You Don’t Need? 202
Is MySQL Examining Too Much Data? 204

Ways to Restructure Queries 207
Complex Queries Versus Many Queries 207
Chopping Up a Query 208
Join Decomposition 209

Query Execution Basics 210
The MySQL Client/Server Protocol 210
The Query Cache 214
The Query Optimization Process 214
The Query Execution Engine 228
Returning Results to the Client 228

Limitations of the MySQL Query Optimizer 229
Correlated Subqueries 229
UNION Limitations 233
Index Merge Optimizations 234
Equality Propagation 234
Parallel Execution 234
Hash Joins 234
Loose Index Scans 235
MIN() and MAX() 237
SELECT and UPDATE on the Same Table 237

Query Optimizer Hints 238
Optimizing Specific Types of Queries 241

Optimizing COUNT() Queries 241
Optimizing JOIN Queries 244
Optimizing Subqueries 244
Optimizing GROUP BY and DISTINCT 244
Optimizing LIMIT and OFFSET 246
Optimizing SQL_CALC_FOUND_ROWS 248
Optimizing UNION 248
Static Query Analysis 249
Using User-Defined Variables 249

Case Studies 256
Building a Queue Table in MySQL 256
Computing the Distance Between Points 258
Using User-Defined Functions 262

Summary 263

vi | Table of Contents

7. Advanced MySQL Features . 265
Partitioned Tables 265

How Partitioning Works 266
Types of Partitioning 267
How to Use Partitioning 268
What Can Go Wrong 270
Optimizing Queries 272
Merge Tables 273

Views 276
Updatable Views 278
Performance Implications of Views 279
Limitations of Views 280

Foreign Key Constraints 281
Storing Code Inside MySQL 282

Stored Procedures and Functions 284
Triggers 286
Events 288
Preserving Comments in Stored Code 289

Cursors 290
Prepared Statements 291

Prepared Statement Optimization 292
The SQL Interface to Prepared Statements 293
Limitations of Prepared Statements 294

User-Defined Functions 295
Plugins 297
Character Sets and Collations 298

How MySQL Uses Character Sets 298
Choosing a Character Set and Collation 301
How Character Sets and Collations Affect Queries 302

Full-Text Searching 305
Natural-Language Full-Text Searches 306
Boolean Full-Text Searches 308
Full-Text Changes in MySQL 5.1 310
Full-Text Tradeoffs and Workarounds 310
Full-Text Configuration and Optimization 312

Distributed (XA) Transactions 313
Internal XA Transactions 314
External XA Transactions 315

The MySQL Query Cache 315
How MySQL Checks for a Cache Hit 316
How the Cache Uses Memory 318
When the Query Cache Is Helpful 320
How to Configure and Maintain the Query Cache 323

Table of Contents | vii

InnoDB and the Query Cache 326
General Query Cache Optimizations 327
Alternatives to the Query Cache 328

Summary 329

8. Optimizing Server Settings . 331
How MySQL’s Configuration Works 332

Syntax, Scope, and Dynamism 333
Side Effects of Setting Variables 335
Getting Started 337
Iterative Optimization by Benchmarking 338

What Not to Do 340
Creating a MySQL Configuration File 342

Inspecting MySQL Server Status Variables 346
Configuring Memory Usage 347

How Much Memory Can MySQL Use? 347
Per-Connection Memory Needs 348
Reserving Memory for the Operating System 349
Allocating Memory for Caches 349
The InnoDB Buffer Pool 350
The MyISAM Key Caches 351
The Thread Cache 353
The Table Cache 354
The InnoDB Data Dictionary 356

Configuring MySQL’s I/O Behavior 356
InnoDB I/O Configuration 357
MyISAM I/O Configuration 369

Configuring MySQL Concurrency 371
InnoDB Concurrency Configuration 372
MyISAM Concurrency Configuration 373

Workload-Based Configuration 375
Optimizing for BLOB and TEXT Workloads 375
Optimizing for Filesorts 377

Completing the Basic Configuration 378
Safety and Sanity Settings 380
Advanced InnoDB Settings 383
Summary 385

9. Operating System and Hardware Optimization . 387
What Limits MySQL’s Performance? 387
How to Select CPUs for MySQL 388

Which Is Better: Fast CPUs or Many CPUs? 388
CPU Architecture 390

viii | Table of Contents

Scaling to Many CPUs and Cores 391
Balancing Memory and Disk Resources 393

Random Versus Sequential I/O 394
Caching, Reads, and Writes 395
What’s Your Working Set? 395
Finding an Effective Memory-to-Disk Ratio 397
Choosing Hard Disks 398

Solid-State Storage 400
An Overview of Flash Memory 401
Flash Technologies 402
Benchmarking Flash Storage 403
Solid-State Drives (SSDs) 404
PCIe Storage Devices 406
Other Types of Solid-State Storage 407
When Should You Use Flash? 407
Using Flashcache 408
Optimizing MySQL for Solid-State Storage 410

Choosing Hardware for a Replica 414
RAID Performance Optimization 415

RAID Failure, Recovery, and Monitoring 417
Balancing Hardware RAID and Software RAID 418
RAID Configuration and Caching 419

Storage Area Networks and Network-Attached Storage 422
SAN Benchmarks 423
Using a SAN over NFS or SMB 424
MySQL Performance on a SAN 424
Should You Use a SAN? 425

Using Multiple Disk Volumes 427
Network Configuration 429
Choosing an Operating System 431
Choosing a Filesystem 432
Choosing a Disk Queue Scheduler 434
Threading 435
Swapping 436
Operating System Status 438

How to Read vmstat Output 438
How to Read iostat Output 440
Other Helpful Tools 441
A CPU-Bound Machine 442
An I/O-Bound Machine 443
A Swapping Machine 444
An Idle Machine 444

Summary 445

Table of Contents | ix

10. Replication . 447
Replication Overview 447

Problems Solved by Replication 448
How Replication Works 449

Setting Up Replication 451
Creating Replication Accounts 451
Configuring the Master and Replica 452
Starting the Replica 453
Initializing a Replica from Another Server 456
Recommended Replication Configuration 458

Replication Under the Hood 460
Statement-Based Replication 460
Row-Based Replication 460
Statement-Based or Row-Based: Which Is Better? 461
Replication Files 463
Sending Replication Events to Other Replicas 465
Replication Filters 466

Replication Topologies 468
Master and Multiple Replicas 468
Master-Master in Active-Active Mode 469
Master-Master in Active-Passive Mode 471
Master-Master with Replicas 473
Ring Replication 473
Master, Distribution Master, and Replicas 474
Tree or Pyramid 476
Custom Replication Solutions 477

Replication and Capacity Planning 482
Why Replication Doesn’t Help Scale Writes 483
When Will Replicas Begin to Lag? 484
Plan to Underutilize 485

Replication Administration and Maintenance 485
Monitoring Replication 485
Measuring Replication Lag 486
Determining Whether Replicas Are Consistent with the Master 487
Resyncing a Replica from the Master 488
Changing Masters 489
Switching Roles in a Master-Master Configuration 494

Replication Problems and Solutions 495
Errors Caused by Data Corruption or Loss 495
Using Nontransactional Tables 498
Mixing Transactional and Nontransactional Tables 498
Nondeterministic Statements 499
Different Storage Engines on the Master and Replica 500

x | Table of Contents

Data Changes on the Replica 500
Nonunique Server IDs 500
Undefined Server IDs 501
Dependencies on Nonreplicated Data 501
Missing Temporary Tables 502
Not Replicating All Updates 503
Lock Contention Caused by InnoDB Locking Selects 503
Writing to Both Masters in Master-Master Replication 505
Excessive Replication Lag 507
Oversized Packets from the Master 511
Limited Replication Bandwidth 511
No Disk Space 511
Replication Limitations 512

How Fast Is Replication? 512
Advanced Features in MySQL Replication 514
Other Replication Technologies 516
Summary 518

11. Scaling MySQL . 521
What Is Scalability? 521

A Formal Definition 523
Scaling MySQL 527

Planning for Scalability 527
Buying Time Before Scaling 528
Scaling Up 529
Scaling Out 531
Scaling by Consolidation 547
Scaling by Clustering 548
Scaling Back 552

Load Balancing 555
Connecting Directly 556
Introducing a Middleman 560
Load Balancing with a Master and Multiple Replicas 564

Summary 565

12. High Availability . 567
What Is High Availability? 567
What Causes Downtime? 568
Achieving High Availability 569

Improving Mean Time Between Failures 570
Improving Mean Time to Recovery 571

Avoiding Single Points of Failure 572
Shared Storage or Replicated Disk 573

Table of Contents | xi

Synchronous MySQL Replication 576
Replication-Based Redundancy 580

Failover and Failback 581
Promoting a Replica or Switching Roles 583
Virtual IP Addresses or IP Takeover 583
Middleman Solutions 584
Handling Failover in the Application 585

Summary 586

13. MySQL in the Cloud . 589
Benefits, Drawbacks, and Myths of the Cloud 590
The Economics of MySQL in the Cloud 592
MySQL Scaling and HA in the Cloud 593
The Four Fundamental Resources 594
MySQL Performance in Cloud Hosting 595

Benchmarks for MySQL in the Cloud 598
MySQL Database as a Service (DBaaS) 600

Amazon RDS 600
Other DBaaS Solutions 602

Summary 602

14. Application-Level Optimization . 605
Common Problems 605
Web Server Issues 608

Finding the Optimal Concurrency 609
Caching 611

Caching Below the Application 611
Application-Level Caching 612
Cache Control Policies 614
Cache Object Hierarchies 616
Pregenerating Content 617
The Cache as an Infrastructure Component 617
Using HandlerSocket and memcached Access 618

Extending MySQL 618
Alternatives to MySQL 619
Summary 620

15. Backup and Recovery . 621
Why Backups? 622
Defining Recovery Requirements 623
Designing a MySQL Backup Solution 624

Online or Offline Backups? 625
Logical or Raw Backups? 627

xii | Table of Contents

What to Back Up 629
Storage Engines and Consistency 632
Replication 634

Managing and Backing Up Binary Logs 634
The Binary Log Format 635
Purging Old Binary Logs Safely 636

Backing Up Data 637
Making a Logical Backup 637
Filesystem Snapshots 640

Recovering from a Backup 647
Restoring Raw Files 648
Restoring Logical Backups 649
Point-in-Time Recovery 652
More Advanced Recovery Techniques 653
InnoDB Crash Recovery 655

Backup and Recovery Tools 658
MySQL Enterprise Backup 658
Percona XtraBackup 658
mylvmbackup 659
Zmanda Recovery Manager 659
mydumper 659
mysqldump 660

Scripting Backups 661
Summary 664

16. Tools for MySQL Users . 665
Interface Tools 665
Command-Line Utilities 666
SQL Utilities 667
Monitoring Tools 667

Open Source Monitoring Tools 668
Commercial Monitoring Systems 670
Command-Line Monitoring with Innotop 672

Summary 677

A. Forks and Variants of MySQL . 679

B. MySQL Server Status . 685

C. Transferring Large Files . 715

D. Using EXPLAIN . 719

Table of Contents | xiii

E. Debugging Locks . 735

F. Using Sphinx with MySQL . 745

Index . 771

xiv | Table of Contents

Foreword

I’ve been a fan of this book for years, and the third edition makes a great book even
better. Not only do world-class experts share that expertise, but they have taken the
time to update and add chapters with high-quality writing. While the book has many
details on getting high performance from MySQL, the focus of the book is on the pro-
cess of improvement rather than facts and trivia. This book will help you figure out
how to make things better, regardless of changes in MySQL’s behavior over time.

The authors are uniquely qualified to write this book, based on their experience, prin-
cipled approach, focus on efficiency, and commitment to improvement. By experi-
ence, I mean that the authors have been working on MySQL performance from the days
when it didn’t scale and had no instrumentation to the current period where things are
much better. By principled approach, I mean that they treat this like a science, first
defining problems to be solved and then using reason and measurement to solve those
problems.

I am most impressed by their focus on efficiency. As consultants, they don’t have the
luxury of time. Clients getting billed by the hour want problems solved quickly. So the
authors have defined processes and built tools to get things done correctly and effi-
ciently. They describe the processes in this book and publish source code for the tools.

Finally, they continue to get better at what they do. This includes a shift in concern
from throughput to response time, a commitment to understanding the performance
of MySQL on new hardware, and a pursuit of new skills like queueing theory that can
be used to understand performance.

I believe this book augurs a bright future for MySQL. As MySQL has evolved to support
demanding workloads, the authors have led a similar effort to improve the under-
standing of MySQL performance within the community. They have also contributed
directly to that improvement via XtraDB and XtraBackup. I continue to learn from them
and hope you take the time to do so as well.

—Mark Callaghan, Software Engineer, Facebook

xv

Preface

We wrote this book to serve the needs of not just the MySQL application developer
but also the MySQL database administrator. We assume that you are already relatively
experienced with MySQL. We also assume some experience with general system ad-
ministration, networking, and Unix-like operating systems.

The second edition of this book presented a lot of information to readers, but no book
can provide complete coverage of a topic. Between the second and third editions, we
took notes on literally thousands of interesting problems we’d solved or seen others
solve. When we started to outline the third edition, it became clear that not only would
full coverage of these topics require three to five thousand pages, but the book still
wouldn’t be complete. After reflecting on this problem, we realized that the second
edition’s emphasis on deep coverage was actually self-limiting, in the sense that it often
didn’t teach readers how to think about MySQL.

As a result, this third edition has a different focus from the second edition. We still
convey a lot of information, and we still emphasize the same goals, such as reliability
and correctness. But we’ve also tried to imbue the book with a deeper purpose: we want
to teach the principles of why MySQL works as it does, not just the facts about how it
works. We’ve included more illustrative stories and case studies, which demonstrate
the principles in action. We build on these to try to answer questions such as “Given
MySQL’s internal architecture and operation, what practical effects arise in real usage?
Why do those effects matter? How do they make MySQL well suited (or not well suited)
for particular needs?”

Ultimately, we hope that your knowledge of MySQL’s internals will help you in situa-
tions beyond the scope of this book. And we hope that your newfound insight will help
you to learn and practice a methodical approach to designing, maintaining, and trou-
bleshooting systems that are built on MySQL.

How This Book Is Organized
We fit a lot of complicated topics into this book. Here, we explain how we put them
together in an order that makes them easier to learn.

xvii

A Broad Overview
Chapter 1, MySQL Architecture and History is dedicated to the basics—things you’ll
need to be familiar with before you dig in deeply. You need to understand how MySQL
is organized before you’ll be able to use it effectively. This chapter explains MySQL’s
architecture and key facts about its storage engines. It helps you get up to speed if you
aren’t familiar with some of the fundamentals of a relational database, including trans-
actions. This chapter will also be useful if this book is your introduction to MySQL but
you’re already familiar with another database, such as Oracle. We also include a bit of
historical context: the changes to MySQL over time, recent ownership changes, and
where we think it’s headed.

Building a Solid Foundation
The early chapters cover material we hope you’ll reference over and over as you use
MySQL.

Chapter 2, Benchmarking MySQL discusses the basics of benchmarking—that is, de-
termining what sort of workload your server can handle, how fast it can perform certain
tasks, and so on. Benchmarking is an essential skill for evaluating how the server be-
haves under load, but it’s also important to know when it’s not useful.

Chapter 3, Profiling Server Performance introduces you to the response time–oriented
approach we take to troubleshooting and diagnosing server performance problems.
This framework has proven essential to solving some of the most puzzling cases we’ve
seen. Although you might choose to modify our approach (we developed it by modi-
fying Cary Millsap’s approach, after all), we hope you’ll avoid the pitfalls of not having
any method at all.

In Chapters 4 through 6, we introduce three topics that together form the foundation
for a good logical and physical database design. In Chapter 4, Optimizing Schema and
Data Types, we cover the various nuances of data types and table design. Chapter 5,
Indexing for High Performance extends the discussion to indexes—that is, physical
database design. A firm understanding of indexes and how to use them well is essential
for using MySQL effectively, so you’ll probably find yourself returning to this chapter
repeatedly. And Chapter 6, Query Performance Optimization wraps the topics together
by explaining how MySQL executes queries and how you can take advantage of its
query optimizer’s strengths. This chapter also presents specific examples of many com-
mon classes of queries, illustrating where MySQL does a good job and how to transform
queries into forms that use its strengths.

Up to this point, we’ve covered the basic topics that apply to any database: tables,
indexes, data, and queries. Chapter 7, Advanced MySQL Features goes beyond the
basics and shows you how MySQL’s advanced features work. We examine topics such
as partitioning, stored procedures, triggers, and character sets. MySQL’s implementa-
tion of these features is different from other databases, and a good understanding of

xviii | Preface

them can open up new opportunities for performance gains that you might not have
thought about otherwise.

Configuring Your Application
The next two chapters discuss how to make MySQL, your application, and your hard-
ware work well together. In Chapter 8, Optimizing Server Settings, we discuss how you
can configure MySQL to make the most of your hardware and to be reliable and robust.
Chapter 9, Operating System and Hardware Optimization explains how to get the most
out of your operating system and hardware. We discuss solid-state storage in depth,
and we suggest hardware configurations that might provide better performance for
larger-scale applications.

Both chapters explore MySQL internals to some degree. This is a recurring theme that
continues all the way through the appendixes: learn how it works internally, and you’ll
be empowered to understand and reason about the consequences.

MySQL as an Infrastructure Component
MySQL doesn’t exist in a vacuum. It’s part of an overall application stack, and you’ll
need to build a robust overall architecture for your application. The next set of chapters
is about how to do that.

In Chapter 10, Replication, we discuss MySQL’s killer feature: the ability to set up
multiple servers that all stay in sync with a master server’s changes. Unfortunately,
replication is perhaps MySQL’s most troublesome feature for some people. This
doesn’t have to be the case, and we show you how to ensure that it keeps running well.

Chapter 11, Scaling MySQL discusses what scalability is (it’s not the same thing as
performance), why applications and systems don’t scale, and what to do about it. If
you do it right, you can scale MySQL to suit nearly any purpose. Chapter 12, High
Availability delves into a related-but-distinct topic: how to ensure that MySQL stays
up and functions smoothly. In Chapter 13, MySQL in the Cloud, you’ll learn about
what’s different when you run MySQL in cloud computing environments.

In Chapter 14, Application-Level Optimization, we explain what we call full-stack op-
timization—optimization from the frontend to the backend, all the way from the user’s
experience to the database.

The best-designed, most scalable architecture in the world is no good if it can’t survive
power outages, malicious attacks, application bugs or programmer mistakes, and other
disasters. That’s why Chapter 15, Backup and Recovery discusses various backup and
recovery strategies for your MySQL databases. These strategies will help minimize your
downtime in the event of inevitable hardware failure and ensure that your data survives
such catastrophes.

Preface | xix

Miscellaneous Useful Topics
In the last chapter and the book’s appendixes, we delve into several topics that either
don’t fit well into any of the earlier chapters, or are referenced often enough in multiple
chapters that they deserve a bit of special attention.

Chapter 16, Tools for MySQL Users explores some of the open source and commercial
tools that can help you manage and monitor your MySQL servers more efficiently.

Appendix A introduces the three major unofficial versions of MySQL that have arisen
over the last few years, including the one that our company maintains. It’s worth
knowing what else is available; many problems that are difficult or intractable with
MySQL are solved elegantly by one of the variants. Two of the three (Percona Server
and MariaDB) are drop-in replacements, so the effort involved in trying them out is not
large. However, we hasten to add that we think most users are well served by sticking
with the official MySQL distribution from Oracle.

Appendix B shows you how to inspect your MySQL server. Knowing how to get status
information from the server is important; knowing what that information means is even
more important. We cover SHOW INNODB STATUS in particular detail, because it provides
deep insight into the operations of the InnoDB transactional storage engine. There is a
lot of discussion of InnoDB’s internals in this appendix.

Appendix C shows you how to copy very large files from place to place efficiently—a
must if you are going to manage large volumes of data. Appendix D shows you how to
really use and understand the all-important EXPLAIN command. Appendix E shows you
how to decipher what’s going on when queries are requesting locks that interfere with
each other. And finally, Appendix F is an introduction to Sphinx, a high-performance,
full-text indexing system that can complement MySQL’s own abilities.

Software Versions and Availability
MySQL is a moving target. In the years since Jeremy wrote the outline for the first
edition of this book, numerous releases of MySQL have appeared. MySQL 4.1 and 5.0
were available only as alpha versions when the first edition went to press, but today
MySQL 5.1 and 5.5 are the backbone of many large online applications. As we com-
pleted this third edition, MySQL 5.6 was the unreleased bleeding edge.

We didn’t rely on a single version of MySQL for this book. Instead, we drew on our
extensive collective knowledge of MySQL in the real world. The core of the book is
focused on MySQL 5.1 and MySQL 5.5, because those are what we consider the “cur-
rent” versions. Most of our examples assume you’re running some reasonably mature
version of MySQL 5.1, such as MySQL 5.1.50 or newer or newer. We have made an
effort to note features or functionalities that might not exist in older releases or that
might exist only in the upcoming 5.6 series. However, the definitive reference for map-
ping features to specific versions is the MySQL documentation itself. We expect that

xx | Preface

you’ll find yourself visiting the annotated online documentation (http://dev.mysql.com/
doc/) from time to time as you read this book.

Another great aspect of MySQL is that it runs on all of today’s popular platforms:
Mac OS X, Windows, GNU/Linux, Solaris, FreeBSD, you name it! However, we are
biased toward GNU/Linux1 and other Unix-like operating systems. Windows users are
likely to encounter some differences. For example, file paths are completely different
on Windows. We also refer to standard Unix command-line utilities; we assume you
know the corresponding commands in Windows.2

Perl is the other rough spot when dealing with MySQL on Windows. MySQL comes
with several useful utilities that are written in Perl, and certain chapters in this book
present example Perl scripts that form the basis of more complex tools you’ll build.
Percona Toolkit—which is indispensable for administering MySQL—is also written in
Perl. However, Perl isn’t included with Windows. In order to use these scripts, you’ll
need to download a Windows version of Perl from ActiveState and install the necessary
add-on modules (DBI and DBD::mysql) for MySQL access.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Used for new terms, URLs, email addresses, usernames, hostnames, filenames, file
extensions, pathnames, directories, and Unix commands and utilities.

Constant width
Indicates elements of code, configuration options, database and table names, vari-
ables and their values, functions, modules, the contents of files, or the output from
commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also used
for emphasis in command output.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

1. To avoid confusion, we refer to Linux when we are writing about the kernel, and GNU/Linux when we
are writing about the whole operating system infrastructure that supports applications.

2. You can get Windows-compatible versions of Unix utilities at http://unxutils.sourceforge.net or http://
gnuwin32.sourceforge.net.

Preface | xxi

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://unxutils.sourceforge.net
http://gnuwin32.sourceforge.net
http://gnuwin32.sourceforge.net

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You don’t need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book doesn’t require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code doesn’t require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

Examples are maintained on the site http://www.highperfmysql.com and will be updated
there from time to time. We cannot commit, however, to updating and testing the code
for every minor release of MySQL.

We appreciate, but don’t require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “High Performance MySQL, Third Edi-
tion, by Baron Schwartz et al. (O’Reilly). Copyright 2012 Baron Schwartz, Peter Zaitsev,
and Vadim Tkachenko, 978-1-449-31428-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business. Technology profes-
sionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for re-
search, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

xxii | Preface

http://www.highperfmysql.com
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022343.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

You can also get in touch with the authors directly. You can use the contact form on
our company’s website at http://www.percona.com. We’d be delighted to hear from
you.

Acknowledgments for the Third Edition
Thanks to the following people who helped in various ways: Brian Aker, Johan An-
dersson, Espen Braekken, Mark Callaghan, James Day, Maciej Dobrzanski, Ewen
Fortune, Dave Hildebrandt, Fernando Ipar, Haidong Ji, Giuseppe Maxia, Aurimas Mi-
kalauskas, Istvan Podor, Yves Trudeau, Matt Yonkovit, and Alex Yurchenko. Thanks
to everyone at Percona for helping in dozens of ways over the years. Thanks to the many
great bloggers3 and speakers who gave us a great deal of food for thought, especially
Yoshinori Matsunobu. Thanks also to the authors of the previous editions: Jeremy D.
Zawodny, Derek J. Balling, and Arjen Lentz. Thanks to Andy Oram, Rachel Head, and
the whole O’Reilly staff who do such a classy job of publishing books and running
conferences. And much gratitude to the brilliant and dedicated MySQL team inside

3. You can find a wealth of great technical blogging on http://planet.mysql.com.

Preface | xxiii

http://shop.oreilly.com/product/0636920022343.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.percona.com
http://planet.mysql.com

Oracle, as well as all of the ex-MySQLers, wherever you are, and especially to SkySQL
and Monty Program.

Baron thanks his wife Lynn, his mother, Connie, and his parents-in-law, Jane and
Roger, for helping and supporting this project in many ways, but most especially for
their encouragement and help with chores and taking care of the family. Thanks also
to Peter and Vadim for being such great teachers and colleagues. Baron dedicates this
edition to the memory of Alan Rimm-Kaufman, whose great love and encouragement
are never forgotten.

Acknowledgments for the Second Edition
Sphinx developer Andrew Aksyonoff wrote Appendix F. We’d like to thank him first
for his in-depth discussion.

We have received invaluable help from many people while writing this book. It’s im-
possible to list everyone who gave us help—we really owe thanks to the entire MySQL
community and everyone at MySQL AB. However, here’s a list of people who contrib-
uted directly, with apologies if we’ve missed anyone: Tobias Asplund, Igor Babaev,
Pascal Borghino, Roland Bouman, Ronald Bradford, Mark Callaghan, Jeremy Cole,
Britt Crawford and the HiveDB Project, Vasil Dimov, Harrison Fisk, Florian Haas,
Dmitri Joukovski and Zmanda (thanks for the diagram explaining LVM snapshots),
Alan Kasindorf, Sheeri Kritzer Cabral, Marko Makela, Giuseppe Maxia, Paul McCul-
lagh, B. Keith Murphy, Dhiren Patel, Sergey Petrunia, Alexander Rubin, Paul Tuckfield,
Heikki Tuuri, and Michael “Monty” Widenius.

A special thanks to Andy Oram and Isabel Kunkle, our editor and assistant editor at
O’Reilly, and to Rachel Wheeler, the copyeditor. Thanks also to the rest of the O’Reilly
staff.

From Baron
I would like to thank my wife, Lynn Rainville, and our dog, Carbon. If you’ve written
a book, I’m sure you know how grateful I am to them. I also owe a huge debt of gratitude
to Alan Rimm-Kaufman and my colleagues at the Rimm-Kaufman Group for their
support and encouragement during this project. Thanks to Peter, Vadim, and Arjen for
giving me the opportunity to make this dream come true. And thanks to Jeremy and
Derek for breaking the trail for us.

From Peter
I’ve been doing MySQL performance and scaling presentations, training, and consult-
ing for years, and I’ve always wanted to reach a wider audience, so I was very excited
when Andy Oram approached me to work on this book. I have not written a book
before, so I wasn’t prepared for how much time and effort it required. We first started

xxiv | Preface

talking about updating the first edition to cover recent versions of MySQL, but we
wanted to add so much material that we ended up rewriting most of the book.

This book is truly a team effort. Because I was very busy bootstrapping Percona,
Vadim’s and my consulting company, and because English is not my first language, we
all had different roles. I provided the outline and technical content, then I reviewed the
material, revising and extending it as we wrote. When Arjen (the former head of the
MySQL documentation team) joined the project, we began to fill out the outline. Things
really started to roll once we brought in Baron, who can write high-quality book content
at insane speeds. Vadim was a great help with in-depth MySQL source code checks
and when we needed to back our claims with benchmarks and other research.

As we worked on the book, we found more and more areas we wanted to explore in
more detail. Many of the book’s topics, such as replication, query optimization,
InnoDB, architecture, and design could easily fill their own books, so we had to stop
somewhere and leave some material for a possible future edition or for our blogs, pre-
sentations, and articles.

We got great help from our reviewers, who are the top MySQL experts in the world,
from both inside and outside of MySQL AB. These include MySQL’s founder, Michael
Widenius; InnoDB’s founder, Heikki Tuuri; Igor Babaev, the head of the MySQL op-
timizer team; and many others.

I would also like to thank my wife, Katya Zaytseva, and my children, Ivan and Na-
dezhda, for allowing me to spend time on the book that should have been Family Time.
I’m also grateful to Percona’s employees for handling things when I disappeared to
work on the book, and of course to Andy Oram and O’Reilly for making things happen.

From Vadim
I would like to thank Peter, who I am excited to have worked with on this book and
look forward to working with on other projects; Baron, who was instrumental in getting
this book done; and Arjen, who was a lot of fun to work with. Thanks also to our editor
Andy Oram, who had enough patience to work with us; the MySQL team that created
great software; and our clients who provide me the opportunities to fine-tune my
MySQL understanding. And finally a special thank you to my wife, Valerie, and our
sons, Myroslav and Timur, who always support me and help me to move forward.

From Arjen
I would like to thank Andy for his wisdom, guidance, and patience. Thanks to Baron
for hopping on the second edition train while it was already in motion, and to Peter
and Vadim for solid background information and benchmarks. Thanks also to Jeremy
and Derek for the foundation with the first edition; as you wrote in my copy, Derek:
“Keep ’em honest, that’s all I ask.”

Preface | xxv

Also thanks to all my former colleagues (and present friends) at MySQL AB, where I
acquired most of what I know about the topic; and in this context a special mention
for Monty, whom I continue to regard as the proud parent of MySQL, even though his
company now lives on as part of Sun Microsystems. I would also like to thank everyone
else in the global MySQL community.

And last but not least, thanks to my daughter Phoebe, who at this stage in her young
life does not care about this thing called “MySQL,” nor indeed has she any idea which
of The Wiggles it might refer to! For some, ignorance is truly bliss, and they provide us
with a refreshing perspective on what is really important in life; for the rest of you, may
you find this book a useful addition on your reference bookshelf. And don’t forget
your life.

Acknowledgments for the First Edition
A book like this doesn’t come into being without help from literally dozens of people.
Without their assistance, the book you hold in your hands would probably still be a
bunch of sticky notes on the sides of our monitors. This is the part of the book where
we get to say whatever we like about the folks who helped us out, and we don’t have
to worry about music playing in the background telling us to shut up and go away, as
you might see on TV during an awards show.

We couldn’t have completed this project without the constant prodding, begging,
pleading, and support from our editor, Andy Oram. If there is one person most re-
sponsible for the book in your hands, it’s Andy. We really do appreciate the weekly
nag sessions.

Andy isn’t alone, though. At O’Reilly there are a bunch of other folks who had some
part in getting those sticky notes converted to a cohesive book that you’d be willing to
read, so we also have to thank the production, illustration, and marketing folks for
helping to pull this book together. And, of course, thanks to Tim O’Reilly for his con-
tinued commitment to producing some of the industry’s finest documentation for pop-
ular open source software.

Finally, we’d both like to give a big thanks to the folks who agreed to look over the
various drafts of the book and tell us all the things we were doing wrong: our reviewers.
They spent part of their 2003 holiday break looking over roughly formatted versions
of this text, full of typos, misleading statements, and outright mathematical errors. In
no particular order, thanks to Brian “Krow” Aker, Mark “JDBC” Matthews, Jeremy
“the other Jeremy” Cole, Mike “VBMySQL.com” Hillyer, Raymond “Rainman” De
Roo, Jeffrey “Regex Master” Friedl, Jason DeHaan, Dan Nelson, Steve “Unix Wiz”
Friedl, and, last but not least, Kasia “Unix Girl” Trapszo.

xxvi | Preface

http://vbmysql.com

From Jeremy
I would again like to thank Andy for agreeing to take on this project and for continually
beating on us for more chapter material. Derek’s help was essential for getting the last
20–30% of the book completed so that we wouldn’t miss yet another target date.
Thanks for agreeing to come on board late in the process and deal with my sporadic
bursts of productivity, and for handling the XML grunt work, Chapter 10, Appendix
F, and all the other stuff I threw your way.

I also need to thank my parents for getting me that first Commodore 64 computer so
many years ago. They not only tolerated the first 10 years of what seems to be a lifelong
obsession with electronics and computer technology, but quickly became supporters
of my never-ending quest to learn and do more.

Next, I’d like to thank a group of people I’ve had the distinct pleasure of working with
while spreading the MySQL religion at Yahoo! during the last few years. Jeffrey Friedl
and Ray Goldberger provided encouragement and feedback from the earliest stages of
this undertaking. Along with them, Steve Morris, James Harvey, and Sergey Kolychev
put up with my seemingly constant experimentation on the Yahoo! Finance MySQL
servers, even when it interrupted their important work. Thanks also to the countless
other Yahoo!s who have helped me find interesting MySQL problems and solutions.
And, most importantly, thanks for having the trust and faith in me needed to put
MySQL into some of the most important and visible parts of Yahoo!’s business.

Adam Goodman, the publisher and owner of Linux Magazine, helped me ease into the
world of writing for a technical audience by publishing my first feature-length MySQL
articles back in 2001. Since then, he’s taught me more than he realizes about editing
and publishing and has encouraged me to continue on this road with my own monthly
column in the magazine. Thanks, Adam.

Thanks to Monty and David for sharing MySQL with the world. Speaking of MySQL
AB, thanks to all the other great folks there who have encouraged me in writing this:
Kerry, Larry, Joe, Marten, Brian, Paul, Jeremy, Mark, Harrison, Matt, and the rest of
the team there. You guys rock.

Finally, thanks to all my weblog readers for encouraging me to write informally about
MySQL and other technical topics on a daily basis. And, last but not least, thanks to
the Goon Squad.

From Derek
Like Jeremy, I’ve got to thank my family, for much the same reasons. I want to thank
my parents for their constant goading that I should write a book, even if this isn’t
anywhere near what they had in mind. My grandparents helped me learn two valuable
lessons, the meaning of the dollar and how much I would fall in love with computers,
as they loaned me the money to buy my first Commodore VIC-20.

Preface | xxvii

I can’t thank Jeremy enough for inviting me to join him on the whirlwind book-writing
roller coaster. It’s been a great experience and I look forward to working with him again
in the future.

A special thanks goes out to Raymond De Roo, Brian Wohlgemuth, David Calafran-
cesco, Tera Doty, Jay Rubin, Bill Catlan, Anthony Howe, Mark O’Neal, George Mont-
gomery, George Barber, and the myriad other people who patiently listened to me gripe
about things, let me bounce ideas off them to see whether an outsider could understand
what I was trying to say, or just managed to bring a smile to my face when I needed it
most. Without you, this book might still have been written, but I almost certainly would
have gone crazy in the process.

xxviii | Preface

CHAPTER 1

MySQL Architecture and History

MySQL is very different from other database servers, and its architectural characteris-
tics make it useful for a wide range of purposes as well as making it a poor choice for
others. MySQL is not perfect, but it is flexible enough to work well in very demanding
environments, such as web applications. At the same time, MySQL can power embed-
ded applications, data warehouses, content indexing and delivery software, highly
available redundant systems, online transaction processing (OLTP), and much more.

To get the most from MySQL, you need to understand its design so that you can
work with it, not against it. MySQL is flexible in many ways. For example, you can
configure it to run well on a wide range of hardware, and it supports a variety of data
types. However, MySQL’s most unusual and important feature is its storage-engine
architecture, whose design separates query processing and other server tasks from data
storage and retrieval. This separation of concerns lets you choose how your data is
stored and what performance, features, and other characteristics you want.

This chapter provides a high-level overview of the MySQL server architecture, the major
differences between the storage engines, and why those differences are important. We’ll
finish with some historical context and benchmarks. We’ve tried to explain MySQL by
simplifying the details and showing examples. This discussion will be useful for those
new to database servers as well as readers who are experts with other database servers.

MySQL’s Logical Architecture
A good mental picture of how MySQL’s components work together will help you un-
derstand the server. Figure 1-1 shows a logical view of MySQL’s architecture.

The topmost layer contains the services that aren’t unique to MySQL. They’re services
most network-based client/server tools or servers need: connection handling, authen-
tication, security, and so forth.

The second layer is where things get interesting. Much of MySQL’s brains are here,
including the code for query parsing, analysis, optimization, caching, and all the

1

built-in functions (e.g., dates, times, math, and encryption). Any functionality provided
across storage engines lives at this level: stored procedures, triggers, and views, for
example.

The third layer contains the storage engines. They are responsible for storing and
retrieving all data stored “in” MySQL. Like the various filesystems available for GNU/
Linux, each storage engine has its own benefits and drawbacks. The server communi-
cates with them through the storage engine API. This interface hides differences
between storage engines and makes them largely transparent at the query layer. The
API contains a couple of dozen low-level functions that perform operations such as
“begin a transaction” or “fetch the row that has this primary key.” The storage engines
don’t parse SQL1 or communicate with each other; they simply respond to requests
from the server.

Connection Management and Security
Each client connection gets its own thread within the server process. The connection’s
queries execute within that single thread, which in turn resides on one core or CPU.
The server caches threads, so they don’t need to be created and destroyed for each new
connection.2

When clients (applications) connect to the MySQL server, the server needs to authen-
ticate them. Authentication is based on username, originating host, and password.

Figure 1-1. A logical view of the MySQL server architecture

1. One exception is InnoDB, which does parse foreign key definitions, because the MySQL server doesn’t
yet implement them itself.

2. MySQL 5.5 and newer versions support an API that can accept thread-pooling plugins, so a small pool
of threads can service many connections.

2 | Chapter 1: MySQL Architecture and History

X.509 certificates can also be used across an SSL (Secure Sockets Layer) connection.
Once a client has connected, the server verifies whether the client has privileges for
each query it issues (e.g., whether the client is allowed to issue a SELECT statement that
accesses the Country table in the world database).

Optimization and Execution
MySQL parses queries to create an internal structure (the parse tree), and then applies
a variety of optimizations. These can include rewriting the query, determining the order
in which it will read tables, choosing which indexes to use, and so on. You can pass
hints to the optimizer through special keywords in the query, affecting its decision-
making process. You can also ask the server to explain various aspects of optimization.
This lets you know what decisions the server is making and gives you a reference point
for reworking queries, schemas, and settings to make everything run as efficiently as
possible. We discuss the optimizer in much more detail in Chapter 6.

The optimizer does not really care what storage engine a particular table uses, but the
storage engine does affect how the server optimizes the query. The optimizer asks
the storage engine about some of its capabilities and the cost of certain operations, and
for statistics on the table data. For instance, some storage engines support index types
that can be helpful to certain queries. You can read more about indexing and schema
optimization in Chapter 4 and Chapter 5.

Before even parsing the query, though, the server consults the query cache, which can
store only SELECT statements, along with their result sets. If anyone issues a query that’s
identical to one already in the cache, the server doesn’t need to parse, optimize, or
execute the query at all—it can simply pass back the stored result set. We write more
about that in Chapter 7.

Concurrency Control
Anytime more than one query needs to change data at the same time, the problem of
concurrency control arises. For our purposes in this chapter, MySQL has to do this at
two levels: the server level and the storage engine level. Concurrency control is a big
topic to which a large body of theoretical literature is devoted, so we will just give you
a simplified overview of how MySQL deals with concurrent readers and writers, so you
have the context you need for the rest of this chapter.

We’ll use an email box on a Unix system as an example. The classic mbox file format
is very simple. All the messages in an mbox mailbox are concatenated together, one
after another. This makes it very easy to read and parse mail messages. It also makes
mail delivery easy: just append a new message to the end of the file.

Concurrency Control | 3

But what happens when two processes try to deliver messages at the same time to the
same mailbox? Clearly that could corrupt the mailbox, leaving two interleaved mes-
sages at the end of the mailbox file. Well-behaved mail delivery systems use locking to
prevent corruption. If a client attempts a second delivery while the mailbox is locked,
it must wait to acquire the lock itself before delivering its message.

This scheme works reasonably well in practice, but it gives no support for concurrency.
Because only a single process can change the mailbox at any given time, this approach
becomes problematic with a high-volume mailbox.

Read/Write Locks
Reading from the mailbox isn’t as troublesome. There’s nothing wrong with multiple
clients reading the same mailbox simultaneously; because they aren’t making changes,
nothing is likely to go wrong. But what happens if someone tries to delete message
number 25 while programs are reading the mailbox? It depends, but a reader could
come away with a corrupted or inconsistent view of the mailbox. So, to be safe, even
reading from a mailbox requires special care.

If you think of the mailbox as a database table and each mail message as a row, it’s easy
to see that the problem is the same in this context. In many ways, a mailbox is really
just a simple database table. Modifying rows in a database table is very similar to re-
moving or changing the content of messages in a mailbox file.

The solution to this classic problem of concurrency control is rather simple. Systems
that deal with concurrent read/write access typically implement a locking system that
consists of two lock types. These locks are usually known as shared locks and exclusive
locks, or read locks and write locks.

Without worrying about the actual locking technology, we can describe the concept as
follows. Read locks on a resource are shared, or mutually nonblocking: many clients
can read from a resource at the same time and not interfere with each other. Write
locks, on the other hand, are exclusive—i.e., they block both read locks and other write
locks—because the only safe policy is to have a single client writing to the resource at
a given time and to prevent all reads when a client is writing.

In the database world, locking happens all the time: MySQL has to prevent one client
from reading a piece of data while another is changing it. It performs this lock man-
agement internally in a way that is transparent much of the time.

Lock Granularity
One way to improve the concurrency of a shared resource is to be more selective about
what you lock. Rather than locking the entire resource, lock only the part that contains
the data you need to change. Better yet, lock only the exact piece of data you plan to

4 | Chapter 1: MySQL Architecture and History

change. Minimizing the amount of data that you lock at any one time lets changes to
a given resource occur simultaneously, as long as they don’t conflict with each other.

The problem is locks consume resources. Every lock operation—getting a lock, check-
ing to see whether a lock is free, releasing a lock, and so on—has overhead. If the system
spends too much time managing locks instead of storing and retrieving data, perfor-
mance can suffer.

A locking strategy is a compromise between lock overhead and data safety, and that
compromise affects performance. Most commercial database servers don’t give you
much choice: you get what is known as row-level locking in your tables, with a variety
of often complex ways to give good performance with many locks.

MySQL, on the other hand, does offer choices. Its storage engines can implement their
own locking policies and lock granularities. Lock management is a very important de-
cision in storage engine design; fixing the granularity at a certain level can give better
performance for certain uses, yet make that engine less suited for other purposes. Be-
cause MySQL offers multiple storage engines, it doesn’t require a single general-
purpose solution. Let’s have a look at the two most important lock strategies.

Table locks

The most basic locking strategy available in MySQL, and the one with the lowest over-
head, is table locks. A table lock is analogous to the mailbox locks described earlier: it
locks the entire table. When a client wishes to write to a table (insert, delete, update,
etc.), it acquires a write lock. This keeps all other read and write operations at bay.
When nobody is writing, readers can obtain read locks, which don’t conflict with other
read locks.

Table locks have variations for good performance in specific situations. For example,
READ LOCAL table locks allow some types of concurrent write operations. Write locks
also have a higher priority than read locks, so a request for a write lock will advance to
the front of the lock queue even if readers are already in the queue (write locks can
advance past read locks in the queue, but read locks cannot advance past write locks).

Although storage engines can manage their own locks, MySQL itself also uses a variety
of locks that are effectively table-level for various purposes. For instance, the server
uses a table-level lock for statements such as ALTER TABLE, regardless of the storage
engine.

Row locks

The locking style that offers the greatest concurrency (and carries the greatest overhead)
is the use of row locks. Row-level locking, as this strategy is commonly known, is
available in the InnoDB and XtraDB storage engines, among others. Row locks are
implemented in the storage engine, not the server (refer back to the logical architecture
diagram if you need to). The server is completely unaware of locks implemented in the

Concurrency Control | 5

storage engines, and as you’ll see later in this chapter and throughout the book, the
storage engines all implement locking in their own ways.

Transactions
You can’t examine the more advanced features of a database system for very long before
transactions enter the mix. A transaction is a group of SQL queries that are treated
atomically, as a single unit of work. If the database engine can apply the entire group
of queries to a database, it does so, but if any of them can’t be done because of a crash
or other reason, none of them is applied. It’s all or nothing.

Little of this section is specific to MySQL. If you’re already familiar with ACID trans-
actions, feel free to skip ahead to “Transactions in MySQL” on page 10.

A banking application is the classic example of why transactions are necessary. Imagine
a bank’s database with two tables: checking and savings. To move $200 from Jane’s
checking account to her savings account, you need to perform at least three steps:

1. Make sure her checking account balance is greater than $200.

2. Subtract $200 from her checking account balance.

3. Add $200 to her savings account balance.

The entire operation should be wrapped in a transaction so that if any one of the steps
fails, any completed steps can be rolled back.

You start a transaction with the START TRANSACTION statement and then either make its
changes permanent with COMMIT or discard the changes with ROLLBACK. So, the SQL for
our sample transaction might look like this:

1 START TRANSACTION;
2 SELECT balance FROM checking WHERE customer_id = 10233276;
3 UPDATE checking SET balance = balance - 200.00 WHERE customer_id = 10233276;
4 UPDATE savings SET balance = balance + 200.00 WHERE customer_id = 10233276;
5 COMMIT;

But transactions alone aren’t the whole story. What happens if the database server
crashes while performing line 4? Who knows? The customer probably just lost $200.
And what if another process comes along between lines 3 and 4 and removes the entire
checking account balance? The bank has given the customer a $200 credit without even
knowing it.

Transactions aren’t enough unless the system passes the ACID test. ACID stands for
Atomicity, Consistency, Isolation, and Durability. These are tightly related criteria that
a well-behaved transaction processing system must meet:

Atomicity
A transaction must function as a single indivisible unit of work so that the entire
transaction is either applied or rolled back. When transactions are atomic, there is
no such thing as a partially completed transaction: it’s all or nothing.

6 | Chapter 1: MySQL Architecture and History

Consistency
The database should always move from one consistent state to the next. In our
example, consistency ensures that a crash between lines 3 and 4 doesn’t result in
$200 disappearing from the checking account. Because the transaction is never
committed, none of the transaction’s changes are ever reflected in the database.

Isolation
The results of a transaction are usually invisible to other transactions until the
transaction is complete. This ensures that if a bank account summary runs after
line 3 but before line 4 in our example, it will still see the $200 in the checking
account. When we discuss isolation levels, you’ll understand why we said usu-
ally invisible.

Durability
Once committed, a transaction’s changes are permanent. This means the changes
must be recorded such that data won’t be lost in a system crash. Durability is a
slightly fuzzy concept, however, because there are actually many levels. Some du-
rability strategies provide a stronger safety guarantee than others, and nothing is
ever 100% durable (if the database itself were truly durable, then how could back-
ups increase durability?). We discuss what durability really means in MySQL in
later chapters.

ACID transactions ensure that banks don’t lose your money. It is generally extremely
difficult or impossible to do this with application logic. An ACID-compliant database
server has to do all sorts of complicated things you might not realize to provide ACID
guarantees.

Just as with increased lock granularity, the downside of this extra security is that the
database server has to do more work. A database server with ACID transactions also
generally requires more CPU power, memory, and disk space than one without them.
As we’ve said several times, this is where MySQL’s storage engine architecture works
to your advantage. You can decide whether your application needs transactions. If you
don’t really need them, you might be able to get higher performance with a nontran-
sactional storage engine for some kinds of queries. You might be able to use LOCK
TABLES to give the level of protection you need without transactions. It’s all up to you.

Isolation Levels
Isolation is more complex than it looks. The SQL standard defines four isolation levels,
with specific rules for which changes are and aren’t visible inside and outside a trans-
action. Lower isolation levels typically allow higher concurrency and have lower
overhead.

Transactions | 7

Each storage engine implements isolation levels slightly differently, and
they don’t necessarily match what you might expect if you’re used to
another database product (thus, we won’t go into exhaustive detail in
this section). You should read the manuals for whichever storage en-
gines you decide to use.

Let’s take a quick look at the four isolation levels:

READ UNCOMMITTED
In the READ UNCOMMITTED isolation level, transactions can view the results of un-
committed transactions. At this level, many problems can occur unless you really,
really know what you are doing and have a good reason for doing it. This level is
rarely used in practice, because its performance isn’t much better than the other
levels, which have many advantages. Reading uncommitted data is also known as
a dirty read.

READ COMMITTED
The default isolation level for most database systems (but not MySQL!) is READ
COMMITTED. It satisfies the simple definition of isolation used earlier: a transaction
will see only those changes made by transactions that were already committed
when it began, and its changes won’t be visible to others until it has committed.
This level still allows what’s known as a nonrepeatable read. This means you can
run the same statement twice and see different data.

REPEATABLE READ
REPEATABLE READ solves the problems that READ UNCOMMITTED allows. It guarantees
that any rows a transaction reads will “look the same” in subsequent reads within
the same transaction, but in theory it still allows another tricky problem: phantom
reads. Simply put, a phantom read can happen when you select some range of rows,
another transaction inserts a new row into the range, and then you select the same
range again; you will then see the new “phantom” row. InnoDB and XtraDB solve
the phantom read problem with multiversion concurrency control, which we ex-
plain later in this chapter.

REPEATABLE READ is MySQL’s default transaction isolation level.

SERIALIZABLE
The highest level of isolation, SERIALIZABLE, solves the phantom read problem by
forcing transactions to be ordered so that they can’t possibly conflict. In a nutshell,
SERIALIZABLE places a lock on every row it reads. At this level, a lot of timeouts and
lock contention can occur. We’ve rarely seen people use this isolation level, but
your application’s needs might force you to accept the decreased concurrency in
favor of the data stability that results.

Table 1-1 summarizes the various isolation levels and the drawbacks associated with
each one.

8 | Chapter 1: MySQL Architecture and History

Table 1-1. ANSI SQL isolation levels

Isolation level Dirty reads possible
Nonrepeatable reads
possible

Phantom reads
possible Locking reads

READ UNCOMMITTED Yes Yes Yes No

READ COMMITTED No Yes Yes No

REPEATABLE READ No No Yes No

SERIALIZABLE No No No Yes

Deadlocks
A deadlock is when two or more transactions are mutually holding and requesting locks
on the same resources, creating a cycle of dependencies. Deadlocks occur when trans-
actions try to lock resources in a different order. They can happen whenever multiple
transactions lock the same resources. For example, consider these two transactions
running against the StockPrice table:

Transaction #1

START TRANSACTION;
UPDATE StockPrice SET close = 45.50 WHERE stock_id = 4 and date = '2002-05-01';
UPDATE StockPrice SET close = 19.80 WHERE stock_id = 3 and date = '2002-05-02';
COMMIT;

Transaction #2

START TRANSACTION;
UPDATE StockPrice SET high = 20.12 WHERE stock_id = 3 and date = '2002-05-02';
UPDATE StockPrice SET high = 47.20 WHERE stock_id = 4 and date = '2002-05-01';
COMMIT;

If you’re unlucky, each transaction will execute its first query and update a row of data,
locking it in the process. Each transaction will then attempt to update its second row,
only to find that it is already locked. The two transactions will wait forever for each
other to complete, unless something intervenes to break the deadlock.

To combat this problem, database systems implement various forms of deadlock de-
tection and timeouts. The more sophisticated systems, such as the InnoDB storage
engine, will notice circular dependencies and return an error instantly. This can be a
good thing—otherwise, deadlocks would manifest themselves as very slow queries.
Others will give up after the query exceeds a lock wait timeout, which is not always
good. The way InnoDB currently handles deadlocks is to roll back the transaction that
has the fewest exclusive row locks (an approximate metric for which will be the easiest
to roll back).

Lock behavior and order are storage engine–specific, so some storage engines might
deadlock on a certain sequence of statements even though others won’t. Deadlocks
have a dual nature: some are unavoidable because of true data conflicts, and some are
caused by how a storage engine works.

Transactions | 9

Deadlocks cannot be broken without rolling back one of the transactions, either par-
tially or wholly. They are a fact of life in transactional systems, and your applications
should be designed to handle them. Many applications can simply retry their transac-
tions from the beginning.

Transaction Logging
Transaction logging helps make transactions more efficient. Instead of updating the
tables on disk each time a change occurs, the storage engine can change its in-memory
copy of the data. This is very fast. The storage engine can then write a record of the
change to the transaction log, which is on disk and therefore durable. This is also a
relatively fast operation, because appending log events involves sequential I/O in one
small area of the disk instead of random I/O in many places. Then, at some later time,
a process can update the table on disk. Thus, most storage engines that use this tech-
nique (known as write-ahead logging) end up writing the changes to disk twice.

If there’s a crash after the update is written to the transaction log but before the changes
are made to the data itself, the storage engine can still recover the changes upon restart.
The recovery method varies between storage engines.

Transactions in MySQL
MySQL provides two transactional storage engines: InnoDB and NDB Cluster. Several
third-party engines are also available; the best-known engines right now are XtraDB
and PBXT. We discuss some specific properties of each engine in the next section.

AUTOCOMMIT

MySQL operates in AUTOCOMMIT mode by default. This means that unless you’ve ex-
plicitly begun a transaction, it automatically executes each query in a separate trans-
action. You can enable or disable AUTOCOMMIT for the current connection by setting a
variable:

mysql> SHOW VARIABLES LIKE 'AUTOCOMMIT';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> SET AUTOCOMMIT = 1;

The values 1 and ON are equivalent, as are 0 and OFF. When you run with AUTOCOMMIT
=0, you are always in a transaction, until you issue a COMMIT or ROLLBACK. MySQL then
starts a new transaction immediately. Changing the value of AUTOCOMMIT has no effect
on nontransactional tables, such as MyISAM or Memory tables, which have no notion
of committing or rolling back changes.

10 | Chapter 1: MySQL Architecture and History

Certain commands, when issued during an open transaction, cause MySQL to commit
the transaction before they execute. These are typically Data Definition Language
(DDL) commands that make significant changes, such as ALTER TABLE, but LOCK
TABLES and some other statements also have this effect. Check your version’s docu-
mentation for the full list of commands that automatically commit a transaction.

MySQL lets you set the isolation level using the SET TRANSACTION ISOLATION LEVEL
command, which takes effect when the next transaction starts. You can set the isolation
level for the whole server in the configuration file, or just for your session:

mysql> SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;

MySQL recognizes all four ANSI standard isolation levels, and InnoDB supports all of
them.

Mixing storage engines in transactions

MySQL doesn’t manage transactions at the server level. Instead, the underlying storage
engines implement transactions themselves. This means you can’t reliably mix different
engines in a single transaction.

If you mix transactional and nontransactional tables (for instance, InnoDB and
MyISAM tables) in a transaction, the transaction will work properly if all goes well.

However, if a rollback is required, the changes to the nontransactional table can’t be
undone. This leaves the database in an inconsistent state from which it might be difficult
to recover and renders the entire point of transactions moot. This is why it is really
important to pick the right storage engine for each table.

MySQL will not usually warn you or raise errors if you do transactional operations on
a nontransactional table. Sometimes rolling back a transaction will generate the warn-
ing “Some nontransactional changed tables couldn’t be rolled back,” but most of the
time, you’ll have no indication you’re working with nontransactional tables.

Implicit and explicit locking

InnoDB uses a two-phase locking protocol. It can acquire locks at any time during a
transaction, but it does not release them until a COMMIT or ROLLBACK. It releases all the
locks at the same time. The locking mechanisms described earlier are all implicit.
InnoDB handles locks automatically, according to your isolation level.

However, InnoDB also supports explicit locking, which the SQL standard does not
mention at all:3

• SELECT ... LOCK IN SHARE MODE

• SELECT ... FOR UPDATE

3. These locking hints are frequently abused and should usually be avoided; see Chapter 6 for more details.

Transactions | 11

MySQL also supports the LOCK TABLES and UNLOCK TABLES commands, which are im-
plemented in the server, not in the storage engines. These have their uses, but they are
not a substitute for transactions. If you need transactions, use a transactional storage
engine.

We often see applications that have been converted from MyISAM to InnoDB but are
still using LOCK TABLES. This is no longer necessary because of row-level locking, and it
can cause severe performance problems.

The interaction between LOCK TABLES and transactions is complex, and
there are unexpected behaviors in some server versions. Therefore, we
recommend that you never use LOCK TABLES unless you are in a trans-
action and AUTOCOMMIT is disabled, no matter what storage engine you
are using.

Multiversion Concurrency Control
Most of MySQL’s transactional storage engines don’t use a simple row-locking mech-
anism. Instead, they use row-level locking in conjunction with a technique for increas-
ing concurrency known as multiversion concurrency control (MVCC). MVCC is not
unique to MySQL: Oracle, PostgreSQL, and some other database systems use it too,
although there are significant differences because there is no standard for how MVCC
should work.

You can think of MVCC as a twist on row-level locking; it avoids the need for locking
at all in many cases and can have much lower overhead. Depending on how it is im-
plemented, it can allow nonlocking reads, while locking only the necessary rows during
write operations.

MVCC works by keeping a snapshot of the data as it existed at some point in time.
This means transactions can see a consistent view of the data, no matter how long they
run. It also means different transactions can see different data in the same tables at the
same time! If you’ve never experienced this before, it might be confusing, but it will
become easier to understand with familiarity.

Each storage engine implements MVCC differently. Some of the variations include
optimistic and pessimistic concurrency control. We’ll illustrate one way MVCC works
by explaining a simplified version of InnoDB’s behavior.

InnoDB implements MVCC by storing with each row two additional, hidden values
that record when the row was created and when it was expired (or deleted). Rather
than storing the actual times at which these events occurred, the row stores the system
version number at the time each event occurred. This is a number that increments each
time a transaction begins. Each transaction keeps its own record of the current system
version, as of the time it began. Each query has to check each row’s version numbers

12 | Chapter 1: MySQL Architecture and History

against the transaction’s version. Let’s see how this applies to particular operations
when the transaction isolation level is set to REPEATABLE READ:

SELECT
InnoDB must examine each row to ensure that it meets two criteria:

a. InnoDB must find a version of the row that is at least as old as the transaction
(i.e., its version must be less than or equal to the transaction’s version). This
ensures that either the row existed before the transaction began, or the trans-
action created or altered the row.

b. The row’s deletion version must be undefined or greater than the transaction’s
version. This ensures that the row wasn’t deleted before the transaction began.

Rows that pass both tests may be returned as the query’s result.

INSERT
InnoDB records the current system version number with the new row.

DELETE
InnoDB records the current system version number as the row’s deletion ID.

UPDATE
InnoDB writes a new copy of the row, using the system version number for the new
row’s version. It also writes the system version number as the old row’s deletion
version.

The result of all this extra record keeping is that most read queries never acquire locks.
They simply read data as fast as they can, making sure to select only rows that meet
the criteria. The drawbacks are that the storage engine has to store more data with each
row, do more work when examining rows, and handle some additional housekeeping
operations.

MVCC works only with the REPEATABLE READ and READ COMMITTED isolation levels. READ
UNCOMMITTED isn’t MVCC-compatible4 because queries don’t read the row version
that’s appropriate for their transaction version; they read the newest version, no matter
what. SERIALIZABLE isn’t MVCC-compatible because reads lock every row they return.

MySQL’s Storage Engines
This section gives an overview of MySQL’s storage engines. We won’t go into great
detail here, because we discuss storage engines and their particular behaviors through-
out the book. Even this book, though, isn’t a complete source of documentation; you
should read the MySQL manuals for the storage engines you decide to use.

MySQL stores each database (also called a schema) as a subdirectory of its data directory
in the underlying filesystem. When you create a table, MySQL stores the table definition

4. There is no formal standard that defines MVCC, so different engines and databases implement it very
differently, and no one can say any of them is wrong.

MySQL’s Storage Engines | 13

in a .frm file with the same name as the table. Thus, when you create a table named
MyTable, MySQL stores the table definition in MyTable.frm. Because MySQL uses the
filesystem to store database names and table definitions, case sensitivity depends on
the platform. On a Windows MySQL instance, table and database names are case
insensitive; on Unix-like systems, they are case sensitive. Each storage engine stores the
table’s data and indexes differently, but the server itself handles the table definition.

You can use the SHOW TABLE STATUS command (or in MySQL 5.0 and newer versions,
query the INFORMATION_SCHEMA tables) to display information about tables. For example,
to examine the user table in the mysql database, execute the following:

mysql> SHOW TABLE STATUS LIKE 'user' \G
*************************** 1. row ***************************
 Name: user
 Engine: MyISAM
 Row_format: Dynamic
 Rows: 6
 Avg_row_length: 59
 Data_length: 356
Max_data_length: 4294967295
 Index_length: 2048
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2002-01-24 18:07:17
 Update_time: 2002-01-24 21:56:29
 Check_time: NULL
 Collation: utf8_bin
 Checksum: NULL
 Create_options:
 Comment: Users and global privileges
1 row in set (0.00 sec)

The output shows that this is a MyISAM table. You might also notice a lot of other
information and statistics in the output. Let’s look briefly at what each line means:

Name
The table’s name.

Engine
The table’s storage engine. In old versions of MySQL, this column was named
Type, not Engine.

Row_format
The row format. For a MyISAM table, this can be Dynamic, Fixed, or Compressed.
Dynamic rows vary in length because they contain variable-length fields such as
VARCHAR or BLOB. Fixed rows, which are always the same size, are made up of fields
that don’t vary in length, such as CHAR and INTEGER. Compressed rows exist only in
compressed tables; see “Compressed MyISAM tables” on page 19.

Rows
The number of rows in the table. For MyISAM and most other engines, this number
is always accurate. For InnoDB, it is an estimate.

14 | Chapter 1: MySQL Architecture and History

Avg_row_length
How many bytes the average row contains.

Data_length
How much data (in bytes) the entire table contains.

Max_data_length
The maximum amount of data this table can hold. This is engine-specific.

Index_length
How much disk space the index data consumes.

Data_free
For a MyISAM table, the amount of space that is allocated but currently unused.
This space holds previously deleted rows and can be reclaimed by future INSERT
statements.

Auto_increment
The next AUTO_INCREMENT value.

Create_time
When the table was first created.

Update_time
When data in the table last changed.

Check_time
When the table was last checked using CHECK TABLE or myisamchk.

Collation
The default character set and collation for character columns in this table.

Checksum
A live checksum of the entire table’s contents, if enabled.

Create_options
Any other options that were specified when the table was created.

Comment
This field contains a variety of extra information. For a MyISAM table, it contains
the comments, if any, that were set when the table was created. If the table uses
the InnoDB storage engine, the amount of free space in the InnoDB tablespace
appears here. If the table is a view, the comment contains the text “VIEW.”

The InnoDB Engine
InnoDB is the default transactional storage engine for MySQL and the most important
and broadly useful engine overall. It was designed for processing many short-lived
transactions that usually complete rather than being rolled back. Its performance and
automatic crash recovery make it popular for nontransactional storage needs, too. You
should use InnoDB for your tables unless you have a compelling need to use a different
engine. If you want to study storage engines, it is also well worth your time to study

MySQL’s Storage Engines | 15

InnoDB in depth to learn as much as you can about it, rather than studying all storage
engines equally.

InnoDB’s history

InnoDB has a complex release history, but it’s very helpful to understand it. In 2008,
the so-called InnoDB plugin was released for MySQL 5.1. This was the next generation
of InnoDB created by Oracle, which at that time owned InnoDB but not MySQL. For
various reasons that are great to discuss over beers, MySQL continued shipping the
older version of InnoDB, compiled into the server. But you could disable this and install
the newer, better-performing, more scalable InnoDB plugin if you wished. Eventually,
Oracle acquired Sun Microsystems and thus MySQL, and removed the older codebase,
replacing it with the “plugin” by default in MySQL 5.5. (Yes, this means that now the
“plugin” is actually compiled in, not installed as a plugin. Old terminology dies hard.)

The modern version of InnoDB, introduced as the InnoDB plugin in MySQL 5.1, sports
new features such as building indexes by sorting, the ability to drop and add indexes
without rebuilding the whole table, and a new storage format that offers compression,
a new way to store large values such as BLOB columns, and file format management.
Many people who use MySQL 5.1 don’t use the plugin, sometimes because they aren’t
aware of it. If you’re using MySQL 5.1, please ensure that you’re using the InnoDB
plugin. It’s much better than the older version of InnoDB.

InnoDB is such an important engine that many people and companies have invested
in developing it, not just Oracle’s team. Notable contributions have come from Google,
Yasufumi Kinoshita, Percona, and Facebook, among others. Some of these improve-
ments have been included into the official InnoDB source code, and many others have
been reimplemented in slightly different ways by the InnoDB team. In general,
InnoDB’s development has accelerated greatly in the last few years, with major im-
provements to instrumentation, scalability, configurability, performance, features, and
support for Windows, among other notable items. MySQL 5.6 lab previews and mile-
stone releases include a remarkable palette of new features for InnoDB, too.

Oracle is investing tremendous resources in improving InnoDB performance, and doing
a great job of it (a considerable amount of external contribution has helped with this,
too). In the second edition of this book, we noted that InnoDB failed pretty miserably
beyond four CPU cores. It now scales well to 24 CPU cores, and arguably up to 32 or
even more cores depending on the scenario. Many improvements are slated for the
upcoming 5.6 release, but there are still opportunities for enhancement.

InnoDB overview

InnoDB stores its data in a series of one or more data files that are collectively known
as a tablespace. A tablespace is essentially a black box that InnoDB manages all by itself.
In MySQL 4.1 and newer versions, InnoDB can store each table’s data and indexes in

16 | Chapter 1: MySQL Architecture and History

separate files. InnoDB can also use raw disk partitions for building its tablespace, but
modern filesystems make this unnecessary.

InnoDB uses MVCC to achieve high concurrency, and it implements all four SQL stan-
dard isolation levels. It defaults to the REPEATABLE READ isolation level, and it has a
next-key locking strategy that prevents phantom reads in this isolation level: rather than
locking only the rows you’ve touched in a query, InnoDB locks gaps in the index struc-
ture as well, preventing phantoms from being inserted.

InnoDB tables are built on a clustered index, which we will cover in detail in later chap-
ters. InnoDB’s index structures are very different from those of most other MySQL
storage engines. As a result, it provides very fast primary key lookups. However, sec-
ondary indexes (indexes that aren’t the primary key) contain the primary key columns,
so if your primary key is large, other indexes will also be large. You should strive for a
small primary key if you’ll have many indexes on a table. The storage format is platform-
neutral, meaning you can copy the data and index files from an Intel-based server to a
PowerPC or Sun SPARC without any trouble.

InnoDB has a variety of internal optimizations. These include predictive read-ahead for
prefetching data from disk, an adaptive hash index that automatically builds hash in-
dexes in memory for very fast lookups, and an insert buffer to speed inserts. We cover
these later in this book.

InnoDB’s behavior is very intricate, and we highly recommend reading the “InnoDB
Transaction Model and Locking” section of the MySQL manual if you’re using
InnoDB. There are many subtleties you should be aware of before building an appli-
cation with InnoDB, because of its MVCC architecture. Working with a storage engine
that maintains consistent views of the data for all users, even when some users are
changing data, can be complex.

As a transactional storage engine, InnoDB supports truly “hot” online backups through
a variety of mechanisms, including Oracle’s proprietary MySQL Enterprise Backup and
the open source Percona XtraBackup. MySQL’s other storage engines can’t take hot
backups—to get a consistent backup, you have to halt all writes to the table, which in
a mixed read/write workload usually ends up halting reads too.

The MyISAM Engine
As MySQL’s default storage engine in versions 5.1 and older, MyISAM provides a large
list of features, such as full-text indexing, compression, and spatial (GIS) functions.
MyISAM doesn’t support transactions or row-level locks. Its biggest weakness is un-
doubtedly the fact that it isn’t even remotely crash-safe. MyISAM is why MySQL still
has the reputation of being a nontransactional database management system, more
than a decade after it gained transactions! Still, MyISAM isn’t all that bad for a non-
transactional, non-crash-safe storage engine. If you need read-only data, or if your

MySQL’s Storage Engines | 17

tables aren’t large and won’t be painful to repair, it isn’t out of the question to use it.
(But please, don’t use it by default. Use InnoDB instead.)

Storage

MyISAM typically stores each table in two files: a data file and an index file. The two
files bear .MYD and .MYI extensions, respectively. MyISAM tables can contain either
dynamic or static (fixed-length) rows. MySQL decides which format to use based on
the table definition. The number of rows a MyISAM table can hold is limited primarily
by the available disk space on your database server and the largest file your operating
system will let you create.

MyISAM tables created in MySQL 5.0 with variable-length rows are configured by
default to handle 256 TB of data, using 6-byte pointers to the data records. Earlier
MySQL versions defaulted to 4-byte pointers, for up to 4 GB of data. All MySQL ver-
sions can handle a pointer size of up to 8 bytes. To change the pointer size on a MyISAM
table (either up or down), you must alter the table with new values for the MAX_ROWS
and AVG_ROW_LENGTH options that represent ballpark figures for the amount of space you
need. This will cause the entire table and all of its indexes to be rewritten, which might
take a long time.

MyISAM features

As one of the oldest storage engines included in MySQL, MyISAM has many features
that have been developed over years of use to fill niche needs:

Locking and concurrency
MyISAM locks entire tables, not rows. Readers obtain shared (read) locks on all
tables they need to read. Writers obtain exclusive (write) locks. However, you can
insert new rows into the table while select queries are running against it (concurrent
inserts).

Repair
MySQL supports manual and automatic checking and repairing of MyISAM tables,
but don’t confuse this with transactions or crash recovery. After repairing a table,
you’ll likely find that some data is simply gone. Repairing is slow, too. You can use
the CHECK TABLE mytable and REPAIR TABLE mytable commands to check a table for
errors and repair them. You can also use the myisamchk command-line tool to
check and repair tables when the server is offline.

Index features
You can create indexes on the first 500 characters of BLOB and TEXT columns in
MyISAM tables. MyISAM supports full-text indexes, which index individual words
for complex search operations. For more information on indexing, see Chapter 5.

18 | Chapter 1: MySQL Architecture and History

Delayed key writes
MyISAM tables marked with the DELAY_KEY_WRITE create option don’t write
changed index data to disk at the end of a query. Instead, MyISAM buffers the
changes in the in-memory key buffer. It flushes index blocks to disk when it prunes
the buffer or closes the table. This can boost performance, but after a server or
system crash, the indexes will definitely be corrupted and will need repair. You can
configure delayed key writes globally, as well as for individual tables.

Compressed MyISAM tables

Some tables never change once they’re created and filled with data. These might be
well suited to compressed MyISAM tables.

You can compress (or “pack”) tables with the myisampack utility. You can’t modify
compressed tables (although you can uncompress, modify, and recompress tables if
you need to), but they generally use less space on disk. As a result, they offer faster
performance, because their smaller size requires fewer disk seeks to find records. Com-
pressed MyISAM tables can have indexes, but they’re read-only.

The overhead of decompressing the data to read it is insignificant for most applications
on modern hardware, where the real gain is in reducing disk I/O. The rows are com-
pressed individually, so MySQL doesn’t need to unpack an entire table (or even a page)
just to fetch a single row.

MyISAM performance

Because of its compact data storage and low overhead due to its simpler design,
MyISAM can provide good performance for some uses. It does have some severe scal-
ability limitations, including mutexes on key caches. MariaDB offers a segmented key
cache that avoids this problem. The most common MyISAM performance problem we
see, however, is table locking. If your queries are all getting stuck in the “Locked” status,
you’re suffering from table-level locking.

Other Built-in MySQL Engines
MySQL has a variety of special-purpose storage engines. Many of them are somewhat
deprecated in newer versions, for various reasons. Some of these are still available in
the server, but must be enabled specially.

The Archive engine

The Archive engine supports only INSERT and SELECT queries, and it does not support
indexes until MySQL 5.1. It causes much less disk I/O than MyISAM, because it buffers
data writes and compresses each row with zlib as it’s inserted. Also, each SELECT query
requires a full table scan. Archive tables are thus best for logging and data acquisition,
where analysis tends to scan an entire table, or where you want fast INSERT queries.

MySQL’s Storage Engines | 19

Archive supports row-level locking and a special buffer system for high-concurrency
inserts. It gives consistent reads by stopping a SELECT after it has retrieved the number
of rows that existed in the table when the query began. It also makes bulk inserts
invisible until they’re complete. These features emulate some aspects of transactional
and MVCC behaviors, but Archive is not a transactional storage engine. It is simply a
storage engine that’s optimized for high-speed inserting and compressed storage.

The Blackhole engine

The Blackhole engine has no storage mechanism at all. It discards every INSERT instead
of storing it. However, the server writes queries against Blackhole tables to its logs, so
they can be replicated or simply kept in the log. That makes the Blackhole engine
popular for fancy replication setups and audit logging, although we’ve seen enough
problems caused by such setups that we don’t recommend them.

The CSV engine

The CSV engine can treat comma-separated values (CSV) files as tables, but it does not
support indexes on them. This engine lets you copy files into and out of the database
while the server is running. If you export a CSV file from a spreadsheet and save it in
the MySQL server’s data directory, the server can read it immediately. Similarly, if you
write data to a CSV table, an external program can read it right away. CSV tables are
thus useful as a data interchange format.

The Federated engine

This storage engine is sort of a proxy to other servers. It opens a client connection to
another server and executes queries against a table there, retrieving and sending rows
as needed. It was originally marketed as a competitor to features supported in many
enterprise-grade proprietary database servers, such as Microsoft SQL Server and
Oracle, but that was always a stretch, to say the least. Although it seemed to enable a
lot of flexibility and neat tricks, it has proven to be a source of many problems and is
disabled by default. A successor to it, FederatedX, is available in MariaDB.

The Memory engine

Memory tables (formerly called HEAP tables) are useful when you need fast access to
data that either never changes or doesn’t need to persist after a restart. Memory tables
can be up to an order of magnitude faster than MyISAM tables. All of their data is stored
in memory, so queries don’t have to wait for disk I/O. The table structure of a Memory
table persists across a server restart, but no data survives.

Here are some good uses for Memory tables:

• For “lookup” or “mapping” tables, such as a table that maps postal codes to state
names

20 | Chapter 1: MySQL Architecture and History

• For caching the results of periodically aggregated data

• For intermediate results when analyzing data

Memory tables support HASH indexes, which are very fast for lookup queries. Although
Memory tables are very fast, they often don’t work well as a general-purpose
replacement for disk-based tables. They use table-level locking, which gives low write
concurrency. They do not support TEXT or BLOB column types, and they support only
fixed-size rows, so they really store VARCHARs as CHARs, which can waste memory. (Some
of these limitations are lifted in Percona Server.)

MySQL uses the Memory engine internally while processing queries that require a
temporary table to hold intermediate results. If the intermediate result becomes too
large for a Memory table, or has TEXT or BLOB columns, MySQL will convert it to a
MyISAM table on disk. We say more about this in later chapters.

People often confuse Memory tables with temporary tables, which are
ephemeral tables created with CREATE TEMPORARY TABLE. Temporary
tables can use any storage engine; they are not the same thing as tables
that use the Memory storage engine. Temporary tables are visible only
to a single connection and disappear entirely when the connection
closes.

The Merge storage engine

The Merge engine is a variation of MyISAM. A Merge table is the combination of several
identical MyISAM tables into one virtual table. This can be useful when you use MySQL
in logging and data warehousing applications, but it has been deprecated in favor of
partitioning (see Chapter 7).

The NDB Cluster engine

MySQL AB acquired the NDB database from Sony Ericsson in 2003 and built the NDB
Cluster storage engine as an interface between the SQL used in MySQL and the native
NDB protocol. The combination of the MySQL server, the NDB Cluster storage engine,
and the distributed, shared-nothing, fault-tolerant, highly available NDB database is
known as MySQL Cluster. We discuss MySQL Cluster later in this book.

Third-Party Storage Engines
Because MySQL offers a pluggable storage engine API, beginning around 2007 a be-
wildering array of storage engines started springing up to serve special purposes. Some
of these were included with the server, but most were third-party products or open
source projects. We’ll discuss a few of the storage engines that we’ve observed to be
useful enough that they remain relevant even as the diversity has thinned out a bit.

MySQL’s Storage Engines | 21

OLTP storage engines

Percona’s XtraDB storage engine, which is included with Percona Server and MariaDB,
is a modified version of InnoDB. Its improvements are targeted at performance, meas-
urability, and operational flexibility. It is a drop-in replacement for InnoDB with the
ability to read and write InnoDB’s data files compatibly, and to execute all queries that
InnoDB can execute.

There are several other OLTP storage engines that are roughly similar to InnoDB in
some important ways, such as offering ACID compliance and MVCC. One is PBXT,
the creation of Paul McCullagh and Primebase GMBH. It sports engine-level replica-
tion, foreign key constraints, and an intricate architecture that positions it for solid-
state storage and efficient handling of large values such as BLOBs. PBXT is widely
regarded as a community storage engine and is included with MariaDB.

TokuDB uses a new index data structure called Fractal Trees, which are cache-
oblivious, so they don’t slow down as they get larger than memory, nor do they age or
fragment. TokuDB is marketed as a Big Data storage engine, because it has high com-
pression ratios and can support lots of indexes on large data volumes. At the time of
writing it is in early production release status, and has some important limitations
around concurrency. This makes it best suited for use cases such as analytical datasets
with high insertion rates, but that could change in future versions.

RethinkDB was originally positioned as a storage engine designed for solid-state
storage, although it seems to have become less niched as time has passed. Its most
distinctive technical characteristic could be said to be its use of an append-only copy-
on-write B-Tree index data structure. It is still in early development, and we’ve neither
evaluated it nor seen it in use.

Falcon was promoted as the next-generation transactional storage engine for MySQL
around the time of Sun’s acquisition of MySQL AB, but it has long since been canceled.
Jim Starkey, the primary architect of Falcon, has founded a new company to build a
cloud-enabled NewSQL database called NuoDB (formerly NimbusDB).

Column-oriented storage engines

MySQL is row-oriented by default, meaning that each row’s data is stored together,
and the server works in units of rows as it executes queries. But for very large volumes
of data, a column-oriented approach can be more efficient; it allows the engine to re-
trieve less data when full rows aren’t needed, and when each column is stored sepa-
rately, it can often be compressed more effectively.

The leading column-oriented storage engine is Infobright, which works well at very
large sizes (tens of terabytes). It is designed for analytical and data warehousing use
cases. It works by storing data in blocks, which are highly compressed. It maintains a
set of metadata for each block, which allows it to skip blocks or even to complete queries
simply by looking at the metadata. It has no indexes—that’s the point; at such huge

22 | Chapter 1: MySQL Architecture and History

sizes, indexes are useless, and the block structure is a kind of quasi-index. Infobright
requires a customized version of the server, because portions of the server have to be
rewritten to work with column-oriented data. Some queries can’t be executed by the
storage engine in column-oriented mode, and cause the server to fall back to row-by-
row mode, which is slow. Infobright is available in both open source–community and
proprietary commercial versions.

Another column-oriented storage engine is Calpont’s InfiniDB, which is also available
in commercial and community versions. InfiniDB offers the ability to distribute queries
across a cluster of machines. We haven’t seen anyone use it in production, though.

By the way, if you’re in the market for a column-oriented database that isn’t MySQL,
we’ve also evaluated LucidDB and MonetDB. You can find benchmarks and opinions
on the MySQL Performance Blog, although they will probably become somewhat out-
dated as time passes.

Community storage engines

A full list of community storage engines would run into the scores, and perhaps even
to triple digits if we researched them exhaustively. However, it’s safe to say that most
of them serve very limited niches, and many aren’t known or used by more than a few
people. We’ll just mention a few of them. We haven’t seen most of these in production
use. Caveat emptor!

Aria
Aria, formerly named Maria, is the original MySQL creator’s planned successor to
MyISAM. It’s available in MariaDB. Many of the features that were planned for it
seem to have been deferred in favor of improvements elsewhere in the MariaDB
server. At the time of writing it is probably best to describe it as a crash-safe version
of MyISAM, with several other improvements such as the ability to cache data (not
just indexes) in its own memory.

Groonga
This is a full-text search storage engine that claims to offer accuracy and high speed.

OQGraph
This engine from Open Query supports graph operations (think “find the shortest
path between nodes”) that are impractical or impossible to perform in SQL.

Q4M
This engine implements a queue inside MySQL, with support for operations that
SQL itself makes quite difficult or impossible to do in a single statement.

SphinxSE
This engine provides a SQL interface to the Sphinx full-text search server, which
we discuss more in Appendix F.

MySQL’s Storage Engines | 23

Spider
This engine partitions data into several partitions, effectively implementing trans-
parent sharding, and executes your queries in parallel across shards, which can be
located on different servers.

VPForMySQL
This engine supports vertical partitioning of tables through a sort of proxy storage
engine. That is, you can chop a table into several sets of columns and store those
independently, but query them as a single table. It’s by the same author as the
Spider engine.

Selecting the Right Engine
Which engine should you use? InnoDB is usually the right choice, which is why we’re
glad that Oracle made it the default engine in MySQL 5.5. The decision of which engine
to use can be summed up by saying, “Use InnoDB unless you need a feature it doesn’t
provide, and for which there is no good alternative approach.” For example, when we
need full-text search, we usually prefer to use InnoDB in combination with Sphinx,
rather than choosing MyISAM for its full-text indexing capabilities. Sometimes we
choose something other than InnoDB when we don’t need InnoDB’s features and an-
other engine provides a compelling benefit without downsides. For instance, we might
use MyISAM when its limited scalability, poor support for concurrency, and lack of
crash resilience aren’t an issue, but InnoDB’s increased space consumption is a
problem.

We prefer not to mix and match different storage engines unless absolutely needed. It
makes things much more complicated and exposes you to a whole new set of potential
bugs and edge-case behaviors. The interactions between the storage engines and the
server are complex enough without adding multiple storage engines into the mix. For
example, multiple storage engines make it difficult to perform consistent backups or
to configure the server properly.

If you believe that you do need a different engine, here are some factors you should
consider:

Transactions
If your application requires transactions, InnoDB (or XtraDB) is the most stable,
well-integrated, proven choice. MyISAM is a good choice if a task doesn’t require
transactions and issues primarily either SELECT or INSERT queries. Sometimes spe-
cific components of an application (such as logging) fall into this category.

Backups
The need to perform regular backups might also influence your choice. If your
server can be shut down at regular intervals for backups, the storage engines are
equally easy to deal with. However, if you need to perform online backups, you
basically need InnoDB.

24 | Chapter 1: MySQL Architecture and History

Crash recovery
If you have a lot of data, you should seriously consider how long it will take to
recover from a crash. MyISAM tables become corrupt more easily and take much
longer to recover than InnoDB tables. In fact, this is one of the most important
reasons why a lot of people use InnoDB when they don’t need transactions.

Special features
Finally, you sometimes find that an application relies on particular features or op-
timizations that only some of MySQL’s storage engines provide. For example, a
lot of applications rely on clustered index optimizations. On the other hand, only
MyISAM supports geospatial search inside MySQL. If a storage engine meets one
or more critical requirements, but not others, you need to either compromise or
find a clever design solution. You can often get what you need from a storage engine
that seemingly doesn’t support your requirements.

You don’t need to decide right now. There’s a lot of material on each storage engine’s
strengths and weaknesses in the rest of the book, and lots of architecture and design
tips as well. In general, there are probably more options than you realize yet, and it
might help to come back to this question after reading more. If you’re not sure, just
stick with InnoDB. It’s a safe default and there’s no reason to choose anything else if
you don’t know yet what you need.

These topics might seem rather abstract without some sort of real-world context, so
let’s consider some common database applications. We’ll look at a variety of tables and
determine which engine best matches with each table’s needs. We give a summary of
the options in the next section.

Logging

Suppose you want to use MySQL to log a record of every telephone call from a central
telephone switch in real time. Or maybe you’ve installed mod_log_sql for Apache, so
you can log all visits to your website directly in a table. In such an application, speed
is probably the most important goal; you don’t want the database to be the bottleneck.
The MyISAM and Archive storage engines would work very well because they have
very low overhead and can insert thousands of records per second.

Things will get interesting, however, if you decide it’s time to start running reports to
summarize the data you’ve logged. Depending on the queries you use, there’s a good
chance that gathering data for the report will significantly slow the process of inserting
records. What can you do?

One solution is to use MySQL’s built-in replication feature to clone the data onto a
second server, and then run your time- and CPU-intensive queries against the data on
the replica. This leaves the master free to insert records and lets you run any query you
want on the replica without worrying about how it might affect the real-time logging.

MySQL’s Storage Engines | 25

You can also run queries at times of low load, but don’t rely on this strategy continuing
to work as your application grows.

Another option is to log to a table that contains the year and name or number of the
month in its name, such as web_logs_2012_01 or web_logs_2012_jan. While you’re busy
running queries against tables that are no longer being written to, your application can
log records to its current table uninterrupted.

Read-only or read-mostly tables

Tables that contain data used to construct a catalog or listing of some sort (jobs, auc-
tions, real estate, etc.) are usually read from far more often than they are written to.
This seemingly makes them good candidates for MyISAM—if you don’t mind what
happens when MyISAM crashes. Don’t underestimate how important this is; a lot of
users don’t really understand how risky it is to use a storage engine that doesn’t even
try to get their data written to disk. (MyISAM just writes the data to memory and
assumes the operating system will flush it to disk sometime later.)

It’s an excellent idea to run a realistic load simulation on a test server
and then literally pull the power plug. The firsthand experience of re-
covering from a crash is priceless. It saves nasty surprises later.

Don’t just believe the common “MyISAM is faster than InnoDB” folk wisdom. It is
not categorically true. We can name dozens of situations where InnoDB leaves
MyISAM in the dust, especially for applications where clustered indexes are useful or
where the data fits in memory. As you read the rest of this book, you’ll get a sense of
which factors influence a storage engine’s performance (data size, number of I/O op-
erations required, primary keys versus secondary indexes, etc.), and which of them
matter to your application.

When we design systems such as these, we use InnoDB. MyISAM might seem to work
okay in the beginning, but it will absolutely fall on its face when the application gets
busy. Everything will lock up, and you’ll lose data when you have a server crash.

Order processing

When you deal with any sort of order processing, transactions are all but required.
Half-completed orders aren’t going to endear customers to your service. Another im-
portant consideration is whether the engine needs to support foreign key constraints.
InnoDB is your best bet for order-processing applications.

26 | Chapter 1: MySQL Architecture and History

Bulletin boards and threaded discussion forums

Threaded discussions are an interesting problem for MySQL users. There are hundreds
of freely available PHP and Perl-based systems that provide threaded discussions. Many
of them aren’t written with database efficiency in mind, so they tend to run a lot of
queries for each request they serve. Some were written to be database-independent, so
their queries do not take advantage of the features of any one database system. They
also tend to update counters and compile usage statistics about the various discussions.
Many of the systems also use a few monolithic tables to store all their data. As a result,
a few central tables become the focus of heavy read and write activity, and the locks
required to enforce consistency become a substantial source of contention.

Despite their design shortcomings, most of these systems work well for small and me-
dium loads. However, if a website grows large enough and generates significant traffic,
it will become very slow. The obvious solution is to switch to a different storage engine
that can handle the heavy read/write volume, but users who attempt this are sometimes
surprised to find that the system runs even more slowly than it did before!

What these users don’t realize is that the system is using a particular query, normally
something like this:

mysql> SELECT COUNT(*) FROM table;

The problem is that not all engines can run that query quickly: MyISAM can, but other
engines might not. There are similar examples for every engine. Later chapters will help
you keep such a situation from catching you by surprise and show you how to find and
fix the problems if it does.

CD-ROM applications

If you ever need to distribute a CD-ROM- or DVD-ROM-based application that uses
MySQL data files, consider using MyISAM or compressed MyISAM tables, which can
easily be isolated and copied to other media. Compressed MyISAM tables use far less
space than uncompressed ones, but they are read-only. This can be problematic in
certain applications, but because the data is going to be on read-only media anyway,
there’s little reason not to use compressed tables for this particular task.

Large data volumes

How big is too big? We’ve built and managed—or helped build and manage—many
InnoDB databases in the 3 TB to 5 TB range, or even larger. That’s on a single server,
not sharded. It’s perfectly feasible, although you have to choose your hardware wisely,
practice smart physical design, and plan for your server to be I/O-bound. At these sizes,
MyISAM is just a nightmare when it crashes.

If you’re going really big, such as tens of terabytes, you’re probably building a data
warehouse. In this case, Infobright is where we’ve seen the most success. Some very

MySQL’s Storage Engines | 27

large databases that aren’t suitable for Infobright might be candidates for TokuDB
instead.

Table Conversions
There are several ways to convert a table from one storage engine to another, each with
advantages and disadvantages. In the following sections, we cover three of the most
common ways.

ALTER TABLE

The easiest way to move a table from one engine to another is with an ALTER TABLE
statement. The following command converts mytable to InnoDB:

mysql> ALTER TABLE mytable ENGINE = InnoDB;

This syntax works for all storage engines, but there’s a catch: it can take a lot of time.
MySQL will perform a row-by-row copy of your old table into a new table. During that
time, you’ll probably be using all of the server’s disk I/O capacity, and the original table
will be read-locked while the conversion runs. So, take care before trying this technique
on a busy table. Instead, you can use one of the methods discussed next, which involve
making a copy of the table first.

When you convert from one storage engine to another, any storage engine–specific
features are lost. For example, if you convert an InnoDB table to MyISAM and back
again, you will lose any foreign keys originally defined on the InnoDB table.

Dump and import

To gain more control over the conversion process, you might choose to first dump the
table to a text file using the mysqldump utility. Once you’ve dumped the table, you can
simply edit the dump file to adjust the CREATE TABLE statement it contains. Be sure to
change the table name as well as its type, because you can’t have two tables with the
same name in the same database even if they are of different types—and mysqldump
defaults to writing a DROP TABLE command before the CREATE TABLE, so you might lose
your data if you are not careful!

CREATE and SELECT

The third conversion technique is a compromise between the first mechanism’s speed
and the safety of the second. Rather than dumping the entire table or converting it all
at once, create the new table and use MySQL’s INSERT ... SELECT syntax to populate
it, as follows:

mysql> CREATE TABLE innodb_table LIKE myisam_table;
mysql> ALTER TABLE innodb_table ENGINE=InnoDB;
mysql> INSERT INTO innodb_table SELECT * FROM myisam_table;

28 | Chapter 1: MySQL Architecture and History

That works well if you don’t have much data, but if you do, it’s often more efficient to
populate the table incrementally, committing the transaction between each chunk so
the undo logs don’t grow huge. Assuming that id is the primary key, run this query
repeatedly (using larger values of x and y each time) until you’ve copied all the data to
the new table:

mysql> START TRANSACTION;
mysql> INSERT INTO innodb_table SELECT * FROM myisam_table
 -> WHERE id BETWEEN x AND y;
mysql> COMMIT;

After doing so, you’ll be left with the original table, which you can drop when you’re
done with it, and the new table, which is now fully populated. Be careful to lock the
original table if needed to prevent getting an inconsistent copy of the data!

Tools such as Percona Toolkit’s pt-online-schema-change (based on Facebook’s online
schema change technique) can remove the error-prone and tedious manual work from
schema changes.

A MySQL Timeline
It is helpful to understand MySQL’s version history as a frame of reference when
choosing which version of the server you want to run. Plus, it’s kind of fun for old-
timers to remember what it used to be like in the good old days!

Version 3.23 (2001)
This release of MySQL is generally regarded as the moment MySQL “arrived” and
became a viable option for widespread use. MySQL was still not much more than
a query language over flat files, but MyISAM was introduced to replace ISAM, an
older and much more limited storage engine. InnoDB was available, but was not
shipped in the standard binary distribution because it was so new. If you wanted
to use InnoDB, you had to compile the server yourself with support for it. Version
3.23 introduced full-text indexing and replication. Replication was to become the
killer feature that propelled MySQL to fame as the database that powered much
of the Internet.

Version 4.0 (2003)
New syntax features appeared, such as support for UNION and multi-table DELETE
statements. Replication was rewritten to use two threads on the replica, instead of
one thread that did all the work and suffered from task switching. InnoDB was
shipped as a standard part of the server, with its full feature set: row-level locking,
foreign keys, and so on. The query cache was introduced in version 4.0 (and hasn’t
changed much since then). Support for SSL connections was also introduced.

Version 4.1 (2005)
More query syntax features were introduced, including subqueries and INSERT ON
DUPLICATE KEY UPDATE. The UTF-8 character set was supported. There was a new
binary protocol and prepared statement support.

A MySQL Timeline | 29

Version 5.0 (2006)
A number of “enterprise” features appeared in this release: views, triggers, stored
procedures, and stored functions. The ISAM engine was removed completely, but
new storage engines such as Federated were introduced.

Version 5.1 (2008)
This release was the first under Sun Microsystems’s ownership after its acquisition
of MySQL AB, and was over five years in the making. Version 5.1 introduced par-
titioning, row-based replication, and a variety of plugin APIs, including the
pluggable storage engine API. The BerkeleyDB storage engine—MySQL’s first
transactional storage engine—was removed and some others, such as Federated,
were deprecated. Also, Oracle, now the owner of Innobase Oy,5 released the
InnoDB plugin storage engine.

Version 5.5 (2010)
MySQL 5.5 was the first release following Oracle’s acquisition of Sun (and there-
fore MySQL). It focused on improvements to performance, scalability, replication,
partitioning, and support for Microsoft Windows, but included many other im-
provements as well. InnoDB became the default storage engine, and many legacy
features and deprecated options and behaviors were scrubbed. The PERFORMANCE
_SCHEMA database was added, along with a first batch of enhanced instrumentation.
New plugin APIs for replication, authentication, and auditing were added. A plugin
for semisynchronous replication was available, and Oracle released commercial
plugins for authentication and thread pooling in 2011. There were also major ar-
chitectural changes to InnoDB, such as a partitioned buffer pool.

Version 5.6 (Unreleased)
MySQL 5.6 will have a raft of new features, including the first major improvements
to the query optimizer in many years, more plugin APIs (e.g., one for full-text
search), replication improvements, and greatly expanded instrumentation in the
PERFORMANCE_SCHEMA database. The InnoDB team is also hard at work, with a huge
variety of changes and improvements having been released in development mile-
stones and lab previews. Whereas MySQL 5.5 seemed to be about firming up and
fixing the fundamentals, with a limited number of new introductions, MySQL 5.6
appears to be focused on advancing server development and performance, using
5.5’s success as a springboard.

Version 6.0 (Canceled)
Version 6.0 is confusing because of the overlapping chronology. It was announced
during the 5.1 development years. There were rumors or promises of many new
features, such as online backups and server-level foreign keys for all storage en-
gines, subquery improvements, and thread pooling. This release was canceled, and
Sun resumed development with version 5.4, which was eventually released as

5. Oracle also now owns BerkeleyDB.

30 | Chapter 1: MySQL Architecture and History

version 5.5. Many of the features of the 6.0 codebase have been (or will be) released
in versions 5.5 and 5.6.

We’d summarize MySQL’s history this way: it was clearly a disruptive innovation6 early
in its lifecycle, with limited and sometimes second-class functionality, but its features
and low price made it a killer application to power the explosion of the Internet. In the
early 5.x releases, it tried to move into enterprise territory with features such as views
and stored procedures, but these were buggy and brittle, so it wasn’t always smooth
sailing. In hindsight, MySQL 5.0’s flood of bug fixes didn’t settle down until around
the 5.0.50 releases, and MySQL 5.1 didn’t fare much better. The 5.0 and 5.1 releases
were delayed, and the Sun and Oracle acquisitions made many observers fearful. But
in our opinion, things are on track: MySQL 5.5 was the highest-quality release in
MySQL’s history, Oracle’s ownership is making MySQL much more palatable to en-
terprise customers, and version 5.6 promises great improvements in functionality and
performance.

Speaking of performance, we thought it would be interesting to show a basic bench-
mark of the server’s performance over time. We decided not to benchmark versions
older than 4.1, because it’s very rare to see 4.0 and older in production these days. In
addition, an apples-to-apples benchmark is very hard to produce across so many dif-
ferent versions, for reasons you’ll read more about in the next chapter. We had lots of
fun crafting a benchmark method that would work uniformly across the server versions
that we did use, and it took many tries to get it right. Table 1-2 shows the results in
transactions per second for several levels of concurrency.

Table 1-2. Readonly benchmarks of several MySQL versions

Threads MySQL 4.1 MySQL 5.0 MySQL 5.1 MySQL 5.1 with InnoDB plugin MySQL 5.5 MySQL 5.6a

1 686 640 596 594 531 526

2 1307 1221 1140 1139 1077 1019

4 2275 2168 2032 2043 1938 1831

8 3879 3746 3606 3681 3523 3320

16 4374 4527 4393 6131 5881 5573

32 4591 4864 4698 7762 7549 7139

64 4688 5078 4910 7536 7269 6994
a At the time of our benchmark, MySQL 5.6 was not yet released as GA.

This is a little easier to see in graphical form, which we’ve shown in Figure 1-2.

Before we interpret the results, we need to tell you a little bit about the benchmark
itself. We ran it on our Cisco UCS C250 machine, which has two six-core CPUs, each
with two hardware threads. The server contains 384 GB of RAM, but we ran the

6. The term “disruptive innovation” originated in Clayton M. Christensen’s book The Innovator’s
Dilemma (Harper).

A MySQL Timeline | 31

benchmark with a 2.5 GB dataset, so we configured MySQL with a 4 GB buffer pool.
The benchmark was the standard SysBench read-only workload, with all data in
InnoDB, fully in-memory and CPU-bound. We ran the benchmark for 60 minutes for
each measurement point, measuring throughput every 10 seconds and using 900 sec-
onds of measurements after the server warmed up and stabilized to generate the final
results.

Now, looking at the results, two broad trends are clear. First, MySQL versions that
include the InnoDB plugin perform much better at higher concurrency, which is to say
that they are more scalable. This is to be expected, because we know older versions are
seriously limited at high concurrency. Second, newer MySQL versions are slower than
older versions in single-threaded workloads, which you might not have expected but
is easily explained by noting that this is a very simple read-only workload. Newer server
versions have a more complex SQL grammar, and lots of other features and improve-
ments that enable more complex queries but are simply additional overhead for the
simple queries we’re benchmarking here. Older versions of the server are simpler and
thus have an advantage for simple queries.

We wanted to show you a more complex read/write benchmark (such as TPC-C) over
a broader range of concurrencies, but we found it ultimately impossible to do across
such a diversity of server versions. We can say that in general, newer versions of the
server have better and more consistent performance on more complex workloads, es-
pecially at higher concurrency, and with a larger dataset.

Figure 1-2. Readonly benchmarks of several MySQL versions

32 | Chapter 1: MySQL Architecture and History

Which version should you use? This depends on your business more than on your
technical needs. You should ideally build on the newest version that’s available, but of
course you might choose to wait until the first bugs have been worked out of a brand-
new release. If you’re building an application that’s not in production yet, you might
even consider building it on the upcoming release so that you delay your upgrade life-
cycle as much as possible.

MySQL’s Development Model
MySQL’s development process and release model have changed greatly over the years,
but now appear to have settled down into a steady rhythm. Oracle releases new
development milestones periodically, with previews of features that will eventually be
included in the next GA7 release. These are for testing and feedback, not for production
use, but Oracle’s statement is that they’re high quality and essentially ready to release
at any time—and we see no reason to disagree with that. Oracle also periodically re-
leases lab previews, which are special builds that include only a selected feature for
interested parties to evaluate. These features are not guaranteed to be included in the
next release of the server. And finally, once in a while Oracle will bundle up the features
it deems to be ready and ship a new GA release of the server.

MySQL remains GPL-licensed and open source, with the full source code (except for
commercially licensed plugins, of course) available to the community. Oracle seems to
understand that it would be unwise to ship different versions of the server to the com-
munity and its paying customers. MySQL AB tried that, which resulted in its paying
customers becoming the bleeding-edge guinea pigs, robbing them of the benefit of
community testing and feedback. That policy was the reverse of what enterprise cus-
tomers need, and was discontinued in the Sun days.

Now that Oracle is releasing some server plugins for paying customers only, MySQL
is for all intents and purposes following the so-called open-core model. Although
there’s been some murmuring over the release of proprietary plugins for the server, it
comes from a minority and has sometimes been exaggerated. Most MySQL users we
know (and we know a lot of them) don’t seem to mind. The commercially licensed,
pay-only plugins are acceptable to those users who actually need them.

In any case, the proprietary extensions are just that: extensions. They do not represent
a crippleware development model, and the server is more than adequate without them.
Frankly, we appreciate the way that Oracle is building more features as plugins. If the
features were built right into the server with no API, there would be no choice: you’d
get exactly one implementation, with limited opportunity to build something that
suited you better. For example, if Oracle eventually releases InnoDB’s full-text search
functionality as a plugin, it will be an opportunity to use the same API to develop a
similar plugin for Sphinx or Lucene, which many people might find more useful. We

7. GA stands for generally available, which means “production quality” to pointy-haired bosses.

MySQL’s Development Model | 33

also appreciate clean APIs inside the server. They help to promote higher-quality code,
and who doesn’t want that?

Summary
MySQL has a layered architecture, with server-wide services and query execution on
top and storage engines underneath. Although there are many different plugin APIs,
the storage engine API is the most important. If you understand that MySQL executes
queries by handing rows back and forth across the storage engine API, you’ve grasped
one of the core fundamentals of the server’s architecture.

MySQL was built around ISAM (and later MyISAM), and multiple storage engines and
transactions were added later. Many of the server’s quirks reflect this legacy. For ex-
ample, the way that MySQL commits transactions when you execute an ALTER TABLE
is a direct result of the storage engine architecture, as well as the fact that the data
dictionary is stored in .frm files. (There’s nothing in InnoDB that forces an ALTER to be
nontransactional, by the way; absolutely everything InnoDB does is transactional.)

The storage engine API has its downsides. Sometimes choice isn’t a good thing, and
the explosion of storage engines in the heady days of the 5.0 and 5.1 versions of MySQL
might have introduced too much choice. In the end, InnoDB turns out to be a very good
storage engine for something like 95% or more of users (that’s just a rough guess). All
those other engines usually just make things more complicated and brittle, although
there are special cases where an alternative is definitely called for.

Oracle’s acquisition of first InnoDB and then MySQL brought both products under
one roof, where they can be codeveloped. This appears to be working out well for
everyone: InnoDB and the server itself are getting better by leaps and bounds in many
ways, MySQL remains GPL’ed and fully open source, the community and customers
alike are getting a solid and stable database, and the server is becoming ever more
extensible and useful.

34 | Chapter 1: MySQL Architecture and History

CHAPTER 2

Benchmarking MySQL

Benchmarking is an essential skill for MySQL novices and power users alike. A bench-
mark, simply put, is a workload designed to stress your system. The usual goal is to
learn about the system’s behavior, but there are other worthwhile reasons for running
benchmarks, such as reproducing a desired system state or burning in new hardware.
In this chapter we’ll explore reasons, strategies, tactics, and tools for benchmarking
MySQL and MySQL-based applications. We’ll focus especially on sysbench, because
it’s an excellent tool for MySQL benchmarking.

Why Benchmark?
Why is benchmarking so important? It’s because benchmarking is uniquely convenient
and effective for studying what happens when you give systems work to do. A bench-
mark can help you observe the system’s behavior under load, determine the system’s
capacity, learn which changes are important, or see how your application performs
with different data. Benchmarking lets you create fictional circumstances, beyond the
real conditions you can observe. You can do these things and more with benchmarks:

• Validate your assumptions about the system, and see whether your assumptions
are realistic.

• Reproduce a bad behavior you’re trying to eliminate in the system.

• Measure how your application currently performs. If you don’t know how fast it
currently runs, you can’t be sure any changes you make are helpful. You can also
use historical benchmark results to diagnose problems you didn’t foresee.

• Simulate a higher load than your production systems handle, to identify the scal-
ability bottleneck that you’ll encounter first with growth.

• Plan for growth. Benchmarks can help you estimate how much hardware, network
capacity, and other resources you’ll need for your projected future load. This can
help reduce risk during upgrades or major application changes.

35

• Test your application’s ability to tolerate a changing environment. For example,
you can find out how your application performs during a sporadic peak in con-
currency or with a different configuration of servers, or you can see how it handles
a different data distribution.

• Test different hardware, software, and operating system configurations. Is RAID
5 or RAID 10 better for your system? How does random write performance change
when you switch from ATA disks to SAN storage? Does the 2.4 Linux kernel scale
better than the 2.6 series? Does a MySQL upgrade help performance? What about
using a different storage engine for your data? You can answer these questions with
special benchmarks.

• Prove that your newly purchased hardware is correctly configured. We can’t count
the number of times we’ve used benchmarks to burn in a new system and found
misconfigurations or faulty hardware components. It’s a good idea not to put a
new server into production without benchmarking it first, and never to take a
hosting provider or hardware vendor’s word for what is installed and how fast it
should perform. Testing is always a good idea, if possible.

You can also use benchmarks for other purposes, such as to create a unit test suite for
your application, but we focus only on performance-related aspects here.

The problem with benchmarking is that it isn’t real. The workload you use to stress
the system is usually very simple in comparison with real-life workloads. There’s a
reason for that: real-life workloads are nondeterministic, varying, and too complex to
understand readily. If you benchmarked your systems with real workloads, it would be
harder to draw accurate conclusions from the benchmarks.

In what ways is a benchmark’s workload unrealistic? There are many artificial dimen-
sions to a benchmark—the data size, the distribution of data and queries—but perhaps
the most important is that a benchmark usually runs as fast as it possibly can, loading
the system so heavily that it behaves badly. In many cases we would like to tell bench-
mark tools to run as fast as possible within certain tolerances, throttling themselves as
necessary to maintain good performance. This would be especially helpful for deter-
mining the system’s maximum usable capacity. However, most benchmarking tools
don’t support such complexity. It’s good to keep in mind that the tools limit the mean-
ingfulness and usefulness of the results.

It’s tricky to use benchmarks for capacity planning, too. It is often unrealistic to ex-
trapolate from benchmark results. For example, suppose you want to know how much
business growth you will be able to support with your new database server. You bench-
mark the existing server, then benchmark the new server and find that it can perform
40 times as many transactions per second. But that doesn’t mean that your business
will be able to grow 40-fold on the new server. By the time your revenue grows that
much, the system will probably have more traffic, more users, more data, and more
interconnections between related pieces of data. You should not expect any of those
factors to grow only 40 times, especially the number of relationships. In addition, your

36 | Chapter 2: Benchmarking MySQL

application will almost certainly have changed by the time your revenue has grown by
a factor of 40. You will have new features, some of which might impact the database
far out of proportion to their apparent complexity. These changes in workload, data,
relationships, and features are very hard to simulate, and their impacts are hard to guess.

As a result, we usually settle for approximations, with a goal of knowing whether there’s
still a decent amount of spare capacity in the system. It is possible to do more realistic
load testing (as distinct from benchmarking), but it requires a lot of care in creating the
dataset and workload, and in the end it’s not really a benchmark. Benchmarks are
simpler, more directly comparable to each other, and cheaper and easier to run. And
despite their limitations, benchmarks are useful. You just need to be clear about what
you’re doing and in what ways the outcome is meaningful.

Benchmarking Strategies
There are two primary benchmarking strategies: you can benchmark the application
as a whole, or isolate MySQL. We call these two strategies full-stack and single-
component benchmarking, respectively. There are several reasons to measure the ap-
plication as a whole instead of just MySQL:

• You’re testing the entire application, including the web server, the application
code, the network, and the database. This is useful because you don’t care about
MySQL’s performance in particular; you care about the whole application.

• MySQL is not always the application bottleneck, and a full-stack benchmark can
reveal this.

• Only by testing the full application can you see how each part’s cache behaves.

• Benchmarks are good only to the extent that they reflect your actual application’s
behavior, which is hard to do when you’re testing only part of it.

On the other hand, application benchmarks can be hard to create and even harder to
set up correctly. If you design the benchmark badly, you can end up making bad deci-
sions, because the results don’t reflect reality.

Sometimes, however, you don’t really want to know about the entire application. You
might just need a MySQL benchmark, at least initially. Such a benchmark is useful if:

• You want to compare different schemas or queries.

• You want to benchmark a specific problem you see in the application.

• You want to avoid a long benchmark in favor of a shorter one that gives you a faster
“cycle time” for making and measuring changes.

It’s also useful to benchmark MySQL when you can repeat your application’s queries
against a real dataset. The data itself and the dataset’s size both need to be realistic. If
possible, use a snapshot of actual production data.

Benchmarking Strategies | 37

Unfortunately, setting up a realistic benchmark can be complicated and time-
consuming, and if you can get a copy of the production dataset, count yourself lucky.
It might even be impossible—for example, you might be developing a new application
that has few users and little data. If you want to know how it’ll perform when it grows
very large, you’ll have no option but to simulate the larger application’s data and
workload.

What to Measure
It’s best to identify your goals before you start benchmarking—indeed, before you even
design your benchmarks. Your goals will determine the tools and techniques you’ll
use to get accurate, meaningful results. Try to frame your goals as a questions, such as
“Is this CPU better than that one?” or “Do the new indexes work better than the current
ones?”

You sometimes need different approaches to measure different things. For example,
latency and throughput might require different benchmarks.

Consider some of the following measurements and how they fit your goals:

Throughput
Throughput is defined as the number of transactions per unit of time. This is one
of the all-time classics for benchmarking database applications. Standardized
benchmarks such as TPC-C (see http://www.tpc.org) are widely quoted, and many
database vendors work very hard to do well on them. These benchmarks measure
online transaction processing (OLTP) throughput and are most suitable for inter-
active multiuser applications. The usual unit of measurement is transactions per
second, although it is sometimes transactions per minute.

Response time or latency
This measures the total time a task requires. Depending on your application, you
might need to measure time in micro- or milliseconds, seconds, or minutes. From
this you can derive aggregate response times, such as average, maximum, mini-
mum, and percentiles. Maximum response time is rarely a useful metric, because
the longer the benchmark runs, the longer the maximum response time is likely to
be. It’s also not at all repeatable, because it’s likely to vary widely between runs.
For this reason, it’s common to use percentile response times instead. For example,
if the 95th percentile response time is 5 milliseconds, you know that the task fin-
ishes in 5 milliseconds or less 95% of the time.

It’s usually helpful to graph the results of these benchmarks, either as lines (for
example, the average and 95th percentile) or as a scatter plot so you can see how
the results are distributed. These graphs help show how the benchmarks will be-
have in the long run. We will return to this point later in this chapter.

38 | Chapter 2: Benchmarking MySQL

http://www.tpc.org

Concurrency
Concurrency is an important but frequently misused and misunderstood metric.
For example, it’s popular to say how many users are browsing a website at the same
time, usually measured by how many sessions there are.1 However, HTTP is state-
less and most users are simply reading what’s displayed in their browsers, so this
doesn’t translate into concurrency on the web server. Likewise, concurrency on
the web server doesn’t necessarily translate to the database server; the only thing
it directly relates to is how much data your session storage mechanism must be
able to handle. A more accurate measurement of concurrency on the web server is
how many simultaneous requests are running at any given time.

You can measure concurrency at different places in the application, too. The higher
concurrency on the web server might cause higher concurrency at the database
level, but the language and toolset will influence this. Be sure that you don’t confuse
open connections to the database server with concurrency. A well-designed appli-
cation might have hundreds of connections open to the MySQL server, but only a
fraction of these should be running queries at the same time. Thus, a website with
“50,000 users at a time” might require only 10 or 15 simultaneously running quer-
ies on the MySQL server!

In other words, what you should really care about benchmarking is the working
concurrency, or the number of threads or connections doing work simultaneously.
Measure whether throughput drops or response times increase when the concur-
rency increases; if so, your application probably can’t handle spikes in load.

Concurrency is completely different from other metrics such as response time and
throughput: it’s usually not an outcome, but rather a property of how you set up
the benchmark. Instead of measuring the concurrency your application achieves,
you will usually instruct the benchmark tool to generate various levels of concur-
rency, and then measure the application’s performance. However, you should
measure concurrency at the database, too. When you tell sysbench to run with 32,
64, and 128 threads, check the database server during each run and record the
value of the Threads_running status variable. In Chapter 11, you’ll see why this is
useful for capacity planning.

Scalability
Scalability measurements are useful for systems that need to maintain performance
under a changing workload. We’ll discuss scalability more formally in Chap-
ter 11, but one short definition is that an ideal system should get twice as much
work done (twice as much throughput) when you double the number of workers
trying to complete tasks. A second angle on the same goal is that if you double the
resources available (for example, twice as many CPUs), you should be able to ach-
ieve twice the throughput. In both cases, you also want to ensure that performance

1. Forum software, in particular, has miseducated countless website owners to believe they have tens of
thousands of users at a time.

Benchmarking Strategies | 39

(response time) is acceptable. Most systems are not linearly scalable, and exhibit
diminishing returns and degraded performance as you vary the parameters.

Scalability measurements are good for capacity planning, because they can show
weaknesses in your application that other benchmark strategies won’t show. For
example, if you design your system to perform well on a response-time benchmark
with a single connection (a poor benchmark strategy), your application might per-
form badly when there’s any degree of concurrency. A benchmark that looks for
consistent response times under an increasing number of connections would show
this design flaw.

Some activities, such as batch jobs to create summary tables from granular data,
just need fast response times, period. It’s fine to benchmark them for pure response
time, but remember to think about how they’ll interact with other activities. Batch
jobs can cause interactive queries to suffer, and vice versa.

In the final analysis, it’s best to benchmark whatever is important to your users. Try to
gather some requirements (formally or informally) about what acceptable response
times are, what kind of concurrency you expect, and so on. Then try to design your
benchmarks to satisfy all of the requirements, without getting tunnel vision and focus-
ing on some things to the exclusion of others.

Benchmarking Tactics
With the general behind us, let’s move on to the specifics of how to design and execute
benchmarks. Before we discuss how to do benchmarks well, though, let’s look at some
common mistakes that can lead to unusable or inaccurate results:

• Using a subset of the real data size, such as using only one gigabyte of data when
the application will need to handle hundreds of gigabytes, or using the current
dataset when you plan for the application to grow much larger.

• Using incorrectly distributed data, such as uniformly distributed data when the
real system’s data will have “hot spots.” (Randomly generated data is almost always
unrealistically distributed.)

• Using unrealistically distributed parameters, such as pretending that all user pro-
files are equally likely to be viewed.2

• Using a single-user scenario for a multiuser application.

• Benchmarking a distributed application on a single server.

• Failing to match real user behavior, such as “think time” on a web page. Real users
request a page and then read it; they don’t click on links one after another without
pausing.

2. Justin Bieber, we love you! Just kidding.

40 | Chapter 2: Benchmarking MySQL

• Running identical queries in a loop. Real queries aren’t identical, so they cause
cache misses. Identical queries will be fully or partially cached at some level.

• Failing to check for errors. If a benchmark’s results don’t make sense—e.g., if a
slow operation suddenly completes very quickly—check for errors. You might just
be benchmarking how quickly MySQL can detect a syntax error in the SQL query!
Always check error logs after benchmarks, as a matter of principle.

• Ignoring how the system performs when it’s not warmed up, such as right after a
restart. Sometimes you need to know how long it’ll take your server to reach ca-
pacity after a restart, so you’ll want to look specifically at the warmup period.
Conversely, if you intend to study normal performance, you’ll need to be aware
that if you benchmark just after a restart many caches will be cold, and the bench-
mark results won’t reflect the results you’ll get under load when the caches are
warmed up.

• Using default server settings. There’s more on optimizing server settings in later
chapters.

• Benchmarking too quickly. Your benchmark needs to last a while. We’ll say more
about this later.

Merely avoiding these mistakes will take you a long way toward improving the quality
of your results.

All other things being equal, you should typically strive to make the tests as realistic as
you can. Sometimes, though, it makes sense to use a slightly unrealistic benchmark.
For example, say your application is on a different host from the database server. It
would be more realistic to run the benchmarks in the same configuration, but doing
so would add more variables, such as how fast and how heavily loaded the network is.
Benchmarking on a single node is usually easier, and, in some cases, it’s accurate
enough. You’ll have to use your judgment as to when this is appropriate.

Designing and Planning a Benchmark
The first step in planning a benchmark is to identify the problem and the goal. Next,
decide whether to use a standard benchmark or design your own.

If you use a standard benchmark, be sure to choose one that matches your needs. For
example, don’t use TPC-H to benchmark an ecommerce system. In TPC’s own words,
“TPC-H is an ad-hoc, decision support benchmark.” Therefore, it’s not an appropriate
benchmark for an OLTP system.

Designing your own benchmark is a complicated and iterative process. To get started,
take a snapshot of your production dataset. Make sure you can restore this dataset for
subsequent runs.

Next, you need queries to run against the data. You can make a unit test suite into a
rudimentary benchmark just by running it many times, but that’s unlikely to match

Benchmarking Tactics | 41

how you really use the database. A better approach is to log all queries on your pro-
duction system during a representative time frame, such as an hour during peak load
or an entire day. If you log queries during a small time frame, you might need to choose
several time frames. This will let you cover all system activities, such as weekly reporting
queries or batch jobs you schedule during off-peak times.3

You can log queries at different levels. For example, you can log the HTTP requests on
a web server if you need a full-stack benchmark. You can also enable MySQL’s query
log, but if you replay a query log, be sure to recreate the separate threads instead of just
replaying each query linearly. It’s also important to create a separate thread for each
connection in the log, instead of shuffling queries among threads. The query log shows
which connection ran each query.

Even if you don’t build your own benchmark, you should write down your bench-
marking plan. You’re going to run the benchmark many times over, and you need to
be able to reproduce it exactly. Plan for the future, too. You might not be the one who
runs the benchmark the next time around, and even if you are, you probably will not
remember exactly how you ran it the first time. Your plan should include the test data,
the steps taken to set up the system, how you measured and analyzed the results, and
the warmup plan.

Design some method of documenting parameters and results, and document each run
carefully. Your documentation method might be as simple as a spreadsheet or note-
book, or as complex as a custom-designed database. Keep in mind that you’ll probably
want to write some scripts to help analyze the results, so the easier it is to process the
results without opening spreadsheets and text files, the better.

How Long Should the Benchmark Last?
It’s important to run the benchmark for a meaningful amount of time. If you’re inter-
ested in the system’s steady-state performance, which you probably should be, then
you need to observe the system in a steady state. This can take a surprisingly long time
to achieve, especially on servers with a lot of data and a lot of memory. Most systems
have some buffers that create burstable capacity—the ability to absorb spikes, defer
some work, and catch up later after the peak is over. But if you pressure these mecha-
nisms for a long time, they will fill up, and you will eventually see that the system can’t
sustain its short-term peak performance.

Sometimes you don’t know how long your benchmark needs to run. If this is the case,
you can just run the benchmark forever, and observe until you are satisfied that the
system is starting to become stable. Here’s an example of how we did this on a system
we didn’t know well. Figure 2-1 shows a time-series plot of the system’s disk read and
write throughput.

3. All this is provided that you want a perfect benchmark, of course. Real life usually gets in the way.

42 | Chapter 2: Benchmarking MySQL

As the system warmed up, the read I/O activity settled into a steady line after three or
four hours, but writes remained variable for at least eight hours, and then there were a
few sharp notches in the plot of writes. After that, both reads and writes seemed to
settle in.4 A rule of thumb is to wait until the system looks like it’s been steady for at
least as long as the initial warmup appeared to take. We ended up running this bench-
mark for 72 hours to ensure that the system was exhibiting its typical long-term
behavior.

A very common benchmarking mistake is to run a series of short benchmarks, such as
60-second runs, and conclude something about the system’s performance from that.
We hear a lot of comments such as “I tried benchmarking the new version of the server,
and it wasn’t faster than the old version.” When we dig into the actual benchmark, we
often find the benchmarks were conducted in a way that doesn’t support the conclu-
sions they’re intended to generate. Sometimes people protest that they just don’t have
time to benchmark the server for 8 or 12 hours at 10 different levels of concurrency on
two or three server versions. If you don’t have the time to do the benchmarks right, any
time you do spend is wasted; it is better to trust other people’s results, instead of doing
an incomplete benchmark and getting the wrong answers.

Figure 2-1. I/O performance during an extended benchmark

4. By the way, the graph of write I/O activity shows extremely bad behavior; this system’s steady state is a
performance catastrophe. Calling it a “steady state” is almost laughable, but our point is that it’s indicative
of how the server is going to behave over the long term.

Benchmarking Tactics | 43

Capturing System Performance and Status
It is important to capture as much information about the system under test (SUT) as
possible while the benchmark runs. It’s a good idea to make a benchmark directory
with subdirectories for each run’s results. You can then place the results, configuration
files, measurements, scripts, and notes for each run in the appropriate subdirectory. If
you can measure more than you think you’re interested in, record the extra data any-
way. It’s much better to have unneeded data than to miss important data, and you
might find the extra data useful in the future. Try to record status and performance
metrics such as CPU usage, disk I/O, network traffic statistics, counters from SHOW
GLOBAL STATUS; and so on.

Here is a sample shell script that you can use to gather data on MySQL during bench-
marks:

#!/bin/sh

INTERVAL=5
PREFIX=$INTERVAL-sec-status
RUNFILE=/home/benchmarks/running
mysql -e 'SHOW GLOBAL VARIABLES' >> mysql-variables
while test -e $RUNFILE; do
 file=$(date +%F_%I)
 sleep=$(date +%s.%N | awk "{print $INTERVAL - (\$1 % $INTERVAL)}")
 sleep $sleep
 ts="$(date +"TS %s.%N %F %T")"
 loadavg="$(uptime)"
 echo "$ts $loadavg" >> $PREFIX-${file}-status
 mysql -e 'SHOW GLOBAL STATUS' >> $PREFIX-${file}-status &
 echo "$ts $loadavg" >> $PREFIX-${file}-innodbstatus
 mysql -e 'SHOW ENGINE INNODB STATUS\G' >> $PREFIX-${file}-innodbstatus &
 echo "$ts $loadavg" >> $PREFIX-${file}-processlist
 mysql -e 'SHOW FULL PROCESSLIST\G' >> $PREFIX-${file}-processlist &
 echo $ts
done
echo Exiting because $RUNFILE does not exist.

The shell script, simple as it is, is a solid framework for gathering performance and
status data. There are a few things about it that we find useful, which you might not
appreciate until you run large benchmarks across many servers and find it difficult to
answer questions about system behavior:

• The iterations are timed so that it will run every time the clock is evenly divisible
by 5 seconds. If you just insert “sleep 5” into the loop, the loop will take slightly
longer than 5 seconds to run, and you won’t have an easy time correlating any data
captured by this script with any other scripts or graphs. And even if your loops
somehow last exactly 5 seconds, it’s annoying to have some data from one system
with a timestamp of 15:32:18.218192 and another system at 15:32:23.819437. You
can change 5 seconds to something else, such as 1, 10, 30, or 60 if you want; we
usually use 5 or 10 seconds.

44 | Chapter 2: Benchmarking MySQL

• Each file is named after the date and hour when the benchmark is run. When
benchmarks last for days and the files grow large, you might find it handy to move
previous files off the server and free up some disk space if needed, and get a head
start on analyzing the full results. When you’re looking for data about a specific
point in time, it’s also nice to be able to find it in a file named after the hour, rather
than searching through a single file that has grown to gigabytes in size.

• Each sample begins with a distinctive timestamp line, so you can search through
the files for samples related to specific times, and you can write little awk and sed
scripts easily.

• The script doesn’t preprocess or filter anything it gathers. It’s a good idea to gather
everything in its raw form, and process and filter it later. If you preprocess it, you’ll
surely find yourself wishing for the raw data later when you find an anomaly and
need more data to understand it.

• You can make the script exit when the benchmark is done by removing the /home/
benchmarks/running file in the script that executes your benchmark.

This is just a short code snippet, and probably won’t meet your needs as-is, but it’s an
illustration of a good general approach to capturing performance and status data. As
shown, the script captures only a few kinds of data on MySQL, but you can easily add
more things to it. You can capture /proc/diskstats to record disk I/O for later analysis
with the pt-diskstats tool,5 for example.

Getting Accurate Results
The best way to get accurate results is to design your benchmark to answer the question
you want to answer. Have you chosen the right benchmark? Are you capturing the data
you need to answer the question? Are you benchmarking by the wrong criteria? For
example, are you running a CPU-bound benchmark to predict the performance of an
application you know will be I/O-bound?

Next, make sure your benchmark results will be repeatable. Try to ensure that the
system is in the same state at the beginning of each run. If the benchmark is important,
you should reboot between runs. If you need to benchmark on a warmed-up server,
which is the norm, you should also make sure that your warmup is long enough (see
the previous section on how long to run a benchmark), and that it’s repeatable. If the
warmup consists of random queries, for example, your benchmark results will not be
repeatable.

If the benchmark changes data or schema, reset it with a fresh snapshot between runs.
Inserting into a table with a thousand rows will not give the same results as inserting
into a table with a million rows! The data fragmentation and layout on disk can also

5. See Chapter 9 for more on the pt-diskstats tool.

Benchmarking Tactics | 45

make your results nonrepeatable. One way to make sure the physical layout is close to
the same is to do a quick format and file copy of a partition.

Watch out for external load, profiling and monitoring systems, verbose logging, peri-
odic jobs, and other factors that can skew your results. A typical surprise is a cron job
that starts in the middle of a benchmark run, or a Patrol Read cycle or scheduled
consistency check on your RAID card. Make sure all the resources the benchmark needs
are dedicated to it while it runs. If something else is consuming network capacity, or if
the benchmark runs on a SAN that’s shared with other servers, your results might not
be accurate.

Try to change as few parameters as possible each time you run a benchmark. If you
must change several things at once, you risk missing something. Parameters can also
be dependent on one another, so sometimes you can’t change them independently.
Sometimes you might not even know they are related, which adds to the complexity.6

It generally helps to change the benchmark parameters iteratively, rather than making
dramatic changes between runs. For example, if you’re trying to adjust a setting to
create a specific behavior, use techniques such as divide-and-conquer (halving the dif-
ferences between runs) to home in on the right value.

We see a lot of benchmarks that try to predict performance after a migration, such as
migrating from Oracle to MySQL. These are often troublesome, because MySQL per-
forms well on completely different types of queries than Oracle. If you want to know
how well an application built on Oracle will run after migrating it to MySQL, you
usually need to redesign the schema and queries for MySQL. (In some cases, such as
when you’re building a cross-platform application, you might want to know how the
same queries will run on both platforms, but that’s unusual.)

You can’t get meaningful results from the default MySQL configuration settings either,
because they’re tuned for tiny applications that consume very little memory. Some of
the biggest face-palm moments we’ve had were when someone published flawed
benchmarks comparing MySQL to other relational database management systems
(RDBMSs) with the default settings. Irritatingly, these novice benchmarks often seem
to become headline news.

Solid-state storage (SSDs and PCIe cards) presents special challenges for benchmarking,
which we address in Chapter 9.

Finally, if you get a strange result, don’t simply dismiss it as a bad data point or say you
don’t understand. Investigate and try to find out what happened. You might find a
valuable result, a huge problem, or a flaw in your benchmark design. It’s not a good
idea to publish benchmarks if you don’t understand the results. We’ve seen more than

6. Sometimes, this doesn’t really matter. For example, if you’re thinking about migrating from a Solaris
system on SPARC hardware to GNU/Linux on x86, there’s no point in benchmarking Solaris on x86 as
an intermediate step!

46 | Chapter 2: Benchmarking MySQL

a few cases where benchmarks with odd results turned out to be completely meaning-
less due to a silly mistake, and the benchmarker looked rather foolish in the end.7

Running the Benchmark and Analyzing Results
Once you’ve prepared everything, you’re ready to run the benchmark and begin gath-
ering and analyzing data.

It’s a good idea to automate the benchmark runs. Doing so will improve your results
and their accuracy, because it will prevent you from forgetting steps or accidentally
doing things differently on different runs. It will also help you document how to run
the benchmark.

Any automation method will do; for example, a Makefile or a set of custom scripts.
Choose whatever scripting language makes sense for you: shell, PHP, Perl, etc. Try to
automate as much of the process as you can, including loading the data, warming up
the system, running the benchmark, and recording the results.

When you have it set up correctly, benchmarking can be a one-step
process. If you’re just running a one-off benchmark to check something
quickly, you might not want to automate it, but if you think you’ll ever
refer to the results in the future, do it anyway. If you don’t, you’ll never
remember how you ran the benchmark or what parameters you used,
and you won’t be able to use the benchmark results later.

You’ll usually run a benchmark several times. Exactly how many runs you need
depends on how you score the results, and how important the benchmark is. If you
need greater certainty, you need to run the benchmark more times. Common practices
are to look for the best result, average all the results, or just run the benchmark five
times and average the three best results. You can be as precise as you want. You might
want to apply statistical methods to your results, find the confidence interval, and so
on, but you often don’t need that level of certainty.8 If it answers your question to your
satisfaction, you can simply run the benchmark several times and see how much the
results vary. If they vary widely, either run the benchmark more times or run it for
longer, which usually reduces variance.

Once you have your results, you need to analyze them—that is, turn the numbers into
knowledge. The goal is to answer the question that frames the benchmark. Ideally,
you’d like to be able to make a statement such as “Upgrading to four CPUs increases
throughput by 50% with the same response time” or “The indexes made the queries
faster.” If you want to be more scientific, read up on the null hypothesis before

7. This has never, ever happened to any of the authors. Just in case you’re wondering.

8. If you really need scientific, rigorous results, you should read a good book on how to design and execute
controlled tests, because the subject is much larger than we can cover here.

Benchmarking Tactics | 47

benchmarking—but note that most people are unlikely to hold you to such strict
standards.

How you “crunch the numbers” depends on how you collect the results. You should
probably write scripts to analyze the results, not only to help reduce the amount of
work required, but for the same reasons you should automate the benchmark itself:
repeatability and documentation. Here is a very simple skeleton shell script that can
help you extract time-series metrics from the data-gathering script we showed earlier.
It accepts as its command-line options the filenames of the collected data:

#!/bin/sh

This script converts SHOW GLOBAL STATUS into a tabulated format, one line
per sample in the input, with the metrics divided by the time elapsed
between samples.
awk '
 BEGIN {
 printf "#ts date time load QPS";
 fmt = " %.2f";
 }
 /^TS/ { # The timestamp lines begin with TS.
 ts = substr($2, 1, index($2, ".") - 1);
 load = NF - 2;
 diff = ts - prev_ts;
 prev_ts = ts;
 printf "\n%s %s %s %s", ts, $3, $4, substr($load, 1, length($load)-1);
 }
 /Queries/ {
 printf fmt, ($2-Queries)/diff;
 Queries=$2
 }
 ' "$@"

If you name this script analyze and run it against the status file generated by the earlier
script, you might get something like the following:

[baron@ginger ~]$./analyze 5-sec-status-2011-03-20
#ts date time load QPS
1300642150 2011-03-20 17:29:10 0.00 0.62
1300642155 2011-03-20 17:29:15 0.00 1311.60
1300642160 2011-03-20 17:29:20 0.00 1770.60
1300642165 2011-03-20 17:29:25 0.00 1756.60
1300642170 2011-03-20 17:29:30 0.00 1752.40
1300642175 2011-03-20 17:29:35 0.00 1735.00
1300642180 2011-03-20 17:29:40 0.00 1713.00
1300642185 2011-03-20 17:29:45 0.00 1788.00
1300642190 2011-03-20 17:29:50 0.00 1596.40

The first line is the column headers, and you should ignore the second line, because it
is before the benchmark really started to run. Subsequent lines have the Unix time-
stamp, date, time (notice the data points occur on the five-second clock ticks, as men-
tioned previously), system load average, and finally the QPS (queries per second) that
the database server was executing. This is the bare minimum data you need to examine

48 | Chapter 2: Benchmarking MySQL

the system’s performance. Next we’ll show you how to plot this quickly and see what
happened during the benchmark.

The Importance of Plotting
If you want to achieve world domination, you must plot continually, pun intended.
But seriously, the single easiest and most rewarding thing you can do with your system
performance metrics is plot them in a time series and look at them. You can spot prob-
lems on a chart instantly, when they could be difficult or impossible to see by examining
the raw data. You should resist the temptation to simply look at the averages and other
summary statistics your benchmark tool might print out. Averages are useless, because
they obscure what is really happening. Fortunately, the output from the scripts we’ve
written so far is custom-made for tools such as gnuplot or R to plot in the blink of an
eye. We’ll demonstrate using gnuplot, assuming you saved the data into a file called
QPS-per-5-seconds:

gnuplot> plot "QPS-per-5-seconds" using 5 w lines title "QPS"

This instructs gnuplot to plot the fifth field in the file (the QPS field) with lines and title
it “QPS” on the plot. Figure 2-2 shows the result.

Figure 2-2. Plotting the benchmark’s QPS

Now let’s look at an example that will make the value of plotting more obvious. Suppose
your system suffers from so-called “furious flushing” when it gets behind on check-
pointing and blocks all activity until it catches up, causing sharp drops in the through-
put. The 95th percentile and average response times will not show the drops, so the
results will hide the problem. However, a graph will show periodic notches. This is
illustrated in Figure 2-3.

Benchmarking Tactics | 49

Figure 2-3. Results from a 30-minute dbt2 benchmark run

Figure 2-3 shows the throughput in new-order transactions per minute (NOTPM). This
line shows significant drops, which the overall average (the dotted line) doesn’t show
at all. The first drop is because the server’s caches are cold. The others show when the
server spends time intensively flushing dirty pages to the disk. Without the graph, these
aberrations are hard to see.

Such spiky behavior is very common in heavily loaded systems, and needs to be inves-
tigated. In this case, the behavior was because of the use of an older version of InnoDB,
which had a poor flushing algorithm. But you can’t take that for granted. You need to
go back to your detailed statistics and look at them. What did SHOW ENGINE INNODB
STATUS look like during these notches? What about the output of SHOW FULL PROCESS
LIST? You might be able to see instantly that InnoDB was flushing, or that there were
many threads in the process list with a status of “waiting on query cache lock,” or
something else similarly obvious. This is why it’s helpful to capture very detailed data
during your benchmarks, and then plot it so problems pop out.

Benchmarking Tools
You don’t have to roll your own benchmarking system, and in fact you shouldn’t unless
there’s a good reason why you can’t use one of the available ones. We show you some
of the available tools in the following sections.

50 | Chapter 2: Benchmarking MySQL

Full-Stack Tools
Recall that there are two types of benchmarks: full-stack and single-component. Not
surprisingly, there are tools to benchmark full applications, and there are tools to
stress-test MySQL and other components in isolation. Testing the full stack is usually
a better way to get a clear picture of your whole application’s performance. Full-stack
tools include:

ab
ab is an Apache HTTP server benchmarking tool. It shows how many requests per
second your HTTP server is capable of serving. If you are benchmarking a web
application, this translates to how many requests per second the entire application
can satisfy. It’s a very simple tool, but its usefulness is limited because it just ham-
mers one URL as fast as it can. More information on ab is available at http://httpd
.apache.org/docs/2.0/programs/ab.html.

http_load
This tool is similar in concept to ab; it is also designed to load a web server, but
it’s more flexible. You can create an input file with many different URLs, and
http_load will choose from among them at random. You can also instruct it to issue
requests at a timed rate, instead of just running them as fast as it can. See http://
www.acme.com/software/http_load/ for more information.

JMeter
JMeter is a Java application that can load another application and measure its
performance. It was designed for testing web applications, but you can also use it
to test FTP servers and issue queries to a database via JDBC.

JMeter is much more complex than ab and http_load. For example, it has features
that let you simulate real users more flexibly, by controlling such parameters as
ramp-up time. It has a graphical user interface with built-in result graphing, and it
offers the ability to record and replay results offline. For more information, see
http://jakarta.apache.org/jmeter/.

Single-Component Tools
Here are some useful tools to test the performance of MySQL and the system on which
it runs. We show example benchmarks with some of these tools in the next section:

mysqlslap
mysqlslap (http://dev.mysql.com/doc/refman/5.1/en/mysqlslap.html) simulates load
on the server and reports timing information. It is part of the MySQL 5.1 server
distribution, but it should be possible to run it against MySQL 4.1 and newer
servers. You can specify how many concurrent connections it should use, and you
can give it either a SQL statement on the command line or a file containing SQL
statements to run. If you don’t give it statements, it can also autogenerate SELECT
statements by examining the server’s schema.

Benchmarking Tools | 51

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.acme.com/software/http_load/
http://www.acme.com/software/http_load/
http://jakarta.apache.org/jmeter/
http://dev.mysql.com/doc/refman/5.1/en/mysqlslap.html

MySQL Benchmark Suite (sql-bench)
MySQL distributes its own benchmark suite with the MySQL server, and you can
use it to benchmark several different database servers. It is single-threaded and
measures how quickly the server executes queries. The results show which types
of operations the server performs well.

The main benefit of this benchmark suite is that it contains a lot of predefined tests
that are easy to use, so it makes it easy to compare different storage engines or
configurations. It’s useful as a high-level benchmark, to compare the overall per-
formance of two servers. You can also run a subset of its tests (for example, just
testing UPDATE performance). The tests are mostly CPU-bound, but there are short
periods that demand a lot of disk I/O.

The biggest disadvantages of this tool are that it’s single-user, it uses a very small
dataset, you can’t test your site-specific data, and its results might vary between
runs. Because it’s single-threaded and completely serial, it will not help you assess
the benefits of multiple CPUs, but it can help you compare single-CPU servers.

Perl and DBD drivers are required for the database server you wish to benchmark.
Documentation is available at http://dev.mysql.com/doc/en/mysql-benchmarks
.html/.

Super Smack
Super Smack (http://vegan.net/tony/supersmack/) is a benchmarking, stress-testing,
and load-generating tool for MySQL and PostgreSQL. It is a complex, powerful
tool that lets you simulate multiple users, load test data into the database, and
populate tables with randomly generated data. Benchmarks are contained in
“smack” files, which use a simple language to define clients, tables, queries, and
so on.

Database Test Suite
The Database Test Suite, designed by The Open Source Development Labs (OSDL)
and hosted on SourceForge at http://sourceforge.net/projects/osdldbt/, is a test kit
for running benchmarks similar to some industry-standard benchmarks, such as
those published by the Transaction Processing Performance Council (TPC). In
particular, the dbt2 test tool is a free (but uncertified) implementation of the
TPC-C OLTP test. We used to use it a lot, but we have developed purpose-built
tools for MySQL that we now use instead.

Percona’s TPCC-MySQL Tool
We have created a fair-usage implementation of a benchmark similar to the
TPC-C test, with tools specifically designed for benchmarking MySQL. This is the
tool we use most often for evaluating how MySQL behaves on nontrivial work-
loads. (For simpler benchmarks, we usually use sysbench instead.) The source code
is available at https://launchpad.net/perconatools, and there is brief usage docu-
mentation in the source repository.

52 | Chapter 2: Benchmarking MySQL

http://dev.mysql.com/doc/en/mysql-benchmarks.html/
http://dev.mysql.com/doc/en/mysql-benchmarks.html/
http://vegan.net/tony/supersmack/
http://sourceforge.net/projects/osdldbt/
https://launchpad.net/perconatools

sysbench
sysbench (https://launchpad.net/sysbench) is a multithreaded system benchmarking
tool. Its goal is to get a sense of system performance, in terms of the factors im-
portant for running a database server. For example, you can measure the perfor-
mance of file I/O, the OS scheduler, memory allocation and transfer speed, POSIX
threads, and the database server itself. sysbench supports scripting in the Lua lan-
guage (http://www.lua.org), which makes it very flexible for testing a variety of
scenarios. It is our favorite all-around benchmarking tool for MySQL, operating
system, and hardware performance.

MySQL’s BENCHMARK() Function
MySQL has a handy BENCHMARK() function that you can use to test execution speeds for
certain types of operations. You use it by specifying a number of times to execute and
an expression to execute. The expression can be any scalar expression, such as a scalar
subquery or a function. This is convenient for testing the relative speed of some oper-
ations, such as seeing whether MD5() is faster than SHA1():

mysql> SET @input := 'hello world';
mysql> SELECT BENCHMARK(1000000, MD5(@input));
+---------------------------------+
| BENCHMARK(1000000, MD5(@input)) |
+---------------------------------+
| 0 |
+---------------------------------+
1 row in set (2.78 sec)
mysql> SELECT BENCHMARK(1000000, SHA1(@input));
+----------------------------------+
| BENCHMARK(1000000, SHA1(@input)) |
+----------------------------------+
| 0 |
+----------------------------------+
1 row in set (3.50 sec)

The return value is always 0; you time the execution by looking at how long the client
application reported the query took. In this case, it looks like MD5() is faster. However,
using BENCHMARK() correctly is tricky unless you know what it’s really doing. It simply
measures how fast the server can execute the expression; it does not give any indication
of the parsing and optimization overhead. And unless the expression includes a user
variable, as in our example, the second and subsequent times the server executes the
expression might be cache hits.9

Although it’s handy, we don’t use BENCHMARK() for real benchmarks. It’s too hard to
figure out what it really measures, and it’s too narrowly focused on a small part of the
overall execution process.

9. One of the authors made this mistake and found that 10,000 executions of a certain expression ran
just as fast as 1 execution. It was a cache hit. In general, this type of behavior should always make
you suspect either a cache hit or an error.

Benchmarking Tools | 53

https://launchpad.net/sysbench
http://www.lua.org

Benchmarking Examples
In this section, we’ll show you some examples of actual benchmarks with tools we
mentioned in the preceding sections. We can’t cover each tool exhaustively, but these
examples should help you decide which benchmarks might be useful for your purposes
and get you started using them.

http_load
Let’s start with a simple example of how to use http_load. We’ll use the following URLs,
which we saved to a file called urls.txt:

http://www.mysqlperformanceblog.com/
http://www.mysqlperformanceblog.com/page/2/
http://www.mysqlperformanceblog.com/mysql-patches/
http://www.mysqlperformanceblog.com/mysql-performance-presentations/
http://www.mysqlperformanceblog.com/2006/09/06/slow-query-log-analyzes-tools/

The simplest way to use http_load is to simply fetch the URLs in a loop. The program
fetches them as fast as it can:

$ http_load -parallel 1 -seconds 10 urls.txt
19 fetches, 1 max parallel, 837929 bytes, in 10.0003 seconds
44101.5 mean bytes/connection
1.89995 fetches/sec, 83790.7 bytes/sec
msecs/connect: 41.6647 mean, 56.156 max, 38.21 min
msecs/first-response: 320.207 mean, 508.958 max, 179.308 min
HTTP response codes:
 code 200 - 19

The results are pretty self-explanatory; they simply show statistics about the requests.
A slightly more complex usage scenario is to fetch the URLs as fast as possible in a loop,
but emulate five concurrent users:

$ http_load -parallel 5 -seconds 10 urls.txt
94 fetches, 5 max parallel, 4.75565e+06 bytes, in 10.0005 seconds
50592 mean bytes/connection
9.39953 fetches/sec, 475541 bytes/sec
msecs/connect: 65.1983 mean, 169.991 max, 38.189 min
msecs/first-response: 245.014 mean, 993.059 max, 99.646 min
HTTP response codes:
 code 200 - 94

Alternatively, instead of fetching as fast as possible, we can emulate the load for a
predicted rate of requests (such as five per second):

$ http_load -rate 5 -seconds 10 urls.txt
48 fetches, 4 max parallel, 2.50104e+06 bytes, in 10 seconds
52105 mean bytes/connection
4.8 fetches/sec, 250104 bytes/sec
msecs/connect: 42.5931 mean, 60.462 max, 38.117 min
msecs/first-response: 246.811 mean, 546.203 max, 108.363 min

54 | Chapter 2: Benchmarking MySQL

HTTP response codes:
 code 200 - 48

Finally, we emulate even more load, with an incoming rate of 20 requests per second.
Notice how the connect and response times increase with the higher load:

$ http_load -rate 20 -seconds 10 urls.txt
111 fetches, 89 max parallel, 5.91142e+06 bytes, in 10.0001 seconds
53256.1 mean bytes/connection
11.0998 fetches/sec, 591134 bytes/sec
msecs/connect: 100.384 mean, 211.885 max, 38.214 min
msecs/first-response: 2163.51 mean, 7862.77 max, 933.708 min
HTTP response codes:
 code 200 -- 111

MySQL Benchmark Suite
The MySQL Benchmark Suite consists of a set of Perl benchmarks, so you’ll need Perl
to run them. You’ll find the benchmarks in the sql-bench/ subdirectory in your MySQL
installation. On Debian GNU/Linux systems, for example, they’re in /usr/share/mysql/
sql-bench/.

Before getting started, read the included README file, which explains how to use the
suite and documents the command-line arguments. To run all the tests, use commands
like the following:

$ cd /usr/share/mysql/sql-bench/
sql-bench$./run-all-tests --server=mysql --user=root --log --fast
Test finished. You can find the result in:
output/RUN-mysql_fast-Linux_2.4.18_686_smp_i686

The benchmarks can take quite a while to run—perhaps over an hour, depending on
your hardware and configuration. If you give the --log command-line option, you can
monitor progress while they’re running. Each test logs its results in a subdirectory
named output. Each file contains a series of timings for the operations in each bench-
mark. Here’s a sample, slightly reformatted for printing:

sql-bench$ tail −5 output/select-mysql_fast-Linux_2.4.18_686_smp_i686
Time for count_distinct_group_on_key (1000:6000):
 34 wallclock secs (0.20 usr 0.08 sys + 0.00 cusr 0.00 csys = 0.28 CPU)
Time for count_distinct_group_on_key_parts (1000:100000):
 34 wallclock secs (0.57 usr 0.27 sys + 0.00 cusr 0.00 csys = 0.84 CPU)
Time for count_distinct_group (1000:100000):
 34 wallclock secs (0.59 usr 0.20 sys + 0.00 cusr 0.00 csys = 0.79 CPU)
Time for count_distinct_big (100:1000000):
 8 wallclock secs (4.22 usr 2.20 sys + 0.00 cusr 0.00 csys = 6.42 CPU)
Total time:
 868 wallclock secs (33.24 usr 9.55 sys + 0.00 cusr 0.00 csys = 42.79 CPU)

As an example, the count_distinct_group_on_key (1000:6000) test took 34 wall-clock
seconds to execute. That’s the total amount of time the client took to run the test. The
other values (usr, sys, cursr, csys) that added up to 0.28 seconds constitute the over-
head for this test. That’s how much of the time was spent running the benchmark client

Benchmarking Examples | 55

code, rather than waiting for the MySQL server’s response. This means that the figure
we care about—how much time was tied up by things outside the client’s
control—was 33.72 seconds.

Rather than running the whole suite, you can run the tests individually. For example,
you might decide to focus on the insert test. This gives you more detail than the sum-
mary created by the full test suite:

sql-bench$./test-insert
Testing server 'MySQL 4.0.13 log' at 2003-05-18 11:02:39

Testing the speed of inserting data into 1 table and do some selects on it.
The tests are done with a table that has 100000 rows.

Generating random keys
Creating tables
Inserting 100000 rows in order
Inserting 100000 rows in reverse order
Inserting 100000 rows in random order
Time for insert (300000):
 42 wallclock secs (7.91 usr 5.03 sys + 0.00 cusr 0.00 csys = 12.94 CPU)
Testing insert of duplicates
Time for insert_duplicates (100000):
 16 wallclock secs (2.28 usr 1.89 sys + 0.00 cusr 0.00 csys = 4.17 CPU)

sysbench
The sysbench tool can run a variety of “tests” (benchmarks). It was designed to test not
only database performance, but also how well a system is likely to perform as a database
server. In fact, Peter and Vadim originally designed it to run benchmarks specifically
relevant to MySQL performance, even though they aren’t actually all MySQL bench-
marks. We’ll start with some tests that aren’t MySQL-specific and measure perfor-
mance for subsystems that will determine the system’s overall limits. Then we’ll show
you how to measure database performance.

We highly recommend getting familiar with sysbench. It is one of the most useful tools
in a MySQL user’s bag. And although there are many other tools that perform some of
the functions it can do, those tools aren’t always reliable and the results aren’t always
relevant to MySQL performance. For example, you can test I/O performance with
iozone, bonnie++, and a number of other tools, but it requires a lot of care to make
them test I/O in a similar fashion to the way InnoDB exercises the disks. On the other
hand, sysbench behaves a lot like InnoDB, so its fileio test is relevant out-of-the-box.

The sysbench CPU benchmark

The most obvious subsystem test is the CPU benchmark, which uses 64-bit integers to
calculate prime numbers up to a specified maximum. We run this on two servers, both
running GNU/Linux, and compare the results. Here’s the first server’s hardware:

56 | Chapter 2: Benchmarking MySQL

[server1 ~]$ cat /proc/cpuinfo
...
model name : AMD Opteron(tm) Processor 246
stepping : 1
cpu MHz : 1992.857
cache size : 1024 KB

And here’s how to run the benchmark:

[server1 ~]$ sysbench --test=cpu --cpu-max-prime=20000 run
sysbench v0.4.8: multithreaded system evaluation benchmark
...
Test execution summary: total time: 121.7404s

The second server has a different CPU:

[server2 ~]$ cat /proc/cpuinfo
...
model name : Intel(R) Xeon(R) CPU 5130 @ 2.00GHz
stepping : 6
cpu MHz : 1995.005

Here’s its benchmark result:

[server1 ~]$ sysbench --test=cpu --cpu-max-prime=20000 run
sysbench v0.4.8: multithreaded system evaluation benchmark
...
Test execution summary: total time: 61.8596s

The result simply indicates the total time required to calculate the primes, which is very
easy to compare. In this case, the second server ran the benchmark about twice as fast
as the first server.

The sysbench file I/O benchmark

The fileio benchmark measures how your system performs under different kinds of
I/O loads. It is very helpful for comparing hard drives, RAID cards, and RAID modes,
and for tweaking the I/O subsystem. It emulates how InnoDB uses the disks in some
important ways.

The first stage in running this test is to prepare some files for the benchmark. You
should generate much more data than will fit in memory. If the data fits in memory,
the operating system will cache most of it, and the results will not accurately represent
an I/O-bound workload. We begin by creating a dataset:

$ sysbench --test=fileio --file-total-size=150G prepare

This creates files in the current working directory, which the run step will read and
write. The second step is to run the benchmark. Several options are available to test
different types of I/O performance:

Benchmarking Examples | 57

seqwr
Sequential write

seqrewr
Sequential rewrite

seqrd
Sequential read

rndrd
Random read

rndwr
Random write

rndrw
Combined random read/write

The following command runs the random read/write access file I/O benchmark:

$ sysbench --test=fileio --file-total-size=150G --file-test-mode=rndrw/
--init-rng=on --max-time=300 --max-requests=0 run

Here are the results:

sysbench v0.4.8: multithreaded system evaluation benchmark

Running the test with following options:
Number of threads: 1
Initializing random number generator from timer.

Extra file open flags: 0
128 files, 1.1719Gb each
150Gb total file size
Block size 16Kb
Number of random requests for random IO: 10000
Read/Write ratio for combined random IO test: 1.50
Periodic FSYNC enabled, calling fsync() each 100 requests.
Calling fsync() at the end of test, Enabled.
Using synchronous I/O mode
Doing random r/w test
Threads started!
Time limit exceeded, exiting...
Done.

Operations performed: 40260 Read, 26840 Write, 85785 Other = 152885 Total
Read 629.06Mb Written 419.38Mb Total transferred 1.0239Gb (3.4948Mb/sec)
 223.67 Requests/sec executed

Test execution summary:
 total time: 300.0004s
 total number of events: 67100
 total time taken by event execution: 254.4601
 per-request statistics:
 min: 0.0000s
 avg: 0.0038s

58 | Chapter 2: Benchmarking MySQL

 max: 0.5628s
 approx. 95 percentile: 0.0099s

Threads fairness:
 events (avg/stddev): 67100.0000/0.00
 execution time (avg/stddev): 254.4601/0.00

There’s a lot of information in the output. The most interesting numbers for measuring
the I/O subsystem are the number of requests per second and the total throughput. In
this case, the results are 223.67 requests/sec and 3.4948 MB/sec, respectively. The
timing information, especially the approximate 95th percentile, is also valuable. These
values provide a good indication of disk performance.

When you’re finished, you can run a cleanup to delete the files sysbench created for the
benchmarks:

$ sysbench --test=fileio --file-total-size=150G cleanup

The sysbench OLTP benchmark

The OLTP benchmark emulates a simple transaction-processing workload. We show
an example with a table that has a million rows. The first step is to prepare a table for
the test:

$ sysbench --test=oltp --oltp-table-size=1000000 --mysql-db=test/
--mysql-user=root prepare
sysbench v0.4.8: multithreaded system evaluation benchmark

No DB drivers specified, using mysql
Creating table 'sbtest'...
Creating 1000000 records in table 'sbtest'...

That’s all you need to do to prepare the test data. Next, we run the benchmark in read-
only mode for 60 seconds, with eight concurrent threads:

$ sysbench --test=oltp --oltp-table-size=1000000 --mysql-db=test --mysql-user=root/
--max-time=60 --oltp-read-only=on --max-requests=0 --num-threads=8 run
sysbench v0.4.8: multithreaded system evaluation benchmark

No DB drivers specified, using mysql
WARNING: Preparing of "BEGIN" is unsupported, using emulation
(last message repeated 7 times)
Running the test with following options:
Number of threads: 8

Doing OLTP test.
Running mixed OLTP test
Doing read-only test
Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct
cases)
Using "BEGIN" for starting transactions
Using auto_inc on the id column
Threads started!
Time limit exceeded, exiting...

Benchmarking Examples | 59

(last message repeated 7 times)
Done.

OLTP test statistics:
 queries performed:
 read: 179606
 write: 0
 other: 25658
 total: 205264
 transactions: 12829 (213.07 per sec.)
 deadlocks: 0 (0.00 per sec.)
 read/write requests: 179606 (2982.92 per sec.)
 other operations: 25658 (426.13 per sec.)

Test execution summary:
 total time: 60.2114s
 total number of events: 12829
 total time taken by event execution: 480.2086

 per-request statistics:
 min: 0.0030s
 avg: 0.0374s
 max: 1.9106s
 approx. 95 percentile: 0.1163s

Threads fairness:
 events (avg/stddev): 1603.6250/70.66
 execution time (avg/stddev): 60.0261/0.06

As before, there’s quite a bit of information in the results. The most interesting parts are:

• The transaction count

• The rate of transactions per second

• The timing statistics (minimal, average, maximal, and 95th percentile time)

• The thread-fairness statistics, which show how fair the simulated workload was

The example we’ve given is applicable to version 4 of sysbench, which is available in
prebuilt binaries from SourceForge.net. However, if you’re willing to compile sys-
bench from the source code on Launchpad (it’s easy and tastes great!), you can take
advantage of a lot of improvements in version 5. You can run benchmarks against
multiple tables instead of a single table, and you can observe throughput and response
time at regular intervals, such as every 10 seconds. These metrics are very important
for understanding system behavior.

Other sysbench features

The sysbench tool can run several other system benchmarks that don’t measure a
database server’s performance directly:

memory
Exercises sequential memory reads or writes.

60 | Chapter 2: Benchmarking MySQL

threads
Benchmarks the thread scheduler’s performance. This is especially useful to test
the scheduler’s behavior under high load.

mutex
Measures mutex performance by emulating a situation where all threads run con-
currently most of the time, acquiring mutex locks only briefly. (A mutex is a data
structure that guarantees mutually exclusive access to some resource, preventing
concurrent access from causing problems.)

seqwr
Measures sequential write performance. This is very important for testing a sys-
tem’s practical performance limits. It can show how well your RAID controller’s
cache performs and alert you if the results are unusual. For example, if you have
no battery-backed write cache but your disk achieves 3,000 requests per second,
something is wrong, and your data is not safe.

In addition to the benchmark-specific mode parameter (--test), sysbench accepts some
other common parameters, such as --num-threads, --max-requests, and --max-time. See
the documentation for more information on these.

dbt2 TPC-C on the Database Test Suite
The Database Test Suite’s dbt2 tool is a free implementation of the TPC-C test. TPC-
C is a specification published by the TPC organization that emulates a complex online
transaction-processing load. It reports its results in transactions per minute (tpmC),
along with the cost of each transaction (Price/tpmC). The results depend greatly on the
hardware, so the published TPC-C results contain detailed specifications of the servers
used in the benchmark.

The dbt2 test is not really TPC-C. It’s not certified by TPC, and its results
aren’t directly comparable with TPC-C results. Also note that the
authors have created what we consider to be a better tool than dbt2 for
MySQL; see the next section.

Let’s look at a sample of how to set up and run a dbt2 benchmark. We used version
0.37 of dbt2, which is the most recent version we were able to use with MySQL (newer
versions contain fixes that MySQL does not fully support). The following are the steps
we took:

1. Prepare data.

The following command creates data for 10 warehouses in the specified directory.
The warehouses use a total of about 700 MB of space. The amount of space required
will change in proportion to the number of warehouses, so you can change
the -w parameter to create a dataset with the size you need:

Benchmarking Examples | 61

src/datagen -w 10 -d /mnt/data/dbt2-w10
warehouses = 10
districts = 10
customers = 3000
items = 100000
orders = 3000
stock = 100000
new_orders = 900

Output directory of data files: /mnt/data/dbt2-w10

Generating data files for 10 warehouse(s)...
Generating item table data...
Finished item table data...
Generating warehouse table data...
Finished warehouse table data...
Generating stock table data...

2. Load data into the MySQL database.

The following command creates a database named dbt2w10 and loads it with the
data we generated in the previous step (-d is the database name and -f is the direc-
tory with the generated data):

scripts/mysql/mysql_load_db.sh -d dbt2w10 -f /mnt/data/dbt2-w10/
-s /var/lib/mysql/mysql.sock

3. Run the benchmark.

The final step is to execute the following command from the scripts directory:

run_mysql.sh -c 10 -w 10 -t 300 -n dbt2w10/
-u root -o /var/lib/mysql/mysql.sock-e
**
* DBT2 test for MySQL started *
* *
* Results can be found in output/9 directory *
**
* *
* Test consists of 4 stages: *
* *
* 1. Start of client to create pool of databases connections *
* 2. Start of driver to emulate terminals and transactions generation *
* 3. Test *
* 4. Processing of results *
* *
**

DATABASE NAME: dbt2w10
DATABASE USER: root
DATABASE SOCKET: /var/lib/mysql/mysql.sock
DATABASE CONNECTIONS: 10
TERMINAL THREADS: 100
SCALE FACTOR(WARHOUSES): 10
TERMINALS PER WAREHOUSE: 10
DURATION OF TEST(in sec): 300
SLEEPY in (msec) 300

62 | Chapter 2: Benchmarking MySQL

ZERO DELAYS MODE: 1

Stage 1. Starting up client...
Delay for each thread - 300 msec. Will sleep for 4 sec to start 10 database
connections
CLIENT_PID = 12962

Stage 2. Starting up driver...
Delay for each thread - 300 msec. Will sleep for 34 sec to start 100 terminal
threads
All threads has spawned successfuly.

Stage 3. Starting of the test. Duration of the test 300 sec

Stage 4. Processing of results...
Shutdown clients. Send TERM signal to 12962.
 Response Time (s)
 Transaction % Average : 90th % Total Rollbacks %
------------ ----- ----------------- ------ --------- -----
 Delivery 3.53 2.224 : 3.059 1603 0 0.00
 New Order 41.24 0.659 : 1.175 18742 172 0.92
Order Status 3.86 0.684 : 1.228 1756 0 0.00
 Payment 39.23 0.644 : 1.161 17827 0 0.00
 Stock Level 3.59 0.652 : 1.147 1630 0 0.00

3396.95 new-order transactions per minute (NOTPM)
5.5 minute duration
0 total unknown errors
31 second(s) ramping up

The most important result is this line near the end:

3396.95 new-order transactions per minute (NOTPM)

This shows how many transactions per minute the system can process; more is better.
(The term “new-order” is not a special term for a type of transaction; it simply means
the test simulated someone placing a new order on the imaginary ecommerce website.)

You can change a few parameters to create different benchmarks:

-c
The number of connections to the database. You can change this to emulate dif-
ferent levels of concurrency and see how the system scales.

-e
This enables zero-delay mode, which means there will be no delay between queries.
This stress-tests the database, but it can be unrealistic as real users need some
“think time” before generating new queries.

-t
The total duration of the benchmark. Choose this time carefully, or the results will
be meaningless. Too short a time for benchmarking an I/O-bound workload will
give incorrect results because the system will not have enough time to warm the
caches and start to work normally. On the other hand, if you want to benchmark

Benchmarking Examples | 63

a CPU-bound workload, you shouldn’t make the time too long, or the dataset
might grow significantly and become I/O-bound.

This benchmark’s results can provide information on more than just performance. For
example, if you see too many rollbacks, you’ll know something is likely to be wrong.

Percona’s TPCC-MySQL Tool
Although it’s great for simple tests and comparisons, the workload that sysbench gen-
erates is not really relevant to any real-world application. The TPC-C benchmark is
much better for that. Although the dbt2 tool shown in the previous section is one fair-
use implementation of that benchmark, it has some drawbacks. These prompted the
authors of this book to create another TCP-C-like benchmark tool better suited to
running a lot of very large benchmarks. The code is available through Launchpad at
https://code.launchpad.net/~percona-dev/perconatools/tpcc-mysql, and there is a brief
README file that explains how to build and use the tool. It is quite simple to use. For
large numbers of warehouses, you might want to consider using the parallel data load-
ing utility included with the tool, because otherwise it can take a long time to generate
the dataset.

To use the tool, you need to create the database and table structures, load the data, and
then execute the benchmark. The database and table structures are simple SQL scripts
included with the source code, and the data loading is accomplished through the
tpcc_load C program, which you must compile. This will run for a while and produce
a great deal of output. (You should always redirect program output to files for docu-
mentation purposes, but here you really need to do so, or you might even lose your
scrollback history.) Here is an example setup, creating a small (five warehouses) dataset
in a database named tpcc5:

$./tpcc_load localhost tpcc5 username p4ssword 5

*** ###easy### TPC-C Data Loader ***

<Parameters>
 [server]: localhost
 [port]: 3306
 [DBname]: tpcc5
 [user]: username
 [pass]: p4ssword
 [warehouse]: 5
TPCC Data Load Started...
Loading Item
.. 5000
.. 10000
.. 15000

[output snipped for brevity]

Loading Orders for D=10, W= 5
.......... 1000

64 | Chapter 2: Benchmarking MySQL

https://code.launchpad.net/~percona-dev/perconatools/tpcc-mysql

.......... 2000

.......... 3000
Orders Done.

...DATA LOADING COMPLETED SUCCESSFULLY.

Next, you need to execute the benchmark, which requires the tpcc_start C program.
Again there is a lot of output, which should be redirected to a file. Here is a very short
sample run that runs five threads against the five warehouses, warming up for 30 sec-
onds and then benchmarking for 30 seconds:

$./tpcc_start localhost tpcc5 username p4ssword 5 5 30 30

*** ###easy### TPC-C Load Generator ***

<Parameters>
 [server]: localhost
 [port]: 3306
 [DBname]: tpcc5
 [user]: username
 [pass]: p4ssword
 [warehouse]: 5
 [connection]: 5
 [rampup]: 30 (sec.)
 [measure]: 30 (sec.)

RAMP-UP TIME.(30 sec.)

MEASURING START.

 10, 63(0):0.40, 63(0):0.42, 7(0):0.76, 6(0):2.60, 6(0):0.17
 20, 75(0):0.40, 74(0):0.62, 7(0):0.04, 9(0):2.38, 7(0):0.75
 30, 83(0):0.22, 84(0):0.37, 9(0):0.04, 7(0):1.97, 9(0):0.80

STOPPING THREADS.....

<RT Histogram>

1.New-Order
2.Payment
3.Order-Status
4.Delivery
5.Stock-Level

<90th Percentile RT (MaxRT)>
 New-Order : 0.37 (1.10)
 Payment : 0.47 (1.24)
Order-Status : 0.06 (0.96)
 Delivery : 2.43 (2.72)
 Stock-Level : 0.75 (0.79)

<Raw Results>
 [0] sc:221 lt:0 rt:0 fl:0
 [1] sc:221 lt:0 rt:0 fl:0
 [2] sc:23 lt:0 rt:0 fl:0

Benchmarking Examples | 65

 [3] sc:22 lt:0 rt:0 fl:0
 [4] sc:22 lt:0 rt:0 fl:0
 in 30 sec.

<Raw Results2(sum ver.)>
 [0] sc:221 lt:0 rt:0 fl:0
 [1] sc:221 lt:0 rt:0 fl:0
 [2] sc:23 lt:0 rt:0 fl:0
 [3] sc:22 lt:0 rt:0 fl:0
 [4] sc:22 lt:0 rt:0 fl:0

<Constraint Check> (all must be [OK])
 [transaction percentage]
 Payment: 43.42% (>=43.0%) [OK]
 Order-Status: 4.52% (>= 4.0%) [OK]
 Delivery: 4.32% (>= 4.0%) [OK]
 Stock-Level: 4.32% (>= 4.0%) [OK]
 [response time (at least 90% passed)]
 New-Order: 100.00% [OK]
 Payment: 100.00% [OK]
 Order-Status: 100.00% [OK]
 Delivery: 100.00% [OK]
 Stock-Level: 100.00% [OK]

<TpmC>
 442.000 TpmC

The very last line is the benchmark result: the number of transactions per minute that
the benchmark achieved.10 If you see aberrant results in the lines immediately preceding
this, such as the constraint check lines, you can examine the response-time histograms
and other verbose output for clues about what was going wrong. Of course, you should
have used scripts such as those we showed earlier in this chapter as well, so you should
also have detailed diagnostic and performance data about what the server was doing
during the benchmark run.

Summary
Everyone who uses MySQL has reasons to learn the basics of benchmarking it. Bench-
marking is not just a practical activity for solving business problems, it’s also highly
educational. Learning how to frame a problem in such a way that a benchmark can
help provide an answer is analogous to working from word problems to setting up
equations in a math course. Phrasing the question correctly, choosing the right bench-
mark to answer the question, selecting the benchmark duration and parameters, run-
ning the benchmark, collecting the data, and analyzing the results will all make you a
much better MySQL user.

10. We ran this benchmark on a laptop for demonstration purposes only. Real servers should perform much
faster.

66 | Chapter 2: Benchmarking MySQL

If you haven’t done so yet, we recommend at least getting familiar with sysbench. Learn
how to use its oltp and fileio benchmarks, if nothing else. The oltp benchmark is very
handy for quickly comparing different systems. Filesystem and disk benchmarks, on
the other hand, are invaluable for troubleshooting and isolating misbehaving compo-
nents when there are system performance problems. We’ve used such benchmarks
many times to prove that despite the administrator’s claims, a SAN really did have a
failed disk, or a RAID controller’s cache policy wasn’t actually configured as the utility
claimed it was. And when you’re benchmarking a single disk and it claims to be able
to execute 14,000 random reads per second, you know that you’ve either made a mis-
take or something is seriously wrong or misconfigured.11

If you’ll be benchmarking systems often, it’s a good idea to make a discipline of it. Pick
a few benchmark tools that suit your needs, and learn them well. Build up a library of
scripts to help you set up benchmarks, capture the output and system performance
and status information, and analyze it afterward. Get comfortable with a plotting utility
such as gnuplot or R—don’t waste your time on spreadsheets; they are far too
cumbersome and slow. Plot early and plot often, to discover problems and failures in
your benchmarks and systems. Your eyes are more sophisticated than any script or tool
for discovering anomalies.

11. A single spinning disk can perform only a couple hundred operations per second, due to seek and rotation
times.

Summary | 67

CHAPTER 3

Profiling Server Performance

The three most common performance-related requests we receive in our consulting
practice are to find out whether a server is doing all of its work optimally, to find out
why a specific query is not executing quickly enough, and to troubleshoot mysterious
intermittent incidents, which users commonly call “stalls,” “pileups,” or “freezes.” This
chapter is a direct response to those three types of requests. We’ll show you tools and
techniques to help you speed up a server’s overall workload, speed up a single query,
or troubleshoot and solve a problem when it’s hard to observe, and you don’t know
what causes it or even how it manifests.

This might seem like a tall order, but it turns out that a simple method can show you
the signal within the noise. That method is to focus on measuring what the server spends
its time doing, and the technique that supports this is called profiling. In this chapter,
we’ll show you how to measure systems and generate profiles, and we’ll show you how
to profile your whole stack, from the application to the database server to individual
queries.

But you must empty your cup before you can fill it, so let’s dispel a few common mis-
conceptions about performance first. This gets a bit dense, so stay with us and we’ll
explain it all with examples later.

Introduction to Performance Optimization
Ask 10 people to define performance and you’ll probably get 10 different answers,
filled with terms such as “queries per second,” “CPU utilization,” “scalability,” and so
on. This is fine for most purposes, because people understand performance differently
in different contexts, but we will use a formal definition in this chapter. Our definition
is that performance is measured by the time required to complete a task. In other words,
performance is response time. This is a very important principle. We measure
performance by tasks and time, not by resources. A database server’s purpose is to
execute SQL statements, so the tasks we care about are queries or statements—the

69

bread-and-butter SELECT, UPDATE, INSERT, and so on.1 A database server’s performance
is measured by query response time, and the unit of measurement is time per query.

Now for another rhetorical question: what is optimization? We’ll return to this later,
but for now let’s agree that performance optimization is the practice of reducing re-
sponse time as much as possible2 for a given workload.

We find that many people are very confused about this. If you think performance op-
timization requires you to reduce CPU utilization, for example, you’re thinking about
reducing resource consumption. But this is a trap. Resources are there to be consumed.
Sometimes making things faster requires that you increase resource consumption.
We’ve upgraded many times from an old version of MySQL with an ancient version of
InnoDB, and witnessed a dramatic increase in CPU utilization as a result. This is usually
nothing to be concerned about. It usually means that the newer version of InnoDB is
spending more time doing useful work and less time fighting with itself. Looking at
query response time is the best way to know whether the upgrade was an improvement.
Sometimes an upgrade introduces a bug such as not using an index, which can also
manifest as increased CPU utilization. CPU utilization is a symptom, not a goal, and
it’s best to measure the goal, or you could get derailed.

Similarly, if you thought that performance optimization was about improving queries
per second, then you were thinking about throughput optimization. Increased through-
put can be considered as a side effect of performance optimization.3 Optimizing queries
makes it possible for the server to execute more queries per second, because each one
requires less time to execute when the server is optimized. (The unit of throughput is
queries per time, which is the inverse of our definition of performance.)

So if the goal is to reduce response time, we need to understand why the server requires
a certain amount of time to respond to a query, and reduce or eliminate whatever
unnecessary work it’s doing to achieve the result. In other words, we need to measure
where the time goes. This leads to our second important principle of optimization: you
cannot reliably optimize what you cannot measure. Your first job is therefore to measure
where time is spent.

1. We don’t distinguish between queries and statements, DDL and DML, and so on. If you send a command
to the server, no matter what it is, you just care about how quickly it executes. We tend to use “query”
as a catch-all phrase for any command you send.

2. We’ll mostly avoid philosophical discussions about performance optimization, but we have two
suggestions for further reading. There is a white paper called Goal-Driven Performance Optimization on
Percona’s website (http://www.percona.com), which is a compact quick-reference sheet. It is also very
worthwhile to read Cary Millsap’s book Optimizing Oracle Performance (O’Reilly). Cary’s performance
optimization method, Method R, is the gold standard in the Oracle world.

3. Some people define performance in terms of throughput, which is okay, but it’s not the definition we use
here. We think response time is more useful, although throughput is often easier to measure in
benchmarks.

70 | Chapter 3: Profiling Server Performance

We’ve observed that many people, when trying to optimize something, spend the bulk
of their time changing things and very little time measuring. In contrast, we aim to
spend most of our time—perhaps upwards of 90%—measuring where the response
time is spent. If we don’t find the answer, we might not have measured correctly or
completely. When we gather complete and properly scoped measurements about server
activity, performance problems usually can’t hide, and the solution often becomes
trivially obvious. Measuring can be a challenge, however, and it can also be hard to
know what to do with the results once you have them—measuring where the time is
spent is not the same thing as understanding why the time is spent.

We mentioned proper scoping, but what does that mean? A properly scoped measure-
ment is one that measures only the activity you want to optimize. There are two com-
mon ways that you can capture something irrelevant:

• You can begin and end your measurements at the wrong time.

• You can measure things in aggregate instead of specifically targeting the activity
itself.

For example, a common mistake is to observe a slow query, and then look at the whole
server’s behavior to try to find what’s wrong. If the query is slow, then it’s best to
measure the query, not the whole server. And it’s best to measure from the beginning
of the query to the end, not before or after.

The time required to execute a task is spent either executing, or waiting. The best way
to reduce the time required to execute is to identify and measure the subtasks, and then
do one or more of the following: eliminate subtasks completely, make them happen
less often, or make them happen more efficiently. Reducing waiting is a more complex
exercise, because waiting can be caused by “collateral damage” from other activities
on the system, and thus there can be interaction between the task and other tasks that
might be contending for access to resources such as the disk or CPU. And you might
need to use different techniques or tools, depending on whether the time is spent ex-
ecuting or waiting.

In the preceding paragraph we said that you need to identify and optimize subtasks.
But that’s an oversimplification. Infrequent or short subtasks might contribute so little
to overall response time that it’s not worth your time to optimize them. How do you
determine which tasks to target for optimization? This is why profiling was invented.

Introduction to Performance Optimization | 71

How Do You Know If Measurements Are Right?
If measurements are so important, then what if the measurements are wrong? In fact,
measurements are always wrong. The measurement of a quantity is not the same as the
quantity itself. The measurements might not be wrong enough to make a big difference,
but they’re wrong. So the question really should be, “How uncertain is the measure-
ment?” This is a topic that’s addressed in great detail in other books, so we won’t tackle
it here. Just be conscious that you’re working with measurements, not the actual
quantities they represent. As usual, the measurements can be presented in confusing
or ambiguous ways, which can lead to wrong conclusions, too.

Optimization Through Profiling
Once you have learned and practiced the response time–oriented method of perfor-
mance optimization, you’ll find yourself profiling systems over and over.

Profiling is the primary means of measuring and analyzing where time is consumed.
Profiling entails two steps: measuring tasks and the time elapsed, and aggregating and
sorting the results so that the important tasks bubble to the top.

Profiling tools all work in pretty much the same way. When a task begins, they start a
timer, and when it ends, they stop the timer and subtract the start time from the end
time to derive the response time. Most tools also record the task’s parent. The resulting
data can be used to construct call graphs, but more importantly for our purpose, similar
tasks can be grouped together and summed up. It can be helpful to do sophisticated
statistical analysis on the tasks that were grouped into one, but at a minimum, you need
to know how many tasks were grouped together, and the sum of their response times.
The profile report accomplishes this. A profile report consists of a table of tasks, one
line per task. Each line shows a name, the number of times the task executed, the total
time consumed, the average time per execution, and what portion of the whole this
task consumed. The profile report should be sorted in order of total time consumed,
descending.

To make this clearer, let’s look at a real profile of an entire server’s workload, which
shows the types of queries that the server spends its time executing. This is a top-level
view of where the response time goes; we’ll show others later. The following is from
Percona Toolkit’s pt-query-digest tool, which is the successor to Maatkit’s mk-query-
digest. We’ve simplified it slightly and included only the first few types of queries, to
remove distractions:

Rank Response time Calls R/Call Item
==== ================ ===== ====== =======
 1 11256.3618 68.1% 78069 0.1442 SELECT InvitesNew
 2 2029.4730 12.3% 14415 0.1408 SELECT StatusUpdate
 3 1345.3445 8.1% 3520 0.3822 SHOW STATUS

72 | Chapter 3: Profiling Server Performance

We’ve shown only the first few lines in the profile, ranked in order of total response
time consumption, with the minimal set of columns that a profile ought to have. Each
row shows the response time as a total and as a percent of the overall total, the number
of times the query executed, the average response time per query, and an abstraction
of the query. This profile makes it clear how expensive each of these types of queries
is, relative to each other as well as to the whole. In this case, tasks are queries, which
is probably the most common way that you’ll profile MySQL.

We will actually discuss two kinds of profiling: execution-time profiling and wait
analysis. Execution-time profiling shows which tasks consume the most time, whereas
wait analysis shows where tasks get stuck or blocked the most.

When tasks are slow because they’re consuming too many resources and are spending
most of their time executing, they won’t spend much time waiting, and wait analysis
will not be useful. The reverse is true, too: when tasks are waiting all the time and not
consuming any resources, measuring where they spend time executing won’t be very
helpful. If you’re not sure which kind of time consumption is the problem, you might
need to do both. We’ll show some examples of that later.

In practice, when execution-time profiling shows that a task is responsible for a lot of
elapsed time, you might be able to drill into it and find that some of the “execution
time” is spent waiting, at some lower level. For example, our simplified profile above
shows that a lot of time is consumed by a SELECT against the InvitesNew table, but at a
lower level, that time might be spent waiting for I/O to complete.

Before you can profile a system, you need to be able to measure it, and that often
requires instrumentation. An instrumented system has measurement points where data
is captured, and some way to make the data available for collection. Systems that are
well-instrumented are rather uncommon. Most systems are not built with a lot of in-
strumentation points, and those that are often provide only counts of activities, and no
way to measure how much time those activities took. MySQL is an example of this, at
least until version 5.5 when the first version of the Performance Schema introduced a
few time-based measurement points.4 Versions 5.1 and earlier of MySQL had practi-
cally no time-based measurement points; most of the data you could get about the
server’s operation was in the form of SHOW STATUS counters, which simply count how
many times activities occur. That’s the main reason we ended up creating Percona
Server, which has offered detailed query-level instrumentation since version 5.0.

Fortunately, even though our ideal performance optimization technique works best
with great instrumentation, you can still make progress even with imperfectly instru-
mented systems. It’s often possible to measure the systems externally, or, failing that,
to make educated guesses based on knowledge of the system and the best information
available to you. However, when you do so, just be conscious that you’re operating on

4. The Performance Schema in MySQL 5.5 doesn’t provide query-level details; that is added in MySQL 5.6.

Introduction to Performance Optimization | 73

potentially flawed data, and your guesses are not guaranteed to be correct. This is a
risk that you usually take when you observe systems that aren’t perfectly transparent.

For example, in Percona Server 5.0, the slow query log can reveal a few of the most
important causes of poor performance, such as waiting for disk I/O or row-level locks.
If the log shows 9.6 seconds of disk I/O wait for a 10-second query, it’s not important
to find out where the remaining 4% of the response time went. The disk I/O is clearly
the most important problem.

Interpreting the Profile
The profile shows you the most important tasks first, but what it doesn’t show you can
be just as important. Refer to the example profile we showed earlier. Unfortunately,
there’s a lot that it conceals, because all it shows is ranks, sums, and averages. Here’s
what’s missing:

Worthwhile queries
The profile doesn’t automatically show you which queries are worth your time to
optimize. This brings us back to the meaning of optimization. If you read Cary
Millsap’s book, you’ll get a lot more on this topic, but we’ll repeat two salient
points. First, some tasks aren’t worth optimizing because they contribute such a
small portion of response time overall. Because of Amdahl’s Law, a query that
consumes only 5% of total response time can contribute only 5% to overall
speedup, no matter how much faster you make it. Second, if it costs you a thousand
dollars to optimize a task and the business ends up making no additional money
as a result, you just deoptimized the business by a thousand dollars. Thus, opti-
mization should halt when the cost of improvement outweighs the benefit.

Outliers
Tasks might need to be optimized even if they don’t sort to the top of the profile.
If an occasional task is very slow, it might be unacceptable to users, even though
it doesn’t happen often enough to constitute a significant portion of overall re-
sponse time.

Unknown unknowns5

A good profiling tool will show you the “lost time,” if possible. Lost time is the
amount of wall-clock time not accounted in the tasks measured. For example, if
you measure the process’s overall CPU time as 10 seconds, but your profile of
subtasks adds up to 9.7 seconds, there are 300 milliseconds of lost time. This can
be an indication that you’re not measuring everything, or it could just be unavoid-
able due to rounding errors and the cost of measurement itself. You should pay
attention to this, if the tool shows it. You might be missing something important.
If the profile doesn’t show this, you should try to be conscious of its absence and

5. With apologies to Donald Rumsfeld. His comments were actually very insightful, even if they sounded
funny.

74 | Chapter 3: Profiling Server Performance

include it in your mental (or real) notes about what information you’re missing.
Our example profile doesn’t show lost time; that’s just a limitation of the tool we
used.

Buried details
The profile doesn’t show anything about the distribution of the response times.
Averages are dangerous because they hide information from you, and the average
isn’t a good indication of the whole. Peter often likes to say that the average tem-
perature of patients in the hospital isn’t important.6 What if item #1 in the profile
we showed earlier were really composed of two queries with one-second response
times, and 12,771 queries with response times in the tens of microseconds? There’s
no way to know from what we’re given. In order to make the best decisions about
where to concentrate your efforts, you need more information about the 12,773
queries that got packed into that single line in the profile. It’s especially helpful to
have more information on the response times, such as histograms, percentiles, the
standard deviation, and the index of dispersion.

Good tools can help you by automatically showing you some of these things. In fact,
pt-query-digest includes many of these details in its profile, and in the detailed report
that follows the profile. We simplified so that we could focus the example on the im-
portant basics: sorting the most expensive tasks to the top. We’ll show examples of a
richer and more useful profile report later in this chapter.

Another very important thing that’s missing from our example profile is the ability to
analyze interactions at a higher layer in the stack. When we’re looking solely at queries
in the server, we don’t really have the ability to link together related queries and un-
derstand whether they were all part of the same user interaction. We have tunnel vision,
so to speak, and we can’t zoom out and profile at the level of transactions or page views.
There are some ways to solve this problem, such as tagging queries with special com-
ments indicating where they originated and then aggregating at that level. Or you can
add instrumentation and profiling capabilities at the application layer, which is the
subject of our next section.

Profiling Your Application
You can profile pretty much anything that consumes time, and this includes your ap-
plication. In fact, profiling your application is generally easier than profiling your
database server, and much more rewarding. Although we’ve started by showing a pro-
file of a MySQL server’s queries for the purposes of illustration, it’s better to try to
measure and profile from the top down.7 This lets you trace tasks as they flow through

6. Blimey! (It’s an inside joke. We can’t resist.)

7. We’ll show examples later where we have a priori knowledge that the problem originates at a lower level,
so we skip the top-down approach.

Profiling Your Application | 75

the system from the user to the servers and back. It’s often true that the database server
is to blame for performance problems, but it’s the application’s fault at least as often.
Bottlenecks can also be caused by any of the following:

• External resources, such as calls to web services or search engines

• Operations that require processing large amounts of data in the application, such
as parsing big XML files

• Expensive operations in tight loops, such as abusing regular expressions

• Badly optimized algorithms, such as naïve search algorithms to find items in lists

Fortunately, it’s easy to figure out whether MySQL is the problem. You just need an
application profiling tool. (As a bonus, once you have it in place, it can help developers
write efficient code from the start.)

We recommend that you include profiling code in every new project you start. It might
be hard to inject profiling code into an existing application, but it’s easy to include it
in new applications.

Will Profiling Slow Your Servers?
Yes, it will make your application slower. No, it will make your application much faster.
Wait, we can explain.

Profiling and routine monitoring add overhead. The important questions are how much
overhead they add and whether the extra work is worth the benefit.

Many people who design and build high-performance applications believe that you
should measure everything you can and just accept the cost of measurement as a part
of your application’s work. Oracle performance guru Tom Kyte was famously asked
how costly Oracle’s instrumentation is, and he replied that the instrumentation makes
it possible to improve performance by at least 10%. We agree with this philosophy,
and for most applications that wouldn’t otherwise receive detailed performance eval-
uations every day, we think the improvement is likely to be much more than 10%. Even
if you don’t agree, it’s a great idea to build in at least some lightweight profiling that
you can enable permanently. It’s no fun to hit a performance bottleneck you never saw
coming, just because you didn’t build your systems to capture day-to-day changes in
their performance. Likewise, when you find a problem, historical data is invaluable.
You can also use the profiling data to help you plan hardware purchases, allocate re-
sources, and predict load for peak times or seasons.

What do we mean by “lightweight” profiling? Timing all SQL queries, plus the total
script execution time, is certainly cheap. And you don’t have to do it for every page
view. If you have a decent amount of traffic, you can just profile a random sample by
enabling profiling in your application’s setup file:

76 | Chapter 3: Profiling Server Performance

<?php
$profiling_enabled = rand(0, 100) > 99;
?>

Profiling just 1% of your sessions should help you find the worst problems. It’s ex-
tremely helpful to do this in production, because you’ll find things that you’ll never see
elsewhere.

A few years ago, when we wrote the second edition of this book, good prefabricated
tools for profiling applications in production weren’t all that readily available for the
popular web programming languages and frameworks, so we showed you a code ex-
ample of baking your own in a simple but effective way. Today we’re glad to say that
great tools are available and all you have to do is open the box and start improving
performance.

First and foremost, we want to tout the benefits of a software-as-a-service product called
New Relic. We aren’t paid to praise it, and we normally don’t endorse specific com-
panies or products, but this is a great tool. If you can possibly use it, you should. Our
customers who use New Relic are able to solve their problems without our help much
more often, and they can sometimes use it to identify problems correctly even when
they can’t find the solution. New Relic plugs into your application, profiles it, and sends
the data back to a web-based dashboard that makes it easy to take a response time–
oriented approach to application performance. You end up doing the right thing
without having to think about it. And New Relic instruments a lot of the user experi-
ence, from the web browser to the application code to the database and other external
calls.

What’s great about tools like New Relic is that they let you instrument your code in
production, all the time—not just in development, and not just sometimes. This is an
important point because many profiling tools, or the instrumentation they need to
function, can be so expensive that people are afraid to run them in production. You
need to instrument in production because you’ll discover things about your system’s
performance that you won’t find in development or staging environments. If your
chosen tools are really too expensive to run all the time, try to at least run them on one
application server in the cluster, or instrument just a fraction of executions, as men-
tioned in the sidebar “Will Profiling Slow Your Servers?”.

Instrumenting PHP Applications
If you can’t use New Relic, there are other good options. For PHP in particular, there
are several tools that can help you do profile your application. One of them is xhprof
(http://pecl.php.net/package/xhprof), which Facebook developed for its own use and
open sourced in 2009. It has a lot of advanced features, but for our purposes, the pri-
mary things to mention are that it’s easy to install and use, it’s lightweight and built for
scale so it can run in production all the time even on a very large installation, and it
generates a sensible profile of function calls sorted by time consumption. In addition

Profiling Your Application | 77

http://pecl.php.net/package/xhprof

to xhprof, there are low-level profiling tools such as xdebug, Valgrind, and cachegrind
to help you inspect your code in various ways.8 Some of these tools are not suitable for
production use because of their verbosity and high overhead, but can be great to use
in your development environment.

The other PHP profiling tool we’ll discuss is one that we wrote ourselves, based
partially on the code and principles we introduced in the second edition of this book.
It is called instrumentation-for-php (IfP), and it’s hosted on Google Code at http://code
.google.com/p/instrumentation-for-php/. It doesn’t instrument PHP itself as thoroughly
as xhprof does, but it instruments database calls more thoroughly, and thus it’s an
extremely valuable way to profile your application’s database usage when you don’t
have much access to or control over the database, which is often the case. IfP is a
singleton class that provides counters and timers, so it’s also easy to put into production
without requiring access to your PHP configuration, which again is the norm for a lot
of developers.

IfP doesn’t profile all of your PHP functions automatically—just the most important
ones. You have to start and stop custom counters manually when you identify things
that you want to profile, for example. But it times the whole page execution automat-
ically, and it makes it easy to instrument database and memcached calls automatically,
so you don’t have to start and stop counters explicitly for those important items. This
means that you can profile three very valuable things in a jiffy: the application at the
level of requests (page views), database queries, and cache queries. It also exports
the counters and timers to the Apache environment, so you can get Apache to write
the results out to the log. This is an easy and very lightweight way to store the results
for later analysis. IfP doesn’t store any other data on your systems, so there’s no need
for additional system administrator involvement.

To use it, you simply call start_request() at the very start of the page execution. Ideally,
this should be the first thing your application does:

require_once('Instrumentation.php');
Instrumentation::get_instance()->start_request();

This registers a shutdown function, so you don’t have to do anything further at the end
of the execution.

IfP adds comments to your SQL queries automatically. This makes it possible to analyze
the application quite flexibly by looking at the database server’s query log, and it also
makes it easy to know what’s really going on when you look at SHOW PROCESSLIST and
see some abusive query running in MySQL. If you’re like most people, you’ll have a
hard time tracking down the source of a bad query, especially if it’s a query that was
cobbled together through string concatenation and so forth, so you can’t just search
for it in the source code. This solves that problem. It tells you which application host

8. Unlike PHP, many programming languages have some built-in support for profiling. For Ruby, use the
-r command-line option; for Perl you can use perl -d:DProf, and so on.

78 | Chapter 3: Profiling Server Performance

http://code.google.com/p/instrumentation-for-php/
http://code.google.com/p/instrumentation-for-php/

sent the query, even if you’re using a proxy or a load balancer. It tells you which ap-
plication user is responsible, and you can find the page request, source code function,
and line number, as well as key-value pairs for all of the counters you’ve created. Here’s
an example:

-- File: index.php Line: 118 Function: fullCachePage request_id: ABC session_id: XYZ
SELECT * FROM ...

How you instrument the calls to MySQL depends on which interface you use to connect
to MySQL. If you’re using the object-oriented mysqli interface, it’s a one-line change:
just replace the call to the mysqli constructor with a call to the automatically instru-
mented mysqli_x constructor instead. This constructor is a subclass provided by IfP,
with instrumentation and query rewrites baked in. If you’re not using the object-
oriented interface, or you’re using some other database access layer, you might need
to rewrite a little bit of code. Hopefully you don’t have database calls scattered
haphazardly throughout your code, but if you do, you can use an integrated develop-
ment environment (IDE) such as Eclipse to help you refactor it easily. Centralizing your
database access code is a very good practice, for many reasons.

Analyzing the results is easy. The pt-query-digest tool from Percona Toolkit has func-
tionality to extract the embedded name-value pairs from the query comments, so you
can simply log the queries with the MySQL log file and process the log file. And you
can use mod_log_config with Apache to set up custom logging with environment vari-
ables exported by IfP, along with the %D macro to capture request times in microseconds.

You can load the Apache log into a MySQL database with LOAD DATA INFILE and ex-
amine it with SQL queries easily. There is a PDF slideshow on the IfP website that gives
examples of how to do all of these things and more, with sample queries and command-
line arguments.

If you’re resisting adding instrumentation to your application, or if you feel too busy,
consider that it might be much easier than you think. The effort invested will pay you
back many times over in time savings and performance improvements. There’s no sub-
stitute for application instrumentation. Use New Relic, xhprof, IfP, or any of a number
of other solutions for various application languages and environments; this is not a
wheel you need to reinvent.

Profiling Your Application | 79

The MySQL Enterprise Monitor’s Query Analyzer
One of the tools you should consider using is the MySQL Enterprise Monitor. It’s part
of a commercial MySQL support subscription from Oracle. It can capture queries to
your server, either from the application’s MySQL connection libraries or from a proxy
(although we’re not fans of using the proxy). It has a very nice graphical user interface
that shows a profile of queries on the server and makes it easy to zoom into a specific
time period, such as during a suspicious spike in a graph of status counters. You can
also see information such as the queries’ EXPLAIN plans, making it a very useful trou-
bleshooting and diagnosis tool.

Profiling MySQL Queries
There are two broad approaches to profiling queries, which address two of the ques-
tions we mentioned in this chapter’s introduction. You can profile a whole server, in
terms of which queries contribute the most to its load. (If you’ve started at the top with
application-level profiling, you might already know which queries need attention.)
Then, once you’ve targeted specific queries for optimization, you can drill down to
profiling them individually, measuring which subtasks contribute the most to their
response times.

Profiling a Server’s Workload
The server-wide approach is worthwhile because it can help you to audit a server for
inefficient queries. Identifying and fixing these “bad” queries can help you improve the
application’s performance overall, as well as target specific trouble spots. You can re-
duce the overall load on the server, thus making all queries faster by reducing conten-
tion for shared resources (“collateral benefit”). Reducing load on the server can help
you delay or avoid upgrades or other more costly measures, and you can discover and
address poor user experiences, such as outliers.

MySQL is getting more instrumentation with each new release, and if the current trend
is a reliable indicator, it will soon have world-class support for measuring most impor-
tant aspects of its performance. But in terms of profiling queries and finding the most
expensive ones, we don’t really need all that sophistication. The tool we need the most
has been there for a long time. It’s the so-called slow query log.

Capturing MySQL’s queries to a log

In MySQL, the slow query log was originally meant to capture just “slow” queries, but
for profiling, we need it to log all queries. And we need high-resolution response times,
not the one-second granularity that was available in MySQL 5.0 and earlier. Fortu-
nately, those old limitations are a thing of the past. In MySQL 5.1 and newer versions,
the slow query log is enhanced so that you can set the long_query_time server variable

80 | Chapter 3: Profiling Server Performance

to zero, capturing all queries, and the query response time is available with microsecond
resolution. If you are using Percona Server, this functionality is available in version 5.0,
and Percona Server adds a great deal more control over the log’s contents and capturing
queries.

The slow query log is the lowest-overhead, highest-fidelity way to measure query exe-
cution times in current versions of MySQL. If you’re worried about the additional
I/O it might cause, put your mind at ease. We benchmarked it, and on I/O-bound
workloads, the overhead is negligible. (It’s actually more noticeable on CPU-bound
workloads.) A more valid concern is filling up your disk. Make sure that you have log
rotation set up for the slow query log, if you leave it on all the time. Or, just don’t enable
it all the time; leave it disabled, and turn it on only for a period of time to gather a
workload sample.

MySQL has another type of query log, called the “general log,” but it’s not much use
for analyzing and profiling a server. The queries are logged as they arrive at the server,
so the log has no information on response times or the query execution plan. MySQL
5.1 and later also support logging queries to tables, but that too is a nonstarter for
most purposes. The performance impact is huge, and although MySQL 5.1 prints query
times with microsecond precision in the slow query log, it reverts to one-second gran-
ularity for logging slow queries to a table. That’s not very helpful.

Percona Server logs significantly more details to the slow query log than MySQL does.
There is valuable information on the query execution plan, locking, I/O activity, and
much more. These additional bits of data were added slowly over time, as we faced
different optimization scenarios that demanded more details about how queries ac-
tually executed and where they spent their time. We also made it much easier to
administer. For example, we added the ability to control every connection’s long_
query_time threshold globally, so you can make them start or stop logging their quer-
ies when the application uses a connection pool or persistent connections and you can’t
reset their session-level variables. All in all, it is a lightweight and full-featured way to
profile a server and optimize its queries.

Sometimes you don’t want to log queries on the server, or you can’t for some reason,
such as not having access to the server. We encountered these same limitations, so we
developed two alternative techniques and programmed them both into Percona Tool-
kit’s pt-query-digest tool. The first tactic is watching SHOW FULL PROCESSLIST repeatedly
with the --processlist option, noting when queries first appear and when they disappear.
This is a sufficiently accurate method for some purposes, but it can’t capture all queries.
Very short-lived queries can sneak in and finish before the tool can observe them.

The second technique is capturing TCP network traffic and inspecting it, then decoding
the MySQL client/server protocol. You can use tcpdump to save the traffic to disk, then
use pt-query-digest with the --type=tpcdump option to decode and analyze the queries.
This is a much higher-precision technique, and it can capture all queries. It even works
with advanced protocol features such as the binary protocol used to create and execute

Profiling MySQL Queries | 81

server-side prepared statements, and the compressed protocol. You can also use
MySQL Proxy with a logging script, but in practice we rarely do this.

Analyzing the query log

We suggest that at least every now and then you should use the slow query log to
capture all queries executing on your server, and analyze them. Log the queries for some
representative period of time, such as an hour during your peak traffic time. If your
workload is very homogeneous, a minute or less might even be enough to find bad
queries that need to be optimized.

Don’t just open up the log and start looking at it directly—it’s a waste of time and
money. Generate a profile first, and if you need to, then you can go look at specific
samples in the log. It’s best to work from a high-level view down to the low level, or
you could de-optimize the business, as mentioned earlier.

Generating a profile from the slow query log requires a good log analysis tool. We
suggest pt-query-digest, which is arguably the most powerful tool available for MySQL
query log analysis. It supports a large variety of functionality, including the ability to
save query reports to a database and track changes in workload over time.

By default, you simply execute it and pass it the slow query log file as an argument, and
it just does the right thing. It prints out a profile of the queries in the log, and then
selects “important” classes of queries and prints out a detailed report on each one. The
report has dozens of little niceties to make your life easier. We continue to develop this
tool actively, so you should read the documentation for the most recent version to learn
about its current functionality.

We’ll give you a brief tour of the report pt-query-digest prints out, beginning with the
profile. Here is an uncensored version of the profile we showed earlier in this chapter:

Profile
Rank Query ID Response time Calls R/Call V/M Item
==== ================== ================ ===== ====== ===== =======
1 0xBFCF8E3F293F6466 11256.3618 68.1% 78069 0.1442 0.21 SELECT InvitesNew?
2 0x620B8CAB2B1C76EC 2029.4730 12.3% 14415 0.1408 0.21 SELECT StatusUpdate?
3 0xB90978440CC11CC7 1345.3445 8.1% 3520 0.3822 0.00 SHOW STATUS
4 0xCB73D6B5B031B4CF 1341.6432 8.1% 3509 0.3823 0.00 SHOW STATUS
MISC 0xMISC 560.7556 3.4% 23930 0.0234 0.0 <17 ITEMS>

There’s a little more detail here than we saw previously. First, each query has an ID,
which is a hash of its “fingerprint.” A fingerprint is the normalized, canonical version
of the query with literal values removed, whitespace collapsed, and everything lower-
cased (notice that queries 3 and 4 appear to be the same, but they have different fin-
gerprints). The tool also merges tables with similar names into a canonical form. The
question mark at the end of the InvitesNew table name signifies that there is a shard
identifier appended to the table name, and the tool has removed that so that queries
against tables with a similar purpose are aggregated together. This report is from a
heavily sharded Facebook application.

82 | Chapter 3: Profiling Server Performance

Another bit of extra detail here is the variance-to-mean ratio, in the V/M column. This
is also known as the index of dispersion. Queries with a higher index of dispersion have
a more variable execution-time profile, and highly variable queries are generally good
candidates for optimization. If you specify the --explain option to pt-query-digest, it will
also add a column with a short representation of the query’s EXPLAIN plan—sort of a
“geek code” for the query. This, in combination with the V/M column, makes it a snap
to see which queries are bad and potentially easy to optimize.

Finally, there’s an additional line at the bottom, showing the presence of 17 other types
of queries that the tool didn’t consider important enough to report individually,
and a summary of the statistics for all of them. You can use options such as --limit and
--outliers to make the tool show more details instead of collapsing unimportant queries
into this final line. By default, the tool prints out queries that are either in the top 10
time consumers overall, or whose execution time was over a one-second threshold too
many times. Both of these limits are configurable.

Following the profile, the tool prints out a detailed report on each type of query. You
can match the query reports to the profile by looking for the query ID or the rank.
Here’s the report for the #1 ranked query, the “worst” one:

Query 1: 24.28 QPS, 3.50x concurrency, ID 0xBFCF8E3F293F6466 at byte 5590079
This item is included in the report because it matches --limit.
Scores: V/M = 0.21
Query_time sparkline: | _^_.^_ |
Time range: 2008-09-13 21:51:55 to 22:45:30
Attribute pct total min max avg 95% stddev median
============ === ======= ======= ======= ======= ======= ======= =======
Count 63 78069
Exec time 68 11256s 37us 1s 144ms 501ms 175ms 68ms
Lock time 85 134s 0 650ms 2ms 176us 20ms 57us
Rows sent 8 70.18k 0 1 0.92 0.99 0.27 0.99
Rows examine 8 70.84k 0 3 0.93 0.99 0.28 0.99
Query size 84 10.43M 135 141 140.13 136.99 0.10 136.99
String:
Databases production
Hosts
Users fbappuser
Query_time distribution
1us
10us
100us
1ms
10ms
100ms
1s
10s+
Tables
SHOW TABLE STATUS FROM `production ` LIKE'InvitesNew82'\G
SHOW CREATE TABLE `production `.`InvitesNew82'\G
EXPLAIN /*!50100 PARTITIONS*/
SELECT InviteId, InviterIdentifier FROM InvitesNew82 WHERE (InviteSetId = 87041469)
AND (InviteeIdentifier = 1138714082) LIMIT 1\G

Profiling MySQL Queries | 83

The report contains a variety of metadata at the top, including how often the query
executes, its average concurrency, and the byte offset where the worst-performing in-
stance of the query was found in the log file. There is a tabular printout of the numeric
metadata, including statistics such as the standard deviation.9

This is followed by a histogram of the response times. Interestingly, you can see that
this query has a double-peak histogram, under Query_time distribution. It usually
executes in the hundreds of milliseconds, but there’s also a significant spike of queries
that execute about three orders of magnitude faster. If this log were from Percona
Server, we’d have a richer set of attributes in the query log, so we’d be able to slice and
dice the queries to determine why that happens. Perhaps those are queries against
specific values that are disproportionately common, so a different index is used, or
perhaps they’re query cache hits, for example. This sort of double-peak histogram
shape is not unusual in real systems, especially for simple queries, which will usually
have only a few alternative execution paths.

Finally, the report detail section ends with little helper snippets to make it easy for you
to copy and paste commands into a terminal and examine the schema and status of the
tables mentioned, and an EXPLAIN-ready sample query. The sample contains all of the
literals and isn’t “fingerprinted,” so it’s a real query. It’s actually the instance of this
query that had the worst execution time in our example.

After you choose the queries you want to optimize, you can use this report to examine
the query execution very quickly. We use this tool constantly, and we’ve spent a lot of
time tweaking it to be as efficient and helpful as possible. We definitely recommend
that you get comfortable with it. MySQL might gain more sophisticated built-in in-
strumentation and profiling in the future, but at the time of writing, logging queries
with the slow query log or tcpdump and running the resulting log through pt-query-
digest is about as good as you can get.

Profiling a Single Query
After you’ve identified a single query to optimize, you can drill into it and determine
why it takes as much time as it does, and how to optimize it. The actual techniques for
optimizing queries are covered in later chapters in this book, along with the background
necessary to support those techniques. Our purpose here is simply to show you how
to measure what the query does and how long each part of that takes. Knowing this
helps you decide which optimization techniques to use.

Unfortunately, most of the instrumentation in MySQL isn’t very helpful for profiling
queries. This is changing, but at the time of writing, most production servers don’t have
the newest profiling features. So for practical purposes, we’re pretty much limited to

9. We’re keeping it simple here for clarity, but Percona Server’s query log will produce a much more detailed
report, which could help you understand why the query is apparently spending 144 ms to examine a
single row—that’s a lot!

84 | Chapter 3: Profiling Server Performance

SHOW STATUS, SHOW PROFILE, and examining individual entries in the slow query log (if
you have Percona Server—standard MySQL doesn’t have any additional information
in the log). We’ll demonstrate all three techniques for a single query and show you
what you can learn about the query execution from each.

Using SHOW PROFILE

The SHOW PROFILE command is a community contribution from Jeremy Cole that’s in-
cluded in MySQL 5.1 and newer, and some versions of MySQL 5.0. It is the only real
query profiling tool available in a GA release of MySQL at the time of writing. It is
disabled by default, but can be enabled for the duration of a session (connection) simply
by setting a server variable:

mysql> SET profiling = 1;

After this, whenever you issue a statement to the server, it will measure the elapsed
time and a few other types of data whenever the query changes from one execution
state to another. The feature actually has quite a bit of functionality, and was designed
to have more, but it will probably be replaced or superseded by the Performance Schema
in a future release. Regardless, the most useful functionality of this feature is to generate
a profile of the work the server did during statement execution.

Every time you issue a query to the server, it records the profiling information in a
temporary table and assigns the statement an integer identifier, starting with 1. Here’s
an example of profiling a view included with the Sakila sample database:10

mysql> SELECT * FROM sakila.nicer_but_slower_film_list;
[query results omitted]
997 rows in set (0.17 sec)

The query returned 997 rows in about a sixth of a second. Let’s see what SHOW PRO
FILES (note the plural) knows about this query:

mysql> SHOW PROFILES;
+----------+------------+---+
| Query_ID | Duration | Query |
+----------+------------+---+
| 1 | 0.16767900 | SELECT * FROM sakila.nicer_but_slower_film_list |
+----------+------------+---+

The first thing you’ll notice is that it shows the query’s response time with higher
precision, which is nice. Two decimal places of precision, as shown in the MySQL
client, often isn’t enough when you’re working on fast queries. Now let’s look at the
profile for this query:

10. The view is too lengthy to show here, but the Sakila database is available for download from MySQL’s
website.

Profiling MySQL Queries | 85

mysql> SHOW PROFILE FOR QUERY 1;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
starting	0.000082
Opening tables	0.000459
System lock	0.000010
Table lock	0.000020
checking permissions	0.000005
checking permissions	0.000004
checking permissions	0.000003
checking permissions	0.000004
checking permissions	0.000560
optimizing	0.000054
statistics	0.000174
preparing	0.000059
Creating tmp table	0.000463
executing	0.000006
Copying to tmp table	0.090623
Sorting result	0.011555
Sending data	0.045931
removing tmp table	0.004782
Sending data	0.000011
init	0.000022
optimizing	0.000005
statistics	0.000013
preparing	0.000008
executing	0.000004
Sending data	0.010832
end	0.000008
query end	0.000003
freeing items	0.000017
removing tmp table	0.000010
freeing items	0.000042
removing tmp table	0.001098
closing tables	0.000013
logging slow query	0.000003
logging slow query	0.000789
cleaning up	0.000007
+----------------------+----------+

The profile allows you to follow through every step of the query’s execution and see
how long it took. You’ll notice that it’s a bit hard to scan this output and see where
most of the time was spent. It is sorted in chronological order, but we don’t really care
about the order in which the steps happened—we just care how much time they took,
so we know what was costly. Unfortunately, you can’t sort the output of the command
with an ORDER BY. Let’s switch from using the SHOW PROFILE command to querying the
corresponding INFORMATION_SCHEMA table, and format to look like the profiles we’re used
to seeing:

mysql> SET @query_id = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT STATE, SUM(DURATION) AS Total_R,

86 | Chapter 3: Profiling Server Performance

 -> ROUND(
 -> 100 * SUM(DURATION) /
 -> (SELECT SUM(DURATION)
 -> FROM INFORMATION_SCHEMA.PROFILING
 -> WHERE QUERY_ID = @query_id
 ->), 2) AS Pct_R,
 -> COUNT(*) AS Calls,
 -> SUM(DURATION) / COUNT(*) AS "R/Call"
 -> FROM INFORMATION_SCHEMA.PROFILING
 -> WHERE QUERY_ID = @query_id
 -> GROUP BY STATE
 -> ORDER BY Total_R DESC;
+----------------------+----------+-------+-------+--------------+
| STATE | Total_R | Pct_R | Calls | R/Call |
+----------------------+----------+-------+-------+--------------+
Copying to tmp table	0.090623	54.05	1	0.0906230000
Sending data	0.056774	33.86	3	0.0189246667
Sorting result	0.011555	6.89	1	0.0115550000
removing tmp table	0.005890	3.51	3	0.0019633333
logging slow query	0.000792	0.47	2	0.0003960000
checking permissions	0.000576	0.34	5	0.0001152000
Creating tmp table	0.000463	0.28	1	0.0004630000
Opening tables	0.000459	0.27	1	0.0004590000
statistics	0.000187	0.11	2	0.0000935000
starting	0.000082	0.05	1	0.0000820000
preparing	0.000067	0.04	2	0.0000335000
freeing items	0.000059	0.04	2	0.0000295000
optimizing	0.000059	0.04	2	0.0000295000
init	0.000022	0.01	1	0.0000220000
Table lock	0.000020	0.01	1	0.0000200000
closing tables	0.000013	0.01	1	0.0000130000
System lock	0.000010	0.01	1	0.0000100000
executing	0.000010	0.01	2	0.0000050000
end	0.000008	0.00	1	0.0000080000
cleaning up	0.000007	0.00	1	0.0000070000
query end	0.000003	0.00	1	0.0000030000
+----------------------+----------+-------+-------+--------------+

Much better! Now we can see that the reason this query took so long was that it spent
over half its time copying data into a temporary table. We might need to look into
rewriting this query so it doesn’t use a temporary table, or perhaps do it more efficiently.
The next biggest time consumer, “Sending data,” is really kind of a catch-all state that
could represent any number of different server activities, including searching for match-
ing rows in a join and so on. It’s hard to say whether we’ll be able to shave any time off
this. Notice that “Sorting result” takes up a very small portion of the time, not enough
to be worth optimizing. This is rather typical, which is why we encourage people not
to spend time on “tuning the sort buffers” and similar activities.

As usual, although the profile helps us identify what types of activity contribute the
most to the elapsed time, it doesn’t tell us why. To find out why it took so much time
to copy data into the temporary table, we’d have to drill down into that state and
produce a profile of the subtasks it executed.

Profiling MySQL Queries | 87

Using SHOW STATUS

MySQL’s SHOW STATUS command returns a variety of counters. There is a server-wide
global scope for the counters, as well as a session scope that is specific to your own
connection. The Queries counter, for example, starts at zero in your session and in-
creases every time you issue a query. If you execute SHOW GLOBAL STATUS (note the ad-
dition of the GLOBAL keyword), you’ll see a server-wide count of queries the server has
issued since it was started. The scope of each counter varies—counters that don’t have
a session-level scope still appear in SHOW STATUS, masquerading as session counters—
and this can be confusing. It’s something to keep in mind as you use this command.
As we discussed earlier, gathering properly scoped measurements is key. If you’re trying
to optimize something that you can observe occurring in your specific connection to
the server, measurements that are being polluted by server-wide activity are not helpful.
The MySQL manual has a great reference to all of the variables and whether they have
session or global scope.

SHOW STATUS can be a helpful tool, but it isn’t really profiling.11 Most of the results from
SHOW STATUS are just counters. They tell you how often various activities took place,
such as reads from an index, but they tell you nothing about how much time was
consumed. There is only one counter in SHOW STATUS that shows time consumed by an
operation (Innodb_row_lock_time), and it has only global scope, so you can’t use it to
examine only the work you’ve done in your session.

Still, although SHOW STATUS doesn’t provide timings, it can be helpful to look at it after
you execute a query and examine the values for a few of the counters. You can form a
guess about which types of expensive operations took place and how likely they were
to contribute to the query time. The most important counters are the handler counters
and the temporary file and table counters. We explain these in more detail in Appen-
dix B. Here’s an example of resetting the session status counters to zero, selecting from
the same view we used in the previous section, and then looking at the counters:

mysql> FLUSH STATUS;
mysql> SELECT * FROM sakila.nicer_but_slower_film_list;
[query results omitted]
mysql> SHOW STATUS WHERE Variable_name LIKE 'Handler%'
 OR Variable_name LIKE 'Created%';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
Created_tmp_disk_tables	2
Created_tmp_files	0
Created_tmp_tables	3
Handler_commit	1
Handler_delete	0
Handler_discover	0
Handler_prepare	0
Handler_read_first	1

11. If you own the second edition of this book, you’ll notice that we’re doing an about-face on this point.

88 | Chapter 3: Profiling Server Performance

Handler_read_key	7483
Handler_read_next	6462
Handler_read_prev	0
Handler_read_rnd	5462
Handler_read_rnd_next	6478
Handler_rollback	0
Handler_savepoint	0
Handler_savepoint_rollback	0
Handler_update	0
Handler_write	6459
+----------------------------+-------+

It looks like the query used three temporary tables—two of them on disk—and did a
lot of unindexed reads (Handler_read_rnd_next). If we didn’t know anything about the
view we just accessed, we might guess that the query is perhaps doing a join without
an index, possibly because of a subquery that created temporary tables and then made
it the right-hand input to a join. Temporary tables created to hold the results of sub-
queries don’t have indexes, so this seems plausible.

When you use this technique, be aware that SHOW STATUS itself creates a temporary table,
and accesses this table with handler operations, so the numbers you see in the output
are actually impacted by SHOW STATUS. This varies between server versions. Given what
we already know about the query’s execution from SHOW PROFILES, it looks like the
count of temporary tables might be overstated by 2.

It’s worth noting that you can probably discover most of the same information by
looking at an EXPLAIN plan for this query. But EXPLAIN is an estimate of what the server
thinks it will do, and looking at the status counters is a measurement of what it actually
did. EXPLAIN won’t tell you whether a temporary table was created on disk, for example,
which is slower than in memory. There’s more on EXPLAIN in Appendix D.

Using the slow query log

What does the enhanced slow query log in Percona Server reveal about this query?
Here’s what it captured from the very same execution of the query that we demon-
strated in the section on SHOW PROFILE:

Time: 110905 17:03:18
User@Host: root[root] @ localhost [127.0.0.1]
Thread_id: 7 Schema: sakila Last_errno: 0 Killed: 0
Query_time: 0.166872 Lock_time: 0.000552 Rows_sent: 997 Rows_examined: 24861
 Rows_affected: 0 Rows_read: 997
Bytes_sent: 216528 Tmp_tables: 3 Tmp_disk_tables: 2 Tmp_table_sizes: 11627188
InnoDB_trx_id: 191E
QC_Hit: No Full_scan: Yes Full_join: No Tmp_table: Yes Tmp_table_on_disk: Yes
Filesort: Yes Filesort_on_disk: No Merge_passes: 0
InnoDB_IO_r_ops: 0 InnoDB_IO_r_bytes: 0 InnoDB_IO_r_wait: 0.000000
InnoDB_rec_lock_wait: 0.000000 InnoDB_queue_wait: 0.000000
InnoDB_pages_distinct: 20
PROFILE_VALUES ... Copying to tmp table: 0.090623... [omitted]
SET timestamp=1315256598;
SELECT * FROM sakila.nicer_but_slower_film_list;

Profiling MySQL Queries | 89

It looks like the query did create three temp tables after all, which was somewhat hidden
from view in SHOW PROFILE (perhaps due to a subtlety in the way the server executed
the query). Two of the temp tables were on disk. And we’re shortening the output here
for readability, but toward the end, the SHOW PROFILE data for this query is actually
written to the log, so you can even log that level of detail in Percona Server.

As you can see, this highly verbose slow query log entry contains just about everything
you can see in SHOW PROFILE and SHOW STATUS, and then some. This makes the log a very
useful place to look for more detail when you find a “bad” query with pt-query-digest.
When you’re looking at a report from pt-query-digest, you’ll see a header line such as
the following:

Query 1: 0 QPS, 0x concurrency, ID 0xEE758C5E0D7EADEE at byte 3214 _____

You can use the byte offset from the header to zoom right into that section of the log,
like this:

tail -c +3214 /path/to/query.log | head -n100

And presto, you can look at all the details. By the way, pt-query-digest understands all
the added name-value pairs in the Percona Server slow query log format, and auto-
matically prints out a much more detailed report as a result.

Using the Performance Schema

At the time of writing, the Performance Schema tables introduced in MySQL 5.5 don’t
support query-level profiling. The Performance Schema is rather new and in rapid de-
velopment, with much more functionality in the works for future releases. However,
even MySQL 5.5’s initial functionality can reveal interesting information. For example,
here’s a query that shows the top causes of waiting in the system:

mysql> SELECT event_name, count_star, sum_timer_wait
 -> FROM events_waits_summary_global_by_event_name
 -> ORDER BY sum_timer_wait DESC LIMIT 5;
+--+------------+------------------+
| event_name | count_star | sum_timer_wait |
+--+------------+------------------+
innodb_log_file	205438	2552133070220355
Query_cache::COND_cache_status_changed	8405302	2259497326493034
Query_cache::structure_guard_mutex	55769435	361568224932147
innodb_data_file	62423	347302500600411
dict_table_stats	15330162	53005067680923
+--+------------+------------------+

There are a few of things that limit the Performance Schema’s use as a general-purpose
profiling tool at present. First, it doesn’t yet provide the level of detail on query exe-
cution stages and timing that we’ve been showing with existing tools. Second, it hasn’t
been “in the wild” for all that long, and the implementation has more overhead at
present than many conservative users are comfortable with. (There is reason to believe
this will be fixed soon.)

90 | Chapter 3: Profiling Server Performance

Finally, it’s sometimes too complex and low-level to be accessible to most users in its
raw form. The features implemented so far are mostly targeted toward the things we
need to measure when modifying MySQL source code to improve the server’s perfor-
mance. This includes things like waits and mutexes. Some of the features in MySQL
5.5 are valuable to power users as opposed to server developers, but those still need
some frontend tool development to make it convenient to use them and interpret the
results. Right now the state of the art is writing complex queries against a large variety
of metadata tables with lots and lots of columns. It’s a pretty intimidating amount of
instrumentation to navigate and understand.

When the Performance Schema gets more functionality in MySQL 5.6 and beyond, and
there are nice tools to use it, it’s going to be awesome. And it’s really nice that Oracle
is implementing it as tables accessible through SQL so that users can consume the data
in whatever manner is most useful to them. For the time being, though, it’s not quite
a workable replacement for the slow query log or other tools that can help us imme-
diately see how to improve server and query performance.

Using the Profile for Optimization
So you’ve got a profile of your server or your query—what do you do with it? A good
profile usually makes the problem obvious, but the solution might not be (although it
often is). At this point, especially when optimizing queries, you need to rely on a lot of
knowledge about the server and how it executes queries. The profile, or as much of one
as you can gather, points you in the right direction and gives you a basis for using further
tools, such as EXPLAIN, to apply your knowledge and measure the results. That’s a topic
for future chapters, but at least you have the right starting point.

In general, although a profile with complete measurements ought to make determining
the problem trivial, we can’t always measure perfectly because the systems we’re trying
to measure don’t support it. In the example we’ve been looking at, we suspect that
temporary tables and unindexed reads are contributing most of the response time to
the query, but we can’t prove it. Sometimes problems are hard to solve because you
might not have measured everything you need, or your measurements might be badly
scoped. You might be measuring server-wide activity instead of looking specifically at
what you’re trying to optimize, for example, or you might be looking at measurements
that count from a point in time before your query started to execute, rather than the
instant the query began.

There’s another possibility. Suppose you analyze your slow query log and find a simple
query that took an unreasonably long time to execute a handful of times, although it
ran quickly thousands of other times. You run the query again, and it is lightning fast,
as it should be. You use EXPLAIN, and it is using an index correctly. You even try similar
queries with different values in the WHERE clause to ensure you aren’t just seeing cache
hits, and they run quickly. Nothing seems to be wrong with this query. What gives?

Profiling MySQL Queries | 91

If you have only the standard MySQL slow query log, with no execution plan or detailed
timing information, you are limited to the knowledge that the query ran badly at the
point that it was logged—you can’t see why that was. Perhaps something else was
consuming resources on the system, such as a backup, or perhaps some kind of locking
or contention blocked the query’s progress. Intermittent problems are a special case
that we’ll cover in the next section.

Diagnosing Intermittent Problems
Intermittent problems such as occasional server stalls or slow queries can be frustrating
to diagnose, and the most egregious wastes of time we’ve seen have been results of
phantom problems that happen only when you’re not looking, or aren’t reliably re-
producible. We’ve seen people spend literally months fighting with such problems. In
the process, some of them reverted to a trial-and-error troubleshooting approach, and
sometimes made things dramatically worse by trying to change things such as server
settings at random, hoping to stumble upon something that would help.

Try to avoid trial and error if you can. Trial-and-error troubleshooting is risky, because
the results can be bad, and it can be frustrating and inefficient. If you can’t figure out
what the problem is, you might not be measuring correctly, you might be measuring
in the wrong place, or you might not know the necessary tools to use. (Or the tools
might not exist—we’ve developed a number of tools specifically to address the lack
of transparency in various system components, from the operating system to MySQL
itself.)

To illustrate the importance of trying to avoid trial and error, here are some sample
resolutions we’ve found to some of the intermittent database performance problems
we’ve been called in to solve:

• The application was executing curl to fetch exchange rate quotes from an external
service, which was running very slowly at times.

• Important cache entries were expiring from memcached, causing the application
to flood MySQL with requests to regenerate the cached items.

• DNS lookups were timing out randomly.

• The query cache was freezing MySQL periodically due to mutex contention or
inefficient internal algorithms for deleting cached queries.

• InnoDB scalability limitations were causing query plan optimization to take too
long when concurrency was over some threshold.

As you can see, some of these problems were in the database, and some of them weren’t.
Only by beginning at the place where the misbehavior could be observed and working
through the resources it used, measuring as completely as possible, can you avoid
hunting in the wrong place for problems that don’t exist there.

92 | Chapter 3: Profiling Server Performance

We’ll stop lecturing you now, and explain the approach and tools we use for solving
intermittent problems.

Single-Query Versus Server-Wide Problems
Do you have any evidence of the problem? If so, try to determine whether the problem
is with a single isolated query, or if it’s server-wide. This is important to point you in
the right direction. If everything on the server is suffering, and then everything is okay
again, then any given query that’s slow isn’t likely to be the problem. Most of the slow
queries are likely to be victims of some other problem instead. On the other hand, if
the server is running nicely as a whole and a single query is slow for some reason, you
have to look more closely at that query.

Server-wide problems are fairly common. As more powerful hardware has become
available in the last several years, with 16-core and bigger servers becoming the norm,
MySQL’s scalability limitations on SMP systems have become more noticeable. Most
of these problems are in older versions, which are unfortunately still widely used in
production. MySQL still has some scalability problems even in newer versions, but
they are much less serious, and much less frequently encountered, because they’re edge
cases. This is good news and bad news: good because you’re much less likely to hit
them, and bad because they require more knowledge of MySQL internals to diagnose.
It also means that a lot of problems can be solved by simply upgrading MySQL.12

How do you determine whether the problem is server-wide or isolated to a single query?
If the problem occurs repeatedly enough that you can observe it in action, or run a
script overnight and look at the results the next day, there are three easy techniques
that can make it obvious in most cases. We’ll cover those next.

Using SHOW GLOBAL STATUS

The essence of this technique is to capture samples of SHOW GLOBAL STATUS at high
frequency, such as once per second, and when the problem manifests, look for “spikes”
or “notches” in counters such as Threads_running, Threads_connected, Questions, and
Queries. This is a simple method that anyone can use (no special privileges are required)
without impacting the server, so it’s a great way to learn more about the nature of the
problem without a big investment of time. Here’s a sample command and output:

$ mysqladmin ext -i1 | awk '
 /Queries/{q=$4-qp;qp=$4}
 /Threads_connected/{tc=$4}
 /Threads_running/{printf "%5d %5d %5d\n", q, tc, $4}'
2147483647 136 7
 798 136 7
 767 134 9
 828 134 7

12. Again, don’t do that without a good reason to believe that it’s the solution.

Diagnosing Intermittent Problems | 93

 683 134 7
 784 135 7
 614 134 7
 108 134 24
 187 134 31
 179 134 28
 1179 134 7
 1151 134 7
 1240 135 7
 1000 135 7

The command captures samples of SHOW GLOBAL STATUS every second and pipes those
into an awk script that prints out queries per second, Threads_connected, and
Threads_running (number of queries currently executing). These three tend to be very
sensitive to server-wide stalls. What usually happens is that, depending on the nature
of the problem and how the application connects to MySQL, queries per second will
drop and at least one of the other two will spike. Here the application is probably using
a connection pool, so there’s no spike of connected threads, but there’s a clear bump
in in-progress queries at the same time that the queries per second value drops to a
fraction of its normal level.

What could explain this behavior? It’s risky to guess, but in practice we’ve seen two
common cases. One is some kind of internal bottleneck in the server, causing new
queries to begin executing but to pile up against some lock that the older queries are
waiting to acquire. This type of lock usually puts back-pressure on the application
servers and causes some queueing there, too. The other common case we’ve seen is a
spike of heavy queries such as those that can happen with a badly handled memc-
ached expiration.

At one line per second, you can easily let this run for hours or days and make a quick
plot to see if there are any areas with aberrations. If a problem is truly intermittent, you
can let it run as long as needed and then refer back to the output when you notice the
problem. In most cases this output will show the problem clearly.

Using SHOW PROCESSLIST

With this method, you capture samples of SHOW PROCESSLIST and look for lots of threads
that are in unusual states or have some other unusual characteristic. For example, it’s
rather rare for queries to stay in the “statistics” state for very long, because this is the
phase of query optimization where the server determines the best join order—normally
very fast. Likewise, it’s rare to see a lot of threads reporting the user as “Unauthenticated
user,” because this is a state that happens in the middle of the connection handshake
when the client specifies the user it’s trying to use to log in.

Vertical output with the \G terminator is very helpful for working with SHOW PROCESS
LIST, because it puts each column of each row of the output onto its own line, making
it easy to do a little sort|uniq|sort incantation that helps you view the count of unique
values in any desired column easily:

94 | Chapter 3: Profiling Server Performance

$ mysql -e 'SHOW PROCESSLIST\G' | grep State: | sort | uniq -c | sort -rn
 744 State:
 67 State: Sending data
 36 State: freeing items
 8 State: NULL
 6 State: end
 4 State: Updating
 4 State: cleaning up
 2 State: update
 1 State: Sorting result
 1 State: logging slow query

Just change the grep pattern if you want to examine a different column. The State
column is a good one for a lot of cases. Here we can see that there are an awful lot of
threads in states that are part of the end of query execution: “freeing items,” “end,”
“cleaning up,” and “logging slow query.” In fact, in many samples on the server from
which this output came, this pattern or a similar one occurred. The most characteristic
and reliable indicator of a problem was a high number of queries in the “freeing items”
state.

You don’t have to use command-line techniques to find problems like this. You can
query the PROCESSLIST table in the INFORMATION_SCHEMA if your server is new enough, or
use innotop with a fast refresh rate and watch the screen for an unusual buildup of
queries. The example we just showed was of a server with InnoDB internal contention
and flushing problems, but it can be far more mundane than that. The classic example
would be a lot of queries in the “Locked” state. That’s the unlovable trademark of
MyISAM with its table-level locking, which quickly escalates into server-wide pileups
when there’s enough write activity on the tables.

Using query logging

To find problems in the query log, turn on the slow query log and set long_query_time
to 0 globally, and make sure that all of the connections see the new setting. You might
have to recycle connections so they pick up the new global value, or use Percona Server’s
feature to force it to take effect instantly without disrupting existing connections.

If you can’t enable the slow query log to capture all queries for some reason, use
tcpdump and pt-query-digest to emulate it. Look for periods in the log where the
throughput drops suddenly. Queries are sent to the slow query log at completion time,
so pileups typically result in a sudden drop of completions, until the culprit finishes
and releases the resource that’s blocking the other queries. The other queries will then
complete. What’s helpful about this characteristic behavior is that it lets you blame the
first query that completes after a drop in throughput. (Sometimes it’s not quite the first
query; other queries might be running unaffected while some are blocked, so this isn’t
completely reliable.)

Again, good tools can help with this. You can’t be looking through hundreds of giga-
bytes of queries by hand. Here’s a one-liner that relies on MySQL’s pattern of writing
the current time to the log when the clock advances one second:

Diagnosing Intermittent Problems | 95

$ awk '/^# Time:/{print $3, $4, c;c=0}/^# User/{c++}' slow-query.log
080913 21:52:17 51
080913 21:52:18 29
080913 21:52:19 34
080913 21:52:20 33
080913 21:52:21 38
080913 21:52:22 15
080913 21:52:23 47
080913 21:52:24 96
080913 21:52:25 6
080913 21:52:26 66
080913 21:52:27 37
080913 21:52:28 59

There was a drop in throughput in that output, which was interestingly also preceded
by a rush of queries completing. Without looking into the log around these timestamps
it’s hard to say what happened, but it’s possible that the spike is related to the drop
immediately afterward. In any case, it’s clear that something odd happened in this
server, and digging into the log around the timestamps in question could be very fruit-
ful. (When we looked into this log, we found that the spike was due to connections
being disconnected. Perhaps an application server was being restarted. Not everything
is a MySQL problem.)

Making sense of the findings

Nothing beats visualization of the data. We’ve shown only small examples here, but in
reality many of these techniques can result in thousands of lines of output. Get com-
fortable with gnuplot or R or another graphing tool of your choice. You can use them
to plot things in a jiffy—much faster than a spreadsheet—and you can instantly zoom
in on aberrations in a plot that you’ll have a hard time seeing in a scrolling terminal,
even if you think you’re pretty good at Matrix-watching.13

We suggest trying the first two approaches—SHOW STATUS and SHOW PROCESSLIST—
initially, because they’re cheap and can be done interactively with nothing more than
a little bit of shell scripting or running queries repeatedly. Analyzing the slow query log
is much more disruptive and harder to do, and often shows what looks like funny
patterns that disappear as you look closer. We’ve found that it’s easy to imagine pat-
terns where there are none.

When you find an aberration, what does it mean? It usually means that queries are
queueing somewhere, or there’s a flood or spike of a particular kind of query. Now the
task is to find out why.

13. We haven’t seen the woman in the red dress yet, but we’ll let you know if we do.

96 | Chapter 3: Profiling Server Performance

Capturing Diagnostic Data
When an intermittent problem strikes, it’s important to measure everything you pos-
sibly can, preferably for only the duration of the problem. If you do this right, you will
gather a ton of diagnostic data. The data you don’t collect often seems to be the data
you really need to diagnose the problem.

To get started, you need two things:

1. A reliable and real-time “trigger”—a way to know when the problem happens

2. A tool to gather the diagnostic data

The diagnostic trigger

The trigger is very important to get right. It’s the foundation for capturing the data
when the problem happens. There are two common problems that cause this to go
sideways: false positives and false negatives. If you have a false positive, you’ll gather
diagnostic data when nothing’s wrong, and you’ll waste time and get frustrated. False
negatives will result in missed opportunities and more wasted time and frustration.
Spend a little extra time making sure that your trigger indicates for sure that the problem
is happening, if you need to. It’s worth it.

What is a good criterion for a trigger? As shown in our examples, Threads_running
tends to be very sensitive to problems, but pretty stable when nothing is wrong. A spike
of unusual thread states in SHOW PROCESSLIST is another good indicator. But there can
be many more ways to observe the problem, including specific output in SHOW INNODB
STATUS, a spike in the server’s load average, and so on. The key is to express this as
something that you can compare to a definite threshold. This usually means a count.
A count of threads running, a count of threads in “freeing items” state, and so on works
well. The -c option to grep is your friend when looking at thread states:

$ mysql -e 'SHOW PROCESSLIST\G' | grep -c "State: freeing items"
36

Pick a threshold that’s high enough that you won’t hit it during normal operation, but
not so high that you won’t capture the problem in action. Beware, too, of setting the
threshold too high to catch the problem when it begins. Problems that escalate tend to
cause cascades of other problems, and if you capture diagnostic information after things
have really gone down the toilet, you’ll likely have a harder time isolating the original
cause. You want to collect your data when things are clearly circling the drain, if
possible, but before the loud flushing sound deafens you. For example, spikes in
Threads_connected can go insanely high—we’ve seen it escalate from 100 to 5000 or
more in the space of a couple minutes. You could clearly use 4999 as the threshold, but
why wait for things to get that bad? If the application doesn’t open more than 150
connections when it’s healthy, start collecting at 200 or 300.

Referring back to our earlier example of Threads_running, it looks like the normal con-
currency is less than 10. But 10 is not a good threshold—it is way too likely to produce

Diagnosing Intermittent Problems | 97

false positives, and 15 isn’t far enough away to definitely be out of the normal range of
behavior either. There could be a mini-pileup at 15, but it’s quite possible that it could
not quite cross the tipping point, and the problem could clear right up before getting
bad enough to be clearly diagnosable. We’d suggest setting 20 as the threshold in that
example.

You probably also want to capture the problem as soon as it is clearly happening, but
only after waiting briefly to ensure that it’s not a false positive or short-term spike. So,
our final trigger would be this: watch the status variables once per second, and if
Threads_running exceeds 20 for more than 5 seconds, start gathering diagnostic data.
(By the way, our example showed the problem going away after three seconds. That’s
a bit contrived to keep the example brief. A three-second problem is not likely to be
easily diagnosable, and most problems we’ve seen last a bit longer.)

Now you need to set up some kind of tool to watch the server and take action when
the trigger condition occurs. You could script this yourself, but we’ve saved you the
trouble. There’s a tool called pt-stalk in Percona Toolkit that is custom-built just for
this. It has a lot of nice features whose necessity we’ve learned of through the school
of hard knocks. For example, it looks at how much disk space is free, so it won’t fill up
your disk with the data it collects and crash your server. Not that we’ve ever done that,
you understand!

The pt-stalk tool is really simple to use. You can configure the variable to watch, the
threshold, the frequency of checks, and so forth. It supports a lot more fanciness than
that if needed, but that’s all you need to do for our example. Read the user’s manual
that comes with it before you use it. It relies on another tool for actually collecting the
data, which we’ll discuss next.

What kinds of data should you collect?

Now that you have determined a diagnostic trigger, you can use it to fire some process
to collect data. But what kind of data should you collect? The answer, as mentioned
previously, is everything you possibly can—but for only a reasonable amount of time.
Gather operating system stats, CPU usage, disk utilization and free space, samples of
ps output, memory usage, and everything you can from within MySQL, such as samples
of SHOW STATUS, SHOW PROCESSLIST, and SHOW INNODB STATUS. You’ll need all of these
things, and probably more, to diagnose problems.

Execution time is spent doing work or waiting, as you’ll recall. When an unknown
problem happens, there are two types of causes, broadly speaking. The server could be
doing a lot of work—consuming a lot of CPU cycles—or it could be stuck waiting for
resources to become free. You need two different approaches to gather the diagnostic
data to identify the causes of each of these types of problems: a profile when the system
is doing too much work, and wait analysis when the system is doing too much waiting.
But how do you know which of these to focus on when the problem is unknown? You
don’t, so it’s best to collect data for both.

98 | Chapter 3: Profiling Server Performance

The primary profiling tool we rely on for server internals on GNU/Linux (as opposed
to queries server-wide) is oprofile. We’ll show examples of this a bit later. You can also
profile the server’s system calls with strace, but we have found this to be riskier on
production systems. More on that later, too. For capturing queries to profile, we like
to use tcpdump. It’s hard to turn the slow query log on and off reliably at a moment’s
notice on most versions of MySQL, but you can get a pretty good simulation of it from
TCP traffic. Besides, the traffic is useful for lots of other kinds of analysis.

For wait analysis, we often use GDB stack traces.14 Threads that are stuck in a particular
spot inside of MySQL for a long time tend to have the same stack trace. The procedure
is to start gdb, attach it to the mysqld process, and dump stack traces for all threads.
You can then use some short scripts to aggregate common stack traces together and do
the sort|uniq|sort magic to show which ones are most common. We’ll show how to use
the pt-pmp tool for this a bit later.

You can also do wait analysis with data such as snapshots of SHOW PROCESSLIST and
SHOW INNODB STATUS by observing thread and transaction states. None of these
approaches is perfectly foolproof, but in practice they work often enough to be very
helpful.

Gathering all of this data sounds like a lot of work! You probably anticipated this
already, but we’ve built a tool to do this for you too. It’s called pt-collect, and it’s also
part of Percona Toolkit. It’s intended to be executed from pt-stalk. It needs to be run
as root in order to gather most of the important data. By default, it will collect data for
30 seconds and then exit. This is usually enough to diagnose most problems, but not
so much that it causes problems when there’s a false positive.

The tool is easy to download and doesn’t need any configuration—all of the configu-
ration goes into pt-stalk. You will want to ensure that gdb and oprofile are installed on
your server, and enable those in the pt-stalk configuration. You also need to ensure that
mysqld has debug symbols.15 When the trigger condition occurs, the tool will gather a
pretty complete set of data. It will create timestamped files in a specified directory. At
the time of writing, it’s rather oriented toward GNU/Linux and will need tweaking on
other operating systems, but it’s still a good place to start.

Interpreting the data

If you’ve set up your trigger condition correctly and let pt-stalk run long enough to
catch the problem in action a few times, you’ll end up with a lot of data to sift through.
What’s the most useful place to start? We suggest looking at just a few things, with two

14. A caveat: using GDB is intrusive. It will freeze the server momentarily, especially if you have a lot of
threads (connections), and can sometimes even crash it. The benefit still sometimes outweighs the risk.
If the server becomes unusable anyway during a stall, it’s not such a bad thing to double-freeze it.

15. Sometimes symbols are omitted as an “optimization,” which really is not an optimization; it just makes
diagnosing problems harder. You can use the nm tool to check if you have them, and install the
debuginfo packages for MySQL to supply symbols.

Diagnosing Intermittent Problems | 99

purposes in mind. First, check that the problem really did occur, because if you have
many samples to examine, you won’t want to spend your time on false positives. Sec-
ond, see if something obvious jumps out at you.

It’s very helpful to capture samples of how the server looks when it’s
behaving well, not just when it’s in trouble. This will help you determine
whether a particular sample, or even a portion of a sample, is abnormal
or not. For example, when you’re looking at the states of queries in the
process list, you can answer questions such as “Is it normal for a lot of
queries to be sorting their results?”

The most fruitful things to look at are usually query or transaction behavior, and server
internals behavior. Query or transaction behavior shows you whether the problem was
caused by the way the server is being used: badly written SQL, bad indexing, bad logical
database design, and so on. You can see what the users are doing to the server by looking
at places where queries and transactions appear: in the logged TCP traffic, in the SHOW
PROCESSLIST output, and so on. Server internals behavior tells you whether the server
is buggy or has built-in performance or scalability problems. You can see this in some
of the same places, but also in oprofile and gdb output. This takes more experience to
interpret.

If you don’t know how to interpret what’s wrong, you can tarball the directory full of
collected data and submit it to a support provider for analysis. Any competent MySQL
support professional will be able to interpret the data and tell you what it means. And
they’ll love you for sending such detailed data to peruse. You might also want to send
the output of two other tools in Percona Toolkit: pt-mysql-summary and pt-summary.
These show status and configuration snapshots of your MySQL instance and the op-
erating system and hardware, respectively.

Percona Toolkit includes a tool designed to help you look through lots of samples of
collected data quickly. It’s called pt-sift, and it helps you navigate between samples,
shows a summary of each sample, and lets you drill down into particular bits of the
data if desired. It can save a lot of keystrokes.

We showed some examples of status counters and thread states earlier. We’ll finish out
this chapter by showing some examples of output from oprofile and gdb. Here’s an
oprofile report from a server that was having trouble. Can you find the problem?

samples % image name app name symbol name
893793 31.1273 /no-vmlinux /no-vmlinux (no symbols)
325733 11.3440 mysqld mysqld Query_cache::free_memory_block()
117732 4.1001 libc libc (no symbols)
102349 3.5644 mysqld mysqld my_hash_sort_bin
 76977 2.6808 mysqld mysqld MYSQLparse()
 71599 2.4935 libpthread libpthread pthread_mutex_trylock
 52203 1.8180 mysqld mysqld read_view_open_now
 46516 1.6200 mysqld mysqld Query_cache::invalidate_query_block_list()
 42153 1.4680 mysqld mysqld Query_cache::write_result_data()

100 | Chapter 3: Profiling Server Performance

 37359 1.3011 mysqld mysqld MYSQLlex()
 35917 1.2508 libpthread libpthread __pthread_mutex_unlock_usercnt
 34248 1.1927 mysqld mysqld __intel_new_memcpy

If you said “the query cache,” you were right. This server’s query cache was causing far
too much work and slowing everything down. This had happened overnight, a factor
of 50 slowdown, with no other changes to the system. Disabling the query cache re-
turned the server to its normal performance. This is an example of when server internals
are relatively straightforward to interpret.

Another important tool for bottleneck analysis is wait analysis using stack traces from
gdb. A single thread’s stack trace normally looks like the following, which we’ve for-
matted a bit for printing:

Thread 992 (Thread 0x7f6ee0111910 (LWP 31510)):
#0 0x0000003be560b2f9 in pthread_cond_wait@@GLIBC_2.3.2 () from /libpthread.so.0
#1 0x00007f6ee14f0965 in os_event_wait_low () at os/os0sync.c:396
#2 0x00007f6ee1531507 in srv_conc_enter_innodb () at srv/srv0srv.c:1185
#3 0x00007f6ee14c906a in innodb_srv_conc_enter_innodb () at handler/ha_innodb.cc:609
#4 ha_innodb::index_read () at handler/ha_innodb.cc:5057
#5 0x00000000006538c5 in ?? ()
#6 0x0000000000658029 in sub_select() ()
#7 0x0000000000658e25 in ?? ()
#8 0x00000000006677c0 in JOIN::exec() ()
#9 0x000000000066944a in mysql_select() ()
#10 0x0000000000669ea4 in handle_select() ()
#11 0x00000000005ff89a in ?? ()
#12 0x0000000000601c5e in mysql_execute_command() ()
#13 0x000000000060701c in mysql_parse() ()
#14 0x000000000060829a in dispatch_command() ()
#15 0x0000000000608b8a in do_command(THD*) ()
#16 0x00000000005fbd1d in handle_one_connection ()
#17 0x0000003be560686a in start_thread () from /lib64/libpthread.so.0
#18 0x0000003be4ede3bd in clone () from /lib64/libc.so.6
#19 0x0000000000000000 in ?? ()

The stack reads from the bottom up; that is, the thread is currently executing inside of
the pthread_cond_wait function, which was called from os_event_wait_low. Reading
down the trace, it looks like this thread was trying to enter the InnoDB kernel
(srv_conc_enter_innodb), but got put on an internal queue (os_event_wait_low) because
more than innodb_thread_concurrency threads were already inside the kernel. The real
value of stack traces is aggregating lots of them together, however. This is a technique
that Domas Mituzas, a former MySQL support engineer, made popular with his “poor
man’s profiler” tool. He currently works at Facebook, and he and others there have
developed a wide variety of tools for gathering and analyzing stack traces. You can find
out more about what’s available at http://www.poormansprofiler.org.

We have an implementation of the poor man’s profiler in Percona Toolkit, called pt-
pmp. It’s a shell and awk program that collapses similar stack traces together and does
the usual sort|uniq|sort to show the most common ones first. Here’s what the full set
of stack traces looks like after crunching it down to its essence. We’re going to use

Diagnosing Intermittent Problems | 101

http://www.poormansprofiler.org

the -l 5 option to truncate the stack traces after five levels so that we don’t get so many
traces with common tops but different bottoms, which would prevent them from ag-
gregating together and showing where things are really waiting:

$ pt-pmp -l 5 stacktraces.txt
 507 pthread_cond_wait,one_thread_per_connection_end,handle_one_connection,
 start_thread,clone
 398 pthread_cond_wait,os_event_wait_low,srv_conc_enter_innodb,
 innodb_srv_conc_enter_innodb,ha_innodb::index_read
 83 pthread_cond_wait,os_event_wait_low,sync_array_wait_event,mutex_spin_wait,
 mutex_enter_func
 10 pthread_cond_wait,os_event_wait_low,os_aio_simulated_handle,fil_aio_wait,
 io_handler_thread
 7 pthread_cond_wait,os_event_wait_low,srv_conc_enter_innodb,
 innodb_srv_conc_enter_innodb,ha_innodb::general_fetch
 5 pthread_cond_wait,os_event_wait_low,sync_array_wait_event,rw_lock_s_lock_spin,
 rw_lock_s_lock_func
 1 sigwait,signal_hand,start_thread,clone,??
 1 select,os_thread_sleep,srv_lock_timeout_and_monitor_thread,start_thread,clone
 1 select,os_thread_sleep,srv_error_monitor_thread,start_thread,clone
 1 select,handle_connections_sockets,main
 1 read,vio_read_buff,::??,my_net_read,cli_safe_read

 1 pthread_cond_wait,os_event_wait_low,sync_array_wait_event,rw_lock_x_lock_low,
 rw_lock_x_lock_func
 1 pthread_cond_wait,MYSQL_BIN_LOG::wait_for_update,mysql_binlog_send,
 dispatch_command,do_command
 1 fsync,os_file_fsync,os_file_flush,fil_flush,log_write_up_to

The first line is the characteristic signature of an idle thread in MySQL, so you can
ignore that. The second line is the most interesting one: it shows that a lot of threads
are waiting to enter the InnoDB kernel but are blocked. The third line shows many
threads waiting on some mutex, but we can’t see which one because we have truncated
the deeper levels of the stack trace. If it is important to know which mutex that is, we
would need to re run the tool with a larger value for the -l option. In general, the stack
traces show that lots of things are waiting for their turn inside InnoDB, but why? That
isn’t clear at all. To find out, we probably need to look elsewhere.

As the preceding stack trace and oprofile reports show, these types of analysis are not
always useful to those who aren’t experts with MySQL and InnoDB source code, and
you should ask for help from someone else if you get stuck.

Now let’s move on to a server whose problems don’t show up on either a profile or
wait analysis, and need to be diagnosed differently.

A Case Study in Diagnostics
In this section we’ll step you through the process of diagnosing a real customer’s in-
termittent performance problem. This case study is likely to get into unfamiliar territory
unless you’re an expert with MySQL, InnoDB, and GNU/Linux. However, the specifics

102 | Chapter 3: Profiling Server Performance

we’ll discuss are not the point. Try to look for the method within the madness: read
this section with an eye toward the assumptions and guesses we make, the reasoning-
based and measurement-based approaches we take, and so on. We are delving into a
specific and detailed case simply to illustrate generalities.

Before beginning to solve a problem at someone else’s request, it’s good to try to clear
up two things, preferably taking notes to help avoid forgetting or omitting anything:

1. First, what’s the problem? Try to be clear on that. It’s surprisingly easy to go hunt-
ing for the wrong problem. In this case, the customer complained that once every
day or two, the server rejected connections with a max_connections error. It lasted
from a few seconds to a few minutes, and was highly sporadic.

2. Next, what has been done to try to fix it? In this case, the customer did not attempt
to resolve the issue at all. This was extremely helpful, because few things are as
hard to understand as another person’s description of the exact sequence of events,
changes they made, and effects thereof. This is especially true when they call in
desperation after a couple of sleepless nights and caffeine-filled days. A server that
has been subjected to unknown changes, with unknown effects, is much harder to
troubleshoot, especially if you’re under time pressure.

With that behind us, let’s get started. It’s a good idea not only to try to understand
how the server behaves, but also to take an inventory of the server’s status, configura-
tion, software, and hardware. We did so with the pt-summary and pt-mysql-summary
tools. Briefly, this server had 16 CPU cores, 12 GB of RAM, and a total of 900 MB of
data, all in InnoDB, on a solid-state drive. The server was running GNU/Linux with
MySQL 5.1.37 and the InnoDB plugin version 1.0.4. We’d worked with this customer
previously on other unexpected performance problems, and we knew the systems. The
database was never the problem in the past; it had always been bad application behav-
ior. We took a look at the server and found nothing obviously wrong at a glance. The
queries weren’t perfect, but they were still running in less than 10 ms most of the time.
So we confirmed that the server was fine under normal circumstances. (This is impor-
tant to do; many problems that are noticed only sporadically are actually symptoms of
chronic problems, such as failed hard drives in RAID arrays.)

This case study might be a little tedious. We’ll “play dumb” to show all
of the diagnostic data, explain everything we see in detail, and follow
several potential trains of thought to completion. In reality, we don’t
take such a frustratingly slow approach to every problem, and we’re not
trying to say that you should, either.

We installed our diagnostic toolkit and set it to trigger on Threads_connected, which
was normally less than 15 but increased to several hundred during these problems.
We’ll present a sample of the data we collected as a result, but we’ll hold our

Diagnosing Intermittent Problems | 103

commentary until later. See if you can drink from the fire hose and pick out items that
are likely to be important:

• The query activity ranged from 1,000 to 10,000 queries per second, with many of
them being “garbage” commands such as pinging the server to see if it was alive.
Most of the rest were SELECT commands—from 300 to 2,000 per second—and there
were a very small number of UPDATE commands (about 5 per second).

• There were basically two distinct types of queries in SHOW PROCESSLIST, varying only
in the values in the WHERE clauses. Here are the query states, summarized:

$ grep State: processlist.txt | sort | uniq -c | sort -rn
 161 State: Copying to tmp table
 156 State: Sorting result
 136 State: statistics
 50 State: Sending data
 24 State: NULL
 13 State:
 7 State: freeing items
 7 State: cleaning up
 1 State: storing result in query cache
 1 State: end

• Most queries were doing index scans or range scans—no full-table scans or cross
joins.

• There were between 20 and 100 sorts per second, with between 1,000 and 12,000
rows sorted per second.

• There were between 12 and 90 temporary tables created per second, with about 3
to 5 of them on disk.

• There was no problem with table locking or the query cache.

• In SHOW INNODB STATUS, we observed that the main thread state was “flushing buffer
pool pages,” but there were only a few dozen dirty pages to flush (Innodb_buffer
_pool_pages_dirty), there was practically no change in Innodb_buffer_pool
_pages_flushed, and the difference between the log sequence number and the last
checkpoint was very small. The InnoDB buffer pool wasn’t even close to being full;
it was much bigger than the data size. Most threads were waiting in the InnoDB
queue: “12 queries inside InnoDB, 495 queries in queue.”

• We captured iostat output for 30 seconds, one sample per second. This showed
that there was essentially no read activity at all on the disks, but writes went through
the roof, and average I/O wait times and queue length were extremely high. Here
is the first bit of the output, simplified to fit on the page without wrapping:

 r/s w/s rsec/s wsec/s avgqu-sz await svctm %util
1.00 500.00 8.00 86216.00 5.05 11.95 0.59 29.40
0.00 451.00 0.00 206248.00 123.25 238.00 1.90 85.90
0.00 565.00 0.00 269792.00 143.80 245.43 1.77 100.00
0.00 649.00 0.00 309248.00 143.01 231.30 1.54 100.10
0.00 589.00 0.00 281784.00 142.58 232.15 1.70 100.00
0.00 384.00 0.00 162008.00 71.80 238.39 1.73 66.60

104 | Chapter 3: Profiling Server Performance

0.00 14.00 0.00 400.00 0.01 0.93 0.36 0.50
0.00 13.00 0.00 248.00 0.01 0.92 0.23 0.30
0.00 13.00 0.00 408.00 0.01 0.92 0.23 0.30

• The output of vmstat confirmed what we saw in iostat and showed that the CPUs
were basically idle except for some I/O wait during the spike of writes (ranging up
to 9% wait).

Is your brain full yet? This can happen quickly when you dig into a system in detail and
you don’t have (or you try to ignore) any preconceived notions, so you end up looking
at everything. Most of what you’ll look at is either completely normal, or shows the
effects of the problem but doesn’t indicate the source of the problem. Although at this
point we have some good guesses about the cause of the problem, we’ll keep going by
looking at the oprofile report, and we’ll begin to add commentary and interpretation
as we throw more data at you:

samples % image name app name symbol name
 473653 63.5323 no-vmlinux no-vmlinux /no-vmlinux
 95164 12.7646 mysqld mysqld /usr/libexec/mysqld
 53107 7.1234 libc-2.10.1.so libc-2.10.1.so memcpy
 13698 1.8373 ha_innodb.so ha_innodb.so build_template()
 13059 1.7516 ha_innodb.so ha_innodb.so btr_search_guess_on_hash
 11724 1.5726 ha_innodb.so ha_innodb.so row_sel_store_mysql_rec
 8872 1.1900 ha_innodb.so ha_innodb.so rec_init_offsets_comp_ordinary
 7577 1.0163 ha_innodb.so ha_innodb.so row_search_for_mysql
 6030 0.8088 ha_innodb.so ha_innodb.so rec_get_offsets_func
 5268 0.7066 ha_innodb.so ha_innodb.so cmp_dtuple_rec_with_match

It’s not at all obvious what most of these symbols represent, and most of the time is
lumped together in the kernel16 and in a generic mysqld symbol that doesn’t tell us
anything.17 Don’t get distracted by all of the ha_innodb.so symbols. Look at the per-
centage of time they contributed: regardless of what they do, they’re burning so little
time that you can be sure they’re not the problem. This is an example of a problem that
isn’t going to yield results from this type of profile analysis. We are looking at the wrong
data. When you see something like the previous sample, move along and look at other
data to see if there’s a more obvious pointer to the cause.

At this point, if you’re interested in the wait analysis from gdb stack traces, please refer
to the end of the preceding section. The sample we showed there is from the system
we’re currently diagnosing. If you recall, the bulk of stack traces were simply waiting
to enter the InnoDB kernel, which corresponds to “12 queries inside InnoDB, 495
queries in queue” in the output from SHOW INNODB STATUS.

Do you see anything that points conclusively to a specific problem? We didn’t; we saw
possible symptoms of many different problems, and at least two potential causes of the

16. In theory, we need kernel symbols to understand what’s going on inside the kernel. In practice, this can
be a hassle to install, and we know from looking at vmstat that the system CPU usage was low, so we’re
unlikely to find much other than “sleeping” there anyway.

17. It looks like this was a bad build of MySQL.

Diagnosing Intermittent Problems | 105

problem based on intuition and experience. But we also saw something that didn’t
make sense. If you look at the iostat output again, in the wsec/s column you can see
that for about six seconds, the server is writing hundreds of megabytes of data per
second to the disks. Each sector is 512 bytes, so those samples show up to 150 MB of
writes per second at times. Yet the entire database is only 900 MB, and the workload
is mostly SELECT queries. How can this happen?

When you examine a system, try to ask yourself whether there are any things like this
that simply don’t add up, and investigate them further. Try to follow each train of
thought to its conclusion, and try not to get sidetracked on too many tangents, or you
could forget about a promising possibility. Write down little notes and cross them off
to help ensure that you’ve dotted all the Ts.18

At this point, we could jump right to a conclusion, and it would be wrong. We see from
the main thread state that InnoDB is trying to flush dirty pages, which generally doesn’t
appear in the status output unless flushing is delayed. We know that this version of
InnoDB is prone to the “furious flushing” problem, also called a checkpoint stall. This
is what happens when InnoDB doesn’t spread flushing out evenly over time, and it
suddenly decides to force a checkpoint (flush a lot of data) to make up for that. This
can cause serious blocking inside InnoDB, making everything queue and wait to enter
the kernel, and thus pile up at the layers above InnoDB in the server. We showed an
example in Chapter 2 of the periodic drops in performance that can happen when there
is furious flushing. Many of this server’s symptoms are similar to what happens during
a forced checkpoint, but it’s not the problem in this case. You can prove that in many
ways, perhaps most easily by looking at the SHOW STATUS counters and tracking the
change in the Innodb_buffer_pool_pages_flushed counter, which, as we mentioned
earlier, was not increasing much. In addition, we noted that the buffer pool doesn’t
have much dirty data to flush anyway—certainly not hundreds of megabytes. This is
not surprising, because the workload on this server is almost entirely SELECT queries.
We can therefore conclude that instead of blaming the problem on InnoDB
flushing, we should blame InnoDB’s flushing delay on the problem. It is a symptom—
an effect—not a cause. The underlying problem is causing the disks to become satu-
rated that InnoDB isn’t having any luck getting its I/O tasks done. So we can eliminate
this as a possible cause, and cross off one of our intuition-based ideas.

Distinguishing cause from effect can be hard sometimes, and it can be tempting to just
skip the investigation and jump to the diagnosis when a problem looks familiar. It is
good to avoid taking shortcuts, but it’s equally important to pay attention to your
intuition. If something looks familiar, it is prudent to spend a little time measuring the
necessary and sufficient conditions to prove whether that’s the problem. This can save
a lot of time you’d otherwise spend looking through other data about the system and
its performance. Just try not to jump to conclusions based on a gut feeling that “I’ve

18. Or whatever that phrase is. Put all your eggs in one haystack?

106 | Chapter 3: Profiling Server Performance

seen this before, and I am sure it’s the same thing.” Gather some evidence, if you can—
especially evidence that could disprove your gut feeling.

The next step was to try to figure out what was causing the server’s I/O usage to be so
strange. We call your attention to the reasoning we used earlier: “The server writes
hundreds of megabytes to disk for many seconds, but the database is only 900 MB.
How can this happen?” Notice the implicit assumption that the database is doing the
writing? What evidence did we have that it’s the database? Try to catch yourself when
you think unsubstantiated thoughts, and when something doesn’t make sense, ask if
you’re assuming something. If you can, measure and remove the doubt.

We saw two possibilities: either the database was causing the I/O—and if we could
find the source of that, we thought that it was likely that we’d find the cause of the
problem—or, the database wasn’t doing all that I/O, but rather something else was,
and the lack of I/O resources could have been impacting the database. We’re stating
that very carefully to avoid another implicit assumption: just because the disks are busy
doesn’t guarantee that MySQL will suffer. Remember, this server basically has a read-
only in-memory workload, so it is quite possible to imagine that the disks could stop
responding for a long time without causing serious problems.

If you’re following our reasoning, you might see that we need to go back and gut-check
another assumption. We can see that the disk device was behaving badly, as evidenced
by the high wait times. A solid-state drive shouldn’t take a quarter of a second per I/O
on average. And indeed, we can see that iostat claimed the drive itself was responding
quickly, but things were taking a long time to get through the block device queue to
the drive. Remember that this is only what iostat claims; it could be wrong.

What Causes Poor Performance?
When a resource is behaving badly, it’s good to try to understand why. There are a few
possibilities:

1. The resource is being overworked and doesn’t have the capacity to behave well.

2. The resource is not configured properly.

3. The resource is broken or malfunctioning.

In the case we’re examining, iostat’s output could point to either too much work, or
misconfiguration (why are I/O requests queueing so long before reaching the disk, if
it’s actually responding quickly?). However, a very important part of deciding what’s
wrong is to compare the demand on the system to its known capacity. We know from
extensive benchmarking that the particular SSD drive this customer was using can’t
sustain hundreds of megabytes of writes per second. Thus, although iostat claims the
disk is responding just fine, it’s likely that this isn’t entirely true. In this case, we had
no way to prove that the disk was slower than iostat claimed, but it looked rather likely
to be the case. Still, this doesn’t change our opinion: this could be disk abuse,19 mis-
configuration, or both.

Diagnosing Intermittent Problems | 107

After working through the diagnostic data to reach this point, the next task was obvi-
ous: measure what was causing the I/O. Unfortunately, this was infeasible on the ver-
sion of GNU/Linux the customer was using. We could have made an educated guess
with some work, but we wanted to explore other options first. As a proxy, we could
have measured how much I/O was coming from MySQL, but again, in this version of
MySQL that wasn’t really feasible due to lack of instrumentation.

Instead, we opted to try to observe MySQL’s I/O, based on what we know about how
it uses the disk. In general, MySQL writes only data, logs, sort files, and temporary
tables to disk. We eliminated data and logs from consideration, based on the status
counters and other information we discussed earlier. Now, suppose MySQL were to
suddenly write a bunch of data to disk temporary tables or sort files. How could we
observe this? Two easy ways are to watch the amount of free space on the disk, or to
look at the server’s open filehandles with the lsof command. We did both, and the
results were convincing enough to satisfy us. Here’s what df -h showed every second
during the same incident we’ve been studying:

Filesystem Size Used Avail Use% Mounted on
/dev/sda3 58G 20G 36G 36% /
/dev/sda3 58G 20G 36G 36% /
/dev/sda3 58G 19G 36G 35% /
/dev/sda3 58G 19G 36G 35% /
/dev/sda3 58G 19G 36G 35% /
/dev/sda3 58G 19G 36G 35% /
/dev/sda3 58G 18G 37G 33% /
/dev/sda3 58G 18G 37G 33% /
/dev/sda3 58G 18G 37G 33% /

And here’s the data from lsof, which for some reason we gathered only once per five
seconds. We’re simply summing the sizes of all of the files mysqld has open in /tmp,
and printing out the total for each timestamped sample in the file:

$ awk '
 /mysqld.*tmp/ {
 total += $7;
 }
 /^Sun Mar 28/ && total {
 printf "%s %7.2f MB\n", $4, total/1024/1024;
 total = 0;
 }' lsof.txt
18:34:38 1655.21 MB
18:34:43 1.88 MB
18:34:48 1.88 MB
18:34:53 1.88 MB
18:34:58 1.88 MB

Based on this data, it looks like MySQL is writing about 1.5 GB of data to temporary
tables in the beginning phases of the incident, and this matches what we found in the
SHOW PROCESSLIST states (“Copying to tmp table”). The evidence points to a storm of

19. Someone call the 1-800 hotline!

108 | Chapter 3: Profiling Server Performance

bad queries all at once saturating the disk. The most common cause of this we’ve seen
(this is our intuition at work) is a cache stampede, when cached items expire all at once
from memcached and many instances of the application try to repopulate the cache
simultaneously. We showed samples of the queries to the developers and discussed
their purpose. Indeed, it turned out that simultaneous cache expiration was the cause
(confirming our intuition). In addition to the developers addressing the problem at the
application level, we were able to help them modify the queries so they didn’t use
temporary tables on disk. Either one of these fixes might have prevented the problem,
but it was much better to do both than just one.

Now, we’d like to apply a little hindsight to explain some questions you might have
had as we went along (we certainly critiqued our own approach as we reviewed it for
this chapter):

Why didn’t we just optimize the slow queries to begin with?
Because the problem wasn’t slow queries, it was “too many connections” errors.
Sure, it’s logical to see that long-running queries cause things to stack up and the
connection count to climb. But so can dozens of other things. In the absence of
finding a good reason for why things are going wrong, it’s all too tempting to fall
back to looking for slow queries or other general things that look like they could
be improved.20 But this goes badly more often than it goes well. If you took your
car to the mechanic and complained about an unfamiliar noise, and then got slap-
ped with a bill for balancing the tires and changing the transmission fluid because
the mechanic couldn’t figure out the real problem and went looking for other things
to do, wouldn’t you be annoyed?

But isn’t it a red flag that the queries were running slowly with a bad EXPLAIN?
They were indeed—during the incidents. Was that a cause or an effect? It wasn’t
obvious until we dug into things more deeply. And remember, the queries seemed
to be running well enough in normal circumstances. Just because a query does a
filesort with a temporary table doesn’t mean it is a problem. Getting rid of filesorts
and temporary tables is a catch-all, “best practice” type of tactic.

Generic “best practices” reviews have their place, but they are seldom the solution
to highly specific problems. The problem could easily have been misconfiguration,
for example. We’ve seen many cases where someone tried to fix a misconfigured
server with tactics such as optimizing queries, which was ultimately a waste of time
and just prolonged the damage caused by the real problem.

If cached items were being regenerated many times, wouldn’t there be multiple identical
queries?

Yes, and this is something we did not investigate at the time. Multiple threads
regenerating the same cached item would indeed cause many completely identical
queries. (This is different from having multiple queries of the same general type,

20. Also known as the “when all you have is a hammer, everything looks like a nail” approach.

Diagnosing Intermittent Problems | 109

which might differ in a parameter to the WHERE clause, for example.) Noticing this
could have stimulated our intuition and directed us to the solution more quickly.

There were hundreds of SELECT queries per second, but only five UPDATEs. What’s to say
that these five weren’t really heavy queries?

They could indeed have been responsible for a lot of load on the server. We didn’t
show the actual queries because it would clutter things too much, but it’s a valid
point that the absolute number of each type of query isn’t necessarily meaningful.

Isn’t the “proof” about the origin of the I/O storms still pretty weak?
Yes, it is. There could be many explanations for why a small database would write
a huge amount of data to disk, or why the disk’s free space decreased quickly. This
is something that’s ultimately pretty hard to measure (though not impossible) on
the versions of MySQL and GNU/Linux in question. Although it’s possible to play
devil’s advocate and come up with lots of scenarios, we chose to balance the cost
and potential benefit by pursuing what seemed like the most promising leads first.
The harder it is to measure and be certain, the higher the cost/benefit ratio climbs,
and the more willing we are to accept uncertainty.

We said “the database was never the problem in the past.” Wasn’t that a bias?
Yes, that was a bias. If you caught it, great—if not, well, then hopefully it serves
as a useful illustration that we all have biases.

We’d like to finish this troubleshooting case study by pointing out that this issue
probably could have been solved (or prevented) without our involvement by using an
application profiling tool such as New Relic.

Other Profiling Tools
We’ve shown a variety of ways to profile MySQL, the operating system, and queries.
We’ve demonstrated those that we think you’ll find most useful, and of course, we’ll
show more tools and techniques for inspecting and measuring systems throughout this
book. But wait, there’s more!

Using the USER_STATISTICS Tables
Percona Server and MariaDB include additional INFORMATION_SCHEMA tables for object-
level usage statistics. These were originally created at Google. They are extremely useful
for finding out how much or little the various parts of your server are actually used. In
a large enterprise, where the DBAs are responsible for managing the databases and have
little control over the developers, they can be vital for measuring and auditing database
activity and enforcing usage policies. They’re similarly useful for multitenant applica-
tions such as shared hosting environments. When you’re hunting for performance
problems, on the other hand, they can be great for helping you figure out who’s spend-
ing the most time in the database or what tables and indexes are most or least used.
Here are the tables:

110 | Chapter 3: Profiling Server Performance

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE '%_STATISTICS';
+---+
| Tables_in_information_schema (%_STATISTICS) |
+---+
| CLIENT_STATISTICS |
| INDEX_STATISTICS |
| TABLE_STATISTICS |
| THREAD_STATISTICS |
| USER_STATISTICS |
+---+

We don’t have space for examples of all the queries you can perform against these
tables, but a couple of bullet points won’t hurt:

• You can find the most-used and least-used tables and indexes, by reads, updates,
or both.

• You can find unused indexes, which are candidates for removal.

• You can look at the CONNECTED_TIME versus the BUSY_TIME of the replication user to
see whether replication will likely have a hard time keeping up soon.

In MySQL 5.6, the Performance Schema adds tables that serve purposes similar to the
aforementioned tables.

Using strace
The strace tool intercepts system calls. There are several ways you can use it. One is to
time the system calls and print out a profile:

$ strace -cfp $(pidof mysqld)
Process 12648 attached with 17 threads - interrupt to quit
^CProcess 12648 detached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 73.51 0.608908 13839 44 select
 24.38 0.201969 20197 10 futex
 0.76 0.006313 1 11233 3 read
 0.60 0.004999 625 8 unlink
 0.48 0.003969 22 180 write
 0.23 0.001870 11 178 pread64
 0.04 0.000304 0 5538 _llseek
[some lines omitted for brevity]
------ ----------- ----------- --------- --------- ----------------
100.00 0.828375 17834 46 total

In this way, it’s a bit like oprofile. However, oprofile will profile the internal symbols of
the program, not just the system calls. In addition, strace uses a different technique for
intercepting the calls, which is a bit more unpredictable and adds a lot of overhead.
And strace measures wall-clock time, whereas oprofile measures where the CPU cycles
are spent. As an example, strace will show when I/O waits are a problem because it
measures from the beginning of a system call such as read or pread64 to the end of the

Other Profiling Tools | 111

call, but oprofile usually won’t because the I/O system call doesn’t actually do any CPU
work—it just waits for the I/O to complete.

We use oprofile only when necessary, because it can have strange side effects on a big
multithreaded process like mysqld, and while strace is attached, mysqld will run so
slowly that it’s pretty much unusable for a production workload. Still, it can be ex-
tremely useful in some circumstances, and there is a tool in Percona Toolkit called
pt-ioprofile that uses strace to generate a true profile of I/O activity. This has been
helpful in proving or disproving some hard-to-measure cases that we couldn’t bring to
a close otherwise. (If the server had been running MySQL 5.6, we’d have been able to
do this with the Performance Schema instead.)

Summary
This chapter lays the foundation of thought processes and techniques you’ll need to
succeed in performance optimization. The right mental approach is the key to unlock-
ing the full potential of your systems and applying the knowledge you’ll gain in the rest
of this book. Here are some of the fundamentals we tried to illustrate:

• We think that the most useful way to define performance is in terms of response
time.

• You cannot reliably improve what you cannot measure, so performance improve-
ment works best with high-quality, well-scoped, complete measurements of re-
sponse time.

• The best place to start measuring is the application, not the database. If there is a
problem in the lower layers, such as the database, good measurements will make
it obvious.

• Most systems are impossible to measure completely, and measurements are
always wrong. But you can usually work around the limitations and get a good
outcome anyway, if you acknowledge the imperfection and uncertainty of the pro-
cess you use.

• Thorough measurements produce way too much data to analyze, so you need a
profile. This is the best tool to help you bubble important things to the top so you
can decide where to start.

• A profile is a summary, which obscures and discards details. It also usually doesn’t
show you what’s missing. It’s unwise to take a profile at face value.

• There are two kinds of time consumption: working and waiting. Many profiling
tools can only measure work done, so wait analysis is sometimes an important
supplement, especially when CPU usage is low but things still aren’t getting done.

• Optimization is not the same thing as improvement. Stop working when further
improvement is not worth the cost.

112 | Chapter 3: Profiling Server Performance

• Pay attention to your intuition, but try to use it to direct your analysis, not to decide
on changes to the system. Base your decisions on data, not gut feeling, as much as
possible.

The overall approach we showed to solving performance problems is to first clarify the
question, then choose the appropriate technique to answer it. If you’re trying to see if
you can improve the server’s performance overall, a good way to start is to log all the
queries and produce a system-wide profile with pt-query-digest. If you’re hunting for
bad queries you might not know about, logging and profiling will also help. Look for
top time consumers, queries that are causing a bad user experience, and queries that
are highly variable or have strange response-time histograms. When you find “bad”
queries, drill into them by looking at the detailed report from pt-query-digest, using
SHOW PROFILE, and using other tools such as EXPLAIN.

If the queries are performing badly for no discernible reason, you might be experiencing
sporadic server-wide problems. To find out, you can measure and plot the server’s
status counters at a fine level of detail. If this reveals a problem, use the same data to
formulate a reliable trigger condition, so you can capture a burst of detailed diagnostic
data. Invest as much time and care as necessary to find a good trigger condition that
avoids false positives and false negatives. If you capture the problem in action but you
still don’t understand the cause, gather more data, or ask for help.

You’re working with systems you can’t measure fully, but they’re just state machines,
so if you are careful, logical, and persistent, you will usually get results. Try not to
confuse effects with causes, and try not to make changes until you have identified the
problem.

The theoretically pure approach of top-down profiling and exhaustive measurement is
the ideal toward which we aspire, but we often have to deal with real systems. Real
systems are complex and inadequately instrumented, so we do the best we can with
what we have. Tools such as pt-query-digest and the MySQL Enterprise Monitor’s query
analyzer aren’t perfect, and often won’t show conclusive proof of a problem’s cause.
But they are good enough to get the job done much of the time.

Summary | 113

CHAPTER 4

Optimizing Schema and Data Types

Good logical and physical design is the cornerstone of high performance, and you must
design your schema for the specific queries you will run. This often involves trade-offs.
For example, a denormalized schema can speed up some types of queries but slow down
others. Adding counter and summary tables is a great way to optimize queries, but they
can be expensive to maintain. MySQL’s particular features and implementation details
influence this quite a bit.

This chapter and the following one, which focuses on indexing, cover the MySQL-
specific bits of schema design. We assume that you know how to design databases, so
this is not an introductory chapter, or even an advanced chapter, on database design.
It’s a chapter on MySQL database design—it’s about what is different when designing
databases with MySQL rather than other relational database management systems. If
you need to study the basics of database design, we suggest Clare Churcher’s book
Beginning Database Design (Apress).

This chapter is preparation for the two that follow. In these three chapters, we will
explore the interaction of logical design, physical design, and query execution. This
requires a big-picture approach as well as attention to details. You need to understand
the whole system to understand how each piece will affect others. You might find it
useful to review this chapter after reading the chapters on indexing and query optimi-
zation. Many of the topics discussed can’t be considered in isolation.

Choosing Optimal Data Types
MySQL supports a large variety of data types, and choosing the correct type to store
your data is crucial to getting good performance. The following simple guidelines can
help you make better choices, no matter what type of data you are storing:

Smaller is usually better.
In general, try to use the smallest data type that can correctly store and represent
your data. Smaller data types are usually faster, because they use less space on the

115

disk, in memory, and in the CPU cache. They also generally require fewer CPU
cycles to process.

Make sure you don’t underestimate the range of values you need to store, though,
because increasing the data type range in multiple places in your schema can be a
painful and time-consuming operation. If you’re in doubt as to which is the best
data type to use, choose the smallest one that you don’t think you’ll exceed. (If the
system is not very busy or doesn’t store much data, or if you’re at an early phase
in the design process, you can change it easily later.)

Simple is good.
Fewer CPU cycles are typically required to process operations on simpler data
types. For example, integers are cheaper to compare than characters, because
character sets and collations (sorting rules) make character comparisons compli-
cated. Here are two examples: you should store dates and times in MySQL’s built-
in types instead of as strings, and you should use integers for IP addresses. We
discuss these topics further later.

Avoid NULL if possible.
A lot of tables include nullable columns even when the application does not need
to store NULL (the absence of a value), merely because it’s the default. It’s usually
best to specify columns as NOT NULL unless you intend to store NULL in them.

It’s harder for MySQL to optimize queries that refer to nullable columns, because
they make indexes, index statistics, and value comparisons more complicated. A
nullable column uses more storage space and requires special processing inside
MySQL. When a nullable column is indexed, it requires an extra byte per entry
and can even cause a fixed-size index (such as an index on a single integer column)
to be converted to a variable-sized one in MyISAM.

The performance improvement from changing NULL columns to NOT NULL is usually
small, so don’t make it a priority to find and change them on an existing schema
unless you know they are causing problems. However, if you’re planning to index
columns, avoid making them nullable if possible.

There are exceptions, of course. For example, it’s worth mentioning that InnoDB
stores NULL with a single bit, so it can be pretty space-efficient for sparsely populated
data. This doesn’t apply to MyISAM, though.

The first step in deciding what data type to use for a given column is to determine what
general class of types is appropriate: numeric, string, temporal, and so on. This is usu-
ally pretty straightforward, but we mention some special cases where the choice is
unintuitive.

The next step is to choose the specific type. Many of MySQL’s data types can store the
same kind of data but vary in the range of values they can store, the precision they
permit, or the physical space (on disk and in memory) they require. Some data types
also have special behaviors or properties.

116 | Chapter 4: Optimizing Schema and Data Types

For example, a DATETIME and a TIMESTAMP column can store the same kind of data: date
and time, to a precision of one second. However, TIMESTAMP uses only half as much
storage space, is time zone–aware, and has special autoupdating capabilities. On the
other hand, it has a much smaller range of allowable values, and sometimes its special
capabilities can be a handicap.

We discuss base data types here. MySQL supports many aliases for compatibility, such
as INTEGER, BOOL, and NUMERIC. These are only aliases. They can be confusing, but they
don’t affect performance. If you create a table with an aliased data type and then ex-
amine SHOW CREATE TABLE, you’ll see that MySQL reports the base type, not the alias
you used.

Whole Numbers
There are two kinds of numbers: whole numbers and real numbers (numbers with a
fractional part). If you’re storing whole numbers, use one of the integer types: TINYINT,
SMALLINT, MEDIUMINT, INT, or BIGINT. These require 8, 16, 24, 32, and 64 bits of storage
space, respectively. They can store values from −2(N–1) to 2(N–1)–1, where N is the number
of bits of storage space they use.

Integer types can optionally have the UNSIGNED attribute, which disallows negative val-
ues and approximately doubles the upper limit of positive values you can store. For
example, a TINYINT UNSIGNED can store values ranging from 0 to 255 instead of from
−128 to 127.

Signed and unsigned types use the same amount of storage space and have the same
performance, so use whatever’s best for your data range.

Your choice determines how MySQL stores the data, in memory and on disk. However,
integer computations generally use 64-bit BIGINT integers, even on 32-bit architectures.
(The exceptions are some aggregate functions, which use DECIMAL or DOUBLE to perform
computations.)

MySQL lets you specify a “width” for integer types, such as INT(11). This is meaningless
for most applications: it does not restrict the legal range of values, but simply specifies
the number of characters MySQL’s interactive tools (such as the command-line client)
will reserve for display purposes. For storage and computational purposes, INT(1) is
identical to INT(20).

Third-party storage engines, such as Infobright, sometimes have their
own storage formats and compression schemes, and don’t necessarily
use those that are common to MySQL’s built-in storage engines.

Choosing Optimal Data Types | 117

Real Numbers
Real numbers are numbers that have a fractional part. However, they aren’t just for
fractional numbers; you can also use DECIMAL to store integers that are so large they
don’t fit in BIGINT. MySQL supports both exact and inexact types.

The FLOAT and DOUBLE types support approximate calculations with standard floating-
point math. If you need to know exactly how floating-point results are calculated, you
will need to research your platform’s floating-point implementation.

The DECIMAL type is for storing exact fractional numbers. In MySQL 5.0 and newer, the
DECIMAL type supports exact math. MySQL 4.1 and earlier used floating-point math to
perform computations on DECIMAL values, which could give strange results because of
loss of precision. In these versions of MySQL, DECIMAL was only a “storage type.”

The server itself performs DECIMAL math in MySQL 5.0 and newer, because CPUs don’t
support the computations directly. Floating-point math is significantly faster, because
the CPU performs the computations natively.

Both floating-point and DECIMAL types let you specify a precision. For a DECIMAL column,
you can specify the maximum allowed digits before and after the decimal point. This
influences the column’s space consumption. MySQL 5.0 and newer pack the digits into
a binary string (nine digits per four bytes). For example, DECIMAL(18, 9) will store nine
digits from each side of the decimal point, using nine bytes in total: four for the digits
before the decimal point, one for the decimal point itself, and four for the digits after
the decimal point.

A DECIMAL number in MySQL 5.0 and newer can have up to 65 digits. Earlier MySQL
versions had a limit of 254 digits and stored the values as unpacked strings (one byte
per digit). However, these versions of MySQL couldn’t actually use such large numbers
in computations, because DECIMAL was just a storage format; DECIMAL numbers were
converted to DOUBLEs for computational purposes,

You can specify a floating-point column’s desired precision in a couple of ways, which
can cause MySQL to silently choose a different data type or to round values when you
store them. These precision specifiers are nonstandard, so we suggest that you specify
the type you want but not the precision.

Floating-point types typically use less space than DECIMAL to store the same range of
values. A FLOAT column uses four bytes of storage. DOUBLE consumes eight bytes and has
greater precision and a larger range of values than FLOAT. As with integers, you’re
choosing only the storage type; MySQL uses DOUBLE for its internal calculations on
floating-point types.

Because of the additional space requirements and computational cost, you should use
DECIMAL only when you need exact results for fractional numbers—for example, when
storing financial data. But in some high-volume cases it actually makes sense to use a
BIGINT instead, and store the data as some multiple of the smallest fraction of currency

118 | Chapter 4: Optimizing Schema and Data Types

you need to handle. Suppose you are required to store financial data to the ten-
thousandth of a cent. You can multiply all dollar amounts by a million and store the
result in a BIGINT, avoiding both the imprecision of floating-point storage and the cost
of the precise DECIMAL math.

String Types
MySQL supports quite a few string data types, with many variations on each. These
data types changed greatly in versions 4.1 and 5.0, which makes them even more com-
plicated. Since MySQL 4.1, each string column can have its own character set and set
of sorting rules for that character set, or collation (see Chapter 7 for more on these
topics). This can impact performance greatly.

VARCHAR and CHAR types

The two major string types are VARCHAR and CHAR, which store character values. Un-
fortunately, it’s hard to explain exactly how these values are stored on disk and in
memory, because the implementations are storage engine–dependent. We assume you
are using InnoDB and/or MyISAM. If not, you should read the documentation for your
storage engine.

Let’s take a look at how VARCHAR and CHAR values are typically stored on disk. Be aware
that a storage engine may store a CHAR or VARCHAR value differently in memory from how
it stores that value on disk, and that the server may translate the value into yet another
storage format when it retrieves it from the storage engine. Here’s a general comparison
of the two types:

VARCHAR
VARCHAR stores variable-length character strings and is the most common string
data type. It can require less storage space than fixed-length types, because it uses
only as much space as it needs (i.e., less space is used to store shorter values). The
exception is a MyISAM table created with ROW_FORMAT=FIXED, which uses a fixed
amount of space on disk for each row and can thus waste space.

VARCHAR uses 1 or 2 extra bytes to record the value’s length: 1 byte if the column’s
maximum length is 255 bytes or less, and 2 bytes if it’s more. Assuming the
latin1 character set, a VARCHAR(10) will use up to 11 bytes of storage space. A
VARCHAR(1000) can use up to 1002 bytes, because it needs 2 bytes to store length
information.

VARCHAR helps performance because it saves space. However, because the rows are
variable-length, they can grow when you update them, which can cause extra work.
If a row grows and no longer fits in its original location, the behavior is storage
engine–dependent. For example, MyISAM may fragment the row, and InnoDB
may need to split the page to fit the row into it. Other storage engines may never
update data in-place at all.

Choosing Optimal Data Types | 119

It’s usually worth using VARCHAR when the maximum column length is much larger
than the average length; when updates to the field are rare, so fragmentation is not
a problem; and when you’re using a complex character set such as UTF-8, where
each character uses a variable number of bytes of storage.

In version 5.0 and newer, MySQL preserves trailing spaces when you store and
retrieve values. In versions 4.1 and older, MySQL strips trailing spaces.

It’s trickier with InnoDB, which can store long VARCHAR values as BLOBs. We discuss
this later.

CHAR
CHAR is fixed-length: MySQL always allocates enough space for the specified num-
ber of characters. When storing a CHAR value, MySQL removes any trailing spaces.
(This was also true of VARCHAR in MySQL 4.1 and older versions—CHAR and VAR
CHAR were logically identical and differed only in storage format.) Values are padded
with spaces as needed for comparisons.

CHAR is useful if you want to store very short strings, or if all the values are nearly
the same length. For example, CHAR is a good choice for MD5 values for user pass-
words, which are always the same length. CHAR is also better than VARCHAR for data
that’s changed frequently, because a fixed-length row is not prone to fragmenta-
tion. For very short columns, CHAR is also more efficient than VARCHAR; a CHAR(1)
designed to hold only Y and N values will use only one byte in a single-byte character
set,1 but a VARCHAR(1) would use two bytes because of the length byte.

This behavior can be a little confusing, so we’ll illustrate with an example. First, we
create a table with a single CHAR(10) column and store some values in it:

mysql> CREATE TABLE char_test(char_col CHAR(10));
mysql> INSERT INTO char_test(char_col) VALUES
 -> ('string1'), (' string2'), ('string3 ');

When we retrieve the values, the trailing spaces have been stripped away:

mysql> SELECT CONCAT("'", char_col, "'") FROM char_test;
+----------------------------+
| CONCAT("'", char_col, "'") |
+----------------------------+
| 'string1' |
| ' string2' |
| 'string3' |
+----------------------------+

If we store the same values into a VARCHAR(10) column, we get the following result upon
retrieval:

1. Remember that the length is specified in characters, not bytes. A multibyte character set can require more
than one byte to store each character.

120 | Chapter 4: Optimizing Schema and Data Types

mysql> SELECT CONCAT("'", varchar_col, "'") FROM varchar_test;
+-------------------------------+
| CONCAT("'", varchar_col, "'") |
+-------------------------------+
| 'string1' |
| ' string2' |
| 'string3 ' |
+-------------------------------+

How data is stored is up to the storage engines, and not all storage engines handle fixed-
length and variable-length data the same way. The Memory storage engine uses fixed-
size rows, so it has to allocate the maximum possible space for each value even when
it’s a variable-length field.2 However, the padding and trimming behavior is consistent
across storage engines, because the MySQL server itself handles that.

The sibling types for CHAR and VARCHAR are BINARY and VARBINARY, which store binary
strings. Binary strings are very similar to conventional strings, but they store bytes
instead of characters. Padding is also different: MySQL pads BINARY values with \0 (the
zero byte) instead of spaces and doesn’t strip the pad value on retrieval.3

These types are useful when you need to store binary data and want MySQL to compare
the values as bytes instead of characters. The advantage of byte-wise comparisons is
more than just a matter of case insensitivity. MySQL literally compares BINARY strings
one byte at a time, according to the numeric value of each byte. As a result, binary
comparisons can be much simpler than character comparisons, so they are faster.

Generosity Can Be Unwise
Storing the value 'hello' requires the same amount of space in a VARCHAR(5) and a
VARCHAR(200) column. Is there any advantage to using the shorter column?

As it turns out, there is a big advantage. The larger column can use much more memory,
because MySQL often allocates fixed-size chunks of memory to hold values internally.
This is especially bad for sorting or operations that use in-memory temporary tables.
The same thing happens with filesorts that use on-disk temporary tables.

The best strategy is to allocate only as much space as you really need.

BLOB and TEXT types

BLOB and TEXT are string data types designed to store large amounts of data as either
binary or character strings, respectively.

2. The Memory engine in Percona Server supports variable-length rows.

3. Be careful with the BINARY type if the value must remain unchanged after retrieval. MySQL will pad it to
the required length with \0s.

Choosing Optimal Data Types | 121

In fact, they are each families of data types: the character types are TINYTEXT, SMALL
TEXT, TEXT, MEDIUMTEXT, and LONGTEXT, and the binary types are TINYBLOB, SMALLBLOB,
BLOB, MEDIUMBLOB, and LONGBLOB. BLOB is a synonym for SMALLBLOB, and TEXT is a synonym
for SMALLTEXT.

Unlike with all other data types, MySQL handles each BLOB and TEXT value as an object
with its own identity. Storage engines often store them specially; InnoDB may use a
separate “external” storage area for them when they’re large. Each value requires from
one to four bytes of storage space in the row and enough space in external storage to
actually hold the value.

The only difference between the BLOB and TEXT families is that BLOB types store binary
data with no collation or character set, but TEXT types have a character set and collation.

MySQL sorts BLOB and TEXT columns differently from other types: instead of sorting the
full length of the string, it sorts only the first max_sort_length bytes of such columns.
If you need to sort by only the first few characters, you can either decrease the
max_sort_length server variable or use ORDER BY SUBSTRING(column, length).

MySQL can’t index the full length of these data types and can’t use the indexes for
sorting. (You’ll find more on these topics in the next chapter.)

On-Disk Temporary Tables and Sort Files
Because the Memory storage engine doesn’t support the BLOB and TEXT types, queries
that use BLOB or TEXT columns and need an implicit temporary table will have to use on-
disk MyISAM temporary tables, even for only a few rows. (Percona Server’s Memory
storage engine supports the BLOB and TEXT types, but at the time of writing, it doesn’t
yet prevent on-disk tables from being used.)

This can result in a serious performance overhead. Even if you configure MySQL to
store temporary tables on a RAM disk, many expensive operating system calls will be
required.

The best solution is to avoid using the BLOB and TEXT types unless you really need them.
If you can’t avoid them, you may be able to use the SUBSTRING(column, length) trick
everywhere a BLOB column is mentioned (including in the ORDER BY clause) to convert
the values to character strings, which will permit in-memory temporary tables. Just be
sure that you’re using a short enough substring that the temporary table doesn’t grow
larger than max_heap_table_size or tmp_table_size, or MySQL will convert the table
to an on-disk MyISAM table.

The worst-case length allocation also applies to sorting of values, so this trick can help
with both kinds of problems: creating large temporary tables and sort files, and creating
them on disk.

122 | Chapter 4: Optimizing Schema and Data Types

Here’s an example. Suppose you have a table with 10 million rows, which uses a couple
of gigabytes on disk. It has a VARCHAR(1000) column with the utf8 character set. This
can use up to 3 bytes per character, for a worst-case size of 3,000 bytes. If you mention
this column in your ORDER BY clause, a query against the whole table can require over
30 GB of temporary space just for the sort files!

If the Extra column of EXPLAIN contains “Using temporary,” the query uses an implicit
temporary table.

Using ENUM instead of a string type

Sometimes you can use an ENUM column instead of conventional string types. An ENUM
column can store a predefined set of distinct string values. MySQL stores them very
compactly, packed into one or two bytes depending on the number of values in the list.
It stores each value internally as an integer representing its position in the field defini-
tion list, and it keeps the “lookup table” that defines the number-to-string correspond-
ence in the table’s .frm file. Here’s an example:

mysql> CREATE TABLE enum_test(
 -> e ENUM('fish', 'apple', 'dog') NOT NULL
 ->);
mysql> INSERT INTO enum_test(e) VALUES('fish'), ('dog'), ('apple');

The three rows actually store integers, not strings. You can see the dual nature of the
values by retrieving them in a numeric context:

mysql> SELECT e + 0 FROM enum_test;
+-------+
| e + 0 |
+-------+
| 1 |
| 3 |
| 2 |
+-------+

This duality can be terribly confusing if you specify numbers for your ENUM constants,
as in ENUM('1', '2', '3'). We suggest you don’t do this.

Another surprise is that an ENUM field sorts by the internal integer values, not by the
strings themselves:

mysql> SELECT e FROM enum_test ORDER BY e;
+-------+
| e |
+-------+
| fish |
| apple |
| dog |
+-------+

Choosing Optimal Data Types | 123

You can work around this by specifying ENUM members in the order in which you want
them to sort. You can also use FIELD() to specify a sort order explicitly in your queries,
but this prevents MySQL from using the index for sorting:

mysql> SELECT e FROM enum_test ORDER BY FIELD(e, 'apple', 'dog', 'fish');
+-------+
| e |
+-------+
| apple |
| dog |
| fish |
+-------+

If we’d defined the values in alphabetical order, we wouldn’t have needed to do that.

The biggest downside of ENUM is that the list of strings is fixed, and adding or removing
strings requires the use of ALTER TABLE. Thus, it might not be a good idea to use ENUM
as a string data type when the list of allowed string values is likely to change arbitrarily
in the future, unless it’s acceptable to add them at the end of the list, which can be done
without a full rebuild of the table in MySQL 5.1.

Because MySQL stores each value as an integer and has to do a lookup to convert it to
its string representation, ENUM columns have some overhead. This is usually offset by
their smaller size, but not always. In particular, it can be slower to join a CHAR or
VARCHAR column to an ENUM column than to another CHAR or VARCHAR column.

To illustrate, we benchmarked how quickly MySQL performs such a join on a table in
one of our applications. The table has a fairly wide primary key:

CREATE TABLE webservicecalls (
 day date NOT NULL,
 account smallint NOT NULL,
 service varchar(10) NOT NULL,
 method varchar(50) NOT NULL,
 calls int NOT NULL,
 items int NOT NULL,
 time float NOT NULL,
 cost decimal(9,5) NOT NULL,
 updated datetime,
 PRIMARY KEY (day, account, service, method)
) ENGINE=InnoDB;

The table contains about 110,000 rows and is only about 10 MB, so it fits entirely in
memory. The service column contains 5 distinct values with an average length of 4
characters, and the method column contains 71 values with an average length of 20
characters.

We made a copy of this table and converted the service and method columns to ENUM,
as follows:

CREATE TABLE webservicecalls_enum (
 ... omitted ...
 service ENUM(...values omitted...) NOT NULL,
 method ENUM(...values omitted...) NOT NULL,

124 | Chapter 4: Optimizing Schema and Data Types

 ... omitted ...
) ENGINE=InnoDB;

We then measured the performance of joining the tables by the primary key columns.
Here is the query we used:

mysql> SELECT SQL_NO_CACHE COUNT(*)
 -> FROM webservicecalls
 -> JOIN webservicecalls USING(day, account, service, method);

We varied this query to join the VARCHAR and ENUM columns in different combinations.
Table 4-1 shows the results.

Table 4-1. Speed of joining VARCHAR and ENUM columns

Test Queries per second

VARCHAR joined to VARCHAR 2.6

VARCHAR joined to ENUM 1.7

ENUM joined to VARCHAR 1.8

ENUM joined to ENUM 3.5

The join is faster after converting the columns to ENUM, but joining the ENUM columns to
VARCHAR columns is slower. In this case, it looks like a good idea to convert these col-
umns, as long as they don’t have to be joined to VARCHAR columns. It’s a common design
practice to use “lookup tables” with integer primary keys to avoid using character-based
values in joins.

However, there’s another benefit to converting the columns: according to the Data_
length column from SHOW TABLE STATUS, converting these two columns to ENUM made
the table about 1/3 smaller. In some cases, this might be beneficial even if the ENUM
columns have to be joined to VARCHAR columns. Also, the primary key itself is only about
half the size after the conversion. Because this is an InnoDB table, if there are any other
indexes on this table, reducing the primary key size will make them much smaller, too.
We explain this in the next chapter.

Date and Time Types
MySQL has many types for various kinds of date and time values, such as YEAR and
DATE. The finest granularity of time MySQL can store is one second. (MariaDB has
microsecond-granularity temporal types.) However, it can do temporal computations
with microsecond granularity, and we’ll show you how to work around the storage
limitations.

Most of the temporal types have no alternatives, so there is no question of which one
is the best choice. The only question is what to do when you need to store both the
date and the time. MySQL offers two very similar data types for this purpose: DATE

Choosing Optimal Data Types | 125

TIME and TIMESTAMP. For many applications, either will work, but in some cases, one
works better than the other. Let’s take a look:

DATETIME
This type can hold a large range of values, from the year 1001 to the year 9999,
with a precision of one second. It stores the date and time packed into an integer
in YYYYMMDDHHMMSS format, independent of time zone. This uses eight bytes
of storage space.

By default, MySQL displays DATETIME values in a sortable, unambiguous format,
such as 2008-01-16 22:37:08. This is the ANSI standard way to represent dates
and times.

TIMESTAMP
As its name implies, the TIMESTAMP type stores the number of seconds elapsed since
midnight, January 1, 1970, Greenwich Mean Time (GMT)—the same as a Unix
timestamp. TIMESTAMP uses only four bytes of storage, so it has a much smaller
range than DATETIME: from the year 1970 to partway through the year 2038. MySQL
provides the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions to convert a Unix
timestamp to a date, and vice versa.

MySQL 4.1 and newer versions format TIMESTAMP values just like DATETIME values,
but MySQL 4.0 and older versions display them without any punctuation between
the parts. This is only a display formatting difference; the TIMESTAMP storage format
is the same in all MySQL versions.

The value a TIMESTAMP displays also depends on the time zone. The MySQL server,
operating system, and client connections all have time zone settings.

Thus, a TIMESTAMP that stores the value 0 actually displays it as 1969-12-31 19:00:00
in Eastern Standard Time (EST), which has a five-hour offset from GMT. It’s worth
emphasizing this difference: if you store or access data from multiple time zones,
the behavior of TIMESTAMP and DATETIME will be very different. The former preserves
values relative to the time zone in use, while the latter preserves the textual repre-
sentation of the date and time.

TIMESTAMP also has special properties that DATETIME doesn’t have. By default,
MySQL will set the first TIMESTAMP column to the current time when you insert a
row without specifying a value for the column.4 MySQL also updates the first
TIMESTAMP column’s value by default when you update the row, unless you assign
a value explicitly in the UPDATE statement. You can configure the insertion and
update behaviors for any TIMESTAMP column. Finally, TIMESTAMP columns are NOT
NULL by default, which is different from every other data type.

4. The rules for TIMESTAMP behavior are complex and have changed in various MySQL versions, so you should
verify that you are getting the behavior you want. It’s usually a good idea to examine the output of SHOW
CREATE TABLE after making changes to TIMESTAMP columns.

126 | Chapter 4: Optimizing Schema and Data Types

Special behavior aside, in general if you can use TIMESTAMP you should, because it is
more space-efficient than DATETIME. Sometimes people store Unix timestamps as integer
values, but this usually doesn’t gain you anything. The integer format is often less
convenient to deal with, so we do not recommend doing this.

What if you need to store a date and time value with subsecond resolution? MySQL
currently does not have an appropriate data type for this, but you can use your own
storage format: you can use the BIGINT data type and store the value as a timestamp in
microseconds, or you can use a DOUBLE and store the fractional part of the second after
the decimal point. Both approaches will work well. Or you can use MariaDB instead
of MySQL.

Bit-Packed Data Types
MySQL has a few storage types that use individual bits within a value to store data
compactly. All of these types are technically string types, regardless of the underlying
storage format and manipulations:

BIT
Before MySQL 5.0, BIT is just a synonym for TINYINT. But in MySQL 5.0 and newer,
it’s a completely different data type with special characteristics. We discuss the
new behavior here.

You can use a BIT column to store one or many true/false values in a single column.
BIT(1) defines a field that contains a single bit, BIT(2) stores 2 bits, and so on; the
maximum length of a BIT column is 64 bits.

BIT behavior varies between storage engines. MyISAM packs the columns together
for storage purposes, so 17 individual BIT columns require only 17 bits to store
(assuming none of the columns permits NULL). MyISAM rounds that to three bytes
for storage. Other storage engines, such as Memory and InnoDB, store each column
as the smallest integer type large enough to contain the bits, so you don’t save any
storage space.

MySQL treats BIT as a string type, not a numeric type. When you retrieve a BIT
(1) value, the result is a string but the contents are the binary value 0 or 1, not the
ASCII value “0” or “1”. However, if you retrieve the value in a numeric context,
the result is the number to which the bit string converts. Keep this in mind if you
need to compare the result to another value. For example, if you store the value
b'00111001' (which is the binary equivalent of 57) into a BIT(8) column and retrieve
it, you will get the string containing the character code 57. This happens to be the
ASCII character code for “9”. But in a numeric context, you’ll get the value 57:

mysql> CREATE TABLE bittest(a bit(8));
mysql> INSERT INTO bittest VALUES(b'00111001');
mysql> SELECT a, a + 0 FROM bittest;

Choosing Optimal Data Types | 127

+------+-------+
| a | a + 0 |
+------+-------+
| 9 | 57 |
+------+-------+

This can be very confusing, so we recommend that you use BIT with caution. For
most applications, we think it is a better idea to avoid this type.

If you want to store a true/false value in a single bit of storage space, another option
is to create a nullable CHAR(0) column. This column is capable of storing either the
absence of a value (NULL) or a zero-length value (the empty string).

SET
If you need to store many true/false values, consider combining many columns into
one with MySQL’s native SET data type, which MySQL represents internally as a
packed set of bits. It uses storage efficiently, and MySQL has functions such as
FIND_IN_SET() and FIELD() that make it easy to use in queries. The major drawback
is the cost of changing the column’s definition: this requires an ALTER TABLE, which
is very expensive on large tables (but see the workaround later in this chapter). In
general, you also can’t use indexes for lookups on SET columns.

Bitwise operations on integer columns
An alternative to SET is to use an integer as a packed set of bits. For example, you
can pack eight bits in a TINYINT and manipulate them with bitwise operators. You
can make this easier by defining named constants for each bit in your application
code.

The major advantage of this approach over SET is that you can change the “enu-
meration” the field represents without an ALTER TABLE. The drawback is that your
queries are harder to write and understand (what does it mean when bit 5 is set?).
Some people are comfortable with bitwise manipulations and some aren’t, so
whether you’ll want to try this technique is largely a matter of taste.

An example application for packed bits is an access control list (ACL) that stores per-
missions. Each bit or SET element represents a value such as CAN_READ, CAN_WRITE, or
CAN_DELETE. If you use a SET column, you’ll let MySQL store the bit-to-value mapping
in the column definition; if you use an integer column, you’ll store the mapping in your
application code. Here’s what the queries would look like with a SET column:

mysql> CREATE TABLE acl (
 -> perms SET('CAN_READ', 'CAN_WRITE', 'CAN_DELETE') NOT NULL
 ->);
mysql> INSERT INTO acl(perms) VALUES ('CAN_READ,CAN_DELETE');
mysql> SELECT perms FROM acl WHERE FIND_IN_SET('AN_READ', perms);
+---------------------+
| perms |
+---------------------+
| CAN_READ,CAN_DELETE |
+---------------------+

If you used an integer, you could write that example as follows:

128 | Chapter 4: Optimizing Schema and Data Types

mysql> SET @CAN_READ := 1 << 0,
 -> @CAN_WRITE := 1 << 1,
 -> @CAN_DELETE := 1 << 2;
mysql> CREATE TABLE acl (
 -> perms TINYINT UNSIGNED NOT NULL DEFAULT 0
 ->);
mysql> INSERT INTO acl(perms) VALUES(@CAN_READ + @CAN_DELETE);
mysql> SELECT perms FROM acl WHERE perms & @CAN_READ;
+-------+
| perms |
+-------+
| 5 |
+-------+

We’ve used variables to define the values, but you can use constants in your code
instead.

Choosing Identifiers
Choosing a good data type for an identifier column is very important. You’re more
likely to compare these columns to other values (for example, in joins) and to use them
for lookups than other columns. You’re also likely to use them in other tables as foreign
keys, so when you choose a data type for an identifier column, you’re probably choosing
the type in related tables as well. (As we demonstrated earlier in this chapter, it’s a good
idea to use the same data types in related tables, because you’re likely to use them for
joins.)

When choosing a type for an identifier column, you need to consider not only the
storage type, but also how MySQL performs computations and comparisons on that
type. For example, MySQL stores ENUM and SET types internally as integers but converts
them to strings when doing comparisons in a string context.

Once you choose a type, make sure you use the same type in all related tables. The
types should match exactly, including properties such as UNSIGNED.5 Mixing different
data types can cause performance problems, and even if it doesn’t, implicit type con-
versions during comparisons can create hard-to-find errors. These may even crop up
much later, after you’ve forgotten that you’re comparing different data types.

Choose the smallest size that can hold your required range of values, and leave room
for future growth if necessary. For example, if you have a state_id column that stores
US state names, you don’t need thousands or millions of values, so don’t use an INT.
A TINYINT should be sufficient and is three bytes smaller. If you use this value as a foreign
key in other tables, three bytes can make a big difference. Here are a few tips:

5. If you’re using the InnoDB storage engine, you may not be able to create foreign keys unless the data
types match exactly. The resulting error message, “ERROR 1005 (HY000): Can’t create table,” can be
confusing depending on the context, and questions about it come up often on MySQL mailing lists.
(Oddly, you can create foreign keys between VARCHAR columns of different lengths.)

Choosing Optimal Data Types | 129

Integer types
Integers are usually the best choice for identifiers, because they’re fast and they
work with AUTO_INCREMENT.

ENUM and SET
The ENUM and SET types are generally a poor choice for identifiers, though they can
be okay for static “definition tables” that contain status or “type” values. ENUM and
SET columns are appropriate for holding information such as an order’s status, a
product’s type, or a person’s gender.

As an example, if you use an ENUM field to define a product’s type, you might want
a lookup table primary keyed on an identical ENUM field. (You could add columns
to the lookup table for descriptive text, to generate a glossary, or to provide mean-
ingful labels in a pull-down menu on a website.) In this case, you’ll want to use the
ENUM as an identifier, but for most purposes you should avoid doing so.

String types
Avoid string types for identifiers if possible, because they take up a lot of space and
are generally slower than integer types. Be especially cautious when using string
identifiers with MyISAM tables. MyISAM uses packed indexes for strings by de-
fault, which can make lookups much slower. In our tests, we’ve noted up to six
times slower performance with packed indexes on MyISAM.

You should also be very careful with completely “random” strings, such as those
produced by MD5(), SHA1(), or UUID(). Each new value you generate with them will
be distributed in arbitrary ways over a large space, which can slow INSERT and some
types of SELECT queries:6

• They slow INSERT queries because the inserted value has to go in a random
location in indexes. This causes page splits, random disk accesses, and clus-
tered index fragmentation for clustered storage engines. More about this in
the next chapter.

• They slow SELECT queries because logically adjacent rows will be widely dis-
persed on disk and in memory.

• Random values cause caches to perform poorly for all types of queries because
they defeat locality of reference, which is how caching works. If the entire
dataset is equally “hot,” there is no advantage to having any particular part of
the data cached in memory, and if the working set does not fit in memory, the
cache will have a lot of flushes and misses.

If you do store UUID values, you should remove the dashes or, even better, convert the
UUID values to 16-byte numbers with UNHEX() and store them in a BINARY(16) column.
You can retrieve the values in hexadecimal format with the HEX() function.

6. On the other hand, for some very large tables with many writers, such pseudorandom values can actually
help eliminate “hot spots.”

130 | Chapter 4: Optimizing Schema and Data Types

Values generated by UUID() have different characteristics from those generated by a
cryptographic hash function such as SHA1(): the UUID values are unevenly distributed
and are somewhat sequential. They’re still not as good as a monotonically increasing
integer, though.

Beware of Autogenerated Schemas
We’ve covered the most important data type considerations (some with serious and
others with more minor performance implications), but we haven’t yet told you about
the evils of autogenerated schemas.

Badly written schema migration programs and programs that autogenerate schemas
can cause severe performance problems. Some programs use large VARCHAR fields for
everything, or use different data types for columns that will be compared in joins. Be
sure to double-check a schema if it was created for you automatically.

Object-relational mapping (ORM) systems (and the “frameworks” that use them) are
another frequent performance nightmare. Some of these systems let you store any type
of data in any type of backend data store, which usually means they aren’t designed to
use the strengths of any of the data stores. Sometimes they store each property of each
object in a separate row, even using timestamp-based versioning, so there are multiple
versions of each property!

This design may appeal to developers, because it lets them work in an object-oriented
fashion without needing to think about how the data is stored. However, applications
that “hide complexity from developers” usually don’t scale well. We suggest you think
carefully before trading performance for developer productivity, and always test on a
realistically large dataset, so you don’t discover performance problems too late.

Special Types of Data
Some kinds of data don’t correspond directly to the available built-in types. A time-
stamp with subsecond resolution is one example; we showed you some options for
storing such data earlier in the chapter.

Another example is an IPv4 address. People often use VARCHAR(15) columns to store IP
addresses. However, they are really unsigned 32-bit integers, not strings. The dotted-
quad notation is just a way of writing it out so that humans can read it more easily. You
should store IP addresses as unsigned integers. MySQL provides the INET_ATON() and
INET_NTOA() functions to convert between the two representations.

Schema Design Gotchas in MySQL
Although there are universally bad and good design principles, there are also issues that
arise from how MySQL is implemented, and that means you can make MySQL-specific
mistakes, too. This section discusses problems that we’ve observed in schema designs

Schema Design Gotchas in MySQL | 131

with MySQL. It might help you avoid those mistakes and choose alternatives that work
better with MySQL’s specific implementation.

Too many columns
MySQL’s storage engine API works by copying rows between the server and the
storage engine in a row buffer format; the server then decodes the buffer into col-
umns. But it can be costly to turn the row buffer into the row data structure with
the decoded columns. MyISAM’s fixed row format actually matches the server’s
row format exactly, so no conversion is needed. However, MyISAM’s variable row
format and InnoDB’s row format always require conversion. The cost of this con-
version depends on the number of columns. We discovered that this can become
expensive when we investigated an issue with high CPU consumption for a cus-
tomer with extremely wide tables (hundreds of columns), even though only a few
columns were actually used. If you’re planning for hundreds of columns, be aware
that the server’s performance characteristics will be a bit different.

Too many joins
The so-called entity-attribute-value (EAV) design pattern is a classic case of a uni-
versally bad design pattern that especially doesn’t work well in MySQL. MySQL
has a limitation of 61 tables per join, and EAV databases require many self-joins.
We’ve seen more than a few EAV databases eventually exceed this limit. Even at
many fewer joins than 61, however, the cost of planning and optimizing the query
can become problematic for MySQL. As a rough rule of thumb, it’s better to have
a dozen or fewer tables per query if you need queries to execute very fast with high
concurrency.

The all-powerful ENUM
Beware of overusing ENUM. Here’s an example we saw:

CREATE TABLE ... (
 country enum('','0','1','2',...,'31')

The schema was sprinkled liberally with this pattern. This would probably be a
questionable design decision in any database with an enumerated value type, be-
cause it really should be an integer that is foreign-keyed to a “dictionary” or
“lookup” table anyway. But in MySQL, you can’t add a new country to the list
without an ALTER TABLE, which is a blocking operation in MySQL 5.0 and earlier,
and even in 5.1 and newer if you add the value anywhere but at the end of the list.
(We’ll show some hacks to address this later, but they’re just hacks.)

The ENUM in disguise
An ENUM permits the column to hold one value from a set of defined values. A SET
permits the column to hold one or more values from a set of defined values. Some-
times these can be easy to confuse. Here’s an example:

CREATE TABLE ...(
 is_default set('Y','N') NOT NULL default 'N'

132 | Chapter 4: Optimizing Schema and Data Types

That almost surely ought to be an ENUM instead of a SET, assuming that it can’t be
both true and false at the same time.

NULL not invented here
We wrote earlier about the benefits of avoiding NULL, and indeed we suggest con-
sidering alternatives when possible. Even when you do need to store a “no value”
fact in a table, you might not need to use NULL. Perhaps you can use zero, a special
value, or an empty string instead.

However, you can take this to extremes. Don’t be too afraid of using NULL when
you need to represent an unknown value. In some cases, it’s better to use NULL than
a magical constant. Selecting one value from the domain of a constrained type,
such as using −1 to represent an unknown integer, can complicate your code a lot,
introduce bugs, and just generally make a total mess out of things. Handling
NULL isn’t always easy, but it’s often better than the alternative.

Here’s one example we’ve seen pretty frequently:

CREATE TABLE ... (
 dt DATETIME NOT NULL DEFAULT '0000-00-00 00:00:00'

That bogus all-zeros value can cause lots of problems. (You can configure MySQL’s
SQL_MODE to disallow nonsense dates, which is an especially good practice for a new
application that hasn’t yet created a database full of bad data.)

On a related topic, MySQL does index NULLs, unlike Oracle, which doesn’t include
non-values in indexes.

Normalization and Denormalization
There are usually many ways to represent any given data, ranging from fully normalized
to fully denormalized and anything in between. In a normalized database, each fact is
represented once and only once. Conversely, in a denormalized database, information
is duplicated, or stored in multiple places.

If you’re not familiar with normalization, you should study it. There are many good
books on the topic and resources online; here, we just give a brief introduction to the
aspects you need to know for this chapter. Let’s start with the classic example of em-
ployees, departments, and department heads:

EMPLOYEE DEPARTMENT HEAD

Jones Accounting Jones

Smith Engineering Smith

Brown Accounting Jones

Green Engineering Smith

Normalization and Denormalization | 133

The problem with this schema is that inconsistencies can occur while the data is being
modified. Say Brown takes over as the head of the Accounting department. We need
to update multiple rows to reflect this change, and that’s a pain and introduces oppor-
tunities for error. If the “Jones” row says the head of the department is something
different from the “Brown” row, there’s no way to know which is right. It’s like the old
saying, “A person with two watches never knows what time it is.” Furthermore, we
can’t represent a department without employees—if we delete all employees in the
Accounting department, we lose all records about the department itself. To avoid these
problems, we need to normalize the table by separating the employee and department
entities. This process results in the following two tables for employees:

EMPLOYEE_NAME DEPARTMENT

Jones Accounting

Smith Engineering

Brown Accounting

Green Engineering

and departments:

DEPARTMENT HEAD

Accounting Jones

Engineering Smith

These tables are now in second normal form, which is good enough for many purposes.
However, second normal form is only one of many possible normal forms.

We’re using the last name as the primary key here for purposes of illus-
tration, because it’s the “natural identifier” of the data. In practice,
however, we wouldn’t do that. It’s not guaranteed to be unique, and it’s
usually a bad idea to use a long string for a primary key.

Pros and Cons of a Normalized Schema
People who ask for help with performance issues are frequently advised to normalize
their schemas, especially if the workload is write-heavy. This is often good advice. It
works well for the following reasons:

• Normalized updates are usually faster than denormalized updates.

• When the data is well normalized, there’s little or no duplicated data, so there’s
less data to change.

• Normalized tables are usually smaller, so they fit better in memory and perform
better.

134 | Chapter 4: Optimizing Schema and Data Types

• The lack of redundant data means there’s less need for DISTINCT or GROUP BY queries
when retrieving lists of values. Consider the preceding example: it’s impossible
to get a distinct list of departments from the denormalized schema without DIS
TINCT or GROUP BY, but if DEPARTMENT is a separate table, it’s a trivial query.

The drawbacks of a normalized schema usually have to do with retrieval. Any nontrivial
query on a well-normalized schema will probably require at least one join, and perhaps
several. This is not only expensive, but it can make some indexing strategies impossible.
For example, normalizing may place columns in different tables that would benefit
from belonging to the same index.

Pros and Cons of a Denormalized Schema
A denormalized schema works well because everything is in the same table, which
avoids joins.

If you don’t need to join tables, the worst case for most queries—even the ones that
don’t use indexes—is a full table scan. This can be much faster than a join when the
data doesn’t fit in memory, because it avoids random I/O.

A single table can also allow more efficient indexing strategies. Suppose you have a
website where users post their messages, and some users are premium users. Now say
you want to view the last 10 messages from premium users. If you’ve normalized the
schema and indexed the publishing dates of the messages, the query might look like
this:

mysql> SELECT message_text, user_name
 -> FROM message
 -> INNER JOIN user ON message.user_id=user.id
 -> WHERE user.account_type='premiumv
 -> ORDER BY message.published DESC LIMIT 10;

To execute this query efficiently, MySQL will need to scan the published index on
the message table. For each row it finds, it will need to probe into the user table and
check whether the user is a premium user. This is inefficient if only a small fraction of
users have premium accounts.

The other possible query plan is to start with the user table, select all premium users,
get all messages for them, and do a filesort. This will probably be even worse.

The problem is the join, which is keeping you from sorting and filtering simultaneously
with a single index. If you denormalize the data by combining the tables and add an
index on (account_type, published), you can write the query without a join. This will
be very efficient:

mysql> SELECT message_text,user_name
 -> FROM user_messages
 -> WHERE account_type='premium'
 -> ORDER BY published DESC
 -> LIMIT 10;

Normalization and Denormalization | 135

A Mixture of Normalized and Denormalized
Given that both normalized and denormalized schemas have benefits and drawbacks,
how can you choose the best design?

The truth is, fully normalized and fully denormalized schemas are like laboratory rats:
they usually have little to do with the real world. In the real world, you often need to
mix the approaches, possibly using a partially normalized schema, cache tables, and
other techniques.

The most common way to denormalize data is to duplicate, or cache, selected columns
from one table in another table. In MySQL 5.0 and newer, you can use triggers to update
the cached values, which makes the implementation easier.

In our website example, for instance, instead of denormalizing fully you can store
account_type in both the user and message tables. This avoids the insert and delete
problems that come with full denormalization, because you never lose information
about the user, even when there are no messages. It won’t make the user_message table
much larger, but it will let you select the data efficiently.

However, it’s now more expensive to update a user’s account type, because you have
to change it in both tables. To see whether that’s a problem, you must consider how
frequently you’ll have to make such changes and how long they will take, compared to
how often you’ll run the SELECT query.

Another good reason to move some data from the parent table to the child table is for
sorting. For example, it would be extremely expensive to sort messages by the author’s
name on a normalized schema, but you can perform such a sort very efficiently if you
cache the author_name in the message table and index it.

It can also be useful to cache derived values. If you need to display how many messages
each user has posted (as many forums do), either you can run an expensive subquery
to count the data every time you display it, or you can have a num_messages column in
the user table that you update whenever a user posts a new message.

Cache and Summary Tables
Sometimes the best way to improve performance is to keep redundant data in the same
table as the data from which it was derived. However, sometimes you’ll need to build
completely separate summary or cache tables, specially tuned for your retrieval needs.
This approach works best if you can tolerate slightly stale data, but sometimes you
really don’t have a choice (for instance, when you need to avoid complex and expensive
real-time updates).

The terms “cache table” and “summary table” don’t have standardized meanings. We
use the term “cache tables” to refer to tables that contain data that can be easily, if more
slowly, retrieved from the schema (i.e., data that is logically redundant). When we say

136 | Chapter 4: Optimizing Schema and Data Types

“summary tables,” we mean tables that hold aggregated data from GROUP BY queries
(i.e., data that is not logically redundant). Some people also use the term “roll-up tables”
for these tables, because the data has been “rolled up.”

Staying with the website example, suppose you need to count the number of messages
posted during the previous 24 hours. It would be impossible to maintain an accurate
real-time counter on a busy site. Instead, you could generate a summary table every
hour. You can often do this with a single query, and it’s more efficient than maintaining
counters in real time. The drawback is that the counts are not 100% accurate.

If you need to get an accurate count of messages posted during the previous 24-hour
period (with no staleness), there is another option. Begin with a per-hour summary
table. You can then count the exact number of messages posted in a given 24-hour
period by adding the number of messages in the 23 whole hours contained in that
period, the partial hour at the beginning of the period, and the partial hour at the end
of the period. Suppose your summary table is called msg_per_hr and is defined
as follows:

CREATE TABLE msg_per_hr (
 hr DATETIME NOT NULL,
 cnt INT UNSIGNED NOT NULL,
 PRIMARY KEY(hr)
);

You can find the number of messages posted in the previous 24 hours by adding the
results of the following three queries. We’re using LEFT(NOW(), 14) to round the current
date and time to the nearest hour:

mysql> SELECT SUM(cnt) FROM msg_per_hr
 -> WHERE hr BETWEEN
 -> CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 23 HOUR
 -> AND CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 1 HOUR;
mysql> SELECT COUNT(*) FROM message
 -> WHERE posted >= NOW() - INTERVAL 24 HOUR
 -> AND posted < CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 23 HOUR;
mysql> SELECT COUNT(*) FROM message
 -> WHERE posted >= CONCAT(LEFT(NOW(), 14), '00:00');

Either approach—an inexact count or an exact count with small range queries to fill
in the gaps—is more efficient than counting all the rows in the message table. This is
the key reason for creating summary tables. These statistics are expensive to compute
in real time, because they require scanning a lot of data, or queries that will only run
efficiently with special indexes that you don’t want to add because of the impact they
will have on updates. Computing the most active users or the most frequent “tags” are
typical examples of such operations.

Cache tables, in turn, are useful for optimizing search and retrieval queries. These
queries often require a particular table and index structure that is different from the
one you would use for general online transaction processing (OLTP) operations.

Cache and Summary Tables | 137

For example, you might need many different index combinations to speed up various
types of queries. These conflicting requirements sometimes demand that you create a
cache table that contains only some of the columns from the main table. A useful tech-
nique is to use a different storage engine for the cache table. If the main table uses
InnoDB, for example, by using MyISAM for the cache table you’ll gain a smaller index
footprint and the ability to do full-text search queries. Sometimes you might even want
to take the table completely out of MySQL and into a specialized system that can search
more efficiently, such as the Lucene or Sphinx search engines.

When using cache and summary tables, you have to decide whether to maintain their
data in real time or with periodic rebuilds. Which is better will depend on your appli-
cation, but a periodic rebuild not only can save resources but also can result in a more
efficient table that’s not fragmented and has fully sorted indexes.

When you rebuild summary and cache tables, you’ll often need their data to remain
available during the operation. You can achieve this by using a “shadow table,” which
is a table you build “behind” the real table. When you’re done building it, you can swap
the tables with an atomic rename. For example, if you need to rebuild my_summary, you
can create my_summary_new, fill it with data, and swap it with the real table:

mysql> DROP TABLE IF EXISTS my_summary_new, my_summary_old;
mysql> CREATE TABLE my_summary_new LIKE my_summary;
-- populate my_summary_new as desired
mysql> RENAME TABLE my_summary TO my_summary_old, my_summary_new TO my_summary;

If you rename the original my_summary table my_summary_old before assigning the name
my_summary to the newly rebuilt table, as we’ve done here, you can keep the old version
until you’re ready to overwrite it at the next rebuild. It’s handy to have it for a quick
rollback if the new table has a problem.

Materialized Views
Many database management systems, such as Oracle or Microsoft SQL Server, offer a
feature called materialized views. These are views that are actually precomputed and
stored as tables on disk, and can be refreshed and updated through various strategies.
MySQL doesn’t support this natively (we’ll go into details about its support for views
in Chapter 7). However, you can implement materialized views yourself, using Justin
Swanhart’s open source Flexviews tools (http://code.google.com/p/flexviews/). Flex-
views is more sophisticated than roll-your-own solutions and offers a lot of nice features
that make materialized views simpler to create and maintain. It consists of a few parts:

• A Change Data Capture (CDC) utility that reads the server’s binary logs and ex-
tracts relevant changes to rows

• A set of stored procedures that help define and manage the view definitions

• Tools to apply the changes to the materialized data in the database

138 | Chapter 4: Optimizing Schema and Data Types

http://code.google.com/p/flexviews/

In contrast to typical methods of maintaining summary and cache tables, Flexviews
can recalculate the contents of the materialized view incrementally by extracting delta
changes to the source tables. This means it can update the view without needing to
query the source data. For example, if you create a summary table that counts groups
of rows, and you add a row to the source table, Flexviews simply increments the cor-
responding group by one. The same technique works for other aggregate functions,
such as SUM() and AVG(). It takes advantage of the fact that row-based binary logging
includes images of the rows before and after they are updated, so Flexviews can see not
only the new value of each row, but the delta from the previous version, without even
looking at the source table. Computing with deltas is much more efficient than reading
the data from the source table.

We don’t have space for a full exploration of how to use Flexviews, but we can give an
overview. You start by writing a SELECT statement that expresses the data you want to
derive from your existing database. This can include joins and aggregations (GROUP
BY). There’s a helper tool in Flexviews that transforms your SQL query into Flexviews
API calls. Then Flexviews does all the dirty work of watching changes to the database
and transforming them into updates to the tables that store your materialized view over
the original tables. Now your application can simply query the materialized view in-
stead of the tables from which it was derived.

Flexviews has good coverage of SQL, including tricky expressions that you might not
expect a tool to handle outside the server. That makes it useful for building views over
complex SQL expressions, so you can replace complex queries with simple, fast queries
against the materialized view.

Counter Tables
An application that keeps counts in a table can run into concurrency problems when
updating the counters. Such tables are very common in web applications. You can use
them to cache the number of friends a user has, the number of downloads of a file, and
so on. It’s often a good idea to build a separate table for the counters, to keep it small
and fast. Using a separate table can help you avoid query cache invalidations and lets
you use some of the more advanced techniques we show in this section.

To keep things as simple as possible, suppose you have a counter table with a single
row that just counts hits on your website:

mysql> CREATE TABLE hit_counter (
 -> cnt int unsigned not null
 ->) ENGINE=InnoDB;

Each hit on the website updates the counter:

mysql> UPDATE hit_counter SET cnt = cnt + 1;

Cache and Summary Tables | 139

The problem is that this single row is effectively a global “mutex” for any transaction
that updates the counter. It will serialize those transactions. You can get higher con-
currency by keeping more than one row and updating a random row. This requires the
following change to the table:

mysql> CREATE TABLE hit_counter (
 -> slot tinyint unsigned not null primary key,
 -> cnt int unsigned not null
 ->) ENGINE=InnoDB;

Prepopulate the table by adding 100 rows to it. Now the query can just choose a random
slot and update it:

mysql> UPDATE hit_counter SET cnt = cnt + 1 WHERE slot = RAND() * 100;

To retrieve statistics, just use aggregate queries:

mysql> SELECT SUM(cnt) FROM hit_counter;

A common requirement is to start new counters every so often (for example, once a
day). If you need to do this, you can change the schema slightly:

mysql> CREATE TABLE daily_hit_counter (
 -> day date not null,
 -> slot tinyint unsigned not null,
 -> cnt int unsigned not null,
 -> primary key(day, slot)
 ->) ENGINE=InnoDB;

You don’t want to pregenerate rows for this scenario. Instead, you can use ON DUPLICATE
KEY UPDATE:

mysql> INSERT INTO daily_hit_counter(day, slot, cnt)
 -> VALUES(CURRENT_DATE, RAND() * 100, 1)
 -> ON DUPLICATE KEY UPDATE cnt = cnt + 1;

If you want to reduce the number of rows to keep the table smaller, you can write a
periodic job that merges all the results into slot 0 and deletes every other slot:

mysql> UPDATE daily_hit_counter as c
 -> INNER JOIN (
 -> SELECT day, SUM(cnt) AS cnt, MIN(slot) AS mslot
 -> FROM daily_hit_counter
 -> GROUP BY day
 ->) AS x USING(day)
 -> SET c.cnt = IF(c.slot = x.mslot, x.cnt, 0),
 -> c.slot = IF(c.slot = x.mslot, 0, c.slot);
mysql> DELETE FROM daily_hit_counter WHERE slot <> 0 AND cnt = 0;

140 | Chapter 4: Optimizing Schema and Data Types

Faster Reads, Slower Writes
You’ll often need extra indexes, redundant fields, or even cache and summary tables
to speed up read queries. These add work to write queries and maintenance jobs, but
this is still a technique you’ll see a lot when you design for high performance: you
amortize the cost of the slower writes by speeding up reads significantly.

However, this isn’t the only price you pay for faster read queries. You also increase
development complexity for both read and write operations.

Speeding Up ALTER TABLE
MySQL’s ALTER TABLE performance can become a problem with very large tables.
MySQL performs most alterations by making an empty table with the desired new
structure, inserting all the data from the old table into the new one, and deleting the
old table. This can take a very long time, especially if you’re short on memory and the
table is large and has lots of indexes. Many people have experience with ALTER TABLE
operations that have taken hours or days to complete.

MySQL 5.1 and newer include support for some types of “online” operations that won’t
lock the table for the whole operation. Recent versions of InnoDB7 also support build-
ing indexes by sorting, which makes building indexes much faster and results in a
compact index layout.

In general, most ALTER TABLE operations will cause interruption of service in MySQL.
We’ll show some techniques to work around this in a bit, but those are for special cases.
For the general case, you need to use either operational tricks such as swapping servers
around and performing the ALTER on servers that are not in production service, or a
“shadow copy” approach. The technique for a shadow copy is to build a new table with
the desired structure beside the existing one, and then perform a rename and drop to
swap the two. Tools can help with this: for example, the “online schema change” tools
from Facebook’s database operations team (https://launchpad.net/mysqlatfacebook),
Shlomi Noach’s openark toolkit (http://code.openark.org/), and Percona Toolkit (http:
//www.percona.com/software/). If you are using Flexviews (discussed in “Materialized
Views” on page 138), you can perform nonblocking schema changes with its CDC
utility too.

Not all ALTER TABLE operations cause table rebuilds. For example, you can change or
drop a column’s default value in two ways (one fast, and one slow). Say you want to
change a film’s default rental duration from three to five days. Here’s the expensive way:

mysql> ALTER TABLE sakila.film
 -> MODIFY COLUMN rental_duration TINYINT(3) NOT NULL DEFAULT 5;

7. This applies to the so-called “InnoDB plugin,” which is the only version of InnoDB that exists anymore
in MySQL 5.5 and newer versions. See Chapter 1 for the details on InnoDB’s release history.

Speeding Up ALTER TABLE | 141

https://launchpad.net/mysqlatfacebook
http://code.openark.org/
http://www.percona.com/software/
http://www.percona.com/software/

SHOW STATUS shows that this statement does 1,000 handler reads and 1,000 inserts. In
other words, it copies the table to a new table, even though the column’s type, size,
and nullability haven’t changed.

In theory, MySQL could have skipped building a new table. The default value for the
column is actually stored in the table’s .frm file, so you should be able to change it
without touching the table itself. MySQL doesn’t yet use this optimization, however;
any MODIFY COLUMN will cause a table rebuild.

You can change a column’s default with ALTER COLUMN,8 though:

mysql> ALTER TABLE sakila.film
 -> ALTER COLUMN rental_duration SET DEFAULT 5;

This statement modifies the .frm file and leaves the table alone. As a result, it is very fast.

Modifying Only the .frm File
We’ve seen that modifying a table’s .frm file is fast and that MySQL sometimes rebuilds
a table when it doesn’t have to. If you’re willing to take some risks, you can convince
MySQL to do several other types of modifications without rebuilding the table.

The technique we’re about to demonstrate is unsupported, undocu-
mented, and may not work. Use it at your own risk. We advise you to
back up your data first!

You can potentially do the following types of operations without a table rebuild:

• Remove (but not add) a column’s AUTO_INCREMENT attribute.

• Add, remove, or change ENUM and SET constants. If you remove a constant and
some rows contain that value, queries will return the value as the empty string.

The basic technique is to create a .frm file for the desired table structure and copy it
into the place of the existing table’s .frm file, as follows:

1. Create an empty table with exactly the same layout, except for the desired modifi-
cation (such as added ENUM constants).

2. Execute FLUSH TABLES WITH READ LOCK. This will close all tables in use and prevent
any tables from being opened.

3. Swap the .frm files.

4. Execute UNLOCK TABLES to release the read lock.

As an example, let’s add a constant to the rating column in sakila.film. The current
column looks like this:

8. ALTER TABLE lets you modify columns with ALTER COLUMN, MODIFY COLUMN, and CHANGE COLUMN. All three
do different things.

142 | Chapter 4: Optimizing Schema and Data Types

mysql> SHOW COLUMNS FROM sakila.film LIKE 'rating';
+--------+------------------------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+------------------------------------+------+-----+---------+-------+
| rating | enum('G','PG','PG-13','R','NC-17') | YES | | G | |
+--------+------------------------------------+------+-----+---------+-------+

We’ll add a PG-14 rating for parents who are just a little bit more cautious about films:

mysql> CREATE TABLE sakila.film_new LIKE sakila.film;
mysql> ALTER TABLE sakila.film_new
 -> MODIFY COLUMN rating ENUM('G','PG','PG-13','R','NC-17', 'PG-14')
 -> DEFAULT 'G';
mysql> FLUSH TABLES WITH READ LOCK;

Notice that we’re adding the new value at the end of the list of constants. If we placed
it in the middle, after PG-13, we’d change the meaning of the existing data: existing R
values would become PG-14, NC-17 would become R, and so on.

Now we swap the .frm files from the operating system’s command prompt:

/var/lib/mysql/sakila# mv film.frm film_tmp.frm
/var/lib/mysql/sakila# mv film_new.frm film.frm
/var/lib/mysql/sakila# mv film_tmp.frm film_new.frm

Back in the MySQL prompt, we can now unlock the table and see that the changes took
effect:

mysql> UNLOCK TABLES;
mysql> SHOW COLUMNS FROM sakila.film LIKE 'rating'\G
*************************** 1. row ***************************
Field: rating
 Type: enum('G','PG','PG-13','R','NC-17','PG-14')

The only thing left to do is drop the table we created to help with the operation:

mysql> DROP TABLE sakila.film_new;

Building MyISAM Indexes Quickly
The usual trick for loading MyISAM tables efficiently is to disable keys, load the data,
and reenable the keys:

mysql> ALTER TABLE test.load_data DISABLE KEYS;
-- load the data
mysql> ALTER TABLE test.load_data ENABLE KEYS;

This works because it lets MyISAM delay building the keys until all the data is loaded,
at which point it can build the indexes by sorting. This is much faster and results in a
defragmented, compact index tree.9

Unfortunately, it doesn’t work for unique indexes, because DISABLE KEYS applies only
to nonunique indexes. MyISAM builds unique indexes in memory and checks the

9. MyISAM will also build indexes by sorting when you use LOAD DATA INFILE and the table is empty.

Speeding Up ALTER TABLE | 143

uniqueness as it loads each row. Loading becomes extremely slow as soon as the
index’s size exceeds the available memory.

In modern versions of InnoDB, you can use an analogous technique that relies on
InnoDB’s fast online index creation capabilities. This calls for dropping all of the non-
unique indexes, adding the new column, and then adding back the indexes you drop-
ped. Percona Server supports doing this automatically.

As with the ALTER TABLE hacks in the previous section, you can speed up this process
if you’re willing to do a little more work and assume some risk. This can be useful for
loading data from backups, for example, when you already know all the data is valid
and there’s no need for uniqueness checks.

Again, this is an undocumented, unsupported technique. Use it at your
own risk, and back up your data first.

Here are the steps you’ll need to take:

1. Create a table of the desired structure, but without any indexes.

2. Load the data into the table to build the .MYD file.

3. Create another empty table with the desired structure, this time including the in-
dexes. This will create the .frm and .MYI files you need.

4. Flush the tables with a read lock.

5. Rename the second table’s .frm and .MYI files, so MySQL uses them for the first
table.

6. Release the read lock.

7. Use REPAIR TABLE to build the table’s indexes. This will build all indexes by sorting,
including the unique indexes.

This procedure can be much faster for very large tables.

144 | Chapter 4: Optimizing Schema and Data Types

Summary
Good schema design is pretty universal, but of course MySQL has special implemen-
tation details to consider. In a nutshell, it’s a good idea to keep things as small and
simple as you can. MySQL likes simplicity, and so will the people who have to work
with your database:

• Try to avoid extremes in your design, such as a schema that will force enormously
complex queries, or tables with oodles and oodles of columns. (An oodle is some-
where between a scad and a gazillion.)

• Use small, simple, appropriate data types, and avoid NULL unless it’s actually the
right way to model your data’s reality.

• Try to use the same data types to store similar or related values, especially if they’ll
be used in a join condition.

• Watch out for variable-length strings, which might cause pessimistic full-length
memory allocation for temporary tables and sorting.

• Try to use integers for identifiers if you can.

• Avoid the legacy MySQL-isms such as specifying precisions for floating-point
numbers or display widths for integers.

• Be careful with ENUM and SET. They’re handy, but they can be abused, and they’re
tricky sometimes. BIT is best avoided.

Normalization is good, but denormalization (duplication of data, in most cases) is
sometimes actually necessary and beneficial. We’ll see more examples of that in the
next chapter. And precomputing, caching, or generating summary tables can also be a
big win. Justin Swanhart’s Flexviews tool can help maintain summary tables.

Finally, ALTER TABLE can be painful because in most cases, it locks and rebuilds the
whole table. We showed a number of workarounds for specific cases; for the general
case, you’ll have to use other techniques, such as performing the ALTER on a replica and
then promoting it to master. There’s more about this later in the book.

Summary | 145

CHAPTER 5

Indexing for High Performance

Indexes (also called “keys” in MySQL) are data structures that storage engines use to
find rows quickly. They also have several other beneficial properties that we’ll explore
in this chapter.

Indexes are critical for good performance, and become more important as your data
grows larger. Small, lightly loaded databases often perform well even without proper
indexes, but as the dataset grows, performance can drop very quickly.1 Unfortunately,
indexes are often forgotten or misunderstood, so poor indexing is a leading cause of
real-world performance problems. That’s why we put this material early in the book—
even earlier than our discussion of query optimization.

Index optimization is perhaps the most powerful way to improve query performance.
Indexes can improve performance by many orders of magnitude, and optimal indexes
can sometimes boost performance about two orders of magnitude more than indexes
that are merely “good.” Creating truly optimal indexes will often require you to rewrite
queries, so this chapter and the next one are closely related.

Indexing Basics
The easiest way to understand how an index works in MySQL is to think about the
index in a book. To find out where a particular topic is discussed in a book, you look
in the index, and it tells you the page number(s) where that term appears.

In MySQL, a storage engine uses indexes in a similar way. It searches the index’s data
structure for a value. When it finds a match, it can find the row that contains the match.
Suppose you run the following query:

mysql> SELECT first_name FROM sakila.actor WHERE actor_id = 5;

1. This chapter assumes you’re using conventional hard drives, unless otherwise stated. Solid-state drives
have different performance characteristics, which we cover throughout this book. The indexing principles
remain true, but the penalties we’re trying to avoid aren’t as large with solid-state drives as they are with
conventional drives.

147

There’s an index on the actor_id column, so MySQL will use the index to find rows
whose actor_id is 5. In other words, it performs a lookup on the values in the index
and returns any rows containing the specified value.

An index contains values from one or more columns in a table. If you index more than
one column, the column order is very important, because MySQL can only search
efficiently on a leftmost prefix of the index. Creating an index on two columns is not
the same as creating two separate single-column indexes, as you’ll see.

If I Use an ORM, Do I Need to Care?
The short version: yes, you still need to learn about indexing, even if you rely on an
object-relational mapping (ORM) tool.

ORMs produce logically and syntactically correct queries (most of the time), but they
rarely produce index-friendly queries, unless you use them for only the most basic types
of queries, such as primary key lookups. You can’t expect your ORM, no matter how
sophisticated, to handle the subtleties and complexities of indexing. Read the rest of
this chapter if you disagree! It’s sometimes a hard job for an expert human to puzzle
through all of the possibilities, let alone an ORM.

Types of Indexes
There are many types of indexes, each designed to perform well for different purposes.
Indexes are implemented in the storage engine layer, not the server layer. Thus, they
are not standardized: indexing works slightly differently in each engine, and not all
engines support all types of indexes. Even when multiple engines support the same
index type, they might implement it differently under the hood.

That said, let’s look at the index types MySQL currently supports, their benefits, and
their drawbacks.

B-Tree indexes

When people talk about an index without mentioning a type, they’re probably referring
to a B-Tree index, which typically uses a B-Tree data structure to store its data.2 Most
of MySQL’s storage engines support this index type. The Archive engine is the excep-
tion: it didn’t support indexes at all until MySQL 5.1, when it started to allow a single
indexed AUTO_INCREMENT column.

We use the term “B-Tree” for these indexes because that’s what MySQL uses in CREATE
TABLE and other statements. However, storage engines might use different storage
structures internally. For example, the NDB Cluster storage engine uses a T-Tree data

2. Many storage engines actually use a B+Tree index, in which each leaf node contains a link to the next for
fast range traversals through nodes. Refer to computer science literature for a detailed explanation of
B-Tree indexes.

148 | Chapter 5: Indexing for High Performance

structure for these indexes, even though they’re labeled BTREE, and InnoDB uses
B+Trees. The variations in the structures and algorithms are out of scope for this book,
though.

Storage engines use B-Tree indexes in various ways, which can affect performance. For
instance, MyISAM uses a prefix compression technique that makes indexes smaller,
but InnoDB leaves values uncompressed in its indexes. Also, MyISAM indexes refer to
the indexed rows by their physical storage locations, but InnoDB refers to them by their
primary key values. Each variation has benefits and drawbacks.

The general idea of a B-Tree is that all the values are stored in order, and each leaf page
is the same distance from the root. Figure 5-1 shows an abstract representation of a B-
Tree index, which corresponds roughly to how InnoDB’s indexes work. MyISAM uses
a different structure, but the principles are similar.

A B-Tree index speeds up data access because the storage engine doesn’t have to scan
the whole table to find the desired data. Instead, it starts at the root node (not shown
in this figure). The slots in the root node hold pointers to child nodes, and the storage
engine follows these pointers. It finds the right pointer by looking at the values in the
node pages, which define the upper and lower bounds of the values in the child nodes.
Eventually, the storage engine either determines that the desired value doesn’t exist or
successfully reaches a leaf page.

Figure 5-1. An index built on a B-Tree (technically, a B+Tree) structure

Indexing Basics | 149

Leaf pages are special, because they have pointers to the indexed data instead of
pointers to other pages. (Different storage engines have different types of “pointers” to
the data.) Our illustration shows only one node page and its leaf pages, but there might
be many levels of node pages between the root and the leaves. The tree’s depth depends
on how big the table is.

Because B-Trees store the indexed columns in order, they’re useful for searching for
ranges of data. For instance, descending the tree for an index on a text field passes
through values in alphabetical order, so looking for “everyone whose name begins with
I through K” is efficient.

Suppose you have the following table:

CREATE TABLE People (
 last_name varchar(50) not null,
 first_name varchar(50) not null,
 dob date not null,
 gender enum('m', 'f')not null,
 key(last_name, first_name, dob)
);

The index will contain the values from the last_name, first_name, and dob columns for
every row in the table. Figure 5-2 illustrates how the index arranges the data it stores.

Figure 5-2. Sample entries from a B-Tree (technically, a B+Tree) index

150 | Chapter 5: Indexing for High Performance

Notice that the index sorts the values according to the order of the columns given in
the index in the CREATE TABLE statement. Look at the last two entries: there are two
people with the same name but different birth dates, and they’re sorted by birth date.

B-Tree indexes work well for lookups by the full
key value, a key range, or a key prefix. They are useful only if the lookup uses a leftmost
prefix of the index.3 The index we showed in the previous section will be useful for the
following kinds of queries:

Match the full value
A match on the full key value specifies values for all columns in the index. For
example, this index can help you find a person named Cuba Allen who was born
on 1960-01-01.

Match a leftmost prefix
This index can help you find all people with the last name Allen. This uses only
the first column in the index.

Match a column prefix
You can match on the first part of a column’s value. This index can help you find
all people whose last names begin with J. This uses only the first column in the
index.

Match a range of values
This index can help you find people whose last names are between Allen and Bar-
rymore. This also uses only the first column.

Match one part exactly and match a range on another part
This index can help you find everyone whose last name is Allen and whose first
name starts with the letter K (Kim, Karl, etc.). This is an exact match on last_
name and a range query on first_name.

Index-only queries
B-Tree indexes can normally support index-only queries, which are queries that
access only the index, not the row storage. We discuss this optimization in “Cov-
ering Indexes” on page 177.

Because the tree’s nodes are sorted, they can be used for both lookups (finding values)
and ORDER BY queries (finding values in sorted order). In general, if a B-Tree can help
you find a row in a particular way, it can help you sort rows by the same criteria. So,
our index will be helpful for ORDER BY clauses that match all the types of lookups we
just listed.

Here are some limitations of B-Tree indexes:

Types of queries that can use a B-Tree index.

3. This is MySQL-specific, and even version-specific. Some other databases can use nonleading index parts,
though it’s usually more efficient to use a complete prefix. MySQL might offer this option in the future;
we show workarounds later in the chapter.

Indexing Basics | 151

• They are not useful if the lookup does not start from the leftmost side of the indexed
columns. For example, this index won’t help you find all people named Bill or all
people born on a certain date, because those columns are not leftmost in the index.
Likewise, you can’t use the index to find people whose last name ends with a par-
ticular letter.

• You can’t skip columns in the index. That is, you won’t be able to find all people
whose last name is Smith and who were born on a particular date. If you don’t
specify a value for the first_name column, MySQL can use only the first column
of the index.

• The storage engine can’t optimize accesses with any columns to the right of the
first range condition. For example, if your query is WHERE last_name="Smith" AND
first_name LIKE 'J%' AND dob='1976-12-23', the index access will use only the
first two columns in the index, because the LIKE is a range condition (the server
can use the rest of the columns for other purposes, though). For a column that has
a limited number of values, you can often work around this by specifying equality
conditions instead of range conditions. We show detailed examples of this in the
indexing case study later in this chapter.

Now you know why we said the column order is extremely important: these limitations
are all related to column ordering. For optimal performance, you might need to create
indexes with the same columns in different orders to satisfy your queries.

Some of these limitations are not inherent to B-Tree indexes, but are a result of how
the MySQL query optimizer and storage engines use indexes. Some of them might be
removed in the future.

Hash indexes

A hash index is built on a hash table and is useful only for exact lookups that use every
column in the index.4 For each row, the storage engine computes a hash code of the
indexed columns, which is a small value that will probably differ from the hash codes
computed for other rows with different key values. It stores the hash codes in the index
and stores a pointer to each row in a hash table.

In MySQL, only the Memory storage engine supports explicit hash indexes. They are
the default index type for Memory tables, though Memory tables can have B-Tree in-
dexes, too. The Memory engine supports nonunique hash indexes, which is unusual
in the database world. If multiple values have the same hash code, the index will store
their row pointers in the same hash table entry, using a linked list.

Here’s an example. Suppose we have the following table:

CREATE TABLE testhash (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,

4. See the computer science literature for more on hash tables.

152 | Chapter 5: Indexing for High Performance

 KEY USING HASH(fname)
) ENGINE=MEMORY;

containing this data:

mysql> SELECT * FROM testhash;
+--------+-----------+
| fname | lname |
+--------+-----------+
Arjen	Lentz
Baron	Schwartz
Peter	Zaitsev
Vadim	Tkachenko
+--------+-----------+

Now suppose the index uses an imaginary hash function called f(), which returns the
following values (these are just examples, not real values):

f('Arjen')= 2323
f('Baron')= 7437
f('Peter')= 8784
f('Vadim')= 2458

The index’s data structure will look like this:

Slot Value

2323 Pointer to row 1

2458 Pointer to row 4

7437 Pointer to row 2

8784 Pointer to row 3

Notice that the slots are ordered, but the rows are not. Now, when we execute this
query:

mysql> SELECT lname FROM testhash WHERE fname='Peter';

MySQL will calculate the hash of 'Peter' and use that to look up the pointer in the
index. Because f('Peter') = 8784, MySQL will look in the index for 8784 and find the
pointer to row 3. The final step is to compare the value in row 3 to 'Peter', to make
sure it’s the right row.

Because the indexes themselves store only short hash values, hash indexes are very
compact. As a result, lookups are usually lightning fast. However, hash indexes have
some limitations:

• Because the index contains only hash codes and row pointers rather than the values
themselves, MySQL can’t use the values in the index to avoid reading the rows.
Fortunately, accessing the in-memory rows is very fast, so this doesn’t usually de-
grade performance.

Indexing Basics | 153

• MySQL can’t use hash indexes for sorting because they don’t store rows in sorted
order.

• Hash indexes don’t support partial key matching, because they compute the hash
from the entire indexed value. That is, if you have an index on (A,B) and your
query’s WHERE clause refers only to A, the index won’t help.

• Hash indexes support only equality comparisons that use the =, IN(), and <=>
operators (note that <> and <=> are not the same operator). They can’t speed up
range queries, such as WHERE price > 100.

• Accessing data in a hash index is very quick, unless there are many collisions (mul-
tiple values with the same hash). When there are collisions, the storage engine must
follow each row pointer in the linked list and compare their values to the lookup
value to find the right row(s).

• Some index maintenance operations can be slow if there are many hash collisions.
For example, if you create a hash index on a column with a very low selectivity
(many hash collisions) and then delete a row from the table, finding the pointer
from the index to that row might be expensive. The storage engine will have to
examine each row in that hash key’s linked list to find and remove the reference to
the one row you deleted.

These limitations make hash indexes useful only in special cases. However, when they
match the application’s needs, they can improve performance dramatically. An exam-
ple is in data-warehousing applications where a classic “star” schema requires many
joins to lookup tables. Hash indexes are exactly what a lookup table requires.

In addition to the Memory storage engine’s explicit hash indexes, the NDB Cluster
storage engine supports unique hash indexes. Their functionality is specific to the NDB
Cluster storage engine, which we don’t cover in this book.

The InnoDB storage engine has a special feature called adaptive hash indexes. When
InnoDB notices that some index values are being accessed very frequently, it builds a
hash index for them in memory on top of B-Tree indexes. This gives its B-Tree indexes
some properties of hash indexes, such as very fast hashed lookups. This process is
completely automatic, and you can’t control or configure it, although you can disable
the adaptive hash index altogether.

If your storage engine doesn’t support hash indexes, you
can emulate them yourself in a manner similar to that InnoDB uses. This will give you
access to some of the desirable properties of hash indexes, such as a very small index
size for very long keys.

The idea is simple: create a pseudohash index on top of a standard B-Tree index. It will
not be exactly the same thing as a real hash index, because it will still use the B-Tree
index for lookups. However, it will use the keys’ hash values for lookups, instead of
the keys themselves. All you need to do is specify the hash function manually in the
query’s WHERE clause.

Building your own hash indexes.

154 | Chapter 5: Indexing for High Performance

An example of when this approach works well is for URL lookups. URLs generally
cause B-Tree indexes to become huge, because they’re very long. You’d normally query
a table of URLs like this:

mysql> SELECT id FROM url WHERE url="http://www.mysql.com";

But if you remove the index on the url column and add an indexed url_crc column to
the table, you can use a query like this:

mysql> SELECT id FROM url WHERE url="http://www.mysql.com"
 -> AND url_crc=CRC32("http://www.mysql.com");

This works well because the MySQL query optimizer notices there’s a small, highly
selective index on the url_crc column and does an index lookup for entries with that
value (1560514994, in this case). Even if several rows have the same url_crc value, it’s
very easy to find these rows with a fast integer comparison and then examine them to
find the one that matches the full URL exactly. The alternative is to index the full URL
as a string, which is much slower.

One drawback to this approach is the need to maintain the hash values. You can do
this manually or, in MySQL 5.0 and newer, you can use triggers. The following example
shows how triggers can help maintain the url_crc column when you insert and update
values. First, we create the table:

CREATE TABLE pseudohash (
 id int unsigned NOT NULL auto_increment,
 url varchar(255) NOT NULL,
 url_crc int unsigned NOT NULL DEFAULT 0,
 PRIMARY KEY(id)
);

Now we create the triggers. We change the statement delimiter temporarily, so we can
use a semicolon as a delimiter for the trigger:

DELIMITER //

CREATE TRIGGER pseudohash_crc_ins BEFORE INSERT ON pseudohash FOR EACH ROW BEGIN
SET NEW.url_crc=crc32(NEW.url);
END;
//

CREATE TRIGGER pseudohash_crc_upd BEFORE UPDATE ON pseudohash FOR EACH ROW BEGIN
SET NEW.url_crc=crc32(NEW.url);
END;
//

DELIMITER ;

Indexing Basics | 155

All that remains is to verify that the trigger maintains the hash:

mysql> INSERT INTO pseudohash (url) VALUES ('http://www.mysql.com');
mysql> SELECT * FROM pseudohash;
+----+----------------------+------------+
| id | url | url_crc |
+----+----------------------+------------+
| 1 | http://www.mysql.com | 1560514994 |
+----+----------------------+------------+
mysql> UPDATE pseudohash SET url='http://www.mysql.com/' WHERE id=1;
mysql> SELECT * FROM pseudohash;
+----+---------------------- +------------+
| id | url | url_crc |
+----+---------------------- +------------+
| 1 | http://www.mysql.com/ | 1558250469 |
+----+---------------------- +------------+

If you use this approach, you should not use SHA1() or MD5() hash functions. These
return very long strings, which waste a lot of space and result in slower comparisons.
They are cryptographically strong functions designed to virtually eliminate collisions,
which is not your goal here. Simple hash functions can offer acceptable collision rates
with better performance.

If your table has many rows and CRC32() gives too many collisions, implement your
own 64-bit hash function. Make sure you use a function that returns an integer, not a
string. One way to implement a 64-bit hash function is to use just part of the value
returned by MD5(). This is probably less efficient than writing your own routine as a
user-defined function (see Chapter 7), but it’ll do in a pinch:

mysql> SELECT CONV(RIGHT(MD5('http://www.mysql.com/'), 16), 16, 10) AS HASH64;
+---------------------+
| HASH64 |
+---------------------+
| 9761173720318281581 |
+---------------------+

When you search for a value by its hash, you must also include
the literal value in your WHERE clause:

mysql> SELECT id FROM url WHERE url_crc=CRC32("http://www.mysql.com")
 -> AND url="http://www.mysql.com";

The following query will not work correctly, because if another URL has the CRC32()
value 1560514994, the query will return both rows:

mysql> SELECT id FROM url WHERE url_crc=CRC32("http://www.mysql.com");

The probability of a hash collision grows much faster than you might think, due to the
so-called Birthday Paradox. CRC32() returns a 32-bit integer value, so the probability of
a collision reaches 1% with as few as 93,000 values. To illustrate this, we loaded all the
words in /usr/share/dict/words into a table along with their CRC32() values, resulting in
98,569 rows. There is already one collision in this set of data! The collision makes the
following query return more than one row:

Handling hash collisions.

156 | Chapter 5: Indexing for High Performance

mysql> SELECT word, crc FROM words WHERE crc = CRC32('gnu');
+---------+------------+
| word | crc |
+---------+------------+
| codding | 1774765869 |
| gnu | 1774765869 |
+---------+------------+

The correct query is as follows:

mysql> SELECT word, crc FROM words WHERE crc = CRC32('gnu')AND word = 'gnu';
+------+------------+
| word | crc |
+------+------------+
| gnu | 1774765869 |
+------+------------+

To avoid problems with collisions, you must specify both conditions in the WHERE
clause. If collisions aren’t a problem—for example, because you’re doing statistical
queries and you don’t need exact results—you can simplify, and gain some efficiency,
by using only the CRC32() value in the WHERE clause. You can also use the FNV64() func-
tion, which ships with Percona Server and can be installed as a plugin in any version
of MySQL. It’s 64 bits long, very fast, and much less prone to collisions than CRC32().

Spatial (R-Tree) indexes

MyISAM supports spatial indexes, which you can use with partial types such as GEOME
TRY. Unlike B-Tree indexes, spatial indexes don’t require your WHERE clauses to operate
on a leftmost prefix of the index. They index the data by all dimensions at the same
time. As a result, lookups can use any combination of dimensions efficiently. However,
you must use the MySQL GIS functions, such as MBRCONTAINS(), for this to work, and
MySQL’s GIS support isn’t great, so most people don’t use it. The go-to solution for
GIS in an open source RDBMS is PostGIS in PostgreSQL.

Full-text indexes

FULLTEXT is a special type of index that finds keywords in the text instead of comparing
values directly to the values in the index. Full-text searching is completely different
from other types of matching. It has many subtleties, such as stopwords, stemming and
plurals, and Boolean searching. It is much more analogous to what a search engine does
than to simple WHERE parameter matching.

Having a full-text index on a column does not eliminate the value of a B-Tree index on
the same column. Full-text indexes are for MATCH AGAINST operations, not ordinary
WHERE clause operations.

We discuss full-text indexing in more detail in Chapter 7.

Indexing Basics | 157

Other types of index

Several third-party storage engines use different types of data structures for their in-
dexes. For example, TokuDB uses fractal tree indexes. This is a newly developed data
structure that has some of the same benefits as B-Tree indexes, without some of the
drawbacks. As you read through this chapter, you’ll see many InnoDB topics, including
clustered indexes and covering indexes. In most cases, the discussions of InnoDB apply
equally well to TokuDB.

ScaleDB uses Patricia tries (that’s not a typo), and other technologies such as InfiniDB
or Infobright have their own special data structures for optimizing queries.

Benefits of Indexes
Indexes enable the server to navigate quickly to a desired position in the table, but that’s
not all they’re good for. As you’ve probably gathered by now, indexes have several
additional benefits, based on the properties of the data structures used to create them.

B-Tree indexes, which are the most common type you’ll use, function by storing the
data in sorted order, and MySQL can exploit that for queries with clauses such as ORDER
BY and GROUP BY. Because the data is presorted, a B-Tree index also stores related values
close together. Finally, the index actually stores a copy of the values, so some queries
can be satisfied from the index alone. Three main benefits proceed from these
properties:

1. Indexes reduce the amount of data the server has to examine.

2. Indexes help the server avoid sorting and temporary tables.

3. Indexes turn random I/O into sequential I/O.

This subject really deserves an entire book. For those who would like to dig in deeply,
we recommend Relational Database Index Design and the Optimizers, by Tapio Lah-
denmaki and Mike Leach (Wiley). It explains topics such as how to calculate the costs
and benefits of indexes, how to estimate query speed, and how to determine whether
indexes will be more expensive to maintain than the benefit they provide.

Lahdenmaki and Leach’s book also introduces a three-star system for grading how
suitable an index is for a query. The index earns one star if it places relevant rows
adjacent to each other, a second star if its rows are sorted in the order the query needs,
and a final star if it contains all the columns needed for the query.

We’ll return to these principles throughout this chapter.

158 | Chapter 5: Indexing for High Performance

Is an Index the Best Solution?
An index isn’t always the right tool. At a high level, keep in mind that indexes are most
effective when they help the storage engine find rows without adding more work than
they avoid. For very small tables, it is often more effective to simply read all the rows
in the table. For medium to large tables, indexes can be very effective. For enormous
tables, the overhead of indexing, as well as the work required to actually use the indexes,
can start to add up. In such cases you might need to choose a technique that identifies
groups of rows that are interesting to the query, instead of individual rows. You can
use partitioning for this purpose; see Chapter 7.

If you have lots of tables, it can also make sense to create a metadata table to store some
characteristics of interest for your queries. For example, if you execute queries that
perform aggregations over rows in a multitenant application whose data is partitioned
into many tables, you can record which users of the system are actually stored in each
table, thus letting you simply ignore tables that don’t have information about those
users. These tactics are usually useful only at extremely large scales. In fact, this is a
crude approximation of what Infobright does. At the scale of terabytes, locating indi-
vidual rows doesn’t make sense; indexes are replaced by per-block metadata.

Indexing Strategies for High Performance
Creating the correct indexes and using them properly is essential to good query per-
formance. We’ve introduced the different types of indexes and explored their strengths
and weaknesses. Now let’s see how to really tap into the power of indexes.

There are many ways to choose and use indexes effectively, because there are many
special-case optimizations and specialized behaviors. Determining what to use when
and evaluating the performance implications of your choices are skills you’ll learn over
time. The following sections will help you understand how to use indexes effectively.

Isolating the Column
We commonly see queries that defeat indexes or prevent MySQL from using the avail-
able indexes. MySQL generally can’t use indexes on columns unless the columns are
isolated in the query. “Isolating” the column means it should not be part of an expres-
sion or be inside a function in the query.

For example, here’s a query that can’t use the index on actor_id:

mysql> SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5;

A human can easily see that the WHERE clause is equivalent to actor_id = 4, but MySQL
can’t solve the equation for actor_id. It’s up to you to do this. You should get in the
habit of simplifying your WHERE criteria, so the indexed column is alone on one side of
the comparison operator.

Indexing Strategies for High Performance | 159

Here’s another example of a common mistake:

mysql> SELECT ... WHERE TO_DAYS(CURRENT_DATE) - TO_DAYS(date_col) <= 10;

Prefix Indexes and Index Selectivity
Sometimes you need to index very long character columns, which makes your indexes
large and slow. One strategy is to simulate a hash index, as we showed earlier in this
chapter. But sometimes that isn’t good enough. What can you do?

You can often save space and get good performance by indexing the first few characters
instead of the whole value. This makes your indexes use less space, but it also makes
them less selective. Index selectivity is the ratio of the number of distinct indexed values
(the cardinality) to the total number of rows in the table (#T), and ranges from 1/#T to
1. A highly selective index is good because it lets MySQL filter out more rows when it
looks for matches. A unique index has a selectivity of 1, which is as good as it gets.

A prefix of the column is often selective enough to give good performance. If you’re
indexing BLOB or TEXT columns, or very long VARCHAR columns, you must define prefix
indexes, because MySQL disallows indexing their full length.

The trick is to choose a prefix that’s long enough to give good selectivity, but short
enough to save space. The prefix should be long enough to make the index nearly as
useful as it would be if you’d indexed the whole column. In other words, you’d like the
prefix’s cardinality to be close to the full column’s cardinality.

To determine a good prefix length, find the most frequent values and compare that list
to a list of the most frequent prefixes. There’s no good table to demonstrate this in the
Sakila sample database, so we derive one from the city table, just so we have enough
data to work with:

CREATE TABLE sakila.city_demo(city VARCHAR(50) NOT NULL);
INSERT INTO sakila.city_demo(city) SELECT city FROM sakila.city;
-- Repeat the next statement five times:
INSERT INTO sakila.city_demo(city) SELECT city FROM sakila.city_demo;
-- Now randomize the distribution (inefficiently but conveniently):
UPDATE sakila.city_demo
 SET city = (SELECT city FROM sakila.city ORDER BY RAND() LIMIT 1);

Now we have an example dataset. The results are not realistically distributed, and we
used RAND(), so your results will vary, but that doesn’t matter for this exercise. First,
we find the most frequently occurring cities:

mysql> SELECT COUNT(*) AS cnt, city
 -> FROM sakila.city_demo GROUP BY city ORDER BY cnt DESC LIMIT 10;
+-----+----------------+
| cnt | city |
+-----+----------------+
65	London
49	Hiroshima
48	Teboksary
48	Pak Kret

160 | Chapter 5: Indexing for High Performance

48	Yaound
47	Tel Aviv-Jaffa
47	Shimoga
45	Cabuyao
45	Callao
45	Bislig
+-----+----------------+

Notice that there are roughly 45 to 65 occurrences of each value. Now we find the most
frequently occurring city name prefixes, beginning with three-letter prefixes:

mysql> SELECT COUNT(*) AS cnt, LEFT(city, 3) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY cnt DESC LIMIT 10;
+-----+------+
| cnt | pref |
+-----+------+
483	San
195	Cha
177	Tan
167	Sou
163	al-
163	Sal
146	Shi
136	Hal
130	Val
129	Bat
+-----+------+

There are many more occurrences of each prefix, so there are many fewer unique pre-
fixes than unique full-length city names. The idea is to increase the prefix length until
the prefix becomes nearly as selective as the full length of the column. A little experi-
mentation shows that 7 is a good value:

mysql> SELECT COUNT(*) AS cnt, LEFT(city, 7) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY cnt DESC LIMIT 10;
+-----+---------+
| cnt | pref |
+-----+---------+
70	Santiag
68	San Fel
65	London
61	Valle d
49	Hiroshi
48	Teboksa
48	Pak Kre
48	Yaound
47	Tel Avi
47	Shimoga
+-----+---------+

Another way to calculate a good prefix length is by computing the full column’s selec-
tivity and trying to make the prefix’s selectivity close to that value. Here’s how to find
the full column’s selectivity:

Indexing Strategies for High Performance | 161

mysql> SELECT COUNT(DISTINCT city)/COUNT(*) FROM sakila.city_demo;
+-------------------------------+
| COUNT(DISTINCT city)/COUNT(*) |
+-------------------------------+
| 0.0312 |
+-------------------------------+

The prefix will be about as good, on average (there’s a caveat here, though), if we target
a selectivity near .031. It’s possible to evaluate many different lengths in one query,
which is useful on very large tables. Here’s how to find the selectivity of several prefix
lengths in one query:

mysql> SELECT COUNT(DISTINCT LEFT(city, 3))/COUNT(*) AS sel3,
 -> COUNT(DISTINCT LEFT(city, 4))/COUNT(*) AS sel4,
 -> COUNT(DISTINCT LEFT(city, 5))/COUNT(*) AS sel5,
 -> COUNT(DISTINCT LEFT(city, 6))/COUNT(*) AS sel6,
 -> COUNT(DISTINCT LEFT(city, 7))/COUNT(*) AS sel7
 -> FROM sakila.city_demo;
+--------+--------+--------+--------+--------+
| sel3 | sel4 | sel5 | sel6 | sel7 |
+--------+--------+--------+--------+--------+
| 0.0239 | 0.0293 | 0.0305 | 0.0309 | 0.0310 |
+--------+--------+--------+--------+--------+

This query shows that increasing the prefix length results in successively smaller im-
provements as it approaches seven characters.

It’s not a good idea to look only at average selectivity. The caveat is that the worst-
case selectivity matters, too. The average selectivity might make you think a four- or
five-character prefix is good enough, but if your data is very uneven, that could be a
trap. If you look at the number of occurrences of the most common city name prefixes
using a value of 4, you’ll see the unevenness clearly:

mysql> SELECT COUNT(*) AS cnt, LEFT(city, 4) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY cnt DESC LIMIT 5;
+-----+------+
| cnt | pref |
+-----+------+
205	San
200	Sant
135	Sout
104	Chan
91	Toul
+-----+------+

With four characters, the most frequent prefixes occur quite a bit more often than the
most frequent full-length values. That is, the selectivity on those values is lower than
the average selectivity. If you have a more realistic dataset than this randomly generated
sample, you’re likely to see this effect even more. For example, building a four-character
prefix index on real-world city names will give terrible selectivity on cities that begin
with “San” and “New,” of which there are many.

162 | Chapter 5: Indexing for High Performance

Now that we’ve found a good value for our sample data, here’s how to create a prefix
index on the column:

mysql> ALTER TABLE sakila.city_demo ADD KEY (city(7));

Prefix indexes can be a great way to make indexes smaller and faster, but they have
downsides too: MySQL cannot use prefix indexes for ORDER BY or GROUP BY queries, nor
can it use them as covering indexes.

A common case we’ve found to benefit from prefix indexes is when long hexadecimal
identifiers are used. We discussed more efficient techniques of storing such identifiers
in the previous chapter, but what if you’re using a packaged solution that you can’t
modify? We see this frequently with vBulletin and other applications that use MySQL
to store website sessions, keyed on long hex strings. Adding an index on the first eight
characters or so often boosts performance significantly, in a way that’s completely
transparent to the application.

Sometimes suffix indexes make sense (e.g., for finding all email ad-
dresses from a certain domain). MySQL does not support reversed in-
dexes natively, but you can store a reversed string and index a prefix of
it. You can maintain the index with triggers; see “Building your own
hash indexes” on page 154.

Multicolumn Indexes
Multicolumn indexes are often very poorly understood. Common mistakes are to index
many or all of the columns separately, or to index columns in the wrong order.

We’ll discuss column order in the next section. The first mistake, indexing many col-
umns separately, has a distinctive signature in SHOW CREATE TABLE:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT,
 KEY(c1),
 KEY(c2),
 KEY(c3)
);

This strategy of indexing often results when people give vague but authoritative-
sounding advice such as “create indexes on columns that appear in the WHERE clause.”
This advice is very wrong. It will result in one-star indexes at best. These indexes can
be many orders of magnitude slower than truly optimal indexes. Sometimes when you
can’t design a three-star index, it’s much better to ignore the WHERE clause and pay
attention to optimal row order or create a covering index instead.

Individual indexes on lots of columns won’t help MySQL improve performance for
most queries. MySQL 5.0 and newer can cope a little with such poorly indexed tables

Indexing Strategies for High Performance | 163

by using a strategy known as index merge, which permits a query to make limited use
of multiple indexes from a single table to locate desired rows. Earlier versions of MySQL
could use only a single index, so when no single index was good enough to help, MySQL
often chose a table scan. For example, the film_actor table has an index on film_id
and an index on actor_id, but neither is a good choice for both WHERE conditions in this
query:

mysql> SELECT film_id, actor_id FROM sakila.film_actor
 -> WHERE actor_id = 1 OR film_id = 1;

In older MySQL versions, that query would produce a table scan unless you wrote it
as the UNION of two queries:

mysql> SELECT film_id, actor_id FROM sakila.film_actor WHERE actor_id = 1
 -> UNION ALL
 -> SELECT film_id, actor_id FROM sakila.film_actor WHERE film_id = 1
 -> AND actor_id <> 1;

In MySQL 5.0 and newer, however, the query can use both indexes, scanning them
simultaneously and merging the results. There are three variations on the algorithm:
union for OR conditions, intersection for AND conditions, and unions of intersections for
combinations of the two. The following query uses a union of two index scans, as you
can see by examining the Extra column:

mysql> EXPLAIN SELECT film_id, actor_id FROM sakila.film_actor
 -> WHERE actor_id = 1 OR film_id = 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: index_merge
possible_keys: PRIMARY,idx_fk_film_id
 key: PRIMARY,idx_fk_film_id
 key_len: 2,2
 ref: NULL
 rows: 29
 Extra: Using union(PRIMARY,idx_fk_film_id); Using where

MySQL can use this technique on complex queries, so you might see nested operations
in the Extra column for some queries.

The index merge strategy sometimes works very well, but it’s more common for it to
actually be an indication of a poorly indexed table:

• When the server intersects indexes (usually for AND conditions), it usually means
that you need a single index with all the relevant columns, not multiple indexes
that have to be combined.

• When the server unions indexes (usually for OR conditions), sometimes the algo-
rithm’s buffering, sorting, and merging operations use lots of CPU and memory
resources. This is especially true if not all of the indexes are very selective, so the
scans return lots of rows to the merge operation.

164 | Chapter 5: Indexing for High Performance

• Recall that the optimizer doesn’t account for this cost—it optimizes just the num-
ber of random page reads. This can make it “underprice” the query, which might
in fact run more slowly than a plain table scan. The intensive memory and CPU
usage also tends to impact concurrent queries, but you won’t see this effect when
you run the query in isolation. Sometimes rewriting such queries with a UNION, the
way you used to have to do in MySQL 4.1 and earlier, is more optimal.

When you see an index merge in EXPLAIN, you should examine the query and table
structure to see if this is really the best you can get. You can disable index merges with
the optimizer_switch option or variable. You can also use IGNORE INDEX.

Choosing a Good Column Order
One of the most common causes of confusion we’ve seen is the order of columns in an
index. The correct order depends on the queries that will use the index, and you must
think about how to choose the index order such that rows are sorted and grouped in a
way that will benefit the query. (This section applies to B-Tree indexes, by the way;
hash and other index types don’t store their data in sorted order as B-Tree indexes do.)

The order of columns in a multicolumn B-Tree index means that the index is sorted
first by the leftmost column, then by the next column, and so on. Therefore, the index
can be scanned in either forward or reverse order, to satisfy queries with ORDER BY, GROUP
BY, and DISTINCT clauses that match the column order exactly.

As a result, the column order is vitally important in multicolumn indexes. The column
order either enables or prevents the index from earning “stars” in Lahdenmaki and
Leach’s three-star system (see “Benefits of Indexes” on page 158 earlier in this chapter
for more on the three-star system). We will show many examples of how this works
through the rest of this chapter.

There is an old rule of thumb for choosing column order: place the most selective
columns first in the index. How useful is this suggestion? It can be helpful in some
cases, but it’s usually much less important than avoiding random I/O and sorting, all
things considered. (Specific cases vary, so there’s no one-size-fits-all rule. That alone
should tell you that this rule of thumb is probably less important than you think.)

Placing the most selective columns first can be a good idea when there is no sorting
or grouping to consider, and thus the purpose of the index is only to optimize WHERE
lookups. In such cases, it might indeed work well to design the index so that it filters
out rows as quickly as possible, so it’s more selective for queries that specify only a
prefix of the index in the WHERE clause. However, this depends not only on the selectivity
(overall cardinality) of the columns, but also on the actual values you use to look up
rows—the distribution of values. This is the same type of consideration we explored
for choosing a good prefix length. You might actually need to choose the column order
such that it’s as selective as possible for the queries that you’ll run most.

Indexing Strategies for High Performance | 165

Let’s use the following query as an example:

SELECT * FROM payment WHERE staff_id = 2 AND customer_id = 584;

Should you create an index on (staff_id, customer_id), or should you reverse the
column order? We can run some quick queries to help examine the distribution of
values in the table and determine which column has a higher selectivity. Let’s transform
the query to count the cardinality of each predicate5 in the WHERE clause:

mysql> SELECT SUM(staff_id = 2), SUM(customer_id = 584) FROM payment\G
*************************** 1. row ***************************
 SUM(staff_id = 2): 7992
SUM(customer_id = 584): 30

According to the rule of thumb, we should place customer_id first in the index, because
the predicate matches fewer rows in the table. We can then run the query again to see
how selective staff_id is within the range of rows selected by this specific customer ID:

mysql> SELECT SUM(staff_id = 2) FROM payment WHERE customer_id = 584\G
*************************** 1. row ***************************
SUM(staff_id = 2): 17

Be careful with this technique, because the results depend on the specific constants
supplied for the chosen query. If you optimize your indexes for this query and other
queries don’t fare as well, the server’s performance might suffer overall, or some queries
might run unpredictably.

If you’re using the “worst” sample query from a report from a tool such as pt-query-
digest, this technique can be an effective way to see what might be the most helpful
indexes for your queries and your data. But if you don’t have specific samples to run,
it might be better to use the old rule of thumb, which is to look at the cardinality across
the board, not just for one query:

mysql> SELECT COUNT(DISTINCT staff_id)/COUNT(*) AS staff_id_selectivity,
 > COUNT(DISTINCT customer_id)/COUNT(*) AS customer_id_selectivity,
 > COUNT(*)
 > FROM payment\G
*************************** 1. row ***************************
 staff_id_selectivity: 0.0001
customer_id_selectivity: 0.0373
 COUNT(*): 16049

customer_id has higher selectivity, so again the answer is to put that column first in the
index:

mysql> ALTER TABLE payment ADD KEY(customer_id, staff_id);

As with prefix indexes, problems often arise from special values that have higher than
normal cardinality. For example, we have seen applications treat users who aren’t log-
ged in as “guest” users, who get a special user ID in session tables and other places
where user activity is recorded. Queries involving that user ID are likely to behave very

5. Optimizer geeks call this a “sarg,” for “searchable argument.” Now you’re a geek, too!

166 | Chapter 5: Indexing for High Performance

differently from other queries, because there are usually a lot of sessions that aren’t
logged in. We’ve also seen system accounts cause similar problems. One application
had a magical administrative account, which wasn’t a real user, who was “friends” with
every user of the whole website so that it could send status notices and other messages.
That user’s huge list of friends was causing severe performance problems for the site.

This is actually fairly typical. Any outlier, even if it’s not an artifact of a poor decision
in how the application is managed, can cause problems. Users who really do have lots
of friends, photos, status messages, and the like can be just as troublesome as fake users.

Here’s a real example we saw once, on a product forum where users exchanged stories
and experiences about the product. Queries of this particular form were running very
slowly:

mysql> SELECT COUNT(DISTINCT threadId) AS COUNT_VALUE
 -> FROM Message
 -> WHERE (groupId = 10137) AND (userId = 1288826) AND (anonymous = 0)
 -> ORDER BY priority DESC, modifiedDate DESC

This query appeared not to have a very good index, so the customer asked us to see if
it could be improved. The EXPLAIN follows:

 id: 1
 select_type: SIMPLE
 table: Message
 type: ref
 key: ix_groupId_userId
 key_len: 18
 ref: const,const
 rows: 1251162
 Extra: Using where

The index that MySQL chose for this query is on (groupId, userId), which would seem
like a pretty decent choice if we had no information about the column cardinality.
However, a different picture emerged when we looked at how many rows matched that
user ID and group ID:

mysql> SELECT COUNT(*), SUM(groupId = 10137),
 -> SUM(userId = 1288826), SUM(anonymous = 0)
 -> FROM Message\G
*************************** 1. row ***************************
 count(*): 4142217
 sum(groupId = 10137): 4092654
sum(userId = 1288826): 1288496
 sum(anonymous = 0): 4141934

It turned out that this group owned almost every row in the table, and the user had 1.3
million rows—in this case, there simply isn’t an index that can help! This was because
the data was migrated from another application, and all of the messages were assigned
to the administrative user and group as part of the import process. The solution to this
problem was to change the application code to recognize this special-case user ID and
group ID, and not issue this query for that user.

Indexing Strategies for High Performance | 167

The moral of this little story is that rules of thumb and heuristics can be useful, but you
have to be careful not to assume that average-case performance is representative of
special-case performance. Special cases can wreck performance for the whole
application.

In the end, although the rule of thumb about selectivity and cardinality is interesting
to explore, other factors—such as sorting, grouping, and the presence of range condi-
tions in the query’s WHERE clause—can make a much bigger difference to query
performance.

Clustered Indexes
Clustered indexes6 aren’t a separate type of index. Rather, they’re an approach to data
storage. The exact details vary between implementations, but InnoDB’s clustered in-
dexes actually store a B-Tree index and the rows together in the same structure.

When a table has a clustered index, its rows are actually stored in the index’s leaf pages.
The term “clustered” refers to the fact that rows with adjacent key values are stored
close to each other.7 You can have only one clustered index per table, because you can’t
store the rows in two places at once. (However, covering indexes let you emulate mul-
tiple clustered indexes; more on this later.)

Because storage engines are responsible for implementing indexes, not all storage en-
gines support clustered indexes. We focus on InnoDB in this section, but the principles
we discuss are likely to be at least partially true for any storage engine that supports
clustered indexes now or in the future.

Figure 5-3 shows how records are laid out in a clustered index. Notice that the leaf
pages contain full rows but the node pages contain only the indexed columns. In this
case, the indexed column contains integer values.

Some database servers let you choose which index to cluster, but none of MySQL’s
built-in storage engines does at the time of this writing. InnoDB clusters the data by
the primary key. That means that the “indexed column” in Figure 5-3 is the primary
key column.

If you don’t define a primary key, InnoDB will try to use a unique nonnullable index
instead. If there’s no such index, InnoDB will define a hidden primary key for you and
then cluster on that. InnoDB clusters records together only within a page. Pages with
adjacent key values might be distant from each other.

A clustering primary key can help performance, but it can also cause serious perfor-
mance problems. Thus, you should think carefully about clustering, especially when
you change a table’s storage engine from InnoDB to something else (or vice versa).

6. Oracle users will be familiar with the term “index-organized table,” which means the same thing.

7. This isn’t always true, as you’ll see in a moment.

168 | Chapter 5: Indexing for High Performance

Clustering data has some very important advantages:

• You can keep related data close together. For example, when implementing a
mailbox, you can cluster by user_id, so you can retrieve all of a single user’s mes-
sages by fetching only a few pages from disk. If you didn’t use clustering, each
message might require its own disk I/O.

• Data access is fast. A clustered index holds both the index and the data together
in one B-Tree, so retrieving rows from a clustered index is normally faster than a
comparable lookup in a nonclustered index.

• Queries that use covering indexes can use the primary key values contained at the
leaf node.

These benefits can boost performance tremendously if you design your tables and
queries to take advantage of them. However, clustered indexes also have disadvantages:

• Clustering gives the largest improvement for I/O-bound workloads. If the data fits
in memory the order in which it’s accessed doesn’t really matter, so clustering
doesn’t give much benefit.

• Insert speeds depend heavily on insertion order. Inserting rows in primary key
order is the fastest way to load data into an InnoDB table. It might be a good idea

Figure 5-3. Clustered index data layout

Indexing Strategies for High Performance | 169

to reorganize the table with OPTIMIZE TABLE after loading a lot of data if you didn’t
load the rows in primary key order.

• Updating the clustered index columns is expensive, because it forces InnoDB to
move each updated row to a new location.

• Tables built upon clustered indexes are subject to page splits when new rows are
inserted, or when a row’s primary key is updated such that the row must be moved.
A page split happens when a row’s key value dictates that the row must be placed
into a page that is full of data. The storage engine must split the page into two to
accommodate the row. Page splits can cause a table to use more space on disk.

• Clustered tables can be slower for full table scans, especially if rows are less densely
packed or stored nonsequentially because of page splits.

• Secondary (nonclustered) indexes can be larger than you might expect, because
their leaf nodes contain the primary key columns of the referenced rows.

• Secondary index accesses require two index lookups instead of one.

The last point can be a bit confusing. Why would a secondary index require two index
lookups? The answer lies in the nature of the “row pointers” the secondary index stores.
Remember, a leaf node doesn’t store a pointer to the referenced row’s physical location;
rather, it stores the row’s primary key values.

That means that to find a row from a secondary index, the storage engine first finds the
leaf node in the secondary index and then uses the primary key values stored there to
navigate the primary key and find the row. That’s double work: two B-Tree navigations
instead of one.8 In InnoDB, the adaptive hash index can help reduce this penalty.

Comparison of InnoDB and MyISAM data layout

The differences between clustered and nonclustered data layouts, and the correspond-
ing differences between primary and secondary indexes, can be confusing and surpris-
ing. Let’s see how InnoDB and MyISAM lay out the following table:

CREATE TABLE layout_test (
 col1 int NOT NULL,
 col2 int NOT NULL,
 PRIMARY KEY(col1),
 KEY(col2)
);

Suppose the table is populated with primary key values 1 to 10,000, inserted in random
order and then optimized with OPTIMIZE TABLE. In other words, the data is arranged
optimally on disk, but the rows might be in a random order. The values for col2 are
randomly assigned between 1 and 100, so there are lots of duplicates.

8. Nonclustered index designs aren’t always able to provide single-operation row lookups, by the way. When
a row changes it might not fit in its original location anymore, so you might end up with fragmented rows
or “forwarding addresses” in the table, both of which would result in more work to find the row.

170 | Chapter 5: Indexing for High Performance

MyISAM’s data layout is simpler, so we’ll illustrate that first. MyI-
SAM stores the rows on disk in the order in which they were inserted, as shown in
Figure 5-4.

We’ve shown the row numbers, beginning at 0, beside the rows. Because the rows are
fixed-size, MyISAM can find any row by seeking the required number of bytes from the
beginning of the table. (MyISAM doesn’t always use “row numbers,” as we’ve shown;
it uses different strategies depending on whether the rows are fixed-size or variable-
size.)

This layout makes it easy to build an index. We illustrate with a series of diagrams,
abstracting away physical details such as pages and showing only “nodes” in the index.
Each leaf node in the index can simply contain the row number. Figure 5-5 illustrates
the table’s primary key.

Figure 5-4. MyISAM data layout for the layout_test table

Figure 5-5. MyISAM primary key layout for the layout_test table

We’ve glossed over some of the details, such as how many internal B-Tree nodes de-
scend from the one before, but that’s not important to understanding the basic data
layout of a nonclustered storage engine.

MyISAM’s data layout.

Indexing Strategies for High Performance | 171

What about the index on col2? Is there anything special about it? As it turns out, no—
it’s just an index like any other. Figure 5-6 illustrates the col2 index.

Figure 5-6. MyISAM col2 index layout for the layout_test table

In fact, in MyISAM, there is no structural difference between a primary key and any
other index. A primary key is simply a unique, nonnullable index named PRIMARY.

InnoDB stores the same data very differently because of its clustered
organization. InnoDB stores the table as shown in Figure 5-7.

Figure 5-7. InnoDB primary key layout for the layout_test table

At first glance, that might not look very different from Figure 5-5. But look again, and
notice that this illustration shows the whole table, not just the index. Because the
clustered index “is” the table in InnoDB, there’s no separate row storage as there is for
MyISAM.

InnoDB’s data layout.

172 | Chapter 5: Indexing for High Performance

Each leaf node in the clustered index contains the primary key value, the transaction
ID, and rollback pointer InnoDB uses for transactional and MVCC purposes, and the
rest of the columns (in this case, col2). If the primary key is on a column prefix, InnoDB
includes the full column value with the rest of the columns.

Also in contrast to MyISAM, secondary indexes are very different from clustered in-
dexes in InnoDB. Instead of storing “row pointers,” InnoDB’s secondary index leaf
nodes contain the primary key values, which serve as the “pointers” to the rows. This
strategy reduces the work needed to maintain secondary indexes when rows move or
when there’s a data page split. Using the row’s primary key values as the pointer makes
the index larger, but it means InnoDB can move a row without updating pointers to it.

Figure 5-8 illustrates the col2 index for the example table. Each leaf node contains the
indexed columns (in this case just col2), followed by the primary key values (col1).

Figure 5-8. InnoDB secondary index layout for the layout_test table

These diagrams have illustrated the B-Tree leaf nodes, but we intentionally omitted
details about the non-leaf nodes. InnoDB’s non-leaf B-Tree nodes each contain the
indexed column(s), plus a pointer to the next-deeper node (which might be either an-
other non-leaf node or a leaf node). This applies to all indexes, clustered and secondary.

Figure 5-9 is an abstract diagram of how InnoDB and MyISAM arrange the table. This
illustration makes it easier to see how differently InnoDB and MyISAM store data and
indexes.

If you don’t understand why and how clustered and nonclustered storage are different,
and why it’s so important, don’t worry. It will become clearer as you learn more, es-
pecially in the rest of this chapter and in the next chapter. These concepts are compli-
cated, and they take a while to understand fully.

Inserting rows in primary key order with InnoDB

If you’re using InnoDB and don’t need any particular clustering, it can be a good idea
to define a surrogate key, which is a primary key whose value is not derived from your

Indexing Strategies for High Performance | 173

application’s data. The easiest way to do this is usually with an AUTO_INCREMENT column.
This will ensure that rows are inserted in sequential order and will offer better perfor-
mance for joins using primary keys.

It is best to avoid random (nonsequential and distributed over a large set of values)
clustered keys, especially for I/O-bound workloads. For example, using UUID values
is a poor choice from a performance standpoint: it makes clustered index insertion
random, which is a worst-case scenario, and does not give you any helpful data
clustering.

To demonstrate, we benchmarked two cases. The first is inserting into a userinfo table
with an integer ID, defined as follows:

CREATE TABLE userinfo (
 id int unsigned NOT NULL AUTO_INCREMENT,
 name varchar(64) NOT NULL DEFAULT '',
 email varchar(64) NOT NULL DEFAULT '',
 password varchar(64) NOT NULL DEFAULT '',
 dob date DEFAULT NULL,
 address varchar(255) NOT NULL DEFAULT '',
 city varchar(64) NOT NULL DEFAULT '',
 state_id tinyint unsigned NOT NULL DEFAULT '0',
 zip varchar(8) NOT NULL DEFAULT '',
 country_id smallint unsigned NOT NULL DEFAULT '0',
 gender ('M','F')NOT NULL DEFAULT 'M',
 account_type varchar(32) NOT NULL DEFAULT '',
 verified tinyint NOT NULL DEFAULT '0',
 allow_mail tinyint unsigned NOT NULL DEFAULT '0',
 parrent_account int unsigned NOT NULL DEFAULT '0',
 closest_airport varchar(3) NOT NULL DEFAULT '',
 PRIMARY KEY (id),
 UNIQUE KEY email (email),
 KEY country_id (country_id),
 KEY state_id (state_id),
 KEY state_id_2 (state_id,city,address)
) ENGINE=InnoDB

Notice the autoincrementing integer primary key.9

The second case is a table named userinfo_uuid. It is identical to the userinfo table,
except that its primary key is a UUID instead of an integer:

CREATE TABLE userinfo_uuid (
 uuid varchar(36) NOT NULL,
 ...

We benchmarked both table designs. First, we inserted a million records into both
tables on a server with enough memory to hold the indexes. Next, we inserted three
million rows into the same tables, which made the indexes bigger than the server’s
memory. Table 5-1 compares the benchmark results.

9. It’s worth pointing out that this is a real table, with secondary indexes and lots of columns. If we removed
these and benchmarked only the primary key performance, the difference would be even larger.

174 | Chapter 5: Indexing for High Performance

Table 5-1. Benchmark results for inserting rows into InnoDB tables

Table Rows Time (sec) Index size (MB)

userinfo 1,000,000 137 342

userinfo_uuid 1,000,000 180 544

userinfo 3,000,000 1233 1036

userinfo_uuid 3,000,000 4525 1707

Notice that not only does it take longer to insert the rows with the UUID primary key,
but the resulting indexes are quite a bit bigger. Some of that is due to the larger primary
key, but some of it is undoubtedly due to page splits and resultant fragmentation as well.

To see why this is so, let’s see what happened in the index when we inserted data into
the first table. Figure 5-10 shows inserts filling a page and then continuing on a second
page.

Figure 5-9. Clustered and nonclustered tables side-by-side

Indexing Strategies for High Performance | 175

As Figure 5-10 illustrates, InnoDB stores each record immediately after the one before,
because the primary key values are sequential. When the page reaches its maximum
fill factor (InnoDB’s initial fill factor is only 15/16 full, to leave room for modifications
later), the next record goes into a new page. Once the data has been loaded in this
sequential fashion, the primary key pages are packed nearly full with in-order records,
which is highly desirable. (The secondary index pages are not likely to differ, however.)

Contrast that with what happened when we inserted the data into the second table
with the UUID clustered index, as shown in Figure 5-11.

Because each new row doesn’t necessarily have a larger primary key value than the
previous one, InnoDB cannot always place the new row at the end of the index. It has
to find the appropriate place for the row—on average, somewhere near the middle of
the existing data—and make room for it. This causes a lot of extra work and results in
a suboptimal data layout. Here’s a summary of the drawbacks:

• The destination page might have been flushed to disk and removed from the caches,
or might not have ever been placed into the caches, in which case InnoDB will have
to find it and read it from the disk before it can insert the new row. This causes a
lot of random I/O.

• When insertions are done out of order, InnoDB has to split pages frequently to
make room for new rows. This requires moving around a lot of data, and modifying
at least three pages instead of one.

• Pages become sparsely and irregularly filled because of splitting, so the final data
is fragmented.

After loading such random values into a clustered index, you should probably do an
OPTIMIZE TABLE to rebuild the table and fill the pages optimally.

The moral of the story is that you should strive to insert data in primary key order when
using InnoDB, and you should try to use a clustering key that will give a monotonically
increasing value for each new row.

Figure 5-10. Inserting sequential index values into a clustered index

176 | Chapter 5: Indexing for High Performance

When Primary Key Order Is Worse
For high-concurrency workloads, inserting in primary key order can actually create
points of contention in InnoDB. The upper end of the primary key is one hot spot.
Because all inserts take place there, concurrent inserts might fight over next-key locks.
Another hot spot is the AUTO_INCREMENT locking mechanism; if you experience problems
with that, you might be able to redesign your table or application, or configure
innodb_autoinc_lock_mode. If your server version doesn’t support innodb_auto
inc_lock_mode, you can upgrade to a newer version of InnoDB that will perform better
for this specific workload.

Covering Indexes
A common suggestion is to create indexes for the query’s WHERE clause, but that’s only
part of the story. Indexes need to be designed for the whole query, not just the WHERE
clause. Indexes are indeed a way to find rows efficiently, but MySQL can also use an
index to retrieve a column’s data, so it doesn’t have to read the row at all. After all,
the index’s leaf nodes contain the values they index; why read the row when reading

Figure 5-11. Inserting nonsequential values into a clustered index

Indexing Strategies for High Performance | 177

the index can give you the data you want? An index that contains (or “covers”) all the
data needed to satisfy a query is called a covering index.

Covering indexes can be a very powerful tool and can dramatically improve perfor-
mance. Consider the benefits of reading only the index instead of the data:

• Index entries are usually much smaller than the full row size, so MySQL can access
significantly less data if it reads only the index. This is very important for cached
workloads, where much of the response time comes from copying the data. It is
also helpful for I/O-bound workloads, because the indexes are smaller than the
data and fit in memory better. (This is especially true for MyISAM, which can pack
indexes to make them even smaller.)

• Indexes are sorted by their index values (at least within the page), so I/O-bound
range accesses will need to do less I/O compared to fetching each row from a
random disk location. For some storage engines, such as MyISAM and Percona
XtraDB, you can even OPTIMIZE the table to get fully sorted indexes, which will let
simple range queries use completely sequential index accesses.

• Some storage engines, such as MyISAM, cache only the index in MySQL’s memory.
Because the operating system caches the data for MyISAM, accessing it typically
requires a system call. This might cause a huge performance impact, especially for
cached workloads where the system call is the most expensive part of data access.

• Covering indexes are especially helpful for InnoDB tables, because of InnoDB’s
clustered indexes. InnoDB’s secondary indexes hold the row’s primary key values
at their leaf nodes. Thus, a secondary index that covers a query avoids another
index lookup in the primary key.

In all of these scenarios, it is typically much less expensive to satisfy a query from an
index instead of looking up the rows.

A covering index can’t be just any kind of index. The index must store the values from
the columns it contains. Hash, spatial, and full-text indexes don’t store these values,
so MySQL can use only B-Tree indexes to cover queries. And again, different storage
engines implement covering indexes differently, and not all storage engines support
them (at the time of this writing, the Memory storage engine doesn’t).

When you issue a query that is covered by an index (an index-covered query), you’ll see
“Using index” in the Extra column in EXPLAIN.10 For example, the sakila.inventory
table has a multicolumn index on (store_id, film_id). MySQL can use this index for
a query that accesses only those two columns, such as the following:

mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G
*************************** 1. row ***************************
 id: 1

10. It’s easy to confuse “Using index” in the Extra column with “index” in the type column. However, they
are completely different. The type column has nothing to do with covering indexes; it shows the query’s
access type, or how the query will find rows. The MySQL manual calls this the “join type.”

178 | Chapter 5: Indexing for High Performance

 select_type: SIMPLE
 table: inventory
 type: index
possible_keys: NULL
 key: idx_store_id_film_id
 key_len: 3
 ref: NULL
 rows: 4673
 Extra: Using index

Index-covered queries have subtleties that can disable this optimization. The MySQL
query optimizer decides before executing a query whether an index covers it. Suppose
the index covers a WHERE condition, but not the entire query. If the condition evaluates
as false, MySQL 5.5 and earlier will fetch the row anyway, even though it doesn’t need
it and will filter it out.

Let’s see why this can happen, and how to rewrite the query to work around the prob-
lem. We begin with the following query:

mysql> EXPLAIN SELECT * FROM products WHERE actor='SEAN CARREY'
 -> AND title like '%APOLLO%'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: products
 type: ref
possible_keys: ACTOR,IX_PROD_ACTOR
 key: ACTOR
 key_len: 52
 ref: const
 rows: 10
 Extra: Using where

The index can’t cover this query for two reasons:

• No index covers the query, because we selected all columns from the table and no
index covers all columns. There’s still a shortcut MySQL could theoretically use,
though: the WHERE clause mentions only columns the index covers, so MySQL could
use the index to find the actor and check whether the title matches, and only then
read the full row.

• MySQL can’t perform the LIKE operation in the index. This is a limitation of the
low-level storage engine API, which in MySQL 5.5 and earlier allows only simple
comparisons (such as equality, inequality, and greater-than) in index operations.
MySQL can perform prefix-match LIKE patterns in the index because it can convert
them to simple comparisons, but the leading wildcard in the query makes it im-
possible for the storage engine to evaluate the match. Thus, the MySQL server itself
will have to fetch and match on the row’s values, not the index’s values.

There’s a way to work around both problems with a combination of clever indexing
and query rewriting. We can extend the index to cover (artist, title, prod_id) and
rewrite the query as follows:

Indexing Strategies for High Performance | 179

mysql> EXPLAIN SELECT *
 -> FROM products
 -> JOIN (
 -> SELECT prod_id
 -> FROM products
 -> WHERE actor='SEAN CARREY' AND title LIKE '%APOLLO%'
 ->) AS t1 ON (t1.prod_id=products.prod_id)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 ...omitted...
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: products
 ...omitted...
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: products
 type: ref
possible_keys: ACTOR,ACTOR_2,IX_PROD_ACTOR
 key: ACTOR_2
 key_len: 52
 ref:
 rows: 11
 Extra: Using where; Using index

We call this a “deferred join” because it defers access to the columns. MySQL uses the
covering index in the first stage of the query, when it finds matching rows in the sub-
query in the FROM clause. It doesn’t use the index to cover the whole query, but it’s better
than nothing.

The effectiveness of this optimization depends on how many rows the WHERE clause
finds. Suppose the products table contains a million rows. Let’s see how these two
queries perform on three different datasets, each of which contains a million rows:

1. In the first, 30,000 products have Sean Carrey as the actor, and 20,000 of those
contain “Apollo” in the title.

2. In the second, 30,000 products have Sean Carrey as the actor, and 40 of those
contain “Apollo” in the title.

3. In the third, 50 products have Sean Carrey as the actor, and 10 of those contain
“Apollo” in the title.

We used these three datasets to benchmark the two variations of the query and got the
results shown in Table 5-2.

180 | Chapter 5: Indexing for High Performance

Table 5-2. Benchmark results for index-covered queries versus non-index-covered queries

Dataset Original query Optimized query

Example 1 5 queries per sec 5 queries per sec

Example 2 7 queries per sec 35 queries per sec

Example 3 2400 queries per sec 2000 queries per sec

Here’s how to interpret these results:

• In example 1 the query returns a big result set, so we can’t see the optimization’s
effect. Most of the time is spent reading and sending data.

• Example 2, where the second condition filter leaves only a small set of results after
index filtering, shows how effective the proposed optimization is: performance is
five times better on our data. The efficiency comes from needing to read only 40
full rows, instead of 30,000 as in the first query.

• Example 3 shows the case when the subquery is inefficient. The set of results left
after index filtering is so small that the subquery is more expensive than reading
all the data from the table.

In most storage engines, an index can cover only queries that access columns that are
part of the index. However, InnoDB can actually take this optimization a little bit fur-
ther. Recall that InnoDB’s secondary indexes hold primary key values at their leaf no-
des. This means InnoDB’s secondary indexes effectively have “extra columns” that
InnoDB can use to cover queries.

For example, the sakila.actor table uses InnoDB and has an index on last_name,
so the index can cover queries that retrieve the primary key column actor_id, even
though that column isn’t technically part of the index:

mysql> EXPLAIN SELECT actor_id, last_name
 -> FROM sakila.actor WHERE last_name = 'HOPPER'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: ref
possible_keys: idx_actor_last_name
 key: idx_actor_last_name
 key_len: 137
 ref: const
 rows: 2
 Extra: Using where; Using index

Indexing Strategies for High Performance | 181

Improvements in Future MySQL Versions
Many of the particulars we’ve mentioned here are a result of the limited storage engine
API, which doesn’t allow MySQL to push filters through the API to the storage engine.
If MySQL could do that, it could send the query to the data, instead of pulling the data
into the server where it evaluates the query. At the time of writing, the unreleased
MySQL 5.6 contains a significant improvement to the storage engine API, called index
condition pushdown. This feature will change query execution greatly and render ob-
solete many of the tricks we’ve discussed.

Using Index Scans for Sorts
MySQL has two ways to produce ordered results: it can use a sort operation, or it can
scan an index in order.11 You can tell when MySQL plans to scan an index by looking
for “index” in the type column in EXPLAIN. (Don’t confuse this with “Using index” in
the Extra column.)

Scanning the index itself is fast, because it simply requires moving from one index entry
to the next. However, if MySQL isn’t using the index to cover the query, it will have to
look up each row it finds in the index. This is basically random I/O, so reading data in
index order is usually much slower than a sequential table scan, especially for I/O-
bound workloads.

MySQL can use the same index for both sorting and finding rows. If possible, it’s a
good idea to design your indexes so that they’re useful for both tasks at once.

Ordering the results by the index works only when the index’s order is exactly the same
as the ORDER BY clause and all columns are sorted in the same direction (ascending or
descending).12 If the query joins multiple tables, it works only when all columns in the
ORDER BY clause refer to the first table. The ORDER BY clause also has the same limitation
as lookup queries: it needs to form a leftmost prefix of the index. In all other cases,
MySQL uses a sort.

One case where the ORDER BY clause doesn’t have to specify a leftmost prefix of the
index is if there are constants for the leading columns. If the WHERE clause or a JOIN
clause specifies constants for these columns, they can “fill the gaps” in the index.

For example, the rental table in the standard Sakila sample database has an index on
(rental_date, inventory_id, customer_id):

CREATE TABLE rental (
 ...
 PRIMARY KEY (rental_id),

11. MySQL has two sort algorithms; you can read more about them in Chapter 7.

12. If you need to sort in different directions, a trick that sometimes helps is to store a reversed or negated
value.

182 | Chapter 5: Indexing for High Performance

 UNIQUE KEY rental_date (rental_date,inventory_id,customer_id),
 KEY idx_fk_inventory_id (inventory_id),
 KEY idx_fk_customer_id (customer_id),
 KEY idx_fk_staff_id (staff_id),
 ...
);

MySQL uses the rental_date index to order the following query, as you can see from
the lack of a filesort13 in EXPLAIN:

mysql> EXPLAIN SELECT rental_id, staff_id FROM sakila.rental
 -> WHERE rental_date = '2005-05-25'
 -> ORDER BY inventory_id, customer_id\G
*************************** 1. row ***************************
 type: ref
possible_keys: rental_date
 key: rental_date
 rows: 1
 Extra: Using where

This works, even though the ORDER BY clause isn’t itself a leftmost prefix of the index,
because we specified an equality condition for the first column in the index.

Here are some more queries that can use the index for sorting. This one works because
the query provides a constant for the first column of the index and specifies an ORDER
BY on the second column. Taken together, those two form a leftmost prefix on the index:

... WHERE rental_date = '2005-05-25' ORDER BY inventory_id DESC;

The following query also works, because the two columns in the ORDER BY are a leftmost
prefix of the index:

... WHERE rental_date > '2005-05-25' ORDER BY rental_date, inventory_id;

Here are some queries that cannot use the index for sorting:

• This query uses two different sort directions, but the index’s columns are all sorted
ascending:

... WHERE rental_date = '2005-05-25' ORDER BY inventory_id DESC, customer_id ASC;

• Here, the ORDER BY refers to a column that isn’t in the index:

... WHERE rental_date = '2005-05-25' ORDER BY inventory_id, staff_id;

• Here, the WHERE and the ORDER BY don’t form a leftmost prefix of the index:

... WHERE rental_date = '2005-05-25' ORDER BY customer_id;

• This query has a range condition on the first column, so MySQL doesn’t use the
rest of the index:

... WHERE rental_date > '2005-05-25' ORDER BY inventory_id, customer_id;

• Here there’s a multiple equality on the inventory_id column. For the purposes of
sorting, this is basically the same as a range:

13. MySQL calls it a “filesort,” but it doesn’t necessarily use files.

Indexing Strategies for High Performance | 183

... WHERE rental_date = '2005-05-25' AND inventory_id IN(1,2) ORDER BY customer_
id;

• Here’s an example where MySQL could theoretically use an index to order a join,
but doesn’t because the optimizer places the film_actor table second in the join
(the next chapter shows ways to change the join order):

mysql> EXPLAIN SELECT actor_id, title FROM sakila.film_actor
 -> INNER JOIN sakila.film USING(film_id) ORDER BY actor_id\G
+------------+--+
| table | Extra |
+------------+--+
| film | Using index; Using temporary; Using filesort |
| film_actor | Using index |
+------------+--+

One of the most important uses for ordering by an index is a query that has both an
ORDER BY and a LIMIT clause. We explore this in more detail later.

Packed (Prefix-Compressed) Indexes
MyISAM uses prefix compression to reduce index size, allowing more of the index to
fit in memory and dramatically improving performance in some cases. It packs string
values by default, but you can even tell it to compress integer values.

MyISAM packs each index block by storing the block’s first value fully, then storing
each additional value in the block by recording the number of bytes that have the same
prefix, plus the actual data of the suffix that differs. For example, if the first value is
“perform” and the second is “performance,” the second value will be stored analo-
gously to “7,ance”. MyISAM can also prefix-compress adjacent row pointers.

Compressed blocks use less space, but they make some operations slower. Because
each value’s compression prefix depends on the value before it, MyISAM can’t do bi-
nary searches to find a desired item in the block and must scan the block from the
beginning. Sequential forward scans perform well, but reverse scans—such as ORDER
BY DESC—don’t work as well. Any operation that requires finding a single row in the
middle of the block will require scanning, on average, half the block.

Our benchmarks have shown that packed keys make index lookups on MyISAM tables
perform several times more slowly for a CPU-bound workload, because of the scans
required for random lookups. Reverse scans of packed keys are even slower. The trade-
off is one of CPU and memory resources versus disk resources. Packed indexes can be
about one-tenth the size on disk, and if you have an I/O-bound workload they can more
than offset the cost for some queries.

You can control how a table’s indexes are packed with the PACK_KEYS option to CREATE
TABLE.

184 | Chapter 5: Indexing for High Performance

Redundant and Duplicate Indexes
MySQL allows you to create multiple indexes on the same column; it does not “notice”
and protect you from your mistake. MySQL has to maintain each duplicate index sep-
arately, and the query optimizer will consider each of them when it optimizes queries.
This can impact performance.

Duplicate indexes are indexes of the same type, created on the same set of columns in
the same order. You should try to avoid creating them, and you should remove them
if you find them.

Sometimes you can create duplicate indexes without knowing it. For example, look at
the following code:

CREATE TABLE test (
 ID INT NOT NULL PRIMARY KEY,
 A INT NOT NULL,
 B INT NOT NULL,
 UNIQUE(ID),
 INDEX(ID)
) ENGINE=InnoDB;

An inexperienced user might think this identifies the column’s role as a primary key,
adds a UNIQUE constraint, and adds an index for queries to use. In fact, MySQL imple-
ments UNIQUE constraints and PRIMARY KEY constraints with indexes, so this actually
creates three indexes on the same column! There is typically no reason to do this, unless
you want to have different types of indexes on the same column to satisfy different
kinds of queries.14

Redundant indexes are a bit different from duplicated indexes. If there is an index on
(A, B), another index on (A) would be redundant because it is a prefix of the first index.
That is, the index on (A, B) can also be used as an index on (A) alone. (This type of
redundancy applies only to B-Tree indexes.) However, an index on (B, A) would not
be redundant, and neither would an index on (B), because B is not a leftmost prefix of
(A, B). Furthermore, indexes of different types (such as hash or full-text indexes) are
not redundant to B-Tree indexes, no matter what columns they cover.

Redundant indexes usually appear when people add indexes to a table. For example,
someone might add an index on (A, B) instead of extending an existing index on (A)
to cover (A, B). Another way this could happen is by changing the index to cover (A,
ID). The ID column is the primary key, so it’s already included if you’re using InnoDB.

In most cases you don’t want redundant indexes, and to avoid them you should extend
existing indexes rather than add new ones. Still, there are times when you’ll need re-
dundant indexes for performance reasons. Extending an existing index might make it
much larger and reduce performance for some queries.

14. An index is not necessarily a duplicate if it’s a different type of index; there are often good reasons to have
KEY(col) and FULLTEXT KEY(col).

Indexing Strategies for High Performance | 185

For example, if you have an index on an integer column and you extend it with a long
VARCHAR column, it might become significantly slower. This is especially true if your
queries use the index as a covering index, or if it’s a MyISAM table and you perform a
lot of range scans on it (because of MyISAM’s prefix compression).

Consider the userinfo table, which we described previously in “Inserting rows in pri-
mary key order with InnoDB” on page 173. This table contains 1,000,000 rows, and
for each state_id there are about 20,000 records. There is an index on state_id, which
is useful for the following query. We refer to this query as Q1:

mysql> SELECT count(*) FROM userinfo WHERE state_id=5;

A simple benchmark shows an execution rate of almost 115 queries per second (QPS)
for this query. We also have a related query that retrieves several columns instead of
just counting rows. This is Q2:

mysql> SELECT state_id, city, address FROM userinfo WHERE state_id=5;

For this query, the result is less than 10 QPS.15 The simple solution to improve its
performance is to extend the index to (state_id, city, address), so the index will
cover the query:

mysql> ALTER TABLE userinfo DROP KEY state_id,
 -> ADD KEY state_id_2 (state_id, city, address);

After extending the index, Q2 runs faster, but Q1 runs more slowly. If we really care
about making both queries fast, we should leave both indexes, even though the single-
column index is redundant. Table 5-3 shows detailed results for both queries and in-
dexing strategies, with MyISAM and InnoDB storage engines. Note that InnoDB’s
performance doesn’t degrade as much for Q1 with only the state_id_2 index, because
InnoDB doesn’t use key compression.

Table 5-3. Benchmark results in QPS for SELECT queries with various index strategies

 state_id only state_id_2 only Both state_id and state_id_2

MyISAM, Q1 114.96 25.40 112.19

MyISAM, Q2 9.97 16.34 16.37

InnoDB, Q1 108.55 100.33 107.97

InnoDB, Q2 12.12 28.04 28.06

The drawback of having two indexes is the maintenance cost. Table 5-4 shows how
long it takes to insert a million rows into the table.

15. We’ve used an in-memory example here. When the table is bigger and the workload becomes I/O-bound,
the difference between the numbers will be much larger. It’s not uncommon for COUNT() queries to become
100 or more times faster with a covering index.

186 | Chapter 5: Indexing for High Performance

Table 5-4. Speed of inserting a million rows with various index strategies

 state_id only Both state_id and state_id_2

InnoDB, enough memory for both indexes 80 seconds 136 seconds

MyISAM, enough memory for only one index 72 seconds 470 seconds

As you can see, inserting new rows into the table with more indexes is slower. This is
true in general: adding new indexes might have a performance impact for INSERT,
UPDATE, and DELETE operations, especially if a new index causes you to hit memory limits.

The solution for redundant and duplicate indexes is simply to drop them, but first you
need to identify them. You can write various complicated queries against the INFORMA
TION_SCHEMA tables, but there are two easier techniques. You can use the views in Shlomi
Noach’s common_schema, a set of utility routines and views you can install into your
server (http://code.google.com/p/common-schema/). This is faster and easier than writing
the queries yourself. Or you can use the pt-duplicate-key-checker tool included with
Percona Toolkit, which analyzes table structures and suggests indexes that are duplicate
or redundant. The external tool is probably a better choice for very large servers; queries
against the INFORMATION_SCHEMA tables can cause performance problems when there is
a lot of data or a large number of tables.

Be careful when determining which indexes are candidates for dropping or extending.
Recall that in InnoDB, an index on column (A) in our example table is really equivalent
to an index on (A, ID) because the primary key is appended to secondary index leaf
nodes. If you have a query such as WHERE A = 5 ORDER BY ID, the index will be very
helpful. But if you extend the index to (A, B), then it really becomes (A, B, ID) and
the query will begin to use a filesort for the ORDER BY portion of the query. It’s good to
validate your planned changes carefully with a tool such as pt-upgrade from the Percona
Toolkit.

Unused Indexes
In addition to duplicate and redundant indexes, you might have some indexes that the
server simply doesn’t use. These are simply dead weight, and you should consider
dropping them.16 There are two tools that can help you identify unused indexes. Per-
haps the easiest and most accurate is the INFORMATION_SCHEMA.INDEX_STATISTICS table
in Percona Server and MariaDB. Just enable the userstats server variable (it’s disabled
by default) and let the server run for a while, and you’ll be able to see how much each
index is used.

Alternatively, you can use the pt-index-usage tool included in Percona Toolkit. This
tool reads a log of queries and executes EXPLAIN with each one. When it completes, it

16. Some indexes function as unique constraints, so even if an index doesn’t get used for queries, it might be
used to prevent duplicate values.

Indexing Strategies for High Performance | 187

http://code.google.com/p/common-schema/

prints out a report on indexes and queries. You can use this not only to find indexes
that aren’t used, but also to learn about the query execution plans—for example, find-
ing similar queries that the server executes differently in some cases. This can help you
identify queries that might provide poor quality of service at times, so you can optimize
them to run more uniformly. The tool can also store its results into tables in MySQL,
so you can run SQL queries against them.

Indexes and Locking
Indexes permit queries to lock fewer rows. If your queries never touch rows they don’t
need, they’ll lock fewer rows, and that’s better for performance for two reasons. First,
even though InnoDB’s row locks are very efficient and use very little memory, there’s
still some overhead involved in row locking. Secondly, locking more rows than needed
increases lock contention and reduces concurrency.

InnoDB locks rows only when it accesses them, and an index can reduce the number
of rows InnoDB accesses and therefore locks. However, this works only if InnoDB can
filter out the undesired rows at the storage engine level. If the index doesn’t permit
InnoDB to do that, the MySQL server will have to apply a WHERE clause after InnoDB
retrieves the rows and returns them to the server level.17 At this point, it’s too late to
avoid locking the rows: InnoDB will already have locked them, and they will remain
locked for some period of time. In MySQL 5.1 and newer, InnoDB can unlock rows
after the server filters them out; in older versions of MySQL, InnoDB doesn’t unlock
the rows until the transaction commits.

This is easier to see with an example. We use the Sakila sample database again:

mysql> SET AUTOCOMMIT=0;
mysql> BEGIN;
mysql> SELECT actor_id FROM sakila.actor WHERE actor_id < 5
 -> AND actor_id <> 1 FOR UPDATE;
+----------+
| actor_id |
+----------+
| 2 |
| 3 |
| 4 |
+----------+

This query returns only rows 2 through 4, but it actually gets exclusive locks on rows
1 through 4. InnoDB locked row 1 because the plan MySQL chose for this query was
an index range access:

mysql> EXPLAIN SELECT actor_id FROM sakila.actor
 -> WHERE actor_id < 5 AND actor_id <> 1 FOR UPDATE;
+----+-------------+-------+-------+---------+--------------------------+
| id | select_type | table | type | key | Extra |

17. Again, MySQL 5.6 might help significantly with this problem.

188 | Chapter 5: Indexing for High Performance

+----+-------------+-------+-------+---------+--------------------------+
| 1 | SIMPLE | actor | range | PRIMARY | Using where; Using index |
+----+-------------+-------+-------+---------+--------------------------+

In other words, the low-level storage engine operation was “begin at the start of the
index and fetch all rows until actor_id < 5 is false.” The server didn’t tell InnoDB about
the WHERE condition that eliminated row 1. Note the presence of “Using where” in the
Extra column in EXPLAIN. This indicates that the MySQL server is applying a WHERE filter
after the storage engine returns the rows.

Here’s a second query that proves row 1 is locked, even though it didn’t appear in the
results from the first query. Leaving the first connection open, start a second connection
and execute the following:

mysql> SET AUTOCOMMIT=0;
mysql> BEGIN;
mysql> SELECT actor_id FROM sakila.actor WHERE actor_id = 1 FOR UPDATE;

The query will hang, waiting for the first transaction to release the lock on row 1. This
behavior is necessary for statement-based replication (discussed in Chapter 10) to work
correctly.18

As this example shows, InnoDB can lock rows it doesn’t really need even when it uses
an index. The problem is even worse when it can’t use an index to find and lock the
rows: if there’s no index for the query, MySQL will do a full table scan and lock every
row, whether it “needs” it or not.

Here’s a little-known detail about InnoDB, indexes, and locking: InnoDB can place
shared (read) locks on secondary indexes, but exclusive (write) locks require access to
the primary key. That eliminates the possibility of using a covering index and can make
SELECT FOR UPDATE much slower than LOCK IN SHARE MODE or a nonlocking query.

An Indexing Case Study
The easiest way to understand how to apply indexing concepts is with an illustration,
so we’ve prepared a case study in indexing.

Suppose we need to design an online dating site with user profiles that have many
different columns, such as the user’s country, state/region, city, sex, age, eye color, and
so on. The site must support searching the profiles by various combinations of these
properties. It must also let the user sort and limit results by the last time the profile’s
owner was online, ratings from other members, etc. How do we design indexes for such
complex requirements?

18. Although it’s possible for the server not to lock the rows in some transaction isolation levels when row-
based binary logging is used, in practice it turns out to be tricky to get the desired behavior, and even in
MySQL 5.6.3 with read-committed isolation and row-based logging, the example we’ve shown will cause
blocking.

An Indexing Case Study | 189

Oddly enough, the first thing to decide is whether we have to use index-based sorting,
or whether post-retrieval sorting is acceptable. Index-based sorting restricts how the
indexes and queries need to be built. For example, we can’t use an index for a WHERE
clause such as WHERE age BETWEEN 18 AND 25 if the same query uses an index to sort
users by the ratings other users have given them. If MySQL uses an index for a range
criterion in a query, it cannot also use another index (or a suffix of the same index) for
ordering. Assuming this will be one of the most common WHERE clauses, we’ll take for
granted that many queries will need a sort (i.e., a filesort).

Supporting Many Kinds of Filtering
Now we need to look at which columns have many distinct values and which columns
appear in WHERE clauses most often. Indexes on columns with many distinct values will
be very selective. This is generally a good thing, because it lets MySQL filter out un-
desired rows more efficiently.

The country column might not be selective, but it’ll probably be in most queries anyway.
The sex column is certainly not selective, but it’ll probably be in every query. With this
in mind, we create a series of indexes for many different combinations of columns,
prefixed with (sex,country).

The traditional wisdom is that it’s useless to index columns with very low selectivity.
So why would we place a nonselective column at the beginning of every index? Are we
out of our minds?

We have two reasons for doing this. The first reason is that, as stated earlier, almost
every query will use sex. We might even design the site such that users can choose to
search for only one sex at a time. But more importantly, there’s not much of a downside
to adding the column, because we have a trick up our sleeves.

Here’s the trick: even if a query that doesn’t restrict the results by sex is issued, we can
ensure that the index is usable anyway by adding AND sex IN('m', 'f') to the WHERE
clause. This won’t actually filter out any rows, so it’s functionally the same as not
including the sex column in the WHERE clause at all. However, we need to include this
column, because it’ll let MySQL use a larger prefix of the index. This trick is useful in
situations like this one, but if the column had many distinct values, it wouldn’t work
well because the IN() list would get too large.

This case illustrates a general principle: keep all options on the table. When you’re
designing indexes, don’t just think about the kinds of indexes you need for existing
queries, but consider optimizing the queries, too. If you see the need for an index but
you think some queries might suffer because of it, ask yourself whether you can change
the queries. You should optimize queries and indexes together to find the best com-
promise; you don’t have to design the perfect indexing scheme in a vacuum.

190 | Chapter 5: Indexing for High Performance

Next, we need to think about what other combinations of WHERE conditions we’re likely
to see and consider which of those combinations would be slow without proper in-
dexes. An index on (sex, country, age) is an obvious choice, and we’ll probably also
need indexes on (sex, country, region, age) and (sex, country, region, city, age).

That’s getting to be a lot of indexes. If we want to reuse indexes and it won’t generate
too many combinations of conditions, we can use the IN() trick and scrap the (sex,
country, age) and (sex, country, region, age) indexes. If they’re not specified in the
search form, we can ensure the index prefix has equality constraints by specifying a list
of all countries, or all regions for the country. (Combined lists of all countries, all re-
gions, and all sexes would probably be too large.)

These indexes will satisfy the most frequently specified search queries, but how can we
design indexes for less common options, such as has_pictures, eye_color, hair_
color, and education? If these columns are not very selective and are not used a lot, we
can simply skip them and let MySQL scan a few extra rows. Alternatively, we can add
them before the age column and use the IN() technique described earlier to handle the
case where they are not specified.

You might have noticed that we’re keeping the age column at the end of the index.
What makes this column so special, and why should it be at the end of the index? We’re
trying to make sure that MySQL uses as many columns of the index as possible, because
it uses only the leftmost prefix, up to and including the first condition that specifies a
range of values. All the other columns we’ve mentioned can use equality conditions in
the WHERE clause, but age is almost certain to be a range (e.g., age BETWEEN 18 AND 25).

We could convert this to an IN() list, such as age IN(18, 19, 20, 21, 22, 23, 24,
25), but this won’t always be possible for this type of query. The general principle we’re
trying to illustrate is to keep the range criterion at the end of the index, so the optimizer
will use as much of the index as possible.

We’ve said that you can add more and more columns to the index and use IN() lists to
cover cases where those columns aren’t part of the WHERE clause, but you can overdo
this and get into trouble. Using more than a few such lists explodes the number of
combinations the optimizer has to evaluate, and this can ultimately reduce query speed.
Consider the following WHERE clause:

WHERE eye_color IN('brown','blue','hazel')
 AND hair_color IN('black','red','blonde','brown')
 AND sex IN('M','F')

The optimizer will convert this into 4*3*2 = 24 combinations, and the WHERE clause will
then have to check for each of them. Twenty-four is not an extreme number of com-
binations, but be careful if that number approaches thousands. Older MySQL versions
had more problems with large numbers of IN() combinations: query optimization could
take longer than execution and consume a lot of memory. Newer MySQL versions stop
evaluating combinations if the number of combinations gets too large, but this limits
how well MySQL can use the index.

An Indexing Case Study | 191

Avoiding Multiple Range Conditions
Let’s assume we have a last_online column and we want to be able to show the users
who were online during the previous week:

WHERE eye_color IN('brown','blue','hazel')
 AND hair_color IN('black','red','blonde','brown')
 AND sex IN('M','F')
 AND last_online > DATE_SUB(NOW(), INTERVAL 7 DAY)
 AND age BETWEEN 18 AND 25

What Is a Range Condition?
EXPLAIN’s output can sometimes make it hard to tell whether MySQL is really looking
for a range of values, or for a list of values. EXPLAIN uses the same term, “range,” to
indicate both. For example, MySQL calls the following a “range” query, as you can see
in the type column:

mysql> EXPLAIN SELECT actor_id FROM sakila.actor
 -> WHERE actor_id > 45\G
************************* 1. row *************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: range

But what about this one?

mysql> EXPLAIN SELECT actor_id FROM sakila.actor
 -> WHERE actor_id IN(1, 4, 99)\G
************************* 1. row *************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: range

There’s no way to tell the difference by looking at EXPLAIN, but we draw a distinction
between ranges of values and multiple equality conditions. The second query is a mul-
tiple equality condition, in our terminology.

We’re not just being picky: these two kinds of index accesses perform differently. The
range condition makes MySQL ignore any further columns in the index, but the mul-
tiple equality condition doesn’t have that limitation.

There’s a problem with this query: it has two range conditions. MySQL can use either
the last_online criterion or the age criterion, but not both.

If the last_online restriction appears without the age restriction, or if last_online is
more selective than age, we might wish to add another set of indexes with last
_online at the end. But what if we can’t convert the age to an IN() list, and we really
need the speed boost of restricting by last_online and age simultaneously? At the mo-
ment there’s no way to do this directly, but we can convert one of the ranges to an
equality comparison. To do this, we add a precomputed active column, which we’ll

192 | Chapter 5: Indexing for High Performance

maintain with a periodic job. We’ll set the column to 1 when the user logs in, and the
job will set it back to 0 if the user doesn’t log in for seven consecutive days.

This approach lets MySQL use indexes such as (active, sex, country, age). The
column might not be absolutely accurate, but this kind of query might not require a
high degree of accuracy. If we do need accuracy, we can leave the last_online condition
in the WHERE clause, but not index it. This technique is similar to the one we used to
simulate hash indexes for URL lookups earlier in this chapter. The condition won’t use
any index, but because it’s unlikely to throw away many of the rows that an index
would find, an index wouldn’t really be beneficial anyway. Put another way, the lack
of an index won’t hurt the query noticeably.

By now, you can probably see the pattern: if a user wants to see both active and inactive
results, we can add an IN() list. We’ve added a lot of these lists, but the alternative is
to create separate indexes that can satisfy every combination of columns on which we
need to filter. We’d have to use at least the following indexes: (active, sex, country,
age), (active, country, age), (sex, country, age), and (country, age). Although
such indexes might be more optimal for each specific query, the overhead of main-
taining them all, combined with all the extra space they’d require, would likely make
this a poor strategy overall.

This is a case where optimizer changes can really affect the optimal indexing strategy.
If a future version of MySQL can do a true loose index scan, it should be able to use
multiple range conditions on a single index, so we won’t need the IN() lists for the
kinds of queries we’re considering here.

Optimizing Sorts
The last issue we want to cover in this case study is sorting. Sorting small result sets
with filesorts is fast, but what if millions of rows match a query? For example, what if
only sex is specified in the WHERE clause?

We can add special indexes for sorting these low-selectivity cases. For example, an
index on (sex, rating) can be used for the following query:

mysql> SELECT <cols> FROM profiles WHERE sex='M' ORDER BY rating LIMIT 10;

This query has both ORDER BY and LIMIT clauses, and it would be very slow without the
index.

Even with the index, the query can be slow if the user interface is paginated and some-
one requests a page that’s not near the beginning. This case creates a bad combination
of ORDER BY and LIMIT with an offset:

mysql> SELECT <cols> FROM profiles WHERE sex='M' ORDER BY rating LIMIT 100000, 10;

Such queries can be a serious problem no matter how they’re indexed, because the high
offset requires them to spend most of their time scanning a lot of data that they will
then throw away. Denormalizing, precomputing, and caching are likely to be the only

An Indexing Case Study | 193

strategies that work for queries like this one. An even better strategy is to limit the
number of pages you let the user view. This is unlikely to impact the user’s experience,
because no one really cares about the 10,000th page of search results.

Another good strategy for optimizing such queries is to use a deferred join, which again
is our term for using a covering index to retrieve just the primary key columns of the
rows you’ll eventually retrieve. You can then join this back to the table to retrieve all
desired columns. This helps minimize the amount of work MySQL must do gathering
data that it will only throw away. Here’s an example that requires an index on (sex,
rating) to work efficiently:

mysql> SELECT <cols> FROM profiles INNER JOIN (
 -> SELECT <primary key cols> FROM profiles
 -> WHERE x.sex='M' ORDER BY rating LIMIT 100000, 10
 ->) AS x USING(<primary key cols>);

Index and Table Maintenance
Once you’ve created tables with proper data types and added indexes, your work isn’t
over: you still need to maintain your tables and indexes to make sure they perform well.
The three main goals of table maintenance are finding and fixing corruption, main-
taining accurate index statistics, and reducing fragmentation.

Finding and Repairing Table Corruption
The worst thing that can happen to a table is corruption. With the MyISAM storage
engine, this often happens due to crashes. However, all storage engines can experience
index corruption due to hardware problems or internal bugs in MySQL or the operating
system.

Corrupted indexes can cause queries to return incorrect results, raise duplicate-key
errors when there is no duplicated value, or even cause lockups and crashes. If you
experience odd behavior—such as an error that you think shouldn’t be happening—
run CHECK TABLE to see if the table is corrupt. (Note that some storage engines don’t
support this command, and others support multiple options to specify how thoroughly
they check the table.) CHECK TABLE usually catches most table and index errors.

You can fix corrupt tables with the REPAIR TABLE command, but again, not all storage
engines support this. In these cases you can do a “no-op” ALTER, such as altering a table
to use the same storage engine it currently uses. Here’s an example for an InnoDB table:

mysql> ALTER TABLE innodb_tbl ENGINE=INNODB;

Alternatively, you can either use an offline engine-specific repair utility, such as myi-
samchk, or dump the data and reload it. However, if the corruption is in the system
area, or in the table’s “row data” area instead of the index, you might be unable to use
any of these options. In this case, you might need to restore the table from your backups
or attempt to recover data from the corrupted files.

194 | Chapter 5: Indexing for High Performance

If you experience corruption with the InnoDB storage engine, something is seriously
wrong and you need to investigate it right away. InnoDB simply shouldn’t corrupt. Its
design makes it very resilient to corruption. Corruption is evidence of either a hardware
problem such as bad memory or disks (likely), an administrator error such as manip-
ulating the database files externally to MySQL (likely), or an InnoDB bug (unlikely).
The usual causes are mistakes such as trying to make backups with rsync. There is no
query you can execute—none—that you are supposed to avoid because it’ll corrupt
InnoDB’s data. There is no hidden gun pointed at your foot. If you’re corrupting
InnoDB’s data by issuing queries against it, there’s a bug in InnoDB, and it’s never your
fault.

If you experience data corruption, the most important thing to do is try to determine
why it’s occurring; don’t simply repair the data, or the corruption could return. You
can repair the data by putting InnoDB into forced recovery mode with the
innodb_force_recovery parameter; see the MySQL manual for details. You can also use
the open source Percona InnoDB Data Recovery Toolkit (http://www.percona.com/soft
ware/mysql-innodb-data-recovery-tools/) to extract data directly from damaged data
files.

Updating Index Statistics
The MySQL query optimizer uses two API calls to ask the storage engines how index
values are distributed when deciding how to use indexes. The first is the records
_in_range() call, which accepts range end points and returns the number of records in
that range. This can be exact for some storage engines such as MyISAM, but is only an
estimate for InnoDB.

The second API call is info(), which can return various types of data, including index
cardinality (approximately how many records there are for each key value).

When the storage engine provides the optimizer with inexact information about the
number of rows a query might examine, or when the query plan is too complex to know
exactly how many rows will be matched at various stages, the optimizer uses the index
statistics to estimate the number of rows. MySQL’s optimizer is cost-based, and the
main cost metric is how much data the query will access. If the statistics were never
generated, or if they are out of date, the optimizer can make bad decisions. The solution
is to run ANALYZE TABLE, which regenerates the statistics.

Each storage engine implements index statistics differently, so the frequency with
which you’ll need to run ANALYZE TABLE differs, as does the cost of running the
statement:

• The Memory storage engine does not store index statistics at all.

• MyISAM stores statistics on disk, and ANALYZE TABLE performs a full index scan to
compute cardinality. The entire table is locked during this process.

Index and Table Maintenance | 195

http://www.percona.com/software/mysql-innodb-data-recovery-tools/
http://www.percona.com/software/mysql-innodb-data-recovery-tools/

• InnoDB does not store statistics on disk as of MySQL 5.5, but rather estimates
them with random index dives and stores them in memory.

You can examine the cardinality of your indexes with the SHOW INDEX FROM command.
For example:

mysql> SHOW INDEX FROM sakila.actor\G
*************************** 1. row ***************************
 Table: actor
 Non_unique: 0
 Key_name: PRIMARY
Seq_in_index: 1
 Column_name: actor_id
 Collation: A
 Cardinality: 200
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
*************************** 2. row ***************************
 Table: actor
 Non_unique: 1
 Key_name: idx_actor_last_name
Seq_in_index: 1
 Column_name: last_name
 Collation: A
 Cardinality: 200
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:

This command gives quite a lot of index information, which the MySQL manual ex-
plains in detail. We do want to call your attention to the Cardinality column, though.
This shows how many distinct values the storage engine estimates are in the index. You
can also get this data from the INFORMATION_SCHEMA.STATISTICS table in MySQL 5.0 and
newer, which can be quite handy. For example, you can write queries against the
INFORMATION_SCHEMA tables to find indexes with very low selectivity. Beware, however,
that on servers with a lot of data, these metadata tables can cause a lot of load on the
server.

InnoDB’s statistics are worth exploring more. The statistics are generated by sampling
a few random pages in the index and assuming that the rest of the index looks similar.
The number of pages sampled is eight in older InnoDB versions, but in more recent
versions it can be controlled with the innodb_stats_sample_pages variable. Setting this
to a value larger than eight can in theory help generate more representative index sta-
tistics, especially on very large tables, but your mileage may vary.

196 | Chapter 5: Indexing for High Performance

InnoDB calculates statistics for indexes when tables are first opened, when you run
ANALYZE TABLE, and when the table’s size changes significantly (a size change of 1/16th
or 2 billion row insertions, whichever comes first).

InnoDB also calculates statistics for queries against some INFORMATION_SCHEMA tables,
SHOW TABLE STATUS and SHOW INDEX queries, and when the MySQL command-line client
has autocompletion enabled. This can actually become a pretty serious problem on
large servers with lots of data, or when I/O is slow. Client programs or monitoring tools
that cause sampling to occur can cause a lot of locking and heavy load on the server,
as well as frustrating users with slow startup times. And you can’t observe the index
statistics without changing them, because SHOW INDEX will update the statistics. You
can disable the innodb_stats_on_metadata option to avoid all of these problems.

If you’re using Percona Server, which includes Percona XtraDB instead of standard
InnoDB, you can configure the behavior further. The innodb_stats_auto_update option
lets you disable auto-resampling, effectively freezing statistics unless you run ANALYZE
TABLE manually. This can help if you’re struggling with unstable query plans. We cre-
ated this feature at the request of some customers with very large deployments.

For even more query plan stability, and for faster system warmups, you can use a system
table to store index statistics so they are stable across server restarts and don’t need to
be recomputed when InnoDB opens the table for the first time after booting up. This
feature is available in Percona Server 5.1 and in the development milestone releases of
standard MySQL 5.6. The Percona Server feature is enabled with the innodb_
use_sys_stats_table option, and there will also be index statistics persistence in
MySQL 5.6, controlled by the innodb_analyze_is_persistent option.

If you configure your server not to update index statistics automatically, you need to
do it manually with periodic ANALYZE TABLE commands, unless you know that the sta-
tistics won’t change in ways that will create bad query plans.

Reducing Index and Data Fragmentation
B-Tree indexes can become fragmented, which might reduce performance. Fragmented
indexes can be poorly filled and/or nonsequential on disk.

By design B-Tree indexes require random disk accesses to “dive” to the leaf pages, so
random access is the rule, not the exception. However, the leaf pages can still perform
better if they are physically sequential and tightly packed. If they are not, we say they
are fragmented, and range scans or full index scans can be many times slower. This is
especially true for index-covered queries.

The table’s data storage can also become fragmented. However, data storage fragmen-
tation is more complex than index fragmentation. There are three types of data
fragmentation:

Index and Table Maintenance | 197

Row fragmentation
This type of fragmentation occurs when the row is stored in multiple pieces in
multiple locations. Row fragmentation reduces performance even if the query
needs only a single row from the index.

Intra-row fragmentation
This kind of fragmentation occurs when logically sequential pages or rows are not
stored sequentially on disk. It affects operations such as full table scans and clus-
tered index range scans, which normally benefit from a sequential data layout on
disk.

Free space fragmentation
This type of fragmentation occurs when there is a lot of empty space in data pages.
It causes the server to read a lot of data it doesn’t need, which is wasteful.

MyISAM tables might suffer from all types of fragmentation, but InnoDB never frag-
ments short rows; it moves them and rewrites them in a single piece.

To defragment data, you can either run OPTIMIZE TABLE or dump and reload the data.
These approaches work for most storage engines. For some, such as MyISAM, they
also defragment indexes by rebuilding them with a sort algorithm, which creates the
indexes in sorted order. There is no way to defragment InnoDB indexes in older
versions of InnoDB, but in more recent versions that include the ability to drop and
build indexes “online” without rebuilding the whole table, you can drop and recreate
the indexes to defragment them.

For storage engines that don’t support OPTIMIZE TABLE, you can rebuild the table with
a no-op ALTER TABLE. Just alter the table to have the same engine it currently uses:

mysql> ALTER TABLE <table> ENGINE=<engine>;

In Percona Server with expand_fast_index_creation enabled, rebuilding the table in
this way will defragment InnoDB tables and indexes. In standard MySQL, it will de-
fragment only the table (the clustered index). You can emulate Percona Server’s func-
tionality by dropping all indexes, rebuilding the table, and then adding the indexes
back to the table.

Don’t assume that you need to defragment your indexes and tables—measure them
first to find out. Percona XtraBackup has a --stats option that makes it run in a non-
backup mode. This mode prints out index and table statistics, including the amount
of data and free space in pages. This is one way you can find out how fragmented your
data really is. Also consider whether the data could have settled into a nice steady state
that you might disrupt by packing it tightly together, causing future updates to incur
a spike of page splits and reorganizations, which can impact performance until they
reach the steady state again.

198 | Chapter 5: Indexing for High Performance

Summary
As you can see, indexing is a complex topic! The way MySQL and the storage engines
access data, combined with the properties of indexes, make indexes a very powerful
and flexible tool for influencing data access, both on disk and in memory.

Most of the time you’ll use B-Tree indexes with MySQL. The other types of indexes
are rather more suitable for special purposes, and it will generally be obvious when you
ought to use them and how they can improve query response times. We’ll say no more
about them in this chapter, but it’s worth wrapping up with a review of the properties
and uses of B-Tree indexes.

Here are three principles to keep in mind as you choose indexes and write queries to
take advantage of them:

1. Single-row access is slow, especially on spindle-based storage. (Solid-state disks
are faster at random I/O, but this point remains true.) If the server reads a block
of data from storage and then accesses only one row in it, it wastes a lot of work.
It’s much better to read in a block that contains lots of rows you need. Use indexes
to create locality of reference for improved efficiency.

2. Accessing ranges of rows in order is fast, for two reasons. First, sequential I/O
doesn’t require disk seeks, so it is faster than random I/O, especially on spindle-
based storage. Secondly, if the server can read the data in the order you need it, it
doesn’t need to perform any follow-up work to sort it, and GROUP BY queries don’t
need to sort and group rows together to compute aggregates over them.

3. Index-only access is fast. If an index contains all the columns that the query needs,
the storage engine doesn’t need to find the other columns by looking up rows in
the table. This avoids lots of single-row access, which as we know from point 1
above is slow.

In sum, try to choose indexes and write queries so that you can avoid single-row look-
ups, use the inherent ordering of the data to avoid sorting operations, and exploit index-
only access. This corresponds to the three-star ranking system set out in Lahdenmaki
and Leach’s book, mentioned at the beginning of this chapter.

It would be great to be able to create perfect indexes for every query against your tables.
Unfortunately, sometimes this would require an impractically large number of indexes,
and at other times there simply is no way to create a three-star index for a given query
(for example, if the query orders by two columns, one ascending and the other de-
scending). In these cases you have to settle for the best you can do, or pursue alternative
strategies, such as denormalization or summary tables.

It’s very important to be able to reason through how indexes work, and to choose them
based on that understanding, not on rules of thumb or heuristics such as “place the
most selective columns first in multicolumn indexes” or “you should index all of the
columns that appear in the WHERE clause.”

Summary | 199

How do you know whether your schema is indexed well enough? As always, we suggest
that you frame the question in terms of response time. Find queries that are either taking
too long or contributing too much load to the server (see Chapter 3 for more on how
to measure this). Examine the schema, SQL, and index structures for the queries that
need attention. Determine whether the query has to examine too many rows, perform
post-retrieval sorting or use temporary tables, access data with random I/O, or look up
full rows from the table to retrieve columns not included in the index.

If you find a query that doesn’t benefit from all of these possible advantages of indexes,
see if a better index can be created to improve performance. If not, perhaps a rewrite
can transform the query so that it can use an index that either already exists or could
be created. That’s what the next chapter is about.

What if a query doesn’t show up in the response time–based analysis explained in
Chapter 3? Isn’t it possible that a “bad” query could escape your notice, even though
it really needs a better index for better performance? Generally, no. If profiling doesn’t
catch a query, it simply doesn’t matter. However, the query might matter in the future,
as the application, data, and workload change, so you might still wish to find queries
that don’t use indexes well and fix them before they become problematic. You can use
the query review features in pt-query-digest to help you notice “new” queries, and ex-
amine their EXPLAIN plans, for this purpose.

200 | Chapter 5: Indexing for High Performance

CHAPTER 6

Query Performance Optimization

In the previous chapters we explained schema optimization and indexing, which are
necessary for high performance. But they aren’t enough—you also need to design your
queries well. If your queries are bad, even the best-designed schema and indexes will
not perform well.

Query optimization, index optimization, and schema optimization go hand in hand.
As you gain experience writing queries in MySQL, you will learn how to design tables
and indexes to support efficient queries. Similarly, what you learn about optimal
schema design will influence the kinds of queries you write. This process takes time,
so we encourage you to refer back to these three chapters as you learn more.

This chapter begins with general query design considerations—the things you should
consider first when a query isn’t performing well. We then dig much deeper into query
optimization and server internals. We show you how to find out how MySQL executes
a particular query, and you’ll learn how to change the query execution plan. Finally,
we’ll look at some places MySQL doesn’t optimize queries well and explore query
optimization patterns that help MySQL execute queries more efficiently.

Our goal is to help you understand deeply how MySQL really executes queries, so you
can reason about what is efficient or inefficient, exploit MySQL’s strengths, and avoid
its weaknesses.

Why Are Queries Slow?
Before trying to write fast queries, remember that it’s all about response time. Queries
are tasks, but they are composed of subtasks, and those subtasks consume time. To
optimize a query, you must optimize its subtasks by eliminating them, making them
happen fewer times, or making them happen more quickly.1

1. Sometimes you might also need to modify a query to reduce its impact on other queries running on the
system. In this case, you’re trying to reduce the query’s resource consumption, a topic we discussed in
Chapter 3.

201

What are the subtasks that MySQL performs to execute a query, and which ones are
slow? The full list is impossible to include here, but if you profile a query as we showed
in Chapter 3, you will find out what tasks it performs. In general, you can think of a
query’s lifetime by mentally following the query through its sequence diagram from the
client to the server, where it is parsed, planned, and executed, and then back again to
the client. Execution is one of the most important stages in a query’s lifetime. It involves
lots of calls to the storage engine to retrieve rows, as well as post-retrieval operations
such as grouping and sorting.

While accomplishing all these tasks, the query spends time on the network, in the CPU,
in operations such as statistics and planning, locking (mutex waits), and most espe-
cially, calls to the storage engine to retrieve rows. These calls consume time in memory
operations, CPU operations, and especially I/O operations if the data isn’t in memory.
Depending on the storage engine, a lot of context switching and/or system calls might
also be involved.

In every case, excessive time may be consumed because the operations are performed
needlessly, performed too many times, or are too slow. The goal of optimization is to
avoid that, by eliminating or reducing operations, or making them faster.

Again, this isn’t a complete or accurate picture of a query’s life. Our goal here is to show
the importance of understanding a query’s lifecycle and thinking in terms of where the
time is consumed. With that in mind, let’s see how to optimize queries.

Slow Query Basics: Optimize Data Access
The most basic reason a query doesn’t perform well is because it’s working with too
much data. Some queries just have to sift through a lot of data and can’t be helped.
That’s unusual, though; most bad queries can be changed to access less data. We’ve
found it useful to analyze a poorly performing query in two steps:

1. Find out whether your application is retrieving more data than you need. That
usually means it’s accessing too many rows, but it might also be accessing too many
columns.

2. Find out whether the MySQL server is analyzing more rows than it needs.

Are You Asking the Database for Data You Don’t Need?
Some queries ask for more data than they need and then throw some of it away. This
demands extra work of the MySQL server, adds network overhead,2 and consumes
memory and CPU resources on the application server.

Here are a few typical mistakes:

2. Network overhead is worst if the application is on a different host from the server, but transferring data
between MySQL and the application isn’t free even if they’re on the same server.

202 | Chapter 6: Query Performance Optimization

Fetching more rows than needed
One common mistake is assuming that MySQL provides results on demand, rather
than calculating and returning the full result set. We often see this in applications
designed by people familiar with other database systems. These developers are used
to techniques such as issuing a SELECT statement that returns many rows, then
fetching the first N rows and closing the result set (e.g., fetching the 100 most recent
articles for a news site when they only need to show 10 of them on the front page).
They think MySQL will provide them with these 10 rows and stop executing the
query, but what MySQL really does is generate the complete result set. The client
library then fetches all the data and discards most of it. The best solution is to add
a LIMIT clause to the query.

Fetching all columns from a multitable join
If you want to retrieve all actors who appear in the film Academy Dinosaur, don’t
write the query this way:

mysql> SELECT * FROM sakila.actor
 -> INNER JOIN sakila.film_actor USING(actor_id)
 -> INNER JOIN sakila.film USING(film_id)
 -> WHERE sakila.film.title = 'Academy Dinosaur';

That returns all columns from all three tables. Instead, write the query as follows:

mysql> SELECT sakila.actor.* FROM sakila.actor...;

Fetching all columns
You should always be suspicious when you see SELECT *. Do you really need all
columns? Probably not. Retrieving all columns can prevent optimizations such as
covering indexes, as well as adding I/O, memory, and CPU overhead for the server.

Some DBAs ban SELECT * universally because of this fact, and to reduce the risk of
problems when someone alters the table’s column list.

Of course, asking for more data than you really need is not always bad. In many
cases we’ve investigated, people tell us the wasteful approach simplifies develop-
ment, because it lets the developer use the same bit of code in more than one place.
That’s a reasonable consideration, as long as you know what it costs in terms of
performance. It might also be useful to retrieve more data than you actually need
if you use some type of caching in your application, or if you have another benefit
in mind. Fetching and caching full objects might be preferable to running many
separate queries that retrieve only parts of the object.

Fetching the same data repeatedly
If you’re not careful, it’s quite easy to write application code that retrieves the same
data repeatedly from the database server, executing the same query to fetch it. For
example, if you want to find out a user’s profile image URL to display next to a list
of comments, you might request this repeatedly for each comment. Or you could
cache it the first time you fetch it, and reuse it thereafter. The latter approach is
much more efficient.

Slow Query Basics: Optimize Data Access | 203

Is MySQL Examining Too Much Data?
Once you’re sure your queries retrieve only the data you need, you can look for queries
that examine too much data while generating results. In MySQL, the simplest query
cost metrics are:

• Response time

• Number of rows examined

• Number of rows returned

None of these metrics is a perfect way to measure query cost, but they reflect roughly
how much data MySQL must access internally to execute a query and translate ap-
proximately into how fast the query runs. All three metrics are logged in the slow query
log, so looking at the slow query log is one of the best ways to find queries that examine
too much data.

Response time

Beware of taking query response time at face value. Hey, isn’t that the opposite of what
we’ve been telling you? Not really. It’s still true that response time is what matters, but
it’s a bit complicated.

Response time is the sum of two things: service time and queue time. Service time is
how long it takes the server to actually process the query. Queue time is the portion of
response time during which the server isn’t really executing the query—it’s waiting for
something, such as waiting for an I/O operation to complete, waiting for a row lock,
and so forth. The problem is, you can’t break the response time down into these com-
ponents unless you can measure them individually, which is usually hard to do. In
general, the most common and important waits you’ll encounter are I/O and lock waits,
but you shouldn’t count on that, because it varies a lot.

As a result, response time is not consistent under varying load conditions. Other
factors—such as storage engine locks (table locks and row locks), high concurrency,
and hardware—can also have a considerable impact on response times. Response time
can also be both a symptom and a cause of problems, and it’s not always obvious which
is the case, unless you can use the techniques shown in “Single-Query Versus Server-
Wide Problems” on page 93 to find out.

When you look at a query’s response time, you should ask yourself whether the re-
sponse time is reasonable for the query. We don’t have space for a detailed explanation
in this book, but you can actually calculate a quick upper-bound estimate (QUBE) of
query response time using the techniques explained in Tapio Lahdenmaki and Mike
Leach’s book Relational Database Index Design and the Optimizers (Wiley). In a nut-
shell: examine the query execution plan and the indexes involved, determine how many
sequential and random I/O operations might be required, and multiply these by the

204 | Chapter 6: Query Performance Optimization

time it takes your hardware to perform them. Add it all up and you have a yardstick to
judge whether a query is slower than it could or should be.

Rows examined and rows returned

It’s useful to think about the number of rows examined when analyzing queries, be-
cause you can see how efficiently the queries are finding the data you need.

However, this is not a perfect metric for finding “bad” queries. Not all row accesses are
equal. Shorter rows are faster to access, and fetching rows from memory is much faster
than reading them from disk.

Ideally, the number of rows examined would be the same as the number returned, but
in practice this is rarely possible. For example, when constructing rows with joins, the
server must access multiple rows to generate each row in the result set. The ratio of
rows examined to rows returned is usually small—say, between 1:1 and 10:1—but
sometimes it can be orders of magnitude larger.

Rows examined and access types

When you’re thinking about the cost of a query, consider the cost of finding a single
row in a table. MySQL can use several access methods to find and return a row. Some
require examining many rows, but others might be able to generate the result without
examining any.

The access method(s) appear in the type column in EXPLAIN’s output. The access types
range from a full table scan to index scans, range scans, unique index lookups, and
constants. Each of these is faster than the one before it, because it requires reading less
data. You don’t need to memorize the access types, but you should understand the
general concepts of scanning a table, scanning an index, range accesses, and single-
value accesses.

If you aren’t getting a good access type, the best way to solve the problem is usually by
adding an appropriate index. We discussed indexing in the previous chapter; now you
can see why indexes are so important to query optimization. Indexes let MySQL find
rows with a more efficient access type that examines less data.

For example, let’s look at a simple query on the Sakila sample database:

mysql> SELECT * FROM sakila.film_actor WHERE film_id = 1;

This query will return 10 rows, and EXPLAIN shows that MySQL uses the ref access type
on the idx_fk_film_id index to execute the query:

mysql> EXPLAIN SELECT * FROM sakila.film_actor WHERE film_id = 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: idx_fk_film_id

Slow Query Basics: Optimize Data Access | 205

 key: idx_fk_film_id
 key_len: 2
 ref: const
 rows: 10
 Extra:

EXPLAIN shows that MySQL estimated it needed to access only 10 rows. In other words,
the query optimizer knew the chosen access type could satisfy the query efficiently.
What would happen if there were no suitable index for the query? MySQL would have
to use a less optimal access type, as we can see if we drop the index and run the query
again:

mysql> ALTER TABLE sakila.film_actor DROP FOREIGN KEY fk_film_actor_film;
mysql> ALTER TABLE sakila.film_actor DROP KEY idx_fk_film_id;
mysql> EXPLAIN SELECT * FROM sakila.film_actor WHERE film_id = 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 5073
 Extra: Using where

Predictably, the access type has changed to a full table scan (ALL), and MySQL now
estimates it’ll have to examine 5,073 rows to satisfy the query. The “Using where” in
the Extra column shows that the MySQL server is using the WHERE clause to discard
rows after the storage engine reads them.

In general, MySQL can apply a WHERE clause in three ways, from best to worst:

• Apply the conditions to the index lookup operation to eliminate nonmatching
rows. This happens at the storage engine layer.

• Use a covering index (“Using index” in the Extra column) to avoid row accesses,
and filter out nonmatching rows after retrieving each result from the index. This
happens at the server layer, but it doesn’t require reading rows from the table.

• Retrieve rows from the table, then filter nonmatching rows (“Using where” in the
Extra column). This happens at the server layer and requires the server to read rows
from the table before it can filter them.

This example illustrates how important it is to have good indexes. Good indexes help
your queries get a good access type and examine only the rows they need. However,
adding an index doesn’t always mean that MySQL will access and return the same
number of rows. For example, here’s a query that uses the COUNT() aggregate function:3

mysql> SELECT actor_id, COUNT(*) FROM sakila.film_actor GROUP BY actor_id;

3. See “Optimizing COUNT() Queries” on page 241 for more on this topic.

206 | Chapter 6: Query Performance Optimization

This query returns only 200 rows, but it needs to read thousands of rows to build the
result set. An index can’t reduce the number of rows examined for a query like this one.

Unfortunately, MySQL does not tell you how many of the rows it accessed were used
to build the result set; it tells you only the total number of rows it accessed. Many of
these rows could be eliminated by a WHERE clause and end up not contributing to the
result set. In the previous example, after removing the index on sakila.film_actor, the
query accessed every row in the table and the WHERE clause discarded all but 10 of them.
Only the remaining 10 rows were used to build the result set. Understanding how many
rows the server accesses and how many it really uses requires reasoning about the query.

If you find that a huge number of rows were examined to produce relatively few rows
in the result, you can try some more sophisticated fixes:

• Use covering indexes, which store data so that the storage engine doesn’t have to
retrieve the complete rows. (We discussed these in the previous chapter.)

• Change the schema. An example is using summary tables (discussed in Chapter 4).

• Rewrite a complicated query so the MySQL optimizer is able to execute it opti-
mally. (We discuss this later in this chapter.)

Ways to Restructure Queries
As you optimize problematic queries, your goal should be to find alternative ways to
get the result you want—but that doesn’t necessarily mean getting the same result set
back from MySQL. You can sometimes transform queries into equivalent forms that
return the same results, and get better performance. However, you should also think
about rewriting the query to retrieve different results, if that provides an efficiency ben-
efit. You might be able to ultimately do the same work by changing the application
code as well as the query. In this section, we explain techniques that can help you
restructure a wide range of queries and show you when to use each technique.

Complex Queries Versus Many Queries
One important query design question is whether it’s preferable to break up a complex
query into several simpler queries. The traditional approach to database design em-
phasizes doing as much work as possible with as few queries as possible. This approach
was historically better because of the cost of network communication and the overhead
of the query parsing and optimization stages.

However, this advice doesn’t apply as much to MySQL, because it was designed to
handle connecting and disconnecting very efficiently and to respond to small and sim-
ple queries very quickly. Modern networks are also significantly faster than they used
to be, reducing network latency. Depending on the server version, MySQL can run well
over 100,000 simple queries per second on commodity server hardware and over 2,000

Ways to Restructure Queries | 207

queries per second from a single correspondent on a gigabit network, so running mul-
tiple queries isn’t necessarily such a bad thing.

Connection response is still slow compared to the number of rows MySQL can traverse
per second internally, though, which is counted in millions per second for in-memory
data. All else being equal, it’s still a good idea to use as few queries as possible, but
sometimes you can make a query more efficient by decomposing it and executing a few
simple queries instead of one complex one. Don’t be afraid to do this; weigh the costs,
and go with the strategy that causes less work. We show some examples of this tech-
nique a little later in the chapter.

That said, using too many queries is a common mistake in application design. For
example, some applications perform 10 single-row queries to retrieve data from a table
when they could use a single 10-row query. We’ve even seen applications that retrieve
each column individually, querying each row many times!

Chopping Up a Query
Another way to slice up a query is to divide and conquer, keeping it essentially the same
but running it in smaller “chunks” that affect fewer rows each time.

Purging old data is a great example. Periodic purge jobs might need to remove quite a
bit of data, and doing this in one massive query could lock a lot of rows for a long time,
fill up transaction logs, hog resources, and block small queries that shouldn’t be inter-
rupted. Chopping up the DELETE statement and using medium-size queries can improve
performance considerably, and reduce replication lag when a query is replicated. For
example, instead of running this monolithic query:

mysql> DELETE FROM messages WHERE created < DATE_SUB(NOW(),INTERVAL 3 MONTH);

you could do something like the following pseudocode:

rows_affected = 0
do {
 rows_affected = do_query(
 "DELETE FROM messages WHERE created < DATE_SUB(NOW(),INTERVAL 3 MONTH)
 LIMIT 10000")
} while rows_affected > 0

Deleting 10,000 rows at a time is typically a large enough task to make each query
efficient, and a short enough task to minimize the impact on the server4 (transactional
storage engines might benefit from smaller transactions). It might also be a good idea
to add some sleep time between the DELETE statements to spread the load over time and
reduce the amount of time locks are held.

4. Percona Toolkit’s pt-archiver tool makes these types of jobs easy and safe.

208 | Chapter 6: Query Performance Optimization

Join Decomposition
Many high-performance applications use join decomposition. You can decompose a join
by running multiple single-table queries instead of a multitable join, and then per-
forming the join in the application. For example, instead of this single query:

mysql> SELECT * FROM tag
 -> JOIN tag_post ON tag_post.tag_id=tag.id
 -> JOIN post ON tag_post.post_id=post.id
 -> WHERE tag.tag='mysql';

You might run these queries:

mysql> SELECT * FROM tag WHERE tag='mysql';
mysql> SELECT * FROM tag_post WHERE tag_id=1234;
mysql> SELECT * FROM post WHERE post.id in (123,456,567,9098,8904);

Why on earth would you do this? It looks wasteful at first glance, because you’ve in-
creased the number of queries without getting anything in return. However, such re-
structuring can actually give significant performance advantages:

• Caching can be more efficient. Many applications cache “objects” that map directly
to tables. In this example, if the object with the tag mysql is already cached, the
application can skip the first query. If you find posts with an ID of 123, 567, or
9098 in the cache, you can remove them from the IN() list. The query cache might
also benefit from this strategy. If only one of the tables changes frequently, de-
composing a join can reduce the number of cache invalidations.

• Executing the queries individually can sometimes reduce lock contention.

• Doing joins in the application makes it easier to scale the database by placing tables
on different servers.

• The queries themselves can be more efficient. In this example, using an IN() list
instead of a join lets MySQL sort row IDs and retrieve rows more optimally than
might be possible with a join. We explain this in more detail later.

• You can reduce redundant row accesses. Doing a join in the application means you
retrieve each row only once, whereas a join in the query is essentially a denormal-
ization that might repeatedly access the same data. For the same reason, such re-
structuring might also reduce the total network traffic and memory usage.

• To some extent, you can view this technique as manually implementing a hash
join instead of the nested loops algorithm MySQL uses to execute a join. A hash
join might be more efficient. (We discuss MySQL’s join strategy later in this
chapter.)

As a result, doing joins in the application can be more efficient when you cache and
reuse a lot of data from earlier queries, you distribute data across multiple servers, you
replace joins with IN() lists on large tables, or a join refers to the same table multiple
times.

Ways to Restructure Queries | 209

Query Execution Basics
If you need to get high performance from your MySQL server, one of the best ways to
invest your time is in learning how MySQL optimizes and executes queries. Once you
understand this, much of query optimization is a matter of reasoning from principles,
and query optimization becomes a very logical process.

In other words, it’s time to revisit what we discussed earlier: the process MySQL follows
to execute queries. Follow along with Figure 6-1 to see what happens when you send
MySQL a query:

1. The client sends the SQL statement to the server.

2. The server checks the query cache. If there’s a hit, it returns the stored result from
the cache; otherwise, it passes the SQL statement to the next step.

3. The server parses, preprocesses, and optimizes the SQL into a query execution
plan.

4. The query execution engine executes the plan by making calls to the storage engine
API.

5. The server sends the result to the client.

Each of these steps has some extra complexity, which we discuss in the following sec-
tions. We also explain which states the query will be in during each step. The query
optimization process is particularly complex and important to understand. There are
also exceptions or special cases, such as the difference in execution path when you use
prepared statements; we discuss that in the next chapter.

The MySQL Client/Server Protocol
Though you don’t need to understand the inner details of MySQL’s client/server pro-
tocol, you do need to understand how it works at a high level. The protocol is half-
duplex, which means that at any given time the MySQL server can be either sending
or receiving messages, but not both. It also means there is no way to cut a message short.

This protocol makes MySQL communication simple and fast, but it limits it in some
ways too. For one thing, it means there’s no flow control; once one side sends a message,
the other side must fetch the entire message before responding. It’s like a game of tossing
a ball back and forth: only one side has the ball at any instant, and you can’t toss the
ball (send a message) unless you have it.

The client sends a query to the server as a single packet of data. This is why the
max_allowed_packet configuration variable is important if you have large queries.5 Once
the client sends the query, it doesn’t have the ball anymore; it can only wait for results.

5. If the query is too large, the server will refuse to receive any more data and throw an error.

210 | Chapter 6: Query Performance Optimization

In contrast, the response from the server usually consists of many packets of data. When
the server responds, the client has to receive the entire result set. It cannot simply fetch
a few rows and then ask the server not to bother sending the rest. If the client needs
only the first few rows that are returned, it either has to wait for all of the server’s packets
to arrive and then discard the ones it doesn’t need, or disconnect ungracefully. Neither
is a good idea, which is why appropriate LIMIT clauses are so important.

Here’s another way to think about this: when a client fetches rows from the server, it
thinks it’s pulling them. But the truth is, the MySQL server is pushing the rows as it
generates them. The client is only receiving the pushed rows; there is no way for it to
tell the server to stop sending rows. The client is “drinking from the fire hose,” so to
speak. (Yes, that’s a technical term.)

Most libraries that connect to MySQL let you either fetch the whole result set and buffer
it in memory, or fetch each row as you need it. The default behavior is generally to fetch
the whole result and buffer it in memory. This is important because until all the rows
have been fetched, the MySQL server will not release the locks and other resources

Figure 6-1. Execution path of a query

Query Execution Basics | 211

required by the query. The query will be in the “Sending data” state. When the client
library fetches the results all at once, it reduces the amount of work the server needs to
do: the server can finish and clean up the query as quickly as possible.

Most client libraries let you treat the result set as though you’re fetching it from the
server, although in fact you’re just fetching it from the buffer in the library’s memory.
This works fine most of the time, but it’s not a good idea for huge result sets that might
take a long time to fetch and use a lot of memory. You can use less memory, and start
working on the result sooner, if you instruct the library not to buffer the result. The
downside is that the locks and other resources on the server will remain open while
your application is interacting with the library.6

Let’s look at an example using PHP. First, here’s how you’ll usually query MySQL from
PHP:

<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql_query('SELECT * FROM HUGE_TABLE', $link);
while ($row = mysql_fetch_array($result)) {
 // Do something with result
}
?>

The code seems to indicate that you fetch rows only when you need them, in the
while loop. However, the code actually fetches the entire result into a buffer with the
mysql_query() function call. The while loop simply iterates through the buffer. In
contrast, the following code doesn’t buffer the results, because it uses mysql_unbuf
fered_query() instead of mysql_query():

<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql_unbuffered_query('SELECT * FROM HUGE_TABLE', $link);
while ($row = mysql_fetch_array($result)) {
 // Do something with result
}
?>

Programming languages have different ways to override buffering. For example, the
Perl DBD::mysql driver requires you to specify the C client library’s mysql_use_result
attribute (the default is mysql_buffer_result). Here’s an example:

#!/usr/bin/perl
use DBI;
my $dbh = DBI->connect('DBI:mysql:;host=localhost', 'user', 'p4ssword');
my $sth = $dbh->prepare('SELECT * FROM HUGE_TABLE', { mysql_use_result => 1 });
$sth->execute();
while (my $row = $sth->fetchrow_array()) {
 # Do something with result
}

6. You can work around this with SQL_BUFFER_RESULT, which we’ll see a bit later.

212 | Chapter 6: Query Performance Optimization

Notice that the call to prepare() specified to “use” the result instead of “buffering”
it. You can also specify this when connecting, which will make every statement
unbuffered:

my $dbh = DBI->connect('DBI:mysql:;mysql_use_result=1', 'user', 'p4ssword');

Query states

Each MySQL connection, or thread, has a state that shows what it is doing at any given
time. There are several ways to view these states, but the easiest is to use the SHOW FULL
PROCESSLIST command (the states appear in the Command column). As a query progresses
through its lifecycle, its state changes many times, and there are dozens of states. The
MySQL manual is the authoritative source of information for all the states, but we list
a few here and explain what they mean:

Sleep
The thread is waiting for a new query from the client.

Query
The thread is either executing the query or sending the result back to the client.

Locked
The thread is waiting for a table lock to be granted at the server level. Locks that
are implemented by the storage engine, such as InnoDB’s row locks, do not cause
the thread to enter the Locked state. This thread state is the classic symptom of
MyISAM locking, but it can occur in other storage engines that don’t have row-
level locking, too.

Analyzing and statistics
The thread is checking storage engine statistics and optimizing the query.

Copying to tmp table [on disk]
The thread is processing the query and copying results to a temporary table, prob-
ably for a GROUP BY, for a filesort, or to satisfy a UNION. If the state ends with “on
disk,” MySQL is converting an in-memory table to an on-disk table.

Sorting result
The thread is sorting a result set.

Sending data
This can mean several things: the thread might be sending data between stages of
the query, generating the result set, or returning the result set to the client.

It’s helpful to at least know the basic states, so you can get a sense of “who has the ball”
for the query. On very busy servers, you might see an unusual or normally brief state,
such as statistics, begin to take a significant amount of time. This usually indicates
that something is wrong, and you should use the techniques shown in Chapter 3 to
capture detailed diagnostic data when it happens.

Query Execution Basics | 213

The Query Cache
Before even parsing a query, MySQL checks for it in the query cache, if the cache is
enabled. This operation is a case-sensitive hash lookup. If the query differs from a
similar query in the cache by even a single byte, it won’t match,7 and the query pro-
cessing will go to the next stage.

If MySQL does find a match in the query cache, it must check privileges before returning
the cached query. This is possible without parsing the query, because MySQL stores
table information with the cached query. If the privileges are OK, MySQL retrieves the
stored result from the query cache and sends it to the client, bypassing every other stage
in query execution. The query is never parsed, optimized, or executed.

You can learn more about the query cache in Chapter 7.

The Query Optimization Process
The next step in the query lifecycle turns a SQL query into an execution plan for the
query execution engine. It has several substeps: parsing, preprocessing, and optimiza-
tion. Errors (for example, syntax errors) can be raised at any point in the process. We’re
not trying to document the MySQL internals here, so we’re going to take some liberties,
such as describing steps separately even though they’re often combined wholly or par-
tially for efficiency. Our goal is simply to help you understand how MySQL executes
queries so that you can write better ones.

The parser and the preprocessor

To begin, MySQL’s parser breaks the query into tokens and builds a “parse tree” from
them. The parser uses MySQL’s SQL grammar to interpret and validate the query. For
instance, it ensures that the tokens in the query are valid and in the proper order, and
it checks for mistakes such as quoted strings that aren’t terminated.

The preprocessor then checks the resulting parse tree for additional semantics that the
parser can’t resolve. For example, it checks that tables and columns exist, and it resolves
names and aliases to ensure that column references aren’t ambiguous.

Next, the preprocessor checks privileges. This is normally very fast unless your server
has large numbers of privileges.

7. Percona Server has a feature that strips comments from queries before the hash lookup is performed,
which can help make the query cache more effective when queries differ only in the text contained in
their comments.

214 | Chapter 6: Query Performance Optimization

The query optimizer

The parse tree is now valid and ready for the optimizer to turn it into a query execution
plan. A query can often be executed many different ways and produce the same result.
The optimizer’s job is to find the best option.

MySQL uses a cost-based optimizer, which means it tries to predict the cost of various
execution plans and choose the least expensive. The unit of cost was originally a single
random 4 KB data page read, but it has become more sophisticated and now includes
factors such as the estimated cost of executing a WHERE clause comparison. You can see
how expensive the optimizer estimated a query to be by running the query, then in-
specting the Last_query_cost session variable:

mysql> SELECT SQL_NO_CACHE COUNT(*) FROM sakila.film_actor;
+----------+
| count(*) |
+----------+
| 5462 |
+----------+
mysql> SHOW STATUS LIKE 'Last_query_cost';
+-----------------+-------------+
| Variable_name | Value |
+-----------------+-------------+
| Last_query_cost | 1040.599000 |
+-----------------+-------------+

This result means that the optimizer estimated it would need to do about 1,040 random
data page reads to execute the query. It bases the estimate on statistics: the number of
pages per table or index, the cardinality (number of distinct values) of the indexes, the
length of the rows and keys, and the key distribution. The optimizer does not include
the effects of any type of caching in its estimates—it assumes every read will result in
a disk I/O operation.

The optimizer might not always choose the best plan, for many reasons:

• The statistics could be wrong. The server relies on storage engines to provide sta-
tistics, and they can range from exactly correct to wildly inaccurate. For example,
the InnoDB storage engine doesn’t maintain accurate statistics about the number
of rows in a table because of its MVCC architecture.

• The cost metric is not exactly equivalent to the true cost of running the query, so
even when the statistics are accurate, the query might be more or less expensive
than MySQL’s approximation. A plan that reads more pages might actually be
cheaper in some cases, such as when the reads are sequential so the disk I/O is
faster, or when the pages are already cached in memory. MySQL also doesn’t un-
derstand which pages are in memory and which pages are on disk, so it doesn’t
really know how much I/O the query will cause.

• MySQL’s idea of “optimal” might not match yours. You probably want the fastest
execution time, but MySQL doesn’t really try to make queries fast; it tries to min-
imize their cost, and as we’ve seen, determining cost is not an exact science.

Query Execution Basics | 215

• MySQL doesn’t consider other queries that are running concurrently, which can
affect how quickly the query runs.

• MySQL doesn’t always do cost-based optimization. Sometimes it just follows the
rules, such as “if there’s a full-text MATCH() clause, use a FULLTEXT index if one
exists.” It will do this even when it would be faster to use a different index and a
non-FULLTEXT query with a WHERE clause.

• The optimizer doesn’t take into account the cost of operations not under its con-
trol, such as executing stored functions or user-defined functions.

• As we’ll see later, the optimizer can’t always estimate every possible execution plan,
so it might miss an optimal plan.

MySQL’s query optimizer is a highly complex piece of software, and it uses many op-
timizations to transform the query into an execution plan. There are two basic types
of optimizations, which we call static and dynamic. Static optimizations can be per-
formed simply by inspecting the parse tree. For example, the optimizer can transform
the WHERE clause into an equivalent form by applying algebraic rules. Static optimiza-
tions are independent of values, such as the value of a constant in a WHERE clause. They
can be performed once and will always be valid, even when the query is reexecuted
with different values. You can think of these as “compile-time optimizations.”

In contrast, dynamic optimizations are based on context and can depend on many fac-
tors, such as which value is in a WHERE clause or how many rows are in an index. They
must be reevaluated each time the query is executed. You can think of these as “runtime
optimizations.”

The difference is important when executing prepared statements or stored procedures.
MySQL can do static optimizations once, but it must reevaluate dynamic optimizations
every time it executes a query. MySQL sometimes even reoptimizes the query as it
executes it.8

Here are some types of optimizations MySQL knows how to do:

Reordering joins
Tables don’t always have to be joined in the order you specify in the query. De-
termining the best join order is an important optimization; we explain it in depth
later in this chapter.

Converting OUTER JOINs to INNER JOINs
An OUTER JOIN doesn’t necessarily have to be executed as an OUTER JOIN. Some
factors, such as the WHERE clause and table schema, can actually cause an OUTER
JOIN to be equivalent to an INNER JOIN. MySQL can recognize this and rewrite the
join, which makes it eligible for reordering.

8. For example, the range check query plan reevaluates indexes for each row in a JOIN. You can see this
query plan by looking for “range checked for each record” in the Extra column in EXPLAIN. This query
plan also increments the Select_full_range_join server variable.

216 | Chapter 6: Query Performance Optimization

Applying algebraic equivalence rules
MySQL applies algebraic transformations to simplify and canonicalize expres-
sions. It can also fold and reduce constants, eliminating impossible constraints and
constant conditions. For example, the term (5=5 AND a>5) will reduce to just a>5.
Similarly, (a<b AND b=c) AND a=5 becomes b>5 AND b=c AND a=5. These rules are
very useful for writing conditional queries, which we discuss later in this chapter.

COUNT(), MIN(), and MAX() optimizations
Indexes and column nullability can often help MySQL optimize away these ex-
pressions. For example, to find the minimum value of a column that’s leftmost in
a B-Tree index, MySQL can just request the first row in the index. It can even do
this in the query optimization stage, and treat the value as a constant for the rest
of the query. Similarly, to find the maximum value in a B-Tree index, the server
reads the last row. If the server uses this optimization, you’ll see “Select tables
optimized away” in the EXPLAIN plan. This literally means the optimizer has re-
moved the table from the query plan and replaced it with a constant.

Likewise, COUNT(*) queries without a WHERE clause can often be optimized away on
some storage engines (such as MyISAM, which keeps an exact count of rows in the
table at all times).

Evaluating and reducing constant expressions
When MySQL detects that an expression can be reduced to a constant, it will do
so during optimization. For example, a user-defined variable can be converted to
a constant if it’s not changed in the query. Arithmetic expressions are another
example.

Perhaps surprisingly, even something you might consider to be a query can be
reduced to a constant during the optimization phase. One example is a MIN() on
an index. This can even be extended to a constant lookup on a primary key or
unique index. If a WHERE clause applies a constant condition to such an index, the
optimizer knows MySQL can look up the value at the beginning of the query. It
will then treat the value as a constant in the rest of the query. Here’s an example:

mysql> EXPLAIN SELECT film.film_id, film_actor.actor_id
 -> FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> WHERE film.film_id = 1;
+----+-------------+------------+-------+----------------+-------+------+
| id | select_type | table | type | key | ref | rows |
+----+-------------+------------+-------+----------------+-------+------+
| 1 | SIMPLE | film | const | PRIMARY | const | 1 |
| 1 | SIMPLE | film_actor | ref | idx_fk_film_id | const | 10 |
+----+-------------+------------+-------+----------------+-------+------+

MySQL executes this query in two steps, which correspond to the two rows in the
output. The first step is to find the desired row in the film table. MySQL’s optimizer
knows there is only one row, because there’s a primary key on the film_id column,
and it has already consulted the index during the query optimization stage to see

Query Execution Basics | 217

how many rows it will find. Because the query optimizer has a known quantity (the
value in the WHERE clause) to use in the lookup, this table’s ref type is const.

In the second step, MySQL treats the film_id column from the row found in the
first step as a known quantity. It can do this because the optimizer knows that by
the time the query reaches the second step, it will know all the values from the first
step. Notice that the film_actor table’s ref type is const, just as the film table’s was.

Another way you’ll see constant conditions applied is by propagating a value’s
constant-ness from one place to another if there is a WHERE, USING, or ON clause that
restricts the values to being equal. In this example, the optimizer knows that the
USING clause forces film_id to have the same value everywhere in the query—it
must be equal to the constant value given in the WHERE clause.

Covering indexes
MySQL can sometimes use an index to avoid reading row data, when the index
contains all the columns the query needs. We discussed covering indexes at length
in the previous chapter.

Subquery optimization
MySQL can convert some types of subqueries into more efficient alternative forms,
reducing them to index lookups instead of separate queries.

Early termination
MySQL can stop processing a query (or a step in a query) as soon as it fulfills the
query or step. The obvious case is a LIMIT clause, but there are several other kinds
of early termination. For instance, if MySQL detects an impossible condition, it
can abort the entire query. You can see this in the following example:

mysql> EXPLAIN SELECT film.film_id FROM sakila.film WHERE film_id = −1;
+----+...+---+
| id |...| Extra |
+----+...+---+
| 1 |...| Impossible WHERE noticed after reading const tables |
+----+...+---+

This query stopped during the optimization step, but MySQL can also terminate
execution early in some other cases. The server can use this optimization when the
query execution engine recognizes the need to retrieve distinct values, or to stop
when a value doesn’t exist. For example, the following query finds all movies
without any actors:9

mysql> SELECT film.film_id
 -> FROM sakila.film
 -> LEFT OUTER JOIN sakila.film_actor USING(film_id)
 -> WHERE film_actor.film_id IS NULL;

9. We agree, a movie without actors is strange, but the Sakila sample database lists no actors for SLACKER
LIAISONS, which it describes as “A Fast-Paced Tale of a Shark And a Student who must Meet a Crocodile
in Ancient China.”

218 | Chapter 6: Query Performance Optimization

This query works by eliminating any films that have actors. Each film might have
many actors, but as soon as it finds one actor, it stops processing the current film
and moves to the next one because it knows the WHERE clause prohibits outputting
that film. A similar “Distinct/not-exists” optimization can apply to certain kinds
of DISTINCT, NOT EXISTS(), and LEFT JOIN queries.

Equality propagation
MySQL recognizes when a query holds two columns as equal—for example, in a
JOIN condition—and propagates WHERE clauses across equivalent columns. For in-
stance, in the following query:

mysql> SELECT film.film_id
 -> FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> WHERE film.film_id > 500;

MySQL knows that the WHERE clause applies not only to the film table but to the
film_actor table as well, because the USING clause forces the two columns to match.

If you’re used to another database server that can’t do this, you might have been
advised to “help the optimizer” by manually specifying the WHERE clause for both
tables, like this:

... WHERE film.film_id > 500 AND film_actor.film_id > 500

This is unnecessary in MySQL. It just makes your queries harder to maintain.

IN() list comparisons
In many database servers, IN() is just a synonym for multiple OR clauses, because
the two are logically equivalent. Not so in MySQL, which sorts the values in the
IN() list and uses a fast binary search to see whether a value is in the list. This is
O(log n) in the size of the list, whereas an equivalent series of OR clauses is O(n) in
the size of the list (i.e., much slower for large lists).

The preceding list is woefully incomplete, because MySQL performs more optimiza-
tions than we could fit into this entire chapter, but it should give you an idea of the
optimizer’s complexity and intelligence. If there’s one thing you should take away from
this discussion, it’s don’t try to outsmart the optimizer. You might end up just defeating
it, or making your queries more complicated and harder to maintain for zero benefit.
In general, you should let the optimizer do its work.

Of course, as smart as the optimizer is, there are times when it doesn’t give the best
result. Sometimes you might know something about the data that the optimizer doesn’t,
such as a fact that’s guaranteed to be true because of application logic. Also, sometimes
the optimizer doesn’t have the necessary functionality, such as hash indexes; at other
times, as mentioned earlier, its cost estimates might prefer a query plan that turns out
to be more expensive than an alternative.

Query Execution Basics | 219

If you know the optimizer isn’t giving a good result, and you know why, you can help
it. Some of the options are to add a hint to the query, rewrite the query, redesign your
schema, or add indexes.

Table and index statistics

Recall the various layers in the MySQL server architecture, which we illustrated in
Figure 1-1. The server layer, which contains the query optimizer, doesn’t store statistics
on data and indexes. That’s a job for the storage engines, because each storage engine
might keep different kinds of statistics (or keep them in a different way). Some engines,
such as Archive, don’t keep statistics at all!

Because the server doesn’t store statistics, the MySQL query optimizer has to ask the
engines for statistics on the tables in a query. The engines provide the optimizer with
statistics such as the number of pages per table or index, the cardinality of tables and
indexes, the length of rows and keys, and key distribution information. The optimizer
can use this information to help it decide on the best execution plan. We see how these
statistics influence the optimizer’s choices in later sections.

MySQL’s join execution strategy

MySQL uses the term “join” more broadly than you might be used to. In sum, it con-
siders every query a join—not just every query that matches rows from two tables, but
every query, period (including subqueries, and even a SELECT against a single table).
Consequently, it’s very important to understand how MySQL executes joins.

Consider the example of a UNION query. MySQL executes a UNION as a series of single
queries whose results are spooled into a temporary table, then read out again. Each of
the individual queries is a join, in MySQL terminology—and so is the act of reading
from the resulting temporary table.

At the moment, MySQL’s join execution strategy is simple: it treats every join as a
nested-loop join. This means MySQL runs a loop to find a row from a table, then runs
a nested loop to find a matching row in the next table. It continues until it has found
a matching row in each table in the join. It then builds and returns a row from the
columns named in the SELECT list. It tries to build the next row by looking for more
matching rows in the last table. If it doesn’t find any, it backtracks one table and looks
for more rows there. It keeps backtracking until it finds another row in some table, at
which point it looks for a matching row in the next table, and so on.10

This process of finding rows, probing into the next table, and then backtracking can
be written as nested loops in the execution plan—hence the name “nested-loop join.”
As an example, consider this simple query:

10. As we show later, MySQL’s query execution isn’t quite this simple; there are many optimizations that
complicate it.

220 | Chapter 6: Query Performance Optimization

mysql> SELECT tbl1.col1, tbl2.col2
 -> FROM tbl1 INNER JOIN tbl2 USING(col3)
 -> WHERE tbl1.col1 IN(5,6);

Assuming MySQL decides to join the tables in the order shown in the query, the fol-
lowing pseudocode shows how MySQL might execute the query:

outer_iter = iterator over tbl1 where col1 IN(5,6)
outer_row = outer_iter.next
while outer_row
 inner_iter = iterator over tbl2 where col3 = outer_row.col3
 inner_row = inner_iter.next
 while inner_row
 output [outer_row.col1, inner_row.col2]
 inner_row = inner_iter.next
 end
 outer_row = outer_iter.next
end

This query execution plan applies as easily to a single-table query as it does to a many-
table query, which is why even a single-table query can be considered a join—the single-
table join is the basic operation from which more complex joins are composed. It can
support OUTER JOINs, too. For example, let’s change the example query as follows:

mysql> SELECT tbl1.col1, tbl2.col2
 -> FROM tbl1 LEFT OUTER JOIN tbl2 USING(col3)
 -> WHERE tbl1.col1 IN(5,6);

Here’s the corresponding pseudocode, with the changed parts in bold:

outer_iter = iterator over tbl1 where col1 IN(5,6)
outer_row = outer_iter.next
while outer_row
 inner_iter = iterator over tbl2 where col3 = outer_row.col3
 inner_row = inner_iter.next
 if inner_row
 while inner_row
 output [outer_row.col1, inner_row.col2]
 inner_row = inner_iter.next
 end
 else
 output [outer_row.col1, NULL]
 end
 outer_row = outer_iter.next
end

Another way to visualize a query execution plan is to use what the optimizer folks call
a “swim-lane diagram.” Figure 6-2 contains a swim-lane diagram of our initial INNER
JOIN query. Read it from left to right and top to bottom.

Query Execution Basics | 221

Figure 6-2. Swim-lane diagram illustrating retrieving rows using a join

MySQL executes every kind of query in essentially the same way. For example, it han-
dles a subquery in the FROM clause by executing it first, putting the results into a tem-
porary table,11 and then treating that table just like an ordinary table (hence the name
“derived table”). MySQL executes UNION queries with temporary tables too, and it
rewrites all RIGHT OUTER JOIN queries to equivalent LEFT OUTER JOINs. In short, current
versions of MySQL coerce every kind of query into this execution plan.12

It’s not possible to execute every legal SQL query this way, however. For example, a
FULL OUTER JOIN can’t be executed with nested loops and backtracking as soon as a
table with no matching rows is found, because it might begin with a table that has no
matching rows. This explains why MySQL doesn’t support FULL OUTER JOIN. Still other
queries can be executed with nested loops, but perform very badly as a result. We’ll
look at some of those later.

The execution plan

MySQL doesn’t generate byte-code to execute a query, as many other database prod-
ucts do. Instead, the query execution plan is actually a tree of instructions that the query
execution engine follows to produce the query results. The final plan contains enough
information to reconstruct the original query. If you execute EXPLAIN EXTENDED on a
query, followed by SHOW WARNINGS, you’ll see the reconstructed query.13

11. There are no indexes on the temporary table, which is something you should keep in mind when writing
complex joins against subqueries in the FROM clause. This applies to UNION queries, too.

12. There are significant changes in MySQL 5.6 and in MariaDB, which introduce more sophisticated
execution paths.

13. The server generates the output from the execution plan. It thus has the same semantics as the original
query, but not necessarily the same text.

222 | Chapter 6: Query Performance Optimization

Any multitable query can conceptually be represented as a tree. For example, it might
be possible to execute a four-table join as shown in Figure 6-3.

Figure 6-3. One way to join multiple tables

This is what computer scientists call a balanced tree. This is not how MySQL executes
the query, though. As we described in the previous section, MySQL always begins with
one table and finds matching rows in the next table. Thus, MySQL’s query execution
plans always take the form of a left-deep tree, as in Figure 6-4.

Figure 6-4. How MySQL joins multiple tables

The join optimizer

The most important part of the MySQL query optimizer is the join optimizer, which
decides the best order of execution for multitable queries. It is often possible to join
the tables in several different orders and get the same results. The join optimizer esti-
mates the cost for various plans and tries to choose the least expensive one that gives
the same result.

Here’s a query whose tables can be joined in different orders without changing the
results:

mysql> SELECT film.film_id, film.title, film.release_year, actor.actor_id,
 -> actor.first_name, actor.last_name
 -> FROM sakila.film

Query Execution Basics | 223

 -> INNER JOIN sakila.film_actor USING(film_id)
 -> INNER JOIN sakila.actor USING(actor_id);

You can probably think of a few different query plans. For example, MySQL could
begin with the film table, use the index on film_id in the film_actor table to find
actor_id values, and then look up rows in the actor table’s primary key. Oracle users
might phrase this as “The film table is the driver table into the film_actor table, which
is the driver for the actor table.” This should be efficient, right? Now let’s use
EXPLAIN to see how MySQL wants to execute the query:

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 200
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: PRIMARY,idx_fk_film_id
 key: PRIMARY
 key_len: 2
 ref: sakila.actor.actor_id
 rows: 1
 Extra: Using index
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.film_actor.film_id
 rows: 1
 Extra:

This is quite a different plan from the one suggested in the previous paragraph. MySQL
wants to start with the actor table (we know this because it’s listed first in the
EXPLAIN output) and go in the reverse order. Is this really more efficient? Let’s find out.
The STRAIGHT_JOIN keyword forces the join to proceed in the order specified in the
query. Here’s the EXPLAIN output for the revised query:

mysql> EXPLAIN SELECT STRAIGHT_JOIN film.film_id...\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE

224 | Chapter 6: Query Performance Optimization

 table: film
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: PRIMARY,idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: sakila.film.film_id
 rows: 1
 Extra: Using index
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.film_actor.actor_id
 rows: 1
 Extra:

This shows why MySQL wants to reverse the join order: doing so will enable it to
examine fewer rows in the first table.14 In both cases, it will be able to perform fast
indexed lookups in the second and third tables. The difference is how many of these
indexed lookups it will have to do:

• Placing film first will require about 951 probes into film_actor and actor, one for
each row in the first table.

• If the server scans the actor table first, it will have to do only 200 index lookups
into later tables.

In other words, the reversed join order will require less backtracking and rereading. To
double-check the optimizer’s choice, we executed the two query versions and looked
at the Last_query_cost variable for each. The reordered query had an estimated cost of
241, while the estimated cost of forcing the join order was 1,154.

This is a simple example of how MySQL’s join optimizer can reorder queries to make
them less expensive to execute. Reordering joins is usually a very effective optimization.
There are times when it won’t result in an optimal plan, though, and for those times

14. Strictly speaking, MySQL doesn’t try to reduce the number of rows it reads. Instead, it tries to optimize
for fewer page reads. But a row count can often give you a rough idea of the query cost.

Query Execution Basics | 225

you can use STRAIGHT_JOIN and write the query in the order you think is best—but
such times are rare. In most cases, the join optimizer will outperform a human.

The join optimizer tries to produce a query execution plan tree with the lowest ach-
ievable cost. When possible, it examines all potential combinations of subtrees, begin-
ning with all one-table plans.

Unfortunately, a join over n tables will have n-factorial combinations of join orders to
examine. This is called the search space of all possible query plans, and it grows very
quickly—a 10-table join can be executed up to 3,628,800 different ways! When the
search space grows too large, it can take far too long to optimize the query, so the server
stops doing a full analysis. Instead, it resorts to shortcuts such as “greedy” searches
when the number of tables exceeds the limit specified by the optimizer_search_depth
variable (which you can change if necessary).

MySQL has many heuristics, accumulated through years of research and experimen-
tation, that it uses to speed up the optimization stage. This can be beneficial, but it can
also mean that MySQL might (on rare occasions) miss an optimal plan and choose a
less optimal one because it’s trying not to examine every possible query plan.

Sometimes queries can’t be reordered, and the join optimizer can use this fact to reduce
the search space by eliminating choices. A LEFT JOIN is a good example, as are correlated
subqueries (more about subqueries later). This is because the results for one table de-
pend on data retrieved from another table. These dependencies help the join optimizer
reduce the search space by eliminating choices.

Sort optimizations

Sorting results can be a costly operation, so you can often improve performance by
avoiding sorts or by performing them on fewer rows.

We showed you how to use indexes for sorting in Chapter 3. When MySQL can’t use
an index to produce a sorted result, it must sort the rows itself. It can do this in memory
or on disk, but it always calls this process a filesort, even if it doesn’t actually use a file.

If the values to be sorted will fit into the sort buffer, MySQL can perform the sort entirely
in memory with a quicksort. If MySQL can’t do the sort in memory, it performs it on
disk by sorting the values in chunks. It uses a quicksort to sort each chunk and then
merges the sorted chunks into the results.

There are two filesort algorithms:

Two passes (old)
Reads row pointers and ORDER BY columns, sorts them, and then scans the sorted
list and rereads the rows for output.

The two-pass algorithm can be quite expensive, because it reads the rows from the
table twice, and the second read causes a lot of random I/O. This is especially
expensive for MyISAM, which uses a system call to fetch each row (because

226 | Chapter 6: Query Performance Optimization

MyISAM relies on the operating system’s cache to hold the data). On the other
hand, it stores a minimal amount of data during the sort, so if the rows to be sorted
are completely in memory, it can be cheaper to store less data and reread the rows
to generate the final result.

Single pass (new)
Reads all the columns needed for the query, sorts them by the ORDER BY columns,
and then scans the sorted list and outputs the specified columns.

This algorithm is available only in MySQL 4.1 and newer. It can be much more
efficient, especially on large I/O-bound datasets, because it avoids reading the rows
from the table twice and trades random I/O for more sequential I/O. However, it
has the potential to use a lot more space, because it holds all the desired columns
from each row, not just the columns needed to sort the rows. This means fewer
tuples will fit into the sort buffer, and the filesort will have to perform more sort
merge passes.

It’s tricky to say which algorithm is more efficient, and there are best and worst
cases for each algorithm. MySQL uses the new algorithm if the total size of all the
columns needed for the query, plus the ORDER BY columns, is no more than
max_length_for_sort_data bytes, so you can use this setting to influence which
algorithm is used. See “Optimizing for Filesorts” on page 377 in Chapter 8 for
more on this topic.

MySQL might use much more temporary storage space for a filesort than you’d expect,
because it allocates a fixed-size record for each tuple it will sort. These records are large
enough to hold the largest possible tuple, including the full length of each VARCHAR
column. Also, if you’re using UTF-8, MySQL allocates three bytes for each character.
As a result, we’ve seen cases where poorly optimized schemas caused the temporary
space used for sorting to be many times larger than the entire table’s size on disk.

When sorting a join, MySQL might perform the filesort at two stages during the query
execution. If the ORDER BY clause refers only to columns from the first table in the join
order, MySQL can filesort this table and then proceed with the join. If this happens,
EXPLAIN shows “Using filesort” in the Extra column. In all other circumstances—such
as a sort against a table that’s not first in the join order, or when the ORDER BY clause
contains columns from more than one table—MySQL must store the query’s results
into a temporary table and then filesort the temporary table after the join finishes. In
this case, EXPLAIN shows “Using temporary; Using filesort” in the Extra column. If
there’s a LIMIT, it is applied after the filesort, so the temporary table and the filesort can
be very large.

MySQL 5.6 introduces significant changes to how sorts are performed when only a
subset of the rows will be needed, such as a LIMIT query. Instead of sorting the entire
result set and then returning a portion of it, MySQL 5.6 can sometimes discard un-
wanted rows before sorting them.

Query Execution Basics | 227

The Query Execution Engine
The parsing and optimizing stage outputs a query execution plan, which MySQL’s
query execution engine uses to process the query. The plan is a data structure; it is not
executable byte-code, which is how many other databases execute queries.

In contrast to the optimization stage, the execution stage is usually not all that complex:
MySQL simply follows the instructions given in the query execution plan. Many of the
operations in the plan invoke methods implemented by the storage engine interface,
also known as the handler API. Each table in the query is represented by an instance
of a handler. If a table appears three times in the query, for example, the server creates
three handler instances. Though we glossed over this before, MySQL actually creates
the handler instances early in the optimization stage. The optimizer uses them to get
information about the tables, such as their column names and index statistics.

The storage engine interface has lots of functionality, but it needs only a dozen or so
“building-block” operations to execute most queries. For example, there’s an operation
to read the first row in an index, and one to read the next row in an index. This is
enough for a query that does an index scan. This simplistic execution method makes
MySQL’s storage engine architecture possible, but it also imposes some of the optimizer
limitations we’ve discussed.

Not everything is a handler operation. For example, the server manages
table locks. The handler might implement its own lower-level locking,
as InnoDB does with row-level locks, but this does not replace the
server’s own locking implementation. As explained in Chapter 1, any-
thing that all storage engines share is implemented in the server, such
as date and time functions, views, and triggers.

To execute the query, the server just repeats the instructions until there are no more
rows to examine.

Returning Results to the Client
The final step in executing a query is to reply to the client. Even queries that don’t
return a result set still reply to the client connection with information about the query,
such as how many rows it affected.

If the query is cacheable, MySQL will also place the results into the query cache at this
stage.

The server generates and sends results incrementally. Think back to the single-sweep
multijoin method we mentioned earlier. As soon as MySQL processes the last table and
generates one row successfully, it can and should send that row to the client.

228 | Chapter 6: Query Performance Optimization

This has two benefits: it lets the server avoid holding the row in memory, and it means
the client starts getting the results as soon as possible.15

Each row in the result set is sent in a separate packet in the MySQL client/server pro-
tocol, although protocol packets can be buffered and sent together at the TCP protocol
layer.

Limitations of the MySQL Query Optimizer
MySQL’s “everything is a nested-loop join” approach to query execution isn’t ideal for
optimizing every kind of query. Fortunately, there are only a limited number of cases
where the MySQL query optimizer does a poor job, and it’s usually possible to rewrite
such queries more efficiently. Even better, when MySQL 5.6 is released it will eliminate
many of MySQL’s limitations and make a variety of queries execute much more quickly.

Correlated Subqueries
MySQL sometimes optimizes subqueries very badly. The worst offenders are IN() sub-
queries in the WHERE clause. As an example, let’s find all films in the Sakila sample
database’s sakila.film table whose casts include the actress Penelope Guiness
(actor_id=1). This feels natural to write with a subquery, as follows:

mysql> SELECT * FROM sakila.film
 -> WHERE film_id IN(
 -> SELECT film_id FROM sakila.film_actor WHERE actor_id = 1);

It’s tempting to think that MySQL will execute this query from the inside out, by finding
a list of actor_id values and substituting them into the IN() list. We said an IN() list is
generally very fast, so you might expect the query to be optimized to something like this:

-- SELECT GROUP_CONCAT(film_id) FROM sakila.film_actor WHERE actor_id = 1;
-- Result: 1,23,25,106,140,166,277,361,438,499,506,509,605,635,749,832,939,970,980
SELECT * FROM sakila.film
WHERE film_id
IN(1,23,25,106,140,166,277,361,438,499,506,509,605,635,749,832,939,970,980);

Unfortunately, exactly the opposite happens. MySQL tries to “help” the subquery by
pushing a correlation into it from the outer table, which it thinks will let the subquery
find rows more efficiently. It rewrites the query as follows:

SELECT * FROM sakila.film
WHERE EXISTS (
 SELECT * FROM sakila.film_actor WHERE actor_id = 1
 AND film_actor.film_id = film.film_id);

15. You can influence this behavior if needed—for example, with the SQL_BUFFER_RESULT hint. See “Query
Optimizer Hints” on page 238.

Limitations of the MySQL Query Optimizer | 229

Now the subquery requires the film_id from the outer film table and can’t be executed
first. EXPLAIN shows the result as DEPENDENT SUBQUERY (you can use EXPLAIN EXTENDED to
see exactly how the query is rewritten):

mysql> EXPLAIN SELECT * FROM sakila.film ...;
+----+--------------------+------------+--------+------------------------+
| id | select_type | table | type | possible_keys |
+----+--------------------+------------+--------+------------------------+
| 1 | PRIMARY | film | ALL | NULL |
| 2 | DEPENDENT SUBQUERY | film_actor | eq_ref | PRIMARY,idx_fk_film_id |
+----+--------------------+------------+--------+------------------------+

According to the EXPLAIN output, MySQL will table-scan the film table and execute the
subquery for each row it finds. This won’t cause a noticeable performance hit on small
tables, but if the outer table is very large, the performance will be extremely bad. For-
tunately, it’s easy to rewrite such a query as a JOIN:

mysql> SELECT film.* FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> WHERE actor_id = 1;

Another good optimization is to manually generate the IN() list by executing the sub-
query as a separate query with GROUP_CONCAT(). Sometimes this can be faster than a
JOIN. And finally, although IN() subqueries work poorly in many cases, EXISTS() or
equality subqueries sometimes work much better. Here is another way to rewrite our
IN() subquery example:

mysql> SELECT * FROM sakila.film
 -> WHERE EXISTS(
 -> SELECT * FROM sakila.film_actor WHERE actor_id = 1
 -> AND film_actor.film_id = film.film_id);

The optimizer limitations we’ll discuss throughout this section apply to
the official MySQL server from Oracle Corporation as of version 5.5.
The MariaDB fork of MySQL has several related query optimizer and
execution engine enhancements, such as executing correlated subquer-
ies from the inside out.

When a correlated subquery is good

MySQL doesn’t always optimize correlated subqueries badly. If you hear advice to
always avoid them, don’t listen! Instead, measure and make your own decision. Some-
times a correlated subquery is a perfectly reasonable, or even optimal, way to get a
result. Let’s look at an example:

mysql> EXPLAIN SELECT film_id, language_id FROM sakila.film
 -> WHERE NOT EXISTS(
 -> SELECT * FROM sakila.film_actor
 -> WHERE film_actor.film_id = film.film_id
 ->)\G
 *************************** 1. row ***************************
 id: 1

230 | Chapter 6: Query Performance Optimization

 select_type: PRIMARY
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra: Using where
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: film_actor
 type: ref
possible_keys: idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: film.film_id
 rows: 2
 Extra: Using where; Using index

The standard advice for this query is to write it as a LEFT OUTER JOIN instead of using a
subquery. In theory, MySQL’s execution plan will be essentially the same either way.
Let’s see:

mysql> EXPLAIN SELECT film.film_id, film.language_id
 -> FROM sakila.film
 -> LEFT OUTER JOIN sakila.film_actor USING(film_id)
 -> WHERE film_actor.film_id IS NULL\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: sakila.film.film_id
 rows: 2
 Extra: Using where; Using index; Not exists

Limitations of the MySQL Query Optimizer | 231

The plans are nearly identical, but there are some differences:

• The SELECT type against film_actor is DEPENDENT SUBQUERY in one query and SIM
PLE in the other. This difference simply reflects the syntax, because the first query
uses a subquery and the second doesn’t. It doesn’t make much difference in terms
of handler operations.

• The second query doesn’t say “Using where” in the Extra column for the film table.
That doesn’t matter, though: the second query’s USING clause is the same thing as
a WHERE clause anyway.

• The second query says “Not exists” in the film_actor table’s Extra column. This
is an example of the early-termination algorithm we mentioned earlier in this
chapter. It means MySQL is using a not-exists optimization to avoid reading more
than one row in the film_actor table’s idx_fk_film_id index. This is equivalent to
a NOT EXISTS() correlated subquery, because it stops processing the current row as
soon as it finds a match.

So, in theory, MySQL will execute the queries almost identically. In reality, measuring
is the only way to tell which approach is really faster. We benchmarked both queries
on our standard setup. The results are shown in Table 6-1.

Table 6-1. NOT EXISTS versus LEFT OUTER JOIN

Query Result in queries per second (QPS)

NOT EXISTS subquery 360 QPS

LEFT OUTER JOIN 425 QPS

Our benchmark found that the subquery is quite a bit slower!

However, this isn’t always the case. Sometimes a subquery can be faster. For example,
it can work well when you just want to see rows from one table that match rows in
another table. Although that sounds like it describes a join perfectly, it’s not always the
same thing. The following join, which is designed to find every film that has an actor,
will return duplicates because some films have multiple actors:

mysql> SELECT film.film_id FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id);

We need to use DISTINCT or GROUP BY to eliminate the duplicates:

mysql> SELECT DISTINCT film.film_id FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id);

But what are we really trying to express with this query, and is it obvious from the SQL?
The EXISTS operator expresses the logical concept of “has a match” without producing
duplicated rows and avoids a GROUP BY or DISTINCT operation, which might require a
temporary table. Here’s the query written as a subquery instead of a join:

232 | Chapter 6: Query Performance Optimization

mysql> SELECT film_id FROM sakila.film
 -> WHERE EXISTS(SELECT * FROM sakila.film_actor
 -> WHERE film.film_id = film_actor.film_id);

Again, we benchmarked to see which strategy was faster. The results are shown in
Table 6-2.

Table 6-2. EXISTS versus INNER JOIN

Query Result in queries per second (QPS)

INNER JOIN 185 QPS

EXISTS subquery 325 QPS

In this example, the subquery performs much faster than the join.

We showed this lengthy example to illustrate two points: you should not heed cate-
gorical advice about subqueries, and you should measure to prove your assumptions
about query plans and response time. A final note on subqueries: this is one of the rare
cases where we need to mention a bug in MySQL. In MySQL version 5.1.48 and earlier,
the following syntax can lock a row in table2:

SELECT ... FROM table1 WHERE col = (SELECT ... FROM table2 WHERE ...);

This bug, if it affects you, can cause subqueries to behave much differently under high
concurrency than if you measure their performance in a single thread. This is bug
46947, and even though it’s solved, it still reinforces our point: don’t assume.

UNION Limitations
MySQL sometimes can’t “push down” conditions from the outside of a UNION to the
inside, where they could be used to limit results or enable additional optimizations.

If you think any of the individual queries inside a UNION would benefit from a LIMIT, or
if you know they’ll be subject to an ORDER BY clause once combined with other queries,
you need to put those clauses inside each part of the UNION. For example, if you UNION
together two tables and LIMIT the result to the first 20 rows, MySQL will store both
tables into a temporary table and then retrieve just 20 rows from it:

(SELECT first_name, last_name
 FROM sakila.actor
 ORDER BY last_name)
UNION ALL
(SELECT first_name, last_name
 FROM sakila.customer
 ORDER BY last_name)
LIMIT 20;

This query will store 200 rows from the actor table, and 599 from the customer table,
into a temporary table and then fetch the first 20 rows from that temporary table. You
can avoid this by adding LIMIT 20 redundantly to each query inside the UNION:

Limitations of the MySQL Query Optimizer | 233

(SELECT first_name, last_name
 FROM sakila.actor
 ORDER BY last_name
 LIMIT 20)
UNION ALL
(SELECT first_name, last_name
 FROM sakila.customer
 ORDER BY last_name
 LIMIT 20)
LIMIT 20;

Now the temporary table will contain only 40 rows. In addition to the performance
improvement, you’ll probably need to correct the query: the order in which the rows
are retrieved from the temporary table is undefined, so there should be an overall ORDER
BY just before the final LIMIT.

Index Merge Optimizations
As discussed in the previous chapter, MySQL 5.0 and greater can access several indexes
from a single table and union or intersect the results to locate rows when there are
complex filtering conditions in the WHERE clause.

Equality Propagation
Equality propagation can have unexpected costs sometimes. For example, consider a
huge IN() list on a column the optimizer knows will be equal to some columns on other
tables, due to a WHERE, ON, or USING clause that sets the columns equal to each other.

The optimizer will “share” the list by copying it to the corresponding columns in all
related tables. This is normally helpful, because it gives the query optimizer and exe-
cution engine more options for where to actually execute the IN() check. But when the
list is very large, it can result in slower optimization and execution. There’s no built-in
workaround for this problem at the time of this writing—you’ll have to change the
source code if it’s a problem for you. (It’s not a problem for most people.)

Parallel Execution
MySQL can’t execute a single query in parallel on many CPUs. This is a feature offered
by some other database servers, but not MySQL. We mention it so that you won’t spend
a lot of time trying to figure out how to get parallel query execution on MySQL!

Hash Joins
MySQL can’t do true hash joins at the time of this writing—everything is a nested-loop
join. However, you can emulate hash joins using hash indexes. If you aren’t using the
Memory storage engine, you’ll have to emulate the hash indexes, too. We showed you

234 | Chapter 6: Query Performance Optimization

how to do this in “Building your own hash indexes” on page 154. MariaDB can perform
true hash joins.

Loose Index Scans
MySQL has historically been unable to do loose index scans, which scan noncontiguous
ranges of an index. MySQL’s index scans generally require a defined start point and a
defined end point in the index, even if only a few noncontiguous rows in the middle
are really desired for the query. MySQL will scan the entire range of rows within these
end points.

An example will help clarify this. Suppose we have a table with an index on columns
(a, b), and we want to run the following query:

mysql> SELECT ... FROM tbl WHERE b BETWEEN 2 AND 3;

Because the index begins with column a, but the query’s WHERE clause doesn’t specify
column a, MySQL will do a table scan and eliminate the nonmatching rows with a
WHERE clause, as shown in Figure 6-5.

Figure 6-5. MySQL scans the entire table to find rows

It’s easy to see that there’s a faster way to execute this query. The index’s structure (but
not MySQL’s storage engine API) lets you seek to the beginning of each range of values,
scan until the end of the range, and then backtrack and jump ahead to the start of the
next range. Figure 6-6 shows what that strategy would look like if MySQL were able
to do it.

Limitations of the MySQL Query Optimizer | 235

Notice the absence of a WHERE clause, which isn’t needed because the index alone lets
us skip over the unwanted rows.

This is admittedly a simplistic example, and we could easily optimize the query we’ve
shown by adding a different index. However, there are many cases where adding an-
other index can’t solve the problem. One example is a query that has a range condition
on the index’s first column and an equality condition on the second column.

Beginning in MySQL 5.0, loose index scans are possible in certain limited circumstan-
ces, such as queries that find maximum and minimum values in a grouped query:

mysql> EXPLAIN SELECT actor_id, MAX(film_id)
 -> FROM sakila.film_actor
 -> GROUP BY actor_id\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: range
possible_keys: NULL
 key: PRIMARY
 key_len: 2
 ref: NULL
 rows: 396
 Extra: Using index for group-by

The “Using index for group-by” information in this EXPLAIN plan indicates a loose index
scan. This is a good optimization for this special purpose, but it is not a general-purpose
loose index scan. It might be better termed a “loose index probe.”

Figure 6-6. A loose index scan, which MySQL cannot currently do, would be more efficient

236 | Chapter 6: Query Performance Optimization

Until MySQL supports general-purpose loose index scans, the workaround is to supply
a constant or list of constants for the leading columns of the index. We showed several
examples of how to get good performance with these types of queries in our indexing
case study in the previous chapter.

In MySQL 5.6, some limitations on loose index scans will be fixed with an optimizer
technique called “index condition pushdown.”

MIN() and MAX()
MySQL doesn’t optimize certain MIN() and MAX() queries very well. Here’s an example:

mysql> SELECT MIN(actor_id) FROM sakila.actor WHERE first_name = 'PENELOPE';

Because there’s no index on first_name, this query performs a table scan. If MySQL
scans the primary key, it can theoretically stop after reading the first matching row,
because the primary key is strictly ascending and any subsequent row will have a greater
actor_id. However, in this case MySQL will scan the whole table, which you can verify
by looking at SHOW STATUS counters. The workaround is to remove the MIN() and rewrite
the query with a LIMIT, as follows:

mysql> SELECT actor_id FROM sakila.actor USE INDEX(PRIMARY)
 -> WHERE first_name = 'PENELOPE' LIMIT 1;

This general strategy often works well when MySQL would otherwise choose to scan
more rows than necessary. If you’re a purist, you might object that this query is missing
the point of SQL. We’re supposed to be able to tell the server what we want and it’s
supposed to figure out how to get that data, whereas in this case we’re telling MySQL
how to execute the query and, as a result, it’s not clear from the query that what we’re
looking for is a minimal value. True, but sometimes you have to compromise your
principles to get high performance.

SELECT and UPDATE on the Same Table
MySQL doesn’t let you SELECT from a table while simultaneously running an UPDATE on
it. This isn’t really an optimizer limitation, but knowing how MySQL executes queries
can help you work around it. Here’s an example of a query that’s disallowed, even
though it is standard SQL. The query updates each row with the number of similar
rows in the table:

mysql> UPDATE tbl AS outer_tbl
 -> SET cnt = (
 -> SELECT count(*) FROM tbl AS inner_tbl
 -> WHERE inner_tbl.type = outer_tbl.type
 ->);
ERROR 1093 (HY000): You can’t specify target table 'outer_tbl' for update in FROM
clause

Limitations of the MySQL Query Optimizer | 237

To work around this limitation, you can use a derived table, because MySQL materi-
alizes it as a temporary table. This effectively executes two queries: one SELECT inside
the subquery, and one multitable UPDATE with the joined results of the table and the
subquery. The subquery opens and closes the table before the outer UPDATE opens the
table, so the query will now succeed:

mysql> UPDATE tbl
 -> INNER JOIN(
 -> SELECT type, count(*) AS cnt
 -> FROM tbl
 -> GROUP BY type
 ->) AS der USING(type)
 -> SET tbl.cnt = der.cnt;

Query Optimizer Hints
MySQL has a few optimizer hints you can use to control the query plan if you’re not
happy with the one MySQL’s optimizer chooses. The following list identifies these hints
and indicates when it’s a good idea to use them. You place the appropriate hint in the
query whose plan you want to modify, and it is effective for only that query. Check the
MySQL manual for the exact syntax of each hint. Some of them are version-dependent.
The options are:

HIGH_PRIORITY and LOW_PRIORITY
These hints tell MySQL how to prioritize the statement relative to other statements
that are trying to access the same tables.

HIGH_PRIORITY tells MySQL to schedule a SELECT statement before other statements
that might be waiting for table locks so they can modify data. In effect, it makes
the SELECT go to the front of the queue instead of waiting its turn. You can also
apply this modifier to INSERT, where it simply cancels the effect of a global LOW
_PRIORITY server setting.

LOW_PRIORITY is the reverse: it makes the statement wait at the very end of the queue
if there are any other statements that want to access the tables—even if the other
statements are issued after it. It’s rather like an overly polite person holding the
door at a restaurant: as long as there’s anyone else waiting, it will starve itself! You
can apply this hint to SELECT, INSERT, UPDATE, REPLACE, and DELETE statements.

These hints are effective on storage engines with table-level locking, but you should
never need them on InnoDB or other engines with fine-grained locking and con-
currency control. Be careful when using them on MyISAM, because they can dis-
able concurrent inserts and greatly reduce performance.

The HIGH_PRIORITY and LOW_PRIORITY hints are a frequent source of confusion.
They do not allocate more or fewer resources to queries to make them “work
harder” or “not work as hard”; they simply affect how the server queues statements
that are waiting for access to a table.

238 | Chapter 6: Query Performance Optimization

DELAYED
This hint is for use with INSERT and REPLACE. It lets the statement to which it is
applied return immediately and places the inserted rows into a buffer, which will
be inserted in bulk when the table is free. This is most useful for logging and similar
applications where you want to insert a lot of rows without making the client wait,
and without causing I/O for each statement. There are many limitations; for
example, delayed inserts are not implemented in all storage engines, and LAST
_INSERT_ID() doesn’t work with them.

STRAIGHT_JOIN
This hint can appear either just after the SELECT keyword in a SELECT statement, or
in any statement between two joined tables. The first usage forces all tables in the
query to be joined in the order in which they’re listed in the statement. The second
usage forces a join order on the two tables between which the hint appears.

The STRAIGHT_JOIN hint is useful when MySQL doesn’t choose a good join order,
or when the optimizer takes a long time to decide on a join order. In the latter case,
the thread will spend a lot of time in the “statistics” state, and adding this hint will
reduce the search space for the optimizer.

You can use EXPLAIN to see what order the optimizer would choose, then rewrite
the query in that order and add STRAIGHT_JOIN. This is a good idea as long as you
don’t think the fixed order will result in bad performance for some WHERE clauses.
You should be careful to revisit such queries after upgrading MySQL, however,
because new optimizations might appear that will be defeated by STRAIGHT_JOIN.

SQL_SMALL_RESULT and SQL_BIG_RESULT
These hints are for SELECT statements. They tell the optimizer how and when to
use temporary tables and sort in GROUP BY or DISTINCT queries. SQL_SMALL_RESULT
tells the optimizer that the result set will be small and can be put into indexed
temporary tables to avoid sorting for the grouping, whereas SQL_BIG_RESULT indi-
cates that the result will be large and that it will be better to use temporary tables
on disk with sorting.

SQL_BUFFER_RESULT
This hint tells the optimizer to put the results into a temporary table and release
table locks as soon as possible. This is different from the client-side buffering we
described previously. Server-side buffering can be useful when you don’t use
buffering on the client, because it lets you avoid consuming a lot of memory on the
client and still release locks quickly. The trade-off is that the server’s memory is
used instead of the client’s.

SQL_CACHE and SQL_NO_CACHE
These hints instruct the server that the query either is or is not a candidate for
caching in the query cache. See the next chapter for details on how to use them.

SQL_CALC_FOUND_ROWS
This hint isn’t strictly an optimizer hint. It doesn’t tell MySQL to plan the query
differently. Instead, it provides extra functionality by changing what the query

Query Optimizer Hints | 239

actually does. It tells MySQL to calculate a full result set when there’s a LIMIT
clause, even though it returns only LIMIT rows. You can retrieve the total number
of rows it found via FOUND_ROWS() (but take a look at the section “Optimizing
SQL_CALC_FOUND_ROWS” on page 248 for reasons why you shouldn’t use
this hint).

FOR UPDATE and LOCK IN SHARE MODE
These hints aren’t really optimizer hints, either; they control locking for SELECT
statements, but only for storage engines that have row-level locks. They enable you
to place locks on the matched rows. These hints are not needed for INSERT ...
SELECT queries, which place read locks on the source rows by default in MySQL
5.0 and newer versions. (You can disable this behavior, but it’s not a good idea—
we explain why in the chapters on replication and backups.)

The only built-in storage engine that supports these hints is InnoDB. Be aware that
they disable some optimizations, such as covering indexes. InnoDB can’t lock rows
exclusively without accessing the primary key, which is where the row versioning
information is stored.

Unfortunately, these hints are way overused and frequently cause severe locking
problems, as we’ll discuss later in this chapter. You should avoid them at pretty
much all costs; there’s usually a better way to do what you’re trying to do.

USE INDEX, IGNORE INDEX, and FORCE INDEX
These hints tell the optimizer which indexes to use or ignore for finding rows in a
table (for example, when deciding on a join order). In MySQL 5.0 and earlier, they
don’t influence which indexes the server uses for sorting and grouping; in MySQL
5.1 the syntax can take an optional FOR ORDER BY or FOR GROUP BY clause.

FORCE INDEX is the same as USE INDEX, but it tells the optimizer that a table scan is
extremely expensive compared to the index, even if the index is not very useful.
You can use these hints when you don’t think the optimizer is choosing the right
index, or when you want to take advantage of an index for some reason, such as
implicit ordering without an ORDER BY. We gave an example of this previously,
where we showed how to get a minimum value efficiently with LIMIT.

In MySQL 5.0 and newer, there are also some configuration variables that influence
the optimizer:

optimizer_search_depth
This variable tells the optimizer how exhaustively to examine partial plans. If your
queries are taking a very long time in the “Statistics” state, you might try lowering
this value.

optimizer_prune_level
This variable, which is enabled by default, lets the optimizer skip certain plans
based on the number of rows examined.

240 | Chapter 6: Query Performance Optimization

optimizer_switch
This variable contains a set of flags that enable or disable specific optimizer fea-
tures. For example, in MySQL 5.1 you can use it to disable the index merge query
plan.

The first two options control optimizer shortcuts. These shortcuts are valuable for good
performance on complex queries, but they can cause the server to miss optimal plans
for the sake of efficiency. That’s why it sometimes makes sense to change them.

Validating MySQL Upgrades
Trying to outsmart the MySQL optimizer usually is not a good idea. It generally creates
more work and increases maintenance costs for very little benefit. This is especially
relevant when you upgrade MySQL, because optimizer hints used in your queries might
prevent new optimizer strategies from being used.

In MySQL 5.0 a number of capabilities were added to the optimizer, and the as-yet
unreleased MySQL 5.6 will have the biggest changes to the optimizer in a very long
time. If you are upgrading to one of these versions, you will not want to miss out on
the benefits they offer.

New versions of MySQL generally improve the server by leaps and bounds, and this is
especially true in the 5.5 and 5.6 versions. MySQL upgrades usually go fine, but you
still need to test changes carefully. There is always a chance that you will discover an
edge case that affects you. The good news is that it’s really easy to prevent this with a
little change management. Use the pt-upgrade tool from Percona Toolkit to validate
that your queries run well on the new version of MySQL, and that they don’t return
different results.

Optimizing Specific Types of Queries
In this section, we give advice on how to optimize certain kinds of queries. We’ve
covered most of these topics in detail elsewhere in the book, but we wanted to make a
list of common optimization problems that you can refer to easily.

Most of the advice in this section is version-dependent, and it might not hold for future
versions of MySQL. There’s no reason why the server won’t be able to do some or all
of these optimizations itself someday.

Optimizing COUNT() Queries
The COUNT() aggregate function, and how to optimize queries that use it, is probably
one of the top 10 most-misunderstood topics in MySQL. You can do a web search and
find more misinformation on this topic than we care to think about.

Before we get into optimization, it’s important that you understand what COUNT()
really does.

Optimizing Specific Types of Queries | 241

What COUNT() does

COUNT() is a special function that works in two very different ways: it counts values and
rows. A value is a non-NULL expression (NULL is the absence of a value). If you specify a
column name or other expression inside the parentheses, COUNT() counts how many
times that expression has a value. This is confusing for many people, in part because
values and NULL are confusing. If you need to learn how this works in SQL, we suggest
a good book on SQL fundamentals. (The Internet is not necessarily a good source of
accurate information on this topic.)

The other form of COUNT() simply counts the number of rows in the result. This is what
MySQL does when it knows the expression inside the parentheses can never be NULL.
The most obvious example is COUNT(*), which is a special form of COUNT() that does not
expand the * wildcard into the full list of columns in the table, as you might expect;
instead, it ignores columns altogether and counts rows.

One of the most common mistakes we see is specifying column names inside the
parentheses when you want to count rows. When you want to know the number of
rows in the result, you should always use COUNT(*). This communicates your intention
clearly and avoids poor performance.

Myths about MyISAM

A common misconception is that MyISAM is extremely fast for COUNT() queries. It is
fast, but only for a very special case: COUNT(*) without a WHERE clause, which merely
counts the number of rows in the entire table. MySQL can optimize this away because
the storage engine always knows how many rows are in the table. If MySQL knows
col can never be NULL, it can also optimize a COUNT(col) expression by converting it to
COUNT(*) internally.

MyISAM does not have any magical speed optimizations for counting rows when the
query has a WHERE clause, or for the more general case of counting values instead of
rows. It might be faster than other storage engines for a given query, or it might not be.
That depends on a lot of factors.

Simple optimizations

You can sometimes use MyISAM’s COUNT(*) optimization to your advantage when you
want to count all but a very small number of rows that are well indexed. The following
example uses the standard world database to show how you can efficiently find the
number of cities whose ID is greater than 5. You might write this query as follows:

mysql> SELECT COUNT(*) FROM world.City WHERE ID > 5;

If you examine this query with SHOW STATUS, you’ll see that it scans 4,079 rows. If you
negate the conditions and subtract the number of cities whose IDs are less than or equal
to 5 from the total number of cities, you can reduce that to five rows:

242 | Chapter 6: Query Performance Optimization

mysql> SELECT (SELECT COUNT(*) FROM world.City) - COUNT(*)
 -> FROM world.City WHERE ID <= 5;

This version reads fewer rows because the subquery is turned into a constant during
the query optimization phase, as you can see with EXPLAIN:

+----+-------------+-------+...+------+------------------------------+
| id | select_type | table |...| rows | Extra |
+----+-------------+-------+...+------+------------------------------+
| 1 | PRIMARY | City |...| 6 | Using where; Using index |
| 2 | SUBQUERY | NULL |...| NULL | Select tables optimized away |
+----+-------------+-------+...+------+------------------------------+

A frequent question on mailing lists and IRC channels is how to retrieve counts for
several different values in the same column with just one query, to reduce the number
of queries required. For example, say you want to create a single query that counts how
many items have each of several colors. You can’t use an OR (e.g., SELECT COUNT(color
= 'blue' OR color = 'red') FROM items;), because that won’t separate the different
counts for the different colors. And you can’t put the colors in the WHERE clause (e.g.,
SELECT COUNT(*) FROM items WHERE color = 'blue' AND color = 'red';), because the
colors are mutually exclusive. Here is a query that solves this problem:16

mysql> SELECT SUM(IF(color = 'blue', 1, 0)) AS blue,SUM(IF(color = 'red', 1, 0))
 -> AS red FROM items;

And here is another that’s equivalent, but instead of using SUM() uses COUNT() and en-
sures that the expressions won’t have values when the criteria are false:

mysql> SELECT COUNT(color = 'blue' OR NULL) AS blue, COUNT(color = 'red' OR NULL)
 -> AS red FROM items;

Using an approximation

Sometimes you don’t need an accurate count, so you can just use an approximation.
The optimizer’s estimated rows in EXPLAIN often serves well for this. Just execute an
EXPLAIN query instead of the real query.

At other times, an exact count is much less efficient than an approximation. One cus-
tomer asked for help counting the number of active users on his website. The user count
was cached and displayed for 30 minutes, after which it was regenerated and cached
again. This was inaccurate by nature, so an approximation was acceptable. The query
included several WHERE conditions to ensure that it didn’t count inactive users or the
“default” user, which was a special user ID in the application. Removing these condi-
tions changed the count only slightly, but made the query much more efficient. A fur-
ther optimization was to eliminate an unnecessary DISTINCT to remove a filesort. The
rewritten query was much faster and returned almost exactly the same results.

16. You can also write the SUM() expressions as SUM(color = 'blue'), SUM(color = 'red').

Optimizing Specific Types of Queries | 243

More complex optimizations

In general, COUNT() queries are hard to optimize because they usually need to count a
lot of rows (i.e., access a lot of data). Your only other option for optimizing within
MySQL itself is to use a covering index. If that doesn’t help enough, you need to
make changes to your application architecture. Consider summary tables (covered in
Chapter 4), and possibly an external caching system such as memcached. You’ll prob-
ably find yourself faced with the familiar dilemma, “fast, accurate, and simple: pick
any two.”

Optimizing JOIN Queries
This topic is actually spread throughout most of the book, but we’ll mention a few
highlights:

• Make sure there are indexes on the columns in the ON or USING clauses. Consider
the join order when adding indexes. If you’re joining tables A and B on column c
and the query optimizer decides to join the tables in the order B, A, you don’t need
to index the column on table B. Unused indexes are extra overhead. In general, you
need to add indexes only on the second table in the join order, unless they’re needed
for some other reason.

• Try to ensure that any GROUP BY or ORDER BY expression refers only to columns from
a single table, so MySQL can try to use an index for that operation.

• Be careful when upgrading MySQL, because the join syntax, operator precedence,
and other behaviors have changed at various times. What used to be a normal join
can sometimes become a cross product, a different kind of join that returns differ-
ent results, or even invalid syntax.

Optimizing Subqueries
The most important advice we can give on subqueries is that you should usually prefer
a join where possible, at least in current versions of MySQL. We covered this topic
extensively earlier in this chapter. However, “prefer a join” is not future-proof advice,
and if you’re using MySQL 5.6 or newer versions, or MariaDB, subqueries are a whole
different matter.

Optimizing GROUP BY and DISTINCT
MySQL optimizes these two kinds of queries similarly in many cases, and in fact con-
verts between them as needed internally during the optimization process. Both types
of queries benefit from indexes, as usual, and that’s the single most important way to
optimize them.

MySQL has two kinds of GROUP BY strategies when it can’t use an index: it can use a
temporary table or a filesort to perform the grouping. Either one can be more efficient

244 | Chapter 6: Query Performance Optimization

for any given query. You can force the optimizer to choose one method or the other
with the SQL_BIG_RESULT and SQL_SMALL_RESULT optimizer hints, as discussed earlier in
this chapter.

If you need to group a join by a value that comes from a lookup table, it’s usually more
efficient to group by the lookup table’s identifier than by the value. For example, the
following query isn’t as efficient as it could be:

mysql> SELECT actor.first_name, actor.last_name, COUNT(*)
 -> FROM sakila.film_actor
 -> INNER JOIN sakila.actor USING(actor_id)
 -> GROUP BY actor.first_name, actor.last_name;

The query is more efficiently written as follows:

mysql> SELECT actor.first_name, actor.last_name, COUNT(*)
 -> FROM sakila.film_actor
 -> INNER JOIN sakila.actor USING(actor_id)
 -> GROUP BY film_actor.actor_id;

Grouping by actor.actor_id could be even more efficient than grouping by film_
actor.actor_id. You should test on your specific data to see.

This query takes advantage of the fact that the actor’s first and last name are dependent
on the actor_id, so it will return the same results, but it’s not always the case that you
can blithely select nongrouped columns and get the same result. You might even have
the server’s SQL_MODE configured to disallow it. You can use MIN() or MAX() to work
around this when you know the values within the group are distinct because they de-
pend on the grouped-by column, or if you don’t care which value you get:

mysql> SELECT MIN(actor.first_name), MAX(actor.last_name), ...;

Purists will argue that you’re grouping by the wrong thing, and they’re right. A spurious
MIN() or MAX() is a sign that the query isn’t structured correctly. However, sometimes
your only concern will be making MySQL execute the query as quickly as possible. The
purists will be satisfied with the following way of writing the query:

mysql> SELECT actor.first_name, actor.last_name, c.cnt
 -> FROM sakila.actor
 -> INNER JOIN (
 -> SELECT actor_id, COUNT(*) AS cnt
 -> FROM sakila.film_actor
 -> GROUP BY actor_id
 ->) AS c USING(actor_id) ;

But the cost of creating and filling the temporary table required for the subquery may
be high compared to the cost of fudging pure relational theory a little bit. Remember,
the temporary table created by the subquery has no indexes.17

It’s generally a bad idea to select nongrouped columns in a grouped query, because the
results will be nondeterministic and could easily change if you change an index or the

17. This is another limitation that’s fixed in MariaDB, by the way.

Optimizing Specific Types of Queries | 245

optimizer decides to use a different strategy. Most such queries we see are accidents
(because the server doesn’t complain), or are the result of laziness rather than being
designed that way for optimization purposes. It’s better to be explicit. In fact, we suggest
that you set the server’s SQL_MODE configuration variable to include ONLY_FULL
_GROUP_BY so it produces an error instead of letting you write a bad query.

MySQL automatically orders grouped queries by the columns in the GROUP BY clause,
unless you specify an ORDER BY clause explicitly. If you don’t care about the order and
you see this causing a filesort, you can use ORDER BY NULL to skip the automatic sort.
You can also add an optional DESC or ASC keyword right after the GROUP BY clause to
order the results in the desired direction by the clause’s columns.

Optimizing GROUP BY WITH ROLLUP

A variation on grouped queries is to ask MySQL to do superaggregation within the
results. You can do this with a WITH ROLLUP clause, but it might not be as well optimized
as you need. Check the execution method with EXPLAIN, paying attention to whether
the grouping is done via filesort or temporary table; try removing the WITH ROLLUP and
seeing if you get the same group method. You might be able to force the grouping
method with the hints we mentioned earlier in this section.

Sometimes it’s more efficient to do superaggregation in your application, even if it
means fetching many more rows from the server. You can also nest a subquery in the
FROM clause or use a temporary table to hold intermediate results, and then query the
temporary table with a UNION.

The best approach might be to move the WITH ROLLUP functionality into your
application code.

Optimizing LIMIT and OFFSET
Queries with LIMITs and OFFSETs are common in systems that do pagination, nearly
always in conjunction with an ORDER BY clause. It’s helpful to have an index that sup-
ports the ordering; otherwise, the server has to do a lot of filesorts.

A frequent problem is having a high value for the offset. If your query looks like LIMIT
10000, 20, it is generating 10,020 rows and throwing away the first 10,000 of them,
which is very expensive. Assuming all pages are accessed with equal frequency, such
queries scan half the table on average. To optimize them, you can either limit how many
pages are permitted in a pagination view, or try to make the high offsets more efficient.

One simple technique to improve efficiency is to do the offset on a covering index,
rather than the full rows. You can then join the result to the full row and retrieve the
additional columns you need. This can be much more efficient. Consider the following
query:

mysql> SELECT film_id, description FROM sakila.film ORDER BY title LIMIT 50, 5;

246 | Chapter 6: Query Performance Optimization

If the table is very large, this query is better written as follows:

mysql> SELECT film.film_id, film.description
 -> FROM sakila.film
 -> INNER JOIN (
 -> SELECT film_id FROM sakila.film
 -> ORDER BY title LIMIT 50, 5
 ->) AS lim USING(film_id);

This “deferred join” works because it lets the server examine as little data as possible
in an index without accessing rows, and then, once the desired rows are found, join
them against the full table to retrieve the other columns from the row. A similar tech-
nique applies to joins with LIMIT clauses.

Sometimes you can also convert the limit to a positional query, which the server can
execute as an index range scan. For example, if you precalculate and index a position
column, you can rewrite the query as follows:

mysql> SELECT film_id, description FROM sakila.film
 -> WHERE position BETWEEN 50 AND 54 ORDER BY position;

Ranked data poses a similar problem, but usually mixes GROUP BY into the fray. You’ll
almost certainly need to precompute and store ranks.

The problem with LIMIT and OFFSET is really the OFFSET, which represents rows the
server is generating and throwing away. If you use a sort of bookmark to remember the
position of the last row you fetched, you can generate the next set of rows by starting
from that position instead of using an OFFSET. For example, if you want to paginate
through rental records, starting from the newest rentals and working backward, you
can rely on the fact that their primary keys are always increasing. You can fetch the first
set of results like this:

mysql> SELECT * FROM sakila.rental
 -> ORDER BY rental_id DESC LIMIT 20;

This query returns rentals 16049 through 16030. The next query can continue from
that point:

mysql> SELECT * FROM sakila.rental
 -> WHERE rental_id < 16030
 -> ORDER BY rental_id DESC LIMIT 20;

The nice thing about this technique is that it’s very efficient no matter how far you
paginate into the table.

Other alternatives include using precomputed summaries, or joining against redundant
tables that contain only the primary key and the columns you need for the ORDER BY.
You can also use Sphinx; see Appendix F for more information.

Optimizing Specific Types of Queries | 247

Optimizing SQL_CALC_FOUND_ROWS
Another common technique for paginated displays is to add the SQL_CALC_FOUND_ROWS
hint to a query with a LIMIT, so you’ll know how many rows would have been returned
without the LIMIT. It might seem that there’s some kind of “magic” happening here,
whereby the server predicts how many rows it would have found. But unfortunately,
the server doesn’t really do that; it can’t count rows it doesn’t actually find. This option
just tells the server to generate and throw away the rest of the result set, instead of
stopping when it reaches the desired number of rows. That’s very expensive.

A better design is to convert the pager to a “next” link. Assuming there are 20 results
per page, the query should then use a LIMIT of 21 rows and display only 20. If the 21st
row exists in the results, there’s a next page, and you can render the “next” link.

Another possibility is to fetch and cache many more rows than you need—say, 1,000—
and then retrieve them from the cache for successive pages. This strategy lets your
application know how large the full result set is. If it’s fewer than 1,000 rows, the
application knows how many page links to render; if it’s more, the application can just
display “more than 1,000 results found.” Both strategies are much more efficient than
repeatedly generating an entire result and discarding most of it.

Sometimes you can also just estimate the full size of the result set by running an
EXPLAIN query and looking at the rows column in the result (hey, even Google doesn’t
show exact result counts!). If you can’t use these tactics, using a separate COUNT(*) query
to find the number of rows can be much faster than SQL_CALC_FOUND_ROWS, if it can use
a covering index.

Optimizing UNION
MySQL always executes UNION queries by creating a temporary table and filling it with
the UNION results. MySQL can’t apply as many optimizations to UNION queries as you
might be used to. You might have to help the optimizer by manually “pushing down”
WHERE, LIMIT, ORDER BY, and other conditions (i.e., copying them, as appropriate, from
the outer query into each SELECT in the UNION).

It’s important to always use UNION ALL, unless you need the server to eliminate
duplicate rows. If you omit the ALL keyword, MySQL adds the distinct option to the
temporary table, which uses the full row to determine uniqueness. This is quite ex-
pensive. Be aware that the ALL keyword doesn’t eliminate the temporary table, though.
MySQL always places results into a temporary table and then reads them out again,
even when it’s not really necessary (for example, when the results could be returned
directly to the client).

248 | Chapter 6: Query Performance Optimization

Static Query Analysis
Percona Toolkit contains pt-query-advisor, a tool that parses a log of queries, analyzes
the query patterns, and gives annoyingly detailed advice about potentially bad practices
in them. It’s sort of a “lint checker” for MySQL queries. It will catch many common
problems such as those we’ve mentioned in the previous sections.

Using User-Defined Variables
It’s easy to forget about MySQL’s user-defined variables, but they can be a powerful
technique for writing efficient queries. They work especially well for queries that benefit
from a mixture of procedural and relational logic. Purely relational queries treat every-
thing as unordered sets that the server somehow manipulates all at once. MySQL takes
a more pragmatic approach. This can be a weakness, but it can be a strength if you
know how to exploit it, and user-defined variables can help.

User-defined variables are temporary containers for values, which persist as long as
your connection to the server lives. You define them by simply assigning to them with
a SET or SELECT statement:18

mysql> SET @one := 1;
mysql> SET @min_actor := (SELECT MIN(actor_id) FROM sakila.actor);
mysql> SET @last_week := CURRENT_DATE-INTERVAL 1 WEEK;

You can then use the variables in most places an expression can go:

mysql> SELECT ... WHERE col <= @last_week;

Before we get into the strengths of user-defined variables, let’s take a look at some of
their peculiarities and disadvantages and see what things you can’t use them for:

• They disable the query cache.

• You can’t use them where a literal or identifier is needed, such as for a table or
column name, or in the LIMIT clause.

• They are connection-specific, so you can’t use them for interconnection commu-
nication.

• If you’re using connection pooling or persistent connections, they can cause seem-
ingly isolated parts of your code to interact. (If so, it’s because of a bug in your
code or the connection pool, but it can still happen.)

• They are case sensitive in MySQL versions prior to 5.0, so beware of compatibility
issues.

• You can’t explicitly declare these variables’ types, and the point at which types are
decided for undefined variables differs across MySQL versions. The best thing to
do is initially assign a value of 0 for variables you want to use for integers, 0.0 for

18. In some contexts you can assign with a plain = sign, but we think it’s better to avoid ambiguity and always
use :=.

Optimizing Specific Types of Queries | 249

floating-point numbers, or '' (the empty string) for strings. A variable’s type
changes when it is assigned to; MySQL’s user-defined variable typing is dynamic.

• The optimizer might optimize away these variables in some situations, preventing
them from doing what you want.

• Order of assignment, and indeed even the time of assignment, can be nondeter-
ministic and depend on the query plan the optimizer chose. The results can be very
confusing, as you’ll see later.

• The := assignment operator has lower precedence than any other operator, so you
have to be careful to parenthesize explicitly.

• Undefined variables do not generate a syntax error, so it’s easy to make mistakes
without knowing it.

Optimizing ranking queries

One of the most important features of variables is that you can assign a value to a
variable and use the resulting value at the same time. In other words, an assignment is
an L-value. Here’s an example that simultaneously calculates and outputs a “row num-
ber” for a query:

mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS rownum
 -> FROM sakila.actor LIMIT 3;
+----------+--------+
| actor_id | rownum |
+----------+--------+
1	1
2	2
3	3
+----------+--------+

This example isn’t terribly interesting, because it just shows that we can duplicate the
table’s primary key. Still, it has its uses—one of which is ranking. Let’s write a query
that returns the 10 actors who have played in the most movies, with a rank column that
gives actors the same rank if they’re tied. We start with a query that finds the actors
and the number of movies:

mysql> SELECT actor_id, COUNT(*) as cnt
 -> FROM sakila.film_actor
 -> GROUP BY actor_id
 -> ORDER BY cnt DESC
 -> LIMIT 10;
+----------+-----+
| actor_id | cnt |
+----------+-----+
107	42
102	41
198	40
181	39
23	37
81	36

250 | Chapter 6: Query Performance Optimization

106	35
60	35
13	35
158	35
+----------+-----+

Now let’s add the rank, which should be the same for all the actors who played in 35
movies. We use three variables to do this: one to keep track of the current rank, one to
keep track of the previous actor’s movie count, and one to keep track of the current
actor’s movie count. We change the rank when the movie count changes. Here’s a first
try:

mysql> SET @curr_cnt := 0, @prev_cnt := 0, @rank := 0;
mysql> SELECT actor_id,
 -> @curr_cnt := COUNT(*) AS cnt,
 -> @rank := IF(@prev_cnt <> @curr_cnt, @rank + 1, @rank) AS rank,
 -> @prev_cnt := @curr_cnt AS dummy
 -> FROM sakila.film_actor
 -> GROUP BY actor_id
 -> ORDER BY cnt DESC
 -> LIMIT 10;
+----------+-----+------+-------+
| actor_id | cnt | rank | dummy |
+----------+-----+------+-------+
| 107 | 42 | 0 | 0 |
| 102 | 41 | 0 | 0 |
...

Oops—the rank and count never got updated from zero. Why did this happen?

It’s impossible to give a one-size-fits-all answer. The problem could be as simple as a
misspelled variable name (in this example it’s not), or something more involved. In this
case, EXPLAIN shows there’s a temporary table and filesort, so the variables are being
evaluated at a different time from when we expected.

This is the type of inscrutable behavior you might experience with MySQL’s user-
defined variables. Debugging such problems can be tough, but it can really pay off.
Ranking in SQL normally requires quadratic algorithms, such as counting the distinct
number of actors who played in a greater number of movies. A user-defined variable
solution can be a linear algorithm—quite an improvement.

An easy solution in this case is to add another level of temporary tables to the query,
using a subquery in the FROM clause:

mysql> SET @curr_cnt := 0, @prev_cnt := 0, @rank := 0;
 -> SELECT actor_id,
 -> @curr_cnt := cnt AS cnt,
 -> @rank := IF(@prev_cnt <> @curr_cnt, @rank + 1, @rank) AS rank,
 -> @prev_cnt := @curr_cnt AS dummy
 -> FROM (
 -> SELECT actor_id, COUNT(*) AS cnt
 -> FROM sakila.film_actor
 -> GROUP BY actor_id
 -> ORDER BY cnt DESC

Optimizing Specific Types of Queries | 251

 -> LIMIT 10
 ->) as der;
+----------+-----+------+-------+
| actor_id | cnt | rank | dummy |
+----------+-----+------+-------+
107	42	1	42
102	41	2	41
198	40	3	40
181	39	4	39
23	37	5	37
81	36	6	36
106	35	7	35
60	35	7	35
13	35	7	35
158	35	7	35
+----------+-----+------+-------+

Avoiding retrieving the row just modified

What if you want to update a row, but then you want to retrieve some information
about it without actually accessing the row again? Unfortunately, MySQL doesn’t sup-
port anything like PostgreSQL’s UPDATE RETURNING functionality, which would be
useful for this purpose. But you can use variables instead. For example, one of our
customers wanted a more efficient way to update a row’s timestamp to the current time,
and then find out what that time was. The code looked like the following:

UPDATE t1 SET lastUpdated = NOW() WHERE id = 1;
SELECT lastUpdated FROM t1 WHERE id = 1;

We rewrote those queries to use a variable instead, as follows:

UPDATE t1 SET lastUpdated = NOW() WHERE id = 1 AND @now := NOW();
SELECT @now;

There are still two queries and two network round-trips, but the second query doesn’t
access any tables, so it’s faster. (Your mileage may vary. This might not be worthwhile
for you, but it was for this customer.)

Counting UPDATEs and INSERTs

What if you’re using INSERT ON DUPLICATE KEY UPDATE and you want to know how many
rows were inserted without conflicting with existing rows, versus the rows that caused
a conflict and updated a row? Kristian Köhntopp posted a solution to this problem on
his blog.19 The essence of the technique follows:

INSERT INTO t1(c1, c2) VALUES(4, 4), (2, 1), (3, 1)
ON DUPLICATE KEY UPDATE
 c1 = VALUES(c1) + (0 * (@x := @x +1));

19. See http://mysqldump.azundris.com/archives/86-Down-the-dirty-road.html.

252 | Chapter 6: Query Performance Optimization

http://mysqldump.azundris.com/archives/86-Down-the-dirty-road.html

The query increments the @x variable when there is a conflict that causes the UPDATE
portion of the query to execute. It hides the variable’s value inside an expression that
is multiplied by zero, so the variable doesn’t affect the ultimate value assigned to the
column. The MySQL client protocol returns the total rows affected, so there is no need
to count that with a user variable.

Making evaluation order deterministic

Most problems with user variables come from assigning to them and reading them at
different stages in the query. For example, it doesn’t work predictably to assign them
in the SELECT statement and read from them in the WHERE clause. The following query
might look like it will just return one row, but it doesn’t:

mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS cnt
 -> FROM sakila.actor
 -> WHERE @rownum <= 1;
+----------+------+
| actor_id | cnt |
+----------+------+
| 1 | 1 |
| 2 | 2 |
+----------+------+

This happens because the WHERE and SELECT are different stages in the query execution
process. This is even more obvious when you add another stage to execution with an
ORDER BY:

mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS cnt
 -> FROM sakila.actor
 -> WHERE @rownum <= 1
 -> ORDER BY first_name;

This query returns every row in the table, because the ORDER BY added a filesort and the
WHERE is evaluated before the filesort. The solution to this problem is to assign and read
in the same stage of query execution:

mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum AS rownum
 -> FROM sakila.actor
 -> WHERE (@rownum := @rownum + 1) <= 1;
+----------+--------+
| actor_id | rownum |
+----------+--------+
| 1 | 1 |
+----------+--------+

Pop quiz: what will happen if you add the ORDER BY back to this query? Try it and see.
If you didn’t get the results you expected, why not? What about the following query,
where the ORDER BY changes the variable’s value and the WHERE clause evaluates it?

Optimizing Specific Types of Queries | 253

mysql> SET @rownum := 0;
mysql> SELECT actor_id, first_name, @rownum AS rownum
 -> FROM sakila.actor
 -> WHERE @rownum <= 1
 -> ORDER BY first_name, LEAST(0, @rownum := @rownum + 1);

The answer to most unexpected user-defined variable behavior can be found by
running EXPLAIN and looking for “Using where,” “Using temporary,” or “Using filesort”
in the Extra column.

The last example introduced another useful hack: we placed the assignment in the
LEAST() function, so its value is effectively masked and won’t skew the results of the
ORDER BY (as we’ve written it, the LEAST() function will always return 0). This trick is
very helpful when you want to do variable assignments solely for their side effects: it
lets you hide the return value and avoid extra columns, such as the dummy column we
showed in a previous example. The GREATEST(), LENGTH(), ISNULL(), NULLIF(), IF(), and
COALESCE() functions are also useful for this purpose, alone and in combination, because
they have special behaviors. For instance, COALESCE() stops evaluating its arguments as
soon as one has a defined value.

Writing a lazy UNION

Suppose you want to write a UNION query that executes the first branch of the UNION
and, if it finds any rows, skips the second branch. You might do this when you’re
looking for a row in a table that has “hot” rows that are accessed frequently, and another
table with identical rows that happen to be accessed less often. (Partitioning hot and
cold data can be a helpful way to increase cache efficiency.)

Here’s a query that will look for a user in two places—the main user table, and a table
of users who haven’t visited in a long time and so have been archived for efficiency:20

SELECT id FROM users WHERE id = 123
UNION ALL
SELECT id FROM users_archived WHERE id = 123;

That query works, but it’ll look for the row in the users_archived table even if it is
found in the users table. We can prevent that with a lazy UNION, which lazily accesses
the second table only if there are no results in the first one. We’ll assign to a user variable
called @found when a row is found. To make that happen, we need to place the assign-
ment in the column list, so we’ll use the GREATEST function as a container for the as-
signment so we don’t get an extra column in the results. To make it easier to see which
table the results came from, we’ll add a column containing the table name. Finally, we
need to reset the user variable to NULL at the end of the query, so it has no side effects
and can be executed repeatedly. Here’s the query:

20. Baron thinks that some social networks archive his data between his very infrequent visits. When he logs
in, his account doesn’t seem to exist; but then he gets an email a few minutes later welcoming him back,
and voilà, his account has been recovered. This is a smart optimization for antisocial users, which we’ll
discuss further in Chapter 11.

254 | Chapter 6: Query Performance Optimization

SELECT GREATEST(@found := −1, id) AS id, 'users' AS which_tbl
FROM users WHERE id = 1
UNION ALL
 SELECT id, 'users_archived'
 FROM users_archived WHERE id = 1 AND @found IS NULL
UNION ALL
 SELECT 1, 'reset' FROM DUAL WHERE (@found := NULL) IS NOT NULL;

Other uses for variables

You can put variable assignments in all types of statements, not just SELECT statements.
In fact, this is one of the best uses for user-defined variables. For example, you can
rewrite expensive queries, such as rank calculations with subqueries, as cheap once-
through UPDATE statements.

It can be a little tricky to get the desired behavior, though. Sometimes the optimizer
decides to consider the variables as compile-time constants and refuses to perform
assignments. Placing the assignments inside a function like LEAST() will usually help.
Another tip is to check whether your variable has a defined value before executing the
containing statement. Sometimes you want it to, but other times you don’t.

With a little experimentation, you can do all sorts of interesting things with user-defined
variables. Here are some ideas:

• Calculate running totals and averages

• Emulate FIRST() and LAST() functions for grouped queries

• Do math on extremely large numbers

• Reduce an entire table to a single MD5 hash value

• “Unwrap” a sampled value that wraps around to zero when it increases beyond a
certain boundary

• Emulate read/write cursors

• Put variables in SHOW statements by embedding them into the WHERE clause

The C. J. Date Dilemma
C. J. Date advocates a database design approach that treats SQL databases as closely
as possible to relational databases. It is enlightening to know how SQL deviates from
the relational model, and frankly MySQL goes farther afield than some database man-
agement systems. However, you won’t get good performance from MySQL if you try
to force it to behave like a relational database with some of the techniques Mr. Date
advocates in his books, such as deeply nested subqueries. It’s unfortunate, but
MySQL’s limitations prevent a more formal approach from working well. We recom-
mend reading his book SQL and Relational Theory: How to Write Accurate SQL Code
(O’Reilly). It’ll change the way you think about SQL.

Optimizing Specific Types of Queries | 255

http://shop.oreilly.com/product/0636920022879.do

Case Studies
Sometimes it’s not about query optimization, schema optimization, index optimiza-
tion, or application design optimization—it’s about all of these practices put together.
The case studies in this section illustrate how to approach some design challenges that
frequently cause problems for users. You might also be interested in Bill Karwin’s book
SQL Antipatterns (Pragmatic Bookshelf). It has recipes for solving particular problems
with SQL that often trap the unwary programmer into a poor solution.

Building a Queue Table in MySQL
Building a queue in MySQL is tricky, and most designs we’ve seen don’t work well
when the system experiences high traffic and lots of concurrency. The typical pattern
is to have a table that contains several types of rows: rows that haven’t been processed,
rows in process, and finished rows. One or more worker processes look for unprocessed
rows, update them to “claim” them, and then perform the work and update them to
mark them as finished. Common examples include emails that are ready to send, orders
to process, comments to moderate, and so on.

There are two broad reasons why this doesn’t work well. First, the table tends to grow
very large, and searching for the unprocessed rows becomes slow when the table is large
and the indexes are many levels deep. You can solve this by splitting the queue into
two tables and moving the completed rows to the archive or history table, which helps
keep the queue table small.

The second reason is that the process of finding work to do is usually implemented
with polling and locking. Polling creates load on the server, and locking creates con-
tention and serialization between worker processes. We’ll see later, in Chapter 11, why
that limits scalability.

Polling might actually be okay, but if it’s not, you can use notifications to tell workers
that there’s work to do. One technique is to use the SLEEP() function with a very long
timeout and an indicative comment, such as the following:

SELECT /* waiting on unsent_emails */ SLEEP(10000);

This will cause the thread to block until one of two things happens: it times out after
10,000 seconds, or another thread issues KILL QUERY and terminates it. So, after insert-
ing a batch of queries into the table, you can look at SHOW PROCESSLIST, find threads
that are running queries with the magical comment, and kill the queries. You can also
implement a form of notification with the GET_LOCK() and RELEASE_LOCK() functions,
or you can do it outside of the database, with a messaging service.

The final problem is how workers should claim rows so that they don’t get processed
multiple times. We often see this implemented with SELECT FOR UPDATE. This is usually
a huge scalability bottleneck and causes a lot of pileups as transactions block on each
other and wait.

256 | Chapter 6: Query Performance Optimization

In general, it’s a good idea to avoid SELECT FOR UPDATE. And not just for a queue table—
it’s a good idea to avoid it for any purpose. There is almost always a better way to
achieve your desired purpose. In the case of a queue, you can use a simple UPDATE to
claim rows, and then check whether you claimed anything. Here’s how. Let’s start with
the schema:

CREATE TABLE unsent_emails (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 -- columns for the message, from, to, subject, etc.
 status ENUM('unsent', 'claimed', 'sent'),
 owner INT UNSIGNED NOT NULL DEFAULT 0,
 ts TIMESTAMP,
 KEY (owner, status, ts)
);

The owner column is used to store the connection ID of the worker process that owns
the row. This is the same value returned by the CONNECTION_ID() function in MySQL.
If it’s 0, then the row is unclaimed.

We frequently see a technique like the following to claim 10 rows:

BEGIN;
SELECT id FROM unsent_emails
 WHERE owner = 0 AND status = 'unsent'
 LIMIT 10 FOR UPDATE;
-- result: 123, 456, 789
UPDATE unsent_emails
 SET status = 'claimed', owner = CONNECTION_ID()
 WHERE id IN(123, 456, 789);
COMMIT;

That will use the first two columns of the index, so in theory it looks rather efficient.
The problem is that between the two queries, the application has some “think time,”
and that causes the locks on the rows to block other clients who are running the same
queries. All of the queries will use the same index, so they’ll begin scanning right at the
front of the index and will probably block instantly.

It’s much more efficient to perform the queries as follows:

SET AUTOCOMMIT = 1;
COMMIT;
UPDATE unsent_emails
 SET status = 'claimed', owner = CONNECTION_ID()
 WHERE owner = 0 AND status = 'unsent'
 LIMIT 10;
SET AUTOCOMMIT = 0;
SELECT id FROM unsent_emails
 WHERE owner = CONNECTION_ID() AND status = 'claimed';
-- result: 123, 456, 789

You don’t even have to run the SELECT query to check for rows that you claimed. The
client protocol will tell you how many rows were updated, so you know whether there
were unsent rows to claim.

Case Studies | 257

Most uses of SELECT FOR UPDATE can be rewritten to use a similar technique.

The final task is to clean up rows that were claimed but never processed because the
worker quit for some reason, but that’s easy. You can just run an UPDATE to reset them
periodically. Execute SHOW PROCESSLIST, gather a list of all the thread IDs that are cur-
rently connected to the server, and use that in the WHERE clause to avoid stealing a row
that’s actually being processed. Assuming the list of thread IDs is (10, 20, 30), here’s
a sample query that “times out” and reclaims rows after 10 minutes:

UPDATE unsent_emails
 SET owner = 0, status = 'unsent'
 WHERE owner NOT IN(0, 10, 20, 30) AND status = 'claimed'
 AND ts < CURRENT_TIMESTAMP - INTERVAL 10 MINUTE;

By the way, notice how the index is carefully designed for the queries we’re running.
This is an example of the interplay between this chapter and the previous one. The
query we just showed will be able to use the full width of the index, because the range
condition is placed on the last column in the index. The index will also be useful for
the other queries; this avoids the need for another redundant index for the two columns
used by the other queries.

We’ve illustrated a few fundamentals in this case study:

• Stop doing things, or do them less often. Don’t use polling unless you have to,
because it adds load and unproductive busywork.

• Do things more quickly. Use an UPDATE instead of a SELECT FOR UPDATE followed by
an UPDATE, because the faster the transaction commits, the shorter the lock duration
is, and the less contention and serialization there are. Also, keep the unprocessed
data separate from the processed rows, because smaller is faster.

• The overall moral of this example is that some queries can’t be optimized; they
must be replaced with a different query or a different strategy altogether. SELECT
FOR UPDATE queries usually fall into that category.

Sometimes, the best solution is to move the queue outside of the database server en-
tirely. Redis is good at queue operations, and occasionally you can use memcached
for this purpose, too. Alternatively, you might evaluate the Q4M storage engine for
MySQL, although we have no experience using it in production environments so we
can’t provide any guidance here. RabbitMQ and Gearman21 can be very helpful for
some purposes, too.

Computing the Distance Between Points
Geospatial computations crop up now and again in our work. People don’t tend to use
MySQL for heavy spatial computation—PostgreSQL is usually a much better choice

21. See http://www.rabbitmq.com and http://gearman.org.

258 | Chapter 6: Query Performance Optimization

http://www.rabbitmq.com
http://gearman.org

for that—but we still see a few recurrent patterns. One is the ubiquitous query to find
things within a radius of a point.

The typical use is something like finding apartments for rent within a radius of the
center of a zip code, filtering “matches” on a dating site, and so on. Suppose you have
the following table:

CREATE TABLE locations (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(30),
 lat FLOAT NOT NULL,
 lon FLOAT NOT NULL
);
INSERT INTO locations(name, lat, lon)
 VALUES('Charlottesville, Virginia', 38.03, −78.48),
 ('Chicago, Illinois', 41.85, −87.65),
 ('Washington, DC', 38.89, −77.04);

The latitude and longitude are in degrees, and the queries usually use the great-circle
(Haversine) formula to find the distance along the surface of the Earth, assuming that
it is a sphere. The formula to find the distance between point A and point B, with
coordinates latA and lonA, latB, and lonB in radians, can be expressed as follows:

ACOS(
 COS(latA) * COS(latB) * COS(lonA - lonB)
 + SIN(latA) * SIN(latB)
)

The result is in radians, so to find the distance in miles or kilometers, it needs to be
multiplied by the Earth’s radius, which is about 3,959 miles or 6,371 kilometers. Sup-
pose we want to find all points within 100 miles of Charlottesville, where Baron lives.
We need to convert the latitudes and longitudes to radians to plug them into the
formula:

SELECT * FROM locations WHERE 3979 * ACOS(
 COS(RADIANS(lat)) * COS(RADIANS(38.03)) * COS(RADIANS(lon) - RADIANS(-78.48))
 + SIN(RADIANS(lat)) * SIN(RADIANS(38.03))
) <= 100;
+----+---------------------------+-------+--------+
| id | name | lat | lon |
+----+---------------------------+-------+--------+
| 1 | Charlottesville, Virginia | 38.03 | −78.48 |
| 3 | Washington, DC | 38.89 | −77.04 |
+----+---------------------------+-------+--------+

This type of query not only can’t use an index, but will also burn a ton of CPU cycles
and load the server very heavily. We’ve seen it many times. What can we do about it?

There are several aspects of this design that can be optimized. The first is to decide
whether the precision is really necessary. There’s a lot of inherent imprecision:

• Locations might be within 100 miles “as the crow flies” across the surface of the
Earth, but that’s really not closely related to their practical distance. No matter

Case Studies | 259

where they are, it’s pretty certain you can’t get there in an absolutely straight line,
and there are often a lot of obstacles in the way, such as large rivers that require
long detours to cross a bridge. Distance is therefore a poor proxy for how close
something actually is.

• If we’ve looked up someone’s location from his zip code or city, we’re measuring
from the center of an area to the center of another area, which also adds wiggle
room. Baron lives in Charlottesville, but not exactly at its center, and he’s probably
not interested in traveling precisely to the center of Washington.

Maybe you really do need the precision, but for most applications, it’s just overkill. It’s
analogous to significant digits: you can’t have more precision in your result than you
have in the measurements. (Or, put another way, “garbage in, garbage out.”)

If you don’t need a lot of precision, it might be okay to pretend that the earth is flat
instead of curved! This transforms the trigonometry into a much simpler computation
with the Pythagorean theorem, which just uses a few sums, products, and a square root
to determine whether points are within a circle on a plane.22

But wait, why stop there? Do we even need a circle? Why not just use a square instead?
The corners of a square that’s 200 miles on a side are only 141 miles from the center,
which is not so far outside the desired radius of 100 miles. Let’s update our query to
look for a square that’s 0.0253 radians (100 miles) from the center to the edges:

SELECT * FROM locations
WHERE lat BETWEEN 38.03 - DEGREES(0.0253) AND 38.03 + DEGREES(0.0253)
 AND lon BETWEEN −78.48 - DEGREES(0.0253) AND −78.48 + DEGREES(0.0253);

Now the question is how to optimize this expression with indexes. We could certainly
index (lat, lon) or (lon, lat). But that won’t really help the query very much. As you
know, MySQL 5.5 and older versions can’t take advantage of any column past the first
one that is accessed with a range condition. Only one of the columns would be used
effectively, because our query has two range conditions (BETWEEN is equivalent to a
greater-than and a less-than-or-equal-to).

Our trusty IN() workaround comes to the rescue again. We can add two columns to
store the FLOOR() of each coordinate, and then the query can use two IN() lists of integers
to capture all points that fall within the desired square. Here’s how to add the new
columns, and an index whose purpose you’ll see shortly:

mysql> ALTER TABLE locations
 -> ADD lat_floor INT NOT NULL DEFAULT 0,
 -> ADD lon_floor INT NOT NULL DEFAULT 0,
 -> ADD KEY(lat_floor, lon_floor);

22. To help out even more, you can do the trigonometry in the application, instead of making the database
server do it. Trig functions are pretty CPU-hungry. Storing radians in the table and transforming
everything into radians in the application can help a lot, for example. We’re trying to keep our example
simple and free of magic numbers whose origin is unclear, so we don’t show this additional optimization.

260 | Chapter 6: Query Performance Optimization

mysql> UPDATE locations
 -> SET lat_floor = FLOOR(lat), lon_floor = FLOOR(lon);

Now we need to search for a range of coordinates from floor to ceiling, both north and
south. Here is a query that shows the range of degrees we’re looking for we’re using
the query only for demonstration purposes; you should perform this math in the ap-
plication code, not in MySQL:

mysql> SELECT FLOOR(38.03 - DEGREES(0.0253)) AS lat_lb,
 -> CEILING(38.03 + DEGREES(0.0253)) AS lat_ub,
 -> FLOOR(-78.48 - DEGREES(0.0253)) AS lon_lb,
 -> CEILING(-78.48 + DEGREES(0.0253)) AS lon_ub;
+--------+--------+--------+--------+
| lat_lb | lat_ub | lon_lb | lon_ub |
+--------+--------+--------+--------+
| 36 | 40 | −80 | −77 |
+--------+--------+--------+--------+

Now we generate IN() lists with all integers between the floor and ceiling of each range.
Here’s the query with the extra WHERE conditions added:

SELECT * FROM locations
WHERE lat BETWEEN 38.03 - DEGREES(0.0253) AND 38.03 + DEGREES(0.0253)
 AND lon BETWEEN −78.48 - DEGREES(0.0253) AND −78.48 + DEGREES(0.0253)
 AND lat_floor IN(36,37,38,39,40) AND lon_floor IN(-80,-79,-78,-77);

Using a floor and ceiling introduces some extra slack into the computation, so the query
can actually find points that lie outside the square. That’s why we still need the filters
on lat and lon, to discard the results that shouldn’t be included. This is similar to the
technique we showed in the previous chapter for simulating a hash index with a CRC32
column: create an index on a value that isn’t the whole truth but nevertheless gets us
close to the truth cheaply, and then post-filter to remove the few imposters.

In fact, at this point it makes sense to mention that instead of searching for a crude
square and then trimming the results to fit a precise square, we could search for a square
and then filter the results down with the great circle formula or the Pythagorean
theorem:

SELECT * FROM locations
WHERE lat_floor IN(36,37,38,39,40) AND lon_floor IN(-80,-79,-78,-77)
 AND 3979 * ACOS(
 COS(RADIANS(lat)) * COS(RADIANS(38.03)) * COS(RADIANS(lon) - RADIANS(-78.48))
 + SIN(RADIANS(lat)) * SIN(RADIANS(38.03))
) <= 100;

So we’re back to the beginning—a precise circle—but we’re doing it better now.23 As
long as you pre-filter the result set with efficient techniques such as the auxiliary integer
columns and indexes, it’s usually not bad at all to post-filter with the more costly math.
Just don’t make the great-circle formula the first hoop the query has to jump through,
or everything will be slow!

23. Again, though, you should use application code to compute expressions such as COS(RADIANS(38.03)).

Case Studies | 261

Sphinx has some good geospatial search functions built in, which can
be a lot better than using MySQL. And in case you’re thinking of using
MyISAM’s GIS functions for the techniques shown in this section, take
our word for it: they don’t work much better, and MyISAM itself just
doesn’t work well for large, high-traffic applications, for all the usual
reasons: data corruption, table-level locking, and so on.

To recap this case study, we covered the usual optimization strategies:

• Stop doing things, or do them less often. Don’t run your entire dataset through the
great-circle formula; trim it down first with a cheaper technique, and then run the
expensive formula on a smaller set of rows.

• Do things more quickly. Make sure you design the system to be able to use indexes
effectively, as discussed in the previous chapter, and use approximations (the earth
is flat, and a square is an approximation of a circle) sensibly to avoid needless
precision.

• Pull the work out into the application as much as you can. Get those expensive
trigonometry functions out of SQL and into the application code!

Using User-Defined Functions
Our last advanced query optimization illustrates when SQL just isn’t the right tool for
the job. When you need raw speed, nothing beats C or C++ code. Of course, you have
to be able to program in C or C++ well enough not to destroy your server. With great
power comes great responsibility.

We’ll show you how to write your own user-defined functions (UDFs) in the next
chapter, but we thought it would be a good idea to mention a real use case for a UDF
in this chapter. The project requirement from the customer was as follows: “We need
to run a matching query, which is basically an XOR operation between two random 64-
byte long data strings, against 35 million records in less than few seconds.” A little
calculation showed that this just can’t be done inside MySQL with currently available
hardware. How to solve this problem?

The answer was a program that Yves Trudeau wrote, which takes advantage of the
SSE4.2 instruction set. It runs as a daemon on many commodity servers, and the
MySQL server communicates with it over a simple network protocol via a UDF written
in C. Yves benchmarked the distributed program running matches against 4 million
strings in 130 milliseconds. By taking the problem out of MySQL and making MySQL
talk to the distributed daemon, the customer was able to keep things simple for the
application, so that it can continue acting as if MySQL is doing all the work. As they
say on Twitter, #winning! This is an example of optimizing for the business, not just
for the technical aspects of the problem.

262 | Chapter 6: Query Performance Optimization

Summary
Query optimization is the final piece in the interlocking puzzle of schema, index, and
query design to create high-performance applications. To write good queries, you need
to understand schemas and indexing, and vice versa.

Ultimately, it is still about response time, and understanding how queries execute so
that you can reason about where the time is consumed. With the addition of a few
things such as the parsing and optimization process, this is just the next step in
understanding how MySQL accesses tables and indexes, which we discussed in the
previous chapter. The extra dimension that emerges when you start studying the in-
terplay between queries and indexes is how MySQL accesses one table or index based
on the data that it finds in another one.

Optimization always requires a three-pronged approach: stop doing things, do them
fewer times, and do them more quickly. We hope that the case studies we presented
help to tie it all together and illustrate this approach in action.

Beyond the fundamental building blocks of queries, tables, and indexes are more ad-
vanced features in MySQL, such as partitioning, which has a similar goal to indexes
but works differently. MySQL also supports features such as a query cache, which
avoids the need to even execute queries (remember, “stop doing things”). We’ll explore
some of these features in the next chapter.

Summary | 263

CHAPTER 7

Advanced MySQL Features

MySQL 5.0 and 5.1 introduced many features, such as partitioning and triggers, which
are familiar to users with a background in other database servers. The addition of these
features attracted many new users to MySQL. However, their performance implications
did not really become clear until people began to use them widely. In this chapter we
explain what we’ve learned from seeing these features in the real world, beyond what
the manuals and reference material have taught us.

Partitioned Tables
A partitioned table is a single logical table that’s composed of multiple physical sub-
tables. The partitioning code is really just a wrapper around a set of Handler objects
that represent the underlying partitions, and it forwards requests to the storage engine
through the Handler objects. Partitioning is a kind of black box that hides the under-
lying partitions from you at the SQL layer, although you can see them quite easily by
looking at the filesystem, where you’ll see the component tables with a hash-delimited
naming convention.

The way MySQL implements partitioning—as a wrapper over hidden tables—means
that indexes are defined per-partition, rather than being created over the entire table.
This is different from Oracle, for example, where indexes and tables can be partitioned
in more flexible and complex ways.

MySQL decides which partition holds each row of data based on the PARTITION BY
clause that you define for the table. The query optimizer can prune partitions when
you execute queries, so the queries don’t examine all partitions—just the ones that
hold the data you are looking for.

The primary purpose of partitioning is to act as a coarse form of indexing and data
clustering over the table. This can help to eliminate large parts of the table from being
accessed, and to store related rows close together.

265

Partitioning can be very beneficial, especially in specific scenarios:

• When the table is much too big to fit in memory, or when you have “hot” rows at
the end of a table that has lots of historical data.

• Partitioned data is easier to maintain than nonpartitioned data. For example, it’s
easier to discard old data by dropping an entire partition, which you can do quickly.
You can also optimize, check, and repair individual partitions.

• Partitioned data can be distributed physically, enabling the server to use multiple
hard drives more efficiently.

• You can use partitioning to avoid some bottlenecks in specific workloads, such as
per-index mutexes with InnoDB or per-inode locking with the ext3 filesystem.

• If you really need to, you can back up and restore individual partitions, which is
very helpful with extremely large datasets.

MySQL’s implementation of partitioning is too complicated to explore in full detail
here. We want to concentrate on its performance implications, so we recommend that
for the basics you turn to the MySQL manual, which has a lot of material on partition-
ing. You should read the entire partitioning chapter, and look at the sections on CREATE
TABLE, SHOW CREATE TABLE, ALTER TABLE, the INFORMATION_SCHEMA.PARTITIONS table, and
EXPLAIN. Partitioning has made the CREATE TABLE and ALTER TABLE commands much
more complex.

A few limitations apply to partitioned tables. Here are the most important ones:

• There’s a limit of 1,024 partitions per table.

• In MySQL 5.1, the partitioning expression must be an integer or an expression that
returns an integer. In MySQL 5.5, you can partition by columns in certain cases.

• Any primary key or unique index must include all columns in the partitioning
expression.

• You can’t use foreign key constraints.

How Partitioning Works
As we’ve mentioned, partitioned tables have multiple underlying tables, which are
represented by Handler objects. You can’t access the partitions directly. Each partition
is managed by the storage engine in the normal fashion (all partitions must use the same
storage engine), and any indexes defined over the table are actually implemented as
identical indexes over each underlying partition. From the storage engine’s point of
view, the partitions are just tables; the storage engine doesn’t really know whether a
specific table it’s managing is a standalone table or just part of a bigger partitioned table.

Operations on a partitioned table are implemented with the following logical
operations:

266 | Chapter 7: Advanced MySQL Features

SELECT queries
When you query a partitioned table, the partitioning layer opens and locks all of
the underlying partitions, the query optimizer determines whether any of the par-
titions can be ignored (pruned), and then the partitioning layer forwards the han-
dler API calls to the storage engine that manages the partitions.

INSERT queries
When you insert a row, the partitioning layer opens and locks all partitions, de-
termines which partition should receive the row, and forwards the row to that
partition.

DELETE queries
When you delete a row, the partitioning layer opens and locks all partitions, de-
termines which partition contains the row, and forwards the deletion request to
that partition.

UPDATE queries
When you modify a row, the partitioning layer (you guessed it) opens and locks
all partitions, determines which partition contains the row, fetches the row, modi-
fies the row and determines which partition should contain the new row, forwards
the row with an insertion request to the destination partition, and forwards the
deletion request to the source partition.

Some of these operations support pruning. For example, when you delete a row, the
server first has to locate it. The server can prune partitions that can’t contain the row
if you specify a WHERE clause that matches the partitioning expression. The same applies
to UPDATE queries. INSERT queries are naturally self-pruned; the server looks at the values
to be inserted and finds one and only one destination partition.

Although the partitioning layer opens and locks all partitions, this doesn’t mean that
the partitions remain locked. A storage engine such as InnoDB, which handles its own
locking at the row level, will instruct the partitioning layer to unlock the partitions.
This lock-and-unlock cycle is similar to how queries against ordinary InnoDB tables
are executed.

We’ll show some examples a bit later that illustrate the cost and consequences of
opening and locking every partition when there’s any access to the table.

Types of Partitioning
MySQL supports several types of partitioning. The most common type we’ve seen used
is range partitioning, in which each partition is defined to accept a specific range of
values for some column or columns, or a function over those columns. For example,
here’s a simple way to place each year’s worth of sales into a separate partition:

CREATE TABLE sales (
 order_date DATETIME NOT NULL,
 -- Other columns omitted
) ENGINE=InnoDB PARTITION BY RANGE(YEAR(order_date)) (

Partitioned Tables | 267

 PARTITION p_2010 VALUES LESS THAN (2010),
 PARTITION p_2011 VALUES LESS THAN (2011),
 PARTITION p_2012 VALUES LESS THAN (2012),
 PARTITION p_catchall VALUES LESS THAN MAXVALUE);

You can use many functions in the partitioning clause. The main requirement is that
it must return a nonconstant, deterministic integer. We’re using YEAR() here, but you
can also use other functions, such as TO_DAYS(). Partitioning by intervals of time is a
common way to work with date-based data, so we’ll return to this example later and
see how to optimize it to avoid some of the problems it can cause.

MySQL also supports key, hash, and list partitioning methods, some of which support
subpartitions, which we’ve rarely seen used in production. In MySQL 5.5 you can use
the RANGE COLUMNS partitioning type, so you can partition by date-based columns di-
rectly, without using a function to convert them to an integer. More on that later.

One use of subpartitions we’ve seen was to work around a per-index mutex inside
InnoDB on a table designed similarly to our previous example. The partition for the
most recent year was modified heavily, which caused a lot of contention on that mutex.
Subpartitioning by hash helped chop the data into smaller pieces and alleviated the
problem.

Other partitioning techniques we’ve seen include:

• You can partition by key to help reduce contention on InnoDB mutexes.

• You can partition by range using a modulo function to create a round-robin table
that retains only a desired amount of data. For example, you can partition date-
based data by day modulo 7, or simply by day of week, if you want to retain only
the most recent days of data.

• Suppose you have a table with an autoincrementing idprimary key, but you want
to partition the data temporally so the “hot” recent data is clustered together. You
can’t partition by a timestamp column unless you include it in the primary key,
but that defeats the purpose of a primary key. You can partition by an expression
such as HASH(id DIV 1000000), which creates a new partition for each million rows
inserted. This achieves the goal without requiring you to change the primary key.
It has the added benefit that you don’t need to constantly create partitions to hold
new ranges of dates, as you’d need to do with range-based partitioning.

How to Use Partitioning
Imagine that you want to run queries over ranges of data from a really huge table that
contains many years’ worth of historical metrics in time-series order. You want to run
reports on the most recent month, which is about 100 million rows. In a few years this
book will be out of date, but let’s pretend that you have hardware from 2012 and your
table is 10 terabytes, so it’s much bigger than memory, and you have traditional hard
drives, not flash (most SSDs aren’t big enough for this table yet). How can you query
this table at all, let alone efficiently?

268 | Chapter 7: Advanced MySQL Features

One thing is sure: you can’t scan the whole table every time you want to query it,
because it’s too big. And you don’t want to use an index because of the maintenance
cost and space consumption. Depending on the index, you could get a lot of fragmen-
tation and poorly clustered data, which would cause death by a thousand cuts through
random I/O. You can sometimes work around this for one or two indexes, but rarely
for more. Only two workable options remain: your query must be a sequential scan
over a portion of the table, or the desired portion of the table and index must fit entirely
in memory.

It’s worth restating this: at very large sizes, B-Tree indexes don’t work. Unless the index
covers the query completely, the server needs to look up the full rows in the table, and
that causes random I/O a row at a time over a very large space, which will just kill query
response times. The cost of maintaining the index (disk space, I/O operations) is also
very high. Systems such as Infobright acknowledge this and throw B-Tree indexes out
entirely, opting for something coarser-grained but less costly at scale, such as per-block
metadata over large blocks of data.

This is what partitioning can accomplish, too. The key is to think about partitioning
as a crude form of indexing that has very low overhead and gets you in the neighborhood
of the data you want. From there, you can either scan the neighborhood sequentially,
or fit the neighborhood in memory and index it. Partitioning has low overhead because
there is no data structure that points to rows and must be updated—partitioning
doesn’t identify data at the precision of rows, and has no data structure to speak of.
Instead, it has an equation that says which partitions can contain which categories of
rows.

Let’s look at the two strategies that work at large scale:

Scan the data, don’t index it
You can create tables without indexes and use partitioning as the only mechanism
to navigate to the desired kind of rows. As long as you always use a WHERE clause
that prunes the query to a small number of partitions, this can be good enough.
You’ll need to do the math and decide whether your query response times will be
acceptable, of course. The assumption here is that you’re not even trying to fit the
data in memory; you assume that anything you query has to be read from disk, and
that that data will be replaced soon by some other query, so caching is futile. This
strategy is for when you have to access a lot of the table on a regular basis. A caveat:
for reasons we’ll explain a bit later, you usually need to limit yourself to a couple
of hundred partitions at most.

Index the data, and segregate hot data
If your data is mostly unused except for a “hot” portion, and you can partition so
that the hot data is stored in a single partition that is small enough to fit in memory
along with its indexes, you can add indexes and write queries to take advantage of
them, just as you would with smaller tables.

Partitioned Tables | 269

This isn’t quite all you need to know, because MySQL’s implementation of partitioning
has a few pitfalls that can bite. Let’s see what those are and how to avoid them.

What Can Go Wrong
The two partitioning strategies we just suggested are based on two key assumptions:
that you can narrow the search by pruning partitions when you query, and that parti-
tioning itself is not very costly. As it turns out, those assumptions are not always valid.
Here are a few problems you might encounter:

NULLs can defeat pruning
Partitioning works in a funny way when the result of the partitioning function can
be NULL: it treats the first partition as special. Suppose that you PARTITION BY RANGE
YEAR(order_date), as in the example we gave earlier. Any row whose order_date is
either NULL or not a valid date will be stored in the first partition you define.1 Now
suppose you write a query that ends as follows: WHERE order_date BETWEEN
'2012-01-01' AND '2012-01-31'. MySQL will actually check two partitions, not
one: it will look at the partition that stores orders from 2012, as well as the first
partition in the table. It looks at the first partition because the YEAR() function can
return NULL if it receives invalid input, and values that might match the range would
be stored as NULL in the first partition. This affects other functions, such as
TO_DAYS(), too.2

This can be expensive if your first partition is large, especially if you’re using the
“scan, don’t index” strategy. Checking two partitions instead of one to find the
rows is definitely undesirable. To avoid this, you can define a dummy first partition.
That is, we could fix our earlier example by creating a partition such as PARTITION
p_nulls VALUES LESS THAN (0). If you don’t put invalid data into your table, that
partition will be empty, and although it’ll be checked, it’ll be fast because it’s
empty.

This workaround is not necessary in MySQL 5.5, where you can partition by
the column itself, instead of a function over the column: PARTITION BY RANGE COL
UMNS(order_date). Our earlier example should use that syntax in MySQL 5.5.

Mismatched PARTITION BY and index
If you define an index that doesn’t match the partitioning clause, queries might
not be prunable. Suppose you define an index on a and partition by b. Each parti-
tion will have its own index, and a lookup on this index will open and check each
index tree in every partition. This could be quick if the non-leaf nodes of each index
are resident in memory, but it is nevertheless more costly than skipping the index
lookups completely. To avoid this problem, you should try to avoid indexing on

1. This happens even if order_date is not nullable, because you can store a value that’s not a valid date.

2. This is a bug from the user’s point of view, but a feature from the server developer’s point of view.

270 | Chapter 7: Advanced MySQL Features

nonpartitioned columns unless your queries will also include an expression that
can help prune out partitions.

This sounds simple enough to avoid, but it can catch you by surprise. For example,
suppose a partitioned table ends up being the second table in a join, and the index
that’s used for the join isn’t part of the partition clause. Each row in the join will
access and search every partition in the second table.

Selecting partitions can be costly
The various types of partitioning are implemented in different ways, so of course
their performance is not uniform all the time. In particular, questions such as
“Where does this row belong?” or “Where can I find rows matching this query?”
can be costly to answer with range partitioning, because the server scans the list of
partition definitions to find the right one. This linear search isn’t all that efficient,
as it turns out, so the cost grows as the number of partitions grows.

The queries we’ve observed to suffer the worst from this type of overhead are row-
by-row inserts. For every row you insert into a table that’s partitioned by range,
the server has to scan the list of partitions to select the destination. You can alleviate
this problem by limiting how many partitions you define. In practice, a hundred
or so works okay for most systems we’ve seen.

Other partition types, such as key and hash partitions, don’t have the same
limitation.

Opening and locking partitions can be costly
Opening and locking partitions when a query accesses a partitioned table is another
type of per-partition overhead. Opening and locking occur before pruning, so this
isn’t a prunable overhead. This type of overhead is independent of the partitioning
type and affects all types of statements. It adds an especially noticeable amount of
overhead to short operations, such as single-row lookups by primary key. You can
avoid high per-statement costs by performing operations in bulk, such as using
multirow inserts or LOAD DATA INFILE, deleting ranges of rows instead of one at a
time, and so on. And, of course, limit the number of partitions you define.

Maintenance operations can be costly
Some partition maintenance operations are very quick, such as creating or drop-
ping partitions. (Dropping the underlying table might be slow, but that’s another
matter.) Other operations, such as REORGANIZE PARTITION, operate similarly to the
way ALTER works: by copying rows around. For example, REORGANIZE PARTITION
works by creating a new temporary partition, moving rows into it, and deleting the
old partition when it’s done.

As you can see, partitioned tables are not a “silver bullet” solution. Here is a sample of
some other limitations in the current implementation:

• All partitions have to use the same storage engine.

• There are some restrictions on the functions and expressions you can use in a
partitioning function.

Partitioned Tables | 271

• Some storage engines don’t work with partitioning.

• For MyISAM tables, you can’t use LOAD INDEX INTO CACHE.

• For MyISAM tables, a partitioned table requires more open file descriptors than a
normal table containing the same data. Even though it looks like a single table, as
you know, it’s really many tables. As a result, a single table cache entry can create
many file descriptors. Therefore, even if you have configured the table cache to
protect your server against exceeding the operating system’s per-process file-
descriptor limits, partitioned tables can cause you to exceed that limit anyway.

Finally, it’s worth pointing out that older server versions just aren’t as good as newer
ones. All software has bugs. Partitioning was introduced in MySQL 5.1, and many
partitioning bugs were fixed as late as the 5.1.40s and 5.1.50s. MySQL 5.5 improved
partitioning significantly in some common real-world cases. In the upcoming MySQL
5.6 release, there are more improvements, such as ALTER TABLE EXCHANGE PARTITION.

Optimizing Queries
Partitioning introduces new ways to optimize queries (and corresponding pitfalls). The
biggest opportunity is that the optimizer can use the partitioning function to prune
partitions. As you’d expect from a coarse-grained index, pruning lets queries access
much less data than they’d otherwise need to (in the best case).

Thus, it’s very important to specify the partitioned key in the WHERE clause, even if it’s
otherwise redundant, so the optimizer can prune unneeded partitions. If you don’t do
this, the query execution engine will have to access all partitions in the table, and this
can be extremely slow on large tables.

You can use EXPLAIN PARTITIONS to see whether the optimizer is pruning partitions.
Let’s return to the sample data from before:

mysql> EXPLAIN PARTITIONS SELECT * FROM sales \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: sales_by_day
 partitions: p_2010,p_2011,p_2012
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 3
 Extra:

As you can see, the query will access all partitions. Look at the difference when we add
a constraint to the WHERE clause:

mysql> EXPLAIN PARTITIONS SELECT * FROM sales_by_day WHERE day > '2011-01-01'\G
*************************** 1. row ***************************
 id: 1

272 | Chapter 7: Advanced MySQL Features

 select_type: SIMPLE
 table: sales_by_day
 partitions: p_2011,p_2012

The optimizer is pretty good about pruning; for example, it can convert ranges into
lists of discrete values and prune on each item in the list. However, it’s not all-knowing.
The following WHERE clause is theoretically prunable, but MySQL can’t prune it:

mysql> EXPLAIN PARTITIONS SELECT * FROM sales_by_day WHERE YEAR(day) = 2010\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: sales_by_day
 partitions: p_2010,p_2011,p_2012

MySQL can prune only on comparisons to the partitioning function’s columns. It can-
not prune on the result of an expression, even if the expression is the same as the
partitioning function. This is similar to the way that indexed columns must be isolated
in the query to make the index usable (see Chapter 5). You can convert the query into
an equivalent form, though:

mysql> EXPLAIN PARTITIONS SELECT * FROM sales_by_day
 -> WHERE day BETWEEN '2010-01-01' AND '2010-12-31'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: sales_by_day
 partitions: p_2010

Because the WHERE clause now refers directly to the partitioning column, not to an ex-
pression, the optimizer can prune out other partitions. The rule of thumb is that even
though you can partition by expressions, you must search by column.

The optimizer is smart enough to prune partitions during query processing, too. For
example, if a partitioned table is the second table in a join, and the join condition is the
partitioned key, MySQL will search for matching rows only in the relevant partitions.
(EXPLAIN won’t show the partition pruning, because it happens at runtime, not at query
optimization time.)

Merge Tables
Merge tables are sort of an earlier, simpler kind of partitioning with different restrictions
and fewer optimizations. Whereas partitioning enforces the abstraction rigorously, de-
nying access to the underlying partitions and permitting you to reference only the par-
titioned table, merge tables let you access the underlying tables separately from the
merge table. And whereas partitioning is more integrated with the query optimizer and
is the way of the future, merge tables are quasi-deprecated and might even be removed
someday.

Like partitioned tables, merge tables are wrappers around underlying MyISAM tables
with the same structure. Although you can think of merge tables as an older, more

Partitioned Tables | 273

limited version of partitioning, they actually provide some features you can’t get with
partitions.3

The merge table is really just a container that holds the real tables. You specify which
tables to include with a special UNION syntax to CREATE TABLE. Here’s an example that
demonstrates many aspects of merge tables:

mysql> CREATE TABLE t1(a INT NOT NULL PRIMARY KEY)ENGINE=MyISAM;
mysql> CREATE TABLE t2(a INT NOT NULL PRIMARY KEY)ENGINE=MyISAM;
mysql> INSERT INTO t1(a) VALUES(1),(2);
mysql> INSERT INTO t2(a) VALUES(1),(2);
mysql> CREATE TABLE mrg(a INT NOT NULL PRIMARY KEY)
 -> ENGINE=MERGE UNION=(t1, t2) INSERT_METHOD=LAST;
mysql> SELECT a FROM mrg;
+------+
| a |
+------+
| 1 |
| 1 |
| 2 |
| 2 |
+------+

Notice that the underlying tables have exactly the same number and types of columns,
and that all indexes that exist on the merge table also exist on the underlying tables.
These are requirements when creating a merge table. Notice also that there’s a primary
key on the sole column of each table, yet the resulting merge table has duplicate rows.
This is one of the limitations of merge tables: each table inside the merge behaves
normally, but the merge table doesn’t enforce constraints over the entire set of tables.

The INSERT_METHOD=LAST instruction to the table tells MySQL to send all INSERT state-
ments to the last table in the merge. Specifying FIRST or LAST is the only control you
have over where rows inserted into the merge table are placed (you can still insert into
the underlying tables directly, though). Partitioned tables give more control over where
data is stored.

The results of an INSERT are visible in both the merge table and the underlying table:

mysql> INSERT INTO mrg(a) VALUES(3);
mysql> SELECT a FROM t2;
+---+
| a |
+---+
| 1 |
| 2 |
| 3 |
+---+

Merge tables have some other interesting features and limitations, such as what hap-
pens when you drop a merge table or one of its underlying tables. Dropping a merge

3. Some people call these features “foot-guns.”

274 | Chapter 7: Advanced MySQL Features

table leaves its “child” tables untouched, but dropping one of the child tables has a
different effect, which is operating system–specific. On GNU/Linux, for example, the
underlying table’s file descriptor stays open and the table continues to exist, but only
via the merge table:

mysql> DROP TABLE t1, t2;
mysql> SELECT a FROM mrg;
+------+
| a |
+------+
| 1 |
| 1 |
| 2 |
| 2 |
| 3 |
+------+

A variety of other limitations and special behaviors exist. Here are some aspects of
merge tables you should keep in mind:

• The CREATE statement that creates a merge table doesn’t check that the underlying
tables are compatible. If the underlying tables are defined slightly differently,
MySQL might create a merge table that it can’t use later. Also, if you alter one of
the underlying tables after creating a valid merge table, it will stop working and
you’ll see this error: “ERROR 1168 (HY000): Unable to open underlying table
which is differently defined or of non-MyISAM type or doesn’t exist.”

• REPLACE doesn’t work at all on a merge table, and AUTO_INCREMENT won’t work as
you might expect. We’ll let you read the manual for the details.

• Queries that access a merge table access every underlying table. This can make
single-row key lookups relatively slow, compared to a lookup in a single table.
Therefore, it’s a good idea to limit the number of underlying tables in a merge table,
especially if it is the second or later table in a join. The less data you access with
each operation, the more important the cost of accessing each table becomes, rel-
ative to the entire operation. Here are a few things to keep in mind when planning
how to use merge tables:

— Range lookups are less affected by the overhead of accessing all the underlying
tables than individual item lookups.

— Table scans are just as fast on merge tables as they are on normal tables.

— Unique key and primary key lookups stop as soon as they succeed. In this case,
the server accesses the underlying merge tables one at a time until the lookup
finds a value, and then it accesses no further tables.

— The underlying tables are read in the order specified in the CREATE TABLE state-
ment. If you frequently need data in a specific order, you can exploit this to
make the merge-sorting operation faster.

Partitioned Tables | 275

Because merge tables don’t hide the underlying MyISAM tables, they offer some fea-
tures that partitions don’t as of MySQL 5.5:

• A MyISAM table can be a member of many merge tables.

• You can copy underlying tables between servers by copying the .frm, .MYI,
and .MYD files.

• You can add more tables to a merge collection easily; just alter the merge definition.

• You can create temporary merge tables that include only the data you want, such
as data from a specific time period, which you can’t do with partitions.

• You can remove a table from the merge if you want to back it up, restore it, alter
it, repair it, or perform other operations on it. You can then add it back when you’re
done.

• You can use myisampack to compress some or all of the underlying tables.

In contrast, a partitioned table’s partitions are hidden by the MySQL server and are
accessible only through the partitioned table.

Views
Views were added in MySQL 5.0. A view is a virtual table that doesn’t store any data
itself. Instead, the data “in” the table is derived from a SQL query that MySQL runs
when you access the view. MySQL treats a view exactly like a table for many purposes,
and views and tables share the same namespace in MySQL; however, MySQL doesn’t
treat them identically. For example, you can’t have triggers on views, and you can’t
drop a view with the DROP TABLE command.

This book does not explain how to create or use views; you can read the MySQL manual
for that. We’ll focus on how views are implemented and how they interact with the
query optimizer, so you can understand how to get good performance from them. We
use the world sample database to demonstrate how views work:

mysql> CREATE VIEW Oceania AS
 -> SELECT * FROM Country WHERE Continent = 'Oceania'
 -> WITH CHECK OPTION;

The easiest way for the server to implement a view is to execute its SELECT statement
and place the result into a temporary table. It can then refer to the temporary table
where the view’s name appears in the query. To see how this would work, consider the
following query:

mysql> SELECT Code, Name FROM Oceania WHERE Name = 'Australia';

Here’s how the server might execute it as a temporary table. The temporary table’s
name is for demonstration purposes only:

mysql> CREATE TEMPORARY TABLE TMP_Oceania_123 AS
 -> SELECT * FROM Country WHERE Continent = 'Oceania';
mysql> SELECT Code, Name FROM TMP_Oceania_123 WHERE Name = 'Australia';

276 | Chapter 7: Advanced MySQL Features

There are obvious performance and query optimization problems with this approach.
A better way to implement views is to rewrite a query that refers to the view, merging
the view’s SQL with the query’s SQL. The following example shows how the query
might look after MySQL has merged it into the view definition:

mysql> SELECT Code, Name FROM Country
 -> WHERE Continent = 'Oceania' AND Name = 'Australia';

MySQL can use both methods. It calls the two algorithms MERGE and TEMPTABLE,4 and
it tries to use the MERGE algorithm when possible. MySQL can even merge nested view
definitions when a view is based upon another view. You can see the results of the query
rewrite with EXPLAIN EXTENDED, followed by SHOW WARNINGS.

If a view uses the TEMPTABLE algorithm, EXPLAIN will usually show it as a DERIVED table.
Figure 7-1 illustrates the two implementations.

Figure 7-1. Two implementations of views

MySQL uses TEMPTABLE when the view definition contains GROUP BY, DISTINCT, aggregate
functions, UNION, subqueries, or any other construct that doesn’t preserve a one-to-one
relationship between the rows in the underlying base tables and the rows returned from

4. That’s “temp table,” not “can be tempted.” MySQL’s views don’t fast for 40 days and nights in the
wilderness, either.

Views | 277

the view. This is not a complete list, and it might change in the future. If you want to
know whether a view will use MERGE or TEMPTABLE, you can EXPLAIN a trivial SELECT query
against the view:

mysql> EXPLAIN SELECT * FROM <view_name>;
+----+-------------+
| id | select_type |
+----+-------------+
| 1 | PRIMARY |
| 2 | DERIVED |
+----+-------------+

The presence of a SELECT type of DERIVED select type indicates that the view will use the
TEMPTABLE algorithm. Beware, though: if the underlying derived table is expensive to
produce, EXPLAIN can be quite costly and slow to execute in MySQL 5.5 and older
versions, because it will actually execute and materialize the derived table.

The algorithm is a property of the view and is not influenced by the type of query that
is executed against the view. For example, suppose you create a trivial view and ex-
plicitly specify the TEMPTABLE algorithm:

CREATE ALGORITHM=TEMPTABLE VIEW v1 AS SELECT * FROM sakila.actor;

The SQL inside the view doesn’t inherently require a temporary table, but the view will
always use one, no matter what type of query you execute against it.

Updatable Views
An updatable view lets you update the underlying base tables via the view. As long as
specific conditions hold, you can UPDATE, DELETE, and even INSERT into a view as you
would with a normal table. For example, the following is a valid operation:

mysql> UPDATE Oceania SET Population = Population * 1.1 WHERE Name = 'Australia';

A view is not updatable if it contains GROUP BY, UNION, an aggregate function, or any of
a few other exceptions. A query that changes data might contain a join, but the columns
to be changed must all be in a single table. Any view that uses the TEMPTABLE algorithm
is not updatable.

The CHECK OPTION clause, which we included when we created the view in the previous
section, ensures that any rows changed through the view continue to match the view’s
WHERE clause after the change. So, we can’t change the Continent column, nor can we
insert a row that has a different Continent. Either would cause the server to report an
error:

mysql> UPDATE Oceania SET Continent = 'Atlantis';
ERROR 1369 (HY000): CHECK OPTION failed 'world.Oceania'

Some database products allow INSTEAD OF triggers on views so you can define exactly
what happens when a statement tries to modify a view’s data, but MySQL does not
support triggers on views.

278 | Chapter 7: Advanced MySQL Features

Performance Implications of Views
Most people don’t think of using views to improve performance, but in some cases they
can actually enhance performance in MySQL. You can also use them to aid other per-
formance improvements. For example, refactoring a schema in stages with views can
let some code continue working while you change the tables it accesses.

You can use views to implement column privileges without the overhead of actually
creating those privileges:

CREATE VIEW public.employeeinfo AS
 SELECT firstname, lastname -- but not socialsecuritynumber
 FROM private.employeeinfo;
GRANT SELECT ON public.* TO public_user;

You can also sometimes use pseudotemporary views to good effect. You can’t actually
create a truly temporary view that persists only for your current connection, but you
can create a view under a special name, perhaps in a database reserved for it, that you
know you can drop later. You can then use the view in the FROM clause, much the same
way you’d use a subquery in the FROM clause. The two approaches are theoretically the
same, but MySQL has a different codebase for views, so performance can vary. Here’s
an example:

-- Assuming 1234 is the result of CONNECTION_ID()
CREATE VIEW temp.cost_per_day_1234 AS
 SELECT DATE(ts) AS day, sum(cost) AS cost
 FROM logs.cost
 GROUP BY day;
SELECT c.day, c.cost, s.sales
FROM temp.cost_per_day_1234 AS c
 INNER JOIN sales.sales_per_day AS s USING(day);
DROP VIEW temp.cost_per_day_1234;

Note that we’ve used the connection ID as a unique suffix to avoid name clashes. This
approach can make it easier to clean up in the event that the application crashes and
doesn’t drop the temporary view. See “Missing Temporary Tables” on page 502 for
more about this technique.

Views that use the TEMPTABLE algorithm can perform very badly (although they might
still perform better than an equivalent query that doesn’t use a view). MySQL executes
them as a recursive step in optimizing the outer query, before the outer query is even
fully optimized, so they don’t get a lot of the optimizations you might be used to from
other database products. The query that builds the temporary table doesn’t get WHERE
conditions pushed down from the outer query, and the temporary table does not have
any indexes.5 Here’s an example, again using the temp.cost_per_day_1234 view:

5. This will be improved in MySQL 5.6, which is unreleased at the time of writing.

Views | 279

mysql> SELECT c.day, c.cost, s.sales
 -> FROM temp.cost_per_day_1234 AS c
 -> INNER JOIN sales.sales_per_day AS s USING(day)
 -> WHERE day BETWEEN '2007-01-01' AND '2007-01-31';

What really happens in this query is that the server executes the view and places the
result into a temporary table, then joins the sales_per_day table against this temporary
table. The BETWEEN restriction in the WHERE clause is not “pushed into” the view, so the
view will create a result set for all dates in the table, not just the one month desired.
The temporary table also lacks any indexes. In this example, this isn’t a problem: the
server will place the temporary table first in the join order, so the join can use the index
on the sales_per_day table. However, if we were joining two such views against each
other, the join would not be optimized with any indexes.

Views introduce some issues that aren’t MySQL-specific. Views might trick developers
into thinking they’re simple, when in fact they’re very complicated under the hood. A
developer who doesn’t understand the underlying complexity might think nothing of
repeatedly querying what looks like a table but is in fact an expensive view. We’ve seen
cases where an apparently simple query produced hundreds of lines of EXPLAIN output
because one or more of the “tables” it referenced was actually a view that referred to
many other tables and views.

You should always measure carefully if you’re trying to use views to improve perfor-
mance. Even MERGE views add overhead, and it’s hard to predict how a view will impact
performance. Views actually use a different execution path within the MySQL opti-
mizer, one that isn’t tested as widely and might still have bugs or problems. For that
reason, views don’t seem quite as mature as we’d like. For example, we’ve seen cases
where complex views under high concurrency caused the query optimizer to spend a
lot of time in the planning and statistics stages of the query, even causing server-wide
stalls, which we solved by replacing the view with the equivalent SQL. This indicates
that views—even those using the MERGE algorithm—don’t always have an optimal
implementation.

Limitations of Views
MySQL does not support the materialized views that you might be used to if you’ve
worked with other database servers. (A materialized view generally stores its results in
an invisible table behind the scenes, with periodic updates to refresh the invisible table
from the source data.) MySQL also doesn’t support indexed views. You can emulate
materialized and/or indexed views by building cache and summary tables, however.
You use Justin Swanhart’s Flexviews tool for this purpose; see Chapter 4 for more.

MySQL’s implementation of views also has a few annoyances. For example, MySQL
doesn’t preserve your original view SQL, so if you ever try to edit a view by executing
SHOW CREATE VIEW and changing the resulting SQL, you’re in for a nasty surprise. The

280 | Chapter 7: Advanced MySQL Features

query will be expanded to the fully canonicalized and quoted internal format, without
the benefit of formatting, comments, and indenting.

If you need to edit a view and you’ve lost the pretty-printed query you originally used
to create it, you can find it in the last line of the view’s .frm file. If you have the FILE
privilege and the .frm file is readable by all users, you can even load the file’s contents
through SQL with the LOAD_FILE() function. A little string manipulation can retrieve
your original code intact, thanks to Roland Bouman’s creativity:

mysql> SELECT
 -> REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(
 -> REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(
 -> SUBSTRING_INDEX(LOAD_FILE('/var/lib/mysql/world/Oceania.frm'),
 -> '\nsource=', −1),
 -> '_','_'), '\\%','\%'), '\\\\','\\'), '\\Z','\Z'), '\\t','\t'),
 -> '\\r','\r'), '\\n','\n'), '\\b','\b'), '\\\"','\"'), '\\\'','\''),
 -> '\\0','\0')
 -> AS source;
+---+
| source |
+---+
| SELECT * FROM Country WHERE continent = 'Oceania'
 WITH CHECK OPTION
|
+---+

Foreign Key Constraints
InnoDB is currently the only bundled storage engine that supports foreign keys in
MySQL, limiting your choice of storage engines if you require them (PBXT has foreign
keys, too).

Foreign keys aren’t free. They typically require the server to do a lookup in another
table every time you change some data. Although InnoDB requires an index to make
this operation faster, this doesn’t eliminate the impact of these checks. It can even result
in a very large index with virtually zero selectivity. For example, suppose you have a
status column in a huge table and you want to constrain the status to valid values, but
there are only three such values. The extra index required can add significantly to the
table’s total size—even if the column itself is small, and especially if the primary key is
large—and is useless for anything but the foreign key checks.

Still, foreign keys can actually improve performance in some cases. If you must guar-
antee that two related tables have consistent data, it can be more efficient to let the
server perform this check than to do it in your application. Foreign keys are also useful
for cascading deletes or updates, although they do operate row by row, so they’re
slower than multitable deletes or batch operations.

Foreign keys cause your query to “reach into” other tables, which means acquiring
locks. If you insert a row into a child table, for example, the foreign key constraint will

Foreign Key Constraints | 281

cause InnoDB to check for a corresponding value in the parent. It must also lock the
row in the parent, to ensure it doesn’t get deleted before the transaction completes.
This can cause unexpected lock waits and even deadlocks on tables you’re not touching
directly. Such problems can be very unintuitive and frustrating to debug.

You can sometimes use triggers instead of foreign keys. Foreign keys tend to outperform
triggers for tasks such as cascading updates, but a foreign key that’s just used as a
constraint, as in our status example, can be more efficiently rewritten as a trigger with
an explicit list of allowable values. (You can also just use an ENUM data type.)

Instead of using foreign keys as constraints, it’s often a good idea to constrain the values
in the application. Foreign keys can add significant overhead. We don’t have any
benchmarks to share, but we have seen many cases where server profiling revealed that
foreign key constraint checks were the performance problem, and removing the foreign
keys improved performance greatly.

Storing Code Inside MySQL
MySQL lets you store code inside the server in the form of triggers, stored procedures,
and stored functions. In MySQL 5.1, you can also store code in periodic jobs called
events. Stored procedures and stored functions are collectively known as “stored
routines.”

All four types of stored code use a special extended SQL language that contains pro-
cedural structures such as loops and conditionals.6 The biggest difference between the
types of stored code is the context in which they operate—that is, their inputs and
outputs. Stored procedures and stored functions can accept parameters and return
results, but triggers and events do not.

In principle, stored code is a good way to share and reuse code. Giuseppe Maxia and
others have created a library of useful general-purpose stored routines at http://mysql
-sr-lib.sourceforge.net. However, it’s hard to reuse stored routines from other database
systems, because most have their own language (the exception is DB2, which has a
fairly similar language based on the same standard).7

We focus more on the performance implications of stored code than on how to write
it. Guy Harrison and Steven Feuerstein’s MySQL Stored Procedure Programming
(O’Reilly) might be useful if you plan to write stored procedures in MySQL.

It’s easy to find both advocates and opponents of stored code. Without taking sides,
we’ll list some of the pros and cons of using it in MySQL. First, the advantages:

6. The language is a subset of SQL/PSM, the Persistent Stored Modules part of the SQL standard. It is defined
in ISO/IEC 9075-4:2003 (E).

7. There are also some porting utilities, such as the tsql2mysql project (http://sourceforge.net/projects/
tsql2mysql) for porting from Microsoft SQL Server.

282 | Chapter 7: Advanced MySQL Features

http://mysql-sr-lib.sourceforge.net
http://mysql-sr-lib.sourceforge.net
http://shop.oreilly.com/product/9780596100896.do
http://sourceforge.net/projects/tsql2mysql
http://sourceforge.net/projects/tsql2mysql

• It runs where the data is, so you can save bandwidth and reduce latency by running
tasks on the database server.

• It’s a form of code reuse. It can help centralize business rules, which can enforce
consistent behavior and provide more safety and peace of mind.

• It can ease release policies and maintenance.

• It can provide some security advantages and a way to control privileges more finely.
A common example is a stored procedure for funds transfer at a bank: the proce-
dure transfers the money within a transaction and logs the entire operation for
auditing. You can let applications call the stored procedure without granting access
to the underlying tables.

• The server caches stored procedure execution plans, which lowers the overhead of
repeated calls.

• Because it’s stored in the server and can be deployed, backed up, and maintained
with the server, stored code is well suited for maintenance jobs. It doesn’t have any
external dependencies, such as Perl libraries or other software that you might not
want to place on the server.

• It enables division of labor between application programmers and database pro-
grammers. It can be preferable for a database expert to write the stored procedures,
as not every application programmer is good at writing efficient SQL queries.

Disadvantages include the following:

• MySQL doesn’t provide good developing and debugging tools, so it’s harder to
write stored code in MySQL than it is in some other database servers.

• The language is slow and primitive compared to application languages. The num-
ber of functions you can use is limited, and it’s hard to do complex string manip-
ulations and write intricate logic.

• Stored code can actually add complexity to deploying your application. Instead of
just application code and database schema changes, you’ll need to deploy code
that’s stored inside the server, too.

• Because stored routines are stored with the database, they can create a security
vulnerability. Having nonstandard cryptographic functions inside a stored routine,
for example, will not protect your data if the database is compromised. If the cryp-
tographic function were in the code, the attacker would have to compromise both
the code and the database.

• Storing routines moves the load to the database server, which is typically harder
to scale and more expensive than application or web servers.

• MySQL doesn’t give you much control over the resources stored code can allocate,
so a mistake can bring down the server.

• MySQL’s implementation of stored code is pretty limited—execution plan caches
are per-connection, cursors are materialized as temporary tables, there’s very

Storing Code Inside MySQL | 283

limited ability to raise and catch errors prior to MySQL 5.5, and so on. (We mention
the limitations of various features as we describe them.) In general, MySQL’s stored
routine language is nowhere near as capable as T-SQL or PL/SQL.

• It’s hard to profile code with stored procedures in MySQL. It’s difficult to analyze
the slow query log when it just shows CALL XYZ('A'), because you have to go and
find that procedure and look at the statements inside it. (This is configurable in
Percona Server.)

• It doesn’t play well with statement-based binary logging or replication. There are
so many “gotchas” that you probably should not use stored code with statement-
based logging unless you are very knowledgeable and strict about checking it for
potential problems.

That’s a long list of drawbacks—what does this all mean in the real world? Here’s an
example where we’ve seen the use of stored code backfire in real life: in one instance,
using them to create an API for the application to access the database. This resulted in
all access to the database—even trivial primary-key row lookups—going through
CALL queries, which reduced performance by about a factor of five.

Ultimately, stored code is a way to hide complexity, which simplifies development but
can be very bad for performance and add a lot of potential hazards with replication and
other server features. When you’re thinking about using stored code, you should ask
yourself where you want your business logic to live: in application code, or in the da-
tabase? Both approaches are popular. You just need to be aware that you’re placing
logic into the database when you use stored code.

Stored Procedures and Functions
MySQL’s architecture and query optimizer place some limits on how you can use stored
routines and how efficient they can be. The following restrictions apply at the time of
this writing:

• The optimizer doesn’t use the DETERMINISTIC modifier in stored functions to opti-
mize away multiple calls within a single query.

• The optimizer cannot estimate how much it will cost to execute a stored function.

• Each connection has its own stored procedure execution plan cache. If many con-
nections call the same procedure, they’ll waste resources caching the same execu-
tion plan over and over. (If you use connection pooling or persistent connections,
the execution plan cache can have a longer useful life.)

• Stored routines and replication are a tricky combination. You might not want to
replicate the call to the routine. Instead, you might want to replicate the exact
changes made to your dataset. Row-based replication, introduced in MySQL 5.1,
helps alleviate this problem. If binary logging is enabled in MySQL 5.0, the server
will insist that you either define all stored procedures as DETERMINISTIC or enable
the elaborately named server option log_bin_trust_function_creators.

284 | Chapter 7: Advanced MySQL Features

We usually prefer to keep stored routines small and simple. We like to perform complex
logic outside the database in a procedural language, which is more expressive and
versatile. It can also give you access to more computational resources and potentially
to different forms of caching.

However, stored procedures can be much faster for certain types of operations—
especially when a single stored procedure call with a loop inside it can replace many
small queries. If a query is small enough, the overhead of parsing and network com-
munication becomes a significant fraction of the overall work required to execute it.
To illustrate this, we created a simple stored procedure that inserts a specified number
of rows into a table. Here’s the procedure’s code:

 1 DROP PROCEDURE IF EXISTS insert_many_rows;
 2
 3 delimiter //
 4
 5 CREATE PROCEDURE insert_many_rows (IN loops INT)
 6 BEGIN
 7 DECLARE v1 INT;
 8 SET v1=loops;
 9 WHILE v1 > 0 DO
10 INSERT INTO test_table values(NULL,0,
11 'qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt',
12 'qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt');
13 SET v1 = v1 - 1;
14 END WHILE;
15 END;
16 //
17
18 delimiter ;

We then benchmarked how quickly this stored procedure could insert a million rows
into a table, as compared to inserting one row at a time via a client application. The
table structure and hardware we used doesn’t really matter—what is important is the
relative speed of the different approaches. Just for fun, we also measured how long
the same queries took to execute when we connected through a MySQL Proxy. To keep
things simple, we ran the entire benchmark on a single server, including the client
application and the MySQL Proxy instance. Table 7-1 shows the results.

Table 7-1. Total time to insert one million rows one at a time

Method Total time

Stored procedure 101 sec

Client application 279 sec

Client application with MySQL Proxy 307 sec

The stored procedure is much faster, mostly because it avoids the overhead of network
communication, parsing, optimizing, and so on.

We show a typical stored procedure for maintenance jobs later in this chapter.

Storing Code Inside MySQL | 285

Triggers
Triggers let you execute code when there’s an INSERT, UPDATE, or DELETE statement. You
can direct MySQL to activate triggers before and/or after the triggering statement ex-
ecutes. They cannot return values, but they can read and/or change the data that the
triggering statement changes. Thus, you can use triggers to enforce constraints or busi-
ness logic that you’d otherwise need to write in client code.

Triggers can simplify application logic and improve performance, because they save
round-trips between the client and the server. They can also be helpful for automatically
updating denormalized and summary tables. For example, the Sakila sample database
uses them to maintain the film_text table.

MySQL’s trigger implementation is very limited. If you’re used to relying on triggers
extensively in another database product, you shouldn’t assume they will work the same
way in MySQL. In particular:

• You can have only one trigger per table for each event (in other words, you can’t
have two triggers that fire AFTER INSERT).

• MySQL supports only row-level triggers—that is, triggers always operate FOR EACH
ROW rather than for the statement as a whole. This is a much less efficient way to
process large datasets.

The following universal cautions about triggers apply in MySQL, too:

• They can obscure what your server is really doing, because a simple statement can
make the server perform a lot of “invisible” work. For example, if a trigger updates
a related table, it can double the number of rows a statement affects.

• Triggers can be hard to debug, and it’s often difficult to analyze performance
bottlenecks when triggers are involved.

• Triggers can cause nonobvious deadlocks and lock waits. If a trigger fails the orig-
inal query will fail, and if you’re not aware the trigger exists, it can be hard to
decipher the error code.

In terms of performance, the most severe limitation in MySQL’s trigger implementation
is the FOR EACH ROW design. This sometimes makes it impractical to use triggers for
maintaining summary and cache tables, because they might be too slow. The main
reason to use triggers instead of a periodic bulk update is that they keep your data
consistent at all times.

Triggers also might not guarantee atomicity. For example, a trigger that updates a
MyISAM table cannot be rolled back if there’s an error in the statement that fires it. It
is possible for a trigger to cause an error, too. Suppose you attach an AFTER UPDATE
trigger to a MyISAM table and use it to update another MyISAM table. If the trigger
has an error that causes the second table’s update to fail, the first table’s update will
not be rolled back.

286 | Chapter 7: Advanced MySQL Features

Triggers on InnoDB tables all operate within the same transaction, so the actions they
take will be atomic, together with the statement that fired them. However, if you’re
using a trigger with InnoDB to check another table’s data when validating a constraint,
be careful about MVCC, as you can get incorrect results if you’re not careful. For ex-
ample, suppose you want to emulate foreign keys, but you don’t want to use InnoDB’s
foreign keys. You can write a BEFORE INSERT trigger that verifies the existence of a
matching record in another table, but if you don’t use SELECT FOR UPDATE in the trigger
when reading from the other table, concurrent updates to that table can cause incorrect
results.

We don’t mean to scare you away from triggers. On the contrary, they can be useful,
particularly for constraints, system maintenance tasks, and keeping denormalized data
up-to-date.

You can also use triggers to log changes to rows. This can be handy for custom-built
replication setups where you want to disconnect systems, make data changes, and then
merge the changes back together. A simple example is a group of users who take laptops
onto a job site. Their changes need to be synchronized to a master database, and then
the master data needs to be copied back to the individual laptops. Accomplishing this
requires two-way synchronization. Triggers are a good way to build such systems. Each
laptop can use triggers to log every data modification to tables that indicate which rows
have been changed. The custom synchronization tool can then apply these changes to
the master database. Finally, ordinary MySQL replication can sync the laptops with
the master, which will have the changes from all the laptops. However, you need to be
very careful with triggers that insert rows into other tables that have autoincrementing
primary keys. This doesn’t play well with statement-based replication, as the autoin-
crement values are likely to be different on replicas.

Sometimes you can work around the FOR EACH ROW limitation. Roland Bouman found
that ROW_COUNT() always reports 1 inside a trigger, except for the first row of a BEFORE
trigger. You can use this to prevent a trigger’s code from executing for every row affected
and run it only once per statement. It’s not the same as a per-statement trigger, but it
is a useful technique for emulating a per-statement BEFORE trigger in some cases. This
behavior might actually be a bug that will get fixed at some point, so you should use it
with care and verify that it still works when you upgrade your server. Here’s a sample
of how to use this hack:

CREATE TRIGGER fake_statement_trigger
BEFORE INSERT ON sometable
FOR EACH ROW
BEGIN
 DECLARE v_row_count INT DEFAULT ROW_COUNT();
 IF v_row_count <> 1 THEN
 -- Your code here
 END IF;
END;

Storing Code Inside MySQL | 287

Events
Events are a new form of stored code in MySQL 5.1. They are akin to cron jobs but are
completely internal to the MySQL server. You can create events that execute SQL code
once at a specific time, or frequently at a specified interval. The usual practice is to wrap
the complex SQL in a stored procedure, so the event merely needs to perform a CALL.

Events are initiated by a separate event scheduler thread, because they have nothing to
do with connections. They accept no inputs and return no values—there’s no connec-
tion for them to get inputs from or return values to. You can see the commands they
execute in the server log, if it’s enabled, but it can be hard to tell that those commands
were executed from an event. You can also look in the INFORMATION_SCHEMA.EVENTS table
to see an event’s status, such as the last time it was executed.

Similar considerations to those that apply to stored procedures apply to events. First,
you are giving the server additional work to do. The event overhead itself is minimal,
but the SQL it calls can have a potentially serious impact on performance. Further,
events can cause the same types of problems with statement-based replication that
other stored code can cause. Good uses for events include periodic maintenance tasks,
rebuilding cache and summary tables to emulate materialized views, or saving status
values for monitoring and diagnostics.

The following example creates an event that will run a stored procedure for a specific
database, once a week (we’ll show you how to create this stored procedure later):

CREATE EVENT optimize_somedb ON SCHEDULE EVERY 1 WEEK
DO
CALL optimize_tables('somedb');

You can specify whether events should be replicated. In some cases this is appropriate,
whereas in others it’s not. Take the previous example, for instance: you probably want
to run the OPTIMIZE TABLE operation on all replicas, but keep in mind that it could
impact overall server performance (with table locks, for instance) if all replicas were to
execute this operation at the same time.

Finally, if a periodic event can take a long time to complete, it might be possible for the
event to fire again while its earlier execution is still running. MySQL doesn’t protect
against this, so you’ll have to write your own mutual exclusivity code. You can use
GET_LOCK() to make sure that only one event runs at a time:

CREATE EVENT optimize_somedb ON SCHEDULE EVERY 1 WEEK
DO
BEGIN
 DECLARE CONTINUE HANLDER FOR SQLEXCEPTION
 BEGIN END;
 IF GET_LOCK('somedb', 0) THEN
 DO CALL optimize_tables('somedb');
 END IF;
 DO RELEASE_LOCK('somedb');
END

288 | Chapter 7: Advanced MySQL Features

The “dummy” continue handler ensures that the event will release the lock, even if the
stored procedure throws an exception.

Although events are dissociated from connections, they are still associated with threads.
There’s a main event scheduler thread, which you must enable in your server’s config-
uration file or with a SET command:

mysql> SET GLOBAL event_scheduler := 1;

When enabled, this thread executes events on the schedule specified in the event. You
can watch the server’s error log for information about event execution.

Although the event scheduler is single-threaded, events can run concurrently. The
server will create a new process each time an event executes. Within the event’s code,
a call to CONNECTION_ID() will return a unique value, as usual—even though there is no
“connection” per se. (The return value of CONNECTION_ID() is really just the thread ID.)
The process and thread will live only for the duration of the event’s execution. You can
see it in SHOW PROCESSLIST by looking at the Command column, which will appear as
“Connect”.

Although the process necessarily creates a thread to actually execute, the thread is
destroyed at the end of event execution, not placed into the thread cache, and the
Threads_created status counter is not incremented.

Preserving Comments in Stored Code
Stored procedures, stored functions, triggers, and events can all have significant
amounts of code, and it’s useful to add comments. But the comments might not be
stored inside the server, because the command-line client can strip them out. (This
“feature” of the command-line client can be a nuisance, but c’est la vie.)

A useful trick for preserving comments in your stored code is to use version-specific
comments, which the server sees as potentially executable code (i.e., code to be exe-
cuted only if the server’s version number is that high or higher). The server and client
programs know these aren’t ordinary comments, so they won’t discard them. To pre-
vent the “code” from being executed, you can just use a very high version number, such
as 99999. Let’s add some documentation to our trigger example to demystify what it
does:

CREATE TRIGGER fake_statement_trigger
BEFORE INSERT ON sometable
FOR EACH ROW
BEGIN
 DECLARE v_row_count INT DEFAULT ROW_COUNT();
 /*!99999 ROW_COUNT() is 1 except for the first row, so this executes
 only once per statement. */
 IF v_row_count <> 1 THEN
 -- Your code here
 END IF;
END;

Storing Code Inside MySQL | 289

Cursors
MySQL provides read-only, forward-only server-side cursors that you can use only
from within a MySQL stored procedure or the low-level client API. MySQL’s cursors
are read-only because they iterate over temporary tables rather than the tables where
the data originated. They let you iterate over query results row by row and fetch each
row into variables for further processing. A stored procedure can have multiple cursors
open at once, and you can “nest” cursors in loops.

MySQL’s cursor design holds some snares for the unwary. Because they’re imple-
mented with temporary tables, they can give developers a false sense of efficiency. The
most important thing to know is that a cursor executes the entire query when you open
it. Consider the following procedure:

1 CREATE PROCEDURE bad_cursor()
2 BEGIN
3 DECLARE film_id INT;
4 DECLARE f CURSOR FOR SELECT film_id FROM sakila.film;
5 OPEN f;
6 FETCH f INTO film_id;
7 CLOSE f;
8 END

This example shows that you can close a cursor before iterating through all of its results.
A developer used to Oracle or Microsoft SQL Server might see nothing wrong with this
procedure, but in MySQL it causes a lot of unnecessary work. Profiling this procedure
with SHOW STATUS shows that it does 1,000 index reads and 1,000 inserts. That’s because
there are 1,000 rows in sakila.film. All 1,000 reads and writes occur when line 5
executes, before line 6 executes.

The moral of the story is that if you close a cursor that fetches data from a large result
set early, you won’t actually save work. If you need only a few rows, use LIMIT.

Cursors can cause MySQL to perform extra I/O operations too, and they can be very
slow. Because in-memory temporary tables do not support the BLOB and TEXT types,
MySQL has to create an on-disk temporary table for cursors over results that include
these types. Even when that’s not the case, if the temporary table is larger than
tmp_table_size, MySQL will create it on disk.

MySQL doesn’t support client-side cursors, but the client API has functions that em-
ulate client-side cursors by fetching the entire result into memory. This is really no
different from putting the result in an array in your application and manipulating it
there. See Chapter 6 for more on the performance implications of fetching the entire
result into client-side memory.

290 | Chapter 7: Advanced MySQL Features

Prepared Statements
MySQL 4.1 and newer support server-side prepared statements that use an enhanced
binary client/server protocol to send data efficiently between the client and server. You
can access the prepared statement functionality through a programming library that
supports the new protocol, such as the MySQL C API. The MySQL Connector/J and
MySQL Connector/NET libraries provide the same capability to Java and .NET, re-
spectively. There’s also a SQL interface to prepared statements, which we discuss later
(it’s confusing).

When you create a prepared statement, the client library sends the server a prototype
of the actual query you want to use. The server parses and processes this “skeleton”
query, stores a structure representing the partially optimized query, and returns a
statement handle to the client. The client library can execute the query repeatedly by
specifying the statement handle.

Prepared statements can have parameters, which are question-mark placeholders for
values that you can specify when you execute them. For example, you might prepare
the following query:

INSERT INTO tbl(col1, col2, col3) VALUES (?, ?, ?);

You could then execute this query by sending the statement handle to the server, with
values for each of the question-mark placeholders. You can repeat this as many times
as desired. Exactly how you send the statement handle to the server will depend on
your programming language. One way is to use the MySQL connectors for Java
and .NET. Many client libraries that link to the MySQL C libraries also provide some
interface to the binary protocol; you should read the documentation for your chosen
MySQL API.

Using prepared statements can be more efficient than executing a query repeatedly, for
several reasons:

• The server has to parse the query only once.

• The server has to perform some query optimization steps only once, as it caches a
partial query execution plan.

• Sending parameters via the binary protocol is more efficient than sending them as
ASCII text. For example, a DATE value can be sent in just 3 bytes, instead of the 10
bytes required in ASCII. The biggest savings are for BLOB and TEXT values, which
can be sent to the server in chunks rather than as a single huge piece of data. The
binary protocol therefore helps save memory on the client, as well as reducing
network traffic and the overhead of converting between the data’s native storage
format and the non-binary protocol’s format.

• Only the parameters—not the entire query text—need to be sent for each execu-
tion, which reduces network traffic.

Prepared Statements | 291

• MySQL stores the parameters directly into buffers on the server, which eliminates
the need for the server to copy values around in memory.

Prepared statements can also help with security. There is no need to escape or quote
values in the application, which is more convenient and reduces vulnerability to SQL
injection or other attacks. (You should never trust user input, even when you’re using
prepared statements.)

You can use the binary protocol only with prepared statements. Issuing queries through
the normal mysql_query() API function will not use the binary protocol. Many client
libraries let you “prepare” statements with question-mark placeholders and then spec-
ify the values for each execution, but these libraries are often only emulating the
prepare-execute cycle in client-side code and are actually sending each query, as text
with parameters replaced by values, to the server with mysql_query().

Prepared Statement Optimization
MySQL caches partial query execution plans for prepared statements, but some opti-
mizations depend on the actual values that are bound to each parameter and therefore
can’t be precomputed and cached. The optimizations can be separated into three types,
based on when they must be performed. The following list applies at the time of this
writing:

At preparation time
The server parses the query text, eliminates negations, and rewrites subqueries.

At first execution
The server simplifies nested joins and converts OUTER JOINs to INNER JOINs where
possible.

At every execution
The server does the following:

• Prunes partitions

• Eliminates COUNT(), MIN(), and MAX() where possible

• Removes constant subexpressions

• Detects constant tables

• Propagates equalities

• Analyzes and optimizes ref, range, and index_merge access methods

• Optimizes the join order

See Chapter 6 for more information on these optimizations. Even though some of them
are theoretically possible to do only once, they are still performed as noted above.

292 | Chapter 7: Advanced MySQL Features

The SQL Interface to Prepared Statements
A SQL interface to prepared statements is available in MySQL 4.1 and newer. It lets
you instruct the server to create and execute prepared statements, but doesn’t use the
binary protocol. Here’s an example of how to use a prepared statement through SQL:

mysql> SET @sql := 'SELECT actor_id, first_name, last_name
 -> FROM sakila.actor WHERE first_name = ?';
mysql> PREPARE stmt_fetch_actor FROM @sql;
mysql> SET @actor_name := 'Penelope';
mysql> EXECUTE stmt_fetch_actor USING @actor_name;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
1	PENELOPE	GUINESS
54	PENELOPE	PINKETT
104	PENELOPE	CRONYN
120	PENELOPE	MONROE
+----------+------------+-----------+
mysql> DEALLOCATE PREPARE stmt_fetch_actor;

When the server receives these statements, it translates them into the same operations
that would have been invoked by the client library. This means that you don’t have to
use the special binary protocol to create and execute prepared statements.

As you can see, the syntax is a little awkward compared to just typing the SELECT state-
ment directly. So what’s the advantage of using a prepared statement this way?

The main use case is for stored procedures. In MySQL 5.0, you can use prepared state-
ments in stored procedures, and the syntax is similar to the SQL interface. This means
you can build and execute “dynamic SQL” in stored procedures by concatenating
strings, which makes stored procedures much more flexible. For example, here’s a
sample stored procedure that can call OPTIMIZE TABLE on each table in a specified
database:

DROP PROCEDURE IF EXISTS optimize_tables;
DELIMITER //
CREATE PROCEDURE optimize_tables(db_name VARCHAR(64))
BEGIN
 DECLARE t VARCHAR(64);
 DECLARE done INT DEFAULT 0;
 DECLARE c CURSOR FOR
 SELECT table_name FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = db_name AND TABLE_TYPE = 'BASE TABLE';
 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;
 OPEN c;
 tables_loop: LOOP
 FETCH c INTO t;
 IF done THEN
 LEAVE tables_loop;
 END IF;
 SET @stmt_text := CONCAT("OPTIMIZE TABLE ", db_name, ".", t);
 PREPARE stmt FROM @stmt_text;
 EXECUTE stmt;

Prepared Statements | 293

 DEALLOCATE PREPARE stmt;
 END LOOP;
 CLOSE c;
END//
DELIMITER ;

You can use this stored procedure as follows:

mysql> CALL optimize_tables('sakila');

Another way to write the loop in the procedure is as follows:

REPEAT
 FETCH c INTO t;
 IF NOT done THEN
 SET @stmt_text := CONCAT("OPTIMIZE TABLE ", db_name, ".", t);
 PREPARE stmt FROM @stmt_text;
 EXECUTE stmt;
 DEALLOCATE PREPARE stmt;
 END IF;
UNTIL done END REPEAT;

There is an important difference between the two loop constructs: REPEAT checks the
loop condition twice for each loop. This probably won’t cause a big performance prob-
lem in this example because we’re merely checking an integer’s value, but with more
complex checks it could be costly.

Concatenating strings to refer to tables and databases is a good use for the SQL interface
to prepared statements, because it lets you write statements that won’t work with pa-
rameters. You can’t parameterize database and table names because they are identifiers.
Another scenario is dynamically setting a LIMIT clause, which you can’t specify with a
parameter either.

The SQL interface is useful for testing a prepared statement by hand, but it’s otherwise
not all that useful outside of stored procedures. Because the interface is through SQL,
it doesn’t use the binary protocol, and it doesn’t really reduce network traffic because
you have to issue extra queries to set the variables when there are parameters. You can
benefit from using this interface in special cases, such as when preparing an enormous
string of SQL that you’ll execute many times without parameters.

Limitations of Prepared Statements
Prepared statements have a few limitations and caveats:

• Prepared statements are local to a connection, so another connection cannot use
the same handle. For the same reason, a client that disconnects and reconnects
loses the statements. (Connection pooling or persistent connections can alleviate
this problem.)

• Prepared statements cannot use the query cache in MySQL versions prior to 5.1.

• It’s not always more efficient to use prepared statements. If you use a prepared
statement only once, you might spend more time preparing it than you would just

294 | Chapter 7: Advanced MySQL Features

executing it as normal SQL. Preparing a statement also requires two extra round-
trips to the server (to use prepared statements properly, you should deallocate them
after use).

• You cannot currently use a prepared statement inside a stored function (but you
can use prepared statements inside stored procedures).

• You can accidentally “leak” a prepared statement by forgetting to deallocate it.
This can consume a lot of resources on the server. Also, because there is a single
global limit on the number of prepared statements, a mistake such as this can
interfere with other connections’ use of prepared statements.

• Some operations, such as BEGIN, cannot be performed in prepared statements.

Probably the biggest limitation of prepared statements, however, is that it’s so easy to
get confused about what they are and how they work. Sometimes it’s very hard to
explain the difference between these three kinds of prepared statements:

Client-side emulated
The client driver accepts a string with placeholders, then substitutes the parameters
into the SQL and sends the resulting query to the server.

Server-side
The driver sends a string with placeholders to the server with a special binary pro-
tocol, receives back a statement identifier, then executes the statement over the
binary protocol by specifying the identifier and the parameters.

SQL interface
The client sends a string with placeholders to the server as a PREPARE SQL statement,
sets SQL variables to parameter values, and finally executes the statement with an
EXECUTE SQL statement. All of this happens via the normal textual protocol.

User-Defined Functions
MySQL has supported user-defined functions (UDFs) since ancient times. Unlike stored
functions, which are written in SQL, you can write UDFs in any programming language
that supports C calling conventions.

UDFs must be compiled and then dynamically linked with the server, making them
platform-specific and giving you a lot of power. UDFs can be very fast and can access
a large range of functionality in the operating system and available libraries. SQL stored
functions are good for simple operations, such as calculating the great-circle distance
between two points on the globe, but if you want to send network packets, you need
a UDF. Also, while you can’t currently build aggregate functions in SQL stored func-
tions, you can do this easily with a UDF.

With great power comes great responsibility. A mistake in your UDF can crash your
whole server, corrupt the server’s memory and/or your data, and generally wreak all
the havoc that any misbehaving C code can potentially cause.

User-Defined Functions | 295

Unlike stored functions written in SQL, UDFs cannot currently read
and write tables—at least, not in the same transactional context as the
statement that calls them. This means they’re more helpful for pure
computation, or interaction with the outside world. MySQL is gaining
more and more possibilities for interaction with resources outside of the
server. The functions Brian Aker and Patrick Galbraith have created to
communicate with memcached (http://tangent.org/586/Memcached
_Functions_for_MySQL.html) are a good example of how this can be
done with UDFs.

If you use UDFs, check carefully for changes between MySQL versions when you up-
grade, because they might need to be recompiled or even changed to work correctly
with the new MySQL server. Also make sure your UDFs are absolutely thread-safe,
because they execute within the MySQL server process, which is a pure multithreaded
environment.

There are good libraries of prebuilt UDFs for MySQL, and many good examples of how
to implement your own. The biggest repository of UDFs is at http://www.mysqludf.org.

The following is the code for the NOW_USEC() UDF we’ll use to measure replication speed
in Chapter 10:

#include <my_global.h>
#include <my_sys.h>
#include <mysql.h>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
extern "C" {
 my_bool now_usec_init(UDF_INIT *initid, UDF_ARGS *args, char *message);
 char *now_usec(
 UDF_INIT *initid,
 UDF_ARGS *args,
 char *result,
 unsigned long *length,
 char *is_null,
 char *error);
}
my_bool now_usec_init(UDF_INIT *initid, UDF_ARGS *args, char *message) {
 return 0;
}
char *now_usec(UDF_INIT *initid, UDF_ARGS *args, char *result,
 unsigned long *length, char *is_null, char *error) {
 struct timeval tv;
 struct tm* ptm;
 char time_string[20]; /* e.g. "2006-04-27 17:10:52" */
 char *usec_time_string = result;
 time_t t;
 /* Obtain the time of day, and convert it to a tm struct. */
 gettimeofday (&tv, NULL);
 t = (time_t)tv.tv_sec;

296 | Chapter 7: Advanced MySQL Features

http://tangent.org/586/Memcached_Functions_for_MySQL.html
http://tangent.org/586/Memcached_Functions_for_MySQL.html
http://www.mysqludf.org

 ptm = localtime (&t);
 /* Format the date and time, down to a single second. */
 strftime (time_string, sizeof (time_string), "%Y-%m-%d %H:%M:%S", ptm);
 /* Print the formatted time, in seconds, followed by a decimal point
 * and the microseconds. */
 sprintf(usec_time_string, "%s.%06ld\n", time_string, tv.tv_usec);
 *length = 26;
 return(usec_time_string);
}

For one example of a user-defined function at work solving a thorny problem, see the
case studies in the previous chapter. We’ve also written UDFs that ship with the Per-
cona Toolkit for checksumming data efficiently so you can test your replication integ-
rity at lower cost, and one for preprocessing text before indexing it with Sphinx for
searching. UDFs can be very powerful.

Plugins
In addition to UDFs, MySQL supports a variety of other plugins. They can add their
own command-line options and status variables, provide INFORMATION_SCHEMA tables,
run as daemons, and much more. In MySQL 5.1 and newer, the server has many
more plugin APIs than it did previously, and the server can now be extended in many
ways without altering its source code. Here is a short list:

Procedure plugins
Procedure plugins can post-process a result set. This is an ancient type of plugin,
similar to UDFs, that most people aren’t even aware of and never consider using.
The built-in PROCEDURE ANALYSE is an example.

Daemon plugins
Daemon plugins run as a process within MySQL and can perform tasks such as
listening on network ports or executing periodic jobs. An example is the Handler-
Socket plugin included with Percona Server. It opens network ports and accepts a
simple protocol that lets you access InnoDB tables through the Handler interface
without using SQL, which makes it a high-performance NoSQL interface into the
server.

INFORMATION_SCHEMA plugins
These plugins can provide arbitrary INFORMATION_SCHEMA tables.

Full-text parser plugins
These plugins provide a way to intercept the processes of reading and breaking a
document into words for indexing, so you can do things such as indexing PDF
documents given their filenames. You can also make it a part of the matching
process during query execution.

Audit plugins
Audit plugins receive events at defined points in query execution, so they can be
used (for example) as a way to log what happens in the server.

Plugins | 297

Authentication plugins
Authentication plugins can work on the client or the server side to extend the range
of authentication mechanisms available to the server, including PAM and LDAP
authentication, for example.

For more details, see the MySQL manual, or read the book MySQL 5.1 Plugin Devel-
opment by Sergei Golubchik and Andrew Hutchings (Packt). If you need a plugin and
don’t know how to write one, many service providers have competent staff who can
help you, including Monty Program, Open Query, Percona, and SkySQL.

Character Sets and Collations
A character set is a mapping from binary encodings to a defined set of symbols; you
can think of it as how to represent a particular alphabet in bits. A collation is a set of
sorting rules for a character set. In MySQL 4.1 and later, every character-based value
can have a character set and a collation.8 MySQL’s support for character sets and col-
lations is very full-featured, but it can add complexity, and in some cases it has a per-
formance cost. (By the way, Drizzle discards it all and makes everything UTF-8, period.)

This section explains the settings and functionality you’ll need for most situations. If
you need to know the more esoteric details, you should consult the MySQL manual.

How MySQL Uses Character Sets
Character sets can have several collations, and each character set has a default collation.
Collations belong to a particular character set and cannot be used with any other. You
use a character set and a collation together, so we’ll refer to them collectively as a
character set from now on.

MySQL has a variety of options that control character sets. The options and the char-
acter sets are easy to confuse, so keep this distinction in mind: only character-based
values can truly “have” a character set. Everything else is just a setting that specifies
which character set to use for comparisons and other operations. A character-based
value can be the value stored in a column, a literal in a query, the result of an expression,
a user variable, and so on.

MySQL’s settings can be divided into two classes: defaults for creating objects, and
settings that control how the server and the client communicate.

Defaults for creating objects

MySQL has a default character set and collation for the server, for each database, and
for each table. These form a hierarchy of defaults that influences the character set that’s

8. MySQL 4.0 and earlier used a global setting for the entire server, and you could choose from among
several 8-bit character sets.

298 | Chapter 7: Advanced MySQL Features

used when you create a column. That, in turn, tells the server what character set to use
for values you store in the column.

At each level in the hierarchy, you can either specify a character set explicitly or let the
server use the applicable default:

• When you create a database, it inherits from the server-wide character_set
_server setting.

• When you create a table, it inherits from the database.

• When you create a column, it inherits from the table.

Remember, columns are the only place MySQL stores values, so the higher levels in the
hierarchy are only defaults. A table’s default character set doesn’t affect values stored
in the tables; it just tells MySQL which character set to use when you create a column
without specifying a character set explicitly.

Settings for client/server communication

When the server and the client communicate with each other, they might send data
back and forth in different character sets. The server will translate as needed:

• The server assumes the client is sending statements in the character set specified
by character_set_client.

• After the server receives a statement from the client, it translates it into the character
set specified by character_set_connection. It also uses this setting to determine
how to convert numbers into strings.

• When the server returns results or error messages back to the client, it translates
them into character_set_result.

Figure 7-2 illustrates this process.

Figure 7-2. Client and server character sets

Character Sets and Collations | 299

You can use the SET NAMES statement and/or the SET CHARACTER SET statement to change
these three settings as needed. However, note that this command affects only the server’s
settings. The client program and the client API also need to be set correctly to avoid
communication problems with the server.

Suppose you open a client connection with latin1 (the default character set, unless
you’ve used mysql_options() to change it) and then use SET NAMES utf8 to tell the server
to assume the client is sending data in UTF-8. You’ve created a character set mismatch,
which can cause errors and even security problems. You should set the client’s character
set and use mysql_real_escape_string() when escaping values. In PHP, you can change
the client’s character set with mysql_set_charset().

How MySQL compares values

When MySQL compares two values with different character sets, it must convert them
to the same character set for the comparison. If the character sets aren’t compatible,
this can cause an error, such as “ERROR 1267 (HY000): Illegal mix of collations.” In
this case, you’ll generally need to use the CONVERT() function explicitly to force one of
the values into a character set that’s compatible with the other. MySQL 5.0 and newer
often do this conversion implicitly, so this error is more common in MySQL 4.1.

MySQL also assigns a coercibility to values. This determines the priority of a value’s
character set and influences which value MySQL will convert implicitly. You can use
the CHARSET(), COLLATION(), and COERCIBILITY() functions to help debug errors related
to character sets and collations.

You can use introducers and collate clauses to specify the character set and/or collation
for literal values in your SQL statements. For example, the following statement uses an
introducer (preceded by an underscore) to specify the utf8 character set, and a collate
clause to specify a binary collation:

mysql> SELECT _utf8 'hello world' COLLATE utf8_bin;
+--------------------------------------+
| _utf8 'hello world' COLLATE utf8_bin |
+--------------------------------------+
| hello world |
+--------------------------------------+

Special-case behaviors

MySQL’s character set behavior holds a few surprises. Here are some things you should
watch out for:

The magical character_set_database setting
The character_set_database setting defaults to the default database’s setting. As
you change your default database, it will change too. If you connect to the server
without a default database, it defaults to character_set_server.

300 | Chapter 7: Advanced MySQL Features

LOAD DATA INFILE
LOAD DATA INFILE interprets incoming data according to the current setting of
character_set_database. MySQL versions 5.0 and newer accept an optional CHAR
ACTER SET clause in the LOAD DATA INFILE statement, but you shouldn’t rely on this.
We’ve found that the best way to get reliable results is to USE the desired database,
execute SET NAMES to select a character set, and only then load the data. MySQL
interprets all the loaded data as having the same character set, regardless of the
character sets specified for the destination columns.

SELECT INTO OUTFILE
MySQL writes all data from SELECT INTO OUTFILE without converting it. There is
currently no way to specify a character set for the data without wrapping each
column in a CONVERT() function.

Embedded escape sequences
The MySQL server interprets escape sequences in statements according to char
acter_set_client, even when there’s an introducer or collate clause. This is be-
cause the parser interprets the escape sequences in literal values. The parser is not
collation-aware—as far as it is concerned, an introducer isn’t an instruction, it’s
just a token.

Choosing a Character Set and Collation
MySQL 4.1 and later support a large range of character sets and collations, including
support for multibyte characters with the UTF-8 encoding of the Unicode character set
(MySQL supports a three-byte subset of full UTF-8 that can store most characters in
most languages). You can see the supported character sets with the SHOW CHARACTER
SET and SHOW COLLATION commands.

Keep It Simple
A mixture of character sets in your database can be a real mess. Incompatible character
sets tend to be terribly confusing. They might even work fine until certain characters
appear in your data, at which point you’ll start getting problems in all sorts of operations
(such as joins between tables). You can solve the errors only by using ALTER TABLE to
convert columns to compatible character sets, or casting values to the desired character
set with introducers and collate clauses in your SQL statements.

For sanity’s sake, it’s best to choose sensible defaults on the server level, and perhaps
on the database level. Then you can deal with special exceptions on a case-by-case basis,
probably at the column level.

The most common choices for collations are whether letters should sort in a case-
sensitive or case-insensitive manner, or according to the encoding’s binary value. The
collation names generally end with _cs, _ci, or _bin, so you can tell which is which
easily. The difference between case-sensitive and binary collations is that binary

Character Sets and Collations | 301

collations sort according to the byte values of the characters, whereas case-sensitive
collations might have complex sorting rules such as those regarding multiple characters
in languages like German.

When you specify a character set explicitly, you don’t have to name both a character
set and a collation. If you omit one or both, MySQL fills in the missing pieces from the
applicable default. Table 7-2 shows how MySQL decides which character set and col-
lation to use.

Table 7-2. How MySQL determines character set and collation defaults

If you specify Resulting character set Resulting collation

Both character set and collation As specified As specified

Character set only As specified Character set’s default collation

Collation only Character set to which collation belongs As specified

Neither Applicable default Applicable default

The following commands show how to create a database, table, and column with ex-
plicitly specified character sets and collations:

CREATE DATABASE d CHARSET latin1;
CREATE TABLE d.t(
 col1 CHAR(1),
 col2 CHAR(1) CHARSET utf8,
 col3 CHAR(1) COLLATE latin1_bin
) DEFAULT CHARSET=cp1251;

The resulting table’s columns have the following collations:

mysql> SHOW FULL COLUMNS FROM d.t;
+------+---------+-------------------+
|Field | Type | Collation |
+------+---------+-------------------+
col1	char(1)	cp1251_general_ci
col2	char(1)	utf8_general_ci
col3	char(1)	latin1_bin
+------+---------+-------------------+

How Character Sets and Collations Affect Queries
Some character sets might require more CPU operations, consume more memory and
storage space, or even defeat indexing. Therefore, you should choose character sets and
collations carefully.

Converting between character sets or collations can add overhead for some operations.
For example, the sakila.film table has an index on the title column, which can speed
up ORDER BY queries:

302 | Chapter 7: Advanced MySQL Features

mysql> EXPLAIN SELECT title, release_year FROM sakila.film ORDER BY title\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: index
possible_keys: NULL
 key: idx_title
 key_len: 767
 ref: NULL
 rows: 953
 Extra:

However, the server can use the index for sorting only if it’s sorted by the same collation
as the one the query specifies. The index is sorted by the column’s collation, which in
this case is utf8_general_ci. If you want the results ordered by another collation, the
server will have to do a filesort:

mysql> EXPLAIN SELECT title, release_year
 -> FROM sakila.film ORDER BY title COLLATE utf8_bin\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 953
 Extra: Using filesort

In addition to accommodating your connection’s default character set and any prefer-
ences you specify explicitly in queries, MySQL has to convert character sets so that it
can compare them when they’re not the same. For example, if you join two tables on
character columns that don’t have the same character set, MySQL has to convert one
of them. This conversion can make it impossible to use an index, because it is just like
a function enclosing the column. If you’re not sure whether something like this is hap-
pening, you can use EXPLAIN EXTENDED followed by SHOW WARNINGS to look at the query
from the server’s point of view. You’ll see character sets in the query and you can often
tell if something is being translated between character sets.

The UTF-8 multibyte character set stores each character in a varying number of bytes
(between one and three). MySQL uses fixed-size buffers internally for many string op-
erations, so it must allocate enough space to accommodate the maximum possible
length. For example, a CHAR(10) encoded with UTF-8 requires 30 bytes to store, even
if the actual string contains no so-called “wide” characters. Variable-length fields
(VARCHAR, TEXT) do not suffer from this on disk, but in-memory temporary tables used
for processing and sorting queries will always allocate the maximum length needed.

Character Sets and Collations | 303

In multibyte character sets, a character is no longer the same as a byte. Consequently,
MySQL has separate LENGTH() and CHAR_LENGTH() functions, which don’t return the
same results on multibyte characters. When you’re working with multibyte character
sets, be sure to use the CHAR_LENGTH() function when you want to count characters
(e.g., when you’re doing SUBSTRING() operations). The same caution holds for multibyte
characters in application languages.

Another possible surprise is index limitations. If you index a UTF-8 column, MySQL
has to assume each character can take up to three bytes, so the usual length restrictions
are suddenly shortened by a factor of three:

mysql> CREATE TABLE big_string(str VARCHAR(500), KEY(str)) DEFAULT CHARSET=utf8;
Query OK, 0 rows affected, 1 warning (0.06 sec)
mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1071 | Specified key was too long; max key length is 999 bytes |
+---------+------+---+

Notice that MySQL shortened the index to a 333-character prefix automatically:

mysql> SHOW CREATE TABLE big_string\G
*************************** 1. row ***************************
 Table: big_string
Create Table: CREATE TABLE `big_string` (
 `str` varchar(500) default NULL,
 KEY `str` (`str`(333))
) ENGINE=MyISAM DEFAULT CHARSET=utf8

If you didn’t notice the warning and check the table definition, you might not have
spotted that the index was created on only a prefix of the column. This will have side
effects such as disabling covering indexes.

Some people recommend that you just use UTF-8 globally to “make your life simpler.”
However, this is not necessarily a good idea if you care about performance. Many ap-
plications don’t need to use UTF-8 at all, and depending on your data, UTF-8 can use
much more storage space on disk.

When deciding on a character set, it’s important to consider the kind of data you will
store. For example, if you store mostly English text UTF-8 will add practically no stor-
age penalty, because most characters in the English language fit in one byte in UTF-8.
On the other hand, you might see a big difference if you store non-Latin languages such
as Russian or Arabic. An application that needs to store only Arabic could use the
cp1256 character set, which can represent all Arabic characters in one byte. But if the
application needs to store many different languages and you choose UTF-8 instead,
the very same Arabic characters will use more space. Likewise, if you convert a column
from a national character set to UTF-8, you can increase the required storage space
dramatically. If you’re using InnoDB, you might increase the data size to the point that
the values don’t fit on the page and require external storage, which can cause a lot of
wasted storage space and fragmentation.

304 | Chapter 7: Advanced MySQL Features

Sometimes you don’t need to use a character set at all. Character sets are mostly useful
for case-insensitive comparison, sorting, and string operations that need to be
character-aware, such as SUBSTRING(). If you don’t need the database server to be aware
of characters, you can store anything you want in BINARY columns, including UTF-8
data. If you do this, you can also add a column that tells you what character set you
used to encode the data. Although this is an approach some people have used for a long
time, it does require you to be more careful. It can cause hard-to-catch mistakes, such
as errors with SUBSTRING() and LENGTH(), if you forget that a byte is not necessarily a
character. We recommend you avoid this practice if possible.

Full-Text Searching
Most of the queries you’ll write will probably have WHERE clauses that compare values
for equality, filter out ranges of rows, and so on. However, you might also need to
perform keyword searches, which are based on relevance instead of comparing values
to each other. Full-text search systems are designed for this purpose.

Full-text searches require a special query syntax. They can work with or without in-
dexes, but indexes can speed up the matching. The indexes used for full-text searches
have a special structure to help find documents that contain the desired keywords.

You might not know it, but you’re already familiar with at least one type of full-text
search system: Internet search engines. Although they operate at a massive scale and
don’t usually have a relational database for a backend, the principles are similar.

Full-text searching lets you search character-based content (CHAR, VARCHAR, and TEXT
columns), and it supports both natural-language and Boolean searching. The full-text
search implementation has a number of restrictions and limitations9 and is quite com-
plicated, but it’s still widely used because it’s included with the server and is adequate
for many applications. In this section, we take a general look at how to use it and how
to design for performance with full-text searching.

In standard MySQL, only the MyISAM storage engine supports full-text indexing at
the time of writing, though there is a lab preview of InnoDB full-text search available
for the unreleased MySQL 5.6, and there are third-party storage engines for full-text
search, such as Groonga.

The fact that only MyISAM supports full-text search is a serious limitation that makes
it a nonstarter for most applications, because it’s just too painful to deal with table-
level locking, data corruption, and crash recovery. In most cases you should simply use
another solution, such as Sphinx, Lucene, Solr, Groonga, Xapian, or Senna, or wait for

9. In MySQL 5.1, you can use full-text parser plugins to extend full-text search. Still, you might find that
MySQL’s full-text limitations make it impractical or impossible to use for your application. We discuss
using Sphinx as an external full-text search engine in Appendix F.

Full-Text Searching | 305

MySQL 5.6 to be released and use InnoDB. Still, if using MyISAM is acceptable for
your application, read on.

A MyISAM full-text index operates on a full-text collection, which is made up of one or
more character columns from a single table. In effect, MySQL builds the index by
concatenating the columns in the collection and indexing them as one long string of
text.

A MyISAM full-text index is a special type of B-Tree index with two levels. The first
level holds keywords. Then, for each keyword, the second level holds a list of associated
document pointers that point to full-text collections that contain that keyword. The
index doesn’t contain every word in the collection. It prunes it as follows:

• A list of stopwords weeds out “noise” words by preventing them from being in-
dexed. The stopword list is based on common English usage by default, but you
can use the ft_stopword_file option to replace it with a list from an external file.

• The index ignores words unless they’re longer than ft_min_word_len characters
and shorter than ft_max_word_len characters.

Full-text indexes don’t store information about which column in the collection a key-
word occurs in, so if you need to search on different combinations of columns, you will
need to create several indexes.

This also means you can’t instruct a MATCH AGAINST clause to regard words from a par-
ticular column as more important than words from other columns. This is a common
requirement when building search engines for websites. For example, you might want
search results to appear first when the keywords appear in an item’s title. If you need
this, you’ll have to write more complicated queries. (We show an example later.)

Natural-Language Full-Text Searches
A natural-language search query determines each document’s relevance to the query.
Relevance is based on the number of matched words and the frequency with which
they occur in the document. Words that are less common in the entire index make a
match more relevant. In contrast, extremely common words aren’t worth searching for
at all. A natural-language full-text search excludes words that exist in more than 50%
of the rows in the table, even if they’re not in the stopword list.10

The syntax of a full-text search is a little different from other types of queries. You tell
MySQL to do full-text matching with MATCH AGAINST in the WHERE clause. Let’s look at
an example. In the standard Sakila sample database, the film_text table has a full-text
index on the title and description columns:

10. A common mistake during testing is to put a few rows of sample data into a full-text search index, only
to find that no queries match. The problem is that every word appears in more than half the rows.

306 | Chapter 7: Advanced MySQL Features

mysql> SHOW INDEX FROM sakila.film_text;
+-----------+-----------------------+-------------+------------+
| Table | Key_name | Column_name | Index_type |
+-----------+-----------------------+-------------+------------+
| ...
| film_text | idx_title_description | title | FULLTEXT |
| film_text | idx_title_description | description | FULLTEXT |
+-----------+-----------------------+-------------+------------+

Here’s an example natural-language full-text search query:

mysql> SELECT film_id, title, RIGHT(description, 25),
 -> MATCH(title, description) AGAINST('factory casualties') AS relevance
 -> FROM sakila.film_text
 -> WHERE MATCH(title, description) AGAINST('factory casualties');
+---------+-----------------------+---------------------------+-----------------+
| film_id | title | RIGHT(description, 25) | relevance |
+---------+-----------------------+---------------------------+-----------------+
831	SPIRITED CASUALTIES	a Car in A Baloon Factory	8.4692449569702
126	CASUALTIES ENCINO	Face a Boy in A Monastery	5.2615661621094
193	CROSSROADS CASUALTIES	a Composer in The Outback	5.2072987556458
369	GOODFELLAS SALUTE	d Cow in A Baloon Factory	3.1522686481476
451	IGBY MAKER	a Dog in A Baloon Factory	3.1522686481476

MySQL performed the full-text search by breaking the search string into words and
matching each of them against the title and description fields, which are combined
in the full-text collection upon which the index is built. Notice that only one of the
results contains both words, and that the three results that contain “casualties” (there
are only three in the entire table) are listed first. That’s because the index sorts the
results by decreasing relevance.

Unlike with normal queries, the results of full-text searches are auto-
matically ordered by relevance. MySQL cannot use an index for sorting
when you perform a full-text search. Therefore, you shouldn’t specify
an ORDER BY clause if you want to avoid a filesort.

The MATCH() function actually returns the relevance as a floating-point number, as you
can see from our example. You can use this to filter by relevance or to present the
relevance in a user interface. There is no extra overhead from specifying the MATCH()
function twice; MySQL recognizes they are the same and does the operation only once.
However, if you put the MATCH() function in an ORDER BY clause, MySQL will use a
filesort to order the results.

You have to specify the columns in the MATCH() clause exactly as they’re specified in a
full-text index, or MySQL can’t use the index. This is because the index doesn’t record
in which column a keyword appeared.

This also means you can’t use a full-text search to specify that a keyword should appear
in a particular column of the index, as we mentioned previously. However, there’s a
workaround: you can do custom sorting with several full-text indexes on different

Full-Text Searching | 307

combinations of columns to compute the desired ranking. Suppose we want the
title column to be more important. We can add another index on this column, as
follows:

mysql> ALTER TABLE film_text ADD FULLTEXT KEY(title) ;

Now we can make the title twice as important for purposes of ranking:

mysql> SELECT film_id, RIGHT(description, 25),
 -> ROUND(MATCH(title, description) AGAINST('factory casualties'), 3)
 -> AS full_rel,
 -> ROUND(MATCH(title) AGAINST('factory casualties'), 3) AS title_rel
 -> FROM sakila.film_text
 -> WHERE MATCH(title, description) AGAINST('factory casualties')
 -> ORDER BY (2 * MATCH(title) AGAINST('factory casualties'))
 -> + MATCH(title, description) AGAINST('factory casualties') DESC;
+---------+---------------------------+----------+-----------+
| film_id | RIGHT(description, 25) | full_rel | title_rel |
+---------+-------------- ------------+----------+-----------+
831	a Car in A Baloon Factory	8.469	5.676
126	Face a Boy in A Monastery	5.262	5.676
299	jack in The Sahara Desert	3.056	6.751
193	a Composer in The Outback	5.207	5.676
369	d Cow in A Baloon Factory	3.152	0.000
451	a Dog in A Baloon Factory	3.152	0.000
595	a Cat in A Baloon Factory	3.152	0.000
649	nizer in A Baloon Factory	3.152	0.000

However, this is usually an inefficient approach because it causes filesorts.

Boolean Full-Text Searches
In Boolean searches, the query itself specifies the relative relevance of each word in a
match. Boolean searches use the stopword list to filter out noise words, but the re-
quirement that search terms be longer than ft_min_word_len characters and shorter
than ft_max_word_len characters is disabled.11 The results are unsorted.

When constructing a Boolean search query, you can use prefixes to modify the relative
ranking of each keyword in the search string. The most commonly used modifiers are
shown in Table 7-3.

Table 7-3. Common modifiers for Boolean full-text searches

Example Meaning

dinosaur Rows containing “dinosaur” rank higher.

~dinosaur Rows containing “dinosaur” rank lower.

+dinosaur Rows must contain “dinosaur”.

11. Full-text indexes won’t even contain words that are too short or too long, but that’s a different matter.
Here we refer to the fact that the server won’t strip words from the search phrase if they’re too short or
too long, which it normally does as part of the query optimization process.

308 | Chapter 7: Advanced MySQL Features

Example Meaning

-dinosaur Rows must not contain “dinosaur”.

dino* Rows containing words that begin with “dino” rank higher.

You can also use other operators, such as parentheses for grouping. You can construct
complex searches in this way.

As an example, let’s again search the sakila.film_text table for films that contain both
“factory” and “casualties.” A natural-language search returns results that match either
or both of these terms, as we saw before. If we use a Boolean search, however, we can
insist that both must appear:

mysql> SELECT film_id, title, RIGHT(description, 25)
 -> FROM sakila.film_text
 -> WHERE MATCH(title, description)
 -> AGAINST('+factory +casualties' IN BOOLEAN MODE);
+---------+---------------------+---------------------------+
| film_id | title | RIGHT(description, 25) |
+---------+---------------------+---------------------------+
| 831 | SPIRITED CASUALTIES | a Car in A Baloon Factory |
+---------+---------------------+---------------------------+

You can also do a phrase search by quoting multiple words, which requires them to
appear exactly as specified:

mysql> SELECT film_id, title, RIGHT(description, 25)
 -> FROM sakila.film_text
 -> WHERE MATCH(title, description)
 -> AGAINST('"spirited casualties"' IN BOOLEAN MODE);
+---------+---------------------+---------------------------+
| film_id | title | RIGHT(description, 25) |
+---------+---------------------+---------------------------+
| 831 | SPIRITED CASUALTIES | a Car in A Baloon Factory |
+---------+---------------------+---------------------------+

Phrase searches tend to be quite slow. The full-text index alone can’t answer a query
like this one, because it doesn’t record where words are located relative to each other
in the original full-text collection. Consequently, the server actually has to look inside
the rows to do a phrase search.

To execute such a search, the server will find all documents that contain both “spirited”
and “casualties.” It will then fetch the rows from which the documents were built, and
check for the exact phrase in the collection. Because it uses the full-text index to find
the initial list of documents that match, you might think this will be very fast—much
faster than an equivalent LIKE operation. In fact, it is very fast, as long as the words in
the phrase aren’t common and not many results are returned from the full-text index
to the Boolean matcher. If the words in the phrase are common, LIKE can actually be
much faster, because it fetches rows sequentially instead of in quasirandom index order,
and it doesn’t need to read a full-text index.

Full-Text Searching | 309

A Boolean full-text search doesn’t actually require a full-text index to work, although
it does require the MyISAM storage engine. It will use a full-text index if there is one,
but if there isn’t, it will just scan the entire table. You can even use a Boolean full-text
search on columns from multiple tables, such as the results of a join. In all of these
cases, though, it will be slow.

Full-Text Changes in MySQL 5.1
MySQL 5.1 introduced quite a few changes related to full-text searching. These include
performance improvements and the ability to build pluggable parsers that can enhance
the built-in capabilities. For example, plugin can change the way indexing works. They
can split text into words more flexibly than the defaults (you can specify that “C++”
is a single word, for example), do preprocessing, index different content types (such as
PDF), or do custom word stemming. The plugins can also influence the way searches
work—for example, by stemming search terms.

Full-Text Tradeoffs and Workarounds
MySQL’s implementation of full-text searching has several design limitations. These
can be contraindications for specific purposes, but there are also many ways to work
around them.

For example, there is only one form of relevance ranking in MySQL’s full-text indexing:
frequency. The index doesn’t record the indexed word’s position in the string, so
proximity doesn’t contribute to relevance. Although that’s fine for many purposes—
especially for small amounts of data—it might not be what you need, and MySQL’s
full-text indexing doesn’t give you the flexibility to choose a different ranking algo-
rithm. (It doesn’t even store the data you’d need for proximity-based ranking.)

Size is another issue. MySQL’s full-text indexing performs well when the index fits in
memory, but if the index is not in memory it can be very slow, especially when the fields
are large. When you’re using phrase searches, the data and indexes must both fit in
memory for good performance. Compared to other index types, it can be very expensive
to insert, update, or delete rows in a full-text index:

• Modifying a piece of text with 100 words requires not 1 but up to 100 index
operations.

• The field length doesn’t usually affect other index types much, but with full-text
indexing, text with 3 words and text with 10,000 words will have performance
profiles that differ by orders of magnitude.

• Full-text search indexes are also much more prone to fragmentation, and you might
find you need to use OPTIMIZE TABLE more frequently.

Full-text indexes affect how the server optimizes queries, too. Index choice, WHERE clau-
ses, and ORDER BY all work differently from how you might expect:

310 | Chapter 7: Advanced MySQL Features

• If there’s a full-text index and the query has a MATCH AGAINST clause that can use it,
MySQL will use the full-text index to process the query. It will not compare the
full-text index to the other indexes that might be used for the query. Some of these
other indexes might actually be better for the query, but MySQL will not consider
them.

• The full-text search index can perform only full-text matches. Any other criteria in
the query, such as WHERE clauses, must be applied after MySQL reads the row from
the table. This is different from the behavior of other types of indexes, which can
be used to check several parts of a WHERE clause at once.

• Full-text indexes don’t store the actual text they index. Thus, you can never use
a full-text index as a covering index.

• Full-text indexes cannot be used for any type of sorting, other than sorting by
relevance in natural-language mode. If you need to sort by something other than
relevance, MySQL will use a filesort.

Let’s see how these constraints affect queries. Suppose you have a million documents,
with an ordinary index on the document’s author and a full-text index on the content.
You want to do a full-text search on the document content, but only for author 123.
You might write the query as follows:

... WHERE MATCH(content) AGAINST ('High Performance MySQL')
 AND author = 123;

However, this query will be very inefficient. MySQL will search all one million docu-
ments first, because it prefers the full-text index. It will then apply the WHERE clause to
restrict the results to the given author, but this filtering operation won’t be able to use
the index on the author.

One workaround is to include the author IDs in the full-text index. You can choose a
prefix that’s very unlikely to appear in the text, then append the author’s ID to it, and
include this “word” in a filters column that’s maintained separately (perhaps by a
trigger).

You can then extend the full-text index to include the filters column and rewrite the
query as follows:

... WHERE MATCH(content, filters)
 AGAINST ('High Performance MySQL +author_id_123' IN BOOLEAN MODE);

This might be more efficient if the author ID is very selective, because MySQL will be
able to narrow the list of documents very quickly by searching the full-text index for
“author_id_123”. If it’s not selective, though, the performance might be worse. Be
careful with this approach.

Sometimes you can use full-text indexes for bounding-box searches. For instance, if
you want to restrict searches to a range of coordinates (for geographically constrained
searches), you can encode the coordinates into the full-text collection. Suppose the
coordinates for a given row are X=123 and Y=456. You can interleave the coordinates

Full-Text Searching | 311

with the most significant digits first, as in XY142536, and place them in a column that
is included in the full-text index. Now if you want to limit searches to, for example, a
rectangle bounded by X between 100 and 199 and Y between 400 and 499, you can
add “+XY14*” to the search query. This can be faster than filtering with a WHERE clause.

A technique that sometimes works well with full-text indexes, especially for paginated
displays, is to select a list of primary keys by a full-text query and cache the results.
When the application is ready to render some results, it can issue another query that
fetches the desired rows by their IDs. This second query can include more complicated
criteria or joins that need to use other indexes to work well.

Even though only MyISAM supports full-text indexes, if you need to use InnoDB or
another storage engine instead, you can replicate your tables to a server that uses the
MyISAM storage engine, then use the replica to serve full-text queries. If you don’t want
to serve some queries from a different server, you can partition a table vertically by
breaking it into two, keeping textual columns separate from the rest of the data.

You can also duplicate some columns into a table that’s full-text indexed. You can see
this strategy in action in the sakila.film_text table, which is maintained with triggers.
Yet another alternative is to use an external full-text engine, such as Lucene or Sphinx.
You can read more about Sphinx in Appendix F.

GROUP BY queries with full-text searches can be performance killers, again because the
full-text query typically finds a lot of matches; these cause random disk I/O, followed
by a temporary table or filesort for the grouping. Because such queries are often just
looking for the top items per group, a good optimization is to sample the results instead
of trying for complete accuracy. For example, select the first 1,000 rows into a tempo-
rary table, then return the top result per group from that.

Full-Text Configuration and Optimization
Regular maintenance of your full-text indexes is one of the most important things you
can do to enhance performance. The double-B-Tree structure of full-text indexes, com-
bined with the large number of keywords in typical documents, means they suffer from
fragmentation much more than normal indexes. You might need to use OPTIMIZE
TABLE frequently to defragment the indexes. If your server is I/O-bound, it might be
much faster to just drop and recreate the full-text indexes periodically.

A server that must perform well for full-text searches needs key buffers that are large
enough to hold the full-text indexes, because they work much better when they’re in
memory. You can use dedicated key buffers to make sure other indexes don’t flush your
full-text indexes from the key buffer. See Chapter 8 for more details on MyISAM key
buffers.

It’s also important to provide a good stopword list. The defaults will work well for
English prose, but they might not be good for other languages or for specialized texts,
such as technical documents. For example, if you’re indexing a document about

312 | Chapter 7: Advanced MySQL Features

MySQL, you might want “mysql” to be a stopword, because it’s too common to be
helpful.

You can often improve performance by skipping short words. The length is configu-
rable with the ft_min_word_len parameter. Increasing the default value will skip more
words, making your index smaller and faster, but less accurate. Also bear in mind that
for special purposes, you might need very short words. For example, a full-text search
of consumer electronics products for the query “cd player” is likely to produce lots of
irrelevant results unless short words are allowed in the index. A user searching for “cd
player” won’t want to see MP3 and DVD players in the results, but if the minimum
word length is the default four characters, the search will actually be for just “player,”
so all types of players will be returned.

The stopword list and the minimum word length can improve search speeds by keeping
some words out of the index, but the search quality can suffer as a result. The right
balance is application-dependent. If you need good performance and good-quality
results, you’ll have to customize both parameters for your application. It’s a good idea
to build in some logging and then investigate common searches, uncommon searches,
searches that don’t return results, and searches that return a lot of results. You can gain
insight about your users and your searchable content this way, and then use that insight
to improve performance and the quality of your search results.

Be aware that if you change the minimum word length, you’ll have to
rebuild the index with OPTIMIZE TABLE for the change to take effect. A
related parameter is ft_max_word_len, which is mainly a safeguard to
avoid indexing very long keywords.

If you’re importing a lot of data into a server and you want full-text indexing on some
columns, disable the full-text indexes before the import with DISABLE KEYS and enable
them afterward with ENABLE KEYS. This is usually much faster because of the high cost
of updating the index for each row inserted, and you’ll get a defragmented index as a
bonus.

For large datasets, you might need to manually partition the data across many nodes
and search them in parallel. This is a difficult task, and you might be better off using
an external full-text search engine, such as Lucene or Sphinx. Our experience shows
they can have orders of magnitude better performance.

Distributed (XA) Transactions
Whereas storage engine (see “Transactions” on page 6) transactions give ACID prop-
erties inside the storage engine, a distributed (XA) transaction is a higher-level trans-
action that can extend some ACID properties outside the storage engine—and even

Distributed (XA) Transactions | 313

outside the database—with a two-phase commit. MySQL 5.0 and newer have partial
support for XA transactions.

An XA transaction requires a transaction coordinator, which asks all participants to
prepare to commit (phase one). When the coordinator receives a “ready” from all
participants, it tells them all to go ahead and commit. This is phase two. MySQL can
act as a participant in XA transactions, but not as a coordinator.

There are actually two kinds of XA transactions in MySQL. The MySQL server can
participate in an externally managed distributed transaction, but it also uses XA inter-
nally to coordinate storage engines and binary logging.

Internal XA Transactions
The reason for MySQL’s internal use of XA transactions is the architectural separation
between the server and the storage engines. Storage engines are completely independent
from and unaware of each other, so any cross-engine transaction is distributed by nature
and requires a third party to coordinate it. That third party is the MySQL server. Were
it not for XA transactions, for example, a cross-engine transaction commit would re-
quire sequentially asking each engine involved to commit. That would introduce the
possibility of a crash after one engine had committed but before another did, which
would break the rules of transactions (recall that transactions are supposed to be all-
or-nothing operations).

If you consider the binary log to be a “storage engine” for log events, you can see why
XA transactions are necessary even when only a single transactional engine is involved.
Synchronizing a storage engine commit with “committing” an event to the binary log
is a distributed transaction, because the server—not the storage engine—handles the
binary log.

XA currently creates a performance dilemma. It has broken InnoDB’s support for group
commit (a technique that can commit several transactions with a single I/O operation)
since MySQL 5.0, so it causes many more fsync() calls than it should.12 It also causes
each transaction to require a binary log sync if binary logs are enabled and requires two
InnoDB transaction log flushes per commit instead of one. In other words, if you want
the binary log to be safely synchronized with your transactions, each transaction will
require a total of at least three fsync() calls. The only way to prevent this is to disable
the binary log and set innodb_support_xa to 0.13

12. At the time of writing, a lot of work has gone into fixing the group commit problem, and there are at least
three competing implementations. It remains to be seen which one ends up in the official MySQL source
code that most people will use, or which version it will be fixed in. The version available in MariaDB and
Percona Server appears to be a good solution.

13. A common misconception is that innodb_support_xa is only needed if you use XA transactions. This is
incorrect: it controls the internal XA transactions between the storage engine and the binary log, and if
you value your data, you need this setting to be enabled.

314 | Chapter 7: Advanced MySQL Features

These settings are unsafe and incompatible with replication. Replication requires bi-
nary logging and XA support, and in addition—to be as safe as possible—you need
sync_binlog set to 1, so the storage engine and the binary log are synchronized. (The
XA support is worthless otherwise, because the binary log might not be “committed”
to disk.) This is one of the reasons we strongly recommend using a RAID controller
with a battery-backed write cache: the cache can speed up the extra fsync() calls and
restore performance.

The next chapter goes into more detail on how to configure transaction logging and
binary logging.

External XA Transactions
MySQL can participate in, but not manage, external distributed transactions. It doesn’t
support the full XA specification. For example, the XA specification allows connections
to be joined in a single transaction, but that’s not possible in MySQL at this time.

External XA transactions are even more expensive than internal ones, due to the added
latency and the greater likelihood of a participant failing. Using XA over a WAN, or
even over the Internet, is a common trap because of unpredictable network perfor-
mance. It’s generally best to avoid XA transactions when there’s an unpredictable
component, such as a slow network or a user who might not click the “Save” button
for a long time. Anything that delays the commit has a heavy cost, because it’s causing
delays not just on one system, but potentially on many.

You can design high-performance distributed transactions in other ways, though. For
instance, you can insert and queue data locally, then distribute it atomically in a much
smaller, faster transaction. You can also use MySQL replication to ship data from one
place to another. We’ve found that some applications that use distributed transactions
really don’t need to use them at all.

That said, XA transactions can be a useful way to synchronize data between servers.
This method works well when you can’t use replication for some reason, or when the
updates are not performance-critical.

The MySQL Query Cache
Many database products can cache query execution plans, so the server can skip the
SQL parsing and optimization stages for repeated queries. MySQL can do this in some
circumstances, but it also has a different type of cache (known as the query cache) that
stores complete result sets for SELECT statements. This section focuses on that cache.

The MySQL query cache holds the exact bits that a completed query returned to the
client. When a query cache hit occurs, the server can simply return the stored results
immediately, skipping the parsing, optimization, and execution steps.

The MySQL Query Cache | 315

The query cache keeps track of which tables a query uses, and if any of those tables
changes, it invalidates the cache entry. This coarse invalidation policy might seem in-
efficient, because the changes made to the tables might not affect the results stored in
the cache, but it’s a simple approach with low overhead, which is important on a busy
system.

The query cache is designed to be completely transparent to the application. The ap-
plication does not need to know whether MySQL returned data from the cache or
actually executed the query. The result should be the same either way. In other words,
the query cache doesn’t change semantics; the server appears to behave the same way
with it enabled or disabled.14

As servers have gotten larger and more powerful, the query cache has unfortunately
proven not to be a very scalable part of MySQL. It is effectively a single point of con-
tention for the whole server, and it can cause severe stalls on multicore servers. Al-
though we’ll go into quite a bit of detail about how to configure it, we think that the
best approach is actually to disable it by default, and configure a small query cache (no
more than a few dozen megabytes) only if it’s very beneficial. We’ll explain later how
to determine if the query cache is likely to be beneficial for your workload.

How MySQL Checks for a Cache Hit
The way MySQL checks for a cache hit is simple: the cache is a lookup table. The lookup
key is a hash of the query text itself, the current database, the client protocol version,
and a handful of other things that might affect the actual bytes in the query’s result.

MySQL does not parse, “normalize,” or parameterize a statement when it checks for a
cache hit; it uses the statement and other bits of data exactly as the client sends them.
Any difference in character case, spacing, or comments—any difference at all—will
prevent a query from matching a previously cached version.15 This is something to keep
in mind while writing queries. Using consistent formatting and style is a good habit
anyway, but in this case it can even make your system faster.

Another caching consideration is that the query cache will not store a result unless the
query that generated it was deterministic. Thus, any query that contains a nondeter-
ministic function, such as NOW() or CURRENT_DATE(), will not be cached. Similarly, func-
tions such as CURRENT_USER() or CONNECTION_ID() might vary when executed by different
users, thereby preventing a cache hit. In fact, the query cache does not work for queries

14. The query cache actually does change semantics in one subtle way: by default, a query can still be served
from the cache when one of the tables to which it refers is locked with LOCK TABLES. You can disable this
with the query_cache_wlock_invalidate variable.

15. Percona Server is an exception to this rule; it can strip comments from queries before comparing them to
the query cache. This feature is needed because it’s a common, and good, practice to insert comments
into queries with additional information about the process that invoked them. The PHP instrumentation
software that we discussed in Chapter 3 relies on this, for example.

316 | Chapter 7: Advanced MySQL Features

that refer to user-defined functions, stored functions, user variables, temporary tables,
tables in the mysql database, or any table that has a column-level privilege. (For a list
of everything that makes a query uncacheable, see the MySQL manual.)

We’ve heard statements such as “MySQL doesn’t check the cache if the query contains
a nondeterministic function.” This is incorrect. MySQL cannot know whether a query
contains a nondeterministic function unless it parses the query, and the cache lookup
happens before parsing. The server performs a case-insensitive check to verify that the
query begins with the letters SEL, but that’s all.

However, it is correct to say “The server will find no results in the cache if the query
contains a function such as NOW(),” because even if the server executed the same query
earlier, it will not have cached the results. MySQL marks a query as uncacheable as
soon as it notices a construct that forbids caching, and the results generated by such a
query are not stored.

A useful technique to enable the caching of queries that refer to the current date is to
include the date as a literal value, instead of using a function. For example:

... DATE_SUB(CURRENT_DATE, INTERVAL 1 DAY) -- Not cacheable!

... DATE_SUB('2007-07-14’, INTERVAL 1 DAY) -- Cacheable

Because the query cache works at the level of a complete SELECT statement when the
server first receives it from the client connection, identical queries made inside a sub-
query or view cannot use the query cache, and neither can queries in stored procedures.
Prepared statements also cannot use the query cache in versions prior to MySQL 5.1.

MySQL’s query cache can sometimes improve performance, but there are a few issues
you should be aware of when using it. First, enabling the query cache adds some over-
head for both reads and writes:

• Read queries must check the cache before beginning.

• If the query is cacheable and isn’t in the cache yet, there’s some overhead due to
storing the result after generating it.

• There’s overhead for write queries, which must invalidate the cache entries for
queries that use tables they change. Invalidation can be very costly if the cache is
fragmented and/or large (has many cached queries, or is configured to use a large
amount of memory).

The query cache can still be a net gain. However, as we explain later, the extra overhead
can add up, especially in combination with contention caused by queries trying to lock
the cache to perform operations on it.

For InnoDB users, another problem is that transactions limit the query cache’s useful-
ness. When a statement inside a transaction modifies a table, the server invalidates any
cached queries that refer to the table, even though InnoDB’s multiversioning might
hide the transaction’s changes from other statements. The table is also globally
uncacheable until the transaction commits, so no further queries against that table—

The MySQL Query Cache | 317

whether inside or outside the transaction—can be cached until the transaction com-
mits. Long-running transactions can, therefore, increase the number of query cache
misses.

Invalidation can become a very serious problem with a large query cache. If there are
many queries in the cache, the invalidation can take a long time and cause the entire
system to stall while it works. This is because there’s a single global lock on the query
cache, which will block all queries that need to access it. Accessing happens both when
checking for a hit and when checking whether there are any queries to invalidate.
Chapter 3 includes a real case study that shows excessive query cache invalidation
overhead.

How the Cache Uses Memory
MySQL stores the query cache completely in memory, so you need to understand how
it uses memory before you can configure it correctly. The cache stores more than just
query results in its memory. It’s a lot like a filesystem in some ways: it keeps structures
that help it figure out which memory in its pool is free, mappings between tables and
query results, query text, and the query results.

Aside from some basic housekeeping structures, which require about 40 KB, the query
cache’s memory pool is available to be used in variable-sized blocks. Every block knows
what type it is, how large it is, and how much data it contains, and it holds pointers to
the next and previous logical and physical blocks. Blocks can be of several types: they
can store cache results, lists of tables used by a query, query text, and so on. However,
the different types of blocks are treated in much the same way, so there’s no need to
distinguish among them for purposes of configuring the query cache.

When the server starts, it initializes the memory for the query cache. The memory pool
is initially a single free block. This block is as large as the entire amount of memory the
cache is configured to use, minus the housekeeping structures.

When the server caches a query’s results, it reserves a block from its memory pool to
store those results. This block must be a minimum of query_cache_min_res_unit bytes,
though it might be larger if the server knows it is storing a larger result. Unfortunately,
the server cannot choose a block of precisely the right size, because it makes its initial
choice before the result set is complete. The server does not build the entire result set
in memory and then send it—it’s much more efficient to send each row as it’s generated.
Consequently, when it begins caching the result set, the server has no way of knowing
how large it will eventually be.

Assigning blocks is a relatively slow process, because it requires the server to look at
its lists of free blocks to find one that’s big enough. Therefore, the server tries to min-
imize the number of times it performs this task. When it needs to cache a result set, it
chooses a block of at least the minimum size (possibly larger, for reasons too complex
to explain) and begins placing the results in that block. If the block becomes full while

318 | Chapter 7: Advanced MySQL Features

there is still data left to store, the server reserves a new block—again of at least the
minimum size—and continues storing the data in that block. When the result is fin-
ished, if there is space left in the last block the server trims it to size and merges the
leftover space into the adjacent free block. Figure 7-3 illustrates this process.16

Figure 7-3. How the query cache allocates blocks to store a result

When we say the server “reserves a block,” we don’t mean it is asking the operating
system to allocate memory with malloc() or a similar call. It does that only once, when
it creates the query cache. What we mean is that the server is examining its list of blocks
and either choosing the best place to put a new block or, if necessary, removing the
oldest cached query to make room. In other words, the MySQL server manages its own
memory; it does not rely on the operating system to do it.

So far, this is all pretty straightforward. However, the picture can become quite a bit
more complicated than it appeared in Figure 7-3. Let’s suppose the average result is
quite small, and the server is sending results to two client connections simultaneously.
Trimming the results can leave a free block that’s smaller than query_cache
_min_res_unit and cannot be used for storing future cache results. The block alloca-
tion might end up looking something like Figure 7-4.

16. We’ve simplified the diagrams in this section for the purposes of illustration. The server really reserves
query cache blocks in a more complicated fashion than we’ve shown here. If you’re interested in how it
works, the comments at the top of sql/sql_cache.cc in the server’s source code explain it very clearly.

The MySQL Query Cache | 319

Figure 7-4. Fragmentation caused by storing results in the query cache

Trimming the first result to size left a gap between the two results—a block too small
to use for storing a different query result. The appearance of such gaps is called frag-
mentation, and it’s a classic problem in memory and filesystem allocation. Fragmen-
tation can happen for a number of reasons, including cache invalidations, which can
leave blocks that are too small to reuse later.

When the Query Cache Is Helpful
Caching queries isn’t automatically more efficient than not caching them. Caching
takes work, and the query cache results in a net gain only if the savings are greater than
the overhead. This will depend on your server’s workload.

In theory, you can tell whether the cache is helpful by comparing the amount of work
the server has to do with the cache enabled and disabled. With the cache disabled, each
read query has to execute and return its results, and each write query has to execute.
With the cache enabled, each read query has to first check the cache and then either
return the stored result or, if there isn’t one, execute, generate the result, store it, and
return it. Each write query has to execute and then check whether there are any cached
queries that must be invalidated.

Although this might sound straightforward, it’s not—it’s hard to calculate or predict
the query cache’s benefit. You must also take into account external factors. For exam-
ple, the query cache can reduce the amount of time required to produce a query’s result,
but not the time it takes to send the result to the client program, which might be the
dominating factor.

320 | Chapter 7: Advanced MySQL Features

In addition, MySQL provides no good way to determine how beneficial the query cache
is for individual queries,17 because the counters in SHOW STATUS are aggregated over the
whole workload. But the average behavior usually isn’t really interesting. For example,
you might have one slow query that becomes much faster with the help of the query
cache, even though it makes everything else a little bit slower or even makes the server
slower on average. Is this what you want? It might actually be the right thing to do, if
the queries that get faster are ones to which users are very sensitive and the others aren’t
so important. This would be a good candidate for selective use of the cache with the
SQL_CACHE directive.

The type of query that benefits most from caching is one whose result is expensive to
generate but doesn’t take up much space in the cache, so it’s cheap to store, return to
the client, and invalidate. Aggregate queries, such as small COUNT() results from large
tables, fit into this category. However, some other types of queries might be worth
caching, too. As a rule of thumb, you can consider the query cache if your workload is
dominated by complex SELECT queries, such as multitable joins with ORDER BY and
LIMIT clauses, which produce small result sets. You should have very few UPDATE,
DELETE, and INSERT queries in comparison to these complex SELECT queries.

One of the ways to tell if you are benefiting from the query cache is to examine the
query cache hit rate. This is the number of queries that are served from the cache instead
of being executed by the server. When the server receives a SELECT statement, it incre-
ments either the Qcache_hits or the Com_select status variable, depending on whether
the query was cached. Thus, the query cache hit rate is given by the formula
Qcache_hits / (Qcache_hits+Com_select).

Unfortunately, the cache hit rate isn’t easy to interpret. What’s a good cache hit rate?
It depends. Even a 30% hit rate can be very helpful, because the work saved by not
executing queries could be much more (per query) than the overhead of invalidating
entries and storing results in the cache. It is also important to know which queries are
cached. If the cache hits represent the most expensive queries, even a low hit rate could
save work for the server. So there is no simple rule that tells you whether the query
cache hit rate is good or not.

Any SELECT query that MySQL doesn’t serve from the cache is a cache miss. A cache
miss can occur for any of the following reasons:

• The query is not cacheable, either because it contains a nondeterministic construct
(such as CURRENT_DATE) or because its result set is too large to store. Both types of
uncacheable queries increment the Qcache_not_cached status variable.

• The server has never seen the query before, so it never had a chance to cache its
result.

17. The enhanced “slow query log” in Percona Server and MariaDB reveals whether individual queries were
cache hits.

The MySQL Query Cache | 321

• The query’s result was previously cached, but the server removed it. This can hap-
pen because there wasn’t enough memory to keep it, because someone instructed
the server to remove it, or because it was invalidated (more on invalidations in a
moment).

If your server has a lot of cache misses but very few uncacheable queries, one of the
following must be true:

• The query cache is not warmed up yet. That is, the server hasn’t had a chance to
fill the cache with result sets.

• The server is seeing queries it hasn’t seen before. If you don’t have a lot of repeated
queries, this can happen even after the cache is warmed up.

• There are a lot of cache invalidations.

Cache invalidations can happen because of fragmentation, insufficient memory, or
data modifications. If you have allocated enough memory to the cache and configured
the query_cache_min_res_unit value properly, most cache invalidations should be due
to data modifications. You can see how many queries have modified data by examining
the Com_* status variables (Com_update, Com_delete, and so forth), and you can check
the Qcache_lowmem_prunes variable to see how many queries have been invalidated due
to low memory.

It’s a good idea to consider the overhead of invalidation separately from the hit rate.
As an extreme example, suppose you have one table that gets all the reads and has a
100% query cache hit rate, and another table that gets only updates. If you simply
calculate the hit rate from the status variables, you will see a 100% hit rate. However,
the query cache can still be inefficient, because it will slow down the update queries.
All update queries will have to check whether any of the queries in the query cache
need to be invalidated as a result of their modifications, but since the answer will always
be “no,” this is wasted work. You might not spot a problem such as this unless you
check the number of uncacheable queries as well as the hit rate.

A server that handles a balanced blend of writes and cacheable reads on the same tables
also might not benefit much from the query cache. The writes will constantly invalidate
cached results, while at the same time the cacheable reads will constantly insert new
results into the cache. These will be beneficial only if they are subsequently served from
the cache.

If a cached result is invalidated before the server receives the same SELECT statement
again, storing it was a waste of time and memory. Examine the relative sizes of
Com_select and Qcache_inserts to see whether this is happening. If nearly every
SELECT is a cache miss (thus incrementing Com_select) and subsequently stores its result
into the cache, Qcache_inserts will be nearly as large as Com_select. Thus, you’d like
Qcache_inserts to be much smaller than Com_select, at least when the cache is properly
warmed up. However, this is still a hard-to-interpret ratio because of the subtleties of
what’s happening inside the cache and the server.

322 | Chapter 7: Advanced MySQL Features

As you’ve seen, the hit rate and the insert-to-select rate are not good guides. It’s really
best to measure and calculate how much the cache could help your workload. But if
you want, you can look at a different ratio, the hit-to-insert ratio. That indicates the
size of Qcache_hits relative to Qcache_inserts. As a rough rule of thumb, a hit-to-insert
ratio of 3:1 or better might be worth considering for average quick queries, but it’s
much better to have 10:1 or higher. If you aren’t achieving this level of benefit from
your query cache, it’s probably better to disable it, unless you have done the math and
determined that two things are true for your server: hits are way cheaper than misses,
and query cache contention isn’t a problem.

Every application has a finite potential cache size, even if there are no write queries.
The potential cache size is the amount of memory required to store every possible
cacheable query the application will ever issue. In theory, this is an extremely large
number for most applications. In practice, many applications have a much smaller
usable cache size than you might expect, because of the number of invalidations. Even
if you make the query cache very large, it will never fill up more than the potential cache
size.

You should monitor how much of the query cache your server actually uses. If it doesn’t
use as much memory as you’ve given it, make it smaller. If memory restrictions are
causing excessive invalidations you can try making it bigger, but as mentioned previ-
ously, it can be dangerous to exceed a few dozen megabytes. (This depends on your
hardware and workload.)

You also have to balance the query cache with the other server caches, such as the
InnoDB buffer pool or the MyISAM key cache. It’s not possible to just give a ratio or a
simple formula for this, because the right balance depends on the application.

The best way to know how beneficial the query cache really is is to measure how long
queries take to execute with and without the cache, if possible. Percona Server’s ex-
tended slow query log can report whether a query was a cache hit or not. If the query
cache isn’t saving you a significant amount of time, it’s probably best to try disabling it.

How to Configure and Maintain the Query Cache
Once you understand how the query cache works, it’s easy to configure. It has only a
few moving parts:

query_cache_type
Whether the query cache is enabled. Possible values are OFF, ON, or DEMAND, where
the latter means that only queries containing the SQL_CACHE modifier are eligible for
caching. This is both a session-level and a global variable. (See Chapter 8 for details
on session and global variables.)

The MySQL Query Cache | 323

query_cache_size
The total memory to allocate to the query cache, in bytes. This must be a multiple
of 1,024 bytes, so MySQL might use a slightly different value than the one you
specify.

query_cache_min_res_unit
The minimum size when allocating a block. We explained this setting previously;
it’s discussed further in the next section.

query_cache_limit
The largest result set that MySQL will cache. Queries whose results are larger than
this setting will not be cached. Remember that the server caches results as it
generates them, so it doesn’t know in advance when a result will be too large to
cache.
If the result exceeds the specified limit, MySQL will increment the Qcache_
not_cached status variable and discard the results cached so far. If you know this
happens a lot, you can add the SQL_NO_CACHE hint to queries you don’t want to incur
this overhead.

query_cache_wlock_invalidate
Whether to serve cached results that refer to tables other connections have locked.
The default value is OFF, which makes the query cache change the server’s semantics
because it lets you read cached data from a table another connection has locked,
which you wouldn’t normally be able to do. Changing it to ON will keep you from
reading this data, but it might increase lock waits. This really doesn’t matter for
most applications, so the default is generally fine.

In principle, configuring the cache is pretty simple, but understanding the effects of
your changes is more complicated. In the following sections, we’ll try to help you make
good decisions.

Reducing fragmentation

There’s no way to avoid all fragmentation, but choosing your query_cache_min
_res_unit value carefully can help you avoid wasting a lot of memory in the query
cache. The trick is to balance the size of each new block against the number of alloca-
tions the server has to do while storing results. If you make this value too small, the
server will waste less memory, but it will have to allocate blocks more frequently, which
is more work for the server. If you make it too large, you’ll get too much fragmentation.
The trade-off is wasting memory versus using more CPU cycles during allocation.

The best setting varies with the size of your typical query result. You can see the average
size of the queries in the cache by dividing the memory used (approximately
query_cache_size — Qcache_free_memory) by the Qcache_queries_in_cache status vari-
able. If you have a mixture of large and small results, you might not be able to choose
a size that avoids fragmentation while also avoiding too many allocations. However,
you might have reason to believe that it’s not beneficial to cache the larger results (this

324 | Chapter 7: Advanced MySQL Features

is frequently true). You can keep large results from being cached by lowering the value
of the query_cache_limit variable, which can sometimes help achieve a better balance
between fragmentation and the overhead of storing results in the cache.

You can detect query cache fragmentation by examining the Qcache_free_blocks status
variable, which shows you how many blocks in the query cache are of type FREE. In the
final configuration shown in Figure 7-4, there are two free blocks. The worst possible
fragmentation is when there’s a slightly-too-small free block between every pair of
blocks used to store data, so every other block is a free block. Thus, if Qcache
_free_blocks approaches Qcache_total_blocks / 2, your query cache is severely frag-
mented. If the Qcache_lowmem_prunes status variable is increasing and you have a lot of
free blocks, fragmentation is causing queries to be deleted from the cache
prematurely.

You can defragment the query cache with FLUSH QUERY CACHE. This command compacts
the query cache by moving all blocks “upward” and removing the free space between
them, leaving a single free block at the bottom. Contrary to its name, it does not remove
queries from the cache; that’s what RESET QUERY CACHE does. FLUSH QUERY CACHE blocks
access to the query cache while it runs, which effectively locks the whole server, so be
very careful with it. One rule of thumb for query cache sizing is to keep it small enough
that the stalls caused by FLUSH QUERY CACHE are acceptably short.

Improving query cache usage

If your query cache isn’t fragmented but you’re still not getting a good hit rate, you
might have given it too little memory. If the server can’t find any free blocks that are
large enough to use for a new block, it must “prune” some queries from the cache.

When the server prunes cache entries, it increments the Qcache_lowmem_prunes status
variable. If this value increases rapidly, there are two possible causes:

• If there are many free blocks, fragmentation is the likely culprit (see the previous
section).

• If there are few free blocks, it might mean that your workload can use a larger cache
size than you’re giving it. You can see the amount of unused memory in the cache
by examining Qcache_free_memory.

If there are many free blocks, fragmentation is low, there are few prunes due to low
memory, and the hit rate is still low, your workload probably won’t benefit much from
the query cache. Something is keeping it from being used. If you have a lot of updates,
that’s probably the culprit; it’s also possible that your queries are not cacheable.

If you’ve measured the cache hit ratio and you’re still not sure whether the server is
benefiting from the query cache, you can disable it and monitor performance, then
reenable it and see how performance changes. To disable the query cache, set query
_cache_size to 0. (Changing query_cache_type globally won’t affect connections that
are already open, and it won’t return the memory to the server.) You can also

The MySQL Query Cache | 325

benchmark, but it’s sometimes tricky to get a realistic combination of cached queries,
uncached queries, and updates.

Figure 7-5 shows a flowchart with a basic example of the process you can use to analyze
and configure your server’s query cache.

InnoDB and the Query Cache
InnoDB interacts with the query cache in a more complex way than other storage en-
gines, because of its implementation of MVCC. In MySQL 4.0 the query cache is dis-
abled entirely within transactions, but in MySQL 4.1 and newer InnoDB indicates to
the server, on a per-table basis, whether a transaction can access the query cache. It
controls access to the query cache for both reads (retrieving results from the cache) and
writes (saving results to the cache).

Figure 7-5. How to analyze and configure the query cache

326 | Chapter 7: Advanced MySQL Features

The factors that determine access are the transaction ID and whether there are any
locks on the table. Each table in InnoDB’s in-memory data dictionary has an associated
transaction ID counter. Transactions whose IDs are less than the counter value are
forbidden to read from or write to the query cache for queries that involve that table.

Any locks on a table also make queries that access it uncacheable. For example, if a
transaction performs a SELECT FOR UPDATE query on a table, no other transactions will
be able to read from or write to the query cache for queries involving that table until
the locks are released.

When a transaction commits, InnoDB updates the counters for the tables upon which
the transaction has locks. A lock is a rough heuristic for determining whether the
transaction has modified a table; it is possible for a transaction to lock rows in a table
and not update them, but it is not possible for it to modify the table’s contents without
acquiring any locks. InnoDB sets each table’s counter to the system’s transaction ID,
which is the maximum transaction ID in existence.

This has the following consequences:

• The table’s counter is an absolute lower bound on which transactions can use the
query cache. If the system’s transaction ID is 5 and a transaction acquires locks on
rows in a table and then commits, transactions 1 through 4 can never read from or
write to the query cache for queries involving that table again.

• The table’s counter is updated not to the transaction ID of the transaction that
locked rows in it, but to the system’s transaction ID. As a result, transactions that
lock rows in tables might find themselves blocked from reading from or writing to
the query cache for queries involving that table in the future.

Query cache storage, retrieval, and invalidation are handled at the server level, and
InnoDB cannot bypass or delay this. However, InnoDB can tell the server explicitly to
invalidate queries that involve specific tables. This is necessary when a foreign key
constraint, such as ON DELETE CASCADE, alters the contents of a table that isn’t mentioned
in a query.

In principle, InnoDB’s MVCC architecture could let queries be served from the cache
when modifications to a table don’t affect the consistent read view other transactions
see. However, implementing this would be complex. InnoDB’s algorithm takes some
shortcuts for simplicity, at the cost of locking transactions out of the query cache when
this might not really be necessary.

General Query Cache Optimizations
Many schema, query, and application design decisions affect the query cache. In ad-
dition to what we discussed in the previous sections, here are some points to keep in
mind:

The MySQL Query Cache | 327

• Having multiple smaller tables instead of one huge one can help the query cache.
This design effectively makes the invalidation strategy work at a finer level of
granularity. Don’t let this unduly influence your schema design, though, as other
factors can easily outweigh the benefit.

• It’s more efficient to batch writes than to do them singly, because this method
invalidates cached cache entries only once. (Be careful not to delay and batch so
much that the invalidations caused by the writes will stall the server for too long,
however.)

• We’ve noticed that the server can stall for a long time while invalidating entries in
or pruning a very large query cache. A possible solution is to not make query_
cache_size very large, but in some cases you simply have to disable it altogether,
because nothing is small enough.

• You cannot control the query cache on a per-database or per-table basis, but you
can include or exclude individual queries with the SQL_CACHE and SQL_NO_CACHE
modifiers in the SELECT statement. You can also enable or disable the query cache
on a per-connection basis by setting the session-level query_cache_type server vari-
able to the appropriate value.

• For a write-heavy application, disabling the query cache completely might improve
performance. Doing so eliminates the overhead of caching queries that would be
invalidated soon anyway. Remember to set query_cache_size to 0 when you disable
it, so it doesn’t consume any memory.

• Disabling the query cache might be beneficial for a read-heavy application, too,
because of contention on the single query cache mutex. If you need good perfor-
mance at high concurrency, be sure to validate it with high-concurrency tests,
because enabling the query cache and testing at low concurrency can be very
misleading.

If you want to avoid the query cache for most queries, but you know that some will
benefit significantly from caching, you can set the global query_cache_type to DEMAND
and then add the SQL_CACHE hint to those queries you want to cache. Although this
requires you to do more work, it gives you very fine-grained control over the cache.
Conversely, if you want to cache most queries and exclude just a few, you can add
SQL_NO_CACHE to them.

Alternatives to the Query Cache
The MySQL query cache works on the principle that the fastest query is the one you
don’t have to execute, but you still have to issue the query, and the server still needs to
do a little bit of work. What if you really didn’t have to talk to the database server at
all for particular queries? Client-side caching can help ease the workload on your
MySQL server even more. We explain caching more in Chapter 14.

328 | Chapter 7: Advanced MySQL Features

Summary
This chapter has been more of a potpourri of different topics than some of the previous
chapters were. We’ll wrap up by revisiting some of the most important points from
each topic:

Partitioned tables
Partitioning is a kind of cheap, coarse indexing that works at large scale. For best
results, either forget about indexing and plan to full-scan selected partitions, or
make sure that only one partition is hot and it fits in memory, including its indexes.
Stick to about 150 or fewer partitions per table, watch out for subtleties that defeat
pruning, and monitor the per-row and per-query overhead of partitioning.

Views
Views can be useful for abstracting underlying tables and complex queries. Beware
of views that use temporary tables, though, because they don’t push your WHERE
clauses down to the underlying queries; nor do they have indexes themselves, so
you can’t query them efficiently in a join. Using views as conveniences is probably
the best approach.

Foreign keys
Foreign key constraints push constraints into the server, where they can be more
efficient. However, they can also add complexity, extra indexing overhead, and
interactions between tables that cause more locking and contention. We think
foreign keys are a nice-to-have feature for ensuring system integrity, but they’re a
luxury for applications that need extremely high performance; most people don’t
use them when performance is a concern, preferring instead to trust the application
code.

Stored routines
MySQL’s implementation of stored procedures, triggers, stored functions, and
events is quite frankly pretty unimpressive. There are also a lot of problems with
statement-based replication. Use these features when they can save you a lot of
network round-trips—in such cases, you can get much better performance by cut-
ting out costly latency. You can also use them for the usual reasons (centralizing
business logic, enforcing privileges, and so on), but this just doesn’t work as well
in MySQL as it does in the bigger, more complex and mature database servers.

Prepared statements
Prepared statements are useful when a large portion of the cost of executing state-
ments is from transferring statements across the network, parsing the SQL, and
optimizing the SQL. If you’ll repeat the same statement many times, you can save
on these costs by using prepared statements because they’re parsed once, there is
some execution plan caching, and the binary protocol is more efficient than the
ordinary text-based protocol.

Summary | 329

Plugins
Plugins are written in C or C++ and let you extend the functionality of the server
in many ways. They’re very powerful, and we’ve written many UDFs and plugins
for various purposes when the problem is best solved inside the server in native
code.

Character sets
A character set is a mapping between byte values and characters, and a collation
is the sort order of the characters. Most people use either the latin1 (the default,
suitable for English and some European languages) or UTF-8 character sets. If you
use UTF-8, beware of temporary tables and buffers: the server allocates three bytes
per character, so you can use a lot of disk and memory space if you’re not careful.
Be very careful to make character sets and character set configuration options
match, from the client-side connections all the way through, or you’ll cause con-
versions that defeat indexing.

Full-text searching
Only MyISAM supports full-text indexes at the time of writing, though it looks
like InnoDB will offer this capability when MySQL 5.6 is released. MyISAM is
basically unusable for large-scale full-text searching due to locking and lack of
crash resilience, and we generally help people set up and use Sphinx instead.

XA transactions
Most people don’t use XA transactions with MySQL. However, don’t disable
innodb_support_xa unless you know what you are doing. It is not, as many people
think, unnecessary if you don’t do explicit XA transactions. It is used for coordi-
nating InnoDB and the binary log so crash recovery will work correctly.

The query cache
The query cache prevents queries from being reexecuted if the stored result of an
exactly identical query is already cached. Our experience with the query cache in
high-load environments has been peppered with server lockups and stalls. If you
use the query cache, don’t make it very large, and use it only if you know it’s highly
beneficial. How can you know that? The best way is to use Percona Server’s ex-
tended query logging facilities and a little math. Barring that, you can look at the
cache hit ratio (not always helpful), the select-to-insert ratio (also hard to interpret),
or the hit-to-insert ratio (a bit more meaningful). In the final analysis, the query
cache is convenient because it’s transparent and doesn’t require any additional
coding on your part, but if you need a highly efficient cache for high performance,
you’re better off looking at memcached or another external solution. More on this
in Chapter 14.

330 | Chapter 7: Advanced MySQL Features

CHAPTER 8

Optimizing Server Settings

In this chapter, we’ll explain a process by which you can create a good configuration
file for your MySQL server. It is a roundabout trip, with many points of interest and
side trips to scenic overlooks. These are necessary, because determining the shortest
path to a good configuration doesn’t start with studying configuration options and
asking which ones you should set or how you should change them, nor does it start
with examining server behavior and asking whether any configuration options can im-
prove it. It’s best to begin with an understanding of MySQL’s internals and behavior.
You can then use that knowledge as a guide for how MySQL should be configured.
Finally, you can compare the desired configuration to the current configuration and
correct any differences that are important and worthwhile.

People often ask, “What’s the optimal configuration file for my server with 32 GB of
RAM and 12 CPU cores?” Unfortunately, it’s not that simple. The server should be
configured for the workload, data, and application requirements, not just the hardware.
MySQL has scores of settings that you can change—but you shouldn’t. It’s usually
better to configure the basic settings correctly (and there are only a few that really matter
in most cases) and spend more time on schema optimization, indexes, and query design.
After you’ve set MySQL’s basic configuration options correctly, the potential gains
from further changes are usually small.

On the other hand, the potential downside of fiddling with the configuration can be
great. We’ve seen more than one “highly tuned” server that was crashing constantly,
stalling, or performing slowly due to unwise settings. We’ll spend a bit of time on why
that can happen and what not to do.

So what should you do? Make sure the basics such as the InnoDB buffer pool and log
file size are appropriate, set a few safety and sanity options if you wish to prevent bad
behavior (but note that these usually won’t improve performance—they’ll only avoid
problems), and then leave the rest of the settings alone. If you begin to experience a
problem, diagnose it carefully with the techniques shown in Chapter 3. If the problem
is caused by a part of the server whose behavior can be corrected with a configuration
option, then you might need to change it.

331

Sometimes you might also need to set specific configuration options that can have a
significant performance impact in special cases. However, these should not be part of
a basic server configuration file. You should set them only when you find the specific
performance problems they address. That’s why we don’t suggest that you approach
configuration options by looking for bad things to improve. If something needs to be
improved, it should show up in query response times. It’s best to start your search with
queries and their response times, not with configuration options. This could save you
a lot of time and prevent many problems.

Another good way to save time and trouble is to use the defaults unless you know you
shouldn’t. There is safety in numbers, and a lot of people are running with default
settings. That makes them the most thoroughly tested settings. Unexpected bugs can
arise when you change things needlessly.

How MySQL’s Configuration Works
We’ll begin by explaining MySQL’s configuration mechanisms, before covering what
you should configure in MySQL. MySQL is generally pretty forgiving about its config-
uration, but following these suggestions might save you a lot of work and time.

The first thing to know is where MySQL gets configuration information: from
command-line arguments and settings in its configuration file. On Unix-like systems,
the configuration file is typically located at /etc/my.cnf or /etc/mysql/my.cnf. If you use
your operating system’s startup scripts, this is typically the only place you’ll specify
configuration settings. If you start MySQL manually, which you might do when you’re
running a test installation, you can also specify settings on the command line. The
server actually reads the contents of the configuration file, removes any comment lines
and newlines, and then processes it together with the command-line options.

A note on terminology: because many of MySQL’s command-line op-
tions correspond to server variables, we sometimes use the terms op-
tion and variable interchangeably. Most variables have the same names
as their corresponding command-line options, but there are a few ex-
ceptions. For example, --memlock sets the locked_in_memory variable.

Any settings you decide to use permanently should go into the global configuration
file, instead of being specified at the command line. Otherwise, you risk accidentally
starting the server without them. It’s also a good idea to keep all of your configuration
files in a single place so that you can inspect them easily.

Be sure you know where your server’s configuration file is located! We’ve seen people
try unsuccessfully to configure a server with a file it doesn’t read, such as /etc/my.cnf
on Debian servers, which look in /etc/mysql/my.cnf for their configuration. Sometimes

332 | Chapter 8: Optimizing Server Settings

there are files in several places, perhaps because a previous system administrator was
confused as well. If you don’t know which files your server reads, you can ask it:

$ which mysqld
/usr/sbin/mysqld
$ /usr/sbin/mysqld --verbose --help | grep -A 1 'Default options'
Default options are read from the following files in the given order:
/etc/mysql/my.cnf ~/.my.cnf /usr/etc/my.cnf

This applies to typical installations, where there’s a single server on a host. You can
design more complicated configurations, but there’s no standard way to do this. The
MySQL server distribution used to include a now-deprecated program called mysql-
manager, which can run multiple instances from a single configuration with separate
sections. (This was a replacement for the even older mysqld_multi script.) However,
many operating system distributions don’t include or use this program in their startup
scripts. In fact, many don’t use the MySQL-provided startup script at all.

The configuration file is divided into sections, each of which begins with a line that
contains the section name in square brackets. A MySQL program will generally read
the section that has the same name as that program, and many client programs also
read the client section, which gives you a place to put common settings. The server
usually reads the mysqld section. Be sure you place your settings in the correct section
in the file, or they will have no effect.

Syntax, Scope, and Dynamism
Configuration settings are written in all lowercase, with words separated by under-
scores or dashes. The following are equivalent, and you might see both forms in com-
mand lines and configuration files:

/usr/sbin/mysqld --auto-increment-offset=5
/usr/sbin/mysqld --auto_increment_offset=5

We suggest that you pick a style and use it consistently. This makes it easier to search
for settings in your files.

Configuration settings can have several scopes. Some settings are server-wide (global
scope); others are different for each connection (session scope); and others are per-
object. Many session-scoped variables have global equivalents, which you can think of
as defaults. If you change the session-scoped variable, it affects only the connection
from which you changed it, and the changes are lost when the connection closes. Here
are some examples of the variety of behaviors of which you should be aware:

• The query_cache_size variable is globally scoped.

• The sort_buffer_size variable has a global default, but you can set it per-session
as well.

How MySQL’s Configuration Works | 333

• The join_buffer_size variable has a global default and can be set per-session, but
a single query that joins several tables can allocate one join buffer per join, so there
might be several join buffers per query.

In addition to setting variables in the configuration files, you can also change many
(but not all) of them while the server is running. MySQL refers to these as dynamic
configuration variables. The following statements show different ways to change the
session and global values of sort_buffer_size dynamically:

SET sort_buffer_size = <value>;
SET GLOBAL sort_buffer_size = <value>;
SET @@sort_buffer_size := <value>;
SET @@session.sort_buffer_size := <value>;
SET @@global.sort_buffer_size := <value>;

If you set variables dynamically, be aware that those settings will be lost when MySQL
shuts down. If you want to keep the settings, you’ll have to update your configuration
file as well.

If you set a variable’s global value while the server is running, the values for the current
session and any other existing sessions are not affected. This is because the session
values are initialized from the global value when the connections are created. You
should inspect the output of SHOW GLOBAL VARIABLES after each change to make sure it’s
had the desired effect.

Variables use different kinds of units, and you have to know the correct unit for each
variable. For example, the table_cache variable specifies the number of tables that can
be cached, not the size of the table cache in bytes. The key_buffer_size is specified in
bytes, whereas still other variables are specified in number of pages or other units, such
as percentages.

Many variables can be specified with a suffix, such as 1M for one megabyte. However,
this works only in the configuration file or as a command-line argument. When you
use the SQL SET command, you must use the literal value 1048576, or an expression
such as 1024 * 1024. You can’t use expressions in configuration files.

There is also a special value you can assign to variables with the SET command: the
keyword DEFAULT. Assigning this value to a session-scoped variable sets that variable to
the corresponding globally scoped variable’s value; assigning it to a globally scoped
variable sets the variable to the compiled-in default (not the value specified in the con-
figuration file). This is useful for resetting session-scoped variables back to the values
they had when you opened the connection. We advise you not to use it for global
variables, because it probably won’t do what you want—that is, it doesn’t set the values
back to what they were when you started the server.

334 | Chapter 8: Optimizing Server Settings

Side Effects of Setting Variables
Setting variables dynamically can have unexpected side effects, such as flushing dirty
blocks from buffers. Be careful which settings you change online, because this can cause
the server to do a lot of work.

Sometimes you can infer a variable’s behavior from its name. For example, max_
heap_table_size does what it sounds like: it specifies the maximum size to which im-
plicit in-memory temporary tables are allowed to grow. However, the naming conven-
tions aren’t completely consistent, so you can’t always guess what a variable will do by
looking at its name.

Let’s take a look at some commonly used variables and the effects of changing them
dynamically:

key_buffer_size
Setting this variable allocates the designated amount of space for the key buffer (or
key cache) all at once. However, the operating system doesn’t actually commit
memory to it until it is used. Setting the key buffer size to one gigabyte, for example,
doesn’t mean you’ve instantly caused the server to actually commit a gigabyte of
memory to it. (We discuss how to watch the server’s memory usage in the next
chapter.)

MySQL lets you create multiple key caches, as we explain later in this chapter. If
you set this variable to 0 for a nondefault key cache, MySQL discards any indexes
cached in the specified cache, begins to cache them in the default cache, and deletes
the specified cache when nothing is using it anymore. Setting this variable for a
nonexistent cache creates it. Setting the variable to a nonzero value for an existing
cache will flush the specified cache’s memory. This blocks all operations that try
to access the cache until the flush is finished.

table_cache_size
Setting this variable has no immediate effect—the effect is delayed until the next
time a thread opens a table. When this happens, MySQL checks the variable’s
value. If the value is larger than the number of tables in the cache, the thread can
insert the newly opened table into the cache. If the value is smaller than the number
of tables in the cache, MySQL deletes unused tables from the cache.

thread_cache_size
Setting this variable has no immediate effect—the effect is delayed until the next
time a connection is closed. At that time, MySQL checks whether there is space in
the cache to store the thread. If so, it caches the thread for future reuse by another
connection. If not, it kills the thread instead of caching it. In this case, the number
of threads in the cache, and hence the amount of memory the thread cache uses,
does not immediately decrease; it decreases only when a new connection removes
a thread from the cache to use it. (MySQL adds threads to the cache only when
connections close and removes them from the cache only when new connections
are created.)

How MySQL’s Configuration Works | 335

query_cache_size
MySQL allocates and initializes the specified amount of memory for the query
cache all at once when the server starts. If you update this variable (even if you set
it to its current value), MySQL immediately deletes all cached queries, resizes the
cache to the specified size, and reinitializes the cache’s memory. This can take a
long time and stalls the server until it completes, because MySQL deletes all of the
cached queries one by one, not instantaneously.

read_buffer_size
MySQL doesn’t allocate any memory for this buffer until a query needs it, but then
it immediately allocates the entire chunk of memory specified here.

read_rnd_buffer_size
MySQL doesn’t allocate any memory for this buffer until a query needs it, and then
it allocates only as much memory as needed. (The name max_read_rnd
_buffer_size would describe this variable more accurately.)

sort_buffer_size
MySQL doesn’t allocate any memory for this buffer until a query needs to do a
sort. However, when there’s a sort, MySQL allocates the entire chunk of memory
immediately, whether the full size is required or not.

We explain what these variables do in more detail elsewhere, and this isn’t an exhaus-
tive list. Our goal here is simply to show you what behavior to expect when you change
a few common variables.

You should not raise the value of a per-connection setting globally unless you know it’s
the right thing to do. Some buffers are allocated all at once, even if they’re not needed,
so a large global setting can be a huge waste. Instead, you can raise the value when a
query needs it.

The most common example of a variable that you should probably keep small and raise
only for certain queries is sort_buffer_size, which controls how large the sort buffer
should be for filesorts. MySQL performs some work to initialize the sort buffer after
allocating it.

In addition, the sort buffer is allocated to its full size even for very small sorts, so if you
make it much larger than the average sort requires, you’ll be wasting memory and
adding allocation cost. This can be surprising to those readers who think of memory
allocation as an inexpensive operation. Without digging into all of the technical details,
it’s enough to say that memory allocation includes setting up the address space, which
can be relatively expensive; in Linux in particular, memory allocation uses a couple of
strategies with varying cost depending on the size.

In summary, a large sort buffer can be very expensive, so don’t increase its size unless
you know it’s needed.

336 | Chapter 8: Optimizing Server Settings

When you find a query that needs a larger sort buffer to perform well, you can raise the
sort_buffer_size value just before the query and then restore it to DEFAULT afterward.
Here’s an example of how to do this:

SET @@session.sort_buffer_size := <value>;
-- Execute the query...
SET @@session.sort_buffer_size := DEFAULT;

Wrapper functions can be handy for this type of code. Other variables you might set
on a per-connection basis are read_buffer_size, read_rnd_buffer_size, tmp_table
_size, and myisam_sort_buffer_size (if you’re repairing tables).

If you need to save and restore a possibly customized value, you can do something like
the following:

SET @saved_<unique_variable_name> := @@session.sort_buffer_size;
SET @@session.sort_buffer_size := <value>;
-- Execute the query...
SET @@session.sort_buffer_size := @saved_<unique_variable_name>;

The sort buffer size is one of the settings that is the focus of far too much
“tuning.” Some people seem to have the idea that bigger is better, and
we’ve even seen servers with this variable set to 1 GB. Perhaps not sur-
prisingly, this can cause the server to try to allocate too much memory
and crash, or simply to burn a lot of CPU time when initializing the sort
buffer for a query; see MySQL bug 37359 for more on this.

Don’t assign too much importance to the sort buffer size. Do you really
need your queries to allocate 128 MB of memory to sort 10 rows and
return them to the client? Think about what kinds of sorting your quer-
ies are doing, and how much, and try to avoid them with proper indexing
and query design (see Chapter 5 and Chapter 6) rather than trying to
make the sorting operation itself faster. And you should definitely pro-
file your queries to see whether sorting is where you should focus your
attention anyway; see Chapter 3 for an example of a query that performs
a sort but doesn’t spend much of its time sorting.

Getting Started
Be careful when setting variables. More is not always better, and if you set the values
too high, you can easily cause problems: you might run out of memory, causing your
server to swap, or run out of address space.1

1. A common mistake we’ve seen is to set up a server with twice as much memory as your existing server,
and—using the old server’s configuration as a baseline—create the new server’s configuration by
multiplying everything by two. This doesn’t work.

How MySQL’s Configuration Works | 337

You should always have a monitoring system in place to measure whether a change
improves or hurts your server’s overall performance in real life. Benchmarks aren’t
enough, because they’re not real. If you don’t measure your server’s actual perfor-
mance, you might hurt performance without knowing it. We’ve seen many cases where
someone changed a server’s configuration and thought it improved performance, when
in fact the server’s performance worsened overall because of a different workload at a
different time of day or day of the week.

If you take notes, perhaps with comments in the configuration file, you might save
yourself (and your colleagues) a lot of work. An even better idea is to place your con-
figuration file under version control. This is a good practice anyway, because it lets you
undo changes. To reduce the complexity of managing many configuration files, simply
create a symbolic link from the configuration file to a central version control repository.

Before you start changing your configuration, you should optimize your queries and
your schema, addressing at least the obvious things such as adding indexes. If you get
deep into tweaking the configuration and then change your queries or schema, you
might need to reevaluate the configuration. Keep in mind that unless your hardware,
workload, and data are completely static, chances are you’ll need to revisit your con-
figuration later. And in fact, most people’s servers don’t even have a steady workload
throughout the day—meaning that the “perfect” configuration for the middle of the
morning is not right for midafternoon! Obviously, chasing the mythical “perfect” con-
figuration is completely impractical. Thus, you don’t need to squeeze every last ounce
of performance out of your server; in fact, the return for such an investment of time
will probably be very small. We suggest that you stop at “good enough,” unless you
have reason to believe you’re forgoing a significant performance improvement.

Iterative Optimization by Benchmarking
You might be expected (or believe that you’re expected) to set up a benchmark suite
and “tune” your server by changing its configuration iteratively in search of optimal
settings. This usually is not something we advise most people to do. It requires so much
work and research, and the potential payoff is so small in most cases, that it can be a
huge waste of time. You are probably better off spending that time on other things such
as checking your backups, monitoring changes in query plans, and so on.

It’s also very hard to know what side effects your changes might have over the long run.
If you change an option and it appears to improve your benchmark, but your bench-
mark doesn’t measure everything that’s important, or you don’t run it long enough to
detect changes in the system’s long-term steady-state behavior, you might cause prob-
lems such as periodic server stalls or sporadic slow queries. These can be difficult to
detect.

338 | Chapter 8: Optimizing Server Settings

We do sometimes run sets of benchmarks to examine or stress particular parts of the
server so we can understand their behavior better. A good example is the many bench-
marks we’ve run over the years to understand InnoDB’s flushing behavior, in our quest
to develop better flushing algorithms for various workloads and types of hardware. It
often happens that we benchmark extensively with different settings to understand
their effects and how to optimize them. But this is not a small undertaking—it can take
many days or weeks—and it is also not beneficial for most people to do, because such
tunnel vision about a specific part of the server often obscures other concerns. For
example, sometimes we find that specific combinations of settings enable better per-
formance in edge cases, but the configuration options are not really practical for pro-
duction usage, due to factors such as wasting a huge amount of memory or optimizing
for throughput while ignoring the impact on crash recovery altogether.

If you must do this, we suggest that you develop a custom benchmark suite before you
begin configuring your server. You need something that represents your overall work-
load and includes edge cases such as very large and complex queries. Replaying your
actual workload against your actual data is usually a good approach. If you have iden-
tified a particular problem spot—such as a single query that runs slowly—you can also
try to optimize for that case, but you risk impacting other queries negatively without
knowing it.

The best way to proceed is to change one or two variables, a little at a time, and run
the benchmarks after each change, being sure to run them long enough to observe the
steady-state behavior. Sometimes the results will surprise you; you might increase a
variable a little and see an improvement, then increase it a little more and see a sharp
drop in performance. If performance suffers after a change, you might be asking for too
much of some resource, such as too much memory for a buffer that’s frequently allo-
cated and deallocated. You might also have created a mismatch between MySQL and
your operating system or hardware. For example, we’ve found that the optimal
sort_buffer_size might be affected by how the CPU cache works, and the read_
buffer_size needs to be matched to the server’s read-ahead and general I/O subsystem
configuration. Larger is not always better, and can be much worse. Some variables are
also dependent on others, which is something you learn with experience and by un-
derstanding the system’s architecture.

How MySQL’s Configuration Works | 339

When Benchmarking Is Good
There are exceptions to our advice not to benchmark. We sometimes do advise people
to run some iterative benchmarks, although usually in a different context than “server
tuning.” Here are some examples:

• If you’re approaching a large investment, such as purchasing a number of new
servers, you can run benchmarks to understand your hardware needs. (The context
here is capacity planning, not server tuning.) In particular, we like to run bench-
marks with different amounts of memory allocated to the InnoDB buffer pool,
which helps us draw a “memory curve” that shows how much memory is really
needed and how it impacts the demands on the storage systems.

• If you want to understand how long it will take InnoDB to recover from a crash,
you can repeatedly set up a replica, crash it intentionally, and “benchmark” how
long InnoDB takes to recover after restarting. The context here is for high availa-
bility planning.

• For read-mostly applications, it can be a great idea to capture all queries with the
slow query log (or from TCP traffic with pt-query-digest), use pt-log-player to replay
it against the server with full slow query logging enabled, and then analyze the
resulting log with pt-query-digest. This lets you see how various types of queries
perform with different hardware, software, and server settings. For example, we
once helped a customer assess the performance changes of a migration to a server
with much more memory, but with slower hard drives. Most queries became faster,
but some analytical queries slowed down because they remained I/O-bound. The
context of this exercise was workload comparison.

What Not to Do
Before we get started with server configuration, we want to encourage you to avoid a
few common practices that we’ve found to be risky or harmful. Warning: rants ahead!

First, you should not “tune by ratio.” The classic “tuning ratio” is the rule of thumb
that your key cache hit ratio should be higher than some percentage, and you should
increase the cache size if the hit rate is too low. This is very wrong advice. Regardless
of what anyone tells you, the cache hit ratio has nothing to do with whether the cache is
too large or too small. To begin with, the hit ratio depends on the workload—some
workloads simply aren’t cacheable no matter how big the cache is—and secondly,
cache hits are meaningless, for reasons we’ll explain later. It sometimes happens that
when the cache is too small, the hit rate is low, and increasing the cache size increases
the hit rate. However, this is an accidental correlation and does not indicate anything
about performance or proper sizing of the cache.

340 | Chapter 8: Optimizing Server Settings

The problem with correlations that sometimes appear to be true is that people begin
to believe they will always be true. Oracle DBAs abandoned ratio-based tuning years
ago, and we wish MySQL DBAs would follow their lead.2 We wish even more fervently
that people wouldn’t write “tuning scripts” that codify these dangerous practices and
teach them to thousands of people. This leads to our second suggestion of what not to
do: don’t use tuning scripts! There are several very popular ones that you can find on
the Internet. It’s probably best to ignore them.3

We also suggest that you avoid the word “tuning,” which we’ve used liberally in the
past few paragraphs. We favor “configuration” or “optimization” instead (as long as
that’s what you’re actually doing; see Chapter 3). The word “tuning” conjures up im-
ages of an undisciplined novice who tweaks the server and sees what happens. We
suggested in the previous section that this practice is best left to those who are re-
searching server internals. “Tuning” your server can be a stunning waste of time.

On a related topic, searching the Internet for configuration advice is not always a great
idea. You can find a lot of bad advice in blogs, forums, and so on.4 Although many
experts contribute what they know online, it is not always easy to tell who is qualified.
We can’t give unbiased recommendations about where to find real experts, of course.
But we can say that the credible, reputable MySQL service providers are a safer bet in
general than what a simple Internet search turns up, because people who have happy
customers are probably doing something right. Even their advice, however, can be
dangerous to apply without testing and understanding, because it might have been
directed at a situation that differed from yours in a way you don’t understand.

Finally, don’t believe the popular memory consumption formula—yes, the very one
that MySQL itself prints out when it crashes. (We won’t repeat it here.) This formula
is from an ancient time. It is not a reliable or even useful way to understand how much
memory MySQL can use in the worst case. You might see some variations on this
formula on the Internet, too. These are similarly flawed, even though they add in more
factors that the original formula doesn’t have. The truth is that you can’t put an upper
bound on MySQL’s memory consumption. It is not a tightly regulated database server
that controls memory allocation. You can prove that very simply by logging into the
server and running a number of queries that consume a lot of memory:

mysql> SET @crash_me_1 := REPEAT('a', @@max_allowed_packet);
mysql> SET @crash_me_2 := REPEAT('a', @@max_allowed_packet);

2. If you are not convinced that “tuning by ratio” is bad, please read Optimizing Oracle Performance by
Cary Millsap (O’Reilly). He even devotes an appendix to the topic, with a tool that can artificially generate
any cache hit ratio you wish, no matter how badly your system is performing! Of course, it’s all for the
purpose of illustrating how useless the ratio is.

3. An exception: we maintain a (good) free online configuration tool at http://tools.percona.com. Yes, we’re
biased.

4. Q: How is query formed? A: They need to do way instain DBAs who kill thier querys, becuse these querys
cant frigth back?

What Not to Do | 341

http://tools.percona.com

... run a lot of these ...
mysql> SET @crash_me_1000000 := REPEAT('a', @@max_allowed_packet);

Run that in a loop, creating new variables each time, and you’ll eventually run the server
out of memory and crash it! And it requires no privileges to execute.

The points we’ve tried to illustrate in this section have sometimes made us unpopular
with people who perceive us as arrogant, think that we’re trying to discredit others and
set ourselves up as the sole authority, or feel that we’re trying to promote our services.
It is not our intention to be self-serving. We have simply seen so much bad advice that
appears legitimate if you are not experienced enough to know better, and helped clean
up the wreckage so many times, that we think it is important to debunk a few myths
and warn our readers to be careful whose expertise they trust. We’ll try to avoid ranting
from here on.

Creating a MySQL Configuration File
As we mentioned at the beginning of this chapter, we don’t have a one-size-fits-all “best
configuration file” for, say, a 4-CPU server with 16 GB of memory and 12 hard drives.
You really do need to develop your own configurations, because even a good starting
point will vary widely depending on how you’re using the server.

MySQL’s compiled-in default settings aren’t all great, although most of them are fine.
They are designed not to use a lot of resources, because MySQL is intended to be very
versatile, and it does not assume it is the only thing running on the server on which it
is installed. By default, MySQL uses just enough resources to start and run simple
queries with a little bit of data. You’ll certainly need to customize it if you have more
than a few megabytes of data.

You can start with one of the sample configuration files included with the MySQL server
distribution, but they have their own problems. For example, they have a lot of
commented-out settings that might tempt you to think that you should choose values
and uncomment them (it’s a bit reminiscent of an Apache configuration file). And they
have a lot of prose comments that explain the options, but these explanations are not
always well-balanced, complete, or even correct. Some of the options don’t even apply
to popular operating systems at all! Finally, the samples are perpetually out of date for
modern hardware and workloads.

MySQL experts have had many conversations about how to fix these problems over
the years, but the issues remain. Here’s our suggestion: don’t use those files as a starting
point, and don’t use the samples that ship with your operating system’s packages either.
It’s better to start from scratch.

That’s what we’ll do in this chapter. It’s actually a weakness that MySQL is so config-
urable, because it makes it seem as though you should spend a lot of time on configu-
ration, when in fact most things are fine at their defaults, and you are often better off
setting and forgetting. That’s why we’ve created a sane minimal sample configuration

342 | Chapter 8: Optimizing Server Settings

file for this book, which you can use as a good starting point for your own servers. You
must choose values for a few of the settings; we’ll explain those later in this chapter.
Our base file looks like this:

[mysqld]
GENERAL
datadir = /var/lib/mysql
socket = /var/lib/mysql/mysql.sock
pid_file = /var/lib/mysql/mysql.pid
user = mysql
port = 3306
storage_engine = InnoDB
INNODB
innodb_buffer_pool_size = <value>
innodb_log_file_size = <value>
innodb_file_per_table = 1
innodb_flush_method = O_DIRECT
MyISAM
key_buffer_size = <value>
LOGGING
log_error = /var/lib/mysql/mysql-error.log
log_slow_queries = /var/lib/mysql/mysql-slow.log
OTHER
tmp_table_size = 32M
max_heap_table_size = 32M
query_cache_type = 0
query_cache_size = 0
max_connections = <value>
thread_cache_size = <value>
table_cache_size = <value>
open_files_limit = 65535
[client]
socket = /var/lib/mysql/mysql.sock
port = 3306

This might seem too minimal in comparison to what you’re used to seeing,5 but it’s
actually more than many people need. There are a few other types of configuration
options that you are likely to use as well, such as binary logging; we’ll cover those later
in this and other chapters.

The first thing we configured is the location of the data. We chose /var/lib/mysql for
this, because it’s a popular location on many Unix variants. There is nothing wrong
with choosing another location; you decide. We’ve put the PID file into the same lo-
cation, but many operating systems will want to place it in /var/run instead. That’s fine,
too. We simply needed to have something configured for these settings. By the way,
don’t let the socket and PID file be located according to the server’s compiled-in de-
faults; there are some bugs in various MySQL versions that can cause problems with
this. It’s best to set these locations explicitly. (We’re not advising you to choose different

5. Question: where are the settings for the sort buffer size and read buffer size? Answer: they’re off minding
their own business. Leave them at their defaults unless you can prove the defaults are not good enough.

Creating a MySQL Configuration File | 343

locations; we’re just advising you to make sure the my.cnf file mentions those locations
explicitly, so they won’t change and break things if you upgrade the server.)

We also specified that mysqld should run as the mysql user account on the operating
system. You’ll need to make sure this account exists, and that it owns the data directory.
The port is set to the default of 3306, but sometimes that is something you’ll want to
change.

We’ve chosen the default storage engine to be InnoDB, and this is worth explaining.
We think InnoDB is the best choice in most situations, but that’s not always the case.
Some third-party software, for example, might assume the default is MyISAM, and will
create tables without specifying the engine. This might cause the software to malfunc-
tion if, for example, it assumes that it can create full-text indexes. And the default
storage engine is used for explicitly created temporary tables, too, which can cause
quite a bit of unexpected work for the server. If you want your permanent tables to use
InnoDB but any temporary tables to use MyISAM, you should be sure to specify the
engine explicitly in the CREATE TABLE statement.

In general, if you decide to use a storage engine as your default, it’s best to configure it
as the default. Many users think they use only a specific storage engine, but then dis-
cover another engine has crept into use because of the configured default.

We’ll illustrate the basics of configuration with InnoDB. All InnoDB really needs to run
well in most cases is a proper buffer pool size and log file size. The defaults are far too
small. All of the other settings for InnoDB are optional, although we’ve enabled
innodb_file_per_table for manageability and flexibility reasons. Setting the InnoDB
log file size is a topic that we’ll discuss later in this chapter, as is the setting of innodb
_flush_method, which is Unix-specific.

There’s a popular rule of thumb that says you should set the buffer pool size to around
75% or 80% of your server’s memory. This is another accidental ratio that seems to
work okay sometimes, but isn’t always correct. It’s a better idea to set the buffer pool
roughly as follows:

1. Begin with the amount of memory in the server.

2. Subtract out a bit for the operating system and perhaps for other programs, if
MySQL isn’t the only thing running on the server.

3. Subtract some more for MySQL’s memory needs; it uses various buffers for per-
query operations, for example.

4. Subtract enough for the InnoDB log files, so the operating system has enough
memory to cache them, or at least the recently accessed portion thereof. (This
advice applies to standard MySQL; in Percona Server, you can configure the log
files to be opened with O_DIRECT, bypassing the operating system caches.) It might
also be a good idea to leave some memory free for caching at least the tail of the
binary logs, especially if you have replicas that are delayed, because they can some-
times read old binary log files on the master, causing some pressure on its memory.

344 | Chapter 8: Optimizing Server Settings

5. Subtract enough for any other buffers and caches that you configure inside MySQL,
such as the MyISAM key cache or the query cache.

6. Divide by 105%, which is an approximation of the overhead InnoDB adds on to
manage the buffer pool itself.

7. Round the result down to a sensible number. Rounding down won’t change things
much, but overallocating can be a bad thing.

We were a bit blasé about some of the amounts of memory involved here—what
exactly is “a bit for the operating system,” anyway? That varies, and we’ll discuss it in
some depth later in this chapter and the rest of this book. You need to understand your
system and estimate how much memory you think it’ll need to run well. This is why
one-size-fits-all configuration files are not possible. Experience and sometimes a bit of
math will be your guide.

Here’s an example. Suppose you have a server with 192 GB of memory, and you want
to dedicate it to MySQL and to use only InnoDB, with no query cache and not very
many connections to the server. If your log files are 4 GB in total, you might proceed
as follows: “I think that 2 GB or 5% of overall memory, whichever is larger, should be
enough for the OS and for MySQL’s other memory needs; subtract 4 GB for the log
files; use everything else for InnoDB.” The result is about 177 GB, but it’s probably a
good idea to round that down a bit. You might configure the server with 168 GB or so
of buffer pool. If the server tends to run with a fair amount of unallocated memory in
practice, you might set the buffer pool larger when there is an opportunity to restart it
for some other purpose.

The result would be very different if you had a number of MyISAM tables and needed
to cache their indexes, naturally. It would also be quite different on Windows, which
has trouble using large amounts of memory in most MySQL versions (although it’s
improved in MySQL 5.5), or if you chose not to use O_DIRECT for some reason.

As you can see, it’s not crucial to get this setting precisely right from the beginning. It’s
better to start with a safe value that’s larger than the default but not as large as it could
be, run the server for a while, and see how much memory it really uses. These things
can be hard to anticipate, because MySQL’s memory usage isn’t always predictable: it
can depend on factors such as the query complexity and concurrency. With a simple
workload, MySQL’s memory needs are pretty minimal—around 256 KB per connec-
tion. But complex queries that use temporary tables, sorting, stored procedures, and
so forth can use a lot more RAM.

That’s why we chose a pretty safe starting point. You can see that even the conservative
setting for InnoDB’s buffer pool is actually 87.5% of the server’s installed RAM—more
than 75%, which is why we said that simple ratios aren’t the right approach.

We suggest that when it comes to configuring the memory buffers, you err on the side
of caution, rather than making them too large. If you make the buffer pool 20% smaller
than it could be, you’ll likely impact performance only a small amount—maybe a few

Creating a MySQL Configuration File | 345

percent. If you set it 20% too large, you’ll probably cause much more severe problems:
swapping, thrashing the disks, or even running out of memory and crashing hard.

This InnoDB configuration example illustrates our preferred approach to configuring
the server: understand what it does internally and how that interacts with the settings,
and then decide.

Time Changes Everything
The need to configure MySQL’s memory buffers precisely has become less important
over time. When a powerful server had 4 GB of memory, we worked hard to balance
its resources so it could run a thousand connections. This typically required us to re-
serve a gigabyte or so for MySQL’s needs, which was a quarter of the server’s total
memory and greatly influenced how we sized the buffer pool.

Nowadays a comparable server has 144 GB of memory, but we typically see about the
same number of connections in most applications, and the per-connection buffers
haven’t really changed much either. As a result, we might generously reserve 4 GB of
memory for MySQL, which is a drop in the bucket. It doesn’t impact how we size the
buffer pool very much.

Most of the other settings in our sample file are pretty self-explanatory, and many of
them are a matter of judgment. We’ll explore several of them in the rest of this chapter.
You can see that we’ve enabled logging, disabled the query cache, and so on. We’ll also
discuss some safety and sanity settings later in this chapter, which can be very helpful
for making your server more robust and helping prevent bad data and other problems.
We don’t show those settings here.

One setting to explain here is the open_files_limit option. We’ve set this as large as
possible on a typical Linux system. Open filehandles are very cheap on modern oper-
ating systems. If this setting isn’t large enough, you’ll see error 24, “too many open
files.”

Skipping all the way to the end, the last section in the configuration file is for client
programs such as mysql and mysqladmin, and simply lets them know how to connect
to the server. You should set the values for client programs to match those you chose
for the server.

Inspecting MySQL Server Status Variables
Sometimes you can use the output from SHOW GLOBAL STATUS as input to your configu-
ration to help customize the settings better for your workload. For the best results, look
both at absolute values and at how the values change over time, preferably with several
snapshots at peak and off-peak times. You can use the following command to see in-
cremental changes to status variables every 60 seconds:

$ mysqladmin extended-status -ri60

346 | Chapter 8: Optimizing Server Settings

We will frequently refer to changes in status variables over time as we explain various
configuration settings. We will usually expect you to be examining the output of a
command such as the one we just showed. Other helpful tools that can provide a
compact display of status counter changes are Percona Toolkit’s pt-mext or pt-mysql-
summary.

Now that we’ve shown you the preliminaries, we’ll take you on a guided tour of some
server internals, interleaved with advice on configuration. This will give you the back-
ground you’ll need to choose appropriate values for configuration options when we
return to the sample configuration file later.

Configuring Memory Usage
Configuring MySQL to use memory correctly is vital to good performance. You’ll al-
most certainly need to customize MySQL’s memory usage for your needs. You can
think of MySQL’s memory consumption as falling into two categories: the memory
you can control, and the memory you can’t. You can’t control how much memory
MySQL uses merely to run the server, parse queries, and manage its internals, but you
have a lot of control over how much memory it uses for specific purposes. Making good
use of the memory you can control is not hard, but it does require you to know what
you’re configuring.

As shown previously, you can approach memory configuration in steps:

1. Determine the absolute upper limit of memory MySQL can possibly use.

2. Determine how much memory MySQL will use for per-connection needs, such as
sort buffers and temporary tables.

3. Determine how much memory the operating system needs to run well. Include
memory for other programs that run on the same machine, such as periodic jobs.

4. Assuming that it makes sense to do so, use the rest of the memory for MySQL’s
caches, such as the InnoDB buffer pool.

We go over each of these steps in the following sections, and then we take a more
detailed look at the various MySQL caches’ requirements.

How Much Memory Can MySQL Use?
There is a hard upper limit on the amount of memory that can possibly be available to
MySQL on any given system. The starting point is the amount of physically installed
memory. If your server doesn’t have it, MySQL can’t use it.

You also need to think about operating system or architecture limits, such as
restrictions 32-bit operating systems place on how much memory a given process can
address. Because MySQL runs in a single process with multiple threads, the amount of
memory it can use overall might be severely limited by such restrictions—for example,

Configuring Memory Usage | 347

32-bit Linux kernels limit the amount of memory any one process can address to a value
that is typically between 2.5 and 2.7 GB. Running out of address space is very dangerous
and can cause MySQL to crash. This is pretty rare to see these days, but it used to be
common.

There are many other operating system–specific parameters and oddities that must be
taken into account, including not just the per-process limits, but also stack sizes and
other settings. The system’s glibc libraries can also impose limits per single allocation.
For example, you might not be able to set innodb_buffer_pool larger than 2 GB if that’s
all your glibc libraries support in a single allocation.

Even on 64-bit servers, some limitations still apply. For example, many of the buffers
we discuss, such as the key buffer, are limited to 4 GB on a 64-bit server in 5.0 and
older MySQL versions. Some of these restrictions are lifted in MySQL 5.1, and the
MySQL manual documents each variable’s maximum value.

Per-Connection Memory Needs
MySQL needs a small amount of memory just to hold a connection (thread) open. It
also requires a base amount of memory to execute any given query. You’ll need to set
aside enough memory for MySQL to execute queries during peak load times. Other-
wise, your queries will be starved for memory, and they will run poorly or fail.

It’s useful to know how much memory MySQL will consume during peak usage, but
some usage patterns can unexpectedly consume a lot of memory, which makes this
hard to predict. Prepared statements are one example, because you can have many of
them open at once. Another example is the InnoDB data dictionary (more about this
later).

You don’t need to assume a worst-case scenario when trying to predict peak memory
consumption. For example, if you configure MySQL to allow a maximum of 100 con-
nections, it theoretically might be possible to simultaneously run large queries on all
100 connections, but in reality this probably won’t happen. For example, if you set
myisam_sort_buffer_size to 256M, your worst-case usage is at least 25 GB, but this level
of consumption is highly unlikely to actually occur. Queries that use many large tem-
porary tables, or complex stored procedures, are the most likely causes of high per-
connection memory consumption.

Rather than calculating worst cases, a better approach is to watch your server under a
real workload and see how much memory it uses, which you can see by watching the
process’s virtual memory size. In many Unix-like systems, this is reported in the VIRT
column in top, or VSZ in ps. The next chapter has more information on how to monitor
memory usage.

348 | Chapter 8: Optimizing Server Settings

Reserving Memory for the Operating System
Just as with queries, you need to reserve enough memory for the operating system to
do its work. The best indication that the operating system has enough memory is that
it’s not actively swapping (paging) virtual memory to disk. (See the next chapter for
more on this topic.)

You should reserve at least a gigabyte or two for the operating system—more for ma-
chines with a lot of memory. We suggest starting with 2 GB or 5% of total memory as
the baseline, whichever is greater. Add in some extra for safety, and add in some more
if you’ll be running periodic memory-intensive jobs on the machine (such as backups).
Don’t add any memory for the operating system’s caches, because they can be very
large. The operating system will generally use any leftover memory for these caches,
and we consider them separately from the operating system’s own needs in the follow-
ing sections.

Allocating Memory for Caches
If the server is dedicated to MySQL, any memory you don’t reserve for the operating
system or for query processing is available for caches.

MySQL needs more memory for caches than anything else. It uses caches to avoid disk
access, which is orders of magnitude slower than accessing data in memory. The op-
erating system might cache some data on MySQL’s behalf (especially for MyISAM),
but MySQL needs lots of memory for itself, too.

The following are the most important caches to consider for most installations:

• The InnoDB buffer pool

• The operating system caches for InnoDB log files and MyISAM data

• MyISAM key caches

• The query cache

• Caches you can’t really configure, such as the operating system’s caches of binary
logs and table definition files

There are other caches, but they generally don’t use much memory. We discussed the
query cache in detail in the previous chapter, so the following sections concentrate on
the caches InnoDB and MyISAM need to work well.

It is much easier to configure a server if you’re using only one storage engine. If you’re
using only MyISAM tables, you can disable InnoDB completely, and if you’re using
only InnoDB, you need to allocate only minimal resources for MyISAM (MySQL uses
MyISAM tables internally for some operations). But if you’re using a mixture of storage
engines, it can be very hard to figure out the right balance between them. The best
approach we’ve found is to make an educated guess and then observe the server in
operation.

Configuring Memory Usage | 349

The InnoDB Buffer Pool
If you use mostly InnoDB tables, the InnoDB buffer pool probably needs more memory
than anything else. The InnoDB buffer pool doesn’t just cache indexes: it also holds
row data, the adaptive hash index, the insert buffer, locks, and other internal structures.
InnoDB also uses the buffer pool to help it delay writes, so it can merge many writes
together and perform them sequentially. In short, InnoDB relies heavily on the buffer
pool, and you should be sure to allocate enough memory to it, typically with a process
such as that shown earlier in this chapter. You can use variables from SHOW commands
or tools such as innotop to monitor your InnoDB buffer pool’s memory usage.

If you don’t have much data, and you know that your data won’t grow quickly, you
don’t need to overallocate memory to the buffer pool. It’s not really beneficial to make
it much larger than the size of the tables and indexes that it will hold. There’s nothing
wrong with planning ahead for a rapidly growing database, of course, but sometimes
we see huge buffer pools with a tiny amount of data. This isn’t necessary.

Large buffer pools come with some challenges, such as long shutdown and warmup
times. If there are a lot of dirty (modified) pages in the buffer pool InnoDB can take a
long time to shut down, because it writes the dirty pages to the data files upon shut-
down. You can force it to shut down quickly, but then it just has to do more recovery
when it restarts, so you can’t actually speed up the shutdown and restart cycle time. If
you know in advance when you need to shut down, you can change the innodb_
max_dirty_pages_pct variable at runtime to a lower value, wait for the flush thread to
clean up the buffer pool, and then shut down once the number of dirty pages becomes
small. You can monitor the number of dirty pages by watching the Innodb
_buffer_pool_pages_dirty server status variable or using innotop to monitor SHOW
INNODB STATUS.

Lowering the value of the innodb_max_dirty_pages_pct variable doesn’t actually guar-
antee that InnoDB will keep fewer dirty pages in the buffer pool. Instead, it controls
the threshold at which InnoDB stops being “lazy.” InnoDB’s default behavior is to
flush dirty pages with a background thread, merging writes together and performing
them sequentially for efficiency. This behavior is called “lazy” because it lets InnoDB
delay flushing dirty pages in the buffer pool, unless it needs to use the space for some
other data. When the percentage of dirty pages exceeds the threshold, InnoDB will
flush pages as quickly as it can to try to keep the dirty page count lower. InnoDB will
also go into “furious flushing” mode when there isn’t enough space left in the trans-
action logs, which is one reason that large logs can improve performance.

When you have a large buffer pool, especially in combination with slow disks, the server
might take a long time (many hours or even days) to warm up after a restart. In such
cases, you might benefit from using Percona Server’s feature to reload the pages after
restart. This can reduce warmup times to a few minutes. MySQL 5.6 will introduce a
similar feature. This is especially beneficial on replicas, which pay an extra warmup
penalty due to the single-threaded nature of replication.

350 | Chapter 8: Optimizing Server Settings

If you can’t use Percona Server’s fast warmup feature, some people issue full-table scans
or index scans immediately after a restart to load indexes into the buffer pool. This is
crude, but can sometimes be better than nothing. You can use the init_file setting to
accomplish this. You can place SQL into a file that’s executed when MySQL starts up.
The filename must be specified in the init_file option, and the file can include
multiple SQL commands, each on a single line (no comments are allowed).

The MyISAM Key Caches
The MyISAM key caches are also referred to as key buffers; there is one by default, but
you can create more. Unlike InnoDB and some other storage engines, MyISAM itself
caches only indexes, not data (it lets the operating system cache the data). If you use
mostly MyISAM, you should allocate a lot of memory to the key caches.

The most important option is the key_buffer_size. Any memory not allocated to it will
be available for the operating system caches, which the operating system will usually
fill with data from MyISAM’s .MYD files. MySQL 5.0 has a hard upper limit of 4 GB
for this variable, no matter what architecture you’re running. MySQL 5.1 allows larger
sizes. Check the current documentation for your version of the server.

When you’re deciding how much memory to allocate to the key caches, it might help
to know how much space your MyISAM indexes are actually using on disk. You don’t
need to make the key buffers larger than the data they will cache. You can query the
INFORMATION_SCHEMA tables and sum up the INDEX_LENGTH column to find out the size of
the files storing the indexes:

SELECT SUM(INDEX_LENGTH) FROM INFORMATION_SCHEMA.TABLES WHERE ENGINE='MYISAM';

If you have a Unix-like system, you can also use a command like the following:

$ du -sch `find /path/to/mysql/data/directory/ -name "*.MYI"`

How big should you set the key caches? No bigger than the total index size or 25% to
50% of the amount of memory you reserved for operating system caches, whichever is
smaller.

By default, MyISAM caches all indexes in the default key buffer, but you can create
multiple named key buffers. This lets you keep more than 4 GB of indexes in memory
at once. To create key buffers named key_buffer_1 and key_buffer_2, each sized at
1 GB, place the following in the configuration file:

key_buffer_1.key_buffer_size = 1G
key_buffer_2.key_buffer_size = 1G

Now there are three key buffers: the two explicitly created by those lines and the default
buffer. You can use the CACHE INDEX command to map tables to caches. You can tell
MySQL to use key_buffer_1 for the indexes from tables t1 and t2 with the following
SQL statement:

mysql> CACHE INDEX t1, t2 IN key_buffer_1;

Configuring Memory Usage | 351

Now when MySQL reads blocks from the indexes on these tables, it will cache the
blocks in the specified buffer. You can also preload the tables’ indexes into the cache
with the init_file option and the LOAD INDEX command:

mysql> LOAD INDEX INTO CACHE t1, t2;

Any indexes you don’t explicitly map to a key buffer will be assigned to the default
buffer the first time MySQL needs to access the .MYI file.

You can monitor key buffer usage with information from SHOW STATUS and SHOW VARI
ABLES. You can calculate the percentage of the buffer in use with this equation:

100 - ((Key_blocks_unused * key_cache_block_size) * 100 / key_buffer_size)

If the server doesn’t use all of its key buffer after it’s been running for a long time, you
can consider making the buffer smaller.

What about the key buffer hit ratio? As we explained previously, this number is useless.
For example, the difference between 99% and 99.9% looks small, but it really repre-
sents a tenfold increase. The cache hit ratio is also application-dependent: some ap-
plications might work fine at 95%, whereas others might be I/O-bound at 99.9%. You
might even be able to get a 99.99% hit ratio with properly sized caches.

The number of cache misses per second is much more empirically useful. Suppose you
have a single hard drive that can do 100 random reads per second. Five misses per
second will not cause your workload to be I/O-bound, but 80 per second will likely
cause problems. You can use the following equation to calculate this value:

Key_reads / Uptime

Calculate the number of misses incrementally over intervals of 10 to 100 seconds, so
you can get an idea of the current performance. The following command will show the
incremental values every 10 seconds:

$ mysqladmin extended-status -r -i 10 | grep Key_reads

Remember that MyISAM uses the operating system cache for the data files, which are
often larger than the indexes. Therefore, it often makes sense to leave more memory
for the operating system cache than for the key caches. Even if you have enough memory
to cache all the indexes, and the key cache miss rate is very low, cache misses when
MyISAM tries to read from the data files (not the index files!) happen at the operating
system level, which is completely invisible to MySQL. Thus, you can have a lot of data
file cache misses independently of your index cache miss rate.

Finally, even if you don’t have any MyISAM tables, bear in mind that you still need to
set key_buffer_size to a small amount of memory, such as 32M. The MySQL server
sometimes uses MyISAM tables for internal purposes, such as temporary tables for
GROUP BY queries.

352 | Chapter 8: Optimizing Server Settings

The MyISAM key block size

The key block size is important (especially for write-intensive workloads) because of
the way it causes MyISAM, the operating system cache, and the filesystem to interact.
If the key block size is too small, you might encounter read-around writes, which are
writes that the operating system cannot perform without first reading some data from
the disk. Here’s how a read-around write happens, assuming the operating system’s
page size is 4 KB (typically true on the x86 architecture) and the key block size is 1 KB:

1. MyISAM requests a 1 KB key block from disk.

2. The operating system reads 4 KB of data from the disk and caches it, then passes
the desired 1 KB of data to MyISAM.

3. The operating system discards the cached data in favor of some other data.

4. MyISAM modifies the 1 KB key block and asks the operating system to write it
back to disk.

5. The operating system reads the same 4 KB of data from the disk into the operating
system cache, modifies the 1 KB that MyISAM changed, and writes the entire 4 KB
back to disk.

The read-around write happened in step 5, when MyISAM asked the operating system
to write only part of a 4 KB page. If MyISAM’s block size had matched the operating
system’s, the disk read in step 5 could have been avoided.6

Unfortunately, in MySQL 5.0 and earlier there’s no way to configure the key block
size. However, in MySQL 5.1 and later you can avoid read-around writes by making
MyISAM’s key block size the same as the operating system’s. The myisam_block_size
variable controls the key block size. You can also specify the size for each key with the
KEY_BLOCK_SIZE option in a CREATE TABLE or CREATE INDEX statement, but because all
keys are stored in the same file, you really need all of them to have blocks as large as
or larger than the operating system’s to avoid alignment issues that could still cause
read-around writes. (For example, if one key has 1 KB blocks and another has 4 KB
blocks, the 4 KB block boundaries might not match the operating system’s page
boundaries.)

The Thread Cache
The thread cache holds threads that aren’t currently associated with a connection but
are ready to serve new connections. When there’s a thread in the cache and a new
connection is created, MySQL removes the thread from the cache and gives it to the
new connection. When the connection is closed, MySQL places the thread back into

6. Theoretically, if you could ensure that the original 4 KB of data was still in the operating system’s cache,
the read wouldn’t be needed. However, you have no control over which blocks the operating system
decides to keep in its cache. You can find out which blocks are in the cache with the fincore tool, available
at http://net.doit.wisc.edu/~plonka/fincore/.

Configuring Memory Usage | 353

http://net.doit.wisc.edu/~plonka/fincore/

the cache, if there’s room. If there isn’t room, MySQL destroys the thread. As long as
MySQL has a free thread in the cache it can respond rapidly to connection requests,
because it doesn’t have to create a new thread for each connection.

The thread_cache_size variable specifies the number of threads MySQL can keep in
the cache. You probably won’t need to configure this value unless your server gets many
connection requests. To check whether the thread cache is large enough, watch the
Threads_created status variable. We generally try to keep the thread cache large enough
that we see fewer than 10 new threads created each second, but it’s often pretty easy
to get this number lower than 1 per second.

A good approach is to watch the Threads_connected variable and try to set thread
_cache_size large enough to handle the typical fluctuation in your workload. For ex-
ample, if Threads_connected usually stays between 100 and 120, you can set the cache
size to 20. If it stays between 500 and 700, a thread cache of 200 should be large enough.
Think of it this way: at 700 connections, there are probably no threads in the cache; at
500 connections, there are 200 cached threads ready to be used if the load increases to
700 again.

Making the thread cache very large is probably not necessary for most uses, but keeping
it small doesn’t save much memory, so there’s little benefit in doing so. Each thread
that’s in the thread cache or sleeping typically uses around 256 KB of memory. This is
not very much compared to the amount of memory a thread can use when a connection
is actively processing a query. In general, you should keep your thread cache large
enough that Threads_created doesn’t increase very often. If this is a very large number,
however (e.g., many thousand threads), you might want to set it lower because some
operating systems don’t handle very large numbers of threads well, even when most of
them are sleeping.

The Table Cache
The table cache is similar in concept to the thread cache, but it stores objects that
represent tables. Each object in the cache contains the associated table’s parsed .frm
file, plus other data. Exactly what else is in the object depends on the table’s storage
engine. For example, for MyISAM, it holds the table data and/or index file descriptors.
For merge tables it might hold many file descriptors, because merge tables can have
many underlying tables.

The table cache can help you reuse resources. For instance, when a query requests
access to a MyISAM table, MySQL might be able to give it a file descriptor from the
cached object. Although this does avoid the cost of opening a file descriptor, that’s not
as expensive as you might think. Opening and closing file descriptors is very fast on
local storage; the server should be able to do it a million times a second easily (it’s
different on network-attached storage, though). The real benefit of the table cache is
for MyISAM tables, where it lets the server avoid modifying the MyISAM file headers
to mark a table as “in use.”7

354 | Chapter 8: Optimizing Server Settings

The table cache’s design is one of the areas where the separation between the server
and the storage engines is not completely clean, for historical reasons. The table cache
is a little less important for InnoDB, because InnoDB doesn’t rely on it for as many
purposes (such as holding file descriptors; it has its own version of a table cache for
this purpose). However, even InnoDB benefits from caching the parsed .frm files.

In MySQL 5.1, the table cache is separated into two parts: a cache of open tables and
a table definition cache (configured via the table_open_cache and table_definition
_cache variables). Thus, the table definitions (the parsed .frm files) are separated from
the other resources, such as file descriptors. Opened tables are still per-thread, per-
table-used, but the table definitions are global and can be shared among all connections
efficiently. You can generally set table_definition_cache high enough to cache all your
table definitions. Unless you have tens of thousands of tables, this is likely to be the
easiest approach.

If the Opened_tables status variable is large or increasing, the table cache might not be
large enough, and you can consider increasing the table_cache system variable (or
table_open_cache, in MySQL 5.1). However, note that this counter increases when you
create and drop temporary tables, so if you do that a lot, you’ll never get the counter
to stop increasing.

One downside to making the table cache very large is that it might cause longer shut-
down times when your server has a lot of MyISAM tables, because the key blocks have
to be flushed and the tables have to be marked as no longer open. It can also make
FLUSH TABLES WITH READ LOCK take a long time to complete, for the same reason.

More seriously, the algorithms that check the table cache aren’t very efficient; more on
this later.

If you get errors indicating that MySQL can’t open any more files (use the perror utility
to check what the error number means), you might need to increase the number of files
MySQL is allowed to keep open. You can do this with the open_files_limit server
variable in your my.cnf file.

The thread and table caches don’t really use much memory, and they can be beneficial
when they conserve resources. Although creating a new thread and opening a new table
aren’t really expensive compared to other things MySQL might do, the overhead can
add up. Caching threads and tables can sometimes improve efficiency.

7. The concept of an “opened table” can be a little confusing. MySQL counts a table as opened many times
when different queries are accessing it simultaneously, or even when a single query refers to the same
table more than once, as in a subquery or a self-join. MyISAM’s index files contain a counter that MyISAM
increments when the table is opened and decrements when it is closed. This lets MyISAM see when the
table wasn’t closed cleanly: if it opens a table for the first time and the counter is not zero, the table wasn’t
closed cleanly.

Configuring Memory Usage | 355

The InnoDB Data Dictionary
InnoDB has its own per-table cache, variously called a table definition cache or data
dictionary, which you cannot configure in current versions of MySQL. When InnoDB
opens a table, it adds a corresponding object to the data dictionary. Each table can take
up 4 KB or more of memory (although much less space is required in MySQL 5.1).
Tables are not removed from the data dictionary when they are closed.

As a result, the server can appear to leak memory over time, due to an ever-increasing
number of entries in the dictionary cache. It isn’t truly leaking memory; it just isn’t
implementing any kind of cache expiration. This is normally a problem only when you
have many (thousands or tens of thousands) large tables. If this is a problem for you,
you can use Percona Server, which has an option to limit the data dictionary’s size by
removing tables that are unused. There is a similar feature in the yet-to-be-released
MySQL 5.6.

The other performance issue is computing statistics for the tables when opening them
for the first time, which is expensive because it requires a lot of I/O. In contrast to
MyISAM, InnoDB doesn’t store statistics in the tables permanently; it recomputes them
each time it starts, and thereafter when various intervals expire or events occur (changes
to the table’s contents, queries against the INFORMATION_SCHEMA, and so on). If you have
a lot of tables, your server can take hours to start and fully warm up, during which time
it might not be doing much other than waiting for one I/O operation after another. You
can enable the innodb_use_sys_stats_table option in Percona Server (also in MySQL
5.6, but called innodb_analyze_is_persistent) to store the statistics persistently on disk
and solve this problem.

Even after startup, InnoDB statistics operations can have an impact on the server and
on individual queries. You can turn off the innodb_stats_on_metadata option to avoid
time-consuming refreshes of table statistics. This can make a big difference when tools
such as IDEs are querying the INFORMATION_SCHEMA tables.

If you use InnoDB’s innodb_file_per_table option (described later), there’s a separate
limit on the number of .ibd files InnoDB can keep open at any time. This is handled by
the InnoDB storage engine, not the MySQL server, and is controlled by innodb
_open_files. InnoDB doesn’t open files the same way MyISAM does: whereas MyISAM
uses the table cache to hold file descriptors for open tables, in InnoDB there is no direct
relationship between open tables and open files. InnoDB uses a single, global file de-
scriptor for each .ibd file. If you can afford it, it’s best to set innodb_open_files large
enough that the server can keep all .ibd files open simultaneously.

Configuring MySQL’s I/O Behavior
A few configuration options affect how MySQL synchronizes data to disk and performs
recovery. These can affect performance dramatically, because they involve expensive
I/O operations. They also represent a trade-off between performance and data safety.

356 | Chapter 8: Optimizing Server Settings

In general, it’s expensive to ensure that your data is written to disk immediately and
consistently. If you’re willing to risk the danger that a disk write won’t really make it
to permanent storage, you can increase concurrency and/or reduce I/O waits, but you’ll
have to decide for yourself how much risk you can tolerate.

InnoDB I/O Configuration
InnoDB permits you to control not only how it recovers, but also how it opens and
flushes its data, which greatly affects recovery and overall performance. InnoDB’s re-
covery process is automatic and always runs when InnoDB starts, though you can in-
fluence what actions it takes. Leaving aside recovery and assuming nothing ever crashes
or goes wrong, there’s still a lot to configure for InnoDB. It has a complex chain of
buffers and files designed to increase performance and guarantee ACID properties, and
each piece of the chain is configurable. Figure 8-1 illustrates these files and buffers.

A few of the most important things to change for normal usage are the InnoDB log file
size, how InnoDB flushes its log buffer, and how InnoDB performs I/O.

The InnoDB transaction log

InnoDB uses its log to reduce the cost of committing transactions. Instead of flushing
the buffer pool to disk when each transaction commits, it logs the transactions. The
changes transactions make to data and indexes often map to random locations in the
tablespace, so flushing these changes to disk would require random I/O. InnoDB as-
sumes it’s using conventional disks, where random I/O is much more expensive than
sequential I/O because of the time it takes to seek to the correct location on disk and
wait for the desired part of the disk to rotate under the head.

InnoDB uses its log to convert this random disk I/O into sequential I/O. Once the log
is safely on disk, the transactions are permanent, even though the changes haven’t been
written to the data files yet. If something bad happens (such as a power failure), InnoDB
can replay the log and recover the committed transactions.

Of course, InnoDB does ultimately have to write the changes to the data files, because
the log has a fixed size. It writes to the log in a circular fashion: when it reaches the end
of the log, it wraps around to the beginning. It can’t overwrite a log record if the changes
contained there haven’t been applied to the data files, because this would erase the only
permanent record of the committed transaction.

InnoDB uses a background thread to flush the changes to the data files intelligently.
This thread can group writes together and make the data writes sequential, for im-
proved efficiency. In effect, the transaction log converts random data file I/O into
mostly sequential log file and data file I/O. Moving flushes into the background makes
queries complete more quickly and helps cushion the I/O system from spikes in the
query load.

Configuring MySQL’s I/O Behavior | 357

The overall log file size is controlled by innodb_log_file_size and innodb_log
_files_in_group, and it’s very important for write performance. The total size is the
sum of each file’s size. By default there are two 5 MB files, for a total of 10 MB. This is
much too small for a high-performance workload. You need hundreds of megabytes,
or even gigabytes, of log files.

InnoDB uses multiple files as a single circular log. You usually don’t need to change
the default number of logs, just the size of each log file. To change the log file size, shut
down MySQL cleanly, move the old logs away, reconfigure, and restart. Be sure MySQL
shuts down cleanly, or the log files will actually have entries that need to be applied to
the data files! Watch the MySQL error log when you restart the server. After you’ve
restarted successfully, you can delete the old log files.

To determine the ideal size for your log files, you’ll have to
weigh the overhead of routine data changes against the recovery time required in the
event of a crash. If the log is too small, InnoDB will have to do more checkpoints,
causing more log writes. In extreme cases, write queries might stall and have to wait
for changes to be applied to the data files before there is room to write into the log. On
the other hand, if the log is too large, InnoDB might have to do a lot of work when it
recovers. This can greatly increase recovery time, although this process is much more
efficient in newer MySQL versions.

Log file size and the log buffer.

Figure 8-1. InnoDB’s buffers and files

358 | Chapter 8: Optimizing Server Settings

Your data size and access patterns will influence the recovery time, too. Suppose you
have a terabyte of data and 16 GB of buffer pool, and your total log size is 128 MB. If
you have a lot of dirty pages (i.e., pages whose changes have not yet been flushed to
the data files) in the buffer pool and they are uniformly spread across your terabyte of
data, recovery after a crash might take a long time. InnoDB will have to scan through
the log, examine the data files, and apply changes to the data files as needed. That’s a
lot of reading and writing! On the other hand, if the changes are localized—say, if only
a few hundred megabytes of data are updated frequently—recovery might be fast, even
when your data and log files are huge. Recovery time also depends on the size of a
typical modification, which is related to your average row length. Short rows let more
modifications fit in the log, so InnoDB might need to replay more modifications on
recovery.8

When InnoDB changes any data, it writes a record of the change into its log buffer,
which it keeps in memory. InnoDB flushes the buffer to the log files on disk when the
buffer gets full, when a transaction commits, or once per second—whichever comes
first. Increasing the buffer size, which is 1 MB by default, can help reduce I/O if you
have large transactions. The variable that controls the buffer size is called innodb_
log_buffer_size.

You usually don’t need to make the buffer very large. The recommended range is 1 to
8 MB, and this usually will be enough unless you write a lot of huge BLOB records. The
log entries are very compact compared to InnoDB’s normal data. They are not page-
based, so they don’t waste space storing whole pages at a time. InnoDB also makes log
entries as short as possible. They are sometimes even stored as the function number
and parameters of a C function!

There’s an additional circumstance where a larger value might be beneficial: when it
can reduce contention during allocation of space in the buffer. When we’re configuring
servers with a large amount of memory, we’ll sometimes allocate 32 to 128 MB of log
buffer simply because spending such a relatively small amount of extra memory is not
detrimental and it can help avoid pressure on a bottleneck. The bottleneck shows up
as contention on the log buffer mutex when it’s a problem.

You can monitor InnoDB’s log and log buffer I/O performance by inspecting the LOG
section of the output of SHOW INNODB STATUS, and by watching the Innodb_os_log_
written status variable to see how much data InnoDB writes to the log files. A good
rule of thumb is to watch it over intervals of 10 to 100 seconds and note the peak value.
You can use this to judge whether your log buffer is sized right. For example, if you see
a peak of 100 KB written to the log per second, a 1 MB log buffer is probably plenty.

You can also use this metric to decide on a good size for your log files. If the peak is
100 KB per second, a 256 MB log file is enough to store at least 2,560 seconds of log

8. For the curious, Percona Server’s innodb_recovery_stats option can help you understand your server’s
workload from the standpoint of performing crash recovery.

Configuring MySQL’s I/O Behavior | 359

entries, which is likely to be enough. As a rule of thumb, you can make your total log
file size large enough to hold an hour’s worth of server activity.

When InnoDB flushes the log buffer to the log files on
disk, it locks the buffer with a mutex, flushes it up to the desired point, and then moves
any remaining entries to the front of the buffer. It is possible that more than one trans-
action will be ready to flush its log entries when the mutex is released. InnoDB has a
group commit feature that can commit all of them to the log in a single I/O operation,
but this is broken in MySQL 5.0 when the binary log is enabled. We wrote about group
commit in the previous chapter.

The log buffer must be flushed to durable storage to ensure that committed transactions
are fully durable. If you care more about performance than durability, you can change
innodb_flush_log_at_trx_commit to control where and how often the log buffer is
flushed. Possible settings are as follows:

0
Write the log buffer to the log file and flush the log file every second, but do nothing
at transaction commit.

1
Write the log buffer to the log file and flush it to durable storage every time a
transaction commits. This is the default (and safest) setting; it guarantees that you
won’t lose any committed transactions, unless the disk or operating system “fakes”
the flush operation.

2
Write the log buffer to the log file at every commit, but don’t flush it. InnoDB
schedules a flush once every second. The most important difference from the 0
setting (and what makes 2 the preferable setting) is that 2 won’t lose any transac-
tions if the MySQL process crashes. If the entire server crashes or loses power,
however, you can still lose transactions.

It’s important to know the difference between writing the log buffer to the log file and
flushing the log to durable storage. In most operating systems, writing the buffer to the
log simply moves the data from InnoDB’s memory buffer to the operating system’s
cache, which is also in memory. It doesn’t actually write the data to durable storage.
Thus, settings 0 and 2 usually result in at most one second of lost data if there’s a crash
or a power outage, because the data might exist only in the operating system’s cache.
We say “usually” because InnoDB tries to flush the log file to disk about once per second
no matter what, but it is possible to lose more than a second of transactions in some
cases, such as when a flush gets stalled.

In contrast, flushing the log to durable storage means InnoDB asks the operating
system to actually flush the data out of the cache and ensure it is written to the disk.
This is a blocking I/O call that doesn’t complete until the data is completely written.
Because writing data to a disk is slow, this can dramatically reduce the number of
transactions InnoDB can commit per second when innodb_flush_log_at_trx_commit is

How InnoDB flushes the log buffer.

360 | Chapter 8: Optimizing Server Settings

set to 1. Today’s high-speed drives9 can perform only a couple of hundred real disk
transactions per second, simply because of the limitations of drive rotation speed and
seek time.

Sometimes the hard disk controller or operating system fakes a flush by putting the
data into yet another cache, such as the hard disk’s own cache. This is faster but very
dangerous, because the data might still be lost if the drive loses power. This is even
worse than setting innodb_flush_log_at_trx_commit to something other than 1, because
it can cause data corruption, not just lost transactions.

Setting innodb_flush_log_at_trx_commit to anything other than 1 can cause you to lose
transactions. However, you might find the other settings useful if you don’t care about
durability (the D in ACID). Maybe you just want some of InnoDB’s other features, such
as clustered indexes, resistance to data corruption, and row-level locking. This is not
uncommon when using InnoDB to replace MyISAM solely for performance reasons.

The best configuration for high-performance transactional needs is to leave innodb_
flush_log_at_trx_commit set to 1 and place the log files on a RAID volume with a
battery-backed write cache. This is both safe and very fast. In fact, we dare say that any
production database server that’s expected to handle a serious workload needs to have
this kind of hardware.

Percona Server extends innodb_flush_log_at_trx_commit to make it a per-session
variable, instead of global for the whole server. This allows applications with varying
performance and durability needs to use the same database, and avoids the one-size-
fits-all solution offered by standard MySQL.

How InnoDB opens and flushes log and data files

The innodb_flush_method option lets you configure how InnoDB actually interacts with
the filesystem. Despite its name, it can affect how InnoDB reads data, not just how it
writes it. The Windows and non-Windows values for this option are mutually exclu-
sive: you can use async_unbuffered, unbuffered, and normal only on Windows, and you
cannot use any other values on Windows. The default value is unbuffered on Windows
and fdatasync on all other systems. (If SHOW GLOBAL VARIABLES shows the variable with
an empty value, that means it’s set to the default.)

Changing how InnoDB performs I/O operations can impact perfor-
mance greatly, so be sure you understand what you’re doing before you
change anything!

This is a slightly confusing option, because it affects both the log files and the data files,
and it sometimes does different things to each kind of file. It would be nice to have one

9. We’re talking about spindle-based disk drives with rotating platters, not solid-state hard drives, which
have completely different performance characteristics.

Configuring MySQL’s I/O Behavior | 361

configuration option for the logs and another for the data files, but they’re combined.
Here are the possible values:

fdatasync
The default value on non-Windows systems: InnoDB uses fsync() to flush both
data and log files.

InnoDB generally uses fsync() instead of fdatasync(), even though this value
seems to indicate the contrary. fdatasync() is like fsync(), except it flushes only
the file’s data, not its metadata (last modified time, etc.). Therefore, fsync() can
cause more I/O. However, the InnoDB developers are very conservative, and they
found that fdatasync() caused corruption in some cases. InnoDB determines
which methods can be used safely; some options are set at compile time and some
are discovered at runtime. It uses the fastest safe method it can.

The disadvantage of using fsync() is that the operating system buffers at least some
of the data in its own cache. In theory, this is wasteful double buffering, because
InnoDB manages its own buffers more intelligently than the operating system can.
However, the ultimate effect is very system- and filesystem-dependent. The double
buffering might not be a bad thing if it lets the filesystem do smarter I/O scheduling
and batching. Some filesystems and operating systems can accumulate writes and
execute them together, reorder them for efficiency, or write to multiple devices in
parallel. They might also do read-ahead optimizations, such as instructing the disk
to preread the next sequential block if several have been requested in sequence.

Sometimes these optimizations help, and sometimes they don’t. You can read your
system’s manpage for fsync(2) if you’re curious about exactly what your version
of fsync() does.

innodb_file_per_table causes each file to be fsync()ed separately, which means
writes to multiple tables can’t be combined into a single I/O operation. This might
require InnoDB to perform a higher total number of fsync() operations.

O_DIRECT
InnoDB uses the O_DIRECT flag, or directio(), depending on the system, on the
data files. This option does not affect the log files and is not necessarily available
on all Unix-like operating systems. At least GNU/Linux, FreeBSD, and Solaris (late
5.0 and newer) support it. Unlike the O_DSYNC flag, it affects both reads and writes.

This setting still uses fsync() to flush the files to disk, but it instructs the operating
system not to cache the data and not to use read-ahead. This disables the operating
system’s caches completely and makes all reads and writes go directly to the storage
device, avoiding double buffering.

On most systems, this is implemented with a call to fcntl() to set the O_DIRECT flag
on the file descriptor, so you can read the fcntl(2) manpage for your system’s
details. On Solaris, this option uses directio().

If your RAID card does read-ahead, this setting will not disable that. It disables
only the operating system’s and/or filesystem’s read-ahead capabilities.

362 | Chapter 8: Optimizing Server Settings

You generally need a RAID card with a write cache set to a write-back policy if you
use O_DIRECT, because that’s typically the only thing that keeps performance good.
Using O_DIRECT when there is no buffer between InnoDB and the actual storage
device, such as when you have no write cache on your RAID card, can cause per-
formance to degrade greatly. This is a bit less of a problem nowadays with multiple
write threads (and native asynchronous I/O introduced in MySQL 5.5), but it’s
still the case in general.

This setting can cause the server’s warmup time to increase significantly, especially
if the operating system’s cache is very large. It can also make a small buffer pool
(e.g., a buffer pool of the default size) much slower than buffered I/O would. This
is because the operating system won’t “help out” by keeping more of the data in
its own cache. If the desired data isn’t in the buffer pool, InnoDB will have to read
it directly from disk.

This setting does not impose any extra penalty on the use of innodb_
file_per_table. However, the reverse can be true: if you do not use innodb_file_
per_table, you can suffer from some serialization of I/O when you use O_DIRECT.
This happens because some filesystems (including all of Linux’s ext filesystems)
have a per-inode mutex. When you use O_DIRECT with such filesystems, you really
need innodb_file_per_table to be enabled. We delve more into filesystems in the
next chapter.

ALL_O_DIRECT
This option is available in Percona Server and MariaDB. It lets the server open the
log files, not just the data files, in the same way that standard MySQL opens the
data files.

O_DSYNC
This option sets the O_SYNC flag on the open() call for the log files. It makes all writes
synchronous—in other words, writes do not return until the data is written to
disk. This option does not affect the data files.

The difference between the O_SYNC flag and the O_DIRECT flag is that O_SYNC doesn’t
disable caching at the operating system level. Therefore, it doesn’t avoid double
buffering, and it doesn’t make writes go directly to disk. With O_SYNC, writes modify
the data in the cache, and then it is sent to the disk.

While synchronous writes with O_SYNC might sound very similar to what fsync()
does, the two can be implemented very differently on both the operating system
and the hardware level. When the O_SYNC flag is used, the operating system might
pass a “use synchronous I/O” flag down to the hardware level, telling the device
not to use caches. On the other hand, fsync() tells the operating system to flush
modified buffers to the device, followed by an instruction for the device to flush
its own caches, if applicable, so it is certain that the data has been recorded on the
physical media. Another difference is that with O_SYNC, every write() or pwrite()
operation syncs data to disk before it finishes, blocking the calling process. In con-
trast, writing without the O_SYNC flag and then calling fsync() allows writes to

Configuring MySQL’s I/O Behavior | 363

accumulate in the cache (which makes each write fast), and then flushes them all
at once.

Again, despite its name, this option sets the O_SYNC flag, not the O_DSYNC flag, be-
cause the InnoDB developers found bugs with O_DSYNC. O_SYNC and O_DSYNC are
similar to fysnc() and fdatasync(): O_SYNC syncs both data and metadata, whereas
O_DSYNC syncs data only.

async_unbuffered
This is the default value on Windows. This option causes InnoDB to use unbuffered
I/O for most writes; the exception is that it uses buffered I/O to the log files when
innodb_flush_log_at_trx_commit is set to 2.

This setting causes InnoDB to use the operating system’s native asynchronous
(overlapped) I/O for both reads and writes on Windows 2000, XP, and newer. On
older Windows versions, InnoDB uses its own asynchronous I/O, which is imple-
mented with threads.

unbuffered
Windows-only. This option is similar to async_unbuffered but does not use native
asynchronous I/O.

normal
Windows-only. This option causes InnoDB not to use native asynchronous I/O or
unbuffered I/O.

nosync and littlesync
For development use only. These options are undocumented and unsafe for pro-
duction; they should not be used.

If that all seemed like a lot of explanation with no advice, here’s the advice: if you use
a Unix-like operating system and your RAID controller has a battery-backed write
cache, we recommend that you use O_DIRECT. If not, either the default or O_DIRECT will
probably be the best choice, depending on your application.

The InnoDB tablespace

InnoDB keeps its data in a tablespace, which is essentially a virtual filesystem spanning
one or many files on disk. InnoDB uses the tablespace for many purposes, not just
for storing tables and indexes. It keeps its undo log (old row versions), insert buffer,
doublewrite buffer (described in an upcoming section), and other internal structures
in the tablespace.

You specify the tablespace files with the innodb_data_file
_path configuration option. The files are all contained in the directory given by
innodb_data_home_dir. Here’s an example:

innodb_data_home_dir = /var/lib/mysql/
innodb_data_file_path = ibdata1:1G;ibdata2:1G;ibdata3:1G

Configuring the tablespace.

364 | Chapter 8: Optimizing Server Settings

That creates a 3 GB tablespace in three files. Sometimes people wonder whether they
can use multiple files to spread load across drives, like this:

innodb_data_file_path = /disk1/ibdata1:1G;/disk2/ibdata2:1G;...

While that does indeed place the files in different directories, which represent different
drives in this example, InnoDB concatenates the files end-to-end. Thus, you usually
don’t gain much this way. InnoDB will fill the first file, then the second when the first
is full, and so on; the load isn’t really spread in the fashion you need for higher perfor-
mance. A RAID controller is a smarter way to spread load.

To allow the tablespace to grow if it runs out of space, you can make the last file
autoextend as follows:

...ibdata3:1G:autoextend

The default behavior is to create a single 10 MB autoextending file. If you make the file
autoextend, it’s a good idea to place an upper limit on the tablespace’s size to keep it
from growing very large, because once it grows, it doesn’t shrink. For example, the
following example limits the autoextending file to 2 GB:

...ibdata3:1G:autoextend:max:2G

Managing a single tablespace can be a hassle, especially if it autoextends and you want
to reclaim the space (for this reason, we recommend disabling the autoextend feature,
or at least setting a reasonable cap on the space). The only way to reclaim space is to
dump your data, shut down MySQL, delete all the files, change the configuration,
restart, let InnoDB create new empty files, and restore your data. InnoDB is completely
unforgiving about its tablespace—you cannot simply remove files or change their sizes.
It will refuse to start if you corrupt its tablespace. It is likewise very strict about its log
files. If you’re used to casually moving files around with MyISAM, take heed!

The innodb_file_per_table option lets you configure InnoDB to use one file per table
in MySQL 4.1 and later. It stores the data in the database directory as tablename.ibd
files. This makes it easier to reclaim space when you drop a table, and it can be useful
for spreading tables across multiple disks. However, placing the data in multiple files
can actually result in more wasted space overall, because it trades internal fragmenta-
tion in the single InnoDB tablespace for wasted space in the .ibd files. This is more of
an issue for very small tables, because InnoDB’s page size is 16 KB. Even if your table
has only 1 KB of data, it will still require at least 16 KB on disk.

Even if you enable the innodb_file_per_table option, you’ll still need the main table-
space for the undo logs and other system data. It will be smaller if you’re not storing
all the data in it, but it’s still a good idea to disable autoextend, because you can’t shrink
the file without reloading all your data.

Some people like to use innodb_file_per_table just because of the extra manageability
and visibility it gives you. For example, it’s much faster to find a table’s size by exam-
ining a single file than it is to use SHOW TABLE STATUS, which has to perform more com-
plex work to determine how many pages are allocated to a table.

Configuring MySQL’s I/O Behavior | 365

There is a dark side to innodb_file_per_table: slow DROP TABLE performance. This can
be severe enough to cause a noticeable server-wide stall, for two reasons:

• Dropping the table unlinks (deletes) the file at the filesystem level, which can be
very slow on some filesystems (ext3, we’re looking at you). You can shorten the
duration of this with tricks on the filesystem: link the .ibd file to a zero-sized file,
then delete the file manually, instead of waiting for MySQL to do it.

• When you enable this option, each table gets its own tablespace inside InnoDB. It
turns out that removing the tablespace actually requires InnoDB to lock and scan
the buffer pool while it looks for pages belonging to this tablespace, which is very
slow on a server with a large buffer pool. If you’re going to be dropping a lot of
InnoDB tables (including temporary tables) and you use innodb_file_per_table,
you might benefit from the fix included with Percona Server, which lets the server
lazily invalidate the pages belonging to the dropped tables. You just need to set the
innodb_lazy_drop_table option.

What’s the final recommendation? We suggest that you use innodb_file_per_table
and cap the size of your shared tablespace to make your life easier. If you run into any
circumstances that make this painful, as noted above, consider one of the fixes we
suggested.

We should also note that you don’t actually have to store your InnoDB files in a tra-
ditional filesystem. Like many traditional database servers, InnoDB offers the option
of using a raw device—i.e., an unformatted partition—for its storage. However, today’s
filesystems can handle sufficiently large files that you shouldn’t need to use this option.
Using raw devices might improve performance by a few percentage points, but we don’t
think this small increase justifies the disadvantages of not being able to manipulate the
data as files. When you store your data on a raw partition, you can’t use mv, cp, or any
other tools on it. Ultimately, the tiny performance gains you get from using raw devices
aren’t worth the extra hassle.

InnoDB’s tablespace can grow very large in a write-
heavy environment. If transactions stay open for a long time (even if they’re not
doing any work) and they’re using the default REPEATABLE READ transaction isolation
level, InnoDB won’t be able to remove old row versions, because the uncommitted
transactions will still need to be able to see them. InnoDB stores the old versions in the
tablespace, so it continues to grow as more data is updated. Sometimes the problem
isn’t uncommitted transactions, but just the workload: the purge process is only a single
thread until recent versions of MySQL, and it might not be able to keep up with the
number of old row versions that need to be purged.

In either case, the output of SHOW INNODB STATUS can help you pinpoint the problem.
Look at the history list length; it shows the size of the undo log, in units of pages.

You can corroborate this by examining the first and second lines of the TRANSACTIONS
section, which show the current transaction number and the point to which the purge

Old row versions and the tablespace.

366 | Chapter 8: Optimizing Server Settings

has completed. If the difference is large, you might have a lot of unpurged transactions.
Here’s an example:

TRANSACTIONS

Trx id counter 0 80157601
Purge done for trx’s n:o <0 80154573 undo n:o <0 0

The transaction identifier is a 64-bit number composed of two 32-bit numbers (it’s a
hexadecimal number in newer versions of InnoDB), so you might have to do a little
math to compute the difference. In this case it’s easy, because the high bits are just
zeros: there are 80,157,601 – 80,154,573 = 3,028 potentially unpurged transactions
(innotop can do this math for you). We said “potentially” because a large difference
doesn’t necessarily mean there are a lot of unpurged rows. Only transactions that
change data will create old row versions, and there might be many transactions that
haven’t changed any data (conversely, a single transaction could have changed many
rows).

If you have a large undo log and your tablespace is growing because of it, you can force
MySQL to slow down enough for InnoDB’s purge thread to keep up. This might not
sound attractive, but there’s no alternative. Otherwise, InnoDB will keep writing data
and filling up your disk until the disk runs out of space or the tablespace reaches the
limits you’ve defined.

To throttle the writes, set the innodb_max_purge_lag variable to a value other than 0.
This value indicates the maximum number of transactions that can be waiting to be
purged before InnoDB starts to delay further queries that update data. You’ll have to
know your workload to decide on a good value. As an example, if your average trans-
action affects 1 KB of rows and you can tolerate 100 MB of unpurged rows in your
tablespace, you could set the value to 100000.

Bear in mind that unpurged row versions impact all queries, because they effectively
make your tables and indexes larger. If the purge thread simply can’t keep up, perfor-
mance can decrease dramatically. Setting the innodb_max_purge_lag variable will slow
down performance too, but it’s the lesser of the two evils.10

In newer versions of MySQL, and even in older versions of Percona Server and MariaDB,
the purging process is significantly improved and separated from other internal house-
keeping tasks. You can even create multiple dedicated purge threads to do this back-
ground work more quickly. This is a better option than throttling the server, if you can
take advantage of it.

10. Note that the way this ought to be implemented is a topic of some debate; see MySQL bug 60776 for the
details.

Configuring MySQL’s I/O Behavior | 367

The doublewrite buffer

InnoDB uses a doublewrite buffer to avoid data corruption in case of partial page writes.
A partial page write occurs when a disk write doesn’t complete fully, and only a portion
of a 16 KB page is written to disk. There are a variety of reasons (crashes, bugs, and so
on) that a page might be partially written to disk. The doublewrite buffer guards against
data corruption if this happens.

The doublewrite buffer is a special reserved area of the tablespace, large enough to hold
100 pages in a contiguous block. It is essentially a backup copy of recently written
pages. When InnoDB flushes pages from the buffer pool to the disk, it writes (and
flushes) them first to the doublewrite buffer, then to the main data area where they
really belong. This ensures that every page write is atomic and durable.

Doesn’t this mean that every page is written twice? Yes, it does, but because InnoDB
writes several pages to the doublewrite buffer sequentially and only then calls
fsync() to sync them to disk, the performance impact is relatively small—generally a
few percentage points, not double, although the overhead is more noticeable on solid-
state drives, as we’ll discuss in the next chapter. More importantly, this strategy allows
the log files to be much more efficient. Because the doublewrite buffer gives InnoDB a
very strong guarantee that the data pages are not corrupt, InnoDB’s log records don’t
have to contain full pages; they are more like binary deltas to pages.

If there’s a partial page write to the doublewrite buffer itself, the original page will still
be on disk in its real location. When InnoDB recovers, it will use the original page
instead of the corrupted copy in the doublewrite buffer. However, if the doublewrite
buffer succeeds and the write to the page’s real location fails, InnoDB will use the copy
in the doublewrite buffer during recovery. InnoDB knows when a page is corrupt be-
cause each page has a checksum at the end; the checksum is the last thing to be written,
so if the page’s contents don’t match the checksum, the page is corrupt. Upon recovery,
therefore, InnoDB just reads each page in the doublewrite buffer and verifies the check-
sums. If a page’s checksum is incorrect, it reads the page from its original location.

In some cases, the doublewrite buffer really isn’t necessary—for example, you might
want to disable it on replicas. Also, some filesystems (such as ZFS) do the same thing
themselves, so it is redundant for InnoDB to do it. You can disable the doublewrite
buffer by setting innodb_doublewrite to 0. In Percona Server, you can configure the
doublewrite buffer to be stored in its own file, so you can separate this workload from
the rest of the server’s work by placing it on separate disk drives.

Other I/O configuration options

The sync_binlog option controls how MySQL flushes the binary log to disk. Its default
value is 0, which means MySQL does no flushing and it’s up to the operating system
to decide when to flush its cache to durable storage. If the value is greater than 0, it
specifies how many binary log writes happen between flushes to disk (each write is a

368 | Chapter 8: Optimizing Server Settings

single statement if autocommit is set, and otherwise a transaction). It’s rare to set this
option to anything other than 0 or 1.

If you don’t set sync_binlog to 1, it’s likely that a crash will cause your binary log to be
out of sync with your transactional data. This can easily break replication and make
point-in-time recovery impossible. However, the safety provided by setting this option
to 1 comes at high price. Synchronizing the binary log and the transaction log requires
MySQL to flush two files in two distinct locations. This might require a disk seek, which
is relatively slow.

As with the InnoDB log file, placing the binary log on a RAID volume with a battery-
backed write cache can give a huge performance boost. In fact, writing and flushing
the binary logs is actually more expensive than writing and flushing the InnoDB trans-
action logs, because unlike the InnoDB transaction logs, every write to the binary logs
increases their size. That requires a metadata update at the filesystem level for every
write. Thus, setting sync_binlog=1 can be much more detrimental to performance
than setting innodb_flush_log_at_trx_commit=1, especially on network filesystems such
as NFS.

A non-performance-related note on the binary logs: if you want to use the expire_
logs_days option to remove old binary logs automatically, don’t remove them with
rm. The server will get confused and refuse to remove them automatically, and PURGE
MASTER LOGS will stop working. The solution, should you find yourself entangled in this
situation, is to manually resync the hostname-bin.index file with the list of files that still
exist on disk.

We cover RAID in more depth in the next chapter, but it’s worth repeating here that
good-quality RAID controllers, with battery-backed write caches set to use the write-
back policy, can handle thousands of writes per second and still give you durable stor-
age. The data gets written to a fast cache with a battery, so it will survive even if the
system loses power. When the power comes back, the RAID controller will write
the data from the cache to the disk before making the disk available for use. Thus, a
good RAID controller with a large enough battery-backed write cache can improve
performance dramatically and is a very good investment. Of course, solid-state storage
is another option; we also cover that in the next chapter.

MyISAM I/O Configuration
Let’s begin by considering how MyISAM performs I/O for its indexes. MyISAM nor-
mally flushes index changes to disk after every write. If you’re going to make many
modifications to a table, however, it might be faster to batch these writes together.

One way to do this is with LOCK TABLES, which defers writes until you unlock the tables.
This can be a valuable technique for improving performance, because it lets you control
exactly which writes are deferred and when the writes are flushed to disk. You can defer
writes for precisely the statements you want.

Configuring MySQL’s I/O Behavior | 369

You can also defer index writes by using the delay_key_write variable. If you do this,
modified key buffer blocks are not flushed until the table is closed.11 The possible
settings are as follows:

OFF
MyISAM flushes modified blocks in the key buffer (key cache) to disk after every
write, unless the table is locked with LOCK TABLES.

ON
Delayed key writes are enabled, but only for tables created with the DELAY_
KEY_WRITE option.

ALL
All MyISAM tables use delayed key writes.

Delaying key writes can be helpful in some cases, but it doesn’t usually create a big
performance boost. It’s most useful with smaller data sizes, when the key cache’s read
hit ratio is good but the write hit ratio is bad. It also has quite a few drawbacks:

• If the server crashes and the blocks haven’t been flushed to disk, the index will be
corrupt.

• If many writes are delayed, it’ll take longer for MySQL to close a table, because it
will have to wait for the buffers to be flushed to disk. This can cause long table
cache locks in MySQL 5.0.

• FLUSH TABLES can take a long time, for the reason just mentioned. This in turn can
increase the time it takes to run FLUSH TABLES WITH READ LOCK for a logical volume
manager (LVM) snapshot or other backup operation.

• Unflushed dirty blocks in the key buffer might not leave any room in the buffer for
new blocks to be read from disk. Therefore, queries might stall while waiting for
MyISAM to free up some space in the key buffer.

In addition to configuring MyISAM’s index I/O, you can configure how MyISAM tries
to recover from corruption. The myisam_recover option controls how MyISAM looks
for and repairs errors. You have to set this option in the configuration file or at the
command line. You can view, but not change, the option’s value with this SQL state-
ment (this is not a typo—the system variable has a different name from the corre-
sponding command-line option):

mysql> SHOW VARIABLES LIKE 'myisam_recover_options';

Enabling this option instructs MySQL to check MyISAM tables for corruption when it
opens them, and to repair them if problems are found. You can set the following values:

11. The table can be closed for several reasons. For example, the server might close the table because there’s
not enough room in the table cache, or someone might execute FLUSH TABLES.

370 | Chapter 8: Optimizing Server Settings

DEFAULT (or no setting)
Instructs MySQL to try to repair any table that is marked as having crashed or not
marked as having been closed cleanly. The default setting performs no other actions
upon recovery. In contrast to how most variables work, this DEFAULT value is not
an instruction to reset the variable to its compiled-in value; it essentially means “no
setting.”

BACKUP
Makes MySQL write a backup of the data file into a .BAK file, which you can
examine afterward.

FORCE
Makes recovery continue even if more than one row will be lost from the .MYD file.

QUICK
Skips recovery unless there are delete blocks. These are blocks of deleted rows that
are still occupying space and can be reused for future INSERT statements. This can
be useful because MyISAM recovery can take a very long time on large tables.

You can use multiple settings, separated by commas. For example, BACKUP,FORCE will
force recovery and create a backup. This is what we used in our sample configuration
file earlier in this chapter.

We recommend that you enable this option, especially if you have just a few small
MyISAM tables. Running a server with corrupted MyISAM tables is dangerous, because
they can sometimes cause more data corruption and even server crashes. However, if
you have large tables, automatic recovery might be impractical: it causes the server to
check and repair all MyISAM tables when they’re opened, which is inefficient. During
this time, MySQL tends to block connections from performing any work. If you have
a lot of MyISAM tables, it might be a good idea to use a less intrusive process that runs
CHECK TABLES and REPAIR TABLES after startup.12 Either way, it is very important to check
and repair the tables.

Enabling memory-mapped access to data files is another useful MyISAM option. Mem-
ory mapping lets MyISAM access the .MYD files directly via the operating system’s
page cache, avoiding costly system calls. In MySQL 5.1 and newer, you can enable
memory mapping with the myisam_use_mmap option. Older versions of MySQL use
memory mapping for compressed MyISAM tables only.

Configuring MySQL Concurrency
When you’re running MySQL in a high-concurrency workload, you might run into
bottlenecks you wouldn’t otherwise experience. This section explains how to detect

12. Some Debian systems do this automatically, which is a swing of the pendulum too far in the other
direction. It’s not a good idea to just configure this behavior by default as Debian does; the DBA should
decide.

Configuring MySQL Concurrency | 371

these problems when they happen, and how to get the best performance possible under
these workloads for MyISAM and InnoDB.

InnoDB Concurrency Configuration
InnoDB is designed for high concurrency, and it has improved dramatically in the last
few years, but it’s still not perfect. The InnoDB architecture still shows some roots in
limited-memory, single-CPU, single-disk systems. Some aspects of InnoDB’s perfor-
mance can degrade in high-concurrency situations, and your only recourse is to limit
concurrency. You can use the techniques shown in Chapter 3 to diagnose concurrency
problems.

If you have problems with InnoDB concurrency, the solution is usually to upgrade the
server. In comparison with current versions, older versions such as MySQL 5.0 and
early MySQL 5.1 were an unmitigated disaster under high concurrency. Everything
queued on global mutexes such as the buffer pool mutex, and the server practically
ground to a halt. If you upgrade to one of the newer versions of MySQL, you don’t
need to limit concurrency in most cases.

If you do, here’s how it works. InnoDB has its own “thread scheduler” that controls
how threads enter its kernel to access data, and what they can do once they’re inside
the kernel. The most basic way to limit concurrency is with the innodb_thread_concur
rency variable, which limits how many threads can be in the kernel at once. A value of
0 means there is no limit on the number of threads. If you are having InnoDB concur-
rency problems in older MySQL versions, this variable is the most important one to
configure.13

It’s impossible to name a good value for any given architecture and workload. In theory,
the following formula gives a good value:

concurrency = Number of CPUs * Number of Disks * 2

But in practice, it can be better to use a much smaller value. You will have to experiment
to find the best value for your system.

If more than the allowed number of threads are already in the kernel, a thread can’t
enter the kernel. InnoDB uses a two-phase process to try to let threads enter as
efficiently as possible. The two-phase policy reduces the overhead of context switches
caused by the operating system scheduler. The thread first sleeps for innodb
_thread_sleep_delay microseconds, and then tries again. If it still can’t enter, it goes
into a queue of waiting threads and yields to the operating system.

The default sleep time in the first phase is 10,000 microseconds. Changing this value
can help in high-concurrency environments, when the CPU is underused with a lot of

13. In fact, in some workloads, the system that implements the concurrency limits itself can become a
bottleneck, so sometimes it needs to be enabled, and at other times it needs to be disabled. Profiling will
show you which to do.

372 | Chapter 8: Optimizing Server Settings

threads in the “sleeping before entering queue” status. The default value can also be
much too large if you have a lot of small queries, because it adds 10 milliseconds to
query latency.

Once a thread is inside the kernel, it has a certain number of “tickets” that let it back
into the kernel for “free,” without any concurrency checks. This limits how much work
it can do before it has to get back in line with other waiting threads. The innodb_con
currency_tickets option controls the number of tickets. It rarely needs to be changed
unless you have a lot of extremely long-running queries. Tickets are granted per-query,
not per-transaction. Once a query finishes, its unused tickets are discarded.

In addition to the bottlenecks in the buffer pool and other structures, there’s another
concurrency bottleneck at the commit stage, which is largely I/O-bound because of
flush operations. The innodb_commit_concurrency variable governs how many threads
can commit at the same time. Configuring this option might help if there’s a lot of
thread thrashing even when innodb_thread_concurrency is set to a low value.

Finally, there’s a new solution that might be worth considering: using a thread pool to
limit concurrency. The original thread pool implementation was in the abandoned
MySQL 6.0 source tree, and had serious flaws. But it’s been reimplemented in MariaDB,
and Oracle has recently released a commercial plugin to provide a thread pool for
MySQL 5.5. We don’t have enough experience with either of these to guide you, so
we’ll confuse you further by pointing out that neither implementation seemed to satisfy
Facebook, which has met its unique needs with so-called “admission control” features
in its own private branch of MySQL. Hopefully by the fourth edition of this book
we’ll have some more knowledge to share on thread pools and when they work or don’t
work.

MyISAM Concurrency Configuration
MyISAM allows concurrent inserts and reads under some conditions, and it lets you
“schedule” some operations to try to block as little as possible.

Before we look at MyISAM’s concurrency settings, it’s important to understand how
MyISAM deletes and inserts rows. Delete operations don’t rearrange the entire table;
they just mark rows as deleted, leaving “holes” in the table. MyISAM prefers to fill the
holes if it can, reusing the spaces for inserted rows. If there are no holes, it appends
new rows to the end of the table.

Even though MyISAM has table-level locks, it can append new rows concurrently with
reads. It does this by stopping the reads at the last row that existed when they began.
This avoids inconsistent reads.

However, it is much more difficult to provide consistent reads when something is
changing the middle of the table. MVCC is the most popular way to solve this problem:
it lets readers read old versions of data while writers create new versions. However,

Configuring MySQL Concurrency | 373

MyISAM doesn’t support MVCC as InnoDB does, so it doesn’t support concurrent
inserts unless they go at the end of the table.

You can configure MyISAM’s concurrent insert behavior with the concurrent_insert
variable, which can have the following values:

0
MyISAM allows no concurrent inserts; every insert locks the table exclusively.

1
This is the default value. MyISAM allows concurrent inserts, as long as there are
no holes in the table.

2
This value is available in MySQL 5.0 and newer. It forces concurrent inserts to
append to the end of the table, even when there are holes. If there are no threads
reading from the table, MySQL will place the new rows in the holes. The table can
become more fragmented than usual with this setting.

You can also configure MySQL to delay some operations to a later time, when they can
be combined for greater efficiency. For instance, you can delay index writes with the
delay_key_write variable, which we mentioned earlier in this chapter. This involves
the familiar trade-off: write the index right away (safe but expensive), or wait and hope
the power doesn’t fail before the write happens (faster, but likely to cause massive index
corruption in the event of a crash because the index file will be very out of date).

You can also give INSERT, REPLACE, DELETE, and UPDATE queries lower priority than
SELECT queries with the low_priority_updates option. This is equivalent to globally
applying the LOW_PRIORITY modifier to UPDATE queries. It’s actually a very important
option when you use MyISAM; it lets you get decent concurrency for SELECT queries
that would otherwise starve in the presence of a very small number of queries getting
top priority for write locks.

Finally, even though InnoDB’s scalability issues are more often talked about, MyISAM
has also had problems with mutexes for a long time. In MySQL 4.0 and earlier, a global
mutex protected any I/O to the key buffer, which caused scalability problems with
multiple CPUs and multiple disks. MySQL 4.1’s key buffer code is improved and
doesn’t have this problem anymore, but it still holds a mutex on each key buffer. This
is an issue when a thread copies key blocks from the key buffer into its local storage,
rather than reading from the disk. The disk bottleneck is gone, but there’s still a bot-
tleneck when accessing data in the key buffer. You can sometimes work around this
problem with multiple key buffers, but this approach isn’t always successful. For ex-
ample, there’s no way to solve the problem when it involves only a single index. As a
result, concurrent SELECT queries can perform significantly worse on multi-CPU ma-
chines than on a single-CPU machine, even when these are the only queries running.
MariaDB offers segmented (partitioned) key buffers, which can help significantly when
you experience this problem.

374 | Chapter 8: Optimizing Server Settings

Workload-Based Configuration
One goal of configuring your server is to customize it for your specific workload. This
requires intimate knowledge of the number, type, and frequency of all kinds of server
activities—not just queries, but other activities too, such as connecting to the server
and flushing tables.

The first thing you should do, if you haven’t done it already, is become familiar with
your server. Know what kinds of queries run on it. Monitor it with tools such as inno-
top, and use pt-query-digest to create a query report. It’s helpful to know not only what
your server is doing overall, but what each MySQL query spends a lot of time doing.
Chapter 3 explains how to find this out.

Try to log all queries when your server is running at full capacity, because that’s the
best way to see what kinds of queries suffer most. At the same time, capture snapshots
of the process list and aggregate them by their state or command (innotop can do this
for you, or you can use the scripts shown in Chapter 3). For example, are there a lot of
queries copying results to temporary tables, or sorting results? If so, you might need to
optimize the queries, and potentially look at the configuration settings for temporary
tables and sort buffers.

Optimizing for BLOB and TEXT Workloads
BLOB and TEXT columns are a special type of workload for MySQL. (We’ll refer to all of
the BLOB and TEXT types as BLOB here for simplicity, because they belong to the same
class of data types.) There are several restrictions on BLOB values that make the server
treat them differently from other types. One of the most important considerations is
that the server cannot use in-memory temporary tables for BLOB values.14 Thus, if a
query involving BLOB values requires a temporary table—no matter how small—it will
go to disk immediately. This is very inefficient, especially for otherwise small and fast
queries. The temporary table could be most of the query’s cost.

There are two ways to ease this penalty: convert the values to VARCHAR with the SUB
STRING() function (see Chapter 4 for more on this), or make temporary tables faster.

The best way to make temporary tables faster is to place them on a memory-based
filesystem (tmpfs on GNU/Linux). This removes some overhead, although it’s still
much slower than using in-memory tables. Using a memory-based filesystem is helpful
because the operating system tries to avoid writing data to disk.15 Normal filesystems
are cached in memory too, but the operating system might flush normal filesystem data
every few seconds. A tmpfs filesystem never gets flushed. The tmpfs filesystem is also

14. Recent versions of Percona Server lift this restriction in some cases.

15. Data can still go to disk if the operating system swaps it.

Workload-Based Configuration | 375

designed for low overhead and simplicity. For example, there’s no need for the filesys-
tem to make any provisions for recovery. That makes it faster.

The server setting that controls where temporary tables are placed is tmpdir. Monitor
how full the filesystem gets to ensure you have enough space for temporary tables. If
necessary, you can even specify several temporary table locations, which MySQL will
use in a round-robin fashion.

If your BLOB columns are very large and you use InnoDB, you might also want to
increase InnoDB’s log buffer size. We wrote more about this earlier in this chapter.

For long variable-length columns (e.g., BLOB, TEXT, and long character columns),
InnoDB stores a 768-byte prefix in-page with the rest of the row.16 If the column’s value
is longer than this prefix length, InnoDB might allocate external storage space outside
the row to store the rest of the value. It allocates this space in whole 16 KB pages, just
like all other InnoDB pages, and each column gets its own page (columns do not share
external storage space). InnoDB allocates external storage space to a column a page at
a time until 32 pages are used; then it allocates 64 pages at a time.

Note that we said InnoDB might allocate external storage. If the total length of the row,
including the full value of the long column, is shorter than InnoDB’s maximum row
length (a little less than 8 KB), InnoDB will not allocate external storage even if the long
column’s value exceeds the prefix length.

Finally, when InnoDB updates a long column that is placed in external storage, it
doesn’t update it in place. Instead, it writes the new value to a new location in external
storage and deletes the old value.

All of this has the following consequences:

• Long columns can waste a lot of space in InnoDB. For example, if you store a
column value that is one byte too long to fit in the row, it will use an entire page
to store the remaining byte, wasting most of the page. Likewise, if you have a value
that is slightly more than 32 pages long, it might actually use 96 pages on disk.

• External storage disables the adaptive hash index, which needs to compare the full
length of columns to verify that it has found the right data. (The hash helps InnoDB
find “guesses” very quickly, but it must check that its “guess” is correct.) Because
the adaptive hash index is completely in-memory and is built directly “on top of”
frequently accessed pages in the buffer pool, it doesn’t work with external storage.

• Long values can make any query with a WHERE clause that doesn’t use an index run
slowly. MySQL reads all columns before it applies the WHERE clause, so it might ask
InnoDB to read a lot of external storage, then check the WHERE clause and throw
away all the data it read. It’s never a good idea to select columns you don’t need,

16. This is long enough to create a 255-character index on a column, even if it’s utf8, which might require
up to three bytes per character. This prefix is specific to the Antelope InnoDB file format; it doesn’t apply
to the Barracuda format, which is available in MySQL 5.1 and newer (though not enabled by default).

376 | Chapter 8: Optimizing Server Settings

but this is a special case where it’s even more important to avoid doing so. If you
find your queries are suffering from this limitation, you can try to use covering
indexes to help.

• If you have many long columns in a single table, it might be better to combine the
data they store into a single column, perhaps as an XML document. That lets all
the values share external storage, rather than using their own pages.

• You can sometimes gain significant space and performance benefits by storing long
columns in a BLOB and compressing them with COMPRESS(), or compressing them
in the application before sending them to MySQL.

Optimizing for Filesorts
Recall from Chapter 6 that MySQL has two filesort algorithms. It uses the two-pass
algorithm if the total size of all the columns needed for the query, plus the ORDER BY
columns, exceeds max_length_for_sort_data bytes. It also uses this algorithm when any
of the required columns—even those not used for the ORDER BY—is a BLOB or TEXT
column. (You can use SUBSTRING() to convert such columns to types that can work with
the single-pass algorithm.)

MySQL has two variables that can help you control how it performs filesorts. You can
influence MySQL’s choice of algorithm by changing the value of the max_
length_for_sort_data variable.17 Because the single-pass algorithm creates a fixed-size
buffer for each row it will sort, the maximum length of VARCHAR columns is what counts
toward max_length_for_sort_data, not the actual size of the stored data. This is one of
the reasons why we recommend you make these columns only as large as necessary.

When MySQL has to sort on BLOB or TEXT columns, it uses only a prefix and ignores
the remainder of the values. This is because it has to allocate a fixed-size structure to
hold the values and copy the prefix from external storage into that structure. You can
specify how large this prefix should be with the max_sort_length variable.

Unfortunately, MySQL doesn’t really give you any visibility into which sort algorithm
it uses. If you increase the max_length_for_sort_data variable and your disk usage goes
up, your CPU usage goes down, and the Sort_merge_passes status variable begins to
grow more quickly than it did before the change, you’ve probably forced more sorts to
use the single-pass algorithm.

17. MySQL 5.6 will introduce changes to the way the sort buffer is used in queries with a LIMIT clause and
will fix a problem that caused a large sort buffer to perform an expensive setup routine, so when you
upgrade to MySQL 5.6 you should carefully check any customizations you’ve made to these settings.

Workload-Based Configuration | 377

Completing the Basic Configuration
We’re done with the tour of server internals—hope you enjoyed the trip! Now let’s
return to our sample configuration file and see how to choose values for the settings
that remain.

We’ve already discussed how to choose values for the general settings such as the data
directory, the InnoDB and MyISAM caches, logs, and a few other things. Let’s go over
what remains:

tmp_table_size and max_heap_table_size
These settings control how large an in-memory temporary table using the Memory
storage engine can grow. If an implicit temporary table’s size exceeds either of these
settings, it will be converted to an on-disk MyISAM table so it can keep growing.
(An implicit temporary table is one that you don’t create yourself; the server creates
it for you to hold an intermediate result while executing a query.)

You should simply set both of these variables to the same value. We’ve chosen the
value 32M for our sample configuration file. This might not be enough, but beware
of setting this variable too large. It’s good for temporary tables to live in memory,
but if they’re simply going to be huge, it’s actually best for them to just use on-disk
tables, or you could run the server out of memory.

Assuming that your queries aren’t creating enormous temporary tables (which you
can often avoid with proper indexing and query design), it’s a good idea to set these
variables large enough that you don’t have to go through the process of converting
an in-memory table to an on-disk table. This procedure will show up in the process
list.

You can look at how the server’s SHOW STATUS counters change over time to under-
stand how often you create temporary tables and whether they go to disk. You
can’t tell whether a table was created in memory and then converted to on-disk or
just created on-disk to begin with (perhaps because of a BLOB column), but you can
at least see how often the tables go to disk. Examine the Created_tmp_
disk_tables and Created_tmp_tables variables.

max_connections
This setting acts like an emergency brake to keep your server from being over-
whelmed by a surge of connections from the application. If the application mis-
behaves, or the server encounters a problem such as a stall, a lot of new connections
can be opened. But opening a connection does no good if it can’t execute queries,
so being denied with a “too many connections” error is a way to fail fast and fail
cheaply.

Set max_connections high enough to accommodate the usual load that you think
you’ll experience, as well as a safety margin to permit logging in and administering
the server. For example, if you think you’ll have 300 or so connections in normal
operations, you might set this to 500 or so. If you don’t know how many connec-

378 | Chapter 8: Optimizing Server Settings

tions you’ll get, 500 is not an unreasonable starting point anyway. The default is
100, but that’s not enough for a lot of applications.

Beware also of surprises that might make you hit the limit of connections. For
example, if you restart an application server, it might not close its connections
cleanly, and MySQL might not realize they’ve been closed. When the application
server comes back up and tries to open connections to the database, it might be
refused due to the dead connections that haven’t timed out yet.

Watch the Max_used_connections status variable over time. It is a high-water mark
that shows you if the server has had a spike in connections at some point. If it
reaches max_connections, chances are a client has been denied at least once, and
you should probably use the techniques shown in Chapter 3 to capture server
activity when that occurs.

thread_cache_size
You can compute a reasonable value for this variable by observing the server’s
behavior over time. Watch the Threads_connected status variable and find its
typical maximum and minimum. You might want to set the thread cache large
enough to hold the difference between the peak and off-peak usage, and go ahead
and be generous, because if you set it a bit too high it’s not a big problem. You
might set it two or three times as large as needed to hold the fluctuations in usage.
For example, if the Threads_connected status variable seems to vary between 150
and 175, you could set the thread cache to 75. But you probably shouldn’t set it
very large, because it isn’t really useful to keep around a huge amount of spare
threads waiting for connections; a ceiling of 250 is a nice round number (or 256,
if you prefer a power of two).

You can also watch the change over time in the Threads_created status variable. If
this value is large or increasing, it’s another clue that you might need to increase
the thread_cache_size variable. Check Threads_cached to see how many threads
are in the cache already.

A related status variable is Slow_launch_threads. A large value for this status vari-
able means that something is delaying new threads upon connection. This is a clue
that something is wrong with your server, but it doesn’t really indicate what. It
usually means there’s a system overload, causing the operating system not to
schedule any CPU time for newly created threads. It doesn’t necessarily indicate
that you need to increase the size of the thread cache. You should diagnose the
problem and fix it rather than masking it with a cache, because it might be affecting
other things, too.

table_cache_size
This cache (or the two caches into which it was split in MySQL 5.1) should be set
large enough to keep from reopening and reparsing table definitions all the time.
You can check this by inspecting the value of Open_tables and the change over time
in the value of Opened_tables. If you see many Opened_tables per second, your
table_cache value might not be large enough. Explicit temporary tables can also

Completing the Basic Configuration | 379

cause a growing number of opened tables even when the table cache isn’t fully
used, though, so it might be nothing to worry about. Your clue would be that
Opened_tables grows constantly even though Open_tables isn’t as large as table_
cache_size.

Even if the table cache is useful, you should not set this variable too large. It turns
out that the table cache can be counterproductive in two circumstances.

First, MySQL doesn’t use a very efficient algorithm to check the cache, so if it’s
really big, it can get really slow. You probably shouldn’t set it higher than 10,000
in most cases, or 10,240 if you like those powers of two.18

The second reason to avoid setting this very large is that some workloads simply
aren’t cacheable. If the workload isn’t cacheable, and everything is going to be a
cache miss no matter how large you make the cache, forget the cache and set it to
zero! This helps you avoid making the situation worse; a cache miss is better than
an expensive cache check followed by a cache miss. What kinds of workloads aren’t
cacheable? If you have tens or hundreds of thousands of tables and you use them
all pretty uniformly, you probably can’t cache them all, and you’re better off setting
this variable small. This is sometimes appropriate on systems that have a very large
number of collocated applications, none of which is very busy.

A reasonable starting value for this setting is 10 times as big as max_connections,
but again, keep it under 10,000 or so in most cases.

There are several other kinds of settings that you will frequently include in your con-
figuration file, including binary logging and replication settings. Binary logging is useful
for enabling point-in-time recovery and for replication, and replication has a few set-
tings of its own. We’ll cover the important settings in the chapters on replication and
backups, later in this book.

Safety and Sanity Settings
After your basic configuration settings are in place, you might wish to enable a number
of settings that make the server safer and more reliable. Some of them influence per-
formance, because safety and reliability are often more costly to guarantee. Some are
just sensible, however: they prevent silly mistakes such as inserting nonsensical data
into the server. And some don’t make a difference in day-to-day operation, but prevent
bad things from happening in edge cases.

Let’s look at a collection of useful options for general server behavior first:

18. Have you heard the joke about powers of two? There are 10 types of people in the world: those who
understand binary, and those who don’t. There are also another 10 types of people: those who think
binary/decimal jokes are funny, and those who have sex. We won’t say whether or not we think that’s
hilarious.

380 | Chapter 8: Optimizing Server Settings

expire_logs_days
If you enable binary logging, you should enable this option, which causes the server
to purge old binary logs after the specified number of days. If you don’t enable it,
you will eventually run the server out of disk space, and it will freeze or crash. We
suggest setting this option large enough that you can recover from at least two
backups ago (in case the most recent backup fails). Even if you take backups every
day, still leave yourself at least 7 to 14 days’ worth of binary logs. Our experience
shows that you’ll be grateful for a week or two of binary logs when you have some
unusual problem, such as rebuilding a replica and then trying to get it caught up
again with the master. You want to keep enough binary logs around to give yourself
some breathing room for operations such as these.

max_allowed_packet
This setting prevents the server from sending too large a packet, and also controls
how large a packet it will accept. The default is probably too small, but it can also
be set dangerously large. If it’s set too small, sometimes problems can occur in
replication, typically when the replica can’t retrieve data from the master that it
needs for replication. You might increase the setting from its default to 16 MB or so.

It’s not documented, but this option also controls the maximum size of a user-
defined variable, so if you need very large variables, be careful—they can be trun-
cated or set to NULL if they exceed the size of this variable.

max_connect_errors
If something goes wrong with your networking for a moment, there is an applica-
tion or configuration error, or there is another problem such as privileges that
prevent connections from completing successfully for a brief period of time, clients
can get blacklisted and will be unable to connect again until you flush the host
cache. The default setting for this option is so small that this problem can happen
too easily. You might want to increase it, and in fact, if you know that the server
is adequately secured against brute-force attacks, you can just make it very large
to effectively disable host blacklisting.

skip_name_resolve
This setting disables another networking- and authentication-related trap: DNS
lookups. DNS is one of the weak points in MySQL’s connection process. When
you connect to the server, by default it tries to determine the hostname from which
you’re connecting and uses that as part of the authentication credentials. (That
is, your credentials are your username, hostname, and password—not just your
username and password.) But to verify your hostname, the server needs to perform
both a reverse and a forward DNS lookup. This is all fine until DNS starts to have
problems, which is pretty much a certainty at some point in time. When that hap-
pens, everything piles up and eventually the connection times out. To prevent this,
we strongly recommend that you set this option, which disables DNS lookups
during authentication. However, if you do this you will need to convert all of your

Safety and Sanity Settings | 381

hostname-based grants to use IP addresses, wildcards, or the special hostname
“localhost,” because hostname-based accounts will be disabled.

sql_mode
This setting can accept a variety of options that modify server behavior. We don’t
recommend changing these just for the fun of it; it’s better to let MySQL be MySQL
in most ways and not try to make it behave like other database servers. (Many client
and GUI tools expect MySQL to have its own flavor of SQL, for example, so if you
change it to speak more ANSI-compliant SQL some things might break.) However,
several of the settings are very useful, and some might be worth considering in your
specific cases. You might want to look at the documentation for the following
options and consider using them: STRICT_TRANS_TABLES, ERROR_FOR_DIVISION_BY
_ZERO, NO_AUTO_CREATE_USER, NO_AUTO_VALUE_ON_ZERO, NO_ENGINE_SUBSTITUTION,
NO_ZERO_DATE, NO_ZERO_IN_DATE, and ONLY_FULL_GROUP_BY.

However, be aware that it might not be a good idea to change these settings for
existing applications, because doing so might make the server incompatible with
the application’s expectations. It’s pretty common for people to unwittingly write
queries that refer to columns not in the GROUP BY clause or use aggregate functions,
for example, so if you want to enable the ONLY_FULL_GROUP_BY option it’s a good
idea to do it in a development or staging server first, and only deploy it in produc-
tion once you’re sure everything is working.

sysdate_is_now
This is another setting that might be backward-incompatible with applications’
expectations. But if you don’t explicitly desire the SYSDATE() function to have non-
deterministic behavior, which can break replication and make point-in-time re-
covery from backups unreliable, you might want to enable this option and make
its behavior deterministic.

A few options control replication behavior and are very helpful for preventing problems
on replicas:

read_only
This option prevents unprivileged users from making changes on replicas, which
should be receiving changes only from the master, not from the application. We
strongly recommend setting replicas to read-only mode.

skip_slave_start
This option prevents MySQL from taking the bit between its teeth and attempting
to start replication automatically. You want to disable automatic starting because
it is unsafe after a crash or other problem; a human needs to examine the server
manually and determine that it is safe to start replication.

slave_net_timeout
This option controls how long it’ll be before a replica notices that its connection
to its master has failed and needs to be reconnected. The default option, one hour,
is way too long. Set it to a minute or less.

382 | Chapter 8: Optimizing Server Settings

sync_master_info, sync_relay_log, and sync_relay_log_info
These options, available in MySQL 5.5 and newer, correct longstanding problems
with replicas: they don’t sync their status files to disk, so if the server crashes it can
be anyone’s guess what the replica’s position relative to the master actually was,
and there can be corruption in the relay logs. These options make replicas much
more likely to be recoverable after a crash. They are not enabled by default, because
they cause extra fsync() operations on replicas, which can slow them down. We
suggest enabling these options if you have decent hardware, and disabling them if
there is a problem with replication that you can trace to latency caused by fsync().

There’s a less intrusive way to do this in Percona Server, enabled with the
innodb_overwrite_relay_log_info option. This makes InnoDB store the replica-
tion position in the InnoDB transaction logs, which is fully transactional and
doesn’t require any extra fsync() operations. During crash recovery, InnoDB will
check the replication metadata files and update them to have the correct position
if they’re out of date.

Advanced InnoDB Settings
Recall our discussion of InnoDB’s history in Chapter 1: it was first built in, then avail-
able in two versions, and now the newer version of the engine is once again built into
the server. The newer InnoDB code has more features and is much more scalable. If
you’re using MySQL 5.1, you should configure MySQL explicitly to ignore the old
version of InnoDB and use the newer version. It will improve server performance
greatly. You’ll need to enable the ignore_builtin_innodb option, and then configure
the plugin_load option to enable InnoDB as a plugin. Consult the InnoDB manual for
the exact syntax for your platform.19

Several options are available in the newer version of InnoDB, once you’ve enabled it.
Some of these are quite important for server performance, and there are also a couple
of safety and sanity options:

innodb
This rather innocuous-looking option is actually very important. If you set its value
to FORCE, the server will not be able to start unless InnoDB can start. If you use
InnoDB as your default storage engine, this is definitely what you want. You do
not want the server to start when InnoDB fails because of some error such as a
misconfiguration, because a badly behaved application could then connect to the
server and cause who knows what harm and confusion. It’s much better for the
server to fail as a whole, which will force you to look at the error log instead of
believing that the server started okay.

19. In Percona Server, there’s only one version of InnoDB and it’s built in, so you don’t need to disable one
version and load another one to replace it.

Advanced InnoDB Settings | 383

innodb_autoinc_lock_mode
This option controls how InnoDB generates autoincrementing primary key values,
which can be a bottleneck in some cases, such as high-concurrency inserts. If you
have many transactions waiting on the autoincrement lock (you can see this in
SHOW ENGINE INNODB STATUS), you should investigate this setting. We won’t repeat
the manual’s explanation of the options and their behaviors.

innodb_buffer_pool_instances
This setting divides the buffer pool into multiple segments in MySQL 5.5 and
newer, and is probably one of the most important ways to improve MySQL’s scal-
ability on multicore machines with a highly concurrent workload. Multiple buffer
pools partition the workload so that some of the global mutexes are not such hot
contention points.

It is not yet clear what kind of guidelines we should develop for choosing the num-
ber of buffer pool instances. We have run most of our benchmarks with eight
instances, but we probably won’t understand some of the subtleties of multiple
buffer pool instances until MySQL 5.5 has been deployed more widely for a longer
time.

We don’t mean that to imply that MySQL 5.5 isn’t deployed widely in production.
It’s just that the most extreme cases of mutex contention we’ve helped solve have
been for very large, very conservative users, for whom an upgrade can require many
months to plan, validate, and execute. These users are sometimes running a highly
customized version of MySQL, which makes it doubly important for them to be
careful with upgrades. When more of these folks upgrade to MySQL 5.5 and stress
it in their own unique ways, we’ll probably learn some interesting things about
multiple buffer pools that we haven’t seen yet. Until then, we can say that it appears
to be very beneficial to run with eight buffer pool instances.

It’s worth noting that Percona Server takes a different approach to solving InnoDB’s
mutex contention issues. Instead of partitioning the buffer pool—an admittedly
tried-and-true approach in many systems like InnoDB—we opted to divide some
of the global mutexes into smaller, more special-purpose mutexes. Our bench-
marks show that the best improvement of all comes from a combination of the two
approaches, which is available in Percona Server version 5.5: multiple buffer pools
and more fine-grained mutexes.

innodb_io_capacity
InnoDB used to be hardcoded to assume that it ran on a single hard disk capable
of 100 I/O operations per second. This was a bad default. Now you can inform
InnoDB how much I/O capacity is available to it. InnoDB sometimes needs this
set quite high (tens of thousands on extremely fast storage such as PCI-E flash
devices) to flush dirty pages in a steady fashion, for reasons that are quite complex
to explain.

384 | Chapter 8: Optimizing Server Settings

innodb_read_io_threads and innodb_write_io_threads
These options control how many background threads are available for I/O opera-
tions. The default in recent versions of MySQL is to have four read threads and
four write threads, which is enough for a lot of servers, especially with the native
asynchronous I/O available in MySQL 5.5. If you have many hard drives and a
high-concurrency workload, and you see that the threads are having a hard time
keeping up, you can increase the number of threads, or you can simply set them
to the number of physical spindles you have for I/O (even if they’re behind a RAID
controller).

innodb_strict_mode
This setting makes InnoDB throw errors instead of warnings for some conditions,
especially invalid or possibly dangerous CREATE TABLE options. If you enable this
option, be certain to check all of your CREATE TABLE options, because it might not
let you create some tables that used to be fine. Sometimes it’s a bit pessimistic and
overly restrictive. You wouldn’t want to find this out when you were trying to
restore a backup.

innodb_old_blocks_time
InnoDB has a two-part buffer pool least recently used (LRU) list, which is designed
to prevent ad hoc queries from evicting pages that are used many times over the
long term. A one-off query such as those issued by mysqldump will typically bring
a page into the buffer pool LRU list, read the rows from it, and move on to the next
page. In theory, the two-part LRU list will prevent this page from displacing pages
that will be needed for a long time by placing it into the “young” sublist and only
moving it to the “old” sublist after it has been accessed multiple times. But InnoDB
is not configured to prevent this by default, because the page has multiple rows,
and thus the multiple accesses to read rows from the page will cause it to be moved
to the “old” sublist immediately, placing pressure on pages that need a long life-
time. This variable specifies the number of milliseconds that must elapse before a
page can move from the “young” part of the LRU list to the “old” part. It’s set to
0 by default, and setting it to a small value such as 1000 (one second) has proven
very effective in our benchmarks.

Summary
After you’ve worked through this chapter, you should have a server configuration that
is much better than the defaults. Your server should be fast and stable, and you should
not need to tweak the configuration unless you run into an unusual circumstance.

To review, we suggest that you begin with our sample configuration file, set the basic
options for your server and workload, add safety and sanity options as desired, and, if
appropriate, configure the new options available in the InnoDB plugin and in MySQL
5.5. That’s really all you need to do.

Summary | 385

The most important options are these two, assuming that you use InnoDB, which most
people should:

• innodb_buffer_pool_size

• innodb_log_file_size

Congratulations—you just solved the vast majority of real-world configuration prob-
lems we’ve seen! If you use our configuration tool at http://tools.percona.com, you will
get good suggestions for a starting point on these and other configuration options.

We’ve also made a lot of suggestions about what not to do. The most important of
these are not to “tune” your server; not to use ratios, formulas, or “tuning scripts” as
a basis for setting the configuration variables; not to trust advice from unknown people
on the Internet; and not to go hunting in SHOW STATUS counters for things that look bad.
If something is actually wrong, it’ll show up in your server profiling.

There are a few significant settings we didn’t discuss in this chapter, which are impor-
tant for specific types of hardware and workloads. We delayed discussion of these
settings because we believe that any advice on settings needs to be paired with an
explanation of the internal processes at work. This brings us to the next chapter, which
will show you how to optimize your hardware and operating system for MySQL, and
vice versa.

386 | Chapter 8: Optimizing Server Settings

http://tools.percona.com

CHAPTER 9

Operating System and Hardware
Optimization

Your MySQL server can perform only as well as its weakest link, and the operating
system and the hardware on which it runs are often limiting factors. The disk size, the
available memory and CPU resources, the network, and the components that link them
all limit the system’s ultimate capacity. Thus, you need to choose your hardware care-
fully, and configure the hardware and operating system appropriately. For example, if
your workload is I/O-bound, one approach is to design your application to minimize
MySQL’s I/O workload. However, it’s often smarter to upgrade the I/O subsystem,
install more memory, or reconfigure existing disks.

Hardware changes very rapidly, so anything we write about particular products or
components in this chapter will become outdated quickly. As usual, our goal is to help
improve your understanding so that you can apply your knowledge in situations we
don’t cover directly. However, we will use currently available hardware to illustrate our
points.

What Limits MySQL’s Performance?
Many different hardware components can affect MySQL’s performance, but the two
most frequent bottlenecks we see are CPU and I/O saturation. CPU saturation happens
when MySQL works with data that either fits in memory or can be read from disk as
fast as needed. A lot of datasets fit completely in memory with the large amounts of
RAM available these days.

I/O saturation, on the other hand, generally happens when you need to work with much
more data than you can fit in memory. If your application is distributed across a net-
work, or if you have a huge number of queries and/or low latency requirements, the
bottleneck might shift to the network instead.

387

The techniques shown in Chapter 3 will help you find your system’s limiting factor,
but look beyond the obvious when you think you’ve found a bottleneck. A weakness
in one area often puts pressure on another subsystem, which then appears to be the
problem. For example, if you don’t have enough memory, MySQL might have to flush
caches to make room for data it needs—and then, an instant later, read back the data
it just flushed (this is true for both read and write operations). The memory scarcity
can thus appear to be a lack of I/O capacity. When you find a component that’s limiting
the system, ask yourself, “Is the component itself the problem, or is the system placing
unreasonable demands on this component?” We explored this question in our diag-
nostics case study in Chapter 3.

Here’s another example: a saturated memory bus can appear to be a CPU problem. In
fact, when we say that an application has a “CPU bottleneck” or is “CPU-bound,” what
we really mean is that there is a computational bottleneck. We delve into this issue next.

How to Select CPUs for MySQL
You should consider whether your workload is CPU-bound when upgrading current
hardware or purchasing new hardware.

You can identify a CPU-bound workload by checking the CPU utilization, but instead
of looking only at how heavily your CPUs are loaded overall, look at the balance of
CPU usage and I/O for your most important queries, and notice whether the CPUs are
loaded evenly. You can use the tools discussed later in this chapter to figure out what
limits your server’s performance.

Which Is Better: Fast CPUs or Many CPUs?
When you have a CPU-bound workload, MySQL generally benefits most from faster
CPUs (as opposed to more CPUs).

This isn’t always true, because it depends on the workload and the number of CPUs.
Older versions of MySQL had scaling issues with multiple CPUs, and even new versions
cannot run a single query in parallel across many CPUs. As a result, the CPU speed
limits the response time for each individual CPU-bound query.

When we discuss CPUs, we’re a bit casual with the terminology, to help keep the text
easy to read. Modern commodity servers usually have multiple sockets, each with sev-
eral CPU cores (which have independent execution units), and each core might have
multiple “hardware threads.” These complex architectures require a bit of patience to
understand, and we won’t always draw clear distinctions among them. In general,
though, when we talk about CPU speed we’re really talking about the speed of the
execution unit, and when we mention the number of CPUs we’re referring to the num-
ber that the operating system sees, even though that might be a multiple of the number
of independent execution units.

388 | Chapter 9: Operating System and Hardware Optimization

Modern CPUs are much improved over those available a few years ago. For example,
today’s Intel CPUs are much faster than previous generations, due to advances such as
directly attached memory and improved interconnects to devices such as PCIe cards.
This is especially good for very fast storage devices, such as Fusion-io and Virident PCIe
flash drives.

Hyperthreading also works much better now than it used to, and operating systems
know how to use hyperthreading quite well these days. It used to be that operating
systems weren’t aware when two virtual CPUs really resided on the same die and would
schedule tasks on two virtual processors on the same physical execution unit, believing
them to be independent. Of course, a single execution unit can’t really run two pro-
cesses at the same time, so they’d conflict and fight over resources. Meanwhile, the
operating system would leave other CPUs idle, thus wasting power. The operating
system needs to be hyperthreading-aware because it has to know when the execution
unit is actually idle, and switch tasks accordingly. A common cause of such problems
used to be waits on the memory bus, which can take up to a hundred CPU cycles and
is analogous to an I/O wait at a very small scale. That’s all much improved in newer
operating systems. Hyperthreading now works fine; we used to advise people to disable
it sometimes, but we don’t do that anymore.

All this is to say that you can get lots of fast CPUs now—many more than you could
when we published the second edition of this book. So which is best, many or fast?
Usually, you want both. Broadly speaking, you might have two goals for your server:

Low latency (fast response time)
To achieve this you need fast CPUs, because each query will use only a single CPU.

High throughput
If you can run many queries at the same time, you might benefit from multiple
CPUs to service the queries. However, whether this works in practice depends on
your situation. Because MySQL doesn’t scale perfectly on multiple CPUs, there is
a limit to how many CPUs you can use anyway. In older versions of the server (up
to late releases of MySQL 5.1, give or take) that was a serious limitation. In newer
versions, you can confidently scale to 16 or 24 CPUs and perhaps beyond, de-
pending on which version you’re using (Percona Server tends to have a slight edge
here).

If you have multiple CPUs and you’re not running queries concurrently, MySQL can
still use the extra CPUs for background tasks such as purging InnoDB buffers, network
operations, and so on. However, these jobs are usually minor compared to executing
queries.

MySQL replication (discussed in the next chapter) also works best with fast CPUs, not
many CPUs. If your workload is CPU-bound, a parallel workload on the master can
easily serialize into a workload the replica can’t keep up with, even if the replica is more
powerful than the master. That said, the I/O subsystem, not the CPU, is usually the
bottleneck on a replica.

How to Select CPUs for MySQL | 389

If you have a CPU-bound workload, another way to approach the question of whether
you need fast CPUs or many CPUs is to consider what your queries are really doing.
At the hardware level, a query can either be executing or waiting. The most common
causes of waiting are waiting in the run queue (when the process is runnable, but all
the CPUs are busy), waiting for latches or locks, and waiting for the disk or network.
What do you expect your queries to be waiting for? If they’ll be waiting for latches or
locks, you generally need faster CPUs; if they’re waiting in the run queue, then either
more or faster CPUs will help. (There might be exceptions, such as a query waiting for
the InnoDB log buffer mutex, which doesn’t become free until the I/O completes—this
might indicate that you actually need more I/O capacity.)

That said, MySQL can use many CPUs effectively on some workloads. For example,
suppose you have many connections querying distinct tables (and thus not contending
for table locks, which can be a problem with MyISAM and Memory tables), and the
server’s total throughput is more important than any individual query’s response time.
Throughput can be very high in this scenario because the threads can all run concur-
rently without contending with each other.

Again, this might work better in theory than in practice: InnoDB has global shared data
structures regardless of whether queries are reading from distinct tables or not, and
MyISAM has global locks on each key buffer. It’s not just the storage engines, either;
InnoDB used to get all the blame, but some of the improvements it’s received lately
have exposed other bottlenecks at higher levels in the server. The infamous LOCK_
open mutex can be a real problem on MySQL 5.1 and older versions; ditto for some of
the other server-level mutexes (the query cache, for example).

You can usually diagnose these types of contention with stack traces. See the pt-pmp
tool in Percona Toolkit, for example. If you encounter such problems, you might have
to change the server’s configuration to disable or alter the offending component, par-
tition (shard) your data, or change how you’re doing things in some way. There are too
many possible problems and corresponding solutions for us to list them all, but fortu-
nately, the answer is usually obvious once you have a firm diagnosis. Also fortunately,
most of the problems are edge cases you’re unlikely to encounter; the most common
cases are being fixed in the server itself as time passes.

CPU Architecture
Probably upwards of 99% of MySQL server instances (excluding embedded usage) run
on the x86 architecture, on either Intel or AMD chips. This is what we focus on in this
book, for the most part.

Sixty-four-bit architectures are now the default, and it’s hard to even buy a 32-bit CPU
these days. MySQL works fine on 64-bit architectures, though some things didn’t be-
come 64-bit capable for a while, so if you’re using an older version of the server, you
might need to take care. For example, in early MySQL 5.0 releases, each MyISAM key

390 | Chapter 9: Operating System and Hardware Optimization

buffer was limited to 4 GB, the size addressable by a 32-bit integer. (You can create
multiple key buffers to work around this, though.)

Make sure you use a 64-bit operating system on your 64-bit hardware! It’s less common
these days than it used to be, but for a while most hosting providers would install 32-
bit operating systems on servers even when the servers had 64-bit CPUs. This meant
that you couldn’t use a lot of memory: even though some 32-bit systems can support
large amounts of memory, they can’t use it as efficiently as a 64-bit system, and no
single process can address more than 4 GB of memory on a 32-bit system.

Scaling to Many CPUs and Cores
One place where multiple CPUs can be quite helpful is an online transaction processing
(OLTP) system. These systems generally do many small operations, which can run on
multiple CPUs because they’re coming from multiple connections. In this environment,
concurrency can become a bottleneck. Most web applications fall into this category.

OLTP servers generally use InnoDB, which has some unresolved concurrency issues
with many CPUs. However, it’s not just InnoDB that can become a bottleneck: any
shared resource is a potential point of contention. InnoDB gets a lot of attention because
it’s the most common storage engine for high-concurrency environments, but MyISAM
is no better when you really stress it, even when you’re not changing any data. Many
of the concurrency bottlenecks, such as InnoDB’s row-level locks and MyISAM’s table
locks, can’t be optimized away internally—there’s no solution except to do the work
as fast as possible, so the locks can be granted to whatever is waiting for them. It doesn’t
matter how many CPUs you have if a single lock is causing them all to wait. Thus, even
some high-concurrency workloads benefit from faster CPUs.

There are actually two types of concurrency problems in databases, and you need dif-
ferent approaches to solve them:

Logical concurrency issues
Contention for resources that are visible to the application, such as table or row
locks. These problems usually require tactics such as changing your application,
using a different storage engine, changing the server configuration, or using dif-
ferent locking hints or transaction isolation levels.

Internal concurrency issues
Contention for resources such as semaphores, access to pages in the InnoDB buffer
pool, and so on. You can try to work around these problems by changing server
settings, changing your operating system, or using different hardware, but you
might just have to live with them. In some cases, using a different storage engine
or a patch to a storage engine can help ease these problems.

The number of CPUs MySQL can use effectively and how it scales under increasing
load—its “scaling pattern”—depend on both the workload and the system architec-
ture. By “system architecture,” we mean the operating system and hardware, not the

How to Select CPUs for MySQL | 391

application that uses MySQL. The CPU architecture (RISC, CISC, depth of pipeline,
etc.), CPU model, and operating system all affect MySQL’s scaling pattern. This is why
benchmarking is so important: some systems might continue to perform very well un-
der increasing concurrency, while others perform much worse.

Some systems can even give lower total performance with more processors. This used
to be quite common; we know of many people who tried to upgrade to systems with
more CPUs, only to be forced to revert to the older systems (or bind the MySQL process
to only some of the cores) because of lower performance. In the MySQL 5.0 days, before
the advent of the Google patches and then Percona Server, the magic number was 4
cores, but these days we’re seeing people running on servers with up to 80 “CPUs”
reported to the operating system. If you’re planning a big upgrade, you’ll have to con-
sider your hardware, server version, and workload.

Some MySQL scalability bottlenecks are in the server, whereas others are in the storage
engine layer. How the storage engine is designed is crucial, and you can sometimes
switch to a different storage engine and get more from multiple CPUs.

The processor speed wars we saw around the turn of the century have subsided to some
extent, and CPU vendors are now focusing more on multicore CPUs and variations
such as multithreading. The future of CPU design might well be hundreds of processor
cores; quad-core and hex-core CPUs are common today. Internal architectures vary so
widely across vendors that it’s impossible to generalize about the interaction between
threads, CPUs, and cores. How the memory and bus are designed is also very important.
In the final analysis, whether it’s better to have multiple cores or multiple physical CPUs
is also architecture-specific.

Two other complexities of modern CPUs deserve mention. Frequency scaling is the
first. This is a power management technique that changes the CPU clock speed dy-
namically, depending on the demand placed on the CPU. The problem is that it some-
times doesn’t cope well with query traffic that’s composed of bursts of short queries,
because the operating system might take a little while to decide that the CPUs should
be clocked back up. As a result, queries might run for a while at a lower speed, and
experience increased response time. Frequency scaling can make performance slow on
intermittent workloads, but perhaps more importantly, it can create inconsistent
performance.

The second is turbo boost technology, which is a paradigm shift in how we think about
CPUs. We are used to thinking that our four-core 2 GHz CPU has four equally powerful
cores, whether some of them are idle or not. A perfectly scalable system could therefore
be expected to get four times as much work done when it uses all four cores. But that’s
not really true anymore, because when the system uses only one core, the processor
might run at a higher clock speed, such as 3 GHz. This throws a wrench into a lot of
capacity planning and scalability modeling, because the system doesn’t behave linearly.
It also means that an “idle CPU” doesn’t represent a wasted resource to the same extent;
if you have a server that just runs replication and you think it’s single-threaded and

392 | Chapter 9: Operating System and Hardware Optimization

there are three other idle CPUs you can use for other tasks without impacting replica-
tion, you might be wrong.

Balancing Memory and Disk Resources
The biggest reason to have a lot of memory isn’t so you can hold a lot of data in memory:
it’s ultimately so you can avoid disk I/O, which is orders of magnitude slower than
accessing data in memory. The trick is to balance the memory and disk size, speed,
cost, and other qualities so you get good performance for your workload. Before we
look at how to do that, let’s go back to the basics for a moment.

Computers contain a pyramid of smaller, faster, more expensive caches, one upon the
other, as depicted in Figure 9-1.

Figure 9-1. The cache hierarchy

Every level in this cache hierarchy is best used to cache “hot” data so it can be accessed
more quickly, usually using heuristics such as “recently used data is likely to be used
again soon” and “data that’s near recently used data is likely to be used soon.” These
heuristics work because of spatial and temporal locality of reference.

From the programmer’s point of view, CPU registers and caches are transparent and
architecture-specific. It is the compiler’s and CPU’s job to manage these. However,
programmers are very conscious of the difference between main memory and the hard
disk, and programs usually treat these very differently.1

This is especially true of database servers, whose behavior often goes against the pre-
dictions made by the heuristics we just mentioned. A well-designed database cache
(such as the InnoDB buffer pool) is usually more efficient than an operating system’s
cache, which is tuned for general-purpose tasks. The database cache has much more
knowledge about its data needs, and it has special-purpose logic (write ordering, for
example) that helps meet those needs. Also, a system call is not required to access the
data in the database cache.

1. However, programs might rely on the operating system to cache in memory a lot of data that’s
conceptually “on disk.” This is what MyISAM does, for example. It treats the data files as disk-resident,
and lets the operating system take care of caching the disk’s data to make it faster.

Balancing Memory and Disk Resources | 393

These special-purpose cache requirements are why you’ll have to balance your cache
hierarchy to suit the particular access patterns of a database server. Because the registers
and on-chip caches are not user-configurable, memory and the storage are the only
things you can change.

Random Versus Sequential I/O
Database servers use both sequential and random I/O, and random I/O benefits the
most from caching. You can convince yourself of this by thinking about a typical mixed
workload, with some balance of single-row lookups and multirow range scans. The
typical pattern is for the “hot” data to be randomly distributed; caching this data will
therefore help avoid expensive disk seeks. In contrast, sequential reads generally go
through the data only once, so it’s useless to cache it unless it fits completely in memory.

Another reason sequential reads don’t benefit much from caching is because they are
faster than random reads. There are two reasons for this:

Sequential I/O is faster than random I/O.
Sequential operations are performed faster than random operations, both in mem-
ory and on disk. Suppose your disks can do 100 random I/O operations per second
and can read 50 MB per second sequentially (that’s roughly what a consumer-grade
disk can achieve today). If you have 100-byte rows, that’s 100 rows per second
randomly, versus 500,000 rows per second sequentially—a difference of 5,000
times, or several orders of magnitude. Thus, the random I/O benefits more from
caching in this scenario.

Accessing in-memory rows sequentially is also faster than accessing in-memory
rows randomly. Today’s memory chips can typically access about 250,000 100-
byte rows per second randomly, and 5 million per second sequentially. Note that
random accesses are some 2,500 times faster in memory than on disk, while se-
quential accesses are only 10 times faster in memory.

Storage engines can perform sequential reads faster than random reads.
A random read generally means that the storage engine must perform index oper-
ations. (There are exceptions to this rule, but it’s true for InnoDB and MyISAM.)
That usually requires navigating a B-Tree data structure and comparing values to
other values. In contrast, sequential reads generally require traversing a simpler
data structure, such as a linked list. That’s a lot less work, so again, sequential reads
are faster.

Finally, random reads are typically executed to find individual rows, but the read isn’t
just one row—it is a whole page of data, most of which isn’t needed. That’s a lot of
wasted work. A sequential read, on the other hand, typically happens when you want
all of the rows on the page, so it’s much more cost-effective.

394 | Chapter 9: Operating System and Hardware Optimization

As a result, you can save work by caching sequential reads, but you can save much more
work by caching random reads instead. In other words, adding memory is the best sol-
ution for random-read I/O problems if you can afford it.

Caching, Reads, and Writes
If you have enough memory, you can insulate the disk from read requests completely.
If all your data fits in memory, every read will be a cache hit once the server’s caches
are warmed up. There will still be logical reads, but no physical reads. Writes are a
different matter, though. A write can be performed in memory just as a read can, but
sooner or later it has to be written to the disk so it’s permanent. In other words, a cache
can delay writes, but caching cannot eliminate writes as it can reads.

In fact, in addition to allowing writes to be delayed, caching can permit them to be
grouped together in two important ways:

Many writes, one flush
A single piece of data can be changed many times in memory without all of the
new values being written to disk. When the data is eventually flushed to disk, all
the modifications that happened since the last physical write are made permanent.
For example, many statements could update an in-memory counter. If the counter
is incremented 100 times and then written to disk, 100 modifications have been
grouped into one write.

I/O merging
Many different pieces of data can be modified in memory and the modifications
can be collected together, so the physical writes can be performed as a single disk
operation.

This is why many transactional systems use a write-ahead logging strategy. Write-ahead
logging lets them make changes to the pages in memory without flushing the changes
to disk, which usually involves random I/O and is very slow. Instead, they write a record
of the changes to a sequential log file, which is much faster. A background thread can
flush the modified pages to disk later; when it does, it can optimize the writes.

Writes benefit greatly from buffering, because it converts random I/O into more se-
quential I/O. Asynchronous (buffered) writes are typically handled by the operating
system and are batched so they can be flushed to disk more optimally. Synchronous
(unbuffered) writes have to be written to disk before they finish. That’s why they benefit
from buffering in a RAID controller’s battery-backed write-back cache (we discuss
RAID a bit later).

What’s Your Working Set?
Every application has a “working set” of data—that is, the data that it really needs to
do its work. A lot of databases also have plenty of data that’s not in the working set.

Balancing Memory and Disk Resources | 395

You can imagine the database as a desk with filing drawers. The working set consists
of the papers you need to have on the desktop to get your work done. The desktop is
main memory in this analogy, while the filing drawers are the hard disks.

Just as you don’t need to have every piece of paper on the desktop to get your work
done, you don’t need the whole database to fit in memory for optimal performance—
just the working set.

The working set’s size varies greatly depending on the application. For some applica-
tions the working set might be 1% of the total data size, while for others it could be
close to 100%. When the working set doesn’t fit in memory, the database server will
have to shuffle data between the disk and memory to get its work done. This is why a
memory shortage might look like an I/O problem. Sometimes there’s no way you can
fit your entire working set in memory, and sometimes you don’t actually want to (for
example, if your application needs a lot of sequential I/O). Your application architec-
ture can change a lot depending on whether you can fit the working set in memory.

The working set can be defined as a time-based percentile. For example, the 95th per-
centile one-hour working set is the set of pages that the database uses during one hour,
except for the 5% of pages that are least frequently used. A percentile is the most useful
way to think about this, because you might need to access only 1% of your data every
hour, but over a 24-hour period that might add up to around 20% of the distinct pages
in the whole database. It might be more intuitive to think of the working set in terms
of how much data you need to have cached, so your workload is mostly CPU-bound.
If you can’t cache enough data, your working set doesn’t fit in memory.

You should think about the working set in terms of the most frequently used set of
pages, not the most frequently read or written set of pages. This means that determining
the working set requires instrumentation inside the application; you cannot just look
at external usage such as I/O accesses, because I/O to the pages is not the same thing
as logical access to the pages. MySQL might read a page into memory and then access
it millions of times, but you’ll see only one I/O operation if you’re looking at strace, for
example. The lack of instrumentation needed for determining the working set is prob-
ably the biggest reason that there isn’t a lot of research into this topic.

The working set consists of both data and indexes, and you should count it in cache
units. A cache unit is the smallest unit of data that the storage engine works with.

The size of the cache unit varies between storage engines, and therefore so does the size
of the working set. For example, InnoDB works in pages of 16 KB by default. If you do
a single-row lookup and InnoDB has to go to disk to get it, it’ll read the entire page
containing that row into the buffer pool and cache it there. This can be wasteful. Sup-
pose you have 100-byte rows that you access randomly. InnoDB will use a lot of extra
memory in the buffer pool for these rows, because it will have to read and cache a
complete 16 KB page for each row. Because the working set includes indexes too,
InnoDB will also read and cache the parts of the index tree it needed to find the row.
InnoDB’s index pages are also 16 KB in size, which means it might have to store a total

396 | Chapter 9: Operating System and Hardware Optimization

of 32 KB (or more, depending on how deep the index tree is) to access a single 100-
byte row. The cache unit is, therefore, another reason why well-chosen clustered in-
dexes are so important in InnoDB. Clustered indexes not only let you optimize disk
accesses but also help you keep related data on the same pages, so you can fit more of
your working set in your cache.

Finding an Effective Memory-to-Disk Ratio
A good memory-to-disk ratio is best discovered by experimentation and/or bench-
marking. If you can fit everything into memory, you’re done—there’s no need to think
about it further. But most of the time you can’t, so you have to benchmark with a subset
of your data and see what happens. What you’re aiming for is an acceptable cache miss
rate. A cache miss is when your queries request some data that’s not cached in main
memory, and the server has to get it from disk.

The cache miss rate really governs how much of your CPU is used, so the best way to
assess your cache miss rate is to look at your CPU usage. For example, if your CPU is
used 99% of the time and waiting for I/O 1% of the time, your cache miss rate is good.

Let’s consider how your working set influences your cache miss rate. It’s important to
realize that your working set isn’t just a single number: it’s a statistical distribution,
and your cache miss rate is nonlinear with regard to the distribution. For example, if
you have 10 GB of memory and you’re getting a 10% cache miss rate, you might think
you just need to add 11% more memory2 to reduce the cache miss rate to zero. But in
reality, inefficiencies such as the size of the cache unit might mean you’d theoretically
need 50 GB of memory just to get a 1% miss rate. And even with a perfect cache unit
match, the theoretical prediction can be wrong: factors such as data access patterns
can complicate things even more. A 1% cache miss rate might require 500 GB of mem-
ory, depending on your workload!

It’s easy to get sidetracked focusing on optimizing something that might not give you
much benefit. For example, a 10% miss rate might result in 80% CPU usage, which is
already pretty good. Suppose you add memory and are able to get the cache miss rate
down to 5%. As a gross oversimplification, you’ll be delivering approximately another
6% data to the CPUs. Making another gross oversimplification, we could say that
you’ve increased your CPU usage to 84.8%. However, this isn’t a very big win, con-
sidering how much memory you might have purchased to get that result. And in reality,
because of the differences between the speed of memory and disk accesses, what the
CPU is really doing with the data, and many other factors, lowering the cache miss rate
by 5% might not change your CPU usage much at all.

2. The right number is 11%, not 10%. A 10% miss rate is a 90% hit rate, so you need to divide 10 GB by
90%, which is 11.111 GB.

Balancing Memory and Disk Resources | 397

This is why we said you should strive for an acceptable cache miss rate, not a zero cache
miss rate. There’s no single number you should target, because what’s considered “ac-
ceptable” will depend on your application and your workload. Some applications might
do very well with a 1% cache miss rate, while others really need a rate as low as 0.01%
to perform well. (A “good cache miss rate” is a fuzzy concept, and the fact that there
are many ways to count the miss rate further complicates matters.)

The best memory-to-disk ratio also depends on other components in your system.
Suppose you have a system with 16 GB of memory, 20 GB of data, and lots of unused
disk space. The system is performing nicely at 80% CPU usage. If you wish to place
twice as much data on this system and maintain the same level of performance, you
might think you can just double the number of CPUs and the amount of memory.
However, even if every component in the system scaled perfectly with the increased
load (an unrealistic assumption), this probably wouldn’t work. The system with 20 GB
of data is likely to be using more than 50% of some component’s capacity—for exam-
ple, it might already be performing 80% of its maximum number of I/O operations per
second. And queueing inside the system is nonlinear, too. The server won’t be able to
handle twice as much load. Thus, the best memory-to-disk ratio depends on the sys-
tem’s weakest component.

Choosing Hard Disks
If you can’t fit enough data in memory—for example, if you estimate you would need
500 GB of memory to fully load your CPUs with your current I/O system—you should
consider a more powerful I/O subsystem, sometimes even at the expense of memory.
And you should design your application to handle I/O wait.

This might seem counterintuitive. After all, we just said that more memory can ease
the pressure on your I/O subsystem and reduce I/O waits. Why would you want to
beef up the I/O subsystem if adding memory could solve the problem? The answer lies
in the balance between the factors involved, such as the number of reads versus writes,
the size of each I/O operation, and how many such operations happen every second.
For example, if you need fast log writes, you can’t shield the disk from these writes by
increasing the amount of available memory. In this case, it might be a better idea to
invest in a high-performance I/O system with a battery-backed write cache, or solid-
state storage.

As a brief refresher, reading data from a conventional hard disk is a three-step process:

1. Move the read head to the right position on the disk’s surface.

2. Wait for the disk to rotate, so the desired data is under the read head.

3. Wait for the disk to rotate all the desired data past the read head.

How quickly the disk can perform these operations can be condensed to two numbers:
access time (steps 1 and 2 combined) and transfer speed. These two numbers also de-
termine latency and throughput. Whether you need fast access times or fast transfer

398 | Chapter 9: Operating System and Hardware Optimization

speeds—or a mixture of the two—depends on the kinds of queries you’re running. In
terms of total time needed to complete a disk read, small random lookups are domi-
nated by steps 1 and 2, while big sequential reads are dominated by step 3.

Several other factors can also influence the choice of disk, and which are important will
depend on your application. Let’s imagine you’re choosing disks for an online appli-
cation such as a popular news site, which does a lot of small, random reads. You might
consider the following factors:

Storage capacity
This is rarely an issue for online applications, because today’s disks are usually
more than big enough. If they’re not, combining smaller disks with RAID is stan-
dard practice.3

Transfer speed
Modern disks can usually transfer data very quickly, as we saw earlier. Exactly how
quickly depends mostly on the spindle rotation speed and how densely the data is
stored on the disk’s surface, plus the limitations of the interface with the host
system (many modern disks can read data faster than the interface can transfer it).
Regardless, transfer speed is usually not a limiting factor for online applications,
because they generally do a lot of small, random lookups.

Access time
This is usually the dominating factor in how fast your random lookups will per-
form, so you should look for fast access time.

Spindle rotation speed
Common rotation speeds today are 7,200 RPM, 10,000 RPM, and 15,000 RPM.
The rotation speed contributes quite a bit to the speed of both random lookups
and sequential scans.

Physical size
All other things being equal, the physical size of the disk makes a difference, too:
the smaller the disk is, the less time it takes to move the read head. Server-grade
2.5-inch disks are often faster than their larger cousins. They also use less power,
and you can usually fit more of them into the chassis.

Just as with CPUs, how MySQL scales to multiple disks depends on the storage engine
and the workload. InnoDB scales well to many hard drives. However, MyISAM’s table
locks limit its write scalability, so a write-heavy workload on MyISAM probably won’t
benefit much from having many drives. Operating system buffering and parallel back-
ground writes help somewhat, but MyISAM’s write scalability is inherently more limi-
ted than InnoDB’s.

3. Interestingly, some people deliberately buy larger-capacity disks, then use only 20–30% of their capacity.
This increases the data locality and decreases the seek time, which can sometimes justify the higher price.

Balancing Memory and Disk Resources | 399

As with CPUs, more disks is not always better. Some applications that demand low
latency need faster drives, not more drives. For example, replication usually performs
better with faster drives, because updates on a replica are single-threaded.

Solid-State Storage
Solid-state (flash) storage is actually a 30-year-old technology, but it’s become a hot
new thing as a new generation of devices have evolved over the last few years. Solid-
state storage has now become sufficiently cheap and mature that it is in widespread
use, and it will probably replace traditional hard drives for many purposes in the near
future.

Solid-state storage devices use nonvolatile flash memory chips composed of cells, in-
stead of magnetic platters. They’re also called NVRAM, or nonvolatile random access
memory. They have no moving parts, which makes them behave very differently from
hard drives. We will explore the differences in detail.

The current technologies of interest to MySQL users can be divided into two major
categories: SSDs (solid-state drives) and PCIe cards. SSDs emulate standard hard drives
by implementing the SATA (Serial Advanced Technology Attachment) interface, so
they are drop-in replacements for the hard drive that’s in your server now and can fit
into the existing slots in the chassis. PCIe cards use special operating system drivers
that present the storage as a block device. PCIe and SSD devices are sometimes casually
referred to as simply SSDs.

Here’s a quick summary of flash performance. High-quality flash devices have:

• Much better random read and write performance compared to hard drives. Flash
devices are usually slightly better at reads than writes.

• Better sequential read and write performance than hard drives. However, it’s not
as dramatic an improvement as that of random I/O, because hard drives are much
slower at random I/O than they are at sequential I/O. Entry-level SSDs can actually
be slower than conventional drives here.

• Much better support for concurrency than hard drives. Flash devices can support
many more concurrent operations, and in fact, they don’t really achieve their top
throughput until you have lots of concurrency.

The most important things are the improvements in random I/O and concurrency.
Flash memory gives you very good random I/O performance at high concurrency,
which is exactly what properly normalized databases need. One of the most common
reasons for denormalizing a schema is to avoid random I/O and make it possible for
sequential I/O to serve the queries.

As a result, we believe that solid-state storage is going to change RDBMS technology
fundamentally in the future. The current generation of RDBMS technology has

400 | Chapter 9: Operating System and Hardware Optimization

undergone decades of optimizations for spindle-based storage. The same maturity and
depth of research and engineering don’t quite exist yet for solid-state storage.4

An Overview of Flash Memory
Hard drives with spinning platters and oscillating heads have inherent limitations and
characteristics that are consequences of the physics involved. The same is true of solid-
state storage, which is built on top of flash memory. Don’t get the idea that solid-state
storage is simple. It’s actually more complex than a hard drive in some ways. The
limitations of the flash memory are actually pretty severe and hard to overcome, so the
typical solid-state device has an intricate architecture with lots of abstractions, caching,
and proprietary “magic.”

The most important characteristic of flash memory is that it can be read many times
rapidly, and in small units, but writes are much more challenging. You can’t rewrite a
cell5 without a special erase operation, and you can erase only in large blocks—for
example, 512 KB. The erase cycle is slow, and eventually wears out the block. The
number of erase cycles a block can tolerate depends on the underlying technology it
uses; more about this later.

The limitations on writes are the reason for the complexity of solid-state storage. This
is why some devices provide stable, consistent performance and others don’t. The
magic is all in the proprietary firmware, drivers, and other bits and pieces that make a
solid-state device run. To make writes perform well and avoid wearing out the blocks
of flash memory prematurely, the device must be able to relocate pages and perform
garbage collection and so-called wear leveling. The term write amplification is used to
describe the additional writes caused by moving data from place to place, writing data
and metadata multiple times due to partial block writes. If you’re interested, Wikipe-
dia’s article on write amplification is a good place to learn more.

Garbage collection is important to understand. In order to keep some blocks fresh and
ready for new writes, the device reclaims blocks. This requires some free space on the
device. Either the device will have some reserved space internally that you can’t see, or
you will need to reserve space yourself by not filling it up all the way—this varies from
device to device. Either way, as the device fills up, the garbage collector has to work
harder to keep some blocks clean, so the write amplification factor increases.

As a result, many devices get slower as they fill up. How much slower is different for
every vendor and model, and depends on the device’s architecture. Some devices are
designed for high performance even when they are pretty full, but in general, a 100 GB
file will perform differently on a 160 GB SSD than on a 320 GB SSD. The slowdown is
caused by having to wait for erases to complete when there are no free blocks. A write

4. Some companies claim that they’re starting with a clean slate, free of the fetters of the spindle-based past.
Mild skepticism is warranted; solving RDBMS challenges is not easy.

5. This is a simplification, but the details are not important here. You can read more on Wikipedia if you like.

Solid-State Storage | 401

to a free block takes a couple of hundred microseconds, but an erase is much slower—
typically a few milliseconds.

Flash Technologies
There are two major types of flash devices, and when you’re considering a flash storage
purchase, it’s important to understand the differences. The two types are single-level
cell (SLC) and multi-level cell (MLC).

SLC stores a single bit of data per cell: it can be either a 0 or a 1. SLC is relatively
expensive, but it is very fast and durable, with a lifetime of up to 100,000 write cycles
depending on the vendor and model. This might not sound like much, but in reality a
good SLC device ought to last about 20 years or so, and is said to be more durable and
reliable than the controller on which the card is mounted. On the downside, the storage
density is relatively low, so you can’t get as much storage space per device.

MLC stores two bits per cell, and three-bit devices are entering the market. This makes
it possible to get much higher storage density (larger capacities) with MLC devices. The
cost is lower, but so is the speed and durability. A good MLC device might be rated for
around 10,000 write cycles.

You can purchase both types of flash devices on the mass market, and there is active
development and competition between them. At present, SLC still holds the reputation
for being the “enterprise” server-grade storage solution, and MLC is usually regarded
as consumer-grade, for use in laptops and cameras and so on. However, this is changing,
and there is an emerging category of so-called enterprise MLC (eMLC) storage.

The development of MLC technology is interesting and bears close watching if you’re
considering purchasing flash storage. MLC is very complex, with a lot of important
factors that contribute to a device’s quality and performance. Any given chip by itself
is not durable, with a relatively short lifetime and a high probability of errors that must
be corrected. As the market moves to even smaller, higher-density chips where the cells
can store three bits, the individual chips become even less reliable and more error-
prone.

However, this isn’t an insurmountable engineering problem. Vendors are building de-
vices with lots and lots of spare capacity that’s hidden from you, so there is internal
redundancy. There are rumors that some devices might have up to twice as much stor-
age as their rated size, although flash vendors guard their trade secrets very closely.
Another way to make MLC chips more durable is through the firmware logic. The
algorithms for wear leveling and remapping are very important.

Longevity therefore depends on the true capacity, the firmware logic, and so on—it is
ultimately vendor-specific. We’ve heard reports of devices being destroyed in a couple
of weeks of intensive use!

402 | Chapter 9: Operating System and Hardware Optimization

As a result, the most critical aspects of an MLC device are the algorithms and intelli-
gence built into it. It’s much harder to build a good MLC device than an SLC device,
but it is possible. With great engineering and increases in capacity and density, some
of the best vendors are offering devices that are worthy of the eMLC label. This is
definitely an area where you’ll want to keep track of progress over time; this book’s
advice on MLC versus SLC is likely to become outdated pretty quickly.

How Long Will Your Device Last?
Virident guarantees that its FlashMax 1.4 TB MLC device will last for 15 PB (petabytes)
of writes, but that’s at the flash level, and user-visible writes are amplified. We ran a
little experiment to discover the write amplification factor for a specific workload.

We created a 500 GB dataset and ran the tpcc-mysql benchmark on it for an hour.
During this hour /proc/diskstats reported 984 GB of writes, and the Virident config-
uration utility showed 1,125GB of writes at the flash level, for a write amplification
factor of 1.14. Remember, this will be higher if more space is consumed on the device,
and it varies based on whether the writes are sequential or random.

At this rate, if we ran the benchmark continuously for a year and a half, we’d wear out
the device. Of course, most real workloads are nowhere close to this write-intensive,
so the card should last many years in practical usage. The point of this sidebar is not
to say that the device will wear out quickly—it is to say that the write amplification
factor is hard to predict, and you need to check your device under your workload to
see how it behaves.

Size also matters a lot for longevity, as we’ve mentioned. Bigger devices should last
significantly longer, which is why MLC is getting more popular—we’re seeing large
enough capacities these days for the longevity to be reasonable.

Benchmarking Flash Storage
Benchmarking flash storage is complicated and difficult. There are many ways to do it
wrong, and it requires device-specific knowledge, as well as great care and patience, to
do it right.

Flash devices have a three-stage pattern that we call the A-B-C performance character-
istics. They start out running fast (stage A), and then the garbage collector starts to
work. This causes a period during which the device is transitioning to a steady state
(stage B), and finally the device enters a steady state (stage C). All of the devices we’ve
tested have this characteristic pattern.

Of course, what you’re interested in is the performance in stage C, so your benchmarks
need to measure only that portion of the run. This means that the benchmark needs to
be more than just a benchmark: it needs to be a warmup workload followed by a
benchmark. Defining where the warmup ends and the benchmark begins can be tricky,
though.

Solid-State Storage | 403

Devices, filesystems, and operating systems vary in their support for the TRIM command,
which marks space as ready to reuse. Sometimes the device will TRIM when you delete
all of the files. If that happens between runs of the benchmark, the device will reset to
stage A, and you’ll have to cycle it through stages A and B between runs. Another factor
is the differing performance when the device is more or less filled up. A repeatable
benchmark has to account for all of these factors.

As a result of the above complexities, vendor benchmarks and specifications are a
minefield for the unwary, even when they’re reported faithfully and with good inten-
tions. You typically get four numbers from vendors. Here’s an example of a device’s
specifications:

1. The device can read up to 520 MB/s.

2. The device can write up to 480 MB/s.

3. The device can perform sustained writes up to 420 MB/s.

4. The device can perform 70,000 random 4 KB writes per second.

If you cross-check those numbers, you will notice that the peak IOPS (input/output
operations per second) of 70,000 random 4 KB writes per second is only about 274
MB/s, which is a lot less than the peak write bandwidths listed in points 2 and 3. This
is because the peak write bandwidth is achieved with large block sizes such as 64 KB
or 128 KB, and the peak IOPS is achieved with small block sizes.

Most applications don’t write in such large blocks. InnoDB typically writes a combi-
nation of 16 KB blocks and 512-byte blocks. As a result, you should really expect only
274 MB/s of write bandwidth from this device—and that’s in stage A, before the
garbage collector kicks in and the device reaches its steady-state long-term performance
levels!

You can find current benchmarks of MySQL and raw file I/O workloads on solid-state
devices at our blogs, http://www.ssdperformanceblog.com and http://www.mysqlperfor
manceblog.com.

Solid-State Drives (SSDs)
SSDs emulate SATA hard drives. This is a compatibility feature: a replacement for a
SATA drive doesn’t require any special drivers or interconnects.

Intel X-25E drives are probably the most common SSDs we see used in servers today,
but there are lots of other options. The X-25E is sold for the “enterprise” market, but
there is also the X-25M, which has MLC storage and is intended for the mass market
of laptop users and so forth. Intel also sells the 320 series, which a lot of people are
using as well. Again, this is just one vendor—there are many, and by the time this book
goes to print, some of what we’ve written about SSDs will likely already be outdated.

404 | Chapter 9: Operating System and Hardware Optimization

http://www.ssdperformanceblog.com
http://www.mysqlperformanceblog.com
http://www.mysqlperformanceblog.com

The good thing about SSDs is that they are readily available in lots of brands and mod-
els, they’re relatively cheap, and they’re a lot faster than hard drives. The biggest down-
side is that they’re not always as reliable as hard drives, depending on the brand and
model. Until recently, most devices didn’t have an onboard battery, but most devices
do have a write cache to buffer writes. This write cache isn’t durable without a battery
to back it, but it can’t be disabled without greatly increasing the write load on the
underlying flash storage. So, if you disable your drive’s cache to get really durable stor-
age, you will wear the device out faster, and in some cases this will void the warranty.

Some manufacturers don’t exactly rush to inform people about this characteristic of
the SSDs they sell, and they guard details such as the internal architecture of the devices
pretty jealously. Whether there is a battery or capacitor to keep the write cache’s data
safe in case of a power failure is usually an open question. In some cases the drive will
accept a command to disable the cache, but ignore it. So you really won’t know whether
your drive is durable unless you do crash testing. We crash-tested some drives and
found varying results. These days some drives ship with a capacitor to protect the cache,
making it durable, but in general, if your drive doesn’t brag that it has a battery or
capacitor, then it doesn’t. This means it isn’t durable in case of power outages, so you’ll
get data corruption, possibly without knowing it. A capacitor or battery is a feature you
should definitely look for in SSDs.

You generally get what you pay for with SSDs. The challenges of the underlying tech-
nology aren’t easy to solve. Lots of manufacturers make drives that fail shockingly
quickly under load, or don’t provide consistent performance. Some low-end manufac-
turers have a habit of releasing a new generation of drives every time you turn around,
and claiming that they’ve solved all the problems of the older generation. This tends
to be untrue, of course. The “enterprise-grade” devices are usually worth the price if
you care about reliability and consistently high performance.

Using RAID with SSDs

We recommend that you use RAID (Redundant Array of Inexpensive Disks) with SATA
SSDs. They are simply not reliable enough to trust a single drive with your data.

Many older RAID controllers weren’t SSD-ready. They assumed that they were man-
aging spindle-based hard drives, and they did things like buffering and reordering
writes, assuming that it would be more efficient. This was just wasted work and added
latency, because the logical locations that the SSD exposes are mapped to arbitrary
locations in the underlying flash memory. The situation is a bit better today. Some
RAID controllers have a letter at the end of their model numbers, indicating that they
are SSD-ready. For example, the Adaptec controllers use a Z for this purpose.

Even flash-ready controllers are not really flash-ready, however. For example, Vadim
benchmarked an Adaptec 5805Z controller with a variety of drives in RAID 10, using
a 500 GB file and a concurrency of 16. The results were terrible: the 95th percentile

Solid-State Storage | 405

latency for random writes was in the double-digit milliseconds, and in the worst case,
it was over a second.6 (You should expect sub-millisecond writes.)

This specific comparison was for a customer who wanted to see whether Micron SSDs
would be better than 64 GB Intel SSDs, which they already used in the same
configuration. When we benchmarked the Intel drives, we found the same performance
characteristics. So we tried some other configurations of drives, with and without a SAS
expander, to see what would happen. Table 9-1 shows the results.

Table 9-1. Benchmarks with SSDs on an Adaptec RAID controller

Drives Brand Size SAS expander Random read Random write

34 Intel 64 GB Yes 310 MB/s 130 MB/s

14 Intel 64 GB Yes 305 MB/s 145 MB/s

24 Micron 50 GB No 350 MB/s 120 MB/s

34 Intel 50 GB No 350 MB/s 180 MB/s

None of these results approached what we should expect from so many drives. In gen-
eral, the RAID controller was giving us the performance we’d expect from six or eight
drives, not dozens. The RAID controller was simply saturated. The point of this story
is that you should benchmark carefully before investing heavily in hardware—the
results might be quite different from your expectations.

PCIe Storage Devices
In contrast to SATA SSDs, PCIe devices don’t try to emulate hard drives. This is a good
thing: the interface between the server and the hard drives isn’t capable of handling the
full performance of flash. The SAS/SATA interconnect has lower bandwidth than PCIe,
so PCIe is a better choice for high performance. PCIe devices also have much lower
latency, because they are physically closer to the CPUs.

Nothing matches the performance you can get from PCIe devices. The downside is that
they’re relatively expensive.

All of the models we’re familiar with require a special driver to create a block device
that the operating system sees as a hard drive. They use a mixture of strategies for their
wear leveling and other logic; some of them use the host system’s CPU and memory,
and some have onboard logic controllers and RAM. In many cases the host system has
plentiful CPU and RAM resources, so using them is actually a more cost-effective strat-
egy than buying a card that has its own.

We don’t recommend RAID with PCIe devices. They’re too expensive to use with
RAID, and most devices have their own onboard RAID anyway. We don’t really know

6. But that’s not all. We checked the drives after the benchmark and found two dead SSDs and one with
inconsistencies.

406 | Chapter 9: Operating System and Hardware Optimization

how likely the controller is to fail, but the vendors say that their controllers should be
as good as network cards or RAID controllers in general, and this seems likely to be
true. In other words, the mean time between failures (MTBF) for these devices is likely
to be similar to the motherboard, so using RAID with the devices would just add a lot
of cost without much benefit.

There are several vendors making PCIe flash cards. The most popular brands among
MySQL users are Fusion-io and Virident, but vendors such as Texas Memory Systems,
STEC, and OCZ also have offerings. Both SLC and MLC cards are available.

Other Types of Solid-State Storage
In addition to SSDs and PCIe devices, there are other options from companies such as
Violin Memory, SandForce, and Texas Memory Systems. These companies provide
large boxes full of flash memory that are essentially flash SANs, with tens of terabytes
of storage. They’re used mostly for large-scale data center storage consolidation.
They’re very expensive and very high-performance. We know of some people who use
them, and we have measured their performance in some cases. They provide very decent
latency despite the network round-trip time—for example, less than four milliseconds
of latency over NFS.

These aren’t really a good fit for the general MySQL market, though. They’re more
targeted towards other databases, such as Oracle, which can use them for shared-
storage clustering. MySQL can’t take advantage of such powerful storage at such a large
scale, in general, as it doesn’t typically run well with databases in the tens of terabytes—
MySQL’s answer to such a large database is to shard and scale out horizontally in a
shared-nothing architecture.

Specialized solutions might be able to use these large storage devices, though—
Infobright might be a candidate, for example. ScaleDB can be deployed in a shared-
storage architecture, but we haven’t seen it in production, so we don’t know how well
it might work.

When Should You Use Flash?
The most obvious use case for solid-state storage is any workload that has a lot of
random I/O. Random I/O is usually caused by the data being larger than the server’s
memory. With standard hard drives, you’re limited by rotation speed and seek latency.
Flash devices can ease the pain significantly.

Of course, sometimes you can simply buy more RAM so the random workload will fit
into memory, and the I/O goes away. But when you can’t buy enough RAM, flash can
help. Another problem that you can’t always solve with RAM is that of a high-through-
put write workload. Adding memory will help reduce the write workload that reaches
the disks, because more memory creates more opportunities to buffer and combine
writes. This allows you to convert a random write workload into a more sequential one.

Solid-State Storage | 407

However, this doesn’t work infinitely, and some transactional or insert-heavy work-
loads don’t benefit from this approach anyway. Flash storage can help here, too.

Single-threaded workloads are another characteristic scenario where flash can poten-
tially help. When a workload is single-threaded it is very sensitive to latency, and the
lower latency of solid-state storage makes a big difference. In contrast, multi-threaded
workloads can often simply be parallelized more heavily to get more throughput.
MySQL replication is the obvious example of a single-threaded workload that benefits
a lot from reduced latency. Using flash storage on replicas can often improve their
performance significantly when they are having trouble keeping up with the master.

Flash is also great for server consolidation, especially in the PCIe form factor. We’ve
seen opportunities to consolidate many server instances onto a single physical server—
sometimes up to a 10- or 15-fold consolidation is possible. See Chapter 11 for more on
this topic.

Flash isn’t always the answer, though. A good example is for sequential write workloads
such as the InnoDB log files. Flash doesn’t offer much of a cost-to-performance ad-
vantage in this scenario, because it’s not much faster at sequential writes than standard
hard drives are. Such workloads are also high-throughput, which will wear out the
device faster. It’s often a better idea to store your log files on standard hard drives, with
a RAID controller that has a battery-backed write cache.

And sometimes the answer lies in the memory-to-disk ratio, not just in the disk. If you
can buy enough RAM to cache your workload, you may find this cheaper and more
effective than purchasing a flash storage device.

Using Flashcache
Although there are many opportunities to make tradeoffs between flash storage, hard
disks, and RAM, these don’t have to be treated as single-component tiers in the storage
hierarchy. Sometimes it makes sense to use a combination of disk and memory tech-
nologies, and that’s what Flashcache does.

Flashcache is one implementation of a technique you can find used in many systems,
such as Oracle Database, the ZFS filesystem, and even many modern hard drives and
RAID controllers. Much of the following discussion applies broadly, but to keep things
concrete we’ll focus only on Flashcache, because it is vendor-and filesystem-agnostic.

Flashcache is a Linux kernel module that uses the Linux device mapper. It creates an
intermediate layer in the memory hierarchy, between RAM and the disk. It is one of
the open source technologies created by Facebook and is used to help optimize Face-
book’s hardware for its database workload.

Flashcache creates a block device, which can be partitioned and used to create a file-
system like any other. The trick is that this block device is backed by both flash and
disk storage. The flash device is used as an intelligent cache for both reads and writes.

408 | Chapter 9: Operating System and Hardware Optimization

The virtual block device is much larger than the flash device, but that’s okay, because
the disk is considered to be the ultimate repository for the data. The flash device is just
there to buffer writes and to effectively extend the server’s memory size for caching
reads.

How good is performance? Flashcache seems to have relatively high kernel overhead.
(The device mapper doesn’t seem to be as efficient as it should be, but we haven’t
probed deeply to find out why.) However, even though it seems that Flashcache could
theoretically be more efficient, and the ultimate performance is not as good as the
performance of the underlying flash storage, it’s still a lot faster than disks. So it might
be worthwhile to consider.

We evaluated Flashcache’s performance in a series of hundreds of benchmarks, and
we found that it’s rather difficult to test meaningfully on an artificial workload. We
concluded that it’s not clear how beneficial Flashcache is for write workloads in general,
but for read workloads it can be very helpful. This matches the use case for which it
was designed: servers that are heavily I/O-bound on reads, with a much larger working
set than the memory size.

In addition to lab testing, we have some experience with Flashcache in production
workloads. One case of a four-terabyte database comes to mind. This database suffered
greatly from replication lag. We modified the system by adding a Virident PCIe card
with half a terabyte of storage. Then we installed Flashcache and used the PCIe card
as the flash portion of the device. This doubled replication speed.

The Flashcache use case is most economical when the flash card is pretty full, so it’s
important to have a card whose performance doesn’t degrade much when it fills up.
That’s why we chose the Virident card.

Flashcache really is a cache, so it has to warm up just like any other cache. This warmup
period can be extremely long, though. For example, in the case we just mentioned,
Flashcache required a week to warm up and really help accelerate the workload.

Should you use Flashcache? Your mileage will vary, so we think it’s a good idea to get
expert advice on this point if you feel uncertain. It’s complex to understand the me-
chanics of Flashcache, and how they impact your database’s working set size and the
(at least) three layers of storage underneath the database:

• First there’s the InnoDB buffer pool, whose size relative to the working set size
determines one cache miss rate. Hits from this cache are very fast, and the response
time is very uniform.

• Misses from the buffer pool propagate down to the Flashcache device, which has
a complex distribution of response times. Flashcache’s cache miss rate is deter-
mined by the working set size and the size of the flash device that backs it. Hits
from this cache are a lot faster than disk retrievals.

• Misses from Flashcache’s cache propagate down to the disks, which have a fairly
uniform distribution of response times.

Solid-State Storage | 409

There might be more layers beyond that: your SAN or your RAID controller cache, for
example.

Here’s a thought experiment that illustrates how these layers interact. It’s clear that the
response times from a Flashcache device will not be as stable or fast as they would be
from the flash device alone. But imagine that you have a terabyte of data, and 100 GB
of this data receives 99% of the I/O operations over a long period of time. That is, the
long-term 99th percentile working set size is 100 GB.

Now suppose that we have the following storage devices: a large RAID volume that can
perform 1,000 IOPS, and a much smaller flash device that can perform 100,000 IOPS.
The flash device is not big enough to store all of the data—let’s pretend it is 128 GB—
so using flash alone isn’t an option. If we use the flash device for Flashcache, we can
expect cache hits to be much faster than disk retrievals, but slower than the responses
from flash device itself. Let’s stick with round numbers and say that 90% of the requests
to the Flashcache device can be served at a rate equivalent to 50,000 IOPS.

What is the outcome of this thought experiment? There are two major points:

1. Our system provides a lot better performance with Flashcache than without it,
because most of the page accesses that are cache misses in the buffer pool are served
from the flash card at a very high speed relative to disk accesses. (The 99th per-
centile working set fits entirely into the flash card.)

2. The 90% hit rate at the Flashcache device means there is a 10% miss rate. Because
the underlying disks can serve only 1,000 IOPS, the most we can expect to push
to the Flashcache device is 10,000 IOPS. To understand why this is true, imagine
what would happen if we requested more than that: with 10% of the I/O operations
missing the cache and falling through to the RAID volume, we’d be requesting
more than 1,000 IOPS of the RAID volume, and we know it can’t handle that. As
a result, even though Flashcache is slower than the flash card, the system as a whole
is still limited by the RAID volume, not the flash card or Flashcache.

In the final analysis, whether Flashcache is right for you is a complex decision that will
involve lots of factors. In general, it seems best suited to heavily I/O-bound read-mostly
workloads whose working set size is much too large to be optimized economically with
memory.

Optimizing MySQL for Solid-State Storage
If you’re running MySQL on flash, there are some configuration parameters that can
provide better performance. The default configuration of InnoDB, in particular, is tail-
ored to hard drives, not solid-state drives. Not all versions of InnoDB provide the same
level of configurability. In particular, many of the improvements designed for flash have
appeared first in Percona Server, although many of these have either already been re-
implemented in Oracle’s version of InnoDB, or appear to be planned for future versions.
Improvements include:

410 | Chapter 9: Operating System and Hardware Optimization

Increasing InnoDB’s I/O capacity
Flash supports much higher concurrency than conventional hard drives, so you
can increase the number of read and write I/O threads to as high as 10 or 15 with
good results. You can also increase the innodb_io_capacity option to between
2000 and 20000, depending on the IOPS your device can actually perform. This is
especially necessary with the official InnoDB from Oracle, which has more internal
algorithms that depend on this setting.

Making the InnoDB log files larger
Even with the improved recovery algorithms in recent versions of InnoDB, you
don’t want your log files to be too large on hard drives, because the random I/O
required for crash recovery is slow and can cause recovery to take a long time. Flash
storage makes this much faster, so you can have larger InnoDB log files, which can
help improve and stabilize performance. This is especially necessary with the offi-
cial InnoDB from Oracle, which has trouble maintaining a consistent dirty page
flush rate unless the log files are fairly large—4 GB or larger seems to be a good
range on typical servers at the time of writing. Percona Server and MySQL 5.6
support log files larger than 4 GB.

Moving some files from flash to RAID
In addition to making the InnoDB log files larger, it can be a good idea to store the
log files separately from the data files, placing them on a RAID controller with a
battery-backed write cache instead of on the solid-state device. There are several
reasons for this. One is that the type of I/O the log files receive isn’t much faster
on flash devices than it is on such a RAID setup. InnoDB writes the log files se-
quentially in 512-byte units and never reads them except during crash recovery,
when it reads them sequentially. It’s kind of wasteful to use your flash storage for
this. It’s also a good idea to move these small writes to the RAID volume because
very small writes increase the write amplification factor on flash devices, which can
be a problem for some devices’ longevity. A mixture of large and small writes can
also cause increased latency for some devices.

It’s also sometimes beneficial to move your binary log files to the RAID volume,
for similar reasons; and you might consider moving your ibdata1 file, too. The
ibdata1 file contains the doublewrite buffer and the insert buffer. The doublewrite
buffer, in particular, gets a lot of repeated writes. In Percona Server, you can remove
the doublewrite buffer from the ibdata1 file and store it in a separate file, which
you can place on the RAID volume.

There’s another option, too: you can take advantage of Percona Server’s ability to
write the transaction logs in 4-kilobyte blocks instead of 512-byte blocks. This can
be more efficient for flash storage as well as for the server itself.

All of the above advice is rather hardware-specific, and your mileage may vary, so
be sure you understand the factors involved—and test appropriately—before you
make such a large change to your storage layout.

Solid-State Storage | 411

Disabling read-ahead
Readahead optimizes device access by noticing and predicting read patterns, and
requesting data from the device when it believes that it will be needed in the future.
There are actually two types of read-ahead in InnoDB, and in various circumstances
we’ve found that performance problems can actually be caused by read-ahead and
the way it works internally. The overhead is greater than the benefit in many cases,
especially on flash storage, but we don’t have hard evidence or guidelines as to
exactly how much you can improve performance by disabling read-ahead.

Oracle disabled so-called “random read-ahead” in the InnoDB plugin in MySQL
5.1, then reenabled it in MySQL 5.5 with a parameter to configure it. Percona Server
lets you configure both random and linear read-ahead in older server versions as
well.

Configuring the InnoDB flushing algorithm
The way that InnoDB decides when, how many, and which pages to flush is a highly
complex topic to explore, and we don’t have room to discuss it in great detail here.
This is also a subject of active research, and in fact several algorithms are available
in various versions of InnoDB and MySQL.

The standard InnoDB’s algorithms don’t offer much configurability that is bene-
ficial on flash storage, but if you’re using Percona XtraDB (included in Percona
Server and MariaDB), we recommend setting the innodb_adaptive_checkpoint op-
tion to keep_average, instead of the default value of estimate. This will help ensure
more consistent performance and avoid server stalls, because the estimate algo-
rithm can stall on flash storage. We developed keep_average specifically for flash
storage, because we realized that it’s possible to push as much I/O to the device as
we want without causing a bottleneck and an ensuing stall.

In addition, we recommend setting innodb_flush_neighbor_pages to 0 on flash
storage. This will prevent InnoDB from trying to find nearby dirty pages to flush
together. The algorithm that performs this operation can cause large spikes of
writes, high latency, and internal contention. It’s not necessary or beneficial on
flash storage, because the neighboring pages can be flushed individually without
impacting performance.

Potentially disabling the doublewrite buffer
Instead of moving the doublewrite buffer off the flash device, you can consider
disabling it altogether. Some vendors claim that their devices support atomic 16
KB writes, which makes the doublewrite buffer redundant. You need to ensure that
the entire storage system is configured to support atomic 16 KB writes, which
generally requires O_DIRECT and the XFS filesystem.

We don’t have conclusive evidence that the claim of atomicity is true, but because
of how flash storage works, we believe that the chance of partial page writes to the
data files is greatly decreased. And the gains are much greater on flash devices than
they are on conventional hard drives. Disabling the doublewrite buffer can improve

412 | Chapter 9: Operating System and Hardware Optimization

MySQL’s overall performance on flash storage by a factor of 50% or so, so although
we don’t know that it’s 100% safe, it’s something you can consider doing.

Restricting the insert buffer size
The insert buffer (or change buffer, in newer versions of InnoDB) is designed to
reduce random I/O to nonunique secondary index pages that aren’t in memory
when rows are updated. On hard drives, it can make a huge difference in reducing
random I/O. For some workloads, the difference may reach nearly two orders of
magnitude when the working set is much larger than memory. Letting the insert
buffer grow large is very helpful in such cases.

However, this isn’t as necessary on flash storage. Random I/O is much faster on
flash devices, so even if you disable the insert buffer completely, it doesn’t hurt as
badly. You probably don’t want to disable it, though. It’s better to leave it enabled,
because the I/O is only one part of the cost of updating index pages that aren’t in
memory. The main thing to configure on flash devices is the maximum permitted
size. You can restrict it to a relatively small size, instead of letting it grow huge; this
can avoid consuming a lot of space on your device and help prevent the ibdata1
file from growing very large. At the time of writing you can’t configure the maxi-
mum size in standard InnoDB, but you can in Percona XtraDB, which is included
in Percona Server and MariaDB. MySQL 5.6 will add a similar option, too.

In addition to the aforementioned configuration suggestions, some other optimizations
have been proposed or discussed for flash storage. However, these are not all as clear-
cut, so we will mention them but leave you to research their benefit for your specific
case. The first is the InnoDB page size. We’ve found mixed results, so we don’t have a
definite recommendation yet. The good news is that the page size is configurable
without recompiling the server in Percona Server, and this will also be possible in
MySQL 5.6. Previous versions of MySQL required you to recompile the server to use
a different page size, so the general public has by far the most experience running with
standard 16 KB pages. When the page size becomes easier for more people to experi-
ment with, we expect a lot more testing with nonstandard sizes, and it’s likely that we’ll
learn a great deal from this.

Another proposed optimization is alternative algorithms for InnoDB’s page checksums.
When the storage system responds very quickly, the checksum computation can ac-
tually start to take a significant amount of time relative to the I/O operation, and for
some people this has become the bottleneck instead of the I/O being the bottleneck.
Our benchmarks haven’t shown repeatable results that are applicable to a broad spec-
trum of use cases, so your mileage may vary. Percona XtraDB permits you to change
the checksum algorithm, and MySQL 5.6 will also have this capability.

You might have noticed that we’ve referred a lot to features and optimizations that
aren’t available yet in standard InnoDB. We hope and believe that many of the
improvements we’ve built into Percona Server and XtraDB will eventually become
available to a wider audience. In the meantime, if you’re using the official MySQL

Solid-State Storage | 413

distribution from Oracle, there are still steps you can take to optimize your server for
flash storage. You should use innodb_file_per_table, and place the data directory on
your flash device. Then move the ibdata1 and log files, and all other log files (binary
logs, relay logs, etc.), to a RAID volume as discussed previously. This will concentrate
the random I/O workload on your flash device and move as many of the write-heavy,
sequentially written files off this device as possible, so you can save space on your flash
device and reduce wear.

In addition, for all versions of the server, you should ensure that hyperthreading is
enabled. It helps a lot when you use flash storage, because the disk is generally no longer
the bottleneck, and tasks become more CPU-bound instead of being I/O-bound.

Choosing Hardware for a Replica
Choosing hardware for a replica is generally similar to choosing hardware for a master,
though there are some differences. If you’re planning to use a replica for failover, it
usually needs to be at least as powerful as the master. And regardless of whether the
replica is acting as a standby to replace the master, it must be powerful enough to
perform all the writes that occur on the master, with the extra handicap that it must
perform them serially. (There’s more information about this in the next chapter.)

The main consideration for a replica’s hardware is cost: do you need to spend as much
on your replica’s hardware as you do on the master? Can you configure the replica
differently, so you can get more performance from it? Will the replica have a different
workload from the master, and potentially benefit from very different hardware?

It all depends. If the replica is a standby, you probably want the master and replica to
have the same hardware and configuration. But if you’re using replication solely as a
cheap way to get more overall read capacity from your system, you can take a variety
of shortcuts on a replica. You might want to use a different storage engine on the replica,
for example, and some people use cheaper hardware or use RAID 0 instead of RAID 5
or RAID 10. You can also disable some consistency and durability guarantees to let the
replica do less work.

These measures can be cost-efficient on a large scale, but they might just make things
more complex on a small scale. In practice, most people seem to use one of two strate-
gies for replicas: they use identical hardware everywhere, or they buy new hardware
for the master and use the master’s old hardware for a replica.

Using solid-state drives on a replica can make a lot of sense when the replica is having
a hard time keeping up with the master. The fast random I/O helps ease the single-
threaded replication thread’s handicap.

414 | Chapter 9: Operating System and Hardware Optimization

RAID Performance Optimization
Storage engines often keep their data and/or indexes in single large files, which means
RAID (Redundant Array of Inexpensive Disks) is usually the most feasible option for
storing a lot of data.7 RAID can help with redundancy, storage size, caching, and speed.
But as with the other optimizations we’ve been looking at, there are many variations
on RAID configurations, and it’s important to choose one that’s appropriate for your
needs.

We won’t cover every RAID level here, or go into the specifics of exactly how the
different RAID levels store data. Good material on this topic is widely available in books
and online.8 Instead, we focus on how RAID configurations satisfy a database server’s
needs. The most important RAID levels are:

RAID 0
RAID 0 is the cheapest and highest-performance RAID configuration, at least when
you measure cost and performance simplistically (if you include data recovery, for
example, it starts to look more expensive). Because it offers no redundancy, we
recommend RAID 0 only for servers you don’t care about, such as replicas or servers
that are “disposable” for some reason. The typical scenario is a replica server that
can easily be cloned from another replica.

Again, note that RAID 0 does not provide any redundancy, even though “redun-
dant” is the R in the RAID acronym. In fact, the probability of a RAID 0 array
failing is actually higher than the probability of any single disk failing, not lower!

RAID 1
RAID 1 offers good read performance for many scenarios, and it duplicates your
data across disks, so there’s good redundancy. RAID 1 is a little bit faster than
RAID 0 for reads. It’s good for servers that handle logging and similar workloads,
because sequential writes rarely need many underlying disks to perform well (as
opposed to random writes, which can benefit from parallelization). It is also a
typical choice for low-end servers that need redundancy but have only two hard
drives.

RAID 0 and RAID 1 are very simple, and they can often be implemented well in
software. Most operating systems will let you create software RAID 0 and RAID 1
volumes easily.

7. Partitioning (see Chapter 7) is another good practice, because it usually splits the file into many files,
which you can place on different devices. However, even compared to partitioning, RAID is a simple
solution for very large data volumes. It doesn’t require you to balance the load manually or intervene
when the load distribution changes, and it gives redundancy, which you won’t get by assigning partitions
to different disks.

8. Two good learning resources are the Wikipedia article on RAID (http://en.wikipedia.org/wiki/RAID) and
the AC&NC tutorial at http://www.acnc.com/04_00.html.

RAID Performance Optimization | 415

http://en.wikipedia.org/wiki/RAID
http://www.acnc.com/04_00.html

RAID 5
RAID 5 is a little scary, but it’s the inevitable choice for some applications because
of price constraints and/or constraints on the number of disks that can physically
fit in the server. It spreads the data across many disks, with distributed parity blocks
so that if any one disk fails the data can be rebuilt from the parity blocks. If two
disks fail, the entire volume fails unrecoverably. In terms of cost per unit of storage,
it’s the most economical redundant configuration, because you lose only one disk’s
worth of storage space across the entire array.

Random writes are expensive in RAID 5, because each write to the volume requires
two reads and two writes to the underlying disks to compute and store the parity
bits. Writes can perform a little better if they are sequential, or if there are many
physical disks. On the other hand, both random and sequential reads perform
decently. RAID 5 is an acceptable choice for data volumes, or data and logs, for
many read-mostly workloads, where the cost of the extra I/O operations for writes
isn’t a big deal.

The biggest performance cost with RAID 5 occurs if a disk fails, because the data
has to be reconstructed by reading all the other disks. This affects performance
severely, and it’s even worse if you have lots of disks. If you’re trying to keep the
server online during the rebuild, don’t expect either the rebuild or the array’s per-
formance to be good. If you use RAID 5, it’s best to have some mechanism to fail
over and take a machine out of service when there’s a problem. Either way, it’s a
good idea to benchmark your system with a failed drive and during recovery, so
you know what to expect. The disk performance might degrade by a factor of two
or more with a failed drive and by a factor of five or more when rebuilding is in
progress, and a server with storage that’s two to five times slower might be dis-
proportionately affected overall.

Other performance costs include limited scalability because of the parity blocks—
RAID 5 doesn’t scale well past 10 disks or so—and caching issues. Good RAID 5
performance depends heavily on the RAID controller’s cache, which can conflict
with the database server’s needs. We discuss caching a bit later.

One of the mitigating factors for RAID 5 is that it’s so popular. As a result, RAID
controllers are often highly optimized for RAID 5, and despite the theoretical limits,
smart controllers that use caches well can sometimes perform nearly as well as
RAID 10 controllers for some workloads. This might actually reflect that the RAID
10 controllers are less highly optimized, but regardless of the reason, this is what
we’ve seen.

RAID 10
RAID 10 is a very good choice for data storage. It consists of mirrored pairs that
are striped, so it scales both reads and writes well. It is fast and easy to rebuild, in
comparison to RAID 5. It can also be implemented in software fairly well.

The performance loss when one hard drive goes out can still be significant, because
that stripe can become a bottleneck. Performance can degrade by up to 50%,

416 | Chapter 9: Operating System and Hardware Optimization

depending on the workload. One thing to watch out for is RAID controllers that
use a “concatenated mirror” implementation for RAID 10. This is suboptimal be-
cause of the absence of striping: your most frequently accessed data might be placed
on only one pair of spindles, instead of being spread across many, so you’ll get
poor performance.

RAID 50
RAID 50 consists of RAID 5 arrays that are striped, and it can be a good compro-
mise between the economy of RAID 5 and the performance of RAID 10, if you have
many disks. This is mainly useful for very large datasets, such as data warehouses
or extremely large OLTP systems.

Table 9-2 summarizes various RAID configurations.

Table 9-2. Comparison of RAID levels

Level Synopsis Redundancy Disks required Faster reads Faster writes

RAID 0 Cheap, fast, dangerous No N Yes Yes

RAID 1 Fast reads, simple, safe Yes 2 (usually) Yes No

RAID 5 A safety, speed, and cost compromise cost Yes N + 1 Yes Depends

RAID 10 Expensive, fast, safe Yes 2N Yes Yes

RAID 50 For very large data stores Yes 2(N + 1) Yes Yes

RAID Failure, Recovery, and Monitoring
RAID configurations (with the exception of RAID 0) offer redundancy. This is impor-
tant, but it’s easy to underestimate the likelihood of concurrent disk failures. You
shouldn’t think of RAID as a strong guarantee of data safety.

RAID doesn’t eliminate—or even reduce—the need for backups. When there is a
problem, the recovery time will depend on your controller, the RAID level, the array
size, the disk speed, and whether you need to keep the server online while you rebuild
the array.

There is a chance of disks failing at exactly the same time. For example, a power spike
or overheating can easily kill two or more disks. What’s more common, however, is
two disk failures happening close together. Many such issues can go unnoticed. A
common case is corruption on the physical media holding data that’s seldom accessed.
This might go undetected for months, until either you try to read the data, or another
drive fails and the RAID controller tries to use the corrupted data to rebuild the array.
The larger the hard drive is, the more likely this is.

That’s why it’s important to monitor your RAID arrays. Most controllers offer some
software to report on the array’s status, and you need to keep track of this because you
might otherwise be totally ignorant of a drive failure. You might miss your opportunity
to recover the data and discover the problem only when a second drive fails, when it’s

RAID Performance Optimization | 417

too late. You should configure a monitoring system to alert you when a drive or volume
changes to a degraded or failed status.

You can mitigate the risk of latent corruption by actively checking your arrays for con-
sistency at regular intervals. Background Patrol Read, a feature of some controllers that
checks for damaged media and fixes it while all the drives are online, can also help avert
such problems. As with recovery, extremely large arrays can be slow to check, so make
sure you plan accordingly when you create large arrays.

You can also add a hot spare drive, which is unused and configured as a standby for
the controller to automatically use for recovery. This is a good idea if you depend on
every server. It’s expensive with servers that have only a few hard drives, because the
cost of having an idle disk is proportionately higher, but if you have many disks, it’s
almost foolish not to have a hot spare. Remember that the probability of a drive failure
increases rapidly with more disks.

In addition to monitoring your drives for failures, you should monitor the RAID con-
troller’s battery backup unit and write cache policy. If the battery fails, by default most
controllers will disable write caching by changing the cache policy to WriteThrough
instead of WriteBack. This can cause a severe drop in performance. Many controllers
will also periodically cycle the battery through a learning process, during which time
the cache is also disabled. Your RAID controller’s management utility should let you
view and configure when the learning cycle is scheduled, so that it doesn’t catch you
off guard.

You might also want to benchmark your system with the cache policy set to Write-
Through so you’ll know what to expect. You might need to schedule your battery
learn cycles at night or on the weekend, reconfigure your servers by changing the
innodb_flush_log_at_trx_commit and sync_binlog variables, or simply fail over to an-
other server and let the battery learn cycles happen one server at a time.

Balancing Hardware RAID and Software RAID
The interaction between the operating system, the filesystem, and the number of drives
the operating system sees can be complicated. Bugs or limitations—or just misconfi-
gurations—can reduce performance well below what is theoretically possible.

If you have 10 hard disks, ideally they should be able to serve 10 requests in parallel,
but sometimes the filesystem, the operating system, or the RAID controller will serialize
requests. One possible solution to this problem is to try different RAID configurations.
For example, if you have 10 disks and you want to use mirroring for redundancy and
performance, you could configure them in several ways:

• Configure a single RAID 10 volume consisting of five mirrored pairs. The operating
system will see a single large disk volume, and the RAID controller will hide the
10 underlying disks.

418 | Chapter 9: Operating System and Hardware Optimization

• Configure five RAID 1 mirrored pairs in the RAID controller, and let the operating
system address five volumes instead of one.

• Configure five RAID 1 mirrored pairs in the RAID controller, and then use software
RAID 0 to make the five volumes appear as one logical volume, effectively imple-
menting RAID 10 partially in hardware and partially in software.

Which option is best? It depends on how all the components in your system interact.
The configurations might perform identically, or they might not.

We’ve noticed serialization in various configurations. For example, the ext3 filesystem
has a single mutex per inode, so when InnoDB is configured with innodb_
flush_method=O_DIRECT (the usual configuration) there will be inode-level locking in the
filesystem. This makes it impossible to have concurrent I/O to the files, and the system
performs well below its theoretical ability.

In another case we saw, requests to each device were serialized with a 10-disk RAID 10
volume, the ReiserFS filesystem, and InnoDB with innodb_file_per_table enabled.
Switching to software RAID 0 on top of hardware RAID 1 gave five times more
throughput, because the storage system began to behave like five spindles instead of
one. This situation was caused by a bug that has since been fixed, but it’s a good
illustration of the sort of thing that can happen.

Serialization can happen on any layer in the software or hardware stack. If you see this
problem occurring, you might need to change the filesystem, upgrade your kernel,
expose more devices to the operating system, or use a different mixture of software or
hardware RAID. You should check your device’s concurrency and make sure it really
is doing concurrent I/O (more on this topic later in the chapter).

Finally, don’t forget to benchmark when you set up a new server! This will help you
verify that you’re getting the performance you expect. For example, if one hard drive
can do 200 random reads per second, a RAID 10 volume with eight hard drives should
do close to 1,600 random reads per second. If you’re observing a much lower number,
such as 500 random reads per second, you should research the problem. Make sure
your benchmarks exercise the I/O subsystem in the same way MySQL will—for
example, use the O_DIRECT flag and test I/O performance to a single file if you’re using
InnoDB without innodb_file_per_table enabled. We usually use sysbench for validat-
ing that new hardware is set up correctly.

RAID Configuration and Caching
You can usually configure the RAID controller itself by entering its setup utility during
the machine’s boot sequence, or by running it from the command prompt. Although
most controllers offer a lot of options, the two we focus on are the chunk size for striped
arrays, and the on-controller cache (also known as the RAID cache; we use the terms
interchangeably).

RAID Performance Optimization | 419

The RAID stripe chunk size

The optimal stripe chunk size is workload- and hardware-specific. In theory, it’s good
to have a large chunk size for random I/O, because it means more reads can be satisfied
from a single drive.

To see why this is so, consider the size of a typical random I/O operation for your
workload. If the chunk size is at least that large, and the data doesn’t span the border
between chunks, only a single drive needs to participate in the read. But if the chunk
size is smaller than the amount of data to be read, there’s no way to avoid involving
more than one drive in the read.

So much for theory. In practice, many RAID controllers don’t work well with large
chunks. For example, the controller might use the chunk size as the cache unit in its
cache, which could be wasteful. The controller might also match the chunk size, cache
size, and read-unit size (the amount of data it reads in a single operation). If the read
unit is too large, its cache might be less effective, and it might end up reading a lot more
data than it really needs, even for tiny requests.

Also, in practice it’s hard to know whether any given piece of data will span multiple
drives. Even if the chunk size is 16 KB, which matches InnoDB’s page size, you can’t
be certain all of the reads will be aligned on 16 KB boundaries. The filesystem might
fragment the file, and it will typically align the fragments on the filesystem block size,
which is often 4 KB. Some filesystems might be smarter, but you shouldn’t count on it.

You can configure the system so that blocks are aligned all the way from the application
down to the underlying storage: InnoDB’s blocks, the filesystem’s blocks, LVM, the
partition offset, the RAID stripe, and disk sectors. Our benchmarks showed that when
everything is aligned, there can be a performance improvement on the order of 15% to
23% for random reads and random writes, respectively. The exact techniques for align-
ing everything are too specific to cover here, but there’s a lot of good information on it
elsewhere, including our blog, http://www.mysqlperformanceblog.com.

The RAID cache

The RAID cache is a (relatively) small amount of memory that is physically installed
on the RAID controller. It can be used to buffer data as it travels between the disks and
the host system. Here are some of the reasons a RAID card might use the cache:

Caching reads
After the controller reads some data from the disks and sends it to the host system,
it can store the data; this will enable it to satisfy future requests for the same data
without having to go to disk again.

This is usually a very poor use of the RAID cache. Why? Because the operating
system and the database server have their own, much larger, caches. If there’s a
cache hit in one of these caches, the data in the RAID cache won’t be used. Con-
versely, if there’s a miss in one of the higher-level caches, the chance that there’ll

420 | Chapter 9: Operating System and Hardware Optimization

http://www.mysqlperformanceblog.com

be a hit in the RAID cache is vanishingly small. Because the RAID cache is so much
smaller, it will almost certainly have been flushed and filled with other data, too.
Either way you look at it, it’s a waste of memory to cache reads in the RAID cache.

Caching read-ahead data
If the RAID controller notices sequential requests for data, it might decide to do a
read-ahead read—that is, to prefetch data it predicts will be needed soon. It has to
have somewhere to put the data until it’s requested, though. It can use the RAID
cache for this. The performance impact of this can vary widely, and you should
check to ensure it’s actually helping. Read-ahead operations might not help if the
database server is doing its own smart read-ahead (as InnoDB does), and it might
interfere with the all-important buffering of synchronous writes.

Caching writes
The RAID controller can buffer writes in its cache and schedule them for a later
time. The advantage to doing this is twofold: first, it can return “success” to the
host system much more quickly than it would be able to if it had to actually perform
the writes on the physical disks, and second, it can accumulate writes and do them
more efficiently.

Internal operations
Some RAID operations are very complex—especially RAID 5 writes, which have
to calculate parity bits that can be used to rebuild data in the event of a failure. The
controller needs to use some memory for this type of internal operation.

This is one reason why RAID 5 can perform poorly on some controllers: it needs
to read a lot of data into the cache for good performance. Some controllers can’t
balance caching writes with caching for the RAID 5 parity operations.

In general, the RAID controller’s memory is a scarce resource that you should try to
use wisely. Using it for reads is usually a waste, but using it for writes is an important
way to speed up your I/O performance. Many controllers let you choose how to allocate
the memory. For example, you can choose how much of it to use for caching writes
and how much for reads. For RAID 0, RAID 1, and RAID 10, you should probably
allocate 100% of the controller’s memory for caching writes. For RAID 5, you should
reserve some of the controller’s memory for its internal operations. This is generally
good advice, but it doesn’t always apply—different RAID cards require different con-
figurations.

When you’re using the RAID cache for write caching, many controllers let you config-
ure how long it’s acceptable to delay the writes (one second, five seconds, and so on).
A longer delay means more writes can be grouped together and flushed to the disks
optimally. The downside is that your writes will be more “bursty.” That’s not a bad
thing, unless your application happens to make a bunch of write requests just as the
controller’s cache fills up, when it’s about to be flushed to disk. If there’s not enough
room for your application’s write requests, it’ll have to wait. Keeping the delay shorter
means you’ll have more write operations and they’ll be less efficient, but it smoothes

RAID Performance Optimization | 421

out the spikiness and helps keep more of the cache free to handle bursts from the
application. (We’re simplifying here—controllers often have complex, vendor-specific
balancing algorithms, so we’re just trying to cover the basic principles.)

The write cache is very helpful for synchronous writes, such as issuing fsync() calls on
the transaction logs and creating binary logs with sync_binlog enabled, but you
shouldn’t enable it unless your controller has a battery backup unit (BBU) or other non-
volatile storage.9 Caching writes without a BBU is likely to corrupt your database, and
even your transactional filesystem, in the event of power loss. If you have a BBU, how-
ever, enabling the write cache can increase performance by a factor of 20 or more for
workloads that do a lot of log flushes, such as flushing the transaction log when a
transaction commits.

A final consideration is that many hard drives have write caches of their own, which
can “fake” fsync() operations by lying to the controller that the data has been written
to physical media. Hard drives that are attached directly (as opposed to being attached
to a RAID controller) can sometimes let their caches be managed by the operating
system, but this doesn’t always work either. These caches are typically flushed for an
fsync() and bypassed for synchronous I/O, but again, the hard drive can lie. You should
either ensure that these caches are flushed on fsync() or disable them, because they
are not battery-backed. Hard drives that aren’t managed properly by the operating
system or RAID firmware have caused many instances of data loss.

For this and other reasons, it’s always a good idea to do genuine crash testing (literally
pulling the power plug out of the wall) when you install new hardware. This is often
the only way to find subtle misconfigurations or sneaky hard drive behaviors. A handy
script for this can be found at http://brad.livejournal.com/2116715.html.

To test whether you can really rely on your RAID controller’s BBU, make sure you leave
the power cord unplugged for a realistic amount of time. Some units don’t last as long
without power as they’re supposed to. Here again, one bad link can render your whole
chain of storage components useless.

Storage Area Networks and Network-Attached Storage
Storage area networks (SANs) and network-attached storage (NAS) are two related ways
to attach external file storage devices to a server. The difference is really in the way you
access the storage. You access a SAN through a block-level interface that a server sees
as being directly attached, but you use a NAS device through a file-based protocol such
as NFS or SMB. A SAN is usually connected to the server via the Fibre Channel Protocol
(FCP) or iSCSI, while a NAS device is connected via a standard network connection.
Some devices, such as the NetApp Filer storage systems, can be accessed both ways.

9. There are several techniques, including capacitors and flash storage, but we’ll lump it all under BBU here.

422 | Chapter 9: Operating System and Hardware Optimization

http://brad.livejournal.com/2116715.html

In the discussion that follows, we’ll lump both types of storage into one acronym—
SAN—and you should keep that in mind as you read. The primary difference is whether
you access your storage as files or as blocks.

A SAN permits a server to access a very large number of hard drives—often 50 or
more—and typically has large, intelligent caches to buffer writes. The block-level in-
terface appears to the server as logical unit numbers (LUNs), or virtual volumes (unless
you’re using NFS). Many SANs also allow multiple nodes to be “clustered” to get better
performance or to increase storage capacity.

The current generation of SANs are different from those available a few years ago. Many
new SANs have hybrid flash and hard drive storage, not just hard drives. They often
have flash caches as large as a terabyte or more, unlike older SANs, which had relatively
small caches. Also, the older SANs couldn’t help “enlarge the buffer pool” with a larger
cache tier, as new SANs can sometimes do. The newer SANs can thus provide better
performance than older ones in some types of comparisons.

SAN Benchmarks
We have benchmarked a variety of products from many SAN vendors. Table 9-3 shows
a selection of typical results at low concurrency.

Table 9-3. Synchronous single-threaded 16 KB operations per second on a 4 GB file

Device Sequential write Sequential read Random write Random read

SAN1 with RAID 5 2428 5794 629 258

SAN1 with RAID 10 1765 3427 1725 213

SAN2 over NFS 1768 3154 2056 166

10k RPM hard drives, RAID 1 7027 4773 2302 310

Intel SSD 3045 6266 2427 4397

The exact SAN vendors and configurations shall remain a secret, although we can reveal
that these are not low-budget SANs. We ran these benchmarks with synchronous
16 KB operations, which emulates the way that InnoDB operates when configured in
O_DIRECT mode.

What conclusions can we draw from Table 9-3? The systems we tested aren’t all directly
comparable, so it’s not a good idea to pore over the finer points. However, the results
are a good illustration of the general performance you can expect from these types of
devices. SANs are able to absorb lots of sequential writes because they can buffer and
combine them. They can serve sequential reads without trouble, because they can pre-
dict the reads, prefetch them, and serve them from the cache. They slow down a bit on
random writes because the writes can’t be combined as much. And they are quite poor
at random reads, because the reads are usually cache misses, so they must wait for the
hard drives to respond. On top of that, there is transport latency between the server

Storage Area Networks and Network-Attached Storage | 423

and the SAN. This is why the SAN that’s connected over NFS can’t even serve as many
random reads per second as you’d expect from a single locally attached hard drive.

We’ve benchmarked with larger file sizes, but we didn’t have results at those sizes for
all of the above systems. The outcome, however, is always predictable: no matter how
large and powerful the SAN, you can’t get good response times or throughput for small,
random operations. There’s just too much latency due to the distance between the
server and the SAN.

Our benchmarks show throughput in operations per second, and they don’t tell the
full story. There are at least three other important metrics: throughput in bytes per
second, concurrency, and response time. In general, compared to directly attached
storage, a SAN will provide good sequential throughput in bytes per second for both
reads and writes. Most SANs can support lots of concurrency, and we benchmarked
only a single thread to illustrate the worst case. But when the working set doesn’t fit
well into the SAN’s caches, random reads will be very poor in terms of throughput and
latency, and even when it does, latency will be higher than with directly attached
storage.

Using a SAN over NFS or SMB
Some SANs, such as NetApp filers, are commonly accessed over NFS instead of via
Fibre Channel or iSCSI. This used to be something you’d want to avoid, but NFS works
a lot better these days than it used to. You can get decent performance over NFS,
although the network needs to be configured specifically for it. The SAN vendors pro-
vide best practice guides that should help you with configuration.

The main consideration is how the NFS protocol itself affects performance. Many file
metadata operations, which are typically performed in memory on a local filesystem or
a non-NFS SAN, can require a network round trip with NFS. For example, we’ve no-
ticed a severe performance penalty from storing binary logs on NFS, even with sync_bin
log disabled. This is because appending to the binary log increases its size, which re-
quires a metadata operation that causes an extra round trip.

You can also access a SAN or NAS over the SMB protocol, and similar considerations
apply: there can be a lot more latency-sensitive network round trips. These don’t matter
much for the typical desktop user who’s storing some spreadsheets or other documents
on a drive he’s mounted, or even for operations such as copying backups to another
server, but it can be a serious mismatch for the way MySQL reads and writes its files.

MySQL Performance on a SAN
The I/O benchmarks are one way to look at things, but what about MySQL perfor-
mance on a SAN? In many cases, MySQL works just fine, and you can avoid many of
the situations where the SAN would cause some degradation in performance. Careful
logical and physical design, including indexing, and appropriate server hardware (lots

424 | Chapter 9: Operating System and Hardware Optimization

of memory!) can avoid many random I/O operations, or transform them into sequential
ones. However, you should be aware that such a system can reach a slightly delicate
balance over a period of time—one that’s easy to perturb with the introduction of a
new query, a schema change, or an infrequent operation.

For example, one SAN user we know was quite happy with its day-to-day performance
until he wanted to purge a lot of rows from an old table that had grown very large. This
resulted in a long-running DELETE statement that was deleting only a couple of hundred
rows per second, because each row required random I/O that the SAN couldn’t perform
quickly. There was no way to accelerate the operation; it was simply going to take a
very long time to complete. Another surprise for the same user came when an ALTER
on a large table slowed down to a similar pace.

Those are typical examples of what doesn’t work well on a SAN: single-threaded tasks
that perform lots of random I/O. Replication is another single-threaded task in current
versions of MySQL; as a result, replicas whose data is stored on a SAN might be more
likely to lag behind the master. Batch jobs might also run more slowly. You might be
able to perform one-off latency-sensitive operations at off-peak hours or on the week-
end, but always-on parts of the server such as replication, binary logs, and InnoDB’s
transaction logs need good performance on small and/or random I/O operations at all
times.

Should You Use a SAN?
Ah, that’s the perennial question—in some cases, the million-dollar question. There
are many factors to consider, and we’ll list a few of them:

Backups
Centralized storage can make backups easier to manage. When everything is stored
in one place, you can just back up the SAN, and you know that you’ve accounted
for all of your data. This simplifies questions such as “Are you sure we’re backing
up all of our data?” In addition, some devices have features such as continuous
data protection (CDP), and powerful snapshot capabilities that make backups
much easier and more flexible.

Simplified capacity planning
Not sure how much capacity you need? A SAN gives you the ability to buy storage
in bulk, share it, and resize and redistribute it on demand.

Storage consolidation versus server consolidation
Some CIOs take stock of what’s running in their data centers and conclude that
there is a lot of wasted I/O capacity, in terms of storage space as well as I/O oper-
ations. No arguments there—but if you centralize your storage to make sure it’s
better utilized, how will that impact the systems that use the storage? The difference
in performance for typical database operations can literally be orders of magnitude,
and as a result you might find that you need to run 10 times as many servers (or
more) to handle your workload. And although the data center’s I/O capacity might

Storage Area Networks and Network-Attached Storage | 425

be much better utilized in a SAN, that can come at the cost of many other systems
being underutilized (the database server spends a lot of time waiting for I/O, the
application server spends a lot of time waiting for the database, and so on). We’ve
seen many real-world opportunities to consolidate servers and cut costs by decen-
tralizing storage.

High availability
Sometimes people think of a SAN as a high-availability solution. We’ll suggest in
Chapter 12 that this could be due to disagreement over what high availability really
means.

In our experience, SANs are pretty frequently implicated in failures and downtime.
This is not because they are unreliable—which they aren’t—but because people
are reluctant to believe such a miracle of engineering can actually fail. In addition,
a SAN is sometimes a complex, mystifying black box that nobody knows how to
troubleshoot when something goes wrong, and it can be expensive and difficult to
build the expertise needed to manage a SAN well. The lack of visibility into most
SANs is why you should never simply trust the SAN administrator, support staff,
or management console. We’ve seen cases where all three are wrong, and the SAN
turned out to have a problem such as a failed hard drive that was causing degraded
performance.10 This is another reason to get comfortable with sysbench: so you
can dash off an I/O benchmark to prove or disprove the SAN’s culpability.

Interaction between servers
Shared storage can cause seemingly independent systems to affect each other,
sometimes very badly. For example, one SAN user we know had a rather rude
awakening when an I/O-intensive operation on a development server caused his
database server to grind nearly to a halt. Batch jobs, ALTER TABLE, backups—
anything that causes a lot of I/O on one system can cause starvation on other
systems. Sometimes the impact is much worse than your intuition would suggest;
a seemingly trivial workload can cause a surprisingly severe degradation of
performance.

Cost
Cost of what? Cost of management and administration? Cost per I/O operation
per second (IOPS)? Sticker price?

There are good reasons to use SANs, but regardless of what the salespeople say,
performance—at least, performance of the type that MySQL needs—just isn’t a
valid reason. (Pick a SAN vendor and call a salesperson, and you’re likely to
hear them agree in general, but then tell you that their product is an exception to
the rule.) If you consider performance and price together, it becomes even clearer,
because if it’s a good price-to-performance ratio you want, flash storage or

10. The web-based SAN management console insisted that all hard drives were healthy—until we asked the
administrator to press Shift-F5 to disable his browser cache and force the console to refresh!

426 | Chapter 9: Operating System and Hardware Optimization

old-fashioned hard drives with a good RAID controller and a battery-backed write
cache offer much better performance at a much lower price.

On this topic, don’t forget to ask the salesperson to quote you a price for two SANs.
You need at least two, or you just have a single expensive point of failure.

We could relate many war stories and cautionary tales, but we’re not trying to scare
you away from using a SAN. Most of the SAN users we know absolutely love them! If
you’re trying to decide whether to use a SAN, the most important thing is to be very
clear on what problems you want to solve. A SAN can do lots of things, but solving a
performance problem is rarely one of them. In contrast, a SAN can be great when you
don’t demand a lot of high-performance random I/O, but you are interested in features
such as snapshots, storage consolidation, data deduplication, and virtualization.

As a result, most web applications don’t use SANs for databases, but they’re very pop-
ular for so-called enterprise applications. Enterprises are usually less constrained by
budget, so they can afford “luxury items” such as SANs. (Sometimes a SAN is even
seen as a status symbol!)

Using Multiple Disk Volumes
Sooner or later, the question of where to place files will come up. MySQL creates a
variety of files:

• Data and index files

• Transaction log files

• Binary log files

• General log files (e.g., for the error log, query log, and slow query log)

• Temporary files and tables

MySQL doesn’t have many features for complex tablespace management. By default,
it simply places all files for each database (schema) into a single directory. You have a
few options to control where the data goes. For example, you can specify an index
location for MyISAM tables, and you can use MySQL 5.1’s partitioned tables.

If you’re using InnoDB’s default configuration, all data and indexes go in a single set
of files, and only the table definition files are placed in the database directory. As a
result, most people place all data and indexes on a single volume.

Sometimes, however, using multiple volumes can help you manage a heavy I/O load.
For example, a batch job that writes data to a massive table can benefit from being on
a separate volume, so it doesn’t starve other queries for I/O. Ideally, you should analyze
the I/O access to the different parts of your data so you can place the data appropriately,
but this is hard to do unless you already have the data on different volumes.

You’ve probably heard the standard advice to place your transaction logs and data files
on different volumes, so the sequential I/O of the logs doesn’t interfere with the random

Using Multiple Disk Volumes | 427

I/O of the data. But unless you have many hard drives (20 or so), or flash storage, you
should think carefully before doing this.

The real advantage of separating the binary log and data files is the reduced likelihood
of losing both your data and your log files in the event of a crash. Separating them is
good practice if you don’t have a battery-backed write cache on your RAID controller.
But if you have a battery backup unit, a separate volume isn’t needed as often as you
might think. Performance is rarely a determining factor. This is because even though
there are lots of writes to transaction logs, most of them are small. As a result, the RAID
cache will usually merge the requests together, and you’ll typically get just a couple of
sequential physical write requests per second. This usually won’t interfere with the
random I/O to your data files, unless you’re really saturating the RAID controller over-
all. The general logs, which have sequential asynchronous writes and low load, can also
share a volume with the data comfortably.

There’s another way to look at it, though, which a lot of people don’t consider. Does
placing logs on separate volumes improve performance? Typically, yes—but is it worth
it? The answer is frequently no.

Here’s why: it’s expensive to dedicate hard drives to transaction logs. Suppose you have
six hard drives. The obvious choices are to place all six into one RAID volume, or split
them into four for the data and two for the transaction logs. If you do this, though,
you’ve reduced the number of drives available for the data files by a third, which is a
significant decrease; also, you’re dedicating two drives to a possibly trivial workload
(assuming that your RAID controller has a battery-backed write cache).

On the other hand, if you have many hard drives, dedicating some to the transaction
logs is proportionately less expensive and can be beneficial. If you have a total of 30
hard drives, for example, you can ensure that the log writes are as fast as possible by
dedicating 2 drives (configured as a RAID 1 volume) to the logs. For extra performance,
you might also dedicate some write cache space for this RAID volume in the RAID
controller.

Cost effectiveness isn’t the only consideration. Another reason why you might want to
keep InnoDB data and transaction logs on the same volume is that this strategy lets you
use LVM snapshots for lock-free backups. Some filesystems allow consistent
multivolume snapshots, and for those filesystems it might not be a big deal, but it’s
something to keep in mind for ext3. (You can also use Percona XtraBackup for lock-
free backups; see Chapter 15 for more on this topic.)

If you have enabled sync_binlog, binary logs are similar to transaction logs in terms of
performance. However, it’s actually a good idea to store binary logs on a different vol-
ume from your data—it’s safer to have them stored separately, so they can survive even
if the data is lost. That way, you can use them for point-in-time recovery. This consid-
eration doesn’t apply to the InnoDB transaction logs, because they’re useless without
the data files; you can’t apply transaction logs to last night’s backup. (This distinction

428 | Chapter 9: Operating System and Hardware Optimization

between transaction logs and binary logs might seem artificial to DBAs used to other
databases, where they are one and the same.)

The only other common scenario for separating out files is the temporary directory,
which MySQL uses for filesorts and on-disk temporary tables. If these won’t be too big
to fit, it’s probably best to put them in a temporary memory-only filesystem such as
tmpfs. This will be the fastest choice. If that isn’t feasible on your system, put them on
the same device as the operating system.

A typical disk layout is to have the operating system, swap partition, and binary logs
on a RAID 1 volume, and a separate RAID 5 or RAID 10 volume that holds everything
else.

Network Configuration
Just as latency and throughput are limiting factors for a hard drive, latency and band-
width (which really means the same thing as throughput) are limiting factors for a
network connection. The biggest problem for most applications is latency; a typical
application does a lot of small network transfers, and the slight delay for each transfer
adds up.

A network that’s not operating correctly is a major performance bottleneck, too. Packet
loss is a common problem. Even 1% loss is enough to cause significant performance
degradation, because various layers in the protocol stack will try to fix the problems
with strategies such as waiting a while and then resending packets, which adds extra
time. Another common problem is broken or slow Domain Name System (DNS) res-
olution.

DNS is enough of an Achilles heel that enabling skip_name_resolve is a good idea for
production servers. Broken or slow DNS resolution is a problem for lots of applications,
but it’s particularly severe for MySQL. When MySQL receives a connection request, it
does both a forward and a reverse DNS lookup. There are lots of reasons that this could
go wrong. When it does, it will cause connections to be denied, slow down the process
of connecting to the server, and generally wreak havoc, up to and including denial-of-
service attacks. If you enable the skip_name_resolve option, MySQL won’t do any DNS
lookups at all. However, this also means that your user accounts must have only IP
addresses, “localhost,” or IP address wildcards in the host column. Any user account
that has a hostname in the host column will not be able to log in.

Another common source of problems in typical web applications is the TCP backlog,
which you can configure through MySQL’s back_log option. This option controls the
size of MySQL’s queue for incoming TCP connections. In environments where a lot of
connections are created and destroyed every second, the default value of 50 is not
enough. The symptom is that the client will see a sporadic “connection refused” error,
paired with three-second timeouts. This option should usually be increased on busy
systems. There doesn’t seem to be any harm in increasing it to hundreds or even

Network Configuration | 429

thousands, in fact—but if you go that far, you’ll probably also need to configure your
operating system’s TCP networking settings. On GNU/Linux systems, you need to
increase the somaxconn limit from its default of 128, and check the tcp_max_syn_back
log settings in sysctl (there’s an example a bit later in this section).

You need to design your network for good performance, rather than just accepting
whatever you get by default. To begin, analyze how many hops are between the nodes,
and map the physical network layout. For instance, suppose you have 10 web servers
connected to a “Web” switch via gigabit Ethernet (1 GigE), and this switch is connected
to the “Database” switch via 1 GigE as well. If you don’t take the time to trace the
connections, you might never realize that your total bandwidth from all database
servers to all web servers is limited to a gigabit! Each hop adds latency, too.

It’s a good idea to monitor network performance and errors on all network ports.
Monitor every port on servers, on routers, and on switches. The Multi Router Traffic
Grapher, or MRTG (http://oss.oetiker.ch/mrtg/), is the tried-and-true open source sol-
ution for device monitoring. Other common tools for monitoring network performance
(as opposed to devices) are Smokeping (http://oss.oetiker.ch/smokeping/) and Cacti
(http://www.cacti.net).

Physical separation matters a lot in networking. Inter-city networks will have much
worse latency than your data center’s LAN, even if the bandwidth is technically the
same. If the nodes are really widely separated, the speed of light actually matters. For
example, if you have data centers on the west and east coasts of the US, they’ll be
separated by about 3,000 miles. The speed of light is 186,000 mps, so a one-way trip
cannot be any faster than 16 ms, and a round-trip takes at least 32 ms. The physical
distance is not the only performance consideration, either: there are devices in between
as well. Repeaters, routers, and switches all degrade performance somewhat. Again,
the more widely separated the network nodes are, the more unpredictable and unreli-
able the links will be.

It’s a good idea to try to avoid real-time cross-data center operations as much as pos-
sible.11 If this isn’t possible, you should make sure your application handles network
failures gracefully. For example, you don’t want your web servers to fork too many
Apache processes because they are all stalled trying to connect to a remote data center
over a link that has significant packet loss.

At the local level, use at least 1 GigE if you’re not already. You might need to use a 10
GigE connection for the backbone between switches. If you need more bandwidth than
that, you can use network trunking: connecting multiple network interface cards (NICs)
to get more bandwidth. Trunking is essentially parallelization of networking, and it can
be very helpful as part of a high-availability strategy.

11. Replication doesn’t count as a real-time cross-data center operation. It’s not real-time, and it’s often a
good idea to replicate your data to a remote location for safety. We cover this more in the next chapter.

430 | Chapter 9: Operating System and Hardware Optimization

http://oss.oetiker.ch/mrtg/
http://oss.oetiker.ch/smokeping/
http://www.cacti.net

When you need very high throughput, you might be able to improve performance by
changing your operating system’s networking configuration. If you don’t have many
connections but you have large queries or result sets, you can increase the TCP buffer
size. How you do this varies from system to system, but in most GNU/Linux systems
you can change the values in /etc/sysctl.conf and execute sysctl -p, or use the /proc file-
system by echoing new values into the files found at /proc/sys/net/. You can find good
tutorials on this topic online with a search for “TCP tuning guide.”

It’s usually more important, though, to adjust your settings to deal efficiently with a
lot of connections and small queries. One of the more common tweaks is to change
your local port range. Here’s a system that is configured to default values:

[root@server ~]# cat /proc/sys/net/ipv4/ip_local_port_range
32768 61000

Sometimes you might need to change these values to a larger range. For example:

[root@server ~]# echo 1024 65535 > /proc/sys/net/ipv4/ip_local_port_range

You can allow more connections to queue up as follows:

[root@server ~]# echo 4096 > /proc/sys/net/ipv4/tcp_max_syn_backlog

For database servers that are used only locally, you can shorten the timeout that comes
after closing a socket in the event that the peer is broken and doesn’t close its side of
the connection. The default is one minute on most systems, which is rather long:

[root@server ~]# echo <value> > /proc/sys/net/ipv4/tcp_fin_timeout

Most of the time these settings can be left at their defaults. You’ll typically need to
change them only when something unusual is happening, such as extremely poor net-
work performance or very large numbers of connections. An Internet search for “TCP
variables” will turn up lots of good reading about these and many more variables.

Choosing an Operating System
GNU/Linux is the most common operating system for high-performance MySQL in-
stallations today, but MySQL will run on many operating systems.

Solaris is the leader on SPARC hardware, and it runs on x86 hardware too. It’s fre-
quently used in applications that demand high reliability. Solaris has a reputation for
being more difficult to work with than GNU/Linux in some ways, but it’s a solid op-
erating system with many advanced features. In particular, Solaris 10 added the ZFS
filesystem, a lot of advanced troubleshooting tools (such as DTrace), good threading
performance, and a virtualization technology called Solaris Zones that helps with re-
source management.

FreeBSD is another option. It has historically had a number of problems with MySQL,
mostly related to threading support, but newer versions are much better. Today, it’s

Choosing an Operating System | 431

not uncommon to see MySQL deployed at a large scale on FreeBSD. ZFS is also avail-
able on FreeBSD.

Windows is typically used for development and when MySQL is used with desktop
applications. There are enterprise MySQL deployments on Windows, but Unix-like
operating systems are more commonly used for these purposes. While we don’t want
to start any debates about operating systems, we will point out that there are no prob-
lems using a heterogeneous environment with MySQL. It’s perfectly reasonable to run
your MySQL server on a Unix-like operating system and run Windows on your web
servers, connecting them via the high-quality .NET connector (which is freely available
from MySQL). It’s just as easy to connect from Unix to a MySQL server hosted on
Windows as it is to connect to another Unix server.

When you choose an operating system, make sure you install the 64-bit version if you’re
using a 64-bit architecture (see “CPU Architecture” on page 390).

When it comes to GNU/Linux distributions, personal preference is often the deciding
factor. We think the best policy is to use a distribution explicitly designed for server
applications, as opposed to a desktop distribution. Consider the distribution’s lifecycle,
release, and update policies, and check whether vendor support is available. Red Hat
Enterprise Linux is a good-quality, stable distribution; CentOS is a popular (and free)
binary-compatible alternative, but has gained a reputation for lagging behind; Oracle
distributes Oracle Enterprise Linux; and Ubuntu and Debian are popular, too.

Choosing a Filesystem
Your filesystem choices are pretty dependent on your operating system. In many sys-
tems, such as Windows, you really have only one or two choices, and only one (NTFS)
is really viable. GNU/Linux, on the other hand, supports many filesystems.

Many people want to know which filesystems will give the best performance for MySQL
on GNU/Linux, or, even more specifically, which of the choices is best for InnoDB and
which for MyISAM. The benchmarks actually show that most of them are very close
in most respects, but looking to the filesystem for performance is really a distraction.
The filesystem’s performance is very workload-specific, and no filesystem is a magic
bullet. Most of the time, a given filesystem won’t perform significantly better or worse
than any other filesystem. The exception is if you run into some filesystem limit, such
as how it deals with concurrency, working with many files, fragmentation, and so on.

It’s more important to consider crash recovery time and whether you’ll run into specific
limits, such as slow performance on directories with many files (a notorious problem
with ext2 and older versions of ext3, but solved in modern versions of ext3 and ext4
with the dir_index option). The filesystem you choose is very important in ensuring
your data’s safety, so we strongly recommend you don’t experiment on production
systems.

432 | Chapter 9: Operating System and Hardware Optimization

When possible, it’s best to use a journaling filesystem, such as ext3, ext4, XFS, ZFS, or
JFS. If you don’t, a filesystem check after a crash can take a long time. If the system is
not very important, nonjournaling filesystems might perform better than transactional
ones. For example, ext2 might perform better than ext3, or you can use tunefs to
disable the journaling feature on ext3. Mount time is also a factor for some filesystems.
ReiserFS, for instance, can take a long time to mount and perform journal recovery on
large partitions.

If you use ext3 or its successor ext4, you have three options for how the data is jour-
naled, which you can place in the /etc/fstab mount options:

data=writeback
This option means only metadata writes are journaled. Writes to the metadata are
not synchronized with the data writes. This is the fastest configuration, and it’s
usually safe to use with InnoDB because it has its own transaction log. The excep-
tion is that a crash at just the right time could cause corruption in a .frm file.

Here’s an example of how this configuration could cause problems. Say a program
decides to extend a file to make it larger. The metadata (the file’s size) will be logged
and written before the data is actually written to the (now larger) file. The result is
that the file’s tail—the newly extended area—contains garbage.

data=ordered
This option also journals only the metadata, but it provides some consistency by
writing the data before the metadata so that they stay consistent. It’s only slightly
slower than the writeback option, and it’s much safer when there’s a crash.

In this configuration, if we suppose again that a program wants to extend a file,
the file’s metadata won’t reflect the file’s new size until the data that resides in the
newly extended area has been written.

data=journal
This option provides atomic journaled behavior, writing the data to the journal
before it’s written to the final location. It is usually unnecessary and has much
higher overhead than the other two options. However, in some cases it can improve
performance because the journaling lets the filesystem delay the writes to the data’s
final location.

Regardless of the filesystem, there are some specific options that it’s best to disable,
because they don’t provide any benefit and can add quite a bit of overhead. The most
famous is recording access time, which requires a write even when you’re reading a file
or directory. To disable this option, add the noatime,nodiratime mount options to
your /etc/fstab; this can sometimes boost performance by as much as 5–10%, depending
on the workload and the filesystem (although it might not make much difference in
other cases). Here’s a sample /etc/fstab line for the ext3 options we mentioned:

/dev/sda2 /usr/lib/mysql ext3 noatime,nodiratime,data=writeback 0 1

Choosing a Filesystem | 433

You can also tune the filesystem’s read-ahead behavior, because it might be redundant.
For example, InnoDB does its own read-ahead prediction. Disabling or limiting read-
ahead is especially beneficial on Solaris’s UFS. Using O_DIRECT automatically disables
read-ahead.

Some filesystems don’t support features you might need. For example, support for
direct I/O might be important if you’re using the O_DIRECT flush method for InnoDB.
Also, some filesystems handle a large number of underlying drives better than others;
XFS is often much better at this than ext3, for instance. Finally, if you plan to use LVM
snapshots for initializing replicas or taking backups, you should verify that your chosen
filesystem and LVM version work well together.

Table 9-4 summarizes the characteristics of some common filesystems.

Table 9-4. Common filesystem characteristics

Filesystem Operating system Journaling Large directories

ext2 GNU/Linux No No

ext3 GNU/Linux Optional Optional/partial

ext4 GNU/Linux Yes Yes

HFS Plus Mac OS Optional Yes

JFS GNU/Linux Yes No

NTFS Windows Yes Yes

ReiserFS GNU/Linux Yes Yes

UFS (Solaris) Solaris Yes Tunable

UFS (FreeBSD) FreeBSD No Optional/partial

UFS2 FreeBSD No Optional/partial

XFS GNU/Linux Yes Yes

ZFS Solaris, FreeBSD Yes Yes

We usually recommend that our customers use the XFS filesystem. The ext3 filesystem
just has too many serious limitations, such as its single mutex per inode, and bad be-
havior such as flushing all dirty blocks in the whole filesystem on fsync() instead of
just one file’s dirty blocks. The ext4 filesystem is too new for many people to feel com-
fortable running it in production, although it seems to be gaining popularity gradually.

Choosing a Disk Queue Scheduler
On GNU/Linux, the queue scheduler determines the order in which requests to a block
device are actually sent to the underlying device. The default is Completely Fair Queue-
ing, or cfq. It’s okay for casual use on laptops and desktops, where it helps prevent
I/O starvation, but it’s terrible for servers. It causes very poor response times under the

434 | Chapter 9: Operating System and Hardware Optimization

types of workload that MySQL generates, because it stalls some requests in the queue
needlessly.

You can see which schedulers are available, and which one is active, with the following
command:

$ cat /sys/block/sda/queue/scheduler
noop deadline [cfq]

You should replace sda with the device name of the disk you’re interested in. In our
example, the square brackets indicate which scheduler is in use for this device. The
other two choices are suitable for server-class hardware, and in most cases they work
about equally well. The noop scheduler is appropriate for devices that do their own
scheduling behind the scenes, such as hardware RAID controllers and SANs, and dead
line is fine both for RAID controllers and disks that are directly attached. Our bench-
marks show very little difference between these two. The main thing is to use anything
but cfq, which can cause severe performance problems.

Take this advice with a grain of salt, though, because the disk schedulers actually come
in many variations in different kernels, and there is no indication of that in their names.

Threading
MySQL uses one thread per connection, plus housekeeping threads, special-purpose
threads, and any threads the storage engine creates. In MySQL 5.5, a thread pool plugin
is available from Oracle, but it’s not yet clear how beneficial this is in the real world.

Either way, MySQL requires efficient support for a large number of threads. It really
needs support for kernel-level threads, as opposed to userland threads, so it can use
multiple CPUs efficiently. It also needs efficient synchronization primitives, such as
mutexes. The operating system’s threading libraries must provide all of these.

GNU/Linux offers two thread libraries: LinuxThreads and the newer Native POSIX
Threads Library (NPTL). LinuxThreads is still used in some cases, but modern distri-
butions have made the switch to NPTL, and most don’t ship LinuxThreads at all any-
more. NPTL is lighter and more efficient, and it doesn’t suffer from a lot of the problems
LinuxThreads had.

FreeBSD also ships a number of threading libraries. Historically it had weak support
for threading, but it has gotten a lot better, and in some tests it even outperforms GNU/
Linux on SMP systems. In FreeBSD 6 and newer, the recommended threading library
is libthr; earlier versions should use linuxthreads, which is a FreeBSD port of GNU/
Linux’s LinuxThreads.

In general, threading problems are a thing of the past, now that GNU/Linux and
FreeBSD have gotten good libraries.

Threading | 435

Solaris and Windows have always had very good support for threads. One note, though:
MyISAM didn’t use threads well on Windows until the 5.5 release, where it was sig-
nificantly improved.

Swapping
Swapping occurs when the operating system writes some virtual memory to disk be-
cause it doesn’t have enough physical memory to hold it.12 Swapping is transparent to
processes running on the operating system. Only the operating system knows whether
a particular virtual memory address is in physical memory or on disk.

Swapping is very bad for MySQL’s performance. It defeats the purpose of caching in
memory, and it results in lower efficiency than using too little memory for the caches.
MySQL and its storage engines have many algorithms that treat in-memory data dif-
ferently from data on disk, because they assume that in-memory data is cheap to access.
Because swapping is invisible to user processes, MySQL (or the storage engine) won’t
know when data it thinks is in memory is actually moved onto the disk.

The result can be very poor performance. For example, if the storage engine thinks the
data is still in memory, it might decide it’s OK to lock a global mutex (such as the
InnoDB buffer pool mutex) for a “short” memory operation. If this operation actually
causes disk I/O, it can stall everything until the I/O completes. This means swapping
is much worse than simply doing I/O as needed.

On GNU/Linux, you can monitor swapping with vmstat (we show some examples in
the next section). You need to look at the swap I/O activity, reported in the si and so
columns, rather than the swap usage, which is reported in the swpd column. The swpd
column can show processes that have been loaded but aren’t being used, which are not
really problematic. We like the si and so column values to be 0, and they should def-
initely be less than 10 blocks per second.

In extreme cases, too much swapping can cause the operating system to run out of
swap space. If this happens, the resulting lack of virtual memory can crash MySQL.
But even if it doesn’t run out of swap space, very active swapping can cause the entire
operating system to become unresponsive, to the point that you can’t even log in and
kill the MySQL process. Sometimes the Linux kernel can even hang completely when
it runs out of swap space.

Never let your system run out of virtual memory! Monitor and alert on swap space
usage. If you don’t know how much swap space you need, allocate lots of it on disk; it
doesn’t impact performance, it only consumes disk space. Some large organizations
know exactly what their memory consumption will be and have swapping under very
tight control, but that’s usually impractical in an environment with only a few

12. Swapping is sometimes called paging. Technically, they are different things, but people often use them
as synonyms.

436 | Chapter 9: Operating System and Hardware Optimization

multipurpose MySQL instances that serve variable workloads. If the latter describes
you, be sure to give your server some breathing room by setting aside enough swap
space.

Another thing that frequently happens under extreme virtual memory pressure is that
the out-of-memory (OOM) killer process will kick in and kill something. This is fre-
quently MySQL, but it can also be another process such as SSH, which can leave you
with a system that’s not accessible from the network. You can prevent this by setting
the SSH process’s oom_adj or oom_score_adj value.

You can solve most swapping problems by configuring your MySQL buffers correctly,
but sometimes the operating system’s virtual memory system decides to swap MySQL
anyway. This usually happens when the operating system sees a lot of I/O from MySQL,
so it tries to increase the file cache to hold more data. If there’s not enough memory,
something must be swapped out, and that something might be MySQL itself. Some
older Linux kernel versions also have counterproductive priorities that swap things
when they shouldn’t, but this has been alleviated a bit in more recent kernels.

Some people advocate disabling the swap file entirely. Although this sometimes works
in extreme cases where the kernel just refuses to behave, it can degrade the operating
system’s performance. (It shouldn’t in theory, but in practice it can.) It’s also dangerous,
because disabling swapping places an inflexible limit on virtual memory. If MySQL has
a temporary spike in memory requirements, or if there are memory-hungry processes
running on the same machine (nightly batch jobs, for example), MySQL can run out
of memory, crash, or be killed by the operating system.

Operating systems usually allow some control over virtual memory and I/O. We men-
tion a few ways to control them on GNU/Linux. The most basic is to change the value
of /proc/sys/vm/swappiness to a low value, such as 0 or 1. This tells the kernel not to
swap unless the need for virtual memory is extreme. For example, here’s how to check
the current value:

$ cat /proc/sys/vm/swappiness
60

The value shown, 60, is the default swappiness setting (the range is from 0 to 100). This
is a very bad default for servers. It’s only appropriate for laptops. Servers should be set
to 0:

$ echo 0 > /proc/sys/vm/swappiness

Another option is to change how the storage engines read and write data. For example,
using innodb_flush_method=O_DIRECT relieves I/O pressure. Direct I/O is not cached, so
the operating system doesn’t see it as a reason to increase the size of the file cache. This
parameter works only for InnoDB. You can also use large pages, which are not swap-
pable. This works for MyISAM and InnoDB.

Swapping | 437

Another option is to use MySQL’s memlock configuration option, which locks MySQL
in memory. This will avoid swapping, but it can be dangerous: if there’s not enough
lockable memory left, MySQL can crash when it tries to allocate more memory. Prob-
lems can also be caused if too much memory is locked and there’s not enough left for
the operating system.

Many of the tricks are specific to a kernel version, so be careful, especially when you
upgrade. In some workloads, it’s hard to make the operating system behave sensibly,
and your only recourse might be to lower the buffer sizes to suboptimal values.

Operating System Status
Your operating system provides tools to help you find out what the operating system
and hardware are doing. In this section we’ll show you examples of how to use two
widely available tools, iostat and vmstat. If your system doesn’t provide either of these
tools, chances are it will provide something similar. Thus, our goal isn’t to make you
an expert at using iostat or vmstat, but simply to show you what to look for when you’re
trying to diagnose problems with tools such as these.

In addition to these tools, your operating system might provide others, such as mpstat
or sar. If you’re interested in other parts of your system, such as the network, you might
want to instead use tools such as ifconfig (which shows how many network errors have
occurred, among other things) or netstat.

By default, vmstat and iostat produce just one report showing the average values of
various counters since the server was started, which is not very useful. However, you
can give both tools an interval argument. This makes them generate incremental reports
showing what the server is doing right now, which is much more relevant. (The first
line shows the statistics since the system was started; you can just ignore this line.)

How to Read vmstat Output
Let’s look at an example of vmstat first. To make it print out a new report every five
seconds, use the following command:

$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 0 2632 25728 23176 740244 0 0 527 521 11 3 10 1 86 3
 0 0 2632 27808 23180 738248 0 0 2 430 222 66 2 0 97 0

You can stop vmstat with Ctrl-C. The output you see depends on your operating system,
so you might need to read the manual page to figure it out.

As stated earlier, even though we asked for incremental output, the first line of values
shows the averages since the server was booted. The second line shows what’s hap-
pening right now, and subsequent lines will show what’s happening at five-second
intervals. The columns are grouped by headers:

438 | Chapter 9: Operating System and Hardware Optimization

procs
The r column shows how many processes are waiting for CPU time. The b column
shows how many are in uninterruptible sleep, which generally means they’re wait-
ing for I/O (disk, network, user input, and so on).

memory
The swpd column shows how many blocks are swapped out to disk (paged). The
remaining three columns show how many blocks are free (unused), how many are
being used for buffers, and how many are being used for the operating system’s
cache.

swap
These columns show swap activity: how many blocks per second the operating
system is swapping in (from disk) and out (to disk). They are much more important
to monitor than the swpd column.

We like to see si and so at 0 most of the time, and we definitely don’t like to see
more than 10 blocks per second. Bursts are also bad.

io
These columns show how many blocks per second are read in from (bi) and written
out to (bo) block devices. This usually reflects disk I/O.

system
These columns show the number of interrupts per second (in) and the number of
context switches per second (cs).

cpu
These columns show the percentages of total CPU time spent running user (non-
kernel) code, running system (kernel) code, idle, and waiting for I/O. A possible
fifth column (st) shows the percent “stolen” from a virtual machine if you’re using
virtualization. This refers to the time during which something was runnable on
the virtual machine, but the hypervisor chose to run something else instead. If the
virtual machine doesn’t want to run anything and the hypervisor runs something
else, that doesn’t count as stolen time.

The vmstat output is system-dependent, so you should read your system’s vmstat(8)
manpage if yours looks different from the sample we’ve shown. One important note:
the memory, swap, and I/O statistics are in blocks, not in bytes. In GNU/Linux, blocks
are usually 1,024 bytes.

Operating System Status | 439

How to Read iostat Output
Now let’s move on to iostat.13 By default, it shows some of the same CPU usage infor-
mation as vmstat. We’re usually interested in just the I/O statistics, though, so we use
the following command to show only extended device statistics:

$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 1.6 2.8 2.5 1.8 138.8 36.9 40.7 0.1 23.2 6.0 2.6

As with vmstat, the first report shows averages since the server was booted (we generally
omit it to save space), and the subsequent reports show incremental averages. There’s
one line per device.

There are various options that show or hide columns. The official documentation is a
bit confusing, and we had to dig into the source code to figure out what was really being
shown. The columns we’ve shown are the following:

rrqm/s and wrqm/s
The number of merged read and write requests queued per second. “Merged”
means the operating system took multiple logical requests from the queue and
grouped them into a single request to the actual device.

r/s and w/s
The number of read and write requests sent to the device per second.

rsec/s and wsec/s
The number of sectors read and written per second. Some systems also output rkB/
s and wkB/s, the number of kilobytes read and written per second. We omit those
for brevity.

avgrq-sz
The request size in sectors.

avgqu-sz
The number of requests waiting in the device’s queue.

await
The number of milliseconds spent in the disk queue. Unfortunately, iostat doesn’t
show separate statistics for read and write requests, which are so different that they
really shouldn’t be averaged together. This is often very important when you’re
trying to diagnose a performance issue.

svctm
The number of milliseconds spent servicing requests, excluding queue time.

13. The iostat examples we show in this book have been slightly reformatted for printing: we’ve reduced the
number of decimal places in the values to avoid line wrapping. Also, we’re showing examples on GNU/
Linux; other operating systems will give completely different output.

440 | Chapter 9: Operating System and Hardware Optimization

%util
The percentage of time during which at least one request was active. This is very
confusingly named. It is not the device’s utilization, if you’re familiar with the
standard definition of utilization in queueing theory. A device with more than one
hard drive (such as a RAID controller) should be able to support a higher concur-
rency than 1, but %util will never exceed 100% unless there’s a rounding error in
the math used to compute it. As a result, it is not a good indication of device sat-
uration, contrary to what the documentation says, except in the special case where
you’re looking at a single physical hard drive.

You can use the output to deduce some facts about a machine’s I/O subsystem. One
important metric is the number of requests served concurrently. Because the reads and
writes are per second and the service time’s unit is thousandths of a second, you can
use Little’s Law to derive the following formula for the number of concurrent requests
the device is serving:14

concurrency = (r/s + w/s) * (svctm/1000)

Here’s a sample of iostat output:

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 105 311 298 820 3236 9052 10 127 113 9 96

Plugging the numbers into the concurrency formula gives a concurrency of about
9.6.15 This means that on average, the device was serving 9.6 requests at a time during
the sampling interval. The sample is from a 10-disk RAID 10 volume, so the operating
system is parallelizing requests to this device quite well. On the other hand, here’s a
device that appears to be serializing requests instead:

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdc 81 0 280 0 3164 0 11 2 7 3 99

The concurrency formula shows that this device is handling just one request per second.
Both devices are close to fully utilized, but they’re giving very different performances.
If your device is busy nearly all the time, as these samples show, you should check the
concurrency and note whether it is close to the number of physical spindles included
in the device. A lower number can indicate problems such as filesystem serialization,
which we discussed earlier.

Other Helpful Tools
We’ve shown vmstat and iostat because they’re widely available, and vmstat is usually
installed by default on many Unix-like operating systems. However, each of these tools

14. Another way to calculate concurrency is by the average queue size, service time, and average wait:
(avuqu_sz * svctm) / await.

15. If you do the math, you’ll get about 10, because we’ve rounded the iostat output for formatting purposes.
Trust us, it’s really 9.6.

Operating System Status | 441

has its limitations, such as confusing units of measurement, sampling at intervals that
don’t correspond to when the operating system updates the statistics, and the inability
to see all of the metrics at once. If these tools don’t meet your needs, you might be
interested in dstat (http://dag.wieers.com/home-made/dstat/) or collectl (http://collectl
.sourceforge.net).

We also like to use mpstat to watch CPU statistics; it provides a much better idea of
how the CPUs are behaving individually, instead of grouping them all together. Some-
times this is very important when you’re diagnosing a problem. You might find
blktrace to be helpful when you’re examining disk I/O usage, too.

We wrote our own replacement for iostat, called pt-diskstats. It’s part of Percona Tool-
kit. It addresses some of our complaints about iostat, such as the way that it presents
reads and writes in aggregate, and the lack of visibility into concurrency. It is also
interactive and keystroke-driven, so you can zoom in and out, change the aggregation,
filter out devices, and show and hide columns. It is a great way to slice and dice a sample
of disk statistics, which you can gather with a simple shell script even if you don’t have
the tool installed. You can capture samples of disk activity and email or save them for
later analysis. In fact, the pt-stalk, pt-collect, and pt-sift trio of tools that we introduced
in Chapter 3 are designed to work well with pt-diskstats.

A CPU-Bound Machine
The vmstat output for a CPU-bound server usually shows a high value in the us column,
which reports time spent running non-kernel code. There can also be a high value in
the sy column, which is the system CPU usage; a value over 20% here is worrisome.
In most cases, there will also be several processes queued up for CPU time (reported
in the r column). Here’s a sample:

$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
10 2 740880 19256 46068 13719952 0 0 2788 11047 1423 14508 89 4 4 3
11 0 740880 19692 46144 13702944 0 0 2907 14073 1504 23045 90 5 2 3
 7 1 740880 20460 46264 13683852 0 0 3554 15567 1513 24182 88 5 3 3
10 2 740880 22292 46324 13670396 0 0 2640 16351 1520 17436 88 4 4 3

Notice that there are also a reasonable number of context switches (the cs column),
although we won’t worry much about this unless there are 100,000 or more per second.
A context switch is when the operating system stops one process from running and
replaces it with another.

For example, a query that performs a noncovering index scan on a MyISAM table will
read an entry from the index, then read the row from a page on disk. If the page isn’t
in the operating system cache, there will be a physical read to the disk, which will cause
a context switch to suspend the process until the I/O completes. Such a query can cause
lots of context switches.

442 | Chapter 9: Operating System and Hardware Optimization

http://dag.wieers.com/home-made/dstat/
http://collectl.sourceforge.net
http://collectl.sourceforge.net

If we take a look at the iostat output for the same machine (again omitting the first
sample, which shows averages since boot), you can see that disk utilization is less
than 50%:

$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 3859 54 458 2063 34546 71 3 6 1 47
dm-0 0 0 54 4316 2063 34532 8 18 4 0 47
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 2898 52 363 1767 26090 67 3 7 1 45
dm-0 0 0 52 3261 1767 26090 8 15 5 0 45

This machine is not I/O-bound, but it’s still doing a fair amount of I/O, which is not
unusual for a database server. On the other hand, a typical web server will consume a
lot of CPU resources but do very little I/O, so a web server’s output will not usually
look like this sample.

An I/O-Bound Machine
In an I/O-bound workload, the CPUs spend a lot of time waiting for I/O requests to
complete. That means vmstat will show many processes in uninterruptible sleep (the
b column), and a high value in the wa column. Here’s an example:

$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 5 7 740632 22684 43212 13466436 0 0 6738 17222 1738 16648 19 3 15 63
 5 7 740632 22748 43396 13465436 0 0 6150 17025 1731 16713 18 4 21 58
 1 8 740632 22380 43416 13464192 0 0 4582 21820 1693 15211 16 4 24 56
 5 6 740632 22116 43512 13463484 0 0 5955 21158 1732 16187 17 4 23 56

This machine’s iostat output shows that the disks are always busy:16

$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 5396 202 626 7319 48187 66 12 14 1 101
dm-0 0 0 202 6016 7319 48130 8 57 9 0 101
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 5810 184 665 6441 51825 68 11 13 1 102
dm-0 0 0 183 6477 6441 51817 8 54 7 0 102

The %util value can be greater than 100% because of rounding errors.

What does it mean for a machine to be I/O-bound? If there’s enough buffer capacity
to serve write requests, it generally—but not always—means the disks can’t keep
up with read requests, even if the machine is doing a lot of writes. That might seem
counterintuitive until you think about the nature of reads and writes:

16. In the second edition of this book, we conflated “always busy” with “completely saturated.” Disks that
are always doing something aren’t necessarily maxed out, because they might be able to support some
concurrency, too.

Operating System Status | 443

• Write requests can be either buffered or synchronous. They can be buffered at any
of the levels we’ve discussed elsewhere in this book: the operating system, the RAID
controller, and so on.

• Read requests are synchronous by nature. It’s possible for a program to predict
that it’ll need some data and issue an asynchronous prefetch (read-ahead) request
for it. However, it’s more common for programs to discover they need data before
they can continue working. That forces the request to be synchronous: the program
must block until the request completes.

Think of it this way: you can issue a write request that goes into a buffer somewhere
and completes at a later time. You can even issue many of these per second. If the buffer
is working correctly and has enough space, each request can complete very quickly,
and the actual writes to the physical disk can be batched and reordered for efficiency.

However, there’s no way to do that with a read—no matter how few or how small the
requests are, it’s impossible for the disk to respond with “Here’s your data, I’ll do the
read later.” That’s why reads are usually responsible for I/O wait.

A Swapping Machine
A machine that’s swapping might or might not show a high value in the swpd column.
However, you’ll see high values in the si and so columns, which you don’t want. Here’s
what the vmstat output looks like on a machine that’s swapping heavily:

$ vmstat 5
procs -----------memory------------- ---swap---- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 10 3794292 24436 27076 14412764 19853 9781 57874 9833 4084 8339 6 14 58 22
 4 11 3797936 21268 27068 14519324 15913 30870 40513 30924 3600 7191 6 11 36 47
 0 37 3847364 20764 27112 14547112 171 38815 22358 39146 2417 4640 6 8 9 77

An Idle Machine
For the sake of completeness, here’s the vmstat output on an idle machine. Notice that
there are no runnable or blocked processes, and the idle column shows that the CPUs
are 100% idle. This sample comes from a machine running Red Hat Enterprise Linux
5, and it shows the st column, which is time “stolen” from a virtual machine:

$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 0 0 108 492556 6768 360092 0 0 345 209 2 65 2 0 97 1 0
 0 0 108 492556 6772 360088 0 0 0 14 357 19 0 0 100 0 0
 0 0 108 492556 6776 360084 0 0 0 6 355 16 0 0 100 0 0

444 | Chapter 9: Operating System and Hardware Optimization

Summary
Choosing and configuring hardware for MySQL, and configuring MySQL for the hard-
ware, is not a mystical art. In general, you need the same skills and knowledge that you
need for most other purposes. However, there are some MySQL-specific things you
should know.

What we commonly suggest for most people is to find a good balance between perfor-
mance and cost. First, we like to use commodity servers, for many reasons. For example,
if you’re having trouble with a server and you need to take it out of service while you
try to diagnose it, or if you simply want to try swapping it with another server as a form
of diagnosis, this is a lot easier to do with a $5,000 server than one that costs $50,000
or more. MySQL is also typically a better fit—both in terms of the software itself and
in terms of the typical workloads it runs—for commodity hardware.

The four fundamental resources MySQL needs are CPU, memory, disk, and network
resources. The network doesn’t tend to show up as a serious bottleneck very often, but
CPUs, memory, and disks certainly do. You generally want many fast CPUs for MySQL,
although if you must choose between many and fast, choose fast instead of many (all
other things being equal).

The relationship between CPUs, memory, and disks is intricate, with problems in one
area often showing up elsewhere. Before you throw resources at a problem, ask yourself
whether you should be throwing resources at a different problem instead. If you’re disk-
bound, do you need more I/O capacity, or just more memory? The answer hinges on
the working set size, which is the set of data that’s needed most frequently over a given
duration.

At the time of writing, we think it makes sense to proceed as follows. First, it’s generally
good not to exceed two sockets. Even a two-socket system can offer a lot of CPU cores
and hardware threads, and the CPUs available for four sockets are dramatically more
expensive. In addition, they are less widely used (and thus less tested and less reliable),
and they come with lower clock frequencies. Finally, four-socket systems appear to
suffer from the increased cost of cross-socket synchronization. On the memory front,
we like to fill our servers with economically priced server-class memory. Many com-
modity servers currently have 18 DIMM slots, and 8 GB DIMMs are a good size—their
price is the same per gigabyte as smaller DIMMs, but much less than 16 GB DIMMs.
That’s why we see a lot of servers with 144 GB of memory these days. This equation
will change over time—the sweet spot will eventually be 16 GB DIMMs, and there
might be a different number of slots in common server form factors—but the general
principle will probably remain.

Summary | 445

Your choices for durable storage essentially boil down to three options, in increasing
order of performance: SANs, conventional disks, and solid-state devices. In a nutshell:

• SANs are nice when you need their features and sheer capacity. They perform well
for many workloads, but they’re costly and they have high latency for small, ran-
dom I/O operations, especially when you use a slower interconnect such as NFS
or when the working set is too larger to fit in the SAN’s internal cache. Beware of
performance surprises with SANs, and plan carefully for disaster scenarios.

• Conventional disks are big, cheap, and slow at random reads. For most scenarios,
the best choice is a RAID 10 volume of server-grade disks. You should usually use
a hardware RAID controller with a battery backup unit and the write cache set to
the WriteBack policy. Such a configuration should perform very well for most
workloads you throw at it.

• Solid-state drives are relatively small and expensive, but they’re very fast at random
I/O. There are two classes: SSDs and PCIe devices. To paint these with a broad
brush, SSDs are cheaper, slower, and less reliable. You need to RAID them for
durability, but most hardware RAID controllers aren’t up to the task. PCIe devices
are expensive and have limited capacity, but they’re extremely fast and reliable,
and they don’t need RAID.

Solid-state devices are great for improving server performance overall, and sometimes
an inexpensive SSD is just the ticket for helping out a particular workload that suffers
a lot on conventional disks, such as replication. If you really need horsepower, you
need a PCIe device. Adding fast I/O to the server tends to shift the bottleneck to the
CPU, and sometimes to the network.

MySQL and InnoDB aren’t fully capable of taking advantage of the performance avail-
able from high-end solid-state storage, and in some cases the operating systems aren’t
either. But this is improving pretty rapidly. Percona Server has a lot of improvements
for solid-state storage, and many of these are finding their way into mainstream MySQL
in the upcoming 5.6 release.

In terms of the operating system, there are just a few Big Things that you need to get
right, mostly related to storage, networking, and virtual memory management. If you
use GNU/Linux, as most MySQL users do, we suggest using the XFS filesystem and
setting the swappiness and disk queue scheduler to values that are appropriate for a
server. There are some network parameters that you might need to change, and you
might wish to tweak a number of other things (such as disabling SELinux), but those
changes are a matter of preference.

446 | Chapter 9: Operating System and Hardware Optimization

CHAPTER 10

Replication

MySQL’s built-in replication is the foundation for building large, high-performance
applications on top of MySQL, using the so-called “scale-out” architecture. Replication
lets you configure one or more servers as replicas1 of another server, keeping their data
synchronized with the master copy. This is not just useful for high-performance
applications—it is also the cornerstone of many strategies for high availability, scala-
bility, disaster recovery, backups, analysis, data warehousing, and many other tasks.
In fact, scalability and high availability are related topics, and we’ll be weaving these
themes through this chapter and the next two.

In this chapter, we examine all aspects of replication. We begin with an overview of
how it works, then look at basic server setup, designing more advanced replication
configurations, and managing and optimizing your replicated servers. Although we
generally focus a lot on performance in this book, we are equally concerned with cor-
rectness and reliability when it comes to replication, so’ll we show you how replication
can fail and how to make it work well.

Replication Overview
The basic problem replication solves is keeping one server’s data synchronized with
another’s. Many replicas can connect to a single master and stay in sync with it, and a
replica can, in turn, act as a master. You can arrange masters and replicas in many
different ways.

MySQL supports two kinds of replication: statement-based replication and row-based
replication. Statement-based (or “logical”) replication has been available since MySQL
3.23. Row-based replication was added in MySQL 5.1. Both kinds work by recording
changes in the master’s binary log2 and replaying the log on the replica, and both are

1. You might see replicas referred to as “slaves.” We avoid this term wherever possible.

2. If you’re new to the binary log, you can find more information in Chapter 8, the rest of this chapter, and
Chapter 15.

447

asynchronous—that is, the replica’s copy of the data isn’t guaranteed to be up-to-date
at any given instant. There are no guarantees as to how large the latency on the replica
might be. Large queries can make the replica fall seconds, minutes, or even hours behind
the master.

MySQL’s replication is mostly backward-compatible. That is, a newer server can usu-
ally be a replica of an older server without trouble. However, older versions of the server
are often unable to serve as replicas of newer versions: they might not understand new
features or SQL syntax the newer server uses, and there might be differences in the file
formats replication uses. For example, you can’t replicate from a MySQL 5.1 master
to a MySQL 4.0 replica. It’s a good idea to test your replication setup before upgrading
from one major or minor version to another, such as from 4.1 to 5.0, or 5.1 to 5.5.
Upgrades within a minor version, such as from 5.1.51 to 5.1.58, are usually
compatible—read the changelog to find out exactly what changed from version to
version.

Replication generally doesn’t add much overhead on the master. It requires binary
logging to be enabled on the master, which can have significant overhead, but you need
that for proper backups and point-in-time recovery anyway. Aside from binary logging,
each attached replica also adds a little load (mostly network I/O) on the master during
normal operation. If replicas are reading old binary logs from the master, rather than
just following along with the newest events, the overhead can be a lot higher due to the
I/O required to read the old logs. This process can also cause some mutex contention
that hinders transaction commits. Finally, if you are replicating a very high-throughput
workload (say, 5,000 or more transactions per second) to many replicas, the overhead
of waking up all the replica threads to send them the events can add up.

Replication is relatively good for scaling reads, which you can direct to a replica, but
it’s not a good way to scale writes unless you design it right. Attaching many replicas
to a master simply causes the writes to be done many times, once on each replica. The
entire system is limited to the number of writes the weakest part can perform.

Replication is also wasteful with more than a few replicas, because it essentially dupli-
cates a lot of data needlessly. For example, a single master with 10 replicas has 11 copies
of the same data and duplicates most of the same data in 11 different caches. This is
analogous to 11-way RAID 1 at the server level. This is not an economical use of hard-
ware, yet it’s surprisingly common to see this type of replication setup. We discuss ways
to alleviate this problem throughout the chapter.

Problems Solved by Replication
Here are some of the more common uses for replication:

Data distribution
MySQL’s replication is usually not very bandwidth-intensive, although, as we’ll
see later, the row-based replication introduced in MySQL 5.1 can use much more

448 | Chapter 10: Replication

bandwidth than the more traditional statement-based replication. You can also
stop and start it at will. Thus, it’s useful for maintaining a copy of your data in a
geographically distant location, such as a different data center. The distant replica
can even work with a connection that’s intermittent (intentionally or otherwise).
However, if you want your replicas to have very low replication lag, you’ll need a
stable, low-latency link.

Load balancing
MySQL replication can help you distribute read queries across several servers,
which works very well for read-intensive applications. You can do basic load
balancing with a few simple code changes. On a small scale, you can use simplistic
approaches such as hardcoded hostnames or round-robin DNS (which points a
single hostname to multiple IP addresses). You can also take more sophisticated
approaches. Standard load-balancing solutions, such as network load-balancing
products, can work well for distributing load among MySQL servers. The
Linux Virtual Server (LVS) project also works well. We cover load balancing in
Chapter 11.

Backups
Replication is a valuable technique for helping with backups. However, a replica
is neither a backup nor a substitute for backups.

High availability and failover
Replication can help avoid making MySQL a single point of failure in your appli-
cation. A good failover system involving replication can help reduce downtime
significantly. We cover failover in Chapter 12.

Testing MySQL upgrades
It’s common practice to set up a replica with an upgraded MySQL version and use
it to ensure that your queries work as expected, before upgrading every instance.

How Replication Works
Before we get into the details of setting up replication, let’s look at how MySQL actually
replicates data. At a high level, replication is a simple three-part process:

1. The master records changes to its data in its binary log. (These records are called
binary log events.)

2. The replica copies the master’s binary log events to its relay log.

3. The replica replays the events in the relay log, applying the changes to its own data.

That’s just the overview—each of those steps is quite complex. Figure 10-1 illustrates
replication in more detail.

The first part of the process is binary logging on the master (we’ll show you how to set
this up a bit later). Just before each transaction that updates data completes on the
master, the master records the changes in its binary log. MySQL writes transactions

Replication Overview | 449

serially in the binary log, even if the statements in the transactions were interleaved
during execution. After writing the events to the binary log, the master tells the storage
engine(s) to commit the transactions.

The next step is for the replica to copy the master’s binary log to its own hard drive,
into the so-called relay log. To begin, it starts a worker thread, called the I/O slave
thread. The I/O thread opens an ordinary client connection to the master, then starts
a special binlog dump process (there is no corresponding SQL command). The binlog
dump process reads events from the master’s binary log. It doesn’t poll for events. If it
catches up to the master, it goes to sleep and waits for the master to signal it when there
are new events. The I/O thread writes the events to the replica’s relay log.

Prior to MySQL 4.0, replication worked quite differently in many ways.
For example, MySQL’s first replication functionality didn’t use a relay
log, so replication used only two threads, not three. Most people are
running more recent versions of the server, so we won’t mention any
further details about very old versions of MySQL in this chapter.

The SQL slave thread handles the last part of the process. This thread reads and replays
events from the relay log, thus updating the replica’s data to match the master’s. As
long as this thread keeps up with the I/O thread, the relay log usually stays in the
operating system’s cache, so relay logs have very low overhead. The events the SQL
thread executes can optionally go into the replica’s own binary log, which is useful for
scenarios we mention later in this chapter.

Figure 10-1 showed only the two replication threads that run on the replica, but there’s
also a thread on the master: like any connection to a MySQL server, the connection
that the replica opens to the master starts a thread on the master.

Figure 10-1. How MySQL replication works

450 | Chapter 10: Replication

This replication architecture decouples the processes of fetching and replaying events
on the replica, which allows them to be asynchronous. That is, the I/O thread can work
independently of the SQL thread. It also places constraints on the replication process,
the most important of which is that replication is serialized on the replica. This means
updates that might have run in parallel (in different threads) on the master cannot be
parallelized on the replica, because they’re executed in a single thread. As we’ll see later,
this is a performance bottleneck for many workloads. There are some solutions to this,
but most users are still subject to the single-threaded constraint.

Setting Up Replication
Setting up replication is a fairly simple process in MySQL, but there are many variations
on the basic steps, depending on the scenario. The most basic scenario is a freshly
installed master and replica. At a high level, the process is as follows:

1. Set up replication accounts on each3 server.

2. Configure the master and replica.

3. Instruct the replica to connect to and replicate from the master.

This assumes that many default settings will suffice, which is true if you’ve just installed
the master and replica and they have the same data (the default mysql database). We
show you here how to do each step in turn, assuming your servers are called server1
(IP address 192.168.0.1) and server2 (IP address 192.168.0.2). We then explain how
to initialize a replica from a server that’s already up and running and explore the rec-
ommended replication configuration.

Creating Replication Accounts
MySQL has a few special privileges that let the replication processes run. The slave
I/O thread, which runs on the replica, makes a TCP/IP connection to the master. This
means you must create a user account on the master and give it the proper privileges,
so the I/O thread can connect as that user and read the master’s binary log. Here’s how
to create that user account, which we’ll call repl:

mysql> GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*
 -> TO repl@'192.168.0.%' IDENTIFIED BY 'p4ssword',;

We create this user account on both the master and the replica. Note that we restricted
the user to the local network, because the replication account has the ability to read all
changes to the server, which makes it a privileged account. (Even though it has no
ability to SELECT or change data, it can still see some of the data in the binary logs.)

3. This isn’t strictly necessary, but it’s something we recommend; we’ll explain later.

Setting Up Replication | 451

The replication user actually needs only the REPLICATION SLAVE privilege
on the master and doesn’t really need the REPLICATION CLIENT privilege
on either server. So why did we grant these privileges on both servers?
We’re keeping things simple, actually. There are two reasons:

• The account you use to monitor and manage replication will need
the REPLICATION CLIENT privilege, and it’s easier to use the same
account for both purposes (rather than creating a separate user
account for this purpose).

• If you set up the account on the master and then clone the replica
from it, the replica will be set up correctly to act as a master, in case
you want the replica and master to switch roles.

Configuring the Master and Replica
The next step is to enable a few settings on the master, which we assume is named
server1. You need to enable binary logging and specify a server ID. Enter (or verify the
presence of) the following lines in the master’s my.cnf file:

log_bin = mysql-bin
server_id = 10

The exact values are up to you. We’re taking the simplest route here, but you can do
something more elaborate.

You must explicitly specify a unique server ID. We chose to use 10 instead of 1, because
1 is the default value a server will typically choose when no value is specified. (This is
version-dependent; some MySQL versions just won’t work at all.) Therefore, using 1
can easily cause confusion and conflicts with servers that have no explicit server IDs.
A common practice is to use the final octet of the server’s IP address, assuming it doesn’t
change and is unique (i.e., the servers belong to only one subnet). You should choose
some convention that makes sense to you and follow it.

If binary logging wasn’t already specified in the master’s configuration file, you’ll need
to restart MySQL. To verify that the binary log file is created on the master, run SHOW
MASTER STATUS and check that you get output similar to the following. MySQL will
append some digits to the filename, so you won’t see a file with the exact name you
specified:

mysql> SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000001 | 98 | | |
+------------------+----------+--------------+------------------+
1 row in set (0.00 sec)

The replica requires a configuration in its my.cnf file similar to the master, and you’ll
also need to restart MySQL on the replica:

452 | Chapter 10: Replication

log_bin = mysql-bin
server_id = 2
relay_log = /var/lib/mysql/mysql-relay-bin
log_slave_updates = 1
read_only = 1

Several of these options are not technically necessary, and for some we’re just making
defaults explicit. In reality, only the server_id parameter is required on a replica, but
we enabled log_bin too, and we gave the binary log file an explicit name. By default it
is named after the server’s hostname, but that can cause problems if the hostname
changes. We are using the same name for the master and replicas to keep things simple,
but you can choose differently if you like.

We also added two other optional configuration parameters: relay_log (to specify the
location and name of the relay log) and log_slave_updates (to make the replica log
the replicated events to its own binary log). The latter option causes extra work for the
replicas, but as you’ll see later, we have good reasons for adding these optional settings
on every replica.

Some people enable just the binary log and not log_slave_updates, so they can see
whether anything, such as a misconfigured application, is modifying data on the replica.
If possible, it’s better to use the read_only configuration setting, which prevents any-
thing but specially privileged threads from changing data. (Don’t grant your users more
privileges than they need!) However, read_only is often not practical, especially for
applications that need to be able to create tables on replicas.

Don’t place replication configuration options such as master_host and
master_port in the replica’s my.cnf file. This is an old, deprecated way
to configure a replica. It can cause problems and has no benefits.

Starting the Replica
The next step is to tell the replica how to connect to the master and begin replaying its
binary logs. You should not use the my.cnf file for this; instead, use the CHANGE MASTER
TO statement. This statement replaces the corresponding my.cnf settings completely. It
also lets you point the replica at a different master in the future, without stopping the
server. Here’s the basic statement you’ll need to run on the replica to start replication:

mysql> CHANGE MASTER TO MASTER_HOST='server1',
 -> MASTER_USER='repl',
 -> MASTER_PASSWORD='p4ssword',
 -> MASTER_LOG_FILE='mysql-bin.000001',
 -> MASTER_LOG_POS=0;

The MASTER_LOG_POS parameter is set to 0 because this is the beginning of the log. After
you run this, you should be able to inspect the output of SHOW SLAVE STATUS and see
that the replica’s settings are correct:

Setting Up Replication | 453

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State:
 Master_Host: server1
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000001
 Read_Master_Log_Pos: 4
 Relay_Log_File: mysql-relay-bin.000001
 Relay_Log_Pos: 4
 Relay_Master_Log_File: mysql-bin.000001
 Slave_IO_Running: No
 Slave_SQL_Running: No
 ...omitted...
 Seconds_Behind_Master: NULL

The Slave_IO_State, Slave_IO_Running, and Slave_SQL_Running columns show that the
replication processes are not running. Astute readers will also notice that the log posi-
tion is 4 instead of 0. That’s because 0 isn’t really a log position; it just means “at the
start of the log file.” MySQL knows that the first event is really at position 4.4

To start replication, run the following command:

mysql> START SLAVE;

This command should produce no errors or output. Now inspect SHOW SLAVE STATUS
again:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: server1
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000001
 Read_Master_Log_Pos: 164
 Relay_Log_File: mysql-relay-bin.000001
 Relay_Log_Pos: 164
 Relay_Master_Log_File: mysql-bin.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 ...omitted...
 Seconds_Behind_Master: 0

Notice that the slave I/O and SQL threads are both running, and Seconds_Behind
_Master is no longer NULL (we’ll examine what Seconds_Behind_Master means later).
The I/O thread is waiting for an event from the master, which means it has fetched all
of the master’s binary logs. The log positions have incremented, which means some

4. Actually, as you can see in the earlier output from SHOW MASTER STATUS, it’s really at position 98. The
master and s/slave/replica/ will work that out together once the s/slave/replica/ connects to the master,
which hasn’t yet happened.

454 | Chapter 10: Replication

events have been fetched and executed (your results will vary). If you make a change
on the master, you should see the various file and position settings increment on the
replica. You should also see the changes in the databases on the replica!

You will also be able to see the replication threads in the process list on both the master
and the replica. On the master, you should see a connection created by the replica’s
I/O thread:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 55
 User: repl
 Host: replica1.webcluster_1:54813
 db: NULL
Command: Binlog Dump
 Time: 610237
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

On the replica, you should see two threads. One is the I/O thread, and the other is the
SQL thread:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 611116
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 2
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 33
 State: Has read all relay log; waiting for the slave I/O thread to update it
 Info: NULL

The sample output we’ve shown comes from servers that have been running for a long
time, which is why the I/O thread’s Time column on the master and the replica has a
large value. The SQL thread has been idle for 33 seconds on the replica, which means
no events have been replayed for 33 seconds.

These processes will always run under the “system user” user account, but the other
column values might vary. For example, when the SQL thread is replaying an event on
the replica, the Info column will show the query it is executing.

Setting Up Replication | 455

If you just want to experiment with MySQL replication, Giuseppe
Maxia’s MySQL Sandbox script (http://mysqlsandbox.net) can quickly
start a throwaway installation from a freshly downloaded MySQL tar-
ball. It takes just a few keystrokes and about 15 seconds to get a running
master and two running replicas:

$./set_replication.pl /path/to/mysql-tarball.tar.gz

Initializing a Replica from Another Server
The previous setup instructions assumed that you started the master and replica with
the default initial data after a fresh installation, so you implicitly had the same data on
both servers and you knew the master’s binary log coordinates. This is not typically the
case. You’ll usually have a master that has been up and running for some time, and
you’ll want to synchronize a freshly installed replica with the master, even though it
doesn’t have the master’s data.

There are several ways to initialize, or “clone,” a replica from another server. These
include copying data from the master, cloning a replica from another replica, and start-
ing a replica from a recent backup. You need three things to synchronize a replica with
a master:

• A snapshot of the master’s data at some point in time.

• The master’s current log file, and the byte offset within that log at the exact point
in time you took the snapshot. We refer to these two values as the log file coordi-
nates, because together they identify a binary log position. You can find the master’s
log file coordinates with the SHOW MASTER STATUS command.

• The master’s binary log files from that time to the present.

Here are some ways to clone a replica from another server:

With a cold copy
One of the most basic ways to start a replica is to shut down the master-to-be and
copy its files to the replica (see Appendix C for more on how to copy files effi-
ciently). You can then start the master again, which begins a new binary log, and
use CHANGE MASTER TO to start the replica at the beginning of that binary log. The
disadvantage of this technique is obvious: you need to shut down the master while
you make the copy.

With a warm copy
If you use only MyISAM tables, you can use mysqlhotcopy or rsync to copy files
while the server is still running. See Chapter 15 for details.

Using mysqldump
If you use only InnoDB tables, you can use the following command to dump ev-
erything from the master, load it all into the replica, and change the replica’s co-
ordinates to the corresponding position in the master’s binary log:

456 | Chapter 10: Replication

http://mysqlsandbox.net

$ mysqldump --single-transaction --all-databases --master-data=1--host=server1 \
 | mysql --host=server2

The --single-transaction option causes the dump to read the data as it existed at the
beginning of the transaction. If you’re not using transactional tables, you can use
the --lock-all-tables option to get a consistent dump of all tables.

With a snapshot or backup
As long as you know the corresponding binary log coordinates, you can use a
snapshot from the master or a backup to initialize the replica (if you use a backup,
this method requires that you’ve kept all of the master’s binary logs since the time
of the backup). Just restore the backup or snapshot onto the replica, then use the
appropriate binary log coordinates in CHANGE MASTER TO. There’s more detail about
this in Chapter 15. You can use LVM snapshots, SAN snapshots, EBS snapshots—
any snapshot will do.

With Percona XtraBackup
Percona XtraBackup is an open source hot backup tool we introduced several years
ago. It can make backups without blocking the server’s operation, which makes it
the cat’s meow for setting up replicas. You can create replicas by cloning the master,
or by cloning an existing replica.

We show more details about how to use Percona XtraBackup in Chapter 15, but
we’ll mention the relevant bits of functionality here. Just create the backup (either
from the master, or from an existing replica), and restore it to the target machine.
Then look in the backup for the correct position to start replication:

• If you took the backup from the new replica’s master, you can start replication
from the position mentioned in the xtrabackup_binlog_pos_innodb file.

• If you took the backup from another replica, you can start replication from the
position mentioned in the xtrabackup_slave_info file.

Using InnoDB Hot Backup or MySQL Enterprise Backup, both covered in Chap-
ter 15, is another good way to initialize a replica.

From another replica
You can use any of the snapshot or copy techniques just mentioned to clone one
replica from another. However, if you use mysqldump, the --master-data option
doesn’t work.

Also, instead of using SHOW MASTER STATUS to get the master’s binary log coordi-
nates, you’ll need to use SHOW SLAVE STATUS to find the position at which the replica
was executing on the master when you snapshotted it.

The biggest disadvantage of cloning one replica from another is that if your replica
has become out of sync with the master, you’ll be cloning bad data.

Don’t use LOAD DATA FROM MASTER or LOAD TABLE FROM MASTER! They are
obsolete, slow, and very dangerous. They also work only with MyISAM.

Setting Up Replication | 457

No matter what technique you choose, get comfortable with it, and document or script
it. You will probably be doing it more than once, and you need to be able to do it in a
pinch if something goes wrong.

Recommended Replication Configuration
There are many replication parameters, and most of them have at least some effect on
data safety and performance. We explain later which rules to break and when. In this
section, we show a recommended, “safe” replication configuration that minimizes the
opportunities for problems.

The most important setting for binary logging on the master is sync_binlog:

sync_binlog=1

This makes MySQL synchronize the binary log’s contents to disk each time it commits
a transaction, so you don’t lose log events if there’s a crash. If you disable this option,
the server will do a little less work, but binary log entries could be corrupted or missing
after a server crash. On a replica that doesn’t need to act as a master, this option creates
unnecessary overhead. It applies only to the binary log, not to the relay log.

We also recommend using InnoDB if you can’t tolerate corrupt tables after a crash.
MyISAM is fine if table corruption isn’t a big deal, but MyISAM tables are likely to be
in an inconsistent state after a replica server crashes. Chances are good that a statement
will have been incompletely applied to one or more tables, and the data will be incon-
sistent even after you’ve repaired the tables.

If you use InnoDB, we strongly recommend setting the following options on the master:

innodb_flush_logs_at_trx_commit=1 # Flush every log write
innodb_support_xa=1 # MySQL 5.0 and newer only
innodb_safe_binlog # MySQL 4.1 only, roughly equivalent to
 # innodb_support_xa

These are the default settings in MySQL 5.0 and newer. We also recommend specifying
a binary log base name explicitly, to create uniform binary log names on all servers and
prevent changes in binary log names if the server’s hostname changes. You might not
think that it’s a problem to have binary logs named after the server’s hostname auto-
matically, but our experience is that it causes a lot of trouble when moving data between
servers, cloning new replicas, and restoring backups, and in lots of other ways you
wouldn’t expect. To avoid this, specify an argument to the log_bin option, optionally
with an absolute path, but certainly with the base name (as shown earlier in this
chapter):

log_bin=/var/lib/mysql/mysql-bin # Good; specifies a path and base name
#log_bin # Bad; base name will be server’s hostname

458 | Chapter 10: Replication

On the replica, we also recommend enabling the following configuration options. We
also recommend using an absolute path for the relay log location:

relay_log=/path/to/logs/relay-bin
skip_slave_start
read_only

The relay_log option prevents hostname-based relay log file names, which avoids the
same problems we mentioned earlier that can happen on the master, and giving the
absolute path to the logs avoids bugs in various versions of MySQL that can cause
the relay logs to be created in an unexpected location. The skip_slave_start option
will prevent the replica from starting automatically after a crash, which can give you a
chance to repair a server if it has problems. If the replica starts automatically after a
crash and is in an inconsistent state, it might cause so much additional corruption that
you’ll have to throw away its data and start fresh.

The read_only option prevents most users from changing non-temporary tables. The
exceptions are the replication SQL thread and threads with the SUPER privilege. This is
one of the many reasons you should try to avoid giving your normal accounts the
SUPER privilege.

Even if you’ve enabled all the options we’ve suggested, a replica can easily break after
a crash, because the relay logs and master.info file aren’t crash-safe. They’re not even
flushed to disk by default, and there’s no configuration option to control that behavior
until MySQL 5.5. You should enable those options if you’re using MySQL 5.5 and if
you don’t mind the performance overhead of the extra fsync() calls:

sync_master_info = 1
sync_relay_log = 1
sync_relay_log_info = 1

If a replica is very far behind its master, the slave I/O thread can write many relay logs.
The replication SQL thread will remove them as soon as it finishes replaying them (you
can change this with the relay_log_purge option), but if it is running far behind, the
I/O thread could actually fill up the disk. The solution to this problem is the
relay_log_space_limit configuration variable. If the total size of all the relay logs grows
larger than this variable’s size, the I/O thread will stop and wait for the SQL thread to
free up some more disk space.

Although this sounds nice, it can actually be a hidden problem. If the replica hasn’t
fetched all the relay logs from the master, those logs might be lost forever if the master
crashes. And this option has had some bugs in the past, and seems to be uncommonly
used, so the risk of bugs is higher when you use it. Unless you’re worried about disk
space, it’s probably a good idea to let the replica use as much space as it needs for relay
logs. That’s why we haven’t included the relay_log_space_limit setting in our recom-
mended configuration.

Setting Up Replication | 459

Replication Under the Hood
Now that we’ve explained some replication basics, let’s dive deeper into it. Let’s take
a look at how replication really works, see what strengths and weaknesses it has as a
result, and examine some more advanced replication configuration options.

Statement-Based Replication
MySQL 5.0 and earlier support only statement-based replication (also called logical
replication). This is unusual in the database world. Statement-based replication works
by recording the query that changed the data on the master. When the replica reads
the event from the relay log and executes it, it is reexecuting the actual SQL query that
the master executed. This arrangement has both benefits and drawbacks.

The most obvious benefit is that it’s fairly simple to implement. Simply logging and
replaying any statement that changes data will, in theory, keep the replica in sync with
the master. Another benefit of statement-based replication is that the binary log events
tend to be reasonably compact. So, relatively speaking, statement-based replication
doesn’t use a lot of bandwidth—a query that updates gigabytes of data might use only
a few dozen bytes in the binary log. Also, the mysqlbinlog tool, which we mention
throughout the chapter, is most convenient to use with statement-based logging.

In practice, however, statement-based replication is not as simple as it might seem,
because many changes on the master can depend on factors besides just the query text.
For example, the statements will execute at slightly—or possibly greatly—different
times on the master and replica. As a result, MySQL’s binary log format includes more
than just the query text; it also transmits several bits of metadata, such as the current
timestamp. Even so, there are some statements that MySQL can’t replicate correctly,
such as queries that use the CURRENT_USER() function. Stored routines and triggers are
also problematic with statement-based replication.

Another issue with statement-based replication is that the modifications must be seri-
alizable. This requires more locking—sometimes significantly more. Not all storage
engines work with statement-based replication, although those provided with the of-
ficial MySQL server distribution up to and including MySQL 5.5 do.

You can find a complete list of statement-based replication’s limitations in the MySQL
manual’s chapter on replication.

Row-Based Replication
MySQL 5.1 added support for row-based replication, which records the actual data
changes in the binary log and is more similar to how most other database products
implement replication. This scheme has several advantages and drawbacks of its own.
The biggest advantages are that MySQL can replicate every statement correctly, and
some statements can be replicated much more efficiently.

460 | Chapter 10: Replication

Row-based logging is not backward-compatible. The mysqlbinlog utility
distributed with MySQL 5.1 can read binary logs that contain events
logged in row-based format (they are not human-readable, but the
MySQL server can interpret them). However, versions of mysqlbinlog
from earlier MySQL distributions will fail to recognize such log events
and will exit with an error upon encountering them.

MySQL can replicate some changes more efficiently using row-based replication, be-
cause the replica doesn’t have to replay the queries that changed the rows on the master.
Replaying some queries can be very expensive. For example, here’s a query that sum-
marizes data from a very large table into a smaller table:

mysql> INSERT INTO summary_table(col1, col2, sum_col3)
 -> SELECT col1, col2, sum(col3)
 -> FROM enormous_table
 -> GROUP BY col1, col2;

Imagine that there are only three unique combinations of col1 and col2 in the
enormous_table table. This query will scan many rows in the source table but will result
in only three rows in the destination table. Replicating this event as a statement will
make the replica repeat all that work just to generate a few rows, but replicating it with
row-based replication will be trivially cheap on the replica. In this case, row-based
replication is much more efficient.

On the other hand, the following event is much cheaper to replicate with statement-
based replication:

mysql> UPDATE enormous_table SET col1 = 0;

Using row-based replication for this query would be very expensive because it changes
every row: every row would have to be written to the binary log, making the binary log
event extremely large. This would place more load on the master during both logging
and replication, and the slower logging might reduce concurrency.

Because neither format is perfect for every situation, MySQL can switch between
statement-based and row-based replication dynamically. By default, it uses statement-
based replication, but when it detects an event that cannot be replicated correctly with
a statement, it switches to row-based replication. You can also control the format as
needed by setting the binlog_format session variable.

It’s harder to do point-in-time recovery with a binary log that has events in row-based
format, but not impossible. A log server can be helpful—more on that later.

Statement-Based or Row-Based: Which Is Better?
We’ve mentioned advantages and disadvantages for both replication formats. Which
is better in practice?

Replication Under the Hood | 461

In theory, row-based replication is probably better all-around, and in practice it gen-
erally works fine for most people. But its implementation is new enough that it hasn’t
had years of little special-case behaviors baked in to support all the operational needs
of MySQL administrators, and as a result it’s still a nonstarter for some people. Here’s
a more complete discussion of the benefits and drawbacks of each format to help you
decide which is more suitable for your needs:

Statement-based replication advantages
Logical replication works in more cases when the schema is different on the master
and the replica. For example, it can be made to work in more cases where the tables
have different but compatible data types, different column orders, and so on. This
makes it easier to perform schema changes on a replica and then promote it to
master, reducing downtime. Statement-based replication generally permits more
operational flexibility.

The replication-applying process in statement-based replication is normal SQL
execution, by and large. This means that all changes on the server are taking place
through a well-understood mechanism, and it’s easy to inspect and determine what
is happening if something isn’t working as expected.

Statement-based replication disadvantages
The list of things that can’t be replicated correctly through statement-based logging
is so large that any given installation is likely to run into at least one of them. In
particular, there were tons of bugs affecting replication of stored procedures, trig-
gers, and so on in the 5.0 and 5.1 series of the server—so many that the way these
are replicated was actually changed around a couple of times in attempts to make
it work better. Bottom line: if you’re using triggers or stored procedures, don’t use
statement-based replication unless you’re watching like a hawk to make sure you
don’t run into problems.

There are also lots of problems with temporary tables, mixtures of storage engines,
specific SQL constructs, nondeterministic statements, and so on. These range from
annoying to show-stopping.

Row-based replication advantages
There are a lot fewer cases that don’t work in row-based replication. It works cor-
rectly with all SQL constructs, with triggers, with stored procedures, and so on. It
generally only fails when you’re trying to do something clever such as schema
changes on the replica.

It also creates opportunities for reduced locking, because it doesn’t require such
strong serialization to be repeatable.

Row-based replication works by logging the data that’s changed, so the binary log
is a record of what has actually changed on the master. You don’t have to look at
a statement and guess whether it changed any data. Thus, in some ways you ac-
tually know more about what’s changed in your server, and you have a better record
of the changes. Also, in some cases the row-based binary logs record what the data

462 | Chapter 10: Replication

used to be, so they can potentially be more useful for some kinds of data recovery
efforts.

Row-based replication can be less CPU-intensive in many cases, due to the lack of
a need to plan and execute queries in the same way that statement-based replication
does.

Finally, row-based replication can help you find and solve data inconsistencies
more quickly in some cases. For example, statement-based replication won’t fail
if you update a row on the master and it doesn’t exist on the replica, but row-based
replication will throw an error and stop.

Row-based replication disadvantages
The statement isn’t included in the log event, so it can be tough to figure out what
SQL was executed. This is important in many cases, in addition to knowing the
row changes. (This will probably be fixed in a future version of MySQL.)

Replication changes are applied on replicas in a completely different manner—it
isn’t SQL being executed. In fact, the process of applying row-based changes is
pretty much a black box with no visibility into what the server is doing, and it’s
not well documented or explained, so when things don’t work right, it can be tough
to troubleshoot. As an example, if the replica chooses an inefficient way to find
rows to change, you can’t observe that.

If you have multiple levels of replication servers, and all are configured for row-
based logging, a statement that you execute while your session-level @@binlog_
format variable is set to STATEMENT will be logged as a statement on the server
where it originates, but then the first-level replicas might relay the event in row-
based format to further replicas in the chain. That is, your desired statement-based
logging will get switched back to row-based logging as it propagates through the
replication topology.

Row-based logging can’t handle some things that statement-based logging can,
such as schema changes on replicas.

Replication will sometimes halt in cases where statement-based replication would
continue, such as when the replica is missing a row that’s supposed to be changed.
This could be regarded as a good thing. In any case, it is configurable with the
slave_exec_mode option.

Many of these disadvantages are being lifted as time passes, but at the time of
writing, they are still true in most production deployments.

Replication Files
Let’s take a look at some of the files replication uses. You already know about the binary
log and the relay log, but there are several other files, too. Where MySQL places
them depends mostly on your configuration settings. Different MySQL versions place
them in different directories by default. You can probably find them either in the data

Replication Under the Hood | 463

directory or in the directory that contains the server’s .pid file (possibly /var/run/
mysqld/ on Unix-like systems). Here they are:

mysql-bin.index
A server that has binary logging enabled will also have a file named the same as the
binary logs, but with a .index suffix. This file keeps track of the binary log files that
exist on disk. It is not an index in the sense of a table’s index; rather, each line in
the file contains the filename of a binary log file.

You might be tempted to think that this file is redundant and can be deleted (after
all, MySQL could just look at the disk to find its files), but don’t. MySQL relies on
this index file, and it will not recognize a binary log file unless it’s mentioned here.

mysql-relay-bin.index
This file serves the same purpose for the relay logs as the binary log index file does
for the binary logs.

master.info
This file contains the information a replica needs to connect to its master. The
format is plain text (one value per line) and varies between MySQL versions. Don’t
delete it, or your replica will not know how to connect to its master after it restarts.
This file contains the replication user’s password, in plain text, so you might want
to restrict its permissions.

relay-log.info
This file contains the replica’s current binary log and relay log coordinates (i.e.,
the replica’s position on the master). Don’t delete this either, or the replica will
forget where it was replicating from after a restart and might try to replay statements
it has already executed.

These files are a rather crude way of recording MySQL’s replication and logging state.
Unfortunately, they are not written synchronously, so if your server loses power and
the files haven’t yet been flushed to disk, they can be inaccurate when the server restarts.
This is improved in MySQL 5.5, as mentioned previously.

The .index files interact with another setting, expire_logs_days, which specifies how
MySQL should purge expired binary logs. If the mysql-bin.index files mention files that
don’t exist on disk, automatic purging will not work in some MySQL versions; in fact,
even the PURGE MASTER LOGS statement won’t work. The solution to this problem is
generally to use the MySQL server to manage the binary logs, so it doesn’t get confused.
(That is, you shouldn’t use rm to purge files yourself.)

You need to implement some sort of log purging strategy explicitly, either with
expire_logs_days or another means, or MySQL will fill up the disk with binary logs.
You should consider your backup policy when you do this.

464 | Chapter 10: Replication

Sending Replication Events to Other Replicas
The log_slave_updates option lets you use a replica as a master of other replicas. It
instructs MySQL to write the events the replication SQL thread executes into its own
binary log, which its own replicas can then retrieve and execute. Figure 10-2 illustrates
this.

Figure 10-2. Passing on a replication event to further replicas

In this scenario, a change on the master causes an event to be written to its binary log.
The first replica then fetches and executes the event. At this point, the event’s life would
normally be over, but because log_slave_updates is enabled, the replica writes it to its
binary log instead. Now the second replica can retrieve the event into its own relay log
and execute it. This configuration means that changes on the original master can
propagate to replicas that are not attached to it directly. We prefer setting log
_slave_updates by default because it lets you connect a replica without having to restart
the server.

When the first replica writes a binary log event from the master into its own binary log,
that event will almost certainly be at a different position in the log from its position on
the master—that is, it could be in a different log file or at a different numerical position
within the log file. This means you can’t assume all servers that are at the same logical
point in replication will have the same log coordinates. As we’ll see later, this makes it
quite complicated to do some tasks, such as changing replicas to a different master or
promoting a replica to be the master.

Unless you’ve taken care to give each server a unique server ID, configuring a replica
in this manner can cause subtle errors and might even cause replication to complain
and stop. One of the more common questions about replication configuration is why
one needs to specify the server ID. Shouldn’t MySQL be able to replicate statements

Replication Under the Hood | 465

without knowing where they originated? Why does MySQL care whether the server ID
is globally unique? The answer to this question lies in how MySQL prevents an infinite
loop in replication. When the replication SQL thread reads the relay log, it discards
any event whose server ID matches its own. This breaks infinite loops in replication.
Preventing infinite loops is important for some of the more useful replication topolo-
gies, such as master-master replication.5

If you’re having trouble getting replication set up, the server ID is one
of the things you should check. It’s not enough to just inspect the
@@server_id variable. It has a default value, but replication won’t work
unless it’s explicitly set, either in my.cnf or via a SET command. If you
use a SET command, be sure you update the configuration file too, or
your settings won’t survive a server restart.

Replication Filters
Replication filtering options let you replicate just part of a server’s data, which is much
less of a good thing than you might think. There are two kinds of replication filters:
those that filter events out of the binary log on the master, and those that filter events
coming from the relay log on the replica. Figure 10-3 illustrates the two types.

Figure 10-3. Replication filtering options

The options that control binary log filtering are binlog_do_db and binlog_ignore_db.
You should not enable these, as we’ll explain in a moment, unless you think you’ll enjoy
explaining to your boss why the data is gone permanently and can’t be recovered.

5. Statements running around in infinite loops are also one of the many joys of multi-server ring replication
topologies, which we’ll show later. Avoid ring replication like the plague.

466 | Chapter 10: Replication

On the replica, the replicate_* options filter events as the replication SQL thread reads
them from the relay log. You can replicate or ignore one or more databases, rewrite one
database to another database, and replicate or ignore tables based on LIKE pattern
matching syntax.

The most important thing to understand about these options is that the *_do_db and
*_ignore_db options, both on the master and on the replica, do not work as you might
expect. You might think they filter on the object’s database name, but they actually
filter on the current default database.6 That is, if you execute the following statements
on the master:

mysql> USE test;
mysql> DELETE FROM sakila.film;

the *_do_db and *_ignore_db parameters will filter the DELETE statement on test, not on
sakila. This is not usually what you want, and it can cause the wrong statements to be
replicated or ignored. The *_do_db and *_ignore_db parameters have uses, but they’re
limited and rare, and you should be very careful with them. If you use these parameters,
it’s very easy to for replication to get out of sync or fail.

The binlog_do_db and binlog_ignore_db options don’t just have the po-
tential to break replication; they also make it impossible to do point-in-
time recovery from a backup. For most situations, you should never use
them. They can cause endless grief. We show some alternative ways to
filter replication with Blackhole tables later in this chapter.

In general, replication filters are a problem waiting to happen. For example, suppose
you want to prevent privilege changes from propagating to replicas, a fairly common
goal. (The desire to do this should probably tip you off that you’re doing something
wrong; there are probably other ways to accomplish your real goal.) Replication filters
on the system tables will certainly prevent GRANT statements from replicating, but they
will prevent events and routines from replicating, too. Such unforeseen consequences
are a reason to be careful with filters. It might be a better idea to prevent specific state-
ments from being replicated, usually with SET SQL_LOG_BIN=0, though that practice has
its own hazards. In general, you should use replication filters very carefully, and only
if you really need them, because they make it so easy to break replication and cause
problems that will manifest when it’s least convenient, such as during disaster recovery.

The filtering options are well documented in the MySQL manual, so we won’t repeat
the details here.

6. If you’re using statement-based replication, that is. If you’re using row-based replication, they don’t
behave quite the same (another good reason to stay away from them).

Replication Under the Hood | 467

Replication Topologies
You can set up MySQL replication for almost any configuration of masters and replicas,
with the limitation that a given MySQL replica instance can have only one master. Many
complex topologies are possible, but even the simple ones can be very flexible. A single
topology can have many different uses. The variety of ways you can use replication
could easily fill its own book.

We’ve already seen how to set up a master with a single replica. In this section, we look
at some other common topologies and discuss their strengths and limitations. As we
go, remember these basic rules:

• A MySQL replica instance can have only one master.

• Every replica must have a unique server ID.

• A master can have many replicas (or, correspondingly, a replica can have many
siblings).

• A replica can propagate changes from its master, and be the master of other repli-
cas, if you enable log_slave_updates.

Master and Multiple Replicas
Aside from the basic two-server master-replica setup we’ve already mentioned, this is
the simplest replication topology. In fact, it’s just as simple as the basic setup, because
the replicas don’t interact with each other;7 they each connect only to the master.
Figure 10-4 shows this arrangement.

Figure 10-4. A master with multiple replicas

7. This isn’t technically true. If they have duplicate server IDs, they’ll get into a catfight and kick each other
off the master repeatedly.

468 | Chapter 10: Replication

This configuration is most useful when you have few writes and many reads. You can
spread reads across any number of replicas, up to the point where the replicas put too
much load on the master or network bandwidth from the master to the replicas
becomes a problem. You can set up many replicas at once, or add replicas as you need
them, using the same steps we showed earlier in this chapter.

Although this is a very simple topology, it is flexible enough to fill many needs. Here
are just a few ideas:

• Use different replicas for different roles (for example, add different indexes or use
different storage engines).

• Set up one of the replicas as a standby master, with no traffic other than replication.

• Put one of the replicas in a remote data center for disaster recovery.

• Time-delay one or more of the replicas for disaster recovery.

• Use one of the replicas for backups, for training, or as a development or staging
server.

One of the reasons this topology is popular is that it avoids many of the complexities
that come with other configurations. Here’s an example: it’s easy to compare one rep-
lica to another in terms of binary log positions on the master, because they’ll all be the
same. In other words, if you stop all the replicas at the same logical point in replication,
they’ll all be reading from the same physical position in the master’s logs. This is a nice
property that simplifies many administrative tasks, such as promoting a replica to be
the master.

This property holds only among “sibling” replicas. It’s more complicated to compare
log positions between servers that aren’t in a direct master-replica or sibling relation-
ship. Many of the topologies we mention later, such as tree replication or distribution
masters, make it harder to figure out where in the logical sequence of events a replica
is really replicating.

Master-Master in Active-Active Mode
Master-master replication (also known as dual-master or bidirectional replication) in-
volves two servers, each configured as both a master and a replica of the other—in other
words, a pair of co-masters. Figure 10-5 shows the setup.

Figure 10-5. Master-master replication

Replication Topologies | 469

MySQL Does Not Support Multisource Replication
We use the term multisource replication very specifically to describe the scenario where
there is a replica with more than one master. Regardless of what you might have been
told, MySQL (unlike some other database servers) does not support the configuration
illustrated in Figure 10-6 at present. However, we show you some ways to emulate
multisource replication later in this chapter.

Figure 10-6. MySQL does not support multisource replication

Master-master replication in active-active mode has uses, but they’re generally special-
purpose. One possible use is for geographically separated offices, where each office
needs its own locally writable copy of data.

The biggest problem with such a configuration is how to handle conflicting changes.
The list of possible problems caused by having two writable co-masters is very long.
Problems usually show up when a query changes the same row simultaneously on both
servers or inserts into a table with an AUTO_INCREMENT column at the same time on both
servers.8

MySQL 5.0 added some replication features that make this type of replication setup
slightly less of a foot-gun: the auto_increment_increment and auto_increment_offset
settings. These settings let servers autogenerate nonconflicting values for INSERT quer-
ies. However, allowing writes to both masters is still extremely dangerous. Updates
that happen in a different order on the two machines can still cause the data to silently
become out of sync. For example, imagine you have a single-column, single-row table
containing the value 1. Now suppose these two statements execute simultaneously:

8. Actually, these problems usually show up at 3am on a weekend, and we’ve seen them take months to
resolve.

470 | Chapter 10: Replication

• On the first co-master:

mysql> UPDATE tbl SET col=col + 1;

• On the second:

mysql> UPDATE tbl SET col=col * 2;

The result? One server has the value 4, and the other has the value 3. And yet, there are
no replication errors at all.

Data getting out of sync is only the beginning. What if normal replication stops with
an error, but applications keep writing to both servers? You can’t just clone one of the
servers from the other, because each of them will have changes that you need to copy
to the other. Solving this problem is likely to be very hard. Consider yourself warned!

If you set up a master-master active-active configuration carefully, perhaps with well-
partitioned data and privileges, and if you really know what you’re doing, you can avoid
some of these problems.9 However, it’s hard to do well, and there’s almost always a
better way to achieve what you need.

In general, allowing writes on both servers causes way more trouble than it’s worth.
However, an active-passive configuration is very useful indeed, as you’ll see in the next
section.

Master-Master in Active-Passive Mode
There’s a variation on master-master replication that avoids the pitfalls we just dis-
cussed and is, in fact, a very powerful way to design fault-tolerant and highly available
systems. The main difference is that one of the servers is a read-only “passive” server,
as shown in Figure 10-7.

Figure 10-7. Master-master replication in active-passive mode

This configuration lets you swap the active and passive server roles back and forth very
easily, because the servers’ configurations are symmetrical. This makes failover and
failback easy. It also lets you perform maintenance, optimize tables, upgrade your op-
erating system (or application, or hardware), and do other tasks without any downtime.

9. Some, but not all—we can play devil’s advocate and show you flaws in just about any setup you can
imagine.

Replication Topologies | 471

For example, running an ALTER TABLE statement locks the entire table, blocking reads
and writes to it. This can take a long time and disrupt service. However, the master-
master configuration lets you stop the replication threads on the active server (so it
doesn’t process any updates from the passive server), alter the table on the passive
server, switch the roles, and restart replication on the formerly active server.10 That
server then reads its relay log and executes the same ALTER TABLE statement. Again, this
might take a long time, but it doesn’t matter because the server isn’t serving any live
queries.

The active-passive master-master topology lets you sidestep many other problems and
limitations in MySQL. There are some toolsets to help with this type of operational
task, too.

Let’s see how to configure a master-master pair. Perform these steps on both servers,
so they end up with symmetrical configurations:

1. Ensure that the servers have exactly the same data.

2. Enable binary logging, choose unique server IDs, and add replication accounts.

3. Enable logging replica updates. This is crucial for failover and failback, as we’ll see
later.

4. Optionally configure the passive server to be read-only to prevent changes that
might conflict with changes on the active server.

5. Start each server’s MySQL instance.

6. Configure each server as a replica of the other, beginning with the newly created
binary log.

Now let’s trace what happens when there’s a change to the active server. The change
gets written to its binary log and flows through replication to the passive server’s relay
log. The passive server executes the query and writes the event to its own binary log,
because you enabled log_slave_updates. The active server then ignores the event,
because the server ID in the event matches its own. See the section “Changing Mas-
ters” on page 489 to learn how to switch roles.

Setting up an active-passive master-master topology is a little like creating a hot spare
in some ways, except that you can use the “spare” to boost performance. You can use
it for read queries, backups, “offline” maintenance, upgrades, and so on—things you
can’t do with a true hot spare. However, you cannot use it to gain better write perfor-
mance than you can get with a single server (more about that later).

As we discuss more scenarios and uses for replication, we’ll come back to this config-
uration. It is a very important and common replication topology.

10. You can also disable binary logging temporarily with SET SQL_LOG_BIN=0, instead of stopping replication.
Some commands, such as OPTIMIZE TABLE, also support a LOCAL or NO_WRITE_TO_BINLOG option that prevents
logging. This can allow you to choose your timing more precisely, rather than just letting the ALTER happen
when it occurs in the replication stream.

472 | Chapter 10: Replication

Master-Master with Replicas
A related configuration is to add one or more replicas to each co-master, as shown in
Figure 10-8.

Figure 10-8. Master-master topology with replicas

The advantage of this configuration is extra redundancy. In a geographically distributed
replication topology, it removes the single point of failure at each site. You can also
offload read-intensive queries to the replicas, as usual.

If you’re using a master-master topology locally for fast failover, this configuration is
still useful. Promoting one of the replicas to replace a failed master is possible, although
it’s a little more complex. The same is true of moving one of the replicas to point to a
different master. The added complexity is an important consideration.

Ring Replication
The dual-master configuration is really just a special case11 of the ring replication con-
figuration, shown in Figure 10-9. A ring has three or more masters. Each server is a
replica of the server before it in the ring, and a master of the server after it. This topology
is also called circular replication.

Rings don’t have some of the key benefits of a master-master setup, such as symmetrical
configuration and easy failover. They also depend completely on every node in the ring
being available, which greatly increases the probability of the entire system failing. And
if you remove one of the nodes from the ring, any replication events that originated at
that node can go into an infinite loop: they’ll cycle forever through the chain of servers,
because the only server that will filter out an event based on its server ID is the server
that created it. In general, rings are brittle and best avoided, no matter how clever you
are.

11. A slightly more sane special case, we might add.

Replication Topologies | 473

Figure 10-9. A replication ring topology

You can mitigate some of the risk of a ring replication setup by adding replicas to
provide redundancy at each site, as shown in Figure 10-10. This merely protects against
the risk of a server failing, though. A loss of power or any other problem that affects
any connection between the sites will still break the entire ring.

Figure 10-10. A replication ring with additional replicas at each site

Master, Distribution Master, and Replicas
We’ve mentioned that replicas can place quite a load on the master if there are enough
of them. Each replica creates a new thread on the master, which executes the special

474 | Chapter 10: Replication

binlog dump command. This command reads the data from the binary log and sends it
to the replica. The work is repeated for each replica; they don’t share the resources
required for a binlog dump.

If there are many replicas and there’s a particularly large binary log event, such as a
huge LOAD DATA INFILE, the master’s load can go up significantly. The master might
even run out of memory and crash because of all the replicas requesting the same huge
event at the same time. On the other hand, if the replicas are all requesting different
binlog events that aren’t in the filesystem cache anymore, that can cause a lot of disk
seeks, which might also interfere with the master’s performance and cause mutex
contention.

For this reason, if you need many replicas, it’s often a good idea to remove the load
from the master and use a distribution master. A distribution master is a replica whose
only purpose is to read and serve the binary logs from the master. Many replicas can
connect to the distribution master, which insulates the original master from the load.
To remove the work of actually executing the queries on the distribution master, you
can change its tables to the Blackhole storage engine, as shown in Figure 10-11.

Figure 10-11. A master, a distribution master, and many replicas

It’s hard to say exactly how many replicas a master can handle before it needs a distri-
bution master. As a very rough rule of thumb, if your master is running near its full
capacity, you might not want to put more than about 10 replicas on it. If there’s very
little write activity, or you’re replicating only a fraction of the tables, the master can
probably serve many more replicas. Additionally, you don’t have to limit yourself to
just one distribution master. You can use several if you need to replicate to a really large
number of replicas, or you can even use a pyramid of distribution masters. In some
cases it also helps to set slave_compressed_protocol, to save some bandwidth on the
master. This is most helpful for cross–data center replication.

Replication Topologies | 475

You can also use the distribution master for other purposes, such as applying filters
and rewrite rules to the binary log events. This is much more efficient than repeating
the logging, rewriting, and filtering on each replica.

If you use Blackhole tables on the distribution master, it will be able to serve more
replicas than it could otherwise. The distribution master will execute the queries, but
the queries will be extremely cheap, because the Blackhole tables will not have any
data. The drawback of Blackhole tables is that they have bugs, such as forgetting to put
autoincrementing IDs into their binary logs in some circumstances, so be very careful
with Blackhole tables if you use them.12

A common question is how to ensure that all tables on the distribution master use the
Blackhole storage engine. What if someone creates a new table on the master and
specifies a different storage engine? Indeed, the same issue arises whenever you want
to use a different storage engine on a replica. The usual solution is to set the server’s
storage_engine option:

storage_engine = blackhole

This will affect only CREATE TABLE statements that don’t specify a storage engine ex-
plicitly. If you have an existing application that you can’t control, this topology might
be fragile. You can disable InnoDB and make tables fall back to MyISAM with the
skip_innodb option, but you can’t disable the MyISAM or Memory engines.

The other major drawback is the difficulty of replacing the master with one of the
(ultimate) replicas. It’s hard to promote one of the replicas into its place, because the
intermediate master ensures that they will almost always have different binary log co-
ordinates than the original master does.13

Tree or Pyramid
If you’re replicating a master to a very large number of replicas—whether you’re dis-
tributing data geographically or just trying to build in more read capacity—it can be
more manageable to use a pyramid design, as illustrated in Figure 10-12.

The advantage of this design is that it eases the load on the master, just as the distri-
bution master did in the previous section. The disadvantage is that any failure in an
intermediate level will affect multiple servers, which wouldn’t happen if the replicas
were each attached to the master directly. Also, the more intermediate levels you have,
the harder and more complicated it is to handle failures.

12. See MySQL bugs 35178 and 62829 for starters. In general, anytime you use a nonstandard storage engine
or feature, it can be a good idea to look for open and closed bugs affecting it.

13. You can use Percona Toolkit’s pt-heartbeat to create a crude global transaction ID to help with this. It
makes it much easier to find binary log positions on various servers, because the heartbeat table itself has
the approximate binary log positions in it.

476 | Chapter 10: Replication

Custom Replication Solutions
MySQL replication is flexible enough that you can often design a custom solution for
your application’s needs. You’ll typically use some combination of filtering, distribu-
tion, and replicating to different storage engines. You can also use “hacks,” such as
replicating to and from servers that use the Blackhole storage engine (as discussed
earlier in this chapter). Your design can be as elaborate as you want. The biggest limi-
tations are what you can monitor and administer reasonably and what resource con-
straints you have (network bandwidth, CPU power, etc.).

Selective replication

To take advantage of locality of reference and keep your working set in memory for
reads, you can replicate a small amount of data to each of many replicas. If each replica
has a fraction of the master’s data and you direct reads to the replicas, you can make
much better use of the memory on each replica. Each replica will also have only a
fraction of the master’s write load, so the master can become more powerful without
making the replicas fall behind.

This scenario is similar in some respects to the horizontal data partitioning we’ll talk
more about in the next chapter, but it has the advantage that one server still hosts all
the data—the master. This means you never have to look on more than one server for
the data needed for a write query, and if you have read queries that need data that
doesn’t all exist on any single replica server, you have the option of doing those reads
on the master instead. Even if you can’t do all reads on the replicas, you should be able
to move many of them off the master.

Figure 10-12. A pyramid replication topology

Replication Topologies | 477

The simplest way to do this is to partition the data into different databases on the
master, and then replicate each database to a different replica server. For example, if
you want to replicate data for each department in your company to a different replica,
you can create databases called sales, marketing, procurement, and so on. Each replica
should then have a replicate_wild_do_table configuration option that limits its data
to the given database. Here’s the configuration option for the sales database:

replicate_wild_do_table = sales.%

Filtering with a distribution master is also useful. For example, if you want to replicate
just part of a heavily loaded server across a slow or very expensive network, you can
use a local distribution master with Blackhole tables and filtering rules. The distribution
master can have replication filters that remove undesired entries from its logs. This can
help avoid dangerous logging settings on the master, and it doesn’t require you to
transfer all the logs across the network to the remote replicas.

Separating functions

Many applications have a mixture of online transaction processing (OLTP) and online
analytical processing (OLAP) queries. OLTP queries tend to be short and transactional.
OLAP queries are usually large and slow and don’t require absolutely up-to-date data.
The two types of queries also place very different stresses on the server. Thus, they
perform best on servers that are configured differently and perhaps even use different
storage engines and hardware.

A common solution to this problem is to replicate the OLTP server’s data to replicas
specifically designed for the OLAP workload. These replicas can have different hard-
ware, configurations, indexes, and/or storage engines. If you dedicate a replica to OLAP
queries, you might also be able to tolerate more replication lag or otherwise degraded
quality of service on that replica. That might mean you can use it for tasks that would
result in unacceptable performance on a nondedicated replica, such as executing very
long-running queries.

No special replication setup is required, although you might choose to omit some of
the data from the master if you’ll achieve significant savings by not having it on the
replica. Filtering out even a small amount of data with replication filters on the relay
log might help reduce I/O and cache activity.

Data archiving

You can archive data on a replica server—that is, keep it on the replica but remove it
from the master—by running delete queries on the master and ensuring that those
queries don’t execute on the replica. There are two common ways to do this: one is to
selectively disable binary logging on the master, and the other is to use replicate
_ignore_db rules on the replica. (Yes, both are dangerous.)

478 | Chapter 10: Replication

The first method requires executing SET SQL_LOG_BIN=0 in the process that purges the
data on the master, then purging the data. This has the advantage of not requiring any
special replication configuration on the replica, and because the statements aren’t even
logged to the master’s binary log, it’s slightly more efficient there too. The main dis-
advantage is that you won’t be able to use the binary log on the master for auditing or
point-in-time recovery anymore, because it won’t contain every modification made to
the master’s data. It also requires the SUPER privilege.

The second technique is to USE a certain database on the master before executing the
statements that purge the data. For example, you can create a database named purge,
and then specify replicate_ignore_db=purge in the replica’s my.cnf file and restart the
server. The replica will ignore statements that USE this database. This approach doesn’t
have the first technique’s weaknesses, but it has the (minor) drawback of making the
replica fetch binary log events it doesn’t need. There’s also a potential for someone to
mistakenly execute non-purge queries in the purge database, thus causing the replica
not to replay events you want it to.

Percona Toolkit’s pt-archiver tool supports both methods.

A third option is to use binlog_ignore_db to filter out replication events,
but as we stated earlier, we consider this too dangerous.

Using replicas for full-text searches

Many applications require a combination of transactions and full-text searches. How-
ever, at the time of writing only MyISAM tables offer built-in full-text search capabil-
ities, and MyISAM doesn’t support transactions. (There’s a laboratory preview of
InnoDB full-text search in MySQL 5.6, but it isn’t GA yet.) A common workaround is
to configure a replica for full-text searches by changing the storage engine for certain
tables to MyISAM on the replica. You can then add full-text indexes and perform full-
text search queries on the replica. This avoids potential replication problems with
transactional and nontransactional storage engines in the same query on the master,
and it relieves the master of the extra work of maintaining the full-text indexes.

Read-only replicas

Many organizations prefer replicas to be read-only, so unintended changes don’t break
replication. You can achieve this with the read_only configuration variable. It disables
most writes: the exceptions are the replica processes, users who have the SUPER privilege,
and temporary tables. This is perfect as long as you don’t give the SUPER privilege to
ordinary users, which you shouldn’t do anyway.

Replication Topologies | 479

Emulating multisource replication

MySQL does not currently support multisource replication (i.e., a replica with more
than one master). However, you can emulate this topology by changing a replica to
point at different masters in turn. For example, you can point the replica at master A
and let it run for a while, then point it at master B for a while, and then switch it back
to master A again. How well this will work depends on your data and how much work
the two masters will cause the single replica to do. If your masters are relatively lightly
loaded and their updates won’t conflict at all, it might work very well.

You’ll need to do a little work to keep track of the binary log coordinates for each
master. You also might want to ensure that the replica’s I/O thread doesn’t fetch more
data than you intend it to execute on each cycle; otherwise, you could increase the
network traffic and load on the master significantly by fetching and throwing away a
lot of data on each cycle.

You can also emulate multisource replication using master-master (or ring) replication
and the Blackhole storage engine with a replica, as depicted in Figure 10-13.

Figure 10-13. Emulating multisource replication with dual masters and the Blackhole storage engine

In this configuration, the two masters each contain their own data. They each also
contain the tables from the other master, but use the Blackhole storage engine to avoid
actually storing the data in those tables. A replica is attached to one of the co-masters—
it doesn’t matter which one. This replica does not use the Blackhole storage engine at
all, so it is effectively a replica of both masters.

In fact, it’s not really necessary to use a master-master topology to achieve this. You
can simply replicate from server1 to server2 to the replica. If server2 uses the Blackhole
storage engine for tables replicated from server1, it will not contain any data from
server1, as shown in Figure 10-14.

480 | Chapter 10: Replication

Either of these configurations can suffer from the usual problems, such as conflicting
updates and CREATE TABLE statements that explicitly specify a storage engine.

Another option is to use Continuent’s Tungsten Replicator, which we’ll discuss later
in this chapter.

Creating a log server

One of the things you can do with MySQL replication is create a “log server” with no
data, whose only purpose is to make it easy to replay and/or filter binary log events. As
you’ll see later in this chapter, this is very useful for restarting replication after crashes.
It’s also useful for point-in-time recovery, which we discuss in Chapter 15.

Imagine you have a set of binary logs or relay logs—perhaps from a backup, perhaps
from a server that crashed—and you want to replay the events in them. You could use
mysqlbinlog to extract the events, but it’s more convenient and efficient to just set up
a MySQL instance without any data and let it think the binary logs are its own. You
can use the MySQL Sandbox script available at http://mysqlsandbox.net to create the
log server if you’ll need it only temporarily. The log server does not need any data because
it won’t be executing the logs—it will only be serving the logs to other servers. (It does
need to have a replication user, however.)

Let’s take a look at how this technique works (we show some applications for it later).
Suppose the logs are called somelog-bin.000001, somelog-bin.000002, and so on. Place
these files into your log server’s binary log directory. We’ll assume it’s /var/log/mysql.
Then, before you start the log server, edit its my.cnf file as follows:

log_bin = /var/log/mysql/somelog-bin
log_bin_index = /var/log/mysql/somelog-bin.index

Figure 10-14. Another way to emulate multisource replication

Replication Topologies | 481

http://mysqlsandbox.net

The server doesn’t automatically discover log files, so you’ll also need to update the
server’s log index file. The following command will accomplish this on Unix-like
systems:14

/bin/ls −1 /var/log/mysql/somelog-bin.[0-9]* > /var/log/mysql/somelog-bin.index

Make sure the user account under which MySQL runs can read and write the log index
file. Now you can start your log server and verify that it sees the log files with SHOW
MASTER LOGS.

Why is a log server better than using mysqlbinlog for recovery? For several reasons:

• Replication is a means of applying binary logs that’s been tested by millions of users
and is known to work. The mysqlbinlog tool isn’t guaranteed to work in the same
way as replication and might not reproduce the changes from the binary log faith-
fully.

• It’s faster because it eliminates the need to extract statements from the log and pipe
them into mysql.

• You can see the progress easily.

• You can work with errors easily. For example, you can skip statements that fail to
replicate.

• You can filter replication events easily.

• Sometimes mysqlbinlog might not be able to read the binary log, because of changes
to the logging format.

Replication and Capacity Planning
Writes are usually the replication bottleneck, and it’s hard to scale writes with repli-
cation. You need to make sure you do the math right when you plan how much capacity
replicas will add to your system overall. It’s easy to make mistakes where replication is
concerned.

For example, imagine your workload is 20% writes and 80% reads. To make the math
easy, let’s grossly oversimplify and assume the following are true:

• Read and write queries involve an identical amount of work.

• All servers are exactly equal and have a capacity of exactly 1,000 queries per second.

• Replicas and masters have the same performance characteristics.

• You can move all read queries to the replicas.

If you currently have one server handling 1,000 queries per second, how many replicas
will you need to add so that you can handle twice your current load and move all read
queries to the replicas?

14. We use /bin/ls explicitly to avoid invoking common aliases that add terminal escape codes for coloring.

482 | Chapter 10: Replication

It might seem that you could add two replicas and split the 1,600 reads between them.
However, don’t forget that your write workload has also increased to 400 queries per
second, and this cannot be divided between the master and replicas. Each replica must
perform 400 writes per second. That means each replica is 40% busy with writes and
can serve only 600 reads per second. Thus, you’ll need not two but three replicas to
handle twice the traffic.

What if your traffic doubles again? There will be 800 writes per second, so the master
will still be able to keep up. But the replicas will each be 80% busy with writes too, so
you’ll need 16 replicas to handle the 3,200 reads per second. And if the traffic increases
just a little more, it will be too much for the master.

This is far from linear scalability: you need 17 times as many servers to handle 4 times
as many queries. This illustrates that you quickly reach a point of diminishing returns
when adding replicas to a single master. And this is even with our unrealistic assump-
tions, which ignore, for example, the fact that single-threaded statement-based repli-
cation usually causes replicas to have lower capacity than the master. A real replication
setup is likely to perform even worse than our theoretical one.

Why Replication Doesn’t Help Scale Writes
The fundamental problem with the poor server-to-capacity ratio we just discussed is
that you cannot distribute the writes equally among the machines, as you can with the
reads. Another way to say this is that replication scales reads, but it doesn’t scale writes.

You might wonder whether there’s a way to add write capacity with replication. The
answer is no—not even a little. Partitioning your data, which we cover in the next
chapter, is the only way you can scale writes.

Some readers might have thought about using a master-master topology (see “Master-
Master in Active-Active Mode” on page 469) and writing to both masters. This con-
figuration can handle slightly more writes as compared to a master-replicas topology,
because you can share the serialization penalty equally between the two servers. If you
do 50% of the writes on each server, only the 50% that execute via replication from the
other server must be serialized. In theory, that’s better than doing 100% of the writes
in parallel on one machine (the master) and 100% of the writes serially on the other
machine (the replica).

This might seem attractive. However, such a configuration still can’t handle as many
writes as a single server. A server whose write workload is 50% serialized is slower than
a single server that can do all its writes in parallel.

That’s why this tactic does not scale writes. It’s only a way to share the serialized-write
disadvantage over two servers, so the “weakest link in the chain” isn’t quite so weak.
It provides only a relatively small improvement over an active-passive setup, adding a
lot of risk for a small gain—and it generally won’t benefit you anyway, as we explain
in the next section.

Replication and Capacity Planning | 483

When Will Replicas Begin to Lag?
A common question about replicas is how to predict when they won’t be able to keep
up with the changes coming from the master. It can be hard to tell the difference be-
tween a replica that’s at 5% of its capacity and one that’s at 95%. However, it’s possible
to get at least a little advance warning of impending saturation and estimate replication
capacity.

The first thing you should do is watch for spikes of lag. If you have graphs of replication
lag, you should notice little bumps in the graphs as the replica begins to encounter short
periods where there’s more work and it can’t keep up. As the workload gets closer to
consuming the replica’s capacity, you’ll see these bumps get higher and wider. The
front side of the bump will generally have a consistent angle, but the back side, when
the replica is catching up after lagging behind, will become a gentler and gentler slope.
The presence of these bumps, and growth in them, is a warning sign that you’re ap-
proaching your limits.

To predict what’s going to happen at some point in the future, deliberately delay a
replica, and then see how fast it can catch up. The goal is to explicitly see how steep
the back side of that slope is. If you stop a replica for an hour, then start it and it catches
up in one hour, it is running at half of its capacity. That is, if you stop it at noon and
restart it at 1:00, and it’s caught up again at 2:00, it has applied all of the changes from
12:00 to 2:00 in an hour, so it went at double speed.

Finally, in Percona Server and MariaDB you can measure the replication utilization
directly. Enable the userstat server variable, and then you’ll be able to do the following:

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_STATISTICS
 -> WHERE USER='#mysql_system#'\G
*************************** 1. row ***************************
 USER: #mysql_system#
 TOTAL_CONNECTIONS: 1
CONCURRENT_CONNECTIONS: 2
 CONNECTED_TIME: 46188
 BUSY_TIME: 719
 ROWS_FETCHED: 0
 ROWS_UPDATED: 1882292
 SELECT_COMMANDS: 0
 UPDATE_COMMANDS: 580431
 OTHER_COMMANDS: 338857
 COMMIT_TRANSACTIONS: 1016571
 ROLLBACK_TRANSACTIONS: 0

You can compare the BUSY_TIME to one-half of the CONNECTED_TIME (because there are
two replication threads on the replica) to see how much of the time the replication
thread was actively processing statements.15 In our example, the replica is using around

15. If the replication threads are always running, you can just use the server’s uptime instead of half the
CONNECTED_TIME.

484 | Chapter 10: Replication

3% of its capacity. This doesn’t mean it won’t have occasional spikes of lag—if the
master executes a change that takes 10 minutes to complete, it’s likely that the replica
will lag by about the same amount of time while applying the change—but it’s a good
indication that the replica will be able to recover from any spikes it experiences.

Plan to Underutilize
Intentionally underutilizing your servers can be a smart and cost-effective way to build
a large application, especially when you use replication. Servers that have spare
capacity can tolerate surges better, have more power to handle slow queries and main-
tenance jobs (such as OPTIMIZE TABLE operations), and will be better able to keep up in
replication.

Trying to reduce the replication penalty a little by writing to both nodes in a master-
master topology is typically a false economy. You should usually load the master-master
pair less than 50% with reads, because if you add more load, there won’t be enough
capacity if one of the servers fails. If both servers can handle the load by themselves,
you probably won’t need to worry much about the single-threaded replication penalty.

Building in excess capacity is also one of the best ways to achieve high availability,
although there are other ways, such as running your application in “degraded” mode
when there’s a failure. Chapter 12 covers this in more detail.

Replication Administration and Maintenance
Setting up replication probably isn’t something you’ll do constantly, unless you have
many servers. But once it’s in place, monitoring and administering your replication
topology will be a regular job, no matter how many servers you have.

You should try to automate this work as much as possible. You might not need to write
your own tools for this purpose, though: in Chapter 16, we discuss several productivity
tools for MySQL, many of which have built-in replication monitoring capabilities or
plugins.

Monitoring Replication
Replication increases the complexity of MySQL monitoring. Although replication ac-
tually happens on both the master and the replica, most of the work is done on the
replica, and that is where the most common problems occur. Are all the replicas work-
ing? Has any replica had errors? How far behind is the slowest replica? MySQL provides
most of the information you need to answer these questions, but automating the mon-
itoring process and making replication robust is left up to you.

Replication Administration and Maintenance | 485

On the master, you can use the SHOW MASTER STATUS command to see the master’s current
binary log position and configuration (see the section “Configuring the Master and
Replica” on page 452). You can also ask the master which binary logs exist on disk:

mysql> SHOW MASTER LOGS;
+------------------+-----------+
| Log_name | File_size |
+------------------+-----------+
mysql-bin.000220	425605
mysql-bin.000221	1134128
mysql-bin.000222	13653
mysql-bin.000223	13634
+------------------+-----------+

This information is useful in determining what parameters to give the PURGE MASTER
LOGS command. You can also view replication events in the binary log with the SHOW
BINLOG EVENTS command. For example, after running the previous command, we cre-
ated a table on an otherwise unused server. Because we knew this was the only state-
ment that changed any data, we knew the statement’s offset in the binary log was 13634,
so we were able to view it as follows:

mysql> SHOW BINLOG EVENTS IN 'mysql-bin.000223' FROM 13634\G
*************************** 1. row ***************************
 Log_name: mysql-bin.000223
 Pos: 13634
 Event_type: Query
 Server_id: 1
End_log_pos: 13723
 Info: use `test`; CREATE TABLE test.t(a int)

Measuring Replication Lag
One of the most common things you’ll need to monitor is how far behind the master
a replica is running. Although the Seconds_behind_master column in SHOW SLAVE STA
TUS theoretically shows the replica’s lag, in fact it’s not always accurate, for a variety of
reasons:

• The replica calculates Seconds_behind_master by comparing the server’s current
timestamp to the timestamp recorded in the binary log event, so the replica can’t
even report its lag unless it is processing a query.

• The replica will usually report NULL if the replication processes aren’t running.

• Some errors (for example, mismatched max_allowed_packet settings between the
master and replica, or an unstable network) can break replication and/or stop the
replication threads, but Seconds_behind_master will report 0 rather than indicating
an error.

• The replica sometimes can’t calculate the lag even if the replication processes are
running. If this happens, the replica might report either 0 or NULL.

486 | Chapter 10: Replication

• A very long transaction can cause the reported lag to fluctuate. For example, if you
have a transaction that updates data, stays open for an hour, and then commits,
the update will go into the binary log an hour after it actually happened. When the
replica processes the statement, it will temporarily report that it is an hour behind
the master, and then it will jump back to zero seconds behind.

• If a distribution master is falling behind and has replicas of its own that are caught
up with it, the replicas will report that they are zero seconds behind, even if there
is lag relative to the ultimate master.

The solution to these problems is to ignore Seconds_behind_master and monitor replica
lag with something you can observe and measure directly. The best solution is a heart-
beat record, which is a timestamp that you update once per second on the master. To
calculate the lag, you can simply subtract the heartbeat from the current timestamp on
the replica. This method is immune to all the problems we just mentioned, and it has
the added benefit of creating a handy timestamp that shows to what point in time the
replica’s data is current. The pt-heartbeat script, included in Percona Toolkit, is the
most popular implementation of a replication heartbeat.

A heartbeat has other benefits, too. The replication heartbeat records in the binary log
are useful for many purposes, such as disaster recovery in otherwise hard-to-solve
scenarios.

None of the lag metrics we just mentioned gives a sense of how long it will take for a
replica to actually catch up to the master. This depends upon many factors, such as
how powerful the replica is and how many write queries the master continues to pro-
cess. See the section “When Will Replicas Begin to Lag?” on page 484 for more on that
topic.

Determining Whether Replicas Are Consistent with the Master
In a perfect world, a replica would always be an exact copy of its master. But in the real
world, errors in replication can cause the replica’s data to “drift” out of sync with the
master’s. Even if there are apparently no errors, replicas can still get out of sync because
of MySQL features that don’t replicate correctly, bugs in MySQL, network corruption,
crashes, ungraceful shutdowns, or other failures.16

Our experience is that this is the rule, not the exception, which means checking your
replicas for consistency with their masters should probably be a routine task. This is
especially important if you use replication for backups, because you don’t want to take
backups from a corrupted replica.

MySQL has no built-in method of determining whether one server has the same data
as another server. It does provide some building blocks for checksumming tables and

16. If you’re using a nontransactional storage engine, shutting down the server without first running STOP
SLAVE is ungraceful.

Replication Administration and Maintenance | 487

data, such as CHECKSUM TABLE. However, it’s nontrivial to compare a replica to its master
while replication is working.

Percona Toolkit has a tool called pt-table-checksum that solves this and several other
problems. The tool’s main feature is that it can verify that a replica’s data is in sync
with its master’s data. It works by running INSERT ... SELECT queries on the master.

These queries checksum the data and insert the results into a table. The statements
flow through replication and execute again on the replica. You can then compare the
results on the master to the results on the replica and see whether the data differs.
Because this process works through replication, it gives consistent results without the
need to lock tables on both servers simultaneously.

A typical way to use the tool is to run it on the master, with parameters similar to the
following:

$ pt-table-checksum --replicate=test.checksum <master_host>

This command checksums all tables and inserts the results into the test.checksum table.
After the queries have executed on the replicas, a simple query can check each replica
for differences from the master. pt-table-checksum can discover the server’s replicas,
run the query on each replica, and output the results automatically. At the time of this
writing, pt-table-checksum is the only tool that can reliably compare a replica’s data to
its master’s.

Resyncing a Replica from the Master
You’ll probably have to deal with an out-of-sync replica more than once in your career.
Perhaps you used the checksum technique and found differences; perhaps you know
that the replica skipped a query or that someone changed the data on the replica.

The traditional advice for fixing an out-of-sync replica is to stop it and reclone it from
the master. If an inconsistent replica is a critical problem, you should probably stop it
and remove it from production as soon as you find it. You can then reclone the replica
or restore it from a backup.

The drawback to this approach is the inconvenience factor, especially if you have a lot
of data. If you can find out which data is different, you can probably do it more effi-
ciently than by recloning the entire server. And if the inconsistency you discovered isn’t
critical, you might be able to leave the replica online and resync only the affected data.

The simplest fix is to dump and reload only the affected data with mysqldump. This
can work very well if your data isn’t changing while you do it. You can simply lock the
table on the master, dump the table, wait for the replica to catch up to the master, and
then import the table on the replica. (You need to wait for the replica to catch up so
you don’t introduce more inconsistencies in other tables, such as those that might be
updated in joins against the out-of-sync table.)

488 | Chapter 10: Replication

Although this works acceptably for many scenarios, it’s often impossible to do on a
busy server. It also has the disadvantage of changing the replica’s data outside of rep-
lication. Changing a replica’s data through replication (by making changes on the mas-
ter) is usually the safest technique, because it avoids nasty race conditions and other
surprises. If the table is very large or network bandwidth is limited, dumping and re-
loading is also prohibitively expensive. What if only every thousandth row in a million-
row table is different? Dumping and reloading the whole table is wasteful in this case.

pt-table-sync is another tool from Percona Toolkit that solves some of these problems.
It can find and resolve differences between tables efficiently. It can also operate through
replication, resynchronizing the replica by executing queries on the master, so there
are no race conditions. It integrates with the checksum table created by pt-table-check-
sum, so it can operate only on chunks of tables that are known to differ. It doesn’t work
in all scenarios, though: it requires that replication is running in order to sync a master
and replica correctly, so it won’t work when there’s a replication error. pt-table-sync is
designed to be efficient, but it still might be impractical for extremely large data sizes.
Comparing a terabyte of data on the master and the replica inevitably causes extra work
for both servers. Still, for those cases where it works, it can save you a great deal of time
and effort.

Changing Masters
Sooner or later, you’ll need to point a replica at a new master. Maybe you’re rotating
servers for an upgrade, maybe there was a failure and you need to promote a replica to
be the master, or maybe you’re just reallocating capacity. Regardless of the reason, you
have to inform the replica about its new master.

When the process is planned, it’s easy (or at least easier than it is in a crisis). You simply
need to issue the CHANGE MASTER TO command on the replica, using the appropriate
values. Most of the values are optional; you can specify just the ones you’re changing.
The replica will discard its current configuration and relay logs and begin replicating
from the new master. It will also update the master.info file with the new parameters,
so the change will persist across a replica restart.

The hardest part of this process is figuring out the desired position on the new master,
so the replica begins at the same logical position at which it stopped on the old master.

Promoting a replica to a master is a little harder. There are two basic scenarios for
replacing a master with one of its replicas. The first is when it’s a planned promotion;
the second is when it’s unplanned.

Replication Administration and Maintenance | 489

Planned promotions

Promoting a replica to a master is conceptually simple. Briefly, here are the steps
involved:

1. Stop writes to the old master.

2. Optionally let its replicas catch up in replication (this makes the subsequent steps
simpler).

3. Configure a replica to be the new master.

4. Point replicas and write traffic to the new master, then enable writes on it.

The devil is in the details, however. Several scenarios are possible, depending on your
replication topology. For example, the steps are slightly different in a master-master
topology than in a master-replica setup.

In more depth, here are the steps you’ll probably need to take for most setups:

1. Stop all writes on the current master. If possible, you might even want to force all
client programs (not replication connections) to quit. It helps if you’ve built your
client programs with a “do not run” flag you can set. If you use virtual IP addresses,
you can simply shut off the virtual IP and then kill all client connections to close
their open transactions.

2. Optionally stop all write activity on the master with FLUSH TABLES WITH READ
LOCK. You can also set the master to be read-only with the read_only option. From
this point on, you should forbid any writes to the soon-to-be-replaced master,
because once it’s no longer a master, writing to it means losing data! Note, however,
that setting read_only doesn’t prevent existing transactions from committing. For
a stronger guarantee, kill all open transactions; this will really stop all writes.

3. Choose one of the replicas to be the new master, and ensure it is completely caught
up in replication (i.e., let it finish executing all the relay logs it has fetched from
the old master).

4. Optionally verify that the new master contains the same data as the old master.

5. Execute STOP SLAVE on the new master.

6. Execute CHANGE MASTER TO MASTER_HOST='' followed by RESET SLAVE on the new
master, to make it disconnect from the old master and discard the connection
information in its master.info file. (This will not work correctly if connection in-
formation is specified in my.cnf, which is one reason we recommend you don’t put
it there.)

7. Note the new master’s binary log coordinates with SHOW MASTER STATUS.

8. Make sure all other replicas are caught up.

9. Shut down the old master.

10. In MySQL 5.1 and newer, activate events on the new master if necessary.

11. Let clients connect to the new master.

490 | Chapter 10: Replication

12. Issue a CHANGE MASTER TO command on each replica, pointing it to the new master.
Use the binary log coordinates you gathered from SHOW MASTER STATUS.

When you promote a replica to a master, be sure to remove from it any
replica-specific databases, tables, and privileges. You also need to
change any replica-specific configuration parameters, such as a relaxed
innodb_flush_log_at_trx_commit option. Likewise, if you demote a
master to a replica, be sure to reconfigure it as needed.

If you configure your masters and replicas identically, you won’t need
to change anything.

Unplanned promotions

If the master crashes and you have to promote a replica to replace it, the process might
not be as easy. If there’s only one replica, you just use the replica. But if there’s more
than one, you’ll have to do a few extra steps to promote a replica to be the new master.

There’s also the added problem of potentially lost replication events. It’s possible that
some updates that have happened on the master will not yet have been replicated to
any of its replicas. It’s even possible that a statement was executed and then rolled back
on the master, but not rolled back on the replica—so the replica could actually be
ahead of the master’s logical replication position.17 If you can recover the master’s data
at some point, you might be able to retrieve the lost statements and apply them
manually.

In all of the following steps, be sure to use the Master_Log_File and Read_Master
_Log_Pos values in your calculations. Here is the procedure to promote a replica in a
master-and-replicas topology:

1. Determine which replica has the most up-to-date data. Check the output of SHOW
SLAVE STATUS on each replica and choose the one whose Master_Log_File/Read_
Master_Log_Pos coordinates are newest.

2. Let all replicas finish executing the relay logs they fetched from the old master
before it crashed. If you change a replica’s master before it’s done executing the
relay log, it will throw away the remaining log events and you won’t know where
it stopped.

3. Perform steps 5–7 from the list in the preceding section.

4. Compare every replica’s Master_Log_File/Read_Master_Log_Pos coordinates to
those of the new master.

5. Perform steps 10–12 from the list in the preceding section.

17. This really is possible, even though MySQL doesn’t log any events until the transaction commits. See
“Mixing Transactional and Nontransactional Tables” on page 498 for the details. Another scenario
where this can happen is when the master crashes and recovers, but it didn’t have innodb
_flush_log_at_trx_commit set to 1, so it loses some changes.

Replication Administration and Maintenance | 491

We’re assuming you have log_bin and log_slave_updates enabled on all your replicas,
as we advised you to do in the beginning of this chapter. Enabling this logging lets you
recover all replicas to a consistent point in time, which you can’t reliably do otherwise.

Locating the desired log positions

If any replica isn’t at the same position as the new master, you’ll have to find the position
in the new master’s binary logs corresponding to the last event that replica executed,
and use it for CHANGE MASTER TO. You can use the mysqlbinlog tool to examine the last
query the replica executed and find that same query in the new master’s binary log. A
little math can often help, too.

To illustrate this, let’s assume that log events have increasing ID numbers and that the
most up-to-date replica—the new master—had just retrieved event 100 when the old
master crashed. Now let’s assume that there are two more replicas, replica2 and rep
lica3; replica2 had retrieved event 99, and replica3 had retrieved event 98. If you
point both replicas at the new master’s current binary log position, they will begin
replicating event 101, so they’ll be out of sync. However, as long as the new master’s
binary log was enabled with log_slave_updates, you can find events 99 and 100 in the
new master’s binary log, so you can bring the replicas back to a consistent state.

Because of server restarts, different configurations, log rotations, or FLUSH LOGS com-
mands, the same events can exist at different byte offsets in different servers. Finding
the events can be slow and tedious, but it’s usually not hard. Just examine the last event
executed on each replica by running mysqlbinlog on the replica’s binary log or relay
log. Then find the same query in the new master’s binary log, also with mysqlbinlog; it
will print the byte offset of the query, and you can use this offset in the CHANGE MASTER
TO query.18

You can make the process faster by subtracting the byte offsets at which the new master
and the replica stopped, which tells you the difference in their byte positions. If you
then subtract this value from the new master’s current binary log position, chances are
the desired query will be at that position. You just need to verify that it is, and you’ve
found the position at which you need to start the replica.

Let’s look at a concrete example. Suppose server1 is the master of server2 and
server3, and it crashes. According to Master_Log_File/Read_Master_Log_Pos in SHOW
SLAVE STATUS, server2 has managed to replicate all the events that were in server1’s
binary log, but server3 isn’t as up-to-date. Figure 10-15 illustrates this scenario (the
log events and byte offsets are for demonstration purposes only).

As Figure 10-15 illustrates, we can be sure that server2 has replicated all the events in
the master’s binary log because its Master_Log_File and Read_Master_Log_Pos match

18. As mentioned earlier, heartbeat records from pt-heartbeat can be a great help in figuring out approximately
where in a binary log you should be looking for your event.

492 | Chapter 10: Replication

the last positions on server1. Therefore, we can promote server2 to be the new master
and make server3 a replica of it.

But what parameters should we use in the CHANGE MASTER TO command on server3?
This is where we need to do a little math and investigation. server3 stopped at offset
1493, which is 89 bytes behind offset 1582, the last command server2 executed.
server2 is currently writing to position 8167 in its binary log. 8167 – 89 = 8078, so in
theory we need to point server3 at that offset in server2’s logs. It’s a good idea to
investigate the log events around this position and verify that server2 really has the
right events at that offset in its logs, though. It might have something else there because
of a data update that happened only on server2, for example.

Assuming that the events are the same upon inspection, the following command will
switch server3 to be a replica of server2:

server2> CHANGE MASTER TO MASTER_HOST="server2", MASTER_LOG_FILE="mysql-bin.000009",
 MASTER_LOG_POS=8078;

What if server1 had actually finished executing and logging one more event, beyond
offset 1582, when it crashed? Because server2 had read and executed only up to offset
1582, you might have lost one event forever. However, if the old master’s disk isn’t
damaged, you can still recover the missing event from its binary log with mysqlbinlog
or with a log server.

Figure 10-15. When server1 crashed, server2 was caught up, but server3 was behind in replication

Replication Administration and Maintenance | 493

If you need to recover missing events from the old master, we recommend that you do
so after you promote the new master, but before you let clients connect to it. This way,
you won’t have to execute the missing events on every replica; replication will take care
of that for you. If the failed master is totally unavailable, however, you might have to
wait and do this work later.

A variation on this procedure is to use a reliable way to store the master’s binary log
files, such as a SAN or a distributed replicated block device (DRBD). Even if the master
has a complete failure, you’ll still have its binary log files. You can set up a log server,
point the replicas to it, and then let them all catch up to the point at which the master
failed. This makes it trivial to promote one of the replicas to be a new master—it’s
essentially the same process we showed for a planned promotion. We discuss these
storage options further in the next chapter.

When you promote a replica to master, don’t change its server ID to
match the old master’s. If you do, you won’t be able to use a log server
to replay events from the old master. This is one of many reasons it’s a
good idea to treat server IDs as fixed.

Switching Roles in a Master-Master Configuration
One of the advantages of master-master replication is that you can switch the active
and passive roles easily, because of the symmetrical configuration. In this section, we
show you how to accomplish the switch.

When switching the roles in a master-master configuration, the most important thing
is to ensure that only one of the co-masters is written to at any time. If writes from one
master are interleaved with writes from the other, the writes can conflict. In other
words, the passive server must not receive any binary log events from the active server
after the roles are switched. You can guarantee this doesn’t happen by ensuring that
the passive server’s replication SQL thread is caught up to the active server before you
make it writable.

The following steps switch the roles without danger of conflicting updates:

1. Stop all writes on the active server.

2. Execute SET GLOBAL read_only = 1 on the active server, and set the read_only
option in its configuration file for safety in case of a restart. Remember, this won’t
stop users with the SUPER privilege from making changes. If you want to prevent
changes from all users, use FLUSH TABLES WITH READ LOCK. If you don’t do this, you
must kill all client connections to make sure there are no long-running statements
or uncommitted transactions.

3. Execute SHOW MASTER STATUS on the active server and note the binary log coordi-
nates.

494 | Chapter 10: Replication

4. Execute SELECT MASTER_POS_WAIT() on the passive server with the active server’s
binary log coordinates. This command will block until the replication processes
catch up to the active server.

5. Execute SET GLOBAL read_only = 0 on the passive server, thus making it the active
server.

6. Reconfigure your applications to write to the newly active server.

Depending on your application’s configuration, you might need to do other tasks as
well, including changing the IP addresses on the two servers. We discuss this in the
following chapters.

Replication Problems and Solutions
Breaking MySQL’s replication isn’t hard. The simple implementation that makes it easy
to set up also means there are many ways to stop, confuse, and otherwise disrupt it.
This section shows common problems, how they manifest themselves, and how you
can solve or even prevent them.

Errors Caused by Data Corruption or Loss
For a variety of reasons, MySQL replication is not very resilient to crashes, power out-
ages, and corruption caused by disk, memory, or network errors. You’ll almost certainly
have to restart replication at some point due to one of these problems.

Most of the problems you’ll have with replication after an unexpected shutdown stem
from one of the servers not flushing something to disk. Here are the issues you might
encounter in the event of an unexpected shutdown:

Unexpected master shutdown
If the master isn’t configured with sync_binlog, it might not have flushed its last
several binary log events to disk before crashing. The replication I/O thread may,
therefore, have been in the middle of reading from an event that never made it to
disk. When the master restarts, the replica will reconnect and try to read that event
again, but the master will respond by telling it that there’s no such binlog offset.
The binlog dump process is typically almost instantaneous, so this is not
uncommon.

The solution to this problem is to instruct the replica to begin reading from the
beginning of the next binary log. However, some log events will have been lost
permanently, so you will need to use Percona Toolkit’s pt-table-checksum tool to
check the server for inconsistencies so you can fix them. This loss of data could
have been prevented by configuring the master with sync_binlog.

Even if you’ve configured sync_binlog, MyISAM data can still get corrupted when
there’s a crash, and InnoDB transactions can be lost (but data won’t be corrupted)
if innodb_flush_logs_at_trx_commit is not set to 1.

Replication Problems and Solutions | 495

Unexpected replica shutdown
When the replica restarts after an unplanned shutdown, it reads its master.info file
to determine where it stopped replicating. Unfortunately, this file is not synchron-
ized to disk, so the information it contains is likely to be wrong. The replica will
probably try to reexecute a few binary log events, which could cause some unique
index violations. Unless you can determine where the replica really stopped, which
is unlikely, you’ll have no choice but to skip the errors that result. The pt-slave-
restart tool, part of Percona Toolkit, can help you with this.

If you use all InnoDB tables, you can look at the MySQL error log after restarting
the replica. The InnoDB recovery process prints the binary log coordinates up
to the point where it recovered, and you can use them to determine where to point
the replica on the master. Percona Server offers a feature to automatically extract
this information during the recovery process and update the master.info file for
you, essentially making the replication coordinates transactional on the replica.
MySQL 5.5 also offers options to control how the master.info and other files are
synced to disk, helping reduce these problems.

In addition to data losses resulting from MySQL being shut down uncleanly, it’s not
uncommon for binary logs or relay logs to be corrupted on disk. The following are some
of the more common scenarios:

Binary logs corrupted on the master
If the binary log is corrupted on the master, you’ll have no choice but to try to skip
the corrupted portion. You can run FLUSH LOGS on the master so it starts a new log
file and point the replica at the beginning of the new log, or you can try to find the
end of the bad region. Sometimes you can use SET GLOBAL SQL_SLAVE_SKIP_COUNTER
= 1 to skip a single corrupt event. If there is more than one corrupt event, just repeat
the process until they’ve all been skipped. If there’s a lot of corruption, though,
you might not be able to do that; corrupt event headers can prevent the server from
being able to find the next event. In that case you might have to do some manual
work to find the next good event.

Relay logs corrupted on the replica
If the master’s binary logs are intact, you can use CHANGE MASTER TO to discard and
refetch the corrupt relay logs. Just point the replica at the same position from which
it’s currently replicating (Relay_Master_Log_File/Exec_Master_Log_Pos). This will
cause it to throw away any relay logs on disk. MySQL 5.5 has some improvements
in this regard: it can refetch relay logs automatically after a crash.

Binary log out of sync with the InnoDB transaction log
If the master crashes, InnoDB might record a transaction as committed even if it
didn’t get written to the binary log on disk. There’s no way to recover the missing
transaction, unless it’s in a replica’s relay log. You can prevent this with the
sync_binlog parameter in MySQL 5.0, or the sync_binlog and safe_binlog param-
eters in MySQL 4.1.

496 | Chapter 10: Replication

When a binary log is corrupt, how much data you can recover depends on the type of
corruption. There are several common types:

Bytes changed, but the event is still valid SQL
Unfortunately, MySQL cannot even detect this type of corruption. This is why it
can be a good idea to routinely check that your replicas have the right data. This
might be fixed in a future version of MySQL.

Bytes changed and the event is invalid SQL
You might be able to extract the event with mysqlbinlog and see garbled data, such
as the following:

UPDATE tbl SET col?????????????????

Try to find the beginning of the next event, which you can do by adding the offset
and length, and print it. You might be able to skip just this event.

Bytes omitted and/or the event’s length is wrong
In this case, mysqlbinlog will sometimes exit with an error or crash because it can’t
read the event and can’t find the beginning of the next event.

Several events corrupted or were overwritten, or offsets have shifted and the next event
starts at the wrong offset

Again, mysqlbinlog will not be much use.

When the corruption is bad enough that mysqlbinlog can’t read the log events, you’ll
have to resort to some hex editing or other tedious techniques to find the boundaries
between log events. This usually isn’t hard to do, because recognizable markers separate
the events.

Here’s an example. First, let’s look at log event offsets for a sample log, as reported by
mysqlbinlog:

$ mysqlbinlog mysql-bin.000113 | egrep '^# at '
at 4
at 98
at 185
at 277
at 369
at 447

A simple way to find offsets in the log is to compare the offsets to the output of the
following strings command:

$ strings -n 2 -t d mysql-bin.000113
 1 binpC'G
 25 5.0.38-Ubuntu_0ubuntu1.1-log
 99 C'G
 146 std
 156 test
 161 create table test(a int)
 186 C'G
 233 std
 243 test

Replication Problems and Solutions | 497

 248 insert into test(a) values(1)
 278 C'G
 325 std
 335 test
 340 insert into test(a) values(2)
 370 C'G
 417 std
 427 test
 432 drop table test
 448 D'G
 474 mysql-bin.000114

There’s a pretty recognizable pattern that should allow you to locate the beginnings of
events. Notice that the strings that end with ’G are located one byte after the beginning
of the log event. They are part of the fixed-length log event header.

The exact value will vary from server to server, so your results will vary depending on
the server whose log you’re examining. With a little sleuthing, though, you should be
able to find the pattern in your binary log and determine the next intact log event’s
offset. You can then try to skip past the bad event(s) with the --start-position argument
to mysqlbinlog, or use the MASTER_LOG_POS parameter to CHANGE MASTER TO.

Using Nontransactional Tables
If all goes well, statement-based replication usually works fine with nontransactional
tables. However, if there’s an error in an update to a nontransactional table, such as
the statement being killed before it is complete, the master and replica will end up with
different data.

For example, suppose you’re updating a MyISAM table with 100 rows. If the statement
updates 50 of the rows and then someone kills it, what happens? Half of the rows will
have been changed, but not the other half. Replication is bound to get out of sync as a
result, because the statement will replay on the replica and change all 100 rows.
(MySQL will then notice that the statement caused an error on the master but not the
replica, and replication will stop with an error.)

If you’re using MyISAM tables, be sure to run STOP SLAVE before stopping the MySQL
server, or the shutdown will kill any running queries (including any incomplete update
statements). Transactional storage engines don’t have this problem. If you’re using
transactional tables, the failed update will be rolled back on the master and not logged
to the binary log.

Mixing Transactional and Nontransactional Tables
When you use a transactional storage engine, MySQL doesn’t log the statements you
execute to the binary log until the transactions commit. Thus, if a transaction is rolled
back, MySQL won’t log the statements, so they won’t get replayed on the replica.

498 | Chapter 10: Replication

However, if you mix transactional and nontransactional tables and there’s a rollback,
MySQL will be able to roll back the changes to the transactional tables, but the non-
transactional ones will be changed permanently. As long as there are no errors, such as
an update being killed partway through execution, this is not a problem: instead of just
not logging the statements, MySQL logs the statements and then logs a ROLLBACK state-
ment to the binary log. The result is that the same statements execute on the replica,
and all is well. It’s a little less efficient, because the replica must do some work and then
throw it away, but the replica will theoretically still be in sync with the master.

So far, so good. The problem is when the replica has a deadlock that didn’t happen on
the master. The tables that use a transactional storage engine will roll back on the
replica, but the replica won’t be able to roll back the nontransactional tables. As a result,
the replica’s data will be different from the master’s.

The only way to prevent this problem is to avoid mixing transactional and nontran-
sactional tables. If you do encounter the problem, the only way to fix it is to skip the
error on the replica and resync the involved tables.

Row-based replication does not suffer from this problem. Row-based replication logs
changes to rows, not SQL statements. If a statement changes some rows in a MyISAM
table and an InnoDB table and then deadlocks on the master and rolls back the InnoDB
table, the changes to the MyISAM table will still be logged to the binary log and replayed
on the replica.

Nondeterministic Statements
Any statement that changes data in a nondeterministic way can cause a replica’s data
to become different from its master’s when using statement-based replication. For ex-
ample, an UPDATE with a LIMIT relies on the order in which the statement finds rows in
the table. Unless the order is guaranteed to be the same on the master and the replica—
for example, if the rows are ordered by primary key—the statement might change dif-
ferent rows on the two servers. Such problems can be subtle and difficult to notice, so
some people make a policy of never using LIMIT with any statement that changes data.
Another surprising source of nondeterministic behavior is a REPLACE or INSERT IGNORE
on a table with more than one unique index—the server might choose a different “win-
ner” on the master than on the replica.

Watch out for statements that involve INFORMATION_SCHEMA tables, too. These can easily
differ between the master and the replica, so the results might vary as well. Finally, be
aware that most server variables, such as @@server_id and @@hostname, will not replicate
correctly before MySQL 5.1.

Row-based replication does not have these limitations.

Replication Problems and Solutions | 499

Different Storage Engines on the Master and Replica
It’s often handy to have different storage engines on a replica, as we’ve mentioned
throughout this chapter. However, in some circumstances, statement-based replication
might produce different results on a replica with different storage engines than the
master. For example, nondeterministic statements (such as the ones mentioned in the
previous section) are more likely to cause problems if the storage engines on the master
and the replica differ.

If you find that your replica’s data is falling out of sync with the master in specific tables,
you should examine the storage engines used on both servers, as well as the queries
that update those tables.

Data Changes on the Replica
Statement-based replication relies upon the replica having the same data as the master,
so you should not make or allow any changes on the replica (using the read_only con-
figuration variable accomplishes this nicely). Consider the following statement:

mysql> INSERT INTO table1 SELECT * FROM table2;

If table2 contains different data on the replica, table1 will end up with different data,
too. In other words, data differences tend to propagate from table to table. This happens
with all types of queries, not just INSERT ... SELECT queries. There are two possible
outcomes: you’ll get an error such as a duplicate index violation on the replica, or you
won’t get any error at all. Getting an error is a blessing, because at least it alerts you
that your data isn’t the same on the replica. Invisibly different data can silently wreak
all kinds of havoc.

The only solution to this problem is to resync the data from the master.

Nonunique Server IDs
This is one of the more elusive problems you might encounter with replication. If you
accidentally configure two replicas with the same server ID, they might seem to work
just fine if you’re not watching closely. But if you watch their error logs, or watch the
master with innotop, you’ll notice something very odd.

On the master, you’ll see only one of the two replicas connected at any time. (Usually,
all replicas are connected and replicating all the time.) On the replica, you’ll see frequent
disconnect and reconnect error messages in the error log, but no mention of a miscon-
figured server ID.

Depending on the MySQL version, the replicas might replicate correctly but slowly, or
they might not actually replicate correctly—any given replica might miss binary log
events, or even repeat them, causing duplicate key errors (or silent data corruption).
You can also cause problems on the master because of the increased load from the

500 | Chapter 10: Replication

replicas fighting amongst themselves. And if replicas are fighting each other badly
enough, the error logs can grow enormous in a very short time.

The only solution to this problem is to be careful when setting up your replicas. You
might find it helpful to create a master list of replica-to–server ID mappings so that you
don’t lose track of which ID belongs to each replica.19 If your replicas live entirely within
one network subnet, you can choose unique IDs by using the last octet of each ma-
chine’s IP address.

Undefined Server IDs
If you don’t define the server ID in the my.cnf file, MySQL will appear to set up repli-
cation with CHANGE MASTER TO but will not let you start the replica:

mysql> START SLAVE;
ERROR 1200 (HY000): The server is not configured as slave; fix in config file or with
CHANGE MASTER TO

This error is especially confusing if you’ve just used CHANGE MASTER TO and verified your
settings with SHOW SLAVE STATUS. You might get a value from SELECT @@server_id, but
it’s just a default. You have to set the value explicitly.

Dependencies on Nonreplicated Data
If you have databases or tables on the master that don’t exist on the replica, or vice
versa, it’s quite easy to accidentally break replication. Suppose there’s a scratch data-
base on the master that doesn’t exist on the replica. If any data updates on the master
refer to a table in this database, replication will break when the replica tries to replay
the updates. Similarly, if you create a table on the master and it already exists on the
replica, replication will break.

There’s no way around this problem. The only way to prevent it is to avoid creating
tables on the master that don’t exist on the replica.

How does such a table get created? There are many possible ways, and some are harder
to prevent than others. For example, suppose you originally created a scratch database
on the replica that didn’t exist on the master, and then you switched the master and
replica for some reason. When you did this, you might have forgotten to remove the
scratch database and its privileges. Now someone might connect to the new master
and run a query in that database, or a periodic job might discover the tables and run
OPTIMIZE TABLE on each of them.

This is one of the things to keep in mind when promoting a replica to master, or when
deciding how to configure replicas. Anything that makes replicas different from mas-
ters, or vice versa, is a potential future problem.

19. Perhaps you’d like to store it in a database table? We’re only half joking... you can add a unique index
on the ID column.

Replication Problems and Solutions | 501

Missing Temporary Tables
Temporary tables are handy for some uses, but unfortunately they’re incompatible with
statement-based replication. If a replica crashes, or if you shut it down, any temporary
tables the replica thread was using disappear. When you restart the replica, any further
statements that refer to the missing temporary tables will fail.

There’s no safe way to use temporary tables on the master with statement-based rep-
lication. Many people love temporary tables dearly, so it can be hard to convince them
of this, but it’s true.20 No matter how briefly they exist, temporary tables make it dif-
ficult to stop and start replicas and to recover from crashes. This is true even if you use
them only within a single transaction. (It’s slightly less problematic to use temporary
tables on a replica, where they can be convenient, but if the replica is itself a master,
the problem still exists.)

If replication stops because the replica can’t find a temporary table after a restart, there
are really only a couple of things to do: you can skip the errors that occur, or you can
manually create a table that has the same name and structure as the now-vanished
temporary table. Either way, your data will likely become different on the replica if any
write queries refer to the temporary table.

It’s not as hard as it seems to eliminate temporary tables. The two most useful properties
of temporary tables are as follows:

• They’re visible only to the connection that created them, so they don’t conflict with
other connections’ temporary tables of the same names.

• They go away when the connection closes, so you don’t have to remove them
explicitly.

You can emulate these properties easily by reserving a database exclusively for
pseudotemporary tables, where you’ll create permanent tables instead. You just have
to choose unique names for them. Fortunately, that’s pretty easy to do: simply append
the connection ID to the table name. For example, where you used to execute CREATE
TEMPORARY TABLE top_users(...), now you can execute CREATE TABLE temp
.top_users_1234(...), where 1234 is the value returned by CONNECTION_ID(). After your
application is done with the pseudotemporary table, you can either drop it or let a
cleanup process remove it instead. Having the connection ID in the table name makes
it easy to determine which tables are not in use anymore—you can get a list of active
connections from SHOW PROCESSLIST and compare it to the connection IDs in the table
names.21

20. We’ve had people stubbornly try all sorts of ways to work around this, but there is no way to make
temporary tables safe for statement-based replication. Period. No matter what you’re thinking of, we’ve
proven it won’t work.

21. pt-find—yet another tool in the Percona Toolkit—can remove pseudotemporary tables easily with the
--connection-id and --server-id options.

502 | Chapter 10: Replication

Using real tables instead of temporary tables has other benefits, too. For example, it
makes it easier to debug your applications, because you can see the data the applications
are manipulating from another connection. If you used a temporary table, you wouldn’t
be able to do that as easily.

Real tables do have some overhead temporary tables don’t, however: it’s slower to
create them because the .frm files associated with these tables must be synced to disk.
You can disable the sync_frm option to speed this up, but it’s more dangerous.

If you do use temporary tables, you should ensure that the Slave_open_temp_tables
status variable is 0 before shutting down a replica. If it’s not 0, you’re likely to have
problems restarting the replica. The proper procedure is to run STOP SLAVE, examine
the variable, and only then shut down the replica. If you examine the variable before
stopping the replica processes, you’re risking a race condition.

Not Replicating All Updates
If you misuse SET SQL_LOG_BIN=0 or don’t understand the replication filtering rules,
your replica might not execute some updates that have taken place on the master.
Sometimes you want this for archiving purposes, but it’s usually accidental and has bad
consequences.

For example, suppose you have a replicate_do_db rule to replicate only the sakila
database to one of your replicas. If you execute the following commands on the master,
the replica’s data will become different from the data on the master:

mysql> USE test;
mysql> UPDATE sakila.actor ...

Other types of statements can even cause replication to fail with an error because of
nonreplicated dependencies.

Lock Contention Caused by InnoDB Locking Selects
InnoDB’s SELECT statements are normally nonlocking, but in certain cases they do ac-
quire locks. In particular, INSERT ... SELECT locks all the rows it reads from the source
table by default when using statement-based replication. MySQL needs the locks to
ensure that the statement produces the same result on the replica when it executes
there. In effect, the locks serialize the statement on the master, which matches how the
replica will execute it.

You might encounter lock contention, blocking, and lock wait timeouts because of this
design. One way to alleviate the problems is not to hold a transaction open longer than
needed, so the locks cause less blocking. You can release the locks by committing the
transaction as soon as possible on the master.

It can also help to keep your statements short, by breaking up large statements into
several smaller ones. This is a very effective way to reduce lock contention, and even

Replication Problems and Solutions | 503

when it’s hard to do, it’s often worth it. (It’s quite simple with the pt-archiver tool in
Percona Toolkit.)

Another workaround is to replace INSERT ... SELECT statements with a combination
of SELECT INTO OUTFILE followed by LOAD DATA INFILE on the master. This is fast and
doesn’t require locking. It is admittedly a hack, but it’s sometimes useful anyway. The
biggest issues are choosing a unique name for the output file, which must not already
exist, and cleaning up the output file when you’re done with it. You can use the CON
NECTION_ID() technique we just discussed to ensure that the filename is unique, and
you can use a periodic job (crontab on Unix, scheduled tasks on Windows) to purge
unused output files after the connections that created them are finished with them.

You might be tempted to try to disable the locks instead of using these workarounds.
There is a way to do so, but it’s not a good idea for most scenarios, because it makes it
possible for your replica to fall silently out of sync with the master. It also makes the
binary log useless for recovering a server. If, however, you decide that the risks are
worth the benefits, the configuration change that accomplishes this is as follows:

THIS IS NOT SAFE!
innodb_locks_unsafe_for_binlog = 1

This allows a statement’s results to depend on data it doesn’t lock. If a second statement
modifies that data and then commits before the first statement, the two statements
might not produce the same results when you replay the binary log. This is true both
for replication and for point-in-time recovery.

To see how locking reads prevent chaos, imagine you have two tables: one without
rows, and one whose single row has the value 99. Two transactions update the data.
Transaction 1 inserts the second table’s contents into the first table, and transaction 2
updates the second (source) table, as depicted in Figure 10-16.

Step 2 in this sequence of events is very important. In it, transaction 2 tries to update
the source table, which requires it to place an exclusive (write) lock on the rows it wants
to update. An exclusive lock is incompatible with any other lock, including the shared
lock transaction 1 has placed on that row, so transaction 2 is forced to wait until trans-
action 1 commits. The transactions are serialized in the binary log in the order they
committed, so replaying these transactions in binary log (commit) order will give the
same results.

On the other hand, if transaction 1 doesn’t place a shared lock on the rows it reads for
the INSERT, no such guarantee exists. Study Figure 10-17, which shows a possible se-
quence of events without the lock.

The absence of locks allows the transactions to be written to the binary log in an order
that will produce different results when that log is replayed, as you can see in the il-
lustration. MySQL logs transaction 2 first, so it will affect transaction 1’s results on the
replica. This didn’t happen on the master. As a result, the replica will contain different
data than the master.

504 | Chapter 10: Replication

We strongly suggest that you leave the innodb_locks_unsafe_for_binlog configuration
variable set to 0 in most situations. Row-based replication avoids this whole scenario,
of course, by logging actual data changes instead of statements.

Writing to Both Masters in Master-Master Replication
Writing to both masters is a terrible idea. If you’re trying to make it safe to write to
both masters at the same time, some of the problems have solutions, but not all. It takes
an expert with a lot of battle scars to know the difference.

In MySQL 5.0, two server configuration variables help address the problem of con-
flicting AUTO_INCREMENT primary keys. The variables are auto_increment_increment and
auto_increment_offset. You can use them to “stagger” the numbers the servers gener-
ate, so they interleave rather than collide.

However, this doesn’t solve all the problems you’ll have with two writable masters; it
solves only the autoincrement problem, which probably accounts for just a small subset
of the conflicting writes you’re likely to have. In fact, it actually adds several new
problems:

Figure 10-16. Two transactions update data, with shared locks to serialize the updates

Replication Problems and Solutions | 505

• It makes it harder to move servers around in the replication topology.

• It wastes key space by potentially introducing gaps between numbers.

• It doesn’t help unless all your tables have AUTO_INCREMENT primary keys, and it’s
not always a good idea to use AUTO_INCREMENT primary keys universally.

You can generate your own nonconflicting primary key values. One way is to create a
multicolumn primary key and use the server ID for the first column. This works well,
but it makes your primary keys larger, which has a compound effect on secondary keys
in InnoDB.

You can also use a single-column primary key, and use the “high bits” of the integer to
store the server ID. A simple left-shift (or multiplication) and addition can accomplish
this. For example, if you’re using the 8 most significant bits of an unsigned BIGINT (64-
bit) column to hold the server ID, you can insert the value 11 on server 15 as follows:

mysql> INSERT INTO test(pk_col, ...) VALUES((15 << 56) + 11, ...);

If you convert the result to base 2 and pad it out to 64 bits wide, the effect is easier to see:

mysql> SELECT LPAD(CONV(pk_col, 10, 2), 64, '0') FROM test;
+--+
| LPAD(CONV(pk_col, 10, 2), 64, '0') |
+--+
| 00001111001011 |
+--+

Figure 10-17. Two transactions update data, but without a shared lock to serialize the updates

506 | Chapter 10: Replication

The problem with this method is that you need an external way to generate key values,
because AUTO_INCREMENT can’t do it for you. Don’t use @@server_id in place of the con-
stant value 15 in the INSERT, because you’ll get a different result on the replica.

You can also turn to pseudorandom values using a function such as MD5() or UUID(),
but these can be bad for performance—they’re big, and they’re essentially random,
which is bad for InnoDB in particular. (Don’t use UUID() unless you generate the values
in the application, because UUID() doesn’t replicate correctly with statement-based
replication.)

It’s a hard problem to solve, and we usually recommend redesigning your application
so that you have only one writable master instead. Who’d have guessed it?

Excessive Replication Lag
Replication lag is a frequent problem. No matter what, it’s a good idea to design your
applications to tolerate some lag on the replicas. If the system can’t function with lag-
ging replicas, replication might not be the correct architecture for your application.
However, there are some steps you can take to help replicas keep up with the master.

The single-threaded nature of MySQL replication means it’s relatively inefficient on
the replica. Even a fast replica with lots of disks, CPUs, and memory can easily fall
behind a master, because the replica’s single thread usually uses only one CPU and disk
efficiently. In fact, each replica typically needs to be at least as powerful as the master.

Locking on the replicas is also a problem. Other queries running on a replica might
acquire locks that block the replication thread. Because replication is single-threaded,
the replication thread won’t be able to do other work while it waits.

Replication tends to fall behind in two ways: spikes of lag followed by catching up, or
staying steadily behind. The former pattern is usually caused by single queries that run
for a long time, but the latter can crop up even when there are no long queries.

Unfortunately, at present it’s not as easy as we’d like to find out whether a replica is
close to its capacity, as discussed earlier in this chapter. If your load were perfectly
uniform at all times, your replicas would perform nearly as well at 99% capacity as at
10% capacity and when they reached 100% capacity they’d abruptly begin to fall be-
hind. In reality, the load is unlikely to be steady, so when a replica is close to its write
capacity you’ll probably see increased replication lag during times of peak load.

Logging queries on a replica and using a log analysis tool to see what’s really slow is
one of the best things to do when replicas can’t keep up. Don’t rely on your instincts
about what’s slow, and don’t base your opinion on how queries perform on the master,
because replicas and masters have very different performance profiles. The best way to
do this analysis is to enable the slow query log on a replica for a while, and then analyze
it with pt-query-digest as discussed in Chapter 3. The standard MySQL slow query log
can log queries the replication thread executes in MySQL 5.1 and newer, if you enable

Replication Problems and Solutions | 507

the log_slow_slave_statements option, so you can see which queries are slow when
they’re replicated. Percona Server and MariaDB let you enable and disable this without
restarting the server.

There’s not much you can tweak or tune on a replica that can’t keep up, aside from
buying faster disks and CPUs (solid-state drives can help tremendously; see Chap-
ter 9 for details). Most of the options involve disabling some things that cause extra
work on the replica to try to reduce its load. One easy change is to configure InnoDB
to flush changes to disk less frequently, so transactions commit more quickly. You can
accomplish this by setting innodb_flush_log_at_trx_commit to 2. You can also disable
binary logging on the replica, set innodb_locks_unsafe_for_binlog to 1, and set
delay_key_write to ALL for MyISAM. These settings trade safety for speed, though. If
you promote a replica to be a master, make sure to reset these settings to safe values.

Don’t duplicate the expensive part of writes

Rearchitecting your application and/or optimizing your queries is often the best way
to help the replicas keep up. Try to minimize the amount of work that has to be du-
plicated through your system. Any write that’s expensive on the master will be replayed
on every replica. If you can move the work off the master onto a replica, only one of
the replicas will have to do the work. You can then push the write results back up to
the master, for example, with LOAD DATA INFILE.

Here’s an example. Suppose you have a very large table that you summarize into a
smaller table for frequent processing:

mysql> REPLACE INTO main_db.summary_table (col1, col2, ...)
 -> SELECT col1, sum(col2, ...)
 -> FROM main_db.enormous_table GROUP BY col1;

If you perform that operation on the master, every replica will have to repeat the enor-
mous GROUP BY query. If you do enough of this, the replicas will not be able to keep up.
Moving the number crunching to one of the replicas can help. On the replica, perhaps
in a special database reserved for the purpose of avoiding conflicts with the data being
replicated from the master, you can run the following:

mysql> REPLACE INTO summary_db.summary_table (col1, col2, ...)
 -> SELECT col1, sum(col2, ...)
 -> FROM main_db.enormous_table GROUP BY col1;

Now you can use SELECT INTO OUTFILE, followed by LOAD DATA INFILE on the master,
to move the results back up to the master. Voilà—the duplicated work is reduced to a
simple LOAD DATA INFILE. If you have N replicas, you have just saved N – 1 enormous
GROUP BY queries.

The problem with this strategy is dealing with stale data. Sometimes it’s hard to get
consistent results by reading on the replica and writing on the master (a problem we
address in detail in the following chapters). If it’s hard to do the read on the replica,
you can simplify and still save your replicas a lot of work. If you separate the REPLACE

508 | Chapter 10: Replication

and SELECT parts of the query, you can fetch the results into your application and then
insert them back into the master. First, perform the following query on the master:

mysql> SELECT col1, sum(col2, ...) FROM main_db.enormous_table GROUP BY col1;

You can then insert the results back into the summary table by repeating the following
query for every row in the result set:

mysql> REPLACE INTO main_db.summary_table (col1, col2, ...) VALUES (?, ?, ...);

Again, you’ve spared the replicas from the large GROUP BY portion of the query; sepa-
rating the SELECT from the REPLACE means that the SELECT part of the query isn’t replayed
on every replica.

This general strategy—saving the replicas from the expensive portion of a write—can
help in many cases where you have queries whose results are expensive to calculate but
cheap to handle once they’ve been calculated.

Do writes in parallel outside of replication

Another tactic for avoiding excessive lag on the replicas is to circumvent replication.
Any writes you do on the master must be serialized on the replica, so it makes sense to
think of “serialized writes” as a scarce resource. Do all your writes need to flow from
the master to the replica? How can you reserve your replica’s limited serialized write
capacity for the writes that really need to be done via replication?

Thinking of it in this light might help you prioritize writes. In particular, if you can
identify some writes that are easy to do outside of replication, you can parallelize writes
that would otherwise claim precious write capacity on the replica.

One great example is data archiving, which we discussed earlier in this chapter. OLTP
archiving queries are often simple single-row operations. If you’re just moving
unneeded rows from one table to another, there might be no reason these writes have
to be replicated to replicas. Instead, you can disable binary logging for the archiving
statements, and then run separate but identical archiving processes on the master and
replicas.

It might sound crazy to copy the data to another server yourself instead of letting rep-
lication do it, but it can actually make sense for some applications. This is especially
true if an application is the only source of updates to a certain set of tables. Replication
bottlenecks often center around a small set of tables, and if you can handle just those
tables outside of replication, you might be able to speed it up significantly.

Prime the cache for the replication thread

If you have the right kind of workload, you might benefit from parallelizing I/O on
replicas by prefetching data into memory. This technique is not well known, for good
reason. Most people should not use it, because it won’t work unless you have the right
workload characteristics and hardware configuration. The other types of changes we’ve

Replication Problems and Solutions | 509

just been discussing are usually far better options, and there are lots more ways to apply
them than you might think. However, we know of a small handful of large applications
that benefit from prefetching data from disk.

There are two workable implementations for this. One idea is to use a program that
reads slightly ahead of the replica’s SQL thread in the relay logs and executes the queries
as SELECT statements. This causes the server to fetch some of the data from the disk into
memory, so when the replica’s SQL thread executes the statement from the relay log,
it doesn’t need to wait for data to be fetched from disk. In effect, the SELECT parallelizes
I/O that the replica SQL thread must normally do serially. While one statement is
changing data, the next statement’s data is being fetched from disk into memory.

The following conditions might indicate that prefetching will work:

• The replication SQL thread is I/O-bound, but the replica server isn’t I/O-bound
overall. A completely I/O-bound server won’t benefit from prefetching, because it
won’t have any idle hard drives to do the work.

• The replica has a lot of disk drives—perhaps eight or more drives per replica.

• You use the InnoDB storage engine, and the working set is much too large to fit in
memory.

An example workload that benefits from prefetching is one with a lot of widely scattered
single-row UPDATE statements, which are typically high-concurrency on the master.
DELETE statements might also benefit from this approach, but INSERT statements are less
likely to—especially when rows are inserted sequentially—because the end of the index
will already be “hot” from previous inserts.

If a table has many indexes, it might not be possible to prefetch all the data the statement
will modify. The UPDATE statement might modify every index, but the SELECT will typi-
cally read only the primary key and one secondary index, in the best case. The UPDATE
will still need to fetch other indexes for modification. That decreases how effective this
tactic can be on tables with many indexes.

This technique is not a silver bullet. There are many reasons why it might not work for
you or might even cause more problems. You should attempt it only if you know your
hardware and operating system well. We know some people for whom this approach
increased replication speed by 300% to 400%, but we’ve tried it ourselves many times
and found it usually doesn’t work. Getting the parameters right is important, but there
isn’t always a right combination of parameters.

The mk-slave-prefetch tool, which is part of Maatkit, is one implementation of the ideas
we’ve described in this section. It has a lot of sophisticated features to try to work in
as many cases as possible, but the drawback is that it has a lot of complexity and requires
a lot of expertise to use. Another is Anders Karlsson’s slavereadahead tool, available
from http://sourceforge.net/projects/slavereadahead/.

510 | Chapter 10: Replication

http://sourceforge.net/projects/slavereadahead/

Another technique entirely, which is under development at the time of writing, is in-
ternal to InnoDB. It puts transactions into a special mode that causes InnoDB to “fake”
updates, so a process can execute these fake updates and then the replication thread
can do the real updates quickly. This is something we’re developing in Percona Server
specifically for a very popular Internet-scale web application. Check on the status of
this, because it’s bound to have changed by the time this book is published.

If you’re considering this technique, we think you would be well advised to get qualified
advice from an expert who’s familiar with when it works and what other options are
available. This is best reserved as a last-resort measure for when all else fails.

Oversized Packets from the Master
Another hard-to-trace problem in replication can occur when the master’s max_
allowed_packet size doesn’t match the replica’s. In this case, the master can log a packet
the replica considers oversized, and when the replica retrieves that binary log event, it
might suffer from a variety of problems. These include an endless loop of errors and
retries, or corruption in the relay log.

Limited Replication Bandwidth
If you’re replicating over limited bandwidth, you can enable the slave_compressed
_protocol option on the replica (available in MySQL 4.0 and newer). When the replica
connects to the master, it will request a compressed connection—the same compres-
sion any MySQL client connection can use. The compression engine used is zlib, and
our tests show it can compress some textual data to roughly a third of its original size.
The trade-off is that extra CPU time is required to compress the data on the master and
decompress it on the replica.

If you have a slow link with a master on one side and many replicas on the other side,
you might want to colocate a distribution master with the replicas. That way only one
server connects to the master over the slow link, reducing the bandwidth load on the
link and the CPU load on the master.

No Disk Space
Replication can indeed fill up your disks with binary logs, relay logs, or temporary files,
especially if you do a lot of LOAD DATA INFILE queries on the master and have log
_slave_updates enabled on the replica. The more a replica falls behind, the more disk
space it is likely to use for relay logs that have been retrieved from the master but not
yet executed. You can prevent these errors by monitoring disk usage and setting the
relay_log_space configuration variable.

Replication Problems and Solutions | 511

Replication Limitations
MySQL replication can fail or get out of sync, with or without errors, just because of
its inherent limitations. A fairly large list of SQL functions and programming practices
simply won’t replicate reliably (we’ve mentioned many of them in this chapter). It’s
hard to ensure that none of these finds a way into your production code, especially if
your application or team is large.22

Another issue is bugs in the server. We don’t want to sound negative, but many major
versions of the MySQL server have historically had bugs in replication, especially in the
first releases of the major version. New features, such as stored procedures, have usually
caused more problems.

For most users, this is not a reason to avoid new features. It’s just a reason to test
carefully, especially when you upgrade your application or MySQL. Monitoring is also
important; you need to know when something causes a problem.

MySQL replication is complicated, and the more complicated your application is, the
more careful you need to be. However, if you learn how to work with it, it works quite
well.

How Fast Is Replication?
A common question about replication is “How fast is it?” The short answer is that it
runs as quickly as MySQL can copy the events from the master and replay them, with
very little overhead. If you have a slow network and very large binary log events, the
delay between binary logging and execution on the replica might be perceptible. If your
queries take a long time to run and you have a fast network, you can generally expect
the query time on the replica to contribute more to the time it takes to replicate an event.

A more complete answer requires measuring every step of the process and deciding
which steps will take the most time in your application. Some readers might care only
that there’s usually very little delay between logging events on the master and copying
them to the replica’s relay log. For those who would like more details, we did a quick
experiment.

We elaborated on the process described in the first edition of this book, and methods
used by Giuseppe Maxia,23 to measure replication speed with high precision. We built
a nondeterministic UDF that returns the system time to microsecond precision (see
“User-Defined Functions” on page 295 for the source code):

22. Alas, MySQL doesn’t have a forbid_operations_unsafe_for_replication option. In recent versions,
however, it does warn pretty vigorously about some unsafe things, and even refuses certain ones.

23. See http://datacharmer.blogspot.com/2006/04/measuring-replication-speed.html.

512 | Chapter 10: Replication

http://datacharmer.blogspot.com/2006/04/measuring-replication-speed.html

mysql> SELECT NOW_USEC()
+----------------------------+
| NOW_USEC() |
+----------------------------+
| 2007-10-23 10:41:10.743917 |
+----------------------------+

This lets us measure replication speed by inserting the value of NOW_USEC() into a table
on the master, then comparing it to the value on the replica.

We measured the delay by setting up two instances of MySQL on the same server to
avoid inaccuracies caused by the clock. We configured one instance as a replica of the
other, then ran the following queries on the master instance:

mysql> CREATE TABLE test.lag_test(
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> now_usec VARCHAR(26) NOT NULL
 ->);
mysql> INSERT INTO test.lag_test(now_usec) VALUES(NOW_USEC());

We used a VARCHAR column because MySQL’s built-in time types can’t store times with
subsecond resolution (although some of its time functions can do subsecond calcula-
tions). All that remained was to compare the difference between the replica and the
master. We decided to use a Federated table to help.24 On the replica, we ran:

mysql> CREATE TABLE test.master_val (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> now_usec VARCHAR(26) NOT NULL
 ->) ENGINE=FEDERATED
 -> CONNECTION='mysql://user:pass@127.0.0.1/test/lag_test',;

A simple join and the TIMESTAMPDIFF() function show the microseconds of lag between
the time the query executed on the master and on the replica:

mysql> SELECT m.id, TIMESTAMPDIFF(FRAC_SECOND, m.now_usec, s.now_usec) AS usec_lag
 -> FROM test.lag_test as s
 -> INNER JOIN test.master_val AS m USING(id);
+----+----------+
| id | usec_lag |
+----+----------+
| 1 | 476 |
+----+----------+

We inserted 1,000 rows into the master with a Perl script, with a 10-millisecond delay
between row insertions to prevent the master and replica instances from fighting each
other for CPU time. We then built a temporary table containing the lag of each event:

mysql> CREATE TABLE test.lag AS
 > SELECT TIMESTAMPDIFF(FRAC_SECOND, m.now_usec, s.now_usec) AS lag
 -> FROM test.master_val AS m
 -> INNER JOIN test.lag_test as s USING(id);

Next, we grouped the results by lag time to see what the most frequent lag times were:

24. By the way, this is the only time that some of the authors have used the Federated engine.

How Fast Is Replication? | 513

mysql> SELECT ROUND(lag / 1000000.0, 4) * 1000 AS msec_lag, COUNT(*)
 -> FROM lag
 -> GROUP BY msec_lag
 -> ORDER BY msec_lag;
+----------+----------+
| msec_lag | COUNT(*) |
+----------+----------+
0.1000	392
0.2000	468
0.3000	75
0.4000	32
0.5000	15
0.6000	9
0.7000	2
1.3000	2
1.4000	1
1.8000	1
4.6000	1
6.6000	1
24.3000	1
+----------+----------+

The results show that most small queries take less than 0.3 milliseconds to replicate,
from execution time on the master to execution time on the replica.

The part of replication this doesn’t measure is how soon an event arrives at the replica
after being logged to the binary log on the master. It would be nice to know this, because
the sooner the replica receives the log event, the better. If the replica has received the
event, it can provide a copy if the master crashes.

Although our measurements don’t show exactly how long this part of the process takes,
in theory it should be extremely fast (i.e., bounded only by the network speed). The
MySQL binlog dump process does not poll the master for events, which would be
inefficient and slow. Instead, the master notifies the replica of events. Reading a binary
log event from the master is a blocking network call that begins sending data practically
instantaneously after the master logs the event. Thus, it’s probably safe to say the event
will reach the replica as quickly as the replication thread can wake up and the network
can transfer the data.

Advanced Features in MySQL Replication
Oracle released significant enhancements to replication in MySQL 5.5, and many more
are in development milestone releases, to be included in MySQL 5.6. Some of these
make replication more robust, others add multithreaded (parallel) replication apply to
alleviate the current single-threaded bottleneck, and still others add advanced features
for more flexibility and control. We won’t speculate much on functionality that isn’t
in a GA release, but there are a few things we want to mention about MySQL 5.5’s
enhancements.

514 | Chapter 10: Replication

The first is semisynchronous replication. Based on work that Google did several years
ago, this is probably the biggest change to replication since MySQL 5.1 introduced row-
based replication. It helps you ensure that your replicas actually have a copy of the
master’s data, so there is less potential for data loss in the event of a complete loss of
the master server.

Semisynchronous replication adds a delay to the commit process: when you commit a
transaction, the binary log events must be transmitted to at least one connected replica
before the client connection receives notification that the query has completed. This
delay is added after the master commits the transaction to its disks. As such, it really
just adds latency to the clients so that they can’t push a bunch of transactions into the
master faster than it can send them to replicas.

There are some common misconceptions about semisynchronous replication. Here’s
what it doesn’t do:

• It does not block the commit on the master until the replicas have acknowledged
receipt. The commit completes on the master, and only the client’s notification of
the commit is delayed.

• It does not block the client until the replicas have applied the transaction. They
acknowledge after receiving the transaction, not after applying it.

• It isn’t bulletproof. If replicas don’t acknowledge receipt, it’ll time out and revert
to “normal” asynchronous replication mode.

Still, it is a very useful tool to help ensure that replicas really do provide greater redun-
dancy and durability.

In terms of performance, semisynchronous replication adds a bit of latency to commits
from the client’s point of view. There is a slight delay due to the network transfer time,
the time needed to write and sync data to the replica’s disk (if so configured), and the
network time for the acknowledgment. It sounds like this might add up, but in tests it
has proven to be barely measurable, probably because the latency is hidden by other
causes of latency. Giuseppe Maxia found about a 200-microsecond performance pen-
alty per commit.25 The overhead will be more noticeable with extremely small trans-
actions, as you might expect.

In fact, semisynchronous replication can actually give you enough flexibility to improve
performance in some cases, by making it safer to relax sync_binlog on the master.
Writing to remote memory (a replica’s acknowledgment) is faster than writing to the
local disk (syncing on commit). Henrik Ingo ran some benchmarks that showed about
a twofold performance improvement when he used semisynchronous replication in-
stead of insisting on strong durability on the master.26 There’s no such thing as absolute
durability in any system—just higher and higher levels of it—and it looks like

25. See http://datacharmer.blogspot.com/2011/05/price-of-safe-data-benchmarking-semi.html.

26. See http://openlife.cc/blogs/2011/may/drbd-and-semi-sync-shootout-large-server.

Advanced Features in MySQL Replication | 515

http://datacharmer.blogspot.com/2011/05/price-of-safe-data-benchmarking-semi.html
http://openlife.cc/blogs/2011/may/drbd-and-semi-sync-shootout-large-server

semisynchronous replication could be a lower-cost way to raise a system’s data dura-
bility than some of the alternatives.

In addition to semisynchronous replication, MySQL 5.5 also sports replication heart-
beats, which help replicas stay in touch with the master and avoid silent disconnections.
If there’s a dropped network connection, the replica will notice the lack of a heartbeat.
There’s an improved ability to deal with differing data types between master and replica
when row-based replication is used, and there are several options to configure how
replication metadata files are actually synced to disk and how relay logs are treated after
a crash, reducing some of the opportunities for problems after a replica crashes and
recovers.

That said, we haven’t yet seen wide production deployment of any of MySQL 5.5’s
improvements to replication, so there is certainly more to learn.

Aside from the above, here’s a quick rundown of improvements in the works, either in
MySQL or in third-party branches such as Percona Server and MariaDB:

• Oracle has many improvements in MySQL 5.6 lab builds and development mile-
stone releases:

— Transactional replication state—no more metadata files to get out of sync on
a crash. (Percona Server and MariaDB have had this for a while in a different
form.)

— Binary log event checksums to help detect corrupted events in a relay log.

— Time-delayed replication to replace Percona Toolkit’s pt-slave-delay tool.

— Row-based binary log events can contain the original SQL executed on the
master.

— Multi-threaded replication apply (parallelized replication).

• MySQL 5.6, Percona Server, Facebook’s patches, and MariaDB have three different
fixes for the group commit problems introduced in MySQL 5.0.

Other Replication Technologies
Built-in replication isn’t the only way to replicate your data from one server to another,
although it probably is the best for most purposes. (In contrast to PostgreSQL, MySQL
doesn’t have a wide variety of add-on replication options, probably because built-in
replication was added early in the product’s life.)

We’ve brushed elbows with a few of the add-on technologies for MySQL replication,
such as Oracle GoldenGate, but we’re really not familiar enough with most of them to
write much about them. There are two that we want to mention, however. The first is
Percona XtraDB Cluster’s synchronous replication, which we’ll discuss in Chapter 12
because it fits better into a chapter on high availability. The second is Continuent’s
Tungsten Replicator (http://code.google.com/p/tungsten-replicator/).

516 | Chapter 10: Replication

http://code.google.com/p/tungsten-replicator/

Tungsten is an open source middleware replication product written in Java. It has sim-
ilarities to Oracle GoldenGate and seems poised to gain a lot of sophisticated features
in future releases. At the time of writing, it already offers features such as replicating
data between servers, sharding data automatically, applying changes in parallel on rep-
licas (multithreaded replication), promoting a replica if a master fails, cross-platform
replication, and multisource replication (many sources replicating to a single destina-
tion). It is the open source version of the Tungsten Enterprise database clustering suite,
which is commercial software from Continuent.

Tungsten also implements multimaster clusters, where writes can be directed to any
server in the cluster. A generic implementation of this architecture requires conflict
detection and/or resolution. This is very hard, and it isn’t always what is needed. In-
stead, Tungsten provides a slightly limited implementation wherein not all data is
writable on all nodes; instead, each node is tagged as the system of record for specific
bits of data. This means that, for example,the Seattle office can own and write to its
data, which is replicated to Houston and Baltimore. In Houston and Baltimore, the
data is available locally for low-latency reads, but Tungsten prevents it from being
written to, so conflicting updates are not possible. Houston and Baltimore can update
their own data, of course, which is also replicated to each of the other locations. This
“system of record” approach solves a need that people frequently try to satisfy with
MySQL’s built-in replication in a ring, which, as we’ve discussed, is far from safe or
robust.

Tungsten Replicator doesn’t just plug into or manage MySQL replication; it replaces
it. It captures data changes on servers by reading their binary logs, but that’s where the
built-in MySQL functionality stops and Tungsten Replicator takes over. It reads the
binary logs and extracts the transactions, then executes them on the replicas.

This process has a richer feature set than MySQL replication does. In particular, Tung-
sten Replicator was the first to offer parallel replication apply for MySQL. We haven’t
seen it in production yet, but it’s claimed to offer up to a threefold improvement in
replication speed, depending on the workload characteristics. This seems credible to
us, based on the architecture and what we know of the product.

Here are some things we like about Tungsten Replicator:

• It provides built-in data consistency checking. Enough said.

• It offers a plugin capability so you can write your own custom functionality.
MySQL’s replication source code is very hard to understand and harder to modify.
Even very talented programmers have introduced bugs into the server when’ve they
tried to modify the replication code. It’s nice to have an option to change replication
without changing the MySQL replication code.

• There are global transaction IDs, which enable you to figure out the state of servers
relative to each other without trying to match up binary log names and offsets.

Other Replication Technologies | 517

• It’s a good high-availability solution, with the ability to promote a replica to be the
master quickly.

• It supports heterogeneous replication (between MySQL and PostgreSQL or
MySQL and Oracle, for example).

• It supports replication between MySQL versions in cases where MySQL’s replica-
tion isn’t backward-compatible. This is very nice for certain upgrade scenarios,
where you might not otherwise be able to create a workable rollback scenario in
case the upgrade doesn’t go well, or you’d have to upgrade servers in an order you’d
prefer not to.

• The parallel replication design is a good match for sharded or multitenant
applications.

• Java applications can transparently write to masters and read from replicas.

• It’s a lot simpler and easier to set up and administer than it used to be, thanks in
large part to Giuseppe Maxia’s diligent work as QA Director.

And here are some drawbacks:

• It’s arguably more complex than built-in MySQL replication, with more moving
parts to set up and administer. It is middleware, after all.

• It’s one more thing to learn and understand in your application stack.

• It’s not as lightweight as built-in MySQL replication and doesn’t have as good
performance. Single-threaded replication is slower than MySQL’s single-threaded
replication.

• It’s not as widely tested and deployed as MySQL replication, so the risk of bugs
and problems is higher.

All in all, we’re happy that Tungsten Replicator is available and is under active devel-
opment, with new features and functionality being released steadily. It’s nice to have
an alternative to built-in replication, making MySQL suitable for more use cases and
flexible enough to satisfy requirements that MySQL replication will probably never
meet.

Summary
MySQL replication is the Swiss Army Knife of MySQL’s built-in capabilities, and it
increases MySQL’s range of functionality and usefulness dramatically. It is probably
one of the key reasons why MySQL became so popular so quickly, in fact.

Although replication has many limitations and caveats, it turns out that most of them
are relatively unimportant or easy for most users to avoid. Many of the drawbacks are
simply special-case behaviors of advanced features that most people won’t use, but
which are very helpful for the minority of users who need them.

518 | Chapter 10: Replication

Because replication offers such important and complex functionality, the server itself
doesn’t offer every bell and whistle that you’ll need to configure, monitor, administer,
and optimize it. Third-party tools can be a tremendous help. We’re biased, but we think
the most notable tools for improving your life with replication are bound to be Percona
Toolkit and Percona XtraBackup. Before you use any other tools, we advise you to
inspect their test suites. If they don’t have formal, automated test suites, think hard
before trusting them with your data.

When it comes to replication, your motto should be K.I.S.S.27 Don’t do anything fancy,
such as using replication rings, Blackhole tables, or replication filters, unless you really
need to. Use replication simply to mirror an entire copy of your data, including all
privileges. Keeping your replicas identical to the master in every way will help you avoid
many problems.

Speaking of keeping replicas identical to the master, here’s a short list of important
things to do when you use replication:

• Use Percona Toolkit’s pt-table-checksum to verify that replicas are true copies of
the master.

• Monitor replication to ensure that it’s running and isn’t lagging behind the master.

• Understand the asynchronous nature of replication, and design your application
to avoid or tolerate reading stale data from replicas.

• Don’t write to more than one server in a replication topology. Configure replicas
as read-only, and lock down privileges to prevent changes to data.

• Enable sanity and safety settings as described in this chapter.

As we’ll discuss in Chapter 12, replication failure is one of the most common reasons
for MySQL downtime. To avoid problems with replication, read that chapter, and try
to put its suggestions into practice. You should also read the replication section of the
MySQL manual thoroughly, and learn how replication works and how to administer
it. If you like reading, the book MySQL High Availability by Charles Bell et al. (O’Reilly)
also has useful information about replication internals. But you still need to read the
manual!

27. Keep It Simple, Schwartz! Some of us think that’s what K.I.S.S. means, anyway.

Summary | 519

http://shop.oreilly.com/product/9780596807290.do

CHAPTER 11

Scaling MySQL

This chapter shows you how to build MySQL-based applications that can grow very
large while remaining fast, efficient, and economical.

Which scalability advice is relevant to applications that can fit on a single server or a
handful of servers? Most people will never maintain systems at an extremely large scale,
and the tactics used at very large and popular companies shouldn’t always be emulated.
We’ll try to cover a range of strategies in this chapter. We’ve built or helped build many
applications, ranging from those that use a single server or a handful of servers to those
that use thousands. Choosing the appropriate strategy for your application is often the
key to saving money and time that can be invested elsewhere.

MySQL has been criticized for being hard to scale, and sometimes that’s true, but
usually you can make MySQL scale well if you choose the right architecture and im-
plement it well. Scalability is not always a well-understood topic, however, so we’ll
begin by clearing up the confusion.

What Is Scalability?
People often use terms such as “scalability,” “high availability,” and “performance” as
synonyms in casual conversation, but they’re completely different. As we explained in
Chapter 3, we define performance as response time. Scalability can be defined precisely
too; we’ll explore that more fully in a moment, but in a nutshell it’s the system’s ability
to deliver equal bang for the buck as you add resources to perform more work. Poorly
scalable systems reach a point of diminishing returns and can’t grow further.

Capacity is a related concept. The system’s capacity is the amount of work it can per-
form in a given amount of time.1 However, capacity must be qualified. The system’s
maximum throughput is not the same as its capacity. Most benchmarks measure a

1. In the physical sciences, work per unit of time is called power, but in computing “power” is such an
overloaded term that it’s ambiguous and we avoid it. However, a precise definition of capacity is the
system’s maximum power output.

521

system’s maximum throughput, but you can’t push real systems that hard. If you do,
performance will degrade and response times will become unacceptably large and vari-
able. We define the system’s actual capacity as the throughput it can achieve while still
delivering acceptable performance. This is why benchmark results usually shouldn’t
be reduced to a single number.

Capacity and scalability are independent of performance. To make an analogy with
cars on a highway:

• Performance is how fast the car is.

• Capacity is the number of lanes times the maximum safe speed.

• Scalability is the degree to which you can add more cars and more lanes without
slowing traffic.

In this analogy, scalability depends on factors such as how well the interchanges are
designed, how many cars have accidents or break down, and whether the cars drive at
different speeds or change lanes a lot—but generally not on how powerful the cars’
engines are. This is not to say that performance doesn’t matter, because it does. We’re
just pointing out that systems can be scalable even if they aren’t high-performance.

From the 50,000-foot view, scalability is the ability to add capacity by adding resources.

Even if your MySQL architecture is scalable, your application might not be. If it’s hard
to increase capacity for any reason, your application isn’t scalable overall. We defined
capacity in terms of throughput a moment ago, but it’s worth looking at capacity from
the same 50,000-foot view. From this vantage point, capacity simply means the ability
to handle load, and it’s useful to think of load from several different angles:

Quantity of data
The sheer volume of data your application can accumulate is one of the most com-
mon scaling challenges. This is particularly an issue for many of today’s web ap-
plications, which never delete any data. Social networking sites, for example,
typically never delete old messages or comments.

Number of users
Even if each user has only a small amount of data, if you have a lot of users it adds
up—and the data size can grow disproportionately faster than the number of users.
Many users generally means more transactions too, and the number of transactions
might not be proportional to the number of users. Finally, many users (and more
data) can mean increasingly complex queries, especially if queries depend on the
number of relationships among users. (The number of relationships is bounded by
(N * (N–1)) / 2, where N is the number of users.)

User activity
Not all user activity is equal, and user activity is not constant. If your users suddenly
become more active, for example because of a new feature they like, your load can
increase significantly. User activity isn’t just a matter of the number of page views,
either—the same number of page views can cause more work if part of the site that

522 | Chapter 11: Scaling MySQL

requires a lot of work to generate becomes more popular. Some users are much
more active than others, too: they might have many more friends, messages, or
photos than the average user.

Size of related datasets
If there are relationships among users, the application might need to run queries
and computations on entire groups of related users. This is more complex than
just working with individual users and their data. Social networking sites often face
challenges due to popular groups or users who have many friends.2

A Formal Definition
It’s worth exploring a mathematical definition of scalability, as it will enable you to
think clearly about the higher-level concepts. If you don’t have that grounding, you
might not understand or be able to communicate scalability precisely. Don’t worry,
this won’t involve advanced mathematics—you’ll be able to understand it intuitively
even if you’re not a math whiz.

The key is the phrase we used earlier: “equal bang for the buck.” Another way to say
this is that scalability is the degree to which the system provides an equal return on
investment (ROI) as you add resources to handle the load and increase capacity. Let’s
suppose that we have a system with one server, and we can measure its maximum
capacity. Figure 11-1 illustrates this scenario.

Figure 11-1. A system with one server

2. Justin Bieber, we still love you!

What Is Scalability? | 523

Now suppose that we add one more server, and the system’s capacity doubles, as shown
in Figure 11-2.

Figure 11-2. A linearly scalable system with two servers has twice the capacity

This is linear scalability. We doubled the number of servers, and as a result, we doubled
the system’s capacity. Most systems aren’t linearly scalable; they often scale a bit like
Figure 11-3 instead.

Figure 11-3. A system that doesn’t scale linearly

524 | Chapter 11: Scaling MySQL

Most systems provide slightly less than linear scalability at small scaling factors, and
the deviation from linearity becomes more obvious at higher scaling factors. In fact,
most systems eventually reach a point of maximum throughput, beyond which addi-
tional investment provides a negative return—add more workload and you’ll actually
reduce the system’s throughput!3

How is this possible? Many models of scalability have been created over the years, with
varying degrees of success and realism. The scalability model that we refer to here is
based on some of the underlying mechanisms that influence systems as they scale. It is
Dr. Neil J. Gunther’s Universal Scalability Law (USL). Dr. Gunther has written about
it at length in his books, including Guerrilla Capacity Planning (Springer). We will not
go deeply into the mathematics here, but if you are interested, his book and the training
courses offered by his company, Performance Dynamics, might be good resources for
you.4

The short introduction to the USL is that the deviation from linear scalability can be
modeled by two factors: a portion of the work cannot be done in parallel, and a portion
of the work requires crosstalk. Modeling the first factor results in the well-known
Amdahl’s Law, which causes throughput to level off. When part of the task can’t be
parallelized, no matter how much you divide and conquer, the task takes at least as
long as the serial portion.

Adding the second factor—intra-node or intra-process communication—to Amdahl’s
Law results in the USL. The cost of this communication depends on the number of
communication channels, which grows quadratically with respect to the number of
workers in the system. Thus, the cost eventually grows faster than the benefit, and that’s
what is responsible for retrograde scalability. Figure 11-4 illustrates the three concepts
we’ve talked about so far: linear scaling, Amdahl scaling, and USL scaling. Most real
systems look like the USL curve.

The USL can be applied both to hardware and to software. In the hardware case, the
x-axis represents units of hardware, such as servers or CPUs; the workload, data size,
and query complexity per unit of hardware must be held constant.5 In the software
case, the x-axis on the plot represents units of concurrency, such as users or threads;
the workload per unit of concurrency must be held constant.

3. In fact, the term “return on investment” can also be considered in light of your financial investment.
Upgrading a component to double its capacity often costs more than twice as much as the initial
investment. Although we often consider this in the real world, we’ll omit it from our discussion here to
avoid complicating an already confusing topic.

4. You can also read our white paper, Forecasting MySQL Scalability with the Universal Scalability Law,
which gives a condensed summary of the mathematics and principles at work in the USL. It is available
at http://www.percona.com.

5. In the real world, it is very difficult to define hardware scalability precisely, because it’s hard to actually
hold all those variables constant as you vary the number of servers in the system.

What Is Scalability? | 525

http://www.percona.com

It is important to understand that the USL won’t describe any real system perfectly,
because it is a simplified model. However, it is a good framework for understanding
why systems fail to provide equal bang for the buck as they grow. It also reveals an
important principle for building highly scalable systems: try to avoid serialization and
crosstalk within the system.

It is possible to measure a system and use regression to determine the amount of seriality
and crosstalk it exhibits. You can use this as a best-case upper bound for capacity
planning and performance forecasting estimates. You can also examine how the system
deviates from the USL model, using it as a worst-case lower bound to point out areas
where your system isn’t performing as well as it should. In both cases, the USL gives
you a reference to discuss scalability. Without it, you’d look at the system and not know
what expectations you should have. A full exploration of this topic deserves its own
book, and Dr. Gunther already wrote that, so we won’t go into this further.

Another framework for understanding scalability problems is the theory of constraints,
which explains how to improve a system’s throughput and efficiency by reducing de-
pendent events and statistical variations. It is explored in Eliyahu M. Goldratt’s book
The Goal (North River), which is an extended parable about a manager at a manufac-
turing facility. Although it might seem far removed from the realm of a database server,
the principles involved are the same as those in queueing theory and other aspects of
operational research.

Figure 11-4. Comparison of linear scalability, Amdahl scalability, and the Universal Scalability Law

526 | Chapter 11: Scaling MySQL

Scalability Models Aren’t the Last Word
This is all a lot of theory, but how well does it work in practice? Just as Newton’s laws
turned out to be approximations that work reasonably well when you’re not close to
the speed of light, these “scalability laws” are simplified models that work well in some
cases. There’s a saying that all models are wrong, but some models are useful, and the
USL in particular is useful for understanding some factors that contribute to poor
scalability.

The USL breaks down when a workload’s interaction with the system on which it runs
has subtleties. For example, one particularly common thing the USL fails to model well
is the system’s changing behavior as a cluster’s total memory size changes relative to
the dataset size. The USL doesn’t permit the possibility of better-than-linear scaling,
but in the real world we sometimes see that happening as we add resources to a system
and change a partially I/O-bound workload into a fully in-memory workload.

There are other cases where the USL model doesn’t describe a system’s behavior very
well. It doesn’t model every possible way in which algorithmic complexity might change
as systems change in size, or as the dataset changes. (The USL has an O(1) component
and an O(N2) component, but what about the O(log N) component, or O(N log N),
for example?) With some thought and practical experience, we could probably extend
the USL to cover some of these common cases. However, that would turn a simple and
usable model into a complex one that’s much harder to use. In practice, it’s quite good
in a lot of cases, and it models enough of a system’s behavior that your brain can deal
with the leftovers. That’s why we find it to be a nice compromise between correctness
and usefulness.

In short: take the models with a grain of salt, and validate your findings when you use
them.

Scaling MySQL
Placing all of your application’s data in a single MySQL instance simply will not scale
well. Sooner or later you’ll hit performance bottlenecks. The traditional solution in
many types of applications is to buy more powerful servers. This is what’s known as
“scaling vertically” or “scaling up.” The opposite approach is to divide your work across
many computers, which is usually called “scaling horizontally” or “scaling out.” We’ll
discuss how to combine scale-out and scale-up solutions with consolidation, and how
to scale with clustering solutions. Finally, most applications also have some data that’s
rarely or never needed and that can be purged or archived. We call this approach “scal-
ing back,” just to give it a name that matches the other strategies.

Planning for Scalability
People usually start to think about scalability when the server has difficulty keeping up
with increased load. This usually shows up as a shift in workload from CPU-bound to

Scaling MySQL | 527

I/O-bound, contention among concurrent queries, and increasing latency. Common
culprits are increased query complexity, or a portion of the data or index that used to
fit into memory but no longer does. You might see a change in certain types of queries
and not others. For example, long or complex queries often show the strain before
smaller queries.

If your application is highly scalable, you can simply plug in more servers to handle the
load, and the performance problems will disappear. If it’s not scalable, you might find
yourself fighting fires endlessly. You can avoid this by planning for scalability.

The hardest part of scalability planning is estimating how much load you’ll need to
handle. You don’t need to get it exactly right, but you need to be within an order of
magnitude. If you overestimate, you’ll waste resources on development, but if you
underestimate, you’ll be unprepared for the load.

You also need to estimate your schedule approximately right—that is, you need to
know where the “horizon” is. For some applications, a simple prototype could work
fine for a few months, giving you a chance to raise capital and build a more scalable
architecture. For other applications, you might need your current architecture to pro-
vide enough capacity for two years.

Here are some questions you can ask yourself to help plan for scalability:

• How complete is your application’s functionality? A lot of the scaling solutions we
suggest can make it harder to implement certain features. If you haven’t yet im-
plemented some of your application’s core features, it might be hard to see how
you can build them in a scaled application. Likewise, it could be hard to decide on
a scaling solution before you’ve seen how these features will really work.

• What is your expected peak load? Your application should work even at this load.
What would happen if your site made the front page of Yahoo! News or Slashdot?
Even if your application isn’t a popular website, you can still have peak loads. For
example, if you’re an online retailer, the holiday season—especially the infamous
online shopping days in the few weeks before Christmas—is often a time of peak
load. In the US, Valentine’s Day and the weekend before Mother’s Day are also a
peak times for online florists.

• If you rely on every part of your system to handle the load, what will happen if part
of it fails? For example, if you rely on replicas to distribute the read load, can you
still keep up if one of them fails? Will you need to disable some functionality to do
so? You can build in some spare capacity to help alleviate these concerns.

Buying Time Before Scaling
In a perfect world, you would be able to plan ahead for any eventuality, would always
have enough developers, would never run into budget limitations, and so on. In the
real world, things are usually more complicated, and you’ll need to make some com-
promises as you scale your application. In particular, you might need to put off big

528 | Chapter 11: Scaling MySQL

application changes for a while. Before we get deep into the details of scaling MySQL,
here are some things you might be able to do now, before you make major scaling
efforts:

Optimize performance
You can often get significant performance improvements from relatively simple
changes, such as indexing tables correctly or switching from MyISAM to the
InnoDB storage engine. If you’re facing performance limitations now, one of the
first things you should do is enable and analyze the slow query log. See Chap-
ter 3 for more on this topic.

There is a point of diminishing returns. After you’ve fixed most of the major prob-
lems, it gets harder and harder to improve performance. Each new optimization
makes less of a difference and requires more effort, and they often make your ap-
plication much more complicated.

Buy more powerful hardware
Upgrading your servers, or adding more of them, can sometimes work well. Espe-
cially for an application that’s early in its lifecycle, it’s often a good idea to buy a
few more servers or get some more memory. The alternative might be to try to keep
the application running on a single server. It can be more practical just to buy some
more hardware than to change your application’s design, especially if time is critical
and developers are scarce.

Buying more hardware works well if your application is either small or designed so it
can use more hardware well. This is common for new applications, which are usually
very small or reasonably well designed. For larger, older applications, buying more
hardware might not work, or might be too expensive. For example, going from 1 to 3
servers isn’t a big deal, but going from 100 to 300 is a different story—it’s very
expensive. At that point, it’s worth putting in a lot of time and effort to get as much
performance as possible out of your existing systems.

Scaling Up
Scaling up means buying more powerful hardware, and for many applications this is
all you need to do. There are many advantages to this strategy. A single server is so
much easier to maintain and develop against than multiple servers that it offers signif-
icant cost savings, for example. Backing up and restoring your application on a single
server is also simpler because there’s never any question about consistency or which
dataset is the authoritative one. The reasons go on. Cost is complexity, and scaling up
is simpler than scaling out.

You can scale up quite far. Commodity servers are readily available today with half a
terabyte of memory, 32 or more CPU cores, and more I/O power than you can even
use for MySQL (flash storage on PCIe cards, for example). With intelligent application

Scaling MySQL | 529

and database design, and good performance optimization skills, you can build very
large applications with MySQL on such servers.

How large can MySQL scale on modern hardware? Although it’s possible to run it on
very powerful servers, it turns out that like most database servers, MySQL doesn’t scale
perfectly (surprise!) as you add hardware resources. To run MySQL on big-iron boxes,
you will definitely need a recent version of the server. The MySQL 5.0 and 5.1 series
will choke badly on such large hardware, due to internal scalability issues. You will
need either MySQL 5.5 or newer, or Percona Server 5.1 or newer. Even so, the currently
reasonable “point of diminishing returns” is probably somewhere around 256 GB of
RAM, 32 cores, and a PCIe flash drive. MySQL will continue to provide improved
performance on bigger hardware than that, but the price-to-performance ratio will not
be as good, and in fact even on these systems you can often get much better performance
by running several smaller instances of MySQL instead of one big instance that uses all
of the server’s resources. This is a rapidly moving target, so this advice will probably
be out of date pretty soon.

Scaling up can work for a while, and many applications will not outgrow this strategy,
but if your application grows extremely large6 it ultimately won’t work. The first reason
is money. Regardless of what software you’re running on the server, at some point
scaling up will become a bad financial decision. Outside the range of hardware that
offers the best price-to-performance ratio, the hardware tends to become more propri-
etary and unusual, and correspondingly more expensive. This means there’s a practical
limit on how far up you can afford to scale. If you use replication and upgrade your
master to high-end hardware, there’s also little chance that you’ll be able to build a
replica server that’s powerful enough to keep up. A heavily loaded master can easily do
more work than a replica server with the same hardware can handle, because the rep-
lication thread can’t use multiple CPUs and disks efficiently.

Finally, you can’t scale up indefinitely, because even the most powerful computers
have limits. Single-server applications usually run into read limits first, especially if they
run complicated read queries. Such queries are single-threaded inside MySQL, so
they’ll use only one CPU, and money can’t buy them much more performance. The
fastest server-grade CPUs you can buy are only a couple of times faster than commodity
CPUs. Adding many CPUs or CPU cores won’t help the slow queries run faster. The
server will also begin to run into memory limits as your data becomes too large to cache
effectively. This will usually show up as heavy disk usage, and disks are the slowest
parts of modern computers.

The most obvious place where you can’t scale up is in the cloud. You generally can’t
get very powerful servers in most public clouds, so scaling up is not an option if your
application must grow very large. We’ll discuss this topic further in Chapter 13.

6. We’re avoiding the phrase “web scale,” because it has become utterly meaningless. See http://www
.xtranormal.com/watch/6995033/.

530 | Chapter 11: Scaling MySQL

http://www.xtranormal.com/watch/6995033/
http://www.xtranormal.com/watch/6995033/

As a result, we recommend that you don’t plan to scale up indefinitely if the prospect
of a hitting a scalability ceiling is real and would be a serious business problem. If you
know your application will grow very large, it’s fine to buy a more powerful server for
the short term while you work on another solution. However, in general you’ll ulti-
mately have to scale out, which brings us to our next topic.

Scaling Out
We can lump scale-out tactics into three broad groups: replication, partitioning, and
sharding.

The simplest and most common way to scale out is to distribute your data across
several servers with replication, and then use the replicas for read queries. This tech-
nique can work well for a read-heavy application. It has drawbacks, such as cache
duplication, but even that might not be a severe problem if the data size is limited. We
wrote quite a bit about these issues in the previous chapter, and we’ll return to them
later in this one.

The other common way to scale out is to partition your workload across multiple
“nodes.” Exactly how you partition the workload is an intricate decision. Most large
MySQL applications don’t automate the partitioning, at least not completely. In this
section, we take a look at some of the possibilities for partitioning and explore their
strengths and drawbacks.

A node is the functional unit in your MySQL architecture. If you’re not planning for
redundancy and high availability, a node might be one server. If you’re designing a
redundant system with failover, a node is generally one of the following:

• A master-master replication pair, with an active server and a passive replica

• A master and many replicas

• An active server that uses a distributed replicated block device (DRBD) for a
standby

• A SAN-based “cluster”

In most cases, all servers within a node should have the same data. We like the master-
master replication architecture for two-server active-passive nodes.

Functional partitioning

Functional partitioning, or division of duties, means dedicating different nodes to dif-
ferent tasks. We’ve mentioned some similar approaches before; for example, we wrote
about how to design different servers for OLTP and OLAP workloads in the previous
chapter. Functional partitioning usually takes that strategy even further by dedicating
individual servers or nodes to different applications, so each contains only the data its
particular application needs.

Scaling MySQL | 531

We’re using the word “application” a bit broadly here. We don’t mean a single com-
puter program, but a set of related programs that’s easily separated from other, unre-
lated programs. For example, if you have a website with distinct sections that don’t
need to share data, you can partition by functional area on the website. It’s common
to see portals that tie the different areas together; from the portal, you can browse to
the news section of the site, the forums, the support area and knowledge base, and so
on. The data for each of these functional areas could be on a dedicated MySQL server.
Figure 11-5 depicts this arrangement.

Figure 11-5. A portal and nodes dedicated to functional areas

If the application is huge, each functional area can also have its own dedicated web
server, but that’s less common.

Another possible functional partitioning approach is to split a single application’s data
by determining sets of tables that you never join to each other. If it becomes necessary,
you can usually perform a few such joins in the application if they’re not performance-
critical. There are a few variations on this approach, but they have the common property
that each type of data can be found on only a single node. This is not a common way
to partition data, because it’s very difficult to do effectively and it doesn’t offer any
advantages over other methods.

In the final analysis, you still can’t scale functional partitioning indefinitely, because
each functional area must scale vertically if it is tied to a single MySQL node. One of
the applications or functional areas is likely to eventually grow too large, forcing you
to find a different strategy. And if you take functional partitioning too far, it can be
harder to change to a more scalable design later.

532 | Chapter 11: Scaling MySQL

Data sharding

Data sharding7 is the most common and successful approach for scaling today’s very
large MySQL applications. You shard the data by splitting it into smaller pieces, or
shards, and storing them on different nodes.

Sharding works well when combined with some type of functional partitioning. Most
sharded systems also have some “global” data that isn’t sharded at all (say, lists of cities,
or login data). This global data is usually stored on a single node, often behind a cache
such as memcached.

In fact, most applications shard only the data that needs sharding—typically, the parts
of the dataset that will grow very large. Suppose you’re building a blogging service. If
you expect 10 million users, you might not need to shard the user registration infor-
mation because you might be able to fit all of the users (or the active subset of them)
entirely in memory. If you expect 500 million users, on the other hand, you should
probably shard this data. The user-generated content, such as posts and comments,
will almost certainly require sharding in either case, because these records are much
larger and there are many more of them.

Large applications might have several logical datasets that you can shard differently.
You can store them on different sets of servers, but you don’t have to. You can also
shard the same data multiple ways, depending on how you access it. We show an
example of this approach later.

Sharding is dramatically different from the way most applications are designed initially,
and it can be difficult to change an application from a monolithic data store to a sharded
architecture. That’s why it’s much easier to build an application with a sharded data
store from the start if you anticipate that it will eventually need one.

Most applications that don’t build in sharding from the beginning go through stages
as they get larger. For example, you can use replication to scale read queries on your
blogging service until it doesn’t work any more. Then you can split the service into
three parts: users, posts, and comments. You can place these on different servers (func-
tional partitioning), perhaps with a service-oriented architecture, and perform the joins
in the application. Figure 11-6 shows the evolution from a single server to functional
partitioning.

Finally, you can shard the posts and comments by the user ID, and keep the user in-
formation on a single node. If you keep a master-replica configuration for the global
node and use master-master pairs for the sharded nodes, the final data store might look
like Figure 11-7.

7. Sharding is also called “splintering” and “partitioning,” but we use the term “sharding” to avoid
confusion. Google calls it sharding, and if it’s good enough for Google, it’s good enough for us.

Scaling MySQL | 533

Figure 11-7. A data store with one global node and six master-master nodes

If you know in advance that you’ll need to scale very large, and you know the limitations
of functional partitioning, you might choose to skip the steps in the middle and go
straight from a single node to a sharded data store. In fact, foresight can often help you
avoid ugly sharding schemes that might arise from meeting each challenge as it comes.

Sharded applications often have a database abstraction library that eases the commu-
nication between the application and the sharded data store. Such libraries usually
don’t hide the sharding completely, because the application usually knows something
about a query that the data store doesn’t. Too much abstraction can cause inefficiencies,
such as querying all nodes for data that lives on a single node.

A sharded data store might feel like an elegant solution, but it’s hard to build. So why
choose this architecture? The answer is simple: if you want to scale your write capacity,
you must partition your data. You cannot scale write capacity if you have only a single
master, no matter how many replicas you have. Sharding, for all its drawbacks, is our
preferred solution to this problem.

Figure 11-6. From a single instance to a functionally partitioned data store

534 | Chapter 11: Scaling MySQL

To Shard or Not to Shard?
That is the question, isn’t it? Here’s the simple answer: don’t shard unless you need to.
See if you can delay it via performance optimization or a better application or database
design. If you can put off sharding long enough, you might be able to just buy a bigger
server, upgrade MySQL to a new higher-performance version, and keep on chugging
with a single server, plus or minus replication.

In a nutshell, sharding is inevitable when either the data size or the write workload
becomes too much for a single server. You’d be surprised how far systems can be scaled
without sharding, using intelligent application design. Some very popular applications
you’d probably assume were sharded from day one in fact grew to multi-billion-dollar
valuations and insane amounts of traffic without sharding. It’s not the only game in
town, and it’s a tough way to build an application if it’s not needed.

Choosing a partitioning key

The most important challenge with sharding is finding and retrieving data. How you
find data depends on how you shard it. There are many ways to do this, and some are
better than others.

The goal is to make your most important and frequent queries touch as few shards as
possible (remember, one of the scalability principles is to avoid crosstalk between
nodes). The most important part of that process is choosing a partitioning key (or keys)
for your data. The partitioning key determines which rows should go onto each shard.
If you know an object’s partitioning key, you can answer two questions:

• Where should I store this data?

• Where can I find the data I need to fetch?

We’ll show you a variety of ways to choose and use a partitioning key later. For now,
let’s look at an example. Suppose we do as MySQL’s NDB Cluster does, and use a hash
of each table’s primary key to partition the data across all the shards. This is a very
simple approach, but it doesn’t scale well because it frequently requires you to check
all the shards for the data you want. For example, if you want user 3’s blog posts, where
can you find them? They are probably scattered evenly across all the shards, because
they’re partitioned by the primary key, not by the user. Using a primary key hash makes
it simple to know where to store the data, but it might make it harder to fetch it,
depending on which data you need and whether you know the primary key.

Cross-shard queries are worse than single-shard queries, but as long as you don’t touch
too many shards, they might not be too bad. The worst case is when you have no idea
where the desired data is stored, and you need to scan every shard to find it.

A good partitioning key is usually the primary key of a very important entity in the
database. These keys determine the unit of sharding. For example, if you partition your
data by a user ID or a client ID, the unit of sharding is the user or client.

Scaling MySQL | 535

A good way to start is to diagram your data model with an entity-relationship diagram,
or an equivalent tool that shows all the entities and their relationships. Try to lay out
the diagram so that the related entities are close together. You can often inspect such
a diagram visually and find candidates for partitioning keys that you’d otherwise miss.
Don’t just look at the diagram, though; consider your application’s queries as well.
Even if two entities are related in some way, if you seldom or never join on the rela-
tionship, you can break the relationship to implement the sharding.

Some data models are easier to shard than others, depending on the degree of connec-
tivity in the entity-relationship graph. Figure 11-8 depicts an easily sharded data model
on the left, and one that’s difficult to shard on the right.

Figure 11-8. Two data models, one easy to shard and the other difficult

The data model on the left is easy to shard because it has many connected subgraphs
consisting mostly of nodes with just one connection, and you can “cut” the connections
between the subgraphs relatively easily. The model on the right is hard to shard, because
there are no such subgraphs. Most data models, luckily, look more like the lefthand
diagram than the righthand one.

When choosing a partitioning key, try to pick something that lets you avoid cross-shard
queries as much as possible, but also makes shards small enough that you won’t have
problems with disproportionately large chunks of data. You want the shards to end up
uniformly small, if possible, and if not, at least small enough that they’re easy to balance
by grouping different numbers of shards together. For example, if your application is
US-only and you want to divide your dataset into 20 shards, you probably shouldn’t
shard by state, because California has such a huge population. But you could shard by
county or telephone area code, because even though these won’t be uniformly popu-
lated, there are enough of them that you can still choose 20 sets that will be roughly

536 | Chapter 11: Scaling MySQL

equally populated in total, and you can choose them with an affinity that helps avoid
cross-shard queries.

Multiple partitioning keys

Complicated data models make data sharding more difficult. Many applications have
more than one partitioning key, especially if there are two or more important “dimen-
sions” in the data. In other words, the application might need to see an efficient, co-
herent view of the data from different angles. This means you might need to store at
least some data twice within the system.

For example, you might need to shard your blogging application’s data by both the
user ID and the post ID, because these are two common ways the application looks at
the data. Think of it this way: you frequently want to see all posts for a user, and all
comments for a post. But sharding by user doesn’t help you find comments for a post,
and sharding by post doesn’t help you find posts for a user. If you need both types of
queries to touch only a single shard, you’ll have to shard both ways.

Just because you need multiple partitioning keys doesn’t mean you’ll need to design
two completely redundant data stores. Let’s look at another example: a social net-
working book club website, where the site’s users can comment on books. The website
can display all comments for a all book, as well as all books a user has read and com-
mented on.

You might build one sharded data store for the user data and another for the book data.
Comments have both a user ID and a post ID, so they cross the boundaries between
shards. Instead of completely duplicating comments, you can store the comments with
the user data. Then you can store just a comment’s headline and ID with the book data.
This might be enough to render most views of a book’s comments without accessing
both data stores, and if you need to display the complete comment text, you can retrieve
it from the user data store.

Querying across shards

Most sharded applications have at least some queries that need to aggregate or join
data from multiple shards. For example, if the book club site shows the most popular
or active users, it must by definition access every shard. Making such queries work well
is the most difficult part of implementing data sharding, because what the application
sees as a single query needs to be split up and executed in parallel as many queries, one
per shard. A good database abstraction layer can help ease the pain, but even then such
queries are so much slower and more expensive than in-shard queries that aggressive
caching is usually necessary as well.

Some languages, such as PHP, don’t have good support for executing multiple queries
in parallel. A common way to work around this is to build a helper application, often
in C or Java, to execute the queries and aggregate the results. The PHP application then

Scaling MySQL | 537

queries the helper application, which is often a web service or a worker service such as
Gearman.

Cross-shard queries can also benefit from summary tables. You can build them by
traversing all the shards and storing the results redundantly on each shard when they’re
complete. If duplicating the data on each shard would be too wasteful, you can con-
solidate the summary tables onto another data store, so they’re stored only once.

Nonsharded data often lives in the global node, with heavy caching to shield it from
the load.

Some applications use essentially random sharding when perfectly even data distribu-
tion is important, or when there is no good partitioning key. A distributed search ap-
plication is a good example. In this case, cross-shard queries and aggregation are the
norm, not the exception.

Querying across shards isn’t the only thing that’s harder with sharding. Maintaining
data consistency is also difficult. Foreign keys won’t work across shards, so the normal
solution is to check referential integrity as needed in the application, or use foreign keys
within a shard, because internal consistency within a shard might be the most important
thing. It’s possible to use XA transactions, but this is uncommon in practice because
of the overhead.

You can also design cleanup processes that run intermittently. For example, if a user’s
book club account expires, you don’t have to remove it immediately. You can write a
periodic job to remove the user’s comments from the per-book shard, and you can build
a checker script that runs periodically and makes sure the data is consistent across the
shards.

Allocating data, shards, and nodes

Shards and nodes don’t have to have a one-to-one relationship. It’s often a good idea
to make a shard’s size much smaller than a node’s capacity, so you can store multiple
shards on a single node.

Keeping each shard small helps keep the data manageable. It makes it easier to do
database backups and recovery, and if the tables are small, it can ease jobs such as
schema changes. For example, suppose you have a 100 GB table that you can either
store as it is or split into 100 shards of 1 GB tables, which you would store on a single
node. Now suppose you want to add an index to the table(s). This would take much
longer on a 100 GB shard than it would on all the 1 GB shards combined, because the
1 GB shards fit completely in memory. You also might need to make the data unavail-
able while ALTER TABLE is running, and blocking 1 GB of data is much better than
blocking 100 GB.

538 | Chapter 11: Scaling MySQL

Smaller shards are easier to move around, too. This makes it easier to reallocate capacity
and rebalance the shards among the nodes. Moving a shard is generally not an efficient
process. You typically need to put the affected shard into read-only mode (a feature
you’ll need to build into your application), extract the data, and move it to another
node. This usually involves using mysqldump to export the data and mysql to reload it.
If you’re using Percona Server, you can use XtraBackup to move the files between
servers, which is much more efficient than dumping and reloading.

In addition to moving shards between nodes, you might need to think about moving
data between shards, preferably without interrupting service for the whole application.
If your shards are large, it will be harder to balance capacity by moving entire shards
around, so you’ll probably need a way to move the individual bits of data (for example,
a single user) between shards. Moving data between shards is usually a lot more com-
plicated than just moving shards, so it’s best not to do it if possible. That’s one reason
we recommend keeping the shard size manageable.

The relative size of your shards depends on the application’s needs. As a rough guide,
a “manageable size” for us is one that keeps tables small enough that we can perform
regular maintenance jobs, such as ALTER TABLE, CHECK TABLE, or OPTIMIZE TABLE, within
5 or 10 minutes.

If you make your shards too small, you might end up with too many tables, which can
cause problems with the filesystem or MySQL’s internal structures. Small shards might
also increase the number of cross-shard queries you need to make.

Arranging shards on nodes

You’ll need to decide how you want to arrange the shards on a node. Here are some
common methods:

• Use a single database per shard, and use the same name for each shard’s database.
This method is typical when you want each shard to mirror the original applica-
tion’s structure. It can work well when you’re making many application instances,
each of which is aware of only one shard.

• Place tables from several shards into one database, and include the shard number
in each table’s name (e.g., bookclub.comments_23). A single database can hold mul-
tiple shards in this configuration.

• Use a single database per shard, and include all the application’s tables in the
database. Include the shard number in the database name but not the table name
(e.g., the tables might be named bookclub_23.comments, bookclub_23.users, and so
on). This is common when an application connects to a single database and doesn’t
specify the database name in any of its queries. The advantage is that you don’t
need to customize the queries per shard, and it can ease the transition to sharding
for an application that uses only one database.

Scaling MySQL | 539

• Use a single database per shard, and include the shard number in both the database
and table names (e.g., the table name would become bookclub_23.comments_23).

• Run multiple MySQL instances per node, each with one or more shards, arranged
in any sensible combination of the ways we’ve just mentioned.

If you include the shard number in the table name, you’ll need some way to insert the
shard number into templated queries. Typical practices include special “magic” place-
holder values in queries, sprintf()-style formatting specifications such as %s, and string
interpolation with variables. Here is one way you can create templated queries in PHP:

$sql = "SELECT book_id, book_title FROM bookclub_%d.comments_%d... ";
$res = mysql_query(sprintf($sql, $shardno, $shardno), $conn);

You could also just use string interpolation:

$sql = "SELECT book_id, book_title FROM bookclub_$shardno.comments_$shardno ...";
$res = mysql_query($sql, $conn);

This is easy to build into a new application, but it might be harder for existing appli-
cations. When we’re building new applications and query templating isn’t an issue, we
like to use a single database per shard, with the shard number in both the database and
the table name. It adds some complexity for jobs such as scripting ALTER TABLE, but it
has advantages, too:

• You can move a shard easily if it’s completely contained in a single database.

• Because a database is a directory in the filesystem, you can manage a shard’s files
easily.

• It’s easy to find out how large the shard is if it isn’t mixed up with other shards.

• The globally unique table names help avoid mistakes. If table names are the same
everywhere, it’s easy to accidentally query the wrong shard because you connected
to the wrong node, or import one shard’s data into another shard’s tables.

You might want to consider whether your application’s data has any shard affinity. You
might benefit from placing certain shards “near” each other (on the same server, on the
same subnet, in the same data center, or on the same switch) to exploit some similarity
in the data access patterns. For example, you can shard by user and then place users
from the same country into shards on the same nodes.

Adding sharding support to an existing application often results in one shard per
node. This simplification helps limit how much you need to change the application’s
queries. Sharding is usually a pretty disruptive change for an application, so it makes
sense to simplify where possible. If you shard so each node looks like a miniature copy
of the whole application’s data, you might not have to change most of the queries or
worry about routing queries to the desired node.

540 | Chapter 11: Scaling MySQL

Fixed allocation

There are two main ways to allocate data to shards: the fixed and dynamic allocation
strategies. Both require a partitioning function that takes a row’s partitioning key as
input and returns the shard that holds the row.9

Fixed allocation uses a partitioning function that depends only on the partitioning key’s
value. Hash functions and modulus are good examples. These functions map each value
of the partitioning key into a limited number of “buckets” that can hold the data.

Suppose you want 100 buckets, and you want to find out where to put user 111. If
you’re using a modulus, the answer is easy: 111 modulus 100 is 11, so you should place
the user into shard 11.

If, on the other hand, you’re using the CRC32() function for hashing, the answer is 81:

mysql> SELECT CRC32(111) % 100;
+------------------+
| CRC32(111) % 100 |
+------------------+
| 81 |
+------------------+

The primary advantages of a fixed strategy are simplicity and low overhead. You can
also hardcode it into the application.

However, a fixed allocation strategy has disadvantages, too:

• If the shards are large and there are few of them, it can be hard to balance the load
across shards.

• Fixed allocation doesn’t let you decide where to store each piece of data, which is
important for applications that don’t have a very uniform load on the unit of
sharding. Some pieces of data will likely be much more active than others, and if
many of those happen to fall into the same shard, a fixed allocation strategy doesn’t
let you ease the strain by moving some of them to another shard. (This is not as
much of a problem when you have many small pieces of data in each shard, because
the law of large numbers will help even things out.)

• It’s usually harder to change the sharding, because it requires reallocating existing
data. For example, if you’ve sharded by a hash function modulus 10, you’ll have
10 shards. If the application grows and the shards get too large, you might want
to increase the number of shards to 20. That will require rehashing everything,
updating a lot of data, and moving data between shards.

Because of these limitations, we usually prefer dynamic allocation for new applications.
But if you’re sharding an existing application, you might find it easier to build a fixed

9. We’re using “function” in its mathematical sense here to refer to a mapping from the input (domain) to
the output (range). As you’ll see, you can create such a function in many ways, including using a lookup
table in your database.

Scaling MySQL | 541

allocation strategy instead of a dynamic one, because it’s simpler. That said, most ap-
plications that use fixed allocation end up with a dynamic allocation strategy sooner
or later.

Dynamic allocation

The alternative to fixed allocation is a dynamic allocation strategy that you store sep-
arately, mapping each unit of data to a shard. An example is a two-column table of user
IDs and shard IDs:

CREATE TABLE user_to_shard (
 user_id INT NOT NULL,
 shard_id INT NOT NULL,
 PRIMARY KEY (user_id)
);

The table itself is the partitioning function. Given a value for the partitioning key (the
user ID), you can find the shard ID. If the row doesn’t exist, you can pick the desired
shard and add it to the table. You can also change it later—that’s what makes this a
dynamic allocation strategy.

Dynamic allocation adds overhead to the partitioning function because it requires a
call to an external resource, such as a directory server (a data storage node that stores
the mapping). Such an architecture often needs more layers for efficiency. For example,
you can use a distributed caching system to store the directory server’s data in memory,
because in practice it doesn’t change all that much. Or—perhaps more commonly—
you can just add a shard_id column to the users table and store it there.

The biggest advantage of dynamic allocation is fine-grained control over where the data
is stored. This makes it easier to allocate data to the shards evenly and gives you a lot
of flexibility to accommodate changes you don’t foresee.

A dynamic mapping also lets you build multiple levels of sharding strategies on top of
the simple key-to-shard mapping. For example, you can build a dual mapping that
assigns each unit of sharding to a group (e.g., a group of users in the book club), and
then keeps the groups together on a shard where possible. This lets you take advantage
of shard affinities, so you can avoid cross-shard queries.

If you use a dynamic allocation strategy, you can have imbalanced shards. This can be
useful when your servers aren’t all equally powerful, or when you want to use some of
them for different purposes, such as archived data. If you also have the ability to reba-
lance shards at any time, you can maintain a one-to-one mapping of shards to nodes
without wasting capacity. Some people prefer the simplicity of one shard per node.
(But remember, there are advantages to keeping shards small.)

Dynamic allocation and smart use of shard affinities can prevent your cross-shard
queries from growing as you scale. Imagine a cross-shard query in a data store with
four nodes. In a fixed allocation, any given query might require touching all shards, but
a dynamic allocation strategy might let you run the same query on only three of the

542 | Chapter 11: Scaling MySQL

nodes. This might not seem like a big difference, but consider what will happen when
your data store grows to 400 shards: the fixed allocation will require querying all 400
shards, while the dynamic allocation might still require querying only 3.

Dynamic allocation lets you make your sharding strategy as complex as you wish. Fixed
allocation doesn’t give you as many choices.

Mixing dynamic and fixed allocation

You can use a mixture of fixed and dynamic allocation, which is often helpful and
sometimes required. Dynamic allocation works well when the directory mapping isn’t
too large. If there are many units of sharding, it might not work so well.

An example is a system that’s designed to store links between websites. Such a site
needs to store tens of billions of rows, and the partitioning key is the combination of
source and target URLs. (Just one of the two URLs might have hundreds of millions of
links, so neither URL is selective enough by itself.) However, it’s not feasible to store
all of the source and target URL combinations in the mapping table, because there are
many of them, and each URL requires a lot of storage space.

One solution is to concatenate the URLs and hash them into a fixed number of buckets,
which you can then map dynamically to shards. If you make the number of buckets
large enough—say, a million—you’ll be able to fit quite a few of them into each shard.
The result is that you get most of the benefits of dynamic sharding, without having a
huge mapping table.

Explicit allocation

A third allocation strategy is to let the application choose each row’s desired shard
explicitly when it creates the row. This is harder to do with existing data, so it’s not
very common when adding sharding to an application. However, it can be helpful
sometimes.

The idea is to encode the shard number into the ID, similar to the technique we showed
for avoiding duplicate key values in master-master replication. (See “Writing to Both
Masters in Master-Master Replication” on page 505 for more details.)

For example, suppose your application wants to create user 3 and assign it to shard 11,
and you’ve reserved the eight most significant bits of a BIGINT column for the shard
number. The resulting ID value is (11 << 56) + 3, or 792633534417207299. The appli-
cation can easily extract the user ID and the shard ID later. Here’s an example:

mysql> SELECT (792633534417207299 >> 56) AS shard_id,
 -> 792633534417207299 & ~(11 << 56) AS user_id;
+----------+---------+
| shard_id | user_id |
+----------+---------+
| 11 | 3 |
+----------+---------+

Scaling MySQL | 543

Now suppose you want to create a comment for this user and store it in the same shard.
The application can assign the comment ID 5 for the user, and combine the value 5
with the shard ID 11 in the same way.

The benefit of this approach is that each object’s ID carries its partitioning key along
with it, whereas other approaches usually require a join or another lookup to find the
partitioning key. If you want to retrieve a certain comment from the database, you don’t
need to know which user owns it; the object’s ID tells you where to find it. If the object
were sharded dynamically by user ID, you’d have to find the comment’s user, then ask
the directory server which shard to look on.

Another solution is to store the partitioning key together with the object in separate
columns. For example, you’d never refer just to comment 5, but to comment 5 be-
longing to user 3. This approach will probably make some people happier, because it
doesn’t violate first normal form; however, the extra column causes more overhead,
coding, and inconvenience. (This is one case where we feel there’s an advantage to
storing two values in a single column.)

The drawback of explicit allocation is that the sharding is fixed, and it’s harder to
balance shards. On the other hand, this approach works well with the combination of
fixed and dynamic allocation. Instead of hashing to a fixed number of buckets and
mapping these to nodes, you encode the bucket as part of each object. This gives the
application control over where the data is located, so it can place related data together
on the same shard.

BoardReader (http://boardreader.com) uses a variation of this technique: it encodes the
partitioning key in the Sphinx document ID. This makes it easy to find each search
result’s related data in the sharded data store. See Appendix F for more on Sphinx.

We’ve described mixed allocation because we’ve seen cases where it’s useful, but nor-
mally we don’t recommend it. We like to use dynamic allocation when possible, and
avoid explicit allocation.

Rebalancing shards

If necessary, you can move data to different shards to rebalance the load. For example,
many readers have probably heard developers from large photo-sharing sites or popular
social networking sites mention their tools for moving users to different shards.

The ability to move data between shards has its benefits. For example, it can help you
upgrade your hardware by enabling you to move users off the old shard onto the new
one without taking the whole shard down or making it read-only.

However, we like to avoid rebalancing shards if possible, because it can disrupt service
to your users. Moving data between shards also makes it harder to add features to the
application, because new features might have to include an upgrade to the rebalance
script. If you keep your shards small enough, you might not need to do this; you can

544 | Chapter 11: Scaling MySQL

http://boardreader.com

often rebalance the load by moving entire shards, which is easier than moving part of
a shard (and more efficient, in terms of cost per row of data).

One strategy that works well is to use a dynamic sharding strategy and assign new data
to shards randomly. When a shard gets full enough, you can set a flag that tells the
application not to give it any new data. You can then flip the flag back if you want more
data on that shard in the future.

Suppose you install a new MySQL node and place 100 shards on it. To begin, you set
their flags to 1, so the application knows they’re ready for new data. Once they each
have enough data (10,000 users each, for example), you set their flags to 0. Then, if the
node becomes underloaded after a while because of abandoned accounts, you can re-
open some of the shards and add new users to them.

If you upgrade the application and add features that make each shard’s query load
higher, or if you just miscalculated the load, you can move some of the shards to new
nodes to ease the load. The drawback is that an entire shard might be read-only or
offline while you do this. It’s up to you and your users to decide whether that’s
acceptable.

Another tactic we use a lot is to set up two replicas of a shard, each with a complete
copy of the shard’s data. We then make each replica responsible for half of the data,
and stop sending queries to the master completely. Each replica contains some data
it doesn’t use; we set up a background job with a tool such as Percona Toolkit’s
pt-archiver to remove the unwanted data. This is simple and requires practically zero
downtime.

Generating globally unique IDs

When you convert a system to use a sharded data store, you frequently need to generate
globally unique IDs on many machines. A monolithic data store often uses AUTO_
INCREMENT columns for this purpose, but that doesn’t tend to work well across many
servers. There are several ways to solve this problem:

Use auto_increment_increment and auto_increment_offset
These two server settings instruct MySQL to increment AUTO_INCREMENT columns
by a desired value and to begin numbering from a desired offset. For example, in
the simplest case with two servers, you can configure the servers to increment by
two, set one server’s offset to one, and set the other’s to two (you can’t set either
value to zero). Now one server’s columns will always contain even numbers, and
the other’s will always contain odd numbers. The setting applies to all tables in the
server.

Because of its simplicity and lack of dependency on a central node, this is a popular
way to generate values, but it requires you to be careful with your server configu-
rations. It’s easy to accidentally configure servers so that they generate duplicate

Scaling MySQL | 545

numbers, especially if you move them into different roles as you add more servers,
or when you recover from failures.

Create a table in the global node
You can create a table with an AUTO_INCREMENT column in your global database
node, and applications can use this to generate unique numbers.

Use memcached
There’s an incr() function in the memcached API that can increment a number
atomically and return the result. You can use Redis, too.

Allocate numbers in batches
The application can request a batch of numbers from a global node, use all the
numbers, and then request more.

Use a combination of values
You can use a combination of values, such as the shard ID and an incrementing
number, to make each server’s values unique. See the discussion of this technique
in the previous section.

Use GUID values
You can generate globally unique values with the UUID() function. Beware, though:
this function does not replicate correctly with statement-based replication, al-
though it works fine if your application selects the value into its own memory and
then uses it as a literal in statements. GUID values are large and nonsequential, so
they don’t make good primary keys for InnoDB tables. See “Inserting rows in pri-
mary key order with InnoDB” on page 173 for more on this. There’s also a
UUID_SHORT() function in MySQL 5.1 and newer versions, which has some nice
properties such as being sequential and only 64 bits instead of 128.

If you use a global allocator to generate values, be careful that the single point of con-
tention doesn’t create a bottleneck for your application.

Although the memcached approach can be very fast (tens of thousands of values per
second), it isn’t persistent. Each time you restart the memcached service, you’ll need to
initialize the value in the cache. This could require you to find the maximum value
that’s in use across all shards, which might be very slow and difficult to do atomically.

Tools for sharding

One of the first things you’ll have to do when designing a sharded application is write
code for querying multiple data sources.

It’s generally a poor design to expose the multiple data sources to the application
without any abstraction, because it can add a lot of code complexity. It’s better to hide
the data sources behind an abstraction layer. This layer might handle the following
tasks:

• Connecting to the correct shard and querying it

• Distributed consistency checks

546 | Chapter 11: Scaling MySQL

• Aggregating results across shards

• Cross-shard joins

• Locking and transaction management

• Creating shards (or at least discovering new shards on the fly) and rebalancing
shards if you have time to implement this

You might not have to build your own sharding infrastructure from scratch. There are
several tools and systems that either provide some of the necessary functionality or are
specifically designed to implement a sharded architecture.

One database abstraction layer with sharding support is Hibernate Shards (http://shards
.hibernate.org), Google’s extension to the open source Java-based Hibernate object-
relational mapping (ORM) library. It provides shard-aware implementations of the
Hibernate Core interfaces, so applications don’t necessarily have to be redesigned to
use a sharded data store; in fact, they might not even have to be aware that they’re using
one. Hibernate Shards uses a fixed allocation strategy to allocate data to the shards.
Another Java sharding system is HiveDB (http://www.hivedb.org).

In PHP, you can use Justin Swanhart’s Shard-Query system (http://code.google.com/p/
shard-query/), which automatically decomposes queries, executes them in parallel, and
combines the results. Commercial systems targeted at similar use cases are ScaleBase
(http://www.scalebase.com), ScalArc (http://www.scalarc.com), and dbShards (http://
www.dbshards.com).

Sphinx is a full-text search engine, not a sharded data storage and retrieval system, but
it is still useful for some types of queries across sharded data stores. It can query remote
systems in parallel and aggregate the results. Sphinx is discussed further in Appendix F.

Scaling by Consolidation
A heavily sharded architecture creates an opportunity to get more out of your hardware.
Our research and experience have shown that MySQL can’t use the full power of
modern hardware. As you scale beyond about 24 CPU cores, MySQL’s efficiency starts
to level off. A similar thing happens beyond 128 MB of memory, and MySQL can’t even
come close to using the full I/O power of high-end PCIe flash devices such as Virident
and Fusion-io cards.

Instead of using a single server instance on a powerful machine, there’s another option.
You can make your shards small enough that you can fit several per machine (a practice
we’ve been advocating anyway), and run several instances per server, carving up the
server’s physical resources to give each instance a portion.

This actually works, although we wish it weren’t necessary. It’s a combination of the
scale-up and scale-out approaches. You can do it in other ways—you don’t have to use
sharding—but sharding is a natural fit for consolidation on large servers.

Scaling MySQL | 547

http://shards.hibernate.org
http://shards.hibernate.org
http://www.hivedb.org
http://code.google.com/p/shard-query/
http://code.google.com/p/shard-query/
http://www.scalebase.com
http://www.scalarc.com
http://www.dbshards.com
http://www.dbshards.com

Some people like to achieve consolidation with virtualization, which has its benefits.
But virtualization also has a pretty hefty performance cost itself in many cases. It de-
pends on the technology, but it’s usually noticeable, and the overhead is especially
exaggerated when I/O is very fast. As an alternative, you can run multiple MySQL
instances, each listening on different network ports or binding to different IP addresses.

We’ve been able to achieve a consolidation factor of up to 10x or 15x on powerful
hardware. You’ll have to balance the cost of the administrative complexity with the
benefit of better performance to determine what’s best for you.

At this point, the network is likely to become the bottleneck—a problem most MySQL
users don’t run into very often. You can address the problem by using multiple NICs
and bonding them. The Linux kernel isn’t ideal for this, depending on the version,
because older kernels can use only one CPU for network interrupts per bonded device.
As a result, you shouldn’t bond too many cables into too few virtual devices, or you’ll
run into a different network bottleneck inside the kernel. Newer kernels should help
with this, so check your distribution to find out what your options are.

Another way you can get more out of this strategy is to bind each MySQL instance to
specific cores. This helps for two reasons: first because MySQL gets more performance
per core at lower core counts due to its internal scalability limitations, and second when
an instance is running threads on many cores, there’s less overhead due to synchro-
nizing shared data between the cores. This helps avoid the scalability limitations of the
hardware itself. Limiting MySQL to only some cores can reduce the crosstalk between
CPU cores. Notice the recurring theme? Pin the process to cores that are on the same
physical socket for the best results.

Scaling by Clustering
The dream scenario for scaling is a single logical database that can hold as much data,
serve as many queries, and grow as large as you need it to. Many people’s first thought
is to create a “cluster” or “grid” that handles this seamlessly, so the application doesn’t
need to do any dirty work or know that the data really lives in many servers instead of
just one. With the rise of the cloud, autoscaling—dynamically adding servers to or
removing them from the cluster in response to changes in workload or data size—is
also becoming interesting.

In the second edition of this book, we expressed our regret that the available technology
wasn’t really up to the task. Since then, a lot of the buzz has centered around so-called
NoSQL technologies. Many NoSQL proponents made strange and unsubstantiated
claims such as “the relational model can’t scale,” or “SQL can’t scale.” New concepts
emerged, and new catchphrases were on everyone’s lips. Who hasn’t heard of eventual
consistency, BASE, vector clocks, or the CAP theorem these days?

But as time has passed, sanity has been at least partially restored. Experience is begin-
ning to reveal that many of the NoSQL databases are primitive in their own ways and

548 | Chapter 11: Scaling MySQL

aren’t really up to a lot of tasks themselves.10 In the meantime, a variety of SQL-based
technologies have arisen—what Matt Aslett of the 451 Group calls NewSQL databases.
What’s the difference between SQL and NewSQL? The NewSQL databases are setting
out to prove that SQL and relational technology aren’t the problem. Rather, the scal-
ability problems in relational databases are implementation problems, and new imple-
mentations are showing better results.

Is everything old new again? Yes and no. A lot of the high-performance implementations
of clustered relational databases are built on low-level building blocks that look re-
markably like NoSQL databases, especially key-value stores. For example, NDB Cluster
isn’t a SQL database; it’s a scalable database that can be accessed through its native
API, which is very much NoSQL, but it can also talk SQL when you put a MySQL
storage engine in front of it. It is a fully distributed, shared-nothing, high-performance,
auto-sharded, transactional database server with no single point of failure. It’s a very
advanced database that has no equal for particular uses. And it has become much more
powerful, sophisticated, and general-purpose in the last few years. At the same time,
the NoSQL databases are gradually starting to look more like relational databases, and
some are even developing query languages that resemble SQL. The typical clustered
database of the future will probably look a bit like a blend of SQL and NoSQL, with
multiple access mechanisms to suit different use cases. So we’re learning from NoSQL,
but SQL is here to stay in clustered databases, too.

At the time of writing, the current breed of clustered or distributed database technol-
ogies that rub shoulders with the MySQL world roughly include the following: NDB
Cluster, Clustrix, Percona XtraDB Cluster, Galera, Schooner Active Cluster, Continu-
ent Tungsten, ScaleBase, ScaleArc, dbShards, Xeround, Akiban, VoltDB, and GenieDB.
These are all more or less built on, accessible through, or related to MySQL. We cover
some of them elsewhere in the book—for example, we’ll look at Xeround in Chap-
ter 13, and we discussed Continuent Tungsten and several other technologies back in
Chapter 10—but we’ll devote a little space to a couple of them here as well.

Before we start, we need to point out again that scalability, high availability, transac-
tionality, and so on are really orthogonal properties of database systems. Some people
get confused and treat them as the same thing, but they’re not. In this chapter we’re
focusing on scalability. However, in real life a scalable database isn’t much good unless
it’s also high-performance, and who wants to scale without high availability, and so
on. Some combination of all these nice properties is the holy grail of databases, and it
happens to be very hard to achieve, but that’s out of scope for this chapter.

Finally, most of the clustered NewSQL products are relatively new on the scene, with
the exception of NDB Cluster. We haven’t seen enough production deployment to
know their strengths and limitations thoroughly. And although they might speak the
MySQL wire protocol or otherwise be related to MySQL, they aren’t MySQL, so they’re

10. Yeah, yeah, we know, choose the right tool for the job. Insert other self-obvious but insightful-sounding
quote here.

Scaling MySQL | 549

really out of scope for this whole book. As a result, we’ll just mention them and leave
it to you to judge their suitability.

MySQL Cluster (NDB Cluster)

MySQL Cluster is a combination of two technologies: the NDB database, and a MySQL
storage engine as a SQL frontend. NDB is a distributed, fault-tolerant, shared-nothing
database that offers synchronous replication and automatic data partitioning across
the nodes. The NDB Cluster storage engine translates SQL into NDB API calls, and
performs operations inside the MySQL server when they can’t be pushed to NDB for
execution. (NDB is a key-value data store, and it can’t do complex operations such as
joins and aggregation.)

NDB is a sophisticated database that has very little in common with MySQL. You don’t
even need MySQL to use NDB: you can run it as a standalone key-value database server.
Its strong points include extremely high throughput for writes and lookups by key.
NDB automatically decides which node should hold a given value, based on a hash of
the key. When you access NDB through MySQL, the row’s primary key is the key, and
the rest of the row is the value.

Because it’s based on a whole new set of technologies, and because the cluster is fault-
tolerant and distributed, NDB is specialized and nontrivial to administer correctly.
There are a lot of moving parts, and operations such as upgrading the cluster or adding
a node must be performed in exactly the right way to avoid problems. NDB is open
source technology, but you can purchase commercial support from Oracle. Part of that
subscription is the proprietary Cluster Manager product, which helps automate many
tedious and tricky tasks. (Severalnines also offers a cluster management product; see
http://www.severalnines.com)

MySQL Cluster has been rapidly gaining more features and capabilities. In recent ver-
sions, for example, it supports more types of changes to the cluster without downtime,
and it can execute some kinds of queries on the nodes, where the data is stored, to
reduce the need to pull data across the wire and execute the queries inside MySQL.
(This feature has been renamed from push-down joins to adaptive query localization.)

NDB used to have a completely different performance profile from other MySQL
storage engines, but recent versions are more general-purpose. It’s becoming a better
solution for an increasing variety of applications, including games and mobile appli-
cations. We should emphasize that NDB is serious technology that powers some of the
world’s largest mission-critical applications under extremely high loads, with demand-
ing latency and uptime requirements. Practically every phone call placed on a cellular
network anywhere in the world uses NDB, for example, and not just in a casual way—
it’s the central and vital database for many cellular providers.

NDB needs a fast and reliable network to connect the nodes, and it’s better to have
special high-speed interconnects for the best performance. It also operates mostly in
memory, so it requires a lot of memory across the servers.

550 | Chapter 11: Scaling MySQL

http://www.severalnines.com

What isn’t it good at? It’s not great at complex queries yet, such as those with lots of
joins or aggregation. Don’t count on using it for data warehousing, for example. It is a
transactional system, but it does not have MVCC support, and reads are locking. It also
does not do any deadlock detection. If there’s a deadlock, NDB resolves it with a time-
out. There are many other fine points and caveats you should know about, which
deserve a dedicated book. (There are books on MySQL Cluster, but most are outdated.
Your best bet is the manual.)

Clustrix

Clustrix (http://www.clustrix.com) is a distributed database that understands the
MySQL protocol, so it is a drop-in replacement for MySQL. Beyond understanding the
protocol, it is completely new technology and isn’t built on MySQL at all. It is a fully
ACID, transactional SQL database with MVCC, targeted at OLTP workloads. Clustrix
partitions the data across nodes for fault tolerance and distributes queries to the data
to execute in parallel on the nodes, rather than fetching the data from the storage
nodes to a centralized execution node. The cluster is expandable online by adding more
nodes to handle more data or more load. Clustrix is similar to MySQL Cluster in some
ways; key differences are its fully distributed execution and its lack of a top-level
“proxy” or query coordinator in front of the cluster. Clustrix understands the MySQL
protocol natively, so it doesn’t need MySQL to translate between the MySQL protocol
and its own. In contrast, MySQL cluster is really assembled from three components:
MySQL, the NDBCLUSTER storage engine, and NDB.

Our laboratory evaluations and benchmarks confirm that Clustrix offers high perfor-
mance and scalability. Clustrix looks like a very promising technology, and we are
continually watching and evaluating it.

ScaleBase

ScaleBase (http://www.scalebase.com) is a software proxy that sits between your appli-
cation and a number of backend MySQL servers. It splits incoming queries into pieces,
distributes them for simultaneous execution on the backend servers, and assembles the
results for delivery back to the application. At the time of writing we have no experience
with it in production, however. Competing technologies include ScaleArc (http://www
.scalearc.com) and dbShards (http://www.dbshards.com).

GenieDB

GenieDB (http://www.geniedb.com) was born as a NoSQL document store for geo-
graphically distributed deployment. It now also has a SQL layer, which is accessible
through a MySQL storage engine. It is built on a collection of technologies including
a local in-memory cache, a messaging layer, and a persistent disk data store. These
work together to provide the application with the choice of executing queries quickly
against local data with relaxed eventual consistency guarantees, or against the dis-
tributed cluster (with added network latency) to guarantee the latest view of the data.

Scaling MySQL | 551

http://www.clustrix.com
http://www.scalebase.com
http://www.scalearc.com
http://www.scalearc.com
http://www.dbshards.com
http://www.geniedb.com

The MySQL compatibility layer through the storage engine doesn’t offer 100% of
MySQL’s features, but it is rich enough to support applications such as Joomla!, Word-
Press, and Drupal out of the box. The use case for the MySQL storage engine is to make
GenieDB available alongside an ACID storage engine such as InnoDB. GenieDB is not
an ACID database.

We have not worked with GenieDB ourselves, nor have we seen any production
deployments.

Akiban

Akiban (http://www.akiban.com) is probably best described as a query accelerator. It
stores data physically to match query patterns, making it possible to perform joins
across tables with much lower cost. Although similar to denormalization, the data
layout is not redundant, so it is not the same thing as precomputing joins and storing
the results. Instead, tuples from the joined tables are interleaved with one another, so
they can be scanned in join order sequentially. This requires the administrator to iden-
tify the query patterns that would benefit from the so-called “table grouping” technique
and design table groups optimized for the queries. The currently suggested system
architecture is to configure Akiban to replicate from your MySQL master, and use it to
serve queries that would otherwise be slow to execute. The speedup factor is claimed
to be one to two orders of magnitude. However, we have neither seen production de-
ployments nor conducted laboratory evaluations.11

Scaling Back
One of the simpler ways to deal with an increasing data size and workload is to archive
and purge unneeded data. Depending on your workload and data characteristics, you
might be able to realize significant gains from archiving and purging data you don’t
need. This doesn’t replace other scaling strategies, but it can be part of a short-term
strategy to buy time and should probably be part of a long-term plan to cope with large
data volumes.

Here are some things to think about when designing archiving and purging strategies:

Impact on the application
A well-designed archiving strategy can move data away from a heavily loaded OLTP
server without impacting transaction processing noticeably. The key is to make it
efficient to find the rows to remove, and to remove them in small chunks. You’ll
usually need to balance the number of rows you archive at once with the size of a
transaction to find a good compromise between lock contention and transactional
overhead. You should design your archive jobs to yield to transactional processing
jobs when necessary.

11. We might be cheating a bit by including Akiban in the list of clustered databases, because it’s not really
clustered. However, it’s similar to some of the other NewSQL databases in some ways.

552 | Chapter 11: Scaling MySQL

http://www.akiban.com

Which rows to archive
You can purge or archive data once you know you’ll never refer to it again, but you
can also design your application to archive seldom-accessed data. You can store
the archived data adjacent to the core tables and access it through views, or even
move it to another server entirely.

Maintaining data consistency
Data relationships make archiving and purging more complex. A well-designed
archiving job keeps the data logically consistent, or at least as consistent as the
application needs, without involving multiple tables in huge transactions.

Deciding which tables to archive first is always a challenge when there are rela-
tionships among the tables. You’ll have to consider the impact of “orphaned” or
“widowed” rows while archiving. The main choice is usually whether to violate
foreign keys (you can disable InnoDB foreign key constraints with SET FOREIGN
_KEY_CHECKS=0) or to leave “dangling pointer” records temporarily. Which is pref-
erable depends on how your application views the data. If the application views a
particular set of related tables from the top down, you should probably archive
them in the same order. For example, if your application always examines orders
before invoices, archive the orders first; your application shouldn’t see the or-
phaned invoices, and you can archive them next.

Avoiding data loss
If you’re archiving between servers, you probably shouldn’t do distributed trans-
actions, and you might be archiving into MyISAM or another nontransactional
storage engine anyway. Therefore, to avoid data loss, you should insert into the
destination before deleting from the source. It might also be a good idea to write
archived data to a file along the way. You should design your archive jobs so you
can kill and restart them at will, without causing inconsistencies or index-violation
errors.

Unarchiving
You can often trim a lot more data by archiving with an unarchiving strategy. This
helps because it lets you archive data you’re not sure you’ll need, with the option
of bringing it back later. If you can identify a few points of entry where your system
can check whether it needs to retrieve some archived data, it might be fairly easy
to implement such a strategy. For example, if you archive possibly inactive users,
the entry point might be the login process. If a login fails because there’s no such
user, you can check the archive to see whether the user exists there, and if so,
retrieve the user from the archive and process the login.

Percona Toolkit contains pt-archiver, a tool that can help you archive
and/or purge MySQL tables efficiently. It does not offer any support for
unarchiving, however.

Scaling MySQL | 553

Keeping active data separate

Even if you don’t actually move stale data away to another server, many applications
can benefit from separating active and inactive datasets. This helps keep caches effi-
cient, and enables you to use different kinds of hardware or application architectures
for the active and inactive data. Here are some ways to accomplish this:

Splitting tables into parts
It’s often smart to split tables, especially if the entire table won’t fit in memory. For
example, you can split the users table into active_users and inactive_users. You
might think this isn’t necessary because the database will cache only the “hot” data
anyway, but that depends on your storage engine. If you use InnoDB, caching
works a page at a time. If you can fit 100 users on a page and only 10% of your
users are active, that probably makes every page “hot” from InnoDB’s point of
view—yet 90% of each “hot” page will be wasted space. Splitting the table in two
could improve your memory usage dramatically.

MySQL partitioning
MySQL 5.1 offers natively partitioned tables, which can help keep the most recent
data in memory. See Chapter 7 for more about partitioning.

Time-based data partitioning
If your application continually gets new data, it’s likely that the newest data will
be far more active than the older data. For example, we know of one blog service
whose traffic is mostly from posts and comments created in the last seven days.
Most of its updates are to the same set of data. As a result, this data is kept entirely
in memory, with replication to ensure there is a recoverable copy on disk if there’s
a failure. The rest of the data lives forever in another location.

We’ve also seen designs that store each user’s data in shards on two nodes. New
data goes to the “active” node, which has a lot of memory and fast disks. This data
is optimized for very fast access. The other node stores older data, with very large
(but slower) disks. The application assumes that it’s not likely to need the older
data. This is a good assumption for a lot of applications, which might be able to
satisfy 90% or more of requests from only the most recent 10% of the data.

You can implement this sharding policy easily with dynamic sharding. For exam-
ple, your sharding directory’s table definition might look something like the
following:

CREATE TABLE users (
 user_id int unsigned not null,
 shard_new int unsigned not null,
 shard_archive int unsigned not null,
 archive_timestamp timestamp,
 PRIMARY KEY (user_id)
);

An archive script can move older data from the active node to the archive node,
updating the archive_timestamp column when it moves a user’s data to the archive

554 | Chapter 11: Scaling MySQL

node. The shard_new and shard_archive columns tell you which shard numbers
hold the data.

Load Balancing
The basic idea behind load balancing is simple: to share the workload among a
collection of servers. The usual way to do this is to place a load balancer (often a spe-
cialized piece of hardware) in front of the servers. The load balancer then routes in-
coming connections to the least busy available server. Figure 11-9 shows a typical load-
balancing setup for a large website, with one load balancer for the HTTP traffic and
another for MySQL traffic.

Figure 11-9. Typical load-balancing architecture for a read-intensive website

Load balancing has five common goals:

Scalability
Load balancing can help with certain kinds of scalability strategies, such as read-
write splitting to read from replicas.

Load Balancing | 555

Efficiency
Load balancing helps you use resources more efficiently because you have control
over how requests are routed. This is particularly important if your servers aren’t
all equally powerful: you can direct more work to the more powerful machines.

Availability
A smart load-balancing solution uses the servers that are available at each moment.

Transparency
Clients don’t need to know about the load-balancing setup. They don’t have to
care about how many machines are behind the load balancer, or what their names
are; the load balancer lets the clients see a single virtual server.

Consistency
If your application is stateful (database transactions, website sessions, etc.), the
load balancer should direct related requests to a single server so that the state isn’t
lost between requests. This relieves the application of having to keep track of
which server it’s connected to.

In the MySQL world, load-balancing architectures are often tightly coupled with
sharding and replication. You can mix and match load-balancing and high-availability
solutions and place them at whatever level is appropriate within your application. For
example, you can load balance across multiple SQL nodes in a MySQL Cluster instal-
lation. You can also load balance across data centers, and within each data center you
might have a sharded architecture, each node of which is actually part of a master-
master replication pair with many replicas that are load balanced yet again. The same
is true of high-availability strategies; you can have multiple levels of failover in an
architecture.

Load balancing has many nuances. For example, one of the challenges is managing
read/write policies. Some load-balancing technologies do this themselves, whereas
others require the application to be aware of which nodes are readable and writable.

You should consider these factors when you decide how to implement load balancing.
A wide variety of load-balancing solutions are available, ranging from peer-based im-
plementations such as Wackamole (http://www.backhand.org/wackamole/) to DNS,
LVS (Linux Virtual Server; http://www.linuxvirtualserver.org), hardware load balanc-
ers, TCP proxies, MySQL Proxy, and managing the load balancing in the application.

Among our customers, perhaps the most common tactic is to use hardware load bal-
ancers. Many of them use HAProxy (http://haproxy.1wt.eu), which seems to be very
popular and work quite well. Some people use another TCP proxy, such as Pen (http:
//siag.nu/pen/). We don’t see MySQL Proxy used very often.

Connecting Directly
Some people automatically associate load balancing with a central system that’s inser-
ted between the application and the MySQL servers. This isn’t the only way to load

556 | Chapter 11: Scaling MySQL

http://www.backhand.org/wackamole/
http://www.linuxvirtualserver.org
http://haproxy.1wt.eu
http://siag.nu/pen/
http://siag.nu/pen/

balance, though. You can load balance and yet still connect directly from the applica-
tion to the MySQL servers. In fact, centralized load-balancing systems usually work
well only when there’s a pool of servers the application can treat as interchangeable. If
the application needs to make a decision such as whether it’s safe to perform a read
from a replica server, it usually needs to connect directly to the server.

Besides making special-case logic possible, handling the load-balancing decisions in
the application can actually be very efficient. For example, if you have two identical
replicas, you can choose to use one of them for all queries that touch certain shards
and the other for queries that touch other shards. This makes good use of the replicas’
memory, because each of them caches only a portion of the data from its disks in
memory. And if one of the replicas fails, the other still has all the data required to serve
queries to both shards.

The following sections discuss some common ways to connect directly from the ap-
plication, and some of the things you should consider as you evaluate each option.

Splitting reads and writes in replication

MySQL replication gives you multiple copies of your data and lets you choose whether
to run a query on the master or a replica. The primary difficulty is how to handle stale
data on the replica, because replication is asynchronous. You should also treat replicas
as read-only, but the master can handle both read and write queries.

You usually have to modify your application so that it’s aware of these concerns. The
application can then use the master for writes and split the reads between the master
and the replicas; it can use the replicas when possibly stale data doesn’t matter and use
the master for data that has to be up-to-date. We call this read/write splitting.

If you use a master-master pair with an active and a passive master, the same consid-
erations hold. In this configuration, though, only the active server should receive writes.
Reads can go to the passive server if it’s OK to read potentially stale data.

The biggest problem is how to avoid artifacts caused by reading stale data. The classic
artifact is when a user makes some change, such as adding a comment to a blog post,
then reloads the page but doesn’t see the change because the application read stale data
from a replica.

Some of the most common methods of splitting reads and writes are as follows:

Query-based split
The simplest split is to direct all writes and any reads that can never tolerate stale
data to the active or master server. All other reads go to the replica or passive server.
This strategy is easy to implement, but in practice it won’t use the replica as often
as it could, because very few read queries can always tolerate stale data.

Stale-data split
This is a minor enhancement of the query-based split strategy. Relatively little extra
work is required to make the application check the replica’s lag and decide whether

Load Balancing | 557

or not its data is too stale to read. Many reporting applications can use this strategy:
as long as the nightly data load has finished replicating to the replica, they don’t
care whether it is 100% caught up with the master.

Session-based split
A slightly more sophisticated way to decide whether a read can go to a replica is
to note whether the user has changed any data. The user doesn’t have to see the
most up-to-date data from other users but should see her own changes. You can
implement this at the session level by flagging the session as having made a change
and directing the user’s read queries to the master for a certain period of time after
that. This is the strategy we usually suggest to clients, because it’s a good com-
promise between simplicity and effectiveness.

If you want to get fancy, you can combine session-based splitting with replication
lag monitoring. If the user changed some data 10 seconds ago and no replica is
more than 5 seconds behind, it’s safe to read from a replica. It’s a very good idea
to select one of the replicas and use it for the whole session, though, or the user
might see strange effects caused by some of the replicas being farther behind than
others.

Version-based split
This is similar to session-based splitting: you can track version numbers and/or
timestamps for objects, and read the object’s version or timestamp from the replica
to determine whether its data is fresh enough to use. If the replica’s data is too old,
you can read the fresh data from the master. You can also increment the top-level
item’s version number even when the object itself doesn’t change, which simplifies
staleness checks (you need to look in only one place—at the top-level item). For
example, you can update the user’s version if he posts a new blog entry. This will
cause reads to go to the master.

Reading the object’s version from the replica adds overhead, which you can reduce
with caching. We discuss caching and object versioning further in later chapters.

Global version/session split
This is a variation on version- and session-based splitting. When the application
performs a write, it runs SHOW MASTER STATUS after the transaction commits. It stores
the master’s log coordinates in the cache as the modified object’s and/or session’s
version number. Then, when the application connects to the replica, it runs SHOW
SLAVE STATUS and compares the replica’s coordinates to the stored version. If the
replica has advanced to at least the point at which the master committed the trans-
action, the replica is safe to use for the read.

Most read/write splitting solutions require you to monitor replication lag and use it to
decide where to direct reads, either in the application or through a load balancer or
another man-in-the-middle system. If you do this, be aware that the Seconds_behind
_master column from SHOW SLAVE STATUS is not a reliable way to monitor lag. (See
Chapter 10 for details.) The pt-heartbeat tool from Percona Toolkit can help you

558 | Chapter 11: Scaling MySQL

monitor replication delay, and help maintain metadata such as binary log positions,
which can ease the problems with some of the strategies we just discussed.

If you don’t care how much hardware it takes to serve your load, you can keep things
simpler and not use replication for scaling reads. That might let you avoid the com-
plexity of splitting reads between the master and replicas. Some people think this makes
sense; others think it wastes hardware. This division reflects differing goals: do you
want scalability only, or both scalability and efficiency? If you want efficiency too, and
thus want to use the replicas for something other than just keeping a copy of the data,
you’ll probably have to deal with some added complexity.

Changing the application configuration

One way you can distribute load is to reconfigure your application. For example, you
can configure several machines to share the load of generating large reports. Each ma-
chine’s configuration can instruct it to connect to a different MySQL replica and gen-
erate reports for every Nth customer or site.

This system is generally very simple to implement, but if it requires any code changes—
including changes to configuration files—it becomes brittle and unwieldy. Anything
hardcoded that you have to change on every server, or change in a central location and
“publish” via file copies or source-control update commands, is inherently limited. If
you store the configuration in the database and/or a cache, you can avoid the need to
publish code changes.

Changing DNS names

A crude load-balancing technique, but one that works acceptably for some simple ap-
plications, is to create DNS names for various purposes. You can then point the names
at different servers as appropriate. The simplest implementation is to have one DNS
name for the read-only servers and one for the writable server. If the replicas are keeping
up with the master, you can change the read-only DNS name to point to the replicas;
when they fall behind, you can point it back to the master.

The DNS technique is very easy to implement, but it has many drawbacks. The biggest
problem is that DNS is not completely under your control:

• DNS changes are not instantaneous or atomic. It can take a long time for DNS
changes to propagate throughout a network or between networks.

• DNS data is cached in various places, and expiry times are advisory, not mandatory.

• DNS changes might require an application or server restart to take effect fully.

• It’s not a good idea to use multiple IP addresses for a DNS name and rely on round-
robin behavior to balance requests. The round-robin behavior isn’t always
predictable.

• The DBA might not always have direct access to DNS.

Load Balancing | 559

Unless the application is very simple, it’s dangerous to rely on a system that’s not
controllable. You can improve your control a little by making changes to /etc/hosts
instead of DNS. When you publish a change to this file, you know the change has taken
effect. This is better than waiting for a cached DNS entry to expire, but it is still not ideal.

We usually advise people to build for zero reliance on DNS. It’s a good idea to avoid
it even for simple applications, because you never know how large your application
will grow.

Moving IP addresses

Some load-balancing solutions rely on moving virtual IP addresses12 between servers,
which can work very well. This might sound similar to making DNS changes, but it’s
not the same thing. Servers don’t listen for network traffic to a DNS name; they listen
for traffic to a specific IP address, so moving IP addresses allows DNS names to
remain static. You can force IP address changes to be noticed very quickly and atomi-
cally via Address Resolution Protocol (ARP) commands.

The most common technology we see used for this is Pacemaker, the successor to the
Linux-HA project’s Heartbeat tool. For example, you can have a single IP address
associated with a role such as “read-only,” and it takes care of moving the IP address
between machines as needed. Other tools for this purpose include LVS and
Wackamole.

One handy technique is to assign a fixed IP address to each physical server. This IP
address defines the server itself and never changes. You can then use a virtual IP address
for each logical “service.” These can move between servers easily, which makes it easy
to move services and application instances around without reconfiguring the applica-
tion. This is a nice feature, even if you don’t move IP addresses a lot.

Introducing a Middleman
So far, the techniques we’ve discussed all assume your application is communicating
directly with MySQL servers. However, many load-balancing solutions introduce a
middleman whose job is to act as a proxy for the network traffic. The middleman
accepts all traffic on one side and directs it to the desired server on the other, then routes
the responses back to the originating machine. Sometimes the middleman is a piece of
hardware, and sometimes it’s software.13 Figure 11-10 illustrates this architecture.
Such solutions generally work well, although unless you make the load balancer itself
redundant, they add a single point of failure. We’ve seen a variety of load balancers

12. Virtual IP addresses aren’t connected to any specific computer or network interfaces; they “float” between
computers.

13. You can configure some solutions such as LVS so they are involved only when an application needs to
create a new connection, and don’t act as a middleman after that.

560 | Chapter 11: Scaling MySQL

used with success, from open source software such as HAProxy to pretty much any
commercial system you can name.

Figure 11-10. A load balancer that acts as a middleman

Load balancers

There is a wide variety of load-balancing hardware and software on the market, but
few of the offerings are designed specifically for balancing load to MySQL servers.14

Web servers need load balancing much more often, so many general-purpose load-
balancing devices have special features for HTTP and only a few basic features for
everything else. MySQL connections are just normal TCP/IP connections, so you can
use general-purpose load balancers for MySQL. However, the lack of MySQL-specific
features does add some limitations:

• Unless the load balancer is aware of MySQL’s true load, it’s unlikely to balance
load so much as distribute requests. Not all queries are equal, but general-purpose
load balancers usually treat all requests as equal.

• Most load balancers know how to inspect an HTTP request and “stick a session”
to a server to preserve session state on one web server. MySQL connections are
stateful too, but the load balancer is unlikely to know how to “stick” all connection
requests from a single HTTP session to a single MySQL server. This results in a
loss of efficiency (if a single session’s requests all go to the same MySQL server, the
server’s cache will be more efficient).

• Connection pooling and persistent connections can interfere with a load balancer’s
ability to distribute connection requests. For example, suppose a connection pool
opens its configured number of connections, and the load balancer distributes
them among the existing four MySQL servers. Now say you add two more MySQL
servers. Because the connection pool isn’t requesting any new connections, they’ll
sit idle. The connections in the pool also might end up being unfairly distributed
among the servers, so some are overloaded and others are underloaded. You can
work around these problems by expiring the connections in the pool at various

14. MySQL Proxy is an exception, but it hasn’t proved to work all that well in the field, due to problems such
as added latency and scalability bottlenecks.

Load Balancing | 561

levels, but that’s complicated and difficult to do. Connection pooling solutions
work best when they do their own load balancing.

• Most general-purpose load balancers know how to do health and load checks only
for HTTP servers. A simple load balancer can verify that the server accepts con-
nections on a TCP port, which is the bare minimum. A better load balancer can
make an HTTP request and check the response code to determine whether the
web server is running well. MySQL doesn’t accept HTTP requests to port 3306,
though, so you’ll have to build a custom health check. You can install HTTP server
software on the MySQL server and point the load balancer at a custom script that
actually checks the MySQL server’s status and returns an appropriate status
code.15 The most important things to check are the operating system load (gener-
ally by looking at /proc/loadavg), the replication status, and the number of MySQL
connections.

Load-balancing algorithms

There are many different algorithms to determine which server should receive the next
connection. Each vendor uses different terminology, but this list should provide an idea
of what’s available:

Random
The load balancer directs each request to a server selected at random from the pool
of available servers.

Round-robin
The load balancer sends requests to servers in a repeating sequence: A, B, C, A, B,
C, etc.

Fewest connections
The next connection goes to the server with the fewest active connections.

Fastest response
The server that has been handling requests the fastest receives the next connection.
This can work well when the pool contains a mix of fast and slow machines. How-
ever, it’s very tricky with SQL when the query complexity varies widely. Even the
same query can perform very differently under different circumstances, such as
when it’s served from the query cache or when the server’s caches already contain
the needed data.

Hashed
The load balancer hashes the connection’s source IP address, which maps it to one
of the servers in the pool. Each time a connection request comes from the same IP
address, the load balancer sends it to the same server. The bindings change only
when the number of machines in the pool does.

15. Actually, if your coding kung fu is up to the task of writing a program to listen on port 80, or if you
configure xinetd to invoke your program, you don’t even need to install a web server.

562 | Chapter 11: Scaling MySQL

Weighted
The load balancer can combine and weight several of the other algorithms. For
example, you might have single- and dual-CPU machines. The dual-CPU machines
are roughly twice as powerful, so you can tell the load balancer to send them an
average of twice as many requests.

The best algorithm for MySQL depends on your workload. The least-connections al-
gorithm, for example, might flood new servers when you add them to the pool of avail-
able servers—before when their caches are warmed up. The authors of this book’s first
edition experienced that problem firsthand.

You’ll need to experiment to find the best performance for your workload. Be sure to
consider what happens in extraordinary circumstances as well as in the day-to-day
norm. It is in those extraordinary circumstances—e.g., during times of high load, when
you’re doing schema changes, or when an unusual number of servers go offline—that
you can least afford something going terribly wrong.

We’ve described only instant-provisioning algorithms here, which don’t queue con-
nection requests. Sometimes algorithms that use queuing can be more efficient. For
example, an algorithm might maintain a given concurrency on the database server, such
as allowing no more than N active transactions at the same time. If there are too many
active transactions, the algorithm can put a new request in a queue and serve it from
the first server that becomes “available” according to the criteria. Some connection
pools support queuing algorithms.

Adding and removing servers in the pool

Adding a new server to the pool is usually not as simple as plugging it in and notifying
the load balancer of its existence. You might think it’ll be OK as long as it doesn’t get
flooded with connections, but that’s not always true. Sometimes you can add load to
a server slowly, but some servers whose caches are cold might be so slow that they
shouldn’t get any user queries for a while. If it takes 30 seconds to return the data a
user needs to see for a page view, the server is unusable even for a small amount of
traffic. You can avoid this problem by mirroring SELECT traffic from an active server for
a while before you notify the load balancer about the new server. You can do this by
reading and replaying the active server’s log files on the newly started server, or by
capturing the production server’s network traffic and replaying a portion of its queries.
The pt-query-digest tool from Percona Toolkit can help with this. Another tactic that
can work well is to use the fast warmup features in Percona Server or MySQL 5.6.

You should configure the servers in the connection pool so that there is enough unused
capacity to let you take servers out for maintenance, or to handle the load when servers
fail. You need more than just “enough” capacity on each server.

Make sure your configuration limits are high enough to work when servers are out of
the pool. For example, if you find that each MySQL server typically has 100 connec-
tions, you should set max_connections to 200 on each server in the pool. Then, even if

Load Balancing | 563

half the servers fail, the pool should be able to handle the same number of connections
as a whole.

Load Balancing with a Master and Multiple Replicas
The most common replication topology is a single master with multiple replicas. It can
be difficult to move away from this architecture. Many applications assume there’s a
single destination for all writes, or that all data will always be available on a single
server. Though this is not the most scalable architecture, there are ways you can use it
to good effect with load balancing. This section examines some of those techniques:

Functional partitioning
You can stretch capacity quite a bit by configuring replicas or groups of replicas
for particular purposes, as discussed previously. Common functions you might
consider separating are reporting and analytics, data warehousing, and full-text
searching. You can find more ideas in Chapter 10.

Filtering and data partitioning
You can partition data among otherwise similar replicas with replication filters
(see Chapter 10). This strategy can work well as long as your data is already sep-
arated into different databases or tables on the master. Unfortunately, there’s no
built-in way to filter replication at the level of individual rows. You’d have to do
something creative (read: hackish) to accomplish this, perhaps with triggers and a
bunch of different tables.

Even if you don’t partition the data amongst the replicas, you can improve cache
efficiency by partitioning reads instead of distributing them randomly. For in-
stance, you might direct all reads for users whose names begin with the letters
A–M to a given replica, and all reads for users whose names begin with N–Z to
another replica. This helps use each machine’s cache more fully, because repeated
reads are more likely to find the relevant data in the cache. In the best case, where
there are no writes, this strategy effectively gives you a total cache size the same as
the two machines’ cache sizes combined. In comparison, if you distribute the reads
randomly among the replicas, every machine’s cache essentially duplicates the
data, and your total effective cache size is only as big as a single replica’s cache, no
matter how many replicas you have.

Moving parts of writes to a replica
The master doesn’t always have to do all the work involved in writes. You can save
a significant amount of redundant work for the master and the replicas by decom-
posing write queries and running parts of them on replicas. See Chapter 10 for
more on this topic.

Guaranteeing a replica is caught up
If you want to run a certain process on the replica, and it needs to know that its
data is current as of a certain point in time—even if it has to wait a while for that
to happen—you can use the MASTER_POS_WAIT() function to block until the replica

564 | Chapter 11: Scaling MySQL

catches up to the desired point on the master. Alternatively, you can use a repli-
cation heartbeat to check for up-to-dateness; see Chapter 10 for more on this.

Write synchronization
You can also use MASTER_POS_WAIT() to make sure your writes actually reach one
or more replicas. If your application needs to emulate synchronous replication to
guarantee data safety, it can cycle between each replica, running MASTER_
POS_WAIT() on each. This creates a “synchronization barrier” that can take a long
time to pass if any of the replicas is far behind in replication, so it’s a good idea to
use it only when absolutely necessary. (You can also wait until just one replica
receives the event if your goal is only to ensure that some replica has the event.
MySQL 5.5 adds semisynchronous replication, which supports this technique
natively.)

Summary
Scaling MySQL correctly is a bit less glamorous than it often seems. The right way to
scale isn’t to build the next Facebook architecture from day one. A better strategy is to
do what’s clearly needed for your application, and plan ahead so that if you do grow
very rapidly, your success will finance whatever steps are necessary to meet the demand.

It is valuable to have a mathematical definition of scalability, just as it’s useful to have
a precise concept of performance, and the Universal Scalability Law can provide a
helpful framework. Knowing that systems fail to scale linearly because of costs such as
serialization and crosstalk can help you avoid building those problems into your ap-
plication. At the same time, many scalability problems aren’t mathematical; they may
be due to problems within the organization, such as lack of teamwork or other less
concrete issues. Dr. Neil J. Gunther’s book Guerrilla Capacity Planning and Eliyahu
M. Goldratt’s book The Goal are good reading for anyone interested in understanding
more about why systems don’t scale.

In terms of MySQL scalability strategies, the typical application that grows very large
usually moves from a single server, to a scale-out architecture with read replicas, to
sharding and/or functional partitioning. We disagree with those who advocate a “shard
early, shard often” approach for every application. It’s complicated and expensive, and
many applications will never need it. It is perfectly legitimate to bide your time and see
what happens with new hardware, new versions of MySQL, or new developments in
MySQL Cluster, and even to evaluate a proprietary system such as Clustrix. Sharding
is a hand-built clustering system, after all, and it’s a good idea not to reinvent the wheel
if you don’t need to.

Where there are multiple servers, there are problems with consistency and atomicity.
The most common problems we see are lack of session consistency (posting a comment
on a website, refreshing the page, and not seeing the comment you just posted) and
failures when telling the application which servers are readable and writable. The latter

Summary | 565

are much more serious, because if you direct writes to more than one place in your
application you’ll inevitably end up with data problems, which can be amazingly dif-
ficult and time-consuming to solve. Load balancers can help with this, but load bal-
ancers can also create problems of their own, sometimes even aggravating the problems
they’re intended to help solve. This is why our next chapter is on high availability.

566 | Chapter 11: Scaling MySQL

CHAPTER 12

High Availability

This chapter covers the third of our little trio of topics: replication, scalability, and high
availability. At the end of the day, high availability really means “less downtime.” Un-
fortunately, high availability is frequently conflated with related concepts such as re-
dundancy, protection against data loss, and load balancing. We hope that the preceding
two chapters have set the stage for a clear understanding of high availability. However,
this chapter can’t be singularly focused; like the others in the trio, it must synthesize a
few related topics.

What Is High Availability?
High availability is actually a bit of a mythical beast. It’s usually expressed as a per-
centage, which is a hint in itself: there is no absolute high availability, only relatively
higher availability. 100% availability is simply impossible. The “nines” rule of availa-
bility is the most common way to express an availability goal. As you probably know,
“five nines” means 99.999% uptime, which is just over five minutes of downtime per
year. That’s pretty impressive for most applications, although some achieve even more
nines than that.

Applications have vastly different availability needs. Before you set your heart on a
certain uptime goal, ask yourself what you really need to achieve. Each increment of
availability usually costs far more than the previous one; the ratio of availability to effort
and cost is nonlinear. How much uptime you need usually depends on how much you
can afford. The trick with high availability is to balance the cost of downtime against
the cost of reducing downtime. Put another way, if you have to spend a lot of money
to achieve better uptime, but the increased uptime earns you only a little more money,
it might not be worth it. In general, making an application highly available is difficult
and expensive past a certain point, so we advise setting realistic goals and avoiding
overengineering. Fortunately, the effort required to build two or three nines of uptime
might not be that high, depending on the application.

567

Sometimes people define availability as the portion of time that a service is running.
We think the definition should also include whether the application is serving requests
with good performance. There are many ways that a server can be running but not
really available. A common case is just after a MySQL server is restarted. It could take
many hours for a big server to warm up enough to serve queries with acceptable re-
sponse times, even if the server receives only a small portion of its normal traffic.

A related consideration is whether you’ll lose any data, even if your application doesn’t
go offline. If a server has a truly catastrophic failure, you might lose at least some data,
such as the last few transactions that were written to the (now lost) binary log and
didn’t make it to a replica’s relay log. Can you tolerate this? Most applications can; the
alternatives are usually expensive, complex, or have some performance overhead. For
example, you can use synchronous replication, or place the binary log on a device that’s
replicated by DRBD so you won’t lose it even if the server fails completely. (You can
still lose power to the whole data center, though.)

A smart application architecture can often reduce your availability needs, at least for
part of the system, and thus make high availability easier to achieve. Separating critical
and noncritical parts of your application can save you a lot of work and money, because
it’s much easier to improve availability for a smaller system. You can identify high-
priority risks by calculating your “risk exposure,” which is the probability of failure
multiplied by the cost of failure. A simple spreadsheet of risks—with columns for the
probability, the cost, and the exposure—can help you prioritize your efforts.

In the previous chapter we examined how to achieve better scalability by avoiding the
causes of poor scalability. We’ll take a similar approach here, because we believe that
availability is best understood by studying its opposite: downtime. Let’s begin by dis-
cussing why downtime happens.

What Causes Downtime?
We’ve heard it said that the main cause of downtime in database servers is badly written
SQL queries, but is that really true? In 2009 we decided to analyze our database of
customer incidents and determine what really causes downtime, and how to prevent
it.1 Although the results affirmed some of what we already believed, they contradicted
other beliefs, and we learned a lot.

We first categorized the downtime incidents by the way they manifested, rather than
by cause. Broadly speaking, what we call the “operating environment” was the leading
place that downtime appeared, with about 35% of incidents landing in this category.
The operating environment is the set of systems and resources that support the database

1. We wrote a lengthy white paper with the full analysis of our customers’ downtime-causing incidents, and
followed it with another on how to prevent downtime, including detailed checklists of activities you can
schedule periodically. There wasn’t room to include all the details in this book, but you can find both
white papers on Percona’s website (http://www.percona.com).

568 | Chapter 12: High Availability

http://www.percona.com

server, such as the operating system, disks, and network. Performance problems were
a close runner-up, with about another 35% of the downtime-causing incidents. Repli-
cation followed that, accounting for 20% of the incidents; and the last 10% were down
to various types of data loss or corruption, plus a few miscellaneous problems.

After we categorized the incidents by type, we identified the causes of the incidents.
Here are a few highlights:

• Within the operating environment, the most prevalent problem by a large margin
was running out of disk space.

• The biggest cause of downtime in the performance problem category was indeed
bad SQL execution, although badly written queries were not always to blame;
many problems were caused by server bugs or misbehavior, for example.

• Bad schema and indexing design were the next most common performance
problems.

• Replication problems were usually caused by differences in data between the mas-
ter and replica.

• Data loss issues were usually caused by DROP TABLE, and were always combined
with a lack of usable backups.

Notice that replication—one of the tactics people use to try to improve uptime—often
causes downtime. That’s usually because it’s used incorrectly, but even so, it illustrates
a common theme: many high-availability tactics can and do backfire. We’ll see this
again later.

Now that we know the broad categories of downtime and where to point the finger of
blame, we’ll get into specifics of how to achieve high availability.

Achieving High Availability
High availability is achieved by two practices, which should go hand-in-hand. First, try
to reduce downtime by preventing the causes of downtime. Many of them are easily
preventable with steps such as proper configuration, monitoring, and policies or safe-
guards to avoid human error. Second, try to ensure that when downtime happens, you
can recover quickly. The usual tactic is building redundancy and failover capability into
systems. These two dimensions of high availability can be measured by two corre-
sponding metrics: mean time between failures (MTBF) and mean time to recovery
(MTTR). Some organizations track these metrics carefully.

The second activity—quick recovery through redundancy—is unfortunately what
seems to get the most attention, but the return on investment from prevention efforts
can be quite high. Let’s explore prevention a bit.

Achieving High Availability | 569

Improving Mean Time Between Failures
You can avoid a lot of downtime with a little due diligence. When we categorized
downtime incidents and attributed them to root causes, we also identified ways they
could have been prevented. We found that most downtime incidents can be averted
through an overall common-sense approach to managing systems. The following sug-
gestions are selected from the guidelines in the white paper we wrote detailing the
results of our analysis:

• Test your recovery tools and procedures, including restores from backups.

• Follow the principle of least privilege.

• Keep your systems clean and neat.

• Use good naming and organization conventions to avoid confusion, such as
whether servers are for development or production use.

• Upgrade your database server on a prudent schedule to keep it current.

• Test carefully with a tool such as pt-upgrade from Percona Toolkit before
upgrading.

• Use InnoDB, configure it properly, and ensure that it is set as the default storage
engine and the server cannot start if it is disabled.

• Make sure the basic server settings are configured properly.

• Disable DNS with skip_name_resolve.

• Disable the query cache unless it has proven beneficial.

• Avoid complexity, such as replication filters and triggers, unless absolutely needed.

• Monitor important components and functions, especially critical items such as
disk space and RAID volume status, but avoid false positives by alerting only on
conditions that reliably indicate problems.

• Record as many historical metrics as possible about server status and performance,
and keep them forever if you can.

• Test replication integrity on a regular basis.

• Make replicas read-only, and don’t let replication start automatically.

• Perform regular query reviews.

• Archive and purge unneeded data.

• Reserve some space in filesystems. In GNU/Linux, you can use the –m option to
reserve space in the filesystem itself. You can also leave space free in your LVM
volume group. Or, perhaps simplest of all, just create a large dummy file that you
can delete if the filesystem becomes completely full.2

2. It’s 100% cross-platform-compatible!

570 | Chapter 12: High Availability

• Make a habit of reviewing and managing system changes and status and perfor-
mance information.

We found that lapses in system change management were the most important overall
reason for downtime incidents. Typical mistakes include careless upgrades, failing to
upgrade at all and encountering bugs, pushing schema or query changes to production
without testing them, and failing to plan for things such as reaching the limits of disk
capacity. Another leading cause of problems is lack of due diligence, such as neglecting
to verify that backups are restorable. Finally, people generally monitor the wrong things
about MySQL. Alerts on metrics such as cache hit ratios, which don’t indicate a real
problem and create lots of false positives, cause the monitoring system to be regarded
as unhelpful, so people ignore alerts. Sometimes the monitoring system fails and no-
body even notices, leading to tough questions from the boss later on, such as “Why
didn’t Nagios alert us about the disk being full?”

Improving Mean Time to Recovery
As we mentioned, it can be tempting to focus exclusively on reducing recovery time to
achieve high availability. In fact, sometimes people go even further and focus on only
one aspect of reducing recovery time: preventing complete system failure by building
redundancy into systems and avoiding single points of failure.

It is very important to invest in quick recovery time, and a good system architecture
that provides redundancy and failover capabilities is a key part of that, but achieving
high availability is not solely a technical problem. There is a large human and organi-
zational component. Organizations and individuals vary in their level of maturity and
capability to avoid and recover from downtime incidents.

Your people are your most important high-availability asset, so good procedures for
recovery are vital. Skilled, adaptable, and well-trained staff members, supported by
well-documented and well-tested procedures for dealing with emergencies, can con-
tribute greatly to quick recovery from downtime. Trusting solely to tools and systems
is usually a mistake, because they don’t understand nuanced situations, and they
sometimes do what would usually be the right thing, but is utterly catastrophic in your
case.

Reviewing downtime incidents can be very helpful in improving organizational learn-
ing, to help avoid similar incidents in the future. Beware, however, of overvaluing
practices such as “after-action reviews” or “post-mortems.” Hindsight is badly distor-
ted, and the desire to find a single root cause tends to impair judgment.3 Many popular
approaches, such as the “Five Whys” approach, can be applied badly, causing people
to focus their attention on finding a single scapegoat. It’s difficult to look back at a

3. Two refutations of common wisdom for further reading: Richard Cook’s paper entitled “How Complex
Systems Fail” (http://www.ctlab.org/documents/How%20Complex%20Systems%20Fail.pdf) and Malcolm
Gladwell’s essay on the Challenger space shuttle disaster, in his book What the Dog Saw (Little, Brown).

Achieving High Availability | 571

http://www.ctlab.org/documents/How%20Complex%20Systems%20Fail.pdf

situation we’ve resolved and understand the real causes, and there are always multiple
causes. As a result, while after-action reviews can be beneficial, you should take the
conclusions with a grain of salt. Even our own recommendations, based as they are on
lengthy studies of the causes and preventions of downtime, are just opinions.

This bears repeating: all downtime incidents are caused by multiple failures in combina-
tion, and thus they could have been averted by the proper functioning of a single safe-
guard. The entire chain must be broken, not merely a single link. For example, people
who ask us for help with data recovery are usually suffering both from a loss of data
(storage failure, DBA mistake, etc.) and a lack of usable backups.

With that said, most people and organizations are not guilty of overdoing it when it
comes to investigating and trying to prevent or hasten recovery from failures. Instead,
they can be prone to focusing on technical measures—especially the cool ones, such
as clustered systems and redundant architectures. There is a place for this, but keep in
mind that systems are fallible, too. In fact, one of the tools we mentioned in the second
edition of this book, the MMM replication manager, has fallen out of our favor because
it turns out that it might cause even more downtime than it prevents. You probably
aren’t surprised that a set of Perl scripts can go haywire, but even extremely expensive
and elaborate systems fail in catastrophic ways—yes, even the SAN that cost you a
king’s ransom. We’ve seen a lot of SAN failures.

Avoiding Single Points of Failure
Finding and eliminating single points of failure in your system, combined with a mech-
anism to switch to using a spare component, is one way of improving availability by
reducing recovery time (MTTR). If you’re clever, you can sometimes reduce the recov-
ery time to effectively zero, though this is rather difficult in the general case. (Even very
impressive technologies such as expensive load balancers cause some delay while they
notice problems and respond to them.)

Think through your application and try to identify any single points of failure. Is it a
hard drive, a server, a switch or router, or the power for one rack? Are your machines
all in one data center, or are your “redundant” data centers provided by the same com-
pany? Any point in your system that isn’t redundant is a single point of failure. Other
common single points of failure, depending on your point of view, are reliance on
services such as DNS, a single network provider,4 a single cloud “availability zone,”
and a single power grid.

You can’t always eliminate single points of failure. Making a component redundant
might not be possible because of some limitation you can’t work around, such as a
geographic, budgetary, or timing constraint. Try to understand all of the components

4. Feeling paranoid? Check that your redundant network connections are really connected to different
Internet backbones, and make sure they aren’t physically cabled on the same street or strung on the same
poles, so they won’t get cut by the same backhoe or hit by the same car.

572 | Chapter 12: High Availability

that affect availability, take a balanced view of the risks, and work on the biggest ones
first. Some people work hard to build software that can handle any kind of hardware
failure, but bugs in this kind of software can cause more downtime than it saves. Some
people build “unsinkable” systems with all kinds of redundancy, but they forget that
the data center can lose power or connectivity. Or maybe they completely forget about
the possibility of malicious attackers or programmer mistakes that delete or corrupt
data—a careless DROP TABLE can cause downtime, too.

Adding redundancy to your system can take two forms: adding spare capacity and
duplicating components. It’s actually quite easy to add spare capacity—you can use
any of the techniques we mention throughout this chapter or the previous one. One
way to increase availability is to create a cluster or pool of servers and add a load-
balancing solution. If one server fails, the other servers take over its load. Some people
underutilize components intentionally, because it leaves much more “headroom” to
handle performance problems caused either by increased load or by component
failures.

For many purposes, you will need to duplicate components and have a standby ready
to take over if the main component fails. A duplicated component can be as simple as
a spare network card, router, or hard drive—whatever you think is most likely to fail.
Duplicating entire MySQL servers is a little harder, because a server is useless without
its data. That means you must ensure that your standby servers have access to the
primary server’s data. Shared or replicated storage is one popular way to accomplish
this. But is it really a high-availability architecture? Let’s dig in and see.

Shared Storage or Replicated Disk
Shared storage is a way to decouple your database server and its storage, usually with
a SAN. With shared storage, the server mounts the filesystem and operates normally.
If the server dies, a standby server can mount the same filesystem, perform any necessary
recovery operations, and start MySQL on the failed server’s data. This process is logi-
cally no different from fixing the failed server, except that it’s faster because the standby
server is already booted and ready to go. Filesystem checks, InnoDB recovery, and
warmup5 are the biggest delays you’re likely to encounter once failover is initiated, but
failure detection itself can take quite a long time in many setups, too.

Shared storage has two advantages: it helps avoid data loss from the failure of any
component other than the storage, and it makes it possible to build redundancy in the
non-storage components. As a result, it’s a strategy for helping to reduce availability
requirements in some parts of the system, making it easier to achieve high availability
by concentrating your efforts on a smaller set of components. But the shared storage

5. Percona Server offers a feature to restore the buffer pool to its saved state after a restart, and this works
fine with shared storage. This can reduce warmup time by hours or days. MySQL 5.6 will have a similar
feature.

Avoiding Single Points of Failure | 573

itself is still a single point of failure. If it goes down, the whole system goes down, and
although SANs are generally very well engineered, they can and do fail, sometimes
spectacularly. Even SANs that are themselves redundant can fail.

What About Active-Active Access to Shared Storage?
What about running many servers in active-active mode on a SAN, NAS, or clustered
filesystem? MySQL can’t do that. It is not designed to synchronize its access to data
with other MySQL instances, so you can’t fire up multiple instances of MySQL working
on the same data. (Technically you could, if you used MyISAM on read-only static data,
but we’ve never seen a real use for that.)

A storage engine for MySQL called ScaleDB operates through an API with a shared-
storage architecture underneath, but we have neither evaluated it nor seen it in pro-
duction use. It’s in beta at the time of writing.

Shared storage has its risks. If a failure such as a MySQL crash corrupts your data files,
that might prevent the standby server from recovering. We highly recommend using
InnoDB or another robust ACID storage engine with shared storage. A crash will almost
certainly corrupt MyISAM tables, and repairing them can take a long time and result
in lost rows. We also strongly recommend a journaling filesystem with shared storage.
We’ve seen cases of severe, unrecoverable corruption with a nonjournaling filesystem
and a SAN. (It was the filesystem’s fault, not the SAN’s.)

A replicated disk is another way to achieve the same ends as a SAN. The type of disk
replication most commonly used for MySQL is DRBD (http://www.drbd.org), in com-
bination with tools from the Linux-HA project (more on this later).

DRBD is synchronous, block-level replication implemented as a Linux kernel module.
It copies every block from a primary device over a network card to another server’s
block device (the secondary device), and writes it there before committing the block
on the primary device.6 Because writes must complete on the secondary DRBD device
before the writes on the primary are considered complete, the secondary device must
perform at least as well as the primary, or it will limit write performance on the primary.
Also, if you’re using DRBD disk replication to have an interchangeable standby in the
event that the primary fails, the standby server’s hardware should match the primary
server’s. And a good RAID controller with a battery-backed write cache is all but
mandatory with DRBD; performance will be very poor without it.

If the active server fails, you can promote the secondary device to be the primary. Be-
cause DRBD replicates the disk at the block layer, however, the filesystem can become
inconsistent. This means it’s essential to use a journaling filesystem for fast recovery.

6. You can actually adjust the level of synchronization for DRDB. You can set it to be asynchronous, to wait
until the remote device receives the data, or to block until the remote device writes the data to disk. Also,
it is strongly recommended that you dedicate a network card to DRBD.

574 | Chapter 12: High Availability

http://www.drbd.org

Once recovery is complete, MySQL will need to run its own recovery as well. If the first
server recovers, it resyncs its device with the new primary device and assumes the sec-
ondary role.

In terms of how you actually implement failover, DRBD is similar to a SAN: you have
a hot standby machine, and you begin serving from the same data as the failed machine.
The biggest difference is that it is replicated storage—not shared storage—so with
DRBD you’re serving a replicated copy of the data, while with a SAN you’re serving
the same data from the same physical device as the failed machine. In other words,
replicated disks create data redundancy, so neither the storage nor the data itself is a
single point of failure. In both cases, the MySQL server’s caches will be empty when
you start it on the standby machine. In contrast, a replica’s caches are likely to be at
least partially warmed up.

DRBD has some nice features and capabilities that can prevent problems common to
clustering software. An example is split-brain syndrome, which occurs when two nodes
promote themselves to primary simultaneously. You can configure DRBD so it won’t
let this happen. However, DRBD isn’t a perfect solution for every need. Let’s take a
look at its drawbacks:

• DRBD’s failover is not subsecond. It will generally require at least a few seconds
to promote the secondary device to primary, not including any necessary filesystem
and MySQL recovery.

• It’s expensive, because you must run it in active-passive mode. The hot standby
server’s replicated device is not usable for any other tasks while it’s in passive mode.
Whether this is really a shortcoming depends on your point of view. If you want
truly high availability and can’t tolerate degraded service when there’s a failure,
you can’t place more than one machine’s worth of load on any two machines,
because if you did, you wouldn’t be able to handle the load if one of them failed.
You can use the standby server for something else, such as a replica, but you’ll still
waste some resources.

• It’s practically unusable for MyISAM tables, because they take too long to check
and repair. MyISAM is not a good choice for any installation that requires high
availability; use InnoDB or another storage engine that allows quick, reliable re-
covery instead.

• It does not replace backups. If your data becomes corrupt on disk due to malicious
interference, mistakes, bugs, or hardware failures, DRBD will not help: the repli-
cated data will be a perfect copy of the corrupted original. You need backups (or
time-delayed MySQL replication) to protect against these problems.

• It introduces some overhead for writes. How much overhead? It’s popular to cite
a percentage, but that’s not a good metric. Instead you need to understand that
writes suffer added latency due to the network round-trip and the remote server’s
storage, and this is relatively larger for small writes. Although the added network
latency might only be about 0.3 ms, which seems small relative to the 4 ms–10 ms

Avoiding Single Points of Failure | 575

latency of an actual I/O on local disk, it’s about three or four times the latency you
should expect from a good RAID controller’s write cache. The most common rea-
son for the server to become slower with DRBD is that MySQL with InnoDB in
full durability mode does a lot of short writes and fsync() calls that will be slowed
greatly by DRBD.7

Our favorite way to use DRBD is to replicate only the device that holds the binary logs.
If the active node fails, you can start a log server on the passive node and use the
recovered binary logs to bring all of the failed master’s replicas up to the latest binary
log position. You can then choose one of the replicas and promote it to master, replacing
the failed system.

In the final analysis, shared storage and replicated disks aren’t as much of a high-
availability (low-downtime) solution as they are a way to keep your data safe. As long
as you have your data, you can recover from failures, with a lower MTTR than not
being able to recover. (Even a long recovery time is still faster than no recovery at all.)
However, as compared to architectures that permit the standby server to be up and
running all the time, most shared storage or replicated disk architectures will increase
the MTTR. There are two ways to have standbys up and running: standard MySQL
replication, which we discussed in Chapter 10, and synchronous replication, which is
the topic of our next section.

Synchronous MySQL Replication
In synchronous replication, a transaction cannot complete on the master until it com-
mits on one or more replica servers. This accomplishes two goals: no committed trans-
actions are lost if a server crashes, and there is at least one other server with a “live”
copy of the data. Most synchronous replication architectures run in active-active
mode. That means every server is a candidate for failover at any time, making high
availability through redundancy much simpler.

MySQL itself does not offer synchronous replication at the time of this writing,8 but
there are two MySQL-based clustering solutions that do support it. You should also
review Chapter 10, Chapter 11, and Chapter 13 for discussions of other products, such
as Continuent Tungsten and Clustrix, that might be of interest.

MySQL Cluster

The first place to look for synchronous replication in MySQL is MySQL Cluster (NDB
Cluster). It has synchronous active-active replication between all nodes. That means
you can write to any node; they’re all equally capable of serving reads and writes. Every

7. On the other hand, large sequential writes are a different story. The added latency introduced by DRBD
practically vanishes, but throughput limitations will come into play. A decent RAID array should give you
200 to 500 MB/second of sequential write throughput, well above what a GigE network can achieve.

8. There is support for semisynchronous replication in MySQL 5.5; see Chapter 10.

576 | Chapter 12: High Availability

row is stored redundantly, so you can lose a node without losing data, and the cluster
remains functional. Although MySQL Cluster still isn’t a complete solution for every
type of application, as we mentioned in the previous chapter, it has been improved
rapidly in recent releases and now has a huge list of new features and characteristics:
disk storage for nonindexed data, online scaling by adding data nodes, ndbinfo tables
for managing the cluster, scripts for provisioning and managing the cluster, multi-
threaded operation, push-down joins (now called adaptive query localization), the
ability to handle BLOBs and tables with many columns, centralized user management,
and NoSQL access through the NDB API as well as the memcached protocol. Upcoming
releases will include the ability to run in eventual-consistency mode, with per-
transaction conflict detection and resolution across a WAN, for active-active replica-
tion between datacenters. In short, MySQL Cluster is an impressive piece of technology.

There are also at least two providers of add-on products to simplify cluster deployment
and management: Oracle support contracts for MySQL Cluster include its MySQL
Cluster Manager product, and Severalnines offers a Cluster Control product (http://
www.severalnines.com). This product is also capable of helping deploy and manage
replication clusters.

Percona XtraDB Cluster

Percona XtraDB Cluster is a relatively new technology that adds synchronous replica-
tion and clustering capabilities to the XtraDB (InnoDB) storage engine itself, rather
than through a new storage engine or an external server. It is built on Galera,9 a library
that replicates writes across nodes in a cluster. Like MySQL Cluster, Percona XtraDB
Cluster offers synchronous multi-master replication,10 with true write-anywhere ca-
pabilities. Also like MySQL Cluster, it can provide high availability as well as guarantee
zero data loss (durability, the D in ACID) when a node fails, and of course nodes can
fail without causing the whole cluster to fail.

The underlying technology, Galera, uses a technique called write-set replication. Write
sets are actually encoded as row-based binary log events for the purpose of transmitting
them between nodes and updating the other nodes in the cluster, though the binary
log is not required to be enabled.

Percona XtraDB Cluster is very fast. Cross-node replication can actually be faster than
not clustering, because writing to remote RAM is faster than writing to the local disk
in full durability mode. You have the option of relaxing durability on each node for
performance, if you wish, and relying on the presence of multiple nodes with copies of

9. The Galera technology is developed by Codership Oy (http://www.codership.com) and is available as a
patch for standard MySQL and InnoDB. Percona XtraDB Cluster includes a modified version of that
patchset, as well as other features and functionality. Percona XtraDB Cluster is a Galera-based solution
that’s ready to use out of the box.

10. You can also use it in a master-replica configuration by writing to just one node, but there’s no difference
in the cluster configuration for this mode of operation.

Avoiding Single Points of Failure | 577

http://www.severalnines.com
http://www.severalnines.com
http://www.codership.com

the data for durability. NDB operates on the same principle. The cluster’s durability as
a whole is not reduced; only the local durability is reduced. In addition, it supports
parallel (multithreaded) replication at the row level, so multiple CPU cores can be used
to apply write sets. These characteristics combine to make Percona XtraDB Cluster
attractive in cloud computing environments, where disks and CPUs are usually slower
than normal.

The cluster implements autoincrementing keys with auto_increment_offset and auto
_increment_increment so that nodes won’t generate conflicting values. Locking is gen-
erally the same as it is in standard InnoDB. It uses optimistic concurrency control.
Changes are serialized and transmitted between nodes at transaction commit, with a
certification process so that if there is a conflicting update, someone has to lose. As a
result, if many nodes are changing the same rows simultaneously, there can be lots of
deadlocks and rollbacks.

Percona XtraDB Cluster provides high availability by keeping the nodes online as long
as they form a quorum. If nodes discover that they are not part of a quorum, they are
ejected from the cluster, and they must resync before joining the cluster again. As a
result, the cluster can’t handle split-brain scenarios; it will stop if that happens. When
a node fails in a two-node cluster, the remaining node isn’t a quorum and will stop
functioning, so in practice you need at least three nodes to have a high-availability
cluster.

Percona XtraDB Cluster has lots of benefits:

• It provides transparent clustering based on InnoDB, so there’s no need to move to
another technology such as NDB, which is a whole different beast to learn and
administer.

• It provides real high availability, with all nodes equal and ready for reads and writes
at all times. In contrast, MySQL’s built-in asynchronous or semisynchronous rep-
lication must have one master, can’t guarantee that your data is replicated, and
can’t guarantee that replicas are up-to-date and ready for reads or to be promoted
to master.

• It protects you against data loss when a node fails. In fact, because all nodes have
all the data, you can lose every node but one and still not lose the data (even if the
cluster has a split brain and stops working). This is different from NDB, where the
data is partitioned across node groups and some data can be lost if all servers in a
node group are lost.

• Replicas cannot fall behind, because write sets are propagated to and certified on
every node in the cluster before the transaction commits.

• Because it uses row-based log events to apply changes to replicas, applying write
sets can be less expensive than generating them, just as with normal row-based
replication. This, combined with multithreaded application of write sets, can make
its replication more scalable than MySQL replication.

578 | Chapter 12: High Availability

Of course, we need to mention its drawbacks, too:

• It’s new. There isn’t a huge body of experience with its strengths, weaknesses, and
appropriate use cases.

• The whole cluster performs writes as slowly as the weakest node. Thus, all nodes
need similar hardware, and if one node slows down (e.g., because the RAID card
does a battery-learn cycle), all of them slow down. If one node has probability P
of being slow to accept writes, a three-node cluster has probability 3P of being slow.

• It isn’t as space-efficient as NDB, because every node has all the data, not just a
portion. On the other hand, it is based on Percona XtraDB (which is an enhanced
version of InnoDB), so it doesn’t have NDB’s limitations regarding on-disk data.

• It currently disallows some operational tricks that are possible with asynchronous
replication, such as making schema changes offline on a replica and promoting it
to be master so you can repeat the changes on other nodes offline. The current
alternative is to use a technique such as Percona Toolkit’s online schema change
tool. Rolling schema upgrades are nearly ready for release at the time of writing,
however.

• Adding a new node to a cluster requires copying data to it, plus the ability to keep
up with ongoing writes, so a big cluster with lots of writes could be hard to grow.
This will put a practical limit on the cluster’s data size. We aren’t sure how large
this is, but a pessimistic estimate is that it could be as low as 100 GB or so. It could
be much larger; time and experience will tell.

• The replication protocol seems to be somewhat sensitive to network hiccups at the
time of writing, and that can cause nodes to stop themselves and drop out of the
cluster, so we recommend a high-performance network with good redundancy. If
you don’t have a reliable network, you might end up adding nodes back to the
cluster too often. This requires a resynchronization of the data. At the time of
writing, incremental state transfer to avoid a full copy of the dataset is almost ready
to use, so this should not be as much of a problem in the future. It’s also possible
to configure Galera to be more tolerant of network timeouts (at the cost of delayed
failure detection), and more reliable algorithms are planned for future releases.

• If you aren’t watching carefully, your cluster could grow too big to restart nodes
that fail, just as backups can get too big to restore in a reasonable amount of time
if you don’t practice it routinely. We need more practical experience to know how
this will work in reality.

• Because of the cross-node communication required at transaction commit, writes
will get slower, and deadlocks and rollbacks will get more frequent, as you add
nodes to the cluster. (See the previous chapter for more on why this happens.)

Both Percona XtraDB Cluster and Galera are still early in their lifecycles and are chang-
ing and improving rapidly. At the time of writing, we can point to recent or forthcoming
improvements to quorum behavior, security, synchronicity, memory management,

Avoiding Single Points of Failure | 579

state transfer, and a host of other things. You will also be able to take nodes offline for
operations such as rolling schema changes in the future.

Replication-Based Redundancy
Replication managers are tools that attempt to use standard MySQL replication as a
building block for redundancy.11 Although it is possible to improve availability with
replication, there is a “glass ceiling” that blocks MySQL’s current asynchronous and
semisynchronous replication from achieving what can be done with true synchronous
replication. You can’t guarantee instantaneous failover and zero data loss, nor can you
treat all nodes as identical.

Replication managers typically monitor and manage three things: the communication
between the application and MySQL, the health of the MySQL servers, and replication
relationships between MySQL servers. They either alter the configuration of load bal-
ancing or move virtual IP addresses as necessary to make the application connect to
the proper servers, and they manipulate replication to elect a server as the writable node
in the pseudo-cluster. In principle, it’s not complicated: just make sure that writes are
never directed to a server that’s not ready for writes, and make sure to get replication
coordinates right when promoting a replica to master status.

This sounds workable in theory, but our experience has been that it doesn’t always
work so well in practice. It’s too bad, really, because it would sometimes be nice to
have a lightweight set of tools to help recover from common failures and get a little bit
higher availability on the cheap. Unfortunately, we don’t know of any good toolset that
accomplishes this reliably at the time of writing. We’ll mention two replication man-
agers in a moment,12 but one is new and the other has a lot of issues.

We’ve also seen many people try to write their own replication managers. They usually
fall into the same traps that have snared others before them. It’s not a great idea to roll
your own. Coaxing good behavior from asynchronous components with oodles of fail-
ure modes you’ve never personally experienced, many of which simply cannot be un-
derstood and handled appropriately by a program, is very hard, and it’s riddled with
opportunities to lose data. In fact, a machine can begin with a situation that could be
fixed by a skilled human, and make it much worse by doing the wrong thing.

The first replication manager we want to mention is MMM (http://mysql-mmm.org).
The authors of this book don’t all agree on how suitable this toolkit is for production
deployment (although the original author of the toolkit has opined that it’s not trust-
worthy). Some of us think it can be helpful in some cases in manual-failover mode, and
others would rather never use it in any mode. It is certain, however, that many of our

11. We’re being careful to avoid confusion in this section. Redundancy is not the same thing as high
availability.

12. We’re also working on a solution that’s based on Pacemaker and the Linux-HA stack, but it’s not ready
to mention in this book. This footnote will self-destruct in 10..9..8..

580 | Chapter 12: High Availability

http://mysql-mmm.org

customers who use it in automatic-failover mode have a lot of serious issues with it. It
can take healthy servers offline, send writes to the wrong place, and move replicas to
the wrong coordinates. Chaos sometimes ensues.

The other tool, which is rather new, is Yoshinori Matsunobu’s MHA toolkit (http://
code.google.com/p/mysql-master-ha/). It is similar to MMM in that it is a set of scripts
to build a pseudo-cluster with some of the same general techniques, but it is not a
complete replacement; it doesn’t attempt to do as many things, and it relies on Pace-
maker to move virtual IP addresses. One major difference is that it has a test suite,
which should prevent some of the problems MMM has encountered. Other than this,
we don’t have a strong opinion on the toolkit yet. We haven’t talked with anyone other
than Yoshinori who is using it in production, and we haven’t used it ourselves.

Replication-based redundancy is ultimately a mixed blessing. The candidate use case
is when availability is much more important than consistency or zero-data-loss guar-
antees. For example, some people don’t really make any money from their site’s func-
tionality, only from its availability. Who cares if there’s a failure and the site loses a few
comments on a photo or something? As long as the ad revenue keeps rolling in, the
cost of truly high availability might not be worth it. But sticking with the “best effort”
high availability you can build with replication carries the potential for serious down-
time that can be extremely laborious to fix. It’s a pretty big gamble, and one that’s
probably too risky for all but the most blasé (or expert) of users.

The problem is, many users don’t know how to self-qualify and assess whether Repli-
cation Roulette is suitable for them. There are two reasons for this. First, they don’t see
the glass ceiling, and they mistakenly believe that a set of virtual IP addresses, replica-
tion, and management scripts can deliver “real” high availability. Second, they under-
estimate the complexity of the technology, and therefore the severity of the failures that
can happen and the difficulty of recovering from them. As a result, sometimes people
think they can live with replication-based redundancy, but they might later wish that
they’d chosen a simpler system with stronger guarantees.

Other types of replication, such as DRBD or a SAN, have their flaws, too—please don’t
think we are promoting them as bulletproof and saying that MySQL replication is a
mess, because that’s not our intention. You can write poor-quality failover scripts for
DRBD just easily as you can for MySQL replication. The main difference is that MySQL
replication is a lot more complex, with a lot more nuances, and it doesn’t prevent you
from doing bad things.

Failover and Failback
Redundancy is great, but it actually doesn’t buy you anything except the opportunity
to recover from a failure. (Heck, you can get that with backups.) Redundancy doesn’t
increase availability or reduce downtime one whit. High availability is built on top of
redundancy, through the process of failover. When a component fails and there is

Failover and Failback | 581

http://code.google.com/p/mysql-master-ha/
http://code.google.com/p/mysql-master-ha/

redundancy, you can stop using the failed piece and start using its redundant standby
instead. The combination of redundancy and failover can enable you to recover more
quickly, and as you know, reducing MTTR reduces downtime and improves
availability.

Before we continue, we should talk about a few terms. We use “failover” consistently;
some people use “fallback” as a synonym. Sometimes people also say “switchover” to
denote a switch that’s planned instead of a response to a failure. Po-tay-toe,
po-tah-toe. We also use the term “failback” to indicate the reverse of failover. If you
have failback capability, failover can be a two-way process: when server A fails and
server B replaces it, you can repair server A and fail back to it.

Failover is good for more than just recovery from failures. You can also do planned
failovers to reduce downtime (improve availability) for events such as upgrades, schema
changes, application modifications, or scheduled maintenance.

You need to identify how fast failover needs to be, but you also need to know how
quickly you have to replace the failed component after a failover. Until you restore the
system’s depleted standby capacity, you have less redundancy and you’re exposed to
extra risk. Thus, having a standby doesn’t eliminate the need for timely replacement
of failed components. How quickly can you build a new standby server, install its op-
erating system, and give it a fresh copy of your data? Do you have enough standby
machines? You might need more than one.

Failover comes in many flavors. We’ve already discussed several of them, because load
balancing and failover are similar in many ways, and the line between them is a bit
fuzzy. In general, we think a full failover solution, at a minimum, needs to be able to
monitor and automatically replace a component. This should ideally be transparent to
the application. Load balancing need not provide this capability.

In the Unix world, failover is often accomplished with the tools provided by the High
Availability Linux project (http://linux-ha.org), which run on many Unix-like operating
systems, not just Linux. The Linux-HA stack has become significantly more featureful
in the last few years. Today most people think of Pacemaker as the main component
in the stack. Pacemaker replaces the older heartbeat tool. Various other tools accom-
plish IP takeover and load-balancing functionality. You can combine them with DRBD
and/or LVS.

The most important part of failover is failback. If you can’t switch back and forth
between servers at will, failover is a dead end and only postpones downtime. This is
why we like symmetrical replication topologies, such as the dual-master configuration,
and we dislike ring replication with three or more co-masters. If the configuration is
symmetrical, failover and failback are the same operation in opposite directions. (It’s
worth mentioning that DRBD has built-in failback capabilities.)

In some applications, it’s critical that failover and failback be as fast and atomic as
possible. Even when it’s not critical, it’s still a good idea not to rely on things that are

582 | Chapter 12: High Availability

http://linux-ha.org

out of your control, such as DNS changes or application configuration files. Some of
the worst problems don’t show up until a system becomes larger, when issues such as
forced application restarts and the need for atomicity rear their heads.

Because load balancing and failover are closely related, and the same piece of hardware
or software often serves both purposes, we suggest that any load-balancing technique
you choose should provide failover capabilities as well. This is the real reason we sug-
gested you avoid DNS or code changes for load balancing. If you use these strategies
for load balancing, you’ll create extra work: you’ll have to rewrite the affected code
later when you need high availability.

The following sections discuss some common failover techniques. You can perform
these manually, or use tools to accomplish them.

Promoting a Replica or Switching Roles
Promoting a replica to master, or switching the active and passive roles in a master-
master replication setup, is an important part of many failover strategies for MySQL.
See Chapter 10 for detailed explanations of how to accomplish this manually. As men-
tioned earlier in this chapter, we aren’t aware of any automated tools that always do
the right thing in all situations—or at least, none that we’ll put our reputations behind.

Depending on your workload, you shouldn’t assume that you can fail over to a passive
replica instantly. Replicas replay the master’s writes, but if you’re not also using them
for reads, they will not be warmed up to serve the production workload. If you want a
replica to be ready for read traffic, you have to continuously “train” it, either by letting
it participate in the production workload or by mirroring production read queries onto
it. We’ve sometimes done this by sniffing TCP traffic, filtering out everything but
SELECT queries, and replaying those against the replica. Percona Toolkit has tools that
can help with this.

Virtual IP Addresses or IP Takeover
You can assign a logical IP address to a MySQL instance that you expect to perform
certain services. If the MySQL instance fails, you can move the IP address to a different
MySQL server. This is essentially the same approach we wrote about in the previous
chapter, except that now we’re using it for failover instead of load balancing.

The benefit of this approach is its transparency for the application. It will abort existing
connections, but it doesn’t require you to change your application’s configuration. It
is also sometimes possible to move the IP address atomically, so all applications see the
change at the same time. This can be especially important when a server is “flapping”
between available and unavailable states.

The downsides are as follows:

Failover and Failback | 583

• You need to either define all IP addresses on the same network segment, or use
network bridging.

• Changing the IP address requires root access to the system.

• Sometimes you need to update address resolution protocol (ARP) caches. Some
network devices might cache ARP entries for too long, and might not instantly
switch an IP address to a different MAC address. We’ve seen lots of cases where
network hardware or other components decide not to cooperate, and thus the
various parts of the system don’t agree on where the IP address really lives.

• You need to make sure the network hardware supports fast IP takeover. Some
hardware requires MAC address cloning for this to work properly.

• It’s possible for a server to keep its IP address even though it’s not fully functional,
so you might need to physically shut it down or disconnect it from the network.
This is known by the lovely acronym of STONITH: “shoot the other node in the
head.” It’s also called “fencing,” which is a more delicate and official-sounding
name.

Floating IP addresses and IP takeover can work well for failover between machines that
are local to each other—that is, on the same subnet. In the end, however, you need to
be aware that this isn’t always a bulletproof strategy, depending on your network hard-
ware and so on.

Waiting for Changes to Propagate
Often, when you define redundancy on one layer, you have to wait for a lower layer to
actually carry out a change. Earlier in this chapter, we pointed out that changing servers
through DNS is a weak solution because DNS is slow to propagate changes. Changing
IP addresses gives you more control, but IP addresses on a LAN also depend on a lower
layer—ARP—to propagate changes.

Middleman Solutions
You can use proxies, port forwarding, network address translation (NAT), and hard-
ware load balancers for failover and failback. They’re nice because unlike other solu-
tions that tend to introduce uncertainty (do all of the system components really agree
on which one is the master database? can it be changed instantaneously and atomi-
cally?), they’re a central authority that controls connections between the application
and the database. However, they do introduce a single point of failure themselves, and
you’ll need to make them redundant to avoid that problem.

One of the nice things you can do with such a solution is make a remote data center
appear to be on the same network as your application. This lets you use techniques
such as floating IP addresses to make your application begin communicating with an
entirely different data center. You can configure each application server in each data

584 | Chapter 12: High Availability

center to connect through its own middleman, each of which routes traffic to the ma-
chines in the active data center. Figure 12-1 illustrates this configuration.

Figure 12-1. Using a middleman to route MySQL connections across data centers

If the active data center’s MySQL installation fails entirely, the middleman can route
the traffic to the pool of servers in the other data center, and the application never needs
to know the difference.

The major disadvantage of this configuration is the high latency between the Apache
server in one data center and the MySQL servers in the other data center. To alleviate
this problem, you can run the web server in redirect mode. This will redirect traffic to
the data center that houses the pool of active MySQL servers. You can also achieve this
with an HTTP proxy.

Figure 12-1 shows a proxy as the means of connecting to the MySQL servers, but you
can combine this approach with many middleman architectures, such as LVS and
hardware load balancers.

Handling Failover in the Application
Sometimes it’s easier or more flexible to let the application handle failover. For example,
if the application experiences an error that isn’t normally detected by an outside ob-
server, such as an error message indicating database corruption, it can handle the fail-
over process itself.

Although integrating the failover process into the application might seem attractive, it
tends not to work as well as you might think it will. Most applications have many
components, such as cron jobs, configuration files, and scripts written in different pro-
gramming languages. Integrating failover into the application can therefore become
unwieldy, especially as the application grows and becomes more complicated.

Failover and Failback | 585

However, it’s a good idea to build monitoring into your application and let it initiate
the failover process if it needs to. The application should also be able to manage the
user experience, by degrading functionality and showing appropriate messages to the
user.

Summary
You can achieve high availability by reducing downtime, which you should attack from
two directions: increasing time between failures (MTBF), and reducing time to recover
from failures (MTTR).

To increase time between failures, try to prevent them. Sadly, when you’re preventing
failures it can feel like you’re not doing very much, so preventive efforts are often ne-
glected. We mentioned the highlights of how to prevent downtime on MySQL systems;
for the long-winded details, see our white papers, available on http://www.percona
.com. And do try to learn from your downtime, but beware of placing root cause
analysis and post-mortems on a pedestal.

Shortening recovery time can get complex and expensive. On the simple and easy side,
you can monitor so that you notice problems more quickly, and record lots of metrics
to help diagnose the problems. As a bonus, these can sometimes be used to spot prob-
lems before they become downtime. Monitor and alert selectively to avoid noise, but
record status and performance metrics eagerly.

Another tactic for shortening recovery time is to build redundancy into the system, and
make the system capable of failover so you can switch between redundant components
when one fails. Unfortunately, redundancy makes systems really complicated. Now
things are no longer centralized; they’re distributed, and that means coordination and
synchronization and CAP theorems and Byzantine Generals and all that messy stuff.
This is why systems like NDB Cluster are both hard to build and hard to make general-
purpose enough to serve everyone’s workloads. But the situation is improving, and
maybe by the fourth edition we’ll be able to sing the praises of one or more clustered
databases.

This chapter and the previous two have covered topics that are often lumped together:
replication, scalability, and high availability. We’ve attempted to consider them as
separately as possible, because it is helpful to be clear on the differences between these
topics. So how are these three chapters related?

People generally want three things from their databases as their applications grow:

• They want to be able to add capacity to serve increasing load without sacrificing
performance.

• They want protection against losing a committed transaction.

• They want the applications to remain online and servicing transactions so they
keep making money.

586 | Chapter 12: High Availability

http://www.percona.com
http://www.percona.com

To accomplish this combination of goals, people usually start by adding redundancy.
That, combined with a failover mechanism, provides high availability through mini-
mizing MTTR. The redundancy also adds spare capacity to serve more load.

Of course, you have to duplicate the data too, not just the resources. This can help
prevent losing the data when you lose a server, which adds durability. The only way to
duplicate data is to replicate it somehow. Unfortunately, data duplication introduces
the possibility of inconsistency. Dealing with that requires coordination and commu-
nication between nodes. This adds extra overhead to the system; that’s why systems
are more or less scalable.

Duplication also requires more resources (more hard drives, more RAM, etc.), which
adds cost. One way to reduce both the resource consumption and the overhead of
maintaining consistency is to partition (shard) the data and distribute each shard only
to certain systems. This reduces the number of times the data is duplicated and de-
couples data redundancy from resource redundancy.

So, although one thing leads to the next, again we’re really talking about a group of
related concepts and practices to address a set of goals. They’re not just different ways
of talking about the same thing.

In the end, you need to choose a strategy that makes sense for you and your application.
Deciding on a full end-to-end high-availability strategy is not something you should
tackle with simple rules of thumb, but perhaps we can help by giving broad-brush
guidelines.

To achieve very short downtimes, you need redundant servers that are ready to take
over the application’s workload instantly. They must be online and processing queries
all the time, not just standing by, so they are “warmed up” and ready to go. If you want
strong guarantees, you need a clustering product such as MySQL Cluster, Percona
XtraDB Cluster, or Clustrix. If you can tolerate a bit more slack in the failover process,
standard replication can be quite a good alternative. Be cautious about using automatic
failover mechanisms; they can wreck your data if they don’t get it right.

If you don’t care as much about the failover time but you want to avoid data loss, you
need some kind of strongly guaranteed data redundancy—i.e., synchronous replica-
tion. At the storage layer, you can do it on the cheap with DRBD, or on the other end
of the cost spectrum you can get two SANs that have synchronous replication between
them. Alternatively, you can replicate the data at the database layer instead, with a
technology such as MySQL Cluster, Percona XtraDB Cluster, or Clustrix. You can also
use middleware such as Tungsten Replicator. If you don’t need strong protection and
you want to keep things as simple as possible, normal asynchronous or semisynchro-
nous replication might be a good option at a reasonable cost.

Or you could just put your application into the cloud. Why not? Won’t that instantly
make it highly available and infinitely scalable? Let’s find out.

Summary | 587

CHAPTER 13

MySQL in the Cloud

It should be no surprise that many people are running MySQL in the cloud, sometimes
at a very large scale. In our experience, most of them are using the Amazon Web Services
(AWS) platform: specifically Amazon’s Elastic Compute Cloud (EC2), Elastic Block
Store (EBS) volumes, and, to a lesser extent, the Relational Database Service (RDS).

One way to frame the discussion about MySQL in the cloud is to divide it into two
rough categories:

IaaS (Infrastructure as a Service)
IaaS is cloud infrastructure for hosting your own MySQL server. You can purchase
a virtual server resource in the cloud and use it to install and run your MySQL
instance. You can configure MySQL and the operating system as you wish, but you
have no access or insight into the underlying physical hardware.

DBaaS (Database as a Service)
MySQL itself is the cloud-managed resource. You receive access credentials to a
MySQL server. You can configure some of MySQL’s settings, but you have no
access or insight into the underlying operating system or virtual server instance.
An example is Amazon RDS running MySQL. Some of these services aren’t really
stock MySQL, but they are compatible with the MySQL protocol and query
language.

We focus most on the first category: cloud hosting on platforms such as AWS, Rack-
space Cloud, and Joyent.1 There are many good resources for learning how to deploy
and manage MySQL and the resources needed to run it, and there are too many plat-
forms for us to cover them all, so we don’t show code samples or discuss operational
techniques. Instead, this chapter focuses on the key differences between running
MySQL in the cloud versus traditional server deployment, and on the resulting eco-
nomic and performance characteristics. We assume that you’re familiar with cloud
computing. This is not an introduction to the topic; our goal is just to help you avoid
some pitfalls you might encounter if you’re not a MySQL-in-the-cloud expert.

1. OK, OK, we admit it. Amazon Web Services is the cloud. This chapter is mostly about AWS.

589

In general, MySQL runs fine in the cloud. Running MySQL in the cloud isn’t dramat-
ically different from running MySQL on any other platform, but there are several very
important distinctions. You need to be aware of them and design your application and
architecture accordingly to get good results. In some circumstances hosting MySQL in
the cloud is not a great fit, and sometimes it’s the best thing since sliced bread, but in
most cases it’s just another deployment platform.

It is important to understand that the cloud is a deployment platform, not an archi-
tecture. Your architecture is influenced by the platform, but the platform and the ar-
chitecture are distinct. If you confuse the two, you might be more likely to make poor
choices that can cause problems in the future. That’s why we’ll spend so much time
discussing which differences matter for MySQL in the cloud.

Benefits, Drawbacks, and Myths of the Cloud
Cloud computing has many benefits, few of which are specific to using it with MySQL.
There are books written on this topic,2 and we don’t want to spend too much time on
it. But we’ll list a few big items for your consideration, because we’re going to discuss
drawbacks in a moment, and we don’t want you to think we’re overly critical of the
cloud:

• The cloud is a way of outsourcing some of your infrastructure so you don’t have
to manage it. You don’t have to purchase hardware and develop supply-chain re-
lationships, you don’t have to replace failed hard drives, and so on.

• The cloud is generally priced pay-as-you-go, converting upfront capital expenses
into ongoing operational expenses.

• The cloud offers increasing value over time as providers deliver new services and
lower costs. You don’t have to do anything yourself (such as upgrading your
servers) to take advantage of these improvements; you simply have more and better
options available to you at a lower cost as time passes.

• The cloud lets you provision servers and other resources easily, and shut them
down when you’re done, without having to dispose of them or reclaim costs by
reselling them.

• The cloud represents a different way of thinking about infrastructure—as resources
that are defined by and controlled through APIs—and this allows a lot more au-
tomation. You can also get these benefits in a “private cloud.”

Of course, not everything about the cloud is good. Here are some drawbacks that can
pose challenges (we’ll list some MySQL-specific drawbacks later in this chapter):

• Resources are shared and unpredictable, and you can actually get more than you’re
paying for. This might sound good, but it can make it difficult to do capacity

2. See George Reese’s Cloud Application Architectures (O’Reilly).

590 | Chapter 13: MySQL in the Cloud

http://shop.oreilly.com/product/9780596156374.do

planning. If you’re getting more than your share of computing resources and you
don’t know it there’s a risk that someone else will claim their fair share of resources,
bumping your performance back to what it’s supposed to be. In general, it can be
difficult to know for certain what you’re supposed to be getting, and most cloud
hosting providers don’t provide concrete answers about such questions.

• There are no guarantees about capacity or availability. You may assume that you
can provision new instances, but what if the provider becomes oversubscribed?
This happens with many shared resources, and it could happen in the cloud, too.

• Virtualized and shared resources can be harder to troubleshoot, especially because
you don’t have access to the underlying physical hardware to inspect and measure
what’s happening. For example, we’ve seen systems where iostat claimed that the
I/O was fine or vmstat showed that the CPU was fine, and yet when we actually
measured the time elapsed to complete tasks, the resources were clearly overloaded
by something else on the system. If you run into performance problems on a cloud
platform, it is even more important than usual to measure carefully. If you’re not
good at this, you might not be able to identify whether the underlying system is
just performing badly, or whether you’ve done something that’s causing the ap-
plication to make unreasonable demands on the system.

We can summarize the above points by saying that there is reduced transparency and
control over performance, availability, and capacity in the cloud. Finally, here are a few
cloud myths to keep in mind:

The cloud is inherently more scalable
Applications, their architectures, and the organizations that manage them are scal-
able (or not). The cloud isn’t inherently scalable just because it’s a cloud, and
choosing a scalable platform doesn’t automatically make your application scalable.
It’s true that if the cloud hosting provider isn’t oversubscribed, there are resources
that you can purchase on demand, but availability of resources when you need
them is only one aspect of scalability.

The cloud automatically improves or even guarantees uptime
Individual cloud-hosted servers are actually more likely to fail or have outages, in
general, than well-designed dedicated infrastructure. Many people don’t realize
this, however. For example, one person wrote “we are upgrading our infrastructure
to a cloud-based system to give us 100% uptime and scalability.” This was just
after AWS had suffered two huge outages that affected large portions of its user
base. A good architect can design reliable systems with unreliable components, but
in general a more reliable infrastructure contributes to higher availability. (There’s
no such thing as 100% uptime, of course.)

On the other hand, by subscribing to a cloud computing service, you’re buying a
platform that was built by experts. They have taken care of a lot of low-level things
for you, and that means you can focus on higher-level tasks. If you build your own
platform and you’re not an expert on all those minutiae, you’re likely to make some

Benefits, Drawbacks, and Myths of the Cloud | 591

beginner’s mistakes, which will probably cause some downtime sooner or later. In
this way, cloud computing can help you improve your uptime.

The cloud is the only thing that provides [insert benefit here]
Actually, many of the benefits of the cloud are inherited from the technologies used
to build cloud platforms and can be obtained with or without the cloud.3 With
properly managed virtualization and capacity planning, for example, you can spin
up a new machine as easily and quickly as you can in any cloud. You don’t need
the cloud for this.

The cloud is a silver bullet
It might seem absurd that anyone would actually say this, but some do. There is
no such thing.

Cloud computing provides unique benefits, to be sure, and over time we will develop
a greater shared understanding of what those are and when they’re useful. One thing
is certain: this is all new, and any predictions we make now are unlikely to age well.
We’ll take the safe course in this book and leave the rest of this topic to in-person
discussions.

The Economics of MySQL in the Cloud
Cloud hosting can certainly be more economical than traditional server deployment in
some cases. In our experience, cloud hosting is a great match for a lot of prototype-
phase businesses, or businesses who are perpetually spinning out new concepts and
essentially running them through a feasibility trial-by-fire. Mobile app developers and
game developers come to mind immediately. The market for these technologies is ex-
ploding with the spread of mobile computing, and it’s a fast-paced world. In many
cases, success comes through factors that are out of the developer’s control, such as
word-of-mouth referrals or timing that coincides with important world events.

We have helped many companies build mobile, social networking, and gaming appli-
cations in the cloud. One strategy many of them use is to develop and release applica-
tions as quickly and cheaply as possible. If an application happens to catch on, the
company will invest resources into making it work at a larger scale; otherwise, they’ll
terminate it quickly. Some companies build and release such applications in lifecycles
as short as a few weeks. In such an environment, cloud hosting is a no-brainer.

If you’re a small-scale company, you probably can’t afford your own data center with
enough hardware to meet the scaling curve of a virally popular Facebook application.
We’ve also helped scale some of the largest Facebook applications ever built, and it
can be astonishing how fast they can grow—sometimes, it seems, faster than some
managed hosting companies can rack servers. But even worse, the growth of these apps

3. We’re not saying it would be easy or cheap. We’re just saying that the cloud isn’t the only place you can
get these benefits.

592 | Chapter 13: MySQL in the Cloud

is completely unpredictable; they could just as easily fail to get more than a handful of
users. We’ve worked on such applications both in datacenters and in the cloud. If you’re
a small company, the cloud can help you hedge against the risk that you’ll need to scale
larger and faster than your capital can support up front.

Another potentially great use for the cloud is to run noncritical infrastructure, such as
integration environments, testbeds for deployment, and evaluations. Suppose your de-
ployment lifecycle is two weeks long. Do you test a deployment every hour of every
day, or do you test when you’re toward the end of the sprint? Many users need staging
and deployment test environments only occasionally. Cloud hosting can help save
money in such cases.

Here are two ways we use the cloud ourselves. The first is as part of our interviewing
process for technical staff members, where we ask them to solve some real problems.
We spin up some “broken” machines with Amazon Machine Images (AMIs) that we
created for this purpose, and we ask candidates to log in and perform a variety of tasks
on the servers. We don’t have to open up access to our own network, and it’s unbeatably
cheap. Another way we’ve used cloud hosting is for staging and development servers
for new projects. One such project ran on a staging server in the cloud for months and
generated a total bill of less than a dollar! There’s no way we could do that on our own
infrastructure. Just sending an email to our system administrator asking for a staging
server would take more than a dollar’s worth of time.

On the other hand, cloud hosting can be more expensive over the long term. You should
take the time to do the math yourself, if you’re in it for the long haul. This will require
benchmarking and a full accounting of total cost of ownership (TCO), as well as some
guesswork about what future innovations will bring both in cloud computing and in
commodity hardware. To get to the heart of the matter and incorporate all the relevant
details, you need to boil everything down to a single number: business transactions per
dollar. Things change quickly, so we leave this as an exercise for the reader.

MySQL Scaling and HA in the Cloud
As we noted earlier, MySQL doesn’t automatically become more scalable in the cloud.
In fact, the less powerful machines that are available force you to use horizontal scaling
strategies much earlier. And cloud-hosted servers are less reliable and predictable than
dedicated hardware, so achieving high availability requires more creativity.

By and large, though, there aren’t many differences between scaling MySQL in the
cloud and scaling MySQL elsewhere. The biggest difference is the ability to provision
servers on demand. However, there are some limitations that make scaling and high
availability a bit harder, at least in some cloud environments. For example, in the AWS
cloud platform, you can’t use the equivalent of virtual IP addresses to perform fast
atomic failover. The limited control over resources like this simply means you have to

MySQL Scaling and HA in the Cloud | 593

use other approaches, such as proxies. (ScaleBase is one that could be worth looking
into.)

The other siren call of the cloud is the dream of auto-scaling—that is, spinning up more
instances in response to increased demand, and shutting them down again when de-
mand reduces. Although this is feasible with stateless parts of the stack such as web
servers, it’s very hard to do with the database server, because it is stateful. For special
cases, such as read-mostly applications, you can get a limited form of auto-scaling by
adding replicas,4 but this is not a one-size-fits-all solution. In practice, although many
applications use auto-scaling in the web tier, MySQL isn’t natively capable of running
across a shared-nothing cluster of servers that all assume peer roles. You could do it
with a sharded architecture that automatically reshards and grows or shrinks,5 but
MySQL itself just isn’t able to auto-scale.

In fact, as it’s typically the main or only stateful and persistent component of an ap-
plication, it’s pretty common for people to move an application into the cloud because
of the benefits it offers for everything but the database—web servers, job queue servers,
caches, etc.—and MySQL just has to go where everything else goes.

The database isn’t the center of the world, after all. If the benefits to the rest of the
application outweigh the additional cost and effort required to make MySQL work as
needed, then it’s not a question of whether it will happen, but how. To answer this,
it’s helpful to understand the additional challenges you might face in the cloud. These
typically center around the resources available to the database server.

The Four Fundamental Resources
MySQL needs four fundamental resources to do its work: CPU cycles, memory, I/O,
and the network. These four resources have characteristic and important differences
in most cloud platforms. One helpful way to approach decisions about hosting MySQL
in the cloud is to examine these differences and their implications for MySQL:

• CPUs are generally fewer and slower. The largest standard EC2 instances at the
time of writing offer eight virtual CPU cores. The virtual CPUs EC2 offers are
effectively slower than top-end CPUs (see our benchmarks a bit later in the chapter
for the subtleties). This is probably fairly typical of most cloud hosting, although
there will be variations. EC2 offers instances with more CPU resources, but they
have lower maximum memory sizes. At the time of writing, commodity servers
offer dozens of CPU cores—and even more, if you count hardware threads.6

4. A popular open source service for auto-scaling MySQL replication in the cloud is Scalr (http://scalr.net).

5. This is what computer scientists like to call a “non-trivial challenge.”

6. Commodity hardware still offers more power than MySQL can use effectively in terms of CPU, RAM,
and I/O, so it’s not completely fair to compare the cloud with the biggest horsepower available outside
the cloud.

594 | Chapter 13: MySQL in the Cloud

http://scalr.net

• Memory size is limited. The largest EC2 instances currently offer 68.4 GB of mem-
ory. In contrast, commodity servers are available with 512 GB to 1 TB of memory.

• I/O performance is limited in throughput, latency, and consistency. There are two
options for storage in the AWS cloud.

The first is using EBS volumes, which are like a cloud SAN. The best practice in
the AWS cloud is to build servers on RAID 10 volumes over EBS. However, EBS
is a shared resource, as is the network connection between the EC2 server and the
EBS server. Latency can be high and unpredictable, even under moderate through-
put demands. We’ve measured I/O latency to EBS devices well into the tenths of
seconds. In comparison, directly attached commodity hard drives respond in
single-digit milliseconds, and flash devices are orders of magnitude faster even than
hard drives. On the other hand, EBS volumes have a lot of nice features, such as
integration with other AWS services, fast snapshots, and so on.

The second storage option is the instance’s local storage. Each EC2 server has some
amount of local storage, which is actually attached to the underlying server. It can
offer more consistent performance than EBS,7 but it does not persist when the
instance is stopped. The ephemeral nature of the local storage makes it unsuitable
for most database server use cases.

• Network performance is usually decent, although it is a shared resource and can
be variable. Although you can get faster and more consistent network performance
in commodity hardware, the CPU, RAM, and I/O tend to be the first bottlenecks,
and we haven’t had problems with network performance in the AWS cloud.

As you can see, three of the four fundamental resources are limited in the AWS cloud,
in some cases significantly so. In general, the underlying resources aren’t as powerful
as what’s available in commodity hardware. We’ll discuss the precise consequences of
this in the next section.

MySQL Performance in Cloud Hosting
In general, MySQL performance on cloud hosting platforms such as AWS isn’t as good
as you can get elsewhere, due to weaker CPU, memory, and I/O performance. This
varies from cloud platform to cloud platform, but it is still generally true.8 However,
cloud hosting might still be a high-enough performance platform for your needs, and
it’s better for some needs than for others.

It shouldn’t surprise you that with weaker resources to run the database, you can’t
make MySQL run as fast when you host it in the cloud. What might surprise you is

7. Local storage is not actually allocated to the instance until it is written, causing a first-write penalty for
each block that is written. The trick to avoiding this penalty is to use dd to write the device full of data.

8. If you believe http://www.xkcd.com/908/, then obviously all clouds have the same weaknesses. We’re just
sayin’.

MySQL Performance in Cloud Hosting | 595

http://www.xkcd.com/908/

that you might not be able to make it run as fast as you can on similarly sized physical
hardware. For example, if you have a server with 8 CPU cores, 16 GB of memory, and
a midlevel RAID array, you might assume that you can get about the same performance
from an EC2 instance with 8 EC2 compute units, 15 GB of memory, and a handful of
EBS volumes. That’s not guaranteed, however. The EC2 instance’s performance is
likely to be more variable than that of your physical hardware, especially because it’s
not one of the super-large instances and is therefore presumably sharing resources with
other instances on the same physical hardware.

Variability is a really big deal. MySQL, and InnoDB in particular, doesn’t like variable
performance—especially not variable I/O performance. I/O operations can acquire
mutex locks inside the server, and when these last too long they can cause pileups that
manifest as many “stuck” processes, inexplicably long-running queries, and spikes in
status variables such as Threads_running or Threads_connected.

The practical result of inconsistent or unpredictable performance is that queueing be-
comes more severe. Queueing is a natural consequence of variability in response times
and inter-arrival times, and there is an entire branch of mathematics devoted to the
study of queueing. All computers are networks of queueing systems, and requests for
resources must wait if the desired resource (CPU, I/O, network, etc.) is busy. When
resource performance is more variable, requests overlap more often, and they experi-
ence more queueing. As a result, it’s a bit harder to achieve high concurrency or con-
sistently low response times in most cloud computing platforms. We have a lot of
experience observing these limitations on the EC2 platform. In our experience, the most
concurrency you can expect from MySQL on the largest instance sizes is a Threads
_running count of 8 to 12 on typical web OLTP workloads. Anything beyond that, and
performance tends to become unacceptable, as a rule of thumb.

Note that we said “typical web OLTP workloads.” Not all workloads respond in the
same way to the limitations of cloud platforms. It turns out that there are actually some
workloads that perform just fine in the cloud, and some that suffer especially badly.
Let’s take a look at what those are:

• Workloads that need high concurrency, as we just discussed, don’t tend to be as
well suited to cloud computing. The same is true of applications that demand
extremely fast response times. The reason boils down to the limited number and
speed of the virtual CPUs. Every query runs on a single CPU inside MySQL, so
query response time is limited by the raw speed of the CPU. If you want fast re-
sponse times, you need fast CPUs. To support higher concurrency, you need more
of them. It’s true that MySQL and InnoDB don’t provide great bang for the buck
on many dozens of CPU cores, but they generally scale well out to at least 24 cores
these days, and that’s more than you can usually get in the cloud.

• Workloads that require a lot of I/O don’t tend to perform all that well in the cloud.
When I/O is slow and variable, things grind to a halt fairly quickly. On the other
hand, if your workload doesn’t demand a lot of I/O, either in throughput

596 | Chapter 13: MySQL in the Cloud

(operations per second) or bandwidth (bytes per second), MySQL can hum along
quite nicely.

The preceding points really follow from the weaknesses of CPU and I/O resources in
the cloud. What can you do about them? There’s not much you can do about CPU
limitations. If you don’t have enough, you don’t have enough. However, I/O is differ-
ent. I/O is really the interchange between two kinds of memory: volatile memory (RAM)
and persistent memory (disk, EBS, or what have you). As a result, MySQL’s I/O de-
mands can be influenced by how much memory the system has. With enough memory,
reads can be served from caches, reducing the I/O needed for both reads and writes.
Writes can generally be buffered in memory too, and multiple writes to the same bits
of memory can be combined and then persisted with a single I/O operation.

That’s where the limitations on memory come into the picture. With enough memory
to hold the working set of data,9 I/O demands can be reduced significantly for certain
workloads. Larger EC2 instance sizes also offer better network performance, which
further helps I/O to EBS volumes. But if your working set is too big to fit into the largest
instances available, I/O demands escalate and things start to block and stall, as dis-
cussed earlier. The largest high-memory instance sizes in EC2 have enough memory to
serve many workloads quite nicely. However, you should be aware that warmup time
can be very long; more on that topic later in this section.

What types of workloads can’t be fixed by adding more memory? Regardless of buffer-
ing, some write-heavy workloads simply require more I/O than you can expect from
many cloud computing platforms. If you’re executing many transactions per second,
for example, that will demand a lot of I/O operations per second to ensure durability,
and you can only get so much throughput from systems such as EBS. Likewise, if you’re
pushing a lot of data into the database, you might exceed the available bandwidth.

You might think that you can improve your I/O performance by striping and mirroring
EBS volumes with RAID. That does help, up to a point. The problem is that as you add
more EBS volumes, you actually increase the likelihood that one of them is going to be
performing badly at any given point in time, and due to the way I/O works inside of
InnoDB, the weakest link is often the bottleneck for the whole system. In practice, we’ve
tried RAID 10 sets of 10 and 20 EBS volumes, and the 20-volume RAID had more
problems with stalls than the 10-volume one did. When we measured the I/O perfor-
mance of the underlying block devices, it was clear that only one or two of the EBS
volumes was performing slowly, and yet the whole server suffered.

You can change the application and server to reduce the I/O demands, too. Careful
logical and physical database design (schema and indexing) goes a long way toward
reducing I/O needs, as does application and query optimization. These are the most
powerful levers you can apply to reducing I/O. Some workloads, such as insert-heavy
workloads, can be helped by judicious use of partitioning to concentrate the I/O on a

9. See Chapter 9 for a definition of the working set and a discussion of how it influences I/O demands.

MySQL Performance in Cloud Hosting | 597

single partition whose indexes fit in memory. You can relax durability, for example by
setting innodb_flush_logs_at_trx_commit=2 and sync_binlog=0, or moving the InnoDB
transaction logs and binary logs off the EBS volumes and onto the local drives (though
this is risky). But the harder you try to squeeze a little bit extra from the server, the
more complexity (and thus cost) you inevitably add.

You can also upgrade your MySQL server software. Newer versions of MySQL and
InnoDB (recent versions of MySQL 5.1 with the InnoDB plugin, or MySQL 5.5 and
newer) offer significantly better I/O performance and fewer internal bottlenecks,
and will suffer from stalls and pileups much less than the older code in early 5.1 and
previous versions. Percona Server can offer even more benefits in certain workloads.
For example, Percona Server’s feature to warm up the buffer pool quickly after a restart
is enormously helpful in getting a server back up and running quickly, especially if
the I/O performance is not great and the server relies on an in-memory workload. This
is one of the scenarios we’ve been discussing as a candidate for good performance in
the cloud, where servers tend to fail more often than on-premise hardware. Percona
Server can reduce warmup times from hours or even days to just minutes. At the time
of writing, a similar warmup feature is available in a MySQL 5.6 development milestone
release.

Ultimately, though, a growing application will reach a point where you have to shard
the database to stay in the cloud. We really like to avoid sharding when we can, but if
you only have so much horsepower, at some point you have to either go elsewhere
(leave the cloud), or break things up into smaller pieces whose demands don’t exceed
the capacity of the virtual hardware that’s available. You can generally count on having
to shard when your working set doesn’t fit in memory anymore, meaning a working
set size of around 50 GB to 60 GB on the largest EC2 instances. In contrast, we have
lots of experience running multi-terabyte databases on physical hardware. You have to
shard much earlier in the cloud.

Benchmarks for MySQL in the Cloud
We performed some benchmarks to illustrate MySQL’s performance in the AWS cloud
environment. It’s virtually impossible to get consistent and reproducible benchmarks
in the cloud when a lot of I/O is needed, so we chose an in-memory workload that
measures essentially everything except I/O. We used Percona Server version 5.5.16 with
a 4 GB buffer pool to run the standard SysBench read-only benchmark on 10 million
rows of data. This allowed us to compare results across a variety of instance sizes. We
omitted the high-CPU instances because they actually have less CPU power than the
m2.4xlarge instance does, and we included a Cisco server as a point of reference. The
Cisco machine is fairly powerful but aging a bit, with dual Intel Xeon X5670 Nehalem
CPUs at 2.93 GHz. Each CPU has six cores with two hardware threads on each, which
the operating system sees as 24 CPUs overall. Figure 13-1 shows the results.

598 | Chapter 13: MySQL in the Cloud

The results should not be surprising, given the workload and the hardware. For exam-
ple, the largest EC2 instance tops out at eight threads, because it has eight CPU cores.
(A read/write workload would spend some of its time off-CPU doing I/O, so we would
be able to achieve more than eight threads of effective concurrency.) This chart might
lead you to assume that the Cisco’s advantage is in CPU power, which is what we
thought. So we benchmarked raw CPU performance to find out, using SysBench’s
prime-number benchmark. Figure 13-2 shows the results.

Figure 13-2. SysBench CPU prime-number benchmarks for AWS servers

The Cisco server has lower per-CPU performance than the EC2 servers. Surprised? We
were a bit surprised ourselves. The prime-number benchmark is essentially raw CPU

Figure 13-1. SysBench read-only benchmarks for MySQL in the AWS cloud

MySQL Performance in Cloud Hosting | 599

instructions, and as such, it shouldn’t have a noticeable virtualization overhead or much
memory traffic. Thus, the explanation for our results is probably as follows: the Cisco
server’s CPUs are a couple of years old, and are slower than the EC2 servers. But for
more complex tasks such as running a database server, the overhead of virtualization
places the EC2 servers at a disadvantage. It’s not always easy to distinguish between
slow CPUs, slow memory access, and virtualization overhead, but in this instance the
differences seem a bit clearer.

MySQL Database as a Service (DBaaS)
Installing MySQL on a cloud-hosted server isn’t the only option for using MySQL in
the cloud. More and more companies are offering the database itself as a cloud resource,
dubbing it Database as a Service (DBaaS, or sometimes DaaS). This means that you can
get a database in the cloud somewhere and leave the actual running of the service to
others. Although we’ve spent most of our time examining IaaS in this chapter, the IaaS
market is rapidly becoming commoditized, and we expect that in the future a lot of
emphasis will shift to DBaaS instead. There are several DBaaS providers at the time of
writing.

Amazon RDS
We’ve seen much more deployment on Amazon’s Relational Database Service (RDS)
than any of the other DBaaS offerings. Amazon RDS isn’t just a MySQL-compatible
service; it actually is MySQL, so it’s completely compatible with your own MySQL
server10 and can serve as a drop-in replacement. We can’t say for sure, but like most
people we believe that RDS is hosted on an EC2 machine backed by EBS volumes—
Amazon has not officially confirmed the underlying technologies, but when you get to
know RDS well, it seems pretty obvious that it’s just MySQL, EC2, and EBS.

Amazon does all the system administration for you. You don’t have access to the EC2
machine; you have access credentials to log into MySQL, and that’s it. You can create
databases, insert data, and so on. You’re not locked in; if you want to, you can export
the data and move it elsewhere, and you can create volume snapshots and mount them
on other machines, too.

RDS comes with some restrictions to keep you from inspecting or interfering with
Amazon’s management of the server or the host instance. There are some privilege
restrictions, for example. You can’t use SELECT INTO OUTFILE, FILE(), LOAD DATA
INFILE, or any other method of accessing the server’s filesystem through MySQL. You
can’t do anything related to replication, and you can’t escalate your privileges to grant
yourself these rights, either. Amazon has taken measures such as placing triggers on

10. Unless you’re using an alternative storage engine or some other nonstandard modification to MySQL.

600 | Chapter 13: MySQL in the Cloud

the system tables to prevent that. And as part of the terms of service, you agree not to
try to get around these limitations.

The MySQL version installed is slightly modified to prevent you from meddling with
the server, but otherwise it seems to be stock MySQL as you know it. We benchmarked
RDS against EBS and EC2 and found nothing beyond the variations we’d expect from
the platform. That is, it looks like Amazon hasn’t done any performance enhancements
to the server.

RDS can offer few compelling benefits, depending on your circumstances:

• You can leave the system administration work and even much of the database
administration work to Amazon. For example, they handle replication for you and
ensure you don’t mess it up.

• Depending on your cost structure and staffing resources, RDS can be inexpensive
compared to the alternatives.

• The restrictions can be seen as a good thing: Amazon takes away the loaded gun
you might otherwise use to shoot yourself in the foot.

However, it does have some potential drawbacks:

• Because you can’t access the server, you can’t tell what’s going on in the operating
system. For example, you can’t measure I/O response time or CPU utilization.
Amazon does provide this through another of its services, CloudWatch. It gives
detailed enough metrics to troubleshoot many performance problems, but some-
times you need the raw data to know exactly what’s happening. (You can’t use
functions such as FILE() to access /proc/diskstats, either.)

• You can’t get the full slow query log file. You can direct MySQL to log slow queries
to a CSV logging table, but this isn’t as good. It consumes a lot more server re-
sources, and it doesn’t give high-resolution query response times. This makes it a
bit harder to profile and troubleshoot SQL.

• If you want the latest and greatest, or some performance enhancements such as
those you could get with Percona Server, you’re out of luck. RDS doesn’t offer
them.

• You must rely on Amazon’s support team to resolve some problems that you might
otherwise be able to fix yourself. For example, suppose queries hang, or your server
crashes due to data corruption. You can either wait for Amazon to work on it, or
you can take matters into your own hands. But to do the latter, you have to take
the data elsewhere; you can’t access the instance itself to fix it. You have to spend
extra time and pay for additional resources if you want to do this. This isn’t just
theoretical; we’ve gotten lots of support requests for help with things that really
require access to the system to troubleshoot, and aren’t really solvable for RDS
users as a result.

MySQL Database as a Service (DBaaS) | 601

In terms of performance, as we said, RDS is pretty comparable to a large high-memory
EC2 instance with EBS storage and stock MySQL. You can squeeze a little more per-
formance out of the AWS cloud if you use EC2 and EBS directly and install and tweak
a higher-performance version of MySQL, such as Percona Server, but it won’t be an
order-of-magnitude difference. With that in mind, it makes sense to base your decision
to use RDS on your business needs, not on performance. If you really need performance
that badly, you should not use the AWS cloud at all.

Other DBaaS Solutions
Amazon RDS isn’t the only DBaaS game in town for MySQL users. There are also
services such as FathomDB (http://fathomdb.com) and Xeround (http://xeround.com).
We don’t have enough firsthand experience to recommend any of them, though, be-
cause we haven’t had any production deployments on these services. From the limited
public information on FathomDB, it appears to be similar to Amazon RDS, although
it is available on the Rackspace cloud as well as the AWS cloud. It is in private beta at
the time of writing.

Xeround is quite different: it is a distributed cluster of servers, fronted by MySQL with
a proprietary storage engine. It seems to have at least some minor incompatibilities
with or differences from stock MySQL, but it only recently became generally available
(GA), so it’s too early to judge it. The storage engine appears to communicate with a
clustered backend system that might bear similarities to NDB Cluster. It has the added
benefit of resharding automatically to add and subtract nodes (dynamic scaling) as the
workload increases and decreases.

There are many other DBaaS services, and new ones are announced pretty frequently.
Anything we write about this will be outdated by the time you read it, so we’ll let you
research the landscape yourself.

Summary
There are at least two mainstream ways to use MySQL in the cloud: install it on cloud
servers, or use a DBaaS offering. MySQL runs just fine in cloud hosting, but the limi-
tations of the cloud environment usually result in sharding much earlier than is
necessary outside the cloud. And cloud servers that appear comparable to your existing
physical hardware are likely to provide reduced performance and quality of service.

Sometimes it seems that people are saying, “The cloud is the answer; what is the ques-
tion?” That is one extreme, but people who are fervent believers that the cloud is a silver
bullet are likely to have corresponding problems. Three of the four fundamental re-
sources the database needs (CPU, memory, and disk) can be significantly weaker and/
or less effective in the cloud, and that has a direct impact on MySQL performance.

602 | Chapter 13: MySQL in the Cloud

http://fathomdb.com
http://xeround.com

Nevertheless, MySQL runs great in the cloud for lots of workloads. In general, you’ll
be fine if you can fit your working set in memory, and if you don’t generate a higher
write workload than your cloud-based I/O can handle. With careful design and archi-
tecture, and by choosing the correct version of MySQL and configuring it properly, you
can match your database’s workload and capabilities to the cloud’s strengths. Still,
MySQL isn’t a cloud database by nature; that is, it can’t really use all of the benefits
cloud computing theoretically offers, such as auto-scaling. Alternative technologies
such as Xeround are attempting to address these shortcomings.

We’ve talked a lot about the shortcomings of the cloud, which might give you the
impression that we’re anti-cloud. We’re not. It’s just that we’re trying to focus on
MySQL, instead of listing all of the benefits of cloud computing, which would not be
much different from anything you’d read elsewhere. We’re trying to point out what’s
different, and what you really need to know, about running MySQL in the cloud.

The biggest successes we’ve seen in the cloud have been when decisions are motivated
by business reasons. Even if the cost per business transaction is higher in the cloud over
the long term, other factors, such as increased flexibility, reduced upfront costs, re-
duced time to market, and reduced risk, can be more important. And the benefits to
the non-MySQL parts of your application could far outweigh any disadvantages you
experience with MySQL.

Summary | 603

CHAPTER 14

Application-Level Optimization

If you spend a lot of time improving MySQL’s performance, it’s easy to get tunnel vision
and forget to focus on the user’s experience. You may step back for a bit and realize
that MySQL is so highly optimized that it’s contributing only a tiny fraction of the
response time the user sees, and it’s time to focus elsewhere. This is a great insight
(especially for a DBA), and it’s exactly the right thing to do. But what is causing prob-
lems, if not MySQL? The answer can be found most reliably and quickly by measuring,
using the techniques we showed in Chapter 3. If your profiling is thorough and you
follow a logical process, it should not be hard to find the source of your problem.
Sometimes, though, even when the problem is MySQL, it might be easiest to solve it
in another part of the system!

No matter where the problem lies, there’s sure to be at least one great tool available to
help you measure it, often for free. For example, if you have issues with JavaScript or
page rendering, you can use the profiler included with the Firebug extension for the
Firefox web browser, or you can use the YSlow tool from Yahoo!. We mentioned several
application-level tools in Chapter 3. Some tools even profile the whole stack; New Relic
is an example of a tool that profiles the frontend, application, and backend of web
applications.

Common Problems
We see the same problems over and over again in applications, often because people
have used poorly designed off-the-shelf systems or popular frameworks that simplify
development. Although it’s sometimes easier and faster to use something you didn’t
build yourself, it also adds risk if you don’t really know what it’s doing under the hood.
Here’s a laundry list of things that we often find to be problems, to stimulate your
creative thought processes:

• What’s using the CPU, disk, network, and memory resources on each of the ma-
chines involved? Do the numbers look reasonable to you? If not, check the basics
for the applications that are hogging resources. Configuration is sometimes the

605

simplest way to solve problems. For example, if Apache runs out of memory be-
cause it creates 1,000 worker processes that each need 50 MB of memory, you can
configure the application to require fewer Apache workers. You can also configure
the system to use less memory for each process.

• Is the application really using all the data it’s getting? Fetching 1,000 rows but
displaying only 10 and throwing away the rest is a common mistake. (However, if
the application caches the other 990 rows for later use, it might be an intentional
optimization.)

• Is the application doing processing that ought to be done in the database, or vice
versa? Two examples are fetching all rows from a table to count them and doing
complex string manipulations in the database. Databases are good at counting
rows, and application languages are good at regular expressions. Use the best tool
for the job.

• Is the application doing too many queries? Object-relational mapping (ORM)
query interfaces that “protect programmers from having to write SQL” are often
to blame. The database server is designed to match data from multiple tables. Re-
move the nested loops in the code and write a join instead.

• Is the application doing too few queries? We know, we just said doing too many
queries can be a problem. But sometimes “manual joins” and similar practices can
be a good idea, because they can permit more granular and efficient caching, less
locking, and sometimes even faster execution when you emulate a hash join in
application code (MySQL’s nested loop join method is not always efficient).

• Is the application connecting to MySQL unnecessarily? If you can get the data from
the cache, don’t connect.

• Is the application connecting too many times to the same MySQL instance, perhaps
because different parts of the application open their own connections? It’s usually
a better idea to reuse the same connection throughout.

• Is the application doing a lot of “garbage” queries? A common example is sending
a ping to see if the server is alive before sending the query itself, or selecting the
desired database before each query. It might be a good idea to always connect to
a specific database and use fully qualified names for tables. (This also makes it
easier to analyze queries from the log or via SHOW PROCESSLIST, because you can
execute them without needing to change the database.) “Preparing” the connection
is another common problem. The Java driver in particular does a lot of things
during preparation, most of which you can disable. Another common garbage
query is SET NAMES UTF8, which is the wrong way to do things anyway (it does not
change the client library’s character set; it affects only the server). If your applica-
tion uses a specific character set for most of its work, you can avoid the need to
change the character set by configuring it as the default.

606 | Chapter 14: Application-Level Optimization

• Does the application use a connection pool? This can be both a good and a bad
thing. It helps limit the number of connections, which is good when connections
aren’t used for many queries (Ajax applications are a typical example). However,
it can have side effects, such as applications interfering with each other’s transac-
tions, temporary tables, connection-specific settings, and user-defined variables.

• Does the application use persistent connections? These can result in way too many
connections to MySQL. They’re generally a bad idea, except if the cost of con-
necting to MySQL is very high because of a slow network, if the connection will
be used only for one or two fast queries, or if you’re connecting so frequently that
you’re running out of local port numbers on the client. If you configure MySQL
correctly, you might not need persistent connections. Use skip-name-resolve to
prevent reverse DNS lookups, ensure that thread_cache is set high enough, and
increase back_log. See Chapter 8 and Chapter 9 for more details.

• Is the application holding connections open even when it’s not using them? If so—
particularly if it connects to many servers—it might be consuming connections
that other processes need. For example, suppose you’re connecting to 10 MySQL
servers. Getting 10 connections from an Apache process isn’t a problem, but only
one of them will really be doing anything at any given time. The other nine will
spend a lot of time in the Sleep state. If one server slows down, or there’s a long
network call, the other servers can suffer because they’re out of connections. The
solution is to control how the application uses connections. For example, you can
batch operations to each MySQL instance in turn, and close each connection before
querying the next one. If you’re doing time-consuming operations, such as calls to
a web service, you can even close the MySQL connection, perform the time-
consuming work, then reopen the MySQL connection and continue working with
the database.

The difference between persistent connections and connection pooling can be confus-
ing. Persistent connections can cause the same side effects as connection pooling, be-
cause a reused connection is stateful in either case.

However, connection pools don’t usually result in as many connections to the server,
because they queue and share connections among processes. Persistent connections,
on the other hand, are created on a per-process basis and can’t be shared among
processes.

Connection pools also allow more control over connection policies than shared con-
nections. You can configure a pool to autoextend, but the usual practice is to queue
connection requests when the pool is completely busy. This makes the connection
requests wait on the application server, rather than overload the MySQL server with
too many connections.

There are many ways to make queries and connections faster, but the general rule is
that avoiding them altogether is better than trying to speed them up.

Common Problems | 607

Web Server Issues
Apache is the most popular server software for web applications. It works well for many
purposes, but when used badly it can consume a lot of resources. The most common
issues are keeping its processes alive too long, and using it for a mixture of purposes
instead of optimizing it separately for each type of work.

Apache is usually used with mod_php, mod_perl, and mod_python in a “prefork” config-
uration. Preforking dedicates a process for each request. Because the PHP, Perl, and
Python scripts can be demanding, it’s not uncommon for each process to use 50 or 100
MB of memory. When a request completes, it returns most of this memory to the
operating system, but not all of it. Apache keeps the process open and reuses it for
future requests. This means that if the next request is for a static file, such as a CSS file
or an image, you’ll wind up with a big fat process serving a simple request. This is why
it’s dangerous to use Apache as a general-purpose web server. It is general-purpose,
but if you specialize it, you’ll get much better performance.

The other major problem is that processes can be kept busy for a long time if you have
Keep-Alive enabled. And even if you don’t, some of the processes might be staying alive
too long, “spoon-feeding” content to a client that is fetching the data slowly.1

People also often make the mistake of leaving the default set of Apache modules en-
abled. You can trim Apache’s footprint by removing modules you don’t need. It’s sim-
ple: just review the Apache configuration file and comment out unwanted modules,
then restart Apache. You can also remove unused PHP modules from your php.ini file.

The bottom line is that if you create an all-purpose Apache configuration that faces the
Web directly, you’re likely to end up with many heavyweight Apache processes. These
will waste resources on your web server. They can also keep a lot of connections open
to MySQL, wasting resources on MySQL, too. Here are some ways you can reduce the
load on your servers:2

• Don’t use Apache to serve static content, or at least use a different Apache instance.
Popular alternatives are Nginx (http://www.nginx.com) and lighttpd (http://www
.lighttpd.net).

• Use a caching proxy server, such as Squid or Varnish, to keep requests from ever
reaching your web servers. Even if you can’t cache full pages on this level, you
might be able to cache most of a page and use technologies such as edge side

1. Spoon-feeding occurs when a client makes an HTTP request but then doesn’t fetch the result quickly.
Until the client fetches the entire result, the HTTP connection—and thus the Apache process—stays alive.

2. A good book on how to optimize web applications is High Performance Web Sites by Steve Souders
(O’Reilly). Though it’s mostly about how to make websites faster from the client’s point of view, the
practices he advocates are good for your servers, too. Steve’s follow-up book, Even Faster Web Sites, is
also a good resource.

608 | Chapter 14: Application-Level Optimization

http://www.nginx.com
http://www.lighttpd.net
http://www.lighttpd.net
http://shop.oreilly.com/product/9780596529307.do
http://shop.oreilly.com/product/9780596522315.do

includes (ESI; see http://www.esi.org) to embed the small dynamic portion of the
page into the cached static portion.

• Set an expiration policy on both dynamic and static content. You can use caching
proxies such as Squid to invalidate content explicitly. Wikipedia uses this techni-
que to remove articles from caches when they change.

• Sometimes you might need to change the application so that you can use longer
expiration times. For example, if you tell the browser to cache CSS and JavaScript
files forever and then release a change to the site’s HTML, the pages might render
badly. You can version the files explicitly with a unique filename for each revision.
For example, you can customize your website publishing script to copy the CSS
files to /css/123_frontpage.css, where 123 is the Subversion revision number. You
can do the same thing for image filenames—never reuse a filename, and your pages
will never break when you upgrade them, no matter how long the browser caches
them.

• Don’t let Apache spoon-feed the client. It’s not just slow; it also makes denial-of-
service attacks easy. Hardware load balancers typically do buffering, so Apache
can finish quickly and the load balancer can spoon-feed the client from the buffer.
You can also use Nginx, Squid, or Apache in event-driven mode in front of the
application.

• Enable gzip compression. It’s very cheap for modern CPUs, and it saves a lot of
traffic. If you want to save on CPU cycles, you can cache and serve the compressed
version of the page with a lightweight server such as Nginx.

• Don’t configure Apache with a Keep-Alive for long-distance connections, because
that will keep fat Apache processes alive for a long time. Instead, let a server-side
proxy handle the Keep-Alive, and shield Apache from the client. It’s OK to con-
figure the connections between the proxy and Apache with a Keep-Alive, because
the proxy will use only a few connections to fetch data from Apache. Figure 14-1
illustrates the difference.

These tactics should keep Apache processes short-lived, so you don’t end up with more
processes than you need. However, some operations might still cause an Apache pro-
cess to stay alive for a long time and consume a lot of resources. An example is a query
to an external resource that has high latency, such as a remote web service. This problem
is often unsolvable.

Finding the Optimal Concurrency
Every web server has an optimal concurrency—that is, an optimal number of concurrent
connections that will result in requests being processed as quickly as possible, without
overloading your systems. This is the maximum system capacity we referred to in
Chapter 11. A little measurement and modeling, or simply trial and error, can be re-
quired to find this “magic number,” but it’s worth the effort.

Web Server Issues | 609

http://www.esi.org

It’s common for a high-traffic website to handle thousands of connections to the web
server at the same time. However, only a few of these connections need to be actively
processing requests. The others might be reading requests, handling file uploads,
spoon-feeding content, or simply awaiting further requests from the client.

As concurrency increases, there’s a point at which the server reaches its peak through-
put. After that, the throughput levels off and often starts to decrease. More importantly,
the response time (latency) starts to increase due to queueing.

To see why, consider what happens when you have a single CPU and the server receives
100 requests simultaneously. Imagine that one second of CPU time is required to pro-
cess each request. Assuming a perfect operating system scheduler with no overhead,
and no context switching overhead, the requests will need a total of 100 CPU seconds
to complete.

What’s the best way to serve the requests? You can queue them one after another, or
you can run them in parallel and switch between them, giving each request equal time
before switching to the next. In both cases, the throughput is one request per second.
However, the average latency is 50 seconds if they’re queued (concurrency = 1), and
100 seconds if they’re run in parallel (concurrency = 100). In practice, the average
latency would be even higher for parallel execution, because of the switching cost.

For a CPU-bound workload, the optimal concurrency is equal to the number of CPUs
(or CPU cores). However, processes are not always runnable, because they make
blocking calls such as I/O, database queries, and network requests. Therefore, the op-
timal concurrency is usually higher than the number of CPUs.

Figure 14-1. A proxy can shield Apache from long-lived Keep-Alive connections, resulting in fewer
Apache workers

610 | Chapter 14: Application-Level Optimization

You can estimate the optimal concurrency, but it requires accurate profiling. It’s usually
easier to either experiment with different concurrency values and see what gives the
peak throughput without degrading response time, or measure your real workload and
analyze it. Percona Toolkit’s pt-tcp-model tool can help you measure and model your
system’s scalability and performance characteristics from a TCP dump.

Caching
Caching is vital for high-load applications. A typical web application serves a lot of
content that costs much more to generate than it costs to cache (including the cost of
checking and expiring the cache), so caching can usually improve performance by or-
ders of magnitude. The trick is to find the right combination of granularity and expi-
ration policies. You also need to decide what content to cache and where to cache it.

A typical high-load application has many layers of caching. Caching doesn’t just happen
in your servers: it happens at every step along the way, including the user’s web browser
(that’s what content expiration headers are for). In general, the closer the cache is to
the client, the more resources it saves and the more effective it is. Serving an image from
the browser’s cache is better than serving it from the web server’s memory, which is
better than reading it from the server’s disk. Each type of cache has unique character-
istics, such as size and latency; we examine some of them in the following sections.

You can think about caches in two broad categories: passive caches and active caches.
Passive caches do nothing but store and return data. When you request something from
a passive cache, either you get the result or the cache tells you “that doesn’t exist.” An
example of a passive cache is memcached.

In contrast, an active cache does something when there’s a miss. It usually passes your
request on to some other part of the application, which generates the requested result.
The active cache then stores the result and returns it. The Squid caching proxy server
is an active cache.

When you design your application, you usually want your caches to be active (also
called transparent), because they hide the check-generate-store logic from the applica-
tion. You can build active caches on top of passive caches.

Caching Below the Application
The MySQL server has its own internal caches, and you can build your own cache and
summary tables, too. You can custom-design your cache tables so that they’re most
useful for filtering, sorting, joining to other tables, counting, or any other purpose.
Cache tables are also more persistent than many application-level caches, because
they’ll survive a server restart.

We wrote about these cache strategies in Chapter 4 and Chapter 5, so in this chapter
we focus on caching at the application level and above.

Caching | 611

Caching Doesn’t Always Help
You need to make sure that caching really improves performance, because it might not
help at all. For example, in practice it’s often faster to serve content from Nginx’s
memory than to serve it from a caching proxy. This is especially true if the proxy’s cache
is on disk.

The reason is simple: caching has its own overhead. There’s the overhead of checking
the cache, and serving the data from the cache if there’s a hit. There’s also the overhead
of invalidating the cache and storing data in it. Caching is helpful only if these costs are
less than the cost of generating and serving the data without a cache.

If you know the costs of all these operations, you can calculate how much the cache
helps. The cost without the cache is the cost of generating the data for each request.
The cost with the cache is the cost of checking the cache, plus the probability of a cache
miss times the cost of generating the data, plus the probability of a cache hit times the
cost of serving the data from the cache.

If the cost with the cache is lower than without, it’s an improvement, but that’s not
guaranteed. Also bear in mind that, as in the case of serving data from Nginx’s memory
rather than from the proxy’s on-disk cache, some caches are cheaper than others.

Application-Level Caching
An application-level cache typically stores data in memory on the same machine, or
across the network in another machine’s memory.

Application-level caching can be more efficient than caching at a lower level, because
the application can store partially computed results in the cache. Thus, the cache saves
two types of work: fetching the data, and doing computations on it. A good example
is blocks of HTML text. The application can generate HTML snippets, such as the top
news headlines, and cache them. Subsequent page views can then simply insert this
cached text into the page. In general, the more you process the data before you cache
it, the more work you save when there’s a cache hit.

The disadvantage is that the cache hit rate can be lower, and the cache can use more
memory. Suppose you need 50 different versions of the top news headlines, so the user
sees different content depending on where she lives. You’ll need enough memory to
store all 50 of them, fewer requests will hit any given version of the headlines, and
invalidation can be more complicated.

There are many types of application caches. Here are a few:

Local caches
These caches are usually small and live only in the process’s memory for the du-
ration of the request. They’re useful for avoiding a repeated request for a resource
when it’s needed more than once. There’s nothing fancy about this type of cache:
it’s usually just a variable or hash table in the application code. For example,

612 | Chapter 14: Application-Level Optimization

suppose you need to display a user’s name, and you know the user’s ID. You can
build a get_name_from_id() function and add caching to it like this:

<?php
function get_name_from_id($user_id) {
 static $name; // static makes the variable persist
 if (!$name) {
 // Fetch name from database
 }
 return $name;
}
?>

If you’re using Perl, the Memoize module is the standard way to cache the results of
function calls:

use Memoize qw(memoize);
memoize 'get_name_from_id';
sub get_name_from_id {
 my ($user_id) = @_;
 my $name = # get name from database
 return $name;
}

These techniques are simple, but they can save your application a lot of work.

Local shared-memory caches
These caches are medium-sized (a few GB), fast, and hard to synchronize across
multiple machines. They’re good for small, semi-static bits of data. Examples in-
clude lists of the cities in each state, the partitioning function (mapping table) for
a sharded data store, or data that you can invalidate with time-to-live (TTL) poli-
cies. The biggest benefit of shared memory is that accessing it is very fast—usually
much faster than accessing any type of remote cache.

Distributed memory caches
The best-known example of a distributed memory cache is memcached. Distributed
caches are much larger than local shared-memory caches and are easy to grow.
Only one copy of each bit of cached data is created, so you don’t waste memory
and introduce consistency problems by caching the same data in many places.
Distributed memory is great for storing shared objects, such as user profiles, com-
ments, and HTML snippets.

These caches have much higher latency than local shared-memory caches, though,
so the most efficient way to use them is with multiple get operations (i.e., getting
many objects in a single round-trip). They also require you to plan how you’ll add
more nodes, and what to do if one of the nodes dies. In both cases, the application
needs to decide how to distribute or redistribute cached objects across the nodes.

Consistent caching is important to avoid performance problems when you add a
server to or remove a server from your cache cluster. There’s a consistent caching
library for memcached at http://www.audioscrobbler.net/development/ketama/.

Caching | 613

http://www.audioscrobbler.net/development/ketama/

On-disk caches
Disks are slow, so caching on disk is best for persistent objects, objects that are
hard to fit in memory, or static content (pregenerated custom images, for example).

One very useful trick with on-disk caches and web servers is to use 404 error han-
dlers to catch cache misses. Suppose your web application shows a custom-
generated image in the header, based on the user’s name (“Welcome back, John!”).
You can refer to the image as /images/welcomeback/john.jpg. If the image doesn’t
exist, it will cause a 404 error and trigger the error handler. The error handler can
generate the image, store it on the disk, and either issue a redirect or just stream
the image back to the browser. Further requests will just return the image from the
file.

You can use this trick for many types of content. For example, instead of caching
the latest headlines as a block of HTML, you can store them in a JavaScript file and
then refer to /latest_headlines.js in the web page’s header.

Cache invalidation is easy: just delete the file. You can implement TTL invalidation
by running a periodic job that deletes files created more than N minutes ago. And
if you want to limit the cache size, you can implement a least recently used (LRU)
invalidation policy by deleting files in order of their last access time.

Invalidation based on last access time requires you to enable the access time option
in your filesystem’s mount options. (You actually do this by omitting the noatime
mount option.) If you do this, you should use an in-memory filesystem to avoid a
lot of disk activity.

Cache Control Policies
Caches create the same problem as denormalizing your database design: they duplicate
data, which means there are multiple places to update the data, and you have to figure
out how to avoid reading stale data. The following are several of the most common
cache control policies:

TTL (time to live)
The cached object is stored with an expiration date; you can either remove the
object with a purge process when that date arrives, or leave it until the next time
something accesses it (at which time you should replace it with a fresh version).
This invalidation policy is best for data that changes rarely or doesn’t have to be
fresh.

Explicit invalidation
If stale data is not acceptable, the process that updates the source data can inva-
lidate the old version in the cache. There are two variations of this policy: write-
invalidate and write-update. The write-invalidate policy is simple: you just mark
the cached data as expired (and optionally purge it from the cache). The write-
update policy involves a little more work, because you have to replace the old cache
entry with the updated data. However, it can be very beneficial, especially if it is

614 | Chapter 14: Application-Level Optimization

expensive to generate the cached data (which the writer process might already
have). If you update the cached data, future requests won’t have to wait for the
application to generate it. If you do invalidations in the background, such as TTL-
based invalidations, you can generate new versions of the invalidated data in a
process that’s completely detached from any user request.

Invalidation on read
Instead of invalidating stale data when you change the source data from which it’s
derived, you can store some information that lets you determine whether the data
has expired when you read it from the cache. This has a significant advantage over
explicit invalidation: it has a fixed cost that you can spread out over time. Suppose
you invalidate an object upon which a million cached objects depend. If you in-
validate on write, you have to invalidate a million things in the cache in one hit,
which could take a long time even if you have an efficient way to find them. If you
invalidate on read, the write can complete immediately, and each of a million reads
will be delayed slightly. This spreads out the cost of the invalidation and helps
avoid spikes of load and long latencies.

One of the simplest ways to do invalidation on read is with object versioning. With this
approach, when you store an object in the cache, you also store the current version
number or timestamp of the data upon which it depends. For example, suppose you’re
caching statistics about a user’s blog posts, including the number of posts the user has
made. When you cache the blog_stats object, you store the user’s current version
number with it, because the statistics are dependent on the user.

Whenever you update some data that also depends on the user, you update the user’s
version number. Suppose the user’s version is initially 0, and you generate and cache
the statistics. When the user publishes a blog post, you increase the user’s version to
1 (you’d store this with the blog post too, though we don’t really need it for this ex-
ample). Then, when you need to display the statistics, you compare the cached
blog_stats object’s version to the cached user’s version. Because the user’s version is
greater than the object’s version, you know that the statistics are stale and you need to
recompute them.

This is a pretty coarse way to invalidate content, because it assumes that every bit of
data that’s dependent on the user also interacts with all other data. That’s not always
true. If a user edits a blog post, for example, you’ll increment the user’s version, and
that will invalidate the stored statistics even though the statistics (the number of blog
posts) didn’t really change. The trade-off is simplicity. A simple cache invalidation
policy isn’t just easier to build; it might be more efficient, too.

Object versioning is a simplified approach to a tagged cache, which can handle more
complex dependencies. A tagged cache knows about different kinds of dependencies
and tracks versions separately for each of them. To return to the book club example
from Chapter 11, you could make the cached comments dependent on the user’s ver-
sion and the book’s version by tagging the comments with these version numbers:

Caching | 615

user_ver=1234 and book_ver=5678. If either version changes, you’d refresh the cached
comments.

Cache Object Hierarchies
Storing objects in a cache hierarchically can help with retrieval, invalidation, and mem-
ory usage. Instead of caching just objects, you can cache the object IDs, as well as the
groups of object IDs that you commonly retrieve together.

A search result on an ecommerce website is a good example of this technique. A search
might return a list of matching products, complete with names, descriptions, thumbnail
photos, and prices. Caching the entire list would be inefficient: other searches would
be likely to include some of the same products, resulting in duplicate data and wasted
memory. That strategy would also make it hard to find and invalidate search results
when a product’s price changes, because you’d have to look inside each list to see which
ones include the updated product.

Instead of caching the list, you can cache minimal information about the search, such
as the number of results returned and a list of product IDs. You can then cache each
product separately. This solves both problems: it doesn’t duplicate any results, and it
makes it easy to invalidate the cache at the granularity of individual products.

The drawback is that you have to retrieve multiple objects from the cache, instead of
getting the entire search result at once. However, storing the list of product IDs for the
search result makes this efficient. Now a cache hit returns the list of IDs, which you
can use for a second call to the cache. The second call can return multiple products if
the cache lets you get multiple results with a single call (memcached supports this
through the mget() call).

If you’re not careful, though, this approach could cause odd results. Suppose you use
a TTL policy to invalidate search results, and you invalidate individual products ex-
plicitly when they change. Now imagine that a product’s description changes so it no
longer contains the keywords that matched a search, but the search isn’t old enough
to have expired from the cache. Your users will see stale search results, because the
cached search will refer to the product even though it no longer matches the search
keywords.

This isn’t usually a problem for most applications. If your application can’t tolerate it,
you can use version-based caching and store the product versions with the results when
you perform a search. When you find a search result in the cache, you can compare
each product’s version in the search results to the current (cached) version. If any
product is stale, you can repeat the search and recache the results.

It’s important to understand how expensive a remote cache access is. Although caches
are fast and avoid a lot of work, the network round-trip to a cache server on a LAN
typically takes about three tenths of a millisecond. We’ve seen many cases where a
complex web page requires around a thousand cache accesses to assemble. That’s a

616 | Chapter 14: Application-Level Optimization

total of three seconds of network latency, which means that your page can be unac-
ceptably slow even if it’s served without a single database access! Using a multi-get call
to the cache is absolutely vital in these situations. Using a cache hierarchy, with a smaller
local cache, can also be very beneficial.

Pregenerating Content
In addition to caching bits of data at the application level, you can prerequest some
pages with background processes and store the results as static pages. If your pages are
dynamic, you can pregenerate parts of the pages and use a technique such as server-
side includes to build the final pages. This can help to reduce the size and cost of the
pregenerated content, because you might otherwise duplicate a lot of content due to
minor variations in how the constituent pieces are assembled into the final page. You
can use a pregeneration strategy for almost any type of caching, including memcached.

Pregenerating content has several important benefits:

• Your application’s code doesn’t have to be complicated with hit and miss paths.

• It works well when the miss path is unacceptably slow, because it ensures that a
miss never happens. In fact, anytime you design any type of caching system, you
should always consider how slow the miss path is. If the average performance
increases a lot but the occasional request becomes extremely slow due to regener-
ating cached content, it might actually be worse than not using a cache. Consistent
performance is often as important as fast performance.

• Pregenerating content avoids a stampede to the cache when there’s a miss.

Caching pregenerated content can take a lot of space, and it’s not always possible to
pregenerate everything. As with any form of caching, the most important pieces of
content to pregenerate are those that are requested the most or are the most expensive
to generate, so you can do on-demand generation with the 404 error handlers we men-
tioned earlier in this chapter.

Pregenerated content sometimes benefits from being stored on an in-memory filesystem
to avoid disk I/O.

The Cache as an Infrastructure Component
A cache is likely to become a vital part of your infrastructure. It can be easy to fall into
the trap of thinking of a cache as a nice thing to have, but not something so important
that you can’t live without it. You might reason that if the cache server goes down, or
you lose the cached content, the request will simply go to the database instead. This
might be true when you initially add the cache into the application, but the cache can
enable the application to grow significantly without increasing the resources dedicated
to some portion of the system—typically the database. As a result, you might become
dependent on the cache without realizing it.

Caching | 617

For example, if your cache hit rate is 90% and you lose the cache for some reason, the
load on the database will increase tenfold. It’s rather likely that this will exceed the
database server’s capacity.

To avoid surprises such as this, you should think about some kind of high-availability
solution for the cache (the data as well as the service), or at least measure the perfor-
mance impact of disabling the cache or losing its data. You might need to design the
application to degrade its functionality, for example.

Using HandlerSocket and memcached Access
Instead of storing data in MySQL and caching it outside of MySQL, an alternative
approach is to create a faster access path to MySQL and then bypass the cache. For
small, simple queries, a large portion of the overhead can come from parsing the SQL,
checking privileges, generating an execution plan, and so on. If this overhead can be
eliminated, MySQL can be very fast at simple queries.

There are currently two solutions that take advantage of this by permitting so-called
NoSQL access to MySQL. The first is a daemon plugin called HandlerSocket, which
was created at DeNA, a large Japanese social networking site. It permits you to access
an InnoDB Handler object through a simple protocol. In effect, you’re reaching past
the upper layers of the server and connecting directly to InnoDB over the network.
There are reports of HandlerSocket achieving over 750,000 queries per second.
HandlerSocket is distributed with Percona Server, and the memcached access to InnoDB
is available in a lab release of MySQL 5.6.

The second option is accessing InnoDB through the memcached protocol. The lab re-
leases of MySQL 5.6 have a plugin that permits this.

Both approaches are somewhat limited—especially the memcached approach, which
doesn’t support as many access methods to the data. Why would you ever want to
access your data through anything but SQL? Aside from speed, the biggest reason is
probably simplicity. It’s a big win to get rid of caches, and all of the invalidation logic
and additional infrastructure that accompanies them.

Extending MySQL
If MySQL can’t do what you need, one possibility is to extend its capabilities. We won’t
show you how to do that, but we want to mention some of the possibilities. If you’re
interested in exploring any of these avenues further, there are good resources online,
and there are books available on many of the topics.

When we say “MySQL can’t do what you need,” we mean two things: MySQL can’t
do it at all, or MySQL can do it, but in a slow or awkward way that’s not good enough.
Either is a reason to look at extending MySQL. The good news is that MySQL is be-
coming more and more modular and general-purpose.

618 | Chapter 14: Application-Level Optimization

Storage engines are a great way to extend MySQL for a special purpose. Brian Aker has
written a skeleton storage engine and a series of articles and presentations about how
to get started writing your own storage engine. This has formed the basis for several of
the major third-party storage engines. Many companies have written their own internal
storage engines. For example, some social networking companies use special storage
engines for social graph operations, and we know of a company that built a custom
engine for fuzzy searches. A simple custom storage engine isn’t very hard to write.

You can also use a storage engine as an interface to another piece of software. A good
example of this is the Sphinx storage engine, which interfaces with the Sphinx full-text
search software (see Appendix F).

Alternatives to MySQL
MySQL is not necessarily the solution for every need. It’s often much better to do some
work completely outside MySQL, even if MySQL can theoretically do what you want.

One of the most obvious examples is storing data in a traditional filesystem instead of
in tables. Image files are the classic case: you can put them into a BLOB column, but this
is rarely a good idea.3 The usual practice is to store images or other large binary files
on the filesystem and store the filenames inside MySQL; the application can then re-
trieve the files from outside of MySQL. In a web application, you accomplish this by
putting the filename in the element’s src attribute.

Full-text searching is something else that’s best handled outside of MySQL—MySQL
doesn’t perform these searches as well as Lucene or Sphinx.

The NDB API can also be useful for certain tasks. For instance, although MySQL’s
NDB Cluster storage engine isn’t (yet) well suited for storing all of a high-performance
web application’s data, it’s possible to use the NDB API directly for storing website
session data or user registration information. You can learn more about the NDB API
at http://dev.mysql.com/doc/ndbapi/en/index.html. There’s also an NDB module for
Apache, mod_ndb, which you can download at http://code.google.com/p/mod-ndb/.

Finally, for some operations—such as graph relationships and tree traversals—a
relational database just isn’t always the right paradigm. MySQL isn’t good for dis-
tributed data processing, because it lacks parallel query execution capabilities. You’ll
probably want to use other tools for this purpose (possibly in combination with
MySQL). Examples that come to mind:

3. There are advantages to using MySQL replication to distribute images quickly to many machines, and
we know of some applications that use this technique.

Alternatives to MySQL | 619

http://dev.mysql.com/doc/ndbapi/en/index.html
http://code.google.com/p/mod-ndb/

• We have replaced MySQL with Redis when simple key-value pairs were being
stored at such a high rate that the replicas fell behind, even though the master could
handle the load just fine. Redis is also popular for queues, due to its nice support
for queue operations.

• Hadoop is the elephant in the room, pun intended. Hybrid MySQL/Hadoop de-
ployments are very common for processing large or semistructured datasets.

Summary
Optimization isn’t just a database thing. As we suggested in Chapter 3, the highest form
of optimization is both business-focused and user-focused. Full-stack performance
optimization is what’s really needed to achieve this.

The first thing to do is measure, as always. Focus on profiling per-tier. Which tiers are
responsible for most of the response time? Concentrate there first. If the user’s experi-
ence is impacted the most by DOM rendering in the browser, and MySQL contributes
only a tiny fraction of the total response time, then optimizing queries further can never
help the user experience appreciably. After you’ve measured, it’s usually easy to un-
derstand where your efforts should be directed. We recommend reading both of Steve
Souders’s books (High Performance Web Sites and Even Faster Web Sites) and the use
of New Relic.

You can often find big, easy wins in web server configuration and caching. There’s a
stereotypical notion that “it’s always a database problem,” but that just isn’t true. The
other tiers in the application are no less important, and they’re just as prone to being
misconfigured, although sometimes the effects are less obvious. Caches, in particular,
can help you deliver a lot of content at a much lower cost than you’d be able to do with
MySQL alone. And although Apache is still the world’s most popular web server soft-
ware, it’s not always the best tool for the job, so consider alternatives such as Nginx
when they make sense.

620 | Chapter 14: Application-Level Optimization

CHAPTER 15

Backup and Recovery

If you don’t plan for backups up front, you might later find that you’ve ruled out some
of the best options. For example, you might set up a server and then wish for LVM so
that you can take filesystem snapshots—but it’s too late. You also might not notice
some important performance impacts of configuring your systems for backups. And if
you don’t plan for and practice recovery, it won’t go smoothly when you need to do it.

In contrast to the first and second editions of this book, we now assume most readers
are using primarily InnoDB instead of MyISAM. We won’t cover all parts of a well-
designed backup and recovery solution in this chapter—just the parts that are relevant
to MySQL. Here are some points we decided not to include:

• Security (access to the backup, privileges to restore data, whether the files need to
be encrypted)

• Where to store the backups, including how far away from the source they should
be (on a different disk, a different server, or offsite), and how to move the data from
the source to the destination

• Retention policies, auditing, legal requirements, and related subjects

• Storage solutions and media, compression, and incremental backups

• Storage formats

• Monitoring and reporting on your backups

• Backup capabilities built into storage layers, or particular devices such as prefab-
ricated file servers

These topics are covered in books such as W. Curtis Preston’s Backup & Recovery
(O’Reilly).

Before we begin, let’s clarify some key terms. First, you’ll often hear about so-called
hot, warm, and cold backups. People generally use these terms to denote a backup’s
impact: “hot” backups aren’t supposed to require any server downtime, for example.
The problem is that these terms don’t mean the same things to everyone. Some tools
even use the word “hot” in their names, but definitely don’t perform what we consider

621

to be hot backups. We try to avoid these terms and instead tell you how much a specific
technique or tool interrupts your server.

Two other confusing words are restore and recover. We use them in specific ways in
this chapter. Restoring means retrieving data from a backup and either loading it into
MySQL or placing the files where MySQL expects them to be. Recovery generally means
the entire process of rescuing a system, or part of a system, after something has gone
wrong. This includes restoring data from backups as well as all the steps necessary to
make a server fully functional again, such as restarting MySQL, changing the configu-
ration, warming up the server’s caches, and so on.

To many people, recovery just means fixing corrupted tables after a crash. This is not
the same as recovering an entire server. A storage engine’s crash recovery reconciles its
data and log files. It makes sure the data files contain only the modifications made by
committed transactions, and it replays transactions from the log files that have not yet
been applied to the data files. This might be part of the overall recovery process, or
even part of making backups. However, it’s not the same as the recovery you might
need to do after an accidental DROP TABLE, for example.

Why Backups?
Here are a few reasons that backups are important:

Disaster recovery
Disaster recovery is what you do when hardware fails, a nasty bug corrupts your
data, or your server and its data become unavailable or unusable for some other
reason. You need to be ready for everything from someone accidentally connecting
to the wrong server doing an ALTER TABLE,1 to the building burning down, to a
malicious attacker or a MySQL bug. Although the odds of any particular disaster
striking are fairly low, taken together they add up.

People changing their minds
You’d be surprised how often people intentionally delete data and then want it
back.

Auditing
Sometimes you need to know what your data or schema looked like at some point
in the past. You might be involved in a lawsuit, for example, or you might discover
a bug in your application and need to see what the code used to do (sometimes
just having your code in version control isn’t enough).

1. Baron still remembers his first job after college, where he dropped two columns from the production
server’s invoice table at an ecommerce site.

622 | Chapter 15: Backup and Recovery

Testing
One of the easiest ways to test on realistic data is to periodically refresh a test server
with the latest production data. If you’re making backups, it’s easy; just restore the
backup to the test server.

Check your assumptions. For example, do you assume your shared hosting provider is
backing up the MySQL server provided with your account? Many hosting providers
don’t back up MySQL servers all, and others just do a file copy while the server is
running, which probably creates a corrupt backup that’s useless.

Defining Recovery Requirements
If all goes well, you’ll never need to think about recovery. But when you do, the best
backup system in the world won’t help. Instead, you’ll need a great recovery system.

Unfortunately, it’s easier to make your backup systems work smoothly than it is to
build good recovery processes and tools. Here’s why:

• Backups come first. You can’t recover unless you’ve first backed up, so your at-
tention naturally focuses on backups when building a system.

• Backups are automated with scripts and jobs. It’s easy to spend time fine-tuning
the backup process, often without thinking of it. Five-minute tweaks to your
backup process might not seem important, but are you applying the same attention
to recovery, day in and day out?

• Backups are routine, but recovery is usually a crisis situation.

• Security gets in the way. If you’re doing offsite backups, you’re probably encrypting
the backup data or taking other measures to protect it. You know how damaging
it would be for your data to be compromised, but how damaging is it when nobody
can unlock your encrypted volume to recover your data, or when you need to
extract a single file from a monolithic encrypted file?

• One person can plan, design, and implement backups. That person might not be
available when disaster strikes. You need to train several people and plan for cov-
erage, so you’re not asking an unqualified person to recover your data.

Here’s an example we’ve seen in the real world: a customer reported that backups
became lightning fast when the -d option was added to mysqldump, and wanted to
know why no one had mentioned how much that option could speed up the backup
process. If this customer had tried to restore the backups, it would have been hard to
miss the reason: the -d option dumps no data! The customer was focused on backups,
not recovery, and was therefore completely unaware of this problem.

There are two Big Important Requirements that are helpful to consider when you’re
planning your backup and recovery strategy. These are the recovery point objective
(RPO) and the recovery time objective (RTO). They define how much data you’re

Defining Recovery Requirements | 623

comfortable losing, and how long you’re comfortable waiting to get it back. Try to
answer the following types of questions when defining your RPO and RTO:

• How much data can you lose without serious consequences? Do you need point-
in-time recovery, or is it acceptable to lose whatever work has happened since your
last regular backup? Are there legal requirements?

• How fast does recovery have to be? What kind of downtime is acceptable? What
impacts (e.g., partial unavailability) can your application and users accept, and
how will you build in the capability to continue functioning when those scenarios
happen?

• What do you need to recover? Common requirements are to recover a whole server,
a single database, a single table, or just specific transactions or statements.

It’s a good idea to document the answers to these questions, and indeed your entire
backup policy, as well as the backup procedures.

Backup Myth #1: “My Replica Is My Backup”
This is a mistake we see quite often. A replica is not a backup. Neither is a RAID array.
To see why, consider this: will they help you get back all your data if you accidentally
execute DROP DATABASE on your production database? RAID and replication don’t pass
even this simple test. Not only are they not backups, they’re not a substitute for back-
ups. Nothing but backups fill the need for backups.

Designing a MySQL Backup Solution
Backing up MySQL is harder than it looks. At its most basic, a backup is just a copy of
the data, but your application’s needs, MySQL’s storage engine architecture, and your
system configuration can make it difficult to make a copy of your data.

Before we go into great detail on all of the available options, here are our recommen-
dations:

• Raw backups are practically a must-have for large databases: logical backups are
simply too slow and resource-intensive, and recovery from a logical backup takes
way too long. Snapshot-based backups, Percona XtraBackup, and MySQL Enter-
prise Backup are the best options. For small databases, logical backups can work
nicely.

• Keep several backup generations.

• Extract logical backups (probably from the raw backups) periodically.

• Keep binary logs for point-in-time recovery. Set expire_logs_days long enough to
recover from at least two generations of raw backups, so that you can create a
replica and start it from the running master without applying any binary logs to it.

624 | Chapter 15: Backup and Recovery

Back up your binary logs independently of the expiry setting, and keep them in the
backup long enough to recover from at least the most recent logical backup.

• Monitor your backups and backup processes independently from the backup tools
themselves. You need external verification that they’re OK.

• Test your backups and recovery process by going through the entire recovery pro-
cess. Measure the resources needed for recovery (CPU, disk space, wall-clock time,
network bandwidth, etc.).

• Think hard about security. What happens if someone compromises your server—
can he then get access to the backup server too, or vice versa?

Knowing your RPO and RTO will guide your backup strategy. Do you need point-in-
time recovery capability, or is it enough to recover to last night’s backup and lose
whatever work has been done since then? If you need point-in-time recovery, you can
probably make a regular backup and make sure the binary log is enabled, so you can
restore that backup and recover to the desired point by replaying the binary log.

Generally, the more you can afford to lose, the easier it is to do backups. If you have
very strict requirements, it’s harder to ensure you can recover everything. There are
also different flavors of point-in-time recovery. A “soft” point-in-time recovery require-
ment means you’d like to be able to recreate your data so that it’s “close enough” to
where it was when the problem happened. A “hard” requirement means you can never
tolerate the loss of a committed transaction, even if something terrible happens (such
as the server catching fire). This requires special techniques, such as keeping your binary
log on a separate SAN volume or using DRBD disk replication.

Online or Offline Backups?
If you can get away with it, shutting down MySQL to make a backup is the easiest,
safest, and overall best way to get a consistent copy of the data with minimal risk of
corruption or inconsistency. If you shut down MySQL, you can copy the data without
any complications from things such as dirty buffers in the InnoDB buffer pool or other
caches. You don’t need to worry about your data being modified while you’re trying
to back it up, and because the server isn’t under load from the application, you can
make the backup more quickly.

However, taking a server offline is more expensive than it might seem. Even if you can
minimize the downtime, shutting down and restarting MySQL can take a long time
under demanding loads and high data volumes, as discussed in Chapter 8. We showed
some techniques for minimizing this impact, but it can’t be reduced to zero. As a result,
you’ll almost certainly need to design your backups so that they don’t require the pro-
duction server to be taken offline. Depending on your consistency requirements,
though, making a backup while the server is online can still mean interrupting service
significantly.

Designing a MySQL Backup Solution | 625

One of the biggest problems with many backup methods is their use of FLUSH TABLES
WITH READ LOCK. This tells MySQL to close and lock all tables, flushes MyISAM’s data
files to disk (but not InnoDB’s!), and flushes the query cache. That can take a very long
time to complete. Exactly how long is unpredictable; it will be even longer if the global
read lock has to wait for a long-running statement to finish, or if you have many tables.
Until the lock is released, you can’t change any data on the server, and everything will
block and queue.2 FLUSH TABLES WITH READ LOCK is not as expensive as shutting down,
because most of your caches are still in memory and the server is still “warm,” but it’s
very disruptive. Anyone who tells you it’s fast probably is trying to sell you something
and has never worked on a real MySQL server in production.

The best way to avoid any use of FLUSH TABLES WITH READ LOCK is to use only InnoDB
tables. You can’t avoid using MyISAM tables for privileges and other system informa-
tion, but if that data changes rarely (which is the norm) you can flush and lock only
those tables without causing trouble.

Here are some performance-related factors to consider when you’re planning backups:

Lock time
How long do you need to hold locks, such as the global FLUSH TABLES WITH READ
LOCK, while backing up?

Backup time
How long does it take to copy the backup to the destination?

Backup load
How much does it impact the server’s performance to copy the backup to the
destination?

Recovery time
How long does it take to copy your backup image from its storage location to the
MySQL server, replay binary logs, and so on?

The biggest trade-off is backup time versus backup load. You can often improve one
at the other’s expense; for example, you can prioritize the backup at the expense of
causing more performance degradation on the server.

You can also design your backups to take advantage of load patterns. For instance, if
your server is only 50% loaded for 8 hours during the night, you can try to design your
backups to load the server less than 50% and still complete within 8 hours. You can
accomplish this in many ways: for example, you can use ionice and nice to prioritize
the copy or compression operations, use different compression levels, or compress the
data on the backup server instead of the MySQL server. You can also use lzo or pigz
for faster compression. You can use O_DIRECT or fadvise() to bypass the operating
system’s cache for the copy operations, so they don’t pollute the server’s caches. Tools

2. Yes, even SELECT queries will get blocked, because there’s bound to be a query that tries to modify some
data, and as soon as it starts waiting for a write lock on a table, all of the queries trying to get read locks
will have to wait, too.

626 | Chapter 15: Backup and Recovery

such as Percona XtraBackup and MySQL Enterprise Backup also have throttling op-
tions, and you can use pv with the --rate-limit option to limit the throughput of scripts
you write yourself.

Logical or Raw Backups?
There are two major ways to back up MySQL’s data: with a logical backup (also called
a “dump”), and by copying the raw files. A logical backup contains the data in a form
that MySQL can interpret either as SQL or as delimited text.3 The raw files are the files
as they exist on disk.

Each type of backup has advantages and disadvantages.

Logical backups

Logical backups have the following advantages:

• They’re normal files you can manipulate and inspect with editors and command-
line tools such as grep and sed. This can be very helpful when restoring data, or
when you just want to inspect the data without restoring.

• They’re simple to restore. You can just pipe them into mysql or use mysqlimport.

• You can back up and restore across the network—that is, on a different machine
from the MySQL host.

• They can work for systems such as Amazon RDS, where you have no access to the
underlying filesystem.

• They can be very flexible, because mysqldump—the tool most people prefer to use
to make them—can accept lots of options, such as a WHERE clause to restrict what
rows are backed up.

• They’re storage engine–independent. Because you create them by extracting data
from the MySQL server, they abstract away differences in the underlying data
storage. Thus, you can back up from InnoDB tables and restore to MyISAM tables
with very little work. You can’t do this with raw file copies.

• They can help avoid data corruption. If your disk drives are failing and you copy
the raw files, you’ll get an error and/or make a partial or corrupt backup, and unless
you check the backup, you won’t notice it and it’ll be unusable later. If the data
MySQL has in memory is not corrupt, you can sometimes get a trustworthy logical
backup when you can’t get a good raw file copy.

3. Logical backups produced by mysqldump are not always text files. SQL dumps can contain many different
character sets, and can even include binary data that’s not valid character data at all. Lines can be too
long for many editors, too. Still, many such files will contain data a text editor can open and read, especially
if you run mysqldump with the —hex-blob option.

Designing a MySQL Backup Solution | 627

Logical backups have their shortcomings, though:

• The server has to do the work of generating them, so they use more CPU cycles.

• Logical backups can be bigger than the underlying files in some cases.4 The ASCII
representation of the data isn’t always as efficient as the way the storage engine
stores the data. For example, an integer requires 4 bytes to store, but when written
in ASCII, it can require up to 12 characters. You can often compress the files ef-
fectively and get a smaller backup, but this uses more CPU resources. (Logical
backups are typically smaller than raw backups if there are a lot of indexes.)

• Dumping and restoring your data isn’t always guaranteed to result in the same
data. Floating-point representation problems, bugs, and so on can cause trouble,
though this is rare.

• Restoring from a logical backup requires MySQL to load and interpret the state-
ments, convert them to the storage format, and rebuild indexes, all of which is very
slow.

The biggest disadvantages are really the cost of dumping the data from MySQL and the
cost of loading data back in via SQL statements. If you use logical backups, it is essential
to test the time required for restoring the data.

The mysqldump included with Percona Server can help when you’re working with
InnoDB tables, because it formats the output so that it will take advantage of InnoDB’s
fast index creation code upon reloading it. Our testing shows that this can reduce the
restore time by two-thirds or more. The more indexes there are, the more beneficial
it is.

Raw backups

Raw backups have the following benefits:

• Raw file backups simply require you to copy the desired files somewhere else for
backup. The raw files don’t require any extra work to generate.

• Restoring raw backups can be simpler, depending on the storage engine. For
MyISAM, it can be as easy as just copying the files into their destinations. InnoDB,
however, requires you to stop the server and possibly take other steps as well.

• Raw backups of InnoDB and MyISAM data are very portable across platforms,
operating systems, and MySQL versions. (Logical dumps are, too. We’re simply
pointing this out to alleviate any concerns you might have.)

• It can be faster to restore raw backups, because the MySQL server doesn’t have to
execute any SQL or build indexes. If you have InnoDB tables that don’t fit entirely
in the server’s memory, it can be much faster to restore raw files—an order of

4. In our experience, logical backups are generally smaller than raw backups, but they aren’t always.

628 | Chapter 15: Backup and Recovery

magnitude or more. In fact, one of the scariest things about logical backups is their
unpredictable restore time.

Here are some disadvantages of raw backups:

• InnoDB’s raw files are often far larger than the corresponding logical backups. The
InnoDB tablespace typically has lots of unused space. Quite a bit of space is also
used for purposes other than storing table data (the insert buffer, the rollback seg-
ment, and so on).

• Raw backups are not always portable across platforms, operating systems, and
MySQL versions. Filename case sensitivity and floating-point formats are places
where you might encounter trouble. You might not be able to move files to a system
whose floating-point format is different (however, the vast majority of processors
use the IEEE floating-point format).

Raw backups are generally easier and much more efficient.5 You should not rely on
raw backups for long-term retention or legal requirements, though; you must make
logical backups at least periodically.

Don’t consider a backup (especially a raw backup) to be good until you’ve tested it.
For InnoDB, that means starting a MySQL instance and letting InnoDB recovery run,
then running CHECK TABLES. You can skip this, or just run innochecksum on the files,
but we don’t recommend it. For MyISAM, you should run CHECK TABLES or use myi-
samchk. You can run CHECK TABLES on all tables with the mysqlcheck command.

We suggest a blend of the two approaches: make raw copies, then start a MySQL server
instance with the resulting data and run mysqlcheck. Then, at least periodically, dump
the data with mysqldump to get a logical backup. This gives you the advantages of both
approaches, without unduly burdening the production server during the dump. It’s
especially convenient if you have the ability to take filesystem snapshots—you can take
a snapshot, copy the snapshot to another server and release it, then test the raw files
and perform a logical backup.

What to Back Up
Your recovery requirements will dictate what you need to back up. The simplest strat-
egy is to just back up your data and table definitions, but this is a bare-minimum ap-
proach. You generally need a lot more to recover a server for use in production. Here
are some things you might consider including with your MySQL backups:

Nonobvious data
Don’t forget data that’s easy to overlook: your binary logs and InnoDB transaction
logs, for example.

5. It’s worth mentioning that raw backups can be more error-prone; it’s hard to beat the simplicity of
mysqldump.

Designing a MySQL Backup Solution | 629

Code
A modern MySQL server can store a lot of code, such as triggers and stored pro-
cedures. If you back up the mysql database, you’ll back up much of this code, but
then it will be hard to restore a single database in its entirety, because some of the
“data” in that database, such as stored procedures, will actually be stored in the
mysql database.

Replication configuration
If you are recovering to a server that is involved in replication, you should include
in your backups whatever replication files you’ll need for that—e.g., binary logs,
relay logs, log index files, and the .info files. At a minimum, you should include the
output of SHOW MASTER STATUS and/or SHOW SLAVE STATUS. It’s also helpful to issue
FLUSH LOGS so MySQL starts a new binary log. It’s easier to do point-in-time re-
covery from the beginning of a log file than the middle.

Server configuration
If you have to recover from a real disaster—say, if you’re building a server from
scratch in a new data center after an earthquake—you’ll appreciate having the
server’s configuration files included in the backup.

Selected operating system files
As with the server configuration, it’s important to back up any external configu-
ration that is essential to a production server. On a Unix server, this might include
your cron jobs, user and group configurations, administrative scripts, and sudo
rules.

These recommendations quickly translate into “back up everything” in many scenarios.
If you have a lot of data, however, this can get expensive, and you might have to be
smarter about how you do your backups. In particular, you might want to back up
different data into different backups. For example, you can back up data, binary logs,
and operating system and system configuration files separately.

Incremental and differential backups

A common strategy for dealing with too much data is to do regular incremental or
differential backups. The difference might be a little confusing, so let’s clarify the terms:
a differential backup is a backup of everything that has changed since the last full
backup, whereas an incremental backup contains everything that has changed since the
last backup of any type.

For example, suppose that you do a full backup every Sunday. On Monday, you do a
differential backup of everything that has changed since Sunday. On Tuesday, you have
two choices: you can back up everything that’s changed since Sunday (differential), or
you can back up only the data that has changed since Monday’s backup (incremental).

Both differential and incremental backups are partial backups: they generally don’t
contain a full dataset, because some data almost certainly hasn’t changed. Partial back-
ups are often desirable for their savings in overhead on the server, backup time, and

630 | Chapter 15: Backup and Recovery

backup space. Some partial backups don’t really reduce the overhead on the server,
though. Percona XtraBackup and MySQL Enterprise Backup, for example, still scan
every block of data on the server, though, so they don’t save a lot of overhead, although
they do save a bit of wall-clock time, lots of CPU time for compression, and of course
disk space.6

You can get pretty fancy with advanced backup techniques, but the more complex your
solution is, the more risky it’s likely to be. Beware of hidden dangers, such as multiple
generations of backups that are tightly coupled to one another, because if one genera-
tion contains corruption, it can invalidate all of the others, too.

Here are some ideas:

• Use the incremental backup features of Percona XtraBackup or MySQL Enterprise
Backup.

• Back up your binary logs. You can also use FLUSH LOGS to begin a new binary log
after each backup, then back up only new binary logs.

• Don’t back up tables that haven’t changed. Some storage engines, such as
MyISAM, record the last time each table was modified. You can see these times by
inspecting the files on disk or by running SHOW TABLE STATUS. If you use InnoDB, a
trigger can help you keep track of the last changes by recording the change times
in a small “last changed time” table. You need to do this only on tables that change
infrequently, so the cost should be minimal. A custom backup script can easily
determine which tables have changed.

If you have “lookup” tables that contain data such as lists of month names in
various languages or abbreviations for states or regions, it can be a good idea to
place them into a separate database, so you don’t have to back them up all the time.

• Don’t back up rows that haven’t changed. If a table is INSERT-only, such as a table
that logs hits to a web page, you can add a TIMESTAMP column and back up only
rows that have been inserted since the last backup.

• Don’t back up some data at all. Sometimes this makes a lot of sense—for example,
if you have a data warehouse that’s built from other data and is technically redun-
dant, you can merely back up the data you used to build the warehouse, instead
of the data warehouse itself. This can be a good idea even if it’s very slow to “re-
cover” by rebuilding the warehouse from the original files. Avoiding the backups
can add up over time to much greater savings than the potentially faster recovery
time you’ll gain by having a full backup. You can also opt not to back up some
temporary data, such as tables that hold website session data.

• Back up everything, but send it to a destination that has data deduplication fea-
tures, such as a ZFS filer.

6. A “true” incremental backup feature for Percona XtraBackup is in progress. It will be able to back up the
blocks that have changed, without needing to scan every block.

Designing a MySQL Backup Solution | 631

The drawbacks of incremental backups include increased recovery complexity, in-
creased risk, and a longer recovery time. If you can do full backups, we suggest that
you do so for simplicity’s sake.

Regardless, you definitely need to do full backups occasionally—we suggest at least
weekly. You can’t expect to recover from a month’s worth of incremental backups.
Even a week is a lot of work and risk.

Storage Engines and Consistency
MySQL’s choice of storage engines can make backups significantly more complicated.
The issue is how to get a consistent backup with any given storage engine.

There are actually two kinds of consistency to think about: data consistency and file
consistency.

Data consistency

When you do backups, you must consider whether you need the data to be point in
time–consistent. For example, in an ecommerce database, you probably need to make
sure your invoices and payments are consistent with each other. Recovering a payment
without its corresponding invoice, or vice versa, is bound to cause trouble!

If you’re making online backups (from a running server), you probably need a consis-
tent backup of all related tables. That means you can’t just lock and back up tables one
at a time—which in turn means your backups might be more intrusive than you’d like.
If you’re not using a transactional storage engine, you have no choice but to use LOCK
TABLES on all the tables you want to back up together, and release the lock only when
all the related tables have been backed up.

InnoDB’s MVCC capabilities can help. You can begin a transaction, dump a group of
related tables, and commit the transaction. (You should not use LOCK TABLES if you’re
using a transaction to get a consistent backup, because it commits your transaction
implicitly—see the MySQL manual for details.) As long as you’re using the REPEATABLE
READ transaction isolation level and you don’t have any DDL on the server, this will give
you a perfectly consistent, point-in-time snapshot of the data that doesn’t block further
work from happening on your server while the backup is being made.

However, this approach doesn’t protect you from poorly designed application logic.
Suppose your ecommerce store inserts a payment, commits the transaction, and then
inserts the invoice in a different transaction. Your backup process might start between
those two operations, backing up the payment and not the invoice. This is why you
have to design transactions carefully to group related operations together.

You can also get a consistent logical backup of InnoDB tables with mysqldump, which
supports a --single-transaction option that does what we just described. However, this

632 | Chapter 15: Backup and Recovery

can cause a very long transaction, which might have an unacceptably high overhead on
some workloads.

File consistency

It’s also important that each file is internally consistent—e.g., that the backup doesn’t
reflect a file’s state partway through a big UPDATE statement—and that all the files you’re
backing up are consistent with each other. If you don’t get internally consistent files,
you’ll have a nasty surprise when you try to restore them (they’ll probably be corrupt).
And if you copy related files at different times, they won’t be consistent with each other.
MyISAM’s .MYD and .MYI files are an example. InnoDB will log errors or even crash
the server intentionally if it detects inconsistency or corruption.

With a nontransactional storage engine such as MyISAM, your only option is to lock
and flush the tables. That means using either a combination of LOCK TABLES and FLUSH
TABLES, so the server flushes its in-memory changes to disk, or FLUSH TABLES WITH READ
LOCK. Once the flush is complete, you can safely do a raw copy of MyISAM’s files.

With InnoDB, it’s harder to ensure the files are consistent on disk. Even if you do a
FLUSH TABLES WITH READ LOCK, InnoDB keeps working in the background: its insert
buffer, log, and write threads continue to merge changes to its log and tablespace files.
These threads are asynchronous by design—doing this work in background threads is
what helps InnoDB achieve high concurrency—so they are independent of LOCK
TABLES. Thus, you need to make sure not only that each file is internally consistent, but
that you copy the log and tablespace files at the same instant. If you make a backup
while a thread is changing a file, or back up the log files at a different point in time from
the tablespace files, you can again end up with a corrupt system after recovery. You
can avoid this problem in a few ways:

• Wait until InnoDB’s purge and insert buffer merge threads are done. You can watch
the output of SHOW INNODB STATUS and copy the files when there are no more dirty
buffers or pending writes. However, this approach might take a long time; it also
involves too much guesswork and might not be safe, because of InnoDB’s back-
ground threads. Consequently, we don’t recommend it.

• Take a consistent snapshot of the data and log files with a system such as LVM.
You must snapshot the data and log files consistently with respect to each other;
it’s no good to snapshot them separately. We discuss LVM snapshots later in this
chapter.

• Send a STOP signal to MySQL, make the backup, and then send a CONT signal to
wake MySQL up again. This might seem like an odd recommendation, but it’s
worth considering if the only alternative is to shut down the server during the
backup. At least this technique won’t require you to warm the server up after re-
starting it.

After you have copied the files elsewhere, you can release the locks and let the MySQL
server run normally again.

Designing a MySQL Backup Solution | 633

Replication
The biggest advantage to backing up from a replica is that it doesn’t interrupt the master
or place extra load on it. This is a good reason to set up a replica server, even if you
don’t need it for load balancing or high availability. If money is a concern, you can
always use the backup replica for other purposes too, such as reporting—as long as
you don’t write to it and thus change the data you’re trying to back up. The replica
doesn’t have to be dedicated to backups; it just has to be able to catch up to the master
in time to make your next backup in the event that its other roles make it fall behind
in replication at times.

When you make a backup from a replica, save all the information about the replication
processes, such as the replica’s position relative to the master. This is useful for cloning
new replicas, reapplying binary logs to the master to get point-in-time recovery, pro-
moting the replica to a master, and more. Also be sure that no temporary tables are
open if you stop your replica, because they might keep you from restarting replication.

Intentionally delaying replication on one of your replicas can be very useful for recov-
ering from some disaster scenarios. Suppose you delay replication by an hour. If an
unwanted statement runs on the master, you have an hour to notice it and stop the
replica before it repeats the event from its relay log. You can then promote the replica
to master and replay some relatively small number of log events, skipping the bad
statements. This can be much faster than the point-in-time recovery technique we dis-
cuss later. The pt-slave-delay tool from Percona Toolkit can help with this.

The replica might not have the same data as the master. Many people
assume replicas are exact copies of their masters, but in our experience,
data mismatches on replicas are common, and MySQL has no way to
detect this problem. The only way to detect the problem is with a tool
such as Percona Toolkit’s pt-table-checksum.

Having a replicated copy of your data might help protect you from
problems such as disk meltdowns on the master, but there’s no guar-
antee. Replication is not a backup.

Managing and Backing Up Binary Logs
Your server’s binary logs are one of the most important things you can back up. They
are necessary for point-in-time recovery, and because they’re usually smaller than your
data, they’re easier to back up frequently. If you have a backup of your data at some
point and all the binary logs since then, you can replay the binary logs and “roll forward”
changes made since the last full backup.

MySQL uses the binary log for replication, too. That means that your backup and
recovery policy often interacts with your replication configuration.

634 | Chapter 15: Backup and Recovery

Binary logs are “special.” If you lose your data, you really don’t want to lose the binary
logs as well. To minimize the chances of this happening, you can keep them on a sep-
arate volume. It’s OK to do this even if you want to snapshot the binary logs with LVM.
For extra safety, you can keep them on a SAN or replicate them to another device with
DRBD.

It’s a good idea to back up binary logs frequently. If you can’t afford to lose more than
30 minutes’ worth of data, back them up at least every 30 minutes. You can also use a
read-only replica with --log_slave_updates, for an extra degree of safety. The log posi-
tions won’t match the master’s, but it’s usually not hard to find the right positions for
recovery. Finally, MySQL 5.6’s version of mysqlbinlog has a very handy feature to con-
nect to a server and mirror its binary logs in real time, which is simpler and more
lightweight than running an instance of mysqld. It’s backward-compatible with older
server versions.

See Chapter 8 and Chapter 10 for our recommended server configuration for binary
logging.

The Binary Log Format
The binary log consists of a sequence of events. Each event has a fixed-size header that
contains a variety of information, such as the current timestamp and default database.
You can use the mysqlbinlog tool to inspect a binary log’s contents, and it prints out
some of the header information. Here’s an example of the output:

1 # at 277
2 #071030 10:47:21 server id 3 end_log_pos 369 Query thread_id=13 exec_time=0
 error_code=0
3 SET TIMESTAMP=1193755641/*!*/;
4 insert into test(a) values(2)/*!*/;

Line 1 contains the byte offset within the log file (in this case, 277).

Line 2 contains the following items:

• The date and time of the event, which MySQL also uses to generate the SET TIME
STAMP statement.

• The server ID of the originating server, which is necessary to prevent endless loops
in replication and other problems.

• The end_log_pos, which is the byte offset of the next event. This value is incorrect
for most of the events in a multistatement transaction. MySQL copies the events
into a buffer on the master during such transactions, but it doesn’t know the next
log event’s position when it does so.

• The event type. Our sample’s type is Query, but there are many different types.

• The thread ID of the thread that executed the event on the originating server, which
is important for auditing as well as for executing the CONNECTION_ID() function.

Managing and Backing Up Binary Logs | 635

• The exec_time, which is the difference between the statement’s timestamp and the
time at which it was written to the binary log. It’s a good idea not to rely on this
value, because it can be very wrong on replicas that have fallen behind in
replication.

• Any error code the event raised on the originating server. If the event causes a
different error when replayed on a replica, then replication will fail as a safety
precaution.

Any further lines contain the data needed to replay the modification. User-defined
variables and any other special settings, such as the timestamp in effect when the state-
ment executed, also appear here.

If you’re using the row-based logging available in MySQL 5.1, the event
won’t be SQL. Instead, it’s a non-human-readable “image” of the mod-
ifications the statement made to the table.

Purging Old Binary Logs Safely
You’ll need to decide on a log expiration policy to keep MySQL from filling your disk
with binary logs. How large your logs grow depends on your workload and the logging
format (row-based logging results in larger log entries). We suggest you keep logs as
long as they’re useful, if possible. Keeping them is helpful for setting up replicas, ana-
lyzing your server’s workload, auditing, and point-in-time recovery from your last full
backup. Consider all of these needs when you decide how long you want to keep your
logs.

A common setup is to use the expire_logs_days variable to tell MySQL to purge logs
after a while. This variable wasn’t available until MySQL 4.1; prior to this version, you
had to purge binary logs manually. Thus, you might see advice to remove old binary
logs with a cron entry such as the following:

0 0 * * * /usr/bin/find /var/log/mysql -mtime +N -name "mysql-bin.[0-9]*" | xargs rm

Although this was the only way to purge the logs prior to MySQL 4.1, don’t do this in
newer server versions! Removing the logs with rm can cause the mysql-bin.index status
file to become out of sync with the files on disk, and some statements, such as SHOW
MASTER LOGS, can begin failing silently. Changing the mysql-bin.index file by hand might
not fix the problem, either. Instead, use a cron command such as the following:

0 0 * * * /usr/bin/mysql -e "PURGE MASTER LOGS BEFORE CURRENT_DATE - INTERVAL N DAY"

The expire_logs_days setting takes effect upon server startup or when MySQL rotates
the binary log, so if your binary log never fills up and rotates, the server will not purge
older entries. It decides which files to purge by looking at their modification times, not
their contents.

636 | Chapter 15: Backup and Recovery

Backing Up Data
As with most things, there are better and worse ways to actually make a backup—and
the obvious ways are sometimes not so good. The trick is to maximize your network,
disk, and CPU capacity to make backups as fast as possible. This is a balancing act,
and you’ll have to experiment to find the “sweet spot.”

Making a Logical Backup
The first thing to realize about logical backups is that they are not all created equal.
There are actually two kinds of logical backups: SQL dumps and delimited files.

SQL dumps

SQL dumps are what most people are familiar with, because they’re what mysqldump
creates by default. For example, dumping a small table with the default options will
produce the following (abridged) output:

$ mysqldump test t1
-- [Version and host comments]
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
-- [More version-specific comments to save options for restore]
--
-- Table structure for table `t1`
--
DROP TABLE IF EXISTS `t1`;
CREATE TABLE `t1` (
 `a` int(11) NOT NULL,
 PRIMARY KEY (`a`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
--
-- Dumping data for table `t1`
--
LOCK TABLES `t1` WRITE;
/*!40000 ALTER TABLE `t1` DISABLE KEYS */;
INSERT INTO `t1` VALUES (1);
/*!40000 ALTER TABLE `t1` ENABLE KEYS */;
UNLOCK TABLES;
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;
/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
-- [More option restoration]

The dump file contains both the table structure and the data, all written out as valid
SQL commands. The file begins with comments that set various MySQL options. These
are present either to make the restore work more efficiently or for compatibility and
correctness. Next you can see the table’s structure, and then its data. Finally, the script
resets the options it changed at the beginning of the dump.

The dump’s output is executable for a restore operation. This is convenient, but mysql-
dump’s default options aren’t great for making a huge backup (we delve into mysql-
dump’s options in more detail later).

Backing Up Data | 637

mysqldump is not the only tool that can make SQL logical backups. You can also create
them with mydumper or phpMyAdmin, for example.7 What we’d really like to point
out here is not so much problems with any particular tool, but rather the shortcomings
of doing monolithic SQL logical backups in the first place. Here are the main problem
areas:

Schema and data stored together
Although this is convenient if you want to restore from a single file, it makes things
difficult if you need to restore only one table or want to restore only the data. You
can alleviate this concern by dumping twice—once for data, once for schema—
but you’ll still have the next problem.

Huge SQL statements
It’s a lot of work for the server to parse and execute all of the SQL statements. This
is a very slow way to load data.

A single huge file
Most text editors can’t edit large files or files with very long lines. Although you
can sometimes use command-line stream editors—such as sed or grep—to pull out
the data you need, it’s preferable to keep the files small.

Logical backups are expensive
There are more efficient ways to get data out of MySQL than fetching it from the
storage engine and sending it over the client/server protocol as a result set.

These limitations mean that SQL dumps quickly become unusable as tables get large.
There’s another option, though: export data to delimited files.

Delimited file backups

You can use the SELECT INTO OUTFILE SQL command to create a logical backup of your
data in a delimited file format. (You can dump to delimited files with mysqldump’s
--tab option, which runs the SQL command for you.) Delimited files contain the raw
data represented in ASCII, without SQL, comments, and column names. Here’s an
example that dumps into comma-separated values (CSV) format, which is a good lingua
franca for tabular data:

mysql> SELECT * INTO OUTFILE '/tmp/t1.txt'
 -> FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 -> LINES TERMINATED BY '\n'
 -> FROM test.t1;

The resulting file is more compact and easier to manipulate with command-line tools
than a SQL dump file, but the biggest advantage of this approach is the speed of backing
up and restoring. You can load the data back into the table with LOAD DATA INFILE, with
the same options used to dump it:

7. Please do not use Maatkit’s mk-parallel-dump and mk-parallel-restore tools. They are not safe.

638 | Chapter 15: Backup and Recovery

mysql> LOAD DATA INFILE '/tmp/t1.txt'
 -> INTO TABLE test.t1
 -> FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 -> LINES TERMINATED BY '\n';

Here’s an informal test we did to demonstrate the backup and restore speed difference
between SQL files and delimited files. We adapted some production data for this test.
The table we’re dumping from looks like the following:

CREATE TABLE load_test (
 col1 date NOT NULL,
 col2 int NOT NULL,
 col3 smallint unsigned NOT NULL,
 col4 mediumint NOT NULL,
 col5 mediumint NOT NULL,
 col6 mediumint NOT NULL,
 col7 decimal(3,1) default NULL,
 col8 varchar(10) NOT NULL default '',
 col9 int NOT NULL,
 PRIMARY KEY (col1, col2)
) ENGINE=InnoDB;

The table has 15 million rows and uses about 700 MB on disk. Table 15-1 compares
the performance of the two backup and restore methods. You can see there’s a large
speed difference in the restore times for the test.

Table 15-1. Backup and restore times for SQL and delimited dumps

Method Dump size Dump time Restore time

SQL dump 727 MB 102 sec 600 sec

Delimited dump 669 MB 86 sec 301 sec

The SELECT INTO OUTFILE method has some limitations, though:

• You can back up only to a file on the machine on which the MySQL server is
running. (You can roll your own SELECT INTO OUTFILE by writing a program that
reads a SELECT result and writes it to disk, which is an approach we’ve seen some
people take.)

• MySQL must have permission to write to the directory where the file is written,
because the MySQL server—not the user running the SQL command—is what
writes the file.

• For security reasons, you can’t overwrite an existing file, no matter what the file’s
permissions are.

• You can’t dump directly to a compressed file.

• Some things, such as nonstandard character sets, are hard to get right in either the
export or the import step.

Backing Up Data | 639

Filesystem Snapshots
Filesystem snapshots are a great way to make online backups. Snapshot-capable file-
systems can create a consistent image of their contents at an instant in time, which you
can then use to make a backup. Snapshot-capable filesystems and appliances include
FreeBSD’s filesystem, the ZFS filesystem, GNU/Linux’s Logical Volume Manager
(LVM), and many SAN systems and file-storage solutions, such as NetApp storage
appliances.

Don’t confuse a snapshot with a backup. Taking a snapshot is simply a way of reducing
the time for which locks must be held; after releasing the locks, you must copy the files
to the backup. In fact, you can optionally take snapshots on InnoDB without even
acquiring locks. We’ll show you two ways to use LVM to make backups of an all-
InnoDB system, with your choice of minimal or zero locking.

A snapshot can be a great way to make a backup for specific uses. One example is as a
fallback in case of a problem during an upgrade. You can take a snapshot, upgrade,
and, if there’s a problem, just roll back to the snapshot. You can do the same thing for
any operation that’s uncertain and risky, such as altering a huge table (which will take
an unknown amount of time).

How LVM snapshots work

LVM uses copy-on-write technology to create a snapshot—i.e., a logical copy of an
entire volume at an instant in time. It’s a little like MVCC in a database, except it keeps
only one old version of the data.

Notice we didn’t say a physical copy. A logical copy appears to contain all the same
data as the volume you snapshotted, but initially it contains no data. Instead of copying
the data to the snapshot, LVM simply notes the time at which you created the snapshot,
then it reads the data from the original volume when you request it from the snapshot.
So, the initial copy is basically an instantaneous operation, no matter how large a vol-
ume you’re snapshotting.

When something changes the data in the original volume, LVM copies the affected
blocks to an area reserved for the snapshot before it writes any changes to them. LVM
doesn’t keep multiple “old versions” of the data, so additional writes to blocks that are
changed in the original volume don’t require any further work for the snapshot. In other
words, only the first write to each block causes a copy-on-write to the reserved area.

Now, when you request these blocks in the snapshot, LVM reads the data from the
copied blocks instead of from the original volume. This lets you continue to see the
same data in the snapshot without blocking anything on the original volume. Fig-
ure 15-1 depicts this arrangement.

The snapshot creates a new logical device in the /dev directory, and you can mount this
device just as you would mount any other.

640 | Chapter 15: Backup and Recovery

You can theoretically snapshot an enormous volume and consume very little physical
space with this technique. However, you need to set aside enough space to hold all the
blocks you expect to be updated in the original volume while you hold the snapshot
open. If you don’t reserve enough copy-on-write space, the snapshot will run out of
space, and the device will become unavailable. The effect is like unplugging an external
drive: any backup job that’s reading from the device will fail with an I/O error.

Prerequisites and configuration

It’s almost trivial to create a snapshot, but you need to ensure that your system is
configured in such a way that you can get a consistent copy of all the files you want to
back up at a single instant in time. First, make sure your system meets these conditions:

• All InnoDB files (InnoDB tablespace files and InnoDB transaction logs) must be
on a single logical volume (partition). You need absolute point-in-time consistency,
and LVM can’t take consistent snapshots of more than one volume at a time. (This
is an LVM limitation; some other systems do not have this problem.)

• If you need to back up the table definitions too, the MySQL data directory must
be in the same logical volume. If you use another method to back up table defini-
tions, such as a schema-only backup into your version control system, you might
not need to worry about this.

• You must have enough free space in the volume group to create the snapshot. How
much you need will depend on your workload. When you set up your system, leave
some unallocated space so that you’ll have room for snapshots later.

LVM has the concept of a volume group, which contains one or more logical volumes.
You can see the volume groups on your system as follows:

Figure 15-1. How copy-on-write technology reduces the size needed for a volume snapshot

Backing Up Data | 641

vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 1 4 0 wz--n- 534.18G 249.18G

This output shows a volume group that has four logical volumes distributed across one
physical volume, with about 250 GB free. The vgdisplay command gives more detail if
you need it. Now let’s take a look at the logical volumes on the system:

lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 home vg -wi-ao 40.00G
 mysql vg -wi-ao 225.00G
 tmp vg -wi-ao 10.00G
 var vg -wi-ao 10.00G

The output shows that the mysql volume has 225 GB of space. The device name is /
dev/vg/mysql. This is just a name, even though it looks like a filesystem path. To add
to the confusion, there’s a symbolic link from the file of the same name to the real device
node at /dev/mapper/vg-mysql, which you can see with the ls and mount commands:

ls -l /dev/vg/mysql
lrwxrwxrwx 1 root root 20 Sep 19 13:08 /dev/vg/mysql -> /dev/mapper/vg-mysql
mount | grep mysql
/dev/mapper/vg-mysql on /var/lib/mysql

Armed with this information, you’re ready to create a filesystem snapshot.

Creating, mounting, and removing an LVM snapshot

You can create the snapshot with a single command. You just need to decide where to
put it and how much space to allocate for copy-on-write. Don’t hesitate to use more
space than you think you’ll need. LVM doesn’t use the space you specify right away;
it just reserves it for future use, so there’s no harm in reserving lots of space, unless you
need to leave space for other snapshots at the same time.

Let’s create a snapshot just for practice. We’ll give it 16 GB of space for copy-on-write,
and we’ll call it backup_mysql:

lvcreate --size 16G --snapshot --name backup_mysql /dev/vg/mysql
 Logical volume "backup_mysql" created

We deliberately called the volume backup_mysql instead of mysql
_backup so that tab completion would be unambiguous. This helps avoid
the possibility of tab completion causing you to accidentally delete the
mysql volume group.

Now let’s see the newly created volume’s status:

lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 backup_mysql vg swi-a- 16.00G mysql 0.01
 home vg -wi-ao 40.00G

642 | Chapter 15: Backup and Recovery

 mysql vg owi-ao 225.00G
 tmp vg -wi-ao 10.00G
 var vg -wi-ao 10.00G

Notice that the snapshot’s attributes are different from the original device’s, and that
the display shows a little extra information: its origin and how much of the allocated
16 GB is currently being used for copy-on-write. It’s a good idea to monitor this as you
make your backup, so you can see if the device is getting full and is about to fail. You
can monitor your device’s status interactively, or with a monitoring system such as
Nagios:

watch 'lvs | grep backup'

As you saw from the output of mount earlier, the mysql volume contains a filesystem.
That means the snapshot volume does too, and you can mount and use it just like any
other filesystem:

mkdir /tmp/backup
mount /dev/mapper/vg-backup_mysql /tmp/backup
ls -l /tmp/backup/mysql
total 5336
-rw-r----- 1 mysql mysql 0 Nov 17 2006 columns_priv.MYD
-rw-r----- 1 mysql mysql 1024 Mar 24 2007 columns_priv.MYI
-rw-r----- 1 mysql mysql 8820 Mar 24 2007 columns_priv.frm
-rw-r----- 1 mysql mysql 10512 Jul 12 10:26 db.MYD
-rw-r----- 1 mysql mysql 4096 Jul 12 10:29 db.MYI
-rw-r----- 1 mysql mysql 9494 Mar 24 2007 db.frm
... omitted ...

This is just for practice, so we’ll unmount and remove the snapshot now with the
lvremove command:

umount /tmp/backup
rmdir /tmp/backup
lvremove --force /dev/vg/backup_mysql
 Logical volume "backup_mysql" successfully removed

LVM snapshots for online backups

Now that you’ve seen how to create, mount, and remove snapshots, you can use them
to make backups. First, let’s look at how to back up an InnoDB database without
stopping the MySQL server, but with a global read lock. Connect to the MySQL server
and flush the tables to disk with a global read lock, then get the binary log coordinates:

mysql> FLUSH TABLES WITH READ LOCK; SHOW MASTER STATUS;

Record the output from SHOW MASTER STATUS, and make sure you keep the connection
to MySQL open so the lock doesn’t get released. You can then take the LVM snapshot
and immediately release the read lock, either with UNLOCK TABLES or by closing the
connection. Finally, mount the snapshot and copy the files to the backup location.

The major problem with this approach is that it might take a while to get the read lock,
especially if there are long-running queries. All queries will be blocked while the

Backing Up Data | 643

connection waits for the global read lock, and it’s impossible to predict how long this
will take.

Filesystem Snapshots and InnoDB
InnoDB’s background threads continue to work even if you’ve locked all tables, so it
is probably still writing to its files even as you take the snapshot. Also, because InnoDB
hasn’t performed its shutdown sequence, the snapshot’s InnoDB files will look the way
these files would have looked if the server had lost power unexpectedly.

This is not a problem, because InnoDB is an ACID system. At any instant (such as the
instant you take the snapshot), every committed transaction is either in the InnoDB
data files or in the log files. When you start MySQL after restoring the snapshot, InnoDB
will run its recovery process, just as though the server had lost power. It will look in
the transaction log for any committed transactions that haven’t yet been applied to the
data files and apply them, so you won’t lose any transactions. This is why it’s mandatory
to snapshot the InnoDB data and log files together.

This is also why you should test your backups when you make them. Start an instance
of MySQL, point it at the new backup, let InnoDB’s recovery run, and check all the
tables. This way you won’t back up corrupted data without knowing it (the files could
be corrupt for any number of reasons). Another benefit to this practice is that restoring
from the backup will be faster in the future, because you’ve already run the recovery
process.

You can optionally run this process on the snapshot before even copying it to the
backup, but that can add quite a bit of overhead. Just be sure you plan for it. (More on
this later.)

Lock-free InnoDB backups with LVM snapshots

Lock-free backups are only a little different. The distinction is that you don’t do a FLUSH
TABLES WITH READ LOCK. This means there won’t be any guarantee that your MyISAM
files will be consistent on disk, but if you use only InnoDB, that’s probably not an issue.
You’ll still have some MyISAM tables in the mysql system database, but if your workload
is typical, they’re unlikely to be changing at the moment you take the snapshot.

If you think the mysql system tables might be changing, you can lock and then flush
them. You shouldn’t have any long-running queries on these tables, so this will nor-
mally be very fast:

mysql> LOCK TABLES mysql.user READ, mysql.db READ, ...;
mysql> FLUSH TABLES mysql.user, mysql.db, ...;

You’re not getting a global read lock, so you won’t be able to get anything useful from
SHOW MASTER STATUS. However, when you start MySQL on the snapshot (to verify your
backup’s integrity), you’ll see something like the following in the log file:

644 | Chapter 15: Backup and Recovery

InnoDB: Doing recovery: scanned up to log sequence number 0 40817239
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 3 4 5 6 ...[omitted]... 97 98 99
InnoDB: Apply batch completed
InnoDB: Last MySQL binlog file position 0 3304937, file name
/var/log/mysql/mysql-bin.000001
070928 14:08:42 InnoDB: Started; log sequence number 0 40817239

InnoDB logs the MySQL binary log position corresponding to the point to which it has
recovered. This is the binary log position you can use for point-in-time recovery.

This approach to lock-free backups with snapshots has a twist in MySQL 5.0 and newer.
These MySQL versions use XA to coordinate transactions between InnoDB and the
binary log. If you restore the backup to a server with a different server_id from the one
on which the backup was made, the server might find prepared transactions from a
server whose ID doesn’t match its own. In this case, the server can become confused,
and it’s possible for transactions to become stuck in PREPARED status upon recovery.
This rarely happens, but it is possible. This is why you should always verify your backup
before you consider it a success. It might not be recoverable!

If you’re taking the snapshot from a replica, InnoDB recovery will also print some lines
that look like these:

InnoDB: In a MySQL replica the last master binlog file
InnoDB: position 0 115, file name mysql-bin.001717

This output shows you the master’s binary log coordinates (as opposed to the replica’s
binary log coordinates) at the point to which InnoDB has recovered, which can be very
useful for making backups from replicas or cloning replicas from other replicas.

Planning for LVM backups

LVM snapshot backups aren’t free. The more your server writes to the original volume,
the more overhead they cause. When the server modifies many distinct blocks in ran-
dom order, the disk head has to seek back and forth to the copy-on-write space and
write the old version of the data there. Reading from the snapshot also has overhead,
because LVM really reads most of the data from the original volume. It reads from the
copy-on-write space only as needed; thus, a logically sequential read from the snapshot
actually causes the disk head to move back and forth.

You should plan for this to happen. What it really means is that both the original volume
and the snapshot will perform worse than usual for both reads and writes—possibly
much worse if you use a lot of copy-on-write space. This can slow down both your
MySQL server and the process of copying the files for the backup. We benchmarked
and found that the overhead of an LVM snapshot is much greater than it ought to be—
we found that performance could be as much as five times slower, depending on the
workload and the filesystem. Keep this in mind when you’re planning your backups.

The other important thing to plan for is allocating enough space for the snapshot. We
take the following approach:

Backing Up Data | 645

• Remember that LVM needs to copy each modified block to the snapshot only once.
When MySQL writes a block in the original volume, it copies the block to the
snapshot, then makes a note of the copied block in its exception table. Future writes
to this block will not cause any further copies to the snapshot.

• If you use only InnoDB, consider how InnoDB writes data. Because it writes all
data twice, at least half of InnoDB’s write I/O goes to the doublewrite buffer, log
files, and other relatively small areas on disk. These reuse the same disk blocks over
and over, so they’ll have an initial impact on the snapshot, but after that they’ll
stop causing writes to the snapshot.

• Next, estimate how much of your I/O will be writing to blocks that haven’t yet
been copied to the snapshot, as opposed to modifying the same data again and
again. Be generous with your estimate.

• Use vmstat or iostat to gather statistics on how many blocks your server writes per
second.

• Measure (or estimate) how long it will take to copy your backup to another loca-
tion: in other words, how long you need to keep the LVM snapshot open.

Let’s suppose you’ve estimated that half of your writes will cause writes to the snap-
shot’s copy-on-write space, and your server writes 10 MB per second. If it takes an hour
(3,600 seconds) to copy the snapshot to another server, you will need 1/2 × 10 MB ×
3,600, or 18 GB of space for the snapshot. Err on the side of caution, and add some
extra space as well.

Sometimes it’s easy to calculate how much data will change while you keep the snapshot
open. Let’s look at an example. The BoardReader forum search engine has about 1 TB
of InnoDB tables per storage node. However, we know the biggest cost is loading new
data. About 10 GB of new data is added per day, so 50 GB should be plenty of space
for the snapshot. This estimate doesn’t always work, though. At one point, we had a
long-running ALTER TABLE that changed each shard one after the other, which modified
much more than 50 GB of data; while this was running, we weren’t able to make the
backup. To avoid problems such as this, you can wait a while after creating the snap-
shot, because the added load is the highest right after creating the snapshot.

Backup Myth #2: “My Snapshot Is My Backup”
A snapshot, whether it’s an LVM snapshot, a ZFS snapshot, or a SAN snapshot, isn’t
a real backup because it doesn’t contain a full copy of your data. Because snapshots are
copy-on-write, they contain only the differences between the live copy of the data and
the data at the point in time when the snapshot happened. If an unmodified block
becomes corrupt in the live copy of the data, there’s no good copy of that block that
you can use for recovery, and every snapshot sees the same corrupted block that the
live volume does. Use snapshots to “freeze” your data while you take a backup, but
don’t rely on the snapshot itself as a backup.

646 | Chapter 15: Backup and Recovery

Other uses and alternatives

You can use snapshots for more than just backups. For example, as mentioned previ-
ously, they can be a useful way to take a “checkpoint” just before a potentially dan-
gerous action. Some systems let you promote the snapshot to the original filesystem.
This makes it easy to roll back to the point at which you took the snapshot.

Filesystem snapshots aren’t the only way to get an instantaneous copy of your data,
either. Another option is a RAID split: if you have a three-disk software RAID mirror,
for example, you can remove one disk from the mirror and mount it separately. There’s
no copy-on-write penalty, and it’s easy to promote this kind of “snapshot” to be the
master copy if necessary. After adding the disk back to the RAID set, however, it will
have to be resynced. There’s no free lunch, sadly.

Recovering from a Backup
How you recover your data depends on how you backed it up. You might need to take
some or all of the following steps:

• Stop the MySQL server.

• Take notes on the server’s configuration and file permissions.

• Move the data from the backup into the MySQL data directory.

• Make configuration changes.

• Change file permissions.

• Restart the server with limited access, and wait for it to start fully.

• Reload logical backup files.

• Examine and replay binary logs.

• Verify what you’ve restored.

• Restart the server with full access.

We demonstrate how to do each of these steps as needed in the following sections. We
also add notes specific to certain backup methods or tools in sections about those
methods or tools later in this chapter.

If there’s a chance you’ll need the current versions of your files, don’t
replace them with the files from the backup. For example, if your backup
includes the binary logs, and you need to replay binary logs for point-
in-time recovery, don’t overwrite the current binary logs with older
copies from the backup. Rename them or move them elsewhere if
necessary.

During recovery, it’s often important to make MySQL inaccessible to everything except
the recovery process. We like to start MySQL with the --skip-networking and --socket=/

Recovering from a Backup | 647

tmp/mysql_recover.sock options to ensure that it is unavailable to existing applications
until we’ve checked it and brought it back online. This is especially important for logical
backups, which are loaded in pieces.

Restoring Raw Files
Restoring raw files tends to be pretty straightforward—which is another way of saying
there aren’t many options. This can be a good or a bad thing, depending on your re-
covery requirements. The usual procedure is simply to copy the files into place.

Whether you need to shut down MySQL depends on the storage engine. MyISAM’s
files are generally independent from one another, and simply copying each ta-
ble’s .frm, .MYI, and .MYD files works well, even if the server is running. The server
will find the table as soon as anyone queries it or otherwise makes the server look for
it (for example, by executing SHOW TABLES). If the table is open when you copy in these
files, it’ll probably cause trouble, so before doing so you should either drop or rename
the table, or use LOCK TABLES and FLUSH TABLES to close it.

InnoDB is another matter. If you’re restoring a traditional InnoDB setup, where all
tables are stored in a single tablespace, you’ll have to shut down MySQL, copy or move
the files into place, and then restart. You also need to ensure that InnoDB’s transaction
log files match its tablespace files. If the files don’t match—for example, if you replace
the tablespace files but not the transaction log files—InnoDB will refuse to start. This
is one reason it’s crucial to back up the transaction log along with the data files.

If you’re using the InnoDB file-per-table feature (innodb_file_per_table), InnoDB
stores the data and indexes for each table in a .ibd file, which is like a combination of
MyISAM’s .MYI and .MYD files. You can back up and restore individual tables by
copying these files, and you can do it while the server is running, but it’s not as simple
as with MyISAM. The individual files are not independent from InnoDB as a whole.
Each .ibd file has internal information that tells InnoDB how the file is related to the
main (shared) tablespace. When you restore such a file, you have to tell InnoDB to
“import” the file.

There are many restrictions on this process, which you can read about in the MySQL
manual section on using per-table tablespaces. The biggest is that you can only restore
a table to the server from which you backed it up. It’s not impossible to back up and
restore tables in this configuration, but it’s trickier than you might think.

Percona Server and Percona XtraBackup have some enhancements that
lift some of the restrictions on this process, such as the same-server
restriction.

All this complexity means that restoring raw files can be very tedious, and it’s easy to
get it wrong. A good rule of thumb is that the harder and more complex your recovery

648 | Chapter 15: Backup and Recovery

procedure becomes, the more you need to protect yourself with logical backups as well.
It’s always a good idea to have a logical backup, in case something goes wrong and you
can’t convince MySQL to use your raw backups.

Starting MySQL after restoring raw files

There are a few things you’ll need to do before you start the MySQL server you’re
recovering.

The first and most important thing, and one of the easiest to forget, is to check your
server’s configuration and make sure the restored files have the correct owner and
permissions, before you try to start the MySQL server. These attributes must be exactly
right, or MySQL might not start. The attributes vary from system to system, so check
your notes to see exactly what you’ll need to set. You typically want the mysql user and
group to own the files and directories, which you want to be readable and writable by
that user and group but no others.

We also suggest watching the MySQL error log while the server starts. On a Unix-style
system, you can watch the file like this:

$ tail -f /var/log/mysql/mysql.err

The exact location of the error log will vary. Once you’re monitoring the file, you can
start the MySQL server and watch for errors. If all goes well, you’ll have a nicely re-
covered server once MySQL starts.

Watching the error log is even more important in newer MySQL versions. Older ver-
sions wouldn’t start if InnoDB had an error, but in newer versions the server will start
anyway and just disable InnoDB. Even if the server seems to start without trouble, you
should run SHOW TABLE STATUS in each database, then check the error log again.

Restoring Logical Backups
If you’re restoring logical backups instead of raw files, you need to use the MySQL
server itself to load the data back into the tables, as opposed to using the operating
system to simply copy files into place.

Before you load that dump file, however, take a moment to consider how large it is,
how long it’ll take to load, and anything you might want to do before you start, such
as notifying your users or disabling part of your application. Disabling binary logging
might be a good idea, unless you need to replicate the restoration to a replica: a huge
dump file is hard enough for the server to load, and writing it to the binary log adds
even more (possibly unnecessary) overhead. Loading huge files also has consequences
for some storage engines. For example, it’s not a good idea to load 100 GB of data into
InnoDB in a single transaction, because of the huge rollback segment that will result.
You should load in manageable chunks and commit the transaction after each chunk.

Recovering from a Backup | 649

There are two kinds of restoration you might do, which correspond to the two kinds
of logical backups you can make.

Loading SQL files

If you have a SQL dump, the file will contain executable SQL. All you need to do is run
it. Assuming you backed up the Sakila sample database and schema into a single file,
the following is a typical command you might use to restore it:

$ mysql < sakila-backup.sql

You can also load the file from within the mysql command-line client with the SOURCE
command. Although this is mostly a different way of doing the same thing, it makes
some things easier. For example, if you’re an administrative user in MySQL, you can
turn off binary logging of the statements you’ll execute from within your client con-
nection, and then load the file without needing to restart the MySQL server:

mysql> SET SQL_LOG_BIN = 0;
mysql> SOURCE sakila-backup.sql;
mysql> SET SQL_LOG_BIN = 1;

If you use SOURCE, be aware that an error won’t abort a batch of statements, as it will
by default when you redirect the file into mysql.

If you compressed the backup, don’t separately decompress and load it. Instead, de-
compress and load it in a single operation. This is much faster:

$ gunzip -c sakila-backup.sql.gz | mysql

If you want to load a compressed file with the SOURCE command, see the discussion of
named pipes in the next section.

What if you want to restore only a single table (for example, the actor table)? If your
data has no line breaks, it’s not hard to restore the data if the schema is already in place:

$ grep 'INSERT INTO `actor`' sakila-backup.sql | mysql sakila

Or, if the file is compressed:

$ gunzip -c sakila-backup.sql.gz | grep 'INSERT INTO `actor`'| mysql sakila

If you need to create the table as well as restore the data, and you have the entire
database in a single file, you’ll have to edit the file. This is why some people like to
dump each table into its own file. Most editors can’t deal with huge files, especially if
they’re compressed. Besides, you don’t want to actually edit the file itself—you just
want to extract the relevant lines—so you’ll probably have to do some command-line
work. It’s easy to use grep to pull out only the INSERT statements for a given table, as
we did in the previous commands, but it’s harder to get the CREATE TABLE statement.
Here’s a sed script that extracts the paragraph you need:

$ sed -e '/./{H;$!d;}' -e 'x;/CREATE TABLE `actor`/!d;q' sakila-backup.sql

650 | Chapter 15: Backup and Recovery

That’s pretty cryptic, we admit. If you have to do this kind of work to restore data, your
backups are poorly designed. With a little planning, it’s possible to prevent a situation
in which you’re panicked and trying to figure out how sed works. Just back up each
table into its own file, or, better yet, back up the data and schema separately.

Loading delimited files

If you dumped the data via SELECT INTO OUTFILE, you’ll have to use LOAD DATA INFILE
with the same parameters to restore it. You can also use mysqlimport, which is a wrapper
around LOAD DATA INFILE. It relies on naming conventions to determine where to load
a file’s data.

We hope you dumped your schema, not just your data. If so, it’s a SQL dump, and you
can use the techniques outlined in the previous section to load it.

There’s a great optimization you can use with LOAD DATA INFILE. It must read directly
from a file, so you might think you have to decompress the file before loading it, which
is very slow and disk-intensive. However, there’s a way around that, at least on systems
that support FIFO “named pipe” files, such as GNU/Linux. First, create a named pipe
and stream the decompressed data into it:

$ mkfifo /tmp/backup/default/sakila/payment.fifo
$ chmod 666 /tmp/backup/default/sakila/payment.fifo
$ gunzip -c /tmp/backup/default/sakila/payment.txt.gz
 > /tmp/backup/default/sakila/payment.fifo

Notice we’re using a greater-than character (>) to redirect the decompressed output
into the payment.fifo file—not a pipe symbol, which creates anonymous pipes between
programs. The payment.fifo file is a named pipe, so there’s no need for an anonymous
one.

The pipe will wait until some program opens it for reading from the other end. Here’s
the neat part: the MySQL server can read the decompressed data from the pipe, just
like any other file. Don’t forget to disable binary logging if appropriate:

mysql> SET SQL_LOG_BIN = 0; -- Optional
 -> LOAD DATA INFILE '/tmp/backup/default/sakila/payment.fifo'
 -> INTO TABLE sakila.payment;
Query OK, 16049 rows affected (2.29 sec)
Records: 16049 Deleted: 0 Skipped: 0 Warnings: 0

Once MySQL is done loading the data, gunzip will exit, and you can delete the named
pipe. You can use this same technique to load compressed files from within the MySQL
command-line client with the SOURCE command. The pt-fifo-split program in Percona
Toolkit can help you load large files in chunks, rather than one large transaction, which
can be a lot more efficient.

Recovering from a Backup | 651

You Can’t Get There from Here
One of the authors once changed a column from DATETIME to TIMESTAMP to save space
and make processing faster, as recommended in Chapter 3. The resulting table defini-
tion looked like the following:

CREATE TABLE tbl (
 col1 timestamp NOT NULL,
 col2 timestamp NOT NULL default CURRENT_TIMESTAMP
 on update CURRENT_TIMESTAMP,
 ... more columns ...
);

This table definition causes a syntax error on MySQL 5.0.40, the server version from
which it was created. You can dump it, but you can’t reload it. Odd, unforeseen errors
such as this one are among the reasons why it’s important to test your backups. You
never know what will prevent you from restoring your data!

Point-in-Time Recovery
The most common way to do point-in-time recovery with MySQL is to restore your
last full backup and then replay the binary log from that time forward (sometimes called
“roll-forward recovery”). As long as you have the binary log, you can recover to any
point you wish. You can even recover a single database without too much trouble.

The main drawback is that binary log replay can potentially be a slow process. It’s
essentially equivalent to replication. If you have a replica, and you have measured how
heavily utilized the SQL thread is, you’ll have a good gauge of how quickly you can
replay binary logs. For example, if your SQL thread is about 50% utilized, recovering
a week’s worth of binary logs is probably going to take between three and four days.

A common scenario is undoing the effects of a harmful statement, such as a DROP
TABLE. Let’s look at a simplified example of how to do that, using only MyISAM tables.
Suppose that at midnight, the backup job ran the equivalent of the following state-
ments, which copied the database elsewhere on the same server:

mysql> FLUSH TABLES WITH READ LOCK;
 -> server1# cp -a /var/lib/mysql/sakila /backup/sakila;
mysql> FLUSH LOGS;
 -> server1# mysql -e "SHOW MASTER STATUS" --vertical > /backup/master.info;
mysql> UNLOCK TABLES;

Then, later in the day, suppose someone ran the following statement:

mysql> USE sakila;
mysql> DROP TABLE sakila.payment;

For the sake of illustration, we assume that we can recover this database in isolation
(that is, that no tables in this database were involved in cross-database queries). We
also assume that we didn’t notice the offending statement until some time later. The
goal is to recover everything that’s happened to the database, except for that statement.

652 | Chapter 15: Backup and Recovery

That is, we must also preserve all the modifications that have been made to other tables,
including after that statement was run.

This isn’t all that hard to do. First, we stop MySQL to prevent further modifications
and restore just the sakila database from the backup:

server1# /etc/init.d/mysql stop
server1# mv /var/lib/mysql/sakila /var/lib/mysql/sakila.tmp
server1# cp -a /backup/sakila /var/lib/mysql

We disable normal connections by adding the following to the server’s my.cnf file while
we work:

skip-networking
socket=/tmp/mysql_recover.sock

Now it’s safe to start the server:

server1# /etc/init.d/mysql start

The next task is to find which statements in the binary log we want to replay, and which
we want to skip. As it happens, the server has created only one binary log since the
backup at midnight. We can examine this file with grep and find the offending
statement:

server1# mysqlbinlog --database=sakila /var/log/mysql/mysql-bin.000215
| grep -B3 -i 'drop table sakila.payment'
at 352
#070919 16:11:23 server id 1 end_log_pos 429 Query thread_id=16 exec_time=0
error_code=0
SET TIMESTAMP=1190232683/*!*/;
DROP TABLE sakila.payment/*!*/;

The statement we want to skip is at position 352 in the log file, and the next statement
is at position 429. We can replay the log up to position 352, and then from 429 on,
with the following commands:

server1# mysqlbinlog --database=sakila /var/log/mysql/mysql-bin.000215
--stop-position=352 | mysql -uroot -p
server1# mysqlbinlog --database=sakila /var/log/mysql/mysql-bin.000215
--start-position=429 | mysql -uroot -p

Now all we have to do is check the data just to be sure, stop the server and undo the
changes to my.cnf, and restart the server.

More Advanced Recovery Techniques
Replication and point-in-time recovery use the same mechanism: the server’s binary
log. This means replication can be a helpful tool during recovery, in some not-so-
obvious ways. We show you some of the possibilities in this section. This isn’t an
exhaustive list, but it should give you some ideas about how to design recovery pro-
cesses for your needs. Remember to script and rehearse anything you think you’ll need
to do during recovery.

Recovering from a Backup | 653

Delayed replication for fast recovery

As we mentioned earlier in this chapter, having a delayed replica can make point-in-
time recovery much faster and easier if you notice the accident before the replica exe-
cutes the offending statement.

The procedure is a little different from that outlined in the preceding section, but the
idea is the same. You stop the replica, then use START SLAVE UNTIL to replay events until
just before the statement you want to skip. Next, you execute SET GLOBAL SQL
_SLAVE_SKIP_COUNTER=1 to skip the bad statement. Set it to a value higher than 1 if you
want to skip several events (or simply use CHANGE MASTER TO to advance the replica’s
position in the log).

All you have to do then is execute START SLAVE and let the replica run until it is finished
executing its relay logs. Your replica has done all the tedious work of point-in-time
recovery for you. Now you can promote the replica to master, and you’ve recovered
with very little interruption.

Even if you don’t have a delayed replica to speed recovery, replicas can be useful
because they fetch the master’s binary logs onto another machine. If your master’s disk
fails, a replica’s relay logs might be the only place you’ll have a reasonably up-to-date
copy of the master’s binary logs.

Recovering with a log server

There’s another way to use replication for recovery: set up a log server. We feel that
replication is more trustworthy than mysqlbinlog, which might have odd bugs or edge
cases that cause unexpected behavior. A log server is also more flexible and easier to
use for recovery than mysqlbinlog, not only because of the START SLAVE UNTIL option,
but also because of the replication rules you can apply (such as replicate-do-table).
With a log server, you can do much more complex filtering than you’d be able to do
otherwise.

For example, a log server lets you recover a single table easily. This is a lot harder to do
correctly with mysqlbinlog and command-line tools—in fact, it’s hard enough that we
advise you not to try.

Let’s suppose our careless developer dropped the same table as before, and we want to
recover it without reverting the whole server to last night’s backup. Here’s how to do
this with a log server:

1. Let the server you need to recover be called server1.

2. Recover last night’s backup to another server, called server2. Run the recovery
process on this server to avoid the risk of making things worse if you make a mistake
in recovery.

654 | Chapter 15: Backup and Recovery

3. Set up a log server to serve server1’s binary logs, following the directions in Chap-
ter 10. (It might be a good idea to copy the logs away to another server and set up
the log server there, just to be extra careful.)

4. Change server2’s configuration file to include the following:

replicate-do-table=sakila.payment

5. Restart server2, then make it a replica of the log server with CHANGE MASTER TO.
Configure it to read from the binary log coordinates of last night’s backup. Don’t
run START SLAVE yet.

6. Examine the output of SHOW SLAVE STATUS on server2 and verify that everything is
correct. Measure twice, cut once!

7. Find the binary log position of the offending statement, and execute START SLAVE
UNTIL to replay events until just before that position on server2.

8. Stop the replica process on server2 with STOP SLAVE. It should now have the table
as it existed just before it was dropped.

9. Copy the table from server2 to server1.

This process is possible only if the table isn’t the target of any multitable UPDATE,
DELETE, or INSERT statements. Any such statements will execute against a different da-
tabase state than the one that existed when the binary log events were logged, so the
table will probably end up containing different data than it should. (This applies only
if you’re using statement-based binary logging; if you use row-based logging, the replay
process won’t be prone to this error.)

InnoDB Crash Recovery
InnoDB checks its data and log files every time it starts to see whether it needs to perform
its recovery process. However, InnoDB’s recovery isn’t the same thing we’ve been talk-
ing about in the context of this chapter. It’s not recovering backed-up data; instead,
it’s applying transactions from the logs to the data files and rolling back uncommitted
modifications to the data files.

Exactly how InnoDB recovery works is a little too complicated to describe here. We
focus instead on how to actually perform recovery when InnoDB has a serious problem.

Most of the time InnoDB is very good at fixing problems. Unless there is a bug in MySQL
or your hardware is faulty, you shouldn’t have to do anything out of the ordinary, even
if your server loses power. InnoDB will just perform its normal recovery upon startup,
and all will be well. In the log file, you’ll see messages like the following:

InnoDB: Doing recovery: scanned up to log sequence number 0 40817239
InnoDB: Starting an apply batch of log records to the database...

InnoDB prints progress messages in percents into the log file. Some people report not
seeing these until the whole process is done. Be patient; there is no way to hurry the
process. Killing and restarting will just make it take longer.

Recovering from a Backup | 655

If there’s a severe problem with your hardware, such as memory or disk corruption, or
if you run into a bug in MySQL or InnoDB, you might have to intervene and either
force recovery or prevent the normal recovery from happening.

Causes of InnoDB corruption

InnoDB is very robust. It is built to be reliable, and it has a lot of built-in sanity checks
to prevent, find, and fix corrupted data—much more so than other MySQL storage
engines, and even more than some other databases. However, it can’t protect itself
against everything.

At a minimum, InnoDB relies on unbuffered I/O calls and fsync() calls not returning
until the data is safely written to physical media. If your hardware doesn’t guarantee
this behavior, InnoDB can’t protect your data, and a crash can cause corruption.

Many InnoDB corruption problems are hardware-related (e.g., corrupted page writes
caused by power failures or bad memory). However, misconfigured hardware is a much
bigger source of problems in our experience. Common misconfigurations include en-
abling the writeback cache on a RAID card that doesn’t have a battery backup unit, or
enabling the writeback cache on hard drives themselves. These mistakes will cause the
controller or drive to lie and say the fsync() completed, when the data is in fact only
in the writeback cache, not on disk. In other words, the hardware doesn’t provide the
guarantees InnoDB needs to keep your data safe.

Sometimes machines are configured this way by default, because it gives better perfor-
mance—which might be fine for some purposes, but not for a transactional database
server.

You can also get corruption if you run InnoDB on network-attached storage (NAS),
because completing an fsync() to such a device might just mean the device received
the data. The data is safe if InnoDB crashes, but not necessarily if the NAS device
crashes.

Sometimes the corruption is worse than other times. Severe corruption can crash
InnoDB or MySQL, but less severe corruption might just mean some transactions are
lost because the log files weren’t really synced to disk.

How to recover corrupted InnoDB data

There are three major types of InnoDB corruption, and each requires a different level
of effort to recover the data:

Secondary index corruption
You can often fix a corrupt secondary index with OPTIMIZE TABLE; alternatively,
you can use SELECT INTO OUTFILE, drop and recreate the table, then use LOAD DATA
INFILE. (You can also alter the table to MyISAM and back.) These processes fix the
corruption by building a new table, and hence rebuilding the affected index.

656 | Chapter 15: Backup and Recovery

Clustered index corruption
In the event of clustered index corruption, you might need to use the innodb
_force_recovery settings to dump the table (more on this later). Sometimes the
dump process crashes InnoDB; if this happens, you might need to dump ranges of
rows to skip the corrupted pages that are causing the crash. A corrupt clustered
index is a more severe problem than a corrupt secondary index because it affects
the data rows themselves, but it’s still possible to fix just the affected tables in many
cases.

Corrupt system structures
System structures include the InnoDB transaction log, the undo log area of the
tablespace, and the data dictionary. This type of corruption is likely to require a
complete dump and restore, because much of InnoDB’s inner workings might be
affected.

You can usually repair a corrupted secondary index without losing any data. However,
the other two scenarios often involve at least some data loss. If you have a backup,
you’re probably better off restoring that backup rather than trying to extract data from
corrupt files.

If you must try to extract the data from the corrupted files, the general process is to try
to get InnoDB up and running, then use SELECT INTO OUTFILE to dump the data. If your
server has already crashed and you can’t even start InnoDB without crashing it, you
can configure it to prevent the normal recovery and background processes from run-
ning. This might let you start the server and make a logical backup with reduced or no
integrity checking.

The innodb_force_recovery parameter controls which kinds of operations InnoDB will
do at startup and during normal operation. The normal value is 0, and you can increase
it up to 6. The MySQL manual documents the exact behavior of each option; we won’t
duplicate that information here, but we will note that you can increase the value to as
high as 4 with little danger. At this setting, you might lose some data on pages that have
corruption; if you go higher, you might extract bad data from corrupted pages, or
increase the risk of a crash during the SELECT INTO OUTFILE. In other words, levels up
to 4 do no harm to your data, but they might miss opportunities to fix problems; levels
5 and 6 are more aggressive at fixing problems but risk doing harm.

When you set innodb_force_recovery to a value greater than 0, InnoDB is essentially
read-only, but you can still create and drop tables. This prevents further corruption,
and it makes InnoDB relax some of its normal checks so it doesn’t intentionally crash
when it finds bad data. In normal operations, this is a safeguard, but you don’t want it
when you’re recovering. If you need to force InnoDB recovery, it’s a good idea to con-
figure MySQL not to allow normal connection requests until you’re finished.

If InnoDB’s data is so corrupt that you can’t start MySQL at all, you can use Percona’s
InnoDB Recovery Toolkit to extract data directly from the files. These tools are freely
available at http://www.percona.com/software/. Percona Server also has an option that

Recovering from a Backup | 657

http://www.percona.com/software/

allows the server to run even when some tables are corrupted, rather than the default
MySQL behavior of hard-crashing the entire server when a single corrupt page is
detected.

Backup and Recovery Tools
A variety of good and not-so-good backup tools are available. Our favorites are mylvm-
backup for LVM snapshot backups, and Percona XtraBackup (open source) or MySQL
Enterprise Backup (proprietary) for hot InnoDB backups. We don’t recommend mysql-
dump for backing up any significant amount of data, due to the impact on the server
and the unpredictably long restore times.

There are a few backup tools that should have disappeared over the years, but un-
fortunately they’ve stayed around. The most obvious example is Maatkit’s mk-parallel-
dump, which never worked right, even though it was redesigned several times. Another
is mysqlhotcopy, which sort of worked for MyISAM tables in the olden days. Neither
tool is safe to trust with your data in the general case, and can lead you to believe that
data is backed up when it isn’t. For example, mysqlhotcopy will copy your .ibd files if
you use InnoDB with innodb_file_per_table, which has fooled some people into
thinking their InnoDB data was backed up. Both tools can have an adverse impact on
a running server in some circumstances.

If you were watching MySQL’s roadmap around 2008 or 2009, you probably heard
about MySQL online backup. This was a feature that let you initiate backups and re-
stores from the server, with SQL commands. It was originally planned for MySQL 5.2,
then rescheduled for MySQL 6.0, then canceled forever as far as we know.

MySQL Enterprise Backup
This tool, formerly known as InnoDB Hot Backup or ibbackup, is part of a MySQL
Enterprise subscription from Oracle. Using it does not require stopping MySQL, setting
locks, or interrupting normal database activity (though it will cause some extra load
on your server). It supports features such as compressed backups, incremental backups,
and streaming backups to another server. It is the “official” backup tool for MySQL.

Percona XtraBackup
Percona XtraBackup is quite similar to MySQL Enterprise Backup in many ways, but
it’s open source and free. In addition to the core backup tool, there is also a wrapper
script written in Perl that enhances its functionality for more advanced tasks. It supports
features such as streaming, incremental, compressed, and multithreaded (parallel)
backup operations. It also has a variety of special features to reduce the impact of
backups on heavily loaded systems.

658 | Chapter 15: Backup and Recovery

Percona XtraBackup works by “tailing” the InnoDB log files in a background thread,
then copying the InnoDB data files. This is a slightly involved process, with special
checks to ensure that data is copied consistently. When all the data files are copied, the
log-copying thread finishes, too. The result is a copy of all the data, but at different
points in time. The logs can now be applied to the data files, using InnoDB’s crash
recovery routines, to bring all of the data files into a consistent state. This is referred to
as the prepare process. Once prepared, the backup is fully consistent and contains all
committed transactions as of the ending point of the file copy process. All of this hap-
pens completely externally to MySQL, so it doesn’t need to connect to or access
MySQL in any way.

The wrapper script adds the ability to recover a backup by copying it back to its original
location. There’s also Lachlan Mulcahy’s XtraBackup Manager project for even more
functionality; see http://code.google.com/p/xtrabackup-manager/ for more information.

mylvmbackup
Lenz Grimmer’s mylvmbackup (http://lenz.homelinux.org/mylvmbackup/) is a Perl
script to help automate MySQL backups via LVM snapshots. It gets a global read lock,
creates a snapshot, and releases the lock. It then compresses the data with tar and
removes the snapshot. It names the tarball according to the timestamp at which the
backup was made. It has a few more advanced options, but in general it’s a straight-
forward tool for performing LVM backups.

Zmanda Recovery Manager
Zmanda Recovery Manager for MySQL, or ZRM (http://www.zmanda.com), comes in
both free (GPL) and commercial versions. The enterprise edition comes with a man-
agement console that provides a graphical web-based interface for configuration,
backup, verification, recovery, reporting, and scheduling. The open source edition is
not crippled in any way, but it doesn’t include some of the extra niceties, such as the
web-based console.

True to its name, ZRM is actually a backup and recovery manager, not just a single
tool. It wraps its own functionality around standard tools and techniques, such as
mysqldump, LVM snapshots, and Percona XtraBackup. It automates much of the te-
dious work of backups and recovery.

mydumper
Several current and former MySQL engineers created mydumper as a replacement for
mysqldump, based on their years of experience. It is a multithreaded (parallel) backup
and restore toolset for MySQL and Drizzle with a lot of nice features. Many people will
probably find the speed of multithreaded backups and restores to be this tool’s most
attractive feature. Although we know of some people using it in production, we don’t

Backup and Recovery Tools | 659

http://code.google.com/p/xtrabackup-manager/
http://lenz.homelinux.org/mylvmbackup/
http://www.zmanda.com

have any production experience with it ourselves. You can find out more at http://www
.mydumper.org.

mysqldump
Most people use the programs that ship with MySQL, so despite its shortcomings, the
most common choice for creating logical backups of data and schemas is mysqldump.
It’s a general-purpose tool that can be used for many tasks, such as copying a table from
one server to another:

$ mysqldump --host=server1 test t1 | mysql --host=server2 test

We’ve shown several examples of how to create logical backups with mysqldump
throughout this chapter. By default, it outputs a script containing all the commands
needed to create a table and fill it with data; there are also options to output views,
stored routines, and triggers. Here are some more examples of typical usage:

• To make a logical backup of everything on a server to a single file, with all tables
in each database backed up at the same logical point in time:

$ mysqldump --all-databases > dump.sql

• To make a logical backup of only the Sakila sample database:

$ mysqldump --databases sakila > dump.sql

• To make a logical backup of only the sakila.actor table:

$ mysqldump sakila actor > dump.sql

You can use the --result-file option to specify an output file, which can help prevent
newline conversion on Windows:

$ mysqldump sakila actor --result-file=dump.sql

The default options for mysqldump aren’t good for most backup purposes. You’ll
probably want to specify some options explicitly to change the output. Here are options
we use frequently to make mysqldump more efficient and make its output easier to use:

--opt
Enables a group of options that disable buffering (which could make your server
run out of memory), write more data into fewer SQL statements in the dump so
they’ll load more efficiently, and do some other useful things. Read your version’s
help for the details. If you disable this group of options, mysqldump will store each
table you dump in its memory before writing it to the disk, which is impractical
for large tables.

--allow-keywords, --quote-names
Make it possible to dump and restore tables that use reserved words as names.

--complete-insert
Makes it possible to move data between tables that don’t have identical columns.

660 | Chapter 15: Backup and Recovery

http://www.mydumper.org
http://www.mydumper.org

--tz-utc
Makes it possible to move data between servers in different time zones.

--lock-all-tables
Uses FLUSH TABLES WITH READ LOCK to get a globally consistent backup.

--tab
Dumps files with SELECT INTO OUTFILE.

--skip-extended-insert
Causes each row of data to have its own INSERT statement. This can help you se-
lectively restore certain rows if necessary. The cost is larger files that are more
expensive to import into MySQL; you should enable this only if you need it.

If you use the --databases or --all-databases options to mysqldump, the resulting dump’s
data will be consistent within each database, because mysqldump will lock and dump
all tables a database at a time. However, tables from different databases might not be
consistent with each other. Using the --lock-all-tables option solves this problem.

For InnoDB backups, you should add the --single-transaction option, which uses
InnoDB’s MVCC features to create a consistent backup at a single point in time, instead
of using LOCK TABLES. If you add the --master-data option, the backup will also contain
the server’s binary log coordinates at the moment of the backup, which is very helpful
for point-in-time recovery and setting up replicas. However, be aware that it will use
FLUSH TABLES WITH READ LOCK to freeze the server so it can get the coordinates.

Scripting Backups
It’s pretty standard to need to write some scripts for backups. Rather than showing you
a sample program, which would necessarily have a lot of scaffolding that just takes up
space on the page, we list the ingredients that go into a typical backup script and show
you code snippets for a Perl script. You can view these as building blocks that you can
snap together to create your own script. We show them in roughly the order you’ll need
to use them:

Sanity checking
Make life easier on yourself and your teammates—turn on strict error checking
and use English variable names:

use strict;
use warnings FATAL => 'all';
use English qw(-no_match_vars);

If you script in Bash, you can enable stricter variable checking, too. The following
will raise an error when there’s an undefined variable in a substitution or when a
program exits with an error:

set -u;
set -e;

Scripting Backups | 661

Command-line arguments
The best way to add command-line option processing is with the standard libraries,
which are included with every Perl installation:

use Getopt::Long;
Getopt::Long::Configure('no_ignore_case', 'bundling');
GetOptions(....);

Connecting to MySQL
The standard Perl DBI library is nearly ubiquitous, and it provides a lot of power
and flexibility. Read the Perldoc (available online at http://search.cpan.org) for de-
tails on how to use it. You can connect to MySQL using DBI as follows:

use DBI;
$dbh = DBI->connect(
 'DBI:mysql:;host=localhost', 'user', 'p4ssw0rd', {RaiseError => 1 });

For command-line scripting, read the --help text for the standard mysql program.
It has a lot of options to make it friendly for scripting. For example, here’s how to
iterate over a list of databases in Bash:

mysql -ss -e 'SHOW DATABASES' | while read DB; do
 echo "${DB}"
done

Stopping and starting MySQL
The best way to stop and start MySQL is to use your operating system’s preferred
method, such as running the /etc/init.d/mysql init script or the service control (on
Windows). It’s not the only way, though. You can shut down the database from
Perl, with an existing database connection:

$dbh->func("shutdown", 'admin');

You shouldn’t rely on MySQL being shut down when this command completes—
it might only be in the process of shutting down. You can also stop MySQL from
the command line:

$ mysqladmin shutdown

Getting lists of databases and tables
Every backup script asks MySQL for a list of databases and tables. Beware of entries
that aren’t really databases, such as the lost+found directory in some journaling
filesystems and the INFORMATION_SCHEMA. Make sure your script is ready to deal with
views, too, and be aware that SHOW TABLE STATUS can take a really long time when
you have lots of data in InnoDB:

mysql> SHOW DATABASES;
mysql> SHOW /*!50002 FULL*/ TABLES FROM <database>;
mysql> SHOW TABLE STATUS FROM <database>;

662 | Chapter 15: Backup and Recovery

http://search.cpan.org

Locking, flushing, and unlocking tables
You’re bound to need to lock and/or flush one or more tables. You can either lock
the desired tables by naming them all, or just lock everything globally:

mysql> LOCK TABLES <database.table> READ [, ...];
mysql> FLUSH TABLES;
mysql> FLUSH TABLES <database.table> [, ...];
mysql> FLUSH TABLES WITH READ LOCK;
mysql> UNLOCK TABLES;

Be very careful about race conditions when getting lists of tables and locking them.
New tables could be created, or tables could be dropped or renamed. If you lock
and back them up one at a time, you won’t get consistent backups.

Flushing binary logs
It’s handy to ask the server to begin a new binary log (do this after locking the
tables, but before taking a backup):

mysql> FLUSH LOGS;

It makes recovery and incremental backups easier if you don’t have to think about
starting in the middle of a log file. This does have some side effects with regard to
flushing and reopening error logs and potentially destroying old log entries, so be
careful you’re not throwing away data you need.

Getting binary log positions
Your script should get and record both the master and replica status—even if the
server is just a master or just a replica:

mysql> SHOW MASTER STATUS\G
mysql> SHOW SLAVE STATUS\G

Issue both statements and ignore any errors you get, so your script gets all the
information possible.

Dumping data
Your best options are to use mysqldump, mydumper, or SELECT INTO OUTFILE.

Copying data
Use one of the methods we showed throughout the chapter.

These are the building blocks of any backup script. The hard part is to script the man-
agement and recovery tasks. If you want inspiration for how to do this, you can take a
look at the source code for ZRM.

Scripting Backups | 663

Summary
Everyone knows that they need backups, but not everyone realizes that they need
recoverable backups. There are many ways to design backups that contradict your
recovery requirements. To help avoid this problem, we suggest that you define and
document your recovery point objective and your recovery time objective, and use those
requirements when choosing a backup system.

It’s also important to test recovery on a routine basis and ensure that it works. It’s easy
to set up mysqldump and let it run every night, without realizing that your data has
grown over time to the point where it might take days or weeks to import again. The
worst time to find out how long your recovery will take is when you actually need it.
A backup that completes in hours can literally take weeks to restore, depending on your
hardware, schema, indexes, and data.

Don’t fall into the trap of thinking that a replica is a backup. It’s a less intrusive source
for taking a backup, but it’s not a backup. The same is true of your RAID volume, your
SAN, and filesystem snapshots. Make sure that your backups can pass the DROP
TABLE test (or the “I got hacked” test), as well as the test of losing your datacenter. And
if you take backups from a replica, be sure that you verify replication integrity with pt-
table-checksum.

Our two favorite ways to take backups are to copy the data from a filesystem or SAN
snapshot, or to use Percona XtraBackup. Both techniques let you take nonintrusive
binary (raw) backups of your data, which you can then verify by starting a mysqld
instance and checking the tables. Sometimes you can even kill two birds with one stone:
test recovery every single day by restoring the backup to your development or staging
server. You can also dump the data from that instance to create a logical backup. We
also like to back up binary logs, and to keep enough generations of backups and binary
logs that we can perform recovery or set up a new replica even if the most recent backup
is unusable.

There are good commercial backup tools in addition to the open source ones we’ve
mentioned, foremost among them MySQL Enterprise Backup. Be careful with
“backup” tools that are included with GUI SQL editors, server management tools, and
the like. Likewise, be careful with “MySQL backup plugins” from companies who make
one-size-fits-all backup tools that claim to support MySQL. You really need a first-class
backup tool that’s designed primarily for MySQL, not one that just happens to support
MySQL as well as a hundred other things. A lot of backup tool vendors don’t know or
acknowledge the impact of practices such as using FLUSH TABLES WITH READ LOCK. The
use of this SQL command automatically disqualifies a solution as a “hot” backup in
our opinion. If you use only InnoDB tables, you usually don’t need it.

664 | Chapter 15: Backup and Recovery

CHAPTER 16

Tools for MySQL Users

The MySQL server distribution doesn’t include tools for many common tasks, such as
monitoring the server or comparing data between servers. Fortunately, Oracle’s com-
mercial offerings extend these tools, and MySQL’s active open source community and
third-party companies also provide a wide variety of tools, reducing the need to roll
your own.

Interface Tools
Interface tools help you run queries, create tables and users, and perform other routine
tasks. This section gives a brief description of some of the most popular tools for these
purposes. You can generally do all or most of the jobs they’re used for with SQL queries
or commands—the tools we discuss here just add convenience, help you avoid mis-
takes, and speed up your work:

MySQL Workbench
MySQL Workbench is an all-in-one tool for tasks such as managing your server,
writing queries, developing stored procedures, and working with schema dia-
grams. It features a plugin interface that lets you write your own tools and integrate
them into the workbench, and there are Python scripts and libraries that use this
plugin interface. MySQL Workbench is available in both community and com-
mercial editions, with the commercial editions adding in some more advanced
features. The free version is more than adequate for most needs, though. You can
learn more at http://www.mysql.com/products/workbench/.

SQLyog
SQLyog is one of the most popular visual tools for MySQL, with many nice features.
It’s in the same class as MySQL Workbench, but both tools have some checkboxes
in their feature matrices that the other doesn’t have. It is available only for Microsoft
Windows, in a full-featured edition for a price and in a limited-functionality edition
for free. More information about SQLyog is available at http://www.webyog.com.

665

http://www.mysql.com/products/workbench/
http://www.webyog.com

phpMyAdmin
phpMyAdmin is a popular administration tool that runs on a web server and gives
you a browser-based interface to your MySQL servers. Although browser-based
access is nice sometimes, phpMyAdmin is a large and complex tool, and it has been
accused of having a lot of security problems. Be extremely careful with it. We
recommend not installing it anywhere that’s accessible from the Internet. More
information is available at http://sourceforge.net/projects/phpmyadmin/.

Adminer
Adminer is a lightweight, secure browser-based administration tool that’s in the
same category as phpMyAdmin. The developer positions it as a better replacement
for phpMyAdmin. Although it does seem to be more secure, we still recommend
being cautious about installing it in any publicly accessible place. More information
is available at http://www.adminer.org.

Command-Line Utilities
MySQL comes with some command-line utilities, such as mysqladmin and mysql-
check. These are listed and documented in the MySQL manual. The MySQL commu-
nity has also created a wide range of high-quality toolkits with good documentation to
supplement these utilities:

Percona Toolkit
Percona Toolkit is the must-have toolkit for MySQL administrators. It is the suc-
cessor to Baron’s earlier toolkits, Maatkit and Aspersa, which many people regar-
ded as mandatory for anyone running a serious MySQL deployment. It includes
many tools for purposes such as log analysis, replication integrity checking, data
synchronization, schema and indexing analysis, query advice, and data archiving.
If you’re just getting started with MySQL, we suggest that you learn these essential
tools first: pt-mysql-summary, pt-table-checksum, pt-table-sync, and pt-query-
digest. More information is available at http://www.percona.com/software/.

Maatkit and Aspersa
These two toolkits have been around since 2006 in one form or another, and both
came to be widely regarded as essential for MySQL users. They have now been
merged into Percona Toolkit.

The openark kit
Shlomi Noach’s openark kit (http://code.openark.org/forge/openark-kit) contains
Python scripts that you can use for a wide variety of administrative tasks.

MySQL Workbench utilities
Some of the MySQL Workbench utilities are usable as standalone Python scripts.
They are available from https://launchpad.net/mysql-utilities.

666 | Chapter 16: Tools for MySQL Users

http://sourceforge.net/projects/phpmyadmin/
http://www.adminer.org
http://www.percona.com/software/
http://code.openark.org/forge/openark-kit
https://launchpad.net/mysql-utilities

In addition to these tools, there are a variety of others that are less formally packaged
and maintained. Many of the prominent MySQL community members have contrib-
uted tools at one time or another, mostly hosted on their own websites or on the MySQL
Forge (http://forge.mysql.com). You can find a great deal of information by watching
the Planet MySQL blog aggregator over time (http://planet.mysql.com), but unfortu-
nately there is no single central directory for these tools.

SQL Utilities
There are a variety of free add-ons and utilities you can use from within the server itself;
some of them are quite powerful indeed:

common_schema
Shlomi Noach’s common_schema project (http://code.openark.org/forge/common
_schema) is a powerful set of routines and views for server scripting and adminis-
tration. The common_schema is to MySQL as jQuery is to JavaScript.

mysql-sr-lib
Giuseppe Maxia created a library of stored routines for MySQL, which you can
find at http://www.nongnu.org/mysql-sr-lib/.

UDF repository for MySQL
Roland Bouman has curated a collection of user-defined functions for MySQL,
which is available at http://www.mysqludf.org.

MySQL Forge
At the MySQL Forge (http://forge.mysql.com), you’ll find hundreds of community-
contributed programs, scripts, snippets, utilities, and tips and tricks.

Monitoring Tools
In our experience, most MySQL shops primarily need two kinds of monitoring: tools
for health monitoring—detecting and alerting when something goes wrong—and re-
cording metrics for trending, diagnosis, troubleshooting, capacity planning, and so on.
Most systems are good at only one of these tasks, and can’t do a good job of both.
Unfortunately, there are dozens of tools to choose from, making it a very time-intensive
process to evaluate the offerings and decide whether a specific one suits you well.

Most monitoring systems are not designed specifically to monitor MySQL servers. In-
stead, they are general-purpose systems designed to periodically check the status of
many kinds of resources, from machines to routers to software (such as MySQL). They
usually have some kind of plugin architecture and often come with plugins for MySQL.

You generally install a monitoring system on its own server and use it to monitor other
servers. If you’re using it to monitor important systems, it will quickly become a critical
part of your infrastructure, so you might need to take extra steps, such as making the
monitoring system itself redundant with failover.

Monitoring Tools | 667

http://forge.mysql.com
http://planet.mysql.com
http://code.openark.org/forge/common_schema
http://code.openark.org/forge/common_schema
http://www.nongnu.org/mysql-sr-lib/
http://www.mysqludf.org
http://forge.mysql.com

Open Source Monitoring Tools
The following are some of the most popular open source all-in-one monitoring systems:

Nagios
Nagios (http://www.nagios.org) is probably the most popular open source problem
detection and alerting system. It periodically checks services you define and com-
pares the results to default or explicit thresholds. If the results are outside the limits,
Nagios can execute a program and/or alert someone to the trouble. Nagios’s con-
tact and alert system lets you escalate alerts to different contacts, change alerts or
send them to different places depending on the time of day and other conditions,
and honor scheduled downtime. Nagios also understands dependencies between
services, so it won’t bother you about a MySQL instance being down when it no-
tices the server is unreachable because a router in the middle is down, or when it
finds that the host server itself is down.

Nagios can run any executable file as a plugin, provided it accepts the right argu-
ments and gives the right output. As a result, Nagios plugins exist in many lan-
guages, including the shell, Perl, Python, Ruby, and other scripting languages. And
if you can’t find a plugin that does exactly what you need, it’s simple to create your
own. A plugin just needs to accept standard arguments, exit with an appropriate
status, and optionally print output for Nagios to capture.

Nagios has some serious shortcomings, though. Even after you’ve learned it well,
it is hard to maintain. It also keeps its entire configuration in files, instead of a
database. The files have a special syntax that is easy to get wrong, and they are
labor-intensive to modify as your systems grow and evolve. Nagios is not very
extensible; you can write monitoring plugins easily, but that’s about all you can
do. Finally, its graphing, trending, and visualization capabilities are limited. Nagios
can store some performance and other data in a MySQL server and generate graphs
from it, but not as flexibly as some other systems. All of these problems are made
worse by politics. Nagios has been forked at least twice due to the real or perceived
difficulties of working with the code and people involved. The forks are named
Opsview (http://www.opsview.com) and Icinga (http://www.icinga.org). Many peo-
ple prefer these systems to Nagios.

There are several books devoted to Nagios; we like Wolfgang Barth’s Nagios System
and Network Monitoring (No Starch Press).

Zabbix
Zabbix is a full-featured system for monitoring and metrics collection. For exam-
ple, it stores all configuration and other data in a database, not in configuration
files. It also stores more types of data than Nagios and can thus generate better
trending and history reports. Its network graphing and visualization capabilities
are superior to Nagios’s, and many people find it easier to configure, more flexible,
and more scalable. See http://www.zabbix.com for more information.

668 | Chapter 16: Tools for MySQL Users

http://www.nagios.org
http://www.opsview.com
http://www.icinga.org
http://www.zabbix.com

Zenoss
Zenoss is written in Python and has a browser-based user interface that uses Ajax
to make it faster and more productive. It can autodiscover resources on the net-
work, and it folds monitoring, alerting, trending, graphing, and recording historical
data into a unified tool. Zenoss uses SNMP to gather data from remote machines
by default, but it can also use SSH, and it has support for Nagios plugins. More
information is available at http://www.zenoss.com.

Hyperic HQ
Hyperic HQ is a Java-based monitoring system that is targeted more toward so-
called enterprise monitoring than most of the other systems in its class. Like
Zenoss, it can autodiscover resources and supports Nagios plugins, but its logical
organization and architecture are different, and it is a little “bulkier.” More infor-
mation can be found at http://www.hyperic.com.

OpenNMS
OpenNMS is written in Java and has an active developer community. It has the
usual features, such as monitoring and alerting, but adds graphing and trending
capabilities as well. Its goals are high performance and scalability, automation, and
flexibility. Like Hyperic, it is intended for enterprise monitoring of large, critical
systems. For more information, see http://www.opennms.org.

Groundwork Open Source
Groundwork Open Source combines Nagios and several other tools into one sys-
tem with a portal interface. Perhaps the best way to describe it is as the system you
might build in-house if you were an expert in Nagios, Cacti, and a host of other
tools and had a lot of time to integrate them together. More information is available
at http://www.groundworkopen source.com.

In addition to the all-in-one systems, there is a variety of software that’s focused on
collecting metrics and letting you graph and visualize them, rather than performing
health checks. Many of these are built on top of RRDTool (http://www.rrdtool.org),
which stores time-series data in round-robin database (RRD) files. RRD files automat-
ically aggregate incoming data, interpolate missing values in case the incoming values
are not delivered when expected, and have powerful graphing tools that generate beau-
tiful, distinctive graphs. Several RRDTool-based systems are available. Here are some
of the most popular:

MRTG
The Multi Router Traffic Grapher, or MRTG (http://oss.oetiker.ch/mrtg/), is the
quintessential RRDTool-based system. It is really designed for recording network
traffic, but it can be extended to record and graph other things as well.

Cacti
Cacti (http://www.cacti.net) is probably the most popular RRDTool-based
system. It is a PHP web interface to RRDTool. It uses a MySQL database to define
the servers, plugins, graphs, and so on. It is template-driven, so you can define

Monitoring Tools | 669

http://www.zenoss.com
http://www.hyperic.com
http://www.opennms.org
http://www.groundworkopen source.com
http://www.rrdtool.org
http://oss.oetiker.ch/mrtg/
http://www.cacti.net

templates and then apply them to your systems. Baron wrote a very popular set
of templates for MySQL and other systems; see http://code.google.com/p/mysql
-cacti-templates/ for more information. These have been ported to Munin,
OpenNMS, and Zabbix.

Ganglia
Ganglia (http://ganglia.sourceforge.net) is similar to Cacti, but it’s designed to
monitor clusters and grids of systems, so you can view data from many servers in
aggregate and drill down to the individual servers if you wish.

Munin
Munin (http://munin.projects.linpro.no) gathers data for you, puts it into RRDTool,
and then generates graphs of the data at several levels of granularity. It creates static
HTML files from the configuration, so you can browse them and view trends easily.
It is easy to define a graph; you just create a plugin script whose command-line
help output has some special syntaxes Munin recognizes as graphing instructions.

RRDTool-based systems have some limitations, such as the inability to query the stored
data with a standard query language, the inability to keep data forever, problems with
kinds of data that don’t fit into simple counters or gauges easily, the requirement to
predefine metrics and graphs, and so on. Ideally, we’d like to have a system that can
just accept any metrics you send to it, with no predefinition of what they are, and draw
arbitrary plots of them afterward, again without needing to predefine them. Probably
the closest we’ve seen to such a system is Graphite (http://graphite.wikidot.com).

These systems can all be used to gather, record, and graph data and report on MySQL
systems, with various degrees of flexibility and for slightly different purposes. They all
lack a really flexible means of alerting someone when something is wrong.

The main problem with most of the systems we’ve mentioned is that they were appa-
rently designed by people who were frustrated that the existing systems didn’t quite
meet their needs, so they wrote yet another system that doesn’t quite meet a lot of other
people’s needs. Most of these systems have fundamental limitations, such as a strange
internal data model that doesn’t work well in a lot of situations. It’s frustrating, but in
many cases, using one of these systems is like trying to fit a round peg into a square hole.

Commercial Monitoring Systems
Although we know a lot of MySQL users who are most interested in using open source
tools, we also know many who are perfectly happy to pay for proprietary software as
well, if it gets the job done better and saves them time and hassle. Here are some of the
available commercial options:

MySQL Enterprise Monitor
The MySQL Enterprise Monitor is included with a MySQL support subscription
from Oracle. It combines features such as monitoring, metrics and graphing,
advisory services, and query analysis into a single tool. It uses an agent on the

670 | Chapter 16: Tools for MySQL Users

http://code.google.com/p/mysql-cacti-templates/
http://code.google.com/p/mysql-cacti-templates/
http://ganglia.sourceforge.net
http://munin.projects.linpro.no
http://graphite.wikidot.com

servers to monitor their status counters (including key operating system metrics).
It can capture queries in two ways: via MySQL Proxy, or by using the appropriate
MySQL connectors, such as Connector/J for Java or MySQLi for PHP. Although
it’s designed to monitor MySQL, it is extensible to some degree. Still, you will
probably not find it adequate for monitoring every server and service in your in-
frastructure. More information is available at http://www.mysql.com/products/en
terprise/monitor.html.

MONyog
MONyog (http://www.webyog.com) is an agentless browser-based monitoring sys-
tem that runs on a desktop system. It starts an HTTP server, and you can point
your browser at this server to use the system.

New Relic
New Relic (http://newrelic.com) is a hosted, software-as-a-service application per-
formance management system that can analyze your entire application’s perfor-
mance, from the application code (in Ruby, PHP, Java, and other languages) to the
JavaScript running in the browser, the SQL calls you make to the database, and
even the server’s disk space, CPU utilization, and other metrics.

Circonus
Circonus (https://circonus.com) is a hosted SaaS metrics and alerting system from
OmniTI. An agent collects metrics from one or more servers and forwards them to
Circonus, where you view them through a browser-based dashboard.

Monitis
Monitis (http://monitis.com) is another cloud-hosted SaaS monitoring system. It is
designed to monitor “everything,” which means that it’s slightly generic. It has a
free entry-level cousin, Monitor.us (http://mon.itor.us), which has a MySQL
plugin, too.

Splunk
Splunk (http://www.splunk.com) is a log aggregator and search engine that can
help you gain operational insight into all of the machine-generated data in your
environment.

Pingdom
Pingdom (http://www.pingdom.com) monitors your website’s availability and per-
formance from many locations in the world. There are many services like Pingdom,
actually, and we don’t necessarily recommend any specific one, but we do recom-
mend that you use some external monitoring service to alert you when your site is
unavailable. Many of the services can do a lot more than just “pinging” or fetching
a web page.

There are many other commercial monitoring tools—we could tick off a dozen or more
from memory. One thing to be careful about with all monitoring systems is their impact
on the server. Some tools are pretty intrusive because they’re designed by companies
who have no practical experience with large, heavily loaded MySQL systems. For

Monitoring Tools | 671

http://www.mysql.com/products/enterprise/monitor.html
http://www.mysql.com/products/enterprise/monitor.html
http://www.webyog.com
http://newrelic.com
https://circonus.com
http://monitis.com
http://mon.itor.us
http://www.splunk.com
http://www.pingdom.com

example, we have solved more than one emergency by disabling the monitoring sys-
tem’s feature that executed SHOW TABLE STATUS in every database once per minute. (This
command is extremely disruptive on large I/O-bound systems.) Tools that query some
of the INFORMATION_SCHEMA tables too often can also tend to have negative impacts.

Command-Line Monitoring with Innotop
There are a few command line–based monitoring tools, most of which emulate the
Unix top tool in some way. The most sophisticated and capable of these is innotop
(http://code.google.com/p/innotop/), which we’ll explore in some detail. There are sev-
eral others, though, such as mtop (http://mtop.sourceforge.net), mytop (http://jeremy
.zawodny.com/mysql/mytop/), and some web-based clones of mytop.

Although mytop is the original top clone for MySQL, innotop can do everything it can
do and much more, which is why we focus on innotop instead.

Baron Schwartz, one of this book’s authors, wrote innotop. It presents a real-time up-
dating view of what’s happening in your server. Despite its name, it is not limited to
monitoring InnoDB, but can monitor practically any aspect of MySQL. It lets you
monitor multiple MySQL instances simultaneously, and it is very configurable and
extensible.

Some of its features include:

• A transaction list that displays current InnoDB transactions

• A query list that shows currently running queries

• A list of current locks and lock waits

• Summaries of server status and variables to show the relative magnitudes of values

• Modes to display information about InnoDB internals, such as its buffers, dead-
locks, foreign key errors, I/O activity, row operations, semaphores, and more

• Replication monitoring, with master and slave statuses displayed together

• A mode to view arbitrary server variables

• Server grouping to help you organize many servers easily

• Noninteractive mode for use in command-line scripting

It’s easy to install innotop. You can either install it from your operating system’s package
repository or download it from http://code.google.com/p/innotop/, unpack it, and run
the standard make install routine:

perl Makefile.PL
make install

Once you’ve installed it, execute innotop at the command line, and it will walk you
through the process of connecting to a MySQL instance. It can read your ~/.my.cnf
option files, so you might not need to do anything but type your server’s hostname and

672 | Chapter 16: Tools for MySQL Users

http://code.google.com/p/innotop/
http://mtop.sourceforge.net
http://jeremy.zawodny.com/mysql/mytop/
http://jeremy.zawodny.com/mysql/mytop/
http://code.google.com/p/innotop/

press Enter a few times. Once connected, you’ll be in T (InnoDB Transaction) mode,
and you should see a list of InnoDB transactions, as shown in Figure 16-1.

Figure 16-1. innotop in T (Transaction) mode

By default, innotop applies filters to reduce the clutter (as with everything in innotop,
you can define your own or customize the built-in filters). In Figure 16-1, most of the
transactions have been filtered out to show only active transactions. You can press the
i key to disable the filter and fill the screen with as many transactions as will fit.

innotop displays a header and a main thread list in this mode. The header shows some
overall InnoDB information, such as the length of the history list, the number of un-
purged InnoDB transactions, the percentage of dirty buffers in the buffer pool, and so
forth.

The first key you should press is the question mark (?), to see the help screen. This
screen’s contents will vary depending on what mode innotop is in, but it always displays
every active key, so you can see all possible actions. Figure 16-2 shows the help screen
in T mode.

We won’t go through all of its other modes, but as you can see from the help screen,
innotop has a lot of features.

The only other thing we cover here is some basic customization to show you how to
monitor whatever you please. One of innotop’s strengths is its ability to interpret user-
defined expressions, such as Uptime/Questions to derive a queries-per-second metric.
It can display the result since the server was started and/or incrementally since the last
sample.

This makes it easy to add your own columns to its tabular displays. For example, the
Q (Query List) mode has a header that shows some overall server information. Let’s
see how to modify it to monitor how full the key cache is. Start innotop and press Q to
enter Q mode. The result will look like Figure 16-3.

The screenshot is truncated because we’re not interested in the query list for this ex-
ercise; we care only about the header.

Monitoring Tools | 673

The header shows statistics for “Now” (which measures incremental activity since the
last time innotop refreshed itself with new data from the server) and “Total” (which
measures all activity since the MySQL server started, in this case 25 days ago). Each
column in the header is derived from an equation involving values from SHOW STATUS
and SHOW VARIABLES. The default headers shown in Figure 16-3 are built in, but it’s easy
to add your own. All you have to do is add a column to the header “table.” Press the
^ key to start the table editor, then enter q_header at the prompt to edit the header
table (Figure 16-4). Tab completion is built in, so you can just press q and then Tab to
complete the word.

Figure 16-2. innotop help screen

Figure 16-3. innotop in Q (Query List) mode

674 | Chapter 16: Tools for MySQL Users

Figure 16-4. Adding a header (start)

After this, you’ll see the table definition for the Q mode header (Figure 16-5). The table
definition shows the table’s columns. The first column is selected. We could move the
selection around, reorder and edit the columns, and do several other things (press ? to
see a full list), but we’re just going to create a new column. Press the n key and type the
column name (Figure 16-6).

Figure 16-5. Adding a header (choices)

Figure 16-6. Adding a header (naming column)

Monitoring Tools | 675

Next, type the column’s header, which will appear at the top of the column (Fig-
ure 16-7). Finally, choose the column’s source. This is an expression that innotop
compiles into a function internally. You can use names from SHOW VARIABLES and SHOW
STATUS as though they’re variables in an equation. We use some parentheses and Perl-
ish “or” defaults to prevent division by zero, but otherwise this equation is pretty
straightforward. We also use an innotop transformation called percent() to format the
resulting column as a percentage; check the innotop documentation for more on that.
Figure 16-8 shows the expression.

Figure 16-7. Adding a header (text for column)

Figure 16-8. Adding a header (expression to calculate)

Press Enter, and you’ll see the table definition just as before, but with the new column
added at the bottom. Press the + key a few times to move it up the list, next to the
key_buffer_hit column, and then press q to exit the table editor. Voilà: your new col-
umn, nestled between KCacheHit and BpsIn (Figure 16-9). It’s easy to customize
innotop to monitor what you want. You can even write plugins if it really can’t do what
you need. There’s more documentation at http://code.google.com/p/innotop/.

Figure 16-9. Adding a header (result)

676 | Chapter 16: Tools for MySQL Users

http://code.google.com/p/innotop/

Summary
Good tools are essential for administering MySQL. You’d be well advised to use some
of the excellent tools that are already available, widely tested, and popular, such as
Percona Toolkit (nee Maatkit). When we are introduced to new servers, practically the
first thing we do is run pt-summary and pt-mysql-summary. If we’re working on a server,
we’ll probably be watching it and any related servers in another terminal running
innotop.

Monitoring tools are a more complicated topic, because they’re so central to the orga-
nization. If you’re an open source advocate and you want to use open source monitoring
systems, you might try either the combination of Nagios and Cacti with Baron’s Cacti
templates, or Zabbix if you don’t mind its complicated interface. If you want a com-
mercial tool for monitoring MySQL, MySQL Enterprise Monitor is quite well done,
and we know a lot of happy users. If you want something capable of monitoring your
whole environment, and all of the software and hardware in it, you will need to do your
own investigation—that is a bigger topic than we can tackle in this book.

Summary | 677

APPENDIX A

Forks and Variants of MySQL

In Chapter 1, we discussed the history of MySQL’s acquisition by Sun Microsystems,
then Sun’s acquisition by Oracle Corporation, and how the server has fared through
these stewardship changes. But there is much more to the story. MySQL isn’t available
solely from Oracle anymore. In the process of two acquisitions, several variants of
MySQL appeared. Although most users are unlikely to want anything but the “official”
version of MySQL from Oracle, the variants are genuinely important and have made a
big difference to all MySQL users—even those who would never consider using them.

There have been a handful of MySQL variants over the years, but three major variants
have stood the test of time so far. These three are Percona Server, MariaDB, and Drizzle.
All of them have active user communities and some degree of commercial backing. All
are supported by independent service providers.

As the creators of Percona Server, we’re biased to some extent, but we think this ap-
pendix is fairly objective because we provide services, support, consulting, training,
and engineering for all of the variants of MySQL. We also invited Brian Aker and Monty
Widenius, who created the Drizzle and MariaDB projects, respectively, to contribute
to this appendix, so that it wouldn’t just be our version of the story.

Percona Server
Percona Server (http://www.percona.com/software/) grew out of our efforts to solve
customer problems. In the second edition of this book, we mentioned some patches
that we had created to enhance the MySQL server’s logging and instrumentation. That
was really the genesis of Percona Server. We modified the server’s source code when
we encountered problems that could not be solved any other way.

679

http://www.percona.com/software/

Percona Server has three primary goals:

Transparency
Added instrumentation permits users to inspect the server internals and behavior
more closely. This includes features such as counters in SHOW STATUS, tables in the
INFORMATION_SCHEMA, and especially added verbosity in the slow query log.

Performance
Percona Server includes many improvements to performance and scalability. Raw
performance is important, but Percona Server also enhances predictability and the
stability of performance. Most of the focus is on InnoDB.

Operational flexibility
Percona Server contains many features that remove limitations. Although some of
the limitations seem small, they can make it hard for operations staff and system
administrators to run MySQL as a reliable and stable component of their infra-
structure.

Percona Server is a backwards-compatible drop-in replacement for MySQL, with min-
imal changes that do not alter SQL syntax, the client/server protocol, or file formats
on disk.1 Anything that runs on MySQL will run without modification on Percona
Server. Switching to Percona Server requires only shutting down MySQL and starting
Percona Server, with no need to export and reimport data. Switching back is similarly
painless, and this is actually very important: many problems have been solved by
switching temporarily, using the improved instrumentation to diagnose the problem,
and then reverting to standard MySQL.

We choose enhancements that deviate from standard MySQL only where needed and
that provide significant benefit. We believe that most users are best served by sticking
to the official version of MySQL as distributed by Oracle, and strive to remain as close
to this as possible.

Percona Server includes the Percona XtraDB storage engine, Percona’s enhanced ver-
sion of InnoDB. This is also a backward-compatible replacement. For example, if you
create a table with the InnoDB storage engine, Percona Server recognizes it automati-
cally and uses Percona XtraDB instead. Percona XtraDB is also included in MariaDB.

Some of the enhancements in Percona Server have been included into Oracle’s version
of MySQL, and many others have been reimplemented in slightly different ways. As a
result, Percona Server has become a sort of early-access preview to features that some-
times appear later in standard MySQL. Many of the enhancements in Percona Server
5.1 and 5.5 are probably going to be reimplemented in MySQL 5.6.

1. Historically, there have been a few changes to file formats, but these are disabled by default and can be
enabled if desired.

680 | Appendix A: Forks and Variants of MySQL

MariaDB
After Sun’s MySQL acquisition Monty Widenius, the cofounder of MySQL, left Sun
Microsystems over disagreements about the MySQL development process. He founded
Monty Program AB and created MariaDB to foster an “open development environment
that would encourage outside participation.” MariaDB’s goals are community devel-
opment, along with bug fixes and lots of new features—especially integration of com-
munity-developed features. To quote Monty again,2 “the vision for MariaDB is for it
to be user and customer driven, as well as more inclusive of community patches and
plugins.”

What’s different about MariaDB? As compared to Percona Server, it includes much
more extensive changes to the server. (Most of Percona Server’s big changes are in the
Percona XtraDB storage engine, not the server level.) There are many changes to the
query optimizer and replication, for example. And it uses the Aria storage engine for
internal temporary tables (those used for complex queries, such as DISTINCT or subqu-
eries) instead of MyISAM. Aria was originally named Maria, and was intended as an
InnoDB replacement during the uncertain Sun times. It is essentially a crash-safe version
of MyISAM.

In addition to Percona XtraDB and Aria, MariaDB also includes a number of commu-
nity storage engines, such as SphinxSE and PBXT.

MariaDB is a superset of stock MySQL, so existing applications should keep working
with no changes, just as with Percona Server. However, MariaDB will work much better
for some scenarios, such as complex subqueries or many-table joins. It also features a
segmented MyISAM key cache, which makes MyISAM much more scalable on modern
hardware.

Perhaps the finest work in MariaDB, however, is in MariaDB 5.3, which is in Release
Candidate status at the time of writing. This version includes an enormous amount of
work on the query optimizer—probably the biggest optimizer improvements MySQL
has seen in a decade. It adds new query execution plans such as hash joins, and fixes
many of the things we’ve pointed out as weaknesses in MySQL throughout this book,
such as outside-in subquery execution. It also includes significant extensions to the
server, such as dynamic columns, role-based access control, and microsecond time-
stamp support.

For a more complete list of improvements to MariaDB, you can read the documentation
on http://www.askmonty.org or these web pages that summarize the changes: http://
askmonty.org/blog/the-2-year-old-mariadb/ and http://kb.askmonty.org/en/what-is-ma
riadb-53.

2. The quotes are from http://monty-says.blogspot.com/2009/02/time-to-move-on.html and http://monty-says
.blogspot.com/2010/03/time-flies-one-year-of-mariadb.html.

MariaDB | 681

http://www.askmonty.org
http://askmonty.org/blog/the-2-year-old-mariadb/
http://askmonty.org/blog/the-2-year-old-mariadb/
http://kb.askmonty.org/en/what-is-mariadb-53
http://kb.askmonty.org/en/what-is-mariadb-53
http://monty-says.blogspot.com/2009/02/time-to-move-on.html
http://monty-says.blogspot.com/2010/03/time-flies-one-year-of-mariadb.html
http://monty-says.blogspot.com/2010/03/time-flies-one-year-of-mariadb.html

Drizzle
Drizzle is a true fork of MySQL, not just a variant or enhancement. It is not compatible
with MySQL, although it’s not so different that it’s unrecognizable. In most cases, you
won’t simply be able to switch out your MySQL backend and replace it with Drizzle,
due to changes such as different SQL syntax.

Drizzle was created in 2008 to better serve the needs of MySQL users. It is built to
satisfy the core functionality needed by web applications. It is greatly streamlined and
simplified compared to MySQL, with many fewer choices; for example, it uses only
utf8 for character storage, and there is only one type of BLOB. It is built primarily for
64-bit hardware, and it supports IPv6 networking.

One of the key goals of the Drizzle database server is to eliminate surprises and legacy
behaviors that exist in MySQL, such as declaring a column NOT NULL and then finding
that the database somehow stored a NULL into it. The poorly implemented or unwieldy
features you can find in MySQL, such as triggers, the query cache, and INSERT ON
DUPLICATE KEY UPDATE, are simply removed.

At the code level, Drizzle is built on a microkernel architecture with a lean core and
plugins. The core of the server has been stripped down to a much smaller codebase
than MySQL. Nearly everything is a plugin—even functions such as SLEEP(). This
makes Drizzle very easy and productive to work with on the source code level.

Drizzle uses standard open-source libraries such as Boost, and complies to standards
in code, build infrastructure, and APIs. It uses the Google Protocol Buffers open mes-
saging format for purposes such as replication, and it uses a modified version of
InnoDB as its default storage engine.

The Drizzle team began benchmarking the server very early, using industry-standard
benchmarks with up to 1,024 threads to measure performance at high concurrencies.
Performance gains at high concurrency are prioritized over low-end gains, and there
has been much progress on improving performance.

Drizzle is a community-developed project, and it has attracted more open source con-
tributions than MySQL was ever able to. The server’s license is pure GPL, with no dual
licensing. However—and this is one of the most important aspects for developing a
commercial ecosystem—there is a new client library that speaks the MySQL client-
server protocol but is BSD-licensed. This means that you can build a proprietary ap-
plication that connects to MySQL through the Drizzle client library, and you do not
need to purchase a commercial license to the MySQL client library or make your soft-
ware available under the GPL license. The libmysql client library for MySQL was one
of the primary reasons that companies purchased commercial licenses for MySQL—
without the commercial license that permitted them to link to libmysql, they would
have been forced to release their software under the GPL. This is no longer necessary,
because now they can use the Drizzle library instead.

682 | Appendix A: Forks and Variants of MySQL

Drizzle is deployed in some production environments, but not very widely from what
we’ve seen. The Drizzle project’s philosophy of casting off the chains of backward-
compatibility means that it’s probably a better candidate for new applications than for
migrating an existing application.

Other MySQL Variants
There are, or have been, many other variants of the MySQL server. Many large com-
panies, such as Google, Facebook, and eBay, maintain modified versions of the server
that suit their precise needs and deployment scenarios. Much of this source code has
been made available publicly; perhaps the best-known examples are the Facebook and
Google patches for MySQL.

In addition, there have been several forks or redistributions, such as OurDelta,
DorsalSource, and, for a brief time, a distribution from Henrik Ingo.

Finally, many people don’t realize that when they install MySQL from their GNU/
Linux distribution’s package repositories, they are actually getting a modified version
of the server—in some cases, quite heavily modified. Red Hat and Debian (and there-
fore Fedora and Ubuntu) ship a nonstandard version of MySQL, as does Gentoo and
practically every other GNU/Linux distribution. In contrast to the other variants we’ve
mentioned, these distributions don’t advertise how much they’ve changed the server’s
source code, because they keep the MySQL name.

We’ve had a lot of problems in the past with such modified versions of MySQL. This
is one reason that we tend to advocate using Oracle’s version of MySQL unless there
is a compelling reason to do otherwise.

Summary
The forks and variants of MySQL have rarely resulted in significant amounts of code
being adopted back into the main MySQL source code tree, but they have nevertheless
influenced the direction and pace of MySQL development greatly. In some cases they
provide a superior alternative.

Should you use a fork instead of Oracle’s official MySQL? We don’t think this is usually
necessary. The choice is usually based on perceptions (which are never completely
accurate) or business reasons, such as having an enterprise-wide relationship with
Oracle. There are two general categories of people who tend to turn away from the
official version of the server:

Summary | 683

• Those who are facing a specific problem that can’t be solved without a source code
modification

• Those who distrust Oracle’s stewardship of MySQL3 and feel happier with a variant
that they regard as being truly open-source

Why would you choose any specific fork? We’d summarize it as follows. If you want
to stay as close as possible to official MySQL, but get better performance, instrumen-
tation, and helpful features, choose Percona Server. Choose MariaDB if you are more
comfortable with big changes to the server, or if you want a broader range of community
contributions such as additional storage engines. Choose Drizzle if you want a lean,
stripped-down database server and you don’t mind that it’s not compatible with
MySQL, or if you want to be able to make your own enhancements to the database
much more easily.

How popular are the forks and variants? Nobody really knows, but one thing we all
agree on is that if you add together all the deployments of unofficial MySQL versions,
they constitute only a tiny fraction of the number of official MySQL deployments in
the world. In terms of relative popularity, we’re biased because many of our customers
choose to use Percona Server, but from what we’ve see deployed “in the wild,” Percona
Server appears to be the most popular, followed by MariaDB.

Speaking of Percona, in general all of the service providers have a lot of experience with
the official MySQL, but naturally Percona has the most experts in working with Percona
Server, and Monty Program is correspondingly the most familiar with MariaDB. This
matters a lot when you’re looking for bug-fix support contracts. Only Oracle can guar-
antee that a bug will be fixed in the official MySQL releases; other vendors can provide
fixes but have no power to get them included in the official releases. This is one answer
to the question of why to choose a fork: some people choose one of the forks simply
because it is the version of MySQL that their service provider controls fully and can
conveniently fix and enhance.

3. As we explained in Chapter 1, we are actually quite happy with Oracle as MySQL’s owner

684 | Appendix A: Forks and Variants of MySQL

APPENDIX B

MySQL Server Status

You can answer many questions about a MySQL server by inspecting its status. MySQL
exposes information about server internals in several ways. The newest is the PERFOR
MANCE_SCHEMA database in MySQL 5.5, but the standard INFORMATION_SCHEMA database
has existed since MySQL 5.0, and there are a series of SHOW commands that have existed
practically forever. Some information you can get via SHOW commands isn’t found in the
INFORMATION_SCHEMA tables.

The challenges for you are determining what is relevant to your problem, how to get
the information you need, and how to interpret it. Although MySQL lets you see a lot
of information about what’s going on inside the server, it’s not always easy to use that
information. Understanding it requires patience, experience, and ready access to the
MySQL manual. Good tools are helpful, too.

This appendix is mostly reference material, but you will also find some information on
the functioning of server internals, especially in the sections on InnoDB.

System Variables
MySQL exposes many system variables through the SHOW VARIABLES SQL command, as
variables you can use in expressions, or with mysqladmin variables at the command
line. From MySQL 5.1, you can also access them through tables in the INFORMATION
_SCHEMA database.

These variables represent a variety of configuration information, such as the server’s
default storage engine (storage_engine), the available time zones, the connection’s col-
lation, and startup parameters. We explained how to set and use system variables in
Chapter 8.

685

SHOW STATUS
The SHOW STATUS command shows server status variables in a two-column name-value
table. Unlike the server variables we mentioned in the previous section, these are read-
only. You can view the variables by either executing SHOW STATUS as a SQL command
or executing mysqladmin extended-status as a shell command. If you use the SQL com-
mand, you can use LIKE and WHERE to limit the results; the LIKE does a standard pattern
match on the variable name. The commands return a table of results, but you can’t sort
it, join it to other tables, or do other standard things you can do with MySQL tables.
In MySQL 5.1 and newer, you can select values directly from the INFORMATION_
SCHEMA.GLOBAL_STATUS and INFORMATION_SCHEMA.SESSION_STATUS tables.

We use the term “status variable” to refer to a value from SHOW STATUS
and the term “system variable” to refer to a server configuration variable.

The behavior of SHOW STATUS changed greatly in MySQL 5.0, but you might not notice
unless you’re paying close attention. Instead of just maintaining one set of global vari-
ables, MySQL now maintains some variables globally and some on a per-connection
basis. Thus, SHOW STATUS contains a mixture of global and session variables. Many of
them have dual scope: there’s both a global and a session variable, and they have the
same name. SHOW STATUS also now shows session variables by default, so if you were
accustomed to running SHOW STATUS and seeing global variables, you won’t see them
anymore; now you have to run SHOW GLOBAL STATUS instead.1

There are hundreds of status variables. Most either are counters or contain the current
value of some status metric. Counters increment every time MySQL does something,
such as initiating a full table scan (Select_scan). Metrics, such as the number of open
connections to the server (Threads_connected), may increase and decrease. Sometimes
there are several variables that seem to refer to the same thing, such as Connections (the
number of connection attempts to the server) and Threads_connected; in this case, the
variables are related, but similar names don’t always imply a relationship.

Counters are stored as unsigned integers. They use 4 bytes on 32-bit builds and 8 bytes
on 64-bit builds, and they wrap back to 0 after reaching their maximum values. If you’re
monitoring the variables incrementally, you might need to watch for and correct the
wrap; you should also be aware that if your server has been up for a long time, you
might see lower values than you expect simply because the variable’s values have wrap-
ped around to zero. (This is very rarely a problem on 64-bit builds.)

1. There’s a gotcha waiting here: if you use an old version of mysqladmin on a new server, it won’t use SHOW
GLOBAL STATUS, so it won’t display the “right” information.

686 | Appendix B: MySQL Server Status

A good way to get a feel for your overall workload is to compare values within a group
of related status variables—for example, look at all the Select_* variables together, or
all the Handler_* variables. If you’re using innotop, this is easy to do in Command
Summary mode, but you can also do it manually with a command like mysqladmin
extended -r -i60 | grep Handler_. Here’s what innotop shows for the Select_* variables
on one server we checked:

____________________ Command Summary _____________________
Name Value Pct Last Incr Pct
Select_scan 756582 59.89% 2 100.00%
Select_range 497675 39.40% 0 0.00%
Select_full_join 7847 0.62% 0 0.00%
Select_full_range_join 1159 0.09% 0 0.00%
Select_range_check 1 0.00% 0 0.00%

The first two columns of values are since the server was booted, and the last two are
since the last refresh (10 seconds ago, in this case). The percentages are over the total
of the values shown in the display, not over the total of all queries.

For a side-by-side view of current and previous snapshots and the differences between
them, you can also use the pt-mext tool from Percona Toolkit, or this clever query from
Shlomi Noach:2

SELECT STRAIGHT_JOIN
 LOWER(gs0.VARIABLE_NAME) AS variable_name,
 gs0.VARIABLE_VALUE AS value_0,
 gs1.VARIABLE_VALUE AS value_1,
 (gs1.VARIABLE_VALUE - gs0.VARIABLE_VALUE) AS diff,
 (gs1.VARIABLE_VALUE - gs0.VARIABLE_VALUE) / 10 AS per_sec,
 (gs1.VARIABLE_VALUE - gs0.VARIABLE_VALUE) * 60 / 10 AS per_min
FROM (
 SELECT VARIABLE_NAME, VARIABLE_VALUE
 FROM INFORMATION_SCHEMA.GLOBAL_STATUS
 UNION ALL
 SELECT '', SLEEP(10) FROM DUAL
) AS gs0
 JOIN INFORMATION_SCHEMA.GLOBAL_STATUS gs1 USING (VARIABLE_NAME)
WHERE gs1.VARIABLE_VALUE <> gs0.VARIABLE_VALUE;
+-----------------------+---------+---------+------+---------+---------+
| variable_name | value_0 | value_1 | diff | per_sec | per_min |
+-----------------------+---------+---------+------+---------+---------+
handler_read_rnd_next	2366	2953	587	58.7	3522
handler_write	2340	3218	878	87.8	5268
open_files	22	20	−2	−0.2	−12
select_full_join	2	3	1	0.1	6
select_scan	7	9	2	0.2	12
+-----------------------+---------+---------+------+---------+---------+

2. First published at http://code.openark.org/blog/mysql/mysql-global-status-difference-using-single-query.

SHOW STATUS | 687

http://code.openark.org/blog/mysql/mysql-global-status-difference-using-single-query

It’s most useful to look at the values of all these variables and metrics over the course
of the last several minutes, as well as over the entire uptime of the server.

The following is an overview—not an exhaustive list—of the different categories of
variables you’ll see in SHOW STATUS. For full details on a given variable, you should
consult the MySQL manual, which helpfully documents them at http://dev.mysql.com/
doc/en/mysqld-option-tables.html. When we discuss a set of related variables whose
name begins with a common prefix, we refer to the group collectively as “the <pre
fix>_* variables.”

Thread and Connection Statistics
These variables track connection attempts, aborted connections, network traffic, and
thread statistics:

• Connections, Max_used_connections, Threads_connected

• Aborted_clients, Aborted_connects

• Bytes_received, Bytes_sent

• Slow_launch_threads, Threads_cached, Threads_created, Threads_running

If Aborted_connects isn’t zero, it might mean that you have network problems or that
someone is trying to connect and failing (perhaps a user is specifying the wrong pass-
word or an invalid database, or maybe a monitoring system is opening TCP port 3306
to check if the server is alive). If this value gets too high, it can have serious side effects:
it can cause MySQL to block a host.

Aborted_clients has a similar name but a completely different meaning. If this value
increments, it usually means there’s been an application error, such as the programmer
forgetting to close MySQL connections properly before terminating the program. This
is not usually indicative of a big problem.

Binary Logging Status
The Binlog_cache_use and Binlog_cache_disk_use status variables show how many
transactions have been stored in the binary log cache, and how many transactions were
too large for the binary log cache and so had their statements stored in a temporary file.
MySQL 5.5 also includes Binlog_stmt_cache_use and Binlog_stmt_cache_disk_use,
which show corresponding metrics for nontransactional statements. The so-called
“binary log cache hit ratio” is not usually useful for configuring the binary log cache
size. See Chapter 8 for more on this topic.

688 | Appendix B: MySQL Server Status

http://dev.mysql.com/doc/en/mysqld-option-tables.html
http://dev.mysql.com/doc/en/mysqld-option-tables.html

Command Counters
The Com_* variables count the number of times each type of SQL or C API command
has been issued. For example, Com_select counts the number of SELECT statements, and
Com_change_db counts the number of times a connection’s default database has been
changed, either with the USE statement or via a C API call. The Questions variable3

counts the total number of queries and commands the server has received. However,
it doesn’t quite equal the sum of all the Com_* variables, because of query cache hits,
closed and aborted connections, and possibly other factors.

The Com_admin_commands status variable might be very large. It counts not only admin-
istrative commands, but ping requests to the MySQL instance as well. These requests
are issued through the C API and typically come from client code, such as the following
Perl code:

my $dbh = DBI->connect(...);
while ($dbh && $dbh->ping) {
 # Do something
}

These ping requests are “garbage” queries. They usually don’t load the server very
much, but they’re still a waste and contribute a lot to application response time because
of the network round trip time. We’ve seen ORM systems (Ruby on Rails comes to
mind) that ping the server before each query, which is pointless; pinging the server and
then querying it is a classic example of the “look before you leap” design pattern, which
creates a race condition. We’ve also seen database abstraction libraries that change the
default database before every query, which will show up as a very large number of
Com_change_db commands. It’s best to eliminate both practices.

Temporary Files and Tables
You can view the variables that count how many times MySQL has created temporary
tables and files with:

mysql> SHOW GLOBAL STATUS LIKE 'Created_tmp%';

This shows statistics about implicit temporary tables and files—those created internally
to execute queries. In Percona Server, there is also a command that can show explicit
temporary tables, which are created by users with CREATE TEMPORARY TABLE:

mysql> SHOW GLOBAL TEMPORARY TABLES;

3. In MySQL 5.1, this variable was split into Questions and Queries, with slightly different meanings.

SHOW STATUS | 689

Handler Operations
The handler API is the interface between MySQL and its storage engines. The Hand
ler_* variables count handler operations, such as the number of times MySQL asks a
storage engine to read the next row from an index. You can view these variables with:

mysql> SHOW GLOBAL STATUS LIKE 'Handler_%';

MyISAM Key Buffer
The Key_* variables contain metrics and counters about the MyISAM key buffer. You
can view these variables with:

mysql> SHOW GLOBAL STATUS LIKE 'Key_%';

File Descriptors
If you mainly use the MyISAM storage engine the Open_* variables reveal how often
MySQL opens each table’s .frm, .MYI, and .MYD files. InnoDB keeps all data in its
tablespace files, so if you mainly use InnoDB, these variables aren’t accurate. You can
view the Open_* variables with:

mysql> SHOW GLOBAL STATUS LIKE 'Open_%';

Query Cache
You can inspect the query cache by looking at the Qcache_* status variables, with:

mysql> SHOW GLOBAL STATUS LIKE 'Qcache_%';

SELECT Types
The Select_* variables are counters for certain types of SELECT queries. They can help
you see the ratio of SELECT queries that use various query plans. Unfortunately, there
are no such status variables for other kinds of queries, such as UPDATE and REPLACE;
however, you can look at the Handler_* status variables (discussed earlier) for insight
into the relative numbers of non-SELECT queries. To see all the Select_* variables, use:

mysql> SHOW GLOBAL STATUS LIKE 'Select_%';

In our judgment, the Select_* status variables can be ranked as follows, in order of
ascending cost:

Select_range
The number of joins that scanned an index range on the first table.

Select_scan
The number of joins that scanned the entire first table. There is nothing wrong
with this if every row in the first table should participate in the join; it’s only a bad
thing if you don’t want all the rows and there is no index to find the ones you want.

690 | Appendix B: MySQL Server Status

Select_full_range_join
The number of joins that used a value from table n to retrieve rows from a range
of the reference index in table n + 1. Depending on the query, this can be more or
less costly than Select_scan.

Select_range_check
The number of joins that reevaluate indexes in table n + 1 for every row in table
n to see which is least expensive. This generally means no indexes in table n + 1 are
useful for the join. This query plan has very high overhead.

Select_full_join
The number of cross joins, or joins without any criteria to match rows in the tables.
The number of rows examined is the product of the number of rows in each table.
This is usually a very bad thing.

The last two variables usually should not increase rapidly, and if they do, it might be
an indication that a “bad” query has been introduced into the system. See Chapter 3
for details on how to find such queries.

Sorts
We covered a lot of MySQL’s sorting optimizations in several previous chapters, so you
should have a good idea of how sorting works. When MySQL can’t use an index to
retrieve rows presorted, it has to do a filesort, and it increments the Sort_* status vari-
ables. Aside from Sort_merge_passes, you can influence these values only by adding
indexes that MySQL can use for sorting. Sort_merge_passes depends on the sort_
buffer_size server variable (not to be confused with the myisam_sort
_buffer_size server variable). MySQL uses the sort buffer to hold a chunk of rows for
sorting. When it’s finished sorting them, it merges these sorted rows into the result,
increments Sort_merge_passes, and fills the buffer with the next chunk of rows to sort.
However, it’s not a great idea to use this variable as a guide to sort buffer sizing, as
shown in Chapter 3.

You can see all the Sort_* variables with:

mysql> SHOW GLOBAL STATUS LIKE 'Sort_%';

MySQL increments the Sort_scan and Sort_range variables when it reads sorted rows
from the results of a filesort and returns them to the client. The difference is merely
that the first is incremented when the query plan causes Select_scan to increment (see
the preceding section), and the second is incremented when Select_range increments.
There is no implementation or cost difference between the two; they merely indicate
the type of query plan that caused the sort.

SHOW STATUS | 691

Table Locking
The Table_locks_immediate and Table_locks_waited variables tell you how many locks
were granted immediately and how many had to be waited for. Be aware, however, that
they show only server-level locking statistics, not storage engine locking statistics.

InnoDB-Specific
The Innodb_* variables show some of the data included in SHOW ENGINE INNODB STA
TUS, discussed later in this appendix. The variables can be grouped together by name:
Innodb_buffer_pool_*, Innodb_log_*, and so on. We discuss InnoDB’s internals more
in a moment, when we examine SHOW ENGINE INNODB STATUS.

These variables are available in MySQL 5.0 and newer, and they have an important side
effect: they create a global lock and traverse the entire InnoDB buffer pool before re-
leasing the lock. In the meantime, other threads will run into the lock and block until
it is released. This skews some status values, such as Threads_running, so they will
appear higher than normal (possibly much higher, depending on how busy your server
is). The same effect happens when you run SHOW ENGINE INNODB STATUS or access these
statistics via the INFORMATION_SCHEMA tables (in MySQL 5.0 and newer, SHOW STATUS and
SHOW VARIABLES are mapped to queries against the INFORMATION_SCHEMA tables behind
the scenes).

These operations can, therefore, be expensive in these versions of MySQL—checking
the server status too frequently (e.g., once a second) can cause significant overhead.
Using SHOW STATUS LIKE doesn’t help, because it retrieves the full status and then post-
filters it.

There are many more variables in MySQL 5.5 than in 5.1, and even more in Percona
Server.

Plugin-Specific
MySQL 5.1 and newer support pluggable storage engines and provide a mechanism
for storage engines to register their own status and configuration variables with the
MySQL server. You might see some plugin-specific variables if you’re using a pluggable
storage engine. Such variables always begin with the name of the plugin.

SHOW ENGINE INNODB STATUS
The InnoDB storage engine exposes a lot of information about its internals in the output
of SHOW ENGINE INNODB STATUS, or its older synonym, SHOW INNODB STATUS.

Unlike most of the SHOW commands, its output consists of a single string, not rows and
columns. It is divided into sections, each of which shows information about a different
part of the InnoDB storage engine. Some of the output is most useful for InnoDB

692 | Appendix B: MySQL Server Status

developers, but much of it is interesting—or even essential—if you’re trying to under-
stand and configure InnoDB for high performance.

Older versions of InnoDB often print out 64-bit numbers in two pieces:
the high 32 bits and the low 32 bits. An example is a transaction ID,
such as TRANSACTION 0 3793469. You can calculate the 64-bit number’s
value by shifting the first number left 32 bits and adding it to the second
one. We show some examples later.

The output includes some average statistics, such as fsync() calls per second. These
show average activity since the last time the output was generated, so if you’re exam-
ining these values, make sure you wait 30 seconds or so between samples to give the
statistics time to accumulate, and sample multiple times and examine the changes to
the counters to understand their behaviors. The output is not all generated at a single
point in time, so not all averages that appear in the output are calculated over the same
time interval. Also, InnoDB has an internal reset interval that is unpredictable and varies
between versions; you should examine the output to see the time over which the aver-
ages were generated, because it will not necessarily be the same as the time between
samples.

There’s enough information in the output to calculate averages for most of the statistics
manually if you want. However, a tool such as innotop—which does incremental dif-
ferences and averages for you—is very helpful here.

Header
The first section is the header, which simply announces the beginning of the output,
the current date and time, and how long it has been since the last printout. Line 2 shows
the current date and time. Line 4 shows the time frame over which the averages were
calculated, which is either the time since the last printout or the time since the last
internal reset:

1 =====================================
2 070913 10:31:48 INNODB MONITOR OUTPUT
3 =====================================
4 Per second averages calculated from the last 49 seconds

SEMAPHORES
If you have a high-concurrency workload, you might want to pay attention to the next
section, SEMAPHORES. It contains two kinds of data: event counters and, optionally, a list
of current waits. If you’re having trouble with bottlenecks, you can use this information
to help you find the bottlenecks. Unfortunately, knowing what to do about them is a
little more complex, but we give some advice later in this appendix. Here is some sample
output for this section:

SHOW ENGINE INNODB STATUS | 693

 1 ----------
 2 SEMAPHORES
 3 ----------
 4 OS WAIT ARRAY INFO: reservation count 13569, signal count 11421
 5 --Thread 1152170336 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds
 the semaphore:
 6 Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
 7 waiters flag 0
 8 wait is ending
 9 --Thread 1147709792 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds
 the semaphore:
10 Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
11 waiters flag 0
12 wait is ending
13 Mutex spin waits 5672442, rounds 3899888, OS waits 4719
14 RW-shared spins 5920, OS waits 2918; RW-excl spins 3463, OS waits 3163

Line 4 gives information about the operating system wait array, which is an array of
“slots.” InnoDB reserves slots in the array for semaphores, which the operating system
uses to signal threads that they can go ahead and do the work they’re waiting to do.
This line shows how many times InnoDB has needed to use operating system waits.
The reservation count indicates how often InnoDB has allocated slots, and the signal
count measures how often threads have been signaled via the array. Operating system
waits are costly relative to spin waits, as we’ll see momentarily.

Lines 5 through 12 show the InnoDB threads that are currently waiting for a mutex.
The example shows two waits, each beginning with the text “-- Thread <num> has
waited....” This section should be empty unless your server has a high-concurrency
workload that causes InnoDB to resort to operating system waits. The most useful thing
to look at, unless you’re familiar with InnoDB source code, is the filename at which the
thread is waiting. This gives you a hint where the hot spots are inside InnoDB. For
example, if you see many threads waiting at a file called buf0buf.ic, you have buffer
pool contention. The output indicates how long the thread has been waiting, and the
“waiters flag” shows how many waiters are waiting for the mutex.

The text “wait is ending” means the mutex is actually free already, but the operating
system hasn’t scheduled the thread to run yet.

You might wonder what exactly InnoDB is waiting for. InnoDB uses mutexes and
semaphores to protect critical sections of code by restricting them to only one thread
at a time, or to restrict writers when there are active readers, and so on. There are many
critical sections in InnoDB’s code, and under the right conditions any of them could
appear here. Gaining access to a buffer pool page is one you might see commonly.

After the list of waiting threads, lines 13 and 14 show more event counters. Line 13
shows several counters related to mutexes, and line 14 is for read/write shared and
exclusive locks. In each case, you can see how often InnoDB has resorted to an operating
system wait.

694 | Appendix B: MySQL Server Status

InnoDB has a multiphase wait policy. First, it tries to spin-wait for the lock. If this
doesn’t succeed after a preconfigured number of spin rounds (specified by the innodb
_sync_spin_loops configuration variable), it falls back to the more expensive and com-
plex wait array.4

Spin waits are relatively low-cost, but they burn CPU cycles by checking repeatedly if
a resource can be locked. This isn’t as bad as it sounds, because there are typically free
CPU cycles while the processor is waiting for I/O. And even if there aren’t any free CPU
cycles, spin waits are often much less expensive than the alternative. However, spinning
monopolizes the processor when another thread might be able to do some work.

The alternative to a spin wait is for the operating system to do a context switch, so
another thread can run while the thread waits, then wake the sleeping thread when it
is signaled via the semaphore in the wait array. Signaling via a semaphore is efficient,
but the context switch is expensive. These can add up quickly: thousands of them per
second can cause a lot of overhead.

You can try to strike a balance between spin waits and operating system waits by
changing the innodb_sync_spin_loops system variable. Don’t worry about spin waits
unless you see many (perhaps in the range of hundreds of thousands) spin rounds per
second. This is something you usually need to resolve by understanding the source code
involved, or by consulting with experts. You can also consider using the Performance
Schema, or look at SHOW ENGINE INNODB MUTEX.

LATEST FOREIGN KEY ERROR
The next section, LATEST FOREIGN KEY ERROR, doesn’t appear unless your server has had
a foreign key error. There are many places in the source code that can generate this
output, depending on the kind of error. Sometimes the problem is to do with a trans-
action and the parent or child rows it was looking for while trying to insert, update, or
delete a record. At other times it’s a type mismatch between tables while InnoDB was
trying to add or delete a foreign key, or alter a table that already had a foreign key.

This section’s output is very helpful for debugging the exact causes of InnoDB’s often
vague foreign key errors. Let’s look at some examples. First, we’ll create two tables with
a foreign key between them, and insert a little data:

CREATE TABLE parent (
 parent_id int NOT NULL,
 PRIMARY KEY(parent_id)
) ENGINE=InnoDB;
CREATE TABLE child (
 parent_id int NOT NULL,
 KEY parent_id (parent_id),
 CONSTRAINT child_ibfk_1 FOREIGN KEY (parent_id) REFERENCES parent (parent_id)
) ENGINE=InnoDB;

4. The wait array was changed to be much more efficient in MySQL 5.1.

SHOW ENGINE INNODB STATUS | 695

INSERT INTO parent(parent_id) VALUES(1);
INSERT INTO child(parent_id) VALUES(1);

There are two basic classes of foreign key errors. Adding, updating, or deleting data in
a way that would violate the foreign key causes the first class of errors. For example,
here’s what happens when we delete the row from the parent table:

DELETE FROM parent;
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint
fails (`test/child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES
`parent` (`parent_id`))

The error message is fairly straightforward, and you’ll get similar messages for all errors
caused by adding, updating, or deleting nonmatching rows. Here’s the output from
SHOW ENGINE INNODB STATUS:

 1 ------------------------
 2 LATEST FOREIGN KEY ERROR
 3 ------------------------
 4 070913 10:57:34 Transaction:
 5 TRANSACTION 0 3793469, ACTIVE 0 sec, process no 5488, OS thread id 1141152064
 updating or deleting, thread declared inside InnoDB 499
 6 mysql tables in use 1, locked 1
 7 4 lock struct(s), heap size 1216, undo log entries 1
 8 MySQL thread id 9, query id 305 localhost baron updating
 9 DELETE FROM parent
10 Foreign key constraint fails for table `test/child`:
11 '
12 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent` (`parent_
 id`)
13 Trying to delete or update in parent table, in index `PRIMARY` tuple:
14 DATA TUPLE: 3 fields;
15 0: len 4; hex 80000001; asc ;; 1: len 6; hex 00000039e23d; asc 9 =;; 2: len
 7; hex 000000002d0e24; asc - $;;
16
17 But in child table `test/child`, in index `parent_id`, there is a record:
18 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
19 0: len 4; hex 80000001; asc ;; 1: len 6; hex 000000000500; asc ;;

Line 4 shows the date and time of the last foreign key error. Lines 5 through 9 show
details about the transaction that violated the foreign key constraint; we explain more
about these lines later. Lines 10 through 19 show the exact data InnoDB was trying to
change when it found the error. A lot of this output is the row data converted to print-
able formats; we say more about this later, too.

So far, so good, but there’s another class of foreign key error that can be much harder
to debug. Here’s what happens when we try to alter the parent table:

ALTER TABLE parent MODIFY parent_id INT UNSIGNED NOT NULL;
ERROR 1025 (HY000): Error on rename of './test/#sql-1570_9' to './test/parent'
(errno: 150)

This is less than clear, but the SHOW ENGINE INNODB STATUS text sheds some light on it:

696 | Appendix B: MySQL Server Status

 1 ------------------------
 2 LATEST FOREIGN KEY ERROR
 3 ------------------------
 4 070913 11:06:03 Error in foreign key constraint of table test/child:
 5 there is no index in referenced table which would contain
 6 the columns as the first columns, or the data types in the
 7 referenced table do not match to the ones in table. Constraint:
 8 ,
 9 CONSTRAINT child_ibfk_1 FOREIGN KEY (parent_id) REFERENCES parent (parent_id)
10 The index in the foreign key in table is parent_id
11 See http://dev.mysql.com/doc/refman/5.0/en/innodb-foreign-key-constraints.html
12 for correct foreign key definition.

The error in this case is a different data type. Foreign-keyed columns must have ex-
actly the same data type, including any modifiers (such as UNSIGNED, which was the
problem in this case). Whenever you see error 1025 and don’t understand why, the
best place to look is in SHOW ENGINE INNODB STATUS.

The foreign key error messages are overwritten every time there’s a new error. The
pt-fk-error-logger tool from Percona Toolkit can help you save these for later analysis.

LATEST DETECTED DEADLOCK
Like the foreign key section, the LATEST DETECTED DEADLOCK section appears only if your
server has had a deadlock. The deadlock error messages are also overwritten every time
there’s a new error, and the pt-deadlock -logger tool from Percona Toolkit can help you
save these for later analysis.

A deadlock is a cycle in the waits-for graph, which is a data structure of row locks held
and waited for. The cycle can be arbitrarily large. InnoDB detects deadlocks instantly,
because it checks for a cycle in the graph every time a transaction has to wait for a row
lock. Deadlocks can be quite complex, but this section shows only the last two trans-
actions involved, the last statement executed in each of the transactions, and the locks
that created the cycle in the graph. You don’t see other transactions that might also be
included in the cycle, nor do you see the statement that might have really acquired the
locks earlier in a transaction. Nevertheless, you can often find out what caused the
deadlock by looking at this output.

There are actually two types of InnoDB deadlocks. The first, which is what most people
are accustomed to, is a true cycle in the waits-for graph. The other type is a waits-for
graph that is too expensive to check for cycles. If InnoDB has to check more than a
million locks in the graph, or if it recurses through more than 200 transactions while
checking, it gives up and says there’s a deadlock. These numbers are hardcoded con-
stants in the InnoDB source, and you can’t configure them (though you can change
them and recompile InnoDB if you wish). You’ll know when exceeding these limits
causes a deadlock, because you’ll see “TOO DEEP OR LONG SEARCH IN THE
LOCK TABLE WAITS-FOR GRAPH” in the output.

SHOW ENGINE INNODB STATUS | 697

InnoDB prints not only the transactions and the locks they held and waited for, but
also the records themselves. This information is mostly useful to the InnoDB develop-
ers, but there’s currently no way to disable it. Unfortunately, it can be so large that it
runs over the length allocated for output and prevents you from seeing the sections that
follow. The only way to remedy this is to cause a small deadlock to replace the large
one, or to use Percona Server, which adds configuration variables to suppress the overly
verbose text.

Here’s a sample deadlock:

 1 ------------------------
 2 LATEST DETECTED DEADLOCK
 3 ------------------------
 4 070913 11:14:21
 5 *** (1) TRANSACTION:
 6 TRANSACTION 0 3793488, ACTIVE 2 sec, process no 5488, OS thread id 1141287232
 starting index read
 7 mysql tables in use 1, locked 1
 8 LOCK WAIT 4 lock struct(s), heap size 1216
 9 MySQL thread id 11, query id 350 localhost baron Updating
10 UPDATE test.tiny_dl SET a = 0 WHERE a <> 0
11 *** (1) WAITING FOR THIS LOCK TO BE GRANTED:
12 RECORD LOCKS space id 0 page no 3662 n bits 72 index `GEN_CLUST_INDEX` of table
 `test/tiny_dl` trx id 0 3793488 lock_mode X waiting
13 Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
14 0: len 6; hex 000000000501 ...[omitted] ...
15
16 *** (2) TRANSACTION:
17 TRANSACTION 0 3793489, ACTIVE 2 sec, process no 5488, OS thread id 1141422400
 starting index read, thread declared inside InnoDB 500
18 mysql tables in use 1, locked 1
19 4 lock struct(s), heap size 1216
20 MySQL thread id 12, query id 351 localhost baron Updating
21 UPDATE test.tiny_dl SET a = 1 WHERE a <> 1
22 *** (2) HOLDS THE LOCK(S):
23 RECORD LOCKS space id 0 page no 3662 n bits 72 index `GEN_CLUST_INDEX` of table
 `test/tiny_dl` trx id 0 3793489 lock mode S
24 Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
25 0: ... [omitted] ...
26
27 *** (2) WAITING FOR THIS LOCK TO BE GRANTED:
28 RECORD LOCKS space id 0 page no 3662 n bits 72 index `GEN_CLUST_INDEX` of table
 `test/tiny_dl` trx id 0 3793489 lock_mode X waiting
29 Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
30 0: len 6; hex 000000000501 ...[omitted] ...
31
32 *** WE ROLL BACK TRANSACTION (2)

Line 4 shows when the deadlock occurred, and lines 5 through 10 show information
about the first transaction involved in the deadlock. We explain the meaning of this
output in detail in the next section.

698 | Appendix B: MySQL Server Status

Lines 11 through 15 show the locks transaction 1 was waiting for when the deadlock
happened. We’ve omitted some of the information that’s useful only for debugging
InnoDB on line 14. The important thing to notice is line 12, which says this transaction
wanted an exclusive (X) lock on GEN_CLUST_INDEX5 on the test.tiny_dl table.

Lines 16 through 21 show the second transaction’s status, and lines 22 through 26 show
the locks it held. There are several records listed on line 25, which we’ve removed for
brevity. One of these was the record for which the first transaction was waiting. Finally,
lines 27 through 31 show the locks for which it was waiting.

A cycle in the waits-for graph occurs when each transaction holds a lock the other wants
and wants a lock the other holds. InnoDB doesn’t show all the locks held and waited
for, but it often shows enough to help you determine what indexes the queries were
using, which is valuable in determining whether you can avoid deadlocks.

If you can get both queries to scan the same index in the same direction, you can often
reduce the number of deadlocks, because queries can’t create a cycle when they request
locks in the same order. This is sometimes easy to do. For example, if you need to
update a number of records within a transaction, sort them by their primary key in the
application’s memory, then update them in that order—then they can’t deadlock. At
other times, however, it can be infeasible (such as when you have two processes that
need to work on the same table but are using different indexes).

Line 32 shows which transaction was chosen as the deadlock victim. InnoDB tries to
choose the transaction it thinks will be easiest to roll back, which is the one with the
fewest updates.

It’s very helpful to examine the general log, find all the queries from the threads in-
volved, and see what really caused the deadlock. Read the next section to see where to
find the thread ID in the deadlock output.

TRANSACTIONS
This section contains a little summary information about InnoDB transactions, fol-
lowed by a list of the currently active transactions. Here are the first few lines (the
header):

1 ------------
2 TRANSACTIONS
3 ------------
4 Trx id counter 0 80157601
5 Purge done for trx's n:o <0 80154573 undo n:o <0 0
6 History list length 6
7 Total number of lock structs in row lock hash table 0

The output varies depending on the MySQL version, but it includes at least the
following:

5. This is the index InnoDB creates internally when you don’t specify a primary key.

SHOW ENGINE INNODB STATUS | 699

• Line 4: the current transaction identifier, which is a system variable that increments
for each new transaction.

• Line 5: the transaction ID to which InnoDB has purged old MVCC row versions.
You can see how many old versions haven’t yet been purged by looking at the
difference between this value and the current transaction ID. There’s no hard and
fast rule as to how large this number can safely get. If nothing is updating any data,
a large number doesn’t mean there’s unpurged data, because all the transactions
are actually looking at the same version of the database. On the other hand, if many
rows are being updated, one or more versions of each row is staying in memory.
The best policy for reducing overhead is to ensure that transactions commit when
they’re done instead of staying open a long time, because even an open transaction
that doesn’t do any work keeps InnoDB from purging old row versions.

Also in line 5: the undo log record number InnoDB’s purge process is currently
working on, if any. If it’s “0 0”, as in our example, the purge process is idle.

• Line 6: the history list length, which is the number of pages in the undo space in
InnoDB’s data files. When a transaction performs updates and commits, this num-
ber increases; when the purge process removes the old versions, it decreases. The
purge process also updates the value in line 5.

• Line 7: the number of lock structs. Each lock struct usually holds many row locks,
so this is not the same as the number of rows locked.

The header is followed by a list of transactions. Current versions of MySQL don’t
support nested transactions, so there’s a maximum of one transaction per client con-
nection at a time, and each transaction belongs to only a single connection. Each trans-
action has at least two lines in the output. Here’s a sample of the minimal information
you’ll see about a transaction:

1 ---TRANSACTION 0 3793494, not started, process no 5488, OS thread id 1141152064
2 MySQL thread id 15, query id 479 localhost baron

The first line begins with the transaction’s ID and status. This transaction is “not
started,” which means it has committed and not issued any more statements that affect
transactions; it’s probably just idle. Then there’s some process and thread information.
The second line shows the MySQL process ID, which is also the same as the Id column
in SHOW FULL PROCESSLIST. This is followed by an internal query number and some
connection information (also the same as what you can find in SHOW FULL PROCESSLIST).

Each transaction can print much more information than that, though. Here’s a more
complex example:

1 ---TRANSACTION 0 80157600, ACTIVE 4 sec, process no 3396, OS thread id 1148250464,
 thread declared inside InnoDB 442
2 mysql tables in use 1, locked 0
3 MySQL thread id 8079, query id 728899 localhost baron Sending data
4 select sql_calc_found_rows * from b limit 5
5 Trx read view will not see trx with id>= 0 80157601, sees <0 80157597

700 | Appendix B: MySQL Server Status

Line 1 in this sample shows the transaction has been active for four seconds. The
possible states are “not started,” “active,” “prepared,” and “committed in memory”
(once it commits to disk, the state will change to “not started”). You might also see
information about what the transaction is currently doing, though this example doesn’t
show that. There are over 30 string constants in the source that can be printed here,
such as “fetching rows,” “adding foreign keys,” and so on.

The “thread declared inside InnoDB 442” text on line 1 means the thread is doing some
operation inside the InnoDB kernel and has 442 “tickets” left to use. In other words,
the same SQL query is allowed to reenter the InnoDB kernel 442 more times. The ticket
system limits thread concurrency inside the kernel to prevent thread thrashing on some
platforms. Even if the thread’s state is “inside InnoDB,” the thread might not necessarily
be doing all its work inside InnoDB; the query might be processing some operations at
the server level and just interacting with the InnoDB kernel in some way. You might
also see that the transaction’s status is “sleeping before joining InnoDB queue” or
“waiting in InnoDB queue.”

The next line you might see shows how many tables the current statement has used
and locked. InnoDB doesn’t normally lock tables, but it does for some statements.
Locked tables can also show up if the MySQL server has locked them at a higher level
than InnoDB. If the transaction has locked any rows, there will be a line showing the
number of lock structs (again, not the same thing as row locks) and the heap size; you
can see examples of this in the earlier deadlock output. In MySQL 5.1 and newer, this
line also shows the actual number of row locks the transaction holds.

The heap size is the amount of memory used to hold row locks. InnoDB implements
row locks with a special table of bitmaps, which can theoretically use as little as one
bit per row it locks. Our tests have shown that it generally uses no more than four bits
per lock.

The third line in this example has a little more information than the second line in the
previous sample: at the end of the line is the thread status, “Sending data.” This is the
same as what you’ll see in the Command column in SHOW FULL PROCESSLIST.

If the transaction is actively running a query, the query’s text (or, in some MySQL
versions, just an excerpt of it) will come next, in this case in line 4.

Line 5 shows the transaction’s read view, which indicates the range of transaction
identifiers that are definitely visible and definitely invisible to the transaction because
of versioning. In this case, there’s a gap of four transactions between the two numbers.
These four transactions might not be visible. When InnoDB executes a query, it must
check the visibility of any rows whose transaction identifiers fall into this gap.

If the transaction is waiting for a lock, you’ll also see the lock information just after the
query. There are examples of this in the earlier deadlock sample as well. Unfortunately,
the output doesn’t say which other transaction holds the lock for which this transaction

SHOW ENGINE INNODB STATUS | 701

is waiting. You can find that in the INFORMATION_SCHEMA tables in MySQL 5.1 and newer,
if you’re using the InnoDB plugin.

If there are many transactions, InnoDB might limit the number it prints to try to keep
the output from growing too large. You’ll see “ ...truncated... ” if this happens.

FILE I/O
The FILE I/O section shows the state of the I/O helper threads, along with performance
counters:

 1 --------
 2 FILE I/O
 3 --------
 4 I/O thread 0 state: waiting for i/o request (insert buffer thread)
 5 I/O thread 1 state: waiting for i/o request (log thread)
 6 I/O thread 2 state: waiting for i/o request (read thread)
 7 I/O thread 3 state: waiting for i/o request (write thread)
 8 Pending normal aio reads: 0, aio writes: 0,
 9 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
10 Pending flushes (fsync) log: 0; buffer pool: 0
11 17909940 OS file reads, 22088963 OS file writes, 1743764 OS fsyncs
12 0.20 reads/s, 16384 avg bytes/read, 5.00 writes/s, 0.80 fsyncs/s

Lines 4 through 7 show the I/O helper thread states. Lines 8 through 10 show the
number of pending operations for each helper thread, and the number of pending
fsync() operations for the log and buffer pool threads. The abbreviation “aio” means
“asynchronous I/O.” Line 11 shows the number of reads, writes, and fsync() calls
performed. Absolute values will vary with your workload, so it’s more important to
monitor how they change over time. Line 12 shows per-second averages over the time
interval shown in the header section.

The pending values on lines 8 and 9 are good ways to detect an I/O-bound application.
If most of these types of I/O have some pending operations, the workload is probably
I/O-bound.

On Windows, you can adjust the number of I/O helper threads with the innodb
_file_io_threads configuration variable, so you might see more than one read and
write thread. And in MySQL 5.1 and newer with the InnoDB plugin, or with Percona
Server, you can use innodb_read_io_threads and innodb_write_io_threads to configure
multiple threads for reading and writing. However, you’ll always see at least these four
threads on all platforms:

Insert buffer thread
Responsible for insert buffer merges (i.e., records being merged from the insert
buffer into the tablespace)

Log thread
Responsible for asynchronous log flushes

702 | Appendix B: MySQL Server Status

Read thread
Performs read-ahead operations to try to prefetch data InnoDB predicts it will need

Write thread
Flushes dirty buffers

INSERT BUFFER AND ADAPTIVE HASH INDEX
This section shows the status of these two structures inside InnoDB:

1 -------------------------------------
2 INSERT BUFFER AND ADAPTIVE HASH INDEX
3 -------------------------------------
4 Ibuf for space 0: size 1, free list len 887, seg size 889, is not empty
5 Ibuf for space 0: size 1, free list len 887, seg size 889,
6 2431891 inserts, 2672643 merged recs, 1059730 merges
7 Hash table size 8850487, used cells 2381348, node heap has 4091 buffer(s)
8 2208.17 hash searches/s, 175.05 non-hash searches/s

Line 4 shows information about the insert buffer’s size, the length of its “free list,” and
its segment size. The text “for space 0” seems to indicate the possibility of multiple
insert buffers—one per tablespace—but that was never implemented, and this text has
been removed in more recent MySQL versions. There’s only one insert buffer, so line
5 is really redundant. Line 6 shows statistics about how many buffer operations
InnoDB has done. The ratio of merges to inserts gives a good idea of how efficient the
buffer is.

Line 7 shows the adaptive hash index’s status. Line 8 shows how many hash index
operations InnoDB has done over the time frame mentioned in the header section. The
ratio of hash index lookups to non-hash index lookups is advisory information; you
can’t configure the adaptive hash index.

LOG
This section shows statistics about InnoDB’s transaction log (redo log) subsystem:

1 ---
2 LOG
3 ---
4 Log sequence number 84 3000620880
5 Log flushed up to 84 3000611265
6 Last checkpoint at 84 2939889199
7 0 pending log writes, 0 pending chkp writes
8 14073669 log i/o's done, 10.90 log i/o's/second

Line 4 shows the current log sequence number, and line 5 shows the point up to which
the logs have been flushed. The log sequence number is just the number of bytes written
to the log files, so you can use it to calculate how much data in the log buffer has not
yet been flushed to the log files. In this case, it is 9,615 bytes (13000620880–
13000611265). Line 6 shows the last checkpoint (a checkpoint identifies an instant at

SHOW ENGINE INNODB STATUS | 703

which the data and log files were in a known state, and can be used for recovery). If the
last checkpoint falls too far behind the log sequence number, and the difference be-
comes close to the size of the log files, InnoDB will trigger “furious flushing,” which is
very bad for performance. Lines 7 and 8 show pending log operations and statistics,
which you can compare to values in the FILE I/O section to see how much of your I/O
is caused by your log subsystem relative to other causes of I/O.

BUFFER POOL AND MEMORY
This section shows statistics about InnoDB’s buffer pool and how it uses memory:

 1 ----------------------
 2 BUFFER POOL AND MEMORY
 3 ----------------------
 4 Total memory allocated 4648979546; in additional pool allocated 16773888
 5 Buffer pool size 262144
 6 Free buffers 0
 7 Database pages 258053
 8 Modified db pages 37491
 9 Pending reads 0
10 Pending writes: LRU 0, flush list 0, single page 0
11 Pages read 57973114, created 251137, written 10761167
12 9.79 reads/s, 0.31 creates/s, 6.00 writes/s
13 Buffer pool hit rate 999 / 1000

Line 4 shows the total memory allocated by InnoDB, and how much of that amount is
allocated in the additional memory pool. The additional memory pool is just a (typically
small) amount of memory it allocates when it wants to use its own internal memory
allocator. Modern versions of InnoDB typically use the operating system’s memory
allocator, but older versions had their own allocator because some operating systems
didn’t provide a very good implementation.

Lines 5 through 8 show buffer pool metrics, in units of pages. The metrics are the total
buffer pool size, the number of free pages, the number of pages allocated to store da-
tabase pages, and the number of “dirty” database pages. InnoDB uses some pages in
the buffer pool for lock indexes, the adaptive hash index, and other system structures,
so the number of database pages in the pool will never equal the total pool size.

Lines 9 and 10 show the number of pending reads and writes (i.e., the number of logical
reads and writes InnoDB needs to do for the buffer pool). These values will not match
values in the FILE I/O section, because InnoDB might merge many logical operations
into a single physical I/O operation. LRU stands for “least recently used”; it’s a method
of freeing space for frequently used pages by flushing infrequently used ones from the
buffer pool. The flush list holds old pages that need to be flushed by the checkpoint
process, and single page writes are independent page writes that won’t be merged.

Line 8 in this output shows that the buffer pool contains 37,491 dirty pages, which
need to be flushed to disk at some point (they have been modified in memory but not
on disk). However, line 10 shows that no flushes are scheduled at the moment. This is

704 | Appendix B: MySQL Server Status

not a problem; InnoDB will flush them when it needs to. If you see a high number of
pending I/O operations anywhere in InnoDB’s status output, it’s typically indicative of
a pretty severe problem.

Line 11 shows how many pages InnoDB has read, created, and written. The pages read
and written values refer to data that’s read into the buffer pool from disk, or vice versa.
The pages created value refers to pages that InnoDB allocates in the buffer pool without
reading their contents from the data file, because it doesn’t care what the contents are
(for example, they might have belonged to a table that has since been dropped).

Line 13 reports the buffer pool hit rate, which measures the rate at which InnoDB finds
the pages it needs in the buffer pool. It measures hits since the last InnoDB status
printout, so if the server has been quiet since then, you’ll see “No buffer pool page gets
since the last printout.” It’s not useful as a metric for buffer pool sizing.

In MySQL 5.5, there might be several buffer pools, and each one will print out a section
in the output. Percona XtraDB will also print more detailed output—for example,
showing exactly where memory is allocated.

ROW OPERATIONS
This section shows miscellaneous InnoDB statistics:

 1 --------------
 2 ROW OPERATIONS
 3 --------------
 4 0 queries inside InnoDB, 0 queries in queue
 5 1 read views open inside InnoDB
 6 Main thread process no. 10099, id 88021936, state: waiting for server activity
 7 Number of rows inserted 143, updated 3000041, deleted 0, read 24865563
 8 0.00 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s
 9 ----------------------------
10 END OF INNODB MONITOR OUTPUT
11 ============================

Line 4 shows how many threads are inside the InnoDB kernel (we referred to this in
our discussion of the TRANSACTIONS section). Queries in the queue are threads InnoDB
is not admitting into the kernel yet to restrict the number of threads concurrently ex-
ecuting. Queries can also be sleeping before they go into the queue to wait, as discussed
earlier.

Line 5 shows how many read views InnoDB has open. A read view is a consistent MVCC
“snapshot” of the database’s contents as of the point the transaction started. You can
see whether a specific transaction has a read view in the TRANSACTIONS section.

Line 6 shows the kernel’s main thread status. Possible status values are as follows:

• doing background drop tables

• doing insert buffer merge

• flushing buffer pool pages

SHOW ENGINE INNODB STATUS | 705

• flushing log

• making checkpoint

• purging

• reserving kernel mutex

• sleeping

• suspending

• waiting for buffer pool flush to end

• waiting for server activity

You should usually see “sleeping” in most servers, and if you take several snapshots
and repeatedly see a different status, such as “flushing buffer pool pages,” you should
suspect a problem with the related activity—for example, a “furious flushing” problem
caused by a version of InnoDB with a poor flushing algorithm, or poor configuration
such as too-small transaction log files.

Lines 7 and 8 show statistics on the number of rows inserted, updated, deleted, and
read, and per-second averages of these values. These are good numbers to monitor if
you want to watch how much work InnoDB is doing.

The SHOW ENGINE INNODB STATUS output ends with lines 9 through 13. If you don’t see
this text, you probably have a very large deadlock that’s truncating the output.

SHOW PROCESSLIST
The process list is the list of connections, or threads, that are currently connected to
MySQL. SHOW PROCESSLIST lists the threads, with information about each thread’s
status. For example:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
 Id: 61539
 User: sphinx
 Host: se02:58392
 db: art136
Command: Query
 Time: 0
 State: Sending data
 Info: SELECT a.id id, a.site_id site_id, unix_timestamp(inserted) AS
inserted,forum_id, unix_timestamp(p
*************************** 2. row ***************************
 Id: 65094
 User: mailboxer
 Host: db01:59659
 db: link84
Command: Killed
 Time: 12931
 State: end

706 | Appendix B: MySQL Server Status

 Info: update link84.link_in84 set url_to =
replace(replace(url_to,'&','&'),'%20','+'), url_prefix=repl

There are several tools (such as innotop) that can show you an updating view of the
process list.

You can also retrieve this information from a table in the INFORMATION_SCHEMA. Percona
Server and MariaDB add more useful information to this table, such as a high-resolution
time column or a column that indicates how much work the query has done, which
you can use as a progress indicator.

The Command and State columns are where the thread’s “status” is really indicated.
Notice that the first of our processes is running a query and sending data while the
second has been killed, probably because it took a very long time to complete and
someone deliberately terminated it with the KILL command. A thread can remain in
this state for some time, because a kill might not complete instantly. For example, it
might take a while to roll back the thread’s transaction.

SHOW FULL PROCESSLIST (with the added FULL keyword) shows the full text of each query,
which is otherwise truncated after 100 characters.

SHOW ENGINE INNODB MUTEX
SHOW ENGINE INNODB MUTEX returns detailed InnoDB mutex information and is mostly
useful for gaining insight into scalability and concurrency problems. Each mutex pro-
tects a critical section in the code, as explained previously.

The output varies depending on the MySQL version and compile options. Here’s a
sample from a MySQL 5.5 server:

mysql> SHOW ENGINE INNODB MUTEX;
+--------+------------------------------+-------------+
| Type | Name | Status |
+--------+------------------------------+-------------+
InnoDB	&table->autoinc_mutex	os_waits=1
InnoDB	&table->autoinc_mutex	os_waits=1
InnoDB	&table->autoinc_mutex	os_waits=4
InnoDB	&table->autoinc_mutex	os_waits=1
InnoDB	&table->autoinc_mutex	os_waits=12
InnoDB	&dict_sys->mutex	os_waits=1
InnoDB	&log_sys->mutex	os_waits=12
InnoDB	&fil_system->mutex	os_waits=11
InnoDB	&kernel_mutex	os_waits=1
InnoDB	&dict_table_stats_latches[i]	os_waits=2
InnoDB	&dict_table_stats_latches[i]	os_waits=54
InnoDB	&dict_table_stats_latches[i]	os_waits=1
InnoDB	&dict_table_stats_latches[i]	os_waits=31
InnoDB	&dict_table_stats_latches[i]	os_waits=41
InnoDB	&dict_table_stats_latches[i]	os_waits=12
InnoDB	&dict_table_stats_latches[i]	os_waits=1
InnoDB	&dict_table_stats_latches[i]	os_waits=90
InnoDB	&dict_table_stats_latches[i]	os_waits=1

SHOW ENGINE INNODB MUTEX | 707

InnoDB	&dict_operation_lock	os_waits=13
InnoDB	&log_sys->checkpoint_lock	os_waits=66
InnoDB	combined &block->lock	os_waits=2
+--------+------------------------------+-------------+

You can use the output to help determine which parts of InnoDB are bottlenecks, based
on the number of waits. Anywhere there’s a mutex, there’s a potential for contention.
You might need to write a script to aggregate the output, which can be very large.

There are three main strategies for easing mutex-related bottlenecks: try to avoid
InnoDB’s weak points, try to limit concurrency, or try to balance between CPU-inten-
sive spin waits and resource-intensive operating system waits. We discussed this earlier
in this appendix, and in Chapter 8.

Replication Status
MySQL has several commands for monitoring replication. On a master server, SHOW
MASTER STATUS shows the master’s replication status and configuration:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000079
 Position: 13847
 Binlog_Do_DB:
Binlog_Ignore_DB:

The output includes the master’s current binary log position. You can get a list of binary
logs with SHOW BINARY LOGS:

mysql> SHOW BINARY LOGS
+------------------+-----------+
| Log_name | File_size |
+------------------+-----------+
| mysql-bin.000044 | 13677 |
...
| mysql-bin.000079 | 13847 |
+------------------+-----------+
36 rows in set (0.18 sec)

To view the events in the binary logs, use SHOW BINLOG EVENTS. In MySQL 5.5, you can
also use SHOW RELAYLOG EVENTS.

On a replica server, you can view the replica’s status and configuration with SHOW SLAVE
STATUS. We won’t include the output here, because it’s a bit verbose, but we will note
a few things about it. First, you can see the status of both the replica I/O and replica
SQL threads, including any errors. You can also see how far behind the replica is in
replication. Finally, for the purposes of backups and cloning replicas, there are three
sets of binary log coordinates in the output:

Master_Log_File/Read_Master_Log_Pos
The position at which the I/O thread is reading in the master’s binary logs.

708 | Appendix B: MySQL Server Status

Relay_Log_File/Relay_Log_Pos
The position at which the SQL thread is executing in the replica’s relay logs.

Relay_Master_Log_File/Exec_Master_Log_Pos
The position at which the SQL thread is executing in the master’s binary logs. This
is the same logical position as Relay_Log_File/Relay_Log_Pos, but it’s in the rep-
lica’s relay logs instead of the master’s binary logs. In other words, if you look at
these two positions in the logs, you will find the same log events.

The INFORMATION_SCHEMA
The INFORMATION_SCHEMA database is a set of system views defined in the SQL standard.
MySQL implements many of the standard views and adds some others. In MySQL 5.1,
many of the views correspond to MySQL’s SHOW commands, such as SHOW FULL
PROCESSLIST and SHOW STATUS. However, there are also some views that have no corre-
sponding SHOW command.

The beauty of the INFORMATION_SCHEMA views is that you can query them with standard
SQL. This gives you much more flexibility than the SHOW commands, which produce
result sets that you can’t aggregate, join, or otherwise manipulate with standard SQL.
Having all this data available in system views makes it possible to write interesting and
useful queries.

For example, what tables have a reference to the actor table in the Sakila sample
database? The consistent naming convention makes this relatively easy to determine:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA='sakila' AND COLUMN_NAME='actor_id'
 -> AND TABLE_NAME <> 'actor';
+------------+
| TABLE_NAME |
+------------+
| actor_info |
| film_actor |
+------------+

We needed to find tables with multiple-column indexes for several of the examples in
this book. Here’s a query for that:

mysql> SELECT TABLE_NAME, GROUP_CONCAT(COLUMN_NAME)
 -> FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 -> WHERE TABLE_SCHEMA='sakila'
 -> GROUP BY TABLE_NAME, CONSTRAINT_NAME
 -> HAVING COUNT(*) > 1;
+---------------+--------------------------------------+
| TABLE_NAME | GROUP_CONCAT(COLUMN_NAME) |
+---------------+--------------------------------------+
film_actor	actor_id,film_id
film_category	film_id,category_id
rental	customer_id,rental_date,inventory_id
+---------------+--------------------------------------+

The INFORMATION_SCHEMA | 709

You can also write more complex queries, just as you would against any ordinary tables.
The MySQL Forge (http://forge.mysql.com) is a great place to find and share queries
against these views. There are samples to find duplicate or redundant indexes, find
indexes with very low cardinality, and much more. There is also a set of useful views
written on top of the INFORMATION_SCHEMA views in Shlomi Noach’s common_schema
project (http://code.openark.org/forge/common_schema).

The biggest drawback is that the views are sometimes very slow compared to the cor-
responding SHOW commands. They typically fetch all the data, store it in a temporary
table, then make the temporary table available to the query. Querying the INFORMA
TION_SCHEMA tables on a server with a lot of data or many tables can cause a great deal
of load on the server, and can cause the server to stall or become unresponsive to other
users, so do be cautious about using it on a heavily loaded, large server in production.
The main tables that can be dangerous to query are the ones that contain table meta-
data: TABLES, COLUMNS, REFERENTIAL_CONSTRAINTS, KEY_COLUMN_USAGE, and so forth.
Queries against these tables can cause MySQL to ask the storage engine for data such
as index statistics on the tables in the server, which is especially burdensome in InnoDB.

The views aren’t updatable. Although you can retrieve server settings from them, you
can’t update them to influence the server’s configuration, so you’ll still need to use the
SHOW and SET commands for configuration, even though the INFORMATION_SCHEMA views
are very useful for other tasks.

InnoDB Tables
In MySQL 5.1 and newer, the InnoDB plugin creates a number of INFORMATION
_SCHEMA tables. These are very helpful. There are more in MySQL 5.5, and even more
in the unreleased MySQL 5.6.

In MySQL 5.1, the following tables exist:

INNODB_CMP and INNODB_CMP_RESET
These tables show information about data that’s compressed in InnoDB’s new file
format, Barracuda. The second table shows the same information as the first but
has the side effect of resetting the data it contains, sort of like using a FLUSH
command.

INNODB_CMPMEM and INNODB_CMPMEM_RESET
These tables show information about buffer pool pages used for InnoDB com-
pressed data. The second table is again a reset table.

INNODB_TRX and INNODB_LOCKS
These tables show transactions, and transactions that hold and wait for locks.
They are very important for diagnosing lock wait problems and long-running
transactions. The MySQL manual contains sample queries you can copy and paste
to show which transactions are blocking which others, the queries they’re running,
and so forth.

710 | Appendix B: MySQL Server Status

http://forge.mysql.com
http://code.openark.org/forge/common_schema

In addition to these tables, MySQL 5.5 adds INNODB_LOCK_WAITS, which can help diag-
nose more types of lock-waiting problems more easily. MySQL 5.6 will add tables that
show more information about InnoDB’s internals, including the buffer pool and data
dictionary, and a new table called INNODB_METRICS, which will be an alternative to using
the Performance Schema.

Tables in Percona Server
Percona Server adds a large number of tables to the INFORMATION_SCHEMA database. The
stock MySQL 5.5 server has 39 tables, and Percona Server 5.5 has 61 tables. Here’s an
overview of the additional tables:

The “user statistics” tables
These tables originated in Google’s patches for MySQL. They show activity sta-
tistics for clients, indexes, tables, threads, and users. We’ve mentioned uses for
these throughout this book, such as determining when replication is beginning to
approach the limit of its ability to keep up with the master.

The InnoDB data dictionary
A series of tables that expose InnoDB’s internal data dictionary as read-only tables:
columns, foreign keys, indexes, statistics, and so on. These are very helpful for
examining and understanding InnoDB’s view of the database, which can differ
from MySQL’s due to MySQL’s reliance on .frm files to store the data dictionary.
Similar tables will be included with MySQL 5.6 when it is released.

The InnoDB buffer pool
These tables let you query the buffer pool as though it’s a table where each page is
a row, so you can see what pages are resident in the buffer pool, what types of pages
they are, and so on. These tables have proven useful for diagnosing problems such
as a bloated insert buffer.

Temporary tables
These tables show the same type of information available in the INFORMATION
_SCHEMA.TABLES table, but for temporary tables instead. There is one for your own
session’s temporary tables, and one for all temporary tables in the whole server.
Both are helpful for gaining visibility into which temporary tables exist, for which
sessions, and how much space they’re using.

Miscellaneous tables
There are a handful of other tables that add visibility into query execution times,
files, tablespaces, and more InnoDB internals.

The documentation for Percona Server’s additional tables is available at http://www
.percona.com/doc/.

The INFORMATION_SCHEMA | 711

http://www.percona.com/doc/
http://www.percona.com/doc/

The Performance Schema
The Performance Schema (which resides in the PERFORMANCE_SCHEMA database) is
MySQL’s new home for enhanced instrumentation, as of MySQL 5.5. We discussed it
a bit in Chapter 3.

By default, the Performance Schema is disabled, and you have to turn it on and enable
specific instrumentation points (“consumers”) that you wish to collect. We bench-
marked the server in a few different configurations and found that the Performance
Schema caused around an 8% to 11% overhead even when it was collecting no data,
and 19% to 25% with all consumers enabled, depending on whether it was a read-only
or read/write workload. Whether this is a little or a lot is up to you to decide.

This is slated to improve in MySQL 5.6, especially when the feature itself is enabled
but all of the instrumentation points are disabled. This will make it more practical for
some users to enable the Performance Schema, but leave it inactive until they want to
gather some information.

In MySQL 5.5, the Performance Schema contains tables that instrument instances of
condition variables, mutexes, read/write locks, and file I/O. There are also tables that
instrument the waits on the instances, and these are what you’ll usually be interested
in querying first, with joins to the instance tables. These event wait tables come in a
few variations that hold current and historical information about server performance
and behavior. Finally, there are is a group of “setup tables,” which you use to enable
or disable the desired consumers.

In MySQL 5.6.3 development milestone release 6, the number of tables in the Perfor-
mance Schema increases from 17 to 49. That means that there is a lot more instru-
mentation in MySQL 5.6! Added instrumentation includes SQL statements, stages of
statements (basically the same thing as the thread status you can see in SHOW PROCESS
LIST), tables, indexes, hosts, threads, users, accounts, and a larger variety of summary
and history tables, among other things.

How can you use these tables? With 49 of them, the time has come for someone to
write tools to help with this. However, for some good examples of old-fashioned SQL
against the Performance Schema tables, you can read some of the articles on Oracle
engineer Mark Leith’s blog, such as http://www.markleith.co.uk/?p=471.

712 | Appendix B: MySQL Server Status

http://www.markleith.co.uk/?p=471

Summary
MySQL’s primary means of exposing server internals is the SHOW commands, but that’s
changing. The introduction in MySQL 5.1 of pluggable INFORMATION_SCHEMA tables per-
mitted the InnoDB plugin to add some very valuable instrumentation, and Percona
Server adds many more. However, the ability to read SHOW ENGINE INNODB STATUS output
and interpret it remains essential for managing InnoDB. In MySQL 5.5 and newer server
versions, the Performance Schema is available, and it will probably become the most
powerful and complete means of inspecting the server’s internals. The great thing about
the Performance Schema is that it’s time-based, meaning that MySQL is finally getting
instrumented for elapsed time, not just operation counts.

Summary | 713

APPENDIX C

Transferring Large Files

Copying, compressing, and decompressing huge files (often across a network) are
common tasks when administering MySQL, initializing servers, cloning replicas, and
performing backups and recovery operations. The fastest and best ways to do these
jobs are not always the most obvious, and the difference between good and bad meth-
ods can be significant. This appendix shows some examples of how to copy a large
backup image from one server to another using common Unix utilities.

It’s common to begin with an uncompressed file, such as one server’s InnoDB tablespace
and log files. You also want the file to be decompressed when you finish copying it to
the destination, of course. The other common scenario is to begin with a compressed
file, such as a backup image, and finish with a decompressed file.

If you have limited network capacity, it’s usually a good idea to send the files across
the network in compressed form. You might also need to do a secure transfer, so your
data isn’t compromised; this is a common requirement for backup images.

Copying Files
The task, then, is to do the following efficiently:

1. (Optionally) compress the data.

2. Send it to another machine.

3. Decompress the data into its final destination.

4. Verify the files aren’t corrupted after copying.

We’ve benchmarked various methods of achieving these goals. The rest of this appen-
dix shows you how we did it and what we found to be the fastest way.

For many of the purposes we’ve discussed in this book, such as backups, you might
want to consider which machine to do the compression on. If you have the network
bandwidth, you can copy your backup images uncompressed and save the CPU re-
sources on your MySQL server for queries.

715

A Naïve Example
We begin with a naïve example of how to send an uncompressed file securely from one
machine to another, compress it en route, and then decompress it. On the source server,
which we call server1, we execute the following:

server1$ gzip -c /backup/mydb/mytable.MYD > mytable.MYD.gz
server1$ scp mytable.MYD.gz root@server2:/var/lib/myql/mydb/

And then, on server2:

server2$ gunzip /var/lib/mysql/mydb/mytable.MYD.gz

This is probably the simplest approach, but it’s not very efficient because it serializes
the steps involved in compressing, copying, and decompressing the file. Each step also
requires reads from and writes to disk, which is slow. Here’s what really happens during
each of the above commands: the gzip performs both reads and writes on server1, the
scp reads on server1 and writes on server2, and the gunzip reads and writes on server2.

A One-Step Method
It’s more efficient to compress and copy the file and then decompress it on the other
end in one step. This time we use SSH, the secure protocol upon which SCP is based.
Here’s the command we execute on server1:

server1$ gzip -c /backup/mydb/mytable.MYD | ssh root@server2"gunzip -c - > /var/lib
>/mysql/mydb/mytable.MYD"

This usually performs much better than the first method, because it significantly re-
duces disk I/O: the disk activity is reduced to reading on server1 and writing on
server2. This lets the disk operate sequentially.

You can also use SSH’s built-in compression to do this, but we’ve shown you how to
compress and decompress with pipes because they give you more flexibility. For ex-
ample, if you didn’t want to decompress the file on the other end, you wouldn’t want
to use SSH compression.

You can improve on this method by tweaking some options, such as adding-1 to make
the gzip compression faster. This usually doesn’t lower the compression ratio much,
but it can make it much faster, which is important. You can also use different com-
pression algorithms. For example, if you want very high compression and don’t care
about how long it takes, you can use bzip2 instead of gzip. If you want very fast com-
pression, you can instead use an LZO-based archiver. The compressed data might be
about 20% larger, but the compression will be around five times faster.

Avoiding Encryption Overhead
SSH isn’t the fastest way to transport data across the network, because it adds the
overhead of encrypting and decrypting. If you don’t need encryption, you can just copy

716 | Appendix C: Transferring Large Files

the “raw” bits over the network with netcat. You invoke this tool as nc for noninteractive
operations, which is what we want.

Here’s an example. First, let’s start listening for the file on port 12345 (any unused port
will do) on server2, and uncompress anything sent to that port to the desired data file:

server2$ nc -l -p 12345 | gunzip -c - > /var/lib/mysql/mydb/mytable.MYD

On server1, we then start another instance of netcat, sending to the port on which the
destination is listening. The -q option tells netcat to close the connection after it sees
the end of the incoming file. This will cause the listening instance to close the destina-
tion file and quit:

server1$ gzip -c - /var/lib/mysql/mydb/mytable.MYD | nc -q 1 server2 12345

An even easier technique is to use tar so filenames are sent across the wire, eliminating
another source of errors and automatically writing the files to their correct locations.
The z option tells tar to use gzip compression and decompression. Here’s the command
to execute on server2:

server2$ nc -l -p 12345 | tar xvzf -

And here’s the command for server1:

server1$ tar cvzf - /var/lib/mysql/mydb/mytable.MYD | nc -q 1 server2 12345

You can assemble these commands into a single script that will compress and copy lots
of files into the network connection efficiently, then decompress them on the other side.

Other Options
Another option is rsync. rsync is convenient because it makes it easy to mirror the source
and destination and because it can restart interrupted file transfers, but it doesn’t tend
to work as well when its binary difference algorithm can’t be put to good use. You
might consider using it for cases where you know most of the file doesn’t need to be
sent—for example, for finishing an aborted nc copy operation.

You should experiment with file copying when you’re not in a crisis situation, because
it will take a little trial and error to discover the fastest method. Which method performs
best will depend on your system. The biggest factors are how many disk drives, network
cards, and CPUs you have, and how fast they are relative to each other. It’s a good idea
to monitor vmstat -n 5 to see whether the disk or the CPU is the speed bottleneck.

If you have idle CPUs, you can probably speed up the process by running several copy
operations in parallel. Conversely, if the CPU is the bottleneck and you have lots of
disk and network capacity, omit the compression. As with dumping and restoring, it’s
often a good idea to do these operations in parallel for speed. Again, monitor your
servers’ performance to see if you have unused capacity. Trying to overparallelize might
just slow things down.

Copying Files | 717

File Copy Benchmarks
For the sake of comparison, Table C-1 shows how quickly we were able to copy a
sample file over a standard 100 Mbps Ethernet link on a LAN. The file was 738 MB
uncompressed and compressed to 100 MB with gzip’s default options. The source and
destination machines had plenty of available memory, CPU resources, and disk ca-
pacity; the network was the bottleneck.

Table C-1. Benchmarks for copying files across a network

Method Time (seconds)

rsync without compression 71

scp without compression 68

nc without compression 67

rsync with compression (-z) 63

gzip, scp, and gunzip 60 (44 + 10 + 6)

ssh with compression 44

nc with compression 42

Notice how much it helped to compress the file when sending it across the network—
the three slowest methods didn’t compress the file. Your mileage will vary, however.
If you have slow CPUs and disks and a gigabit Ethernet connection, reading and
compressing the data might be the bottleneck, and it might be faster to skip the
compression.

By the way, it’s often much faster to use fast compression, such as gzip --fast, than to
use the default compression levels, which use a lot of CPU time to compress the file
only slightly more. Our test used the default compression level.

The last step in transferring data is to verify that the copy didn’t corrupt the files. You
can use a variety of methods for this, such as md5sum, but it’s rather expensive to do
a full scan of the file again. This is another reason why compression is helpful: the
compression itself typically includes at least a cyclic redundancy check (CRC), which
should catch any errors, so you get error checking for free.

718 | Appendix C: Transferring Large Files

APPENDIX D

Using EXPLAIN

This appendix shows you how to invoke EXPLAIN to get information about the query
execution plan, and how to interpret the output. The EXPLAIN command is the main
way to find out how the query optimizer decides to execute queries. This feature has
limitations and doesn’t always tell the truth, but its output is the best information
available, and it’s worth studying so you can learn how your queries are executed.
Learning to interpret EXPLAIN will also help you learn how MySQL’s optimizer works.

Invoking EXPLAIN
To use EXPLAIN, simply add the word EXPLAIN just before the SELECT keyword in your
query. MySQL will set a flag on the query. When it executes the query, the flag causes
it to return information about each step in the execution plan, instead of executing it.
It returns one or more rows, which show each part of the execution plan and the order
of execution.

Here’s the simplest possible EXPLAIN result:

mysql> EXPLAIN SELECT 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: No tables used

There’s one row in the output per table in the query. If the query joins two tables, there
will be two rows of output. An aliased table counts as a separate table, so if you join a
table to itself, there will be two rows in the output. The meaning of “table” is fairly

719

broad here: it can mean a subquery, a UNION result, and so on. You’ll see later why this
is so.

There are two important variations on EXPLAIN:

• EXPLAIN EXTENDED appears to behave just like a normal EXPLAIN, but it tells the server
to “reverse compile” the execution plan into a SELECT statement. You can see this
generated statement by running SHOW WARNINGS immediately afterward. The state-
ment comes directly from the execution plan, not from the original SQL statement,
which by this point has been reduced to a data structure. It will not be the same as
the original statement in most cases. You can examine it to see exactly how the
query optimizer has transformed the statement. EXPLAIN EXTENDED is available in
MySQL 5.0 and newer, and it adds an extra filtered column in MySQL 5.1 (more
on that later).

• EXPLAIN PARTITIONS shows the partitions the query will access, if applicable. It is
available only in MySQL 5.1 and newer.

It’s a common mistake to think that MySQL doesn’t execute a query when you add
EXPLAIN to it. In fact, if the query contains a subquery in the FROM clause, MySQL actually
executes the subquery, places its results into a temporary table, and then finishes op-
timizing the outer query. It has to process all such subqueries before it can optimize
the outer query fully, which it must do for EXPLAIN.1 This means EXPLAIN can actually
cause a great deal of work for the server if the statement contains expensive subqueries
or views that use the TEMPTABLE algorithm.

Bear in mind that EXPLAIN is an approximation, nothing more. Sometimes it’s a good
approximation, but at other times, it can be very far from the truth. Here are some of
its limitations:

• EXPLAIN doesn’t tell you anything about how triggers, stored functions, or UDFs
will affect your query.

• It doesn’t work for stored procedures, although you can extract the queries man-
ually and EXPLAIN them individually.

• It doesn’t tell you about ad hoc optimizations MySQL does during query execution.

• Some of the statistics it shows are estimates and can be very inaccurate.

• It doesn’t show you everything there is to know about a query’s execution plan.
(The MySQL developers are adding more information when possible.)

• It doesn’t distinguish between some things with the same name. For example, it
uses “filesort” for in-memory sorts and for temporary files, and it displays “Using
temporary” for temporary tables on disk and in memory.

1. This limitation will be lifted in MySQL 5.6.

720 | Appendix D: Using EXPLAIN

• It can be misleading. For example, it can show a full index scan for a query with a
small LIMIT. (MySQL 5.1’s EXPLAIN shows more accurate information about the
number of rows to be examined, but earlier versions don’t take LIMIT into account.)

Rewriting Non-SELECT Queries
MySQL explains only SELECT queries, not stored routine calls or INSERT, UPDATE,
DELETE, or any other statements. However, you can rewrite some non-SELECT queries to
be EXPLAIN-able. To do this, you just need to convert the statement into an equivalent
SELECT that accesses all the same columns. Any column mentioned must be in a
SELECT list, a join clause, or a WHERE clause.

For example, suppose you want to rewrite the following UPDATE statement to make it
EXPLAIN-able:

UPDATE sakila.actor
 INNER JOIN sakila.film_actor USING (actor_id)
SET actor.last_update=film_actor.last_update;

The following EXPLAIN statement is not equivalent to the UPDATE, because it doesn’t
require the server to retrieve the last_update column from either table:

mysql> EXPLAIN SELECT film_actor.actor_id
 -> FROM sakila.actor
 -> INNER JOIN sakila.film_actor USING (actor_id)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: index
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: NULL
 rows: 200
 Extra: Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.actor.actor_id
 rows: 13
 Extra: Using index

This difference is very important. The output shows that MySQL will use covering
indexes, for example, which it can’t use when retrieving and updating the last_
updated column. The following statement is much closer to the original:

Invoking EXPLAIN | 721

mysql> EXPLAIN SELECT film_actor.last_update, actor.last_update
 -> FROM sakila.actor
 -> INNER JOIN sakila.film_actor USING (actor_id)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 200
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.actor.actor_id
 rows: 13
 Extra:

Rewriting queries like this is not an exact science, but it’s often good enough to help
you understand what a query will do.2

It’s important to understand that there is no such thing as an “equivalent” read query
to show you the plan for a write query. A SELECT query needs to find only one copy of
the data and return it to you. Any query that modifies data must find and modify all
copies of it, in all indexes. This will often be much more expensive than what appears
to be an equivalent SELECT query.

The Columns in EXPLAIN
EXPLAIN’s output always has the same columns (except for EXPLAIN EXTENDED, which
adds a filtered column in MySQL 5.1, and EXPLAIN PARTITIONS, which adds a parti
tions column). The variability is in the number and contents of the rows. However, to
keep our examples clear, we don’t always show all columns in this appendix.

In the following sections, we show you the meaning of each of the columns in an
EXPLAIN result. Keep in mind that the rows in the output come in the order in which
MySQL actually executes the parts of the query, which is not always the same as the
order in which they appear in the original SQL.

2. MySQL 5.6 will permit you to explain non-SELECT queries. Hooray!

722 | Appendix D: Using EXPLAIN

The id Column
This column always contains a number, which identifies the SELECT to which the row
belongs. If there are no subqueries or unions in the statement, there is only one
SELECT, so every row will show a 1 in this column. Otherwise, the inner SELECT state-
ments generally will be numbered sequentially, according to their positions in the orig-
inal statement.

MySQL divides SELECT queries into simple and complex types, and the complex types
can be grouped into three broad classes: simple subqueries, so-called derived tables
(subqueries in the FROM clause),3 and UNIONs. Here’s a simple subquery:

mysql> EXPLAIN SELECT (SELECT 1 FROM sakila.actor LIMIT 1) FROM sakila.film;
+----+-------------+-------+...
| id | select_type | table |...
+----+-------------+-------+...
| 1 | PRIMARY | film |...
| 2 | SUBQUERY | actor |...
+----+-------------+-------+...

Subqueries in the FROM clause and UNIONs add more complexity to the id column. Here’s
a basic subquery in the FROM clause:

mysql> EXPLAIN SELECT film_id FROM (SELECT film_id FROM sakila.film) AS der;
+----+-------------+------------+...
| id | select_type | table |...
+----+-------------+------------+...
| 1 | PRIMARY | <derived2> |...
| 2 | DERIVED | film |...
+----+-------------+------------+...

As you know, this query is executed with an anonymous temporary table. MySQL
internally refers to the temporary table by its alias (der) within the outer query, which
you can see in the ref column in more complicated queries.

Finally, here’s a UNION query:

mysql> EXPLAIN SELECT 1 UNION ALL SELECT 1;
+------+--------------+------------+...
| id | select_type | table |...
+------+--------------+------------+...
| 1 | PRIMARY | NULL |...
| 2 | UNION | NULL |...
| NULL | UNION RESULT | <union1,2> |...
+------+--------------+------------+...

Note the extra row in the output for the result of the UNION. UNION results are always
placed into an anonymous temporary table, and MySQL then reads the results back
out of the temporary table. The temporary table doesn’t appear in the original SQL, so
its id column is NULL. In contrast to the preceding example (illustrating a subquery in

3. The statement “a subquery in the FROM clause is a derived table” is true, but “a derived table is a subquery
in the FROM clause” is false. The term “derived table” has a broader meaning in SQL.

The Columns in EXPLAIN | 723

the FROM clause), the temporary table that results from this query is shown as the last
row in the results, not the first.

So far this is all very straightforward, but mixtures of these three categories of state-
ments can cause the output to become more complicated, as we’ll see a bit later.

The select_type Column
This column shows whether the row is a simple or complex SELECT (and if it’s the latter,
which of the three complex types it is). The value SIMPLE means the query contains no
subqueries or UNIONs. If the query has any such complex subparts, the outermost part
is labeled PRIMARY, and other parts are labeled as follows:

SUBQUERY
A SELECT that is contained in a subquery in the SELECT list (in other words, not in
the FROM clause) is labeled as SUBQUERY.

DERIVED
The value DERIVED is used for a SELECT that is contained in a subquery in the FROM
clause, which MySQL executes recursively and places into a temporary table. The
server refers to this as a “derived table” internally, because the temporary table is
derived from the subquery.

UNION
The second and subsequent SELECTs in a UNION are labeled as UNION. The first
SELECT is labeled as though it is executed as part of the outer query. This is why the
previous example showed the first SELECT in the UNION as PRIMARY. If the UNION were
contained in a subquery in the FROM clause, its first SELECT would be labeled as
DERIVED.

UNION RESULT
The SELECT used to retrieve results from the UNION’s anonymous temporary table is
labeled as UNION RESULT.

In addition to these values, a SUBQUERY and a UNION can be labeled as DEPENDENT and
UNCACHEABLE. DEPENDENT means the SELECT depends on data that is found in an outer
query; UNCACHEABLE means something in the SELECT prevents the results from being
cached with an Item_cache. (Item_cache is undocumented; it is not the same thing as
the query cache, although it can be defeated by some of the same types of constructs,
such as the RAND() function.)

The table Column
This column shows which table the row is accessing. In most cases, it’s straightforward:
it’s the table, or its alias if the SQL specifies one.

724 | Appendix D: Using EXPLAIN

You can read this column from top to bottom to see the join order MySQL’s join op-
timizer chose for the query. For example, you can see that MySQL chose a different
join order than the one specified for the following query:

mysql> EXPLAIN SELECT film.film_id
 -> FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> INNER JOIN sakila.actor USING(actor_id);
+----+-------------+------------+...
| id | select_type | table |...
+----+-------------+------------+...
| 1 | SIMPLE | actor |...
| 1 | SIMPLE | film_actor |...
| 1 | SIMPLE | film |...
+----+-------------+------------+...

Remember the left-deep tree diagrams we showed in Chapter 6? MySQL’s query exe-
cution plans are always left-deep trees. If you flip the plan on its side, you can read off
the leaf nodes in order, and they’ll correspond directly to the rows in EXPLAIN. The plan
for the preceding query looks like Figure D-1.

Figure D-1. How the query execution plan corresponds to the rows in EXPLAIN

Derived tables and unions

The table column becomes much more complicated when there is a subquery in the
FROM clause or a UNION. In these cases, there really isn’t a “table” to refer to, because the
anonymous temporary table MySQL creates exists only while the query is executing.

When there’s a subquery in the FROM clause, the table column is of the form
<derivedN>, where N is the subquery’s id. This is always a “forward reference”—in
other words, N refers to a later row in the EXPLAIN output.

When there’s a UNION, the UNION RESULT table column contains a list of ids that partic-
ipate in the UNION. This is always a “backward reference,” because the UNION RESULT
comes after all of the rows that participate in the UNION. If there are more than about
20 ids in the list, the table column might be truncated to keep it from getting too long,
and you won’t be able to see all the values. Fortunately, you can still deduce which
rows were included, because you’ll be able to see the first row’s id. Everything that
comes between that row and the UNION RESULT is included in some way.

The Columns in EXPLAIN | 725

An example of complex SELECT types

Here’s a nonsense query that serves as a fairly compact example of some of the complex
SELECT types:

 1 EXPLAIN
 2 SELECT actor_id,
 3 (SELECT 1 FROM sakila.film_actor WHERE film_actor.actor_id =
 4 der_1.actor_id LIMIT 1)
 5 FROM (
 6 SELECT actor_id
 7 FROM sakila.actor LIMIT 5
 8) AS der_1
 9 UNION ALL
10 SELECT film_id,
11 (SELECT @var1 FROM sakila.rental LIMIT 1)
12 FROM (
13 SELECT film_id,
14 (SELECT 1 FROM sakila.store LIMIT 1)
15 FROM sakila.film LIMIT 5
16) AS der_2;

The LIMIT clauses are just for convenience, in case you wish to execute the query
without EXPLAIN and see the results. Here is the result of the EXPLAIN:

+------+----------------------+------------+...
| id | select_type | table |...
+------+----------------------+------------+...
| 1 | PRIMARY | <derived3> |...
| 3 | DERIVED | actor |...
| 2 | DEPENDENT SUBQUERY | film_actor |...
| 4 | UNION | <derived6> |...
| 6 | DERIVED | film |...
| 7 | SUBQUERY | store |...
| 5 | UNCACHEABLE SUBQUERY | rental |...
| NULL | UNION RESULT | <union1,4> |...
+------+----------------------+------------+...

We’ve been careful to make each part of the query access a different table, so you can
see what goes where, but it’s still hard to figure out! Taking it from the top:

• The first row is a forward reference to der_1, which the query has labeled as
<derived3>. It comes from line 2 in the original SQL. To see which rows in the
output refer to SELECT statements that are part of <derived3>, look forward ...

• ...to the second row, whose id is 3. It is 3 because it’s part of the third SELECT in the
query, and it’s listed as a DERIVED type because it’s nested inside a subquery in the
FROM clause. It comes from lines 6 and 7 in the original SQL.

• The third row’s id is 2. It comes from line 3 in the original SQL. Notice that it
comes after a row with a higher id number, suggesting that it is executed afterward,
which makes sense. It is listed as a DEPENDENT SUBQUERY, which means its results
depend on the results of an outer query (also known as a correlated subquery). The

726 | Appendix D: Using EXPLAIN

outer query in this case is the SELECT that begins in line 2 and retrieves data from
der_1.

• The fourth row is listed as a UNION, which means it is the second or later SELECT in
a UNION. Its table is <derived6>, which means it’s retrieving data from a subquery
in the FROM clause and appending to a temporary table for the UNION. As before, to
find the EXPLAIN rows that show the query plan for this subquery, you must look
forward.

• The fifth row is the der_2 subquery defined in lines 13, 14, and 15 in the original
SQL, which EXPLAIN refers to as <derived6>.

• The sixth row is an ordinary subquery in <derived6>’s SELECT list. Its id is 7, which
is important...

• ...because it is greater than 5, which is the seventh row’s id. Why is this important?
Because it shows the boundaries of the <derived6> subquery. When EXPLAIN out-
puts a row whose SELECT type is DERIVED, it represents the beginning of a “nested
scope.” If a subsequent row’s id is smaller (in this case, 5 is smaller than 6), it
means the nested scope has closed. This lets us know that the seventh row is part
of the SELECT list that is retrieving data from <derived6>—i.e., part of the fourth
row’s SELECT list (line 11 in the original SQL). This example is fairly easy to un-
derstand without knowing the significance and rules of nested scopes, but some-
times it’s not so easy. The other notable thing about this row in the output is that
it is listed as an UNCACHEABLE SUBQUERY because of the user variable.

• Finally, the last row is the UNION RESULT. It represents the stage of reading the rows
from the UNION’s temporary table. You can begin at this row and work backward
if you wish; it is returning results from rows whose ids are 1 and 4, which are in
turn references to <derived3> and <derived6>.

As you can see, the combination of these complicated SELECT types can result in
EXPLAIN output that’s pretty difficult to read. Understanding the rules makes it easier,
but there’s no substitute for practice.

Reading EXPLAIN’s output often requires you to jump forward and backward in the list.
For example, look again at the first row in the output. There is no way to know just by
looking at it that it is part of a UNION. You’ll only see that when you read the last row
of the output.

The type Column
The MySQL manual says this column shows the “join type,” but we think it’s more
accurate to say the access type—in other words, how MySQL has decided to find rows
in the table. Here are the most important access methods, from worst to best:

The Columns in EXPLAIN | 727

ALL
This is what most people call a table scan. It generally means MySQL must scan
through the table, from beginning to end, to find the row. (There are exceptions,
such as queries with LIMIT or queries that display “Using distinct/not exists” in the
Extra column.)

index
This is the same as a table scan, except MySQL scans the table in index order
instead of the rows. The main advantage is that this avoids sorting; the biggest
disadvantage is the cost of reading an entire table in index order. This usually means
accessing the rows in random order, which is very expensive.

If you also see “Using index” in the Extra column, it means MySQL is using a
covering index and scanning only the index’s data, not reading each row in index
order. This is much less expensive than scanning the table in index order.

range
A range scan is a limited index scan. It begins at some point in the index and returns
rows that match a range of values. This is better than a full index scan because it
doesn’t go through the entire index. Obvious range scans are queries with a
BETWEEN or > in the WHERE clause.

When MySQL uses an index to look up lists of values, such as IN() and OR lists, it
also displays it as a range scan. However, these are quite different types of accesses,
and they have important performance differences. See the sidebar “What Is a Range
Condition?” on page 192 in Chapter 5 for more information.

The same cost considerations apply for this type as for the index type.

ref
This is an index access (sometimes called an index lookup) that returns rows that
match a single value. However, it might find multiple rows, so it’s a mixture of a
lookup and a scan. This type of index access can happen only on a nonunique
index or a nonunique prefix of a unique index. It’s called ref because the index is
compared to some reference value. The reference value is either a constant or a
value from a previous table in a multiple-table query.

The ref_or_null access type is a variation on ref. It means MySQL must do a
second lookup to find NULL entries after doing the initial lookup.

eq_ref
This is an index lookup that MySQL knows will return at most a single value. You’ll
see this access method when MySQL decides to use a primary key or unique index
to satisfy the query by comparing it to some reference value. MySQL can optimize
this access type very well, because it knows it doesn’t have to estimate ranges of
matching rows or look for more matching rows after it finds one.

const, system
MySQL uses these access types when it can optimize away some part of the query
and turn it into a constant. For example, if you select a row’s primary key by placing

728 | Appendix D: Using EXPLAIN

its primary key into the WHERE clause, MySQL can convert the query into a constant.
It then effectively removes the table from the join execution.

NULL
This access method means MySQL can resolve the query during the optimization
phase and will not even access the table or index during the execution stage. For
example, selecting the minimum value from an indexed column can be done by
looking at the index alone and requires no table access during execution.

The possible_keys Column
This column shows which indexes could be used for the query, based on the columns
the query accesses and the comparison operators used. This list is created early in the
optimization phase, so some of the indexes listed might be useless for the query after
subsequent optimization phases.

The key Column
This column shows which index MySQL decided to use to optimize the access to the
table. If the index doesn’t appear in possible_keys, MySQL chose it for another
reason—for example, it might choose a covering index even when there is no WHERE
clause.

In other words, possible_keys reveals which indexes can help make row lookups effi-
cient, but key shows which index the optimizer decided to use to minimize query cost
(see Chapter 6 for more on the optimizer’s cost metrics). Here’s an example:

mysql> EXPLAIN SELECT actor_id, film_id FROM sakila.film_actor\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: index
possible_keys: NULL
 key: idx_fk_film_id
 key_len: 2
 ref: NULL
 rows: 5143
 Extra: Using index

The key_len Column
This column shows the number of bytes MySQL will use in the index. If MySQL is
using only some of the index’s columns, you can use this value to calculate which
columns it uses. Remember that MySQL 5.5 and older versions can use only the left-
most prefix of the index. For example, sakila.film_actor’s primary key covers two
SMALLINT columns, and a SMALLINT is two bytes, so each tuple in the index is four bytes.
Here’s a sample query:

The Columns in EXPLAIN | 729

mysql> EXPLAIN SELECT actor_id, film_id FROM sakila.film_actor WHERE actor_id=4;
...+------+---------------+---------+---------+...
...| type | possible_keys | key | key_len |...
...+------+---------------+---------+---------+...
...| ref | PRIMARY | PRIMARY | 2 |...
...+------+---------------+---------+---------+...

Based on the key_len column in the result, you can deduce that the query performs
index lookups with only the first column, the actor_id. When calculating column us-
age, be sure to account for character sets in character columns:

mysql> CREATE TABLE t (
 -> a char(3) NOT NULL,
 -> b int(11) NOT NULL,
 -> c char(1) NOT NULL,
 -> PRIMARY KEY (a,b,c)
 ->) ENGINE=MyISAM DEFAULT CHARSET=utf8 ;
mysql> INSERT INTO t(a, b, c)
 -> SELECT DISTINCT LEFT(TABLE_SCHEMA, 3), ORD(TABLE_NAME),
 -> LEFT(COLUMN_NAME, 1)
 -> FROM INFORMATION_SCHEMA.COLUMNS:
mysql> EXPLAIN SELECT a FROM t WHERE a='sak' AND b = 112;
...+------+---------------+---------+---------+...
...| type | possible_keys | key | key_len |...
...+------+---------------+---------+---------+...
...| ref | PRIMARY | PRIMARY | 13 |...
...+------+---------------+---------+---------+...

The length of 13 bytes in this query is the sum of the lengths of the a and b columns.
Column a is three characters, which in utf8 require up to three bytes each, and column
b is a four-byte integer.

MySQL doesn’t always show you how much of an index is really being used. For ex-
ample, if you perform a LIKE query with a prefix pattern match, it will show that the
full width of the column is being used.

The key_len column shows the maximum possible length of the indexed fields, not the
actual number of bytes the data in the table used. MySQL will always show 13 bytes
in the preceding example, even if column a happens to contain no values more than
one character long. In other words, key_len is calculated by looking at the table’s def-
inition, not the data in the table.

The ref Column
This column shows which columns or constants from preceding tables are being used
to look up values in the index named in the key column. Here’s an example that shows
a combination of join conditions and aliases. Notice that the ref column reflects how
the film table is aliased as f in the query text:

730 | Appendix D: Using EXPLAIN

mysql> EXPLAIN
 -> SELECT STRAIGHT_JOIN f.film_id
 -> FROM sakila.film AS f
 -> INNER JOIN sakila.film_actor AS fa
 -> ON f.film_id=fa.film_id AND fa.actor_id = 1
 -> INNER JOIN sakila.actor AS a USING(actor_id);
...+-------+...+--------------------+---------+------------------------+...
...| table |...| key | key_len | ref |...
...+-------+...+--------------------+---------+------------------------+...
...| a |...| PRIMARY | 2 | const |...
...| f |...| idx_fk_language_id | 1 | NULL |...
...| fa |...| PRIMARY | 4 | const,sakila.f.film_id |...
...+-------+...+--------------------+---------+------------------------+...

The rows Column
This column shows the number of rows MySQL estimates it will need to read to find
the desired rows. This number is per loop in the nested-loop join plan. That is, it’s not
just the number of rows MySQL thinks it will need to read from the table; it is the
number of rows, on average, MySQL thinks it will have to read to find rows that satisfy
the criteria in effect at that point in query execution. (The criteria include constants
given in the SQL as well as the current columns from previous tables in the join order.)

This estimate can be quite inaccurate, depending on the table statistics and how selec-
tive the indexes are. It also doesn’t reflect LIMIT clauses in MySQL 5.0 and earlier. For
example, the following query will not examine 1,022 rows:

mysql> EXPLAIN SELECT * FROM sakila.film LIMIT 1\G
...
 rows: 1022

You can calculate roughly the number of rows the entire query will examine by multi-
plying all the rows values together. For example, the following query might examine
approximately 2,600 rows:

mysql> EXPLAIN
 -> SELECT f.film_id
 -> FROM sakila.film AS f
 -> INNER JOIN sakila.film_actor AS fa USING(film_id)
 -> INNER JOIN sakila.actor AS a USING(actor_id);
...+------+...
...| rows |...
...+------+...
...| 200 |...
...| 13 |...
...| 1 |...
...+------+...

Remember, this is the number of rows MySQL thinks it will examine, not the number
of rows in the result set. Also realize that there are many optimizations, such as join
buffers and caches, that aren’t factored into the number of rows shown. MySQL will

The Columns in EXPLAIN | 731

probably not have to actually read every row it predicts it will. MySQL also doesn’t
know anything about the operating system or hardware caches.

The filtered Column
This column is new in MySQL 5.1 and appears when you use EXPLAIN EXTENDED. It
shows a pessimistic estimate of the percentage of rows that will satisfy some condition
on the table, such as a WHERE clause or a join condition. If you multiply the rows column
by this percentage, you will see the number of rows MySQL estimates it will join with
the previous tables in the query plan. At the time of this writing, the optimizer uses this
estimate only for the ALL, index, range, and index_merge access methods.

To illustrate this column’s output, we created a table as follows:

CREATE TABLE t1 (
 id INT NOT NULL AUTO_INCREMENT,
 filler char(200),
 PRIMARY KEY(id)
);

We then inserted 1,000 rows into this table, with random text in the filler column.
Its purpose is to prevent MySQL from using a covering index for the query we’re about
to run:

mysql> EXPLAIN EXTENDED SELECT * FROM t1 WHERE id < 500\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1000
 filtered: 49.40
 Extra: Using where

MySQL could use a range access to retrieve all rows with IDs less than 500 from the
table, but it won’t because that would eliminate only about half the rows. It thinks a
table scan is less expensive. As a result, it uses a table scan and a WHERE clause to filter
out rows. It knows how many rows the WHERE clause will remove from the result, because
of the range access cost estimates. That’s why the 49.40% value appears in the fil
tered column.

The Extra Column
This column contains extra information that doesn’t fit into other columns. The
MySQL manual documents most of the many values that can appear here; we have
referred to many of them throughout this book.

732 | Appendix D: Using EXPLAIN

The most important values you might see frequently are as follows:

“Using index”
This indicates that MySQL will use a covering index to avoid accessing the table.
Don’t confuse covering indexes with the index access type.

“Using where”
This means the MySQL server will post-filter rows after the storage engine retrieves
them. Many WHERE conditions that involve columns in an index can be checked by
the storage engine when (and if) it reads the index, so not all queries with a WHERE
clause will show “Using where.” Sometimes the presence of “Using where” is a
hint that the query can benefit from different indexing.

“Using temporary”
This means MySQL will use a temporary table while sorting the query’s result.

“Using filesort”
This means MySQL will use an external sort to order the results, instead of reading
the rows from the table in index order. MySQL has two filesort algorithms, which
you can read about in Chapter 6. Either type can be done in memory or on disk.
EXPLAIN doesn’t tell you which type of filesort MySQL will use, and it doesn’t tell
you whether the sort will be done in memory or on disk.

“Range checked for each record (index map: N)”
This value means there’s no good index, and the indexes will be reevaluated for
each row in a join. N is a bitmap of the indexes shown in possible_keys and is
redundant.

Tree-Formatted Output
MySQL users often wish they could get EXPLAIN’s output to be formatted as a tree,
showing a more accurate representation of the execution plan. As it is, EXPLAIN is a
somewhat awkward way to see the execution plan; a tree structure doesn’t fit very well
into a tabular output. The awkwardness is highlighted by the large number of possible
values for the Extra column, as well as by UNION. UNION is quite unlike every other kind
of join MySQL can do, and it doesn’t fit well into EXPLAIN.

It’s possible, with a good understanding of the rules and particularities of EXPLAIN, to
work backward to a tree-formatted execution plan. This is quite tedious, though, and
it’s best left to an automated tool. Percona Toolkit contains pt-visual-explain, which is
such a tool.

Tree-Formatted Output | 733

Improvements in MySQL 5.6
MySQL 5.6 will include an important enhancement to EXPLAIN: the ability to explain
queries such as UPDATE, INSERT, and so on. This is very helpful because although one
can convert a DML statement to a quasi-equivalent SELECT statement and EXPLAIN it,
the result will not truly reflect how the statement executes. While developing and using
tools such as Percona Toolkit’s pt-upgrade that attempt to use that technique, we’ve
found several cases where the optimizer doesn’t follow the code path we expected when
converting statements to SELECT. The ability to EXPLAIN a statement without transform-
ing it to a SELECT is thus helpful for understanding what truly happens during execution.

MySQL 5.6 will also include a variety of improvements to the query optimizer and
execution engine that allow anonymous temporary tables to be materialized as late as
possible, rather than always creating and filling them before optimizing and executing
the portions of the query that refer to them. This will allow MySQL to explain queries
with subqueries instantly, without having to actually execute the subqueries first.

Finally, MySQL 5.6 will enhance a related area of the optimizer by adding optimizer
trace functionality to the server. This will permit the user to view the decisions the
optimizer made, as well as the inputs (index cardinality, for example) and the reasons
for the decisions. This will be very helpful for understanding not just the execution plan
that the server chose, but also why it chose that plan.

734 | Appendix D: Using EXPLAIN

APPENDIX E

Debugging Locks

Any system that uses locks to control shared access to resources can be hard to debug
when a lock contention issue crops up. Perhaps you’re trying to add a column to a table,
or just trying to run a query, when suddenly you find that your queries are blocked
because something else is locking the table or rows you’re trying to use. Often all you
will want to do is find out why your query is blocked, but sometimes you will want to
know what’s blocking it, so you know which process to kill. This appendix shows you
how to achieve both goals.

The MySQL server itself uses several types of locks. If a query is waiting for a lock at
the server level, you can see evidence of it in the output of SHOW PROCESSLIST. In addition
to server-level locks, any storage engine that supports row-level locks, such as InnoDB,
implements its own locks. In MySQL 5.0 and earlier versions, the server is unaware of
such locks, and they’re mostly hidden from users and database administrators. There’s
more visibility in MySQL 5.1 and later versions.

Lock Waits at the Server Level
A lock wait can happen at either the server level or the storage engine level.1

(Application-level locks could be a problem too, but we’re focusing on MySQL.) Here
are the kinds of locks the MySQL server uses:

Table locks
Tables can be locked with explicit read and write locks. There are a couple of
variations on these locks, such as local read locks. You can learn about the varia-
tions in the LOCK TABLES section of the MySQL manual. In addition to these explicit
locks, queries acquire implicit locks on tables for their durations.

1. Refer to Figure 1-1 in Chapter 1 if you need to refresh your memory on the separation between the server
and the storage engines.

735

Global locks
There is a single global read lock that can be acquired with FLUSH TABLES WITH READ
LOCK or by setting read_only=1. This conflicts with any table locks.

Name locks
Name locks are a type of table lock that the server creates when it renames or
drops a table.

String locks
You can lock and release an arbitrary string server-wide with GET_LOCK() and its
associated functions.

We examine each of these lock types in more detail in the following sections.

Table Locks
Table locks can be either explicit or implicit. You create explicit locks with LOCK
TABLES. For example, if you execute the following command in a mysql session, you’ll
have an explicit lock on sakila.film:

mysql> LOCK TABLES sakila.film READ;

If you then execute the following command in a different session, the query will hang
and not complete:

mysql> LOCK TABLES sakila.film WRITE;

You can see the waiting thread in the first connection:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 7
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: NULL
 Info: SHOW PROCESSLIST
*************************** 2. row ***************************
 Id: 11
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 4
 State: Locked
 Info: LOCK TABLES sakila.film WRITE
2 rows in set (0.01 sec)

Notice that thread 11’s state is Locked. There is only one place in the MySQL server’s
code where a thread enters that state: when it tries to acquire a table lock and another

736 | Appendix E: Debugging Locks

thread has the table locked. Thus, if you see this, you know the thread is waiting for a
lock in the MySQL server, not in the storage engine.

Explicit locks, however, are not the only type of lock that might block such an opera-
tion. As we mentioned earlier, the server implicitly locks tables during queries. An easy
way to show this is with a long-running query, which you can create easily with the
SLEEP() function:

mysql> SELECT SLEEP(30) FROM sakila.film LIMIT 1;

If you try again to lock sakila.film while that query is running, the operation will hang
because of the implicit lock, just as it did when you had the explicit lock. You’ll be able
to see the effects in the process list, as before:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 7
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 12
 State: Sending data
 Info: SELECT SLEEP(30) FROM sakila.film LIMIT 1
*************************** 2. row ***************************
 Id: 11
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 9
 State: Locked
 Info: LOCK TABLES sakila.film WRITE

In this example, the implicit read lock for the SELECT query blocks the explicit write
lock requested by LOCK TABLES. Implicit locks can block each other, too.

You might be wondering about the difference between implicit and explicit locks. In-
ternally, they are the same type of structure, and the same MySQL server code controls
them. Externally, you can control explicit locks yourself with LOCK TABLES and UNLOCK
TABLES.

When it comes to storage engines other than MyISAM, however, there’s one very im-
portant difference between them. When you create a lock explicitly, it does what you
tell it to, but implicit locks are hidden and “magical.” The server creates and releases
implicit locks automatically as needed, and it tells the storage engine about them. Stor-
age engines “convert” these locks as they see fit. For example, InnoDB has rules about
what type of InnoDB table lock it should create for a given server-level table lock. This
can make it hard to understand what locks InnoDB is really creating behind the scenes.

Lock Waits at the Server Level | 737

Finding out who holds a lock

If you see a lot of processes in the Locked state, your problem might be that you’re trying
to use MyISAM or a similar storage engine for a high-concurrency workload. This can
block you from performing an operation manually, such as adding an index to a table.
If an UPDATE query is queued and waiting for a lock on a MyISAM table, even a SELECT
query won’t be allowed to run. (You can read more about MySQL’s lock queuing and
priorities in the MySQL manual.)

In some cases, it can become clear that some connection has been holding a lock on a
table for a very long time and just needs to be killed (or a user needs to be admonished
not to hold up the works!). But how can you find out which connection that is?

There’s currently no SQL command that can show you which thread holds the table
locks that are blocking your query. If you run SHOW PROCESSLIST, you can see the pro-
cesses that are waiting for locks, but not which processes hold those locks. Fortunately,
there’s a debug command that can print information about locks into the server’s error
log. You can use the mysqladmin utility to run the command:

$ mysqladmin debug

The output in the error log includes a lot of debugging information, but near the end
you’ll see something like the following. We created this output by locking the table in
one connection, then trying to lock it again in another:

Thread database.table_name Locked/Waiting Lock_type
7 sakila.film Locked - read Read lock without concurrent inserts
8 sakila.film Waiting - write Highest priority write lock

You can see that thread 8 is waiting for the lock thread 7 holds.

The Global Read Lock
The MySQL server also implements a global read lock. You can obtain this lock as
follows:

mysql> FLUSH TABLES WITH READ LOCK;

If you now try to lock a table in another session, it will hang as before:

mysql> LOCK TABLES sakila.film WRITE;

How can you tell that this query is waiting for the global read lock and not a table-level
lock? Look at the output of SHOW PROCESSLIST:

mysql> SHOW PROCESSLIST\G
...
*************************** 2. row ***************************
 Id: 22
 User: baron
 Host: localhost
 db: NULL
Command: Query

738 | Appendix E: Debugging Locks

 Time: 9
 State: Waiting for release of readlock
 Info: LOCK TABLES sakila.film WRITE

Notice that the query’s state is Waiting for release of readlock. This is your clue that
the query is waiting for the global read lock, not a table-level lock.

MySQL provides no way to find out who holds the global read lock.

Name Locks
Name locks are a type of table lock that the server creates when it renames or drops a
table. A name lock conflicts with an ordinary table lock, whether implicit or explicit.
For example, if we use LOCK TABLES as before, and then in another session try to rename
the locked table, the query will hang, but this time not in the Locked state:

mysql> RENAME TABLE sakila.film2 TO sakila.film;

As before, the process list is the place to see the locked query, which is in the Waiting
for table state:

mysql> SHOW PROCESSLIST\G
...
*************************** 2. row ***************************
 Id: 27
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 3
 State: Waiting for table
 Info: rename table sakila.film to sakila.film 2

You can see the effects of a name lock in the output of SHOW OPEN TABLES, too:

mysql> SHOW OPEN TABLES;
+----------+-----------+--------+-------------+
| Database | Table | In_use | Name_locked |
+----------+-----------+--------+-------------+
sakila	film_text	3	0
sakila	film	2	1
sakila	film2	1	1
+----------+-----------+--------+-------------+
3 rows in set (0.00 sec)

Notice that both names (the original and the new name) are locked. sakila
.film_text is locked because there’s a trigger on sakila.film that refers to it, which
illustrates another way locks can insinuate themselves into places you might not expect.
If you query sakila.film, the trigger causes you to implicitly touch sakila.film_text,
and therefore to implicitly lock it. It’s true that the trigger really doesn’t need to fire for
the rename, and thus technically the lock isn’t required, but that’s the way it is:
MySQL’s locking is sometimes not as fine-grained as you might like.

Lock Waits at the Server Level | 739

MySQL doesn’t provide any way to find out who holds name locks, but this usually
isn’t a problem because they’re generally held for only a very short time. When there’s
a conflict, it is generally because a name lock is waiting for a normal table lock, which
you can view with mysqladmin debug, as shown earlier.

User Locks
The final type of lock implemented in the server is the user lock, which is basically a
named mutex. You specify the string to lock and the number of seconds to wait before
the lock attempt should time out:

mysql> SELECT GET_LOCK('my lock', 100);
+--------------------------+
| GET_LOCK('my lock', 100) |
+--------------------------+
| 1 |
+--------------------------+
1 row in set (0.00 sec)

This attempt returned success immediately, so this thread now has a lock on that
named mutex. If another thread tries to lock the same string, it will hang until it times
out. This time the process list shows a different state:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 22
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 9
 State: User lock
 Info: SELECT GET_LOCK('my lock', 100)

The User lock state is unique to this type of lock. MySQL provides no way to find out
who holds a user lock.

Lock Waits in InnoDB
Locks at the server level can be quite a bit easier to debug than locks in storage engines.
Storage engine locks differ from one storage engine to the next, and the engines might
not provide any means to inspect their locks. We focus on InnoDB in this appendix.

InnoDB exposes some lock information in the output of SHOW INNODB STATUS. If a trans-
action is waiting for a lock, the lock will appear in the TRANSACTIONS section of the output
from SHOW INNODB STATUS. For example, if you execute the following commands in one
session, you will acquire a write lock on the first row in the table:

mysql> SET AUTOCOMMIT=0;
mysql> BEGIN;
mysql> SELECT film_id FROM sakila.film LIMIT 1 FOR UPDATE;

740 | Appendix E: Debugging Locks

If you now run the same commands in another session, your query will block on the
lock the first session acquired on that row. You can see the effects in SHOW INNODB
STATUS (we’ve abbreviated the results for clarity):

1 LOCK WAIT 2 lock struct(s), heap size 1216
2 MySQL thread id 8, query id 89 localhost baron Sending data
3 SELECT film_id FROM sakila.film LIMIT 1 FOR UPDATE
4 ------- TRX HAS BEEN WAITING 9 SEC FOR THIS LOCK TO BE GRANTED:
5 RECORD LOCKS space id 0 page no 194 n bits 1072 index `idx_fk_language_id` of table
 `sakila/film` trx id 0 61714 lock_mode X waiting

The last line shows that the query is waiting for an exclusive (lock_mode X) lock on page
194 of the table’s idx_fk_language_id index. Eventually, the lock wait timeout will be
exceeded, and the query will return an error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

Unfortunately, without seeing who holds the locks, it’s hard to figure out which trans-
action is causing the problem. You can often make an educated guess by looking at
which transactions have been open a very long time; alternatively, you can activate the
InnoDB lock monitor, which will show up to 10 of the locks each transaction holds.
To activate the monitor, you create a magically named table with the InnoDB storage
engine:2

mysql> CREATE TABLE innodb_lock_monitor(a int) ENGINE=INNODB;

When you issue this query, InnoDB begins printing a slightly enhanced version of the
output of SHOW INNODB STATUS to standard output at intervals (the interval varies, but
it’s usually several times per minute). On most systems, this output is redirected to the
server’s error log; you can examine it to see which transactions hold which locks. To
stop the lock monitor, drop the table.

Here’s the relevant sample of the lock monitor output:

 1 ---TRANSACTION 0 61717, ACTIVE 3 sec, process no 5102, OS thread id 1141152080
 2 3 lock struct(s), heap size 1216
 3 MySQL thread id 11, query id 108 localhost baron
 4 show innodb status
 5 TABLE LOCK table `sakila/film` trx id 0 61717 lock mode IX
 6 RECORD LOCKS space id 0 page no 194 n bits 1072 index `idx_fk_language_id` of table
 `sakila/film` trx id 0 61717 lock_mode X
 7 Record lock, heap no 2 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
 8 ... omitted ...
 9
10 RECORD LOCKS space id 0 page no 231 n bits 168 index `PRIMARY` of table `sakila/film`
 trx id 0 61717 lock_mode X locks rec but not gap
11 Record lock, heap no 2 PHYSICAL RECORD: n_fields 15; compact format; info bits 0
12 ... omitted ...

2. InnoDB honors several “magical” table names as instructions. Current practice is to use dynamically
settable server variables, but InnoDB has been around a long time, so it still has some old behaviors.

Lock Waits in InnoDB | 741

Notice that line 3 shows the MySQL thread ID, which is the same as the value in the
Id column in the process list. Line 5 shows that the transaction has an implicit exclusive
table lock (IX) on the table. Lines 6 through 8 show the lock on the index. We’ve omitted
the information on line 8 because it’s a dump of the locked record and is pretty verbose.
Lines 9 through 11 show the corresponding lock on the primary key (a FOR UPDATE lock
must lock the row, not just the index).

When the lock monitor is activated the extra information appears in the output of SHOW
INNODB STATUS too, so you don’t actually have to look in the server’s error log to see the
lock information.

The lock monitor is not optimal, for several reasons. The primary problem is that the
lock information is very verbose, because it includes hex and ASCII dumps of the re-
cords that are locked. It fills up the error log, and it can easily overflow the fixed-size
output of SHOW INNODB STATUS. This means you might not get the information you’re
looking for in later sections of the output. InnoDB also has a hardcoded limit to the
number of locks it prints per transaction—after printing 10 locks, it will not print any
more, which means you might not even see any information on the lock you want. To
top it all off, even if what you’re looking for is there, it’s hard to find it in all that lock
output. (Just try it on a busy server, and you’ll see!)

Two things can make the lock output more usable. The first is a patch one of this book’s
authors wrote for InnoDB and the MySQL server, which is included in Percona Server
and MariaDB. The patch removes the verbose record dumps from the output, includes
the lock information in the output of SHOW INNODB STATUS by default (so the lock monitor
doesn’t need to be activated), and adds dynamically settable server variables to control
the verbosity and how many locks should be printed per transaction.

The second option is to use innotop to parse and format the output. Its Lock mode
shows locks, aggregated neatly by connection and table, so you can see quickly which
transactions hold locks on a given table. This is not a foolproof method of finding which
transaction is blocking a lock, because that would require examining the dumped re-
cords to find the precise record that’s locked. However, it’s much better than the usual
alternatives, and it’s good enough for many purposes.

Using the INFORMATION_SCHEMA Tables
Using SHOW INNODB STATUS to look at locks is definitely old-school, now that InnoDB
has INFORMATION_SCHEMA tables that expose its transactions and locks.

If you don’t see the tables, you are not using a new enough version of InnoDB. You
need at least MySQL 5.1 and the InnoDB plugin. If you’re using MySQL 5.1 and you
don’t see the INNODB_LOCKS table, check SHOW VARIABLES for the innodb_version variable.
If you don’t see the variable, you’re not using the InnoDB plugin, and you should be!
If you see the variable but you don’t have the tables, you need to ensure that the

742 | Appendix E: Debugging Locks

plugin_load setting in the server configuration file includes the tables explicitly. Check
the MySQL manual for details.

Fortunately, in MySQL 5.5 you don’t need to worry about all of this; the modern version
of InnoDB is built right into the server.

The MySQL and InnoDB manuals have sample queries you can use against these tables,
which we won’t repeat here, but we’ll add a couple of our own. For example, here is a
query that shows who’s blocking and who’s waiting, and for how long:

SELECT r.trx_id AS waiting_trx_id, r.trx_mysql_thread_id AS waiting_thread,
 TIMESTAMPDIFF(SECOND, r.trx_wait_started, CURRENT_TIMESTAMP) AS wait_time,
 r.trx_query AS waiting_query,
 l.lock_table AS waiting_table_lock,
 b.trx_id AS blocking_trx_id, b.trx_mysql_thread_id AS blocking_thread,
 SUBSTRING(p.host, 1, INSTR(p.host, ':') - 1) AS blocking_host,
 SUBSTRING(p.host, INSTR(p.host, ':') +1) AS blocking_port,
 IF(p.command = "Sleep", p.time, 0) AS idle_in_trx,
 b.trx_query AS blocking_query
FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS AS w
INNER JOIN INFORMATION_SCHEMA.INNODB_TRX AS b ON b.trx_id = w.blocking_trx_id
INNER JOIN INFORMATION_SCHEMA.INNODB_TRX AS r ON r.trx_id = w.requesting_trx_id
INNER JOIN INFORMATION_SCHEMA.INNODB_LOCKS AS l ON w.requested_lock_id = l.lock_id
LEFT JOIN INFORMATION_SCHEMA.PROCESSLIST AS p ON p.id = b.trx_mysql_thread_id
ORDER BY wait_time DESC\G
*************************** 1. row ***************************
 waiting_trx_id: 5D03
 waiting_thread: 3
 wait_time: 6
 waiting_query: select * from store limit 1 for update
waiting_table_lock: `sakila`.`store`
 blocking_trx_id: 5D02
 blocking_thread: 2
 blocking_host: localhost
 blocking_port: 40298
 idle_in_trx: 8
 blocking_query: NULL

The result shows that thread 3 has been waiting for 6 seconds to lock a row in the
store table. It is blocked on thread 2, which has been idle for 8 seconds.

If you’re suffering from a lot of locking due to threads that are idle in a transaction, the
following variation can show you how many queries are blocked on which threads,
without all the verbosity:

SELECT CONCAT('thread ', b.trx_mysql_thread_id, ' from ', p.host) AS who_blocks,
 IF(p.command = "Sleep", p.time, 0) AS idle_in_trx,
 MAX(TIMESTAMPDIFF(SECOND, r.trx_wait_started, NOW())) AS max_wait_time,
 COUNT(*) AS num_waiters
FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS AS w
INNER JOIN INFORMATION_SCHEMA.INNODB_TRX AS b ON b.trx_id = w.blocking_trx_id
INNER JOIN INFORMATION_SCHEMA.INNODB_TRX AS r ON r.trx_id = w.requesting_trx_id
LEFT JOIN INFORMATION_SCHEMA.PROCESSLIST AS p ON p.id = b.trx_mysql_thread_id
GROUP BY who_blocks ORDER BY num_waiters DESC\G
*************************** 1. row ***************************

Lock Waits in InnoDB | 743

 who_blocks: thread 2 from localhost:40298
 idle_in_trx: 1016
max_wait_time: 37
 num_waiters: 8

The result shows that thread 2 has now been idle for a much longer time, and at least
one thread has been waiting for up to 37 seconds for it to release its locks. There are
eight threads waiting for thread 2 to finish its work and commit.

We’ve found that idle-in-transaction locking is a common cause of emergency prob-
lems, and is sometimes difficult for people to diagnose. The pt-kill tool from Percona
Toolkit can be configured to kill long-running idle transactions to prevent this situation.
Percona Server itself also supports an idle transaction timeout parameter to accomplish
the same thing.

744 | Appendix E: Debugging Locks

APPENDIX F

Using Sphinx with MySQL

Sphinx (http://www.sphinxsearch.com) is a free, open source, full-text search engine,
designed from the ground up to integrate well with databases. It has DBMS-like fea-
tures, is very fast, supports distributed searching, and scales well. It is also designed for
efficient memory and disk I/O, which is important because they’re often the limiting
factors for large operations.

Sphinx works well with MySQL. It can be used to accelerate a variety of queries, in-
cluding full-text searches; you can also use it to perform fast grouping and sorting
operations, among other applications. It speaks MySQL’s wire protocol and a mostly
MySQL-compatible SQL-like dialect, so you can actually query it just like a MySQL
database. Additionally, there is a pluggable storage engine that lets a programmer or
administrator access Sphinx directly through MySQL. Sphinx is especially useful for
certain queries that MySQL’s general-purpose architecture doesn’t optimize very well
for large datasets in real-world settings. In short, Sphinx can enhance MySQL’s func-
tionality and performance.

The source of data for a Sphinx index is usually the result of a MySQL SELECT query,
but you can build an index from an unlimited number of sources of varying types, and
each instance of Sphinx can search an unlimited number of indexes. For example, you
can pull some of the documents in an index from a MySQL instance running on one
remote server, some from a PostgreSQL instance running on another server, and some
from the output of a local script through an XML pipe mechanism.

In this appendix, we explore some use cases where Sphinx’s capabilities enable en-
hanced performance, show a summary of the steps needed to install and configure
it, explain its features in detail, and we discuss several examples of real-world
implementations.

745

http://www.sphinxsearch.com

A Typical Sphinx Search
We start with a simple but complete Sphinx usage example to provide a starting point
for further discussion. We use PHP because of its popularity, although APIs are avail-
able for a number of other languages, too.

Assume that we’re implementing full-text searching for a comparison-shopping engine.
Our requirements are to:

• Maintain a searchable full-text index on a product table stored in MySQL

• Allow full-text searches over product titles and descriptions

• Be able to narrow down searches to a given category if needed

• Be able to sort the result not only by relevance, but by item price or submission date

We begin by setting up a data source and an index in the Sphinx configuration file:

source products
{
 type = mysql
 sql_host = localhost
 sql_user = shopping
 sql_pass = mysecretpassword
 sql_db = shopping
 sql_query = SELECT id, title, description, \
 cat_id, price, UNIX_TIMESTAMP(added_date) AS added_ts \
 FROM products
 sql_attr_uint = cat_id
 sql_attr_float = price
 sql_attr_timestamp = added_ts
}

index products
{
 source = products
 path = /usr/local/sphinx/var/data/products
 docinfo = extern
}

This example assumes that the MySQL shopping database contains a products table
with the columns we request in our SELECT query to populate our Sphinx index. The
Sphinx index is also named products. After creating a new source and index, we run
the indexer program to create the initial full-text index data files and then (re)start the
searchd daemon to pick up the changes:

$ cd /usr/local/sphinx/bin
$./indexer products
$./searchd --stop
$./searchd

The index is now ready to answer queries. We can test it with Sphinx’s bundled
test.php sample script:

746 | Appendix F: Using Sphinx with MySQL

$ php -q test.php -i products ipod

Query 'ipod ' retrieved 3 of 3 matches in 0.010 sec.
Query stats:
 'ipod' found 3 times in 3 documents
Matches:
1. doc_id=123, weight=100, cat_id=100, price=159.99, added_ts=2008-01-03 22:38:26
2. doc_id=124, weight=100, cat_id=100, price=199.99, added_ts=2008-01-03 22:38:26
3. doc_id=125, weight=100, cat_id=100, price=249.99, added_ts=2008-01-03 22:38:26

The final step is to add searching to our web application. We need to set sorting and
filtering options based on user input and format the output nicely. Also, because Sphinx
returns only document IDs and configured attributes to the client—it doesn’t store any
of the original text data—we need to pull additional row data from MySQL ourselves:

 1 <?php
 2 include ("sphinxapi.php");
 3 // ... other includes, MySQL connection code,
 4 // displaying page header and search form, etc. all go here
 5
 6 // set query options based on end-user input
 7 $cl = new SphinxClient ();
 8 $sortby = $_REQUEST["sortby"];
 9 if (!in_array ($sortby, array ("price", "added_ts")))
10 $sortby = "price";
11 if ($_REQUEST["sortorder"]=="asc")
12 $cl->SetSortMode (SPH_SORT_ATTR_ASC, $sortby);
13 else
14 $cl->SetSortMode (SPH_SORT_ATTR_DESC, $sortby);
15 $offset = ($_REQUEST["page"]-1)*$rows_per_page;
16 $cl->SetLimits ($offset, $rows_per_page);
17
18 // issue the query, get the results
19 $res = $cl->Query ($_REQUEST["query"], "products");
20
21 // handle search errors
22 if (!$res)
23 {
24 print "Search error:" . $cl->GetLastError ();
25 die;
26 }
27
28 // fetch additional columns from MySQL
29 $ids = join (",", array_keys ($res["matches"]);
30 $r = mysql_query ("SELECT id, title FROM products WHERE id IN ($ids)")
31 or die ("MySQL error: " . mysql_error());
32 while ($row = mysql_fetch_assoc($r))
33 {
34 $id = $row["id"];
35 $res["matches"][$id]["sql"] = $row;
36 }
37
38 // display the results in the order returned from Sphinx
39 $n = 1 + $offset;
40 foreach ($res["matches"] as $id=>$match)

A Typical Sphinx Search | 747

41 {
42 printf ("%d. %s, USD %.2f
\n",
43 $n++, $id, $match["sql"]["title"], $match["attrs"]["price"]);
44 }
45
46 ?>

Even though the snippet just shown is pretty simple, there are a few things worth
highlighting:

• The SetLimits() call tells Sphinx to fetch only the number of rows that the client
wants to display on a page. It’s cheap to impose this limit in Sphinx (unlike in
MySQL’s built-in search facility), and the number of results that would have been
returned without the limit are available in $result['total_found'] at no extra cost.

• Because Sphinx only indexes the title column and doesn’t store it, we must fetch
that data from MySQL.

• We retrieve data from MySQL with a single combined query for the whole docu-
ment batch using the clause WHERE id IN (...), instead of running one query for
each match (which would be inefficient).

• We inject the rows pulled from MySQL into our full-text search result set, to keep
the original sorting order. We explain this more in a moment.

• We display the rows using data pulled from both Sphinx and MySQL.

The row injection code, which is PHP-specific, deserves a more detailed explanation.
We couldn’t simply iterate over the result set from the MySQL query, because the row
order can (and in most cases actually will) be different from that specified in the WHERE
id IN (...) clause. PHP hashes (associative arrays), however, keep the order in which
the matches were inserted into them, so iterating over $result["matches"] will produce
rows in the proper sorting order as returned by Sphinx. To keep the matches in the
proper order returned from Sphinx (rather than the semirandom order returned from
MySQL), therefore, we inject the MySQL query results one by one into the hash that
PHP stores from the Sphinx result set of matches.

There are also a few major implementation and performance differences between
MySQL and Sphinx when it comes to counting matches and applying a LIMIT clause.
First, LIMIT is cheap in Sphinx. Consider a LIMIT 500,10 clause. MySQL will retrieve
510 semirandom rows (which is slow) and throw away 500, whereas Sphinx will return
the IDs that you will use to retrieve the 10 rows you actually need from MySQL. Second,
Sphinx will always return the exact number of matches it actually found in the result
set, no matter what’s in the LIMIT clause. MySQL can’t do this efficiently, although in
MySQL 5.6 it will have partial improvements for this limitation.

748 | Appendix F: Using Sphinx with MySQL

Why Use Sphinx?
Sphinx can complement a MySQL-based application in many ways, bolstering perfor-
mance where MySQL is not a good solution and adding functionality MySQL can’t
provide. Typical usage scenarios include:

• Fast, efficient, scalable, relevant full-text searches

• Optimizing WHERE conditions on low-selectivity indexes or columns without in-
dexes

• Optimizing ORDER BY ... LIMIT N queries and GROUP BY queries

• Generating result sets in parallel

• Scaling up and scaling out

• Aggregating partitioned data

We explore each of these scenarios in the following sections. This list is not exhaustive,
though, and Sphinx users find new applications regularly. For example, one of Sphinx’s
most important uses—scanning and filtering records quickly—was a user innovation,
not one of Sphinx’s original design goals.

Efficient and Scalable Full-Text Searching
MyISAM’s full-text search capability is fast for smaller datasets but performs badly
when the data size grows. With millions of records and gigabytes of indexed text, query
times can vary from a second to more than 10 minutes, which is unacceptable for a
high-performance web application. Although it’s possible to scale MyISAM’s full-text
searches by distributing the data in many locations, this requires you to perform
searches in parallel and merge the results in your application.

Sphinx works significantly faster than MyISAM’s built-in full-text indexes. For in-
stance, it can search over 1 GB of text within 10 to 100 milliseconds—and that scales
well up to 10–100 GB per CPU. Sphinx also has the following advantages:

• It can index data stored with InnoDB and other engines, not just MyISAM.

• It can create indexes on data combined from many source tables, instead of being
limited to columns in a single table.

• It can dynamically combine search results from multiple indexes.

• In addition to indexing textual columns, its indexes can contain an unlimited
number of numeric attributes, which are analogous to “extra columns.” Sphinx
attributes can be integers, floating-point numbers, and Unix timestamps.

• It can optimize full-text searches with additional conditions on attributes.

• Its phrase-based ranking algorithm helps it return more relevant results. For in-
stance, if you search a table of song lyrics for “I love you, dear,” a song that contains

Why Use Sphinx? | 749

that exact phrase will turn up at the top, before songs that just contain “love” or
“dear” many times.

• It makes scaling out much easier.

Applying WHERE Clauses Efficiently
Sometimes you’ll need to run SELECT queries against very large tables (containing mil-
lions of records), with several WHERE conditions on columns that have poor index se-
lectivity (i.e., return too many rows for a given WHERE condition) or could not be indexed
at all. Common examples include searching for users in a social network and searching
for items on an auction site. Typical search interfaces let the user apply WHERE conditions
to 10 or more columns, while requiring the results to be sorted by other columns. See
the indexing case study in Chapter 5 for an example of such an application and the
required indexing strategies.

With the proper schema and query optimizations, MySQL can work acceptably for
such queries, as long as the WHERE clauses don’t contain too many columns. But as the
number of columns grows, the number of indexes required to support all possible
searches grows exponentially. Covering all the possible combinations for just four col-
umns strains MySQL’s limits. It becomes very slow and expensive to maintain the
indexes, too. This means it’s practically impossible to have all the required indexes for
many WHERE conditions, and you have to run the queries without indexes.

More importantly, even if you can add indexes, they won’t give much benefit unless
they’re selective. The classic example is a gender column, which isn’t much help because
it typically selects around half of all rows. MySQL will generally revert to a full table
scan when the index isn’t selective enough to help it.

Sphinx can perform such queries much faster than MySQL. You can build a Sphinx
index with only the required columns from the data. Sphinx then allows two types of
access to the data: an indexed search on a keyword or a full scan. In both cases, Sphinx
applies filters, which are its equivalent of a WHERE clause. Unlike MySQL, which decides
internally whether to use an index or a full scan, Sphinx lets you choose which access
method to use.

To use a full scan with filters, specify an empty string as the search query. To use an
indexed search, add pseudokeywords to your full-text fields while building the index
and then search for those keywords. For example, if you wanted to search for items in
category 123, you’d add a “category123” keyword to the document during indexing
and then perform a full-text search for “category123.” You can either add keywords to
one of the existing fields using the CONCAT() function, or create a special full-text field
for the pseudokeywords for more flexibility. Normally, you should use filters for non-
selective values that cover over 30% of the rows, and fake keywords for selective ones
that select 10% or less. If the values are in the 10–30% gray zone, your mileage may
vary, and you should use benchmarks to find the best solution.

750 | Appendix F: Using Sphinx with MySQL

Sphinx will perform both indexed searches and scans faster than MySQL. Sometimes
Sphinx actually performs a full scan faster than MySQL can perform an index read.

Finding the Top Results in Order
Web applications frequently need the top N results in order. As we discussed previously,
this is hard to optimize in MySQL 5.5 and older versions.

The worst case is when the WHERE condition finds many rows (let’s say 1 million) and
the ORDER BY columns aren’t indexed. MySQL uses the index to identify all the matching
rows, reads the records one by one into the sort buffer with semirandom disk reads,
sorts them all with a filesort, and then discards most of them. It will temporarily store
and process the entire result, ignoring the LIMIT clause and churning RAM. And if the
result set doesn’t fit in the sort buffer, it will need to go to disk, causing even more
disk I/O.

This is an extreme case, and you might think it happens rarely in the real world, but in
fact the problems it illustrates happen often. MySQL’s limitations on indexes for
sorting—using only the leftmost part of the index, not supporting loose index scans,
and allowing only a single range condition—mean many real-world queries can’t ben-
efit from indexes. And even when they can, using semirandom disk I/O to retrieve rows
is a performance killer.

Paginated result sets, which usually require queries of the form SELECT ... LIMIT N,
M, are another performance problem in MySQL. They read N + M rows from disk, causing
a large amount of random I/O and wasting memory resources. Sphinx can accelerate
such queries significantly by eliminating the two biggest problems:

Memory usage
Sphinx’s RAM usage is always strictly limited, and the limit is configurable. Sphinx
supports a result set offset and size similar to the MySQL LIMIT N, M syntax, but it
also has a max_matches option. This controls the equivalent of the “sort buffer” size,
on both a per-server and a per-query basis. Sphinx’s RAM footprint is guaranteed
to be within the specified limits.

I/O
If attributes are stored in RAM, Sphinx does not do any I/O at all. And even if
attributes are stored on disk, Sphinx will perform sequential I/O to read them,
which is much faster than MySQL’s semirandom retrieval of rows from disks.

You can sort search results by a combination of relevance (weight), attribute values,
and (when using GROUP BY) aggregate function values. The sorting clause syntax is sim-
ilar to a SQL ORDER BY clause:

<?php
$cl = new SphinxClient ();
$cl->SetSortMode (SPH_SORT_EXTENDED, 'price DESC, @weight ASC');
// more code and Query() call here...
?>

Why Use Sphinx? | 751

In this example, price is a user-specified attribute stored in the index, and @weight is a
special attribute, created at runtime, that contains each result’s computed relevance.
You can also sort by an arithmetic expression involving attribute values, common math
operators, and functions:

<?php
$cl = new SphinxClient ();
$cl->SetSortMode (SPH_SORT_EXPR, '@weight + log(pageviews)*1.5');
// more code and Query() call here...
?>

Optimizing GROUP BY Queries
Support for everyday SQL-like clauses would be incomplete without GROUP BY func-
tionality, so Sphinx has that, too. But unlike MySQL’s general-purpose implementa-
tion, Sphinx specializes in solving a practical subset of GROUP BY tasks efficiently. This
subset covers the generation of reports from big (1–100 million row) datasets when one
of the following cases holds:

• The result is only a “small” number of grouped rows (where “small” is on the order
of 100,000 to 1 million rows).

• Very fast execution speed is required and approximate COUNT(*) results are accept-
able, when many groups are retrieved from data distributed over a cluster of
machines.

This is not as restrictive as it might sound. The first scenario covers practically all
imaginable time-based reports. For example, a detailed per-hour report for a period of
10 years will return fewer than 90,000 records. The second scenario could be expressed
in plain English as something like “as quickly and accurately as possible, find the 20
most important records in a 100-million-row sharded table.”

These two types of queries can accelerate general-purpose queries, but you can also use
them for full-text search applications. Many applications need to display not only full-
text matches, but some aggregate results as well. For example, many search result pages
show how many matches were found in each product category, or display a graph of
matching document counts over time. Another common requirement is to group the
results and show the most relevant match from each category. Sphinx’s group-by
support lets you combine grouping and full-text searching, eliminating the overhead
of doing the grouping in your application or in MySQL.

As with sorting, grouping in Sphinx uses fixed memory. It is slightly (10% to 50%)
more efficient than similar MySQL queries on datasets that fit in RAM. In this case,
most of Sphinx’s power comes from its ability to distribute the load and greatly reduce
the latency. For huge datasets that could never fit in RAM, you can build a special disk-
based index for reporting, using inline attributes (defined later). Queries against such
indexes execute about as fast as the disk can read the data—about 30–100 MB/sec on

752 | Appendix F: Using Sphinx with MySQL

modern hardware. In this case, the performance can be many times better than
MySQL’s, though the results will be approximate.

The most important difference from MySQL’s GROUP BY is that Sphinx may, under
certain circumstances, yield approximate results. There are two reasons for this:

• Grouping uses a fixed amount of memory. If there are too many groups to hold in
RAM and the matches are in a certain “unfortunate” order, per-group counts might
be smaller than the actual values.

• A distributed search sends only the aggregate results, not the matches themselves,
from node to node. If there are duplicate records in different nodes, per-group
distinct counts might be greater than the actual values, because the information
that can remove the duplicates is not transmitted between nodes.

In practice, it is often acceptable to have fast approximate group-by counts. If this isn’t
acceptable, it’s often possible to get exact results by configuring the daemon and client
application carefully.

You can generate the equivalent of COUNT(DISTINCT <attribute>), too. For example, you
can use this to compute the number of distinct sellers per category in an auction site.

Finally, Sphinx lets you choose criteria to select the single “best” document within each
group. For example, you can select the most relevant document from each domain,
while grouping by domain and sorting the result set by per-domain match counts. This
is not possible in MySQL without a complex query.

Generating Parallel Result Sets
Sphinx lets you generate several results from the same data simultaneously, again using
a fixed amount of memory. Compared to the traditional SQL approach of either run-
ning two queries (and hoping that some data stays in the cache between runs) or cre-
ating a temporary table for each search result set, this yields a noticeable improvement.

For example, assume you need per-day, per-week, and per-month reports over a period
of time. To generate these with MySQL you’d have to run three queries with different
GROUP BY clauses, processing the source data three times. Sphinx, however, can process
the underlying data once and accumulate all three reports in parallel.

Sphinx does this with a multi-query mechanism. Instead of issuing queries one by one,
you batch several queries and submit them in one request:

<?php
$cl = new SphinxClient ();
$cl->SetSortMode (SPH_SORT_EXTENDED, "price desc");
$cl->AddQuery ("ipod");
$cl->SetGroupBy ("category_id", SPH_GROUPBY_ATTR, "@count desc");
$cl->AddQuery ("ipod");
$cl->RunQueries ();
?>

Why Use Sphinx? | 753

Sphinx will analyze the request, identify query parts it can combine, and parallelize the
queries where possible.

For example, Sphinx might notice that only the sorting and grouping modes differ, and
that the queries are otherwise the same. This is the case in the sample code just shown,
where the sorting is by price but the grouping is by category_id. Sphinx will create
several sorting queues to process these queries. When it runs the queries, it will retrieve
the rows once and submit them to all queues. Compared to running the queries one by
one, this eliminates several redundant full-text search or full scan operations.

Note that generating parallel result sets, although it’s a common and important opti-
mization, is only a particular case of the more generalized multi-query mechanism. It
is not the only possible optimization. The rule of thumb is to combine queries in one
request where possible, which generally allows Sphinx to apply internal optimizations.
Even if Sphinx can’t parallelize the queries, it still saves network round-trips. And if
Sphinx adds more optimizations in the future, your queries will use them automatically
with no further changes.

Scaling
Sphinx scales well both horizontally (scaling out) and vertically (scaling up).

Sphinx is fully distributable across many machines. All the use cases we’ve mentioned
can benefit from distributing the work across several CPUs.

The Sphinx search daemon (searchd) supports special distributed indexes, which know
which local and remote indexes should be queried and aggregated. This means scaling
out is a trivial configuration change. You simply partition the data across the nodes,
configure the master node to issue several remote queries in parallel with local ones,
and that’s it.

You can also scale up, as in using more cores or CPUs on a single machine to improve
latency. To accomplish this, you can just run several instances of searchd on a single
machine and query them all from another machine via a distributed index. Alterna-
tively, you can configure a single instance to communicate with itself so that the parallel
“remote” queries actually run on a single machine, but on different CPUs or cores.

In other words, with Sphinx a single query can be made to use more than one CPU
(multiple concurrent queries will use multiple CPUs automatically). This is a major
difference from MySQL, where one query always gets one CPU, no matter how many
are available. Also, Sphinx does not need any synchronization between concurrently
running queries. That lets it avoid mutexes (a synchronization mechanism), which are
a notorious MySQL performance bottleneck on multi-CPU systems.

Another important aspect of scaling up is scaling disk I/O. Different indexes (including
parts of a larger distributed index) can easily be put on different physical disks or RAID
volumes to improve latency and throughput. This approach has some of the same

754 | Appendix F: Using Sphinx with MySQL

benefits as MySQL 5.1’s partitioned tables, which can also partition data into multiple
locations. However, distributed indexes have some advantages over partitioned tables.
Sphinx uses distributed indexes both to distribute the load and to process all parts of
a query in parallel. In contrast, MySQL’s partitioning can optimize some queries (but
not all) by pruning partitions, but the query processing will not be parallelized. And
even though both Sphinx and MySQL partitioning will improve query throughput, if
your queries are I/O-bound, you can expect linear latency improvement from Sphinx
on all queries, whereas MySQL’s partitioning will improve latency only on those queries
where the optimizer can prune entire partitions.

The distributed searching workflow is straightforward:

1. Issue remote queries on all remote servers.

2. Perform sequential local index searches.

3. Read the partial search results from the remote servers.

4. Merge all the partial results into the final result set, and return it to the client.

If your hardware resources permit it, you can search through several indexes on the
same machine in parallel, too. If there are several physical disk drives and several CPU
cores, the concurrent searches can run without interfering with each other. You can
pretend that some of the indexes are remote and configure searchd to contact itself to
launch a parallel query on the same machine:

index distributed_sample
{
 type = distributed
 local = chunk1 # resides on HDD1
 agent = localhost:3312:chunk2 # resides on HDD2, searchd contacts itself
}

From the client’s point of view, distributed indexes are absolutely no different from
local indexes. This lets you create “trees” of distributed indexes by using nodes as
proxies for sets of other nodes. For example, the first-level node could proxy the queries
to a number of the second-level nodes, which could in turn either search locally them-
selves or pass the queries to other nodes, to an arbitrary depth.

Aggregating Sharded Data
Building a scalable system often involves sharding (partitioning) the data across differ-
ent physical MySQL servers. We discussed this in depth in Chapter 11.

When the data is sharded at a fine level of granularity, simply fetching a few rows with
a selective WHERE (which should be fast) means contacting many servers, checking for
errors, and merging the results together in the application. Sphinx alleviates this prob-
lem, because all the necessary functionality is already implemented inside the search
daemon.

Why Use Sphinx? | 755

Consider an example where a 1 TB table with a billion blog posts is sharded by user ID
over 10 physical MySQL servers, so a given user’s posts always go to the same server.
As long as queries are restricted to a single user, everything is fine: we choose the server
based on user ID and work with it as usual.

Now assume that we need to implement an archive page that shows the user’s friends’
posts. How are we going to display “Other sysbench features,” with entries 981 to 1000,
sorted by post date? Most likely, the various friends’ data will be on different servers.
With only 10 friends, there’s about a 90% chance that more than 8 servers will be used,
and that probability increases to 99% if there are 20 friends. So, for most queries, we
will need to contact all the servers. Worse, we’ll need to pull 1,000 posts from each
server and sort them all in the application. Following the suggestions we’ve made pre-
viously in this book, we’d trim down the required data to the post ID and timestamp
only, but that’s still 10,000 records to sort in the application. Most modern scripting
languages consume a lot of CPU time for that sorting step alone. In addition, we’ll
either have to fetch the records from each server sequentially (which will be slow) or
write some code to juggle the parallel querying threads (which will be difficult to im-
plement and maintain).

In such situations, it makes sense to use Sphinx instead of reinventing the wheel. All
we’ll have to do in this case is set up several Sphinx instances, mirror the frequently
accessed post attributes from each table—in this example, the post ID, user ID, and
timestamp—and query the master Sphinx instance for entries 981 to 1000, sorted by
post date, in approximately three lines of code. This is a much smarter way to scale.

Architectural Overview
Sphinx is a standalone set of programs. The two main programs are:

indexer
A program that fetches documents from specified sources (e.g., from MySQL query
results) and creates a full-text index over them. This is a background batch job,
which sites usually run regularly.

searchd
A daemon that serves search queries from the indexes indexer builds. This provides
the runtime support for applications.

The Sphinx distribution also includes native searchd client APIs in a number of pro-
gramming languages (PHP, Python, Perl, Ruby, and Java, at the time of this writing),
and SphinxSE, which is a client implemented as a pluggable storage engine for
MySQL 5.0 and newer. The APIs and SphinxSE allow a client application to connect
to searchd, pass it the search query, and fetch back the search results.

Each Sphinx full-text index can be compared to a table in a database; in place of rows
in a table, the Sphinx index consists of documents. (Sphinx also has a separate data

756 | Appendix F: Using Sphinx with MySQL

structure called a multivalued attribute, discussed later.) Each document has a unique
32-bit or 64-bit integer identifier that should be drawn from the database table being
indexed (for instance, from a primary key column). In addition, each document has
one or more full-text fields (each corresponding to a text column from the database)
and numerical attributes. Like a database table, the Sphinx index has the same fields
and attributes for all of its documents. Table F-1 shows the analogy between a database
table and a Sphinx index.

Table F-1. Database structure and corresponding Sphinx structure

Database structure Sphinx structure

CREATE TABLE documents (

 id int(11) NOT NULL auto_increment,
 title varchar(255),
 content text,
 group_id int(11),
 added datetime,
 PRIMARY KEY (id)
);

index documents

 document ID
 title field, full-text indexed
 content field, full-text indexed
 group_id attribute, sql_attr_uint
 added attribute, sql_attr_timestamp

Sphinx does not store the text fields from the database but just uses their contents to
build a search index.

Installation Overview
Sphinx installation is straightforward and typically includes the following steps:

1. Building the programs from sources:

$ configure && make && make install

2. Creating a configuration file with definitions for data sources and full-text indexes

3. Initial indexing

4. Launching searchd

After that, the search functionality is immediately available for client programs:

<?php
include ('sphinxapi.php');
$cl = new SphinxClient ();
$res = $cl->Query ('test query', 'myindex');
// use $res search result here
?>

The only thing left to do is run indexer regularly to update the full-text index data.
Indexes that searchd is currently serving will stay fully functional during reindexing:
indexer will detect that they are in use, create a “shadow” index copy instead, and notify
searchd to pick up that copy on completion.

Full-text indexes are stored in the filesystem (at the location specified in the configu-
ration file) and are in a special “monolithic” format, which is not well suited for

Architectural Overview | 757

incremental updates. The normal way to update the index data is to rebuild it from
scratch. This is not as big a problem as it might seem, though, for the following reasons:

• Indexing is fast. Sphinx can index plain text (without HTML markup) at a rate of
4–8 MB/sec on modern hardware.

• You can partition the data in several indexes, as shown in the next section, and
reindex only the updated part from scratch on each run of indexer.

• There is no need to “defragment” the indexes—they are built for optimal I/O,
which improves search speed.

• Numeric attributes can be updated without a complete rebuild.

A future version will offer an additional index backend, which will support real-time
index updates.

Typical Partition Use
Let’s discuss partitioning in a bit more detail. The simplest partitioning scheme is the
main + delta approach, in which two indexes are created to index one document col-
lection. main indexes the whole document set, while delta indexes only documents that
have changed since the last time the main index was built.

This scheme matches many data modification patterns perfectly. Forums, blogs, email
and news archives, and vertical search engines are all good examples. Most of the data
in those repositories never changes once it is entered, and only a tiny fraction of docu-
ments are changed or added on a regular basis. This means the delta index is small and
can be rebuilt as frequently as required (e.g., once every 1–15 minutes). This is equiv-
alent to indexing just the newly inserted rows.

You don’t need to rebuild the indexes to change attributes associated with
documents—you can do this online via searchd. You can mark rows as deleted by
simply setting a “deleted” attribute in the main index. Thus, you can handle updates
by marking this attribute on documents in the main index, then rebuilding the delta
index. Searching for all documents that are not marked as “deleted” will return the
correct results.

Note that the indexed data can come from the results of any SELECT statement; it doesn’t
have to come from just a single SQL table. There are no restrictions on the SELECT
statements. That means you can preprocess the results in the database before they’re
indexed. Common preprocessing examples include joins with other tables, creating
additional fields on the fly, excluding some fields from indexing, and manipulating
values.

758 | Appendix F: Using Sphinx with MySQL

Special Features
Besides “just” indexing and searching through database content, Sphinx offers several
other special features. Here’s a partial list of the most important ones:

• The searching and ranking algorithms take word positions and the query phrase’s
proximity to the document content into account.

• You can bind numeric attributes to documents, including multivalued attributes.

• You can sort, filter, and group by attribute values.

• You can create document snippets with search query keyword highlighting.

• You can distribute searching across several machines.

• You can optimize queries that generate several result sets from the same data.

• You can access the search results from within MySQL using SphinxSE.

• You can fine-tune the load Sphinx imposes on the server.

We covered some of these features earlier. This section covers a few of the remaining
features.

Phrase Proximity Ranking
Sphinx remembers word positions within each document, as do other open source
full-text search systems. But unlike most other ones, it uses the positions to rank
matches and return more relevant results.

A number of factors might contribute to a document’s final rank. To compute the rank,
most other systems use only keyword frequency: the number of times each keyword
occurs. The classic BM25 weighting function1 that virtually all full-text search systems
use is built around giving more weight to words that either occur frequently in the
particular document being searched or occur rarely in the whole collection. The BM25
result is usually returned as the final rank value.

In contrast, Sphinx also computes query phrase proximity, which is simply the length
of the longest verbatim query subphrase contained in the document, counted in words.
For instance, the phrase “John Doe Jr” queried against a document with the text “John
Black, John White Jr, and Jane Dunne” will produce a phrase proximity of 1, because
no two words in the query appear together in the query order. The same query against
“Mr. John Doe Jr and friends” will yield a proximity of 3, because three query words
occur in the document in the query order. The document “John Gray, Jane Doe Jr” will
produce a proximity of 2, thanks to its “Doe Jr” query subphrase.

1. See http://en.wikipedia.org/wiki/Okapi_BM25 for details.

Special Features | 759

http://en.wikipedia.org/wiki/Okapi_BM25

By default, Sphinx ranks matches using phrase proximity first and the classic BM25
weight second. This means that verbatim query quotes are guaranteed to be at the very
top, quotes that are off by a single word will be right below those, and so on.

When and how does phrase proximity affect results? Consider searching 1,000,000
pages of text for the phrase “To be or not to be.” Sphinx will put the pages with verbatim
quotes at the very top of the search results, whereas BM25-based systems will first
return the pages with the most mentions of “to,” “be,” “or,” and “not”—pages with
an exact quote match but only a few instances of “to” will be buried deep in the results.

Most major web search engines today rank results with keyword positions as well.
Searching for a phrase on Google will likely result in pages with perfect or near-perfect
phrase matches appearing at the very top of the search results, followed by the “bag of
words” documents.

However, analyzing keyword positions requires additional CPU time, and sometimes
you might need to skip it for performance reasons. There are also cases when phrase
ranking produces undesired, unexpected results. For example, searching for tags in a
cloud is better without keyword positions: it makes no difference whether the tags from
the query are next to each other in the document.

To allow for flexibility, Sphinx offers a choice of ranking modes. Besides the default
mode of proximity plus BM25, you can choose from a number of others that include
BM25-only weighting, fully disabled weighting (which provides a nice optimization if
you’re not sorting by rank), and more.

Support for Attributes
Each document might contain an unlimited number of numeric attributes. Attributes
are user-specified and can contain any additional information required for a specific
task. Examples include a blog post’s author ID, an inventory item’s price, a category
ID, and so on.

Attributes enable efficient full-text searches with additional filtering, sorting, and
grouping of the search results. In theory, they could be stored in MySQL and pulled
from there every time a search is performed. But in practice, if a full-text search locates
even hundreds or thousands of rows (which is not many), retrieving them from MySQL
is unacceptably slow.

Sphinx supports two ways to store attributes: inline in the document lists or externally
in a separate file. Inlining requires all attribute values to be stored in the index many
times, once for each time a document ID is stored. This inflates the index size and
increases I/O, but reduces use of RAM. Storing the attributes externally requires pre-
loading them into RAM upon searchd startup.

Attributes normally fit in RAM, so the usual practice is to store them externally. This
makes filtering, sorting, and grouping very fast, because accessing data is a matter of

760 | Appendix F: Using Sphinx with MySQL

quick in-memory lookup. Also, only the externally stored attributes can be updated at
runtime. Inline storage should be used only when there is not enough free RAM to hold
the attribute data.

Sphinx also supports multivalued attributes (MVAs). MVA content consists of an ar-
bitrarily long list of integer values associated with each document. Examples of good
uses for MVAs are lists of tag IDs, product categories, and access control lists.

Filtering
Having access to attribute values in the full-text engine allows Sphinx to filter and reject
candidate matches as early as possible while searching. Technically, the filter check
occurs after verification that the document contains all the required keywords, but
before certain computationally intensive calculations (such as ranking) are done. Be-
cause of these optimizations, using Sphinx to combine full-text searching with filtering
and sorting can be 10 to 100 times faster than using Sphinx for searching and then
filtering results in MySQL.

Sphinx supports two types of filters, which are analogous to simple WHERE conditions
in SQL:

• An attribute value matches a specified range of values (analogous to a BETWEEN
clause, or numeric comparisons).

• An attribute value matches a specified set of values (analogous to an IN() list).

If the filters will have a fixed number of values (“set” filters instead of “range” filters),
and if such values are selective, it makes sense to replace the integer values with “fake
keywords” and index them as full-text content instead of attributes. This applies to
both normal numeric attributes and MVAs. We’ll see some examples of how to do this
later.

Sphinx can also use filters to optimize full scans. Sphinx remembers minimum and
maximum attribute values for short continuous row blocks (128 rows, by default) and
can quickly throw away whole blocks based on filtering conditions. Rows are stored
in the order of ascending document IDs, so this optimization works best for columns
that are correlated with the ID. For instance, if you have a row-insertion timestamp
that grows along with the ID, a full scan with filtering on that timestamp will be very
fast.

The SphinxSE Pluggable Storage Engine
Full-text search results received from Sphinx almost always require additional work
involving MySQL—at the very least, to pull out the text column values that the Sphinx
index does not store. As a result, you’ll frequently need to JOIN search results from
Sphinx with other MySQL tables.

Special Features | 761

Although you can achieve this by sending the result’s document IDs to MySQL in a
query, that strategy leads to neither the cleanest nor the fastest code. For high-volume
situations, you should consider using SphinxSE, a pluggable storage engine that you
can compile into MySQL 5.0 or newer, or load into MySQL 5.1 or newer as a plugin.

SphinxSE lets programmers query searchd and access search results from within
MySQL. The usage is as simple as creating a special table with an ENGINE=SPHINX clause
(and an optional CONNECTION clause to locate the Sphinx server if it’s at a nondefault
location), and then running queries against that table:

mysql> CREATE TABLE search_table (
 -> id INTEGER NOT NULL,
 -> weight INTEGER NOT NULL,
 -> query VARCHAR(3072) NOT NULL,
 -> group_id INTEGER,
 -> INDEX(query)
 ->) ENGINE=SPHINX CONNECTION="sphinx://localhost:3312/test";
Query OK, 0 rows affected (0.12 sec)

mysql> SELECT * FROM search_table WHERE query='test;mode=all' \G
*************************** 1. row ***************************
 id: 123
 weight: 1
 query: test;mode=all
group_id: 45
1 row in set (0.00 sec)

Each SELECT passes a Sphinx query as the query column in the WHERE clause. The Sphinx
searchd server returns the results. The SphinxSE storage engine then translates these
into MySQL results and returns them to the SELECT statement.

Queries might include JOINs with any other tables stored using any other storage
engines.

The SphinxSE engine supports most searching options available via the API, too. You
can specify options such as filtering and limits by plugging additional clauses into the
query string:

mysql> SELECT * FROM search_table WHERE query='test;mode=all;
 -> filter=group_id,5,7,11;maxmatches=3000';

Per-query and per-word statistics that are returned by the API are also accessible
through SHOW STATUS:

mysql> SHOW ENGINE SPHINX STATUS \G
*************************** 1. row ***************************
 Type: SPH INX
 Name: stats
Status: total: 3, total found: 3, time: 8, words: 1
*************************** 2. row ***************************
 Type: SPHINX
 Name: words
Status: test:3:5
2 rows in set (0.00 sec)

762 | Appendix F: Using Sphinx with MySQL

Even when you’re using SphinxSE, the rule of thumb still is to allow searchd to perform
sorting, filtering, and grouping—i.e., to add all the required clauses to the query string
rather than use WHERE, ORDER BY, or GROUP BY. This is especially important for WHERE
conditions. The reason is that SphinxSE is only a client to searchd, not a full-blown
built-in search library. Thus, you need to pass everything that you can to the Sphinx
engine to get the best performance.

Advanced Performance Control
Both indexing and searching operations could impose a significant additional load on
either the search server or the database server. Fortunately, a number of settings let you
limit the load coming from Sphinx.

An undesired database-side load can be caused by indexer queries that either stall
MySQL completely with their locks or just occur too quickly and hog resources from
other concurrent queries.

The first case is a notorious problem with MyISAM, where long-running reads lock the
tables and stall other pending reads and writes—you can’t simply do SELECT * FROM
big_table on a production server, because you risk disrupting all other operations. To
work around that, Sphinx offers ranged queries. Instead of configuring a single huge
query, you can specify one query that quickly computes the indexable row ranges and
another query that pulls out the data step by step, in small chunks:

sql_query_range = SELECT MIN(id),MAX(id) FROM documents
sql_range_step = 1000
sql_query = SELECT id, title, body FROM documents \
 WHERE id>=$start AND id<=$end

This feature is extremely helpful for indexing MyISAM tables, but it should also be
considered when using InnoDB tables. Although InnoDB won’t just lock the table and
stall other queries when running a big SELECT *, it will still use significant machine
resources because of its MVCC architecture. Multiversioning for a thousand transac-
tions that cover a thousand rows each can be less expensive than a single long-running
million-row transaction.

The second cause of excessive load happens when indexer is able to process the data
more quickly than MySQL provides it. You should also use ranged queries in this case.
The sql_ranged_throttle option forces indexer to sleep for a given time period (in
milliseconds) between subsequent ranged query steps, increasing indexing time but
easing the load on MySQL.

Interestingly enough, there’s a special case where you can configure Sphinx to achieve
exactly the opposite effect: that is, you can improve indexing time by placing more load
on MySQL. When the connection between the indexer box and the database box is 100
Mbps, and the rows compress well (which is typical for text data), the MySQL com-
pression protocol can improve overall indexing time. The improvement comes at a
cost of more CPU time spent on both the MySQL and indexer sides to compress and

Special Features | 763

uncompress the rows transmitted over the network, respectively but the overall index-
ing time could be up to 20–30% less because of greatly reduced network traffic.

Search clusters can suffer from occasional overload, too, so Sphinx provides a few ways
to help avoid searchd going off on a spin.

First, a max_children option simply limits the total number of concurrently running
queries and tells clients to retry when that limit is reached.

Then there are query-level limits. You can specify that query processing stop either at
a given threshold of matches found or a given threshold of elapsed time, using the
SetLimits() and SetMaxQueryTime() API calls, respectively. This is done on a per-query
basis, so you can ensure that more important queries always complete fully.

Finally, periodic indexer runs can cause bursts of additional I/O that will in turn cause
intermittent searchd slowdowns. To prevent that, options that limit indexer disk I/O
exist. max_iops enforces a minimal delay between I/O operations that ensures that no
more than max_iops disk operations per second will be performed. But even a single
operation could be too much; consider a 100 MB read() call as an example. The
max_iosize option takes cares of that, guaranteeing that the length of every disk read
or write will be under a given boundary. Larger operations are automatically split into
smaller ones, and these smaller ones are then controlled by max_iops settings.

Practical Implementation Examples
Each of the features we’ve described can be found successfully deployed in production.
The following sections review several of these real-world Sphinx deployments, briefly
describing the sites and some implementation details.

Full-Text Searching on Mininova.org
A popular torrent search engine, Mininova (http://www.mininova.org) provides a clear
example of how to optimize “just” full-text searching. Sphinx replaced several MySQL
replicas using MySQL built-in full-text indexes, which were unable to handle the load.
After the replacement, the search servers were underloaded; the current load average
is now in the 0.3–0.4 range.

Here are the database size and load numbers:

• The site has a small database, with about 300,000–500,000 records and about
300–500 MB of index.

• The site load is quite high: about 8–10 million searches per day at the time of this
writing.

The data mostly consists of user-supplied filenames, frequently without proper punc-
tuation. For this reason, prefix indexing is used instead of whole-word indexing. The

764 | Appendix F: Using Sphinx with MySQL

http://www.mininova.org

resulting index is several times larger than it would otherwise be, but it is still small
enough that it can be built quickly and its data can be cached effectively.

Search results for the 1,000 most frequent queries are cached on the application side.
About 20–30% of all queries are served from the cache. Because of the “long tail” query
distribution, a larger cache would not help much more.

For high availability, the site uses two servers with complete full-text index replicas.
The indexes are rebuilt from scratch every few minutes. Indexing takes less than one
minute, so there’s no point in implementing more complex schemes.

The following are lessons learned from this example:

• Caching search results in the application helps a lot.

• There might be no need to have a huge cache, even for busy applications. A mere
1,000 to 10,000 entries can be enough.

• For databases on the order of 1 GB in size, simple periodic reindexing instead of
more complicated schemes is OK, even for busy sites.

Full-Text Searching on BoardReader.com
Mininova is an extreme high-load project case—there’s not that much data, but there
are a lot of queries against that data. BoardReader (http://www.boardreader.com) is just
the opposite: a forum search engine that performs many fewer searches on a much
larger dataset. Sphinx replaced a commercial full-text search engine that took up to 10
seconds per query to search through a 1 GB collection. Sphinx allowed BoardReader
to scale greatly, both in terms of data size and query throughput.

Here’s some general information:

• There are more than 1 billion documents and 1.5 TB of text in the database.

• There are about 500,000 page views and between 700,000 and 1 million searches
per day.

At the time of this writing, the search cluster consists of six servers, each with four
logical CPUs (two dual-core Xeons), 16 GB of RAM, and 0.5 TB of disk space. The
database itself is stored on a separate cluster. The search cluster is used only for
indexing and searching.

Each of the six servers runs four searchd instances, so all four cores are used. One of
the four instances aggregates the results from the other three. That makes a total of 24
searchd instances. The data is distributed evenly across all of them. Every searchd copy
carries several indexes over approximately 1/24 of the total data (about 60 GB).

The search results from the six “first-tier” searchd nodes are in turn aggregated by
another searchd instance running on the frontend web server. This instance carries
several purely distributed indexes, which reference the six search cluster servers but
have no local data at all.

Practical Implementation Examples | 765

http://www.boardreader.com

Why have four searchd instances per node? Why not have only one searchd instance
per server, configure it to carry four index chunks, and make it contact itself as though
it’s a remote server to utilize multiple CPUs, as we suggested earlier? Having four in-
stances instead of just one has its benefits. First, it reduces startup time. There are
several gigabytes of attribute data that need to be preloaded in RAM; starting several
daemons at a time lets us parallelize that. Second, it improves availability. In the event
of searchd failures or updates, only 1/24 of the whole index is inaccessible, instead
of 1/6.

Within each of the 24 instances on the search cluster, we used time-based partitioning
to reduce the load even further. Many queries need to be run only on the most recent
data, so the data is divided into three disjoint index sets: data from the last week, from
the last three months, and from all time. These indexes are distributed over several
different physical disks on a per-instance basis. This way, each instance has its own
CPU and physical disk drive and won’t interfere with the others.

Local cron jobs update the indexes periodically. They pull the data from MySQL over
the network but create the index files locally.

Using several explicitly separated “raw” disks proved to be faster than a single RAID
volume. Raw disks give control over which files go on which physical disk. That is not
the case with RAID, where the controller decides which block goes on which physical
disk. Raw disks also guarantee fully parallel I/O on different index chunks, but con-
current searches on RAID are subject to I/O stepping. We chose RAID 0, which has no
redundancy, because we don’t care about disk failures; we can easily rebuild the indexes
on the search nodes. We could also have used several RAID 1 (mirror) volumes to give
the same throughput as raw disks while improving reliability.

Another interesting thing to learn from BoardReader is how Sphinx version updates
are performed. Obviously, the whole cluster cannot be taken down. Therefore, back-
ward compatibility is critical. Fortunately, Sphinx provides it—newer searchd versions
usually can read older index files, and they are always able to communicate to older
clients over the network. Note that the first-tier nodes that aggregate the search results
look just like clients to the second-tier nodes, which do most of the actual searching.
Thus, the second-tier nodes are updated first, then the first-tier ones, and finally the
web frontend.

Lessons learned from this example are:

• The Very Large Database Motto: partition, partition, partition, parallelize.

• On big search farms, organize searchd in trees with several tiers.

• Build optimized indexes with a fraction of the total data where possible.

• Map files to disks explicitly rather than relying on the RAID controller.

766 | Appendix F: Using Sphinx with MySQL

Optimizing Selects on Sahibinden.com
Sahibinden (http://www.sahibinden.com), a leading Turkish online auction site, had a
number of performance problems, including full-text search performance. After de-
ploying Sphinx and profiling some queries, we found that Sphinx could perform many
of the frequent application-specific queries with filters faster than MySQL—even when
there was an index on one of the participating columns in MySQL. Besides, using
Sphinx for non-full-text searches resulted in unified application code that was simpler
to write and support.

MySQL was underperforming because the selectivity on each individual column was
not enough to reduce the search space significantly. In fact, it was almost impossible
to create and maintain all the required indexes, because too many columns required
them. The product information tables had about 100 columns, each of which the web
application could technically use for filtering or sorting.

Active insertion and updates to the “hot” products table slowed to a crawl, because of
too many index updates.

For that reason, Sphinx was a natural choice for all the SELECT queries on the product
information tables, not just the full-text search queries.

Here are the database size and load numbers for the site:

• The database contains about 400,000 records and 500 MB of data.

• The load is about 3 million queries per day.

To emulate normal SELECT queries with WHERE conditions, the Sphinx indexing process
included special keywords in the full-text index. The keywords were of the
form _ _CATN_ _ _, where N was replaced with the corresponding category ID. This
replacement happened during indexing with the CONCAT() function in the MySQL
query, so the source data was not altered.

The indexes needed to be rebuilt as frequently as possible. We settled on rebuilding
them every minute. A full reindexing took 9–15 seconds on one of many CPUs, so the
main + delta scheme discussed earlier was not necessary.

The PHP API turned out to spend a noticeable amount of time (7–9 milliseconds per
query) parsing the result set when it had many attributes. Normally, this overhead
would not be an issue because the full-text search costs, especially over big collections,
would be higher than the parsing cost. But in this specific case, we also needed non-
full-text queries against a small collection. To alleviate the issue, the indexes were sep-
arated into pairs: a “lightweight” one with the 34 most frequently used attributes, and
a “complete” one with all 99 attributes.

Other possible solutions would have been to use SphinxSE or to implement a feature
to pull only the specified columns into Sphinx. However, the workaround with two
indexes was by far the fastest to implement, and time was a concern.

Practical Implementation Examples | 767

http://www.sahibinden.com

The following are the lessons learned from this example:

• Sometimes, a full scan in Sphinx performs better than an index read in MySQL.

• For selective conditions, use a “fake keyword” instead of filtering on an attribute,
so the full-text search engine can do more of the work.

• APIs in scripting languages can be a bottleneck in certain extreme but real-world
cases.

Optimizing GROUP BY on BoardReader.com
An improvement to the BoardReader service required counting hyperlinks and building
various reports from the linking data. For instance, one of the reports needed to show
the top N second-level domains linked to during the last week. Another counted the top
N second- and third-level domains that linked to a given site, such as YouTube. The
queries to build these reports had the following common characteristics:

• They always group by domain.

• They sort by count per group or by the count of distinct values per group.

• They process a lot of data (up to millions of records), but the result set with the
best groups is always small.

• Approximate results are acceptable.

During the prototype-testing phase, MySQL took up to 300 seconds to execute these
queries. In theory, by partitioning the data, splitting it across servers, and manually
aggregating the results in the application, it would have been possible to optimize the
queries to around 10 seconds. But this is a complicated architecture to build; even the
partitioning implementation is far from straightforward.

Because we had successfully distributed the search load with Sphinx, we decided to
implement an approximate distributed GROUP BY with Sphinx, too. This required pre-
processing the data before indexing to convert all the interesting substrings into stand-
alone “words.” Here’s a sample URL before and after preprocessing:

source_url = http://my.blogger.com/my/best-post.php
processed_url = my$blogger$com, bloggercom, mybloggercommy,
 my$blogger$commybest, my$blogger$commybest$post.php

Dollar signs ($) are merely a unified replacement for URL separator characters so that
searches can be conducted on any URL part, be it domain or path. This type of pre-
processing extracts all “interesting” substrings into single keywords that are the fastest
to search. Technically, we could have used phrase queries or prefix indexing, but that
would have resulted in bigger indexes and slower performance.

Links are preprocessed at indexing time using a specially crafted MySQL UDF. We also
enhanced Sphinx with the ability to count distinct values for this task. After that, we
were able to move the queries completely to the search cluster, distribute them easily,
and reduce query latency greatly.

768 | Appendix F: Using Sphinx with MySQL

Here are the database size and load numbers:

• There are about 150–200 million records, which becomes about 50–100 GB of data
after preprocessing.

• The load is approximately 60,000–100,000 GROUP BY queries per day.

The indexes for the distributed GROUP BY were deployed on the same search cluster of
6 machines and 24 logical CPUs described previously. This is a minor complementary
load to the main search load over the 1.5 TB text database.

Sphinx replaced MySQL’s exact, slow, single-CPU computations with approximate,
fast, distributed computations. All of the factors that introduce approximation errors
are present here: the incoming data frequently contains too many rows to fit in the “sort
buffer” (we use a fixed RAM limit of 100K rows), we use COUNT(DISTINCT), and the
result sets are aggregated over the network. Despite that, the results for the first 10 to
1000 groups—which are actually required for the reports—are from 99% to 100%
correct.

The indexed data is very different from the data that would be used for an ordinary
full-text search. There are a huge number of documents and keywords, even though
the documents are very small. The document numbering is nonsequential, because a
special numbering convention (source server, source table, and primary key) that does
not fit in 32 bits is used. The huge amount of search “keywords” was also causing
frequent CRC32 collisions (Sphinx uses CRC32 to map keywords to internal word IDs).
For these reasons, we were forced to use 64-bit identifiers everywhere internally.

The current performance is satisfactory. For the most complex domains, queries nor-
mally complete in 0.1 to 1.0 seconds.

The following are the lessons learned from this example:

• For GROUP BY queries, some precision can be traded for speed.

• With huge textual collections or moderately sized special collections, 64-bit
identifiers might be required.

Optimizing Sharded JOIN Queries on Grouply.com
Grouply (http://www.grouply.com) built a Sphinx-based solution to search its multi-
million-record database of tagged messages, using Sphinx’s MVA support. The data-
base is split across many physical servers for massive scalability, so it might be necessary
to query tables that are located on different servers. Arbitrary large-scale joins are im-
possible because there are too many participating servers, databases, and tables.

Grouply uses Sphinx’s MVA attributes to store message tags. The tag list is retrieved
from a Sphinx cluster via the PHP API. This replaces multiple sequential SELECTs
from several MySQL servers. To reduce the number of SQL queries as well, certain

Practical Implementation Examples | 769

http://www.grouply.com

presentation-only data (for example, a small list of users who last read the message) is
also stored in a separate MVA attribute and accessed through Sphinx.

Two key innovations here are using Sphinx to prebuild JOIN results and using its dis-
tributed capabilities to merge data scattered over many shards. This would be next to
impossible with MySQL alone. Efficient merging would require partitioning the data
over as few physical servers and tables as possible, but that would hurt both scalability
and extensibility.

Lessons learned from this example are:

• Sphinx can be used to aggregate highly partitioned data efficiently.

• MVAs can be used to store and optimize prebuilt JOIN results.

Summary
We’ve discussed the Sphinx full-text search system only briefly in this appendix. To
keep it short, we intentionally omitted discussions of many other Sphinx features, such
as HTML indexing support, ranged queries for better MyISAM support, morphology
and synonym support, prefix and infix indexing, and CJK indexing. Nevertheless, this
appendix should give you some idea of how Sphinx can solve many different real-world
problems efficiently. It is not limited to full-text searching; it can solve a number of
difficult problems that would traditionally be done in SQL.

Sphinx is neither a silver bullet nor a replacement for MySQL. However, in many cases
(which are becoming common in modern web applications), it can be used as a very
useful complement to MySQL. You can use it to simply offload some work, or even to
create new possibilities for your application.

Download it at http://www.sphinxsearch.com—and don’t forget to share your own
usage ideas!

770 | Appendix F: Using Sphinx with MySQL

http://www.sphinxsearch.com—and

Index

Symbols
32-bit architecture, 390
404 errors, 614, 617
451 Group, 549
64-bit architecture, 390
:= assign operator, 249
@ user variable, 253
@@ system variable, 334

A
ab tool, Apache, 51
Aborted_clients variable, 688
Aborted_connects variable, 688
access time, 398
access types, 205, 727
ACID transactions, 6, 551
active caches, 611
active data, keeping separate, 554
active-active access, 574
Adaptec controllers, 405
adaptive hash indexes, 154, 703
Adaptive Query Localization, 550, 577
Address Resolution Protocol (ARP), 560, 584
Adminer, 666
admission control features, 373
advanced performance control, 763
after-action reviews, 571
aggregating sharded data, 755
Ajax, 607
Aker, Brian, 296, 679
Akiban, 549, 552
algebraic equivalence rules, 217
algorithms, load-balancing, 562
ALL_O_DIRECT variable, 363

ALTER TABLE command, 11, 28, 141–144,
266, 472, 538

Amazon EBS (Elastic Block Store), 589, 595
Amazon EC2 (Elastic Compute Cloud), 589,

595–598
Amazon RDS (Relational Database Service),

589, 600
Amazon Web Services (AWS), 589
Amdahl scaling, 525
Amdahl’s Law, 74, 525
ANALYZE TABLE command, 195
ANSI SQL isolation levels, 8
Apache ab, 51
application-level optimization

alternatives to MySQL, 619
caching, 611–618
common problems, 605–607
extending MySQL, 618
finding the optimal concurrency, 609
web server issues, 608

approximations, 243
Archive storage engine, 19, 220
Aria storage engine, 23, 681
ARP (Address Resolution Protocol), 560, 584
Aslett, Matt, 549
Aspersa (see Percona Toolkit)
asynchronous I/O, 702
asynchronous replication, 447
async_unbuffered, 364
atomicity, 6
attributes, 749, 760
audit plugins, 297
auditing, 622
authentication plugins, 298
auto-increment keys, 578

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

771

AUTOCOMMIT mode, 10
autogenerated schemas, 131
AUTO_INCREMENT, 142, 275, 505, 545
availability zone, 572
AVG() function, 139
AWS (Amazon Web Services), 589

B
B-Tree indexes, 148, 171, 197, 217, 269
Background Patrol Read, 418
Backup & Recovery (Preston), 621
backup load, 626
backup time, 626
backup tools

Enterprise Backup, MySQL, 658
mydumper, 659
mylvmbackup, 659
mysqldump, 660
Percona XtraBackup, 658
Zmanda Recovery Manager, 659

backups, 425, 621
binary logs, 634–636
data, 637–648
designing a MySQL solution, 624–634
online or offline, 625
reasons for, 622
and replication, 449
scripting, 661–663
snapshots not, 646
and storage engines, 24
tools for, 658–661

balanced trees, 223
Barth, Wolfgang, 668
batteries in SSDs, 405
BBU (battery backup unit), 422
BEFORE INSERT trigger, 287
Beginning Database Design (Churcher), 115
Bell, Charles, 519
Benchmark Suite, 52, 55
BENCHMARK() function, 53
benchmarks, 35–37

analyzing results, 47
capturing system performance and status,

44
common mistakes, 40, 340
design and planning, 41
examples, 54–66
file copy, 718
flash memory, 403

getting accurate results, 45
good uses for, 340
how long to run, 42
iterative optimization by, 338
MySQL versions read-only, 31
plotting, 49
SAN, 423
strategies, 37–40
tactics, 40–50
tools, 51–53
what to measure, 38

BerkeleyDB, 30
BIGINT type, 117
binary logs

backing up, 634–636
format, 635
master record changes (events), 449, 496
purging old logs safely, 636
status, 688

binlog dump command, 450, 474
binlog_do_db variable, 466
binlog_ignore_db variable, 466
Birthday Paradox, 156
BIT type, 127
bit-packed data types, 127
bitwise operations, 128
Blackhole storage engine, 20, 475, 480
blktrace, 442
BLOB type, 21, 121, 375
blog, MySQL Performance, 23
BoardReader.com, 765, 768
Boolean full-text searches, 308
Boost library, 682
Bouman, Roland, 281, 287, 667
buffer pool

InnoDB, 704
size of, 344

buffer threads, 702
built-in MySQL engines, 19–21
bulletin boards, 27
burstable capacity, 42
bzip2, 716

C
cache hits, 53, 316, 340, 395
CACHE INDEX command, 351
cache tables, 136
cache units, 396
cachegrind, 78

772 | Index

caches
allocating memory for, 349
control policies, 614
hierarchy, 393, 616
invalidations, 322
misses, 321, 352, 397
RAID, 419
read-ahead data, 421
tuning by ratio, 340
writes, 421

Cacti, 430, 669
Calpont InfiniDB, 23
capacitors in SSDs, 405
capacity planning, 425, 482
cardinality, 160, 215
case studies

building a queue table, 256
computing the distance between points,

258
diagnostics, 102–110
indexing, 189–194
using user-defined functions, 262

CD-ROM applications, 27
Change Data Capture (CDC) utilities, 138
CHANGE MASTER TO command, 453, 457,

489, 491, 501
CHAR type, 120
character sets, 298, 301–305, 330
character_set_database, 300
CHARSET() function, 300
CHAR_LENGTH() function, 304
CHECK OPTION variable, 278
CHECK TABLES command, 371
CHECKSUM TABLE command, 488
chunk size, 419
Churcher, Clare, 115
Circonus, 671
circular replication, 473
Cisco server, 598
client, returning results to, 228
client-side emulated prepared statements, 295
client/server communication settings, 299
cloud, MySQL in the, 589–602

benchmarks, 598
benefits and drawbacks, 590–592
DBaaS, 600
economics, 592
four fundamental resources, 594
performance, 595–598

scaling and HA, 591
Cluster Control, SeveralNines, 577
Cluster, MySQL, 576
clustered indexes, 17, 168–176, 397, 657
clustering, scaling by, 548
Clustrix, 549, 565
COALESCE() function, 254
code

backing up, 630
stored, 282–284, 289

Codership Oy, 577
COERCIBILITY() function, 300
cold or warm copy, 456
Cole, Jeremy, 85
collate clauses, 300
COLLATION() function, 300
collations, 119, 298, 301–305
collisions, hash, 156
column-oriented storage engines, 22
command counters, 689
command-line monitoring with innotop, 672–

676
command-line utilities, 666
comments

stripping before compare, 316
version-specific, 289

commercial monitoring systems, 670
common_schema, 187, 667
community storage engines, 23
complete result sets, 315
COMPRESS() function, 377
compressed files, 715
compressed MyISAM tables, 19
computations

distance between points, 258–262
integer, 117
temporal, 125

Com_admin_commands variable, 689
CONCAT() function, 750, 767
concurrency

control, 3–6
inserts, 18
measuring, 39
multiversion concurrency control (MVCC),

12
need for high, 596

configuration
by cache hit ratio, 340
completing basic, 378–380

Index | 773

creating configuration files, 342–347
InnoDB flushing algorithm, 412
memory usage, 347–356
MySQL concurrency, 371–374
workload-based, 375–377

connection management, 2
connection pooling, 561, 607
connection refused error, 429
connection statistics, 688
CONNECTION_ID() function, 257, 289, 316,

502, 635
consistency, 7
consolidation

scaling by, 547
storage, 407, 425

constant expressions, 217
Continuent Tungsten Replicator, 481, 516
CONVERT() function, 300
Cook, Richard, 571
correlated subqueries, 229–233
corrupt system structures, 657
corruption, finding and repairing, 194, 495–

498
COUNT() function optimizations, 206, 217,

241–243, 292
counter tables, 139
counters, 686, 689
covering indexes, 177–182, 218
CPU-bound machines, 442
CPUs, 56, 70, 388–393, 594, 598
crash recovery, 25
crash testing, 422
CRC32() function, 156, 541
CREATE and SELECT conversions, 28
CREATE INDEX command, 353
CREATE TABLE command, 184, 266, 353,

476, 481
CREATE TEMPORARY TABLE command,

689
cron jobs, 288, 585, 630
crontab, 504
cross-data center replication, 475
cross-shard queries, 535, 538
CSV format, 638
CSV logging table, 601
CSV storage engine, 20
CURRENT_DATE() function, 316
CURRENT_USER() function, 316, 460
cursors, 290

custom benchmark suite, 339
custom replication solutions, 477–482

D
daemon plugins, 297
dangling pointer records, 553
data

archiving, 478, 509
backing up nonobvious, 629
changes on the replica, 500
consistency, 632
deduplication, 631
dictionary, 356
distribution, 448
fragmentation, 197
loss, avoiding, 553
optimizing access to, 202–207
scanning, 269
sharding, 533–547, 565, 755
types, 115
volume of and search engine choice, 27

Data Definition Language (DDL), 11
Data Recovery Toolkit, 195
data types

BIGINT, 117
BIT, 127
BLOB, 21, 121, 375
CHAR, 120
DATETIME, 117, 126
DECIMAL, 118
DOUBLE, 118
ENUM, 123, 130, 132, 282
FLOAT, 118
GEOMETRY, 157
INT, 117
LONGBLOB, 122
LONGTEXT, 122
MEDIUMBLOB, 122
MEDIUMINT, 117
MEDIUMTEXT, 122
RANGE COLUMNS, 268
SET, 128, 130
SMALLBLOB, 122
SMALLINT, 117
SMALLTEXT, 122
TEXT, 21, 121, 375
TIMESTAMP, 117, 126, 631
TINYBLOB, 122
TINYINT, 117

774 | Index

TINYTEXT, 122
VARCHAR, 119, 124, 131, 513

data=journal option, 433
data=ordered option, 433
data=writeback option, 433
Database as a Service (DBaaS), 589, 600
database servers, 393
Database Test Suite, 52
Date, C. J., 255
DATETIME type, 117, 126
DBaaS (Database as a Service), 589, 600
dbShards, 547, 549
dbt2 tool, 52, 61
DDL (Data Definition Language), 11
deadlocks, 9
Debian, 683
debug symbols, 99
debugging locks, 735–744
DECIMAL type, 118
deduplication, data, 631
“degraded” mode, 485
DELAYED hint, 239
delayed key writes, 19
delayed replication, 654
DELETE command, 267, 278
delimited file backups, 638, 651
DeNA, 618
denormalization, 133–136
dependencies on nonreplicated data, 501
derived tables, 238, 277, 725
DETERMINISTIC variable, 284
diagnostics, 92

capturing diagnostic data, 97–102
case study, 102–110
single-query versus server-wide problems,

93–96
differential backups, 630
directio() function, 362
directory servers, 542
dirty reads, 8
DISABLE KEYS command, 143, 313
disaster recovery, 622
disk queue scheduler, 434
disk space, 511
disruptive innovations, 31
DISTINCT queries, 135, 219, 244
distributed (XA) transactions, 313
distributed indexes, 754
distributed memory caches, 613

distributed replicated block device (DRBD),
494, 568, 574, 581

distribution master and replicas, 474
DNS (Domain Name System), 556, 559, 572,

584
document pointers, 306
Domain Name System (DNS), 556, 559, 572,

584
DorsalSource, 683
DOUBLE type, 118
doublewrite buffer, 368, 412
downtime, causes of, 568
DRBD (distributed replicated block device),

494, 568, 574, 581
drinking from the fire hose, 211
Drizzle, 298, 682
DROP DATABASE command, 624
DROP TABLE command, 28, 366, 573, 652
DTrace, 431
dump and import conversions, 28
duplicate indexes, 185–187
durability, 7
DVD-ROM applications, 27
dynamic allocation, 541–543
dynamic optimizations, 216
dynamic SQL, 293, 335–337

E
early termination, 218
EBS (Elastic Block Store), Amazon, 589, 595
EC2 (Elastic Compute Cloud), 589, 595–598
edge side (ESI), 608
Elastic Block Store (EBS), Amazon, 589, 595
Elastic Compute Cloud (EC2), Amazon, 589,

595–598
embedded escape sequences, 301
eMLC (enterprise MLC), 402
ENABLE KEYS command, 313
encryption overhead, avoiding, 716
end_log_pos, 635
Enterprise Backup, MySQL, 457, 624, 627, 631,

658
enterprise MLC (eMLC), 402
Enterprise Monitor, MySQL, 80, 670
ENUM type, 123, 130, 132, 282
equality propagation, 219, 234
errors

404 error, 614, 617
from data corruption or loss, 495–498

Index | 775

ERROR 1005, 129
ERROR 1168, 275
ERROR 1267, 300

escape sequences, 301
evaluation order, 253
Even Faster Websites (Souders), 608
events, 282, 288
exclusive locks, 4
exec_time, 636
EXISTS operator, 230, 232
expire_logs_days variable, 381, 464, 624, 636
EXPLAIN command, 89, 165, 182, 222, 272,

277, 719–733
explicit allocation, 543
explicit invalidation, 614
explicit locking, 11
external XA transactions, 315
extra column, 732

F
Facebook, 77, 408, 592
fadvise() function, 626
failback, 582
failover, 449, 582, 585
failures, mean time between, 570
Falcon storage engine, 22
fallback, 582
fast warmup feature, 351
FathomDB, 602
FCP (Fibre Channel Protocol), 422
fdatasync() function, 362
Federated storage engine, 20
Fedora, 683
fencing, 584
fetching mistakes, 203
Fibre Channel Protocol (FCP), 422
FIELD() function, 124, 128
FILE () function, 600
FILE I/O, 702
files

consistency of, 633
copying, 715
descriptors, 690
transferring large, 715–718

filesort, 226, 377
filesystems, 432–434, 573, 640–648
filtered column, 732
filtering, 190, 466, 564, 750, 761
fincore tool, 353

FIND_IN_SET() function, 128
fire hose, drinking from the, 211
FIRST() function, 255
first-write penalty, 595
Five Whys, 571
fixed allocation, 541–543
flapping, 583
flash storage, 400–414
Flashcache, 408–410
Flexviews tools, 138, 280
FLOAT type, 118
FLOOR() function, 260
FLUSH LOGS command, 492, 630
FLUSH QUERY CACHE command, 325
FLUSH TABLES WITH READ LOCK

command, 355, 370, 490, 494, 626,
644

flushing algorithm, InnoDB, 412
flushing binary logs, 663
flushing log buffer, 360, 703
flushing tables, 663
FOR UPDATE hint, 240
FORCE INDEX hint, 240
foreign keys, 129, 281, 329
Forge, MySQL, 667, 710
FOUND_ROWS() function, 240
fractal trees, 22, 158
fragmentation, 197, 320, 322, 324
free space fragmentation, 198
FreeBSD, 431, 640
“freezes”, 69
frequency scaling, 392
.frm file, 14, 142, 354, 711
FROM_UNIXTIME() function, 126
fsync() function, 314, 362, 368, 656, 693
full-stack benchmarking, 37, 51
full-text searching, 157, 305–313, 479

on BoardReader.com, 765
Boolean full-text searches, 308
collection, 306
on Mininova.org, 764
parser plugins, 297
Sphinx storage engine, 749

functional partitioning, 531, 564
furious flushing, 49, 704, 706
Fusion-io, 407

G
Galbraith, Patrick, 296

776 | Index

Galera, 549, 577, 579
Ganglia, 670
garbage collection, 401
GDB stack traces, 99
gdb tool, 99–100
general log, 81
GenieDB, 549, 551
Gentoo, 683
GEOMETRY type, 157
geospatial searches, 25, 157, 262
GET_LOCK() function, 256, 288
get_name_from_id() function, 613
Gladwell, Malcom, 571
glibc libraries, 348
global locks, 736, 738
global scope, 333
global version/session splits, 558
globally unique IDs (GUIDs), 545
gnuplot, 49, 96
Goal (Goldratt), 526, 565
Goal-Driven Performance Optimization white

paper, 70
GoldenGate, Oracle, 516
Goldratt, Eliyahu M., 526, 565
Golubchik, Sergei, 298
Graphite, 670
great-circle formula, 259
GREATEST() function, 254
grep, 638
Grimmer, Lenz, 659
Groonga storage engine, 23
Groundwork Open Source, 669
GROUP BY queries, 135, 137, 163, 244, 312,

752
group commit, 314
Grouply.com, 769
GROUP_CONCAT() function, 230
Guerrilla Capacity Planning (Gunther), 525,

565
GUID values, 545
Gunther, Neil J., 525, 565
gunzip tool, 716
gzip compression, 609, 716, 718

H
Hadoop, 620
handler API, 228
handler operations, 228, 265, 690
HandlerSocket, 618

HAProxy, 556
hard disks, choosing, 398
hardware and software RAID, 418
hardware threads, 388
hash codes, 152
hash indexes, 21, 152
hash joins, 234
Haversine formula, 259
header, 693
headroom, 573
HEAP tables, 20
heartbeat record, 487
HEX() function, 130
Hibernate Core interfaces, 547
Hibernate Shards, 547
high availability

achieving, 569–572
avoiding single points of failure, 572–581
defined, 567
failover and failback, 581–585

High Availability Linux project, 582
high bits, 506
High Performance Web Sites (Souders), 608
high throughput, 389
HIGH_PRIORITY hint, 238
hit rate, 322
HiveDB, 547
hot data, segregating, 269
“hot” online backups, 17
How Complex Systems Fail (Cook), 571
HTTP proxy, 585
http_load tool, 51, 54
Hutchings, Andrew, 298
Hyperic HQ, 669
hyperthreading, 389

I
I/O

benchmark, 57
InnoDB, 357–363
MyISAM, 369–371
performance, 595
slave thread, 450

I/O-bound machines, 443
IaaS (Infrastructure as a Service), 589
.ibd files, 356, 366, 648
Icinga, 668
id column, 723
identifiers, choosing, 129–131

Index | 777

idle machine’s vmstat output, 444
IF() function, 254
IfP (instrumentation-for-php), 78
IGNORE INDEX hint, 165, 240
implicit locking, 11
IN() function, 190–193, 219, 260
incr() function, 546
incremental backups, 630
.index files, 464
index-covered queries, 178–181
indexer, Sphinx, 756
indexes

benefits of, 158
case study, 189–194
clustered, 168–176
covering, 177–182
and locking, 188
maintaining, 194–198
merge optimizations, 234
and mismatched PARTITION BY, 270
MyISAM storage engine, 143
order of columns, 165–168
packed (prefix-compressed), 184
reducing fragmentation, 197
redundant and duplicate, 185–187
and scans, 182–184, 269
statistics, 195, 220
strategies for high performance, 159–168
types of, 148–158
unused, 187

INET_ATON() function, 131
INET_NTOA() function, 131
InfiniDB, Calpont, 23
info() function, 195
Infobright, 22, 28, 117, 269
INFORMATION_SCHEMA tables, 14, 110,

297, 499, 742–744
infrastructure, 617
Infrastructure as a Service (IaaS), 589
Ingo, Henrik, 515, 683
inner joins, 216
Innobase Oy, 30
InnoDB, 13, 15

advanced settings, 383–385
buffer pool, 349, 711
concurrency configuration, 372
crash recovery, 655–658
data dictionary, 356, 711
data layout, 172–176

Data Recovery Toolkit, 195
and deadlocks, 9
and filesystem snapshots, 644–646
flushing algorithm, 412
Hot Backup, 457, 658
I/O configuration, 357–363, 411
lock waits in, 740–744
log files, 411
and query cache, 326
release history, 16
row locks, 188
tables, 710, 742
tablespace, 364
transaction log, 357, 496

InnoDB locking selects, 503
innodb variable, 383
InnoDB-specific variables, 692
innodb_adaptive_checkpoint variable, 412
innodb_analyze_is_persistent variable, 197,

356
innodb_autoinc_lock_mode variable, 177,

384
innodb_buffer_pool_instances variable, 384
innodb_buffer_pool_size variable, 348
innodb_commit_concurrency variable, 373
innodb_concurrency_tickets variable, 373
innodb_data_file_path variable, 364
innodb_data_home_dir variable, 364
innodb_doublewrite variable, 368
innodb_file_io_threads variable, 702
innodb_file_per_table variable, 344, 362, 365,

414, 419, 648, 658
innodb_flush_log_at_trx_commit variable,

360, 364, 369, 418, 491, 508
innodb_flush_method variable, 344, 361, 419,

437
innodb_flush_neighbor_pages variable, 412
innodb_force_recovery variable, 195, 657
innodb_io_capacity variable, 384, 411
innodb_lazy_drop_table variable, 366
innodb_locks_unsafe_for_binlog variable,

505, 508
innodb_log_buffer_size variable, 359
innodb_log_files_in_group variable, 358
innodb_log_file_size variable, 358
innodb_max_dirty_pages_pct variable, 350
innodb_max_purge_lag variable, 367
innodb_old_blocks_time variable, 385
innodb_open_files variable, 356

778 | Index

innodb_overwrite_relay_log_info variable,
383

innodb_read_io_threads variable, 385, 702
innodb_recovery_stats variable, 359
innodb_stats_auto_update variable, 197
innodb_stats_on_metadata variable, 197, 356
innodb_stats_sample_pages variable, 196
innodb_strict_mode variable, 385
innodb_support_xa variable, 314, 330
innodb_sync_spin_loops variable, 695
innodb_thread_concurrency variable, 101,

372
innodb_thread_sleep_delay variable, 372
innodb_use_sys_stats_table variable, 197, 356
innodb_version variable, 742
innodb_write_io_threads variable, 385, 702
innotop tool, 500, 672, 693
INSERT ... SELECT statements, 28, 240, 488,

503
insert buffer, 413, 703
INSERT command, 267, 278
INSERT ON DUPLICATE KEY UPDATE

command, 252, 682
insert-to-select rate, 323
inspecting server status variables, 346
INSTEAD OF trigger, 278
instrumentation, 73
instrumentation-for-php (IfP), 78
INT type, 117
integer computations, 117
integer types, 117, 130
Intel X-25E drives, 404
Intel Xeon X5670 Nehalem CPU, 598
interface tools, 665
intermittent problems, diagnosing, 92

capturing diagnostic data, 97–102
case study, 102–110
single-query versus server-wide problems,

93–96
internal concurrency issues, 391
internal XA transactions, 314
intra-row fragmentation, 198
introducers, 300
invalidation on read, 615
ionice, 626
iostat, 438–442, 591, 646
IP addresses, 560, 584
IP takeover, 583
ISNULL() function, 254

isolating columns, 159
isolation, 7
iterative optimization by benchmarking, 338

J
JMeter, 51
joins, 132, 234

decomposition, 209
execution strategy, 220
JOIN queries, 244
optimizers for, 223–226

journaling filesystems, 433
Joyent, 589

K
Karlsson, Anders, 510
Karwin, Bill, 256
Keep-Alive, 608
key block size, 353
key buffers, 351
key column, 729
key_buffer_size variable, 335, 351
key_len column, 729
Köhntopp, Kristian, 252
Kyte, Tom, 76

L
L-values, 250
lag, 484, 486, 507–511
Lahdenmaki, Tapio, 158, 204
LAST() function, 255
LAST_INSERT_ID() function, 239
latency, 38, 398, 576
LATEST DETECTED DEADLOCK, 697
LATEST FOREIGN KEY ERROR, 695
Launchpad, 64
lazy UNIONs, 254
LDAP authentication, 298
Leach, Mike, 158, 204
LEAST() function, 254
LEFT JOIN queries, 219
LEFT OUTER JOIN queries, 231
left-deep trees, 223
Leith, Mark, 712
LENGTH() function, 254, 304
lighttpd, 608
lightweight profiling, 76
LIMIT query, 218, 227, 246

Index | 779

limited replication bandwidth, 511
linear scalability, 524
“lint checking”, 249
Linux Virtual Server (LVS), 449, 556, 560
Linux-HA stack, 582
linuxthreads, 435
Little’s Law, 441
load balancers, 561
load balancing, 449, 555–565
LOAD DATA FROM MASTER command,

457
LOAD DATA INFILE command, 79, 301, 504,

508, 511, 600, 651
LOAD INDEX command, 272, 352
LOAD TABLE FROM MASTER command,

457
LOAD_FILE() function, 281
local caches, 612
local shared-memory caches, 613
locality of reference, 393
lock contention, 503
LOCK IN SHARE MODE command, 240
LOCK TABLES command, 11, 632
lock time, 626
lock waits, 735, 740–744
lock-all-tables variable, 457
lock-free InnoDB backups, 644
locks

debugging, 735–744
granularities, 4
implicit and explicit, 11
read/write, 4
row, 5
table, 5

log buffer, 358–361
log file coordinates, 456
log file size, 344, 358–361, 411
log positions, locating, 492
log servers, 481, 654
log threads, 702
log, InnoDB transaction, 703
logging, 10, 25
logical backups, 627, 637–639, 649–651
logical concurrency issues, 391
logical reads, 395
logical replication, 460
logical unit numbers (LUNs), 423
log_bin variable, 458

log_slave_updates variable, 453, 465, 468, 511,
635

LONGBLOB type, 122
LONGTEXT type, 122
lookup tables, 20
loose index scans, 235
lost time, 74
low latency, 389
LOW_PRIORITY hint, 238
Lua language, 53
Lucene, 313
LucidDB, 23
LUNs (logical unit numbers), 423
LVM snapshots, 434, 633, 640–648
lvremove command, 643
LVS (Linux Virtual Server), 449, 556, 560
lzo, 626

M
Maatkit (see Percona Toolkit)
maintenance operations, 271
malloc() function, 319
manual joins, 606
mapping tables, 20
MariaDB, 19, 484, 681
master and replicas, 468, 474, 564
master shutdown, unexpected, 495
master-data variable, 457
master-master in active-active mode, 469
master-master in active-passive mode, 471
master-master replication, 473, 505
master.info file, 459, 464, 489, 496
Master_Log_File, 491
MASTER_POS_WAIT() function, 495, 564
MATCH() function, 216, 306, 307, 311
materialized views, 138, 280
Matsunobu, Yoshinori, 581
MAX() function, 217, 237, 292
Maxia, Giuseppe, 282, 456, 512, 515, 518,

667
maximum system capacity, 521, 609
max_allowed_packet variable, 381
max_connections setting variable, 378
max_connect_errors variable, 381
max_heap_table_size setting variable, 378
mbox mailbox messages, 3
MBRCONTAINS() function, 157
McCullagh, Paul, 22
MD5() function, 53, 130, 156, 507

780 | Index

md5sum, 718
mean time between failures (MTBF), 569
mean time to recover (MTTR), 569–572, 576,

582, 586
measurement uncertainty, 72
MEDIUMBLOB type, 122
MEDIUMINT type, 117
MEDIUMTEXT type, 122
memcached, 533, 546, 613, 616
Memcached Access, 618
memory

allocating for caches, 349
configuring, 347–356
consumption formula for, 341
InnoDB buffer pool, 349
InnoDB data dictionary, 356
limits on, 347
memory-to-disk ratio, 397
MyISAM key cache, 351–353
per-connection needs, 348
pool, 704
reserving for operating system, 349
size, 595
Sphinx RAM, 751
table cache, 354
thread cache, 353

Memory storage engine, 20
Merge storage engine, 21
merge tables, 273–276
merged read and write requests, 440
mget() call, 616
MHA toolkit, 581
middleman solutions, 560–563, 584
migration, benchmarking after, 46
Millsap, Cary, 70, 74, 341
MIN() function, 217, 237, 292
Mininova.org, 764
mk-parallel-dump tool, 638
mk-parallel-restore tool, 638
mk-query-digest tool, 72
mk-slave-prefetch tool, 510
MLC (multi-level cell), 402, 407
MMM replication manager, 572, 580
mod_log_config variable, 79
MonetDB, 23
Monitis, 671
monitoring tools, 667–676
MONyog, 671
mpstat tool, 438

MRTG (Multi Router Traffic Grapher), 430,
669

MTBF (mean time between failures), 569
mtop tool, 672
MTTR (mean time to recovery), 569–572, 576,

582, 586
Mulcahy, Lachlan, 659
Multi Router Traffic Grapher (MRTG), 430,

669
multi-level cell (MLC), 402, 407
multi-query mechanism, 753
multicolumn indexes, 163
multiple disk volumes, 427
multiple partitioning keys, 537
multisource replication, 470, 480
multivalued attributes, 757, 761
Munin, 670
MVCC (multiversion concurrency control), 12,

551
my.cnf file, 452, 490, 501
.MYD file, 371, 633, 648
mydumper, 638, 659
.MYI file, 633, 648
MyISAM storage engine, 17

and backups, 631
concurrency configuration, 18, 373
and COUNT() queries, 242
data layout, 171
delayed key writes, 19
indexes, 18, 143
key block size, 353
key buffer/cache, 351–353, 690
performance, 19
tables, 19, 498

myisamchk, 629
myisampack, 276
mylvmbackup, 658, 659
MySQL

concurrency, 371–374
configuration mechanisms, 332–337
development model, 33
GPL-licensing, 33
logical architecture, 1
proprietary plugins, 33
Sandbox script, 456, 481
version history, 29–33, 182, 188

MySQL 5.1 Plugin Development (Golubchik &
Hutchings), 298

MySQL Benchmark Suite, 52, 55

Index | 781

MySQL Cluster, 577
MySQL Enterprise Backup, 457, 624, 627, 631,

658
MySQL Enterprise Monitor, 80, 670
MySQL Forge, 667, 710
MySQL High Availability (Bell et al.), 519
MySQL Stored Procedure Programming

(Harrison & Feuerstein), 282
MySQL Workbench Utilities, 665
mysql-bin.index file, 464
mysql-relay-bin.index file, 464
mysqladmin, 666, 686
mysqlbinlog tool, 460, 481, 492, 654
mysqlcheck tool, 629, 666
mysqld tool, 99, 344
mysqldump tool, 456, 488, 623, 627, 637, 660
mysqlhotcopy tool, 658
mysqlimport tool, 627, 651
mysqlslap tool, 51
mysql_query() function, 212, 292
mysql_unbuffered_query() function, 212
mytop tool, 672

N
Nagios, 668
Nagios System and Network Monitoring

(Barth), 643, 668
name locks, 736, 739
NAS (network-attached storage), 422–427
NAT (network address translation), 584
Native POSIX Threads Library (NPTL), 435
natural identifiers, 134
natural-language full-text searches, 306
NDB API, 619
NDB Cluster storage engine, 21, 535, 549, 550,

576
nesting cursors, 290
netcat, 717
network address translation (NAT), 584
network configuration, 429–431
network overhead, 202
network performance, 595
network provider, reliance on single, 572
network-attached storage (NAS), 422–427
New Relic, 77, 671
next-key locking, 17
NFS, SAN over, 424
Nginx, 608, 612
nice, 626

nines rule of availability, 567
Noach, Shlomi, 187, 666, 687, 710
nodes, 531, 538
non-SELECT queries, 721
nondeterministic statements, 499
nonrepeatable reads, 8
nonreplicated data, 501
nonsharded data, 538
nontransactional tables, 498
nonunique server IDs, 500
nonvolatile random access memory (NVRAM),

400
normalization, 133–136
NOT EXISTS() queries, 219, 232
NOT NULL, 116, 682
NOW() function, 316
NOW_USEC() function, 296, 513
NPTL (Native POSIX Threads Library), 435
NULL, 116, 133, 270
null hypothesis, 47
NULLIF() function, 254
NuoDB, 22
NVRAM (nonvolatile random access memory),

400

O
object versioning, 615
object-relational mapping (ORM) tool, 131,

148, 606
OCZ, 407
OFFSET variable, 246
OLTP (online transaction processing), 22, 38,

59, 478, 509, 596
on-controller cache (see RAID)
on-disk caches, 614
on-disk temporary tables, 122
online transaction processing (OLTP), 22, 38,

59, 478, 509, 596
open() function, 363
openark kit, 666
opened tables, 355
opening and locking partitions, 271
OpenNMS, 669
operating system

choosing an, 431
how to select CPUs for MySQL, 388
optimization, 387
status of, 438–444
what limits performance, 387

782 | Index

oprofile tool, 99–102, 111
Opsview, 668
optimistic concurrency control, 12
optimization, 3

(see also application-level optimization)
(see also query optimization)
BLOB workload, 375
DISTINCT queries, 244
filesort, 377
full-text indexes, 312
GROUP BY queries, 244, 752, 768
JOIN queries, 244
LIMIT and OFFSET, 246
OPTIMIZE TABLE command, 170, 310,

501
optimizer traces, 734
optimizer_prune_level, 240
optimizer_search_depth, 240
optimizer_switch, 241
prepared statements, 292
queries, 272
query cache, 327
query optimizer, 215–220
RAID performance, 415–417
ranking queries, 250
selects on Sahibinden.com, 767
server setting optimization, 331
sharded JOIN queries on Grouply.com,

769
for solid-state storage, 410–414
sorts, 193
SQL_CALC_FOUND_ROWS variable,

248
subqueries, 244
TEXT workload, 375
through profiling, 72–75, 91
UNION variable, 248

Optimizer
hints

DELAYED, 239
FOR UPDATE, 240
FORCE INDEX, 240
HIGH_PRIORITY, 238
IGNORE INDEX, 240
LOCK IN SHARE MODE, 240
LOW_PRIORITY, 238
SQL_BIG_RESULT, 239
SQL_BUFFER_RESULT, 239
SQL_CACHE, 239

SQL_CALC_FOUND_ROWS, 239
SQL_NO_CACHE, 239
SQL_SMALL_RESULT, 239
STRAIGHT_JOIN, 239
USE INDEX, 240

limitations of
correlated subqueries, 229–233
equality propogation, 234
hash joins, 234
index merge optimizations, 234
loose index scans, 235
MIN() and MAX(), 237
parallel execution, 234
SELECT and UPDATE on the Same

Table, 237
UNION limitations, 233

query, 214–227
complex queries versus many queries,

207
COUNT() aggregate function, 241
join decomposition, 209
limitations of MySQL, 229–238
optimizing data access, 202–207
reasons for slow queries, 201
restructuring queries, 207–209

Optimizing Oracle Performance (Millsap), 70,
341

options, 332
OQGraph storage engine, 23
Oracle Database, 408
Oracle development milestones, 33
Oracle Enterprise Linux, 432
Oracle GoldenGate, 516
ORDER BY queries, 163, 182, 226, 253
order processing, 26
ORM (object-relational mapping), 148, 606
OurDelta, 683
out-of-sync replicas, 488
OUTER JOIN queries, 221
outer joins, 216
outliers, 74
oversized packets, 511
O_DIRECT variable, 362
O_DSYNC variable, 363

P
Pacemaker, 560, 582
packed indexes, 184
packed tables, 19

Index | 783

PACK_KEYS variable, 184
page splits, 170
paging, 436
PAM authentication, 298
parallel execution, 234
parallel result sets, 753
parse tree, 3
parser, 214
PARTITION BY variable, 265, 270
partitioning, 415

across multiple nodes, 531
how to use, 268
keys, 535
with replication filters, 564
sharding, 533–547, 565, 755
tables, 265–276, 329
types of, 267

passive caches, 611
Patricia tries, 158
PBXT, 22
PCIe cards, 400, 406
Pen, 556
per-connection memory needs, 348
per-connection needs, 348
percent() function, 676
percentile response times, 38
Percona InnoDB Recovery Toolkit, 657
Percona Server, 598, 679, 711

BLOB and TEXT types, 122
buffer pool, 711
bypassing operating system caches, 344
corrupted tables, 657
doublewrite buffer, 411
enhanced slow query log, 89
expand_fast_index_creation, 198
extended slow query log, 323, 330
fast warmup features, 351, 563, 598
FNV64() function, 157
HandlerSocket plugin, 297
idle transaction timeout parameter, 744
INFORMATION_SCHEMA.INDEX_STA

TISTICS table, 187
innobd_use_sys_stats_table option, 197
InnoDB online text creation, 144
innodb_overwrite_relay_log_info option,

383
innodb_read_io_threads option, 702
innodb_recovery_stats option, 359
innodb_use_sys_stats_table option, 356

innodb_write_io_threads option, 702
larger log files, 411
lazy page invalidation, 366
limit data dictionary size, 356, 711
mutex issues, 384
mysqldump, 628
object-level usage statistics, 110
query-level instrumentation, 73
read-ahead, 412
replication, 484, 496, 508, 516
slow query log, 74, 80, 84, 89, 95
stripping query comments, 316
temporary tables, 689, 711
user statistics tables, 711

Percona Toolkit, 666
Aspersa, 666
Maatkit, 658, 666
mk-parallel-dump tool, 638
mk-parallel-restore tool, 638
mk-query-digest tool, 72
mk-slave-prefetch tool, 510
pt-archiver, 208, 479, 504, 545, 553
pt-collect, 99, 442
pt-deadlock-logger, 697
pt-diskstats, 45, 442
pt-duplicate-key-checker, 187
pt-fifo-split, 651
pt-find, 502
pt-heartbeat, 476, 487, 492, 559
pt-index-usage, 187
pt-kill, 744
pt-log-player, 340
pt-mext, 347, 687
pt-mysql-summary, 100, 103, 347, 677
pt-online-schema-change, 29
pt-pmp, 99, 101, 390
pt-query-advisor, 249
pt-query-digest, 375, 507, 563

extracting from comments, 79
profiling, 72–75
query log, 82–84
slow query logging, 90, 95, 340

pt-sift, 100, 442
pt-slave-delay, 516, 634
pt-slave-restart, 496
pt-stalk, 98, 99, 442
pt-summary, 100, 103, 677
pt-table-checksum, 488, 495, 519, 634
pt-table-sync, 489

784 | Index

pt-tcp-model, 611
pt-upgrade, 187, 241, 570, 734
pt-visual-explain, 733

Percona tools, 52, 64–66, 195
Percona XtraBackup, 457, 624, 627, 631, 648,

658
Percona XtraDB Cluster, 516, 549, 577–580,

680
performance optimization, 69–72, 107

plotting metrics, 49
profiling, 72–75
SAN, 424
views and, 279

Performance Schema, 90
Perl scripts, 572
Perldoc, 662
perror utility, 355
persistent connections, 561, 607
persistent memory, 597
pessimistic concurrency control, 12
phantom reads, 8
PHP profiling tools, 77
phpMyAdmin tool, 666
phrase proximity ranking, 759
phrase searches, 309
physical reads, 395
physical size of disk, 399
pigz tool, 626
“pileups”, 69
Pingdom, 671
pinging, 606, 689
Planet MySQL blog aggregator, 667
planned promotions, 490
plugin-specific variables, 692
plugins, 297
point-in-time recovery, 625, 652
poor man’s profiler, 101
port forwarding, 584
possible_keys column, 729
post-mortems, 571
PostgreSQL, 258
potential cache size, 323
power grid, 572
preferring a join, 244
prefix indexes, 160–163
prefix-compressed indexes, 184
preforking, 608
pregenerating content, 617
prepared statements, 291–295, 329

preprocessor, 214
Preston, W. Curtis, 621
primary key, 17, 173–176
PRIMARY KEY constraint, 185
priming the cache, 509
PROCEDURE ANALYSE command, 297
procedure plugins, 297
processor speed, 392
profiling

and application speed, 76
applications, 75–80
diagnosing intermittent problems, 92–110
interpretation, 74
MySQL queries, 80–84
optimization through, 72–75, 91
single queries, 84–91
tools, 72, 110–112

promotions of replicas, 491, 583
propagation of changes, 584
proprietary plugins, 33
proxies, 556, 584, 609
pruning, 270
pt-archiver tool, 208, 479, 504, 545, 553
pt-collect tool, 99, 442
pt-deadlock-logger tool, 697
pt-diskstats tool, 45, 442
pt-duplicate-key-checker tool, 187
pt-fifo-split tool, 651
pt-find tool, 502
pt-heartbeat tool, 476, 487, 492, 559
pt-index-usage tool, 187
pt-kill tool, 744
pt-log-player tool, 340
pt-mext tool, 347, 687
pt-mysql-summary tool, 100, 103, 347, 677
pt-online-schema-change tool, 29
pt-pmp tool, 99, 101, 390
pt-query-advisor tool, 249
pt-query-digest (see Percona Toolkit)
pt-sift tool, 100, 442
pt-slave-delay tool, 516, 634
pt-slave-restart tool, 496
pt-stalk tool, 98, 99, 442
pt-summary tool, 100, 103, 677
pt-table-checksum tool, 488, 495, 519, 634
pt-table-sync tool, 489
pt-tcp-model tool, 611
pt-upgrade tool, 187, 241, 570, 734
pt-visual-explain tool, 733

Index | 785

PURGE MASTER LOGS command, 369, 464,
486

purging old binary logs, 636
pushdown joins, 550, 577

Q
Q mode, 673
Q4M storage engine, 23
Qcache_lowmem_prunes variable, 325
query cache, 214, 315, 330, 690

alternatives to, 328
configuring and maintaining, 323–325
InnoDB and the, 326
memory use, 318
optimizations, 327
when to use, 320–323

query execution
MySQL client/server protocol, 210–213
optimization process, 214
query cache, 214, 315–328

query execution engine, 228
query logging, 95
query optimization, 214–227

complex queries versus many queries, 207
COUNT() aggregate function, 241
join decomposition, 209
limitations of MySQL, 229–238
optimizing data access, 202–207
reasons for slow queries, 201
restructuring queries, 207–209

query states, 213
query-based splits, 557
querying across shards, 537
query_cache_limit variable, 324
query_cache_min_res_unit value variable, 324
query_cache_size variable, 324, 336
query_cache_type variable, 323
query_cache_wlock_invalidate variable, 324
queue scheduler, 434
queue tables, 256
queue time, 204
quicksort, 226

R
R-Tree indexes, 157
Rackspace Cloud, 589
RAID

balancing hardware and software, 418

configuration and caching, 419–422
failure, recovery, and monitoring, 417
moving files from flash to, 411
not for backup, 624
performance optimization, 415–417
splits, 647
with SSDs, 405

RAND() function, 160, 724
random read-ahead, 412
random versus sequential I/O, 394
RANGE COLUMNS type, 268
range conditions, 192
raw file

backup, 627
restoration, 648

RDBMS technology, 400
RDS (Relational Database Service), 589, 600
read buffer size, 343
READ COMMITTED isolation level, 8, 13
read locks, 4, 189
read threads, 703
READ UNCOMMITTED isolation level, 8, 13
read-ahead, 412
read-around writes, 353
read-mostly tables, 26
read-only variable, 26, 382, 459, 479
read-write splitting, 557
read_buffer_size variable, 336
Read_Master_Log_Pos, 491
read_rnd_buffer_size variable, 336
real number data types, 118
rebalancing shards, 544
records_in_range() function, 195
recovery

from a backup, 647–658
defined, 622
defining requirements, 623
more advanced techniques, 653

recovery point objective (RPO), 623, 625
recovery time objective (RTO), 623, 625
Red Hat, 432, 683
Redis, 620
redundancy, replication-based, 580
Redundant Array of Inexpensive Disks (see

RAID)
redundant indexes, 185–187
ref column, 730

786 | Index

Relational Database Index Design and the
Optimizers (Lahdenmaki & Leach),
158, 204

Relational Database Service (RDS), Amazon,
589, 600

relay log, 450, 496
relay-log.info file, 464
relay_log variable, 453, 459
relay_log_purge variable, 459
relay_log_space_limit variable, 459, 511
RELEASE_LOCK() function, 256
reordering joins, 216
REORGANIZE PARTITION command, 271
REPAIR TABLE command, 144, 371
repairing MyISAM tables, 18
REPEATABLE READ isolation level, 8, 13,

632
replica hardware, 414
replica shutdown, unexpected, 496
replicate_ignore_db variable, 478
replication, 447, 634

administration and maintenance, 485
advanced features in MySQL, 514
backing up configuration, 630
and capacity planning, 482–485
changing masters, 489–494
checking consistency of, 487
checking for up-to-dateness, 565
configuring master and replica, 452
creating accounts for, 451
custom solutions, 477–482
filtering, 466, 564
how it works, 449
initializing replica from another server, 456
limitations, 512
master and multiple replicas, 468
master, distribution master, and replicas,

474
master-master in active-active mode, 469
master-master in active-passive mode, 471
master-master with replicas, 473
measuring lag, 486
monitoring, 485
other technologies, 516
problems and solutions, 495–512
problems solved by, 448
promotions of replicas, 491, 583
recommended configuration, 458
replica consistency with master, 487

replication files, 463
resyncing replica from master, 488
ring, 473
row-based, 447, 460–463
sending events to other replicas, 465
setting up, 451
speed of, 512–514
splitting reads and writes in, 557
starting the replica, 453–456
statement-based, 447, 460–463
status, 708
switching master-master configuration

roles, 494
topologies, 468, 490
tree or pyramid, 476

REPLICATION CLIENT privilege, 452
REPLICATION SLAVE privilege, 452
replication-based redundancy, 580
RESET QUERY CACHE command, 325
RESET SLAVE command, 490
resource consumption, 70
response time, 38, 69, 204
restoring

defined, 622
logical backups, 649–651

RethinkDB, 22
ring replication, 473
ROLLBACK command, 499
round-robin database (RRD) files, 669
row fragmentation, 198
row locks, 5, 12
ROW OPERATIONS, 705
row-based logging, 636
row-based replication, 447, 460–463
rows column, 731
rows examined, number of, 205
rows returned, number of, 205
ROW_COUNT command, 287
RPO (recovery point objective), 623, 625
RRDTool, 669
rsync, 195, 456, 717, 718
RTO (recovery time objective), 623, 625
running totals and averages, 255

S
safety and sanity settings, 380–383
Sahibinden.com, 767
SandForce, 407
SANs (storage area networks), 422–427

Index | 787

sar, 438
sargs, 166
SATA SSDs, 405
scalability, 521

by clustering, 548
by consolidation, 547
frequency, 392
and load balancing, 555
mathematical definition, 523
multiple CPUs/cores, 391
planning for, 527
preparing for, 528
“scale-out” architecture, 447
scaling back, 552
scaling out, 531–547
scaling pattern, 391
scaling up, 529
scaling writes, 483
Sphinx, 754
universal law of, 525–527

scalability measurements, 39
ScaleArc, 547, 549
ScaleBase, 547, 549, 551, 594
ScaleDB, 407, 574
scanning data, 269
scheduled tasks, 504
schemas, 13

changes, 29
design, 131
normalized and denormalized, 135

Schooner Active Cluster, 549
scope, 333
scp, 716
search engine, selecting the right, 24–28
search space, 226
searchd, Sphinx, 746, 754, 756–766
secondary indexes, 17, 656
security, connection management, 2
sed, 638
segmented key cache, 19
segregating hot data, 269
SELECT command, 237, 267, 721
SELECT FOR UPDATE command, 256, 287
SELECT INTO OUTFILE command, 301, 504,

508, 600, 638, 651, 657
SELECT types, 690
selective replication, 477
selectivity, index, 160
select_type column, 724

SEMAPHORES, 693
sequential versus random I/O, 394
sequential writes, 576
SERIALIZABLE isolation level, 8, 13
serialized writes, 509
server, 685

adding/removing, 563
configuration, backing up, 630
consolidation, 425
INFORMATION_SCHEMA database, 711
MySQL configuration, 332
PERFORMANCE_SCHEMA database,

712
profiling and speed of, 76, 80
server-wide problems, 93–96
setting optimization, 331
SHOW ENGINE INNODB MUTEX

command, 707–709
SHOW ENGINE INNODB STATUS

command, 692–706
SHOW PROCESSLIST command, 706
SHOW STATUS command, 686–692
status variables, 346
workload profiling, 80

server-side prepared statements, 295
service time, 204
session scope, 333
session-based splits, 558
SET CHARACTER SET command, 300
SET GLOBAL command, 494
SET GLOBAL SQL_SLAVE_SKIP_COUNTER

command, 654
SET NAMES command, 300
SET NAMES utf8 command, 300, 606
SET SQL_LOG_BIN command, 503
SET TIMESTAMP command, 635
SET TRANSACTION ISOLATION LEVEL

command, 11
SET type, 128, 130
SetLimits() function, 748, 764
SetMaxQueryTime() function, 764
SeveralNines, 550, 577
SHA1() function, 53, 130, 156
Shard-Query system, 547
sharding, 533–547, 565, 755
shared locks, 4
shared storage, 573–576
SHOW BINLOG EVENTS command, 486,

708

788 | Index

SHOW commands, 255
SHOW CREATE TABLE command, 117, 163
SHOW CREATE VIEW command, 280
SHOW ENGINE INNODB MUTEX

command, 695, 707–709
SHOW ENGINE INNODB STATUS

command, 97, 359, 366, 384, 633,
692–706, 740

SHOW FULL PROCESSLIST command, 81,
700

SHOW GLOBAL STATUS command, 88, 93,
346, 686

SHOW INDEX command, 197
SHOW INDEX FROM command, 196
SHOW INNODB STATUS command (see

SHOW ENGINE INNODB STATUS
command)

SHOW MASTER STATUS command, 452,
457, 486, 490, 558, 630, 643

SHOW PROCESSLIST command, 94–96, 256,
289, 606, 706

SHOW PROFILE command, 85–89
SHOW RELAYLOG EVENTS command, 708
SHOW SLAVE STATUS command, 453, 457,

486, 491, 558, 630, 708
SHOW STATUS command, 88, 352
SHOW TABLE STATUS command, 14, 197,

365, 672
SHOW VARIABLES command, 352, 685
SHOW WARNINGS command, 222, 277
signed types, 117
single-component benchmarking, 37, 51
single-level cell (SLC), 402, 407
single-shard queries, 535
single-transaction variable, 457, 632
skip_innodb variable, 476
skip_name_resolve variable, 381, 429, 570
skip_slave_start variable, 382, 459
slavereadahead tool, 510
slave_compressed_protocol variable, 475, 511
slave_master_info variable, 383
slave_net_timeout variable, 382
Slave_open_temp_tables variable, 503
SLC (single-level cell), 402, 407
Sleep state, 607
SLEEP() function, 256, 682, 737
sleeping before entering queue, 373
slots, 694
slow queries, 71, 74, 80, 89, 109, 321

SMALLBLOB type, 122
SMALLINT type, 117
SMALLTEXT type, 122
Smokeping tool, 430
snapshots, 457, 624, 640–648
Solaris SPARC hardware, 431
Solaris ZFS filesystem, 431
solid-state drives (SSD), 147, 268, 361, 404
solid-state storage, 400–414
sort buffer size, 343
sort optimizations, 226, 691
sorting, 193
sort_buffer_size variable, 336
Souders, Steve, 608
SourceForge, 52
SPARC hardware, 431
spatial indexes, 157
Sphinx, 313, 619, 745, 770

advanced performance control, 763
applying WHERE clauses, 750
architectural overview, 756–758
efficient and scalable full-text searching,

749
filtering, 761
finding top results in order, 751
geospatial search functions, 262
installation overview, 757
optimizing GROUP BY queries, 752, 768
optimizing selects on Sahibinden.com, 767
optimizing sharded JOIN queries on

Grouply.com, 769
phrase proximity ranking, 759
searching, 746–748
special features, 759–764
SphinxSE, 756, 759, 761, 767
support for attributes, 760
typical partition use, 758

Spider storage engine, 24
spin-wait, 695
spindle rotation speed, 399
splintering, 533–547
split-brain syndrome, 575, 578
splitting reads and write in replication, 557
Splunk, 671
spoon-feeding, 608
SQL and Relational Theory (Date), 255
SQL Antipatterns (Karwin), 256
SQL dumps, 637
SQL interface prepared statements, 295

Index | 789

SQL slave thread, 450
SQL statements, 638
SQL utilities, 667
sql-bench, 52
SQLyog tool, 665
SQL_BIG_RESULT hint, 239, 245
SQL_BUFFER_RESULT hint, 239
SQL_CACHE hint, 239
SQL_CACHE variable, 321, 328
SQL_CALC_FOUND_ROWS hint, 239
SQL_CALC_FOUND_ROWS variable, 248
sql_mode, 382
SQL_MODE configuration variable, 245
SQL_NO_CACHE hint, 239
SQL_NO_CACHE variable, 328
SQL_SMALL_RESULT hint, 239, 245
Squid, 608
SSD (solid-state drives), 147, 268, 361, 404
SSH, 716
staggering numbers, 505
stale-data splits, 557
“stalls”, 69
Starkey, Jim, 22
START SLAVE command, 654
START SLAVE UNTIL command, 654
start-position variable, 498
statement handles, 291
statement-based replication, 447, 460–463
static optimizations, 216
static query analysis, 249
STEC, 407
STONITH, 584
STOP SLAVE command, 487, 490, 498
stopwords, 306, 312
storage area networks (SANs), 422–427
storage capacity, 399
storage consolidation, 425
storage engine API, 2
storage engines, 13, 23–28

Archive, 19
Blackhole, 20
column-oriented, 22
community, 23
and consistency, 633
CSV, 20
Falcon, 22
Federated, 20
InnoDB, 15
Memory, 20

Merge, 21
mixing, 11, 500
MyISAM, 18
NDB Cluster, 21
OLTP, 22
ScaleDB, 574
XtraDB, 680

stored code, 282–284, 289
Stored Procedure Library, 667
stored procedures and functions, 284
stored routines, 282, 329
strace tool, 99, 111
STRAIGHT_JOIN hint, 224, 239
string data types, 119–125, 130
string locks, 736
stripe chunk size, 420
subqueries, 218, 244
SUBSTRING() function, 122, 304, 375
sudo rules, 630
SUM() function, 139
summary tables, 136
Super Smack, 52
surrogate keys, 173
Swanhart, Justin, 138, 280, 547
swapping, 436, 444
switchover, 582
synchronization, two-way, 287
synchronous MySQL replication, 576–580
sync_relay_log variable, 383
sync_relay_log_info variable, 383
sysbench, 39, 53, 56–61, 419, 426, 598
SYSDATE() function, 382
sysdate_is_now variable, 382
system of record approach, 517
system performance, benchmarking, 44
system under test (SUT), 44
system variables, 685

T
table definition cache, 356
tables

building a queue, 256
cache memory, 354
column, 724–727
conversions, 28
derived, 238, 277, 725
finding and repairing corruption, 194
INFORMATION_SCHEMA in Percona

Server, 711

790 | Index

locks, 5, 692, 735–738
maintenance, 194–198
merge, 273–276
partitioned, 265–276, 329
reducing to an MD5 hash value, 255
SELECT and UPDATE on, 237
SHOW TABLE STATUS output, 14
splitting, 554
statistics, 220
tablespaces, 16, 364
views, 276–280

table_cache_size variable, 335, 379
tagged cache, 615
TCP, 556, 583
tcpdump tool, 81, 95, 99
tcp_max_syn_backlog variable, 430
temporal computations, 125
temporary files and tables, 21, 502, 689, 711
TEMPTABLE algorithm, 277
Texas Memory Systems, 407
TEXT type, 21, 121, 122
TEXT workload, optimizing for, 375
Theory of Constraints, 526
third-party storage engines, 21
thread and connection statistics, 688
thread cache memory, 353
threaded discussion forums, 27
threading, 213, 435
Threads_connected variable, 354, 596
Threads_created variable, 354
Threads_running variable, 596
thread_cache_size variable, 335, 354, 379
throttling variables, 627
throughput, 38, 70, 398, 576
tickets, 373
time to live (TTL), 614
time-based data partitioning, 554
TIMESTAMP type, 117, 126, 631
TIMESTAMPDIFF() function, 513
TINYBLOB type, 122
TINYINT type, 117
TINYTEXT type, 122
Tkachenko, Vadim, 405
tmp_table_size setting, 378
TokuDB, 22, 158
TO_DAYS() function, 268
TPC Benchmarks

dbt2, 61
TPC-C, 52

TPC-H, 41
TPCC-MySQL tool, 52, 64–66

transactional tables, 499
transactions, 24

ACID test, 6
deadlocks, 9
InnoDB, 366, 699
isolation levels, 7
logging, 10
in MySQL, 10
and storage engines, 24

transfer speed, 398
transferring large files, 715–718
transparency, 556, 578, 611
tree or pyramid replication, 476
tree-formatted output, 733
trial-and-error troubleshooting, 92
triggers, 97, 282, 286
TRIM command, 404
Trudeau, Yves, 262
tsql2mysql tool, 282
TTL (time to live), 614
tunefs, 433
Tungsten Replicator, Continuent, 481, 516
“tuning”, 340
turbo boost technology, 392
type column, 727

U
Ubuntu, 683
UDF Library, 667
UDFs, 262, 295
unarchiving, 553
uncommitted data, 8
uncompressed files, 715
undefined server IDs, 501
underutilization, 485
UNHEX() function, 130
UNION ALL query, 248
UNION limitations, 233
UNION query, 220, 248, 254, 724–727
UNION syntax, 274
UNIQUE constraint, 185
unit of sharding, 535
Universal Scalability Law (USL), 525–527
Unix, 332, 432, 504, 582, 630
UNIX_TIMESTAMP() function, 126
UNLOCK TABLES command, 12, 142, 643
UNSIGNED attribute, 117

Index | 791

“unsinkable” systems, 573
unused indexes, 187
unwrapping, 255
updatable views, 278
UPDATE command, 237, 267, 278
UPDATE RETURNING command, 252
upgrades

replication before, 449
validating MySQL, 241

USE INDEX hint, 240
user logs, 740
user optimization issues, 39, 166
user statistics tables, 711
user-defined functions (UDFs), 262, 295
user-defined variables, 249–255
USER_STATISTICS tables, 110
“Using filesort” value, 733
“Using index” value, 733
USING query, 218
“Using temporary” value, 733
“Using where” value, 733
USL (Universal Scalability Law), 525–527
UTF-8, 298, 303
utilities, SQL, 667
UUID() function, 130, 507, 546
UUID_SHORT() function, 546

V
Valgrind, 78
validating MySQL upgrades, 241
VARCHAR type, 119, 124, 131, 513
variables, 332

assignments in statements, 255
setting dynamically, 335–337
user-defined, 249–255

version-based splits, 558
versions

and full-text searching, 310
history of MySQL, 29–33
improvements in MySQL 5.6, 734
old row, 366
replication before upgrading, 449
version-specific comments, 289

vgdisplay command, 642
views, 276–280, 329
Violin Memory, 407
Virident, 403, 409
virtual IP addresses, 560, 583
virtualization, 548

vmstat tool, 436, 438, 442, 591, 646
volatile memory, 597
VoltDB, 549
volume groups, 641
VPForMySQL storage engine, 24

W
Wackamole, 556
waiters flag, 694
warmup, 351, 573
wear leveling, 401
What the Dog Saw (Gladwell), 571
WHERE clauses, 255, 750
whole number data types, 117
Widenius, Monty, 679, 681
Windows, 504
WITH ROLLUP variable, 246
Workbench Utilities, MySQL, 665, 666
working concurrency, 39
working sets of data, 395, 597
workload-based configuration, 375–377
worst-case selectivity, 162
write amplification, 401
write cache and power failure, 405
write locks, 4, 189
write synchronization, 565
write threads, 703
write-ahead logging, 10, 395
write-invalidate policy, 614
write-set replication, 577
write-update, 614
writes, scaling, 483
WriteThrough vs. WriteBack, 418

X
X-25E drives, 404
X.509 certificates, 2
x86 architecture, 390, 431
XA transactions, 314, 330
xdebug, 78
Xeround, 549, 602
xhprof tool, 77
XtraBackup, Percona, 457, 624, 627, 631, 648,

658
XtraDB Cluster, Percona, 516, 549, 577–580,

680

792 | Index

Y
YEAR() function, 268, 270

Z
Zabbix, 668
Zenoss, 669
ZFS filer, 631, 640
ZFS filesystem, 408, 431
zlib, 19, 511
Zmanda Recovery Manager (ZRM), 659

Index | 793

About the Authors
Baron Schwartz is a software engineer who lives in Charlottesville, Virginia, and goes
by the online handle of “Xaprb,” which is his first name typed in QWERTY on a Dvorak
keyboard. When he’s not busy solving a fun programming challenge, he relaxes with
his wife, Lynn, and dog, Carbon. He blogs about software engineering at http://www
.xaprb.com/blog/.

A former manager of the High Performance Group at MySQL AB, Peter Zaitsev now
runs the mysqlperformanceblog.com site. He specializes in helping administrators fix
issues with websites handling millions of visitors a day, dealing with terabytes of data
using hundreds of servers. He is used to making changes and upgrades both to hardware
and to software (such as query optimization) in order to find solutions. He also speaks
frequently at conferences.

Vadim Tkachenko was a Performance Engineer in at MySQL AB. As an expert in
multithreaded programming and synchronization, his primary tasks were benchmarks,
profiling, and finding bottlenecks. He also worked on a number of features for perfor-
mance monitoring and tuning, and getting MySQL to scale well on multiple CPUs.

Colophon
The animal on the cover of High Performance MySQL is a sparrow hawk (Accipiter
nisus), a small woodland member of the falcon family found in Eurasia and North
Africa. Sparrow hawks have a long tail and short wings; males are bluish-gray with a
light brown breast, and females are more brown-gray and have an almost fully white
breast. Males are normally somewhat smaller (11 inches) than females (15 inches).

Sparrow hawks live in coniferous woods and feed on small mammals, insects, and birds.
They nest in trees and sometimes on cliff ledges. At the beginning of the summer, the
female lays four to six white eggs, blotched red and brown, in a nest made in the boughs
of the tallest tree available. The male feeds the female and their young.

Like all hawks, the sparrow hawk is capable of bursts of high speed in flight. Whether
soaring or gliding, the sparrow hawk has a characteristic flap-flap-glide action; its large
tail enables the hawk to twist and turn effortlessly in and out of cover.

The cover image is a nineteenth-century engraving from the Dover Pictorial Archive.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMono-
Condensed.

http://www.xaprb.com/blog/
http://www.xaprb.com/blog/
http://www.mysqlperformanceblog.com/

	Table of Contents
	Foreword
	Preface
	How This Book Is Organized
	A Broad Overview
	Building a Solid Foundation
	Configuring Your Application
	MySQL as an Infrastructure Component
	Miscellaneous Useful Topics

	Software Versions and Availability
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments for the Third Edition
	Acknowledgments for the Second Edition
	From Baron
	From Peter
	From Vadim
	From Arjen

	Acknowledgments for the First Edition
	From Jeremy
	From Derek

	Chapter 1. MySQL Architecture and History
	MySQL’s Logical Architecture
	Connection Management and Security
	Optimization and Execution

	Concurrency Control
	Read/Write Locks
	Lock Granularity
	Table locks
	Row locks

	Transactions
	Isolation Levels
	Deadlocks
	Transaction Logging
	Transactions in MySQL
	AUTOCOMMIT
	Mixing storage engines in transactions
	Implicit and explicit locking

	Multiversion Concurrency Control
	MySQL’s Storage Engines
	The InnoDB Engine
	InnoDB’s history
	InnoDB overview

	The MyISAM Engine
	Storage
	MyISAM features
	Compressed MyISAM tables
	MyISAM performance

	Other Built-in MySQL Engines
	The Archive engine
	The Blackhole engine
	The CSV engine
	The Federated engine
	The Memory engine
	The Merge storage engine
	The NDB Cluster engine

	Third-Party Storage Engines
	OLTP storage engines
	Column-oriented storage engines
	Community storage engines

	Selecting the Right Engine
	Logging
	Read-only or read-mostly tables
	Order processing
	Bulletin boards and threaded discussion forums
	CD-ROM applications
	Large data volumes

	Table Conversions
	ALTER TABLE
	Dump and import
	CREATE and SELECT

	A MySQL Timeline
	MySQL’s Development Model
	Summary

	Chapter 2. Benchmarking MySQL
	Why Benchmark?
	Benchmarking Strategies
	What to Measure

	Benchmarking Tactics
	Designing and Planning a Benchmark
	How Long Should the Benchmark Last?
	Capturing System Performance and Status
	Getting Accurate Results
	Running the Benchmark and Analyzing Results
	The Importance of Plotting

	Benchmarking Tools
	Full-Stack Tools
	Single-Component Tools

	Benchmarking Examples
	http_load
	MySQL Benchmark Suite
	sysbench
	The sysbench CPU benchmark
	The sysbench file I/O benchmark
	The sysbench OLTP benchmark
	Other sysbench features

	dbt2 TPC-C on the Database Test Suite
	Percona’s TPCC-MySQL Tool

	Summary

	Chapter 3. Profiling Server Performance
	Introduction to Performance Optimization
	Optimization Through Profiling
	Interpreting the Profile

	Profiling Your Application
	Instrumenting PHP Applications

	Profiling MySQL Queries
	Profiling a Server’s Workload
	Capturing MySQL’s queries to a log
	Analyzing the query log

	Profiling a Single Query
	Using SHOW PROFILE
	Using SHOW STATUS
	Using the slow query log
	Using the Performance Schema

	Using the Profile for Optimization

	Diagnosing Intermittent Problems
	Single-Query Versus Server-Wide Problems
	Using SHOW GLOBAL STATUS
	Using SHOW PROCESSLIST
	Using query logging
	Making sense of the findings

	Capturing Diagnostic Data
	The diagnostic trigger
	What kinds of data should you collect?
	Interpreting the data

	A Case Study in Diagnostics

	Other Profiling Tools
	Using the USER_STATISTICS Tables
	Using strace

	Summary

	Chapter 4. Optimizing Schema and Data Types
	Choosing Optimal Data Types
	Whole Numbers
	Real Numbers
	String Types
	VARCHAR and CHAR types
	BLOB and TEXT types
	Using ENUM instead of a string type

	Date and Time Types
	Bit-Packed Data Types
	Choosing Identifiers
	Special Types of Data

	Schema Design Gotchas in MySQL
	Normalization and Denormalization
	Pros and Cons of a Normalized Schema
	Pros and Cons of a Denormalized Schema
	A Mixture of Normalized and Denormalized

	Cache and Summary Tables
	Materialized Views
	Counter Tables

	Speeding Up ALTER TABLE
	Modifying Only the .frm File
	Building MyISAM Indexes Quickly

	Summary

	Chapter 5. Indexing for High Performance
	Indexing Basics
	Types of Indexes
	B-Tree indexes
	Types of queries that can use a B-Tree index

	Hash indexes
	Building your own hash indexes
	Handling hash collisions

	Spatial (R-Tree) indexes
	Full-text indexes
	Other types of index

	Benefits of Indexes
	Indexing Strategies for High Performance
	Isolating the Column
	Prefix Indexes and Index Selectivity
	Multicolumn Indexes
	Choosing a Good Column Order
	Clustered Indexes
	Comparison of InnoDB and MyISAM data layout
	MyISAM’s data layout
	InnoDB’s data layout

	Inserting rows in primary key order with InnoDB

	Covering Indexes
	Using Index Scans for Sorts
	Packed (Prefix-Compressed) Indexes
	Redundant and Duplicate Indexes
	Unused Indexes
	Indexes and Locking

	An Indexing Case Study
	Supporting Many Kinds of Filtering
	Avoiding Multiple Range Conditions
	Optimizing Sorts

	Index and Table Maintenance
	Finding and Repairing Table Corruption
	Updating Index Statistics
	Reducing Index and Data Fragmentation

	Summary

	Chapter 6. Query Performance Optimization
	Why Are Queries Slow?
	Slow Query Basics: Optimize Data Access
	Are You Asking the Database for Data You Don’t Need?
	Is MySQL Examining Too Much Data?
	Response time
	Rows examined and rows returned
	Rows examined and access types

	Ways to Restructure Queries
	Complex Queries Versus Many Queries
	Chopping Up a Query
	Join Decomposition

	Query Execution Basics
	The MySQL Client/Server Protocol
	Query states

	The Query Cache
	The Query Optimization Process
	The parser and the preprocessor
	The query optimizer
	Table and index statistics
	MySQL’s join execution strategy
	The execution plan
	The join optimizer
	Sort optimizations

	The Query Execution Engine
	Returning Results to the Client

	Limitations of the MySQL Query Optimizer
	Correlated Subqueries
	When a correlated subquery is good

	UNION Limitations
	Index Merge Optimizations
	Equality Propagation
	Parallel Execution
	Hash Joins
	Loose Index Scans
	MIN() and MAX()
	SELECT and UPDATE on the Same Table

	Query Optimizer Hints
	Optimizing Specific Types of Queries
	Optimizing COUNT() Queries
	What COUNT() does
	Myths about MyISAM
	Simple optimizations
	Using an approximation
	More complex optimizations

	Optimizing JOIN Queries
	Optimizing Subqueries
	Optimizing GROUP BY and DISTINCT
	Optimizing GROUP BY WITH ROLLUP

	Optimizing LIMIT and OFFSET
	Optimizing SQL_CALC_FOUND_ROWS
	Optimizing UNION
	Static Query Analysis
	Using User-Defined Variables
	Optimizing ranking queries
	Avoiding retrieving the row just modified
	Counting UPDATEs and INSERTs
	Making evaluation order deterministic
	Writing a lazy UNION
	Other uses for variables

	Case Studies
	Building a Queue Table in MySQL
	Computing the Distance Between Points
	Using User-Defined Functions

	Summary

	Chapter 7. Advanced MySQL Features
	Partitioned Tables
	How Partitioning Works
	Types of Partitioning
	How to Use Partitioning
	What Can Go Wrong
	Optimizing Queries
	Merge Tables

	Views
	Updatable Views
	Performance Implications of Views
	Limitations of Views

	Foreign Key Constraints
	Storing Code Inside MySQL
	Stored Procedures and Functions
	Triggers
	Events
	Preserving Comments in Stored Code

	Cursors
	Prepared Statements
	Prepared Statement Optimization
	The SQL Interface to Prepared Statements
	Limitations of Prepared Statements

	User-Defined Functions
	Plugins
	Character Sets and Collations
	How MySQL Uses Character Sets
	Defaults for creating objects
	Settings for client/server communication
	How MySQL compares values
	Special-case behaviors

	Choosing a Character Set and Collation
	How Character Sets and Collations Affect Queries

	Full-Text Searching
	Natural-Language Full-Text Searches
	Boolean Full-Text Searches
	Full-Text Changes in MySQL 5.1
	Full-Text Tradeoffs and Workarounds
	Full-Text Configuration and Optimization

	Distributed (XA) Transactions
	Internal XA Transactions
	External XA Transactions

	The MySQL Query Cache
	How MySQL Checks for a Cache Hit
	How the Cache Uses Memory
	When the Query Cache Is Helpful
	How to Configure and Maintain the Query Cache
	Reducing fragmentation
	Improving query cache usage

	InnoDB and the Query Cache
	General Query Cache Optimizations
	Alternatives to the Query Cache

	Summary

	Chapter 8. Optimizing Server Settings
	How MySQL’s Configuration Works
	Syntax, Scope, and Dynamism
	Side Effects of Setting Variables
	Getting Started
	Iterative Optimization by Benchmarking

	What Not to Do
	Creating a MySQL Configuration File
	Inspecting MySQL Server Status Variables

	Configuring Memory Usage
	How Much Memory Can MySQL Use?
	Per-Connection Memory Needs
	Reserving Memory for the Operating System
	Allocating Memory for Caches
	The InnoDB Buffer Pool
	The MyISAM Key Caches
	The MyISAM key block size

	The Thread Cache
	The Table Cache
	The InnoDB Data Dictionary

	Configuring MySQL’s I/O Behavior
	InnoDB I/O Configuration
	The InnoDB transaction log
	Log file size and the log buffer
	How InnoDB flushes the log buffer

	How InnoDB opens and flushes log and data files
	The InnoDB tablespace
	Configuring the tablespace
	Old row versions and the tablespace

	The doublewrite buffer
	Other I/O configuration options

	MyISAM I/O Configuration

	Configuring MySQL Concurrency
	InnoDB Concurrency Configuration
	MyISAM Concurrency Configuration

	Workload-Based Configuration
	Optimizing for BLOB and TEXT Workloads
	Optimizing for Filesorts

	Completing the Basic Configuration
	Safety and Sanity Settings
	Advanced InnoDB Settings
	Summary

	Chapter 9. Operating System and Hardware Optimization
	What Limits MySQL’s Performance?
	How to Select CPUs for MySQL
	Which Is Better: Fast CPUs or Many CPUs?
	CPU Architecture
	Scaling to Many CPUs and Cores

	Balancing Memory and Disk Resources
	Random Versus Sequential I/O
	Caching, Reads, and Writes
	What’s Your Working Set?
	Finding an Effective Memory-to-Disk Ratio
	Choosing Hard Disks

	Solid-State Storage
	An Overview of Flash Memory
	Flash Technologies
	Benchmarking Flash Storage
	Solid-State Drives (SSDs)
	Using RAID with SSDs

	PCIe Storage Devices
	Other Types of Solid-State Storage
	When Should You Use Flash?
	Using Flashcache
	Optimizing MySQL for Solid-State Storage

	Choosing Hardware for a Replica
	RAID Performance Optimization
	RAID Failure, Recovery, and Monitoring
	Balancing Hardware RAID and Software RAID
	RAID Configuration and Caching
	The RAID stripe chunk size
	The RAID cache

	Storage Area Networks and Network-Attached Storage
	SAN Benchmarks
	Using a SAN over NFS or SMB
	MySQL Performance on a SAN
	Should You Use a SAN?

	Using Multiple Disk Volumes
	Network Configuration
	Choosing an Operating System
	Choosing a Filesystem
	Choosing a Disk Queue Scheduler
	Threading
	Swapping
	Operating System Status
	How to Read vmstat Output
	How to Read iostat Output
	Other Helpful Tools
	A CPU-Bound Machine
	An I/O-Bound Machine
	A Swapping Machine
	An Idle Machine

	Summary

	Chapter 10. Replication
	Replication Overview
	Problems Solved by Replication
	How Replication Works

	Setting Up Replication
	Creating Replication Accounts
	Configuring the Master and Replica
	Starting the Replica
	Initializing a Replica from Another Server
	Recommended Replication Configuration

	Replication Under the Hood
	Statement-Based Replication
	Row-Based Replication
	Statement-Based or Row-Based: Which Is Better?
	Replication Files
	Sending Replication Events to Other Replicas
	Replication Filters

	Replication Topologies
	Master and Multiple Replicas
	Master-Master in Active-Active Mode
	Master-Master in Active-Passive Mode
	Master-Master with Replicas
	Ring Replication
	Master, Distribution Master, and Replicas
	Tree or Pyramid
	Custom Replication Solutions
	Selective replication
	Separating functions
	Data archiving
	Using replicas for full-text searches
	Read-only replicas
	Emulating multisource replication
	Creating a log server

	Replication and Capacity Planning
	Why Replication Doesn’t Help Scale Writes
	When Will Replicas Begin to Lag?
	Plan to Underutilize

	Replication Administration and Maintenance
	Monitoring Replication
	Measuring Replication Lag
	Determining Whether Replicas Are Consistent with the Master
	Resyncing a Replica from the Master
	Changing Masters
	Planned promotions
	Unplanned promotions
	Locating the desired log positions

	Switching Roles in a Master-Master Configuration

	Replication Problems and Solutions
	Errors Caused by Data Corruption or Loss
	Using Nontransactional Tables
	Mixing Transactional and Nontransactional Tables
	Nondeterministic Statements
	Different Storage Engines on the Master and Replica
	Data Changes on the Replica
	Nonunique Server IDs
	Undefined Server IDs
	Dependencies on Nonreplicated Data
	Missing Temporary Tables
	Not Replicating All Updates
	Lock Contention Caused by InnoDB Locking Selects
	Writing to Both Masters in Master-Master Replication
	Excessive Replication Lag
	Don’t duplicate the expensive part of writes
	Do writes in parallel outside of replication
	Prime the cache for the replication thread

	Oversized Packets from the Master
	Limited Replication Bandwidth
	No Disk Space
	Replication Limitations

	How Fast Is Replication?
	Advanced Features in MySQL Replication
	Other Replication Technologies
	Summary

	Chapter 11. Scaling MySQL
	What Is Scalability?
	A Formal Definition

	Scaling MySQL
	Planning for Scalability
	Buying Time Before Scaling
	Scaling Up
	Scaling Out
	Functional partitioning
	Data sharding
	Choosing a partitioning key
	Multiple partitioning keys
	Querying across shards
	Allocating data, shards, and nodes
	Arranging shards on nodes
	Fixed allocation
	Dynamic allocation
	Mixing dynamic and fixed allocation
	Explicit allocation
	Rebalancing shards
	Generating globally unique IDs
	Tools for sharding

	Scaling by Consolidation
	Scaling by Clustering
	MySQL Cluster (NDB Cluster)
	Clustrix
	ScaleBase
	GenieDB
	Akiban

	Scaling Back
	Keeping active data separate

	Load Balancing
	Connecting Directly
	Splitting reads and writes in replication
	Changing the application configuration
	Changing DNS names
	Moving IP addresses

	Introducing a Middleman
	Load balancers
	Load-balancing algorithms
	Adding and removing servers in the pool

	Load Balancing with a Master and Multiple Replicas

	Summary

	Chapter 12. High Availability
	What Is High Availability?
	What Causes Downtime?
	Achieving High Availability
	Improving Mean Time Between Failures
	Improving Mean Time to Recovery

	Avoiding Single Points of Failure
	Shared Storage or Replicated Disk
	Synchronous MySQL Replication
	MySQL Cluster
	Percona XtraDB Cluster

	Replication-Based Redundancy

	Failover and Failback
	Promoting a Replica or Switching Roles
	Virtual IP Addresses or IP Takeover
	Middleman Solutions
	Handling Failover in the Application

	Summary

	Chapter 13. MySQL in the Cloud
	Benefits, Drawbacks, and Myths of the Cloud
	The Economics of MySQL in the Cloud
	MySQL Scaling and HA in the Cloud
	The Four Fundamental Resources
	MySQL Performance in Cloud Hosting
	Benchmarks for MySQL in the Cloud

	MySQL Database as a Service (DBaaS)
	Amazon RDS
	Other DBaaS Solutions

	Summary

	Chapter 14. Application-Level Optimization
	Common Problems
	Web Server Issues
	Finding the Optimal Concurrency

	Caching
	Caching Below the Application
	Application-Level Caching
	Cache Control Policies
	Cache Object Hierarchies
	Pregenerating Content
	The Cache as an Infrastructure Component
	Using HandlerSocket and memcached Access

	Extending MySQL
	Alternatives to MySQL
	Summary

	Chapter 15. Backup and Recovery
	Why Backups?
	Defining Recovery Requirements
	Designing a MySQL Backup Solution
	Online or Offline Backups?
	Logical or Raw Backups?
	Logical backups
	Raw backups

	What to Back Up
	Incremental and differential backups

	Storage Engines and Consistency
	Data consistency
	File consistency

	Replication

	Managing and Backing Up Binary Logs
	The Binary Log Format
	Purging Old Binary Logs Safely

	Backing Up Data
	Making a Logical Backup
	SQL dumps
	Delimited file backups

	Filesystem Snapshots
	How LVM snapshots work
	Prerequisites and configuration
	Creating, mounting, and removing an LVM snapshot
	LVM snapshots for online backups
	Lock-free InnoDB backups with LVM snapshots
	Planning for LVM backups
	Other uses and alternatives

	Recovering from a Backup
	Restoring Raw Files
	Starting MySQL after restoring raw files

	Restoring Logical Backups
	Loading SQL files
	Loading delimited files

	Point-in-Time Recovery
	More Advanced Recovery Techniques
	Delayed replication for fast recovery
	Recovering with a log server

	InnoDB Crash Recovery
	Causes of InnoDB corruption
	How to recover corrupted InnoDB data

	Backup and Recovery Tools
	MySQL Enterprise Backup
	Percona XtraBackup
	mylvmbackup
	Zmanda Recovery Manager
	mydumper
	mysqldump

	Scripting Backups
	Summary

	Chapter 16. Tools for MySQL Users
	Interface Tools
	Command-Line Utilities
	SQL Utilities
	Monitoring Tools
	Open Source Monitoring Tools
	Commercial Monitoring Systems
	Command-Line Monitoring with Innotop

	Summary

	Appendix A. Forks and Variants of MySQL
	Percona Server
	MariaDB
	Drizzle
	Other MySQL Variants
	Summary

	Appendix B. MySQL Server Status
	System Variables
	SHOW STATUS
	Thread and Connection Statistics
	Binary Logging Status
	Command Counters
	Temporary Files and Tables
	Handler Operations
	MyISAM Key Buffer
	File Descriptors
	Query Cache
	SELECT Types
	Sorts
	Table Locking
	InnoDB-Specific
	Plugin-Specific

	SHOW ENGINE INNODB STATUS
	Header
	SEMAPHORES
	LATEST FOREIGN KEY ERROR
	LATEST DETECTED DEADLOCK
	TRANSACTIONS
	FILE I/O
	INSERT BUFFER AND ADAPTIVE HASH INDEX
	LOG
	BUFFER POOL AND MEMORY
	ROW OPERATIONS

	SHOW PROCESSLIST
	SHOW ENGINE INNODB MUTEX
	Replication Status
	The INFORMATION_SCHEMA
	InnoDB Tables
	Tables in Percona Server

	The Performance Schema
	Summary

	Appendix C. Transferring Large Files
	Copying Files
	A Naïve Example
	A One-Step Method
	Avoiding Encryption Overhead
	Other Options

	File Copy Benchmarks

	Appendix D. Using EXPLAIN
	Invoking EXPLAIN
	Rewriting Non-SELECT Queries

	The Columns in EXPLAIN
	The id Column
	The select_type Column
	The table Column
	Derived tables and unions
	An example of complex SELECT types

	The type Column
	The possible_keys Column
	The key Column
	The key_len Column
	The ref Column
	The rows Column
	The filtered Column
	The Extra Column

	Tree-Formatted Output
	Improvements in MySQL 5.6

	Appendix E. Debugging Locks
	Lock Waits at the Server Level
	Table Locks
	Finding out who holds a lock

	The Global Read Lock
	Name Locks
	User Locks

	Lock Waits in InnoDB
	Using the INFORMATION_SCHEMA Tables

	Appendix F. Using Sphinx with MySQL
	A Typical Sphinx Search
	Why Use Sphinx?
	Efficient and Scalable Full-Text Searching
	Applying WHERE Clauses Efficiently
	Finding the Top Results in Order
	Optimizing GROUP BY Queries
	Generating Parallel Result Sets
	Scaling
	Aggregating Sharded Data

	Architectural Overview
	Installation Overview
	Typical Partition Use

	Special Features
	Phrase Proximity Ranking
	Support for Attributes
	Filtering
	The SphinxSE Pluggable Storage Engine
	Advanced Performance Control

	Practical Implementation Examples
	Full-Text Searching on Mininova.org
	Full-Text Searching on BoardReader.com
	Optimizing Selects on Sahibinden.com
	Optimizing GROUP BY on BoardReader.com
	Optimizing Sharded JOIN Queries on Grouply.com

	Summary

	Index

