
Introducing
MySQL Shell

Administration Made Easy with Python
—
Charles Bell

Introducing
MySQL Shell

Administration Made Easy
with Python

Charles Bell

Introducing MySQL Shell: Administration Made Easy with Python

ISBN-13 (pbk): 978-1-4842-5082-2 ISBN-13 (electronic): 978-1-4842-5083-9
https://doi.org/10.1007/978-1-4842-5083-9

Copyright © 2019 by Charles Bell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250822. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Charles Bell
Warsaw, VA, USA

https://doi.org/10.1007/978-1-4842-5083-9

I dedicate this book to my big brother, William E. Bell,
who left this world too soon. I miss you, Bill.

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

Table of Contents

Chapter 1: Introducing the MySQL Shell ��� 1

Getting To Know the MySQL Shell ��� 2

Overview �� 2

Features��� 5

Old Features New Again �� 9

JSON Data Type ��� 9

X Plugin, X Protocol, and X DevAPI �� 15

InnoDB Improvements ��� 16

New Features �� 17

Data Dictionary �� 18

Account Management�� 19

Removed Options, Variables, and Features ��� 21

Paradigm Shifting Features �� 23

Document Store ��� 23

Group Replication �� 24

InnoDB Cluster ��� 25

Summary��� 26

vi

Chapter 2: Installing the MySQL Shell �� 29

Preparing to Install the MySQL Shell ��� 29

Prerequisites ��� 29

How to Get the MySQL Shell �� 30

Installing on Windows with the MySQL Installer ��� 32

Installing on macOS �� 49

Installing MySQL Server �� 51

Installing the MySQL Shell ��� 57

Installing on Linux (Ubuntu) with the APT Repository ��� 62

Downloading the APT Repository �� 63

Installing the APT Repository ��� 65

Installing MySQL Server �� 66

Installing MySQL Shell ��� 70

Summary��� 73

Chapter 3: MySQL Shell Tutorial ��� 75

Commands and Options �� 75

Starting the MySQL Shell ��� 76

Commands �� 77

Options �� 80

Getting Started with the MySQL Shell ��� 83

Sessions and Modes �� 85

Using Connections �� 88

Using a URI �� 88

Using Individual Options �� 90

Using Connections in Scripts ��� 90

Using SSL Connections �� 91

Working with the MySQL Shell �� 93

Installing the Sample Database ��� 93

Working with Data ��� 96

Using Formatting Modes ��� 104

Code/Command History ��� 108

Table of ConTenTs

vii

Saving Passwords ��� 109

Customizing the Shell �� 111

Working with Saved Passwords �� 115

Changing the Prompt ��� 116

Summary��� 118

Chapter 4: Using the Shell with SQL Databases ��� 119

Revisiting Relational Databases �� 119

Working with MySQL Commands and Functions �� 124

Terminology ��� 124

Creating Users and Granting Access ��� 125

Creating Databases and Tables ��� 126

Storing Data ��� 129

Updating Data �� 130

Deleting Data ��� 131

Selecting Data (Results) �� 132

Creating Indexes �� 139

Creating Views ��� 140

Simple Joins �� 141

Additional Advanced Concepts �� 144

Managing Your Database with Python �� 146

MySQL X Module ��� 147

CRUD Operations (Relational Data) �� 154

Getting Started Writing Python Scripts �� 170

Summary��� 175

Chapter 5: Example: SQL Database Development ��� 177

Getting Started �� 177

Sample Application Concept �� 178

Database Design�� 181

Code Design �� 190

Setup and Configuration ��� 192

Table of ConTenTs

viii

Demonstration��� 194

MyGarage Class ��� 195

Location Class ��� 202

Vendor Class �� 209

Handtool Class ��� 218

Organizer Class ��� 220

Place Class �� 221

Powertool Class ��� 221

Storage Class �� 222

Testing the Class Modules ��� 222

Summary��� 230

Chapter 6: Using the Shell with a Document Store ��� 231

Overview ��� 231

Origins: Key, Value Mechanisms �� 232

Application Programming Interface ��� 234

NoSQL Interface ��� 234

Document Store ��� 235

JSON �� 235

Introducing JSON Documents in MySQL ��� 236

Quick Start �� 237

Combining SQL and JSON ��� 239

Formatting JSON Strings in MySQL ��� 240

Using JSON Strings in SQL Statements ��� 241

Path Expressions ��� 244

JSON Functions ��� 249

Summary��� 272

Table of ConTenTs

ix

Chapter 7: Example: Document Store Development ��� 275

Getting Started �� 275

Sample Application Concept �� 276

Schema Design �� 281

Code Design �� 291

Setup and Configuration ��� 292

Converting Relational Data to a Document Store �� 293

Importing Data to a Document Store ��� 308

Demonstration��� 310

MyGarage Class ��� 311

Collection Base Class �� 319

Testing the Class Modules ��� 328

Summary��� 334

Chapter 8: Using the Shell with Group Replication ��� 337

Overview ��� 338

What is High Availability? �� 338

MySQL High Availability Features �� 341

What is MySQL Replication? �� 342

What is Group Replication? ��� 344

Setup and Configuration ��� 348

Tutorial �� 349

Initialize the Data Directories �� 350

Configure the Master ��� 351

Configure the Slaves ��� 353

Start the MySQL Instances �� 355

Create the Replication User Account ��� 357

Connect the Slaves to the Master �� 358

Start Replication �� 360

Verify Replication Status ��� 363

Shutting Down Replication �� 365

Summary��� 366

Table of ConTenTs

x

Chapter 9: Example: Group Replication Setup and Administration ���������������������� 367

Getting Started �� 367

Concepts, Terms, and Lingo ��� 368

Group Replication Fault Tolerance ��� 370

Setup and Configuration ��� 371

Tutorial �� 371

Initialize the Data Directories �� 373

Configure the Primary ��� 374

Start the MySQL Instances �� 379

Create the Replication User Account ��� 381

Start Group Replication on the Primary ��� 382

Connect the Secondaries to the Primary ��� 382

Start Group Replication on the Secondaries �� 383

Verify Group Replication Status ��� 383

Shutting Down Group Replication �� 388

Demonstration of Failover ��� 388

Summary��� 391

Chapter 10: Using the Shell with InnoDB Cluster ��� 393

Overview ��� 393

InnoDB Storage Engine �� 397

MySQL Shell �� 403

X DevAPI �� 403

AdminAPI ��� 403

MySQL Router �� 404

Using InnoDB with Applications �� 405

Setup and Configuration ��� 407

Upgrade Checker ��� 407

Overview of Installing InnoDB Cluster ��� 411

Summary��� 412

Table of ConTenTs

xi

Chapter 11: Example: InnoDB Cluster Setup and Administration ������������������������� 413

Getting Started �� 413

dba��� 414

cluster ��� 419

Setup and Configuration ��� 421

Create and Deploy Instances in the Sandbox �� 423

Create the Cluster �� 426

Add the Instances to the Cluster ��� 428

Check the Status of the Cluster ��� 430

Failover Demonstration ��� 432

Using MySQL Router �� 437

Administration ��� 445

Common Tasks �� 446

Example Tasks ��� 447

Summary��� 450

Chapter 12: Appendix ��� 451

Setup Your Environment �� 451

Installing Flask �� 453

Installing Flask-Script�� 454

Installing Flask-Bootstrap�� 455

Installing Flask-WTF �� 456

Installing WTForms �� 457

Installing Connector/Python �� 457

Flask Primer �� 458

Terminology ��� 459

Initialization and the Application Instance ��� 461

HTML Files and Templates ��� 470

Error Handlers ��� 477

Redirects ��� 479

Additional Features�� 480

Table of ConTenTs

xii

Flask Review: Sample Application �� 480

Preparing Your PC �� 481

Running the Sample Application ��� 483

How to Use the Application �� 489

CRUD Operations in the Application ��� 490

Shutting Down the Sample Application ��� 491

 Index ��� 493

Table of ConTenTs

xiii

About the Author

Charles Bell conducts research in emerging technologies. He

is a member of the Oracle MySQL Development team and is

a senior software developer for the MySQL Enterprise Backup

team. He lives in a small town in rural Virginia with his loving

wife. He received his Doctor of Philosophy in Engineering

from Virginia Commonwealth University in 2005.

Charles is an expert in the database field and

has extensive knowledge and experience in software

development and systems engineering. His research interests include 3D printers,

microcontrollers, three-dimensional printing, database systems, software engineering,

high availability systems, and cloud and sensor networks. He spends his limited free

time as a practicing Maker, focusing on microcontroller projects and refinement of 3D

printers.

xv

About the Technical Reviewer

Valerie Parham-Thompson has experience with a variety

of open source data storage technologies, including MySQL,

MongoDB, and Cassandra, as well as a foundation in web

development in software-as-a-service environments. Her

work in both development and operations in startups and

traditional enterprises has led to solid expertise in web-scale

data storage and data delivery.

Valerie has spoken at technical conferences on topics

such as database security, performance tuning, and

container management and speaks often at local meetups and volunteer events. She

holds a bachelor’s degree from the Kenan Flagler Business School at UNC-Chapel

Hill, has certifications in MySQL and MongoDB, and is a Google Certified Professional

Cloud Architect. She currently works in the Open Source Database Cluster at Pythian,

headquartered in Ottawa, Ontario.

Follow Valerie’s contributions to technical blogs on Twitter at @dataindataout.

xvii

Acknowledgments

I would like to thank all the many talented and energetic professionals at Apress.

I appreciate the understanding and patience of my editor, Jonathan Gennick, and

managing editor, Jill Balzano. They were instrumental in the success of this project. I

would also like to thank the army of publishing professionals at Apress for making me

look so good in print with a special thank you to the reviewers for their wise counsel and

gentle nudges in the right direction. Thank you all very much!

I am also indebted to the technical reviewer for her insight and guidance in making

this book the best book (so far, the only book) on MySQL Shell for all levels of MySQL

enthusiasts and professionals.

Most importantly, I want to thank my wife, Annette, for her unending patience and

understanding while I spent so much time with my laptop.

xix

Introduction

MySQL has been around a long time. I have had the pleasure of witnessing its evolution

firsthand as a software developer for Oracle working on MySQL. I have watched MySQL

grow from a small database server for web applications to an enterprise-grade high

availability database system. The road has not always been smooth as there have been

some bumps along the way, but overall Oracle has demonstrated its commitment to the

product and continued its evolution.

A perfect example of this dedication is shown in the creation of MySQL Shell, which

is a completely new look at how to create a MySQL client. Not only does it replace the

existing venerable client, it expands productivity to include programmatic access to the

new MySQL Document store (a NoSQL interface) as well as mechanisms for working

with MySQL InnoDB Cluster – the next iteration of MySQL high availability.

If you have used the older MySQL client, you will be especially surprised to see

how much easier the new MySQL Shell is to use. If that wasn’t enough of an incentive,

consider you can now write, debug, and execute Python and JavaScript code right from

the shell! Yes, we now have scripting capability native to the new client. Yippee!

This book will give you an introduction to MySQL Shell and teach you how to use it

for SQL development, working with databases (SQL), writing scripts to interact with the

MySQL Document Store to create NoSQL applications, and even how to use Python to

work with high availability features such as MySQL Replication, Group Replication and

InnoDB Cluster. As you will see, MySQL Shell is the one source for all these uses.

 Intended Audience
I wrote this book to share my passion for MySQL and the giant leap forward for MySQL

users. I especially wanted to show just how easy and sophisticated MySQL Shell has

become. Now, anyone can use MySQL Shell to increase their productivity no matter

whether they’re working with SQL, NoSQL, or even InnoDB Cluster. The intended

audience includes anyone interested in learning about working with MySQL such

as database administrators, developers, information technology managers, systems

architects, and strategic planners.

xx

 How This Book Is Structured
The book was written to guide the reader from a general knowledge of MySQL Shell by

introducing its features using example scenarios such as SQL and NoSQL development

with the X Developer API (X DevAPI) via Python examples, managing MySQL

Replication and Group Replication, working with MySQL InnoDB Cluster via Python

scripts, and how to set up and configure MySQL Shell.

The first several chapters cover general topics such as what MySQL Shell is, its

features, and how to install it on your system. Later chapters present four scenarios

for using MySQL Shell including working with SQL databases with Python, working

with MySQL Document Store with Python, configuring MySQL Replication and Group

Replication, and setup and managing MySQL InnoDB Cluster with Python. Each of

these chapters is presented with an introduction for each topic followed by a companion

chapter that presents a detailed example to illustrate the concepts.

• Chapter 1, “Introducing MySQL Shell”: This chapter introduces

MySQL Shell including a brief tour of the new features in MySQL

realized in the shell.

• Chapter 2, “Installing the MySQL Shell”: This chapter discusses and

presents an example of how to download and install MySQL Shell on

Windows, macOS, and Linux.

• Chapter 3, “MySQL Shell Tutorial”: This chapter presents a short

tutorial on the commands and options used in MySQL Shell, how to

use the shell to connect to MySQL servers, and how to work with the

shell.

• Chapter 4, “Using the Shell with SQL Databases”: This chapter briefly

discusses working with relational databases including a brief look at

the more common SQL commands and functions.

• Chapter 5, “Example: SQL Database Development”: This chapter

presents a complete Flask Python web application that demonstrates

how to use MySQL Shell to develop the Python modules for the SQL

application.

• Chapter 6, “Using the Shell with a Document Store”: This chapter

briefly introduces JSON documents and the MySQL Document Store

InTroduCTIon

xxi

including a brief demonstration of the Document Store. The chapter

also demonstrates how to use JSON in SQL databases.

• Chapter 7, “Example: Document Store Development”: This chapter

presents a complete Flask Python web NoSQL application that

demonstrates how to use MySQL Shell to develop the Python

modules for the NoSQL application.

• Chapter 8, “Using the Shell with MySQL Replication”: This chapter

presents an overview of the high availability features in MySQL

including a brief tutorial on MySQL Replication.

• Chapter 9, “Example: Group Replication Setup and Administration”:

This chapter presents a short tutorial on Group Replication including

a demonstration of how to use MySQL Shell to configure MySQL

Group Replication. The chapter also demonstrates how failover

works in MySQL Group Replication.

• Chapter 10, “Using the Shell with InnoDB Cluster”: This chapter

introduces MySQL InnoDB Cluster as well as how InnoDB Cluster

can be used with applications.

• Chapter 11, “Example: InnoDB Cluster Setup and Administration”:

This chapter presents a complete tour of MySQL InnoDB Cluster

setup and administration using MySQL Shell and the AdminAPI with

Python.

• Appendix: This bonus chapter presents a short primer on Flask and

how to set up the example applications in Chapters 5 and 7. You learn

how to get started writing Flask Python web applications.

 How to Use This Book
This book is designed to guide you through learning more about MySQL Shell,

discovering the power of X DevAPI as well as the AdminAPI for working with MySQL

InnoDB Cluster, and seeing how to build applications with the X DevAPI and Python.

If you are new to MySQL Shell, you should spend some time going through the first

three chapters and installing MySQL Shell on your own system and learning how to use it.

InTroduCTIon

xxii

The remaining chapters can be read in pairs with the first introducing one of the

four scenarios covered and the second providing a complete example walk through. You

can read the pairs of chapters in any order. Even if you are not familiar with some of the

scenarios or do not plan to use the knowledge or examples presented as a basis, reading

about how MySQL Shell supports the scenario can be helpful in the future as your

infrastructure grows.

Finally, those interested in migrating existing applications or perhaps want to write

new applications using the X DevAPI may find Chapters 4–8 enlightening as these

chapters demonstrate both an SQL application (without any SQL commands) and a

NoSQL application in Python.

 Downloading the Code
The code for the examples shown in this book is available on the Apress web site,

www.apress.com. You can find a link on the book’s information page on the Source

Code/Downloads tab. This tab is in the “Related Titles” section of the page.

 Contacting the Author
Should you have any questions or comments – or even spot a mistake you think I should

know about – you can contact me at drcharlesbell@gmail.com.

InTroduCTIon

http://www.apress.com/

1
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_1

CHAPTER 1

Introducing the
MySQL Shell
Oracle has continued to live up to its commitment to making MySQL better. This has

empowered the MySQL engineering division to reach higher and further with each new

release. The newest version, MySQL 8, contains more new features and enhancements

than any other release. As a result, MySQL continues to be the world’s most popular

open source database system.

To fully understand the significance of the MySQL 8 release, let us consider that

while past releases of MySQL have continued to improve the product, the releases

tended to contain a few new features with emphasis on improving the more

popular features. Thus, previous releases were largely evolutionary rather than

revolutionary.

MySQL 8 breaks with this tradition in several ways. Most notably perhaps is the

version number itself. Previous versions were in the 5.X range of numbers, but Oracle

has chosen to use the 8.X series signifying the revolutionary jump in technological

sophistication and finally breaking away from continuous development of the 5.X

codebase that has lasted for over 14 years.

The revolutionary changes to MySQL 8.0 include features dedicated to high

availability, greater reliability, and sophistication as well as a completely new user

experience and revolutionary way to work with your data. This book examines one of the

most important additions that enables the new user experience – the MySQL Shell. In

this chapter, we will get a short overview of the newest features in MySQL 8. But first, let’s

get to know the MySQL Shell better.

2

 Getting To Know the MySQL Shell
One of the pain points for many MySQL users has been the limitations of the default

client utility. For several decades, the client of choice (because there wasn’t anything

else) has been the MySQL client utility named mysql, which is included with the

server releases.

Perhaps the biggest missing feature in the old MySQL client (mysql) was the absence

of any form of scripting capability. One could argue that scripting SQL commands is

possible with the old client to process a batch of SQL commands. And others may point

out that there is limited support in the SQL language supported by MySQL for writing

stored routines (procedures and functions). However, those who wanted to create and

use a scripting language for managing their databases (and server), there have been

external tool options including the MySQL Workbench and MySQL Utilities (now

retired), but nothing dedicated to incorporating scripting languages.

Note MySQL Workbench is a GUI tool designed as a workstation-based tool
with a host of features including design and modeling, development, database
migration, and more. See http://dev.mysql.com/doc/workbench/en/ for
more information about MySQL Workbench.

Aside from these products, there has been no answer to requests to add scripting

languages to the MySQL client. That is, until now.

Note I use the term “shell” to refer to features or objects supported by the
MySQL Shell. I use “MySQL Shell” to refer to the product itself.

 Overview
The MySQL Shell is the next generation of command-line client for MySQL. Not only can

you execute traditional SQL commands, you can also interact with the server using one

of several programming languages including Python and JavaScript. Furthermore, if you

also have the X Plugin installed, you can use MySQL Shell to work with both traditional

relational data as well as JavaScript Object Notation (JSON) documents. How cool is that?

Chapter 1 IntrodUCInG the MySQL SheLL

http://dev.mysql.com/doc/workbench/en/

3

If you’re thinking, “It is about time!” that Oracle has made a new MySQL client,

you’re not alone. The MySQL Shell represents a bold new way to interact with

MySQL. There are many options and even different ways to configure and use the shell.

While we will see more about the shell in the upcoming chapters, let’s take a quick look

at the shell. Figure 1-1 shows a snapshot of the new MySQL Shell. Notice it provides a

very familiar interface albeit a bit more modern and far more powerful. Notice also the

new prompt. Not only is it more colorful, it also provides a quick check to see what mode

you are in. In this case, it is showing JS, which is JavaScript mode (default mode1). You

can also modify the prompt to your liking.

Tip If you’d like to keep tabs on the MySQL Shell releases, bookmark
https://dev.mysql.com/downloads/shell/, which includes links to the
documentation and downloads for popular platforms.

1 This may be the source of rumors regarding the shell not supporting SQL – the default mode is
JavaScript, but as you can see, SQL is also supported. We’ll see how to set the mode on start in
the next chapter.

Figure 1-1. The MySQL Shell

Chapter 1 IntrodUCInG the MySQL SheLL

https://dev.mysql.com/downloads/shell/

4

If you’ve read about the MySQL Shell using an entirely new mechanism for accessing

data and that you must learn all new commands, you may have been led astray. While

the MySQL Shell does indeed support a new application programming interface (API)

to access data using a scripting language and in that sense there are new commands

(methods) to learn, the MySQL Shell continues to support a SQL interface to your

data. In fact, all the SQL commands you’ve come to know are fully supported. In fact,

the MySQL Shell is designed to be your primary tool for working with discrete SQL

commands.

Let’s see an example of using the MySQL Shell with SQL commands. Figure 1-2

shows a typical set of SQL commands to create a database, insert data, and select some

of the data for viewing.

Figure 1-2. Using the MySQL Shell with SQL Commands

Here, we see several things happening. First, we change the mode of the shell from

JavaScript to SQL using the \sql command. Then, we connect to the server using the

\connect command. Notice the command requests the user password and, if this is

the first time using that connection, you can have the shell save the password for you

(a nice security feature). From there, we see several mundane examples of running SQL

commands. Listing 1-1 shows the commands used in this example.

Chapter 1 IntrodUCInG the MySQL SheLL

5

Listing 1-1. Sample Commands (Getting Started with MySQL Shell)

\sql

\connect root@localhost:3306

CREATE DATABASE testdb;

CREATE TABLE testdb.t1 (a int auto_increment not null primary key,

b timestamp, c char(20));

INSERT INTO testdb.t1 (c) VALUES ('one'), ('two'), ('three');

SELECT * FROM testdb.t1 WHERE c = 'two';

Now that we’ve been introduced to the MySQL Shell, let’s look at its impressive

list of features. You are likely to find there are several that you will find can make your

experience with MySQL better.

 Features
The MySQL Shell has many features including support for traditional SQL command

processing, script prototyping, and even support for customizing the shell. The following

lists some of the major features of the shell. Most of the features can be controlled via

command line options or with special shell commands. The list is presented to give you

an idea of the breadth of features in the shell and is presented without examples. We take

a deeper look at some of the more critical features in later chapters.

Tip Some of the jargon here may seem unfamiliar. It is not important to
understand these at this point, but we will discover each of these in later chapters.

• Auto Completion: The shell allows auto completion for keywords in

SQL mode and all the major classes and methods in either JavaScript

or Python. Simply type a few characters, then press the TAB key to

autocomplete keywords. This can be a very handy tool when learning

the new APIs and trying to recall the spelling of a seldom used SQL

keyword or MySQL function.

Chapter 1 IntrodUCInG the MySQL SheLL

6

• APIs: The shell supports JavaScript and Python that interact with the

following application programming interfaces:

• X DevAPI: This API permits you to interact with the MySQL server

using either relational data or the document store (JSON).

• AdminAPI: This API permits you to interact with the MySQL

InnoDB Cluster for setup, configuration, and maintenance of a

high- availability cluster.

• Batch Code Execution: If you want to run your script without the

interactive session, you can use the shell to run the script in batch

mode – just like the old client.

• Command History: The shell saves the commands you enter allowing

you to recall them using the up and down arrow keys.

• Customize the Prompt: You can also change the default prompt by

updating a configuration file named ~/.mysqlsh/prompt.json using

a special format or by defining an environment variable named

MYSQLSH_PROMPT_THEME.

• Global Variables: The shell provides a few global variables you can

access when using the interactive mode. These include the following.

We will learn more about working with sessions and the variables in

Chapter 3.

• session: Global session object if established

• db: Schema if established via a connection

• dba: The AdminAPI object for working with the InnoDB Cluster

• shell: General purpose functions for using the shell

• util: Utility functions for working with servers

• JSON Import: Typing JavaScript Object Notation (JSON) can be

a bit tedious. The shell makes working with JSON even easier by

permitting users to import JSON documents into the shell. The

import feature is enabled in both interactive commands and API

functions.

Chapter 1 IntrodUCInG the MySQL SheLL

7

• Interactive Code Execution: The default mode for using the shell is

interactive mode, which works like the old MySQL client where you

enter a command and get a response.

• Logging: You can create a log of your session for later analysis or

to keep a record of messages. You can set the level of detail with

the --log-level option ranging from 1 (nothing logged) to 8

(max debug).

• Multi-Line Support: The shell permits you to enter commands

caching them to be executed as a single command.

• Output Formats: The shell supports three format options; table

(--table), which is the traditional grid format you’re used to from

the old client, tabbed (--tabbed), which presents information

using tabs for spacing and is used for batch execution, and JSON

(--json), which formats the JSON documents in an easier to

read manner. These are command-line options you specify when

launching the shell.

• Scripting Languages: The shell supports both JavaScript and Python,

although you can use only one at a time.

Note In this book, we will focus on python, but the apI for using JavaScript is
the same. the only difference is in how the classes and methods are spelled. this
is because JavaScript uses a different convention for capitalization and multiword
identifiers. Savvy JavaScript developers will have no trouble translating the
examples in this book.

• Sessions: Sessions are essentially connections to servers. The shell

allows you to work with sessions including storing and retrieving

them when needed.

• Startup Scripts: You can define a script to execute when the shell

starts. You can write the script in either JavaScript or Python.

Chapter 1 IntrodUCInG the MySQL SheLL

8

• Upgrade Checker: The shell also includes a handy upgrade checking

tool that lets you check a given server to see if it can be upgraded to

MySQL 8. It is a real time saver for those who have existing MySQL

servers migrating to MySQL 8.

• User Credentials “Secret” Store: Perhaps the most time saving feature

of all is the ability to save user passwords to a “secret store” or

encrypted credential storage mechanism common to platforms or

platform specific stores. The shell supports the MySQL login-path,

MacOS keychain, and the Windows API. This feature is turned on

by default but may be disabled on a user credential basis (you don’t

have to store the password if you don’t want to). If you’re working

with a single system or a protected account across several systems,

this will save you time by recalling the password for that user from the

secret store. We’ll see more about this feature in Chapter 3.

The latest release of MySQL Shell (8.0.16) includes a host of bug fixes as well as some

new features that are sure to be appreciated and used frequently. These include the

following.

• User Defined Reports: You can now setup reports to display live

information from the server such as status and performance data. See

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-

reporting.html for more information about this new feature if you

want to monitor your server metadata and status variables.

• SQL Mode Execution: If you are using the shell in Python of JavaScript

mode and want to run an SQL command, the \sql shell command

now allows you to specify a SQL command to run. For example, you

can execute \sql SHOW DATABASES and not have to switch to the SQL

mode (and back).

• AdminAPI: Now reports information about the server version in the

status(), describe(), and rescan() methods.

The MySQL Shell isn’t the only thing that is new in MySQL 8. In fact, there are a lot

of things to like and explore in the latest release of MySQL. Indeed, there are features

that have been improved, new features introduced like the MySQL Shell, as well as

some extraordinarily unique features that will change how you use MySQL. Some

Chapter 1 IntrodUCInG the MySQL SheLL

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-reporting.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-reporting.html

9

of these features incorporate the MySQL Shell as a key component. Since we plan to

explore how to use these features with the shell, let’s take a few moments and learn

what is new in MySQL 8.

 Old Features New Again
This category includes those features that were introduced in earlier versions

of MySQL either as a separate download or as a plugin. Some were considered

experimental even though they may have been introduced during a general

announcement (GA) release cycle (the feature may not have been GA). While some

features may be introduced in this manner in the future, currently all of these are now

part of the MySQL 8 GA in a much more refined form. These include the following.

What is not listed here are the hundreds of small-to-moderate enhancements and

defect repairs included in the release.

• JSON Data Type: the most revolutionary change to data includes the

incorporation of the JSON data type, which permits the use of MySQL

as a true NoSQL database system.

• X Plugin, X Protocol, and X DevAPI: The server now supports the new

client protocol upon which all the new APIs have been built.

• InnoDB Improvements: Aside from being the default storage

engine, InnoDB has become a much more robust, enterprise-grade

atomicity, consistency, isolation, and durability (ACID) compliant

storage engine.

 JSON Data Type
As of MySQL version 5.7.8, MySQL supports the JSON data type. The JSON data type can

be used to store JSON documents in a relational table. Thus, you can have JSON columns

in your table! You can have more than one JSON column (field) in a single table.

The JSON data type is also a key component to using MySQL as a document store. In

short, JSON is a markup language used to exchange data. Not only is it human readable,

it can be used directly in your applications to store and retrieve data to and from other

applications, servers, and even MySQL.

Chapter 1 IntrodUCInG the MySQL SheLL

10

Note the following is a brief overview of the JSon data type and JSon
documents. We will see an in-depth look at JSon in Chapter 6.

In fact, JSON looks familiar to programmers because it resembles other markup

schemes. JSON is also very simple in that it supports only two types of structures: (1) a

collection containing (name, value) pairs and (2) an ordered list (or array). Of course,

you can also mix and match the structures in an object. When we create a JSON object,

we call it a JSON document.2

The JSON data type, unlike the normal data types in MySQL, allows you to store

JSON formatted objects (documents) in a column for a row. While you could do this

with TEXT or BLOB fields (and many people do), there is no facility built into MySQL

to interact with the data in TEXT and BLOB fields. Thus, the manipulation of the data is

largely application dependent. Additionally, the data is normally structured such that

every row has the same "format" for the column. Storing data in TEXT and BLOB fields is

not new and many have done this for years.

With the JSON data type, we don't have to write any specialized code to store

and retrieve data. This is because JSON documents are well understood and many

programming environments and scripting languages support it natively. JSON allows

you to store data that you have at the time. Unlike a typical database table, we don't have

to worry about default values (they’re not allowed) or whether we have enough columns

or even master/detail relationships to normalize and store all the data in a nice, neat,

structured package.

Let’s take a sneak peek at the JSON data type. Let’s assume you want to store

addresses in your database, but you cannot guarantee all the items you are storing

will have an address and some may have multiple addresses. Worse, it may be that the

address information you have is inconsistent. That is, the addresses vary in form and

what data is provided. For example, you may have one, two, or even three lines of “street”

address but other addresses may have a single line with a post office box number. Or,

some addresses include a five-digit zip code while others have a nine-digit zip code or

even some may have a postal code (like in Canadian post).

2 Think of JSON as an outgrowth or extension of what XML documents were supposed to be. That
is, they offer a flexible way to store data that may differ from one entry to another.

Chapter 1 IntrodUCInG the MySQL SheLL

11

In this situation, you could either add the address fields to your existing table (but

this does not solve the case where rows could have more than one address) or, better,

create a relational table to store the addresses and shoehorn the data into the fields. For

addresses that do not conform, you may be forced to use default values or even store

NULL for the missing items. While all this is possible, it forces a layer of complexity in

your relational database that may mean additional code for processing the missing data.

Figure 1-3 shows a schema for a typical relational database that contains addresses

stored as a separate table. This excerpt, albeit very terse and incomplete, demonstrates

the typical approach database designers take when dealing with data like addresses that

can vary from one item to another.

Figure 1-3. Sample Relational Database Excerpt

There’s nothing wrong with this approach, but to appreciate the advantages the JSON

data type gives us, let’s look at a typical set of SQL statements to create the sample and

insert some data. Listing 1-2 shows the example SQL statements used to create the tables.

I include the shell-specific commands to switch to SQL mode and connect to the server.

Listing 1-2. Sample Relational Database SQL (no JSON)

DROP DATABASE IF EXISTS my dB;

CREATE DATABASE mydb;

CREATE TABLE mydb.customers (id int auto_increment NOT NULL PRIMARY KEY,

first_name char(30), last_name char(30));

Chapter 1 IntrodUCInG the MySQL SheLL

12

CREATE TABLE mydb.addresses (id int NOT NULL, caption char(20) NOT NULL,

street1 char(100), street2 char(100), city char(50), state_code char(2),

zip char(10), PRIMARY KEY(id, caption));

INSERT INTO mydb.customers VALUES (NULL, 'Sam', 'Blastone');

SELECT LAST_INSERT_ID() INTO @last_id;

INSERT INTO mydb.addresses VALUES (@last_id, 'HOME', '9001 Oak Row Road',

Null, 'LaPlata', 'MD', '33532');

INSERT INTO mydb.addresses VALUES (@last_id, 'WORK', '123 Main Street',

Null, 'White Plains', 'MD', '33560');

SELECT first_name, last_name, addresses.∗ FROM mydb.customers JOIN mydb.
addresses ON customers.id = addresses.id \G

So far, the addresses added are somewhat normal. But consider the possibility that

we want to add another address but this one is incomplete. For example, we know

only the city and state for a warehouse location for this customer where we learn the

customer spends some of his time. We want to store this information so that we can

know the customer has a presence in that area, but we may not know any more details.

If we continue to use this relational example, we will be adding several empty fields

(which is Ok). When we run the SELECT query after inserting the incomplete address,

we get this information.

> SELECT first_name, last_name, addresses.∗ FROM mydb.customers JOIN mydb.
addresses ON customers.id = addresses.id \G

...

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
first_name: Sam

 last_name: Blastone

 id: 1

 caption: WAREHOUSE

 street1: NULL

 street2: NULL

 city: Carson Creek

state_code: CO

 zip: NULL

Chapter 1 IntrodUCInG the MySQL SheLL

13

What we end up with is a single row in the one table (customers) and three rows in

the other table (addresses) but with several empty (Null) fields. Now, let’s see this same

example only this time, we will use a JSON data type to store the addresses.

In this next example, we replace the second table (the address detail table) with a

single column in the customers table assigning the JSON data type. Besides the obvious

removal of a second table and the relationship that one must traverse to query data,

we also gain the ability to store only what we need. Listing 1-3 shows the modified SQL

statements to build this version.

Listing 1-3. Sample Relational Database SQL (JSON)

DROP DATABASE IF EXISTS mydb_json;

CREATE DATABASE mydb_json;

CREATE TABLE mydb_json.customers (id int auto_increment NOT NULL PRIMARY

KEY, first_name char(30), last_name char(30), addresses JSON);

INSERT INTO mydb_json.customers VALUES (NULL, 'Sam', 'Blastone',

'{"addresses":[

 {"caption":"HOME","street1":"9001 Oak Row

Road","city":"LaPlata","state_code":"MD","zip":"33532"},

 {"caption":"WORK","street1":"123 Main Street","city":"White

Plains","state_code":"MD","zip":"33560"},

 {"caption":"WAREHOUSE","city":"Carson Creek","state_code":"CO"}

]}');

SELECT first_name, last_name, JSON_PRETTY(addresses) FROM mydb_json.

customers \G

Here, we see the SQL to define the table is a lot shorter. To use the JSON data type,

we simply specify JSON where we would any other data type. However, entering data with

JSON values takes a bit more typing, but as you can see, it allows us to use expressions

that describe the code in a language that is easily understood. Querying this data

will return the JSON strings as a single string, but we can use one of the MySQL JSON

functions to help make the output more readable. For this, we use the JSON_PRETTY()

function as shown in Listing 1-4, which puts newlines and spacing in the string as it is

returned from the server.

Chapter 1 IntrodUCInG the MySQL SheLL

14

Listing 1-4. Querying Rows with JSON Data

> SELECT first_name, last_name, JSON_PRETTY(addresses) FROM mydb_json.

customers \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 first_name: Sam

 last_name: Blastone

JSON_PRETTY(addresses): {

 "addresses": [

 {

 "zip": "33532",

 "city": "LaPlata",

 "caption": "HOME",

 "street1": "9001 Oak Row Road",

 "state_code": "MD"

 },

 {

 "zip": "33560",

 "city": "White Plains",

 "caption": "WORK",

 "street1": "123 Main Street",

 "state_code": "MD"

 },

 {

 "city": "Carson Creek",

 "caption": "WAREHOUSE",

 "state_code": "CO"

 }

]

}

1 row in set (0.0036 sec)

Notice we have a single table now and the addresses have been “collapsed” into the

JSON column where each row stores the array of addresses. And, only the data known is

stored. So, in the case of the warehouse address, we store only the city and state. While

not as easy to read in the shell output (we will see some ways to improve readability in

Chapter 1 IntrodUCInG the MySQL SheLL

15

output format later), we can still easily see the data. And, when used in our applications,

ingesting the JSON will be much easier than having to check each column for data. We’ll

learn more about this in Chapter 6.

As we discovered, the JSON data type enables building flexibility into our data

storage. As we will discover in Chapter 6, we can take that concept a step further by

storing all our data as JSON documents using the document store through the support

built into MySQL and the MySQL Shell via the X Plugin, X Protocol, and X DevAPI. In

fact, let’s now discover what makes the shell powerful by examining the new X Plugin

and X Protocol.

 X Plugin, X Protocol, and X DevAPI
MySQL has introduced a new protocol and API to work with JSON documents. Along

with supporting the JSON data type, we have three technologies prefixed with the

simple name “X”: the X Plugin, X Protocol, and X DevAPI. The X Plugin is a plugin

that enables the X Protocol. The X Protocol is designed to communicate with the

server using the X DevAPI. The X DevAPI is an application-programming interface

that, among many things, permits you to develop NoSQL solutions for MySQL and

use MySQL as a document store. We will learn more about the document store in a

later section.

You may be wondering how the shell and the plugin interact with the server.

Figure 1-4 shows how the components are “stacked”.

Figure 1-4. X Protocol Stack

Chapter 1 IntrodUCInG the MySQL SheLL

16

Notice we have the shell that permits use of the X DevAPI, which is communicated

over the wire to the server via the X Plugin. Thus, the X Plugin is an enabling technology

with the real power being the X Protocol and X DevAPI.

Now that we’ve seen the technologies that enable using MySQL as a document store,

let’s look at how the InnoDB storage engine has changed in recent releases.

 InnoDB Improvements
Since MySQL 5.6, InnoDB has been the flagship storage engine (and the default engine)

for MySQL. Oracle has slowly evolved away from the multiple storage engine model

focusing on what a modern database server should do – support transactional storage

mechanisms. InnoDB is the answer to that requirement and much more.

WHAT IS A STORAGE ENGINE?

a storage engine is a mechanism to store data in various ways. For example, there is a storage

engine that allows you to interact with comma-separated values (text) files (CSV) , another that

is optimized for writing log files (archive), one that stores data in memory only (Memory), and

even one that doesn’t store anything at all (Blackhole). you can use them with your tables by

using the enGIne = table option. along with InnodB, the MySQL server ships with the archive,

Blackhole, CSV, Memory, and MyISaM storage engines. the InnodB storage engine is the only

one that supports transactions. For more information about the other storage engines including

the features of each and how they are used, see the “alternative Storage engines” section in

the online reference manual.

In the early days, InnoDB was a separate company and thus a separate product that

was not part of MySQL nor was it owned by MySQL AB (the original owner of MySQL

now fully owned by Oracle). Eventually, Oracle came to own both InnoDB and MySQL,

so it made sense to combine the two efforts since they have mutually inclusive goals.

While there still exists a separate InnoDB engineering team, they are fully integrated with

the core server development team.

This tight integration has led to many improves in InnoDB including a host of

performance enhancements and even support for fine-tuning and more. This is readily

apparent in how InnoDB continues to evolve with refinements and never more so than

the state of InnoDB in MySQL 8.

Chapter 1 IntrodUCInG the MySQL SheLL

17

While most of the improvements are rather subtle in the sense you won’t notice them

(except through better performance and reliability, which are not to be taken lightly),

most show a dedication to making InnoDB the best transactional storage mechanism

and through extension MySQL a strong transactional database system.

The most significantly improved areas include performance and stability. Once

again, you may not see a lot of differences for smaller databases, but larger databases

and enterprise-grade systems will see a noticeable improvement. For example, crash

recovery and logging have been improved considerably making recovery faster as well as

normal shutdown and startup faster.

Similarly, improvements in deadlock detection, temporary tables, auto-increment,

and even Memcached support demonstrate Oracle’s desire to leave no stone unturned

correcting defects and improving InnoDB. While this list seems focused on minor

improvements, some of these are very important to system administrators looking for

help tuning and planning their database server installations.

Tip If you would like to know more about any of these improvements or see a
list of all the latest changes, see the online MySQL 8 reference Manual (http://
downloads.mysql.com/docs/refman-8.0-en.pdf).

The next section describes those features that have been added to and are unique to

MySQL 8.

 New Features
Aside from those features that have been in development during the 5.7 server releases,

there are features that are unique to MySQL 8. They are not currently (or even likely to be

incorporated) in the older releases. Part of this is because of how much the server code

base was changed to accommodate the new features. Those new features available in

MySQL 8.0 include the following:

• Data Dictionary: A transactional metadata storage mechanism for all

objects in the system

• Account Management: Major improvements in user, password, and

privilege management

Chapter 1 IntrodUCInG the MySQL SheLL

http://downloads.mysql.com/docs/refman-8.0-en.pdf
http://downloads.mysql.com/docs/refman-8.0-en.pdf

18

• Removed Options, Variables, and Features: Those wanting to upgrade

from older versions should review the smaller details that have

changed in the new release such as options, variables, and features

that have been removed

Aside from those features that have been in development during the 5.7 server

releases, there are features that are unique to MySQL 8. In fact, they are not currently

(or even likely to be incorporated) in the older releases. Part of this is because of how

much the server code base was changed to accommodate the new features. Those new

features available in MySQL 8.0 include the new data dictionary and a new account

management system.

 Data Dictionary
If you have ever worked with MySQL trying to get information about the objects

contained in the databases, either to discover what objects are there, searching

for objects with a specific name prefix, or trying to discover what indexes exist,

chances are you have had to access the tables and views in INFORMATION_SCHEMA or

the special mysql databases you’ve had to navigate. Perhaps worst is some of the

definitions of the tables were stored in a special structured file called an .frm3 (form)

file. For example, a table named table1 in database1 has an .frm file named /data/

database1/table1.frm.

Note the INFORMATION_SCHEMA and mysql databases are still visible and the
information in those views and tables can still be used in a similar manner before
the data dictionary but lack the additional information in the data dictionary.

This combination required database administrators to learn how to find things by

learning where the data resided. Depending on what you were looking for, you may have

had to query one of the databases or, in dire situations, decipher the .frm file. More

importantly, since the data was in non-transactional tables (and metadata files), the

mechanisms were not transactional and, by extension, not crash safe.

3 The .frm file has been a source of diabolical difficulties when the files are lost or corrupt.

Chapter 1 IntrodUCInG the MySQL SheLL

19

The new data dictionary changes all of that for us making a single, transactional

(same ACID support as InnoDB) repository to store all the metadata for objects in the

system. All the file-based metadata has been moved into the data dictionary including

the .frm files, partition, trigger, and other options files (e.g., .par, .trn, .trg, .isl,

and .opt).

However, you won’t see the data dictionary in a list of the databases (e.g., SHOW

DATABASES). The data dictionary tables are invisible and cannot be accessed directly.

You won’t find the data dictionary tables easily (although it is possible if you look hard

enough).

This was done primarily to make the data dictionary crash safe and something you

don’t have to manage. Fortunately, you can access the information stored in the data

dictionary via the INFORMATION_SCHEMA database and even the SHOW commands. The

mysql database still exists, but it mainly contains extra information such as time zones,

help, and similar non-vital information. In fact, the INFORMATION_SCHEMA and SHOW

commands use the data dictionary to present information.

So, how do you use the data dictionary if you can’t see it? Simply, the INFORMATION_

SCHEMA views derive information from the data dictionary. So, you can continue to use

the same queries you’re used to using, but in this case, the data is more reliable and

transactional. Cool!

For more information about the data dictionary including details on what is stored

and how it interacts with the INFORMATION_SCHEMA views, see the section “MySQL Data

Dictionary” in the online MySQL reference manual (https://dev.mysql.com/doc/

refman/8.0/en/).

Adding the data dictionary has finally made possible several features that many have

wanted to implement for some time. One of the newest is a major overhaul in account

management.

 Account Management
Another pain point for MySQL database administrators, especially those that work

with enterprise-grade systems, is the need to assign the same privileges to a group of

users and manage passwords. MySQL 8 provides numerous improvements in account

management and the privilege system in MySQL. The following list the most significant

improvements.

Chapter 1 IntrodUCInG the MySQL SheLL

https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/

20

• Roles: Administrators can assign grant statements to a role, which can

be assigned to multiple users.

• User account limits: Administrators can set resource limits to help

restrict access for critical data.

• Password management: Administrators can set conditions for

password formation and expiration.

• User account locking: Administrators can temporarily lock user

accounts from accessing data.

Note MySQL 8 disables the ability to create the user account with the GRANT
statement. you must explicitly create the user first with the CREATE USER
statement.

 Roles

A very common scenario involves having to create a set of users with the same

permissions. In the past, you would have to save or archive the GRANT statements and

repeat them for each user. That is, you would reuse the GRANT statements for two or more

users. Fortunately, with the advent of the data dictionary, supporting roles in MySQL has

become a reality in MySQL 8!

Roles can be created, dropped, privileges granted or revoked. We can also grant or

revoke roles to/from users. Roles finally make the tedium of managing user accounts on

MySQL much easier.

 User Account Limits

Another administrative problem for enterprise systems includes the need to further

restrict access to user accounts during certain time periods or even restrict the account

from issuing a certain number of statements.

In MySQL 8, administrators can set limits on user accounts for number of queries per

hour, number of transactions per hour, connections per hour, and even the number of

simultaneous connections per hour. This permits administrators to set limits for security

goals, productivity limits, and more.

Chapter 1 IntrodUCInG the MySQL SheLL

21

 Password Management

One of the most requested changes to the account management features is the ability to

set limits and standards for passwords. In today’s challenging security climate, we must

ensure our passwords are not easily hacked and to do that we need to exert control over

how long passwords must be as well as how many characters in lower or upper case or

special characters are included.

Fortunately, MySQL 8 has these features and you can set password expiration, reuse

of old password restrictions, verification of passwords, and of course password strength.

These features and the previous two mentioned have helped propel MySQL 8 a giant

leap forward in better security.

 User Account Locking

Sometimes it is the case that you must temporarily restrict access to one or more

user accounts. This may be due to maintenance schedules, diagnostics, or even the

temporary furlough of an employee. Whatever the reason, MySQL in the past required

either changing of the password (and not telling the user – but this doesn’t prevent the

account from being used) or deleting the account and recreating it later. If your user

accounts have complex privileges granted to them (or several roles), this is problematic

at best.

MySQL 8 includes a feature that allows support for locking and unlocking user

accounts using the ACCOUNT LOCK clause to lock the account and the ACCOUNT UNLOCK

clause to unlock the account. You can use these clauses in either the CREATE USER

statement or the ALTER USER statement.

There are many more minor improvements to the account management feature. To

read more about the changes, see the section “User Account Management” in the online

reference manual (https://dev.mysql.com/doc/refman/8.0/en/).

 Removed Options, Variables, and Features
If you read the release notes for MySQL 8, you may notice about MySQL 8 is a host of

small changes to startup options, variables, and the like. A complete list of all changes

for each release of MySQL 8 can be found at https://dev.mysql.com/doc/relnotes/

mysql/8.0/en/.

Chapter 1 IntrodUCInG the MySQL SheLL

https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/

22

Fortunately, most of the changes are related to supporting the newest features and

removal of old and obsolete settings. So, most won’t have much effect on those wanting

to start using MySQL. However, a few may be of minor concern when upgrading from

older versions.

Keep in mind that many of those options, variables, and features were marked as

deprecated in MySQL 5.7 (and prior). They are now officially removed in MySQL 8. If you have

been using MySQL for some time, then you most likely have already prepared for the changes.

However, there are a couple of changes that may affect some wanting to upgrade to

MySQL 8. These include the following.

• The --bootstrap option was removed. It was used to control how the

server started and was typically used to create the MySQL privilege

tables without having to start a full MySQL server.

• The --innodb_file_format_∗ options were changed. These were

used to configure the file format for the InnoDB storage engine.

• The --partition and --skip partition options were removed. They

were used to control user-defined partitioning support in the MySQL

Server.

• The .frm and related metadata files were removed as part of the data

dictionary feature.

• Some of the SSL options have changed and the introduction of a new

authentication plugin (caching_sha2_password) to improve secure

connections.

• Many error codes were changed in the latest release including

the removal of dozens of lesser known (used) error codes. If your

applications use the MySQL server error codes, you should check the

documentation to ensure the error codes have not changed or been

removed.

Changes like these are typical of major releases. In all cases, you should consider

the release notes as you plan any upgrades. Places where changes like these are likely to

cause problems are in your customizations and configurations. For example, if you have

defined tuning procedures, stored procedures, DevOps, or other mechanisms that use or

interact with options and variables, you should carefully examine the entry in the MySQL

8 documentation to ensure you can modify your tools accordingly.

Chapter 1 IntrodUCInG the MySQL SheLL

23

Tip See http://dev.mysql.com/doc/refman/8.0/en/added-
deprecated- removed.html for a complete list of features to be removed in
MySQL 8.

 Paradigm Shifting Features
Some of the features in MySQL 8 are truly groundbreaking for the MySQL ecosystem.

Indeed, they will likely change how people use MySQL and expand the growing list of

use cases for MySQL. These include the following paradigm shifting features.

• Document Store: A new structured storage mechanism that will

change what you can store and indeed how you can interact with

MySQL to store data for applications where data can change allowing

your application to adapt without having to rebuild the storage layers

• Group Replication: A new, powerful self-healing high-availability

option

• InnoDB Cluster: A new way to manage high availability built on group

replication and incorporating the new shell, and the MySQL Router

for an easy to setup and easy to maintain high-availability installation

 Document Store
We have already learned some things about the document store when we discussed the

JSON data type. The MySQL Document Store takes the JSON storage concept to a new

level. While the JSON data type permits the introduction of unstructured data in our

relational databases, the document store is a true NoSQL data store.

More specifically, the document store allows storing of unstructured data in the form

of JSON documents natively in MySQL. That is, MySQL now supports SQL and NoSQL

options. The NoSQL option uses the X technologies we discovered earlier including the

X Protocol and X DevAPI. These allow you to write applications that interface directly

with MySQL without using any SQL or relational structures. How cool is that?

Chapter 1 IntrodUCInG the MySQL SheLL

http://dev.mysql.com/doc/refman/8.0/en/added-deprecated-removed.html
http://dev.mysql.com/doc/refman/8.0/en/added-deprecated-removed.html

24

I KNOW SQL, BUT WHAT IS NOSQL?

If you have worked with relational databases systems, you are no doubt very familiar with

Structured Query Language (SQL) where we use special statements (commands) to interact

with the data. In fact, most database systems have their own version of SQL that includes

commands to manipulating the data (dML) as well as defining the objects to store data (ddL)

and even administrative commands to manage the server.

that is, you get result sets and must use commands to search for the data then convert results

into internal programming structures making the data seem like an auxiliary component rather

than an integral part of the solution. noSQL interfaces break this mold by allowing you to use

apIs to work with the data. More specifically, you use programming interfaces rather than

command-based interfaces.

Sadly, noSQL can mean several things depending on your perspective including “non-SQL”,

“not only SQL”, or “non-relational”. But they all refer to the fact that the mechanism you’re

using is not using a command-based interface and most uses of the term indicate you’re using

a programming interface. For MySQL 8, access to JSon documents can be either through SQL

or noSQL using the X protocol and X devapI through the X plugin.

The origins of the MySQL document store lie in several technologies that are

leveraged together to form the document store. Specifically, Oracle has combined a

key, value mechanism with a new data type, a new programming library, and a new

access mechanism to create what is now the document store. Not only does this allow

us to use MySQL with a NoSQL interface, it also allows us to build hybrid solutions that

leverage the stability and structure of relational data while adding the flexibility of JSON

documents.

We will learn more about the document store in Chapter 6.

 Group Replication
If you have used MySQL replication, you are no doubt very familiar with how to leverage

it when building high-availability solutions. Indeed, it is likely you have discovered a

host of ways to improve availability in your applications with MySQL replication.

Chapter 1 IntrodUCInG the MySQL SheLL

25

Moreover, it has become apparent that the more your high-availability needs, and

your solution expands (grows in sophistication), the more you need to employ better

ways to manage the loss of nodes, data integrity, and general maintenance of the clusters

(groups of servers replicating data – sometimes called replicasets). In fact, most high-

availability solutions have outgrown the base master and slaves topology evolving into

tiers consisting of clusters of servers, some replicating a portion of the data for faster

throughput and even for compartmental storage. All of these have led many to discover

they need more from MySQL replication. Oracle has answered these needs and more

with Group Replication.

Group Replication enables you to establish a set of servers to be used in a group that

enables the mitigation of not only transactions among the servers, but also automatic

failover, and fault tolerance. In addition, Group Replication can also be used with the

MySQL Router to allow your applications to have a layer of isolation from the cluster. We

will see a bit about the router when we examine the InnoDB Cluster.

One important distinction between Group Replication and standard replication

is that all the servers in the group can participate in updating the data with conflicts

resolved automatically. Yes, you no longer must carefully craft your application to send

writes (updates) to a specific server! However, you can configure Group Replication to

allow updates by only one server (called the primary) with the other servers acting as

secondary servers or as a backup (for failover).

We will learn much more about Group Replication in Chapter 8.

 InnoDB Cluster
Another new and emerging feature is called InnoDB Cluster. It is designed to make

high availability easier to setup, use, and maintain. InnoDB Cluster works with the X

AdminAPI via the MySQL Shell and the AdminAPI, Group Replication, and the MySQL

Router to take high availability and read scalability to a new level. That is, it combines

new features in InnoDB for cloning data with Group Replication and the MySQL Shell

and MySQL Router to provide a new way to setup and manage high availability.

Note the adminapI is a special apI available via the MySQL Shell for configuring
and interacting with InnodB Cluster. thus, the adminapI has features designed to
make working with InnodB Cluster easier.

Chapter 1 IntrodUCInG the MySQL SheLL

26

In this use case, the cluster is setup with a single primary (think master in standard

replication parlance), which is the target for all write (updates). Multiple secondary

servers (slaves) maintain replicas of the data, which can be read from and thus enable

reading data without burdening the primary thus enabling read out scalability (but

all servers participate in consensus and coordination). The incorporation of Group

Replication means the cluster is fault tolerant and group membership is managed

automatically. The MySQL router caches the metadata of the InnoDB Cluster and

performs high-availability routing to the MySQL Server instances making it easier to

write applications to interact with the cluster.

You may be wondering what makes this different from a read-out scalability setup

with standard replication. At a high level, it may seem that the solutions are solving the

same use case. However, with InnoDB Cluster, you can create, deploy, and configure

servers in your cluster from the MySQL shell providing a complete high-availability

solution that can be managed easily. That is, you can use the InnoDB Cluster AdminAPI

via the shell to create and administer an InnoDB Cluster programmatically using either

JavaScript or Python.

We will learn more about InnoDB Cluster in Chapter 10.

 Summary
MySQL 8 has a lot of new features. In many ways, it represents a major leap forward in

several areas including high availability and NoSQL. However, one of the less advertised

but immensely important new features is the new MySQL Shell. As you will see in the

upcoming chapters, the new shell is the glue that makes all the new features work

together in a seamless manner.

For example, without the shell, using the MySQL Document Store would require

using a third-party programming environment to interact with the X DevAPI. The shell

makes working with the new API much easier since it provides an environment not only

familiar (think the old client) but also more user-friendly.

Similarly, without the shell to realize the AdminAPI, working with InnoDB Cluster

would be no better than the manual administration needed for MySQL Replication.

While you can still manually configure any of the high-availability features in MySQL,

now that we have the shell to make it all so much easier, it is not necessary to do so

except in certain, specific cases.

Chapter 1 IntrodUCInG the MySQL SheLL

27

However, to truly appreciate how the importance of and significant contributions

that the shell makes to MySQL 8, we must see it in action with each of the new features.

The rest of this book will present short tutorials on using each of the major features in

MySQL 8 as well as examples of how to use the shell with the feature. These include the

following:

• Using the shell with SQL databases

• Using the shell with Document Store

• Using the shell with Group Replication

• Using the shell with InnoDB Cluster

But first, we will see how to install the MySQL Shell in the next chapter.

Chapter 1 IntrodUCInG the MySQL SheLL

29
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_2

CHAPTER 2

Installing the MySQL Shell
While the MySQL server still includes the old MySQL client (mysql), the new MySQL

Shell should be considered the default client to interact with your MySQL servers. It has

many advantages over the previous client that was bundled with the server; the most

powerful being the ability to use Python or JavaScript directly from the shell. So, how do

we get the new MySQL Shell?

In this chapter, we will discover how to download and install the MySQL Shell for

three of the most popular platforms; Windows, macOS, and Linux. For Windows, we

will use a special all-in-one installer that makes installing any MySQL product easy.

For macOS, we will see how to download and install the shell using macOS-friendly

installers. For Linux, we will see how to use Oracle’s Advanced Packaging Tool (APT)

repository to make adding MySQL products easier on Linux.

Let’s begin by downloading the MySQL Shell and checking its prerequisites.

 Preparing to Install the MySQL Shell
The MySQL Shell can be installed on any platform that Oracle supports for MySQL

Server. On most platforms, the shell is contained in a separate installation. The one

exception is the Windows platform where the shell is included in the MySQL Windows

Installer. In this section, we will see a quick overview of downloading the shell for various

platforms.

 Prerequisites
If you do not have MySQL Server 8.0 installed, you may want to install it on one of your

systems before working through this tutorial. While you can use the shell on older

versions of MySQL, you will need the latest version of the server to use all the features.

30

Aside from having MySQL Server 8.0 available on a system (or your desktop or laptop

for experimentation or development purposes), the shell requires you also have the

following installed.

• Connector/Python 8.0.16 or later (https://dev.mysql.com/

downloads/connector/python/)

• Connector/J 8.0.16 or later (https://dev.mysql.com/downloads/

connector/j/)

• Python 3.7.1 or later (https://www.python.org/downloads/)

• (Windows only) C++ Redistributable for Visual Studio 2015 (available

at the Microsoft Download Center).

Note For the examples in this book, you need only install Python and Connector/
Python. Check your system to see if you have either of these installed. Note that on
Windows, you can install Connector/Python together with the shell.

Let’s now discover how to download the MySQL Shell from Oracle’s web site.

 How to Get the MySQL Shell
Like most MySQL products, the MySQL Shell is available in both the Community and

Enterprise Editions. The Community Edition is open source and thus free to download

and use. If you are an Oracle Enterprise customer, you can obtain the installers for

MySQL via your preferred customer channel. However, you are also free to download

the community edition if you wish. In this section, we will see how to download the

Community Edition.

To download the Community Edition of any of the MySQL products, visit Oracle’s

MySQL download page at https://dev.mysql.com/downloads/. Here, you will see a list

of all the products.

Click the product you want to download (https://dev.mysql.com/downloads/

shell/), and the web site will present you with the files available for download for your

operating system. That is, the web site will preselect the operating system on which your

browser is running. For example, if you were running macOS and clicked on the MySQL

Shell, you will see a list of files like those shown in Figure 2-1. You can click the Select

Operating System drop-down control and select a different operating system if you’d like.

ChaPter 2 INstallINg the MysQl shell

https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://www.python.org/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/shell/

31

If you are using Windows, you have a different option available. For Windows, Oracle

provides a comprehensive guided installer known as MySQL Installer for Windows. If

you visit the download web site for any of the MySQL products, you will see an entry for

the MySQL Installer at the top of the list of files. You can still download the individual

installer if you’d like, but the recommended mechanism is to use the MySQL Installer.

To download the MySQL Installer (https://dev.mysql.com/downloads/

installer/), click the link shown. This will take you to another page as shown in

Figure 2-2, which shows the files available to download. Choose the link that matches

your system (32- or 64-bit).

Figure 2-1. Downloading the MySQL Shell (macOS)

ChaPter 2 INstallINg the MysQl shell

https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/downloads/installer/

32

Be sure to choose the correct download option for your Windows system and

download it now if you want to follow along as we see the installer in action.

There are two versions of the MySQL Installer for Windows; one that includes the

products that are commonly installed, and a web version that will download only those

products you want to install. If you only want to install a few products, the web version

may be a better choice. On the other hand, if you intend to install the server and shell as

well as the documentation and connectors, you should download the full version.

Let’s now look at how to install the shell on Windows, macOS, and Linux (Ubuntu).

You can read the section that matches your choice of platform.

 Installing on Windows with the MySQL Installer
Installing the MySQL Shell with the MySQL Installer for Windows, hence MySQL

Installer or simply installer, follows a similar pattern of installing applications on

Windows. The MySQL Installer includes all the MySQL products permitting you to

Figure 2-2. Downloading the MySQL Installer for Windows

ChaPter 2 INstallINg the MysQl shell

33

install those components that you want. While the MySQL Installer is the recommended

installation option for Windows, you can download the shell and install it separately. But

it is best to use the Windows installer.

In this demonstration, we will also install the MySQL Server and the minimal

components for using the shell with the examples in this book. You may want to follow

along and install MySQL on your system. If you already have MySQL Server installed,

you can skip the portions that install the server.

When you launch the installer for the first time (subsequent launches display the

add, modify, upgrade dialog), you will be presented with a welcome dialog that presents

the license. You must accept the license in order to continue. Figure 2-3 shows the

welcome panel for the installer.

Figure 2-3. Installer Welcome Panel – License Agreement

ChaPter 2 INstallINg the MysQl shell

34

To accept the license terms, tick the checkbox, and click Next to proceed. This will

move you to the setup type dialog where you can choose one of several options including

presets for installing a typical developer setup, installing only the server, installing only

the client, or customizing the install. If you want to install multiple products or remove

some, you should use the custom setup type. Figure 2-4 shows the Choosing a Setup

Type dialog.

Since we will be installing MySQL Server as well as MySQL Shell and related

components, you should tick the Custom setup type and click Next. This will display the

Select Products and Features dialog. Here, we will choose the components we want to

install. For this tutorial, we must install the following components.

• MySQL Server

• MySQL Shell

Figure 2-4. Choosing a Setup Type

ChaPter 2 INstallINg the MysQl shell

35

• MySQL Router

• Connector/J

• Connector/Python

• MySQL Documentation

• Samples and Examples

• (Optional) MySQL Workbench

We use the custom option because the other selections will include additional

components that we may not need (but it won’t hurt to install them).

Figure 2-5 shows the Select Products and Features dialog. The dialog shows two

columns where the column on the left contains all the products in the installer and the

column on the right are those selected to be installed.

Figure 2-5. Select Products and Features (Default Selections)

ChaPter 2 INstallINg the MysQl shell

36

To remove components from installation, select the product on the right and then

click the left arrow icon. This removes the product. To add products, simply navigate the

tree on the left to find the component (e.g., the MySQL Shell), select it, and then click the

green arrow to add it to the column on the right. Figure 2-6 shows the correct selections.

Tip to remove all components, click the double left arrow. similarly, to add all
components, click the double right arrow.

When all the components listed above have been added to the column on the

right, click the Next button to proceed. This presents the installation dialog panel,

which lists the components to be installed along with whether the component must be

downloaded or not. This is a common misconception with the installer. While it covers

Figure 2-6. Select Products and Features (Components Selected)

ChaPter 2 INstallINg the MysQl shell

37

all components, it may not include all the components when you download the installer.

Fortunately, this means we can download only those components we want to install and

nothing more. Figure 2-7 shows the installation dialog.

Take a moment to examine the list to ensure you’ve got all the components you want

to install queued. If you need to make changes, you can click the Back button to return

the previous dialog and select the missing components.

When you are ready to proceed, click the Execute button. This will not display a new

dialog, rather, you will see the status of each component change as it is downloaded and

installed. Figure 2-8 shows a typical example of the dialog with component installations

in progress.

Figure 2-7. Installation (Staging)

ChaPter 2 INstallINg the MysQl shell

38

Once all components are installed, the installation dialog panel will show the status

of all installations as complete and change the buttons at the bottom to show Next as

shown in Figure 2-9. When ready, click Next once all products are installed.

Figure 2-8. Installation (in Progress)

Figure 2-9. Installation (Installation Complete)

Once you click Next, the Product Configuration dialog is displayed as shown in

Figure 2-10. At this point, the installer will return to this dialog after each component is

configured.

ChaPter 2 INstallINg the MysQl shell

39

Notice we have three components to configure; the server, router, and the samples

and examples. The installer will do these in order. Simply click Next to get started

configuring the server. Figure 2-11 shows the first step in configuring the server – setting

up group replication.

The options include installing group replication normally (by choosing the

standalone option) or installing group replication in a sandbox. The sandbox option

may be helpful if you want to test group replication on your system and do not want

to install additional servers. Except for this scenario, you should always choose the

standalone option.

Figure 2-10. Product Configuration

ChaPter 2 INstallINg the MysQl shell

40

Tick the standalone option, then click Next. This will display the Type and

Networking dialog as shown in Figure 2-12.

Figure 2-11. Group Replication

ChaPter 2 INstallINg the MysQl shell

41

On this dialog, you can use one of the preconfigured option or usage sets such as

development (e.g., a development machine), server with applications, or dedicated

server (only MySQL installed). For most installations on your laptop or desktop, you

should choose the Development Computer option.

Choose the Development Computer option if you want to use the defaults for

listening ports (3306 and 33060), named pipes, or shared memory. If the Windows

firewall option is not ticked, you will need to tick that to ensure MySQL runs correctly

and you can connect to it on Windows. When you have all the settings to your liking,

click Next. This will display the Authentication Method dialog.

The Authentication Method dialog allows you to choose between the newest option,

which includes strong password encryption (highly recommended) or use the legacy

authentication method (not recommended for production).

Figure 2-12. Type and Networking

ChaPter 2 INstallINg the MysQl shell

42

Note If you choose the strong password encryption method and you want to
use an older version of the MysQl client (not the shell), you may encounter errors
connecting. you must use the newer client with strong password encryption.

Figure 2-13 shows the Authentication Method dialog. Notice there is a significant

amount of text that describes each option and the default is to use Strong Password

Encryption.

You should tick the Strong Password Encryption option and click Next. This will

display the Accounts and Roles dialog. This dialog is used to set the root password and

optionally create any roles you want to use. This can be helpful if you plan to set up a

server for use with applications and many users. However, for this demonstration, we

need only select a root password.

Figure 2-13. Authentication Method

ChaPter 2 INstallINg the MysQl shell

43

Since we are using the strong password and encryption option, the password we

enter in the dialog will be evaluated against best practices (strong passwords). However,

until we configure the server to use the password validation plugin, we can use whatever

password we want. It is always best to use strong passwords whether you have the plugin

installed or not.

Tip see https://dev.mysql.com/doc/refman/8.0/en/password-
management.html to set up password options and validation.

Figure 2-14 shows the Accounts and Roles dialog. Go ahead and type in the root user

password of your choice, then type it again in the repeat dialog. Notice the password

strength display. In this case, my 10-character password was only medium strength

despite using special characters and no dictionary words. Harsh, eh?

Figure 2-14. Accounts and Roles

ChaPter 2 INstallINg the MysQl shell

https://dev.mysql.com/doc/refman/8.0/en/password-management.html
https://dev.mysql.com/doc/refman/8.0/en/password-management.html

44

Once you have the root password entered, click Next. This will display the Windows

Service dialog where we can choose to start the server on Windows and run it as a

service. Figure 2-15 shows the Windows Service dialog.

It is recommended to use the default selections here, which include configuring

MySQL Server as a Windows service named MySQL80, starting the server at startup, and

using the system user to launch the server. However, if you want to change these and

you are familiar with how to start MySQL on Windows manually, you can make those

changes.

When ready, click the Next button. This will display the Apply Configuration dialog.

There is nothing to select on this dialog, so when ready, just click the Execute button.

This will initiate the configuration process providing feedback in the form of green check

marks that appear when each step is complete.

Figure 2-15. Windows Service

ChaPter 2 INstallINg the MysQl shell

45

When all the steps are complete, the Finish dialog will display. Figure 2-16 shows the

Finish dialog. Click Finish to begin the next phase of the configuration (MySQL Router).

This will return to the Product Configuration dialog (omitted for brevity – see Figure 2- 10).

At the Product Configuration dialog, click Next to proceed to the MySQL Router

configuration dialog, which permits you to make changes in how the router is installed

and which ports it listens on. While we have not discussed the router, some of this may

not be familiar. Fortunately, the default values are acceptable and include ports to use

for both the classic client protocol and X Protocol clients.

Note We will discuss the MysQl router including how to set up and use it in
Chapters 8 and 10.

Figure 2-16. Server Configuration Finished

ChaPter 2 INstallINg the MysQl shell

46

Figure 2-17 shows the MySQL Router configuration dialog. We can use the defaults,

so we need only click Finish to proceed back to the Product Configuration dialog

(omitted for brevity – see Figure 2-10).

At the Product Configuration dialog, click Next to proceed. The next component to

configure is the Samples and Examples components. While it may appear that there

isn’t anything to do here (after all, they’re only samples and examples for using MySQL),

the dialog has a very interesting feature. The dialog allows you to check your server

installation by connecting to the server. This not only tests your server but also ensures

your installation is working correctly.

When the dialog appears, type in the root password you chose earlier and click the

Check button. This will check your connection (and your password) to the server.

Figure 2-17. MySQL Router

ChaPter 2 INstallINg the MysQl shell

47

You may also notice the dialog shows both the standalone server option as well as a

sandbox option. Had you installed the sandbox option, you could also check the MySQL

server running in the sandbox. For this demonstration, we have only the standalone

option checked.

Figure 2-18 shows the Connect to Server dialog.

Once you’ve checked your connection, click Next to proceed. The next dialog

simply applies the configuration like we’ve seen previously, but in this case, the installer

configures all the subcomponents for the samples and examples. Simply click Execute to

begin. When all configurations are complete, you can click Finish to move to the next step.

Figure 2-19 shows the completed configuration dialog for the samples and examples.

When you click Finish, you will return to the Product Configuration dialog, which

will show all components configured (omitted for brevity – see Figure 2-10). Click Next

to proceed.

Figure 2-18. Connect to Server

ChaPter 2 INstallINg the MysQl shell

48

Once all products are configured, you will see the Installation Complete dialog as

shown in Figure 2-20. Click Finish to exit the installer.

Figure 2-19. Samples and Examples Finished

ChaPter 2 INstallINg the MysQl shell

49

If you have been following along installing MySQL on your own machine,

congratulations! You now have MySQL Server and MySQL Shell as well as other

components you need to complete the examples in this book.

 Installing on macOS
Installing MySQL products on macOS is accomplished by downloading each product

from the MySQL web site as a separate package. For example, if you want to install

MySQL Server and MySQL Shell on macOS, you will need to download the installer

for each. In this section, we will see a walkthrough of installing the server and shell on

macOS.

Figure 2-20. Installation Complete

ChaPter 2 INstallINg the MysQl shell

50

We will install MySQL Server first, then install MySQL Shell. Recall we must

download the installer for each from https://dev.mysql.com/downloads/. For example,

after selecting the entry for the community server (https://dev.mysql.com/downloads/

mysql/) and selecting the macOS entry in the operating system drop-down list, we will

see the files available for installing the server on macOS. Figure 2-21 shows the files

available for MySQL 8.0.16.

Notice you will see several options including a mountable disk image with a guided

installer (.dmg) as well as tape archives (.tar). On macOS, you should use the disk image

option. Go ahead and download that now.

Figure 2-21. Downloading MySQL Server for macOS

ChaPter 2 INstallINg the MysQl shell

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/

51

Similarly, you can go back to the community download page and click the entry for

the MySQL Shell and, after selecting macOS in the operating system drop-down box, you

will see the files available for downloading an installer for the shell. Figure 2-22 shows an

example of the files available for MySQL Shell 8.0.16.

Here, we see there are once again a mountable disk image with a guided installer

(.dmg) and a tape archive (.tar). You should download the disk image.

Now, let’s see how to install the server.

 Installing MySQL Server
To install MySQL Server, open the mountable disk image file (e.g., mysql-8.0.16-

macos10.14-x86_64.dmg) and then open the installer (e.g., mysql-8.0.16-

macos10.14-x86_64.pkg). This will start the installation.

The first dialog you will see is the welcome dialog, which presents a list of links for

the documentation and a brief summary of the steps. For savvy macOS enthusiasts, the

install progress will be very familiar. Figure 2-23 shows the welcome dialog.

Figure 2-22. Downloading MySQL Shell for macOS

ChaPter 2 INstallINg the MysQl shell

52

Once you’ve read the welcome text and optionally explored the links, click

Continue to proceed. The next dialog is the license dialog where you can choose to

read the GNU General Public License (GNU GPL) license (or enterprise license if you

chose to download the enterprise edition). You can also print or save the license to a

file for later reading. Figure 2-24 shows the license dialog.

Figure 2-23. Welcome Dialog

ChaPter 2 INstallINg the MysQl shell

53

Click Continue to see the license acceptance dialog. Figure 2-25 shows the license

agreement dialog. Once again, you can read the license, but you must accept the license

to continue. To accept the license, click Accept.

Figure 2-24. License Dialog

Figure 2-25. Accept License Dialog

ChaPter 2 INstallINg the MysQl shell

54

Once you accept the license, you will move to the installation type dialog. Note that

the destination select dialog is skipped. Figure 2-26 shows the installation type dialog.

On this dialog, you can choose the installation destination. For most systems, you

can accept the default. If you need to change the destination, you can click the Customize

button. To proceed with the installation destination, click Install.

The next dialog is a progress dialog that shows the progress of the files being

installed. You won’t see much here, so let’s look at the next dialog, which begins the

configuration process. Once that dialog is dismissed, you will then start the configuration

stage. Figure 2-27 shows the Configure MySQL Server dialog.

Figure 2-26. Installation Type Dialog

ChaPter 2 INstallINg the MysQl shell

55

Here, we must choose to use either strong password encryption (highly

recommended) or use the legacy authentication method (not recommended for

production). Strong encryption is selected by default, so we simply click Next to move to

the next configuration item.

Note If you choose the strong password encryption method and you want to
use an older version of the MysQl client (not the shell), you may encounter errors
connecting. you must use the newer client with strong password encryption.

The next configuration item is where we choose the password for the root user

account as shown in Figure 2-28. Choose a password that you will remember and is

sufficiently complex that no one will guess easily. You are encouraged to use a password

with at least eight characters that are a mix of letters, numbers, and other characters.

Figure 2-27. Configure MySQL Server (Password) Dialog

ChaPter 2 INstallINg the MysQl shell

56

We can also choose to start the MySQL server after installation is complete. It is

recommended to start the server after installation, so you can check that it works correctly.

Once you’ve entered the root user password and decided if you want to start the

server, click Finish to complete the configuration and move to the summary dialog.

Figure 2-29 shows the Summary dialog.

Figure 2-28. Configure MySQL Server (Root User Password/Start Server) Dialog

ChaPter 2 INstallINg the MysQl shell

57

To complete the installation, click Close. You may want to close the mountable disk

image (it will be closed on shutdown if you don’t close it). You can now connect to the

server if you want, but you will have to use the old client. Rather than doing that, let’s

install the shell.

 Installing the MySQL Shell
Installing the MySQL Shell is very similar to installing the server. The exception is there

isn’t a configuration step.

To install MySQL Shell, open the mountable disk image file (e.g., mysql-shell-

8.0.16-macos10.14-x86-64bit.dmg) and then open the installer (e.g., mysql-shell-

8.0.16-macos10.14-x86-64bit.pkg). This will start the installation.

The first dialog you will see is the welcome dialog, which presents a list of links for

the documentation and a brief summary of the steps. For savvy macOS enthusiasts, the

install progress will be very familiar. Figure 2-30 shows the welcome dialog.

Figure 2-29. Summary Dialog

ChaPter 2 INstallINg the MysQl shell

58

Once you’ve read the welcome text and optionally explored the links, click

Continue to proceed. The next dialog is the license dialog where you can choose to

read the GPL license (or enterprise license if you chose to download the enterprise

edition). You can also print or save the license to a file for later reading. Figure 2-31

shows the license dialog.

Figure 2-30. Welcome Dialog

ChaPter 2 INstallINg the MysQl shell

59

Click Continue to see the license acceptance dialog. Figure 2-32 shows the license

agreement dialog. Once again, you can read the license, but you must accept the license

to continue. To accept the license, click Accept.

Figure 2-31. License Dialog

Figure 2-32. Accept License Dialog

ChaPter 2 INstallINg the MysQl shell

60

Once you accept the license, you will move to the installation type dialog. Note that

the destination select dialog is skipped. Figure 2-33 shows the installation type dialog.

On this dialog, you can choose the installation destination. For most systems, you

can accept the default. If you need to change the destination, you can click the Customize

button. To proceed with the installation destination, click Install.

The next dialog is a progress dialog that shows the progress of the files being

installed. You won’t see much here, so let’s look at the next dialog, which presents the

summary dialog. Figure 2-34 shows the Summary dialog.

Figure 2-33. Installation Type Dialog

ChaPter 2 INstallINg the MysQl shell

61

To complete the installation, click Close. You may want to close the mountable disk

image (it will be closed on shutdown if you don’t close it). You can now connect to the

server using the MySQL Shell as shown in Figure 2-35. Here, I opened a terminal and

entered the command mysqlsh to start the shell.

Figure 2-34. Summary Dialog

ChaPter 2 INstallINg the MysQl shell

62

If you have been following along installing MySQL on your own machine,

congratulations! You now have MySQL Server and MySQL Shell as well as other

components you need to complete the examples in this book.

 Installing on Linux (Ubuntu) with the APT
Repository
Installing the MySQL Server and Shell on other platforms is best done by using the

platform-specific repository. That is, you can go to the MySQL download site and

download the platform-specific installers and install MySQL products following the

common methods for your Linux distribution.

In fact, the MySQL Server distribution packages are not a single download like other

platforms. This is because the server packages are built in a modular manner. That is,

you can install the server in parts including the clients, common libraries, server core,

and more.

However, Oracle has built an easier way to install for the more popular Linux

distributions, specifically the Ubuntu and Debian distributions. This is made possible

through the APT Repository, which establishes the packages and references for your

Figure 2-35. Using the MySQL Shell (macOS)

ChaPter 2 INstallINg the MysQl shell

63

platform. For example, once you’ve installed the repository on Ubuntu, you can use apt

to install whichever server product you want, which will automatically download the

appropriate installer.

But the APT Repository is more than that. Once installed, you can keep up with

the latest versions of MySQL Server as they are released. Overall, it is much easier than

downloading the installers manually every time you want to install a new version.

In this section, we see a demonstration of installing MySQL Server and MySQL Shell

using the MySQL APT Repository on Ubuntu. Let’s begin by downloading and installing

the repository.

 Downloading the APT Repository
To download the APT Repository, navigate to the MySQL Community downloads page

(https://dev.mysql.com/downloads/) and click the APT Repository menu item at the

top of the page as shown in Figure 2-36.

Figure 2-36. Select APT Repository

You will then be presented with the files available for the APT repository. For the

MySQL 8.0.16 release, there is only one option as shown in Figure 2-37. To download the

file, click Download.

Figure 2-37. Downloading the APT Repository

ChaPter 2 INstallINg the MysQl shell

https://dev.mysql.com/downloads/

64

You may be asked to log in or sign up for a free MySQL account. This is optional, and

you can bypass the step by clicking the No thanks, just start my download link below the

buttons as shown in Figure 2-38.

Depending on which browser you used, you will next be asked to open or save the

file. You should save the file in your Downloads folder or someplace where you can find it

as shown in Figure 2-39.

Figure 2-38. Skipping the Login for Downloading the APT Repository

ChaPter 2 INstallINg the MysQl shell

65

Now that we have the APT Repository downloaded, we can install it.

 Installing the APT Repository
To install the APT Repository, open a terminal and change to the directory where you

saved it (e.g., your Downloads folder). The steps needed to install the APT Repository

include the following:

$ sudo dpkg -i mysql-apt-config_0.8.13-1_all.deb

$ sudo apt-get update

The first command installs the package sources needed for linking the Oracle

repositories. The second command is used to update the package sources and enable

the new sources. Listing 2-1 shows the transcript of installing the APT Repository. Your

results should be similar.

Listing 2-1. Installing the APT Repository

$ sudo dpkg -i mysql-apt-config_0.8.13-1_all.deb

[sudo] password for cbell:

Selecting previously unselected package mysql-apt-config.

Figure 2-39. Save File

ChaPter 2 INstallINg the MysQl shell

66

(Reading database ... 212217 files and directories currently installed.)

Preparing to unpack mysql-apt-config_0.8.13-1_all.deb ...

Unpacking mysql-apt-config (0.8.13-1) ...

Setting up mysql-apt-config (0.8.13-1) ...

OK

$ sudo apt-get update

Get:1 http://repo.mysql.com/apt/ubuntu xenial InRelease [19.1 kB]

Hit:2 http://us.archive.ubuntu.com/ubuntu xenial InRelease

Get:3 http://security.ubuntu.com/ubuntu xenial-security InRelease [107 kB]

Get:4 http://repo.mysql.com/apt/ubuntu xenial/mysql-8.0 Sources [994 B]

Get:5 http://us.archive.ubuntu.com/ubuntu xenial-updates InRelease [109 kB]

Get:6 http://repo.mysql.com/apt/ubuntu xenial/mysql-apt-config amd64

Packages [567 B]

Get:7 http://repo.mysql.com/apt/ubuntu xenial/mysql-apt-config i386

Packages [567 B]

Get:8 http://repo.mysql.com/apt/ubuntu xenial/mysql-8.0 amd64 Packages [7,150 B]

Get:9 http://repo.mysql.com/apt/ubuntu xenial/mysql-8.0 i386 Packages [7,143 B]

Get:10 http://repo.mysql.com/apt/ubuntu xenial/mysql-tools amd64 Packages

[3,353 B]

Get:11 http://repo.mysql.com/apt/ubuntu xenial/mysql-tools i386 Packages

[2,632 B]

Get:12 http://us.archive.ubuntu.com/ubuntu xenial-backports InRelease [107 kB]

Fetched 364 kB in 5s (64.6 kB/s)

Reading package lists... Done

At this point, your system is ready for installing MySQL products simply by specifying

the product name in the APT command. Next, let’s install MySQL Server.

 Installing MySQL Server
Installing the server with the APT Repository can be done by installing the meta-package

named mysql server. The following shows the command you can use to install the server

and its most common components including the clients.

$ sudo apt-get install mysql-server

ChaPter 2 INstallINg the MysQl shell

67

The output of the command is typical of most Linux installations and the contents

are not particularly interesting for most, so we will skip examining the output. If you’re

curious, you can see all the packages and dependencies for the packages downloaded

and installed.

During the installation, you will be prompted to select the packages you want to

enable. For most, you can use the defaults. Select the Ok entry from the list to proceed

with the defaults. The Ok at the bottom of the dialog moves to the next screen to

configure the package chosen from the list. Figure 2-40 shows the dialog presented that

allows you to configure certain packages. If you want to configure one of the packages,

select the package using the UP and DOWN arrow keys, then press the TAB key to move

to the Ok selection at the bottom of the screen to proceed.

Figure 2-40. Configuring Packages in the APT Repository

The next step you will see is selecting the root password. You should choose a

password that you will remember and is sufficiently complex that no one will guess

easily. You are encouraged to use a password with at least eight characters that are a mix

of letters, numbers, and other characters. Figure 2-41 shows the dialog for setting the

root user password.

ChaPter 2 INstallINg the MysQl shell

68

The next dialog is the last one you will see before returning to the terminal prompt.

You must choose to use either strong password encryption (highly recommended)

or use the legacy authentication method (not recommended for production). Strong

encryption is selected by default, so we simply use the TAB key and select Ok to

continue. Figure 2-42 shows the password encryption configuration dialog.

Note If you choose the strong password encryption method and you want to
use an older version of the MysQl client (not the shell), you may encounter errors
connecting. you must use the newer client with strong password encryption.

Figure 2-41. Setting the Root User Password

Figure 2-42. Password Encryption Dialog

ChaPter 2 INstallINg the MysQl shell

69

If all went well, you should be unceremoniously returned to the terminal. You should

not see any errors and may see the results of installing any additional components such

as the following excerpt.

...

update-alternatives: using /var/lib/mecab/dic/ipadic-utf8 to provide /var/

lib/mecab/dic/debian (mecab-dictionary) in auto mode

Setting up mysql-server (8.0.16-1ubuntu16.04) ...

Processing triggers for libc-bin (2.23-0ubuntu10) ...

Next, we start the server with the following command. Note that this could take a

while to run on the first start since the server must set up the data directory.

$ sudo service mysql start

Now, you can connect to the server. Since we haven’t installed the shell yet, we can

use the old client using the following command. The options specify the user (root) and

the option to prompt for the user password.

$ mysql -uroot -p

This will result in launching the old client, which looks very similar to the examples

we’ve seen thus far for the MySQL Shell. If you look closely, you will see the subtle

differences in the welcome statements, but the biggest clue is the new prompt. Listing 2-2

shows an example of using the old client to connect to the server.

Listing 2-2. Connecting to MySQL (Old Client)

$ mysql -uroot -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 8

Server version: 8.0.16 MySQL Community Server - GPL

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.

ChaPter 2 INstallINg the MysQl shell

70

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> \q

Bye!

Next, let’s install MySQL Shell and test it by connecting to the server.

 Installing MySQL Shell
To install the MySQL Shell, we must download the MySQL Shell distribution

package. You can do this by visiting https://dev.mysql.com/downloads/shell/.

You must then change the operating system to match your system (e.g., Ubuntu) and

the version (e.g., 18.04) as shown in Figure 2-43. Or, you can leave the version set to

“All” to see all the packages available. Click on the Download button for the package

that matches your system.

Figure 2-43. Downloading the MySQL Shell (Ubuntu)

ChaPter 2 INstallINg the MysQl shell

https://dev.mysql.com/downloads/shell/

71

For example, I was using Ubuntu 18.04 running the 64-bit version. Thus, I

downloaded the file named mysql-shell_8.0.16-1ubuntu18.04_amd64.deb. Recall,

depending on what browser you are using, you may need to click through the MySQL

download acceptance dialog (see Figure 2-38) and save the file (see Figure 2-39). Once

downloaded, you can install the shell with the following command.

$ sudo dpkg -i ./mysql-shell_8.0.16-1ubuntu18.04_amd64.deb

The output of running the command is very short as shown here.

(Reading database ... 151363 files and directories currently installed.)

Preparing to unpack .../mysql-shell_8.0.16-1ubuntu18.04_amd64.deb ...

Unpacking mysql-shell:amd64 (8.0.16-1ubuntu18.04) ...

Setting up mysql-shell:amd64 (8.0.16-1ubuntu18.04) ...

You can also install the shell using the APT repository by using the following

command. Whichever you use is fine, but using the APT repository is the preferred

method.

$ sudo apt-get install mysql-shell

At this point, we have the MySQL Server and Shell installed and configured. Now,

let’s test both by issuing the following command in a terminal window.

$ mysqlsh

Once you enter the command, you will see the shell launch as shown in Figure 2-44.

ChaPter 2 INstallINg the MysQl shell

72

Notice in this example, I issued several commands. Those that start with a slash (\)

are shell commands. The first is to change the mode to SQL (\sql) for working with

SQL commands, then I connected to the server with the \connect command passing

the user id, host, and port as root@localhost:3306. Finally, I issued an SQL command

to show all the databases. We will learn more about using the shell in the next chapter.

If you have been following along installing MySQL on your own machine,

congratulations! You now have MySQL Server and MySQL Shell as well as other

components you need to complete the examples in this book.

Figure 2-44. Using the MySQL Shell (Ubuntu)

ChaPter 2 INstallINg the MysQl shell

73

 Summary
The MySQL Shell is a huge leap forward in technology for MySQL clients. Not only is

it designed to work with SQL in MySQL in a smarter way, it is also designed to enable

prototyping of JavaScript and Python. You can work with any language you want and

switch between them easily without having to restart the application or drop the

connection. How cool is that?

In this chapter, we learned how to install MySQL Shell. We also learned how to install

MySQL Server. Demonstrations were presented installing MySQL on Windows using the

MySQL Installer, macOS, and Linux (Ubuntu) using the APT Repository.

In the next chapter, we will see a short tutorial on the shell and its major features.

ChaPter 2 INstallINg the MysQl shell

75
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_3

CHAPTER 3

MySQL Shell Tutorial
Now that we know what the MySQL Shell is and where it fits in the suite of MySQL

products, it is time to learn what the shell can do for us. Specifically, what commands

does it support, how does it connect to the server, and what features does it support?

In this chapter, we explore the MySQL Shell in more detail. We will learn more

about its major features and options as well as see how to use the new shell to

execute scripts interactively. As you will see, the MySQL Shell is an important

element of the future of MySQL. Let’s begin with the commands and options

supported by the shell.

 Commands and Options
If you’re thinking the new shell is nothing more than an improved version of the original

client, you could not be further from the truth. The shell is much more than a simple

replacement for the original client. To get you started learning how it differs and how it is

much more sophisticated than the original shell, let’s begin by examining the commands

and options supported.

Commands are those special entries that you can provide at the prompt that

interacts with the MySQL Shell application directly. These are often referred to as

shell commands and begin with a slash (\). Options refer to the many parameters

(options) that you can specify when you launch the MySQL Shell. Thus, the shell

supports customization at launch such as connecting to a server, setting the mode,

and much more.

We will learn more about the commands and options for the shell in the following

sections, but first let’s briefly discuss how to start the shell.

76

 Starting the MySQL Shell
Depending on your platform and how you installed the shell, you may be able to start

the shell from the system (e.g., Start) menu. However, on all platforms, the installation

places the shell executable in a place where it can be executed from the command line.

The shell executable on Windows is named mysqlsh.exe. On other platforms, it is simply

mysqlsh.

For example, on Windows, you can start the shell in a special terminal using the Start

menu as shown in Figure 3-1.

Most people will launch the shell from the command line. We can do this by opening

a terminal (or console) and running the shell executable. For example, Figure 3-2 shows

how to launch the shell on Windows from a command window. You can do the same on

other platforms.

Figure 3-1. Launching the Shell from the Start Menu (Windows)

Chapter 3 MySQL SheLL tutoriaL

77

 Commands
Like the original MySQL client, there are some special commands that control the

application itself rather than interact with data (via SQL or the X DevAPI). To execute

a shell command, issue the command with a slash (\). For example, \help prints the

help for all the shell commands. Table 3-1 lists some of the more frequently used shell

commands.

Figure 3-2. Launching the Shell from the Command Line (Windows)

Table 3-1. Shell Commands

Command Shortcut Description

\ Start multiline input (SQL mode only)

\connect \c Connect to a server

\help \?,\h print the help text

\history View and edit command line history

\js Switch to JavaScript mode

\nowarnings \w Don't show warnings

\option Query and change MySQL Shell

configuration options

\py Switch to python mode

\quit \q,\exit Quit

(continued)

Chapter 3 MySQL SheLL tutoriaL

78

Some of the commands, such as the \connect command, take one or more

parameters. The best way to learn how to use the shell commands is the \help

command. You can use this command without parameters to get help about it. For

example, to learn more about the \connect command, enter \help connect as shown

in Listing 3-1. Here, we start the shell from the command line without any options,

which starts in the default JavaScript mode, issue a few help commands, then quit the

shell with the \q command. Portions of the output have been omitted for brevity and the

commands bolded for easier reading.

Listing 3-1. Getting Help in MySQL Shell

C:\>mysqlsh

MySQL Shell 8.0.16

...

 MySQL JS > \help sql

Found several entries matching sql

The following topics were found at the X DevAPI category:

- mysqlx.Session.sql

- mysqlx.SqlExecute.sql

For help on a specific topic use: \? <topic>

Command Shortcut Description

\reconnect reconnect to the same MySQL server

\rehash Manually update the autocomplete name

cache

\source \. executes the script file specified

\sql Switch to SQL mode

\status \s print information about the connection

\use \u Set the schema for the session

\warnings \W Show warnings after each statement

Table 3-1. (continued)

Chapter 3 MySQL SheLL tutoriaL

79

e.g.: \? mysqlx.Session.sql

 MySQL JS > \help connect

NAME

 connect - Establishes the shell global session.

SYNTAX

 shell.connect(connectionData[, password])

WHERE

 connectionData: the connection data to be used to establish the session.

 password: The password to be used when establishing the session.

DESCRIPTION

 This function will establish the global session with the received

 connection data.

 The connection data may be specified in the following formats:

 - A URI string

 - A dictionary with the connection options

...

 MySQL JS > \q

Bye!

Tip use the \help <command> to discover how to use a new command.

You can use the \sql, \js, and \py shell commands to switch the mode on the fly.

Not only does this mean you can change modes without restarting the shell, it also

makes working with SQL and NoSQL data much easier by allowing you to switch the

mode whenever you want. For example, you can execute a few SQL commands, then

connect to the X DevAPI to run JavaScript, return to SQL, then switch to running Python

scripts. Furthermore, you can use these shell commands even if you used the startup

option to set the mode.

Chapter 3 MySQL SheLL tutoriaL

80

Notice the way you exit the shell is with the \q (or \quit) command. If you type quit

like you’re used to in the old client, the shell will respond differently depending on the

mode you’re in. Listing 3-2 presents an example of what happens in each mode. Let’s

start with the default mode (JavaScript) then switch to Python and finally SQL mode.

Listing 3-2. Results of Using quit in Different Modes

MySQL JS > quit

ReferenceError: quit is not defined

 MySQL JS > \py

Switching to Python mode...

 MySQL Py > quit

Traceback (most recent call last):

 File "<string>", line 1, in <module>

NameError: name 'quit' is not defined

 MySQL Py > \sql

Switching to SQL mode... Commands end with ;

 MySQL SQL > quit;

ERROR: Not connected.

 MySQL SQL >

 MySQL SQL > \quit

Bye!

You may see similar oddities if you are used to the old MySQL client and accidentally

use an old client command, but it only takes a bit of regular use to remind you of the

correct commands to use. Now, let’s look at the command line options for the shell.

 Options
The shell can be launched using several startup options that control the mode,

connection, behavior, and more. This section introduces some of the more common

options that you may want to use. We will see the more about the connection options

in a later section. Table 3-2 shows the common shell options. These are just a few of the

many options available.

Chapter 3 MySQL SheLL tutoriaL

81

Table 3-2. Common MySQL Shell Options

Option Description

--auth- method=method authentication method to use

--cluster ensures the target is part of an innoDB Cluster

--compress enable compression between client and server

--database=name an alias for --schema

--dba=enableXProtocol enable the X protocol in the server connected to. Must be

used with --mysql

--dbpassword=name password to use when connecting to server

--dbuser=name, -u user to use for the connection

--execute=<cmd>, -e execute command and quit

--file=file, -f process file for execution

--host=name, -h hostname to use for connection

--import import one or more JSoN documents

--interactive[=full], -i to use in batch mode, it forces emulation of interactive

mode processing. each line on the batch is processed as if it

were in interactive mode

--js Start in JavaScript mode

--json=[raw|pretty] produce output in JSoN format in raw format (no formatting)

or pretty (human readable format)

--log-level=value the log level. Value must be an integer between 1 and 8 or

any of [none, internal, error, warning, info, debug, debug2,

debug3]

--mc --mysql Create a classic (old protocol) session

--mx --mysqlx Create an X protocol session (simply called “Session”)

--name-cache enable loading of table names for default schema

--no-name-cache Disable loading of table names for default schema

--nw, --no-wizard Disables wizard mode (noninteractive) for executing scripts

(continued)

Chapter 3 MySQL SheLL tutoriaL

82

Table 3-2. (continued)

Option Description

-p request password prompt to set the password

--password=name an alias for dbpassword

--port=#, -P port number to use for connection

--py Start in python mode

--schema=name, -D Schema to use

--socket=sock, -S Socket name to use for connection in uNiX or a named pipe

name in Windows (only classic sessions)

--sql Start in SQL mode

--sqlc Start in SQL mode using a classic session

--sqlx Start in SQL mode using Creating an X protocol session

--ssl-ca=name Ca file in peM format (check openSSL docs)

--ssl-capath=dir Ca directory

--ssl-cert=name X509 cert in peM format

--ssl-cipher=name SSL Cipher to use

--ssl-crl=name Certificate revocation list

--table Show results in table format

--tabbed Show results in tabbed format

--uri provide connection information in the form of user@

host:port

--vertical Show results in vertical format (like \G)

Notice there are aliases for some of the options that have the same purpose as

the original client. This makes switching to the shell a bit easier if you have scripts for

launching the client to perform operations. Notice also there is a set of options for using

a secure socket layer (SSL) connection. There are also options for controlling how the

output is viewed – as a traditional table (think SQL results), vertical orientation, or

even as JSON. Take a few moments and scan through this list to familiarize yourself

Chapter 3 MySQL SheLL tutoriaL

83

with what is available. However, there are other options that are not commonly used.

For a complete list of the available options, see https://dev.mysql.com/doc/mysql-

shell/8.0/en/mysqlsh.html. Don’t worry about memorizing these now or how to use

them – we will see many of these in action in later chapters.

 Getting Started with the MySQL Shell
As we’ve learned, the MySQL Shell is a new and exciting addition to the MySQL portfolio.

Not only is it a new client, it is also an excellent scripting environment for developing

new tools and applications for working with data. Cool!

Note We won’t examine every aspect of MySQL Shell; rather, we focus on the
commonly used features. We will also see many of the features demonstrated in
later chapters. See the MySQL Shell online user’s manual for more information
about additional features such as application logs, startup scripts, and working
with environment variables (https://dev.mysql.com/doc/mysql-
shell/8.0/en/).

Let’s see the shell in action once more. Listing 3-3 shows an example of using the

command line options to connect to our MySQL server via a Uniform Resource Identifier

(URI) setting the default schema, mode to SQL, and the output format to vertical.

Note in future examples, i will use a listing to show the shell in action rather than
a figure.

Listing 3-3. Starting the MySQL Shell with Options

C:\Users\cbell>mysqlsh --sql --uri=root@localhost -p -D world --vertical

Creating a session to 'root@localhost/world'

Please provide the password for 'root@localhost': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost'? [Y]es/[N]o/Ne[v]er (default No):

Fetching schema names for autocompletion... Press ^C to stop.

Chapter 3 MySQL SheLL tutoriaL

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysqlsh.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysqlsh.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/

84

Fetching table and column names from `world` for auto-completion... Press

^C to stop.

Your MySQL connection id is 11 (X protocol)

Server version: 8.0.16 MySQL Community Server - GPL

Default schema set to `world`.

MySQL Shell 8.0.16

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ ssl world SQL > SHOW TABLES;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Tables_in_world: city

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Tables_in_world: country

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 3. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Tables_in_world: countrylanguage

3 rows in set (0.0014 sec)

 MySQL localhost:33060+ ssl world SQL > \q

Bye!

As you can see, you can start the shell with or without options. You can choose to

connect on start or wait and connect to the server after you’ve started the shell. In fact,

you can also change connections to another server without restarting the application

whether you used command line options to connect or not. That’s a nice feature when

working with multiple MySQL servers and, as we will see, is also key to effectively setting

up high-availability solutions.

As we saw in the table and previous examples, you must use the \connect shell

command to connect to a server. These connections are called sessions and the shell

has several features for working with sessions. Connections can use either the original

client/server protocol or the new X Protocol for communicating with the server via the

Chapter 3 MySQL SheLL tutoriaL

85

X Plugin. What this means is the shell allows you to work with both relational (SQL) and

JSON documents (NoSQL), or both. We will discover more about connections in a later

section.

Along with sessions, it is important to understand the various modes that the shell

supports. Recall, these include an SQL, JavaScript, and Python mode. Like connections,

you can specify the mode on the command line and change the mode at any time while

using the shell. This allows you to switch from Python to SQL and back as you need to –

all without leaving the application.

The following sections present the session and mode features of the shell at a high

level. Learning these features is key to understanding how to make connections in the

shell. We will return to learning about making connections in a later section. For more

information about the MySQL Shell, see the section entitled, “MySQL Shell User Guide”

in the online MySQL reference manual.

 Sessions and Modes
Like the original client and indeed most MySQL client applications, you will need to

connect to a MySQL server so that you can run commands. The MySQL Shell supports

several ways to connect to a MySQL server and a variety of options for interacting with

the server (called a session). Within a session, you can change the way the shell accepts

commands (called modes) to include SQL, JavaScript, or Python commands.

Given all the different and new concepts of working with servers, those new to using

the shell may find the difference subtle and even at times confusing. Indeed, the online

reference manual and various blogs and other reports sometimes use mode and session

interchangeably, but as you will see, they are different (however subtle). Let’s begin by

looking at the session objects available.

 Session Objects

The first thing to understand about sessions is that a session is a connection to a single

server. The second thing to understand is that each session can be started using one of

two session objects that exposes a specific object for use in working with the MySQL

server using a specific communication protocol. That is, sessions are connections to

servers (with all parameters defined) and a session object is what the shell uses to

interact with a server in one of several ways. More specifically, a MySQL Shell session

Chapter 3 MySQL SheLL tutoriaL

86

object simply defines how you interact with the server including what modes are

supported and even how the shell communicates with the server. The shell supports two

session objects as follows:

• Session: An X Protocol session is used for application development

and supports the JavaScript, Python, and SQL modes. Typically

used to develop scripts or execute scripts. To start the shell with this

option, use the --mx (--mysqlx) option.

• Classic Session: Uses the older server communication protocol with

very limited support for the DevAPI. Use this mode with older servers

that do not have the X Plugin or do not support the X Protocol.

Typically used for SQL mode with older servers. To start the shell with

this option, use the --mc (--mysqlc) option.

You can specify the session object (protocol) to use when you use the \connect shell

command by specifying -mc for classic session or -mx for X Protocol session. The following

shows each of these in turn. Note that <URI> specifies a uniform resource identifier.

• \connect -mx <URI>: Use the X Protocol (session)

• \connect -mc <URI>: Use the classic protocol (classic session)

The URI referenced in this chapter and elsewhere refers to a specific format or layout

of the connection information used when connecting to a MySQL server. The following

shows the format for constructing a URI.

[scheme://][user[:[password]]@]target[:port][/schema][?attribute1=value1&at

tribute2=value2...

Notice we can specify the connection (session) type, which is optional, the user,

password (not recommended), the target or host, port, and even the schema as well as

any options used by the session type. For example, a simple URI for connecting to the

local MySQL server is shown in the following. Here, we use the user name root and port

3306. The shell will prompt for the password if not included in the URI.

/connect root@localhost:3306

Of course, you can still use the individual command line options for user, host, and

port. However, the norm is to use URIs with the /connect command or command line

option.

Chapter 3 MySQL SheLL tutoriaL

87

Tip See https://dev.mysql.com/doc/refman/8.0/en/connecting-
using- uri-or-key-value-pairs.html for more information about using uris.

Recall sessions are loosely synonymous with a connection. However, a session is a

bit more than just a connection since all the settings used to establish the connection

including the session object are included as well as the protocol to use to communicate

with the server. Thus, we sometimes encounter the term “protocol” for describing a

 session.

 Modes Supported

The shell supports three modes (also called language support or simply the active

language); SQL, JavaScript, and Python. Recall we can initiate any one of these modes by

using a shell command. You can switch modes (languages) as often as you want without

disconnection each time. The following lists the three modes and how to switch to each.

• \sql: Switch to the SQL language

• \js: Switch to the JavaScript language (default mode)

• \py: Switch to the Python language

You can switch modes any time you want, or you can start the shell in a particular

mode. The default mode is JavaScript. Thus, if you do not specify a mode on the

command line, you will be presented with the JavaScript prompt. This is how you will

know which mode you are in. Figure 3-3 shows the various modes. They are also color-

coded with JavaScript yellow, SQL orange, and Python blue. Nice!

Figure 3-3. MySQL Shell Mode Prompts

Chapter 3 MySQL SheLL tutoriaL

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

88

Now that we understand sessions and modes, we can look at how to make

connections to MySQL servers.

 Using Connections
Making connections in the shell is one area that may take some getting used to doing

differently than the original MySQL client, which required the use of several options

on the command line. You can use a specially formatted URI string or connect to a

server using individual options by name (like the old client). SSL connections are also

supported. Connections can be made via startup options, shell commands, and in

scripts. However, all connections are expected to use a password. Thus, unless you state

otherwise, the shell will prompt for a password if one is not given.

Note if you want to use a connection without a password (not recommended),
you must use the --password option or, if using a uri, include an extra colon to
take the place of the password.

Rather than discuss all the available ways to connect and all the options to do so, the

following presents one example of each method of making a connection in the following

sections.

 Using a URI
Recall, a URI is a string that uses a special format to include the values for the various

parameters. The password, port, and schema are optional, but the user and host are

required. Schema in this case is the default schema (database) that you want to use when

connecting. The default port for the old client/server protocol is 3306 and the default

port for the X Protocol is 33060. To connect to a server using a URI on the command line

when starting the shell, specify it with the --uri option as follows.

$ mysqlsh --uri root:secret@localhost:3306

Tip if you omit --uri but still include a uri, the shell will process the string
presented as a uri.

Chapter 3 MySQL SheLL tutoriaL

89

The shell assumes all connections require a password and will prompt for a

password if one is not provided. Listing 3-4 shows the same preceding connection made

without the password. Notice how the shell prompts for the password.

Listing 3-4. Connecting with a URI

C:\Users\cbell>mysqlsh --uri root@localhost:33060/world_x --sql

Creating a session to 'root@localhost:33060/world_x'

Please provide the password for 'root@localhost:33060': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:33060'? [Y]es/[N]o/Ne[v]er (default No):

Fetching schema names for autocompletion... Press ^C to stop.

Fetching table and column names from `world_x` for auto-completion...

Press ^C to stop.

Your MySQL connection id is 16 (X protocol)

Server version: 8.0.16 MySQL Community Server - GPL

Default schema set to `world_x`.

MySQL Shell 8.0.16

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ ssl world_x SQL > \q

Bye!

Notice we also specified the default schema (world_x) with the schema option in the

URI. The world_x database is a sample database you can download from https://dev.

mysql.com/doc/index-other.html. We will install this database during the tutorial on

MySQL Shell in a later section.

Chapter 3 MySQL SheLL tutoriaL

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

90

 Using Individual Options
You can also specify connections on the shell command line using individual options.

The available connection options available are those shown in Table 3-1. Listing 3-5

shows how to connect to a MySQL server using individual options. Notice I changed the

mode (language) to Python with the --py option.

Listing 3-5. Connecting Using Individual Options

C:\Users\cbell>mysqlsh --user root --host localhost --port 33060 --schema

world_x --py --mx

Creating an X protocol session to 'root@localhost:33060/world_x'

Please provide the password for 'root@localhost:33060': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:33060'? [Y]es/[N]o/Ne[v]er (default No):

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 17 (X protocol)

Server version: 8.0.16 MySQL Community Server - GPL

Default schema `world_x` accessible through db.

MySQL Shell 8.0.16

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ ssl world_x Py > \q

Bye!

 Using Connections in Scripts
If you plan to use the shell to create scripts or simply as a prototyping tool, you will

also want to use sessions in your scripts. While some of the examples may seem

strange and are presented without detailed explanations, it is always a good idea to

see how things in action before learning the details of how to do those steps (and

Chapter 3 MySQL SheLL tutoriaL

91

why). Thus, you should read this section to become familiar with what is possible. In

this section, we will explore how to use session in scripts. We will learn how to use the

examples in later chapters.

What makes using sessions in scripts powerful is that we can save them and

reuse them later. In this case, we will create a variable to contain the session once it is

fetched. A session created in this manner is called a global session because once it is

created, it is available to any of the modes. However, depending on the session object

we’re using (recall this is either Classic or X Protocol), we will use a different method of

the mysqlx object to create an X or Classic session. We use the get_session() method

for an X Protocol session object, and the get_classic_session() method for a classic

session object.

Note We will focus on the python scripts but many of the examples also apply to
JavaScript albeit with a slightly different capitalization of the classes and methods.

The following demonstrates getting an X Protocol session object in Python. Notice I

specify the password in a URI and the password as a separate parameter. I omit the shell

prompt for brevity.

> my_session = mysqlx.get_session('root@localhost:33060', 'secret');

> print(my_session)

<Session:root@localhost:33060>

The following demonstrates getting a Classic session object in Python.

Py > my_classic = mysql.get_classic_session('root@localhost:3306', 'secret');

Py > print(my_classic)

<ClassicSession:root@localhost:3306>

 Using SSL Connections
You can also create SSL connections for secure connections to your servers. To use SSL,

you must configure your server to use SSL. To use SSL on the same machine where

MySQL is running, you can use the --ssl-mode=REQUIRED option.

Chapter 3 MySQL SheLL tutoriaL

92

Use the SHOW VARIABLES command to view the state of the SSL variables to

determine if your server has SSL enabled. Listing 3-6 shows the results of running the

query with ssl surrounded by %, which are wildcards. This will result in showing all

variables with ssl in the name. As we can see, SSL is indeed enabled (see have_ssl,

which shows YES). If your server is not set up to use SSL and you want to use SSL

connections, see the online MySQL Reference Manual (https://dev.mysql.com/doc/

refman/8.0/en/encrypted-connections.html) to learn how to set up SSL on your

server.

Listing 3-6. Checking for SSL Support

SQL > SHOW VARIABLES LIKE '%ssl%';

+--------------------+-----------------+

| Variable_name | Value |

+--------------------+-----------------+

| have_openssl | YES |

| have_ssl | YES |

| mysqlx_ssl_ca | |

| mysqlx_ssl_capath | |

| mysqlx_ssl_cert | |

| mysqlx_ssl_cipher | |

| mysqlx_ssl_crl | |

| mysqlx_ssl_crlpath | |

| mysqlx_ssl_key | |

| ssl_ca | ca.pem |

| ssl_capath | |

| ssl_cert | server-cert.pem |

| ssl_cipher | |

| ssl_crl | |

| ssl_crlpath | |

| ssl_fips_mode | OFF |

| ssl_key | server-key.pem |

+--------------------+-----------------+

17 rows in set (0.0207 sec)

Chapter 3 MySQL SheLL tutoriaL

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html

93

You can also specify the SSL options as shown in Table 3-1. You can specify

them on the command line using the command line options or as an extension to the

\connect shell command. The following shows how to connect to a server using SSL and

command line options.

C:\Users\cbell>mysqlsh -uroot -h127.0.0.1 --port=33060 --ssl-mode=REQUIRED

Note older versions of the MySQL server may not have the X plugin enabled. See
the online MySQL reference manual for how to enable the X plugin on version 5.7
and earlier releases of 8.0.

Now, let’s see the MySQL Shell in action by way of a demonstration of its basic features.

 Working with the MySQL Shell
The following sections demonstrate how to use the MySQL shell in the most basic of

operations – selecting and inserting data. The examples use the world_x database and

are designed to present an overview rather than a deep dive. If you do not know anything

about the MySQL Document Store or JSON data, do not despair; the tutorial is meant to

demonstrate working with the MySQL Shell and since the shell is intended for use with

JSON documents, we will do so.

Thus, the objective in this tutorial is to insert new data in the world_x database and

then execute a search to retrieve rows that meet criteria that contains the new data. I will

use a relational table to illustrate the concepts since that is easier for those of us familiar

with “normal” database operations.

Before we begin our journey, let’s take a moment to install the sample database we

will need, the world_x sample MySQL database from Oracle.

 Installing the Sample Database
Oracle provides several sample databases for you to use in testing and developing your

applications. Sample databases can be downloaded from http://dev.mysql.com/doc/

index-other.html. The sample database we want to use is named world_x to indicate it

contains JSON documents and is intended for testing with the X DevAPI, the shell, etc.

Chapter 3 MySQL SheLL tutoriaL

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/index-other.html

94

Go ahead and navigate to that page and download the database. The sample database

contains several relational tables (country, city, and countrylanguage) as well as a

collection (countryinfo).

Once you’ve downloaded the file, uncompress it and note the location of the

files. You will need that when we import it. Next, start the MySQL Shell and make a

connection to your server. Use the \sql shell command to switch to SQL mode, then

the \source shell command to read the world_x.sql file and process all its statements.

Listing 3-7 demonstrates how to use these options and install the sample database.

Responses from running the \source command are omitted for brevity.

Listing 3-7. Installing the world_x Sample Database

JS > \sql

Switching to SQL mode... Commands end with ;

SQL > \source world_x.sql

Query OK, 0 rows affected (0.0034 sec)

Query OK, 0 rows affected (0.0004 sec)

Query OK, 0 rows affected (0.0003 sec)

…

Query OK, 0 rows affected (0.0003 sec)

Query OK, 0 rows affected (0.0002 sec)

Query OK, 0 rows affected (0.0003 sec)

Query OK, 0 rows affected (0.0003 sec)

Query OK, 0 rows affected (0.0002 sec)

Query OK, 0 rows affected (0.0003 sec)

 MySQL localhost:3306 ssl SQL > show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sakila |

| sys |

| world_x |

+--------------------+

Chapter 3 MySQL SheLL tutoriaL

95

6 rows in set (0.0045 sec)

SQL > USE world_x;

Query OK, 0 rows affected (0.00 sec)

SQL > SHOW TABLES;

+-------------------+

| Tables_in_world_x |

+-------------------+

| city |

| country |

| countryinfo |

| countrylanguage |

+-------------------+

4 rows in set (0.00 sec)

Notice I have another sample database installed named sakila, which you can also

find on the Oracle web site with the world_x database. I also show the tables located in

the sample database.

Tip if the path to the file has spaces in it, you should include the path within
double quotes.

You can also install the sample database using the --recreate-schema option on the

command line as follows. Note that this will delete and recreate the database if it already

exists. This is another example of running the SQL commands as a batch.

C:\Users\cbell\Downloads\world_x-db>mysqlsh -uroot -hlocalhost --sql

--recreate-schema --schema=world_x < world_x.sql

Please provide the password for 'root@localhost': ∗∗∗∗∗∗∗∗∗∗

Please pick an option out of [Y]es/[N]o/Ne[v]er (default No):

Recreating schema world_x...

Of course, you could install the sample database with the old client by using the

similar source command, but where’s the fun in that?

Now, let’s see how we can work with data.

Chapter 3 MySQL SheLL tutoriaL

96

 Working with Data
In this section, we will see some simple examples of selecting and inserting data in the

database. I use the city table in the world_x database demonstrating the JSON data type

in queries. As you will see, this opens a new way to work with data. Once again, we will

see more about the JSON data type in the next chapter. For this section, you should

focus on the interactions within the shell. That is, how to use the shell to run the queries.

If you’re a pro at SQL databases, all of this except for the JSON data type will be very

familiar. Let’s start with querying data.

The task we want to accomplish is to see what rows are in the city table. In this case,

we will retrieve (select) those rows that include cities in the United States. We will sort

the rows by name and for brevity only show the first 20 rows. Listing 3-8 shows how to

execute the query. Even if you don’t know SQL, the query reads easy.

Listing 3-8. Selecting Rows

SQL > SELECT Name, District, Info FROM city WHERE CountryCode = 'USA' ORDER

BY Name DESC LIMIT 20;

+------------------+----------------------+------------------------+

| Name | District | Info |

+------------------+----------------------+------------------------+

| Yonkers | New York | {"Population": 196086} |

| Worcester | Massachusetts | {"Population": 172648} |

| Winston-Salem | North Carolina | {"Population": 185776} |

| Wichita Falls | Texas | {"Population": 104197} |

| Wichita | Kansas | {"Population": 344284} |

| Westminster | Colorado | {"Population": 100940} |

| West Valley City | Utah | {"Population": 108896} |

| West Covina | California | {"Population": 105080} |

| Waterbury | Connecticut | {"Population": 107271} |

| Washington | District of Columbia | {"Population": 572059} |

| Warren | Michigan | {"Population": 138247} |

| Waco | Texas | {"Population": 113726} |

| Visalia | California | {"Population": 91762} |

| Virginia Beach | Virginia | {"Population": 425257} |

| Vancouver | Washington | {"Population": 143560} |

Chapter 3 MySQL SheLL tutoriaL

97

| Vallejo | California | {"Population": 116760} |

| Tulsa | Oklahoma | {"Population": 393049} |

| Tucson | Arizona | {"Population": 486699} |

| Torrance | California | {"Population": 137946} |

| Topeka | Kansas | {"Population": 122377} |

+------------------+----------------------+------------------------+

20 rows in set (0.0024 sec)

Notice the Info column. This is a JSON data type column and the data is displayed as

a JSON document (e.g., {"Population": 122377}). This shows that the JSON document

contains a single key, value pair representing the population for each of the cities. We

can see how the table was constructed using a SHOW CREATE TABLE query as shown in

Listing 3-9. Here, we see the JSON data type for the Info column.

Listing 3-9. SHOW CREATE TABLE Example

SQL > SHOW CREATE TABLE city\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Table: city

Create Table: CREATE TABLE `city` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 ̀Name` char(35) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL

DEFAULT '',

 ̀CountryCode` char(3) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL

DEFAULT '',

 ̀District` char(20) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL

DEFAULT '',

 `Info` json DEFAULT NULL,

 PRIMARY KEY (`ID`)

) ENGINE=InnoDB AUTO_INCREMENT=4080 DEFAULT CHARSET=utf8

1 row in set (0.0038 sec)

You may be wondering if we can use the JSON document in the Info column in

our queries. The answer is, yes, you can! We can do so using a special function (one of

the dozens designed to work with the JSON data type) to extract the key, value pairs. In

this case, we will use the JSON_EXTACT() function passing in the column name and a

specially formatted string called a path expression. In this case, we want to select those

Chapter 3 MySQL SheLL tutoriaL

98

rows representing cities with a population of 500,000 or more. Listing 3-10 shows an

example of the modified query. In this case, we will limit the output to only the first 10

rows but keep the ordering options and limiting the columns to only the name, district,

and information columns. Also, we will use the shell in a batch mode to launch the shell,

run the query, and then exit.

Listing 3-10. Selecting Rows Using JSON Data Type (Batch Mode)

C:\Users\cbell\Downloads\world_x-db>mysqlsh --uri=root@localhost:3306 --sql

--table -e "SELECT Name, District, Info FROM world_x.city WHERE CountryCode

= 'USA' AND JSON_EXTRACT(Info, '$.Population') > 500000 ORDER BY Name DESC

LIMIT 10;"

Please provide the password for 'root@localhost:3306': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er (default No):

+---------------+----------------------+-------------------------+

| Name | District | Info |

+---------------+----------------------+-------------------------+

| Washington | District of Columbia | {"Population": 572059} |

| Seattle | Washington | {"Population": 563374} |

| San Jose | California | {"Population": 894943} |

| San Francisco | California | {"Population": 776733} |

| San Diego | California | {"Population": 1223400} |

| San Antonio | Texas | {"Population": 1144646} |

| Portland | Oregon | {"Population": 529121} |

| Phoenix | Arizona | {"Population": 1321045} |

| Philadelphia | Pennsylvania | {"Population": 1517550} |

| Oklahoma City | Oklahoma | {"Population": 506132} |

+---------------+----------------------+-------------------------+

Let’s look at the command a little closer. Notice we start the shell with the --uri to

provide the login information, --sql to turn on SQL mode, --table to display the output

in table mode (the default is tab), and the -e option followed by the query to execute and

return the results. You can use this mechanism to insert the shell in any batch job.

The next task we want to do is to insert data. To make things interesting, we will

modify some of the rows to include interesting sites you can visit while in town. In a pure

relational database, this would require changing the table or adding a new table to store

the new information. But the JSON data type allows us to add information in a free-form

Chapter 3 MySQL SheLL tutoriaL

99

manner via more key, value pairs. Thus, we will modify the information column to include

additional information about the interesting sites. In other words, we can add our own

comments about places we’ve visited and would recommend to others.

For this example, we will add two sites; the Smithsonian National Air and Space

Museum in Washington, D.C. (https://airandspace.si.edu/) and National Harbor

in Baltimore, MD (https://www.nationalharbor.com/). These are two excellent sites

worth visiting when you are in the area.

We know there exists a row in the table for Washington, D.C. but what about

Baltimore? We can run a quick batch query like the preceding one, but this time we will

see the result in tab form.

C:\Users\cbell\Downloads\world_x-db>mysqlsh --uri=root@localhost:3306

--sql -e "SELECT Name, Info FROM world_x.city WHERE CountryCode = 'USA'

AND DISTRICT = 'Maryland'"

Please provide the password for 'root@localhost:3306': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er (default No):

Name Info

Baltimore {"Population": 651154}

Now that we know there are rows for both cities, all we need do is construct the JSON

we want to insert. In this case, we will use another JSON function to add the new data.

But first, let’s see what that data looks like. In this case, we want to include the name

of the site, the URL for the web site, and the type of site (e.g., museum, attraction). To

make it possible to add more than one site for each city, we will add the new data as a

JSON array. This may seem rather confusing, but let’s look at the example for Baltimore.

The following shows the complete JSON document with the existing and new data. I’ve

formatted it in a typical manner that you will see JSON document using indentation.

{

 "Population": 651154,

 "Places_of_interest": [

 {

 "name":"National Harbor",

 "URL":"https://www.nationalharbor.com/",

 "type":"attraction"

 }

]

}

Chapter 3 MySQL SheLL tutoriaL

https://airandspace.si.edu/
https://www.nationalharbor.com/

100

At this point, you may be wondering how we can ensure the JSON document is

formatted correctly. For most, this comes with experience working with JSON. However,

MySQL provides a JSON function named JSON_VALID() that you can use to validate a

JSON document. Just pass the string as a parameter. You should get a value of 1 for a

valid document or 0 for a document with errors as demonstrated in the following. Here,

we see the document is valid.

SQL > SELECT JSON_VALID('{"Population": 651154, "Places_of_interest":

[{"name": " National Harbor ", "URL":" https://www.nationalharbor.com/","ty

pe":"attraction"}]}')\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_VALID('{"Population": 651154, "Places_of_interest": [{"name":

" National Harbor ", "URL":" https://www.nationalharbor.

com/","type":"attraction"}]}'): 1

1 row in set (0.0005 sec)

Now we’re ready to update the data in the table. To do so, we will use the UPDATE

SQL statement replacing the information column with new JSON document from

above. However, we must reformat the document in a more traditional string. You

may be able to leave the spaces and line breaks in the string, but it is not common to

do that. Rather, we want to form a single string enclosed in single quotes.But first, we

need the key for the row in the table. The city table has a key field named ID. Let’s get

the IDs for both cities.

SQL > SELECT ID, Name FROM world_x.city WHERE Name IN ('Washington',

'Baltimore');

+------+------------+

| ID | Name |

+------+------------+

| 3809 | Baltimore |

| 3813 | Washington |

+------+------------+

2 rows in set (0.0053 sec)

Now, let’s do the update. The following is typical of an SQL UPDATE command to

replace a column for a specific row in the table. There’s nothing unusual here, but notice

we use the \G option of the SQL execution to show the result in an easier reading form.

Chapter 3 MySQL SheLL tutoriaL

101

SQL > UPDATE world_x.city set Info = '{"Population": 651154,"Places_of_

interest":[{"name":"National Harbor","URL":"https://www.nationalharbor.

com/","type":"attraction"}]}' WHERE ID = 3809;

Query OK, 1 row affected (0.0499 sec)

Rows matched: 1 Changed: 1 Warnings: 0

SQL > SELECT Name, District, Info FROM world_x.city WHERE ID = 3809\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Baltimore

District: Maryland

 Info: {"Population": 651154, "Places_of_interest": [{"URL":

"https://www.nationalharbor.com/", "name": "National Harbor", "type":

"attraction"}]}

1 row in set (0.0008 sec)

Here, we see we have successfully updated (replaced) the JSON document. But the

output isn’t easy to read. To make it easier to read, let’s use the JSON_PRETTY() function,

which reformats the output in a more pleasing layout. The following shows the same

query with the function added. Isn’t that easier to read?

SQL > SELECT Name, District, JSON_PRETTY(Info) FROM world_x.city

WHERE ID = 3809\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Baltimore

 District: Maryland

JSON_PRETTY(Info): {

 "Population": 651154,

 "Places_of_interest": [

 {

 "URL": "https://www.nationalharbor.com/",

 "name": "National Harbor",

 "type": "attraction"

 }

]

}

1 row in set (0.0005 sec)

Chapter 3 MySQL SheLL tutoriaL

102

Now, let’s see the other update done using a true update of the column. Here, we will

use another special JSON function named JSON_MERGE_PRESERVE(), which merges two

JSON documents and preserves the arrays (when merging two arrays). For this example, it

effectively merges the existing JSON document with the new information we’re adding.

Note there are several ways we could approach this update, but this is one that
is common among savvy database administrators.

To effect this, let’s first get the current JSON document from the row. We will use

a local variable (starts with @) to store the result using the SELECT…INTO version of the

SELECT statement as shown in the following. Here, we save the value to @var1 and display

it.

SQL > SELECT Info FROM world_x.city WHERE ID = 3813 INTO @var1;

Query OK, 1 row affected (0.0007 sec)

SQL > SELECT @var1;

+------------------------+

| @var1 |

+------------------------+

| {"Population": 572059} |

+------------------------+

1 row in set (0.0004 sec)

Now we can construct the new information we want to add. The following shows

the JSON document with only the new data (population is already in the row). But don’t

worry, we’re going to merge the documents.

{

 "Places_of_interest":[

 {

 "name":"Smithsonian National Air and Space Museum",

 "URL":"https://airandspace.si.edu/",

 "type":"museum"

 }

]

}

Chapter 3 MySQL SheLL tutoriaL

103

Next, we can use that JSON document along with the variable to update the row as

shown in the following.

SQL > UPDATE world_x.city SET Info = JSON_MERGE_PRESERVE(@var1, '{"Places_

of_interest":[{"name":"Smithsonian National Air and Space Museum",

"URL":"https://airandspace.si.edu/","type":"museum"}]}') WHERE ID = 3813;

Query OK, 1 row affected (0.0784 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Notice, we now have the new information added and have retained the

population. Cool.

SQL > SELECT Name, District, JSON_PRETTY(Info) FROM world_x.city WHERE ID =

3813\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Washington

 District: District of Columbia

JSON_PRETTY(Info): {

 "Population": 572059,

 "Places_of_interest": [

 {

 "URL": "https://airandspace.si.edu/",

 "name": "Smithsonian National Air and Space Museum",

 "type": "museum"

 }

]

}

1 row in set (0.0005 sec)

Now, what if we wanted to only retrieve the values for the Places_of_interest

array? In this case, we can use another JSON function called JSON_EXTRACT() to extract

keys and values from the array. The following demonstrates the technique. Notice the

portion highlighted in bold. Here, we extract the key using the path expression like we

saw earlier. And, we’re doing the query on the entire table, so we’ll get all rows that have

the Places_of_interest key in the JSON document.

Chapter 3 MySQL SheLL tutoriaL

104

SQL > SELECT Name, District, JSON_EXTRACT(info, '$.Places_of_interest[∗].
name') as Sights FROM world_x.city WHERE JSON_EXTRACT(info, '$.Places_of_

interest') IS NOT NULL \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Baltimore

District: Maryland

 Sights: ["National Harbor"]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Washington

District: District of Columbia

 Sights: ["Smithsonian National Air and Space Museum"]

2 rows in set (0.0119 sec)

Ok, now that’s a lot easier to read, isn’t it? It’s also a bit of a messy SQL command.

And if all of that seemed a bit painful, you’re right, it was. Working with JSON data in

SQL works with the help of the JSON functions, but it is an extra step and can be a bit

confusing in syntax. See the online MySQL reference manual for full explanations of

each of the JSON functions.1 We will see more about the JSON functions in the next

chapter.

 Using Formatting Modes
If you’ve used the old MySQL client much to query data with wide rows, chances are

you’ve used the \G option like we did above to display the results in a vertical format,

which makes reading the data easier. With the shell, we can display data in several ways.

In this section, we see brief examples of running the shell in batch mode displaying data

in a variety of formats. As you will see, choosing the format can help make the data easier

to read (or ingest if reading the output in a script).

Recall, we can set the format using the command line options --table, --tabbed,

--vertical, or --json with two choices for the JSON format. The output chosen will

affect how the output looks in the execution modes (SQL, Python, or JavaScript). For this

tutorial, we will see only the SQL mode.

1 https://dev.mysql.com/doc/refman/8.0/en/json.html

Chapter 3 MySQL SheLL tutoriaL

https://dev.mysql.com/doc/refman/8.0/en/json.html

105

Let’s begin with the table format. The following shows the results of executing the

last query in batch mode with the table format. Notice we see output like we would when

running interactively in SQL mode.

C:\Users\cbell>mysqlsh --uri=root@localhost:3306 --sql -e "SELECT Name,

District, JSON_EXTRACT(info, '$.Places_of_interest[∗].name') as Sights FROM
world_x.city WHERE JSON_EXTRACT(info, '$.Places_of_interest') IS NOT NULL"

--table

Please provide the password for 'root@localhost:3306': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er (default No):

+------------+----------------------+-------------------------------------+

| Name | District | Sights |

+------------+----------------------+-------------------------------------+

| Baltimore | Maryland | ["National Harbor"] |

| Washington | District of Columbia | ["Smithsonian National Air and

Space Museum"] |

+------------+----------------------+-------------------------------------+

Next, let’s see the tabbed format. The following shows the results of executing the last

query in batch mode with the tabbed format. Notice in this case the output is a tabbed-

separated view. It is not as easy to see in the listing, but when run in a script, it makes

ingesting the output easy to separate with tabs.

C:\Users\cbell>mysqlsh --uri=root@localhost:3306 --sql -e "SELECT Name,

District, JSON_EXTRACT(info, '$.Places_of_interest[∗].name') as Sights FROM
world_x.city WHERE JSON_EXTRACT(info, '$.Places_of_interest') IS NOT NULL"

--tabbed

Please provide the password for 'root@localhost:3306': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er (default No):

Name District Sights

Baltimore Maryland ["National Harbor"]

Washington District of Columbia ["Smithsonian National Air and

Space Museum"]

Next, let’s see the vertical format. The following shows the results of executing the

last query in batch mode with the vertical format. Notice in this case the output is like

using the \G option in the SQL mode.

Chapter 3 MySQL SheLL tutoriaL

106

C:\Users\cbell>mysqlsh --uri=root@localhost:3306 --sql -e "SELECT Name,

District, JSON_EXTRACT(info, '$.Places_of_interest[∗].name') as Sights FROM
world_x.city WHERE JSON_EXTRACT(info, '$.Places_of_interest') IS NOT NULL"

--vertical

Please provide the password for 'root@localhost:3306': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er (default No):

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Baltimore

District: Maryland

 Sights: ["National Harbor"]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Washington

District: District of Columbia

 Sights: ["Smithsonian National Air and Space Museum"]

Next, let’s see the raw JSON format. The following shows the results of executing the

last query in batch mode with the raw JSON format. Notice in this case the output is very

different from what we’d normally see in SQL mode. In fact, we see the output as a series

of JSON documents albeit without formatting.

C:\Users\cbell>mysqlsh --uri=root@localhost:3306 --sql -e "SELECT Name,

District, JSON_EXTRACT(info, '$.Places_of_interest[∗].name') as Sights FROM
world_x.city WHERE JSON_EXTRACT(info, '$.Places_of_interest') IS NOT NULL"

--json=raw

{"password":"Please provide the password for 'root@localhost:3306': "}

∗∗∗∗∗∗∗∗∗∗
{"prompt":"Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er

(default No): "}

{"executionTime":"0.0063 sec","info":"","rows":[{"Name":"Baltimore","Distr

ict":"Maryland","Sights":"[\"National Harbor\"]"},{"Name":"Washington","D

istrict":"District of Columbia","Sights":"[\"Smithsonian National Air and

Space Museum\"]"}],"warningCount":0,"warningsCount":0,"warnings":[],"hasDat

a":true,"affectedRowCount":0,"affectedItemsCount":0,"autoIncrementValue":0}

Chapter 3 MySQL SheLL tutoriaL

107

Finally, let’s look at the pretty JSON format. Up to this point, the output has been

rather concise. However, the pretty JSON format is a bit more verbose. Listing 3-11 shows

the results of executing the last query in batch mode with the pretty JSON format. In this

case, it adds whitespace and new lines to make it easier to read.

Listing 3-11. The JSON pretty Format

C:\Users\cbell>mysqlsh --uri=root@localhost:3306 --sql -e "SELECT Name,

District, JSON_EXTRACT(info, '$.Places_of_interest[∗].name') as Sights FROM
world_x.city WHERE JSON_EXTRACT(info, '$.Places_of_interest') IS NOT NULL"

--json=pretty

{

 "password": "Please provide the password for 'root@localhost:3306': "

}

∗∗∗∗∗∗∗∗∗∗
{

 "prompt": "Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er

(default No): "

}

{

 "executionTime": "0.0033 sec",

 "info": "",

 "rows": [

 {

 "Name": "Baltimore",

 "District": "Maryland",

 "Sights": "[\"National Harbor\"]"

 },

 {

 "Name": "Washington",

 "District": "District of Columbia",

 "Sights": "[\"Smithsonian National Air and Space Museum\"]"

 }

],

Chapter 3 MySQL SheLL tutoriaL

108

 "warningCount": 0,

 "warningsCount": 0,

 "warnings": [],

 "hasData": true,

 "affectedRowCount": 0,

 "affectedItemsCount": 0,

 "autoIncrementValue": 0

}

Notice the output is more verbose and even the messages from the shell are in JSON

format, but it does make for reading JSON data much nicer.

 Code/Command History
Like its predecessor, the shell allows you to recall the last commands entered through

a command history list. Unlike the original client, the shell also allows you to search

through the history. This is especially helpful when writing scripts as it allows you to

search for operations you’ve used previously.

To search the command history, press CTRL+R at any point. This initiates a reverse

search, which searches back through the commands. The prompt changes to indicate

you are searching and you can type in the first few characters of the command you’re

searching for. When the search will display the first command found as shown in the

following. If that isn’t the command you’re looking for, you can press CTRL+R again to

get the next match or CTRL+C to cancel. If you press ENTER, the command found will be

executed.

(reverse-i-search)`SHOW': SHOW TABLES FROM world_x;

The forward search is a little different and works when you are already in a search

mode. That is, pressing CTRL+S will search forward through the history but if you’re not

in the search mode, you cannot search forward. However, it is very handy to use once

you get the hang of it. Like the reverse search, the forward search changes the prompt as

shown in the following.

(i-search)`SHOW': SHOW DATABASES;

Chapter 3 MySQL SheLL tutoriaL

109

You can also configure the number of items to store in the history (default is 100) as

well as see the history in a file named ~/.mysqlsh/history (%AppData%\MySQL\mysqlsh\

history on Windows). However, you must either use the \history command to save the

history or have the shell configured to automatically save the history. We will see how

to do this in a later section. You can see the history list at any time by using the \history

command as shown in the following.

SQL > \history

 1 \history

 2 \connect root@localhost:3306

 3 SHOW DATABASES;

 4 SHOW TABLES FROM world_x;

 5 SHOW VARIABLES LIKE '%ssh%';

 6 SHOW VARIABLES LIKE '%ssl%';

The \history command also allows you to delete one or more entries in the history,

clear the history (useful if you’re switching modes), and save the history. The command

options are demonstrated in the following.

• \history del 2-4: Deletes entries 2, 3, and 4 from history.

• \history clear: Clear history for this session.

• \history save: Save history to file.

Note only those commands entered interactively are saved in the history. Batch
execution does not save commands to the history file.

 Saving Passwords
Now let’s discuss one of the newest and most productive features of the shell – the secret

store. This is made possible with a feature called the pluggable password store, which

supports several storage mechanisms including the secret store, keychain, and more.

It allows you to securely store commonly used passwords, which makes working with

MySQL Shell easier and more secure. You can save a password for a server connection

using a secret store, such as a keychain. You enter the password for a connection

interactively and it is stored with the server URL as credentials for the connection.

Chapter 3 MySQL SheLL tutoriaL

110

Tip See https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-
shell- pluggable-password-store.html for more information about
working with the pluggable password store.

In fact, by this point you’ve seen the message appear in the output of the shell

numerous times and in all the examples I’ve replied “no” by simply pressing enter to this

prompt, which tells the shell to not store the password.

Please provide the password for 'root@localhost:3306': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er (default No):

Now, let’s remedy that and save that password once and for all on our system!

Listing 3-12 shows a transcript of running the shell to execute a simple query. The first

time, I tell the shell to remember the password. The second time, I no longer must

remember the password and the shell doesn’t prompt me for it.

Listing 3-12. Saving Passwords with the Secret Store

C:\Users\cbell>mysqlsh --uri=root@localhost:3306 --sql -e "SELECT Name,

District, JSON_EXTRACT(info, '$.Places_of_interest[∗].name') as Sights FROM
world_x.city WHERE JSON_EXTRACT(info, '$.Places_of_interest') IS NOT NULL"

--vertical

Please provide the password for 'root@localhost:3306': ∗∗∗∗∗∗∗∗∗∗
Save password for 'root@localhost:3306'? [Y]es/[N]o/Ne[v]er (default No): Y

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Baltimore

District: Maryland

 Sights: ["National Harbor"]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Washington

District: District of Columbia

 Sights: ["Smithsonian National Air and Space Museum"]

C:\Users\cbell>mysqlsh --uri=root@localhost:3306 --sql -e "SELECT Name,

District, JSON_EXTRACT(info, '$.Places_of_interest[∗].name') as Sights FROM
world_x.city WHERE JSON_EXTRACT(info, '$.Places_of_interest') IS NOT NULL"

--vertical

Chapter 3 MySQL SheLL tutoriaL

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-pluggable-password-store.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-pluggable-password-store.html

111

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Baltimore

District: Maryland

 Sights: ["National Harbor"]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Name: Washington

District: District of Columbia

 Sights: ["Smithsonian National Air and Space Museum"]

If you want to reset the password should you forget it or change it, you can use a special

object (global variable) that is a class that you can use to customize the pluggable password

feature. Since customizing the shell is a larger topic, we will discuss how to customize the

shell in the next section where we will also see how to reset passwords stored.

 Customizing the Shell
The last tutorial we will cover is how to customize the shell. You can change several

parameters governing how the shell operates. This includes changing the prompt as well

as autocompletion, wait times, output format, and more. Let’s begin with how it works.

There are three ways to set configuration options in the shell. You can either use the

\option command to list, set, and even unset options and their values, or you can use

the shell.option object in either Python or JavaScript mode, or you can modify the

configuration file on disk. Let’s see each of these in action.

 Using the \option Command

The \option command works in any mode. The \option command is the more common

method of setting options. Listing 3-13 shows the help text for the \option command

along with a list of the options for configuring command history.

Listing 3-13. Using the \option Command

Py > \help \option

NAME

 \option - Allows working with the available shell options.

SYNTAX

 \option [args]

Chapter 3 MySQL SheLL tutoriaL

112

DESCRIPTION

 The given [args] define the operation to be done by this command, the

 following values are accepted

 - -h, --help [<filter>]: print help for the shell options matching

 filter.

 - -l, --list [--show-origin]: list all the shell options.

 - <shell_option>: print value of the shell option.

 - <shell_option> [=] <value> sets the value for the shell option.

 - --persist causes an option to be stored on the configuration file

 - --unset resets an option value to the default value.

Py > \option --help history

 history.autoSave Shell's history autosave.

 history.maxSize Shell's history maximum size

 history.sql.ignorePattern Shell's history ignore list.

Py > \option history.autoSave

false

Py > \option history.maxSize

1000

Py > \option history.sql.ignorePattern

∗IDENTIFIED∗:∗PASSWORD∗

Here, we see an example of listing the options available for the command history

feature using the \option \help command. While this only shows the names of the

options, we can use the \option command to see the value for each specific option.

If you want to see all the options available and their values, use the \option --list

command.

Tip if you set options without the --persist argument, the change is not saved
when the shell is closed. you must use the argument to save the changes so that it
persists (is saved) for later executions.

Chapter 3 MySQL SheLL tutoriaL

113

Recall from a previous section we can have the shell save history automatically, so we

don’t have to do it manually. As we saw in Listing 3-13, we can set the history.autoSave

option to true as shown in the following. Notice here, we simply use an assignment

argument (the equals sign) to set the value and then save (persist) the changes.

Py > \option --persist history.autoSave = true

 Using the shell.option Object

We can also set options in one of the scripting modes by using the shell.option object

and the set() method (to set the value for the current execution of the shell) or the

set_perist() method to save the value permanently. To set an option, we use the name

of the option category and option as a dotted string within quotes (single or double). For

example, the following sets the automatic history save like we saw in the last section.

Py > shell.options.set_persist("history.autoSave", True)

The shell object has several methods you can use with options as shown in the following.

• shell.options.set(<option_name>, <value>): sets the <option_

name> to value for this session, the change is not saved.

• shell.options.set_persist(<option_name>, <value>): sets the

<option_name> to value for this session and saves the change to the

configuration file.

• shell.options.unset(<option_name>): resets the <option_name>

to the default value for this session, the change is not saved to the

configuration file.

• shell.options.unset_persist(<option_name>): resets the

<option_name> to the default value for this session and saves the

change to the configuration file.

Listing 3-14 shows an example of using the shell object along with the

autocompletion feature (initiated by pressing TAB twice) to unset the value changing it

to the default and persisting it. Finally, we see how to return all options to their default

values.

Chapter 3 MySQL SheLL tutoriaL

114

Listing 3-14. Using the shell.option Object

Py > shell.options.<TAB><TAB>

autocomplete.nameCache devapi.dbObjectHandles pager

batchContinueOnError history.autoSave passwordsFromStdin

credentialStore.excludeFilters history.maxSize sandboxDir

credentialStore.helper history.sql.ignorePattern showWarnings

credentialStore.savePasswords interactive useWizards

dba.gtidWaitTimeout logLevel

defaultMode outputFormat

Py > shell.options.set("history.autoSave", True)

Py > print(shell.options["history.autoSave"])

True

Py > shell.options.unset_persist("history.autoSave")

 Using the Configuration File

The options that are changed and persisted are stored in a configuration file in JSON

format. Values are read at startup, and when you use the persist feature, settings are

saved to the configuration file. As a result, you can also change options by adding them

to the configuration file or if the option already exists, you can change them in the file

and restart the shell to have them take effect. The following shows an example of what

the configuration file looks like. All options and values are stored as key, value pairs in

the same JSON document.

C:\Users\cbell\AppData\Roaming\MySQL\mysqlsh>more options.json

{

 "history.autoSave": "true"

}

The location of the configuration file is the user configuration path and the file is

named options.json. On Windows, the file is found at %APPDATA%\MySQL\mysqlsh\

options.json or on Linux, at ~/.mysqlsh/options.json.

The configuration file is created the first time you change an option. While you can

edit this file to make changes to options, you must do so with great care. This is because

the file is considered an internal file and is not intended to be changed by the user.

If you make a mistake and set the wrong option (such as misspelling the name), the

Chapter 3 MySQL SheLL tutoriaL

115

shell may not start and throw an error. Thus, you should take care to set the option first

interactively, then edit the file to change it. While this is still not considered “safe,” it is

possible to change options via editing the file.

Caution Directly editing the options.json file is not recommended.

 Working with Saved Passwords
One of the things that you can configure in the shell is the pluggable password

authentication or, in more practical terms, credentials saved in the secret store. In this

case, we may want to revoke certain passwords because we’ve changed them or perhaps

we want to see which credentials are stored.

We can interact with this feature using one or more of the functions in the shell

object. For example, the following shows how to list the credentials stored. This will

return a list (or, if the variable is missing, print the list returned) of all the credentials

stored. In this case, only one credential is stored. Notice no passwords are printed.

Py > shell.list_credentials()

[

 "root@localhost:3306"

]

The following functions are those that allow you to work with the Pluggable

Password store. You can list the available Secret Store Helpers, as well as list, store, and

retrieve credentials. To use any of these, you must execute them in one of the scripting

modes (Python or JavaScript). However, it is worth noting that due to the difference in

naming conventions, method names differ slightly between the Python and JavaScript

modes. For example, JavaScript names follow a different pattern similar to camelCase

where Python uses underscores in names. We will use Python examples in this book.

• cred_list = list_credentials(): return list of all credentials

stored (no passwords!)

• delete_credential(<URI>): delete a credential for a given URI

• delete_all_credentials(): delete all credentials currently stored

Chapter 3 MySQL SheLL tutoriaL

116

• cred_helpers = list_credential_helpers(): return a list of the

credential helpers

• store_credential(<URI>, [<password>]): store a credential for

a given URI optionally specifying the password (if not provided,

password is prompted)

If you want to replace one of the credentials – say to change the password associated

with it – you can use the shell.store_credential() method supplying the same URI

as shown in the following. In this case, I left off the password parameter so the shell

prompts for the password.

Py > shell.store_credential("root@localhost:3306")

Please provide the password for 'root@localhost:3306': ∗∗∗∗∗∗∗∗∗∗

If we want to flush all credentials, we can use the shell.delete_all_credentials()

method.

 Changing the Prompt
Finally, the shell allows you to change the prompt for the interactive session. You may

want to do this if you want to display a reminder or similar cue such as working with

different databases or servers.

Changing the prompt requires editing a file on the system. This file is called a prompt

theme file and can be specified using the MYSQLSH_PROMPT_THEME environment variable

or saving a theme template file to a file named prompt.json in the ~/.mysqlsh folder on

Linux or the %AppData%\MySQL\mysqlsh directory on Windows.

You can find the sample prompt theme files in the share\mysqlsh\prompt directory

where the shell is installed. For example, in Windows, the files are stored in c:\Program

Files\MySQL\MySQL Shell 8.0. The following shows a list of the prompt theme files.

10/04/2018 02:54 AM 1,245 prompt_16.json

10/04/2018 02:54 AM 2,137 prompt_256.json

10/04/2018 02:54 AM 1,622 prompt_256inv.json

10/04/2018 02:54 AM 2,179 prompt_256pl+aw.json

10/04/2018 02:54 AM 1,921 prompt_256pl.json

10/04/2018 02:54 AM 183 prompt_classic.json

10/04/2018 02:54 AM 2,172 prompt_dbl_256.json

Chapter 3 MySQL SheLL tutoriaL

117

10/04/2018 02:54 AM 2,250 prompt_dbl_256pl+aw.json

10/04/2018 02:54 AM 1,992 prompt_dbl_256pl.json

10/04/2018 02:54 AM 1,205 prompt_nocolor.json

Here, we see several files that are preformatted for a variety of common prompt

customizations. There are ones for different color themes as well as what is displayed in

the problem. For example, the following shows the classic theme:

{

 "symbols" : {

 "separator" : "-",

 "separator2" : "-",

 "ellipsis" : "-"

 },

 "segments": [

 {

 "text": "mysql"

 },

 {

 "text": "%mode%"

 }

]

}

If you want to make your own changes, you can find the format documented

in the README.prompt file located in the application installation under the share\

mysqlsh\prompt directory. You can use a theme to specify a special font, terminal

colors, and more.

However, take care when creating a prompt theme file because if an error is found in

the prompt theme file, an error message is printed and a default prompt theme is used. I

recommend spending some time reading the README.prompt file and study the examples

before building your own prompt theme file. Also, remember that these files may specify

settings that are platform dependent and may not apply universally.

Chapter 3 MySQL SheLL tutoriaL

118

 Summary
The MySQL Shell represents a major leap forward in productivity for MySQL users. The

shell is not only a better MySQL client, it is also a code editor and testing environment. In

this chapter, we have taken a short tour of the shell and its major features including built-

in commands, how to format output, and even how to customize the shell. Once again,

we will apply what we learned thus far as we explore using the shell in a variety of tasks

in the following chapters.

While we haven’t learned all there is to know about the MySQL Shell in this chapter,

we have learned quite a bit about how it works and how to become productive using the

MySQL Shell. If you want to learn all the nuances that make up the MySQL Shell, please

see the online users guide (https://dev.mysql.com/doc/mysql-shell/8.0/en/).

In the next chapter, we will take a guided tour of working with SQL databases.

We will see a brief overview of using the SQL interface, but we will focus on working

with relational databases using the X DevAPI. If you are well acquainted with SQL

databases and using SQL commands, you may want to skim the SQL portions of the

chapter and then work through the examples in Chapter 5 that demonstrate how to

use MySQL Shell with SQL databases including how to work with the new X DevAPI for

SQL databases.

Chapter 3 MySQL SheLL tutoriaL

https://dev.mysql.com/doc/mysql-shell/8.0/en/

119
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_4

CHAPTER 4

Using the Shell with SQL
Databases
Most people who work with MySQL leverage the relational database capabilities using

the Structured Query Language (SQL) interface to interact with their data. As we have

seen, MySQL Shell is a very capable client that you can use to work with your data using

Structured Query Language (SQL) statements. However, MySQL Shell is also a powerful

scripting language editor and execution engine.

In this chapter, we will take a brief look at what SQL databases are and how to work

with them in the shell, including a brief overview of using SQL. However, we won’t spend

a lot of time there since many are familiar with SQL. Whether you are new to MySQL

and SQL in general or not, I suggest you read these sections so that you understand the

access methods we will use later in the chapter.

While we will see some short examples, Chapter 5 includes a more detailed example

that demonstrates how to use MySQL Shell with SQL databases including how to work

with the new X DevAPI for SQL databases.

Let’s begin with a brief overview of MySQL’s SQL interface.

 Revisiting Relational Databases
As you know, MySQL runs as a background process (a service in Windows). You can

also run it as a foreground process if you launch it from the command line.

Like most database systems, MySQL supports SQL. You can use SQL to create

databases and objects (using data definition language [DDL]), write or change data

(using data manipulation language [DML]), and execute various commands for

managing the server.

120

DDL statements are those we use to create the storage mechanisms (the objects

such as tables) in the database – including the database itself. DML statements on the

other hand are those designed to store and retrieve data (rows). There are additional,

utilitarian SQL commands supported by MySQL such as those that display system status,

variables, and similar metadata. Listing 4-1 shows an example of each form (DDL and

DML) as well as a few utility SQL commands.1

Listing 4-1. Example DDL and DML Statements

C:\Users\cbell>mysqlsh --sql --uri root@localhost:3306

...

SQL > CREATE DATABASE test_db;

Query OK, 1 row affected (0.0586 sec)

SQL > USE test_db;

Query OK, 0 rows affected (0.0003 sec)

SQL > CREATE TABLE test_tbl (id int auto_increment, name char(20), primary

key(id));

Query OK, 0 rows affected (0.0356 sec)

SQL > INSERT INTO test_tbl VALUES (NULL, 'one');

Query OK, 1 row affected (0.1117 sec)

SQL > INSERT INTO test_tbl VALUES (NULL, 'two');

Query OK, 1 row affected (0.0078 sec)

SQL > INSERT INTO test_tbl VALUES (NULL, 'three');

Query OK, 1 row affected (0.0109 sec)

SQL > SELECT ∗ FROM test_tbl;
+----+-------+

| id | name |

+----+-------+

| 1 | one |

| 3 | three |

1 Not all SQL commands in the MySQL command list are true, standard SQL commands. Many of
the utility commands are nonstandard SQL commands. Thus, if you work with other database
systems, the commands may seem similar but differ slightly.

Chapter 4 Using the shell with sQl Databases

121

| 4 | one |

| 5 | two |

| 6 | three |

+----+-------+

5 rows in set (0.0011 sec)

SQL > DELETE FROM test_tbl WHERE id = 2;

Query OK, 0 rows affected (0.0005 sec)

SQL > SELECT ∗ FROM test_tbl;
+----+-------+

| id | name |

+----+-------+

| 1 | one |

| 3 | three |

| 4 | one |

| 5 | two |

| 6 | three |

+----+-------+

5 rows in set (0.0005 sec)

SQL > SHOW TABLES;

+-------------------+

| Tables_in_test_db |

+-------------------+

| test_tbl |

+-------------------+

1 row in set (0.0015 sec)

SQL > SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sakila |

Chapter 4 Using the shell with sQl Databases

122

| sys |

| test_db |

| world |

| world_x |

+--------------------+

8 rows in set (0.0009 sec))

SQL > SELECT @@version;

+-----------+

| @@version |

+-----------+

| 8.0.16 |

+-----------+

1 row in set (0.0004 sec)

SQL > DROP DATABASE test_db;

Query OK, 1 row affected (0.2659 sec)

Note You must terminate each sQl command with a semicolon (;) or \G.

This example demonstrates DDL statements in the form of the CREATE DATABASE

and CREATE TABLE statements, DML in the form of the INSERT, DELETE, and SELECT

statements, and a couple of utility statements including a simple administrative

command to retrieve a global server variable (@@version).

Notice the creation of a database and a table to store the data, the addition of several

rows in the table, deleting a row, and finally the retrieval of the data in the table. Notice

how I used capital letters for SQL command keywords. This is a common practice and

helps make the SQL commands easier to read and easier to find user-supplied options or

data, which is in lower case.

A great many commands are available in MySQL. Fortunately, you need master only

a few of the more common ones. The following are the commands you will use most

often. The portions enclosed in <> indicate user-supplied components of the command,

and [...] indicates that additional options are needed.

• CREATE DATABASE <database_name>: Creates a database

• USE <database>: Sets the default database (not an SQL command)

Chapter 4 Using the shell with sQl Databases

123

• CREATE TABLE <table_name> [...]: Creates a table or structure to

store data

• INSERT INTO <table_name> [...]: Adds data to a table

• UPDATE [...]: Changes one or more values for a specific row

• DELETE FROM <table_name> [...]: Removes data from a table

• SELECT [...]: Retrieves data (rows) from the table

• SHOW [...]: Shows a list of the objects, system variables, and more

Although this list is only a short introduction and nothing like a complete syntax

guide, there is an excellent online reference manual that explains every command (and

much more) in detail. You should refer to the online reference manual whenever you

have a question about anything in MySQL. You can find explanation and details for every

SQL command supported by MySQL at https://dev.mysql.com/doc/refman/8.0/en/

sql-syntax.html.

One of the more interesting commands shown allows you to see a list of objects.

For example, you can see the databases with SHOW DATABASES, a list of tables (once

you set the default database with the USE command) with SHOW TABLES, and even the

permissions for users with SHOW GRANTS. I find myself using these commands quite

frequently.

If you are thinking that there is a lot more to MySQL than a few simple commands,

you are correct. Despite its ease of use and fast startup time, MySQL is a full-fledged

relational database management system (RDBMS). There is much more to it than you’ve

seen here. For more information about MySQL, including all the advanced features, see

the online reference manual.

WHAT IS A RELATIONAL DATABASE MANAGEMENT SYSTEM?

an rDbMs is a data storage and retrieval service based on the relational Model of Data as

proposed by e. F. Codd in 1970. these systems are the standard storage mechanism for

structured data. a great deal of research is devoted to refining the essential model proposed

by Codd, as discussed by C. J. Date in the Database relational Model: a retrospective review

and analysis. this evolution of theory and practice is best documented in Date’s The Third
Manifesto.

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/refman/8.0/en/sql-syntax.html
https://dev.mysql.com/doc/refman/8.0/en/sql-syntax.html

124

the relational model is an intuitive concept of a storage repository (database) that can be

easily queried by using a mechanism called a query language to retrieve, update, and insert

data. Many vendors have implemented the relational model because it has a sound systematic

theory, a firm mathematical foundation, and a simple structure. the most commonly used

query mechanism is sQl, which resembles natural language. although sQl is not included in

the relational model, it provides an integral part of the practical application of the relational

model in rDbMss.

Now that you know what MySQL is and have seen a terse example of SQL

commands used for working with data, let’s discover some of the more common

concepts and operations needed to successfully deploy and use MySQL to store and

retrieve your data.

 Working with MySQL Commands and Functions
Learning and mastering a database system requires training, experience, and a good

deal of perseverance. Chief among the knowledge needed to become proficient is how

to use the common SQL commands and concepts. This section completes the primer on

MySQL and SQL by introducing the most common commands and concepts.

Rather than regurgitate the reference manual, this section introduces the

commands and concepts at a high level. If you decide to use any of the commands or

concepts and need more information, please refer to the online reference manual for

additional details, complete command syntax, and additional examples. But first, let’s

clarify some of the terms we use when working with MySQL using traditional relation

databases (SQL).

 Terminology
In MySQL, like other relational database systems, we store data in a fixed manner where

we use databases to store data for a given task, job, application, domain, etc. and we

use tables to store like data (data that has the same format). Inside a table, the data is

represented as rows each having the same format (or schema).

Chapter 4 Using the shell with sQl Databases

125

If you have never worked with a database before, you can loosely associate a

relational database table like a spreadsheet2 where the columns are defined, and each

row contains values for each of the columns. Thus, inserting data or retrieving data

requires forming or viewing data as rows from the table.

 Creating Users and Granting Access
To begin working with data, you need to know about two administrative operations

before working with MySQL: creating user accounts and granting access to databases.

MySQL can perform these with the CREATE USER and GRANT statements. To create a

user, you issue a CREATE USER command followed by one or more GRANT commands.

For example, the following shows the creation of a user named jane and grants the user

access to the database named store_inventory:

CREATE USER 'jane'@'%' IDENTIFIED BY 'secret';

GRANT SELECT, INSERT, UPDATE ON store_inventory.∗ TO 'jane'@'%';

The first command creates the user named jane, but the name also has an @ followed

by another string. This second string is the host name of the machine with which

the user is associated. That is, each user in MySQL has both a user name and a host

name, in the form user@host, to uniquely identify them. That means the user and host

jane@10.0.1.16 and the user and host jane@10.0.1.17 are not the same. However, the %

symbol can be used as a wildcard to associate the user with any host. The IDENTIFIED BY

clause sets the password for the user.

Caution it is always a good idea to create the user accounts for your application
without full access to the MysQl system and reserve full access for administrators.
Furthermore, you should avoid using the wildcard for the host so that you can
restrict users to known machines (ip addresses), subnets, etc. this is so you can
minimize any accidental changes and to prevent exploitation.

2 While wildly inaccurate on several levels, the similarity for novice database users is valid.

Chapter 4 Using the shell with sQl Databases

126

Be careful about using the wildcard % for the host. Although it makes it easier to

create a single user and let the user access the database server from any host, it also

makes it much easier for someone bent on malice to access your server from anywhere

(once they discover the password).

The second command allows access to databases. There are many privileges that

you can give a user. The example shows the most likely set that you would want to give a

user of a database: read (SELECT), add data (INSERT), and change data (UPDATE). See the

online reference manual for more about security and account access privileges.3

The command also specifies a database and objects to which to grant the privilege.

Thus, it is possible to give a user read (SELECT) privileges to some tables and write

(INSERT, UPDATE) privileges to other tables. This example gives the user access to all

objects (tables, views, etc.) in the store_inventory database.

Tip newer versions of MysQl no longer permit you to create a user with a
GRANT statement. You must explicitly create the user first.

 Creating Databases and Tables
The most basic commands you will need to learn and master are the CREATE

DATABASE and CREATE TABLE commands. Recall that database servers such as MySQL

allow you to create any number of databases that you can add tables and store data

in a logical manner.

 Creating a Database

To create a database, use CREATE DATABASE followed by a name for the database. Once

you issue the command, the shell does not “switch” context to that database (like some

other clients). Rather, if you want to set the default database, you must use the USE

<database> command. This is needed whenever you decide to omit using the database

in the name qualifiers in the SQL commands.

3 https://dev.mysql.com/doc/refman/8.0/en/access-control.html

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/refman/8.0/en/access-control.html

127

For example, you can use the SELECT command to select rows from any table in

any database by specifying the database and table in the form of <database>.<table>.

Notice we separate the names with a period. Further, SELECT ∗ FROM db1.table1 will

execute regardless of the default database set. You should get in the habit of always

specifying the database in your commands. The following shows two commands to

create and change the focus of the database:

CREATE DATABASE factory_sensors;

USE factory_sensors;

 Creating a Table

To create a table, use the CREATE TABLE command. This command has many options

allowing you to specify not only the columns and their data types but also additional

options such as indexes, foreign keys, and so on. The following shows how to create a

simple table for storing sensor data for an assembly line.

CREATE TABLE `factory_sensors`.`trailer_assembly` (

 `id` int auto_increment,

 `sensor_name` char(30) NOT NULL,

 `sensor_value` float DEFAULT NULL,

 ̀sensor_event` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `sensor_units` char(15) DEFAULT NULL,

 PRIMARY KEY `sensor_id` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Notice here that I specified the table name (trailer_assembly) and four columns

(sensor_name, sensor_value, sensor_event, and sensor_units). I used several data types.

For sensor_name, I used a character field with a maximum of 30 characters, a floating-

point data type for sensor_value, a timestamp value for sensor_event, and another

character field for sensor_units of 15 characters.

I also added an index with an auto increment column to ensure we can store sensor

values with the same name. That is, we may be sampling the same sensors several times

over a period. An index can also be created using the CREATE INDEX command.

Chapter 4 Using the shell with sQl Databases

128

Note this fictional table was taken from a working concept where sensor data
is placed in a table for a given period (say, a 24-hour period) and then moved to
another system for analysis. thus, the table is not designed to store sensor data for
long periods of time.

Notice the TIMESTAMP column. A column with this data type is of particular use in

sensor network or Internet of Things (IOT) solutions or any time you want to record

the date and time of an event or action. For example, it is often helpful to know when

a sensor value is read. By adding a TIMESTAMP column to the table, you do not need to

calculate, read, or otherwise format a date and time at data collection.

Notice also that I specified that the sensor_name column be defined as a key,

which creates an index. In this case, it is also the primary key. The PRIMARY KEY

phrase tells the server to ensure there exists one and only one row in the table that

matches the value of the column. You can specify several columns to be used in the

primary key by repeating the keyword. Note that all primary key columns must not

permit nulls (NOT NULL).

Note this example is a high-level concept of a typical sensor network in a
factory setting and is representative for tutorial purposes.

If you cannot determine a set of columns that uniquely identify a row (and you

want such a behavior – some favor tables without this restriction, but a good database

administrator (DBA) would not), you can use an artificial data type option for integer

fields called AUTO INCREMENT. When used on a column (must be the first column), the

server automatically increases this value for each row inserted. In this way, it creates

a default primary key. For more information about auto increment columns, see the

online reference manual.

However, best practices suggest using a primary key on a character field is

suboptimal in some situations such as tables with large values for each column or many

unique values. This can make searching and indexing slower. In this case, you could

use an auto increment field to artificially add a primary key that is smaller in size (but

somewhat more cryptic).

Chapter 4 Using the shell with sQl Databases

129

There are far more data types available than those shown in the previous example.

You should review the online reference manual for a complete list of data types. See the

section “Data Types.” If you want to know the layout or “schema” of a table, use the SHOW

CREATE TABLE command as demonstrated in the following.

SQL > SHOW CREATE TABLE factory_sensors.trailer_assembly \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Table: trailer_assembly

Create Table: CREATE TABLE `trailer_assembly` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `sensor_name` char(30) NOT NULL,

 `sensor_value` float DEFAULT NULL,

 ̀sensor_event` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `sensor_units` char(15) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=latin1

1 row in set (0.0009 sec)

Like databases, you can also get a list of all the tables in the database with the SHOW

TABLES command.

 Storing Data
Now that you have a database and tables created, you will want to load or insert data into

the tables. You can do so using the INSERT INTO statement. Here, we specify the table

and the data for the row. The following shows a simple example:

INSERT INTO factory_sensors.trailer_assembly (sensor_name, sensor_value,

sensor_units) VALUES ('paint_vat_temp', 32.815, 'Celsius');

In this example, I am inserting data manually for one of the sensors in the trailer

assembly line. What about the other columns, you wonder? In this case, the other

columns include a timestamp column, which will be filled in by the database server.

All other columns (just the one) will be set to NULL, which means no value is available,

the value is missing, the value is not zero, or the value is empty. For auto increment and

Chapter 4 Using the shell with sQl Databases

130

timestamp columns, NULL triggers their behavior such as setting the value to the next

unique integer or capturing the current date and time. The following shows an example

of inserting this one row in the table.

SQL > SELECT ∗ FROM factory_sensors.trailer_assembly \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
sensor_name: paint_vat_temp

sensor_value: 32.815

sensor_event: 2019-02-01 14:59:35

sensor_units: Celsius

1 row in set (0.0005 sec)

Notice I specified the columns before the data for the row. This is necessary

whenever you want to insert data for fewer columns than what the table contains. More

specifically, leaving the column list off means you must supply data (or NULL) for all

columns in the table. Also, the order of the columns listed can be different from the order

they are defined in the table. Leaving the column list off will result in the ordering of the

column data based on how they appear in the table.

You can also insert several rows using the same command by using a comma-

separated list of the row values, as shown here:

INSERT INTO factory_sensors.trailer_assembly (sensor_name, sensor_value,

sensor_units) VALUES ('tongue_height_variance', 1.52, 'mm'), ('ambient_

temperature', 24.5, 'Celsius'), ('gross_weight', 1241.01, 'pounds');

Here I’ve inserted several rows with the same command. Note that this is just a

shorthand mechanism and, except for automatic commits, no different than issuing

separate commands.

 Updating Data
There are times when you want to change or update data. You may have a case where

you need to change the value of one or more columns, replace the values for several

rows, or correct formatting or even the scale of numerical data. To update data, we use

the UPDATE command.

Chapter 4 Using the shell with sQl Databases

131

You can update a column, update a set of columns, perform calculations one or more

columns, and more. The example used in this section – a factory sensor network – isn’t

likely to require changing data (IOT is all about storing data as it was recorded storing it

only for as long as it is relevant), but sometimes in the case of mistakes in sensor- reading

code or similar data entry problems, it may be necessary.

What may be more likely is you or your users will want to rename an object in your

database. For example, suppose we determine the plant on the deck is not actually a fern

but was an exotic flowering plant. In this case, we want to change all rows that have a plant

name of gross_weight to trailer_weight. The following command performs the change. Notice

the key operator here is the SET operator. This tells the database to assign a new value to the

column(s) specified. You can list more than one set operation in the command.

UPDATE factory_sensors.trailer_assembly SET sensor_name = 'trailer_weight'

WHERE sensor_name = 'gross_weight';

Notice also I used a WHERE clause here to restrict the UPDATE to a set of rows. This is

the same WHERE clause as you saw in the SELECT statement, and it does the same thing;

it allows you to specify conditions that restrict the rows affected. If you do not use the

WHERE clause, the updates will apply to all rows.

 Deleting Data
Sometimes you end up with data in a table that needs to be removed. Maybe you used

test data and want to get rid of the fake rows, or perhaps you want to compact or purge

your tables or want to eliminate rows that no longer apply. To remove rows, use the

DELETE FROM command.

Let’s look at an example. Suppose you have a plant-monitoring solution under

development, and you’ve discovered that one of your sensors or sensor nodes is reading

values that are too low, because of a coding, wiring, or calibration error. In this case, we

want to remove all rows with a sensor value less than 0.001 (presumably spurious data).

The following command does this:

DELETE FROM factory_sensors.trailer_assembly WHERE sensor_value < 0.001;

You should take care when forming WHERE clauses. I like to use the WHERE clause

with a SELECT to make sure I am acting on the rows I want. Using the SELECT to test

the potential affected rows in this manner makes it much safer than simply issuing

Chapter 4 Using the shell with sQl Databases

132

the command blindly. For example, I would issue the following first to check that

I am about to delete the rows I want and only those rows. Notice it is the same

WHERE clause.

SELECT ∗ FROM factory_sensors.trailer_assembly WHERE sensor_value < 0.001;

Caution issuing an UPDATE or DELETE command without a WHERE clause will
affect all rows in the table!

 Selecting Data (Results)
The most used basic command you need to know is the command to return the data

from the table (also called a result set or rows). To do this, you use the SELECT statement.

This SQL statement is the workhorse for a database system. All queries for data will

be executed with this command. As such, we will spend a bit more time looking at the

various clauses (parts) that can be used, starting with the column list.

The SELECT statement allows you to specify which columns you want to choose

from the data. The list appears as the first part of the statement. The second part is

the FROM clause, which specifies the table(s) you want to retrieve rows from. The FROM

clause can also permit you to combine data from two or more tables. This is called a

join and uses the JOIN operator to link the tables. You will see a simple example of a

join in a later section.

The order that you specify the columns determines the order shown in the result set.

If you want all the columns, use an asterisk (∗) instead. Listing 4-2 demonstrates three

statements that generate the same result sets. That is, the same rows will be displayed in

the output of each. In fact, I am using a table with only four rows for simplicity.

Listing 4-2. Example SELECT Statements

SQL > SELECT sensor_name FROM factory_sensors.trailer_assembly;

+------------------------+

| sensor_name |

+------------------------+

| ambient_temperature |

| paint_vat_temp |

Chapter 4 Using the shell with sQl Databases

133

| tongue_height_variance |

| trailer_weight |

+------------------------+

4 rows in set (0.0006 sec)

SQL > SELECT sensor_name, sensor_value, sensor_event, sensor_units FROM

factory_sensors.trailer_assembly \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 sensor_name: ambient_temperature

sensor_value: 24.5

sensor_event: 2019-02-01 15:04:08

sensor_units: Celsius

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 sensor_name: paint_vat_temp

sensor_value: 32.815

sensor_event: 2019-02-01 14:59:35

sensor_units: Celsius

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 3. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 sensor_name: tongue_height_variance

sensor_value: 1.52

sensor_event: 2019-02-01 15:04:08

sensor_units: mm

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 4. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 sensor_name: trailer_weight

sensor_value: 1241.01

sensor_event: 2019-02-01 15:06:17

sensor_units: pounds

4 rows in set (0.0004 sec)

SQL > SELECT ∗ FROM factory_sensors.trailer_assembly \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 sensor_name: ambient_temperature

sensor_value: 24.5

sensor_event: 2019-02-01 15:04:08

sensor_units: Celsius

Chapter 4 Using the shell with sQl Databases

134

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 sensor_name: paint_vat_temp

sensor_value: 32.815

sensor_event: 2019-02-01 14:59:35

sensor_units: Celsius

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 3. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 sensor_name: tongue_height_variance

sensor_value: 1.52

sensor_event: 2019-02-01 15:04:08

sensor_units: mm

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 4. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 sensor_name: trailer_weight

sensor_value: 1241.01

sensor_event: 2019-02-01 15:06:17

sensor_units: pounds

4 rows in set (0.0005 sec)

SQL > SELECT sensor_value, sensor_name, sensor_units FROM factory_sensors.

trailer_assembly;

+--------------+------------------------+--------------+

| sensor_value | sensor_name | sensor_units |

+--------------+------------------------+--------------+

| 24.5 | ambient_temperature | Celsius |

| 32.815 | paint_vat_temp | Celsius |

| 1.52 | tongue_height_variance | mm |

| 1242.00 | trailer_weight | pounds |

+--------------+------------------------+--------------+

4 rows in set (0.0005 sec)

Notice that the first statement lists the sensor names in the table. The next two

statements result in the same rows as well as the same columns in the same order, but

the third statement, while it generates the same rows minus the sensor event, displays

the columns in a different order.

Chapter 4 Using the shell with sQl Databases

135

You can also use functions in the column list to perform calculations and similar

operations. One special example is using the COUNT() function to determine the number

of rows in the result set, as shown here. Notice we pass in the wildcard (∗) to count

all rows. See the online reference manual for more examples of functions supplied by

MySQL.4

SELECT COUNT(∗) FROM factory_sensors.trailer_assembly;

The next clause in the SELECT statement is the WHERE clause. Like we saw with

updating and deleting rows, this is where you specify the conditions you want to use

to restrict the number of rows in the result set. That is, only those rows that match the

conditions. The conditions are based on the columns and can be quite complex. That

is, you can specify conditions based on calculations, results from a join, and more. But

most conditions will be simple equalities or inequalities on one or more columns in

order to answer a question. For example, suppose you wanted to see the plants where

the sensor value read is less than 10.00. In this case, we issue the following query and

receive the results. Notice I specified only two columns: the sensor name and the value

read from sensor.

SQL > SELECT sensor_name, sensor_value FROM factory_sensors.trailer_

assembly WHERE sensor_value < 10.00;

+------------------------+--------------+

| sensor_name | sensor_value |

+------------------------+--------------+

| tongue_height_variance | 1.52 |

+------------------------+--------------+

1 row in set (0.0008 sec)

There are additional clauses you can use including the GROUP BY clause, which

is used for grouping rows for aggregation or counting, and the ORDER BY clause,

which is used to order the result set. Let’s take a quick look at each starting with

aggregation.

4 https://dev.mysql.com/doc/refman/8.0/en/functions.html

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/refman/8.0/en/functions.html

136

Suppose you wanted to average the sensor values read in the table for each sensor.

In this case, we have a table that contains sensor readings over time for a variety of

sensors. While the example contains only four rows (and thus may not be statistically

informative), the example demonstrates the concept of aggregation quite plainly, as

shown in Listing 4-3. Notice what we receive is simply the average of the four sensor

values read.

Listing 4-3. GROUP BY Example

SQL > SELECT sensor_name, sensor_value FROM factory_sensors.trailer_

assembly WHERE sensor_name = 'gross_weight';

+--------------+--------------+

| sensor_name | sensor_value |

+--------------+--------------+

| gross_weight | 1250 |

| gross_weight | 1235 |

| gross_weight | 1266 |

| gross_weight | 1242 |

+--------------+--------------+

4 rows in set (0.0040 sec)

SQL > SELECT sensor_name, AVG(sensor_value) as avg_value FROM factory_sensors.

trailer_assembly WHERE sensor_name = 'gross_weight' GROUP BY sensor_name;

+--------------+-----------+

| sensor_name | avg_value |

+--------------+-----------+

| gross_weight | 1248.25 |

+--------------+-----------+

1 row in set (0.0006 sec)

SQL > SELECT sensor_name, sensor_value FROM factory_sensors.trailer_

assembly WHERE sensor_name = 'gross_weight' ORDER BY sensor_value ASC;

+--------------+--------------+

| sensor_name | sensor_value |

+--------------+--------------+

| gross_weight | 1235 |

| gross_weight | 1242 |

Chapter 4 Using the shell with sQl Databases

137

| gross_weight | 1250 |

| gross_weight | 1266 |

+--------------+--------------+

4 rows in set (0.0007 sec)

SQL > SELECT sensor_name, sensor_value FROM factory_sensors.trailer_

assembly WHERE sensor_name = 'gross_weight' ORDER BY sensor_value DESC;

+--------------+--------------+

| sensor_name | sensor_value |

+--------------+--------------+

| gross_weight | 1266 |

| gross_weight | 1250 |

| gross_weight | 1242 |

| gross_weight | 1235 |

+--------------+--------------+

4 rows in set (0.0009 sec)

Notice in the second example, I specified the average function, AVG(), in the column

list and passed in the name of the column I wanted to average. There are many such

functions available in MySQL to perform some powerful calculations. Clearly, this is

another example of how much power exists in the database server that would require

many more resources on a client computer (not to mention for large data sets, it means

transporting the data to the client before the operation).

Notice also that I renamed the column with the average with the AS keyword. You

can use this to rename any column specified, which changes the name in the result set,

as you can see in the listing.

The last two examples show how we can see the results of our result set ordered by

sensor value. We order the rows by sensor value in ascending and descending order using

the ORDER BY clause. If you combine this with the LIMIT clause, you can see the largest

(max) and smallest (min) values as shown in the following. But it is more preferred to use

the MIN() and MAX() functions – see https://dev.mysql.com/doc/refman/8.0/en/func-

op-summary-ref.html for a complete list of functions available in MySQL.

SQL > SELECT sensor_value AS min FROM factory_sensors.trailer_assembly

WHERE sensor_name = 'gross_weight' ORDER BY sensor_value ASC LIMIT 1;

+------+

| min |

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/refman/8.0/en/func-op-summary-ref.html
https://dev.mysql.com/doc/refman/8.0/en/func-op-summary-ref.html

138

+------+

| 1235 |

+------+

1 row in set (0.0008 sec)

SQL > SELECT sensor_value as max FROM factory_sensors.trailer_assembly

WHERE sensor_name = 'gross_weight' ORDER BY sensor_value DESC LIMIT 1;

+------+

| max |

+------+

| 1266 |

+------+

1 row in set (0.0005 sec)

Another use of the GROUP BY clause is counting. In this case, we replaced AVG() with

COUNT() and received the number of rows matching the WHERE clause. More specifically,

we want to know how many sensor values were stored for each sensor.

SQL > SELECT sensor_name, COUNT(sensor_value) as num_values FROM factory_

sensors.trailer_assembly GROUP BY sensor_name;

+------------------------+------------+

| sensor_name | num_values |

+------------------------+------------+

| paint_vat_temp | 1 |

| tongue_height_variance | 1 |

| ambient_temperature | 1 |

| trailer_weight | 1 |

| gross_weight | 4 |

+------------------------+------------+

5 rows in set (0.0008 sec)

As I mentioned, there is a lot more to the SELECT statement than shown here, but

what we have seen here will get you very far, especially when working with data typical of

most small to medium-sized solutions.

Chapter 4 Using the shell with sQl Databases

139

 Creating Indexes
Tables are created without the use of any ordering. That is, tables are unordered. While it is

true MySQL will return the data in the same order each time, there is no implied (or reliable)

ordering unless you create an index.5 The ordering I am referring to here is not like you think

when sorting (that’s possible with the ORDER BY clause in the SELECT statement).

Rather, indexes are mappings that the server uses to read the data when queries are

executed. For example, if you had no index on a table and wanted to select all rows with

a value greater than a certain value for a column, the server will have to read all rows to

find all the matches. However, if we added an index on that column, the server would

have to read only those rows that match the criteria.

To create an index, you can either specify the index in the CREATE TABLE statement

or issue a CREATE INDEX command. We can use this command to add an index on the

sensor_name column. Listing 4-4 shows the effects on the table structure (schema)

before and after the index is added. Recall, we added the index on the primary key when

we created the table earlier.

Listing 4-4. Adding Indexes

SQL > SHOW CREATE TABLE factory_sensors.trailer_assembly \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Table: trailer_assembly

Create Table: CREATE TABLE `trailer_assembly` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `sensor_name` char(30) NOT NULL,

 `sensor_value` float DEFAULT NULL,

 `sensor_event` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `sensor_units` char(15) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=latin1

1 row in set (0.0005 sec)

5 So, you should never expect the results to be in the same order without using an index! It is
possible to demonstrate how the same data entered on one system can differ when entered on
another, like system. There are many factors involved including character set, operating system,
etc. that can cause the order to differ. If order is a concern, use an index.

Chapter 4 Using the shell with sQl Databases

140

SQL > CREATE INDEX sensor_name ON factory_sensors.trailer_assembly

(sensor_name);

Query OK, 0 rows affected (0.2367 sec)

Records: 0 Duplicates: 0 Warnings: 0

SQL > SHOW CREATE TABLE factory_sensors.trailer_assembly \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Table: trailer_assembly

Create Table: CREATE TABLE `trailer_assembly` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `sensor_name` char(30) NOT NULL,

 `sensor_value` float DEFAULT NULL,

 ̀sensor_event` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `sensor_units` char(15) DEFAULT NULL,

 PRIMARY KEY (`id`),

 KEY `sensor_name` (`sensor_name`)

) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=latin1

1 row in set (0.0009 sec)

Indexes created like this do not affect the uniqueness of the rows in the table, in

other words, making sure there exists one and only one row that can be accessed by a

specific value of a specific column (or columns). What I am referring to is the concept

of a primary key (or primary index), which is a special option used in the creation of the

table as described earlier.

You can remove indexes with the DROP INDEX command as shown here.

DROP INDEX sensor_name ON factory_sensors.trailer_assembly;

 Creating Views
Views are logical mappings of results of one or more tables. They can be referenced as

if they were tables in queries, making them a powerful tool for creating subsets of data

to work with. You create a view with CREATE VIEW and give it a name like a table. The

following shows a simple example where we create a test view to read values from a

table. In this case, we limit the size of the view (number of rows), but you could use a

Chapter 4 Using the shell with sQl Databases

141

wide variety of conditions for your views, including combining data from different tables.

Thus, views can be used in queries just like tables. They’re a handy way of working with a

subset of the data (when constructed correctly).

SQL > CREATE VIEW list_weights AS SELECT ∗ FROM factory_sensors.trailer_
assembly WHERE sensor_units = 'pounds' LIMIT 3;

Query OK, 0 rows affected (0.0525 sec)

SQL > SELECT ∗ FROM factory_sensors.list_weights;
+----+----------------+--------------+---------------------+--------------+

| id | sensor_name | sensor_value | sensor_event | sensor_units |

+----+----------------+--------------+---------------------+--------------+

| 4 | trailer_weight | 1241.01 | 2019-02-01 15:40:35 | pounds |

| 5 | gross_weight | 1250 | 2019-02-01 15:40:35 | pounds |

| 6 | gross_weight | 1235 | 2019-02-01 15:40:35 | pounds |

+----+----------------+--------------+---------------------+--------------+

3 rows in set (0.0047 sec)

Views are not normally encountered in small or medium-sized database solutions,

but I include them to make you aware of them in case you decide to do additional

analysis and want to organize the data into smaller groups for easier reading.

 Simple Joins
One of the most powerful concepts of database systems is the ability to make

relationships (hence the name relational) among the data. That is, data in one table can

reference data in another (or several tables). The most simplistic form of this is called

a master-detail relationship where a row in one table references or is related to one or

more rows in another.

A common (and classic) example of a master-detail relationship is from an order-

tracking system where we have one table containing the data for an order and another

table containing the line items for the order. Thus, we store the order information such

as customer number and shipping information once and combine or “join” the tables

when we retrieve the order proper.

Chapter 4 Using the shell with sQl Databases

142

Let’s look at an example from the sample database named world_x. You can find

this database on the MySQL web site (http://dev.mysql.com/doc/index-other.html).

Feel free to download it and any other sample database. They all demonstrate various

designs of database systems. You will also find it handy to practice querying the data as it

contains more than a few, simple rows.

Note if you want to run the following examples, you need to install the world_x
sample database as described in Chapter 3.

Listing 4-5 shows an example of a simple join. There is a lot going on here, so take

a moment to examine the parts of the SELECT statement, especially how I specified the

JOIN clause. You can ignore the LIMIT option because that simply limits the number of

rows in the result set.

Listing 4-5. Simple JOIN Example

SQL > SELECT Name, Code, Language FROM world_x.Country JOIN world_x.

CountryLanguage ON Country.Code = CountryLanguage.CountryCode LIMIT 10;

+-------------+------+------------+

| Name | Code | Language |

+-------------+------+------------+

| Aruba | ABW | Dutch |

| Aruba | ABW | English |

| Aruba | ABW | Papiamento |

| Aruba | ABW | Spanish |

| Afghanistan | AFG | Balochi |

| Afghanistan | AFG | Dari |

| Afghanistan | AFG | Pashto |

| Afghanistan | AFG | Turkmenian |

| Afghanistan | AFG | Uzbek |

| Angola | AGO | Ambo |

+-------------+------+------------+

10 rows in set (0.0165 sec)

Chapter 4 Using the shell with sQl Databases

http://dev.mysql.com/doc/index-other.html

143

Caution if the file system for your system supports case-sensitive names,
be sure to use naming consistently. For example, world_x and World_X are
two different names on some platforms. see https://dev.mysql.com/
doc/refman/8.0/en/identifier-case-sensitivity.html for more
information about case-sensitive identifiers.

Here I used a JOIN clause that takes two tables specified such that the first table is

joined to the second table using a specific column and its values (the ON specifies the

match). What the database server does is read each row from the tables and returns only

those rows where the value in the columns specified a match. Any rows in one table that

are not in the other are not returned.

Notice also that I included only a few columns. In this case, I specified the

country code and continent from the Country table and the language column from

the CountryLanguage table. If the column names were not unique (the same column

appears in each table), I would have to specify them by table name such as Country.

Name. In fact, it is considered good practice to always qualify the columns in

this manner.

There is one interesting anomaly in this example that I feel important to point out. In

fact, some would consider it a design flaw. Notice in the JOIN clause I specified the table

and column for each table. This is normal and correct but notice the column name does

not match in both tables. While this really doesn’t matter and creates only a bit of extra

typing, some DBAs would consider this erroneous and would have a desire to make the

common column name the same in both tables.

Another use for a join is to retrieve common, archival, or lookup data. For

example, suppose you had a table that stored details about things that do not change

(or rarely change) such as cities associated with ZIP codes or names associated with

identification numbers (e.g., social security number (SSN)). You could store this

information in a separate table and join the data on a common column (and values)

whenever you needed. In this case, that common column can be used as a foreign

key, which is another advanced concept.

Foreign keys are used to maintain data integrity (i.e., if you have data in one table

that relates to another table, but the relationship needs to be consistent). For example, if

you wanted to make sure when you delete the master row that all the detail rows are also

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/refman/8.0/en/identifier-case-sensitivity.html
https://dev.mysql.com/doc/refman/8.0/en/identifier-case-sensitivity.html

144

deleted, you could declare a foreign key in the master table to a column (or columns)

to the detail table. See the online reference manual for more information about foreign

keys.6

This discussion on joins touches only the very basics. Indeed, joins are arguably one

of the most difficult and often confused areas in database systems. If you find you want

to use joins to combine several tables or extend data so that data is provided from several

tables (outer joins), you should spend some time with an in-depth study of database

concepts such as Clare Churcher’s book Beginning Database Design (Apress, 2012).

 Additional Advanced Concepts
There are more concepts and commands available in MySQL, but two that may be of

interest are PROCEDURE and FUNCTION, sometimes called routines. I introduce these

concepts here so that if you want to explore them, you understand how they are used at a

high level.

Suppose you need to run several commands to change data. That is, you need

to do some complex changes based on calculations. For these types of operations,

MySQL provides the concept of a stored procedure. The stored procedure allows

you to execute a compound statement (a series of SQL commands) whenever the

procedure is called. Stored procedures are sometimes considered an advanced

technique used mainly for periodic maintenance, but they can be handy in even the

more simplistic situations.

For example, suppose you want to develop your solution, but since you are

developing it, you need to periodically start over and want to clear out all the data first. If

you had only one table, a stored procedure would not help much, but suppose you have

several tables spread over several databases (not unusual for larger solutions). In this

case, a stored procedure may be helpful.

When entering commands with compound statements in the shell, you need to

change the delimiter (the semicolon) temporarily so that the semicolon at the end of

the line does not terminate the command entry. For example, use DELIMITER // before

writing the command with a compound statement, use // to end the command, and

change the delimiter back with DELIMITER ;.

6 https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html

145

Suppose you want to execute a compound statement and return a result – you

want to use it as a function. You can use functions to fill in data by performing

calculations, data transformation, or simple translations. Functions therefore can be

used to provide values to populate column values, provide aggregation, provide date

operations, and more.

You have already seen a couple of functions (COUNT, AVG). These are considered

built-in functions, and there is an entire section devoted to them in the online reference

manual. However, you can also create your own functions. For example, you may want

to create a function to perform some data normalization on your data. More specifically,

suppose you have a sensor that produces a value in a specific range, but depending on

that value and another value from a different sensor or lookup table, you want to add,

subtract, average, and so on the value to correct it. You could write a function to do this

and call it in a trigger to populate the value for a calculation column.

Since stored procedures can be quite complicated, if you decide to use them, read

the “CREATE PROCEDURE and CREATE FUNCTION Syntax” section of the online

reference manual before trying to develop your own.7 There is more to creating stored

procedures than described in this section.

WHAT ABOUT CHANGING OBJECTS?

You may be wondering what you do when you need to modify a table, procedure, trigger,

and so on. rest easy, you do not have to start over from scratch! MysQl provides an ALTER

command for each object. that is, there is an ALTER TABLE, ALTER PROCEDURE, and so

on. see the online reference manual section entitled “Data Definition Statements” for more

information about each ALTER command.8

Now that we’ve had a high-level view of working with SQL commands and MySQL to

store and retrieve relational data, let’s see how we can use the X DevAPI to write Python

code that works with the same relational data. We’re going to write some Python finally!

7 https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
8 https://dev.mysql.com/doc/refman/8.0/en/sql-syntax-data-definition.html

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/sql-syntax-data-definition.html

146

 Managing Your Database with Python
Now that we’ve had a good introduction to SQL and MySQL commands, we can turn our

attention to an exciting new method of working with SQL databases in MySQL – writing

Python scripts to merge code and data using the X DevAPI.

Rather than embark on an arduous, perhaps tedious tour of all that the X DevAPI has

to offer, we will explore the API beginning with a view of working with relational data. In

this section, we will discover just enough about the X DevAPI to be able to write Python

code to work with relational database objects (databases and tables). We leave the more

complex look at the X DevAPI’s support of JSON documents for Chapter 6.

However, we still need to know what the X DevAPI is and its major features. As

mentioned, we will explore a few of these in this chapter and the next from the viewpoint

of working with relational data. There is far more to the API than that but starting from

a known (or at least familiar) ground will help those new to incorporating database

support in applications. After all, the X DevAPI is all about making it easy to access your

data from code!

The first thing you should know is the shell has built-in support for several library

objects that we will need. For example, the mysqlx module listed earlier is one of the

built-in modules in the shell. We refer to the built-in modules as global variables. The

shell also includes the following libraries as built-in modules (sometimes called libraries

or objects) as global variables.

• session: Represents the global session if one has been established.

• db: Represents a schema if one has been defined, for example, by a

URI type string.

• dba: Represents the AdminAPI, a component of InnoDB cluster that

enables you to administer clusters of server instances. See Chapter 10

for more information about InnoDB Cluster.

• mysqlx: Provides operations on session objects resulting from

connection to a MySQL server.

• shell: Provides general purpose functions, for example, to configure

MySQL Shell.

• util: Provides utility functions, for example, to check server instances

before an upgrade.

Chapter 4 Using the shell with sQl Databases

147

The key concepts to understand when learning to use the X DevAPI for relational

data include the following. These are represented (realized) as objects in your Python

code. That is, we will be using one or more methods to create the object, then use one or

more of its methods to execute our code to work with the data.

• CRUD: Create, Read, Update, and Delete – the basic operations on

data

• Database/Schema: A container of one or more database-level objects

such as tables, views, triggers, etc.

• Result: A set of zero or more rows from a read operation (SELECT) or

other operations resulting in values returned from the server

• Session: A connection to a MySQL server including attributes

governing the connection

• Table: A container for data formatted with a specific layout for storing

data in predefined columns with data types

Most of these concepts should be familiar or at least familiar enough that learning

to work with them won’t require a lot of effort. For example, as SQL database users,

we understand the basic concepts of databases (schemas), tables, and result sets. The

objects that represent these concepts are nothing more than models of their behavior,

which we can use to invoke as methods.

However, the three newest concepts are likely the mysqlx module, sessions, and

CRUD operations. Let’s look at each of those.

 MySQL X Module
The mysqlx module is the entry point for writing your applications with the X

DevAPI. You can think of this module as a library that contains several objects that we

can use in our Python scripts. The most notable objects we will need are those classes

and methods available for connecting to and working with relational data in MySQL, but

there is more available for use with JSON documents.

The key concept to understand is that the objects are generated from methods called

on other objects. More specifically, when we call method x() on object a, it returns and

instance of object b. For example, we call the method and assign the returning object to

Chapter 4 Using the shell with sQl Databases

148

another variable like this b = a.x(). Once you understand this, you can check the return

type of a method and then reference the object type returned to find out what methods it

provides.

When working with the mysqlx module, it all begins with the connection that

returns a Session object9 – the same returned from the get_session() method. From

there, we can call the methods on the session, and they return different objects. Let’s

see what classes are available in the mysqlx module. Table 4-1 shows the classes

available in the module.

9 An object in this case is an executable instance of a class.

Table 4-1. Classes in the mysqlx Module

Class Description

BaseResult base class for the different types of results returned by the server

Collection a Collection is a container that may be used to store Documents in a

MysQl database

CollectionAdd handler for document addition on a Collection

CollectionFind handler for document selection on a Collection

CollectionModify Operation to update documents on a Collection

CollectionRemove Operation to delete documents on a Collection

DocResult allows traversing the DbDoc objects returned by a Collection.find

operation

LockContention Constants to represent lock contention types

Result allows retrieving information about nonquery operations performed on

the database

RowResult allows traversing the row objects returned by a table.select operation

Schema represents a schema as retrieved from a session created using the X

protocol

Session enables interaction with a MysQl server using the X protocol

SqlExecute handler for execution sQl statements, supports parameter binding
(continued)

Chapter 4 Using the shell with sQl Databases

149

Class Description

SqlResult allows browsing through the result information after performing an

operation on the database done through session.sql

Table represents a table on a schema, retrieved with a session created using

mysqlx module

TableDelete Operation to delete data from a table

TableInsert handler for insert operations on tables

TableSelect handler for record selection on a table

TableUpdate handler for record update operations on a table

Type Constants to represent data types on Column objects

Table 4-1. (continued)

As you can see, there are several classes that are provided by the mysqlx module.

Don’t worry if this seems a bit overwhelming. We won’t need all of these for working

with relational data; most are designed for use with JSON documents (also called the

document store). However, we will need to use the Session class.

Note the tables in this book are referencing the python X Devapi as
implemented in/for MysQl shell as documented in the online Doxygen documents
(https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/). the X
Devapi for other languages may differ slightly in organization as well as naming
schemes for the classes and methods.

We have already discovered sessions in Chapter 3. Recall, we interacted with sessions

in the shell using the \connect shell command, which allows you to make a connection

in the shell interactive session. Using sessions in Python is a little different. Let’s look at

the Session class next.

 Session Class

The Session class is the major class we will use when writing Python applications that

interact with data. We use this module to pass connection information to the server in

the form of a connection string or a language-specific construct (a dictionary in Python)

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/

150

to pass the connection parameters either as a URI or a connection dictionary as the

parameter (not both). The most commonly used method to get a session object is shown

in the following.

get_session(<URI or connection dictionary>)

The following shows examples of getting a session object instance using a

dictionary of connection options and getting a session object instance using a

connection string (URI).

import mysqlx

mysqlx_session1 = mysqlx.get_session({'host': 'localhost', 'port': 33060,

'user': 'root', 'password': 'secret'})

mysqlx_session2 = mysqlx.get_session('root:secret@localhost:33060')

The resulting variable will point to an object instance should the connection

succeed. If it fails, you could get an error or an uninitialized connection as the result.

We’ll see how to deal with this in the next chapter.

Once we have a session, we can begin working with our data by getting a Schema

object.

 Schema Class

The X DevAPI uses the term “schema” to refer to a set of collections, which are a

collection of documents. However, when working with relational data, we use “database”

to refer to a collection of tables and similar objects. One may be tempted to conclude

“schema” is synonymous with “database,” and for older versions of MySQL, that is true.

However, when working with the document store and the X DevAPI, you should use

“schema” and when you refer to relational data, you should use “database.”

SCHEMA OR DATABASE: DOES IT MATTER?

since MysQl 5.0.2, the two terms have been synonyms via the CREATE DATABASE and

CREATE SCHEMA sQl commands. however, other database systems make a distinction. that

is, some state a schema is a collection of tables and a database is a collection of schemas.

Others state a schema is what defines the structure of data. if you use other database

systems, be sure to check the definitions so that you use the terms correctly.

Chapter 4 Using the shell with sQl Databases

151

When starting work with data, the first thing you will need to do is either select

(get) an existing schema, delete an existing schema, or create a new one. You may also

want to list the schemas on the server. The Session class provides several methods

for performing these operations, all of which return a Schema object. Table 4-2 lists the

methods, parameters, and return values for the methods concerning schemas.

Table 4-2. Session Class – Schema Methods

Method Returns Description

create_schema

(str name)

schema Creates a schema on the database and returns the

corresponding object

get_schema

(str name)

schema retrieves a schema object from the current session

through its name

get_default_

schema()

schema retrieves the schema configured as default for the session

get_current_

schema()

schema retrieves the active schema on the session

set_current_

schema(str name)

schema sets the current schema for this session and returns the

schema object for it

get_schemas() list retrieves the schemas available on the session

drop_schema

(str name)

none Drops the schema with the specified name

Let us now look at the transactional methods for performing ACID compliant

transactions.

 Transaction Methods

Transactions provide a mechanism that permits a set of operations to execute as a single

atomic operation. For example, if a database were built for a banking institution, the

macro operations of transferring money from one account to another would preferably

be executed completely (money removed from one account and placed in another)

without interruption.

Chapter 4 Using the shell with sQl Databases

152

Transactions permit these operations to be encased in an atomic operation that

will back out any changes should an error occur before all operations are complete,

thus avoiding data being removed from one table and never making it to the next table.

A sample set of operations in the form of SQL statements encased in transactional

commands is:

START TRANSACTION;

UPDATE SavingsAccount SET Balance = Balance – 100

WHERE AccountNum = 123;

UPDATE CheckingAccount SET Balance = Balance + 100

WHERE AccountNum = 345;

COMMIT;

MySQL’s InnoDB storage engine (the default storage engine) supports ACID

transactions that ensure data integrity with the ability to only commit (save) the resulting

changes if all operations succeed or rollback (undo) the changes if any one of the

operations fails.

The Session classes implement methods for transaction processing that mirror the

SQL commands shown earlier. Table 4-3 lists the transaction methods.

Table 4-3. Transaction Methods

Method Returns Description

start_transaction() none starts a transaction context on the server

commit() none Commits all the operations executed after a

call to starttransaction()

rollback() none Discards all the operations executed after a

call to starttransaction()

set_savepoint(str name="") str Creates or replaces a transaction savepoint

with the given name

release_savepoint(str name) none removes a savepoint defined on a transaction

rollback_to(str name) none rolls back the transaction to the named

savepoint without terminating the transaction

Chapter 4 Using the shell with sQl Databases

153

Notice the last three methods allow you to create a named transaction savepoint,

which is an advanced form of transaction processing. See the server online reference

manual for more information about savepoints and transactions.10

Now, let’s look at the methods that concern the connection to the server.

 Connection Methods

There are two methods for the underlining connection. One to check to see if the

connection is open and another to close the connection. Table 4-4 shows the remaining

utility methods available in the Session class.

Table 4-4. Connection Methods

Method Returns Description

close() none Closes the session

is_open() bool returns true if session is

known to be open

Table 4-5. Miscellaneous Methods

Method Returns Description

quote_name(str id) str escapes the identifier

get_uri() str returns the Uri for the session

set_fetch_warnings

(bool enable)

none enables or disables warning generation

sql(str sql) sqlstatement Creates a sqlstatement object to allow running the

received sQl statement on the target MysQl server

 Miscellaneous Methods

There are also several utility methods in the Session class. Table 4-5 lists the additional

functions. See the X DevAPI online reference for more information about these methods.

10 https://dev.mysql.com/doc/refman/8.0/en/savepoint.html

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/refman/8.0/en/savepoint.html

154

Notice the sql() method. We can use this method to issue SQL statements, but

in general, we don’t need to when working with data because there is a Table object.

We will examine that class in more detail once we look at what CRUD operations are

available for working with relational data.

 CRUD Operations (Relational Data)
The X DevAPI implements a create, read, update, and delete (CRUD) model for working

with the objects that are contained in a schema. A schema can contain any number of

collections, documents, tables, views, and other relational data objects (such as triggers).

In this section, we see an overview of the schema and tables classes. The CRUD model is

implemented for all objects in the schema that can contain data for both document store

and relational data.

As we will see in Chapter 6, the document store data CRUD operations use the

verbs add, find, modify, and remove, whereas relational data uses terms that match

the equivalent SQL command (insert, select, update, and delete). Table 4-6 provides

a quick look at how the methods are named as well as a brief description of each.

Note that we use the Collection class for document store data and the Table class

for relational data.

Table 4-6. CRUD Operations for Document Store and Relational Data

CRUD operation Description Document store Relational data

Create add a new item/object collection.add() table.insert()

read retrieve/search for data collection.find() table.select()

Update Modify data collection.modify() table.update()

Delete remove item/object collection.remove() table.delete()

We will see the methods specific to each class that we will need for working with

relational data (Schema and Table) in the following sections. Let’s begin with a look at

the details of the Schema class.

Chapter 4 Using the shell with sQl Databases

155

 Schema Class

The schema is a container for the objects that store your data. Recall this can be a

collection for document store data or a table or view for relational data. Much like the old

days working with relational data, you must select (or use) a schema for storing data in

either a collection, table, or view.

While you can mix the use of document store data (collections) and relational data

(tables, views), to keep things easy to remember, we will examine the Schema class

methods as they pertain to working with relational data.

Table 4-7 shows the methods for working with both collections and tables. Once

again, we will only be using the methods to work with tables in this and the next chapter

but it doesn’t hurt to get a glimpse of the document store methods. Notice the create

and get methods return an instance of an object. For example, the get_table() method

returns a Table object.

Table 4-7. Schema Class Methods

Method Returns Description

get_tables() list returns a list of tables for this schema

get_collections() list returns a list of Collections for this schema

get_table(str name) table returns the table of the given name for this

schema

get_collection(str name) Collection returns the Collection of the given name for

this schema

get_collection_as_

table(str name)

table returns a table object representing a

Collection on the database

create_collection

(str name)

Collection Creates in the current schema a new

collection with the specified name and

retrieves an object representing the new

collection created

drop_collection

(str name)

none Drops the specified collection

Now, let’s look at the methods for the Table class.

Chapter 4 Using the shell with sQl Databases

156

 Table Class

The table concept is the major organizational mechanism for relational data. In the

X DevAPI, a table is the same relational data construct with which we are all familiar.

The X DevAPI has a Table (you can use them with views too) class complete with

CRUD operations (select, insert, update, and delete) as well as additional methods for

counting the rows or whether the base object is a view. Table 4-8 shows the methods

for the Table class.

Table 4-8. Table Class

Method Returns Description

insert() tableinsert Creates tableinsert object to insert new

records into the table

insert(list columns) tableinsert insert a row using a list of columns

insert(str col1, str

col2,...)

tableinsert insert a row using a parameter list of columns

select() tableselect Creates a tableselect object to retrieve rows

from the table

select(list columns) tableselect Creates a tableselect object to retrieve rows

from the table

update() tableUpdate Creates a record update handler

delete() tableDelete Creates a record deletion handler

is_view() bool indicates whether this table object represents

a View on the database

count() int returns number of rows in the table

get_name() str returns the name of the object

get_session() object returns the session object of this database

object

get_schema() object returns the schema object of this database

object

exists_in_database() bool Verifies if this object exists in the database

Chapter 4 Using the shell with sQl Databases

157

Notice there aren’t methods for creating the table. We must use the CREATE TABLE SQL

command to do this or the sql() method to execute the SQL statement. In fact, there are

no methods to create any relational data objects. You must use SQL to issue the appropriate

create statement to create the objects. For example, to create a table for our factory_sensors

data in the previous example, we can use the following CREATE TABLE statement. While we

saw this earlier, the following shows a Python code snippet where we declare a variable to

hold the query and demonstrate executing the query using the sql() method.

...

CREATE_TBL = """

CREATE TABLE `factory_sensors`.`trailer_assembly` (

 `id` int auto_increment,

 `sensor_name` char(30) NOT NULL,

 `sensor_value` float DEFAULT NULL,

 ̀sensor_event` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `sensor_units` char(15) DEFAULT NULL,

 PRIMARY KEY `sensor_id` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

"""

my_session = mysqlx.get_session(user_info)

my_db = my_session.create_schema('factory_sensors')

sql_res = my_session.sql(CREATE_TBL).execute()

my_tbl = my_db.get_table('trailer_assembly')

...

Tip there are no create methods to create tables or views. You must pass the
sQl command to the sql() method to create these (and other relational data)
objects.

Now that we’ve got the table created, we can insert data using the Table object.

Recall, we have a set of objects in play here. We started with the Session object create_

schema() method, which returned a Database object that we saved to a variable named

my_db. After we created the table, we called the my_db.get_table() method to get the

Table object.

Chapter 4 Using the shell with sQl Databases

158

Before we see an example of working with the data, let’s look at the other classes

and methods for working with relational data. Table 4-9 lists the methods for each of the

classes related to the CRUD operations for relational data.

Table 4-9. Classes for CRUD Operations for Relational Data

Class Method Returns Description

tableselect a statement for record retrieval operations on a table

select (list

searchExprStr)

tableselect Defines the columns to be

retrieved from the table

where (str

expression)

tableselect sets the search condition to

filter the records to be retrieved

from the table

group_by (list

searchExprStr)

tableselect sets a grouping criteria for the

retrieved rows

having (str

condition)

tableselect sets a condition for records

to be considered in aggregate

function operations

order_by (list

sortExprStr)

tableselect sets the order in which the

records will be retrieved

limit (int

numberOfRows)

tableselect sets the maximum number

of rows to be returned on the

select operation

offset (int

numberOfRows)

tableselect sets number of rows to skip on

the result set when a limit has

been defined

bind (str name,

Value value)

tableselect binds a value to a specific

placeholder used on this

operation

execute () rowresult executes the select operation

with all the configured options

(continued)

Chapter 4 Using the shell with sQl Databases

159

(continued)

Table 4-9. (continued)

Class Method Returns Description

tableinsert a statement for insert operations on table

insert () tableinsert initializes the record insertion

handler

insert (list

columns)

tableinsert initializes the record insertion

handler with the received

column list

insert (str col1,

str col2,...)

tableinsert initializes the record insertion

handler with the received

column list

values (Value,

Value value,...)

tableinsert adds a new row to the insert

operation with the given values

execute () result executes the insert operation

tableUpdate a statement for record update operations on a table

update () tableUpdate initializes the update operation

set (str attribute,

Value value)

tableUpdate adds an update operation

where (str

expression)

tableUpdate sets the search condition to

filter the records to be updated

order_by (list

sortExprStr)

tableUpdate sets the order in which the

records will be updated

limit (int

numberOfRows)

tableUpdate sets the maximum number

of rows to be updated by the

operation

bind (str name,

Value value)

tableUpdate binds a value to a specific

placeholder used on this

operation

execute () result executes the delete operation

with all the configured options

Chapter 4 Using the shell with sQl Databases

160

Wow, there’s a lot of methods! Notice there are some similarities among the

 statement classes. For example, most have methods for binding parameters, search

conditions, and more. To understand this better, let’s look at the syntax diagrams for the

CRUD operations from the X DevAPI Users’ Guide (https://dev.mysql.com/doc/x-

devapi- userguide/en/).

The way we will use these classes and methods is a concept called method chaining

where we can combine our class and method calls into a “chain” where we call the

method for a returned object by using dot notation to extend the syntax. In other words,

if method_a() returns an instance of an object that has a method named count(), we can

chain it together like this: method_a().count() thereby avoiding the need to store an

intermediate object.

Table 4-9. (continued)

Class Method Returns Description

tableDelete a statement that drops a table

delete () tableDelete initializes this record deletion

handler

where (str

expression)

tableDelete sets the search condition to

filter the records to be deleted

from the table

order_by (list

sortExprStr)

tableDelete sets the order in which the

records will be deleted

limit (int

numberOfRows)

tableDelete sets the maximum number

of rows to be deleted by the

operation

bind (str name,

Value value)

tableDelete binds a value to a specific

placeholder used on this

operation

execute () result executes the delete operation

with all the configured options

Chapter 4 Using the shell with sQl Databases

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/

161

WHAT IS METHOD CHAINING?

Method chaining (also known as named parameter idiom) is a design constraint in object-

oriented programing where each method (that supports chaining) returns an instance of an

object. thus, one can access (call) any method on the returned object simply by adding the call

to the end of the first method.

For example, if a class X has a method a() that returns object Y with a method b(), we can

chain calls together as follows.

x = something.get_x()

res = x.a().b()

in this case, the x.a() method executes first, then when it returns with a Y object instance, it

calls the b() method on the Y object instance.

For more information about the concepts of method chaining, see https://en.wikipedia.

org/wiki/Method_chaining.

The following sections demonstrate simple examples of the CRUD operations for

relational data. Recall, we will use the Table object (instance) we retrieved from the

session to execute the CRUD operations. Let’s look at an example of each.

 Creating Data

The create operation uses a Table object method named insert(), which takes as

parameters a list of columns. We can then use the values() method for the TableInsert

object using method chaining (see later) passing as a parameter a list of values. This is

because the insert() method returns an instance of the TableInsert class. For example,

we added a row in the earlier section with the following INSERT query.

INSERT INTO factory_sensors.trailer_assembly (sensor_name, sensor_value,

sensor_units) VALUES ('paint_vat_temp', 32.815, 'Celsius');

To execute this in Python, we use the following statements. Notice we have used a

variable to store the list of columns. We also used method chaining to call the values()

and execute() methods to complete the row insert in a single statement.

Chapter 4 Using the shell with sQl Databases

https://en.wikipedia.org/wiki/Method_chaining
https://en.wikipedia.org/wiki/Method_chaining

162

...

COLUMNS = ['sensor_name', 'sensor_value', 'sensor_units']

my_tbl.insert(COLUMNS).values('paint_vat_temp', 32.815, 'Celsius').

execute()

...

Figure 4-1 shows the syntax diagram for the read operation. Here, the chain is

rather small since we have only two intermediate objects (the “owner” of values() and

execute()). If this seems a little strange, don’t feel bad. Coming from the world of SQL

statements transitioning to advanced coding techniques can be a challenge, but with

practice and more examples, chaining the methods like this will seem quite natural.

 Reading Data

Reading data from the Table object is another case where we use method chaining to

link the object methods together. If you consider the complexity of a typical SELECT

statement, it should come as no surprise that the read operation can also be quite

complex. However, we’ll keep it simple for this demonstration and look at more complex

examples in the next chapter.

The following is the SELECT statement to get all the rows in the table.

SELECT sensor_value, sensor_name, sensor_units FROM factory_sensors.

trailer_assembly;

The same method chaining is true for the select() method, which returns a Table

object where we chained the where() clause. In this simple example, we don’t have a

WHERE clause, so we leave the parameters off. We still add the execute() method to run

the query.

Figure 4-1. Syntax Diagram - Table.insert()

Chapter 4 Using the shell with sQl Databases

163

...

COLUMNS = ['sensor_name', 'sensor_value', 'sensor_units']

my_res = my_tbl.select(COLUMNS).execute()

...

Figure 4-2 shows the syntax diagram for the select() method of the Table class.

Here, we see how the various classes and methods can be chained together with the

execute() method at the end of the chain. The various methods depicted in the chain

are optional, but most read operations will include the where() method (clause).

 Updating Data

The update operation is like the read operation where we use one or more of the

methods to specify the subclauses we would find in a typical UPDATE SQL query. The

following is a simple example where we update rows with a sensor value equal to 1.52

changing the sensor units. Notice we used a trick of MySQL’s function library to convert

our floating point value to a specific decimal to remove errors resulting from rounding

(sensor_units = 1.52 doesn’t work).

UPDATE factory_sensors.trailer_assembly SET sensor_units = 'inches' WHERE

sensor_value LIKE 1.52;

Figure 4-2. Syntax Diagram - Table.select()

Chapter 4 Using the shell with sQl Databases

164

To execute this in Python, we use the Table object’s update() method and chain

it with the TableUpdate object’s set() and where() methods and passing in our

parameters.

my_tbl.update().set().where('sensor_value LIKE 1.52').execute()

Figure 4-3 shows the syntax diagram for the update operation. This is like the read

operation since we have several common intermediate steps such as the WHERE clause,

order by, etc.

 Deleting Data

The delete operation is like the read and update operations where we use one or more of

the methods to specify the subclauses we would find in a typical DELETE SQL query. The

following is a simple example where we delete rows with a sensor value >30.

DELETE FROM factory_sensors.trailer_assembly WHERE sensor_value > 30;

To execute this in Python, we use the Table object’s delete() method and chain it

with the TableDelete object’s where() method and pass in our parameters.

my_tbl.delete().where('sensor_value > 30').execute()

Figure 4-3 shows the syntax diagram for the update operation. This is like the update

operation since we have several common intermediate steps such as the WHERE clause,

order by, etc.

Figure 4-3. Syntax Diagram - Table.update()

Chapter 4 Using the shell with sQl Databases

165

There is just one more thing we should explore before we see a complete Python

example of working with relational data – working with result sets (sometimes called

data sets).

 Working with Results

Until now, we have seen a few simple examples of working with results and while it may

appear all results are the same class, there are several result classes. The object instance

for the Result class returned depends on the operation. For example, there is a separate

class for each type of result. Results are sometimes called data sets or result sets.

Table 4-10 shows all the classes and their methods that you will encounter when

working with data sets and results. All result classes are derived from the BaseResult

object, which provides a set of properties and base methods. I’ve repeated these in the

table for completeness.

Note Class methods are indicated with () and properties are indicated without ().

Figure 4-4. Syntax Diagram - Table.delete()

Chapter 4 Using the shell with sQl Databases

166

Table 4-10. Classes and Methods for Working with Data Sets and Results

Class Method Returns Description

result allows retrieving information about nonquery operations performed on the database

get_affected_item_count() int the number of affected items for

the last operation

get_auto_increment_value() int the last insert id autogenerated

(from an insert operation)

get_generated_ids() list returns the list of document ids

generated on the server

affected_item_count int same as get_affected_itemCount()

auto_increment_value int same as get_auto_increment_

value()

generated_ids list same as get_generated_ids()

affected_items_count int same as get_affected_items_

count()

warning_count int same as get_warning_count()

warnings_count int same as get_warnings_count()

warnings list same as get_warnings()

execution_time str same as get_execution_time()

(continued)

Chapter 4 Using the shell with sQl Databases

167

Table 4-10. (continued)

Class Method Returns Description

rowresult allows traversing the row objects returned by a table.select operation

fetch_one() row retrieves the next row on the

rowresult

fetch_all() list returns a list of DbDoc objects,

which contains an element for

every unread document

get_column_count() int retrieves the number of columns

on the current result

get_column_names() list gets the columns on the current

result

get_columns() list gets the column metadata for the

columns on the active result

column_count int same as get_column_count()

column_names list same as get_column_names()

columns list same as get_columns()

affected_items_count int same as get_affected_items_

count()

warning_count int same as get_warning_count()

warnings_count int same as get_warnings_count()

warnings list same as get_warnings()

execution_time str same as get_execution_time()

(continued)

Chapter 4 Using the shell with sQl Databases

168

Class Method Returns Description

sqlresult represents a result from a sQl statement

get_auto_increment_value() int returns the identifier for the last

record inserted

get_affected_row_count() int returns the number of rows

affected by the executed query

has_data() bool returns true if the last statement

execution has a result set

next_data_set() bool prepares the sqlresult to start

reading data from the next result

(if many results were returned)

next_result() bool prepares the sqlresult to start

reading data from the next result

(if many results were returned)

auto_increment_value int same as get_auto_increment_

value()

affected_row_count int same as get_affected_row_count()

column_count int same as get_column_count()

column_names list same as get_column_names()

columns list same as get_columns()

affected_items_count int same as get_affected_items_

count()

warning_count int same as get_warning_count()

warnings_count int same as get_warnings_count()

warnings list same as get_warnings()

execution_time str same as get_execution_time()

Table 4-10. (continued)

(continued)

Chapter 4 Using the shell with sQl Databases

169

Class Method Returns Description

Docresult allows traversing the DbDoc objects returned by a Collection.find operation

fetch_one() Document retrieves the next DbDoc on the

Docresult

fetch_all() list returns a list of DbDoc objects,

which contains an element for

every unread document

affected_items_count int same as get_affected_items_

count()

warning_count int same as get_warning_count()

warnings_count int same as get_warnings_count()

warnings list same as get_warnings()

execution_time str same as get_execution_time()

Table 4-10. (continued)

The three classes that have iterators implement two methods: fetch_one() and

fetch_all(). They work like you would imagine and return either a data set or a set

of objects for a set of documents. The fetch_one() method returns the next data

item in the data set or NULL if there are no more data items and fetch_all() returns

all the data items. More specifically, fetch_one() retrieves one data item at a time

from the server whereas fetch_all() retrieves all the data from the server in one

pass. Which you use will depend on the size of the data set and how you want to

process the data.

So, what does this look like in Python? The following shows a simple example of

performing a read operation to get all the rows in the table (there is no WHERE clause).

Here, we first retrieve a list of the table columns so we can print them. We will use two

loops: one to loop through the list of column names and another to loop through the

rows returned from the read operation.

column_names = my_res.get_column_names()

column_count = my_res.get_column_count()

Chapter 4 Using the shell with sQl Databases

170

for i in range(0,column_count):

 if i < column_count - 1:

 print "{0}, ".format(column_names[i]),

 else:

 print "{0}".format(column_names[i]),

print

Here, we see a few Python statements for getting the results. In this case, we are

working with the TableSelect class, but since most of the result classes have the same

methods, your code will be similar for other results. You may notice some rudimentary

formatting code to make the output comma-separated. This is only for demonstration.

Your own applications would likely consume the data a row at a time and do something

with it. However, the concepts of getting the columns and fetching rows are the same.

Once you get those concepts down, we need only add the concept of how to get started.

 Getting Started Writing Python Scripts
Now it’s time to get our hands on some actual code that we can use to reinforce the

concepts discussed thus far. Let’s do so by looking at a simple example. At first, this

code may seem a little intimidating, but it is a very simple example that contains the

boilerplate code you will need to make a connection to the server by opening a session,

then creating the new schema and creating the table. From there, we see examples of the

CRUD operations starting with a select() call on the table object and a demonstration

of working with the CRUD operations.

Listing 4-6 shows a Python script to create the database and table used previously

including adding data and performing a simple select query. Only, this time we’re doing

it in Python! If you want to follow along, open the shell and connect to your server as

shown.

Listing 4-6. Simple Relational Data Example

#

Introducing the MySQL 8 Shell

#

This example shows a simple X DevAPI script to work with relational data

#

Dr. Charles A. Bell, 2019

Chapter 4 Using the shell with sQl Databases

171

from mysqlsh import mysqlx # needed in case you run the code outside of the

shell

SQL CREATE TABLE statement

CREATE_TBL = """

CREATE TABLE `factory_sensors`.`trailer_assembly` (

 `id` int auto_increment,

 `sensor_name` char(30) NOT NULL,

 `sensor_value` float DEFAULT NULL,

 ̀sensor_event` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `sensor_units` char(15) DEFAULT NULL,

 PRIMARY KEY `sensor_id` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

"""

column list, user data structure

COLUMNS = ['sensor_name', 'sensor_value', 'sensor_units']

user_info = {

 'host': 'localhost',

 'port': 33060,

 'user': 'root',

 'password': 'secret',

}

print("Listing 4-6 Example - Python X DevAPI Demo with Relational Data.")

Get a session (connection)

my_session = mysqlx.get_session(user_info)

Precautionary drop schema

my_session.drop_schema('factory_sensors')

Create the database (schema)

my_db = my_session.create_schema('factory_sensors')

Execute the SQL statement to create the table

sql_res = my_session.sql(CREATE_TBL).execute()

Get the table object

my_tbl = my_db.get_table('trailer_assembly')

Insert some rows (data)

Chapter 4 Using the shell with sQl Databases

172

my_tbl.insert(COLUMNS).values('paint_vat_temp', 32.815, 'Celsius').execute()

my_tbl.insert(COLUMNS).values('tongue_height_variance', 1.52, 'mm').execute()

my_tbl.insert(COLUMNS).values('ambient_temperature', 24.5, 'Celsius').execute()

my_tbl.insert(COLUMNS).values('gross_weight', 1241.01, 'pounds').execute()

Execute a simple select (SELECT ∗ FROM)
print("\nShowing results after inserting all rows.")

my_res = my_tbl.select(COLUMNS).execute()

Display the results . Demonstrates how to work with results

Print the column names followed by the rows

column_names = my_res.get_column_names()

column_count = my_res.get_column_count()

for i in range(0,column_count):

 if i < column_count - 1:

 print "{0}, ".format(column_names[i]),

 else:

 print "{0}".format(column_names[i]),

print

for row in my_res.fetch_all():

 for i in range(0,column_count):

 if i < column_count - 1:

 print "{0}, ".format(row[i]),

 else:

 print "{0}".format(row[i]),

 print

Update a row

my_tbl.update().set('sensor_units', 'inches').where('sensor_value LIKE

1.52').execute()

print("\nShowing results after updating row with sensor_value LIKE 1.52.")

Execute a simple select (SELECT ∗ FROM)
my_res = my_tbl.select(COLUMNS).execute()

Display the results

for row in my_res.fetch_all():

 print row

Delete some rows

Chapter 4 Using the shell with sQl Databases

173

my_tbl.delete().where('sensor_value > 30').execute()

Execute a simple select (SELECT ∗ FROM)
print("\nShowing results after deleting rows with sensor_value > 30.")

my_res = my_tbl.select(COLUMNS).execute()

Display the results

for row in my_res.fetch_all():

 print row

Delete the database (schema)

my_session.drop_schema('factory_sensors')

Take a moment and read through the code to ensure you find the CRUD operations.

Once again, these are very simple examples with only small examples of expressions for

the WHERE clause. The comment lines and extra print statements form a guide to help

make the code easier to read. We will see a more detailed example in the next chapter

complete with more explanation of how to use the various methods for restricting the

output (the WHERE clause).

Now, let’s see the code executing. In this case, we will use the batch execution

feature of the shell to read the file we created earlier and execute it. Listing 4-7 shows the

command and results of running the script.

Listing 4-7. Executing the Sample Code

C:\Users\cbell\MySQL Shell\source\Ch04>mysqlsh --py -f listing4-6.py

Listing 4-6 Example - Python X DevAPI Demo with Relational Data.

Showing results after inserting all rows.

sensor_name, sensor_value, sensor_units

paint_vat_temp, 32.815, Celsius

tongue_height_variance, 1.52, mm

ambient_temperature, 24.5, Celsius

gross_weight, 1241.01, pounds

Showing results after updating row with sensor_value LIKE 1.52.

[

 "paint_vat_temp",

 32.815,

 "Celsius"

]

Chapter 4 Using the shell with sQl Databases

174

[

 "tongue_height_variance",

 1.52,

 "inches"

]

[

 "ambient_temperature",

 24.5,

 "Celsius"

]

[

 "gross_weight",

 1241.01,

 "pounds"

]

Showing results after deleting rows with sensor_value > 30.

[

 "tongue_height_variance",

 1.52,

 "inches"

]

[

 "ambient_temperature",

 24.5,

 "Celsius"

]

The output shows the first read operation that prints the rows using the method

of working the results that we saw earlier by printing the column names and rows as

comma-separated output with one row per line. The other output shows how the results

are returned to Python – they’re a list of lists! That’s why we see the output appear as a

list of string values for the rows.

Take a moment to look through the code again and ensure you can see the effects of

the CRUD operations on the data. That is, the output of the results should differ slightly

after each of the read, updated, and delete operations.

Chapter 4 Using the shell with sQl Databases

175

WHAT ABOUT CONNECTOR/PYTHON?

if you’re following along and have used the python database connector named Connector/

python, you may be wondering what is so different here that can’t be done with the connector.

at this point, your intuition is correct. so far, nothing i’ve presented cannot be done with the

connector and good python programing. in fact, it is this overlap that shows the X Devapi has

fulfilled one of its goals.

now, you may be interested in knowing that the connector fully supports the X Devapi and that

the shell uses the connector under the hood. what we are learning then is how to work with

our data from a different view – the view of data is code. Once you read Chapter 6, it will all

click (if it hasn’t already).

 Summary
The traditional data storage and retrieval mechanism in MySQL is the SQL interface.

This is what most are familiar with and indeed most learn SQL as part of their training

to become a developer or database administrator. Thus, for many, learning a new tool

like MySQL Shell is done best from the familiar ground of SQL. In fact, that’s what this

chapter is all about.

In this chapter, we saw a brief tour of using the shell first with a traditional SQL

interactive session where we issued SQL statements and worked with relational data.

It was familiar, and it demonstrated the basic concepts of relational data. Even if you

haven’t worked with SQL before, the small demonstration is enough to get you going.

However, the trend is to mix our data into our code, that is, to make our data part

of the code. To do that, we need a strong API that lets us work with our data as if it were

objects in the code. The X DevAPI is the answer. And, we saw a brief introduction to the

X DevAPI for use with relational data. Not only did we learn how to get started using the

X DevAPI, but we also saw some working Python code that you can use to get started

writing your own Python scripts.

But that was just the beginning. What we really need is a larger example that we can

use as a tutorial for writing more advanced Python scripts. The next chapter presents the

concepts introduced in this chapter in greater detail.

Chapter 4 Using the shell with sQl Databases

177
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_5

CHAPTER 5

Example: SQL Database
Development
In the last chapter, we explored the shell using two modes: the traditional SQL command

execution and a brief tour of using the X DevAPI to write Python code to interact without

SQL databases.

In this chapter, we will see a demonstration of how to use the shell to develop Python

code modules for working with a traditional relational database. In fact, we will give

credence to the claim that the MySQL Shell is a development tool.

We are going to do that by first examining the database for a sample application

and then build the database code to access the data in the database. We will do this in

a step- wise manner to give you the best view of how to use the shell to develop your

own code. Finally, we will see a very brief demonstration of how to use the shell to test

the database code.

We won’t go into detail about the sample application because the focus is on how

to use the shell rather than the sample application itself. However, the appendix for this

book contains a tour of the code used to implement the sample application.

Let’s begin by examining the sample database and briefly discussing the sample

application.

 Getting Started
It is one thing to be able to successfully explain topics in prose and to back it up with

examples that solidify the reader’s understanding, but it is quite a different thing to

explain the benefits of a new way of working with data or code. In those cases, one must

demonstrate the concepts in an interactive manner so that the concepts are proven

through the example rather than simply showing how it is possible. In this section, we

178

will learn about a sample application that strives to do just that – to prove how you can

use the shell to develop your own code.

However, in order to show the full capabilities of the shell in this manner, the sample

must be sufficiently complex enough to have the depth (and breadth) to fulfill its role.

Thus, for this chapter, we will focus on solving a monumental problem: how to organize

your garage!

Ok, that may be too far to reach. Let’s scale that back to simply organizing the tools

in your garage or workshop. If you have any tools at all or are like me and have a vast

array of tools for all manner of building, repairing, and servicing, it can be a real struggle

to know where every individual tool is located, especially so when you acquire so many

tools that you need multiple storage locations to hold them.

 Sample Application Concept
The sample application concept is one of organization. As such, we will be storing

descriptions of things we want to organize, including the things in which they are

organized. Specifically, we want to know what tools we have and where they are stored. If

that storage location is a toolbox or cabinet, we also want to know what drawer or shelf it

is on. It may also be that we have tools stored in a box or bin and that, in turn, is stored in

some place. Thus, we are modeling not only the tools but also the tool storage.

The garage application was born from a need to get better organized. Indeed,

having a cluttered garage or just your tools stored in a cavalier manner may fit the

needs of some people, others like me need a bit more structure. Plus, if you ever

wanted to know if you had a certain tool, it would be nice to not only know that you

have one but also where it is!

Thus, this application is designed primarily as a lookup tool, hence the primary focus

on list views that show all the rows in the table.

That is why the storage location is the default view. If you walk into your garage

(or workshop), the first thing you should see is the storage equipment – the toolboxes,

racks, shelves, etc. When you look for a tool, you generally look in one or more of places

(storage equipment) using the memory of the last place or the common place you store

it. But if you have many tools, it may not be possible to remember where each tool

resides, especially if you haven’t used it in some time.

However, the sample application also provides a view to show all your handtools

and powertools. The list views for each of these categories show all the items sorted

Chapter 5 example: SQl DatabaSe Development

179

for you. You need to only skim through the list to find the desired tool, then look at

the columns to determine where the tool is stored. So, by clicking a few times in your

garage application, you know where to go to get the tool you want. We’ll call the sample

application MyGarage. Cool, eh?

Tip rather than explain every nuance of the sample application, we will focus
on the portions that are best used to prove the utility of using the shell to develop
code – the database access code modules.

Let’s take a quick look at a part of the user interface for the sample application.

Figure 5-1 shows a detailed view of the handtool record. Here, we see we can specify

the vendor, a description, the tool size, type, and location. In this way, we can capture

the basic information about a tool, including which company made it and where we’ve

stored it.

Figure 5-1. Handtool Detail View

While this view looks rather straightforward, the design of the database underneath

is a bit more complicated. For example, one can look at the form and predict we will

have some way to store vendors since there can be many tools for one vendor. You can

also predict there is a similar situation for storage locations. However, consider for the

moment a piece of storage equipment can have one or more drawers or shelves or both.

Thus, we may want to model these as well as the tools.

Chapter 5 example: SQl DatabaSe Development

180

Before we embark on the database design, let’s understand better the objects in the

sample application. The following lists the objects identified in the application and how

they are used. This will go a long way toward understanding how the data is stored (and

its design).

• Handtool: A tool that is unpowered

• Powertool: A tool that runs on air (pneumatic) or electricity, either

corded or cordless

• Storage equipment: A rack, box, chest, and so on that has one or more

places where tools (things) can be stored

• Storage place: A feature of storage equipment such as a shelf or

drawer

• Organizer: A container that can hold one or more tools but requires

storing in a storage place

• Vendor: A manufacturer of a tool

Let’s look at the storage portion of the sample application. This may seem a bit

complicated, but once you see it in action it should be clearer. Let’s say we have a new

tool storage chest that has several drawers and shelves. If we were to make a table and

store only the chest, how would we know in which drawer or on which shelf a tool

resides?

For example, we could list the tool as being in tool_chest_1, but if it has ten drawers

and four shelves, that doesn’t help us much. Who wants an application that tells you a

general location? You’d have to pull open drawers or randomly check shelves until you

find your tool. However, if we abstract the drawers and shelves, we can specify the exact

location for a given tool in the tool chest by referencing the storage place (drawer, shelf),

which references the storage equipment.

Let’s look at an example. Figure 5-2 shows a Kobalt tool chest available from a home

improvement store (Lowe’s). Notice the chest has seven drawers and two shelves.

Chapter 5 example: SQl DatabaSe Development

181

If we model or create entries in a table for each drawer, we can then assign a

relationship between the tool, drawer, and the tool chest. Not only does this demonstrate

how we can categorize (organize) our data better, it also demonstrates one of the

key aspects of most applications that use real data – there are several one-to-many

relationships in the data.

Now that we understand the goals of the sample application and how we need to

model the storage feature, let’s see how the database is designed.

 Database Design
Let’s begin our tour of the database design from the entity-relationship diagram (ERD).

Figure 5-3 shows the ERD for the database. If you’re not familiar with these diagrams,

they typically show the tables, views, or any other object you want along with the

relationships between the entities (the dashed lines). Also included in this example are

the indexes for each table. There is one view shown as a solid rectangle.

Figure 5-2. Kobalt Tool Chest

Chapter 5 example: SQl DatabaSe Development

182

Take some time to study the diagram so that you’re familiar with the tables we will

be using. We will see the tables in more detail later in this section. We will name the

database garage_v1 because we will see how to migrate this database from a relational

model to a NoSQL model in Chapter 7, which will become garage_v2.

One thing you may notice is each table has a surrogate key defined as an auto-

increment field. This is a nice, easy way to ensure the rows in your table are unique

and an artificial mechanism for allowing storage of more than one of the same item.

Figure 5-3. MyGarage Database ERD (Version 1)

Chapter 5 example: SQl DatabaSe Development

183

For example, in a typical tool collection, one generally has more than one of a certain

tool such as a hammer, pliers, adjustable wrench, etc. Using auto-increment keys allows

us to give each tool its unique Id.

Now, let’s look at each of the entities in the ERD so that we understand what they

store. We will start with the tables that have the fewest relationships and build from there

so that you can understand how they are constructed.

When reading through this design, savvy readers may see ways to improve the

design. However, recall the goal of this sample application was twofold: to be sufficiently

complex to demonstrate nontrivial examples and to be something readers can run

themselves. Thus, some design compromises were taken to avoid overcomplexity.1

 Vendor Table

The vendor table contains basic information about the vendors or manufacturers of the

tools in the database. We record the name, a URL for the vendor’s web site, and a short

description of where we can purchase products from this vendor. Listing 5-1 shows the

SQL CREATE TABLE command to create the vendor table.

Listing 5-1. Vendor Table

CREATE TABLE `garage_v1`.`vendor` (

 `Id` int(11) NOT NULL AUTO_INCREMENT,

 `Name` char(50) NOT NULL,

 `URL` char(128) DEFAULT NULL,

 `Sources` char(40) DEFAULT NULL,

 PRIMARY KEY (`Id`)

) ENGINE=InnoDB AUTO_INCREMENT=100 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

Notice we use the auto-increment field for the primary key, which is an integer

field. Look closely at the table options. Here, we demonstrate how to set the initial value

for the auto-increment field (column). In this case, we chose a starting value of 100.

1 For example, I opt for object (table) names in the singular, while some prefer plural. It is
customary to use singular names, but some may debate the issue to the point of placing fault.
That’s just noise for most of us.

Chapter 5 example: SQl DatabaSe Development

184

We can choose other starting values for the other tables making each range of Ids

somewhat unique. For example, if we set the starting value for another table at 1000, we

can know at a glance that a row with an Id of 103 is a vendor while a value of 1022 is from

the other table.

Granted, most savvy database administrators would quote chapter and version in

some relational database textbook2 about how horrible this practice is, but in practice, it

can be handy if you use some general form of encoding like this for debugging purposes.

Since the rows are in different tables, the fear or “sin” of encoding is not realized. That

is, there is no possibility of collision. So, you can relax as this isn’t strictly an antithesis to

relational database design; rather, it is a debugging or coding tool.

 Organizer Table

The organizer table is used to store information about an organizer, be that a box, bin,

molded case, and so on. This helps solve the problem of some tools having their own

special cases and tools that must be grouped (and used) together such as socket sets,

some types of wrenches, etc. We also employ the auto-increment trick by starting the

value at 2000 for the Id column. Listing 5-2 shows the SQL CREATE TABLE command to

create the organizer table.

Listing 5-2. Organizer Table

CREATE TABLE `garage_v1`.`organizer` (

 `Id` int(11) NOT NULL AUTO_INCREMENT,

 `PlaceId` int(11) NOT NULL,

 `Type` enum('Bin','Box','Case') DEFAULT 'Case',

 `Description` char(40) NOT NULL,

 `Width` int(11) DEFAULT '0',

 `Depth` int(11) DEFAULT '0',

 `Height` int(11) DEFAULT '0',

 PRIMARY KEY (`Id`),

 KEY `OrganizerStorage_FK_idx` (`PlaceId`),

2 I was one of those at one point in my career. As I gain more and more experience, I’ve come to
realize some trade-off can indeed be beneficial if used sparingly and safely.

Chapter 5 example: SQl DatabaSe Development

185

 CONSTRAINT `OrganizerStorage_FK` FOREIGN KEY (`PlaceId`) REFERENCES

`place` (`Id`) ON DELETE RESTRICT ON UPDATE RESTRICT

) ENGINE=InnoDB AUTO_INCREMENT=2000 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

Notice this table contains a foreign key. A foreign key can be considered a link or

relationship between a row in one table to a row in another. They are primarily used to

enforce the relationship. For example, notice the restrictions in the preceding SQL code.

Here, we see the foreign key is restricted on delete and update operations such that the

row cannot be deleted in the place table if a row in this table references its Id column.

It also specifies that the Id column in the place table cannot be altered in an update.

This is the reason it is called “foreign” because it places restrictions on another table.

This is another relational database construct that database designers use to help build

robustness (and protection from accidental changes) into the database.

 Storage Place Table

The storage place table, named place for brevity, is used to store information about

places where we can store things such as a drawer or shelf. In fact, this table is limited

to those two types through an enumerated column named Type. We also store a

description, the Id of the storage equipment where this storage place resides, its

dimensions. Listing 5-3 shows the SQL CREATE TABLE for the place table.

Listing 5-3. Place Table

CREATE TABLE `garage_v1`.`place` (

 `Id` int(11) NOT NULL AUTO_INCREMENT,

 `StorageId` int(11) NOT NULL,

 `Type` enum('Drawer','Shelf') DEFAULT 'Drawer',

 `Description` char(40) NOT NULL,

 `Width` int(11) DEFAULT '0',

 `Depth` int(11) DEFAULT '0',

 `Height` int(11) DEFAULT '0',

 PRIMARY KEY (`Id`),

 KEY `PlaceStorage_FK_idx` (`StorageId`),

Chapter 5 example: SQl DatabaSe Development

186

 CONSTRAINT `PlaceStorage_FK` FOREIGN KEY (`StorageId`) REFERENCES

`storage` (`Id`) ON DELETE RESTRICT ON UPDATE RESTRICT

) ENGINE=InnoDB AUTO_INCREMENT=1038 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

This table also has a foreign key like the organizer table. Once again, this is so that

rows cannot be deleted (or the Id column changed) in the storage table that a row in this

table references.

 Storage Equipment Table

The storage equipment table, named storage for brevity, is used to store information

about a tool or general storage construct such as a tool chest, cabinet, workbench, or

shelving. In fact, like the storage place table, we use an enumerated column named Type

to specify the storage equipment type.

Along with the storage equipment type, we also store a description, the number

of drawers, shelves, and doors (if applicable) as well as its overall dimensions and a

general text field to store the location (physical description of) where it is in the garage or

workshop. Listing 5-4 shows the SQL CREATE TABLE command for the storage table.

Listing 5-4. Storage Table

CREATE TABLE `garage_v1`.`storage` (

 `Id` int(11) NOT NULL AUTO_INCREMENT,

 `VendorId` int(11) NOT NULL,

 ̀Type` enum('Cabinet','Shelving','Toolchest','Workbench') DEFAULT

'Toolchest',

 `Description` char(125) DEFAULT NULL,

 `NumDrawers` int(11) DEFAULT '0',

 `NumShelves` int(11) DEFAULT '0',

 `NumDoors` int(11) DEFAULT '0',

 `Width` int(11) DEFAULT NULL,

 `Depth` int(11) DEFAULT NULL,

 `Height` int(11) DEFAULT NULL,

 `Location` char(40) DEFAULT NULL,

 PRIMARY KEY (`Id`),

 KEY `VendorKey_idx` (`VendorId`),

Chapter 5 example: SQl DatabaSe Development

187

 CONSTRAINT `StorageVendor_FK` FOREIGN KEY (`VendorId`) REFERENCES

`vendor` (`Id`) ON DELETE RESTRICT ON UPDATE RESTRICT

) ENGINE=InnoDB AUTO_INCREMENT=503 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

Once again, we see a foreign key here between this table and the vendor table so

that no vendor can be deleted, or its Id column changed so long as there are rows in this

table that reference it.

 Handtool Table

The handtool table is used to store the information about each of the non-powered

tools. We collect the vendor, description, and size. We also use an enumerated field

named Type, which stores the type of tool so that we can group tools by category. This

should make for issuing queries such as “show me all of my screwdrivers” much easier –

especially when some categories of tools get put in different places. The types permitted

can be seen in the SQL statement.

We also store links (the Id values for) vendor and storage place. Thus, we are

forming the relationships between these tables. Listing 5-5 shows the SQL CREATE TABLE

command for the handtool table.

Listing 5-5. Handtool Table

CREATE TABLE `garage_v1`.`handtool` (

 `Id` int(11) NOT NULL AUTO_INCREMENT,

 `VendorId` int(11) NOT NULL,

 `Description` char(125) NOT NULL,

 ̀Type` enum('Adjustable Wrench','Awl','Clamp','Crowbar','Drill Bit','File

','Hammer','Knife','Level','Nutdriver','Pliers','Prybar','Router Bit','Ru

ler','Saw','Screwdriver','Socket','Socket Wrench','Wrench') DEFAULT NULL,

 `ToolSize` char(50) DEFAULT NULL,

 `PlaceId` int(11) NOT NULL,

 PRIMARY KEY (`Id`),

 KEY `VendorKey_idx` (`VendorId`),

 KEY `PlaceKey_idx` (`PlaceId`),

 CONSTRAINT `HandtoolPlace_FK` FOREIGN KEY (`PlaceId`) REFERENCES `place`

(`Id`) ON DELETE RESTRICT ON UPDATE RESTRICT,

Chapter 5 example: SQl DatabaSe Development

188

 CONSTRAINT `HandtoolVendor_FK` FOREIGN KEY (`VendorId`) REFERENCES

`vendor` (`Id`) ON DELETE RESTRICT ON UPDATE RESTRICT

) ENGINE=InnoDB AUTO_INCREMENT=2253 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

In this table, we have two foreign keys; one for the Id of the storage place (place)

table and another for the Id in the vendor table.

 Powertool Table

The powertool table is like the handtool table except here we store those tools that

are powered by air, electricity (mains), or battery. We store the description and an

enumerated field named Type for the type of power used by the tool. This might be

handy if we wanted a list of all of the pneumatic tools (air).

We also store links (the Id values for) vendor and storage place. Thus, we are

forming the relationships between these tables. Listing 5-6 shows the SQL CREATE TABLE

command for the powertool table.

Listing 5-6. Powertool Table

CREATE TABLE `garage_v1`.`powertool` (

 `Id` int(11) NOT NULL AUTO_INCREMENT,

 `VendorId` int(11) NOT NULL,

 `Description` char(125) DEFAULT NULL,

 `Type` enum('Air','Corded','Cordless') DEFAULT NULL,

 `PlaceId` int(11) NOT NULL,

 PRIMARY KEY (`Id`),

 KEY `VendorKey_idx` (`VendorId`),

 KEY `PlaceKey_idx` (`PlaceId`),

 CONSTRAINT `PowerToolPlace_FK` FOREIGN KEY (`PlaceId`) REFERENCES `place`

(`Id`) ON DELETE RESTRICT ON UPDATE RESTRICT,

 CONSTRAINT `PowertoolVendor_FK` FOREIGN KEY (`VendorId`) REFERENCES

`vendor` (`Id`) ON DELETE RESTRICT ON UPDATE RESTRICT

) ENGINE=InnoDB AUTO_INCREMENT=3022 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_0900_ai_ci

Chapter 5 example: SQl DatabaSe Development

189

We have the same foreign keys in this table as we had in the handtool table; one for

the Id of the storage place (place) table and another for the Id in the vendor table.

 Location View

Finally, we are going to employ one view. This view, named location, lets us quickly get

a lookup table (view) of the combinations of storage places and storage equipment. We

can use this to create a nice pull-down list in our sample application. Figure 5-4 shows

an example of the result of the pull-down list. We would use the list to create references

to the storage place in the handtool or powertool table as described before. Notice,

we see a combination of the tables to make it much easier to see and select the proper

location. This is another example of how real-world applications can employ tricks in the

database to make the user interface easier to use.

The SQL for this view is rather complex and involves a join (very common among

relational databases) that combines the information from both tables. Listing 5-7 shows

the SQL CREATE VIEW for the location view. Notice the view renames some of the

Figure 5-4. Using the Location View in a Drop-Down List

Chapter 5 example: SQl DatabaSe Development

190

 columns (using the AS keyword) to make it easier to differentiate between the fields from

each table. This is especially important since we used a generic “Id” for the primary key

for each table.3

Listing 5-7. Location View

CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost` SQL SECURITY DEFINER

VIEW `garage_v1`.`location` AS

 SELECT `garage_v1`.`storage`.`Id` AS `StorageId`,

 `garage_v1`.`storage`.`Description` AS `StorageEquipment`,

 `garage_v1`.`place`.`Id` AS `PlaceId`,

 `garage_v1`.`place`.`Type` AS `Type`,

 `garage_v1`.`place`.`Description` AS `Location`

 FROM (`garage_v1`.`storage` JOIN `garage_v1`.`place` ON

 ((`garage_v1`.`storage`.`Id` = `garage_v1`.`place`.`StorageId`)))

Now, let’s take a moment to discuss the database code design.

 Code Design
While you may see some things in the database design that you’d do differently4 and

there are several “right” ways to do things, code design takes that to a much higher level.

That is, given two programmers and a set of code to review, they’ll likely spend more

time scrutinizing the finer points of this way or that way to code something than it took

to write it in the first place. That isn’t to say that the scrutiny isn’t beneficial – it most

certainly is – rather, it means there are always ways to do the same thing in code using

different mechanisms, structures, and philosophies.

This holds true for the code designed for the sample application. Choices were made

to make the code modular, easier to read, and most of all, demonstrate (one way) to

build relational database applications. So, what you are about to encounter may not be

how you would have written the code, but it should still be usable in its current form for

demonstration purposes. More specifically, the code design choices made for the sample

application include the following:

3 Another “sin” for the relational database purists. Hey, it happens.
4 And you’re welcome to do so!

Chapter 5 example: SQl DatabaSe Development

191

• Use Flask framework for web-based interface

• Use a class to represent each table in the database

• Place a single class in its own code module

• Place all database code modules in its own folder (named database)

• Use a class to encapsulate the connection to the database server

• Use class modules to test each of the table/view classes

• Use a code module run from the shell to test the class modules

We will see most of these constraints in the demonstration. As mentioned previously,

a description of the user interface is included in the Appendix.

The code we are focusing on in this section includes the code we need to interact

with the database. Thus, we will need code that implements the create, read, update,

and delete (CRUD) operations. We also need code to help us make a connection to the

database server.

Table 5-1 shows the code modules, class names, and description of each of the

database code files planned. We will see how each of these is developed using the shell

in the next section.

Table 5-1. Database Code Modules

Code module Class name Description

garage_v1 MyGarage Implements connection to server and

general server interface

handtool.py Handtool models the handtool table

location.py Location models the location view

organizer.py Organizer models the organizer table

place.py Place models the place table

powertool.py Powertool models the powertool table

storage.py Storage models the storage table

vendor.py Vendor models the vendor table

Chapter 5 example: SQl DatabaSe Development

192

When we write the code for the sample application to use these code modules,

we will use the MyGarage class to make a connection to the database server and, when

requested, use the class associated with each table to call the CRUD operations on each.

The only exception is the Location class implements only the read operation because it

is a view and views are used as lookup (read) tables.

Now that we understand the goals for the sample application and its design, let’s get

started with writing the database code for the sample application.

 Setup and Configuration
The setup for the following demonstration does not require installing anything or even

using the sample application; rather, we need only load the sample database because

we will only be working with the database code modules. While images are used to

depict certain aspects of the sample application, you don’t strictly need it for this

chapter. Once again, see the appendix for how to set up and use the complete sample

application.

To install the sample database, we must download the sample source code from the

book web site (https://www.apress.com/us/book/9781484250822). Choose the folder

for this chapter and download the files. The sample source code contains a file named

database/garage_v1.sql, which contains the SQL statements for creating the sample

database and populating it with sample data.

This file not only issues the CREATE DATABASE and CREATE TABLE commands, it also

contains a small set of data for each table using INSERT SQL commands. That is, it is an

inventory for a set of tools in a typical garage or workshop. So, you don’t have to spend

precious time trying to come up with descriptions, sizes, etc. for a set of data to use – it’s

been done for you!

Since this file is an SQL file, we will need to use the --sql mode for the shell.

Fortunately, we can use the options to read this file, import (source) it, and exit as shown

in the following. Remember, you must either specify the path to the file or execute the

shell from the directory where the file resides.

mysqlsh --uri root@localhost:3306 --sql -f garage_v1.sql

Change to the database folder and issue the following command to tell the shell to

open the file and execute the statements. It won’t take but a minute to run and, since

we’re running in batch mode, will exit the shell when complete. Listing 5-8 shows the

Chapter 5 example: SQl DatabaSe Development

https://www.apress.com/us/book/9781484250822

193

results of running these commands. If you’re curious about the commands in the file,

feel free to open it and look at how the SQL statements were written. You should notice

that this is a dump of the database using the mysqlpump server client application.

Tip See https://dev.mysql.com/doc/refman/8.0/en/mysqlpump.
html for more information about mysqlpump.

Listing 5-8. Populating the Example Database (Windows 10)

C:\Users\cbell\Documents\mygarage_v1>cd database

C:\Users\cbell\Documents\mygarage_v1\database>mysqlsh --uri root@

localhost:3306 --sql -f garage_v1.sql

Records: 31 Duplicates: 0 Warnings: 0

Records: 6 Duplicates: 0 Warnings: 0

Records: 250 Duplicates: 0 Warnings: 0

Records: 3 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 22 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 22 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 2 Duplicates: 0 Warnings: 0

Records: 3 Duplicates: 0 Warnings: 0

Now that we have the database created and populated, we’re ready to start exploring

the database code modules!

Chapter 5 example: SQl DatabaSe Development

https://dev.mysql.com/doc/refman/8.0/en/mysqlpump.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlpump.html

194

 Demonstration
While you may have realized when downloading the same source code from the book

web site that the code modules are included in the download and are complete. Thus,

if you are a savvy Python programmer, you may be tempted to skim through or skip the

rest of the chapter. However, you should continue reading because we will be seeing a

demonstration of how to use the shell to help develop these modules. That is, we will use

the shell to start the development of our Python code for the sample application.

Note the complete, working sample application for this chapter is available for
download on the book web site. See the appendix on how to set up your machine
to run the application.

If you have never programmed with Python before, don’t worry as it is a very easy

language to learn. In fact, you need only follow the examples in this section and by the

end you will have a solid grasp on what the code is doing (and why). However, if you

want to learn Python or should you require more in-depth knowledge of Python, there

are several excellent books on the topic. I list a few of my favorites in the following. A

great resource is the documentation on the Python site: python.org/doc/.

• Pro Python, Second Edition (Apress 2014), J. Burton Browning, Marty

Alchin

• Learning Python, 5th Edition (O'Reilly Media 2013), Mark Lutz

• Automate the Boring Stuff with Python: Practical Programming for

Total Beginners (No Starch Press 2015), Al Sweigart

In the following sections, we will see demonstrations of how to create the simplest

class first (Location), then move on to some of the other classes. As you will see, they

follow the same design pattern/layout so once you’ve seen one or two, the others are

easy to predict. Thus, we will see detailed walkthroughs using a couple of the classes and

the rest will be demonstrated and presented with fewer details for brevity.

If you want to follow along, be sure to have the sample database loaded and MySQL

Shell ready to go. You may also want to use a code or text editor to write the code

modules. More importantly, you should create a folder named database and start the

shell from the parent folder.

Chapter 5 example: SQl DatabaSe Development

195

For example, you should create a folder named mygarage_v1, and in that folder,

create the database folder. We would then execute the shell from mygarage_v1. Why?

Because we will use the Python import directive and name the path to the code

module using the folder name (e.g., from database import Location). We will also be

creating unit tests and thus will need a folder named unittests where we will store the

test files.

Let’s begin with the MyGarage class.

 MyGarage Class
This class is intended to make it easier to work with the MySQL server by providing

a mechanism to login (connect) to the server and encapsulate some of the common

operations such as getting the session, current database, checking to see if the

connection to MySQL is active, disconnecting, etc. We also will include methods to

convert an SQL result or select result to a Python list (array) for easier processing.

Table 5-2 shows the complete list of methods we will create for this class including the

parameters required (some methods do not require them).

Table 5-2. MyGarage Class Methods

Method Parameters Description

__init__() mysqlx_sh Constructor – provide mysqlx if running from

mySQl Shell

connect() username, passwd,

host, port

Connect to a mySQl server at host, port

get_session() return the session for use in other classes

get_db() return the database for use in other classes

is_connected() Check to see if connected to the server

disconnect() Disconnect from the server

make_rows() sql_select return a python array for the rows returned from a

read operation from a select result

make_rows_sql() sql_res, num_cols return a python array for the rows returned from a

read operation from a sql result

Chapter 5 example: SQl DatabaSe Development

196

 Writing the Source Code

For this code module, we won’t use the shell to develop the code since this is more of a

convenience class and you’ve already seen examples of most of its methods or at least

the methods in the mysqlx module that are used in the code. Rather, we will see the

complete code and then see how to test the class using the shell. This class maintains the

current session and hides much of the mechanism for connecting to and disconnecting

from the server.

Some may be inclined to move the connection mechanism into the classes (and you

can) but using a separate class to manage that means you won’t be duplicating any code,

which is always preferred.

Listing 5-9 shows the complete code for the MyGarage class. Open a new file in your

text or code editor and save this code in the database folder in a file named garage_

v1.py. Take a few minutes to read through the code. It should be easy to read and

understand even if you are learning Python.

Note Comments and nonessential lines have been removed in the source code
listings in this chapter for brevity.

Listing 5-9. garage_v1 Code

from __future__ import print_function

Attempt to import the mysqlx module. If unsuccessful, we are

running from the shell and must pass mysqlx in to the class

constructor.

try:

 import mysqlx

except Exception:

 print("Running from MySQL Shell. Provide mysqlx in constructor.")

class MyGarage(object):

 def __init__(self, mysqlx_sh=None):

 self.session = None

Chapter 5 example: SQl DatabaSe Development

197

 if mysqlx_sh:

 self.mysqlx = mysqlx_sh

 self.using_shell = True

 else:

 self.mysqlx = mysqlx

 self.using_shell = False

 def connect(self, username, passwd, host, port):

 config = {

 'user': username,

 'password': passwd,

 'host': host,

 'port': port,

 }

 try:

 self.session = self.mysqlx.get_session(∗∗config)
 except Exception as err:

 print("CONNECTION ERROR:", err)

 self.session = None

 raise

 def get_session(self):

 return self.session

 def get_db(self):

 return self.session.get_schema('garage_v1')

 def is_connected(self):

 return self.session and (self.session.is_open())

 def disconnect(self):

 try:

 self.session.close()

 except Exception as err:

 print("WARNING: {0}".format(err))

Chapter 5 example: SQl DatabaSe Development

198

 def make_rows(self, sql_select):

 cols = []

 if self.using_shell:

 cols = sql_select.get_column_names()

 else:

 for col in sql_select.columns:

 cols.append(col.get_column_name())

 rows = []

 for row in sql_select.fetch_all():

 row_item = []

 for col in cols:

 if self.using_shell:

 row_item.append("{0}".format(row.get_field(col)))

 else:

 row_item.append("{0}".format(row[col]))

 rows.append(row_item)

 return rows

 @staticmethod

 def make_rows_sql(sql_res, num_cols):

 rows = []

 all_rows = sql_res.fetch_all()

 for row in all_rows:

 row_item = []

 for col in range(0, num_cols):

 row_item.append("{0}".format(row[col]))

 rows.append(row_item)

 return rows

 def get_last_insert_id(self):

 return self.get_session().sql(

 "SELECT LAST_INSERT_ID()").execute().fetch_one()

Notice the import line. This is placed in a try…except block because when using the

code module from the shell, the shell does not expose the mysqlx module directly (it is

one of the built-in modules). Rather, we can provide an instance of the built-in mysqlx

module in the constructor.

Chapter 5 example: SQl DatabaSe Development

199

Indeed, __init__() takes one parameter, mysql_sh, which we can use to run the

code from the shell. This is a nifty way to make your code usable from either the shell or

interactive (in an application).

Notice also we use a variable self.using_shell to store whether we are using the

shell. This is needed in the make_rows∗ methods because the mysqlx module in the shell

differs slightly from the mysqlx module provided in the connectors. See the following

sidebar for why this is so.

DIFFERENCES IN SHELL AND CONNECTORS

one of the things you will notice as you move into more advanced applications is there

are differences in the mysqlx module used in mySQl Shell from those used in the mySQl

connectors (Connector/python, Connector/J, etc.). the reason for these differences

is primarily due to a desire to keep the operation or mechanics of the methods in the

module the same across languages. Since the languages supported by the connectors are

many, an attempt to standardize the behavior has resulted in some slight differences in

how the shell implements the same methods. Fortunately, the differences are minor and

easily rectified.

Now that we have the source code written, let’s test the class using the MySQL Shell.

 Testing the Class

Before we embark on testing the class, we must set the Python path variable

(PYTHONPATH) to include the folder from which we want to run our tests. This is because

we are using modules that are not installed at the system level, rather, are in a folder

relative to the code we’re testing. In Windows, you can use the following command to

add the path for the execution to the Python path.

C:\Users\cbell\Documents\my_garage_v1> set PYTHONPATH=%PYTHONPATH%;c:\

users\cbell\Documents\mygarage_v1

Or, on Linux and macOS, you can use this command to set the Python path.

export PYTHONPATH=$(pwd);$PYTHONPATH

Chapter 5 example: SQl DatabaSe Development

200

Now we can run the shell. For this, we will start in Python mode using the --py

option. Let’s exercise some of the methods in the class. We can do try all of them out

except the make_rows() methods. We’ll see those later. Listing 5-10 shows how to import

the class in the shell, initialize (create) a class instance named mygarage, then connect

with connect(), and execute some of the methods. We close with a call to disconnect()

to shut down the connection to the server.

Listing 5-10. Testing MyGarage using MySQL Shell

C:\Users\cbell\Documents\my_garage_v1> mysqlsh --py

MySQL Py > from database.garage_v1 import MyGarage

Running from MySQL Shell. Provide mysqlx in constructor.

MySQL Py > myg = MyGarage(mysqlx)

MySQL Py > myg.connect('root', 'SECRET', 'localhost', 33060)

MySQL Py > db = myg.get_db()

MySQL Py > db

<Schema:garage_v1>

MySQL Py > s = myg.get_session()

MySQL Py > s

<Session:root@localhost:33060>

MySQL Py > myg.is_connected()

true

MySQL Py > myg.disconnect()

MySQL Py > myg.is_connected()

false

Notice here we imported the module, then created an instance of the class passing

in the built-in mysqlx module. Then, we connected to the server (be sure to use the

password for your system), retrieved the database and printed it (by placing the variable

on a line and pressing ENTER), did the same for the session, and then finally tested the

is_connected() and disconnect() methods.

During the execution, we issued print() statements to print some of the results from

method calls. A nice feature of the shell is if you print a class instance variable, it displays

the class name for the variable. That’s another trick you can use to help you learn the

classes and help you choose the correct methods to use. This will save you time as you

continue to learn the X DevAPI.

Chapter 5 example: SQl DatabaSe Development

201

Caution the class uses the mysqlx module, which requires an x protocol
connection. be sure to use the x protocol port (33060 by default).

If you want to save these commands in a file, you can. In fact, this is one form

of a manual unit test to test class (units) of the code.5 To make it a bit easier to read

from executing in batch mode, we will add some print() statements. To run this test,

create a folder named unittests and place the file there named garage_v1_test.py.

Listing 5-11 shows the complete listing for the file. We also added code to prompt for

the user Id and password, which is much nicer than having it hardcoded in the file!

Listing 5-11. garage_v1_test.py

from getpass import getpass

from database.garage_v1 import MyGarage

print("MyGarage Class Unit test")

mygarage = MyGarage(mysqlx)

user = raw_input("User: ")

passwd = getpass("Password: ")

print("Connecting...")

mygarage.connect(user, passwd, 'localhost', 33060)

print("Getting the database...")

database = mygarage.get_db()

print(database)

print("Getting the session...")

session = mygarage.get_session()

print(session)

print("Connected?")

print(mygarage.is_connected())

print("Disconnecting...")

mygarage.disconnect()

print("Connected?")

print(mygarage.is_connected())

5 These are not the unit tests available in Python using the unit testing framework (https://docs.
python.org/2/library/unit test.html). Rather, they are unit tests in that they test portions of
the application (https://en.wikipedia.org/wiki/Unit_testing).

Chapter 5 example: SQl DatabaSe Development

https://docs.python.org/2/library/unit
https://docs.python.org/2/library/unit
https://en.wikipedia.org/wiki/Unit_testing

202

Later, if you want to execute it, you can do so with the following command.

Remember to run this from the folder you created earlier (mygarage_v1). This is a nifty

way to ensure you can test parts of your code without having the entire application

sorted. Listing 5-12 shows the execution of the test code.

Listing 5-12. Running the garage_v1_test Unit Test

> mysqlsh --py -f unittests\garage_v1_test.py

Running from MySQL Shell. Provide mysqlx in constructor.

MyGarage Class Unit test

User: root

Password:

Connecting...

Getting the database...

<Schema:garage_v1>

Getting the session...

<Session:root@localhost:33060>

Connected?

True

Disconnecting...

Connected?

False

Now, let’s look at the simplest of the classes that model one of the database tables or,

in this case, a view.

 Location Class
This class is a model of the location view. Recall, the location view performs the

join to get a list of all the storage places and storage equipment into a single list that

can be used as a lookup table. Thus, this class needs to implement only the read

CRUD operation.

In the following section, we will demonstrate how to write the source code for the

class using the MySQL Shell.

Chapter 5 example: SQl DatabaSe Development

203

 Writing the Source Code

One of the ways you can use the shell to write your code is to use an interactive session

and write the code one line at a time. This allows you to experiment with how to organize

the code and, more importantly, learn which methods to use.

For this class, we need only the read operation to populate the drop-down list in

the detail forms for the hand tool, power tool, and organizer tables. Since we are using

the database\garage_v1.py code module for the database connection, we will need to

initialize that class first. Once we login and have an instance of the MyGarage class, we

can use that to get the table and read the rows in the table. Listing 5-13 shows the code

that can accomplish these steps.

Listing 5-13. Primitive Code

from database.garage_v1 import MyGarage

LOCATION_READ_COLS = ['PlaceId', 'StorageEquipment', 'Type', 'Location']

LOCATION_READ_BRIEF_COLS = ['StorageEquipment', 'Type', 'Location']

mygarage = MyGarage(mysqlx)

mygarage.connect('root', 'SECRET', 'localhost', 33060)

schema = mygarage.get_db()

table = schema.get_table('location')

sql_res = table.select(LOCATION_READ_COLS).order_by(∗LOCATION_READ_
BRIEF_COLS).limit(5).execute()

rows = mygarage.make_rows(sql_res)

print(rows)

Notice here we use constants to set up the column names. This makes the code in

the select() method a bit nicer, especially if you use other clauses that require a list of

column names. In the case, we also used the limit() method, which limits the output

to the first five rows, which makes the execution of the code brief. Listing 5-14 shows the

execution of this code with the shell.

Listing 5-14. Executing the Primitive Code

MySQL Py > from database.garage_v1 import MyGarage

MySQL Py > LOCATION_READ_COLS = ['PlaceId', 'StorageEquipment', 'Type',

'Location']

Chapter 5 example: SQl DatabaSe Development

204

MySQL Py > LOCATION_READ_BRIEF_COLS = ['StorageEquipment', 'Type',

'Location']

MySQL Py > mygarage = MyGarage(mysqlx)

MySQL Py > mygarage.connect('root', 'SECRET', 'localhost', 33060)

MySQL Py > schema = mygarage.get_db()

MySQL Py > table = schema.get_table('location')

MySQL Py > sql_res = table.select(LOCATION_READ_COLS).order_by(∗LOCATION_
READ_BRIEF_COLS).limit(5).execute()

MySQL Py > rows = mygarage.make_rows(sql_res)

MySQL Py > print(rows)

[['1007', 'Kobalt 3000 Steel Rolling Tool Cabinet (Black)', 'Drawer',

'Bottom'], ['1001', 'Kobalt 3000 Steel Rolling Tool Cabinet (Black)',

'Drawer', 'Left 1'], ['1002', 'Kobalt 3000 Steel Rolling Tool Cabinet

(Black)', 'Drawer', 'Left 2'], ['1003', 'Kobalt 3000 Steel Rolling Tool

Cabinet (Black)', 'Drawer', 'Left 3'], ['1004', 'Kobalt 3000 Steel Rolling

Tool Cabinet (Black)', 'Drawer', 'Right 1']]

While the output of the rows isn’t printed in a nice-to-read manner (it’s not really

required), you could add code to do that if you wanted to see the details, but printing the

raw Python list is enough to see that five rows were returned.

Now, let’s form a class from the preceding example code. We simply apply the

coding constructs for creating a class having a single method named read(). We also

write a constructor to the same using the instance of the mysqlx object to get the table.

Listing 5-15 shows the modified code.

While the listings in this chapter show how you can type the code needed to create

classes, there is a bit of a procedure you must follow to do this. Specifically, you must

enter lines with spaces between the class declaration and its methods. This is because

the shell will evaluate the class code when you press ENTER on a blank line. The same

holds true for any multiline code block including dictionaries, lists, etc.

Caution If you encounter errors about unexpected indent even though the code
is correct, try using a line with spaces on it for the separation between methods.
note that you can execute the file in batch mode without the need for the lines
with spaces.

Chapter 5 example: SQl DatabaSe Development

205

Listing 5-15. Location Class Primitive

from database.garage_v1 import MyGarage

LOCATION_READ_COLS = ['PlaceId', 'StorageEquipment', 'Type', 'Location']

LOCATION_READ_BRIEF_COLS = ['StorageEquipment', 'Type', 'Location']

class Location(object):

 def __init__(self, myg):

 self.table = myg.get_db().get_table('location')

 def read(self):

 sql_res = self.table.select(LOCATION_READ_COLS).order_by(

 ∗LOCATION_READ_BRIEF_COLS).limit(5).execute()
 return(mygarage.make_rows(sql_res))

mygarage = MyGarage(mysqlx)

mygarage.connect('root', 'SECRET', 'localhost', 33060)

location = Location(mygarage)

rows = location.read()

print(rows)

Notice we made a class with a constructor that sets a class variable to contain

the class. This is required for running methods from the X DevAPI to implement the

CRUD operations. Remember, we have the connection already from the MyGarage class

instance (myg) and that is being passed into the Location class on the constructor.

That’s just the class code. We also need to add code to execute or test the class. We

add that after the class. When we place this code in a file (named listing5-15.py) and

execute it, the shell will create the class as written and execute the lines following the

class. For example, we execute the listing using the following command, which tells the

shell to open the file and run the contents of the file one line at a time in Python mode.

$ mysqlsh --py -f listing5-15.py

Now, when we execute that code in the shell, we get the same output as before as

shown in Listing 5-16.

Chapter 5 example: SQl DatabaSe Development

206

Listing 5-16. Executing the Location Class Primitive

MySQL Py > from database.garage_v1 import MyGarage

Running from MySQL Shell. Provide mysqlx in constructor.

MySQL Py > LOCATION_READ_COLS = ['PlaceId', 'StorageEquipment', 'Type',

'Location']

MySQL Py > LOCATION_READ_BRIEF_COLS = ['StorageEquipment', 'Type',

'Location']

MySQL Py > class Location(object):

 -> def __init__(self, myg):

 -> self.table = myg.get_db().get_table('location')

 ->

 -> def read(self):

 -> sql_res = self.table.select(LOCATION_READ_COLS).order_

by(∗LOCATION_READ_BRIEF_COLS).limit(5).execute()
 -> return(mygarage.make_rows(sql_res))

 ->

MySQL Py > mygarage = MyGarage(mysqlx)

MySQL Py > mygarage.connect('root', 'SECRET', 'localhost', 33060)

MySQL Py > location = Location(mygarage)

MySQL Py > rows = location.read()

MySQL Py > print(rows)

[['1007', 'Kobalt 3000 Steel Rolling Tool Cabinet (Black)', 'Drawer',

'Bottom'], ['1001', 'Kobalt 3000 Steel Rolling Tool Cabinet (Black)',

'Drawer', 'Left 1'], ['1002', 'Kobalt 3000 Steel Rolling Tool Cabinet

(Black)', 'Drawer', 'Left 2'], ['1003', 'Kobalt 3000 Steel Rolling Tool

Cabinet (Black)', 'Drawer', 'Left 3'], ['1004', 'Kobalt 3000 Steel Rolling

Tool Cabinet (Black)', 'Drawer', 'Right 1']]

As you can see, we not only were able to code the class, we also tested the class at the

end. This is a common and easy way to create your class modules. That is, rather than

coding them from scratch in a Python code file and later executing them (which many

do), the shell makes it possible to write the code on the fly. This is very similar to how

the Python interpreter works. The difference is the shell makes it possible to use the X

DevAPI directly.

Chapter 5 example: SQl DatabaSe Development

207

Once you perfect your class, you can create the proper code module to store the

class. In the sample application, this code is placed in the database folder with the

name of the class. For example, the Location class is stored in a file named database/

location.py. The completed code for the Location class is shown in Listing 5-17.

Listing 5-17. Completed Location Class Module (database/location.py)

class Location(object):

 """Location class

 This class encapsulates the location view permitting read operations

 on the data.

 """

 def __init__(self, mygarage):

 """Constructor"""

 self.mygarage = mygarage

 self.schema = mygarage.get_db()

 self.tbl = self.schema.get_table('location')

 def read(self):

 """Read data from the table"""

 sql_res = self.tbl.select(LOCATION_READ_COLS).order_by(

 ∗LOCATION_READ_BRIEF_COLS).execute()
 return self.mygarage.make_rows(sql_res)

Notice the completed code differs slightly in that we’ve added comments and we

stored the MyGarage instance and retrieved the schema (database) and stored both

in class variables. That is, the retrieval of the table was done in two steps rather than

chaining the get_schema() and get_table() methods. This sort of simplification can

sometimes make the code easier to read.

Now that we have the code module written, let’s write a unit test to test the class.

 Testing the Class

We have already seen a primitive of how to test the class in Listing 5-16. So, all we need to

do is execute those same lines adding only the import statement for the Location class.

Listing 5-18 shows the complete test code for the class. Notice we added [:5] to the print

statement for the rows. This limits print to the first five items in the list (rows).

Chapter 5 example: SQl DatabaSe Development

208

Listing 5-18. Test Code for the Location Class

from database.garage_v1 import MyGarage

from database.location import Location

mygarage = MyGarage(mysqlx)

mygarage.connect('root', 'SECRET', 'localhost', 33060)

location = Location(mygarage)

rows = location.read()

print(rows[:5])

We could place this code in a file and execute it, but let’s use the shell instead.

Listing 5-19 shows the execution of the code in the shell.

Listing 5-19. Executing the Location Class Test Code

MySQL Py > from database.garage_v1 import MyGarage

Running from MySQL Shell. Provide mysqlx in constructor.

MySQL Py > from database.location import Location

MySQL Py > mygarage = MyGarage(mysqlx)

MySQL Py > mygarage.connect('root', 'SECRET', 'localhost', 33060)

MySQL Py > location = Location(mygarage)

MySQL Py > rows = location.read()

MySQL Py > print(rows[:5])

[['Kobalt 3000 Steel Rolling Tool Cabinet (Black)', 'Drawer', 'Bottom'],

['Kobalt 3000 Steel Rolling Tool Cabinet (Black)', 'Drawer', 'Left 1'],

['Kobalt 3000 Steel Rolling Tool Cabinet (Black)', 'Drawer', 'Left 2'],

['Kobalt 3000 Steel Rolling Tool Cabinet (Black)', 'Drawer', 'Left 3'],

['Kobalt 3000 Steel Rolling Tool Cabinet (Black)', 'Drawer', 'Right 1']]

If you’re thinking that we might want to make the testing code a bit more formal and

easier to use, you’re on the right track. We will explore that in a later section. But first,

let’s see how to create the class for the vendor table.

Chapter 5 example: SQl DatabaSe Development

209

 Vendor Class
The Vendor class is responsible for encapsulating the create, read, update, and delete

(CRUD) operations on the vendor table. As such, the class will implement these methods

by name. In fact, the other classes will implement the same methods. That way, we have

uniformity in the sample application database code.

In this section, we will examine the Vendor class code in detail including a look at

how we can build the class using the shell as well as how we can test the class in the

shell. Now that we’ve seen a smaller example (just the read operation), the code for this

class will be at least familiar in look but much more detailed as you shall see.

We will see a detailed demonstration of how to write the code for the class

incrementally (one method at a time) starting with the first operation – create. We will

also see the test code added to each example but for brevity will only show the code

executing for the method we’re focused on (each of the CRUD operations).

 Create

The create operation is where we create a new row in the table. Thus, we will need to

provide all the data for the row. In this case, that includes the name, URL, and sources

fields. Recall, this allows us to give the vendor a name we recognize (e.g., Kobalt,

Craftsman), a URL to the vendor’s web site, and a sources field that is a text field

describing the stores where we can purchase products for that vendor.

Like the Location class, we will need to add a few directives to start including the

import for the MyGarage class and a list that includes the column names. The list is

purely a bookkeeping measure that allows us to change the columns or use alternate

column definitions for different SQL operations. We use this technique in more detail in

other classes for the database code.

We also include the class definition like we did previously naming the class

appropriately and adding a constructor method that accepts the MyGarage instance,

stores it in a class variable for later use, gets the schema saving that to a class variable,

and finally gets the table class instance.

The create() method simply accepts the values from the caller in the form of a

dictionary where the column names are the keys, then issues the insert() method

passing in the list of column names and values for the columns by chaining the values()

method. Listing 5-20 shows the initial version of the Vendor class. Take a moment to read

through the class definition.

Chapter 5 example: SQl DatabaSe Development

210

Notice at the bottom of the listing is additional code to create an instance of the

Vendor class, create a dictionary of test values, then call the create() method. Finally,

we use the MyGarage method get_last_insert_id() to retrieve the last auto-increment

value and print it.

Listing 5-20. Vendor Class create() Method

from database.garage_v1 import MyGarage

VENDOR_COLS_CREATE = ['Name', 'URL', 'Sources']

class Vendor(object):

 def __init__(self, myg):

 self.mygarage = mygarage

 self.schema = mygarage.get_db()

 self.tbl = self.schema.get_table('vendor')

 def create(self, vendor_data):

 vendor_name = vendor_data.get("Name", None)

 link = vendor_data.get("URL", None)

 sources = vendor_data.get("Sources", None)

 self.tbl.insert(VENDOR_COLS_CREATE).values(

 vendor_name, link, sources).execute()

mygarage = MyGarage(mysqlx)

mygarage.connect('root', 'SECRET', 'localhost', 33060)

vendor = Vendor(mygarage)

vendor_data = {

 "Name": "ACME Bolt Company",

 "URL": "www.acme.org",

 "Sources": "looney toons"

}

vendor.create(vendor_data)

last_id = mygarage.get_last_insert_id()[0]

When we execute this code in the shell, we will see each of the lines of code

validated. Don’t forget to use a blank line with spaces on it to separate the class methods

and a blank line with no spaces on it to terminate the class and dictionary definitions.

See the preceding note for why we need to do this.

Chapter 5 example: SQl DatabaSe Development

211

Let’s concentrate on the test code. Here, we simply created a new row and retrieved

the value for its Id column as shown in the following (the rest of the demonstration

omitted for brevity).

...

MySQL Py > print("Last insert id = {0}".format(last_id))

Last insert id = 177

However, that isn’t much detail is it? We can’t really tell if the row was inserted –

only that we got the last insert Id. So, let’s implement the read operation and use that to

validate the create.

 Read

The read operation needs two things: it needs to be able to read all the rows in the table

and return them like we did with the Location class, but it also needs to be used to read

a single row and return that data. This is because we will either read all the rows for the

list views or, when viewing a single row, retrieve the values for that row.

To do this, we will use a parameter named vendor_id, which is set to None by default.

This allows us to test this parameter and if it is None, retrieve all rows or retrieve a single

row if has a value.

There is one other aspect to the read operation. Recall the create operation used a

list to contain the column names. In that case, we did not need the Id field because the

create operation (insert) will result in that value being populated by MySQL. However,

for reading a row or all the rows, we need to get the Id column. Thus, we build another

list to add the Id column for the select() method call.

Let’s also add some error handling code. In this case, we will use a try…except block

to catch any errors during the insert() and select(). We also add a technique to return

a Boolean to tell the caller if the operation worked and, if it did not, an error message to

be used to display to the user. We do this by returning a tuple such as (True, None) for

success or (False, <error>) for an error. This will help us later if there is a problem.

Listing 5-21 shows the class with the read() method added and the test code updated.

Listing 5-21. Adding the read() Method

from database.garage_v1 import MyGarage

VENDOR_COLS_CREATE = ['Name', 'URL', 'Sources']

VENDOR_COLS = []

Chapter 5 example: SQl DatabaSe Development

212

VENDOR_COLS.extend(VENDOR_COLS_CREATE)

VENDOR_COLS.insert(0, 'Id') # Add the Id to the list

class Vendor(object):

 def __init__(self, mygarage):

 self.mygarage = mygarage

 self.schema = mygarage.get_db()

 self.tbl = self.schema.get_table('vendor')

 def create(self, vendor_data):

 vendor_name = vendor_data.get("Name", None)

 link = vendor_data.get("URL", None)

 sources = vendor_data.get("Sources", None)

 assert vendor_name, "You must supply a name for the vendor."

 try:

 self.tbl.insert(VENDOR_COLS_CREATE).values(

 vendor_name, link, sources).execute()

 except Exception as err:

 print("ERROR: Cannot add vendor: {0}".format(err))

 return (False, err)

 return (True, None)

 def read(self, vendor_id=None):

 if not vendor_id:

 # return all vendors

 sql_res = self.tbl.select(VENDOR_COLS).order_by("Name").

execute()

 else:

 # return specific vendor

 sql_res = self.tbl.select(VENDOR_COLS).where(

 "Id = '{0}'".format(vendor_id)).execute()

 return self.mygarage.make_rows(sql_res)

mygarage = MyGarage(mysqlx)

mygarage.connect('root', 'SECRET', 'localhost', 33060)

vendor = Vendor(mygarage)

Chapter 5 example: SQl DatabaSe Development

213

vendor_data = {

 "Name": "ACME Bolt Company",

 "URL": "www.acme.org",

 "Sources": "looney toons"

}

vendor.create(vendor_data)

last_id = mygarage.get_last_insert_id()[0]

print("Last insert id = {0}".format(last_id))

rows = vendor.read(last_id)

print("{0}".format(", ".join(rows[0])))

rows = vendor.read()

print(rows[:5])

Notice the last line of code prints only the first five rows returned for brevity. Like

before, we will omit the entry of the class and focus on the lines that test the class. The

following shows the lines executed to test the create() and read() methods. We test

reading a single row by using the last Id returned after the create() and then perform a

read() to get all the rows.

...

MySQL Py > print("Last insert id = {0}".format(last_id))

Last insert id = 178

MySQL Py > rows = vendor.read(last_id)

MySQL Py > print("{0}".format(", ".join(rows[0])))

178, ACME Bolt Company, www.acme.org, looney toons

MySQL Py > rows = vendor.read()

MySQL Py > print(rows[:5])

[['178', 'ACME Bolt Company', 'www.acme.org', 'looney toons'], ['175',

'ACME Bolt Company', 'www.acme.org', 'looney toons'], ['172', 'ACME Bolt

Company', 'www.acme.org', 'looney toons'], ['171', 'ACME Bolt Company',

'www.acme.org', 'looney toons'], ['170', 'ACME Bolt Company', 'www.acme.

org', 'looney toons']]

Once again, the printing of the rows isn’t pretty, but for development purposes,

it does show the create() and read() are working. Cool! Now, let’s add the update

operation.

Chapter 5 example: SQl DatabaSe Development

214

 Update

The update operation is like the create operation in that we will need all the data for the

row. But unlike the create operation, we need the Id column so that we’re updating the

correct row. Savvy developers would add a step to validate the columns before issuing

the update so that only those columns that changed are updated, but we’ll take a simpler

approach and supply all the columns and let the database sort it out.

However, since the update operation must have the Id column, we will add an

assertion to ensure the caller provides that information for the where() method.

Otherwise, an update would be too dangerous!

We also use a try...except block around the update() to catch any errors.

Listing 5- 22 shows the class with the update() method added and the constructor,

create(), and read() methods omitted for brevity. Notice how we set the values for

the columns using a for loop.

Listing 5-22. Adding the update() Method

from database.garage_v1 import MyGarage

VENDOR_COLS_CREATE = ['Name', 'URL', 'Sources']

VENDOR_COLS = []

VENDOR_COLS.extend(VENDOR_COLS_CREATE)

VENDOR_COLS.insert(0, 'Id') # Add the Id to the list

class Vendor(object):

...

 def update(self, vendor_data):

 vendor_id = vendor_data.get("VendorId", None)

 vendor_name = vendor_data.get("Name", None)

 link = vendor_data.get("URL", None)

 sources = vendor_data.get("Sources", None)

 assert vendor_id, "You must supply an Id to update the vendor."

 field_value_list = [('Name', vendor_name),

 ('URL', link), ('Sources', sources)]

 try:

 tbl_update = self.tbl.update()

 for field_value in field_value_list:

 tbl_update.set(field_value[0], field_value[1])

Chapter 5 example: SQl DatabaSe Development

215

 tbl_update.where("Id = '{0}'".format(vendor_id)).execute()

 except Exception as err:

 print("ERROR: Cannot update vendor: {0}".format(err))

 return (False, err)

 return (True, None)

mygarage = MyGarage(mysqlx)

mygarage.connect('root', 'SECRET', 'localhost', 33060)

vendor = Vendor(mygarage)

vendor_data = {

 "Name": "ACME Bolt Company",

 "URL": "www.acme.org",

 "Sources": "looney toons"

}

vendor.create(vendor_data)

last_id = mygarage.get_last_insert_id()[0]

print("Last insert id = {0}".format(last_id))

rows = vendor.read(last_id)

print("{0}".format(", ".join(rows[0])))

rows = vendor.read()

print(rows[:5])

vendor_data = {

 "VendorId": last_id,

 "Name": "ACME Nut Company",

 "URL": "www.acme.org",

 "Sources": "looney toons"

}

vendor.update(vendor_data)

rows = vendor.read(last_id)

print("{0}".format(", ".join(rows[0])))

The test code for the update operation simply uses the same dictionary as the create

operation, only we change some of the values to test the update. The following shows

the output of the test execution starting with the read after the create operation. Notice

update() does indeed change the values for that row we created earlier.

Chapter 5 example: SQl DatabaSe Development

216

...

MySQL Py > rows = vendor.read(last_id)

MySQL Py > print("{0}".format(", ".join(rows[0])))

179, ACME Bolt Company, www.acme.org, looney toons

MySQL Py > rows = vendor.read()

...

MySQL Py > vendor_data = {

 -> "VendorId": last_id,

 -> "Name": "ACME Nut Company",

 -> "URL": "www.acme.org",

 -> "Sources": "looney toons"

 -> }

MySQL Py > vendor.update(vendor_data)

MySQL Py > rows = vendor.read(last_id)

MySQL Py > print("{0}".format(", ".join(rows[0])))

179, ACME Nut Company, www.acme.org, looney toons

Now, let’s add the last operation – delete.

 Delete

The delete operation simply deletes a row in the table. All we need to do that is the Id

column. Thus, the delete() method is written to use the vendor_id as a parameter

testing to ensure there is one provided, then issues the delete operation on the table.

Like the other methods, we use the try…except block and return a tuple to report

whether the operation succeeded or not. Listing 5-23 shows the class with the delete()

method added and the constructor, create(), read(), and update() methods omitted

for brevity.

Listing 5-23. Adding the delete() Method

from database.garage_v1 import MyGarage

VENDOR_COLS_CREATE = ['Name', 'URL', 'Sources']

VENDOR_COLS = []

VENDOR_COLS.extend(VENDOR_COLS_CREATE)

VENDOR_COLS.insert(0, 'Id') # Add the Id to the list

class Vendor(object):

Chapter 5 example: SQl DatabaSe Development

217

...

 def delete(self, vendor_id=None):

 """Delete a row from the table"""

 assert vendor_id, "You must supply an Id to delete the vendor."

 try:

 self.tbl.delete().where("Id = '{0}'".format(vendor_id)).

execute()

 except Exception as err:

 print("ERROR: Cannot delete vendor: {0}".format(err))

 return (False, err)

 return (True, None)

mygarage = MyGarage(mysqlx)

mygarage.connect('root', 'secret', 'localhost', 33060)

vendor = Vendor(mygarage)

vendor_data = {

 "Name": "ACME Bolt Company",

 "URL": "www.acme.org",

 "Sources": "looney toons"

}

vendor.create(vendor_data)

last_id = mygarage.get_last_insert_id()[0]

print("Last insert id = {0}".format(last_id))

rows = vendor.read(last_id)

print("{0}".format(", ".join(rows[0])))

rows = vendor.read()

print(rows[:5])

vendor_data = {

 "VendorId": last_id,

 "Name": "ACME Nut Company",

 "URL": "www.acme.org",

 "Sources": "looney toons"

}

vendor.update(vendor_data)

rows = vendor.read(last_id)

print("{0}".format(", ".join(rows[0])))

Chapter 5 example: SQl DatabaSe Development

218

vendor.delete(last_id)

rows = vendor.read(last_id)

if not rows:

 print("Record not found.")

Ok, so that is the complete code for the class. The following shows the execution after

the update() call. Here, we attempt to delete the row we inserted and later updated, then

try to read it from the table. If there are no rows returned, the row was not found and

hence we show the delete operation succeeding.

...

MySQL Py > rows = vendor.read(last_id)

MySQL Py > print("{0}".format(", ".join(rows[0])))

180, ACME Nut Company, www.acme.org, looney toons

MySQL Py > vendor.delete(last_id)

MySQL Py > rows = vendor.read(last_id)

MySQL Py > if not rows:

 -> print("Record not found.")

Record not found.

Now that we’ve had a detailed walkthrough on how to use the shell to create the

classes for the database tables (and view), let’s see an overview of each of the remaining

classes. Each of the classes is written in the same manner as the Vendor class with details

of specific implementation for the class noted. As you will see, uniformity is our friend.

 Handtool Class
The Handtool class encapsulates the CRUD operations for the handtool table. It uses the

same class structure and methods as the other classes. It differs in complexity from the

Vendor class in three main ways.

First, the handtool table has several fields that cannot be blank (Null), so there are a

few additional assertions for insert and update operations as follows.

assert tool_size, "You must specify a toolsize for the handtool."

assert handtool_type, "You must specify a type for the handtool."

assert description, "You must supply a description for the handtool."

assert place_id, "You must supply an Id for the handtool."

Chapter 5 example: SQl DatabaSe Development

219

Second, the table has an enumerated field, which we represent with another list in

the code as follows. This allows us to map the names to the enumerated values. This

may appear strange as it is a list of tuples with the values repeated. That is intentional. A

map can be defined this way so that the key (the first value in the tuple) is used to “map”

to the second value (or simply value). Since we are good database developers, we don’t

encode numeric values for the enumerated field values, we must repeat the value.

HANDTOOL_TYPES = [

 ('Adjustable Wrench', 'Adjustable Wrench'), ('Awl', 'Awl'),

 ('Clamp', 'Clamp'), ('Crowbar', 'Crowbar'), ('Drill Bit', 'Drill Bit'),

 ('File', 'File'), ('Hammer', 'Hammer'), ('Knife', 'Knife'),

('Level', 'Level'),

 ('Nutdriver', 'Nutdriver'), ('Pliers', 'Pliers'), ('Prybar', 'Prybar'),

 ('Router Bit', 'Router Bit'), ('Ruler', 'Ruler'), ('Saw', 'Saw'),

 ('Screwdriver', 'Screwdriver'), ('Socket', 'Socket'),

 ('Socket Wrench', 'Socket Wrench'), ('Wrench', 'Wrench'),

]

Third, since the handtool table has several fields, a list of the rows in the table for a

lookup or browse operation does not require all the fields. It is also the case that we want

to see the values that the foreign keys point to. Thus, we use a SQL SELECT query like the

one shown in the following in place of the read all rows feature for the read() method.

We store this in a constant to make it easier to read and change if needed.

HANDTOOL_READ_LIST = (

 "SELECT handtool.Id, handtool.type, handtool.description, "

 "handtool.toolsize, storage.description as StorageEquipment, "

 "place.type as locationtype, place.description as location FROM

garage_v1.handtool "

 "JOIN garage_v1.place ON "

 "handtool.placeid = place.id JOIN garage_v1.storage ON place.

storageid = storage.id "

 "ORDER BY handtool.type, handtool.description"

)

Chapter 5 example: SQl DatabaSe Development

220

This query is used in the read operation as follows. Notice we use the sql() method

of the session object instead of the select() method for issuing the query. Thus, we also

capture the session object instance in the constructor.

if not handtool_id:

 # return all handtools - uses a JOIN so we have to use the sql()

 # method instead of select, but we arrive at the same results

 sql_res = self.session.sql(HANDTOOL_READ_LIST).execute()

 return self.mygarage.make_rows_sql(sql_res, len(HANDTOOL_READ_COLS))

else:

 # return specific handtool

 sql_res = self.tbl.select(HANDTOOL_COLS).where(

 "Id = '{0}'".format(handtool_id)).execute()

return self.mygarage.make_rows(sql_res)

You can find this code in the database/handtool.py code module. Take a few

moments to study these changes and see for yourself how they fit together.

 Organizer Class
The Organizer class encapsulates the CRUD operations for the organizer table. It

uses the same class structure and methods as the other classes. It differs in complexity

from the Vendor class like the Handtool class; it requires a map for the enumerated

column and an SQL SELECT statement for the read operation as shown in the following.

Otherwise, the code is the same pattern as the Vendor class.

ORGANIZER_TYPES = [('Bin', 'Bin'), ('Box', 'Box'), ('Case', 'Case')]

...

ORGANIZER_READ_LIST = (

 "SELECT organizer.Id, organizer.Type, organizer.Description, "

 "storage.description as StorageEquipment, place.type as LocationType, "

 "place.description as Location FROM garage_v1.organizer JOIN "

 "garage_v1.place ON organizer.placeid = place.ID JOIN "

 "garage_v1.storage ON place.storageid = storage.id "

 "ORDER BY Type, organizer.description"

)

Chapter 5 example: SQl DatabaSe Development

221

 Place Class
The Place class encapsulates the CRUD operations for the place table. It uses the same

class structure and methods as the other classes. It differs in complexity from the Vendor

class like the Handtool class; it requires a map for the enumerated column and an SQL

SELECT statement for the read operation as shown in the following. Otherwise, the code

is the same pattern as the Vendor class.

PLACE_TYPES = [('Drawer', 'Drawer'), ('Shelf', 'Shelf')]

...

PLACE_READ_LIST = (

 "SELECT place.Id, storage.description as StorageEquipment, place.Type

as LocationType, "

 "place.Description as Location FROM garage_v1.place JOIN "

 "garage_v1.storage ON place.StorageId = storage.ID ORDER BY "

 "StorageEquipment, LocationType, Location"

)

 Powertool Class
The Powertool class encapsulates the CRUD operations for the powertool table. It

uses the same class structure and methods as the other classes. It differs in complexity

from the Vendor class like the Handtool class; it requires a map for the enumerated

column and an SQL SELECT statement for the read operation as shown in the following.

Otherwise, the code is the same pattern as the Vendor class.

POWERTOOL_TYPES = [('Corded', 'Corded'), ('Cordless', 'Cordless'),

('Air', 'Air')]

...

POWERTOOL_READ_LIST = (

 "SELECT powertool.Id, powertool.type, powertool.description, "

 "storage.description as StorageEquipment, place.type as locationtype, "

 "place.description as location FROM garage_v1.powertool JOIN garage_

v1.place "

 "ON powertool.placeid = place.id JOIN garage_v1.storage ON "

 "place.storageid = storage.id ORDER BY powertool.type, powertool.

description"

)

Chapter 5 example: SQl DatabaSe Development

222

 Storage Class
The Storage class encapsulates the CRUD operations for the storage table. It uses the

same class structure and methods as the other classes. It differs in complexity from the

Vendor class like the Handtool class; it requires a map for the enumerated column and

an SQL SELECT statement for the read operation as shown in the following. It also differs

in the read operation for returning all rows returns a smaller list of columns. This is used

to show all of the storage equipment in the user interface. Otherwise, the code is the

same pattern as the Vendor class.

STORAGE_TYPES = [

 ('Cabinet', 'Cabinet'), ('Shelving', 'Shelving'),

 ('Toolchest', 'Toolchest'), ('Workbench', 'Workbench')

]

STORAGE_COLS_BRIEF = [

 'storage.Id', 'Type', 'Description', 'Location'

]

...

STORAGE_READ_LIST = (

 "SELECT storage.Id, vendor.name, Type, description, Location FROM "

 "garage_v1.storage JOIN garage_v1.vendor ON storage.VendorId = vendor.Id "

 "ORDER BY Type, Location"

)

 Testing the Class Modules
One of the tools in a developer’s toolbox is a strong set of tests. Since we have already

seen how to create the database classes in the shell, let’s now see how to develop a

testing framework for testing the database classes.

Recall, testing of the classes used a very similar mechanism and, in fact, followed

the same sequence of steps. Whenever developers see this, they think “automate” and

“class.” That is, it is easy to create a base class that contains all the steps and subclasses

that implement the class (test) specific to the class it is testing. This is a very common

way to approach repeatable tests.

In this case, we create a base class named CRUDTest in the unittests/crud_test.

py code module that implements methods for starting (or setup) of the test, a generic

Chapter 5 example: SQl DatabaSe Development

223

method to show the rows returned, and one each for the test cases we want to run.

Table 5-3 shows the methods implemented in the class.

Table 5-3. CRUDTest Class Methods

Method Parameters Description

__init__() Constructor

begin() mysqlx instance, class

name, user name,

password

Connect to a mySQl server and setup the

myGarage class. Called by the setup() method

show_rows() rows (list), number of

rows to display

print the rows in the list up to the number specified

set_up() Setup the test and initialize the test cases. override

for each class

create() run the create test case. override for each class

read_all() run the read test case to return all rows. override

for each class

read_one() run the read test case to return a specific row.

override for each class

update() run the update test case. override for each class

delete() run the delete test case. override for each class

tear_down() Close the test and disconnect from the server

This may seem like a lot of work, but let’s look at the class first, then see an example

of how we can derive from it to create a test for one of the database classes. Listing 5-24

shows the code for the CRUDTest class.

Listing 5-24. Code for the CRUDTest Class

from __future__ import print_function

from getpass import getpass

from database.garage_v1 import MyGarage

Chapter 5 example: SQl DatabaSe Development

224

class CRUDTest(object):

 """Base class for Unit testing table/view classes."""

 def __init__(self):

 """Constructor"""

 self.mygarage = None

 def __begin(self, mysql_x, class_name, user=None, passwd=None):

 """Start the tests"""

 print("\n∗∗∗ {0} Class Unit test ∗∗∗\n".format(class_name))
 self.mygarage = MyGarage(mysql_x)

 if not user:

 user = raw_input("User: ")

 if not passwd:

 passwd = getpass("Password: ")

 print("Connecting...")

 self.mygarage.connect(user, passwd, 'localhost', 33060)

 return self.mygarage

 @staticmethod

 def show_rows(rows, num_rows):

 """Display N rows from row result"""

 print("\n\tFirst {0} rows:".format(num_rows))

 print("\t--------------------------")

 for item in range(0, num_rows):

 print("\t{0}".format(", ".join(rows[item])))

 def set_up(self, mysql_x, user=None, passwd=None):

 """Setup functions"""

 pass

 def create(self):

 """Run Create test case"""

 pass

 def read_all(self):

 """Run Read(all) test case"""

 pass

Chapter 5 example: SQl DatabaSe Development

225

 def read_one(self):

 """Run Read(record) test case"""

 pass

 def udpate(self):

 """Run Update test case"""

 pass

 def delete(self):

 """Run Delete test case"""

 pass

 def tear_down(self):

 """Tear down functions"""

 print("\nDisconnecting...")

 self.mygarage.disconnect()

Notice we perform the initialization, setup, and teardown steps in the base class.

This way, we can ensure we execute those steps the same way for each class.

Notice also the methods we want to override are listed with “pass” as the body. This

is essentially a “do nothing,” but legal method body. We will write the specifics for each

method in the classes we use to create tests for the database classes.

For example, we migrate our test for the Vendor class by creating a new class named

VendorTests derived from CRUDTest and stored in the file unittests/vendor_test.py.

Listing 5-25 shows the code for the new class.

Listing 5-25. Code for the VendorTests Class

from __future__ import print_function

from unittests.crud_test import CRUDTest

from database.vendor import Vendor

class VendorTests(CRUDTest):

 """Test cases for the Vendor class"""

 def __init__(self):

 """Constructor"""

 CRUDTest.__init__(self)

Chapter 5 example: SQl DatabaSe Development

226

 self.vendor = None

 self.last_id = None

 def set_up(self, mysql_x, user=None, passwd=None):

 """Setup the test cases"""

 self.mygarage = self.begin(mysql_x, "Vendor", user, passwd)

 self.vendor = Vendor(self.mygarage)

 def create(self):

 """Run Create test case"""

 print("\nCRUD: Create test case")

 vendor_data = {

 "Name": "ACME Bolt Company",

 "URL": "www.acme.org",

 "Sources": "looney toons"

 }

 self.vendor.create(vendor_data)

 self.last_id = self.mygarage.get_last_insert_id()[0]

 print("\tLast insert id = {0}".format(self.last_id))

 def read_all(self):

 """Run Read(all) test case"""

 print("\nCRUD: Read (all) test case")

 rows = self.vendor.read()

 self.show_rows(rows, 5)

 def read_one(self):

 """Run Read(record) test case"""

 print("\nCRUD: Read (row) test case")

 rows = self.vendor.read(self.last_id)

 print("\t{0}".format(", ".join(rows[0])))

 def update(self):

 """Run Update test case"""

 print("\nCRUD: Update test case")

 vendor_data = {

 "VendorId": self.last_id,

 "Name": "ACME Nut Company",

Chapter 5 example: SQl DatabaSe Development

227

 "URL": "www.acme.org",

 "Sources": "looney toons"

 }

 self.vendor.update(vendor_data)

 def delete(self):

 """Run Delete test case"""

 print("\nCRUD: Delete test case")

 self.vendor.delete(self.last_id)

 rows = self.vendor.read(self.last_id)

 if not rows:

 print("\tNot found (deleted).")

What makes this technique powerful is we can go on to create new tests for each of

the database classes named for the class and store them in the same unittests folder.

We can then write a driver script that runs all the tests in a loop. Since the Location class

has only a read all operation, we can code “no operation” for the other operations, which

allows us to include the LocationTests in the loop. Listing 5-26 shows the code for a

driver script named run_all.py also stored in the unittests folder.

Listing 5-26. Test Driver run_all.py

from __future__ import print_function

from getpass import getpass

from unittests.handtool_test import HandtoolTests

from unittests.location_test import LocationTests

from unittests.organizer_test import OrganizerTests

from unittests.place_test import PlaceTests

from unittests.powertool_test import PowertoolTests

from unittests.storage_test import StorageTests

from unittests.vendor_test import VendorTests

print("CRUD Tests for all classes...")

crud_tests = []

handtool = HandtoolTests()

crud_tests.append(handtool)

location = LocationTests()

crud_tests.append(location)

organizer = OrganizerTests()

Chapter 5 example: SQl DatabaSe Development

228

crud_tests.append(organizer)

place = PlaceTests()

crud_tests.append(place)

powertool = PowertoolTests()

crud_tests.append(powertool)

storage = StorageTests()

crud_tests.append(storage)

vendor = VendorTests()

crud_tests.append(vendor)

Get user, passwd

user = raw_input("User: ")

passwd = getpass("Password: ")

Run the CRUD operations for all classes that support them

for test in crud_tests:

 test.set_up(mysqlx, user, passwd)

 test.create()

 test.read_one()

 test.read_all()

 test.update()

 test.read_one()

 test.delete()

 test.tear_down()

To execute this test, you can use the command shown in Listing 5-27 with the

expected output. Here, we see only a portion of the output for brevity.

Listing 5-27. Executing the Test Driver

C:\Users\cbell\Documents\mygarage_v1>mysqlsh --py -f unittests/run_all.py

Running from MySQL Shell. Provide mysqlx in constructor.

CRUD Tests for all classes...

User: root

Password:

∗∗∗ Handtool Class Unit test ∗∗∗
Connecting...

Chapter 5 example: SQl DatabaSe Development

229

CRUD: Create test case

 Last insert id = 2267

CRUD: Read (row) test case

 2267, 101, Plumpbus, Hammer, medium, 1001

CRUD: Read (all) test case

 First 5 rows:

 2050, Awl, Alloy Steel Scratch, 6-in, Kobalt 3000 Steel Rolling

Tool Cabinet (Black), Drawer, Left 3

 2048, Awl, Complex Hook, 3-in, Kobalt 3000 Steel Rolling Tool

Cabinet (Black), Drawer, Left 3

 2049, Awl, Curved Hook, 3-in, Kobalt 3000 Steel Rolling Tool

Cabinet (Black), Drawer, Left 3

 2047, Awl, Hook, 3-in, Kobalt 3000 Steel Rolling Tool Cabinet

(Black), Drawer, Left 3

 2046, Awl, Scratch, 3-in, Kobalt 3000 Steel Rolling Tool Cabinet

(Black), Drawer, Left 3

CRUD: Update test case

CRUD: Read (row) test case

 2267, 101, Plumpbus Pro, Screwdriver, grande, 1001

CRUD: Delete test case

 Not found (deleted).

Disconnecting...

∗∗∗ Location Class Unit test ∗∗∗
Connecting...

CRUD: Create test case (SKIPPED)

CRUD: Read (row) test case (SKIPPED)

CRUD: Read (all) test case

 First 5 rows:

 1007, Kobalt 3000 Steel Rolling Tool Cabinet (Black), Drawer, Bottom

 1001, Kobalt 3000 Steel Rolling Tool Cabinet (Black), Drawer, Left 1

 1002, Kobalt 3000 Steel Rolling Tool Cabinet (Black), Drawer, Left 2

 1003, Kobalt 3000 Steel Rolling Tool Cabinet (Black), Drawer, Left 3

 1004, Kobalt 3000 Steel Rolling Tool Cabinet (Black), Drawer, Right 1

Chapter 5 example: SQl DatabaSe Development

230

CRUD: Update test case (SKIPPED)

CRUD: Read (row) test case (SKIPPED)

CRUD: Delete test case (SKIPPED)

...

Take some time to download the code from the book web site and test out the unit

tests yourself. You should notice it is very easy to use this concept and you can develop

others like it to test your database code. Just think; we did this all without having to write

any user interface code, which allows to validate our database code before the first line

of user interface code is written. Nice!

 Summary
At first, some may be skeptical of the claim that MySQL Shell can be used as a

development tool. This may be partly because it is new and partly because it isn’t a

typical code editor; rather, it is more like the Python interpreter.

However, you have seen for yourself how one can use the shell to not only test out

code to see what methods work and how to work with the X DevAPI, but you also saw

how easy it is to write code and execute it in the shell.

In fact, we kicked that up a notch further by demonstrating how to develop and test

database code modules in Python all without having a user interface to support it. This

is a huge benefit for developers because it is often left to the end to test modules like the

database classes. This way, we test the database code before the user interface is written,

thereby allowing us to concentrate on one piece of the application at a time.

In the next chapter, we will continue our journey in the X DevAPI using the shell by

taking a deeper look at how to use the MySQL Document Store – a whole new, non-SQL

(NOSQL) way of working with data.

Chapter 5 example: SQl DatabaSe Development

231
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_6

CHAPTER 6

Using the Shell
with a Document Store
Thus far in the book, we have discovered MySQL Shell and seen how we can use it to

replace the older MySQL client (mysql) and how we can use the shell to administer

our database using traditional SQL commands. We also learned how to use the shell to

develop our relational database code using the X DevAPI and even test it!

Now it is time to learn more about what the document store is and how we can begin

to work with it. And, yes, you can do that with the shell too. The core concept being

JavaScript Object Notation (JSON) documents. We will learn more about what JSON is

and how the MySQL Document Store works. We’ll also see several examples of how to

incorporate JSON with your relational database. In the next chapter, we’ll tackle building

a NoSQL solution with JSON documents.

Let’s jump in with a brief foray into terminology and an overview of the technology.

 Overview
The origins of the MySQL Document Store lie in several technologies that are leveraged

together to form the document store. Specifically, Oracle has combined a key, value

mechanism with a new data type, a new programming library, and a new access

mechanism to create what is now the document store. Not only does this allow us to

use MySQL with a NoSQL interface, it also allows us to build hybrid solutions that

leverage the stability and structure of relational data while adding the flexibility of JSON

documents.

In this chapter, we will learn about how MySQL supports JSON documents including

how to add, find, update, and remove data (commonly referred to as create, read,

update, and delete respectfully or simply CRUD). We begin with more information about

the concepts and technologies you will encounter throughout this and the next chapter.

232

We will then move on to learning more about the JSON data type and the JSON functions

in the MySQL server. While this chapter focuses on using JSON with relational data, a

firm foundation on how to use JSON is required to master the MySQL Document Store

NoSQL interface (the X DevAPI).

There are several new concepts and technologies and associated jargon we will

encounter when working with the document store and JSON in MySQL. In this section,

we will see how these concepts and technologies explain what comprises the JSON data

type and document store interface. Let’s begin with most basic concept that JSON uses:

key, value mechanisms.

 Origins: Key, Value Mechanisms
Like most things in this world, nothing is truly new in the sense that it is completely

original without some form of something that came before and thus are typically built

from existing technologies applied in novel ways. Key, value mechanisms are a prime

example of a base technology. We use the term, mechanism, because the use of the key

allows you to access the value.

When we say key, value we mean there exists some tag (normally a string) that forms

the key and each key is associated with a value. For example, "name":"Charlie" is an

example where key (name) has a value (Charlie). While the values in a key, value store

are normally short strings, values can be complex; numeric, alphanumeric, lists, or even

nested key, value sets.

Key, value mechanisms are best known for being easy to use programmatically while

still retaining readability. That is, with diligent use of whitespace, a complex nested

key, value data structure can be read by humans. The following shows one example

formatted in a manner like how some developers would format code.1 As you can see,

it is very easy to see what this set of key, values are storing; name, address, and phone

numbers.

{ "name": {

 "first":"Charlie",

 "last":"Harrington"

1 Debates over how to format code have been known to turn into a religious fervor concerning
spacing, but most agree to disagree where that first curly brace should appear – on the first line
by itself, on the same line, or on the next line.

Chapter 6 Using the shell with a DoCUment store

233

 },

 "address": {

 "street":"123 Main Street",

 "city":"melborne",

 "state":"California",

 "zip":"90125"

 }

 "phone_numbers": [

 "800-555-1212",

 "888-212-1234"

]

 }

}

One example of a key, value mechanism (or storage) is Extensible Markup

Language (XML), which has been around for some time. The following is a simple

example of XML using the preceding data. It is the result of a SQL SELECT query

with the output (rows) shown in XML format. Notice how XML uses tags like HTML

(because it is derived from HTML) along with the key, value storage of the data. Here,

the keys are <row>, <field> and the values the contents between the start and end tag

symbols (<field> </field>).

<?xml version="1.0"?>

<resultset statement="select ∗ from thermostat_model limit 1;"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <row>

 <field name="model_id">acme123</field>

 <field name="brand">WeMakeItSoCo</field>

 </row>

</resultset>

There are systems designed around key, value mechanisms (called key, value or

relational stores) such as the Semantic Web. In short, the Semantic Web is an attempt

to leverage associations of data to describe things, events, etc. Sometimes the terms

“relation store” or “triple store” are used to describe the types of storage systems

employed. There are several forms of key, value mechanisms used in the Sematic Web

including Resource Description Framework (RDF), Web Ontology Language (OWL),

Chapter 6 Using the shell with a DoCUment store

234

and Extensible Markup Language (XML). There are other examples of key, value

mechanisms but the one most pertinent to the document store is JSON.

Now let’s look at another key component of the document store – the NoSQL

interface starting with the programming library.

 Application Programming Interface
Recall, an application programming interface (API), sometimes called simply a library

or programming library, is a set of classes and methods that support operations for

one or more capability. These capabilities, through the classes and methods, allow a

programmer to use the classes and methods to perform various tasks.

In the case of the MySQL Document Store, we use the X Developer API (X DevAPI)

to access the server through a set of classes and methods that provide connectivity to the

server, abstractions of concepts such as collections, tables, SQL operations, and more.

These combine to allow a NoSQL interface to the MySQL server.

 NoSQL Interface
There are several sometimes-conflicting definitions (if not examples) of NoSQL. For the

purposes of this book and MySQL in general, a NoSQL interface is an API that does not

require the use of SQL statements to access data. The API itself provides the connection

to the server as well as classes and methods for creating, retrieving, updating, and

deleting data. We saw this paradigm in action in the last chapter.

It is at this point that you’re wondering about how MySQL handles the hybrid option

of using JSON documents with relational data. Simply, MySQL has been designed

to permit storing and retrieving JSON documents in the relational data (via the SQL

interface). That is, the server has been modified to handle the JSON document. There

are also a set of functions that allow you to do all manner of things with the JSON data

making it easy to use JSON via the SQL interface.

However, you can also use JSON documents via the NoSQL X DevAPI either through

an SQL command or as a pure document store using the special classes and methods

of the X DevAPI. We will see an overview of using JSON both ways in this chapter with a

dive into using JSON documents via the NoSQL interface in the next chapter.

Chapter 6 Using the shell with a DoCUment store

235

 Document Store
A document store (also known as a document-oriented database) is a storage and retrieval

system for managing semi-structured data (hence documents). Modern document store

systems support a key, value construct such as those found in XML and JSON. Document

store systems are therefore sometimes considered a subclass of key, value storage systems.

Document store systems are also commonly accessed by a NoSQL interface

implemented as a programming interface (API) that permits developers to incorporate

the storage and retrieval of documents in their programs without need of a third-party

access mechanism (the API implements the access mechanism).

Indeed, the metadata that describes the data is embedded with the data itself.

Roughly, this means the keys and the layout (arrangement or nesting) of the keys form

the metadata and the metadata becomes opaque to the storage mechanism. More

specifically, how the data is arranged (how the document is formed or describes the

data) is not reflected in or managed by the storage mechanism. Access to the semi-

structured data requires accessing the mechanism designed to process the document

itself using the NoSQL interface.

These two qualities, semi-structured data and NoSQL interfaces, are what separate

document stores from relational data. Relational data requires structure that is not

flexible, forcing all data to conform to a specific structure. Data is also grouped together

with the same structure and there is often little allowance for data that can vary in

content. Thus, we don’t normally see document store accessible via traditional relational

data mechanism. That is, until now.

One thing that is interesting about working with the document store is you don’t

need to be an expert on JavaScript or Python to learn how to work with the Document

Store. Indeed, most of what you will do doesn’t require mastery of any programming

language. That is, there are plenty of examples of how to do things so you need not learn

all that there is to know about the language to get started. In fact, you can pick up what

you need very quickly and then learn more about the language as your needs mature.

 JSON
JSON is a human and machine readable text-based data exchange format. It is also

platform independent meaning there are no concepts of the format that prohibit it from

being used in almost any programming language. In addition, JSON is a widely popular

format used on the Internet.

Chapter 6 Using the shell with a DoCUment store

236

JSON allows you to describe data in any way you want to without violating any

structure. In fact, you can format (layout) your data any way you want to. The only real

restriction is the proper use of the descriptors (curly braces, square brackets, quotes,

commas, and the like) that must be aligned and in some cases paired correctly. The

following is an example of a valid JSON string.

{

 "address": {

 "street": "123 First Street",

 "city": "Oxnard",

 "state": "CA",

 "zip": "90122"

 }

}

If you’re thinking that looks a lot like the key, value example previously, you’re

right – it is! That is no mistake given how JSON was formed. However, we often use the

term, string, to talk about JSON and indeed sometimes we see JSON represented without

spaces and newlines shown as follows. It turns out most programming language JSON

mechanisms can interpret the spaces and newlines correctly. We will see more about

that in a later section.

{"address": {"street": "123 First Street","city": "Oxnard","state": "CA",

"zip": "90122"}}

When supported in programming languages, developers can easily read the data by

accessing it via the keys. Better still, developers don’t need to know what the keys are

(but it helps!) because they can use the language support mechanisms to get the keys

and iterate over them. In this way, like XML, the data is self-describing.

Now, let’s dive into what JSON documents are and how we can use them with MySQL.

 Introducing JSON Documents in MySQL
In MySQL 5.7.8 and beyond, we can use the JSON data type to store a JSON document

in a field (columns) in a row stored in a traditional relational database table. Some may

attempt (and succeed) at storing JSON in a blob or text field. While this is possible, there

are several very good reasons not to do it. The most compelling reason is it requires the

Chapter 6 Using the shell with a DoCUment store

237

application to do all the heavy lifting of reading and writing the JSON document thereby

making it more complex and potentially error-prone. The JSON data type overcomes this

problem in two big ways.

• Validation: The JSON data type provides document validation. That

is, only valid JSON can be stored in a JSON column.

• Efficient Access: When a JSON document is stored in a table, the

storage engine packs the data into a special optimized binary format

allowing the server fast access to the data elements rather than

parsing the data each time it is accessed.

This opens a whole new avenue for storing unstructured data in a structured form

(relational data). However, Oracle didn’t stop with simply adding a JSON data type to

MySQL. Oracle also added a sophisticated programming interface as well as the concept

of storing documents as collections in the database. We’ll seem more about these aspects

in the next chapter. For this chapter, we will see how to use JSON with relational data.

 Quick Start
If you have never worked with JSON before, this section will help get you started. There

are only a few things you should learn about JSON and its use with MySQL, but first and

foremost is the JSON formatting rules.

JSON is formed using strings bracketed or organized using certain symbols. While

we have been discussing key, value mechanisms as they relate to JSON, there are two

types of JSON attributes: arrays formed by a comma separated list and objects formed

from a set of key, value pairs. You can also nest JSON attributes. For example, an array

can contain objects and values in object keys can contain arrays or other objects. The

combination of JSON arrays and objects is called a JSON document.

A JSON array contains a list of values separated by commas and enclosed within

square brackets ([]). For example, the following are valid JSON arrays.

["Cub Cadet", "Troy-Bilt", "John Deere", "Craftsman"]

[33,67,1,55,909]

[True, True, False, False]

Chapter 6 Using the shell with a DoCUment store

238

Notice we started and ended the array with square brackets and used a comma

to separate the values. While we did not use whitespace, you can use whitespace and,

depending on your programming language, you may be able to also use newlines, tabs,

and carriage returns. For example, the following is still a valid JSON array.

[

True,

12,

False,

33

]

A JSON object is a set of key, value pairs where each key, value pair is enclosed

within open and close curly braces ({ }) and separated by commas. For example, the

following are valid JSON objects. Notice the key address has a JSON object as its value.

{"address": {

 "street": "123 First Street",

 "city": "Oxnard",

 "state": "CA",

 "zip": "90122"

}}

{"address": {

 "street":"4 Main Street",

 "city":"Melborne",

 "state":"California",

 "zip":"90125"

}}

JSON arrays are typically used to contain lists of related (well, sometimes) things,

and JSON objects are used to describe complex data. JSON arrays and objects can

 contain scalar values such as strings or numbers, the null literal (just like in relational

data), or Boolean literals true and false. Keep in mind that keys must always be strings

and are commonly enclosed in quotes. Finally, JSON values can also contain time

information (date, time, or datetime). For example, the following shows a JSON array

with time values.

["15:10:22.021100", "2019-03-23", "2019-03-23 08:51:29.012310"]

Chapter 6 Using the shell with a DoCUment store

239

The next section describes how we can use JSON in MySQL. In this case, we are

referring to relational data but the formatting of JSON documents is the same in the

document store.

 Combining SQL and JSON
The use of JSON with relational data may seem a bit unusual or counter-intuitive. That

is, why use unstructured data in a column? Doesn’t that violate some relational database

theory law or something?2 While that may be true to some extent, the ability to add

unstructured data within our relational data opens several doors previous closed to use.

For example, suppose you need to add more data to an existing table for an

application that has been deployed for some time. If you add a new column, you run the

risk of requiring all applications that use the data to be modified.3 Furthermore, suppose

this data you need to add isn’t available for every row. No big deal so far, yes? But what if

this data varies in both type and scope, that is, for any given set of rows, the data added

cannot be described in the same way or the data is different for each row? This is the

nature of unstructured data – it has no pre-defined structure. Thus, you cannot easily

extend the table or even create a new reference (child) table.

This is where having a JSON column can help. You simply add a new column and

store the unstructured data as JSON. Of course, this does not alter the possibility that you

must change the applications, but it does mean you won’t have to retool the database

itself (beyond adding the JSON column) or force-fit the data into a set of typed columns.

In this section, we will see how to work with JSON in MySQL including the

mechanics of including JSON strings in our SQL statements, some of the special

functions available for use with JSON in MySQL, how to access parts of a JSON

document in your SQL statements, and prepare you for using JSON columns in your

relational data. We will use the shell to demonstrate each of these topics. We save

working with pure JSON documents for the next chapter.

2 Some would say it does.
3 There are clever ways to avoid this, but for this argument assume it isn’t possible.

Chapter 6 Using the shell with a DoCUment store

240

Tip mysQl shell has several enhancements for working with Json including the
ability to display Json in a human readable form. we can see results as either raw
Json (json/raw) or pretty-printed Json (json). Use the --result-format=json
command line option for pretty-printed Json or the --result-format=json/
raw command line option for unformatted Json output.

 Formatting JSON Strings in MySQL
When used in MySQL, JSON documents are written as strings. MySQL parses any string

used in a JSON data type validating the document. If the document is not valid (not a

properly formed JSON document), you will get an error. You can use JSON documents in

any SQL statement where it is appropriate, such as INSERT and UPDATE statements as well

as in clauses like the WHERE clause.

Tip properly formatting Json documents can be a bit of a challenge. the things
to remember most is to balance your quotes, use commas correctly, and balance
all curly braces and square brackets.

When you specify keys and values as strings, you must use the double quote

character ("), not the single quote ('). Since MySQL expects JSON documents as strings,

you can use the single quote around the entire JSON document but not within the

document yourself. Fortunately, MySQL provides a host of special functions that you

can use with JSON documents, one of which is the JSON_VALID() function that permits

you to check a JSON document for validity. It returns a 1 if the document is valid and a

0 if it is not. The following shows the results of attempting to validate a JSON document

with single quotes for the keys and values vs. a properly formatted JSON document with

double quotes.

Note henceforth, we will omit the shell sQl prompt for brevity.

Chapter 6 Using the shell with a DoCUment store

241

> SELECT JSON_VALID("{'vendor': {'name': 'Craftsman',

'URL': 'http://www.craftsman.com','sources': 'Lowes'}}") AS IS_VALID \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
IS_VALID: 0

1 row in set (0.0005 sec)

> SELECT JSON_VALID('{"vendor": {"name": "Craftsman",

"URL": "http://www.craftsman.com","sources": "Lowes"}}') AS IS_VALID \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
IS_VALID: 1

1 row in set (0.0040 sec)

Notice the string with the double quotes inside is valid (the function returned a 1)

but not the one with single quotes (the function returned a 0). This is what most people

stumble over most often when working with JSON for the first time.

 Using JSON Strings in SQL Statements
Let’s look at how to use the JSON document in SQL statements. Suppose we wanted to

store addresses in a table. For this example, we will keep it simple and insert the data in

a very simple table. Listing 6-1 shows a transcript of the exercise starting with creating a

test table then inserting the first two addresses.

Listing 6-1. Using JSON with SQL Statements

C:\Users\cbell> mysqlsh --uri root@localhost:33060 --sql

MySQL Shell 8.0.16

...

> CREATE DATABASE `testdb_6`;

Query OK, 1 row affected (0.0098 sec)

> USE `testdb_6`;

Query OK, 0 rows affected (0.0010 sec)

> CREATE TABLE `testdb_6`.`addresses` (`id` int(11) NOT NULL AUTO_

INCREMENT, `address` json DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB

DEFAULT CHARSET=latin1;

Query OK, 0 rows affected (0.0310 sec)

Chapter 6 Using the shell with a DoCUment store

242

> INSERT INTO `testdb_6`.`addresses` VALUES (NULL, '{"address": {"street":

"123 Second St","city": "Maynard","state": "CT","zip": "19023"}}');

Query OK, 1 row affected (0.0042 sec)

> INSERT INTO `testdb_6`.`addresses` VALUES (NULL, '{"address":

{"street":"41 West Hanover","city":"Frederick","state":"Maryland","z

ip":"20445"}}');

Query OK, 1 row affected (0.0030 sec)

> SELECT ∗ FROM `testdb_6`.`addresses` \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 1

address: {"address": {"zip": "19023", "city": "Maynard", "state": "CT",

"street": "123 Second St"}}

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 2

address: {"address": {"zip": "20445", "city": "Frederick", "state":

"Maryland", "street": "41 West Hanover"}}

2 rows in set (0.0005 sec)

> DROP DATABASE `testdb_6`;

Query OK, 1 row affected (0.0132 sec)

Notice in the CREATE statement we used the data type JSON. This signals MySQL to

allocate special storage mechanisms in the storage engine for handling JSON. Contrary

to some reports, the JSON data type is not simply direct storage of a string. On the

contrary, it is organized internally to optimize retrieval of the elements. Thus, it is very

important that the JSON be formatted correctly. You can have multiple JSON columns in

a table. However, the sum of the JSON documents in a table row is limited to the value of

the variable max_allowed_packet.

Note Json columns cannot have a default value like other columns.

Now, let’s see what happens if we use an invalid JSON document (string) in the SQL

statement. The following shows an attempt to insert the last address from the previous

example only without the correct quotes around the keys. Notice the error thrown.

Chapter 6 Using the shell with a DoCUment store

243

> INSERT INTO testdb_6.addresses VALUES (NULL, '{"address": {street:"173

Caroline Ave",city:"Monstrose",state:"Georgia",zip:31505}}');

ERROR: 3140: Invalid JSON text: "Missing a name for object member." at

position 13 in value for column 'addresses.address'.

You can expect to see errors like this and others for any JSON document that isn’t

formatted correctly. If you want to test your JSON first, use the JSON_VALID() function.

However, there are two other functions that may also be helpful when building JSON

documents; JSON_ARRAY() and JSON_OBJECT().

The JSON_ARRAY() function takes a list of values and returns a valid formatted JSON

array. The following shows an example. Notice it returned a correctly formatted JSON

array complete with correct quotes (double instead of single) and the square brackets.

> SELECT JSON_ARRAY(1, true, 'test', 2.4);

+--+

| JSON_ARRAY(1, true, 'test', 2.4) ------|

+--+

| [1, true, "test", 2.4] ------ |

+--+

1 row in set (0.00 sec)

The JSON_OBJECT() function takes a list of key, value pairs and returns a valid JSON

object. The following shows an example. Notice here I used single quotes in calling the

function. This is just one example where we can become confused with which quotes

to use. In this case, the parameters for the function are not JSON documents; they’re

normal SQL strings, which can use single or double quotes.

> SELECT JSON_OBJECT("street","4 Main Street","city","Melborne",'state',

'California','zip',90125) \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_OBJECT("street","4 Main Street","city","Melborne",'state','California',

'zip',90125): {"zip": 90125, "city": "Melborne", "state": "California",

"street": "4 Main Street"}

1 row in set (0.0040 sec)

Notice once again the automatic conversion of the quotes in the function result. This

can be helpful if you need to build JSON on the fly (dynamically).

Chapter 6 Using the shell with a DoCUment store

244

There is one other useful function for constructing JSON documents; the JSON_

TYPE() function. This function takes a JSON document and parse it into a JSON value. It

returns the value's JSON type if it is valid or throws an error if it is not valid. The following

shows use of this function with the preceding statements.

> SELECT JSON_TYPE('[1, true, "test", 2.4]');

+---+

| JSON_TYPE('[1, true, "test", 2.4]') |

+---+

| ARRAY |

+---+

1 row in set (0.00 sec)

> SELECT JSON_TYPE('{"zip": 90125, "city": "Melborne",

"state": "California", "street": "4 Main Street"}') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_TYPE('{"zip": 90125, "city": "Melborne", "state": "California",

"street": "4 Main Street"}'): OBJECT

1 row in set (0.00 sec)

There are more functions that MySQL provides to work with the JSON data type. We

will see more about these in a later section.

This section has described only the basics for using JSON with MySQL in SQL

statements. In fact, the formatting of the JSON document also applies to the document

store. However, there is one thing we have’nt talked about yet – how to access the

elements in a JSON document.

 Path Expressions
To access an element – via its key – we use special notation called path expressions.

The following shows a simple example. Notice the WHERE clause. This shows a path

expression where I check to see if the address column includes the JSON key “city”

referenced with the special notation address->'$.address.city'. We will see more

details about path expressions in the next section.

> SELECT id, address->'$.address.city' FROM test.addresses

 WHERE address->'$.address.zip' = '90125';

Chapter 6 Using the shell with a DoCUment store

245

+----+---------------------------+

| id | address->'$.address.city' |

+----+---------------------------+

| 2 | "Melborne" |

+----+---------------------------+

1 row in set (0.00 sec)

If you consider that a JSON document can be a complex set of semi-structured data

and that at some point you will need to access certain elements in the document, you

may also be wondering how to go about getting what you want from the JSON document.

Fortunately, there is a mechanism to do this and it is called a path expression. More

specifically, it is shortcut notation that you can use in your SQL commands to get an

element without additional programming or scripting.

As you will see, it is a very specific syntax that, while not very expressive (it doesn’t

read well in English), the notation can get you what you need without a lot of extra

typing. Path expressions are initiated with the dollar sign symbol ($) enclosed in a string.

But this notation must have a context. When using path expressions in SQL statements,

you must use the JSON_EXTRACT() function, which allows you to use a path expression

to extract data from a JSON document. This is because, unlike the X DevAPI classes and

methods, path expressions are not directly supported in all SQL statements (but are

for some as we will see). For example, if you wanted the third item in an array (in the

example, the number 3), you would use the function as follows.

> SELECT JSON_EXTRACT('[1,2,3,4,5,6]', '$[2]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT('[1,2,3,4,5,6]', '$[2]'): 3

1 row in set (0.0049 sec)

Notice this accesses data a JSON array. Here we use an array subscript with square

brackets around the index (elements start at 0) as you would for an array in many

programming languages.

Tip the use of path expressions in the sQl interface is limited to either one of
the Json functions or used only in specific clauses that have been modified to
accept path expressions such as SELECT column lists or WHERE, HAVING, ORDER
BY, or GROUP BY clauses.

Chapter 6 Using the shell with a DoCUment store

246

Now suppose you wanted to access an element by key. You can do that too. In this

case, we use the dollar sign followed by a period then the key name. The following shows

how to retrieve the last name for a JSON object containing the name and address of an

individual.

> SELECT JSON_EXTRACT('{"name": {"first":"Billy-bob","last":"Throckmutton"},

"address": {"street":"4 Main Street","city":"Melborne","state":"California",

"zip":"90125"}}', '$.name.first') AS Name \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Name: "Billy-bob"

1 row in set (0.0008 sec)

Notice I had to use two levels of access. That is, I wanted the value for the key named

first from the object named name. Hence, I used '$.name.first'. This demonstrates how

to use path expressions to drill down into the JSON document. This is also why we call

this a path expression because the way we form the expression gives us the “path” to the

element.

Now that we’ve seen a few examples, let’s review the entire syntax for path

expressions; both for use in SQL and the NoSQL interfaces. Unless otherwise stated, the

syntax aspects apply to both interfaces.

Once again, a path expression starts with the dollar sign and can optionally be

followed by several forms of syntax called selectors that allow us to request a part of the

document. These selectors include the following.

• A period followed by the name of a key name references the value for

that key. The key name must be specified within double quotation

marks if the name without quotes is not valid (it requires quotes to be

a valid identifier such as a key name with a space).

• Use square brackets with an integer index ([n]) to select an element

in an array. Indexes start at 0.

• Paths can contain the wildcards * or ** as follows.

• .[*] evaluates to the values of all members in a JSON object.

• [*] evaluates to the values of all elements in a JSON array.

• A sequence such as prefix∗∗suffix evaluates to all paths that begin

with the named prefix and end with the named suffix.

Chapter 6 Using the shell with a DoCUment store

247

• Paths can be nested using a period as the separator. In this case, the

path after the period is evaluated within the context of the parent

path context. For example, $.name.first limits the search for a key

named first to the name JSON object.

If a path expression is evaluated as false or fails to locate a data item, the server will

return null. For example, the following returns null because there are only 6 items in the

array. Can you see why? Remember, counting starts at 0. This is a common mistake for

those new to using path expressions (or arrays in programming languages).

> SELECT JSON_EXTRACT('[1,2,3,4,5,6]', '$[6]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT('[1,2,3,4,5,6]', '$[6]'): NULL

1 row in set (0.0008 sec)

But wait, there’s one more nifty option for path expressions. We can use a shortcut!

That is, the dash and greater than symbol (->) can be used in place of the JSON_

EXTRACT() function when accessing data in SQL statements by column. How cool is that?

The use of the -> operation is sometimes called an “inline path expression”. For example,

we could have written the preceding example to find the third item in a JSON array from

a table as follows.

> CREATE TABLE testdb_6.ex1 (id int AUTO_INCREMENT PRIMARY KEY,

recorded_data JSON);

Query OK, 0 rows affected (0.0405 sec)

> INSERT INTO testdb_6.ex1 VALUES (NULL, JSON_ARRAY(1,2,3,4,5,6));

Query OK, 1 row affected (0.0052 sec)

> INSERT INTO testdb_6.ex1 VALUES (NULL, JSON_ARRAY(7,8,9));

> SELECT ∗ FROM testdb_6.ex1 WHERE recorded_data->'$[2]' = 3 \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 1

recorded_data: [1, 2, 3, 4, 5, 6]

1 row in set (0.0045 sec)

Notice I simply used the column name, recorded_data, and appended the -> to the

end then listed the path expression. Brilliant!

Chapter 6 Using the shell with a DoCUment store

248

But wait, there’s more. There is one other form of this shortcut. If the result of the

-> operation (JSON_EXTRACT) evaluates to a quoted string, we can use the ->> symbol

(called the inline path operator) to retrieve the value without quotes. This is helpful

when dealing with values that are numbers. The following shows two examples. One

with the -> operation and the same with the ->> operation.

> INSERT INTO testdb_6.ex1 VALUES (NULL, '{"name":"will","age":"43"}');

Query OK, 1 row affected (0.00 sec)

> INSERT INTO testdb_6.ex1 VALUES (NULL, '{"name":"joseph","age":"11"}');

Query OK, 1 row affected (0.00 sec)

> SELECT ∗ FROM testdb_6.ex1 WHERE recorded_data->>'$.age' = 43 \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 3

recorded_data: {"age": "43", "name": "will"}

1 row in set (0.0014 sec)

> SELECT ∗ FROM testdb_6.ex1 WHERE recorded_data->'$.age' = '43' \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 3

recorded_data: {"age": "43", "name": "will"}

1 row in set (0.0009 sec)

Notice the recorded_data values (age and name) were stored as a string. But what if

the data were stored as an integer? Observe.

> INSERT INTO testdb_6.ex1 VALUES (NULL, '{"name":"amy","age":22}');

Query OK, 1 row affected (0.0075 sec)

> SELECT ∗ FROM testdb_6.ex1 WHERE recorded_data->'$.age' = 22 \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 5

recorded_data: {"age": 22, "name": "amy"}

1 row in set (0.0010 sec)

> SELECT ∗ FROM testdb_6.ex1 WHERE recorded_data->>'$.age' = 22 \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 5

recorded_data: {"age": 22, "name": "amy"}

1 row in set (0.0009 sec)

Chapter 6 Using the shell with a DoCUment store

249

Aha! So, the ->> operation is most useful when values must be unquoted. If they

are already unquoted (such as an integer), the ->> operation returns the same as the ->

operation.

Please note that the use of the shortcuts (inline path expressions) is not a direct

replacement for the JSON_EXTRACT() function. The following summarizes the

limitations.

• Data Source: When used in a SQL statement, the inline path

expression uses the field (column) specified only. The function can

use any JSON-typed value.

• Path Expression String: An inline path expression must use a plain

string. The function can use any string-typed value.

• Number of Expressions: An inline path expression can use only one

path expression against a single field (column). The function can use

multiple path expressions against a JSON document.

Now let’s look at the various JSON functions that we can use to work with JSON

documents.

 JSON Functions
There are many functions for working with JSON in MySQL. Rather than list all the

functions and risk obsolescence (new ones seem to be added with every release), we will

list some of the most frequently used functions to give you and idea of what is available.

While we won’t explore nuance of every function, we will see some of these in use in

later sections. Table 6-1 lists the JSON functions available in MySQL 8.

Mastery of these functions is not essential to working with the document store

but can help greatly when developing hybrid solutions where you use JSON in SQL

statements.

These functions can be grouped into categories based on how they are used. We will

see functions useful for adding data, those for retrieving (searching) data, and more. The

following show how to use the functions using brief examples.

Chapter 6 Using the shell with a DoCUment store

250

Table 6-1. Commonly Used JSON Functions in MySQL

Function Description and Use

JSON_ARRAY() evaluates a list of values and returns a Json array containing those

values.

JSON_ARRAYAGG() aggregates a result set as a single Json array whose elements

consist of the rows.

JSON_ARRAY_APPEND() appends values to the end of the indicated arrays within a Json

document and returns the result.

JSON_ARRAY_INSERT() Updates a Json document, inserting into an array within the

document and returning the modified document.

JSON_CONTAINS() returns 0 or 1 to indicate whether a specific value is contained in a

target Json document, or, if a path argument is given, at a specific

path within the target document.

JSON_CONTAINS_PATH() returns 0 or 1 to indicate whether a Json document contains data

at a given path or paths.

JSON_DEPTH() returns the maximum depth of a Json document.

JSON_EXTRACT() returns data from a Json document, selected from the parts of the

document matched by the path arguments.

JSON_INSERT() inserts data into a Json document and returns the result.

JSON_KEYS() returns the keys from the top-level value of a Json object as a

Json array, or, if a path argument is given, the top-level keys from

the selected path.

JSON_LENGTH() returns the length of Json document, or, if a path argument is given,

the length of the value within the document identified by the path.

JSON_OBJECT() evaluates a list of key/value pairs and returns a Json object

containing those pairs.

JSON_OBJECTAGG() takes two column names or expressions as arguments, the first of

these being used as a key and the second as a value, and returns a

Json object containing key/value pairs.

JSON_PRETTY() print a nicer looking layout of the Json document.

(continued)

Chapter 6 Using the shell with a DoCUment store

251

 Creating JSON Data

There are several useful functions for creating JSON data. We have already seen two

important functions: JSON_ARRAY() that builds a JSON array type and JSON_OBJECT()

that builds a JSON object type. This section discusses some of the other functions

that you can use to help create JSON documents including functions for aggregating,

appending, and inserting data in JSON arrays.

The JSON_ARRAYAGG() function is used to create an array of JSON documents from

several rows. It can be helpful when you want to summarize data or combine data from

several rows. The function takes a column name and combines the JSON data from the

rows into a new array. Listing 6-2 shows examples of using the function. This example

takes the rows in the table and combines them to form a new array of JSON objects.

Listing 6-2. Using the JSON_ARRAYARG Function

> CREATE TABLE testdb_6.favorites (id int(11) NOT NULL AUTO_INCREMENT,

preferences JSON, PRIMARY KEY (`id`));

> INSERT INTO testdb_6.favorites VALUES (NULL, '{"color": "red"}');

Query OK, 1 row affected (0.0077 sec)

Table 6-1. (continued)

Function Description and Use

JSON_QUOTE() Quotes a string as a Json value by wrapping it with double quote

characters and escaping interior quote and other characters, then

returning the result as a utf8mb4 string.

JSON_REMOVE() removes data from a Json document and returns the result.

JSON_REPLACE() replaces existing values in a Json document and returns the result.

JSON_SEARCH() returns the path to the given string within a Json document.

JSON_SET() inserts or updates data in a Json document and returns the result.

JSON_TABLE() extracts data from a Json document and returns it as a relational

table.

JSON_TYPE() returns a utf8mb4 string indicating the type of a Json value.

JSON_VALID() returns 0 or 1 to indicate whether a value is a valid Json document.

Chapter 6 Using the shell with a DoCUment store

252

> INSERT INTO testdb_6.favorites VALUES (NULL, '{"color": "blue"}');

Query OK, 1 row affected (0.0050 sec)

> INSERT INTO testdb_6.favorites VALUES (NULL, '{"color": "purple"}');

Query OK, 1 row affected (0.0034 sec)

> SELECT ∗ FROM testdb_6.favorites \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 1

preferences: {"color": "red"}

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 2

preferences: {"color": "blue"}

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 3. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 id: 3

preferences: {"color": "purple"}

3 rows in set (0.0012 sec)

> SELECT JSON_ARRAYAGG(preferences) FROM testdb_6.favorites \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_ARRAYAGG(preferences): [{"color": "red"}, {"color": "blue"},

{"color": "purple"}]

1 row in set (0.0049 sec)

The JSON_ARRAY_APPEND() is an interesting function that allows you to append

data to a JSON array either at the end or immediately after a given path expression. The

function takes as parameters a JSON array, a path expression, and the value (including a

JSON document) to be inserted. Listing 6-3 shows several examples.

Listing 6-3. Using the JSON_ARRAY_APPEND Function

> SET @base = '["apple","pear",{"grape":"red"},"strawberry"]';

Query OK, 0 rows affected (0.0045 sec)

> SELECT JSON_ARRAY_APPEND(@base, '$', "banana") \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_ARRAY_APPEND(@base, '$', "banana"): ["apple", "pear",

{"grape": "red"}, "strawberry", "banana"]

1 row in set (0.0009 sec)

> SELECT JSON_ARRAY_APPEND(@base, '$[2].grape', "green") \G

Chapter 6 Using the shell with a DoCUment store

253

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_ARRAY_APPEND(@base, '$[2].grape', "green"): ["apple", "pear",

{"grape": ["red", "green"]}, "strawberry"]

1 row in set (0.0012 sec)

> SET @base = '{"grape":"red"}';

Query OK, 0 rows affected (0.0004 sec)

> SELECT JSON_ARRAY_APPEND(@base, '$', '{"grape":"red"}') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_ARRAY_APPEND(@base, '$', '{"grape":"red"}'): [{"grape": "red"},

"{\"grape\":\"red\"}"]

1 row in set (0.0007 sec)

Notice the first example simply adds a new value to the end of the array. The second

example changes the value of the key in the JSON object in the third index to an array

and adds a new value. This is an interesting by-product of this function. We see this

again on the third example where we change a basic JSON object to a JSON array of

JSON objects.

The JSON_ARRAY_INSERT() function is similar except it inserts the value before the

path expression. The function takes as parameters a JSON array, a path expression, and

the value (including a JSON document) to be inserted. When including multiple path

expression and value pairs, the effect is cumulative where the function evaluates the

first path expression and value applying the next pair to the result, and so on. Listing 6-4

shows some examples using the new function that are like the previous examples. Notice

that the positions of the data inserted is before the path expression.

Listing 6-4. Using the JSON_ARRAY_INSERT Function

> SET @base = '["apple","pear",{"grape":["red","green"]},"strawberry"]';

Query OK, 0 rows affected (0.0007 sec)

> SELECT JSON_ARRAY_INSERT(@base, '$[0]', "banana") \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_ARRAY_INSERT(@base, '$[0]', "banana"): ["banana", "apple", "pear",

{"grape": ["red", "green"]}, "strawberry"]

1 row in set (0.0008 sec)

> SELECT JSON_ARRAY_INSERT(@base, '$[2].grape[0]', "white") \G

Chapter 6 Using the shell with a DoCUment store

254

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_ARRAY_INSERT(@base, '$[2].grape[0]', "white"): ["apple", "pear",

{"grape": ["white", "red", "green"]}, "strawberry"]

1 row in set (0.0009 sec)

> SET @base = '[{"grape":"red"}]';

Query OK, 0 rows affected (0.0004 sec)

> SELECT JSON_ARRAY_INSERT(@base, '$[0]', '{"grape":"red"}') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_ARRAY_INSERT(@base, '$[0]', '{"grape":"red"}'):

["{\"grape\":\"red\"}", {"grape": "red"}]

1 row in set (0.0007 sec)

The JSON_INSERT() function is designed to take a JSON document and inserts one or

more values at a specified path expression. That is, you can pass pairs of path expression

and value at one time. But there is a catch. The path expression in this case must not

evaluate to an element in the document. Like the last function, when including multiple

path expressions, the effect is cumulative where the function evaluates the first path

expression applying the next path expression to the result, and so on. Listing 6-5 shows

an example. Notice the third path expression and value is not inserted because the path

expression, $[0], evaluates to the first element, apple.

Listing 6-5. Using the JSON_INSERT Function

> SET @base = '["apple","pear",{"grape":["red","green"]},"strawberry"]';

Query OK, 0 rows affected (0.0007 sec)

> SELECT JSON_INSERT(@base, '$[9]', "banana", '$[2].grape[3]', "white",

'$[0]', "orange") \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_INSERT(@base, '$[9]', "banana", '$[2].grape[3]', "white", '$[0]', "orange"):

["apple", "pear", {"grape": ["red", "green", "white"]}, "strawberry", "banana"]

1 row in set (0.0008 sec)

The JSON_MERGE_PATCH() and JSON_MERGE_PRESERVE() functions are designed

to take two or more JSON documents and combine them. The JSON_MERGE_PATH()

function replaces values for duplicate keys while the JSON_MERGE_PRESERVE() preserves

the values for duplicate keys. Like the last function, you can include as many JSON

documents as you want. Notice how I used this function to build the example JSON

document from the earlier examples. Listing 6-6 shows an example using the methods.

Chapter 6 Using the shell with a DoCUment store

255

Listing 6-6. Using the JSON_MERGE_PATCH and JSON_MERGE_PRESERVE

Functions

> SELECT JSON_MERGE_PATCH('["apple","pear"]', '{"grape":["red","green"]}',

'["strawberry"]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_MERGE_PATCH('["apple","pear"]', '{"grape":["red","green"]}',

'["strawberry"]'): ["strawberry"]

1 row in set (0.0041 sec)

> SELECT JSON_MERGE_PRESERVE('{"grape":["red","green"]}', '{"grape":["white"]}') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_MERGE_PRESERVE('{"grape":["red","green"]}', '{"grape":["white"]}'):

{"grape": ["red", "green", "white"]}

1 row in set (0.0008 sec)

If any JSON function is passed an invalid parameter, invalid JSON document, or the

path expression does not find an element, some functions return null while others may

return the original JSON document. Listing 6-7 shows an example. In this case, there is

no element at position 8 because the array only has 4 elements.

Listing 6-7. Using the JSON_ARRAY_APPEND Function

> SET @base = '["apple","pear",{"grape":"red"},"strawberry"]' \G

Query OK, 0 rows affected (0.0007 sec)

> SELECT JSON_ARRAY_APPEND(@base, '$[7]', "flesh") \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_ARRAY_APPEND(@base, '$[7]', "flesh"): ["apple", "pear", {"grape":

"red"}, "strawberry"]

1 row in set (0.0007 sec)

Now let’s see functions that we can use to modify JSON data.

 Modifying JSON Data

There are several useful functions for modifying JSON data. This section discusses

functions that you can use to help modify JSON documents by removing, replacing, and

updating elements in the JSON document.

Chapter 6 Using the shell with a DoCUment store

256

The JSON_REMOVE() function is used to remove elements that match a path

expression. You must provide the JSON document to operate on and one or more path

expressions and the result will be the JSON document with the elements removed.

When including multiple path expressions, the effect is cumulative where the function

evaluates the first path expression applying the next path expression to the result, and so

on. Listing 6-8 shows an example. Notice I had to imagine what the intermediate results

would be – that is, I used $[0] three times because the function removed the first element

twice leaving the JSON object as the first element.

Listing 6-8. Using the JSON_REMOVE Function (single)

 > SET @base = '["apple","pear",{"grape":["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.0008 sec)

> SELECT JSON_REMOVE(@base, '$[0]', '$[0]', '$[0].grape[1]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_REMOVE(@base, '$[0]', '$[0]', '$[0].grape[1]'): [{"grape": ["red"]},

"strawberry"]

1 row in set (0.0009 sec)

This may take a little getting used to but you can use the function multiple times or

nested as shown in the examples in Listing 6-9.

Listing 6-9. Using the JSON_REMOVE Function (nested)

 > SET @base = '["apple","pear",{"grape":["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.0007 sec)

> SET @base = JSON_REMOVE(@base, '$[0]');

Query OK, 0 rows affected (0.0009 sec)

> SET @base = JSON_REMOVE(@base, '$[0]');

Query OK, 0 rows affected (0.0006 sec)

> SELECT JSON_REMOVE(@base, '$[0].grape[1]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_REMOVE(@base, '$[0].grape[1]'): [{"grape": ["red"]}, "strawberry"]

1 row in set (0.0007 sec)

> SET @base = '["apple","pear",{"grape":["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.0004 sec)

> SELECT JSON_REMOVE(JSON_REMOVE(JSON_REMOVE(@base, '$[0]'), '$[0]'),

'$[0].grape[1]') \G

Chapter 6 Using the shell with a DoCUment store

257

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_REMOVE(JSON_REMOVE(JSON_REMOVE(@base, '$[0]'), '$[0]'), '$[0].

grape[1]'): [{"grape": ["red"]}, "strawberry"]

1 row in set (0.0005 sec)

The JSON_REPLACE() function takes a JSON document and pairs of path expression

and value replacing the element that matches the path expression with the new value.

Once again, the results are cumulative and work left to right in order. There is a catch

with this function too. It ignores any new values or path expressions that evaluate to new

values. Listing 6-10 shows an example. Notice the third pair was not removed because

there is no tenth element.

Listing 6-10. Using the JSON_REPLACE Function

 > SET @base = '["apple","pear",{"grape":["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.0008 sec)

> SELECT JSON_REPLACE(@base, '$[0]', "orange", '$[2].grape[0]', "green",

'$[9]', "waffles") \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_REPLACE(@base, '$[0]', "orange", '$[2].grape[0]', "green", '$[9]',

"waffles"): ["orange", "pear", {"grape": ["green", "white"]}, "strawberry"]

1 row in set (0.0040 sec)

The JSON_SET() function is designed to modify JSON document elements. Like the

other functions, you pass a JSON document as the first parameter and then one or more

pairs of path expression and value to replace. However, this function also inserts any

elements that are not in the document (the path expression is not found). Listing 6-11

shows an example. Notice the last element did not exist so it adds it to the documents.

Listing 6-11. Using the JSON_SET Function

 > SET @base = '["apple","pear",{"grape":["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.0007 sec)

> SELECT JSON_SET(@base, '$[0]', "orange", '$[2].grape[1]', "green",

'$[9]', "123") \G

Chapter 6 Using the shell with a DoCUment store

258

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_SET(@base, '$[0]', "orange", '$[2].grape[1]', "green", '$[9]', "123"):

["orange", "pear", {"grape": ["red", "green"]}, "strawberry", "123"]

1 row in set (0.0009 sec)

Now let’s look at the JSON functions you can use to find elements in the document.

 Searching JSON Data

Another important operation for working with SQL and JSON data is searching for data

in the JSON document. We discovered earlier in the chapter how to reference data in

the document with the special notation (path expressions), and we learned there are

JSON functions that we can use to search for the data. In fact, we saw these two concepts

used together in the previous section. In this section, we review the JSON data searching

mechanism since you are likely to use these functions more than any other, especially in

your queries.

There are four JSON functions that allow you to search JSON documents. Like the

previous functions, these operate on a JSON document with one or more parameters. I

call them searching functions not because they allow you to search a database or table

for JSON data, but rather they allow you to find things in JSON documents. The functions

include those for checking to see if a value or element exists in the document, whether

a path expression is valid (something can be found using it), and retrieving information

from the document.

The JSON_CONTAINS() function has two options: you can use it to return whether a

value exists anywhere in the document or if a value exists using a path expression (the path

expression is an optional parameter). The function returns a 0 or 1 where a 0 means the value

was not found. An error occurs if either document argument is not a valid JSON document

or the path argument is not a valid path expression or contains a ∗ or ∗∗ wildcard. There is

another catch. The value you pass in must be a valid JSON string or document. Listing 6-12

shows several examples of using the function to search a JSON document.

Listing 6-12. Using the JSON_CONTAINS Function

> SET @base = '{"grapes":["red","white","green"],"berries":["strawberry",

"raspberry","boysenberry","blackberry"]}';

Query OK, 0 rows affected (0.0007 sec)

> SELECT JSON_CONTAINS(@base,'["red","white","green"]') \G

Chapter 6 Using the shell with a DoCUment store

259

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS(@base,'["red","white","green"]'): 0

1 row in set (0.0010 sec)

> SELECT JSON_CONTAINS(@base,'{"grapes":["red","white","green"]}') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS(@base,'{"grapes":["red","white","green"]}'): 1

1 row in set (0.0006 sec)

> SELECT JSON_CONTAINS(@base,'["red","white","green"]','$.grapes') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS(@base,'["red","white","green"]','$.grapes'): 1

1 row in set (0.0004 sec)

> SELECT JSON_CONTAINS(@base,'"blackberry"','$.berries') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS(@base,'"blackberry"','$.berries'): 0

1 row in set (0.0004 sec)

> SELECT JSON_CONTAINS(@base,'blackberry','$.berries') \G

ERROR: 3141: Invalid JSON text in argument 2 to function json_contains:

"Invalid value." at position 0.

> SELECT JSON_CONTAINS(@base,'"red"','$.grapes') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS(@base,'"red"','$.grapes'): 1

1 row in set (0.0004 sec)

As you can see, this is a very useful function but it requires a bit of care to use

properly. That is, you must make sure the value is a valid string. In all examples save one,

I am searching the JSON document for either a JSON document (that makes searching

for nested data easier) or a single value using a path expression. Remember, the function

searches for values, not keys.

Notice the second to last example. This returns an error because the value is not a

valid JSON string. You must use double quotes around it to correct it as shown in the

following example.

The JSON_CONTAINS_PATH() function uses a parameter strategy that is a little

different. The function searches a JSON document to see if a path expression exists but

it also allows you to find the first occurrence or all occurrences. It can also take multiple

paths and evaluate them either as an “or” or “and” condition depending on what value

you pass as the second parameter as follows.

Chapter 6 Using the shell with a DoCUment store

260

• If you pass one, the function will return 1 if at least one path

expression is found (OR).

• If you pass all, the function will return 1 only if all path expressions

are found (AND).

The function returns 0 or 1 to indicate whether a JSON document contains data at

a given path or paths. Note that it can return null if any of the path expressions or the

document is null. An error occurs if the JSON document, or any path expression is not

valid, or the second parameter is not one or all. Listing 6-13 shows several examples of

using the function.

Listing 6-13. Using the JSON_CONTAINS_PATH Function

> SET @base = '{"grapes":["red","white","green"],"berries":["strawberry",

"raspberry","boysenberry","blackberry"],"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.0004 sec)

> SELECT JSON_CONTAINS_PATH(@base,'one','$') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'one','$'): 1

1 row in set (0.0005 sec)

> SELECT JSON_CONTAINS_PATH(@base,'all','$') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'all','$'): 1

1 row in set (0.0005 sec)

> SELECT JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries'): 1

1 row in set (0.0004 sec)

> SELECT JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries','$.numbers')\G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries','$.numbers'): 1

1 row in set (0.0004 sec)

> SELECT JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries','$.num') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries','$.num'): 0

1 row in set (0.0005 sec)

Chapter 6 Using the shell with a DoCUment store

261

> SELECT JSON_CONTAINS_PATH(@base,'one','$.grapes','$.berries','$.num') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'one','$.grapes','$.berries','$.num'): 1

1 row in set (0.0005 sec)

> SELECT JSON_CONTAINS_PATH(@base,'one','$.grapes') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'one','$.grapes'): 1

1 row in set (0.0004 sec)

> SELECT JSON_CONTAINS_PATH(@base,'all','$.grape') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'all','$.grape'): 0

1 row in set (0.0004 sec)

> SELECT JSON_CONTAINS_PATH(@base,'one','$.berries') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'one','$.berries'): 1

1 row in set (0.0004 sec)

> SELECT JSON_CONTAINS_PATH(@base,'all','$.berries') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_CONTAINS_PATH(@base,'all','$.berries'): 1

1 row in set (0.0005 sec)

Take some time to look through these examples so you can see how they work.

Notice in the first two examples, I used a path expression of a single dollar sign. This is

simply the path expression to the entire document so naturally, it exists. Notice also the

differences in the use of one or all for the last two examples.

The JSON_EXTRACT() function is one of the most used functions. It allows you to

extract a value or JSON array or JSON object, etc. from a JSON document using one or

more path expressions. We have already seen a couple of examples. Recall the function

returns the portion of the JSON document that matches the path expression. Listing 6-14

shows a few more examples using a complex path expressions.

Listing 6-14. Using the JSON_EXTRACT Function

> SET @base = '{"grapes":["red","white","green"],"berries":["strawberry",

"raspberry","boysenberry","blackberry"],"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.0004 sec)

> SELECT JSON_EXTRACT(@base,'$') \G

Chapter 6 Using the shell with a DoCUment store

262

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT(@base,'$'): {"grapes": ["red", "white", "green"], "berries":

["strawberry", "raspberry", "boysenberry", "blackberry"], "numbers": ["1",

"2", "3", "4", "5"]}

1 row in set (0.0006 sec)

> SELECT JSON_EXTRACT(@base,'$.grapes') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT(@base,'$.grapes'): ["red", "white", "green"]

1 row in set (0.0005 sec)

> SELECT JSON_EXTRACT(@base,'$.grapes[∗]') \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT(@base,'$.grapes[∗]'): ["red", "white", "green"]
1 row in set (0.0005 sec)

> SELECT JSON_EXTRACT(@base,'$.grapes[1]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT(@base,'$.grapes[1]'): "white"

1 row in set (0.0005 sec)

> SELECT JSON_EXTRACT(@base,'$.grapes[4]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT(@base,'$.grapes[4]'): NULL

1 row in set (0.0006 sec)

> SELECT JSON_EXTRACT(@base,'$.berries') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT(@base,'$.berries'): ["strawberry", "raspberry", "boysenberry",

"blackberry"]

1 row in set (0.0009 sec)

> SELECT JSON_EXTRACT(@base,'$.berries[2]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT(@base,'$.berries[2]'): "boysenberry"

1 row in set (0.0005 sec)

> SELECT JSON_EXTRACT(@base,'$.berries[2]','$.berries[3]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_EXTRACT(@base,'$.berries[2]','$.berries[3]'): ["boysenberry", "blackberry"]

1 row in set (0.0006 sec)

Chapter 6 Using the shell with a DoCUment store

263

Notice what happens when we use the single dollar sign. The function returns

the entire document. Also, notice what happens when we use a path expression that,

although its syntax is valid, it does not evaluate to an element in the document (see the

fifth example).

Notice also the last example where we pass in two path expressions. Notice how

it returns a JSON array whereas the example before it with only one path expression

returns a JSON string value. This is one of the trickier aspects of the function. So long as

you remember it returns a valid JSON string, array, or object, you will be able to use the

function without issue.

The JSON_SEARCH() function is interesting because it is the opposite of the JSON_

EXTRACT() function. More specifically, it takes one or more values and returns path

 expressions to the values if they are found in the document. This makes it easier to

validate your path expressions or to build path expressions on-the-fly.

Like the JSON_CONTAINS_PATH() function, the JSON_SEARCH() function also allows

you to find the first occurrence or all occurrences returning the path expressions

depending on what value you pass as the second parameter as follows.

• If you pass one, the function will return the first match.

• If you pass all, the function will return all matches.

But there is a trick here too. The function takes a third parameter that forms a special

search string that works like the LIKE operator in SQL statements. That is, search string

argument can use the % and _ characters the same way as the LIKE operator. Note that to

use a % or _ as a literal, you must precede it with the \ (escape) character.

The function returns 0 or 1 to indicate whether a JSON document contains the

values. Note that it can return null if any of the path expressions or the document is null.

An error occurs if the JSON document, or any path expression is not valid, or the second

parameter is not one or all. Listing 6-15 shows several examples of using the function.

Listing 6-15. Using the JSON_SEARCH Function

> SET @base = '{"grapes":["red","white","green"],"berries":["strawberry",

"raspberry","boysenberry","blackberry"],"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.0011 sec)

> SELECT JSON_SEARCH(@base,'all','red') \G

Chapter 6 Using the shell with a DoCUment store

264

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_SEARCH(@base,'all','red'): "$.grapes[0]"

1 row in set (0.0006 sec)

> SELECT JSON_SEARCH(@base,'all','gr____') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_SEARCH(@base,'all','gr____'): NULL

1 row in set (0.0004 sec)

> SELECT JSON_SEARCH(@base,'one','%berry') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_SEARCH(@base,'one','%berry'): "$.berries[0]"

1 row in set (0.0005 sec)

> SELECT JSON_SEARCH(@base,'all','%berry') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_SEARCH(@base,'all','%berry'): ["$.berries[0]", "$.berries[1]",

"$.berries[2]", "$.berries[3]"]

1 row in set (0.0006 sec)

Now let’s look at the last group of JSON functions; those that are utilitarian in

nature allowing you to get information about the JSON document and perform simple

operations to help work with JSON documents.

 Utility Functions

Lastly, there are several functions that can return information about the JSON

document, help add or remove quotes, and even find the keys in a document. We

have already seen several of the utility JSON_TYPE() and JSON_VALID() functions. The

following are additional utility functions you may find useful when working with JSON

documents.

The JSON_DEPTH() function returns the maximum depth of a JSON document. If

the document is an empty array, object, or a scalar value, the function returns a depth

of 1. An array containing only elements of depth 1 or nonempty objects containing

only member values of depth 1 returns a depth of 2. Listing 6-16 shows several

examples.

Chapter 6 Using the shell with a DoCUment store

265

Listing 6-16. Using the JSON_DEPTH Function

> SELECT JSON_DEPTH('8') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_DEPTH('8'): 1

1 row in set (0.0017 sec)

> SELECT JSON_DEPTH('[]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_DEPTH('[]'): 1

1 row in set (0.0007 sec)

> SELECT JSON_DEPTH('{}') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_DEPTH('{}'): 1

1 row in set (0.0007 sec)

> SELECT JSON_DEPTH('[12,3,4,5,6]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_DEPTH('[12,3,4,5,6]'): 2

1 row in set (0.0008 sec)

> SELECT JSON_DEPTH('[[], {}]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_DEPTH('[[], {}]'): 2

1 row in set (0.0004 sec)

> SET @base = '{"grapes":["red","white","green"],"berries":["strawberry",

"raspberry","boysenberry","blackberry"],"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.0004 sec)

> SELECT JSON_DEPTH(@base) \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_DEPTH(@base): 3

1 row in set (0.0004 sec)

> SELECT JSON_DEPTH(JSON_EXTRACT(@base, '$.grapes')) \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_DEPTH(JSON_EXTRACT(@base, '$.grapes')): 2

1 row in set (0.0005 sec)

Chapter 6 Using the shell with a DoCUment store

266

The JSON_KEYS() function is used to return a list of keys from the top-level value of

a JSON object as a JSON array. The function also allows you to pass a path expression,

which results in a list of the top-level keys from the selected path expression value.

An error occurs if the json_doc argument is not a valid JSON document or the path

argument is not a valid path expression or contains a ∗ or ∗∗ wildcard. The resulting

array is empty if the selected object is empty.

There is one limitation. If the top-level value has nested JSON objects, the array

returned does not include keys from those nested objects. Listing 6-17 shows several

examples of using this function.

Listing 6-17. Using the JSON_KEYS Function

> SET @base = '{"grapes":["red","white","green"],"berries":["strawberry",

"raspberry","boysenberry","blackberry"],"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.0004 sec)

> SELECT JSON_KEYS(@base) \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_KEYS(@base): ["grapes", "berries", "numbers"]

1 row in set (0.0039 sec)

> SELECT JSON_KEYS(@base,'$') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_KEYS(@base,'$'): ["grapes", "berries", "numbers"]

1 row in set (0.0005 sec)

> SELECT JSON_KEYS('{"z":123,"x":{"albedo":50}}') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_KEYS('{"z":123,"x":{"albedo":50}}'): ["x", "z"]

1 row in set (0.0004 sec)

> SELECT JSON_KEYS('{"z":123,"x":{"albedo":50}}', '$.x') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_KEYS('{"z":123,"x":{"albedo":50}}', '$.x'): ["albedo"]

1 row in set (0.0004 sec)

The JSON_LENGTH() function returns the length of the JSON document passed. It also

allows you to pass in a path expression and if provided, will return the length of the value

that matches the path expression. An error occurs if the json_doc argument is not a valid

JSON document or the path argument is not a valid path expression or contains a * or **

wildcard. However, the value returned has several constraints as follows.

Chapter 6 Using the shell with a DoCUment store

267

• A scalar has length 1.

• An array has a length equal to the number of array elements.

• An object has a length equal to the number of object members.

However, there is one surprising limitation: The length returned does not count the

length of nested arrays or objects. Thus, you must use this function carefully using the

path expression for nested documents. Listing 6-18 shows several examples of using the

function.

Listing 6-18. Using the JSON_LENGTH Function

> SET @base = '{"grapes":["red","white","green"],"berries":["strawberry",

"raspberry","boysenberry","blackberry"],"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.0006 sec)

> SELECT JSON_LENGTH(@base,'$') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_LENGTH(@base,'$'): 3

1 row in set (0.0005 sec)

> SELECT JSON_LENGTH(@base,'$.grapes') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_LENGTH(@base,'$.grapes'): 3

1 row in set (0.0005 sec)

> SELECT JSON_LENGTH(@base,'$.grapes[1]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_LENGTH(@base,'$.grapes[1]'): 1

1 row in set (0.0005 sec)

> SELECT JSON_LENGTH(@base,'$.grapes[4]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_LENGTH(@base,'$.grapes[4]'): NULL

1 row in set (0.0004 sec)

> SELECT JSON_LENGTH(@base,'$.berries') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_LENGTH(@base,'$.berries'): 4

1 row in set (0.0004 sec)

> SELECT JSON_LENGTH(@base,'$.numbers') \G

Chapter 6 Using the shell with a DoCUment store

268

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_LENGTH(@base,'$.numbers'): 5

1 row in set (0.0005 sec)

Notice the fourth example returns null because the path expression, while valid

syntax, does not evaluate to a value or nested JSON array or object.

The JSON_QUOTE() function is a handy function to use that will help you add quotes

where they are appropriate. That is, the function quotes a string as a JSON string

by wrapping it with double quote characters and escaping interior quote and other

characters and returns the result. Note that this function does not operate on a JSON

document, rather, only a string.

You can use this function to produce a valid JSON string literal for inclusion within a

JSON document. Listing 6-19 shows a few short examples of using the function to quote

JSON strings.

Listing 6-19. Using the JSON_QUOTE Function

> SELECT JSON_QUOTE("test") \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_QUOTE("test"): "test"

1 row in set (0.0012 sec)

> SELECT JSON_QUOTE('[true]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_QUOTE('[true]'): "[true]"

1 row in set (0.0007 sec)

> SELECT JSON_QUOTE('90125') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_QUOTE('90125'): "90125"

1 row in set (0.0008 sec)

> SELECT JSON_QUOTE('["red","white","green"]') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_QUOTE('["red","white","green"]'): "[\"red\",\"white\",\"green\"]"

1 row in set (0.0007 sec)

Notice the last example. Here the function adds the escape character (\) since the

string passed contains quotes. Why is this happening? Remember, this function takes a

string, not a JSON array as the parameter.

Chapter 6 Using the shell with a DoCUment store

269

The JSON_UNQUOTE() function is the opposite of the JSON_QUOTE() function. The

JSON_UNQUOTE() function removes quotes JSON value and returns the result as a

utf8mb4 string. The function is designed to recognize and not alter markup sequences as

follows.

• \": A double quote (") character

• \b: A backspace character

• \f: A form feed character

• \n: A newline (linefeed) character

• \r: A carriage return character

• \t: A tab character

• \\: A backslash (\) character

Listing 6-20 shows examples of using the function.

Listing 6-20. Using the JSON_UNQUOTE Function

> SELECT JSON_UNQUOTE("test 123") \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_UNQUOTE("test 123"): test 123

1 row in set (0.0005 sec)

> SELECT JSON_UNQUOTE('"true"') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_UNQUOTE('"true"'): true

1 row in set (0.0007 sec)

> SELECT JSON_UNQUOTE('\"true\"') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_UNQUOTE('\"true\"'): true

1 row in set (0.0007 sec)

> SELECT JSON_UNQUOTE('9\t0\t125\\') \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_UNQUOTE('9\t0\t125\\'): 9 0 125\

1 row in set (0.0006 sec)

Chapter 6 Using the shell with a DoCUment store

270

The JSON_PRETTY() function formats a JSON document for easier viewing. You can

use this to produce an output to send to users or to make the JSON look a bit nicer in

the shell. Listing 6-21 shows an example without the function and the same with the

function. Notice how much easier it is to read when using JSON_PRETTY().

Listing 6-21. Using the JSON_PRETTY Function

> SET @base = '{"name": {"last": "Throckmutton", "first": "Billy-bob"},

"address": {"zip": "90125", "city": "Melborne", "state": "California",

"street": "4 Main Street"}}';

Query OK, 0 rows affected (0.0005 sec)

> SELECT @base \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
@base: {"name": {"last": "Throckmutton", "first": "Billy-bob"},

"address": {"zip": "90125", "city": "Melborne", "state": "California",

"street": "4 Main Street"}}

1 row in set (0.0005 sec)

> SELECT JSON_PRETTY(@base) \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
JSON_PRETTY(@base): {

 "name": {

 "last": "Throckmutton",

 "first": "Billy-bob"

 },

 "address": {

 "zip": "90125",

 "city": "Melborne",

 "state": "California",

 "street": "4 Main Street"

 }

}

1 row in set (0.0004 sec)

Chapter 6 Using the shell with a DoCUment store

271

However, there is one thing the example did not cover. If the JSON data element is a

string, you must use the JSON_UNQUOTE() function to remove the quotes from the string.

Let’s suppose we wanted to add a generated column for the color data element. If we add

the column and index with the ALTER TABLE statements without remove the quotes, we

will get some unusual results as shown in Listing 6-22.

Listing 6-22. Removing Quotes for Generated Columns on JSON Strings

> CREATE TABLE `testdb_6`.`thermostats` (`model_number` char(20) NOT

NULL,`manufacturer` char(30) DEFAULT NULL,`capabilities` json DEFAULT

NULL,PRIMARY KEY (`model_number`)) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Query OK, 0 rows affected (0.0225 sec)

> INSERT INTO `testdb_6`.`thermostats` VALUES ('ODX-123','Genie','{"rpm":

3000, "color": "white", "modes": ["ac", "furnace"], "voltage": 220,

"capability": "fan"}') \G

Query OK, 1 row affected (0.0037 sec)

> INSERT INTO `testdb_6`.`thermostats` VALUES ('AB-90125-C1', 'Jasper',

'{"rpm": 1500, "color": "beige", "modes": ["ac"], "voltage": 110,

"capability": "auto fan"}') \G

Query OK, 1 row affected (0.0041 sec)

> ALTER TABLE `testdb_6`.`thermostats` ADD COLUMN color char(20) GENERATED

ALWAYS AS (capabilities->'$.color') VIRTUAL;

Query OK, 0 rows affected (0.0218 sec)

Records: 0 Duplicates: 0 Warnings: 0

> SELECT model_number, color FROM `testdb_6`.`thermostats` WHERE color =

"beige" \G

Empty set (0.0006 sec)

> SELECT model_number, color FROM `testdb_6`.`thermostats` LIMIT 2 \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
model_number: AB-90125-C1

 color: "beige"

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
model_number: ODX-123

 color: "white"

2 rows in set (0.0006 sec)

> ALTER TABLE `testdb_6`.`thermostats` DROP COLUMN color;

Chapter 6 Using the shell with a DoCUment store

272

Query OK, 0 rows affected (0.0206 sec)

Records: 0 Duplicates: 0 Warnings: 0

> ALTER TABLE `testdb_6`.`thermostats` ADD COLUMN color char(20) GENERATED

ALWAYS AS (JSON_UNQUOTE(capabilities->'$.color')) VIRTUAL;

Query OK, 0 rows affected (0.0172 sec)

Records: 0 Duplicates: 0 Warnings: 0

> SELECT model_number, color FROM `testdb_6`.`thermostats` WHERE color =

'beige' LIMIT 1 \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
model_number: AB-90125-C1

 color: beige

1 row in set (0.0006 sec)

Notice in the first SELECT statement, there is nothing returned. This is because the

virtual generated column used the JSON string with the quotes. This is often a source of

confusion when mixing SQL and JSON data. Notice in the second SELECT statement, we

see there should have been several rows returned. Notice also after we drop the column

and add it again with the JSON_UNQUOTE() function, the SELECT returns the correct data.

Tip For more information about using Json functions, see the section, “Json
Functions” in the online mysQl reference manual (https://dev.mysql.com/
doc/refman/8.0/en/json-functions.html).

 Summary
The addition of the JSON data type to MySQL has ushered a paradigm shift for how we

use MySQL. For the first time, we can store semi-structured data inside our relational

data (tables). Not only does this give us far more flexibility that we ever had before, it

also means we can leverage modern programming techniques to access the data in our

applications without major efforts and complexity. JSON is a well-known format and

used widely in many applications.

Understand the JSON data type is key to understanding the Document Store. This

is because the JSON data type, while designed to work with relational data, forms the

pattern for how we store data in the document store – in JSON documents!

Chapter 6 Using the shell with a DoCUment store

https://dev.mysql.com/doc/refman/8.0/en/json-functions.html
https://dev.mysql.com/doc/refman/8.0/en/json-functions.html

273

In this chapter, we explored the JSON data type in more detail. We saw examples

of how to work with the JSON data in relational tables via the numerous built-in JSON

functions provided in MySQL.

In the next chapter, we will explore the MySQL Document Store in more detail by

taking the garage sample application and converting it to a document store. That is, we

will see how to migrate a relational database solution to a document store all through

using MySQL Shell to migrate the data and develop the code to build a NoSQL solution

with JSON documents.

Chapter 6 Using the shell with a DoCUment store

275
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_7

CHAPTER 7

Example: Document Store
Development
Now that we have a firm foundation in JSON and we have seen how to use MySQL Shell

to develop relational database code, we are ready to begin writing a NoSQL version of

the sample application.

As you will see, the evolution of the application from a pure relational model to a

document model demonstrates how we can avoid some of the messier aspects of using

relational data. One element that may surprise you is the complexity of the code for the

document store (NoSQL) version lower making the code easier to understand. What better

reason to consider writing all your future applications using the MySQL Document Store?

In the last chapter, we explored working with JSON data in our relational databases

by creating one or more JSON columns and using JSON functions to create, manipulate,

search, and access data in a JSON document.

In this chapter, we take the garage sample application (relational database solution)

and migrate it to a pure NoSQL application1 using the MySQL Document Store. We can

do this by using the many X DevAPI features through Python – all developed with the

aide of MySQL Shell! Let’s dive in.

 Getting Started
Rather than leave the explanation of the document store with the last chapter, we back

it up with examples that explain the benefits of a new way of working with data through

code using a document store. We will demonstrate the concepts in an interactive manner

so that the concepts are proven through the example rather than simply showing how it

1 The sample application presented here has no SQL statements and uses only Python and the X
DevAPI.

276

is possible. In this section, we will learn about a sample application that strives to do just

that – to prove how you can use the shell to develop your own document store.

However, in order to show the full capabilities of the shell in this manner, the sample

must be sufficiently complex enough to have the depth (and breadth) to fulfill its role.

Thus, for this chapter, we will use the garage sample application from Chapter 5 as the

starting point and migrate it to a document store.

Recall, the sample application is a tool you can use to organize tools in your garage

or workshop. However, unlike the relational database implementation, we will take a

slightly different view of the data. Let’s begin.

 Sample Application Concept
Like the sample application we saw in Chapter 5, the sample application is all about

organization. In Chapter 5, the data was organized in a typical manner that most

relational database experts use – they construct tables to hold things that all have the

same layout or, in plain terms, the tables represent the major categories of data. Recall,

we had tables for hand tools, power tools, storage places, etc. – all things you would find

in a garage or workshop.

For this version of the garage application, we will use change our focus from

organizing like things into tables to organizing things by collections. For example, a

toolchest contains tools, a storage unit contains bins, boxes, cases, etc. This may seem

like a very subtle difference (and perhaps it is), but it changes the entire focus of the data.

Rather than looking for a tool to find where it is stored, we can open a toolchest or look

on a shelving unit to see what tools are stored there. In this way, we’ve created a much

more user-friendly version. Now, we mimic what most people do when they look for a

tool – they open drawers one at a time (you know you do it too).

This is one of the powers of the document store – the inherent flexibility in the data

allows you choose the view you want to use (or require) and make the data and its access

layers work. This is a challenge that some relational database applications fail miserably.2

Also, unlike the relational database version, we create collections for each of the

major storage equipment and maintain the list of the contents of each (e.g., tools) in the

document that represents the storage equipment. We will group all tools together in a

2 I have personally witnessed several massive failures in design where the database forced an
unnatural and often hostile workflow on the user. The application seemed to be written inside
out making it difficult for users to learn much less use. Don’t be like those developers.

Chapter 7 example: DoCument Store Development

277

single collection and reference them in the storage equipment collection by document

id. Again, this may sound strange, but you will see how well it works as you read along.

Before that, let’s take a moment to look at the modified user interface for this version

of the sample application. We will name this application mygarage_v2. Since we focused

the schema design on the storage equipment, our views in the user interface will be from

that perspective. We retain the list view concept except we use major sections for each

of the storage equipment. Figure 7-1 shows an example of the new interface showing a

toolchest detail view.

Figure 7-1. Toolchest Detail View

Chapter 7 example: DoCument Store Development

278

Note We use “schema” when working with a document store or noSQl model
and “database” for a relational database model.

Notice here we see the toolchest details along with each of the storage locations

(drawers, shelves) and the list of tools in them. While we could have adopted a similar

view for the relational database version,3 the document store makes this considerably

easier to code.

Tip rather than explain every nuance of the sample application, we will focus
on the portions that are best used to prove the utility of using the shell to develop
code – the schema collection code modules.

Unlike the relational database version, the code behind this version is easy to

understand and in some ways much less complex. But before we see the schema design,

let’s discuss the collections used in this version of the application in the following list. This

will help you understand the differences from the relational database version (version 1).

• Cabinets: Storage equipment that has doors and may have one or

more shelves – used to store a variety of tools and organizers

• Toolchests: Storage equipment that has zero or more shelves and one

or more drawers – used for storing smaller tools

• Workbench: Storage equipment that has one or more shelves and

zero or more drawers – used for storing larger tools

• Shelving Unit: Storage equipment that has no doors and one or more

shelves – used for storing larger bins and similar organizers

• Organizers: Containers that can hold one or more tools but requires

storing in storage equipment

• Tools: Hand and power tools

• Vendors: Manufacturers of tools and equipment

3 I challenge you to do just that as an exercise!

Chapter 7 example: DoCument Store Development

279

Notice there is a bit of a vocabulary change here. In the first version of the

application, hence first version or version 1, we used table names in the singular.

Document stores typically use the plural since each collection often contains more than

one item (document). Also, when working with a document store, we should always use

the term, schema, rather than database. While some would argue they are synonyms,

the X DevAPI makes a clear distinction, so we will adopt the same and use the term

“schema”.

You may be wondering how we can get the association from toolchest to tools as

shown in preceding text. This is accomplished by simply storing the document ids of the

tools with each storage place (renamed to tool location) in the toolchest document.

Listing 7-1 is a sample listing that may help visualize how this is accomplished for

the organizers collection. As you will see, we use the shell to connect to the schema

then get the collections and follow the document id key values to fetch the list of tools

(an array named tool_ids). This is similar how one would look up things in a relational

database, but in this case, we don’t have to craft special SQL commands (or worse, evil

SQL joins) to get the data. We’ll talk more about those _id fields later.

Listing 7-1. Sample Toolchest JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> tc = garage_v2.get_collection('toolchests')

> tc.find().execute().fetch_one()

{

 "_id": "00005cc33db4000000000000025f",

 "depth": 22,

 "description": "Kobalt 3000 Steel Rolling Tool Cabinet (Black)",

 "height": 54,

 "location": "Rear wall right of workbench",

 "tool_locations": [

 "00005cc33db40000000000000260",

 "00005cc33db40000000000000261",

 "00005cc33db40000000000000268"

],

 "vendorid": "00005cc33db40000000000000130",

 "width": 48

}

Chapter 7 example: DoCument Store Development

280

> locs = garage_v2.get_collection('locations')

> locs.find('_id = :param1').bind('param1',

'00005cc33db40000000000000260').execute().fetch_one()

{

 "_id": "00005cc33db40000000000000260",

 "depth": 17,

 "description": "Left 1",

 "height": 2,

 "tool_ids": [

 "00005cc33db40000000000000146",

 "00005cc33db40000000000000147",

 "00005cc33db40000000000000148",

 "00005cc33db40000000000000149",

 "00005cc33db4000000000000014a",

 "00005cc33db4000000000000015a"

],

 "type": "Drawer",

 "width": 21

}

At this point, you may be wondering what happened to the happy-go-lucky no

format rules capabilities of JSON documents. In short, it’s still there, but our code

requires a certain set of attributes for each document. As you will see, the attributes we

define will be used in the code directly to access the code in the document.

This does not preclude using additional attributes that can be added at any time, but it

does require your code support such changes. This is what is meant by code-centric schema

less embedded data design (or simply code-driven data). We can use our code to augment

our documents (and collections) as we need to over the evolution of the application.

For example, if we need to add a new attribute in the future, we can add code to handle

the new data presented, which must include how to handle documents that do not have

the new attribute, but may also include code to add the attribute to the older documents as

needed. Unlike relational database applications that require modification of the table(s),

which can force the code to change (perhaps in unhappy ways), we can let the code for the

document store effect the changes instead. It all comes down to the code.

Let’s talk more about the schema design and how we can migrate our relational

database to a document store.

Chapter 7 example: DoCument Store Development

281

 Schema Design
You may be tempted to think we can use a tool like MySQL Workbench to create the

schema and collections (and you can) like you would for a relational database, but

you do not need to do that. You should use code to enact the creation events. More

specifically, if you were to import the schema for a document store into a tool like

MySQL Workbench, you won’t see much that is of interest. This is because MySQL Shell

(or Workbench) in SQL mode sees the collection like a database. For example, listing 7-2

shows the CREATE TABLE statement for the database (schema) for this version of the

sample application (garage_v2).

Listing 7-2. Sample CREATE statement from SQL for garage_v2.

> EXPLAIN toolchests \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Field: doc

 Type: json

 Null: YES

 Key:

Default: NULL

 Extra:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Field: _id

 Type: varbinary(32)

 Null: NO

 Key: PRI

Default: NULL

 Extra: STORED GENERATED

2 rows in set (0.0025 sec)

Clearly, that isn’t going to work, and it has little more than a passing interest to use.

Note the _id field. That’s the document id.

When working with a document store, we use code to create the schema and

collections. Recall, we want to name the schema garage_v2 and create the collections

(cabinets, toolchests, workbenches, shelving units, organizers, tools, and

vendors). We also have a collection named locations that stores as a document each

of the types of storage places (called tool locations) like shelves, drawers, etc. The

Chapter 7 example: DoCument Store Development

282

locations collection is not accessible from the main menu in the user interface since

the focus is on the storage equipment collections. However, each storage equipment

detail view allows you to modify the tool locations for that storage equipment fulfilling

the create, read, update, and delete (CRUD) operations for that collection.

We will use the shell and the X DevAPI to create each of these objects as shown in

Listing 7-3. Notice we first connect to the server, request the session, then create the

schema and collections. That’s it – our schema is done and we have the basis for our

document store!

Listing 7-3. Creating the Document Store

from getpass import getpass

try:

 input = raw_input

except NameError:

 pass

Get user id and password

userid = input("User Id: ")

passwd = getpass("Password: ")

user_info = {

 'host': 'localhost',

 'port': 33060,

 'user': userid,

 'password': passwd,

}

Connect to the database garage_v1

my_session = mysqlx.get_session(user_info)

Create the schema for garage_v2

my_session.drop_schema('garage_v2')

garage_v2 = my_session.create_schema('garage_v2')

Create the collections

cabinets = garage_v2.create_collection('cabinets')

organizers = garage_v2.create_collection('organizers')

shelving_units = garage_v2.create_collection('shelving_units')

tools = garage_v2.create_collection('tools')

Chapter 7 example: DoCument Store Development

283

toolchests = garage_v2.create_collection('toolchests')

locations = garage_v2.create_collection('locations')

workbenches = garage_v2.create_collection('workbenches')

vendors = garage_v2.create_collection('vendors')

Show the collections

print(garage_v2.get_collections())

When you run the code, you should see output like the following.

> mysqlsh --py -f listing7-3.py

User Id: root

Password: ∗∗∗∗∗∗∗∗∗∗∗
[<Collection:cabinets>, <Collection:locations>, <Collection:organizers>,

<Collection:shelving_units>, <Collection:toolchests>, <Collection:tools>,

<Collection:vendors>, <Collection:workbenches>]

Wasn’t that a lot easier than slogging through a bunch of SQL CREATE statements?

You can run this on your machine if you’d like to create the schema and collections from

scratch, but if you are converting the data we saw in Chapter 5 from a relation database

to a document store, you may want to follow along with the example conversion in the

Setup and Configuration section.

Before we do that, let’s talk about the collections again. This time, we will see a

sample document for each collection.

Note We use “‘tool location” in place of the version 1 concept of “storage place”
to both distinguish and better describe the attribute in the JSon document.

 Cabinets Collection

The cabinets collection stores documents that describe a cabinet, which can contain

one or more shelves and one or more doors. As such, we want to store information about

each cabinet in the collection to include its physical size and location as well as the tool

locations (shelves) it contains. Listing 7-4 shows an example JSON document from this

collection.

Chapter 7 example: DoCument Store Development

284

Listing 7-4. Cabinets Collection Example JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> cabinets = garage_v2.get_collection('cabinets')

> cabinets.find().execute().fetch_one()

{

 "_id": "00005cae74150000000000000161",

 "depth": 24,

 "description": "Kobalt Steel Freestanding Garage Cabinet",

 "height": 72,

 "location": "Right wall",

 "numdoors": 2,

 "tool_locations": [

 "00005cae74150000000000000162",

 "00005cae74150000000000000163",

 "00005cae74150000000000000164",

 "00005cae74150000000000000165",

 "00005cae74150000000000000166"

],

 "vendorid": "00005cae74150000000000000001",

 "width": 48

}

Notice we have an attribute named _id. When we created the document, we did not

specify this attribute and, if you don’t, MySQL will create a unique value for you. This

is called a document id. You can specify your own values for _id if you require, but it is

generally discouraged as the internal mechanism will ensure the documents are unique.

Think of it as a primary key.4 For more information about document ids, see https://

dev.mysql.com/doc/x-devapi-userguide/en/working-with-document-ids.html.

We also added attributes for the description, size (depth, height, width), its physical

location, number of doors, and an array of tool locations. Finally, notice we have an

attribute that contains the document id for the vendor. Notice that the tool_locations

array does not impose any restrictions such as allowing only shelves. This is because in

a document store, those types of constraints are added to the code. The document store

simply stores the documents.

4 But don’t call it that. It’s a document id.

Chapter 7 example: DoCument Store Development

https://dev.mysql.com/doc/x-devapi-userguide/en/working-with-document-ids.html
https://dev.mysql.com/doc/x-devapi-userguide/en/working-with-document-ids.html

285

Note We use lower case names for collections and attributes in the JSon
documents. this is not strictly necessary but does follow a familiar pattern.

 Locations Collection

The locations collection stores documents that describe the tool storage locations such

as a shelf or drawer. That is, we want to store information about each location in the

collection to include its physical size and location as well as the tool locations (shelves or

drawers) it contains. Listing 7-5 shows an example JSON document from this collection.

Listing 7-5. Locations Collection Example JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> locations = garage_v2.get_collection('locations')

> locations.find().execute().fetch_one()

{

 "_id": "00005cae74150000000000000146",

 "depth": 17,

 "description": "Left 1",

 "height": 2,

 "tool_ids": [

 "00005cae74150000000000000141",

 "00005cae74150000000000000142",

 "00005cae74150000000000000139"

],

 "type": "Drawer",

 "width": 21

}

Notice we have an array of tool ids, which are the document ids for each of the

tools stored in this location. Notice also we have a type attribute to store the type of tool

location. Control of these values are also moved to the code, which allows you to change

the type permitted through code rather than modifying the underlining data storage,

which can cause additional headaches during development and release.

Chapter 7 example: DoCument Store Development

286

WAIT, WHY NOT LUMP THE TOOLS IN THE TOOLCHEST?

Some document store developers may tell you it is bad form to use a separate collection

and reference documents by ids. they would say, “just dump all the tools into the storage

equipment collection as an array and don’t mess with a locations collection.” that is one

design choice and a valid one, but some rigor in your data such as extracting the mapping

of tool locations to tools in this manner is equally as valid and in some cases may make the

conversion of your data easier to accomplish and visualize. We will see such a case later in

this chapter. Yes, JSon will let you lump everything together, but having a little rigor in how

the data is organized does not validate the noSQl objective whatsoever. Don’t be fooled into

thinking no rigor equates to better noSQl design.

 Organizers Collection

The organizers collection stores documents that describe an organizer such as a bin,

box, case, etc., which can contain one or more tools. As such, we want to store information

about each organizer in the collection to include its physical size and location as well as

the tools it contains. Listing 7-6 shows an example JSON document from this collection.

Listing 7-6. Organizers Collection Example JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> organizers = garage_v2.get_collection('organizers')

> organizers.find().execute().fetch_one()

{

 "_id": "00005cae7415000000000000013b",

 "depth": 14,

 "description": "SAE/Metric Socket Set",

 "height": 4,

 "tool_ids": [

 "00005cae741500000000000000b2",

 "00005cae741500000000000000b9",

 "00005cae741500000000000000c7"

],

 "type": "Case",

 "width": 12

}

Chapter 7 example: DoCument Store Development

287

Like the locations collection, we also have a type attribute that we control in code.

Aside from that, we added attributes to describe its physical size and description. There

is also an array for the tool ids. That’s all we need.

One caveat here for the sample application. Since organizers can be small, they can

be placed in a tool location. As such, the application needs additional code to handle

lookups to distinguish between organizers and tools. This is an example of allow for

flexibility in your application. A relational database design would never permit this

because the types (organizer vs. tool location) aren’t the same. Since we’re controlling

the interface to the data with code, all we need to do is write the code to handle such a

condition! We’ll see more about that in the next section on the code design.

 Shelving Units Collection

The shelving_units collection stores documents that describe a shelving unit, which can

contain one or more shelves. As such, we want to store information about each shelving

unit in the collection to include its physical size and location as well as the tool locations

(shelves) it contains. Listing 7-7 shows an example JSON document from this collection.

Listing 7-7. Shelving Units Collection Example JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> shelving_units = garage_v2.get_collection('shelving_units')

> shelving_units.find().execute().fetch_one()

{

 "_id": "00005cae7415000000000000014f",

 "depth": 24,

 "description": "Wire shelving #1",

 "height": 72,

 "location": "Right wall",

 "tool_locations": [

 "00005cae74150000000000000150",

 "00005cae74150000000000000152",

 "00005cae74150000000000000153"

],

 "vendorid": "00005cae74150000000000000015",

 "width": 48

}

Chapter 7 example: DoCument Store Development

288

Are you starting to see a trend here? Yes, the collections of storage equipment have

a very similar set of attributes. That is by design. Why? So we can isolate the documents

to discrete collections to make the collections shallow (fewer documents). Admittedly,

this will result in a very small performance issue, but it is good practice to use. It also

permits you to change the set of attributes in each collection as your application matures

or evolves.

For example, if you add a new type of shelving unit that has doors, drawers, tool

hangers, and so on, you can change the code to handle the new additions without

redoing any of the documents in the collection and without forcing the change on the

other collections.

Recall, we had a bit of that in the relational database version where we had the field

for storing the number of doors, which was not needed by all storage equipment types.

JSON documents are the answer to that SQL conundrum.

 Toolchests Collection

The toolchests collection stores documents that describe a toolchest, which can

contain zero or more shelves and one or more drawers. As such, we want to store

information about each toolchest in the collection to include its physical size and

location as well as the tool locations (shelves and drawers) it contains. Listing 7-8 shows

an example JSON document from this collection.

Listing 7-8. Toolchests Collection Example JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> toolchests = garage_v2.get_collection('toolchests')

> toolchests.find().execute().fetch_one()

{

 "_id": "00005cae74150000000000000145",

 "depth": 22,

 "description": "Kobalt 3000 Steel Rolling Tool Cabinet (Black)",

 "height": 54,

 "location": "Rear wall right of workbench",

 "tool_locations": [

 "00005cae74150000000000000146",

 "00005cae74150000000000000147",

Chapter 7 example: DoCument Store Development

289

 "00005cae7415000000000000014e"

],

 "vendorid": "00005cae74150000000000000001",

 "width": 48

}

 Tools Collection

The tools collection stores documents that describe a tool. We will include all tools; not

just hand tools or power tools. We store the characteristics of each tool in the document

as you expect such as a description, category, size, etc. Listing 7-9 shows an example

JSON document from this collection.

Listing 7-9. Tools Collection Example JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> tools = garage_v2.get_collection('tools')

> tools.find().execute().fetch_one()

{

 "_id": "00005cae74150000000000000024",

 "category": "Handtool",

 "description": "1/8-in X 1-1/2-in",

 "size": "Slotted",

 "type": "Screwdriver",

 "vendorid": "00005cae74150000000000000002"

}

One note here about this collection. Recall we had two tables in the relational

database for version 1 because of the unique enumerated values for some of the fields.

Since JSON permits us to store the attributes we want, the documents in this collection

may or may not have one or more of the attribute. For example, not all tools have a size

attribute. Like the other collections, the values for the category and type are handled in

the code.

Chapter 7 example: DoCument Store Development

290

 Vendors Collection

The vendors collection stores documents that describe a vendor. We store the same

characteristics from the relational database in version 1 including the name, sources,

and the URL. Listing 7-10 shows an example JSON document from this collection.

Listing 7-10. Vendors Collection Example JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> vendors = garage_v2.get_collection('vendors')

 MySQL Py > vendors.find().execute().fetch_one()

{

 "_id": "00005cae74150000000000000001",

 "name": "Kobalt",

 "sources": "Lowes",

 "url": "https://www.kobalttools.com/"

}

 Workbenches Collection

The workbenches collection stores documents that describe a workbench, which can

contain zero or more shelves. As such, we want to store information about each workbench

in the collection to include its physical size and location as well as the tool locations

(shelves) it contains. Listing 7-11 shows an example JSON document from this collection.

Listing 7-11. Workbenches Collection Example JSON Document

> garage_v2 = my_session.get_schema('garage_v2')

> workbenches = garage_v2.get_collection('workbenches')

> workbenches.find().execute().fetch_one()

{

 "_id": "00005cae74150000000000000167",

 "depth": 24,

 "description": "Large metal workbench",

 "height": 42,

 "location": "Rear wall",

 "tool_locations": [

Chapter 7 example: DoCument Store Development

291

 "00005cae74150000000000000168",

 "00005cae74150000000000000169",

 "00005cae7415000000000000016a"

],

 "vendorid": "00005cae74150000000000000002",

 "width": 72

}

Now that we’ve seen how the collections are formed, let’s look at how we can use the

shell to write the code we need to implement the CRUD operations for the collections.

 Code Design
The code for the sample application is very similar to the code in version 1; it is a Python

Flask application with the same choices for organizing the code modules. Like version 1,

you may find things you would do differently, it should still be usable in its current form

for demonstration purposes. The code design choices made for the sample application

include the following.

• Use Flask framework for web-based interface.

• Use a class to represent each table in the database.

• Place a single class in its own code module.

• Place all schema code modules in its own folder (named schema).

• Use a class to encapsulate the connection to the database server.

• Use class modules to test each of the table/view classes.

• Use a code module run from the shell to test the class modules.

We will see most of these constraints in the demonstration. As mentioned previously,

a description of the user interface is included in the appendix.

Fortunately, we’ve made it a little easier to write the code by using a document

store. This is because collections allow you to specify the attributes, so aside from

adding constraints for a list of valid values (enumerated columns in the relational

database version) and checking for errors, the code for the create, read, update, and

delete (CRUD) are the same. Thus, we will use an object hierarchy with a base class

that contains the main code for the CRUD operations and allow sub classes to add the

constraints code specific to each collection.

Chapter 7 example: DoCument Store Development

292

Let’s take a moment to list the code modules we will use. In this sample application,

we will create a folder named schema and place the following modules in the folder.

We can then import them as needed in the application code. Table 7-1 shows the code

modules needed.

Table 7-1. Schema Code Modules

Code Module Class Name Description

garage_v2 MyGarage Implements connection to server and general

server interface

garage_collection GarageCollection Base class for all collection classes

cabinets.py Cabinets models the cabinets collection

locations.py Locations models the locations collection

organizers.py Organizers models the organizers collection

shelving_units.py ShelvingUnits models the shelving_units collection

toolchests.py Toolchests models the toolchests collection

tools.py Tools models the tools collection

vendors.py Vendors models the vendors collection

workbenches.py Workbenches models the workbenches collection

When we write the code for the sample application to use these code modules, we will

use the MyGarage class to make a connection to the database server and, when requested,

use the class associated with each collection to call the CRUD operations on each.

Now that we understand the goals for the sample application and its design, let’s get

started with writing the schema code for the sample application.

 Setup and Configuration
The setup for the following demonstration does not require installing anything or even

using the sample application, rather, we need only load the sample schema because we

will only be working with the schema code modules. While images are used to depict

certain aspects of the sample application, you don’t strictly need it for this chapter. Once

again, see the appendix for how to setup and use the complete sample application.

Chapter 7 example: DoCument Store Development

293

Since we are using the same data from the sample application in Chapter 5, we’ll

look at how to convert the relational database data to a document store. After that, we

will see how to write the code for the base and collection classes.

 Converting Relational Data to a Document Store
Rather than start from scratch, we can convert the relational database to a document

store. If you haven’t run the sample application from Chapter 5 and you want to see how

the conversion works, you can run the Ch05/mygarage/database/garage_v1.sql file

found in the source code for this book first, then follow along as we see how to convert

the database tables to collections and the data to documents. Even if you do not plan

to use the sample application, this section can help you in the future convert other

databases to document stores.

We will take a stepwise approach to forming a script to convert the data. This is

because there are several challenges that can make the conversion code a little tricky.

Fortunately, we will walk through each of these as we examine the code necessary

for converting the data. The challenges for converting from a relational database to a

document store concern how the data is massaged into the new collections. This means

you must plan your collections and how you want to use them before attempting the

conversion. Otherwise, you may find yourself redoing the conversion code as your

schema design matures.5

The challenges for converting the sample application (version 1) to a document store

include the following.

• We cannot use the auto increment values. Thus, we will need to

create a mapping from the old auto increment values to the new

document ids.

• We are combining the hand tools and power tools into one collection.

• We are splitting the storage table into separate collections.

• We must traverse the place table and preserve the tool locations in

the new collections.

5 Yep. Been there, done that more times than I’d like to admit. Planning solves a lot of problems!

Chapter 7 example: DoCument Store Development

294

Let’s begin with the first step – the preamble or setup of the code for the conversion.

If you plan to convert your own relational database to a document store, you can use a

similar set of steps to write your own conversion code, but you may not need all of them.

 Step 1: Conversion Setup Code

This step is straight forward. We simply import the modules we need, then connect

to the server and get an instance of the garage_v1 database and create the garage_v2

schema and collections like we did earlier in Listing 7-3. Listing 7-12 shows the code for

the setup of the conversion script.

Listing 7-12. Conversion Setup Code

import json

from getpass import getpass

try:

 input = raw_input

except NameError:

 pass

try:

 import mysqlx

except Exception:

 from mysqlsh import mysqlx

Get user id and password

userid = input("User Id: ")

passwd = getpass("Password: ")

user_info = {

 'host': 'localhost',

 'port': 33060,

 'user': userid,

 'password': passwd,

}

Chapter 7 example: DoCument Store Development

295

Connect to the database garage_v1

my_session = mysqlx.get_session(user_info)

garage_v1 = my_session.get_schema('garage_v1')

Get the tables

handtool_tbl = garage_v1.get_table('handtool')

organizer_tbl = garage_v1.get_table('organizer')

place_tbl = garage_v1.get_table('place')

powertool_tbl = garage_v1.get_table('powertool')

storage_tbl = garage_v1.get_table('storage')

vendor_tbl = garage_v1.get_table('vendor')

Create the schema for garage_v2

my_session.drop_schema('garage_v2')

garage_v2 = my_session.create_schema('garage_v2')

Create the collections

cabinets = garage_v2.create_collection('cabinets')

organizers = garage_v2.create_collection('organizers')

shelving_units = garage_v2.create_collection('shelving_units')

tools = garage_v2.create_collection('tools')

toolchests = garage_v2.create_collection('toolchests')

locations = garage_v2.create_collection('locations')

workbenches = garage_v2.create_collection('workbenches')

vendors = garage_v2.create_collection('vendors')

 Step 2: Helper Functions

The next step requires some explanation. It occurs next in the script (but could be placed

in the code earlier). In this step, we create a several helper functions for working with

the database tables and reconstructing the links between the original tables and the new

document id mappings. Table 7-2 lists the new helper functions and a description of

each. We will see the code for the functions as well.

Chapter 7 example: DoCument Store Development

296

The get_∗ functions are all used to query the relational database tables to find

the row that matches the auto increment value and get a list of auto increment ids for

power tools and hand tools. These are used to fetch a row so they can be converted to a

JSON document. The find_∗ functions are used to search the collections for the JSON

document that matches a tool id so that we can populate the locations collection.

Additionally, in order to associate tool storage locations to tools, we need a way to

collect the tools. Instead of making a reference, join, or lookup table, we can store an

array of the tool ids in the document. Thus, we create the link that way making it more

intuitive – we open a toolbox and want to see what is inside.

Let’s now look at the code for these functions. Listing 7-13 shows the code for the

functions. Rather than explain what each does, we present the code and discuss them

later in context. Don’t worry if you do not see how they work or why they were written;

they will make much more sense when you see them used in context.

Table 7-2. Helper Functions for Conversion Script

Name Parameters Description

show_collection(col_object) collection object print the contents of a

collection (for debugging).

get_places(storage_id) auto increment id Get the storage places that

match this storage id.

get_organizer_ids(place_id) auto increment id Get the list of organizer ids at

the storage place.

get_handtool_ids(place_id) auto increment id Get the list of handtool ids at

the storage place.

get_powertool_ids(place_id) auto increment id Get the list of powertool ids at

the storage place.

get_mapping(old_id, mapping) auto increment id,

map (array)

Get the new document id for

the old vendor id.

find_tool_in_organizers(tool_id) _id for the tool Search the organizers

collection for the tool.

find_tool(collection_name, tool_id) collection name,

_id for the tool

Search for a tool in a given

collection.

get_tool_location(tool_id) _id for the tool Find the location _id for a tool.

Chapter 7 example: DoCument Store Development

297

Listing 7-13. Helper Functions

Display the documents in a collection

def show_collection(col_object):

 print("\nCOLLECTION: {0}".format(col_object.name))

 results = col_object.find().execute().fetch_all()

 for document in results:

 print(json.dumps(json.loads(str(document)),

 indent=4, sort_keys=True))

Get the storage places that match this storage id

def get_places(storage_id):

 return place_tbl.select('Type', 'Description', 'Width', 'Depth',

 'Height', 'Id')\

 .where("StorageId = {0}".format(storage_id)).execute()

Get the list of organizer ids at the storage place

def get_organizer_ids(place_id):

 organizer_ids = []

 org_results = organizer_tbl.select('Id')\

 .where("PlaceId = {0}".format(place_id)).execute()

 for org in org_results.fetch_all():

 organizer_ids.append(get_mapping(org[0], organizer_place_map)[0])

 return organizer_ids

Get the list of handtool ids at the storage place

def get_handtool_ids(place_id):

 handtool_ids = []

 ht_results = handtool_tbl.select('Id')\

 .where("PlaceId = {0}".format(place_id)).execute()

 for ht in ht_results.fetch_all():

 handtool_ids.append(ht[0])

 return handtool_ids

Get the list of powertool ids at the storage place

def get_powertool_ids(place_id):

 powertool_ids = []

 pt_results = powertool_tbl.select('Id')\

Chapter 7 example: DoCument Store Development

298

 .where("PlaceId = {0}".format(place_id)).execute()

 for pt in pt_results.fetch_all():

 powertool_ids.append(pt[0])

 return powertool_ids

Get the new docid for the old vendor id

def get_mapping(old_id, mapping):

 for item in mapping:

 if item[0] == old_id:

 return item

 return None

Search the organizers collection for the tool

def find_tool_in_organizers(tool_id):

 # organizers contain no shelves or drawers so fetch only the tool ids

 organizers = garage_v2.get_collection('organizers')

 results = organizers.find().fields("_id", "tool_ids", "type",

 "description").execute().fetch_all()

 for result in results:

 if (result["tool_ids"]) and (tool_id in result["tool_ids"]):

 return ("{0}, {1}".format(result["type"], result["description"]),

 'organizers', result["_id"])

 return None

Search for a tool in a given collection

def find_tool(collection_name, tool_id):

 collection = garage_v2.get_collection(collection_name)

 storage_places = collection.find()\

 .fields("_id", "description", "tool_locations").execute().fetch_all()

 for storage_place in storage_places:

 if storage_place["tool_locations"]:

 for location in storage_place["tool_locations"]:

 loc_data = locations.find('_id = :param1') \

 .bind('param1',

 location).execute().fetch_all()

 if loc_data:

 loc_dict = dict(loc_data[0])

Chapter 7 example: DoCument Store Development

299

 tool_ids = loc_dict.get("tool_ids", [])

 if tool_id in tool_ids:

 return ("{0}, {1} - {2}"

 "".format(storage_place["description"],

 loc_dict["description"],

 loc_dict["type"]),

 collection_name,

 storage_place["_id"])

 return None

Find the location document id for a tool.

def get_tool_location(tool_id):

 loc_found = find_tool_in_organizers(tool_id)

 if loc_found:

 return loc_found

 storage_collections = [

 'toolchests', 'shelving_units', 'workbenches', 'cabinets'

]

 for storage_collection in storage_collections:

 loc_found = find_tool(storage_collection, tool_id)

 if loc_found:

 return loc_found

 return None

 Step 3: Populate Collections

The next step is to populate the collections. We can populate the collections with

data, but we must do it in a specific order. For example, each of the documents in the

collections representing storage equipment and tools is the document id for the vendor.

Thus, we need to do the vendors collection first creating a mapping of the old id column

from the table to the new document id in the vendors collection. Let’s see how to do that.

Listing 7-14 shows the code for converting the vendor table to the vendors collection.

We will explore this code in more detail since it forms the template for working with the

other tables and collections.

Chapter 7 example: DoCument Store Development

300

Listing 7-14. Populate the Vendors Collection

Get the vendors

my_results = vendor_tbl.select('Id', 'Name', 'URL', 'Sources').execute()

vendor_id_map = []

for v_row in my_results.fetch_all():

 new_item = {

 'name': v_row[1],

 'url': v_row[2],

 'sources': v_row[3]

 }

 last_docid = vendors.add(new_item).execute().get_generated_ids()[0]

 vendor_id_map.append((v_row[0], last_docid))

show_collection(vendors)

Notice here we open the vendor table and read all the data. Then, we create an

empty map (array) that we will use to record the auto increment id from the table to the

new document id from the collection. This will allow us to replace the auto increment id

in the other tables for the vendor column to the new document id for the vendor in the

collection. This is a nifty way to preserve relational links during the conversion.

We use a loop to read through the results from the query and form a dictionary with

the attributes (in lower case) using the data from the table row. We then use the vendors

collection to add the vendor document.

We can chain the add() method with the get_generated_ids() call to get the last

document id generated. We then add this to the new mapping named vendor_id_map,

which we will use later to insert the correct document id for the vendor in the other

documents in the other collections.

To help visualize the results, we use the show_collection() function to print the

contents of the collection.

The next collection we convert is the tools collection. Recall, we are going to

combine the handtool and powertool tables into the tools collection. Thus, we must

read each of these tables inserting them into the tools collection. Listing 7-15 shows the

code for this conversion. Take a moment and familiarize yourself with the code.

Chapter 7 example: DoCument Store Development

301

Listing 7-15. Populate the Tools Collection

Get the tools combining the handtool and powertool tables

ht_results = handtool_tbl.select('Id', 'VendorId', 'Description', 'Type',

'Toolsize', 'PlaceId').execute()

tool_place_map = []

for ht_row in ht_results.fetch_all():

 new_item = {

 'category': 'Handtool',

 'vendorid': get_mapping(ht_row[1], vendor_id_map)[1],

 'description': ht_row[2],

 'type': ht_row[3],

 'size': ht_row[4],

 }

 last_docid = tools.add(new_item).execute().get_generated_ids()[0]

 tool_place_map.append((ht_row[0], last_docid))

pt_results = powertool_tbl.select('Id', 'VendorId', 'Description', 'Type',

'PlaceId').execute()

for pt_row in pt_results.fetch_all():

 new_item = {

 'category': 'Powertool',

 'vendorid': get_mapping(pt_row[1], vendor_id_map)[1],

 'description': pt_row[2],

 'type': pt_row[3],

 }

 last_docid = tools.add(new_item).execute().get_generated_ids()[0]

 tool_place_map.append((pt_row[0], last_docid))

show_collection(tools)

As you can see, this code follows the same pattern as the previous code creating a

map for the auto increment ids for the tools to the new document id generated. Notice

that power tools do not have a size attribute, but hand tools do. Thus, we add that

attribute for hand tools but not power tools. This demonstrates in a small way how we

can use documents with different attribute (keys) in the same collection.

To help visualize the results, we use the show_collection() function to print the

contents of the collection.

Chapter 7 example: DoCument Store Development

302

The next collection we convert is the organizers collection. Like before, we simply

read the rows in the table and insert them into the collection. Listing 7-16 shows the

code for converting the organizer table to the organizers collection.

Listing 7-16. Populate the Organizers Collection

Get organizers

org_results = organizer_tbl.select('Id', 'Description', 'Type', 'Width',

'Depth', 'Height', 'PlaceId').execute()

organizer_place_map = []

for org_row in org_results.fetch_all():

 tool_ids = get_handtool_ids(org_row[0])

 tool_ids.extend(get_powertool_ids(org_row[0]))

 tool_docids = [get_mapping(item, tool_place_map)[1] for item in tool_ids]

 new_item = {

 'description': org_row[1],

 'type': org_row[2],

 'width': org_row[3],

 'depth': org_row[4],

 'height': org_row[5],

 }

 if tool_docids:

 new_item.update({'tool_ids': tool_docids})

 last_docid = organizers.add(new_item).execute().get_generated_ids()[0]

 # We also need to save the mapping of organizers to storage places

 organizer_place_map.append((org_row[0], last_docid))

show_collection(organizers)

While this code also follows the same pattern as before, we create the map of

organizer ids to new document ids. However, since the organizer table in the database

had a reference to the tools via the place table, we use the helper functions to retrieve

the tool id that matches this organizer from the table. We then build an array of tool ids

and store that in the attribute tool_ids. Take a moment to see how this works.

To help visualize the results, we use the show_collection() function to print the

contents of the collection.

Chapter 7 example: DoCument Store Development

303

The next collection we convert is the toolchests collection. This is the first of the

collections we will break out of the storage table making a separate collection for each of

the storage equipment. Since we have more than one storage equipment in the storage

table, we will restrict the result to those with the type set to toolchest. Like before, we

simply read the rows in the table and insert them into the collection. Listing 7-17 shows

the code for converting the storage table to the toolchests collection.

Listing 7-17. Populate the Toolchests Collection

Get the toolchests

tc_results = storage_tbl.select('Id', 'VendorId', 'Description', 'Width',

'Depth', 'Height', 'Location').where("Type = 'Toolchest'").execute()

For each toolbox, get its storage places and insert into the collection

for tc_row in tc_results.fetch_all():

 new_tc = {

 'vendorid': get_mapping(tc_row[1], vendor_id_map)[1],

 'description': tc_row[2],

 'width': tc_row[3],

 'depth': tc_row[4],

 'height': tc_row[5],

 'location': tc_row[6],

 }

 _id = toolchests.add(new_tc).execute().get_generated_ids()[0]

 # Now, generate the tool locations for this document

 tool_locations = []

 for pl_row in get_places(tc_row[0]).fetch_all():

 # Get all organizers and tools that are placed here

 tool_ids = get_handtool_ids(pl_row[5])

 tool_ids.extend(get_powertool_ids(pl_row[5]))

 tool_docids = []

 org_ids = get_organizer_ids(pl_row[5])

 if org_ids:

 for org_id in org_ids:

 map_found = get_mapping(org_id, organizer_place_map)

 if map_found:

 tool_docids.append(map_found[1])

Chapter 7 example: DoCument Store Development

304

 for item in tool_ids:

 map_found = get_mapping(item, tool_place_map)

 if map_found:

 tool_docids.append(map_found[1])

 if pl_row[0] == 'Shelf':

 new_item = {

 'type': 'Shelf',

 'description': pl_row[1],

 'width': pl_row[2],

 'depth': pl_row[3],

 'height': pl_row[4],

 }

 if tool_docids:

 new_item.update({'tool_ids': tool_docids})

 loc_id = locations.add(new_item).execute().get_generated_ids()[0]

 tool_locations.append(loc_id)

 else: # drawer is the only other value for type

 new_item = {

 'type': 'Drawer',

 'description': pl_row[1],

 'width': pl_row[2],

 'depth': pl_row[3],

 'height': pl_row[4],

 }

 if tool_docids:

 new_item.update({'tool_ids': tool_docids})

 loc_id = locations.add(new_item).execute().get_generated_ids()[0]

 tool_locations.append(loc_id)

 if len(tool_locations) > 0:

 toolchests.modify('_id = :param1') \

 .bind('param1', _id) \

 .set('tool_locations', tool_locations).execute()

show_collection(toolchests)

Chapter 7 example: DoCument Store Development

305

This code starts out the same way as before by getting the rows from the table

and creating a new document for the collection. However, this becomes a bit more

complicated because we must convert the places table entries to the tool_locations

array. This requires using the helper functions to build a list of the ids from the database

handtool and powertool tables as well as the ids from the organizer table because, from

experience, we know an organizer can be placed in a toolchest.

However, we also need to check the places table to find the storage locations from

the database and convert those to the new locations collection. We use the tool ids

found to update the document in the collection with the new list of tool ids. This sounds

complicated, but if you take a moment to study the code, you will see we do this with the

helper functions more easily.

To help visualize the results, we use the show_collection() function to print the

contents of the collection.

For brevity, we will omit the code for the other collections (cabinets, shelving_

units, and workbenches) as they follow the same pattern as the toolchests conversion

code. Like before, we simply read the rows in the table and insert them into the new

collection.

 Step 4: Add Locations

The last step is used to populate the location for each tool and organizer. Recall from

the database tables, we used a table reference to find the location. However, since we

have a document store, we can simply use a string that is built in the code. This saves a

reference that we don’t need to maintain, rather, we set it when the location is set on the

create and update operations.

To perform this, we use another helper function to build a string for the location. We

update all the documents in the tools and organizers collections. Listing 7-18 shows the

code for building the location string.

Listing 7-18. Build Location String and Update the Tools and Organizer Collections

Add the location for each tool

tool_results = tools.find().execute().fetch_all()

for tool in tool_results:

 _id = tool["_id"]

 try:

 location = get_tool_location(_id)

Chapter 7 example: DoCument Store Development

306

 if location:

 r = tools.modify('_id = :param1').bind('param1', _id).

set('location', location[0]).execute()

 except Exception as err:

 print(err)

 exit(1)

show_collection(tools)

Add the location for each organizer

org_results = organizers.find().execute().fetch_all()

for org in org_results:

 _id = org["_id"]

 try:

 location = get_tool_location(_id)

 if location:

 r = organizers.modify('_id = :param1').bind('param1', _id).

set('location', location[0]).execute()

 except Exception as err:

 print(err)

show_collection(organizers)

show_collection(locations)

Notice we simply get all the documents in each collection and update the document

with the new string. At the end, we print the documents in the collection (for debugging).

Now that we’ve seen all the steps, we can execute the code. Since this is a very long

script, we will use Python to execute the code, but you could use the shell to execute the

steps individually one at a time. In fact, that would be the preferred method if you have

never written code like this before.

You may think this was a lot of work, but it can come in handy as you develop your

application. Especially if you are replacing an older relational database application that

is still in use. More specifically, you can run this script several times during development

to refine it and the new application. Better still, you can use the script in the process of

switching to the new application.

Fortunately, you can find the completed code in a file on the book web site named

convert_rdb.py. Listing 7-19 shows an excerpt of running the script.

Chapter 7 example: DoCument Store Development

307

Listing 7-19. Executing the Conversion Script

C:\Users\cbell\MySQL Shell\source\Ch07> mysqlsh --py -f convert_rdb.py

User Id: root

Password: ∗∗∗∗∗∗∗∗∗
COLLECTION: vendors

{

 "_id": "00005cae7415000000000000016e",

 "name": "Kobalt",

 "sources": "Lowes",

 "url": "https://www.kobalttools.com/"

}

{

 "_id": "00005cae7415000000000000016f",

 "name": "Craftsman",

 "sources": "Lowes, Ace",

 "url": "https://www.craftsman.com/"

}

{

 "_id": "00005cae74150000000000000170",

 "name": "Irwin",

 "sources": "Lowes",

 "url": "https://www.irwin.com/"

}

...

{

 "_id": "00005cae74150000000000000e41",

 "depth": 12,

 "description": "Top",

 "height": 24,

 "tool_ids": [

 "00005cae74150000000000000df5",

 "00005cae74150000000000000e0d"

],

 "type": "Shelf",

 "width": 96

}

Chapter 7 example: DoCument Store Development

308

{

 "_id": "00005cae74150000000000000e42",

 "depth": 48,

 "description": "Bottom",

 "height": 42,

 "tool_ids": [

 "00005cae74150000000000000e0a"

],

 "type": "Shelf",

 "width": 96

}

This will fully populate the garage_v2 schema and collections. However, if you’re

wondering if you need to create a script like this for every conversion or data generation.

The answer is you might not.

 Importing Data to a Document Store
There is a nifty utility available in MySQL Shell that helps importing JSON documents

into your collections. The shell has a utility named the JSON import utility which allows

you to import JSON documents directly into your collections. Thus, if you have data that

is in JSON form or you can write a script to get it into JSON format, you can use the JSON

import utility to import the documents in one pass. How cool is that?

For example, suppose you have data that you’ve read from a file or some other input

stream and generated JSON documents. If you write those to a file (without commas

between the documents), you can use the utility to import all documents in one pass.

Let’s see how this is done using our vendor data from the preceding text.

We begin with a file where each document is presented in a JSON string like the

following. Notice there are no commas between the documents. Also notice we don’t

have the _id attribute (but you could add it if you wanted to generate the document id

yourself).

{

 "name": "Kobalt",

 "sources": "Lowes",

 "url": "https://www.kobalttools.com/"

}

Chapter 7 example: DoCument Store Development

309

{

 "name": "Craftsman",

 "sources": "Lowes, Ace",

 "url": "https://www.craftsman.com/"

}

{

 "name": "Irwin",

 "sources": "Lowes",

 "url": "https://www.irwin.com/"

}

...

To import the document, you can use the shell to connect to the server, then use

the util built-in class and the import_json() method specifying the path to the file

you want to import and a dictionary of options to include the schema and collection.

Listing 7-20 demonstrates import a file with the JSON documents into the vendors

collection in the garage_v2 schema. Notice the import is a good convenience utility for

importing large amounts of (JSON) data.

Listing 7-20. Running the JSON Import Utility in the Shell

> mysqlsh --py --uri root@localhost:33060

> options = {

 -> 'schema': 'garage_v2',

 -> 'collection': 'vendors',

 -> }

 ->

> util.import_json('vendors.json', options)

Importing from file "vendors.json" to collection `garage_v2`.`vendors` in

MySQL Server at localhost:33060

.. 35

Processed 4.68 KB in 35 documents in 0.0161 sec (2.17K documents/s)

Total successfully imported documents 35 (2.17K documents/s)

As you can see, the utility will read the documents and insert them into the schema

and collection you specify. The utility will also validate the JSON document before

inserting; so if there are errors, you will see them reported and the import will stop.

Chapter 7 example: DoCument Store Development

310

The utility also permits execution in command line mode by specifying the import

parameters and connection on the command line as shown in the following text. There

are also a few other options you can use including importing data to a JSON column in

a relational table as well as support for importing binary JSON (BSON) data. Nice! See

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-json.

html for more information about the JSON import utility.

> mysqlsh --py --uri root@localhost:33060 --schema=garage_v2 \

 --import vendors.json vendors

Please provide the password for 'root@localhost:33060': ∗∗∗∗
Importing from file "vendors.json" to collection `garage_v2`.`vendors` in

MySQL Server at localhost:33060

.. 35

Processed 4.68 KB in 35 documents in 0.0097 sec (3.61K documents/s)

Total successfully imported documents 35 (3.61K documents/s)

Ok, now that we have a full populated document store, we can look at how the code

is written for the schema classes.

 Demonstration
The sample application follows the same execution as the sample application in

Chapter 5. The difference is we will be using a base class for the CRUD operations and

a sub class for each collection to handle the validation unique to the collection. We can

do this because we are extracting the data layout (set of attributes) out of the data and

into the code. Thus, the base operations for the CRUD methods are the same for all

collections. We’ll see how this works later in this section.

More specifically, we will see demonstrations of how to create the base class first

(GarageCollection) then move on to some of the other classes. As you will see, they

follow the same design pattern/layout so once you’ve seen one or two, the others are

easy to predict. Thus, we will see detailed walkthroughs using a couple of the classes and

the rest will be demonstrated and presented with fewer details for brevity.

If you want to follow along, be sure to have the sample schema loaded and MySQL

Shell ready to go. You may also want to use a code or text editor to write the code

modules. More importantly, you should create a folder named schema and start the shell

from the parent folder.

Chapter 7 example: DoCument Store Development

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-json.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-json.html

311

For example, you should create a folder named mygarage_v2 and in that folder,

create the schema folder. We would then execute the shell from mygarage_v2. Why?

Because will use the Python import directive and name the path to the code module

using the folder name (e.g., from schema import Locations). We will also be creating

unit tests and thus will need a folder named unittests where we will store the test files.

Let’s begin with the MyGarage class. Recall, this is the utility class that handles getting

a connection to the server and fetching the schema.

 MyGarage Class
This class is intended to make it easier to work with the MySQL server by providing

a mechanism to login (connect) to the server and encapsulate some of the common

operations such as getting the session, current database, checking to see if the

connection to MySQL is active, disconnecting, etc. We also will include methods to

convert an SQL result or select result to a Python list (array) for easier processing.

Table 7-3 shows the complete list of methods we will create for this class including the

parameters required (some methods do not require them).

Table 7-3. MyGarage Class Methods

Method Parameters Description

__init__() mysqlx_sh Constructor – provide mysqlx if running from

mySQl Shell.

connect() username, passwd,

host, port

Connect to a mySQl server at host, port.

get_session() return the session for use in other classes.

get_schema() return the schema for use in other classes.

is_connected() Check to see if connected to the server.

disconnect() Disconnect from the server.

get_locations() return a python array with all the locations where a

tool or organizer can be placed.

build_storage

_contents()

tool_location return a python array for the tools in a tool location.

vendor_in_use() vendor document id returns True if vendor is used in any of the collections.

Chapter 7 example: DoCument Store Development

312

 Writing the Source Code

Most of these methods are the same as we saw in Chapter 5. However, the last three

are different. We need these to manage the locations for selecting a place to put a tool,

get a list of all the tools in a specific tool location, and implement referential integrity

for delete operations on the vendors collection. That is, we use code to ensure no one

deletes a vendor that is being referenced from another document.

Listing 7-21 shows the code for the MyGarage class. While this code may seem longer

than version 1 (and it is), it is because we moved the location string handling and vendor

referential integrity to code.

Note Comments and non-essential lines have been removed in the source code
listings in this chapter for brevity.

Listing 7-21. MyGarage Class Code

class MyGarage(object):

 def __init__(self, mysqlx_sh=None):

 self.session = None

 if mysqlx_sh:

 self.mysqlx = mysqlx_sh

 self.using_shell = True

 else:

 self.mysqlx = mysqlx

 self.using_shell = False

 self.schema = None

 def connect(self, username, passwd, host, port):

 config = {

 'user': username,

 'password': passwd,

 'host': host,

 'port': port,

 }

 try:

 self.session = self.mysqlx.get_session(∗∗config)

Chapter 7 example: DoCument Store Development

313

 except Exception as err:

 print("CONNECTION ERROR:", err)

 self.session = None

 raise

 self.schema = self.session.get_schema('garage_v2')

 def get_session(self):

 return self.session

 def get_schema(self):

 return self.schema

 def is_connected(self):

 return self.session and (self.session.is_open())

 def disconnect(self):

 try:

 self.session.close()

 except Exception as err:

 print("WARNING: {0}".format(err))

 def get_locations(self, include_organizers=True):

 tool_locations = []

 if include_organizers:

 organizers = self.schema.get_collection('organizers').find().\

 fields("_id", "type", "description").execute().fetch_all()

 for organizer in organizers:

 list_item_str = "{0} - {1}"\

 .format(organizer["type"], organizer["description"])

 tool_locations.append((list_item_str, list_item_str))

 storage_collections = ['toolchests', 'shelving_units',

 'workbenches', 'cabinets']

 for storage_collection in storage_collections:

 collection = self.schema.get_collection(storage_collection)

 items = collection.find().fields("_id", "description",

 "tool_locations").execute().fetch_all()

 for item in items:

 locations_found = item["tool_locations"]

 if locations_found:

 for tool_loc_id in locations_found:

Chapter 7 example: DoCument Store Development

314

 tool_location = self.schema\

 .get_collection("locations").\

 find('_id = :param1')\

 .bind('param1', tool_loc_id).execute().fetch_all()

 if tool_location:

 list_item_str = "{0}, {1} - {2}"\

 "".format(item["description"],

 tool_location[0]["description"],

 tool_location[0]["type"])

 tool_locations.append((list_item_str,

 list_item_str))

 return tool_locations

 def build_storage_contents(self, tool_locations):

 storage_places = []

 tools = self.schema.get_collection('tools')

 organizers = self.schema.get_collection('organizers')

 locations = self.schema.get_collection('locations')

 if not tool_locations:

 return storage_places

 list_of_tools = []

 for loc_id in tool_locations:

 tool_location = locations.find("_id = :param1").\

 bind("param1", loc_id).execute().fetch_all()

 if not tool_location or tool_location == []:

 organizer = organizers.find("_id = :param1").\

 bind("param1", loc_id).execute().fetch_all()

 if not organizer or organizer == []:

 continue # This is an error!

 description = organizer[0]['description']

 loc_type = organizer[0]['type']

 list_of_tools.append(('organizers', loc_type,

 description, 'organizer', ' '))

 continue

 else:

Chapter 7 example: DoCument Store Development

315

 try:

 tool_id_list = tool_location[0]['tool_ids']

 except KeyError:

 tool_id_list = []

 description = tool_location[0]['description']

 loc_type = tool_location[0]['type']

 tool_list_str = '_id in [{0}]'.format(

 ', '.join(['"{0}"'.format(t_id) for t_id in tool_id_list]))

 found_tools = tools.find(tool_list_str).execute().fetch_all()

 for tool in found_tools:

 size = dict(tool).get('size', ' ')

 list_of_tools.append(('tools', tool['type'],

 tool['description'],

 tool['category'], size))

 storage_places.append((loc_type, description, list_of_tools))

 list_of_tools = []

 return storage_places

 def vendor_in_use(self, vendor_id):

 collections = ['cabinets', 'shelving_units', 'toolchests',

 'tools', 'workbenches']

 for collection_name in collections:

 collection = self.schema.get_collection(collection_name)

 res = collection.find('vendorid = :param1').\

 bind('param1', vendor_id).execute().fetch_all()

 if res:

 return True

 return False

This code module, garage_v2, also includes a helper function named make_list()

that we can use to make a list of Python arrays from a read operation. Listing 7-22 shows

the code for this function. Take a moment to read through it and you will see it is simple

code for converting the result. We can use this method in the collection classes to help

work with results from the schema.

Chapter 7 example: DoCument Store Development

316

Listing 7-22. Helper Function

def make_list(results, key_list):

 """Build list of Python arrays from results

 Return a Python array for the list of documents returned from a read

 operation.

 """

 result_list = []

 for result in results:

 item_values = []

 for key in key_list:

 try:

 item_values.append(result[key])

 except KeyError:

 # If key not found, create a placeholder

 item_values.append(“)

 result_list.append(item_values)

 return result_list

 Testing the Class

Before we embark on testing the class, we must set the Python path variable

(PYTHONPATH) to include the folder from which we want to run our tests. This is because

we are using modules that are not installed at the system level, rather, are in a folder

relative to the code we’re testing. In Windows, you can use the following command to

add the path for the execution to the Python path.

C:\Users\cbell\Documents\my_garage_v1> set PYTHONPATH=%PYTHONPATH%;c:\

users\cbell\Documents\mygarage_v1

Tip If your path has spaces, make sure you use quotes around the path.

Or, on Linux and macOS, you can use this command to set the Python path.

export PYTHONPATH=$(pwd);$PYTHONPATH

Chapter 7 example: DoCument Store Development

317

Now we can run the shell. For this, we will start in Python mode using the --py

option. Let’s exercise some of the methods in the class. We can do try all of them out

except the make_rows() methods. We’ll see those later. Listing 7-23 shows how to import

the class in the shell, initialize (create) a class instance named mygarage, then connect

with connect() and execute some of the methods. We close with a call to disconnect()

to shut down the connection to the server.

Listing 7-23. Testing MyGarage using MySQL Shell

C:\Users\cbell\Documents\mygarage_v2>mysqlsh --py

> from schema.garage_v2 import MyGarage

Running from MySQL Shell. Provide mysqlx in constructor.

> myg = MyGarage(mysqlx)

> myg.connect('root', 'root', 'localhost', 33060)

> schema = myg.get_schema()

> s = myg.get_session()

> myg.is_connected()

true

> myg.disconnect()

> myg.is_connected()

false

Next, we will create a unit test for this class in a similar way we did in Chapter 5. In

fact, we will create a test named garage_v2_test.py in the unittests folder that will

use nearly the same code from Chapter 5 changing only the database to schema and v1

to v2 occurrences in the import statements. Thus, we present the code without further

explanation in listing 7-24.

Listing 7-24. garage_v2_test.py

from __future__ import print_function

from getpass import getpass

from schema.garage_v2 import MyGarage

print("MyGarage Class Unit test")

mygarage = MyGarage(mysqlx)

user = raw_input("User: ")

Chapter 7 example: DoCument Store Development

318

passwd = getpass("Password: ")

print("Connecting...")

mygarage.connect(user, passwd, 'localhost', 33060)

print("Getting the schema...")

schema = mygarage.get_schema()

print(schema)

print("Getting the session...")

session = mygarage.get_session()

print(session)

print("Connected?")

print(mygarage.is_connected())

print("Disconnecting...")

mygarage.disconnect()

print("Connected?")

print(mygarage.is_connected())

Executing the unit test is also like how we did it in Chapter 5. Listing 7-25 shows this

test run from the shell.

Listing 7-25. Running the garage_v1_test Unit Test

> mysqlsh --py -f unittests\garage_v2_test.py

Running from MySQL Shell. Provide mysqlx in constructor.

MyGarage Class Unit test

User: root

Password:

Connecting...

Getting the schema...

<Schema:garage_v2>

Getting the session...

<Session:root@localhost:33060>

Connected?

True

Disconnecting...

Connected?

False

Now, let’s look at the base class that forms the foundation for the collection classes.

Chapter 7 example: DoCument Store Development

319

 Collection Base Class
As mentioned, we will create a base class that contains all the CRUD operations for a

collection. The reason we can use the same methods for all our collections is because

the format, layout, or simply the field list for the operations is governed by the JSON

document itself. Thus, by simply using the methods for the Collection class, we can

simplify our development by using a base class that does all the CRUD operations and

use sub classes to handle any constraints on the data. Recall, the constraints we will

impose have to do with required fields and in some cases referential integrity.

The methods in the base class should be familiar since they are the same we used in

Chapter 5 with a few added for convenience and validation. Table 7-4 shows each of the

methods in the base class including a short description of each.

Table 7-4. Methods for the GarageCollection Base Class

Method Parameters Description

__init__() Schema, collection name Constructor

check_create_

prerequisites()

JSon document Check data prior to Create

check_upate_

prerequisites()

JSon document Check data prior to upate

create() JSon document perform the Create operation

read() Document Id perform the reaD operation

update() JSon document perform the upate operation

delete() Document Id perform the Delete operation

get_last_docid() return the last document id generated.

get_tool_locations() Document Id returns the list of tool locations.

Chapter 7 example: DoCument Store Development

320

Notice we have the expected CRUD operation methods, but we also see methods

for checking the prerequisites for create and update operations. These are set to return

True by default with the expectation that the sub classes that need these methods will

populate them for collection-specific requirements.

Notice also we have helper functions for retrieving the last document id generated,

which is helpful for create operations and a method to get the list of tool locations. This

last method is not strictly necessary as you can access the array using path expressions,

but it makes the class more tidy and easier to use (and read) in code.

 Writing the Source Code

The code for the base class implements the methods in preceding text using the name

of the collection passed in the constructor to get an instance of the collection from the

schema. This allows us to use the same X DevAPI calls for each of the CRUD operation

no matter which collection we’re using. In fact, since we moved the structure of the JSON

document to the user interface code, we don’t even need to work directly with it except

for those cases where we want to validate for required fields or referential integrity.

Thus, we will create the prerequisite functions as described in preceding text to

return True by default so that if a sub class (a collection) doesn’t need them, the code

will not stop if the prerequisite functions are not overridden in the sub class.

For example, should we not need to validate during the update operation, we simply

don’t include that function in the sub class definition, which means when it is called

from the delete or update operation, it will still work.

Also, since we are using a base class, the sub class inherits the methods of the base

(parent) class, which once again means we need only write the code once for the CRUD

operations. Let’s look at the code and you can see how this works. Listing 7-26 shows the

code for the new base class.

Listing 7-26. The GarageCollection Base Class Code

class GarageCollection(object):

 def __init__(self, mygarage, collection_name):

 self.mygarage = mygarage

 self.schema = mygarage.get_schema()

 self.collection_name = collection_name

 self.col = self.schema.get_collection(collection_name)

 self.docid = None

Chapter 7 example: DoCument Store Development

321

 def check_create_prerequisites(self, doc_data):

 return True

 def check_update_prerequisites(self, doc_data):

 return True

 def create(self, doc_data):

 if not self.check_create_prerequisites(doc_data):

 return (False, "Required fields missing.")

 try:

 json_str = {}

 for key in doc_data.keys():

 json_str.update({key: doc_data[key]})

 self.docid = self.col.add(json_str).\

 execute().get_generated_ids()[0]

 except Exception as err:

 print("ERROR: Cannot add {0}: {1}"

 "".format(err, self.collection_name))

 return (False, err)

 return (True, None)

 def read(self, _id=None):

 if not _id:

 res = self.col.find().execute().fetch_all()

 else:

 res = self.col.find('_id = :param1').\

 bind('param1', _id).execute().fetch_all()

 return res

 def update(self, doc_data):

 _id = doc_data.get("_id", None)

 assert _id, "You must supply an Id to update the {0}."\

 "".format(self.collection_name.rstrip('s'))

 if not self.check_update_prerequisites(doc_data):

 return (False, "Required fields missing.")

 try:

 for key in doc_data.keys():

 # Skip the _id key

 if key != '_id':

Chapter 7 example: DoCument Store Development

322

 self.col.modify('_id = :param1') \

 .bind('param1', _id) \

 .set(key, doc_data[key]).execute()

 except Exception as err:

 print("ERROR: Cannot update {0}: {1}".format(

 self.collection_name.rstrip('s'), err))

 return (False, err)

 return (True, None)

 def delete(self, _id=None):

 assert _id, "You must supply an Id to delete the {0}."\

 "".format(self.collection_name.rstrip('s'))

 try:

 self.col.remove('_id = :param1').bind('param1', _id).execute()

 except Exception as err:

 print("ERROR: Cannot delete {0}: {1}"

 "".format(self.collection_name.rstrip('s'), err))

 return (False, err)

 return (True, None)

 def get_last_docid(self):

 docid = self.docid

 self.docid = None # Clear it after it was read

 return docid

 def get_tool_locations(self, _id=None):

 assert _id, "You must supply an Id to get the tool locations."

 results = []

 if _id:

 places = self.col.find('_id = :param1').bind('param1', _id).\

 fields("tool_locations").execute().fetch_all()

 try:

 tool_locations = places[0]["tool_locations"]

 if tool_locations:

 locations = self.mygarage.get_schema().\

 get_collection("locations")

 tool_ids = ', '.join(['"{0}"'

 “.format(tool_id) for tool_id in tool_locations])

Chapter 7 example: DoCument Store Development

323

 tool_loc_str = '_id in [{0}]'.format(tool_ids)

 results = locations.find(tool_loc_str).\

 execute().fetch_all()

 except KeyError:

 results = []

 return results

Let’s see one of the sub classes. In this example, we will see the Vendors class, which

models the vendors collection in the garage_v2 schema. We place this code in a code

file in the schema folder with the name vendors.py. The following shows the code for

the Vendors class. Notice it is considerably less code than the Vendor class we used in

version 1 of the sample application from Chapter 5.

from schema.garage_collection import GarageCollection

class Vendors(GarageCollection):

 def __init__(self, mygarage):

 """Constructor - set collection name"""

 GarageCollection.__init__(self, mygarage, 'vendors')

 def check_create_prerequisites(self, doc_data):

 """Check prerequisites for the create operation."""

 vendor_name = doc_data.get("name", None)

 assert vendor_name, "You must supply a name for the vendor."

 return True

The remaining classes for the collections are similarly short and contain only the

validation code methods applicable for the collection. Listing 7-27 shows a composition

of the collection code modules (each is saved in a separate code module) with

comments removed for brevity. Take a few moments to see how using the base class

makes writing the collection classes easier by allowing you to place the collection-

specific code in the sub class. The sections for each collection are highlighted in bold.

Once again, comments and extra lines have been removed for brevity.

Note rather than walk you through testing each of the class modules, we’ll
reuse the technique from Chapter 5 and test the class modules with unit tests.

Chapter 7 example: DoCument Store Development

324

Listing 7-27. Collection Classes for MyGarage V2

Cabinets collection - cabinets.py

class Cabinets(GarageCollection):

...

def check_create_prerequisites(self, doc_data):

 vendor_id = doc_data.get("vendorid", None)

 description = doc_data.get("description", None)

 location = doc_data.get("location", None)

 numdoors = doc_data.get("numdoors", None)

 assert vendor_id, "You must supply a vendor id for the cabinet."

 assert description, "You must supply a description for the cabinet."

 assert numdoors, "You must supply the number of doors "\

 "for the cabinet."

 assert location, "You must supply a location for the cabinet."

 return True

Locations collection - locations.py

class Locations(GarageCollection):

...

 def check_create_prerequisites(self, doc_data):

 loc_type = doc_data.get("type", None)

 description = doc_data.get("description", None)

 assert loc_type, "You must supply a type for the location."

 assert description, "You must supply a description for the location."

 return True

 def remove_tool(self, tool_id):

 location = self.col.find(':param1 in $.tool_ids').\

 bind('param1', tool_id).execute().fetch_all()

 if location:

 tool_locations = location[0]['tool_ids']

 tool_locations.remove(tool_id)

Organizers collection - organisers.py

ORGANIZER_TYPES = [

 ('Bag', 'Bag'), ('Basket', 'Basket'), ('Bin', 'Bin'),

 ('Box', 'Box'), ('Case', 'Case'), ('Crate', 'Crate')

]

Chapter 7 example: DoCument Store Development

325

class Organizers(GarageCollection):

...

 def check_create_prerequisites(self, doc_data):

 description = doc_data.get("description", None)

 org_type = doc_data.get("type", None)

 assert description, "You must supply a description for "\

 "the organizer."

 assert org_type, "You must supply type for the organizer."

 return True

 def remove_tool(self, tool_id):

 location = self.col.find(':param1 in $.tool_ids').\

 bind('param1', tool_id).execute().fetch_all()

 if location:

 tool_locations = location[0]['tool_ids']

 tool_locations.remove(tool_id)

Shelving Units collection - shelving_units.py

class ShelvingUnits(GarageCollection):

...

 def check_create_prerequisites(self, doc_data):

 vendor_id = doc_data.get("vendorid", None)

 description = doc_data.get("description", None)

 location = doc_data.get("location", None)

 assert vendor_id, "You must supply a vendor id for "\

 "the shelving_unit."

 assert description, "You must supply a description for "\

 "the shelving_unit."

 assert location, "You must supply a location for the shelving_unit."

 return True

Toolchests collection - toolchests.py

class Toolchests(GarageCollection):

...

 def check_create_prerequisites(self, doc_data):

 vendor_id = doc_data.get("vendorid", None)

 description = doc_data.get("description", None)

 location = doc_data.get("location", None)

Chapter 7 example: DoCument Store Development

326

 assert vendor_id, "You must supply a vendor id for the toolchest."

 assert description, "You must supply a description for "\

 "the toolchest."

 assert location, "You must supply a location for the toolchest."

 return True

Tools collection - tools.py

TOOL_TYPES = [

 ('Adjustable Wrench', 'Adjustable Wrench'), ('Awl', 'Awl'),

 ('Clamp', 'Clamp'), ('Crowbar', 'Crowbar'), ('Drill Bit', 'Drill Bit'),

 ('File', 'File'), ('Hammer', 'Hammer'), ('Knife', 'Knife'),

 ('Level', 'Level'), ('Nutdriver', 'Nutdriver'), ('Pliers', 'Pliers'),

 ('Prybar', 'Prybar'), ('Router Bit', 'Router Bit'), ('Ruler', 'Ruler'),

 ('Saw', 'Saw'), ('Screwdriver', 'Screwdriver'), ('Socket', 'Socket'),

 ('Socket Wrench', 'Socket Wrench'), ('Wrench', 'Wrench'),

 ('Corded', 'Corded'), ('Cordless', 'Cordless'), ('Air', 'Air')

]

class Tools(GarageCollection):

...

 def check_create_prerequisites(self, doc_data):

 vendor_id = doc_data.get("vendorid", None)

 description = doc_data.get("description", None)

 tool_type = doc_data.get("type", None)

 category = doc_data.get("category", None)

 assert vendor_id, "You must supply a vendor id for the tool."

 assert description, "You must supply a description for the tool."

 assert category, "You must supply the category of tool "\

 "(handtool or powertool) for the tool."

 assert tool_type, "You must supply category for the tool."

 return True

Workbenches collection - workbenches.py

class Workbenches(GarageCollection):

...

 def check_create_prerequisites(self, doc_data):

 vendor_id = doc_data.get("vendorid", None)

 description = doc_data.get("description", None)

Chapter 7 example: DoCument Store Development

327

 location = doc_data.get("location", None)

 assert vendor_id, "You must supply a vendor id for the workbench."

 assert description, "You must supply a description for "\

 "the workbench."

 assert location, "You must supply a location for the workbench."

 return True

Notice there are customizations for each of the collections mainly for the validation

methods derived from the base class. But some of the classes also add additional

methods to permit collection-specific options.

For example, we see the method remove_tool() in the Locations and Organizers

classes. This method allows us to remove a tool by document id from the location

or organizer. In this way, we can be sure to remove a tool when it is deleted from the

collection.

Also notice we added arrays for the attributes in the collections that have a known

set of values (enumerated values in the relational tables from version 1). In this case,

they appear in the organizers and tools collections. Recall, we mentioned these are

handled in code. In the sample application for this chapter, we use Python arrays to use

in the drop down lists in the user interface. Thus, we use code to establish the set of valid

values. Figure 7-2 shows one such example.

Chapter 7 example: DoCument Store Development

328

Now, let’s review how we can test the class modules before we write the rest of the

application.

 Testing the Class Modules
We will also be using the same unit test mechanism from Chapter 5. For brevity, we

will only examine one of the unit test code modules to remind us of the code. We then

execute the unit tests using the same run_all.py code module mechanism we used in

Chapter 5.

Recall, we created a base class named CRUDTest in the unittests/crud_test.py

code module that implements same methods for starting (or setup) of the test, a generic

method to show the rows returned, and one each for the test cases we want to run. We

then created a code module with a class to test one of the collection classes (or as we

called them in Chapter 5, table classes).

Figure 7-2. Drop down list for Tool Types

Chapter 7 example: DoCument Store Development

329

For example, we create a test for the Vendors class by creating a new class named

VendorTests derived from CRUDTest and stored in the file unittests/vendor_test.py.

Listing 7-28 shows the code for the new class. As you will see, it is very similar to the test

we wrote in Chapter 5, which also demonstrates how easy it is to develop code for both

an SQL and NoSQL interface – the code is very similar.

Listing 7-28. Code for the VendorTests Class

from __future__ import print_function

from unittests.crud_test import CRUDTest

from schema.vendors import Vendors

class VendorTests(CRUDTest):

 """Test cases for the Vendors class"""

 def __init__(self):

 """Constructor"""

 CRUDTest.__init__(self)

 self.vendors = None

 self.last_id = None

 self.vendors = None

 def set_up(self, mysql_x, user=None, passwd=None):

 """Setup the test cases"""

 self.mygarage = self.begin(mysql_x, "Vendors", user, passwd)

 self.vendors = Vendors(self.mygarage)

 def create(self):

 """Run Create test case"""

 print("\nCRUD: Create test case")

 vendor_data = {

 "name": "ACME Bolt Company",

 "url": "www.acme.org",

 "sources": "looney toons"

 }

 self.vendors.create(vendor_data)

 self.last_id = self.vendors.get_last_docid()

 print("\tLast insert id = {0}".format(self.last_id))

Chapter 7 example: DoCument Store Development

330

 def read_all(self):

 """Run Read(all) test case"""

 print("\nCRUD: Read (all) test case")

 docs = self.vendors.read()

 self.show_docs(docs, 5)

 def read_one(self):

 """Run Read(record) test case"""

 print("\nCRUD: Read (doc) test case")

 docs = self.vendors.read(self.last_id)

 self.show_docs(docs, 1)

 def update(self):

 """Run Update test case"""

 print("\nCRUD: Update test case")

 vendor_data = {

 "_id": self.last_id,

 "name": "ACME Nut Company",

 "url": "www.weesayso.co",

 }

 self.vendors.update(vendor_data)

 def delete(self):

 """Run Delete test case"""

 print("\nCRUD: Delete test case")

 self.vendors.delete(self.last_id)

 docs = self.vendors.read(self.last_id)

 if not docs:

 print("\tNot found (deleted).")

What makes this technique powerful is we can go on to create new tests for each of

the database classes named for the class and store them in the same unittests folder.

Since the tests use the same class signature (same methods) as those in Chapter 5, we

can reuse them substituting schema for database and use the plural for the collection

names in the import statements and then make minor changes to the data as needed to

match the new set of attributes for the collection modules.

Chapter 7 example: DoCument Store Development

331

Once all the collection class test code modules are written, we can then write a driver

script that runs all the tests in a loop. Recall, the driver script is named run_all.py also

stored in the unittests folder. Listing 7-29 shows the code for this module.

Listing 7-29. Test Driver run_all.py

from __future__ import print_function

from getpass import getpass

from unittests.cabinet_test import CabinetTests

from unittests.location_test import LocationTests

from unittests.organizer_test import OrganizerTests

from unittests.shelving_unit_test import ShelvingUnitTests

from unittests.toolchest_test import ToolchestTests

from unittests.tool_test import ToolTests

from unittests.vendor_test import VendorTests

from unittests.workbench_test import WorkbenchTests

print("CRUD Tests for all classes...")

crud_tests = []

cabinets = CabinetTests()

crud_tests.append(cabinets)

locations = LocationTests()

crud_tests.append(locations)

shelving_units = ShelvingUnitTests()

crud_tests.append(shelving_units)

toolchests = ToolchestTests()

crud_tests.append(toolchests)

tools = ToolTests()

crud_tests.append(tools)

organizers = OrganizerTests()

crud_tests.append(organizers)

vendors = VendorTests()

crud_tests.append(vendors)

workbenches = WorkbenchTests()

crud_tests.append(workbenches)

user = raw_input("User: ")

Chapter 7 example: DoCument Store Development

332

passwd = getpass("Password: ")

for test in crud_tests:

 test.set_up(mysqlx, user, passwd)

 test.create()

 test.read_one()

 test.read_all()

 test.update()

 test.read_one()

 test.delete()

 test.tear_down()

To execute this test, you can use the command shown in Listing 7-30 with the

expected output. Here, we see only a portion of the output for brevity.

Listing 7-30. Executing the test driver

C:\Users\cbell\Documents\mygarage_v2>mysqlsh --py -f unittests\run_all.py

Running from MySQL Shell. Provide mysqlx in constructor.

CRUD Tests for all classes...

User: root

Password: ∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗ Cabinets Class Unit test ∗∗∗

Connecting...

CRUD: Create test case

 Last insert id = 00005cc4bca00000000000000001

CRUD: Read (doc) test case

First 1 docs:

{

 "_id": "00005cc4bca00000000000000001",

 "depth": 11,

 "description": "Large freestanding cabinet",

 "height": 11,

 "location": "Read wall next to compressor",

Chapter 7 example: DoCument Store Development

333

 "numdoors": 2,

 "shelves": [

 {

 "depth": 20,

 "description": "Middle",

 "height": 18,

 "width": 48

 }

],

 "vendorid": "00005cae74150000000000000cd6",

 "width": 11

}

...

CRUD: Update test case

CRUD: Read (doc) test case

First 1 docs:

{

 "_id": "00005cc4bca00000000000000001",

 "depth": 11,

 "description": "Cold Storage",

 "height": 11,

 "location": "3rd floor basement",

 "numdoors": 2,

 "shelves": [

 {

 "depth": 20,

 "description": "Top",

 "height": 18,

 "width": 48

 },

 {

 "depth": 20,

 "description": "Bottom",

Chapter 7 example: DoCument Store Development

334

 "height": 18,

 "tool_ids": [

 "00005cafa3eb00000000000007c5",

 "00005cafa3eb00000000000007c6",

 "00005cafa3eb00000000000007c7"

],

 "width": 48

 }

],

 "vendorid": "00005cae74150000000000000cd6",

 "width": 11

}

CRUD: Delete test case

 Not found (deleted).

Disconnecting...

...

Take some time to download the code from the book web site and test out the

unit tests yourself. You are encouraged to download the source code for this sample

application and test it out yourself. Dig into the code and see how it all works. Using this

sample application as a guide may surprise you with the ease with which you can create

your own document store applications.

You should notice it is very easy to use this concept and you can develop others like

help test your database code. Just think; we did this all without having to write any user

interface code, which allows to validate our database code before the first line of user

interface code is written. Nice!

 Summary
Creating and coding an application for the document store (NoSQL) may seem less

intuitive than traditional relational database application, but now that you’ve seen the

power behind placing control of the data directly into code, you can see that document

store applications are easier to write. Indeed, they use similar CRUD operations as we

saw in the relational database example from Chapter 5.

Chapter 7 example: DoCument Store Development

335

In this chapter, we saw how to use the shell to develop a NoSQL application. We

discovered how to write the CRUD operations for working with the document store and

how to write modular schema classes to manage the operations. We also saw how to

write tests to exercise the schema classes. This demonstrated the utility of the shell for

use in developing applications in Python with the X DevAPI.

In the next chapter, we will look at another major feature in MySQL that you can use

the shell to manage – MySQL Group Replication. As you will see, Group Replication is a

major step forward in high availability for MySQL.

Chapter 7 example: DoCument Store Development

337
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_8

CHAPTER 8

Using the Shell
with Group Replication
One of the most advanced features built into MySQL is its ability to connect two or more

servers together where all servers maintain a copy (replica) of the data for redundancy.

Database administrators and systems architects who manage infrastructures understand

the need for building in redundancy while keeping maintenance chores to a minimum.

One of the tools used to achieve this is a class of features that make the server or service

available as much as possible. We call this high availability (HA).

Not only is high availability a key factor in establishing robust, always ready

infrastructures, it is also a quality of robust, enterprise-grade database systems. Oracle

has continued to develop and improve the high availability features in MySQL. Indeed,

they have matured to include detailed management and configuration, status reporting,

and even autxomatic failover of the primary to ensure your data is available even if

the primary server goes down. Best of all, Oracle has included these features in the

community edition of MySQL so the whole world can use xthem.

In this chapter, we will get a glimpse of how we can setup, configure, and maintain

high availability in MySQL. Since high availability is such a large topic with many facets

to consider, we will first take a short tour of high availability – what it is and how it works

followed by the high availability features of MySQL – and we will see how basic replication

works. Then, in the next chapter, wxe will see a demonstration of how you can set up and

configure MySQL Group Replication on your own systems with MySQL Shell.

Tip This chapter prepares you to begin working with MySQL Group Replication
by studying classic replication. If you are familiar with MySQL Replication and
know how to set up classic replication with binary log files and know what global
transaction identifiers (GTIDs) are, you may want to skim this chapter.

338

 Overview
MySQL high availability is a collection of components built upon the long-term

stability of MySQL Replication. The components include modifications to the server

and new features and components such as global transaction identifiers, numerous

improvements to the core replication feature set, and the addition of MySQL Group

Replication, hence Group Replication. Together, these components form a new

paradigm in MySQL high availability.

As you will see, there is quite a lot of power and several options for using high

availability in MySQL. Let’s begin with a brief tutorial on high availability.

 What is High Availability?
High availability is easiest to understand if you consider it loosely synonymous with

reliability—making the solution as accessible as possible and tolerant to failures either

planned or unplanned for an agreed upon period. That is, it’s how much users can

expect the system to be operational. The more reliable the system and thus the longer it

is operational equates to a higher level of availability.

High availability can be accomplished in many ways, resulting in different levels

of availability. The levels can be expressed as goals to achieving some higher state of

reliability. Essentially, you use techniques and tools to boost reliability and make it

possible for the solution to keep running and the data to be available as long as possible

(also called uptime). Uptime is represented as a ratio or percentage of the amount of

time the solution is operational.

You can achieve high availability by practicing the following engineering principles:

• Eliminate single points of failure: Design your solution so that there

are as few components as possible that, should they fail, render the

solution unusable.

• Add recovery through redundancy: Design your solution to permit

multiple, active redundant mechanisms to allow rapid recovery from

failures.

• Implement fault tolerance: Design your solution to actively detect

failures and automatically recover by switching to a redundant or

alternative mechanism.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

339

These principles are building blocks or steps to take to reach higher levels of reliability

and thus high availability. Even if you do not need to achieve maximum high availability

(the solution is available nearly all the time), by implementing these principles, you will

make your solution more reliable at the least, which is a good goal to achieve.

Now that you understand the goals or requirements that high availability (HA)

can solve, let’s now discuss some of the options for implementing HA in your MySQL

solutions. There are four options for implementing goals of high availability. By

implementing all of these, you will achieve a level of high availability. How much you

achieve depends on not only how you implement these options but also how well you

meet your goals for reliability.

• Recovery: The easiest implementation of reliability you can achieve

is the ability to recover from failures. This could be a failure in a

component, application server, database server, or any other part of

the solution. Recovery therefore is how to get the solution back to

operation in as little time and cost as possible.

• Logical Backup: A logical backup makes a copy of the data

by traversing the data, making copies of the data row by row,

and typically translating the data from its binary form to SQL

statements. The advantage of a logical backup is the data is

human readable and can even be used to make alterations or

corrections to the data prior to restoring it. The downside is

logical backups tend to be slow for larger amounts of data and

can take more space to store than the actual data (depending on

data types, number of indexes, and so on).

• Physical Backup: A physical backup makes a binary copy of

the data from the disk storage layer. The backup is typically

application specific; you must use the same application that

made the backup to restore it. The advantage is the backup is

much faster and smaller in size. Plus, applications that perform

physical backups have advanced features such as incremental

backups (only the data that has changed since the last backup)

and other advanced features. For small solutions, a logical

backup may be more than sufficient, but as your solution (your

data) grows, you will need to use a physical backup solution.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

340

• Redundancy: One of the more challenging implementations of

reliability is redundancy – having two or more components serving the

same role in the system. A goal for redundancy may be simply having

a component in place in case you need to replace the primary. This

could be a hot standby where the component is actively participating

in parallel with the primary where your system automatically switches

to the redundant component when a failure is detected. The most

common target for redundancy is the database server.

• Scaling: Another reliability implementation has to do with performance.

In this case, you want to minimize the time it takes to store and retrieve

data. You do this by designing your solution to write (save) data to the

master (primary) and read the data from the slave (secondary). As the

application grows, you can add additional slaves to help minimize

the time to read data. By splitting the writes and reads, you relieve the

master of the burden of having to execute many statements. Given

most applications have many more reads than writes, it makes sense

to devote a different server (or several) to providing data from reading

and leaving the writes to the one master server.

• Fault Tolerance: The last implementation of reliability and indeed

what separates most high availability solutions regarding uptime

is fault tolerance, which is the ability to detect failures and recover

from the event. Fault tolerance is achieved by leveraging recovery

and redundancy and adding the detection mechanism and active

switchover. That is, when a component fails, another takes its place.

The best form of fault tolerance implements automatic switching

(failover) that permits applications to continue running even when a

single component fails.

Note There are two forms of scale out: read and write. You can achieve read
scale out using redundant readers such as multiple slaves in MySQL Replication,
but achieving write scale out requires a solution that can negotiate and handle
updates on two or more servers. Fortunately, we have MySQL Group Replication.
we will see more about this feature in a later section.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

341

 MySQL High Availability Features
MySQL has several high availability features that meet the more challenging of these

techniques and their goals. The following summarizes the features you can use for each

of the preceding techniques.

• Recovery: MySQL Replication provides a mechanism through the

replica to provide recovery. Should the master go down, a slave can

be promoted to take on its role.

• Logical Backup: The client utility mysqlpump (or the older

mysqldump) can be used to make logical backups of your data for

restoring later. Be aware that these tools have all the challenges

with a logical backup. Specifically, they dump the database into

a file constructed of SQL CREATE and INSERT statements, so they

may not be best for large datasets.

• Physical Backup: The Enterprise Edition of MySQL provides a tool

called MySQL Enterprise Backup, which can be used to create

physical backups of your data and restore them.

• Redundancy: MySQL Replication through its used of multiple slaves

can permit some redundancy with certain tips and tricks such as

using a dedicated slave with the same hardware as the master (called

a hot standby) or using multiple slaves to ensure you always have

enough read access to your data.

• Scaling: Once again, MySQL Replication can provide read scale out for your

applications. Write scale out is achieved using MySQL Group Replication.

• Fault Tolerance: You can use MySQL replication to achieve the switch.

That is, when the master goes down, we use the replication commands

in MySQL to switch the role of master to one of the slaves. There

are two types of the master role change when working with MySQL:

switchover, which is switching the role of master to a slave when the

master is still operational, and failover, which is selecting a slave to take

on the role of master when the master is no longer operational. That is,

switchover is intentional and failover is a reactive event. However, you

can use Group Replication, which permits automatic failover.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

342

Note There is also MySQL Router, which is a connection router for MySQL that
allows you to set up a specific set of servers to be used by the router such that the
router automatically switches to another server should the current server go offline
(become unreachable). Fortunately, both Group Replication and Router are part of
InnoDB Cluster, which we will explore in Chapter 10.

Now that we know what high availability is and some of the techniques and goals for

achieving it, let’s dive into the fundamental high availability feature – MySQL Replication.

 What is MySQL Replication?
MySQL Replication is an easy-to-use feature and yet a complex and major component of

the MySQL server. This section presents a bird’s-eye view of replication for the purpose

of explaining its features. We will see an example of setting up MySQL Replication in the

next section.

MySQL Replication requires two or more servers. One server must be designated as

the primary or master. The master role means all data changes (writes) to the data are

sent to the master and only the master. All other servers in the topology maintain a copy

of the master data and are by design and requirement read-only (RO) servers called

secondaries or slaves. Thus, when your applications send data for storage, they send it to

the master. Applications you write to use the sensor data can read it from the slaves.

The copy mechanism works using a technology called the binary log that stores the

changes in a special format, thereby keeping a record of all the changes. These changes

are then shipped to the slaves where the changes are stored in a similar log file (called

the relay log) then read and executed on the slave. Thus, once the slave executes the

changes (called events), it has an exact copy of the data.

At the lowest level, the binary log exchanges between the master and slaves

support three formats: statement-based replication (SBR), which replicates entire SQL

statements; row-based replication (RBR), which replicates only the changed rows; and

for certain scenarios mixed-based replication (MBR), which is a hybrid of RBR with

some events recorded using SQL statements.

As you can imagine, there is a very slight delay from the time a change is made on the

master to the time it is made on the slave. Fortunately, this delay is almost unnoticeable

except in topologies with high traffic (lots of changes). For your purposes, it is likely

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

343

when you read the data from the slave, it is up to date. You can check the slave’s progress

using the command SHOW SLAVE STATUS; among many other things, it shows you how

far behind the master the slave has become. You see this command in action in a later

section.

MySQL Replication supports two methods of replication. The original (sometimes

called classic replication, binary log file and position replication, or simply log file and

position replication) method involves using a binary log file name and position to keep

track of and execute events or apply changes to synchronize data between the master

and slaves. A newer, transactional method uses global transaction identifiers (GTIDs)

and therefore does not require working with log files or positions (but it still uses the

same binary log and relay log files), which greatly simplifies many common replication

tasks. Best of all, replication using GTIDs guarantees consistency between master and

slave because when a slave connects to a master, the new protocol permits slaves to

request the GTIDs that are missing. Thus, each slave can negotiate with the master to

receive the missing events.

WHAT ARE GTIDS?

GTIDs enable servers to assign a unique identifier to each set or group of events thereby

making it possible to know which events have been applied on each slave. To perform failover

with GTIDs, one takes the best slave (the one with the least missing events and the hardware

that matches the master best) and make it a slave of every other slave. we call this slave

the candidate slave. The GTID mechanism will ensure only those events that have not been

executed on the candidate slave are applied. In this way, the candidate slave becomes the

most up to date and therefore a replacement for the master.

MySQL Replication also supports two types of synchronization. The original type,

asynchronous, is one-way where events executed on the master are transmitted to

the slaves and executed (or applied) as they arrive with no checks to ensure the slaves

are all at the same synchronization point as the master (slave updates may be delayed

when there are many transactions). The other type, semi-synchronous, where a commit

performed on the master blocks before returning to the session that performed the

transaction until at least one slave acknowledges that it has received and logged the

events for the transaction.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

344

Synchronous replication, where all nodes are guaranteed to have the same data in

an all or none commit scenario is supported by MySQL NDB Cluster. See the MySQL

NDB Cluster section in the online reference manual for information about synchronous

replication.

Tip For more information about replication, see the online MySQL reference
manual (https://dev.mysql.com/doc/refman/8.0/en/replication.html).

 What is Group Replication?
MySQL Group Replication is an advanced form of MySQL Replication used to

implement fault-tolerant systems. The replication group (topology) is a set of servers that

interact with each other through message passing. The communication layer provides

a set of guarantees such as atomic message and total order message delivery. These are

powerful properties that translate into very useful abstractions that enable advanced

database replication solutions.

Group Replication builds on top of the existing replication properties and

abstractions and implements a multi-master, update everywhere replication protocol.

One of the technologies that makes Group Replication possible is GTIDs. Thus, servers

that participate in Group Replication must have GTIDs enabled.

Essentially, a group is formed by multiple servers and each server in the group

may execute transactions independently. But all read-write (RW) transactions commit

only after they have been approved by the group. Read-only (RO) transactions need no

coordination within the group and thus commit immediately. In other words, for any

RW transaction, the group needs to decide whether it commits or not, thus the commit

operation is not a unilateral decision from the originating server.

To be precise, when a transaction is ready to commit at the originating server, the

server atomically broadcasts the write values (rows changed) and the correspondent

write set (unique identifiers of the rows that were updated). Then a global total order is

established for that transaction. Ultimately, this means that all servers receive the same

set of transactions in the same order. Since all servers apply the same set of changes in

the same order, they remain consistent within the group.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

https://dev.mysql.com/doc/refman/8.0/en/replication.html

345

Group Replication provides redundancy by replicating the system state among the

replication group. Should one (or more) of the servers fail, the system is still available.

While it is possible if enough servers fail that some performance or scalability with be

impacted, the system will remain available.

This is made possible by a group membership service, which relies on a distributed

failure detector that can signal when any servers leave the group, either through

deliberate interaction or due to a failure. There is a distributed recovery procedure to

ensure that when servers join the group, they are brought up-to-date automatically.

There is no need for server failover, and the multi-master update everywhere

nature ensures that not even updates are blocked in the event of a single server

failure. Therefore, MySQL Group Replication guarantees that the database service is

continuously available.

Group Replication makes the topology eventually synchronous replication (among

the nodes belonging to the same group) a reality, while the existing MySQL Replication

feature is asynchronous (or at most semi-synchronous). Therefore, better high

availability guaranties can be provided, since transactions are delivered to all members

in the same order (despite being applied at its own pace in each member after being

accepted).

Group Replication does this via a distributed state machine with strong coordination

among the servers assigned to a group. This communication allows the servers to

coordinate replication automatically within the group. More specifically, groups

maintain membership so that the data replication among the servers is always consistent

at any point in time. Even if servers are removed from the group, when they are added,

the consistency is initiated automatically. Further, there is also a failure detection

mechanism for servers that go offline or become unreachable.

Group Replication can also be used with the MySQL Router to enable application-

level routing and fault tolerance for operations (at the application level). Figure 8-1

shows how you would use Group Replication with our applications to achieve high

availability.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

346

Notice Group Replication can be used with the MySQL Router to allow your

applications to have a layer of isolation from the cluster. We will see a bit about the router

when we examine the InnoDB Cluster in Chapters 10 and 11.

Another important distinction between Group Replication and standard replication

is that all the servers in the group can participate in updating the data with conflicts

resolved automatically. Yes, you no longer must carefully craft your application to send

writes (updates) to a specific server! However, you can configure Group Replication to

allow updates by only one server (called the primary) with the other servers acting as

secondary servers or as a backup (for failover).

These capabilities and more are made possible using three specific technologies

built into Group Replication: group membership, failure detection, and fault tolerance.

The following lists these technologies along with a short overview of each.

Figure 8-1. Using Group Replication with Applications for High Availability
(Courtesy of Oracle)

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

347

• Group Membership: Manages whether servers are active (online) and

participating in the group. Also, ensures every server in the group

has a consistent view of the membership set, that is, every server

knows the complete list of servers in the group. When servers are

added to the group, the group membership service reconfigures the

membership automatically.

• Failure Detection: A mechanism that can find and report which

servers are offline (unreachable) and assumed to be dead. The failure

detector is a distributed service that allows all servers in the group to

test the condition of the presumed dead server and in that way, the

group decides if a server is unreachable (dead). This allows the group

to reconfigure automatically by coordinating the process of excluding

the failed server.

• Fault Tolerance: This service uses an implementation of the Paxos

distributed algorithm to provide distributed coordination among the

servers. In short, the algorithm allows for automatic promotion of

roles within the group to ensure the group remains consistent (data

is consistent and available) even if a server (or several) fails or leaves

the group. Like similar fault tolerance mechanisms, the number of

failures (servers that fail) is limited. Currently, Group Replication

fault tolerance can is defined as n = 2f + 1 where n is the number

of servers needed to tolerate f failures. For example, if you want to

tolerate up to 5 servers failing, you need at least 11 servers in the group.

Tip For more information about Group Replication, see the online reference
manual at https://dev.mysql.com/doc/refman/8.0/en/group-
replication.html

Now that we know a bit more about MySQL Replication and Group Replication, let’s

see a short primer on how to set up and configure MySQL Replication. We will use this

as a spring board into the next chapter where we will configure Group Replication using

MySQL Shell.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

https://dev.mysql.com/doc/refman/8.0/en/group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication.html

348

 Setup and Configuration
Now that you have a little knowledge of replication and how it works, let’s see how to set

it up. The next section discusses how to set up replication with one server as the master

and another as the slave. We will see both types of replication used. As you will see, there

are only a few differences in how you configure the servers and start replication.

Note The terms, “master” and “slave” are used exclusively in MySQL Replication
and representative of the fact that only one server can be written to and thus
has the “master” copy. The remaining servers are read-only containing a copy
(replicant) of the data. These terms were changed to “primary” and “secondary” in
Group Replication to better describe the roles in the new features.

But first, you will need to have two instances of MySQL running either on your

system using different ports, on two additional systems, or on two virtual machines.

For most cases of exploration, running more than one instance of MySQL on your local

computer will work well.

There are some prerequisites for replication that you must set when you launch the

instances. It is recommended that you create a separate configuration file (my.cnf or

my.ini in Windows) for each so that you don’t risk using the same directories for both

instances. To do this, we should already have MySQL installed on our system.

Launching a new instance of MySQL is easy and requires only a few administrative

tasks. The following is an outline of these tasks.

• Data directory: You must create a folder to contain the data directory.

• Port: You must choose a port to use for each instance.

• Configuration file: You must create a separate configuration file for

each server.

• Launch the instance manually: To run the instance, you will launch

MySQL (mysqld) from the command line (or via a batch file)

specifying the correct configuration file.

We will see these steps and more demonstrated in the next section, which presents a

tutorial of how to set up and run MySQL Replication on your local computer.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

349

 Tutorial
This section demonstrates how to set up replication from one server (the master) to

another (a slave). The steps include preparing the master by enabling binary logging and

creating a user account for reading the binary log, preparing the slave by connecting it

to the master, and starting the slave processes. The section concludes with a test of the

replication system.

Note The steps used to setup replication with binary log file and position are the
same as those for using GTIDs, but the commands differ slightly in some of the
steps. This tutorial will show both methods.

The steps to set up and configure MySQL Replication include the following. There

may be other, equally as viable procedures to set up replication, but these can be done

on any machine and will not affect any existing installations of MySQL. That said, it

is recommended to perform these steps on a development machine to remove risk of

disrupting production systems.

• Initialize the Data Directories: Create folders to store the data.

• Configure the Master: Configure the master with binary logging, new

config file.

• Configure the Slaves: Configure the slaves with binary logging, new

config file.

• Start the MySQL Instances: Launch the instances of MySQL server.

• Create the Replication User Account: Create the replication user on all

servers.

• Connect the Slaves to the Master: Connect each slave to the master.

• Start Replication: Initiate replication.

• Verify Replication Status: Perform a short test to ensure data is being

copied.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

350

The following sections demonstrate each of these steps in greater detail. While

the tutorial uses multiple, local instances to demonstrate how to use replication, the

procedure would be the same for setting up replication in a development or production

environment using discrete machines (or virtual machines). The details of the individual

commands to use specific hosts, drives, folders, ports, etc. are the only things that would

change to use the procedure in production.

Note The steps shown in this tutorial are run on the macoS platform. while there
are platform-specific commands and a few platform-specific options, the tutorial
can be run on Linux and windows platforms with minor changes.

 Initialize the Data Directories
The first step is to initialize a data directory for each of the machines used. In this case,

we will create a folder on our local machine to contain all the data directories. We

will use two instances of MySQL to represent a single master and a single slave. The

following demonstrates creating the folders needed. Notice I create these in a local

folder accessible to the user account I am using, not a system or administrative account.

This is because we will be running the instances locally and do not need the additional

privileges or access such accounts permit. If you were to create the folders with an

administrative account, you would have to run the server (mysqld) as that administrator,

which we do not want to do.

$ mkdir rpl

$ cd rpl

$ mkdir data

Now that we have a folder, <user_home>/rpl/data, we can use the initialization

option of the MySQL server to set up our data directories. We do this using the

special --initialize-insecure and --datadir options of the server executable. The

--initialize-insecure option tells the server to create the data directory and populate

it with the system data but to skip the use of any authentication. This is safe because

there are no users created yet (there’s no data directory!).

The --datadir option specifies the location of the data directory main folder. Since

we are running this as a local user, we also need the --user option.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

351

Tip Be sure to use your own user name for the --user option and all paths if
you are copying the commands in this tutorial.

We also need to know the base directory (called basedir) from the MySQL

server installed on the local machine. You can get that information from the server

configuration file or by using the shell and issuing the SHOW SQL command. The

following demonstrates how to do this. Here, we see the base directory is /usr/local/

mysql-8.0.16-macos10.14-x86_64. We will use this value so that the mysqld executable

can find its dependent libraries and files.

$ mysqlsh --uri root@localhost:33060 --sql -e "SHOW VARIABLES LIKE 'basedir'"

Variable_name Value

basedir /usr/local/mysql-8.0.16-macos10.14-x86_64/

The following shows the commands needed to initialize the data directories for the

master and a slave. Notice I use “slave1” for the slave. This so that you can expand the

tutorial to multiple slaves should you want to experiment with adding additional slaves.

$ mysqld --user=cbell --initialize-insecure --basedir=/usr/local/

mysql-8.0.16-macos10.14-x86_64/ --datadir=/Users/cbell/rpl/data/master

$ mysqld --user=cbell --initialize-insecure --basedir=/usr/local/

mysql-8.0.16-macos10.14-x86_64/ --datadir=/Users/cbell/rpl/data/master

When you run these commands, you will see several messages printed. You can

safely ignore the warnings but notice the last one tells us the root user does not have a

password assigned. This is okay for our tutorial, but something you never want to do for

a production installation. Fortunately, we can fix that easily once we start the instance.

Now that we have the data directories created and populated, we can configure the

master and slave(s).

 Configure the Master
Replication requires the master to have binary logging enabled. It is not turned on

by default, so you must add this option in the configuration file. In fact, we will need

a configuration file for each of the instances we want to start. In this section, we

concentrate on the master and in the next we will see the configuration file for a slave.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

352

We also need to select the port for the instance. For this tutorial, we will use port

numbers starting from 13001 for the master and 13002+ for the slaves. In addition, we

will need to choose unique server identification numbers. We will use 1 for the master

and 2+ for the slaves.

There are other settings we will need to make. Rather than list them, let’s view a typical

base configuration file for a master using replication with binary log and file position.

Listing 8-1 shows the configuration file we will use for the master in this tutorial.

Listing 8-1. Master Configuration File (Log File and Position)

[mysqld]

datadir="/Users/cbell/rpl/data/master"

basedir="/usr/local/mysql-8.0.16-macos10.14-x86_64/"

port=13001

socket="/Users/cbell/rpl/master.sock"

server_id=1

master_info_repository=TABLE

relay_log_info_repository=TABLE

log_bin=master_binlog

binlog_format=row

Notice the configuration file has one section named mysqld, which applies only to

the MySQL server executable. That is, only the mysqld and related executables will read

this section for values. Among those values are the common required settings for datadir,

basedir, port, and socket (for ∗nix style platforms). Notice these values match the settings

we’ve discussed previously.

The next section sets the server id, turns on the TABLE option for storing replication

information, which makes replication recoverable from crashes, and turns on the binary

log and sets its location. Finally, we use the ROW format for the binary log, which is a

binary format and is the default for the latest versions of MySQL Replication.

If we wanted to use GTID-based replication, there are some additional options

that must be set. For the master, there are only three; turn GTIDs on, set consistency

enforcement, and log slave updates. Thus, the configuration file for a GTID-enabled

master server is shown in Listing 8-2. Notice the first portion of the file is the same as the

previous example. Only the last few lines are added to enable GTIDs.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

353

Listing 8-2. Master Configuration File (GTIDs)

[mysqld]

datadir="/Users/cbell/rpl/data/master"

basedir="/usr/local/mysql-8.0.16-macos10.14-x86_64/"

port=13001

socket="/Users/cbell/rpl/master.sock"

server_id=1

master_info_repository=TABLE

relay_log_info_repository=TABLE

log_bin=master_binlog

binlog_format=row

GTID VARIABLES

gtid_mode=on

enforce_gtid_consistency=on

log_slave_updates=on

For this tutorial, we will be using GTID-enabled replication, so you should create a

file in the folder we created earlier named master.cnf; for example, /Users/cbell/rpl/

master.cnf. We will use this file to start the instance for the master in a later step.

Tip Some platforms may fail to start MySQL if the configuration file is world
readable. Check the log if your server does not start for messages regarding the
permissions of files.

Now, let’s look at the configuration files for the slaves.

 Configure the Slaves
While log file and position replication require the master to have binary logging enabled,

it is not required for the slaves. However, it is a good idea to turn on the binary log for the

slaves if you want to use the slave to generate backups or for crash recovery. However,

binary logging is also required if you want to use GTID-enabled replication. In this

section, we will use binary logging on the slaves.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

354

Like the master, we need to set several variables including the datadir, basedir, port,

and socket (for ∗nix style platforms). Listing 8-3 shows the configuration file for the first

slave (named slave1).

Listing 8-3. Slave Configuration File (Log File and Position)

[mysqld]

datadir="/Users/cbell/rpl/data/slave1"

basedir="/usr/local/mysql-8.0.16-macos10.14-x86_64/"

port=13002

socket="/Users/cbell/rpl/slave1.sock"

server_id=2

master_info_repository=TABLE

relay_log_info_repository=TABLE

log_bin=slave1_binlog

binlog_format=row

report-port=13002

report-host=localhost

Notice there are two additional variables set; report-port and report-host. These are

necessary to ensure commands like SHOW SLAVE HOSTS report the correct information.

That is, the information for that view is derived from these variables. Thus, it is always a

good idea to set these correctly.

Notice also we set the data directory to one set aside for this slave and the server id

is changed. Finally, we also change the name of the binary log to ensure we know from

which server the log originated (if needed in the future).

If we wanted to use GTID-based replication, we would add the same set of variables

we did for the master as shown in Listing 8-4.

Listing 8-4. Slave Configuration File (GTIDs)

[mysqld]

datadir="/Users/cbell/rpl/data/slave1"

basedir="/usr/local/mysql-8.0.16-macos10.14-x86_64/"

port=13002

socket="/Users/cbell/rpl/slave1.sock"

server_id=2

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

355

master_info_repository=TABLE

relay_log_info_repository=TABLE

log_bin=slave1_binlog

binlog_format=row

report-port=13002

report-host=localhost

GTID VARIABLES

gtid_mode=on

enforce_gtid_consistency=on

log_slave_updates=on

For this tutorial, we will be using GTID-enabled replication, so you should create a

file in the folder we created earlier named slave1.cnf; for example, /Users/cbell/rpl/

slave1.cnf. If you want to add more slaves, create additional configuration files with the

same data changing only the data directory, socket, port, server id, and binary log file.

 Start the MySQL Instances
Now we are ready to start the MySQL instances. This easy to do since we have already

created the configuration file with all the parameters we need. We only need provide the

configuration file with the --defaults-file option. The following shows the commands

to start both server instances.

$ mysqld --defaults-file=master.cnf

$ mysqld --defaults-file=slave1.cnf

When you run these commands, you should run them from the folder that contains

the configuration files; otherwise, you must provide the full path to the configuration file.

It is also a good idea to either use a separate terminal window to launch each instance

or redirect the output (logging of messages) to a file as shown in Listing 8-5. However,

you may want to use a separate terminal the first time you start the server to ensure there

are no errors. Listing 8-5 shows an excerpt of the messages printed when launching the

master (without the return &).

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

356

Listing 8-5. Starting the Master Instance

297Z 0 [System] [MY-010116] [Server] /usr/local/mysql-8.0.16-

macos10.14-x86_64/bin/mysqld (mysqld 8.0.16) starting as process 2615

2019-05-03T23:14:46.081413Z 0 [Warning] [MY-010159] [Server] Setting

lower_case_table_names=2 because file system for /Users/cbell/rpl/data/

master/ is case insensitive

2019-05-03T23:14:46.341919Z 0 [Warning] [MY-010068] [Server] CA certificate

ca.pem is self signed.

2019-05-03T23:14:46.342661Z 0 [Warning] [MY-011810] [Server] Insecure

configuration for --pid-file: Location '/Users/cbell/rpl/data' in the path

is accessible to all OS users. Consider choosing a different directory.

2019-05-03T23:14:46.355855Z 0 [System] [MY-010931] [Server] /usr/local/

mysql-8.0.16-macos10.14-x86_64/bin/mysqld: ready for connections. Version:

'8.0.16' socket: '/Users/cbell/rpl/master.sock' port: 13001 MySQL

Community Server - GPL.

2019-05-03T23:14:46.569522Z 0 [System] [MY-011323] [Server] X Plugin ready

for connections. Socket: '/Users/cbell/rpl/masterx.sock' bind-address: '::'

port: 33061

If you plan to use a single terminal, it is recommended to redirect the output to a file

named master_log.txt and use the option to start the application in another process

(e.g., the & symbol). The log files are updated as the server generates messages, so you

can refer to them if you encounter problems. It also helps to keep your terminal session

clear of extra messages. The following shows how to structure the preceding command

to start as a separate process and log messages to a file.

$ mysqld --defaults-file=master.cnf > master_output.txt 2>&1 &

If you haven’t done so already, go ahead and start the slave. The following is the

command I used to start the slave (slave1).

$ mysqld --defaults-file=slave1.cnf > slave1_output.txt 2>&1 &

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

357

 Create the Replication User Account
After the MySQL instance has started, you must create a user to be used by the slave to

connect to the master and read the binary log before you can setup replication. There is

a special privilege for this named REPLICATION SLAVE. The following shows the correct

GRANT statement to create the user and add the privilege. Remember the username and

password you use here because you will need it for connecting the slave.

The following shows the commands needed to create the replication user. Execute

these commands on all your servers. While it is not needed for the slaves, creating the

user now will allow you to use the slaves for recovery, switchover, or failover without

having to create the user. In fact, this step is required for permitting automatic failover.

SET SQL_LOG_BIN=0;

CREATE USER rpl_user@'localhost' IDENTIFIED BY 'rpl_pass';

GRANT REPLICATION SLAVE ON ∗.∗ TO rpl_user@'localhost';
FLUSH PRIVILEGES;

SET SQL_LOG_BIN=1;

Notice the first and last commands. These commands tell the server to temporarily

disable logging of changes to the binary log. We do this whenever we do not want to

replicate the commands on other machines in the topology. Specifically, maintenance

and administrative commands like creating users should not be replicated. Turning

off the binary log is a great way to ensure you do not accidently issue transactions that

cannot be executed on other machines.

The best way to execute these commands is to save them to a file named create_

rpl_user.sql and use the source command of the mysql client to read the commands

from the file and execute them. Thus, you can quickly create the replication user on all

instances with the following commands.

$ mysqlsh --uri root@localhost:33061 --sql -f "create_rpl_user.sql"

$ mysqlsh --uri root@localhost:33062 --sql -f "create_rpl_user.sql"

Now we are ready to connect the slave to the master and start replicating data.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

358

 Connect the Slaves to the Master
The next step is to connect the slaves to the master. There are different ways to do this

depending on which form of replication you are using. Specifically, the command

to connect the slave to the master differs when using log file and position vs. GTID

replication. There are also two steps: configuring the slave to connect and starting

replication. Let’s look at configuring the slave with log file and position first.

 Connect with Log File and Position

To connect a slave to the master using log file and position, we need a bit of information.

This information is needed to complete the CHANGE MASTER command that instructs

the slave to make a connection to the master. Table 8-1 shows the complete list of

information needed. The table includes one of the sources where the information can be

found along with an example of the values used in this tutorial.

Table 8-1. Information Needed for Connecting a Slave (Log File and Position)

Item from Master Source Example

Ip address or hostname master.cnf localhost

port master.cnf 13001

Binary log file SHOW MASTER STATUS master_binlog.000005

Binary log file position SHOW MASTER STATUS 154

Replication user ID create_rpl_user.sql rpl_user

Replication user password create_rpl_user.sql rpl_pass

The information for the master binary log file can be found with the SHOW MASTER

STATUS command. The following shows how to use the mysql client to execute the

command and return.

$ mysqlsh --uri root@localhost:33061 --sql -e "SHOW MASTER STATUS"

File Position Binlog_Do_DB Binlog_Ignore_DB Executed_Gtid_Set

master_binlog.000005 155

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

359

Notice the command also displays any filters that are active as well as a GTID-

specific value for the latest GTID-executed set. We won’t need that for this tutorial, but it

is a good idea to file that away should you need to recover a GTID-enabled topology.

Now that you have the master’s binary log file name and position as well as the

replication user and password, you can visit your slave and connect it to the master with

the CHANGE MASTER command. The command can be constructed from the information

in Table 8-1 as follows (formatted to make it easier to read – remove the \ if you are

following along with this tutorial).

CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='rpl_pass', \

 MASTER_HOST='localhost', MASTER_PORT=13001, \

 MASTER_LOG_FILE='master_binlog.000005', MASTER_LOG_POS=155;

You must run this command on all the slaves. It may be easier to save this to a file

and execute it using the mysql client like we did for the replication user. For example,

save this to a file named change_master.sql and execute it as following.

$ mysqlsh --uri root@localhost:33062 --sql -f "change_master.sql"

There is one more step to starting the slave, but let’s first look at how to configure the

CHANGE MASTER commands for GTID-enable replication.

 Connect with GTIDs

To connect a slave to the master using GTIDs, we need a bit of information. This

information is needed to complete the CHANGE MASTER command that instructs the slave

to make a connection to the master. Table 8-2 shows the complete list of information

needed. The table includes one of the sources where the information can be found along

with an example of the values used in this tutorial.

Table 8-2. Information Needed for Connecting a Slave (GTIDs)

Item from Master Source Example

Ip address or hostname master.cnf localhost

port master.cnf 13001

Replication user ID create_rpl_user.sql rpl_user

Replication user password create_rpl_user.sql rpl_pass

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

360

Notice we need less information than log file and position replication. We don’t need

to know the master binary log file or position because the GTID handshake procedure

will resolve that information for us. All we need then is the host connection information

for the master and the replication user and password. For GTID-enabled replication,

we use a special parameter, MASTER_AUTO_POSITION to instruct replication to negotiate

the connection information automatically. The CHANGE MASTER command can be

constructed from the information in Table 8-2 as follows (formatted to make it easier to

read – you do not need to remove the \ if you are following along with this tutorial).

CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='rpl_pass', \

 MASTER_HOST='localhost', MASTER_PORT=13001, MASTER_AUTO_POSITION = 1;

You must run this command on all the slaves. It may be easier to save this to a file

and execute it using the mysql client like we did for the replication user. For example,

save this to a file named change_master.sql and execute it as following.

mysqlsh --uri root@localhost:33062 --sql -f "change_master.sql"

If you want to be able to use the file for either form of replication, you can simply

place both commands in the file and comment out one that you don’t need. For

example, the following shows an example file with both CHANGE MASTER commands.

Notice the GTID variant is commented out with the # symbol.

CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='rpl_pass',

MASTER_HOST='localhost', MASTER_PORT=13001, MASTER_LOG_FILE='master_

binlog.000005', MASTER_LOG_POS=155;

GTID option:

CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='rpl_pass',

MASTER_HOST='localhost', MASTER_PORT=13001, MASTER_AUTO_POSITION = 1;

Now that we have our slaves configured to connect, we must finish the process by

telling the slaves to initiate the connection and start replication.

 Start Replication
The next step is to start the slave processes. This command is simply START SLAVE. We

would run this command on all the slaves like we did for the CHANGE MASTER command.

The following shows the commands for starting the slaves.

$ mysqlsh --uri root@localhost:33062 --sql -e "START SLAVE"

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

361

The START SLAVE command normally does not report any errors; you must use SHOW

SLAVE STATUS to see them. Listing 8-6 shows the command in action. For safety as well

as peace of mind, you may want to run this command on any slave you start.

Listing 8-6. Checking SLAVE STATUS

$ mysqlsh --uri root@localhost:33062 --sql -e "SHOW SLAVE STATUS\G"

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Slave_IO_State: Waiting for master to send event

 Master_Host: localhost

 Master_User: rpl_user

 Master_Port: 13001

 Connect_Retry: 60

 Master_Log_File: master_binlog.000005

 Read_Master_Log_Pos: 155

 Relay_Log_File: MacBook-Pro-2-relay-bin.000002

 Relay_Log_Pos: 377

 Relay_Master_Log_File: master_binlog.000005

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 155

 Relay_Log_Space: 593

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

362

 Master_SSL_CA_Path:

 Master_SSL_Cert:

 Master_SSL_Cipher:

 Master_SSL_Key:

 Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 1

 Master_UUID: b6632bf2-6df6-11e9-8bf5-cc9584d9b3f3

 Master_Info_File: mysql.slave_master_info

 SQL_Delay: 0

 SQL_Remaining_Delay: NULL

 Slave_SQL_Running_State: Slave has read all relay log; waiting for

more updates

 Master_Retry_Count: 86400

 Master_Bind:

 Last_IO_Error_Timestamp:

 Last_SQL_Error_Timestamp:

 Master_SSL_Crl:

 Master_SSL_Crlpath:

 Retrieved_Gtid_Set:

 Executed_Gtid_Set: ccc5263e-6df6-11e9-88d5-910b8477c67b:1

 Auto_Position: 1

 Replicate_Rewrite_DB:

 Channel_Name:

 Master_TLS_Version:

 Master_public_key_path:

 Get_master_public_key: 0

 Network_Namespace:

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

363

Take a moment to slog through all these rows. There are several key fields you

need to pay attention to. These include anything with error in the name, and the state

columns. For example, the first row (Slave_IO_State) shows the textual message

indicating the state of the slave’s I/O thread. The I/O thread is responsible for reading

events from the master’s binary log. There is also a SQL thread that is responsible for

reading events from the relay log and executing them.

For this example, you just need to ensure that both threads are running (YES) and

there are no errors. For detailed explanations of all the fields in the SHOW SLAVE STATUS

command, see the online MySQL reference manual in the section “SQL Statements for

Controlling Slave Servers.”1

Now that the slave is connected and running, let’s check replication by checking the

master and creating some data.

 Verify Replication Status
Checking the slave status with the SHOW SLAVE STATUS command is the first step to

verifying replication health. The next step is to check the master using the SHOW SLAVE

HOSTS command. Listing 8-7 shows the output of the SHOW SLAVE HOSTS for the topology

setup in this tutorial. This command shows the slaves that are attached to the master

and their UUIDs. It should be noted that this information is a view and is not real-time.

That is, it is possible for slave connections to fail and still be shown on the report until

the processes time out and the server kills them. Thus, this command is best used as a

sanity check.

Listing 8-7. SHOW SLAVE HOSTS Command (Master)

mysqlsh --uri root@localhost:33061 --sql -e "SHOW SLAVE HOSTS\G"

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Server_id: 2

 Host: localhost

 Port: 13002

 Master_id: 1

Slave_UUID: ccc5263e-6df6-11e9-88d5-910b8477c67b

1 https://dev.mysql.com/doc/refman/8.0/en/replication-slave-sql.html

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

https://dev.mysql.com/doc/refman/8.0/en/replication-slave-sql.html

364

Here we see all the slave is connected and we know from the last section the slave

status is good.

Next, let’s create some simple data on the master then see if that data is replicated to

the slave. In this case, we will simply create a database, a table, and a single row then run

that on the master. Listing 8-8 shows the sample data as executed on the master.

Listing 8-8. Creating Sample Data for Testing Replication (Master)

$ mysqlsh --uri root@localhost:33061 --sql

MySQL Shell 8.0.16

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.

Creating a session to 'root@localhost:33061'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 18 (X protocol)

Server version: 8.0.16 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

 MySQL localhost:33061+ ssl SQL > CREATE DATABASE test;

Query OK, 1 row affected (0.0029 sec)

 MySQL localhost:33061+ ssl SQL > USE test;

Query OK, 0 rows affected (0.0002 sec)

 MySQL localhost:33061+ ssl SQL > CREATE TABLE test.t1 (c1 INT PRIMARY

KEY, c2 TEXT NOT NULL);

Query OK, 0 rows affected (0.0054 sec)

 MySQL localhost:33061+ ssl SQL > INSERT INTO test.t1 VALUES (1, 'Dr.

Charles Bell');

Query OK, 1 row affected (0.0092 sec)

To verify the data was replicated, all we need to do is issue a SELECT SQL command

on the table on one of the slaves (or all of them if you are so inclined). The following

shows an example of what we expect to see on each of the slaves.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

365

$ mysqlsh --uri root@localhost:33062 --sql -e "SELECT ∗ FROM test.t1"
c1 c2

1 Dr. Charles Bell

This concludes the short tutorial on setting up MySQL Replication. This section

presented a brief look at MySQL Replication in its barest, simplest terms. Now, let’s look

at how we can script an example setup of MySQL Replication. However, there is one

more step.

 Shutting Down Replication
If you try this tutorial on your own machine, remember to shut down your instances in a

precise order. On each slave, you first want to stop the slave with the following command.

$ mysqlsh --uri root@localhost:33062 --sql -e "STOP SLAVE"

Once all slaves are stopped, you can shut down the slaves first then the master with

the following commands. Notice we used the old protocol ports (13001, 13002) for

the master and slaves. This is because the X Protocol does not support the shutdown

command. If you encounter an error when using the MySQL X ports, try the old protocol

and rerun the command.

$ mysqlsh --uri root@localhost:13002 --sql -e "SHUTDOWN"

$ mysqlsh --uri root@localhost:13001 --sql -e "SHUTDOWN"

REFERENCES ON MYSQL HIGH AVAILABILITY

If you peruse some of the lengthier works on MySQL high availability prior to InnoDB Cluster,

you may find some additional, more complex challenges for specific use cases. If you would

like to know more about MySQL Replication and MySQL high availability features prior to

InnoDB Cluster, the following are some excellent resources.

• Bell, Kindahl, Thalmann, MySQL High Availability: Tools for Building Robust Data
Centers, 2nd edition (o’Reilly, 2014)

• Das, MySQL Replication Simplified: Easy step-by-step examples to establish,
troubleshoot, and monitor replication (Business Compass, LLC, 2014)

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

366

• Schwartz, Zaitsev, Tkachenko High Performance MySQL: Optimization,
Backups, Replication, and More (o’Reilly, 2012)

• Davies, MySQL High Availability Cookbook (packt, 2010)

The online reference manual has considerable documentation and should be your primary

source (https://dev.mysql.com/doc/refman/8.0/en/replication.html).

 Summary
Achieving high availability in MySQL is possible with MySQL Replication. Indeed, you

can create robust data centers with replication. Better still, replication has been around

for a long time and is considered very stable. Many organizations have and continue

to have success using replication in production – from small installations to massive

installations.

Even so, there are limitations to using MySQL Replication such as how to handle

switching the master role to another machine (slave) if the master fails, how to perform

this automatically, how to handle multiple write scenarios, and general troubleshooting

and maintenance. Many of these have been improved in Group Replication. However, as

we have seen, setup of replication requires some effort and maintenance, which may be

a concern to planners and administrators alike.

In this chapter, we learned more what high availability is, an overview of some of the

high availability features in MySQL, as well as how to implement MySQL Replication

with one master and one slave. Even though the tutorial was limited to two machines,

you can easily expand it to several machines.

You may feel MySQL Replication will meet your high availability needs (and

that’s great), but MySQL Group Replication takes high availability to another level by

introducing fault tolerance and a host of features that make it more versatile for more

demanding high availability requirements.

In the next chapter, we will see a complete walkthrough of how to set up Group

Replication using MySQL Shell.

ChapTeR 8 USInG The SheLL wITh GRoUp RepLICaTIon

https://dev.mysql.com/doc/refman/8.0/en/replication.html

367
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_9

CHAPTER 9

Example: Group
Replication Setup
and Administration
As we learned in the last chapter, Group Replication is an evolution of MySQL

Replication designed to make data replication more robust and reliable. Together

with the modifications to the InnoDB storage engine (all under the hood and hidden

away), Group Replication enables high availability capabilities that used to require

specialized and sometimes customized products, middleware, and bespoken

applications to achieve.

In this chapter, we take a more in-depth look at what makes up Group Replication.

After that, we will take a guided tour of Group Replication in a hands-on walkthrough.

 Getting Started
It may not surprise you that setting up MySQL Group Replication resembles the

process of setting up MySQL Replication. After all, Group Replication is built upon the

foundations of MySQL Replication. In the next section, we will see a demonstration

of Group Replication but rather than concentrate on the same steps from the MySQL

Replication tutorial, we will cover the same topics briefly and dive into the nuances

specific to Group Replication.

But first, let’s begin with a list of concepts and terms that make up the language of

describing Group Replication.

368

 Concepts, Terms, and Lingo
It is likely all but the most proficient or those with the latest knowledge of MySQL

will fully understand all the terms and concepts thrown around describing Group

Replication. In this section, we take a step back for a moment and discuss some of the

terms and concepts you will encounter in this chapter and the next two chapters (or any

book on MySQL High Availability). Thus, this section is a glossary of terms associated

with Group Replication. Feel free to refer to this section from time to time.

• Binary Log: A file produced by the server that contains a binary

form of all transactions executed. The binary log file is also used in

replication to exchange transactions between two servers. When used

on a primary (master), it forms a record of all changes, which can be

sent to the secondary (slave) for execution to create a replicant.

• Multi-Primary: A group where writes may be sent to more than one

primary and replicated among the group.

• Failover: An event that permits the group to recover from a fault on

the primary automatically electing a new primary.

• Fault Tolerant: The ability to recover from a fault or error detected

among the group without loss of data or functionality. Note that fault

tolerance in Group Replication is limited by the number of servers in

the group. See the online reference manual in the Group Replication

section “Fault-tolerance”, for how to calculate the number of servers

and how many faults the group can tolerate.1

• Group: A set of MySQL servers participating in the same Group

Replication communication setup.

• Group Communication: A special mechanism that uses a state

machine and a communication protocol to keep the servers in

the group coordinated including synchronization of transaction

execution and selection/election of roles.

1 https://dev.mysql.com/doc/refman/8.0/en/group-replication-fault-tolerance.html

Chapter 9 example: Group repliCation Setup and adminiStration

https://dev.mysql.com/doc/refman/8.0/en/group-replication-fault-tolerance.html

369

• Instance: A running MySQL server. Typically used to refer to one or

more MySQL servers running on the same machine. This is not the

same as “MySQL Server”, which often refers to the set of hardware

and MySQL execution.

• Primary: A server in a group that is assigned the role of collecting all

writes (updates) to data.

• Relay Log: A binary log file used on a secondary (slave) to record

transactions read from the primary (master) binary log and saved for

execution. It has the same format as the binary log.

• Secondary: A server in a group that is assigned the role of reader,

which means applications can read data from a secondary but may

not write to a secondary.

• Single-Primary: A group configured with a single primary and one or

more secondary server. This is like the master/slave configuration in

the older MySQL Replication feature.

• Switchover: A controlled maintenance event where an administrator

actively changes the primary role removing it from one server and

assigning it to another (making the new server the primary). This

does not happen automatically and typically is not associated with a

failure.

• Transaction: A set of data changes that must all succeed before the

set is applied to the data. Failed transactions are not written to the

database.

• Topology: A term describing the logical layout of servers in a

replication group. Examples include single primary represented as a

single server with radial connections to each slave, tiered represented

as connections of single-primary groups where each secondary is the

primary to another set of secondary servers, and multi-primary often

represented where each primary connects to every other primary in

the group as well as the secondary servers in the group.

There is one more aspect of Group Replication that you should understand; calculating

the number of faults, a group can recover and continue to provide high availability.

Chapter 9 example: Group repliCation Setup and adminiStration

370

 Group Replication Fault Tolerance
Recall from Chapter 8, we learned Group Replication can successfully tolerate a certain

number of server faults where the server goes offline (leaves the group). The number of

faults that the group can tolerate depends on the number of servers in the group. The

formula for determining how many failures simultaneous or consecutive, unrecovered

failures, f, a set of servers, S can tolerate is as follows.

S = 2f + 1

For example, a set of 11 servers can tolerate, at most, 5 failures.

11 = 2f + 1

10 = 2f

2f = 10

f = 10/2

f = 5

If you want to know how many servers, s, it takes to tolerate a known number of

failures, F, a little math application reveals the following. Note that you must round down

any fractions. You can’t have 1.5 servers fail.

s = 2F + 1

(s - 1) = 2F

2F = (s - 1)

F = (s - 1)/2

For example, a set of 5 servers can tolerate 2 failures.

F = (5 - 1)/2

F = 4/2

F = 2

Similarly, a set of 7 servers can tolerate 3 failures.

F = (7 - 1)/2

F = 6/2

F = 3

Chapter 9 example: Group repliCation Setup and adminiStration

371

 Setup and Configuration
Now that you have a little knowledge of Group Replication and how it works, let’s see

how to set it up. We will see how to set up Group Replication with four servers. Thus,

you will need to have four instances of MySQL running either on your system using

different ports, on four additional systems, or on four virtual machines. For most cases

of exploration, running more than one instance of MySQL on your local computer will

work well.

There are some prerequisites for Group Replication that you must set when you

launch the instances. It is recommended that you create a separate configuration file

(my.cfg) for each so that you don’t risk using the same directories for both instances. To

do this, we should already have MySQL installed on our system.

Launching a new instance of MySQL is easy and requires only a few administrative

tasks. The following outline these tasks.

• Data directory: You must create a folder to contain the data directory.

• Port: You must choose a port to use for each instance.

• Configuration file: You must create a separate configuration file for

each server.

• Launch the instance manually: To run the instance, you will launch

MySQL (mysqld) from the command line (or via a batch file)

specifying the correct configuration file.

We will see these steps and more demonstrated in the next section, which presents a

tutorial of how to set up and run MySQL Group Replication on your local computer.

 Tutorial
This section demonstrates how to set up Group Replication among a set of four MySQL

instances running on a local computer. As mentioned previously, Group Replication

uses different terms for the roles in the group. Specifically, there is a primary role and a

secondary role. Unlike MySQL Replication where one server is designated as the master

(primary), Group Replication can automatically change the roles of servers in the group

as needed. Thus, while we will set up Group Replication identifying one of the servers as

the primary, the end state of the group over time may result in one of the other servers

becoming the primary.

Chapter 9 example: Group repliCation Setup and adminiStration

372

If you would like to experience this tutorial on your own, you should prepare four

servers. Like the last tutorial, we will use several instances running on the current

machine. We need several instances to ensure the group has a viable set to enable

redundancy and failover. In this case, the group can tolerate at most 1 failure; (4-1)/2 =

1.5 or 1 rounded down.

The steps to set up and configure Group Replication include the following. There

may be other, equally as viable procedures to set up Group Replication, but these can be

done on any machine and will not affect any existing installations of MySQL. That said,

it is recommended to perform these steps on a development machine to remove risk of

disrupting production systems.

Note the steps used to set up Group replication is very similar to mySQl
replication. in fact, except for terminology (e.g., slave vs. secondary), the
configuration files, and starting Group replication on the master for the first time,
the process is the same.

• Initialize the Data Directories: Create folders to store the data.

• Configure the Primary: Configure the primary with a new config file.

• Configure the Secondaries: configure the secondaries with a new

config file.

• Start the MySQL Instances: Launch the instances of MySQL server.

• Create the Replication User Account: Create the replication user on all

servers.

• Start Group Replication on the Primary: Initiate the primary and

establish the group.

• Connect Secondaries to the Primary: Initiate replication.

• Start Group Replication on the Secondaries: Add secondary to group

membership.

• Verify Group Replication Status: Perform a short test to ensure data is

being copied.

Chapter 9 example: Group repliCation Setup and adminiStration

373

The following sections demonstrate each of these steps in greater detail running on a

macOS system with MySQL installed. The steps are the same for other platforms, but the

paths may differ slightly. While the tutorial uses multiple, local instances to demonstrate

how to use replication, the procedure would be the same for setting up replication in a

production environment. The details of the individual commands to use specific hosts,

drives, folders, ports, etc. are the only things that would change to use the procedure in

production.

 Initialize the Data Directories
The first step is to initialize a data directory for each of the machines used. In this case,

we will create a folder on our local machine to contain all the data directories. We

will use four instances of MySQL to represent a primary and three secondaries. The

following demonstrates creating the folders needed. Notice we create these in a local

folder accessible to the user account we’re using, not a system or administrative account.

This is because we will be running the instances locally and do not need the additional

privileges or access such accounts permit.

$ mkdir gr

$ cd gr

$ mkdir data

Now that we have a folder, <user_home>/gr/data, we can use the initialization

option of the MySQL server to set up our data directories. We do this using the

special --initialize-insecure and --datadir options of the server executable. The

--initialize- insecure option tells the server to create the data directory and populate

it with the system data but to skip the use of any authentication. This is safe because

there are no users created yet (there’s no data directory!).

The --datadir option specifies the location of the data directory main folder. Since

we are running this as a local user, we also need the --user option.

Tip Be sure to use your own user name for the --user option and all paths if
you are copying the commands in this tutorial.

Chapter 9 example: Group repliCation Setup and adminiStration

374

We also need to know the base directory (called basedir) from the MySQL

server installed on the local machine. You can get that information from the server

configuration file or by using the shell and issuing the SHOW SQL command. The

following demonstrates how to do this. Here, we see the base directory is /usr/local/

mysql-8.0.16- macos10.14-x86_64. We will use this value so that the mysqld executable

can find its dependent libraries and files.

$ mysqlsh --uri root@localhost:33060 --sql -e "SHOW VARIABLES LIKE

'basedir'"

Variable_name Value

basedir /usr/local/mysql-8.0.16-macos10.14-x86_64/

The following shows the commands needed to initialize the data directories for the

primary and secondaries.

$ mysqld --user=cbell --initialize-insecure \

 --basedir=/usr/local/mysql-8.0.16-macos10.14-x86_64/ \

 --datadir=/Users/cbell/gr/data/primary

$ mysqld --user=cbell --initialize-insecure \

 --basedir=/usr/local/mysql-8.0.16-macos10.14-x86_64/ \

 --datadir=/Users/cbell/gr/data/secondary1

$ mysqld --user=cbell --initialize-insecure \

 --basedir=/usr/local/mysql-8.0.16-macos10.14-x86_64/ \

 --datadir=/Users/cbell/gr/data/secondary2

$ mysqld --user=cbell --initialize-insecure \

 --basedir=/usr/local/mysql-8.0.16-macos10.14-x86_64/ \

 --datadir=/Users/cbell/gr/data/secondary3

Now that we have the data directories created and populated, we can configure the

master and slave(s).

 Configure the Primary
This step differs the most from MySQL Replication. In fact, the configuration file is quite

a bit different. Specifically, we use the same variables from GTID-enabled replication

in addition to several of the more common Group Replication variables that must be

set. The following lists the Group Replication related variables and their uses. There are

Chapter 9 example: Group repliCation Setup and adminiStration

375

additional variables for controlling Group Replication. See https://dev.mysql.com/

doc/refman/8.0/en/group-replication-options.html in the online reference manual

for a complete list.

• transaction_write_set_extraction: Defines the algorithm used

to hash the writes extracted during a transaction. Group Replication

must be set to XXHASH64.

• group_replication_recovery_use_ssl: Determines if Group

Replication recovery connection should use SSL or not. Typically set

to ON. The default is OFF.

• group_replication_group_name: The name of the group which this

server instance belongs to. Must be a valid, unique UUID.

• group_replication_start_on_boot: Determines if the server should

start Group Replication or not during server start.

• group_replication_local_address: The network address that the

member provides for connections from other members, specified

as a host:port formatted string. Note that this connection is for

communication between the Group Replication members and not for

client use.

• group_replication_group_seeds: A list of group members that is

used to establish the connection from the new member to the group.

The list consists of the seed member's group_replication_local_

address network addresses specified as a comma separated list, such

as host1:port1,host2:port2.

• group_replication_bootstrap_group: Configure this server to

bootstrap the group. This option must only be set on one server and

only when starting the group for the first time or restarting the entire

group. After the group has been bootstrapped, set this option to OFF.

Notice the last variable, group_replication_bootstrap_group. This variable

is something we will set to OFF in the configuration files but only after we have

bootstrapped the group for the first time. This is one of the uses of the initial primary

node – to start the group. We will see a special step that you must take the first time you

boot the primary to start the group. After that, this variable must be set to OFF.

Chapter 9 example: Group repliCation Setup and adminiStration

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html

376

 Primary Configuration File

To construct a configuration file for the primary, we need several things: the usual

variables for data directory, base directory, port, etc. as well as the GTID variables and

the Group Replication variables. It is also a good idea to add the plugin directory to

ensure the server can find the Group Replication plugin (we will see this in a later step),

and to turn on the binary log checksum.

Since the group_replication_group_seeds variable needs the list of servers initially

participating in the group, we must decide on the ports each server will use. Group

Replication setup requires two ports for each server: one for the normal connections and

another for use with Group Replication. For this tutorial, we will use ports 24801+ for the

server connections and ports 24901+ for the Group Replication ports. In addition, since

we are using local instances, the hostname for all the members in the group will use the

loopback address (127.0.0.1), but this would normally be the hostname of the server on

which it is running. Finally, we also need to choose server ids, so we will use sequential

values starting at 1. Listing 9-1 shows the configuration file we will use for the master in

this tutorial.

Listing 9-1. Primary Configuration File (Group Replication)

[mysqld]

datadir="/Users/cbell/gr/data/primary"

basedir="/usr/local/mysql-8.0.16-macos10.14-x86_64/"

plugin_dir=/usr/local/mysql/lib/plugin/

plugin-load=group_replication.so

port=24801

mysqlx-port=33061

mysqlx-socket="/Users/cbell/rpl/primaryx.sock"

socket="/Users/cbell/rpl/primary.sock"

server_id=101

master_info_repository=TABLE

relay_log_info_repository=TABLE

log_bin=master_binlog

binlog_format=row

Chapter 9 example: Group repliCation Setup and adminiStration

377

GTID VARIABLES

gtid_mode=ON

enforce_gtid_consistency=ON

log_slave_updates=ON

binlog_checksum=NONE

GR VARIABLES

transaction_write_set_extraction=XXHASH64

group_replication_recovery_use_ssl=ON

group_replication_group_name="bbbbbbbb-bbbb-cccc-dddd-eeeeeeeeeeee"

group_replication_start_on_boot=OFF

group_replication_local_address="127.0.0.1:24801"

group_replication_group_seeds=" 127.0.0.1:24901,127.0.0.1:24902,

127.0.0.1:24903,127.0.0.1:24904"

group_replication_bootstrap_group=OFF

You may notice there is no log-bin variable set. The server will automatically enable

the binary log when it encounters the variables for Group Replication as it is required.

However, you can include the variable if you want to name the binary log files or located

them in another folder, but that is an advanced configuration option that isn’t necessary

for a tutorial or even a development installation.

Note if you are running this tutorial on Windows and do not have SSl installed
and mySQl configured for use with SSl connections, you must remove the
group_replication_recovery_use_ssl option.

For this tutorial, you should create a file in the folder we created earlier named

primary.cnf; for example, /Users/cbell/gr/primary.cnf. We will use this file to start

the instance for the primary in a later step.

Now, let’s look at the configuration files for the secondaries.

 Secondary Configuration File
The configuration file for the secondaries is very similar to the one for the primary, with the

only changes being to use the correct values for the instance-specific variables like port,

data directory, socket, and server id. However, there are some differences beyond those

settings. The transaction_write_set_extraction variable is set on the initial primary.

Chapter 9 example: Group repliCation Setup and adminiStration

378

For the secondaries, we add group_replication_recovery_get_public_key and

set it to ON. This variable determines if the secondary requests from the primary the

public key required for RSA key pair-based password exchange. This variable applies to

secondaries that authenticate with the caching_sha2_password authentication plugin.

We also include the plugin_dir for the path to the plugin executables, which you

can use the SHOW VARIABLES LIKE '%plugin%' command. Another variable we include

is the plugin-load variable with group_replication.so as the value. Note the .so file

extension refers to shared object libraries on ∗nix computers. On Windows, you would

use .dll.

Listing 9-2 shows the configuration file for the first secondary (named secondary1.

cnf).

Listing 9-2. Secondary Configuration File (Group Replication)

[mysqld]

datadir="/Users/cbell/gr/data/secondary1"

basedir="/usr/local/mysql-8.0.16-macos10.14-x86_64/"

plugin_dir=/usr/local/mysql/lib/plugin/

plugin-load=group_replication.so

port=24901

mysqlx-port=33062

mysqlx-socket="/Users/cbell/rpl/secondary1x.sock"

socket="/Users/cbell/rpl/data/secondary1.sock"

server_id=102

master_info_repository=TABLE

relay_log_info_repository=TABLE

log_bin=slave1_binlog

binlog_format=row

report-port=24901

report-host=localhost

GTID VARIABLES

gtid_mode=ON

enforce_gtid_consistency=ON

log_slave_updates=ON

binlog_checksum=NONE

Chapter 9 example: Group repliCation Setup and adminiStration

379

GR VARIABLES

group_replication_recovery_get_public_key=ON

group_replication_recovery_use_ssl=ON

group_replication_group_name="bbbbbbbb-bbbb-cccc-dddd-eeeeeeeeeeee"

group_replication_start_on_boot=OFF

group_replication_local_address="127.0.0.1:24901"

group_replication_group_see

ds="127.0.0.1:24901,127.0.0.1:24902,127.0.0.1:24903,127.0.0.1:24904"

group_replication_bootstrap_group=OFF

For this tutorial, we will be using three secondaries, so you should create a file for

each in the folder we created earlier and name them secondary1.cnf, secondary2.cnf,

and secondary3.cnf. Be sure to change the instance-specific variables such as the data

directory, socket, port, server id, etc. You must change both ports; the port for the server

and the port for Group Replication.

 Start the MySQL Instances
Now we are ready to start the MySQL instances. This easy to do since we have already

created the configuration files with all the parameters we need. We only need to provide

the configuration file with the --defaults-file option. The following shows the

commands to start the server instances used in this tutorial. Notice a redirect is added to

place the messages from the server in a log file.

$ mysqld --defaults-file=primary.cnf > primary_output.txt 2>&1 &

$ mysqld --defaults-file=secondary1.cnf > secondary1_output.txt 2>&1 &

$ mysqld --defaults-file=secondary2.cnf > secondary2_output.txt 2>&1 &

$ mysqld --defaults-file=secondary3.cnf > secondary3_output.txt 2>&1 &

When you run these commands, you should run them from the folder that contains the

configuration files; otherwise, you will have to provide the full path to the configuration

file. While the commands include the redirects, you may want to use a separate terminal

the first time you start the server to ensure there are no errors. Listing 9-3 shows an

excerpt of the messages printed when launching the primary.

Chapter 9 example: Group repliCation Setup and adminiStration

380

Listing 9-3. Starting the Primary Instance

$ mysqld --defaults-file=primary.cnf

MacBook-Pro-2:gr cbell$ 2019-05-05T21:00:42.388965Z 0 [System] [MY-010116]

[Server] /usr/local/mysql-8.0.16-macos10.14-x86_64/bin/mysqld (mysqld

8.0.16) starting as process 935

2019-05-05T21:00:42.392064Z 0 [Warning] [MY-010159] [Server] Setting lower_

case_table_names=2 because file system for /Users/cbell/gr/data/primary/ is

case insensitive

2019-05-05T21:00:42.662123Z 0 [Warning] [MY-010068] [Server] CA certificate

ca.pem is self signed.

2019-05-05T21:00:42.676713Z 0 [System] [MY-010931] [Server] /usr/local/

mysql-8.0.16-macos10.14-x86_64/bin/mysqld: ready for connections. Version:

'8.0.16' socket: '/Users/cbell/rpl/primary.sock' port: 24801 MySQL

Community Server - GPL.

2019-05-05T21:00:42.895674Z 0 [System] [MY-011323] [Server] X Plugin ready

for connections. Socket: '/Users/cbell/rpl/primaryx.sock' bind-address:

'::' port: 33061

Once again, if you plan to use a single terminal, it is recommended to redirect the

output to a file and use the option to start the application in another process (e.g., the &

symbol).

If you are following along with this tutorial and haven’t done so already, go ahead

and start the secondaries. Use the command shown previously with the redirect to a file.

Once all the server instances are started, we can move on to the next step.

INSTALLING THE GROUP REPLICATION PLUGIN

if you do not want to include the Group replication plugin in the configuration file, you can

install it manually with the INSTALL PLUGIN command. once done, you do not have to

run the command again – the server will reboot with the plugin enabled. the command

requires the name of the plugin along with the name of the dynamically loadable executable.

in this case, the name of the plugin is group_replication and the name of the loadable

executable is group_replication.so. thus, the command we would use is INSTALL

PLUGIN group_replication SONAME 'group_replication.so'.

Chapter 9 example: Group repliCation Setup and adminiStration

381

notice the .so in the file name. this is the extension you would use for *nix platforms. on

Windows, the file name extension is .dll. You can check the status of the plugins with the

SHOW PLUGINS command.

You must run the command on all instances. once the plugin is loaded on all instances, we

can proceed to create the replication user on all the instances.

 Create the Replication User Account
After the MySQL instances are started, you must create a user to be used by the servers

to connect to each other. Recall, in Group Replication, the servers all “talk” to each other.

Fortunately, the commands are the same as what we used in MySQL Replication. We

need to create this user on all the server instances. The following shows the commands

needed to create the replication user. Execute these commands on all your servers.

SET SQL_LOG_BIN=0;

CREATE USER rpl_user@'%' IDENTIFIED BY 'rpl_pass';

GRANT REPLICATION SLAVE ON ∗.∗ TO rpl_user@'%';
FLUSH PRIVILEGES;

SET SQL_LOG_BIN=1;

Notice the use of % in the hostname. This was done to ensure the replication user can

connect from any server. You would not normally do this for a production environment,

but for a tutorial or development testing, it makes things a bit easier.

Recall, these commands tell the server to temporarily disable logging of changes to

the binary log. We do this whenever we do not want to replicate the commands on other

machines in the topology. Specifically, maintenance and administrative commands

like creating users should not be replicated. Turning off the binary log is a great way

to ensure you do not accidently issue transactions that cannot be executed on other

machines.

The best way to execute these commands is to save them to a file named create_

rpl_user.sql and use the source command of the mysql client to read the commands

from the file and execute them. Thus, you can quickly create the replication user on all

instances with the following commands.

Chapter 9 example: Group repliCation Setup and adminiStration

382

$ mysqlsh --uri root@localhost:24801 --sql -f "create_rpl_user.sql"

$ mysqlsh --uri root@localhost:24802 --sql -f "create_rpl_user.sql"

$ mysqlsh --uri root@localhost:24803 --sql -f "create_rpl_user.sql"

$ mysqlsh --uri root@localhost:24804 --sql -f "create_rpl_user.sql"

Now we are ready to start Group Replication on the primary.

 Start Group Replication on the Primary
The next step is start Group Replication on the primary for the first time. Recall from

our discussion on the Group Replication variables, the variable group_replication_

bootstrap_group is normally set to OFF except on the first start of the group. Since the

group has never been started, we must do so on the primary.

Fortunately, the variable group_replication_bootstrap_group is dynamic, and

we can turn it on and off on-the-fly. Thus, we can run the following commands on the

primary to start Group Replication for the first time.

$ mysqlsh --uri root@localhost:24801 --sql

...

SET GLOBAL group_replication_bootstrap_group=ON;

START GROUP_REPLICATION;

SET GLOBAL group_replication_bootstrap_group=OFF;

If you recall, we set group_replication_bootstrap_group to OFF in the primary

configuration file. This was so that if we restart the primary, the setting will be correct.

You can set it ON if you like, but you would have to change it in the configuration file

before you restart the primary. Setting it to OFF is much safer and less work.

If you are following along in this tutorial, go ahead and run those commands on the

primary now. Once done, you are now ready to connect the secondaries to the primary.

 Connect the Secondaries to the Primary
The next step is to connect the secondaries to the primary. We use the same CHANGE

MASTER command as we saw in the last tutorial, however, we only need the replication

user and password. We tell the server to connect to the special replication channel

named group_replication_recovery. The following shows the command used for each

of the secondaries to connect them to the primary.

Chapter 9 example: Group repliCation Setup and adminiStration

383

CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='rpl_pass' FOR

CHANNEL 'group_replication_recovery';

Notice we need less information than even the GTID-enabled replication. Cool! You

must run this command on all the secondaries. It may be easier to save this to a file and

execute it using the mysql client like we did for the replication user. For example, save

this to a file named change_master.sql and execute it as the following.

$ mysqlsh --uri root@localhost:24802 --sql -f "change_master.sql"

$ mysqlsh --uri root@localhost:24803 --sql -f "change_master.sql"

$ mysqlsh --uri root@localhost:24804 --sql -f "change_master.sql"

Now that we have our secondaries configured to connect primary, we must finish the

process by starting Group Replication.

 Start Group Replication on the Secondaries
The next step is to start Group Replication on the secondaries. Rather than use the START

SLAVE command like MySQL Replication, Group Replication uses the command START

GROUP_REPLICATION. Run this on each of the secondaries as the following.

$ mysqlsh --uri root@localhost:24802 --sql -e "START GROUP_REPLICATION"

$ mysqlsh --uri root@localhost:24803 --sql -e "START GROUP_REPLICATION"

$ mysqlsh --uri root@localhost:24804 --sql -e "START GROUP_REPLICATION"

The START GROUP_REPLICATION command normally does not report any errors, and

it may take a bit longer to return. This is because there are a lot of things going on in the

background when the secondary connects to and begins negotiating with the primary.

However, unlike MySQL Replication, you cannot use SHOW SLAVE STATUS to check the

status. In fact, issuing that command will get no results. So what do you do?

 Verify Group Replication Status
Group Replication has redesigned how we monitor replication services. Group

Replication adds several views to the performance_schema database that you can use to

monitor Group Replication. There is a lot of information there and if you are interested,

you can see https://dev.mysql.com/doc/refman/8.0/en/group-replication-

monitoring.html to learn more about the views and what they contain.

Chapter 9 example: Group repliCation Setup and adminiStration

https://dev.mysql.com/doc/refman/8.0/en/group-replication-monitoring.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-monitoring.html

384

Checking Group Replication status requires issuing queries against the

performance_schema views. The replication_group_members view (table) is used for

monitoring the status of the different server instances that are tracked in the current

view or in other words are part of the group and as such are tracked by the membership

service. The information is shared between all the server instances that are members of

the replication group, so information on all the group members can be queried from any

member. Listing 9-4 shows the command in action. You can save the commands in a file

named check_gr.sql for later use.

Listing 9-4. Checking Group Replication Status

$ mysqlsh --uri root@localhost:24802 --sql

MySQL Shell 8.0.16

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.

Creating a session to 'root@localhost:24802'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 28

Server version: 8.0.16 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

> SHOW SLAVE STATUS\G

Empty set (0.0003 sec)

> SELECT ∗ FROM performance_schema.replication_group_members \G
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: e0b8aeca-6f7e-11e9-bd22-533c3552fe03

 MEMBER_HOST: MacBook-Pro-2.local

 MEMBER_PORT: 24801

 MEMBER_STATE: ONLINE

 MEMBER_ROLE: PRIMARY

MEMBER_VERSION: 8.0.16

Chapter 9 example: Group repliCation Setup and adminiStration

385

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: e32085ac-6f7e-11e9-a081-cc47fe26c35d

 MEMBER_HOST: localhost

 MEMBER_PORT: 24901

 MEMBER_STATE: ONLINE

 MEMBER_ROLE: SECONDARY

MEMBER_VERSION: 8.0.16

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 3. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: e5818c4c-6f7e-11e9-a41a-c85d7844eaca

 MEMBER_HOST: localhost

 MEMBER_PORT: 24902

 MEMBER_STATE: ONLINE

 MEMBER_ROLE: SECONDARY

MEMBER_VERSION: 8.0.16

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 4. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: e7f23058-6f7e-11e9-a7c3-c576fe9a0754

 MEMBER_HOST: localhost

 MEMBER_PORT: 24903

 MEMBER_STATE: RECOVERING

 MEMBER_ROLE: SECONDARY

MEMBER_VERSION: 8.0.16

4 rows in set (0.0013 sec)

Notice we run the SHOW SLAVE STATUS command but get nothing in return. Drat.

However, when we query the view, we get a short list of information, including the

current state of each member of the group. Interestingly, you can run this query on any

member in the group. This shows how Group Replication propagates metadata to all the

members in the group.

You can also narrow the output to get a more pleasing view including only the

member host, port, state, and role shown here.

> SELECT MEMBER_HOST, MEMBER_PORT, MEMBER_STATE, MEMBER_ROLE FROM

performance_schema.replication_group_members;

Chapter 9 example: Group repliCation Setup and adminiStration

386

+---------------------+-------------+--------------+-------------+

| MEMBER_HOST | MEMBER_PORT | MEMBER_STATE | MEMBER_ROLE |

+---------------------+-------------+--------------+-------------+

| MacBook-Pro-2.local | 24801 | ONLINE | PRIMARY |

| localhost | 24901 | ONLINE | SECONDARY |

| localhost | 24902 | ONLINE | SECONDARY |

| localhost | 24903 | ONLINE | SECONDARY |

+---------------------+-------------+--------------+-------------+

4 rows in set (0.0006 sec)

If you want to just locate the primary, you can use the following query on any of the

group members. When you execute this query on any one of the members in the group,

you will see the UUID of the primary as the following.

> SELECT member_id, member_host, member_port FROM performance_schema.global_

status JOIN performance_schema.replication_group_members ON VARIABLE_

VALUE=member_id WHERE VARIABLE_NAME='group_replication_primary_member';

+--------------------------------------+---------------------+-------------+

| member_id | member_host | member_port |

+--------------------------------------+---------------------+-------------+

| e0b8aeca-6f7e-11e9-bd22-533c3552fe03 | MacBook-Pro-2.local | 24801 |

+--------------------------------------+---------------------+-------------+

1 row in set (0.0014 sec)

Now that we have Group Replication running, let’s create some data. We will use

the same sample data as we did in the last tutorial. However, this time, we will execute

the queries on one of the secondaries. What do you expect to happen? If you’re thinking

in terms of MySQL Replication, you may expect the data to appear only on one of the

secondaries. Let’s see what happens. The following shows executing the data queries on

one of the secondaries.

> CREATE DATABASE test;

ERROR: 1290 (HY000): The MySQL server is running with the --super-read-only

option so it cannot execute this statement

Why did we get this error? It turns out, each secondary is started with super-read-

only, which means that no one can submit writes, even those with the “super” privilege.

So the common issue of writes sent to a slave (from MySQL Replication) is resolved.

Chapter 9 example: Group repliCation Setup and adminiStration

387

Huzzah! Use of super-read-only also indicates we are running Group Replication in

single-primary mode (which is the default). We will see other modes when we explore

the nuances of InnoDB Cluster in later chapters.

Returning to our test of creating some data, let’s run the same commands on the

primary. The following shows the expected results.

$ mysqlsh --uri root@localhost:24801 --sql

...

> CREATE DATABASE test;

Query OK, 1 row affected (0.0042 sec)

> USE test;

Query OK, 0 rows affected (0.0003 sec)

> CREATE TABLE test.t1 (id INT PRIMARY KEY, message TEXT NOT NULL);

Query OK, 0 rows affected (0.0093 sec)

> INSERT INTO test.t1 VALUES (1, 'Chuck');

Query OK, 1 row affected (0.0103 sec)

Here, we see the data was created. Now, to check the secondary. The following

shows the results of running a query on the secondary. As you can see, the data has been

replicated.

$ mysqlsh --uri root@localhost:24803 --sql

...

> SELECT ∗ FROM test.t1;
+----+---------+

| id | message |

+----+---------+

| 1 | Chuck |

+----+---------+

1 row in set (0.0006 sec)

This concludes the short tutorial on setting up MySQL Group Replication. This

section presented a brief look at MySQL Group Replication in its barest, simplest terms.

Now, let’s look at how we can script an example setup of MySQL Group Replication.

However, there is one more step.

Chapter 9 example: Group repliCation Setup and adminiStration

388

 Shutting Down Group Replication
If you try this tutorial on your own machine, remember to shutdown your instances in

a precise order. On each secondary, you first want to stop Group Replication with the

following command.

$ mysqlsh --uri root@localhost:24802 --sql -e "STOP GROUP_REPLICATION"

Once all slaves are stopped, you can shutdown the slaves first then the master with

the following commands. Notice we used the old protocol ports (13001, 13002) for

the master and slaves. This is because the X Protocol does not support the shutdown

command. If you encounter an error when using the MySQL X ports, try the old protocol

and rerun the command.

$ mysqlsh --uri root@localhost:24804 --sql -e "SHUTDOWN"

$ mysqlsh --uri root@localhost:24803 --sql -e "SHUTDOWN"

$ mysqlsh --uri root@localhost:24802 --sql -e "SHUTDOWN"

$ mysqlsh --uri root@localhost:24801 --sql -e "SHUTDOWN"

 Demonstration of Failover
Now that we have a working Group Replication setup, let’s see how automatic failover

works. If you haven’t run the preceding tutorial and want to follow along, be sure to run

the preceding steps first.

Automatic failover is a built-in feature of Group Replication. The communication

mechanism ensures that the primary (in a single-primary configuration) is monitored

for activity, and when it is no longer available or something serious has gone wrong, the

group can decide to terminate the primary connection and elect a new primary.

Let’s see how this works. Recall from the preceding tutorial, we have the initial primary

running on port 24801. We can simulate a failure by killing the MySQL process for that

server. Since we’re running on Linux, we can determine the process id by inspecting the

process id file, which MySQL creates with the name of the machine and a file extension of

.pid in the data directory. For example, the file for the primary shown in the tutorial is in

data/primary/oracle-pc.pid. The following demonstrates how to find the process id and

stop it. Note that you may need super user privileges to kill the process.

$ more ./data/primary/oracle-pc.pid

18019

$ sudo kill -9 18019

Chapter 9 example: Group repliCation Setup and adminiStration

389

Tip on Windows, you can use the task manager to kill the process.

Now that the primary is down, we can view the health of the group with the

preceding queries. Recall, we use the check_gr.sql file that contains the queries (see

Listing 9-4). Listing 9-5 shows the output from the queries.

Listing 9-5. Checking Group Health After Primary Goes Down

$ mysqlsh --uri root@localhost:24802 --sql -e "source check_gr.sql"

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: 2854aecd-4330-11e8-abb6-d4258b76e981

 MEMBER_HOST: oracle-pc

 MEMBER_PORT: 24802

 MEMBER_STATE: ONLINE

 MEMBER_ROLE: PRIMARY

MEMBER_VERSION: 8.0.16

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: 2ecd9f66-4330-11e8-90fe-d4258b76e981

 MEMBER_HOST: oracle-pc

 MEMBER_PORT: 24803

 MEMBER_STATE: ONLINE

 MEMBER_ROLE: SECONDARY

MEMBER_VERSION: 8.0.16

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 3. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: 3525b7be-4330-11e8-80b1-d4258b76e981

 MEMBER_HOST: oracle-pc

 MEMBER_PORT: 24804

 MEMBER_STATE: ONLINE

 MEMBER_ROLE: SECONDARY

MEMBER_VERSION: 8.0.16

Chapter 9 example: Group repliCation Setup and adminiStration

390

+--------------------------------------+-------------+-------------+

| member_id | member_host | member_port |

+--------------------------------------+-------------+-------------+

| 2854aecd-4330-11e8-abb6-d4258b76e981 | oracle-pc | 24802 |

+--------------------------------------+-------------+-------------+

Notice we see the group has automatically chosen a new primary (on port 24802)

and there are now only three servers in the group. So there is no loss of write capability.

However, recall from an earlier discussion that the group can tolerate only so many

failures and once that limit is reached, the group can no longer successfully failover, and

in those cases, the group may not be fault tolerant. Listing 9-6 shows the state of this

same group once the second and third primary machines have been stopped. Notice the

state of the last primary is unknown.

Listing 9-6. State of the Group When No More Primary Servers Remain

$ mysqlsh --uri root@localhost:24804 --sql -e "source check_gr.sql"

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: 2ecd9f66-4330-11e8-90fe-d4258b76e981

 MEMBER_HOST: oracle-pc

 MEMBER_PORT: 24803

 MEMBER_STATE: UNREACHABLE

 MEMBER_ROLE: PRIMARY

MEMBER_VERSION: 8.0.16

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 2. row ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 CHANNEL_NAME: group_replication_applier

 MEMBER_ID: 3525b7be-4330-11e8-80b1-d4258b76e981

 MEMBER_HOST: oracle-pc

 MEMBER_PORT: 24804

 MEMBER_STATE: ONLINE

 MEMBER_ROLE: SECONDARY

MEMBER_VERSION: 8.0.16

Chapter 9 example: Group repliCation Setup and adminiStration

391

+--------------------------------------+-------------+-------------+

| member_id | member_host | member_port |

+--------------------------------------+-------------+-------------+

| 2ecd9f66-4330-11e8-90fe-d4258b76e981 | oracle-pc | 24803 |

+--------------------------------------+-------------+-------------+

Here, we can see one of the secondaries has indeed taken over the primary role and

the group has tolerated the failure. Note, however, that since we started with four servers,

we can only tolerate one server failure. However, we can add new secondaries at any

time to improve the number of faults the group can tolerate. For example, we can repair

the failed secondary and add it back to the group.

 Summary
There is no denying that Group Replication is a leap forward in MySQL high availability.

However, as we have seen in the tutorial in this chapter, it is not simple to set up. While

those familiar with working with MySQL Replication will see the process similar but

with a few extra steps and slightly different commands, with the most changes in the

configuration file, those new to MySQL and high availability may feel the learning curve

is quite steep.

In this chapter, we took a ground floor view of Group Replication and experienced

what it takes to set it up and maintain a group initially and during a failure or two. If you

are among those thinking there must be a better way, there is and we are almost there!

In the next chapter, we will look at the latest and best high availability feature in

MySQL – InnoDB Cluster and manage it with MySQL Shell.

Chapter 9 example: Group repliCation Setup and adminiStration

393
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_10

CHAPTER 10

Using the Shell
with InnoDB Cluster
Thus far, we have learned what high availability is and how to set up a basic high

availability installation with MySQL Replication. We also learned how to configure

Group Replication for even better high availability. However, we learned along the

way that the setup and commands to make all this work are specific and require more

manual setup and configuration steps than most would want. Fortunately, Oracle has

listened to their customers and has been busy working on MySQL high availability by

dramatically improving not only the features and capabilities but also the ease of use

(or administration). This is where InnoDB Cluster really shines.

InnoDB Cluster represents a huge leap forward in high availability for MySQL. Best

of all, it comes standard in all releases of MySQL 8.0. In this chapter, we will discover

what makes InnoDB Cluster such an important feature for enterprises large and small.

As you will see, InnoDB Cluster is made up of several components that all work together

well and achieve the highest form of high availability for MySQL right out of the box!

 Overview
One of the most exciting new features in MySQL 8.0 is the InnoDB Cluster. It is designed

to make high availability easier to set up, use, and maintain. InnoDB Cluster works with

the X DevAPI via MySQL Shell and the AdminAPI, Group Replication, and the MySQL

Router to take high availability and read scalability to a new level.

That is, it combines new features in the InnoDB storage engine (internals of MySQL)

for cloning data with Group Replication and the MySQL Router to provide a new way to

set up and manage high availability at the application layer. The following list describes

the components that make up InnoDB Cluster. We have seen most of these before, and

394

we will learn more about these in the next sections and details of how to use each in the

next chapter.

• Group Replication: A new form of replication that builds upon

MySQL Replication adding an active communication protocol (group

membership) that permits higher levels of availability including fault

tolerance with automatic failover.

• MySQL Shell: The new MySQL client and programming environment

for JavaScript and Python and, as we shall see, the administration

console for InnoDB Cluster.

• X DevAPI: A special application programming interface for

applications to interact with data programmatically.

• AdminAPI: Is a special API available via the MySQL Shell for

configuring and interacting with InnoDB Cluster. Thus, the

AdminAPI has features designed to make working with InnoDB

Cluster easier.

• MySQL Router: Lightweight middleware that provides transparent

routing between your application and back-end MySQL Servers. We

will learn more about MySQL Router in a later section.

You may be wondering how all these products and features can work together

seamlessly. As you will see, working with InnoDB Cluster through MySQL Shell hides

many of the details (and tedium) of working with the components individually. For

example, we no longer must write specialized configuration files for replication.

Let’s look at a conceptual configuration to get a sense of how the components

interact. In this use case, a Cluster of three servers is set up with a single primary, which

is the target for all writes (updates). Multiple secondary servers maintain replicas of

the data, which can be read from and thus enable reading data without burdening the

primary, thus enabling read-out scalability (but all servers participate in consensus and

coordination).

The incorporation of Group Replication means the Cluster is fault tolerant and

group membership is managed automatically. MySQL Router caches the metadata of the

InnoDB Cluster and performs high availability routing to the MySQL Server instances

making it easier to write applications to interact with the Cluster. Figure 10-1 shows how

each of these components are arranged conceptually to form InnoDB Cluster.

Chapter 10 Using the shell with innoDB ClUster

395

You may be wondering what makes this different from a read-out scalability setup

with standard replication. At a high level, it may seem that the solutions are solving the

same use case. However, with InnoDB Cluster, you can create, deploy, and configure

servers in your Cluster from MySQL Shell. That is, you can use the X AdminAPI

(also called the AdminAPI) via the shell to create and administer an InnoDB Cluster

programmatically using either JavaScript or Python.

Furthermore, you can deploy InnoDB Cluster in a sandbox through the MySQL

Shell. More specifically, you can deploy a test Cluster running on your local computer

and experiment with it prior to deploying it in production. Fortunately, all the steps are

Figure 10-1. Typical Configuration of InnoDB Cluster (courtesy of Oracle)

Chapter 10 Using the shell with innoDB ClUster

396

the same with the only addition of the keyword sandbox in some of the function names

and a few extra functions for creating the local MySQL instances. We’ll see an in-depth

coverage of running InnoDB Cluster in a sandbox in Chapter 11.

WHAT’S A SANDBOX?

a sandbox is a term used to describe a situation where data and metadata (configuration

files, etc.) are organized in such a way that the data and metadata does not affect (replace)

existing data or installations of a product. in the case of the MysQl adminapi, the sandbox it

implements ensures any configuration of the servers in an innoDB Cluster will not affect any

existing installation of MysQl on the machine.

Deploying InnoDB Cluster in production would require setting up the servers

individually then connecting to them from the shell and preparing them. Again, this

step is the same as in the sandbox deployment. The only difference is you’re using an

existing, running MySQL server rather than another instance running on your local

machine.

Now that we have an overview of what InnoDB Cluster is, let’s look at the core

components of InnoDB Cluster beginning with the InnoDB storage engine.

WHAT IS A STORAGE ENGINE?

a storage engine is a mechanism to store data in various ways. For example, there is a storage

engine that allows you to interact with comma-separated values (text) files (CsV), another

that is optimized for writing log files (archive), one that stores data in memory only (Memory),

and even one that doesn’t store anything at all (Blackhole). along with innoDB, the MysQl

server ships with several storage engines. the following sections describe some of the more

commonly used alternative storage engines. note that some storage engines have been

dropped from support over the evolution of MysQl, including the Berkeley Database (BDB)

storage engine.

Chapter 10 Using the shell with innoDB ClUster

397

 InnoDB Storage Engine
The core component of InnoDB Cluster is the InnoDB storage engine. Since MySQL 5.5,

InnoDB has been the flagship storage engine (and the default engine) for MySQL. Oracle

has slowly evolved away from the multiple storage engine model focusing on what a

modern database server should do – support transactional storage mechanisms. InnoDB

is the answer to that requirement and much more.

InnoDB is a general-purpose storage engine that balances high reliability and high

performance. The decision to use the InnoDB storage engine was made after several

attempts to build a robust, high-performance storage engine for MySQL. Given the

maturity and sophistication of InnoDB, it made much more sense to use what already

existed. Plus, Oracle owned both MySQL and InnoDB.

The InnoDB storage engine is used when you need to use transactions. InnoDB

supports traditional ACID transactions and foreign key constraints. All indexes in

InnoDB are B-trees where the index records are stored in the leaf pages of the tree.

InnoDB is the storage engine of choice for high reliability and transaction processing

environments.

ACID stands for atomicity, consistency, isolation, and durability. Perhaps one of

the most important concepts in database theory, it defines the behavior that database

systems must exhibit to be considered reliable for transaction processing. The following

briefly describes each aspect.

• Atomicity means that the database must allow modifications of data

on an “all or nothing” basis for transactions that contain multiple

commands. That is, each transaction is atomic. If a command fails,

the entire transaction fails, and all changes up to that point in the

transaction are discarded. This is especially important for systems

that operate in highly transactional environments, such as the

financial market.

• Consistency means that only valid data will be stored in the database.

That is, if a command in a transaction violates one of the consistency

rules, the entire transaction is discarded and the data is returned to

the state they were in before the transaction began. Conversely, if a

transaction completes successfully, it will alter the data in a manner

that obeys the database consistency rules.

Chapter 10 Using the shell with innoDB ClUster

398

• Isolation means that multiple transactions executing at the same time

will not interfere with one another. This is where the true challenge

of concurrency is most evident. Database systems must handle

situations in which transactions (alter, delete, etc.) cannot violate

the data being used in another transaction. There are many ways

to handle this. Most systems use a mechanism called locking that

keeps the data from being used by another transaction until the first

one is done. Although the isolation property does not dictate which

transaction is executed first, it does ensure they will not interfere with

one another.

• Durability means that no transaction will result in lost data nor will

any data created or altered during the transaction be lost. Durability

is usually provided by robust backup-and-restore maintenance

functions. Some database systems use logging to ensure that any

uncommitted data can be recovered on restart.

Perhaps the most important feature that sets InnoDB apart from the earlier storage

engines in MySQL is its configurability. While some of the early storage engines were

configurable, none were at the scale that exists for configuring InnoDB. There are dozens

of parameters you can use to tune InnoDB to meet your unique storage needs.

Caution Use care when tinkering with innoDB parameters. it is possible to
degrade your system to the point of hurting performance. like any tuning exercise,
always consult the documentation (and experts) first, then plan to target specific
parameters. Be sure to tune one parameter at a time, and test, confirm or revert
before moving on.

While InnoDB works very well out of the box with well-chosen defaults and it is likely

to not require much tuning for most, those that need to tune MySQL will find all they

need and more to get their database systems running at peak efficiency.

See https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html for

more information about the InnoDB Storage engine including numerous configuration

and tuning options.

Chapter 10 Using the shell with innoDB ClUster

https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html

399

Tip another excellent source for tips and advice for configuring MysQl and
innoDB is the book High Performance MySQL: Optimization, Backups, Replication
by schwartz, Zaitsev, tkachenko (o’reilly, 2012).

To better understand how we arrived at InnoDB Cluster, let’s take a short tour of the

other storage engines available in MySQL 8.0 and earlier releases.

Tip if you want to see which storage engines are available for use on your
MysQl server, you can use the SHOW ENGINES command. see https://dev.
mysql.com/doc/refman/8.0/en/create-table.html to learn more how to
specify a storage engine with the CREATE TABLE command.

 Archive

The archive storage engine is designed for storing large amounts of data in a compressed

format. The archive storage mechanism is best used for storing and retrieving large

amounts of seldom-accessed archival or historical data. Such data include security-

access- data logs. While not something that you would want to search or even use daily,

it is something a database professional who is concerned about security would want to

have should a security incident occur. No indexes are provided for the archive storage

mechanism, and the only access method is via a table scan. Thus, the archive storage

engine should not be used for normal database storage and retrieval.

 Blackhole

The blackhole storage engine, an interesting feature with surprising utility, is designed

to permit the system to write data, but the data are never saved. If binary logging is

enabled, however, the SQL statements are written to the logs. This permits database

professionals to temporarily disable data ingestion in the database by switching the table

type. This can be handy in situations in which you want to test an application to ensure

it is writing data that you don’t want to store, such as when creating a relay slave for

filtering replication.

Chapter 10 Using the shell with innoDB ClUster

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

400

 CSV

The CSV storage engine is designed to create, read, and write comma-separated value

(CSV) files as tables. While the CSV storage engine does not copy the data into another

format, the sheet layout, or metadata, is stored along with the filename specified on

the server in the database folder. This permits database professionals to rapidly export

structured business data that is stored in spreadsheets. The CSV storage engine does

not provide any indexing mechanisms, making it impractical for large amounts of data.

It is intended to be used as a link between storing data and visualizing it in spreadsheet

applications.

 Federated

The federated storage engine is designed to create a single table reference from multiple

database systems. The federated storage engine therefore works like the merge storage

engine, but it allows you to link data (tables) together across database servers. This

mechanism is similar in purpose to the linked data tables available in other database

systems. The federated storage mechanism is best used in distributed or data mart

environments.

The most interesting aspect of the federated storage engine is that it does not move

data, nor does it require the remote tables to be the same storage engine. This illustrates

the true power of the pluggable-storage-engine layer. Data are translated during storage

and retrieval.

 Memory

The memory storage engine (sometimes called HEAP tables) is an in-memory table that

uses a hashing mechanism for fast retrieval of frequently used data. Thus, these tables are

much faster than those that are stored and referenced from disk. They are accessed in the

same manner as the other storage engines, but the data is stored in-memory and is valid

only during the MySQL session. The data is flushed and deleted on shutdown (or a crash).

Memory storage engines are typically used in situations in which static data are

accessed frequently and rarely ever altered. Examples of such situations include zip

code, state, county, category, and other lookup tables. HEAP tables can also be used in

databases that utilize snapshot techniques for distributed or historical data access.

Chapter 10 Using the shell with innoDB ClUster

401

 MyISAM

The MyISAM storage engine was originally the default in MySQL and was used by most

LAMP stacks, data warehousing, e-commerce, and enterprise applications. MyISAM files

are an extension of ISAM built with additional optimizations, such as advanced caching

and indexing mechanisms. These tables are built using compression features and index

optimizations for speed.

Additionally, the MyISAM storage engine provides for concurrent operations by

providing table-level locking. The MyISAM storage mechanism offers reliable storage

for a wide variety of applications while providing fast retrieval of data. MyISAM is the

storage engine of choice when read performance is a concern.

 Merge (MyISAM)

The merge storage engine (sometimes named MRG_MYISAM) is built using a set of

MyISAM tables with the same structure (tuple layout or schema) that can be referenced

as a single table. Thus, the tables are partitioned by the location of the individual tables,

but no additional partitioning mechanisms are used. All tables must reside on the same

machine (accessed by the same server). Data is accessed using singular operations or

statements, such as SELECT, UPDATE, INSERT, and DELETE. Fortunately, when a DROP is

issued on a merge table, only the merge specification is removed. The original tables are

not altered.

The biggest benefit of this table type is speed. It is possible to split a large table

into several smaller tables on different disks, combine them using a merge-table

specification, and access them simultaneously. Searches and sorts will execute more

quickly because there is less data in each table to manipulate. For example, if you divide

the data by a predicate, you can search only those specific portions that contain the

category you are searching for. Similarly, repairs on tables are more efficient because

it is faster and easier to repair several smaller individual files than a single large table.

Presumably, most errors will be localized to an area within one or two of the files

and thus will not require rebuilding and repair of all the data. Unfortunately, this

configuration has several disadvantages:

• You can use only identical MyISAM tables, or schemas, to form a single

merge table. This limits the application of the merge storage engine to

MyISAM tables. If the merge storage engine were to accept any storage

engine, the merge storage engine would be more versatile.

Chapter 10 Using the shell with innoDB ClUster

402

• The replace operation is not permitted.

• Indexed access has been shown to be less efficient than for a single

table.

Merge storage mechanisms are best used in very large database (VLDB) applications,

such as data warehousing where data resides in more than one table in one or more

databases.

 Performance Schema

The performance schema storage engine is a special reporting engine for use in

monitoring MySQL Server execution at a low level. While it is shown in the list of

available storage engines, it is not an available option for storing data.

Now that we understand more about what storage engines are and the InnoDB

storage engine in particular, let’s look at the other components of InnoDB Cluster.

 Group Replication

If you have used MySQL replication, you are no doubt very familiar with how to leverage

it when building high availability solutions. Indeed, it is likely you have discovered a

host of ways to improve availability in your applications with MySQL Replication. And, if

you’ve been following along in the book, you’ve also learned about Group Replication.

Group Replication was released as GA in December 2016 (starting with the 5.7.17

release) and is bundled with the MySQL server in the form of a plugin. Since Group

Replication is implemented as a server plugin, you can install the plugin and start using

Group Replication without having to reinstall your server, which makes experimenting

with new functionality easy.

Recall that Group Replication also makes synchronous replication (among the nodes

belonging to the same group) a reality, while the existing MySQL Replication feature is

asynchronous (or at most semi-synchronous). Therefore, stronger data consistency is

provided (data available on all members with no delay) at all times.

Another important distinction between Group Replication and standard replication

we learned is that all the servers in the group can participate in updating the data with

conflicts resolved automatically. However, you can configure Group Replication to

allow updates by only one server (called the primary) with the other servers acting as

secondary servers or as a backup (for failover).

Chapter 10 Using the shell with innoDB ClUster

403

It should come as no surprise then that Group Replication is a core component of

InnoDB Cluster. We get all the benefits of Group Replication without the complexity of

configuring and maintaining the group.

 MySQL Shell
Recall the MySQL Shell is designed to use the new X Protocol for communicating with

the server via the X Plugin, which allows the shell to communicate with the MySQL

server and its components exposing new APIs for working with data and administration.

We learned about the X DevAPI in Chapters 6 and 7. The administration API is called the

X AdminAPI and allows the shell to communicate with InnoDB Cluster for setup and

administration.

 X DevAPI
Recall the X DevAPI is a library of classes and methods that implement a new NoSQL

interface for MySQL. Specifically, the X DevAPI is designed to allow easy interaction with

JSON documents and relational data. The X DevAPI has classes devoted to supporting

both concepts allowing developers to use either (or both) in their applications. The X

DevAPI allows us to work with MySQL using JavaScript or Python and, coupled with the

AdminAPI, provides a powerful mechanism for managing InnoDB Cluster.

Tip see https://dev.mysql.com/doc/x-devapi-userguide/en/ for
more information about the X Devapi.

 AdminAPI
The Admin Application Programming Interface, hence, AdminAPI, is a library of

classes and methods that implement a new management interface for InnoDB Cluster.

Specifically, the AdminAPI is designed to allow easy interaction with InnoDB Cluster

using a scripting language from the MySQL Shell. Thus, MySQL Shell includes the

AdminAPI, which enables you to deploy, configure, and administer InnoDB Cluster.

The AdminAPI contains two classes for accessing the InnoDB Cluster functionality as

follows.

Chapter 10 Using the shell with innoDB ClUster

https://dev.mysql.com/doc/x-devapi-userguide/en/

404

• dba: Enables you to administer InnoDB Clusters using the AdminAPI.

The dba class enables you to administer the Cluster such as creating

a new Cluster, working with a sandbox configuration (a way to

experiment with InnoDB Cluster using several MySQL instances on

the same machine, checking the status of instances and the Cluster).

• cluster: Management handle to an InnoDB Cluster. The cluster

class enables you to work with the cluster to add instances, remove

instances, get the status (health) of the cluster, and more.

We will see more of the AdminAPI in Chapter 11 as we explore how to set up and

manage InnoDB Cluster.

Tip see https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/
group___admin_a_p_i.html to learn more about the adminapi.

 MySQL Router
The MySQL Router is a relatively new component in MySQL. It was originally built

for the now obsolete MySQL Fabric product and has been significantly improved and

reworked for use with InnoDB Cluster. In fact, it is a vital part of InnoDB Cluster.

The MySQL Router is a lightweight middleware component providing transparent

routing between your application and MySQL Servers. While it can be used for a wide

variety of use cases, its primary purpose is to improve high availability and scalability by

effectively routing database traffic to appropriate MySQL Servers.

Traditionally, for client applications to handle failover, they need to be aware of the

InnoDB Cluster topology and know which MySQL instance is the primary (write) server.

While it is possible for applications to implement that logic, MySQL Router can provide

and handle this functionality for you.

Moreover, when used with InnoDB Cluster, MySQL Router acts as a proxy to hide

the multiple MySQL instances on your network and map the data requests to one of

the instances in the cluster. If there are enough online replicas, and communication

between the components is intact, applications will be able to (re)connect to one of

them. The MySQL Router also makes it possible for this to happen by simply repointing

applications to connect to Router instead of directly to MySQL.

Chapter 10 Using the shell with innoDB ClUster

https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/group___admin_a_p_i.html
https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/group___admin_a_p_i.html

405

Tip see https://dev.mysql.com/doc/mysql-router/8.0/en/ for more
information about the MysQl router.

INNODB CLUSTER AND NDB CLUSTER: WHAT IS THE DIFFERENCE?

if you peruse the MysQl web site, you will find another product with “cluster” in the name. it

is enticingly named nDB Cluster. nDB Cluster is a separate product from the MysQl server

employing a technology that enables clustering of in-memory databases in a shared-nothing

system. the shared-nothing architecture enables the system to work with inexpensive

hardware, and with a minimum of specific requirements for hardware or software.

nDB Cluster is designed not to have any single point of failure. in a shared-nothing system,

each component is expected to have its own memory and disk, and the use of shared storage

mechanisms such as network shares, network file systems, and sans is not recommended

or supported. See https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-

compared.html to learn more about nDB Cluster and how it relates to innoDB.

to learn more about nDB Cluster, see the excellent book by Krogh and okuno entitled,

Pro MySQL NDB Cluster (apress 2018). this book covers every aspect of nDB Cluster and is a

must for anyone interested in deploying and managing nDB Cluster.

 Using InnoDB with Applications
You may be wondering how InnoDB Cluster could be beneficial in your environment (or

even how it is used). That is, we know the benefits of InnoDB Cluster is better form of

high availability, but how does MySQL Router and our applications fit into the picture?

When used with MySQL InnoDB Cluster (through the underlying Group Replication)

to replicate databases across multiple servers while performing automatic failover in the

event of a server failure, the router acts as a proxy to hide the multiple MySQL instances

on your network and map the data requests to one of the cluster instances.

Provided there are enough online replicas and reliable network communication

is possible, your applications that use the router will be able to contact one of the

remaining servers. The router makes this possible by having applications connect to

MySQL Router instead of directly to a specific MySQL server. Figure 10-2 shows a logical

view of where the router sits in relation to your application and the InnoDB Cluster.

Chapter 10 Using the shell with innoDB ClUster

https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-compared.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-compared.html

406

Notice we have two applications depicted, each connecting to an instance of

the MySQL Router. The router works by sitting in between applications and MySQL

servers. When an application connects to the router, the router chooses a suitable

MySQL server from the pool of candidates and connects forwarding all network traffic

from the application to that server (and the returning responses from the server to the

application).

Behind the scenes, the router stores a list of the servers from InnoDB Cluster along

with their status. While this list (or cache) of servers is read initially from a configuration

file, subsequent communication between the router and the cluster ensures it gets

updated when the topology changes. This means when servers are lost, they become

marked as offline by the router and the router skips them. Similarly, if new servers are

added to the cluster, the router’s cache is updated to include them.

Thus, to keep the cache updated, the router keeps an open connection to one of

the servers in the cluster querying the cluster metadata from the performance schema

database. These tables (or views) are updated in real-time by Group Replication

whenever a cluster state change is detected. For example, if one of the MySQL servers

had an unexpected shutdown.

Figure 10-2. Application Architecture with MySQL Router (courtesy of Oracle
Corporation)

Chapter 10 Using the shell with innoDB ClUster

407

Finally, the router enables developers to extend MySQL Router using plugins for

custom use cases. This means if your application requires a different routing strategy or

you want to build packet inspection into your solution, you can extend the router with a

custom plugin. While building custom plugins for the router is beyond the scope of this

chapter and there are no examples (yet) to study, be sure to check the MySQL developer

web site (https://dev.mysql.com) and the MySQL Engineering blogs (https://

mysqlserverteam.com/) for the latest information and examples.

Now that we understand the components that make up InnoDB Cluster, let’s

briefly discuss what you need to do to setup and configure InnoDB Cluster. We leave a

demonstration of InnoDB Cluster for the next chapter.

 Setup and Configuration
Setup and configuration of InnoDB Cluster does not require any new and complex steps

other than what we did in Chapter 2. If you recall during the installation of MySQL in

Chapter 2, we did not select the sandbox option for MySQL Server and InnoDB Cluster. We

also did not elect to configure MySQL Router automatically. Had you chosen these options,

you would have InnoDB Cluster running in a sandbox with MySQL Router ready for use.

While you can do that by rerunning the installation (e.g., on Windows, run the

MySQL Installer for Windows), we will use the more traditional manual setup so that

you can learn how to setup InnoDB Cluster and MySQL Router, which will provide a

better foundation for you when you deploy InnoDB Cluster and MySQL Router in your

environment.

The process to prepare your system for running InnoDB Cluster as a test with several

MySQL instances running locally and configure the router to run as well is not difficult.

We will see an overview of the process in this chapter and safe the demonstration for

Chapter 11. But first, let’s discuss a bit more about a topic that comes up often when

planning new, enterprise-grade features like InnoDB Cluster – upgrading existing servers.

 Upgrade Checker
There are a few prerequisites for using InnoDB Cluster. First and foremost is you must

use a MySQL version that supports all its components including Group Replication.

Fortunately, there is one more important step that you can take to ensure your MySQL

servers are ready for InnoDB Cluster. You can use the MySQL Shell Upgrade Checker

utility to check each server.

Chapter 10 Using the shell with innoDB ClUster

https://dev.mysql.com
https://mysqlserverteam.com/
https://mysqlserverteam.com/

408

The upgrade checker is a function in MySQL Shell that allows you to verify that

a server has been configured correctly for upgrading. If you are using older versions

of MySQL or a set of servers that have different versions of MySQL, the upgrade

checker utility can save you a lot of headaches when deploying features such as Group

Replication or InnoDB Cluster.

The upgrade checker is intended for newer versions of MySQL, but can also work

for MySQL 5.7 servers checking them for compatibility and errors in setup. Starting

with release 8.0.16, the upgrade checker can also check configuration files for system

variables that have non-default values.

To use the upgrade checker, simply run the shell and connect to the MySQL server

you want to check. It is always best to run the shell on the same server, but it is not a

requirement except for checking configuration files.

The upgrade checker function is included in the util library and is named util.

check_for_server_upgrade(). The upgrade checker can take two optional parameters:

1) the connection information to the server (if there isn’t one already established), and

2) a dictionary of options. There are many options including the following.

• targetVersion: The MySQL Server version to which you plan to

upgrade

• configPath: The path to the configuration file for the MySQL server

instance

• outputFormat: The format for displaying results – either TEXT or JSON

To best visualize using the upgrade checker, the following demonstrates running the

utility on an older MySQL 5.7.22 server. We will check to see if it can be upgraded to 8.0.16

and we’ll request TEXT output (the default). As you will see, there are quite a few things the

utility checks. Listing 10-1 shows the complete output of the running the utility.

Listing 10-1. Demonstration of the Upgrade Checker Utility

> util.check_for_server_upgrade('root@localhost:13000',

{'targetVersion':'8.0.16', 'outputFormat':'TEXT'})

The MySQL server at localhost:13000, version 5.7.22-log - MySQL Community

Server (GPL), will now be checked for compatibility issues for upgrade to MySQL

8.0.16...

Chapter 10 Using the shell with innoDB ClUster

409

1) Usage of old temporal type

 No issues found

2) Usage of db objects with names conflicting with reserved keywords in 8.0

 No issues found

3) Usage of utf8mb3 charset

 No issues found

4) Table names in the mysql schema conflicting with new tables in 8.0

 No issues found

5) Foreign key constraint names longer than 64 characters

 No issues found

6) Usage of obsolete MAXDB sql_mode flag

 No issues found

7) Usage of obsolete sql_mode flags

 No issues found

8) ENUM/SET column definitions containing elements longer than 255

characters

 No issues found

9) Usage of partitioned tables in shared tablespaces

 No issues found

10) Usage of removed functions

 No issues found

11) Usage of removed GROUP BY ASC/DESC syntax

 No issues found

12) Removed system variables for error logging to the system log configuration

 To run this check requires full path to MySQL server configuration file

to be specified at 'configPath' key of options dictionary

 More information:

 https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-13.

html#mysqld-8-0-13-logging

Chapter 10 Using the shell with innoDB ClUster

410

13) Removed system variables

 To run this check requires full path to MySQL server configuration file

to be specified at 'configPath' key of options dictionary

 More information:

 https://dev.mysql.com/doc/refman/8.0/en/added-deprecated-removed.

html#optvars-removed

14) System variables with new default values

 To run this check requires full path to MySQL server configuration file

to be specified at 'configPath' key of options dictionary

 More information:

 https://mysqlserverteam.com/new-defaults-in-mysql-8-0/

15) Schema inconsistencies resulting from file removal or corruption

 No issues found

16) Issues reported by 'check table x for upgrade' command

 No issues found

17) New default authentication plugin considerations

 Warning: The new default authentication plugin 'caching_sha2_password' offers

 more secure password hashing than previously used 'mysql_native_password'

 (and consequent improved client connection authentication). However,

it also

 has compatibility implications that may affect existing MySQL

installations.

 If your MySQL installation must serve pre-8.0 clients and you encounter

 compatibility issues after upgrading, the simplest way to address those

 issues are to reconfigure the server to revert to the previous default

 authentication plugin (mysql_native_password). For example, use these lines

 in the server option file:

 [mysqld]

 default_authentication_plugin=mysql_native_password

 However, the setting should be viewed as temporary, not as a long term or

 permanent solution, because it causes new accounts created with the setting

 in effect to forego the improved authentication security.

Chapter 10 Using the shell with innoDB ClUster

411

 If you are using replication please take time to understand how the

 authentication plugin changes may impact you.

 More information:

 https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.

html#upgrade-caching-sha2-password-compatibility-issues

 https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.

html#upgrade-caching-sha2-password-replication

Errors: 0

Warnings: 1

Notices: 0

No fatal errors were found that would prevent an upgrade, but some

potential issues were detected. Please ensure that the reported issues are

not significant before upgrading.

Notice the utility found one warning. In this case, it was the use of the authentication

plugin. The server tested was not using the newer, more secure plugin. Fortunately, the

utility provided some hints for how we can overcome this issue.

Notice also we did not provide a path to the configuration file, so that step was

skipped. It did not show as a warning because that is an optional parameter (check) that

you can specify in the dictionary of options.

There are several other configurations you can use to check a server for

compatibility. See the online reference manual for the utility at https://dev.mysql.

com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html for more

information about the upgrade checker utility.

 Overview of Installing InnoDB Cluster
The process for installing InnoDB Cluster is straight forward and once you’ve done if a

few times you will find it far easier than setting up MySQL Replication or MySQL Group

Replication. The only step that may require a bit more work is configuring the router,

but that is fortunately not a regular action (you set it up once and leave it running). The

general outline of steps required is shown as follows. We will see each of these steps in

action in Chapter 11.

• Choose the number of MySQL instances (for fault tolerance)

• Choose the port numbers for the MySQL instances and router

Chapter 10 Using the shell with innoDB ClUster

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html

412

• Create the MySQL instances and configure them

• Create the cluster

• Add MySQL instances to the cluster

• Check status of the cluster

• Configure (bootstrap) the router

While configuration of the router and using it in your applications is not something

related to MySQL Shell, a demonstration of InnoDB Cluster without it would be an error

as the router provides application level failover, which may be critical for some use cases

where high availability requires a high level of reliability.

 Summary
We now have a complete high availability story. While MySQL InnoDB Cluster provides

high availability for our data, it does not help us (directly) for achieving high availability

at the application level. Yes, you can write your applications to query the cluster and

get information that can help your applications “heal” should a server go offline,

but practice shows this is a very brittle solution that relies far too much on known

parameters. Should anything change in the cluster configuration, the application(s) can

fail or require reworking to get restarted.

That’s not ideal for most organizations. What we need is the ability to quickly and

easily make our applications resilient to changes in the cluster. More specifically, the

application should not stop if a server in the cluster goes offline or is taken offline or its

role changes. This is where MySQL Router shines.

MySQL Router takes the burden of connection routing out of the application placing

it in its own lightweight, easily configured instance. Now, applications can be built to

rely on the router for all connection routing including failover events or normal high

availability recovery events.

In the next chapter, we will look at deploying MySQL InnoDB Cluster on a set of

machines and configure the router with a simple application to show how you can

complete your high availability goals for your own applications. We will be show casing

MySQL Shell as the administration console for working with InnoDB Cluster and will see

a quick overview of the AdminAPI.

Chapter 10 Using the shell with innoDB ClUster

413
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_11

CHAPTER 11

Example: InnoDB Cluster
Setup and Administration
Now that we have learned more about what InnoDB Cluster is and the components

that make up the feature, we’re almost to the point where we have enough information

to begin working with a small, experimental InnoDB Cluster. There are just a few more

things we need to learn including how to use the AdminAPI in the shell as well as

become familiar with the steps required to set up not only InnoDB Cluster but also the

MySQL Router.

In this chapter, we will see a demonstration of the easier form of deployment of

InnoDB Cluster – running it in a sandbox deployment method via the MySQL Shell and

the AdminAPI. We will create an InnoDB Cluster with four instances running on our

local machine. We will see not only how to setup the cluster for use but also how the

cluster handles failover and finally how to set up MySQL Router and demonstrate how it

works with an application.

But first, let’s begin with an overview of the AdminAPI.

 Getting Started
The key component that permits us to set up our experimental InnoDB Cluster is called a

sandbox. The AdminAPI has several methods to work with MySQL servers in a sandbox on

a local machine. However, the AdminAPI also have classes with methods for working with

InnoDB Clusters that use MySQL servers on remote machines. In this chapter, we will see

an overview of the classes and methods available in the AdminAPI. We will use some of the

methods discussed in this section in a demonstration of InnoDB Cluster in the next section.

414

There are two major classes in the AdminAPI: dba and cluster. Let’s look at the

details of each of these classes.

Note The following is a condensed version of the documentation available online
written to provide an overview rather than specific use examples.

 dba
The dba class enables you to administer InnoDB clusters using the AdminAPI. The dba

class enables you to administer the cluster such as creating a new cluster, working with a

sandbox configuration (a way to experiment with InnoDB Cluster using several MySQL

instances on the same machine, checking the status of instances and the cluster).

Since this class is the setup and configuration arm of the API, it has methods for

working with the sandbox as well as methods for working with remote servers. Table 11- 1

shows the methods available1 for working with instances in a sandbox (those with

sandbox in the name).

1 This table and subsequent tables in this chapter show the Python names for the methods.
JavaScript names differ slightly due to the camelCase standard for JavaScript.

Table 11-1. Sandbox Methods (dba class)

Returns Function Description

None delete_sandbox_instance

(int port, dict options)

Deletes an existing MySQL Server instance

on localhost

Instance deploy_sandbox_instance

(int port, dict options)

Creates a new MySQL Server instance on

localhost

None kill_sandbox_instance

(int port, dict options)

Kills a running MySQL Server instance on

localhost

None start_sandbox_instance

(int port, dict options)

Starts an existing MySQL Server instance

on localhost

None stop_sandbox_instance

(int port, dict options)

Stops a running MySQL Server instance on

localhost

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

415

Notice that there are methods for deploying an instance in the sandbox as well as

deleting an instance or killing an instance (delete removes it, kill stops the instance but

leaves the data and metadata), and starting and stopping an instance (kill issues an

uncontrolled shutdown). We will use most of these methods in the demonstration of the

InnoDB Cluster in a sandbox in a later section.

Notice also these methods take a port number and a dictionary of options. The

options you can use for these and other methods in the AdminAPI depend on the

method itself as each method permits one or more options. Table 11-2 shows the options

available for the methods in Table 11-1.

Table 11-2. Options for the Sandbox Methods (dba class)

Function Option Description

delete_sandbox_instance sandboxDir The path where the new instance location

that will be deleted

deploy_sandbox_instance portx The port where the new instance will listen

for x protocol connections

sandboxDir The path where the new instance will be

deployed

password The password for the MySQL root user on

the new instance

allowRootFrom Create the remote root account, restricted

to the given address pattern (%)

ignoreSslError Ignore errors when adding SSL support for

the new instance, by default: true

kill_sandbox_instance sandboxDir The path where the new instance is located

will be deployed

start_sandbox_instance sandboxDir The path where the new instance will be

started

stop_sandbox_instance password The password for the MySQL root user on

the deployed instance

sandboxDir The path where the new instance will be

stopped

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

416

The options are specified in a dictionary in the form of a simple JSON document.

For example, if you wanted to stop an instance on port 13004 and specify the sandbox

directory and password, you would call the method as follows.

> stop_sandbox_instance(13004, {'sandboxDir':'/home/cbell/data1',

'password':'secret'})

Caution If you use the sandboxDir option to change the location of the
sandbox, you must ensure to use it for every method that permits it; otherwise
some of your sandbox instances may be placed in the default location.

Table 11-3 shows the remaining methods in the class used for setup and configuration

of MySQL instances and clusters.

Table 11-3. Instance and Cluster Methods (dba class)

Returns Function Description

JSoN check_instance_configuration

(InstanceDef instance, dict options)

Validates an instance for MySQL

InnoDB Cluster usage

None configure_local_instance

(InstanceDef instance, dict options)

Validates and configures a local

instance for MySQL InnoDB Cluster

usage

None configure_instance

(InstanceDef instance, dict options)

Validates and configures an

instance for MySQL InnoDB Cluster

usage

Cluster create_cluster(str name, dict options) Creates a MySQL InnoDB cluster

None drop_metadata_schema(dict options) Drops the Metadata Schema

Cluster get_cluster(str name, dict options) retrieves a cluster from the

Metadata Store

None reboot_cluster_from_complete_outage

(str clusterName, dict options)

Brings a cluster back oNLINe when

all members are oFFLINe

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

417

Table 11-4. Options for dba Class Methods

Area Option Description

General Common options for most methods

verifyMyCnf optional path to the MySQL configuration file for the

instance. If this option is given, the configuration

file will be verified for the expected option values, in

addition to the global MySQL system variables.

outputMycnfPath alternative output path to write the MySQL

configuration file of the instance

password The password to be used on the connection

clusterAdmin The name of the InnoDB cluster administrator user

to be created. The supported format is the standard

MySQL account name format.

clusterAdminPassword The password for the InnoDB cluster administrator

account

clearReadOnly boolean value used to confirm that super_read_only

must be disabled

interactive boolean value used to disable the wizards in the

command execution, i.e, prompts are not provided to

the user and confirmation prompts are not shown

urI or

Dictionary

options for secure connections

ssl-mode the SSL mode to be used in the connection

ssl-ca the path to the x509 certificate authority in peM format

ssl-capath the path to the directory that contains the x509

certificates authorities in peM format

The options for these methods are considerably more. In fact, some methods permit

a long list of options. Rather than list each of the options for each of the methods, the

following list summarizes the options in three categories. We will see some of these in

action during the demonstration. More specific options are required for certain methods.

(continued)

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

418

Area Option Description

ssl-cert The path to the x509 certificate in peM format

ssl-key The path to the x509 key in peM format

ssl-crl The path to file that contains certificate revocation lists

ssl-crlpath The path of directory that contains certificate

revocation list files

ssl-cipher SSL Cipher to use

tls-version List of protocols permitted for secure connections

auth-method authentication method

get-server-public-key request public key from the server required for

rSa key pair-based password exchange. use when

connecting to MySQL 8.0 servers with classic MySQL

sessions with SSL mode DISaBLeD.

server-public-key-path The path name to a file containing a client-side copy

of the public key required by the server for rSa key

pair-based password exchange

Connection

Dictionary

Connection parameters

scheme the protocol to be used on the connection

user the MySQL user name to be used on the connection

dbUser alias for user

password the password to be used on the connection

dbPassword same as password

host the hostname or Ip address to be used on a TCp

connection

port the port to be used in a TCp connection

socket the socket file name to be used on a connection

through unix sockets

schema the schema to be selected once the connection is done.

Table 11-4. (continued)

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

419

Table 11-5. Methods for the Cluster Class

Returns Function Description

None add_instance(InstanceDef instance,

dict options)

adds an Instance to the cluster

dict check_instance_state (InstanceDef

instance, str password)

Verifies the instance GTID state in relation

with the cluster

str describe() Describe the structure of the cluster

None disconnect() Disconnects all internal sessions used by

the cluster object

None dissolve(Dictionary options) Dissolves the cluster

None force_quorum_using_partition_of

(InstanceDef instance, str password)

restores the cluster from quorum loss

str get_name() retrieves the name of the cluster

None rejoin_instance

(InstanceDef instance, dict options)

rejoins an Instance to the cluster

None remove_instance(InstanceDef

instance, dict options)

removes an Instance from the cluster

None rescan() rescans the cluster

str status() Describe the status of the cluster

None switch_to_single_primary_mode

(InstanceDef instance)

Switches the cluster to single-primary mode

None switch_to_multi_primary_mode() Switches the cluster to multi-primary

mode More...

(continued)

 cluster
The cluster class is a handle (think object instance) to an InnoDB Cluster. The cluster

class enables you to work with the cluster to add instances, remove instances, get the

status (health) of the cluster, and more.

Since this class is used to work directly with instances and the cluster, most of the

methods are designed to work with a specific instance of the cluster retrieved via the dba

class. Table 11-5 lists the methods in the cluster class.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

420

Notice we have methods for adding, removing, and rejoining an instance. We will use

these often in managing the instances in the cluster. There are also several methods for

obtaining information, status, and forcing updates to the metadata such as get_name(),

status() and rescan().

We also have methods for switching the mode of an instance, which can come in

handy if we want to manually change the primary role to a specific instance. We also

have methods for displaying and setting general options for the cluster, which once again

helps with maintenance.

Notice also like the dba class, some of the methods accept a dictionary of options.

Such options are again unique to the method, but in general use the same options

described in the previous section for connecting to an instance. And as mentioned, some

permit options specific to the method.

The class has one property: the name of the cluster. The property is named simply,

name, and can be set programmatically but is normally set when the cluster is created

using the dba class.

Tip See https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/
group___admin_a_p_i.html to learn more about the adminapI.

Now that we’ve had a brief overview of the classes and methods in the AdminAPI,

let’s see it in action by setting up InnoDB Cluster in a sandbox.

Table 11-5. (continued)

Returns Function Description

None set_primary_instance

(InstanceDef instance)

elects a specific cluster member as the

new primary

str options(dict options) Lists the cluster configuration options

None set_option(str option, str value) Changes the value of a configuration

option for the whole cluster More...

None set_instance_option(InstanceDef

instance, str option, str value)

Changes the value of a configuration

option in a Cluster member More...

void invalidate () Mark the cluster as invalid (e.g., dissolved)

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/group___admin_a_p_i.html
https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/group___admin_a_p_i.html

421

 Setup and Configuration
To prepare for using the sandbox, you merely need to decide on a few parameters and

prepare an area on your system for working with the data for the cluster. There is one

parameter that is required. We must decide on what port numbers we want to use for the

experimental cluster. In this case, we will use ports 3311-3314 for the server listening ports.

We can also specify a directory to contain the sandbox data. While this is not

required, it is recommended if you want to reinitialize the cluster later. There is no need

to specify a directory otherwise because the AdminAPI uses a predetermined path for

the sandbox. For example, on Windows, it is in the user directory named MySQL\mysql-

sandboxes. This folder forms the root for storing all data and metadata for the sandbox.

For example, when you deploy an instance to the sandbox using port 3312, you will see a

folder with that name as follows.

C:\Users\cbell\MySQL\mysql-sandboxes\3312

If you plan to reuse or restart the cluster, you may want to specify a specific

folder using the sandboxDir option. For example, you can specify the dictionary as

{'sandboxDir':'c://idc_sandbox'} in the AdminAPI. However, the folder must

exist or you will get an error when you call the deploy_sandbox_instance() method.

Listing 11-1 shows a custom sandbox directory on Windows with a single instance

deployed on port 3311.

Listing 11-1. Creating a Directory for the Sandbox

C:\idc_sandbox>dir

 Volume in drive C is Local Disk

 Volume Serial Number is AAFC-6767

 Directory of C:\idc_sandbox

05/09/2019 07:18 PM <DIR> .

05/09/2019 07:18 PM <DIR> ..

05/09/2019 07:18 PM <DIR> 3311 0

File(s) 0 bytes

 3 Dir(s) 172,731,768,832 bytes free

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

422

C:\idc_sandbox>dir 3311

 Volume in drive C is Local Disk

 Volume Serial Number is AAFC-6767

 Directory of C:\idc_sandbox\3311

05/09/2019 07:19 PM <DIR> .

05/09/2019 07:19 PM <DIR> ..

05/09/2019 07:19 PM 6 3311.pid

05/09/2019 07:18 PM 726 my.cnf

05/09/2019 07:18 PM <DIR> mysql-files

05/09/2019 07:18 PM <DIR> sandboxdata

05/09/2019 07:18 PM 147 start.bat

05/09/2019 07:18 PM 207 stop.bat

 4 File(s) 1,086 bytes

 4 Dir(s) 172,557,893,632 bytes free

Note To reuse the instance data, you must start the instance. attempting to redeploy
it using the same port will generate an error because the directory is not empty.

Now, let’s see a demonstration of setting up a cluster in the sandbox. There are

several steps to create a sandbox deployment of InnoDB Cluster. They are as follows.

• Create and Deploy Instances in the Sandbox: Setup and configure our

MySQL servers.

• Create the Cluster: Create an object instance of the cluster class.

• Add the Instances to the Cluster: Add the sandbox instances to the

cluster.

• Check the Status of the Cluster: Check the cluster health.

We will also see a demonstration of how failover works within the cluster by killing

one of the instances. Let’s get started!

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

423

 Create and Deploy Instances in the Sandbox
Let’s begin by starting the shell and deploying four servers using the AdminAPI. In this

case, we will use the ports 3311-3314 and deploy_sandbox_instance() method in the

dba object to create new instances for each server. All of these will run on our localhost.

Note It is not necessary to import the dba class. The MySQL Shell makes it
available whenever you switch to the python mode.

The sandbox is created with the first call to the deploy method. Let’s deploy the four

servers now. The deploy method will ask you to provide a password for the root user. It is

recommended that you use the same password for all four servers.

Note You must create the folder that you specify for the sandbox.

Listing 11-2 demonstrates how to deploy four servers. The commands used are

highlighted in bold to help identify the commands from the messages. Notice I start the

shell in Python mode. The four commands are shown in bold for easier reference.

Listing 11-2. Creating Local Server Instances

$ mysqlsh --py

MySQL Shell 8.0.16

...

Type '\help' or '\?' for help; '\quit' to exit.

> sandbox_options = {'sandboxDir':'/home/cbell/idc_sandbox'}

> dba.deploy_sandbox_instance(3311, sandbox_options)

A new MySQL sandbox instance will be created on this host in

/home/cbell/idc_cluster/3311

Warning: Sandbox instances are only suitable for deploying and

running on your local machine for testing purposes and are not

accessible from external networks.

Please enter a MySQL root password for the new instance: ∗∗∗∗
Deploying new MySQL instance...

Instance localhost:3311 successfully deployed and started.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

424

Use shell.connect('root@localhost:3311'); to connect to the instance.

> dba.deploy_sandbox_instance(3312, sandbox_options)

A new MySQL sandbox instance will be created on this host in

/home/cbell/idc_cluster/3312

Warning: Sandbox instances are only suitable for deploying and

running on your local machine for testing purposes and are not

accessible from external networks.

Please enter a MySQL root password for the new instance: ∗∗∗∗
Deploying new MySQL instance...

Instance localhost:3312 successfully deployed and started.

Use shell.connect('root@localhost:3312'); to connect to the instance.

> dba.deploy_sandbox_instance(3313, sandbox_options)

A new MySQL sandbox instance will be created on this host in

/home/cbell/idc_cluster/3313

Warning: Sandbox instances are only suitable for deploying and

running on your local machine for testing purposes and are not

accessible from external networks.

Please enter a MySQL root password for the new instance: ∗∗∗∗
Deploying new MySQL instance...

Instance localhost:3313 successfully deployed and started.

Use shell.connect('root@localhost:3313'); to connect to the instance.

> dba.deploy_sandbox_instance(3314, sandbox_options)

A new MySQL sandbox instance will be created on this host in

/home/cbell/idc_cluster/3314

Warning: Sandbox instances are only suitable for deploying and

running on your local machine for testing purposes and are not

accessible from external networks.

Please enter a MySQL root password for the new instance: ∗∗∗∗
Deploying new MySQL instance...

Instance localhost:3314 successfully deployed and started.

Use shell.connect('root@localhost:3314'); to connect to the instance.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

425

Notice the deploy_sandbox_instance() method displays the location of the sandbox

data and metadata (e.g., c:\\idc_sandbox\\3314) and prompts us for a password for

the instance. Be sure to use a password that you will remember if you intend to restart or

reuse the cluster. It is Ok to use the same password for all instances. Once you run all the

commands, you will have four instances running on the local machine.

There is one feature in the dba class that often gets overlooked. The check_instance_

configuration() method allows you to check to see if an instance is properly configured

for use with InnoDB Cluster. You can run it on the sandbox instance (but they’ll always

be compatible) or, better, you can run it on your remote instances to check them before

adding them to the cluster. Listing 11-3 demonstrates running the check. This is a

recommended step prior to building your cluster. Note that you must connect to the

instance first.

Listing 11-3. Checking an Instance for Configuration Compatibility

> \connect root@localhost:3311

Creating a session to 'root@localhost:3311'

Please provide the password for 'root@localhost:3311': ∗∗∗∗
Save password for 'root@localhost:3311'? [Y]es/[N]o/Ne[v]er (default No): Y

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 12

Server version: 8.0.16 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

> dba.check_instance_configuration()

Validating local MySQL instance listening at port 3311 for use in an InnoDB

cluster...

Instance detected as a sandbox.

Please note that sandbox instances are only suitable for deploying test

clusters for use within the same host.

This instance reports its own address as OPTIPLEX-7010

Clients and other cluster members will communicate with it through this

address by default. If this is not correct, the report_host MySQL system

variable should be changed.

Checking whether existing tables comply with Group Replication requirements...

No incompatible tables detected

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

426

Checking instance configuration...

Instance configuration is compatible with InnoDB cluster

The instance 'localhost:3311' is valid for InnoDB cluster usage.

{

 "status": "ok"

}

There is also a method to automatically configure a local instance. Use the

configure_local_instance() method to make any changes needed to get the local

instance configured properly for InnoDB Cluster. This can be very handy if you are

working with existing MySQL servers that have been configured for MySQL Replication.

 Create the Cluster
The next thing we need to do is set up a new cluster. We do this with the create_

cluster() method in the dba object, which creates an object instance to the cluster

class. But first, we must connect to the server we want to make our primary server. Note

that this is a continuation of our shell session and demonstrates how to create a new

cluster. Notice how this is done in Listing 11-4.

Listing 11-4. Creating a Cluster in InnoDB Cluster MySQL Py >

\connect root@localhost:3311

Creating a session to 'root@localhost:3311'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 9

Server version: 8.0.16 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

> my_cluster = dba.create_cluster('MyClusterSB')

A new InnoDB cluster will be created on instance 'root@localhost:3311'.

Validating instance at localhost:3311...

Instance detected as a sandbox.

Please note that sandbox instances are only suitable for deploying test

clusters for use within the same host.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

427

This instance reports its own address as localhost

Instance configuration is suitable.

Creating InnoDB cluster 'MyClusterSB' on 'root@localhost:3311'...

Adding Seed Instance...

Cluster successfully created. Use Cluster.add_instance() to add MySQL instances.

At least 3 instances are needed for the cluster to be able to withstand up to

one server failure.

Notice we name the cluster MyClusterSB and use a variable named my_cluster to

store the object returned from the create_cluster() method. Notice also that the server

we connected to first has become the primary and that the AdminAPI has detected we

are running in a sandbox.

 Failure to Create Cluster

If your local machine has an instance of MySQL running that not is part of a replication

topology, you may get an error complaining about the host not being usable for Group

Replication or that is resolves to 127.0.0.1, you must stop each of your sandbox

instances, edit the my.cnf adding the report_host option set to localhost and the

report_port option set to the port for the instance. Then start the instance as shown in

the following text. Repeat for each of the deployed instances. Notice also that there is a

special start and stop script in each instance folder that you can use to quickly start and

stop instance. Cool, eh?

$ cd ~/idc_sandbox

$./3311/stop.sh

Stopping MySQL sandbox using mysqladmin shutdown... Root password is required.

Enter password:

$ nano ./3311/my.cnf

...

report_host='localhost'

report_port=3311

$./3311/start.sh

Starting MySQL sandbox

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

428

Note that if you use the dba.stop_sandbox_instance() in the shell, this completely

removes the instance from the sandbox. It is better to stop the instance using the helper

script (stop.sh or stop.bat). You can, however, start the instance from inside the shell by

using the start_sandbox_instance() method passing in the port for the instance.

> dba.start_sandbox_instance(3314, sandbox_options)

The MySQL sandbox instance on this host in

/home/cbell/idc_sandbox/3314 will be started

Starting MySQL instance...

Instance localhost:3314 successfully started.

Tip If you exit the shell, you can retrieve a running cluster with the get_
cluster() method. For example, you can restart the shell, then issue the
command my_cluster = dba.get_cluster('MyClusterSB').

 Add the Instances to the Cluster
Next, we add the other two server instances to complete the cluster. We are now

using the cluster class instance saved in the variable my_cluster and using the add_

instance(). We will add the three remaining instances to the cluster. These servers

automatically become secondary servers in the group. Listing 11-5 shows how to add the

instances to the cluster.

Listing 11-5. Adding Instances to the Cluster

> my_cluster.add_instance('root@localhost:3312')

A new instance will be added to the InnoDB cluster. Depending on the amount

of data on the cluster this might take from a few seconds to several hours.

Adding instance to the cluster ...

Please provide the password for 'root@localhost:3312': ∗∗∗∗
Save password for 'root@localhost:3312'? [Y]es/[N]o/Ne[v]er (default No): Y

Validating instance at localhost:3312...

Instance detected as a sandbox.

Please note that sandbox instances are only suitable for deploying test

clusters for use within the same host.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

429

This instance reports its own address as localhost

Instance configuration is suitable.

The instance 'root@localhost:3312' was successfully added to the cluster.

> my_cluster.add_instance('root@localhost:3313')

A new instance will be added to the InnoDB cluster. Depending on the amount

of data on the cluster this might take from a few seconds to several hours.

Adding instance to the cluster ...

Please provide the password for 'root@localhost:3313': ∗∗∗∗
Save password for 'root@localhost:3313'? [Y]es/[N]o/Ne[v]er (default No): Y

Validating instance at localhost:3313...

Instance detected as a sandbox.

Please note that sandbox instances are only suitable for deploying test

clusters for use within the same host.

This instance reports its own address as localhost

Instance configuration is suitable.

The instance 'root@localhost:3313' was successfully added to the cluster.

> my_cluster.add_instance('root@localhost:3314')

A new instance will be added to the InnoDB cluster. Depending on the amount

of data on the cluster this might take from a few seconds to several hours.

Adding instance to the cluster ...

Please provide the password for 'root@localhost:3314': ∗∗∗∗
Save password for 'root@localhost:3314'? [Y]es/[N]o/Ne[v]er (default No): Y

Validating instance at localhost:3314...

Instance detected as a sandbox.

Please note that sandbox instances are only suitable for deploying test

clusters for use within the same host.

This instance reports its own address as localhost

Instance configuration is suitable.

The instance 'root@localhost:3314' was successfully added to the cluster.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

430

Notice the add_instance() method takes a string with the URI connection

information. In this case, it is simply the username, at sign (@), hostname, and port in the

form <user>@<host>:<port>. Notice also the method prompts for the password for the

instance.

At this point, we’ve seen how InnoDB Cluster can setup servers and add them to the

group. Take a moment and think back to the Group Replication tutorial. What you do not

see behind the scenes is all the Group Replication mechanisms – you get them for free!

How cool is that?

Clearly, using the shell to set up and manage a cluster is a lot easier than setting

up and managing a standard Group Replication setup. Specifically, you don’t have to

manually configure replication! Better still, should a server fail, you don’t have to worry

about reconfiguring your application or the topology to ensure the solution remains

viable – InnoDB Cluster does this automatically for you.

 Check the Status of the Cluster
Once the cluster is created and instances are added, we can get the status of the cluster

using the status() method of our my_cluster object as shown in Listing 11-6. In this

example, we also see how to retrieve the cluster from a running instance of one of

the servers by connecting with the \connect command and using the get_cluster()

method from the dba class. You can also connect to the server instance using the

command line (mysqlsh --uri root@localhost:3313). Note that you do not have to

connect to the first (or primary) server instance to retrieve the cluster. You can connect

to any server to retrieve the cluster.

Listing 11-6. Getting the status of the cluster

> \connect root@localhost:3313

Creating a session to 'root@localhost:3313'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 30

Server version: 8.0.16 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

> my_cluster = dba.get_cluster('MyClusterSB')

> my_cluster.status()

{

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

431

 "clusterName": "MyClusterSB",

 "defaultReplicaSet": {

 "name": "default",

 "primary": "localhost:3311",

 "ssl": "REQUIRED",

 "status": "OK",

 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",

 "topology": {

 "localhost:3311": {

 "address": "localhost:3311",

 "mode": "R/W",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 },

 "localhost:3312": {

 "address": "localhost:3312",

 "mode": "R/O",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 },

 "localhost:3313": {

 "address": "localhost:3313",

 "mode": "R/O",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 },

 "localhost:3314": {

 "address": "localhost:3314",

 "mode": "R/O",

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

432

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 }

 },

 "topologyMode": "Single-Primary"

 },

 "groupInformationSourceMember": "localhost:3311"

}

Notice the output is in the form of a JSON document and contains the metadata

about the cluster including all the instances, their roles, and status. You want to ensure

all instances are online.

Now, let’s see a demonstration of how the cluster can handle failover automatically.

 Failover Demonstration
Now, let’s a simulated failure scenario. In this case, we will purposefully kill one of the

instances. Let’s kill the one running on port 3311. We can do this in a variety of ways such

as using the operating system to terminate the mysqld process, use the shutdown SQL

command from the shell or MySQL client or the dba class. Listing 11-7 shows how to kill

the instance and the results of the status after the instance stops.

Listing 11-7. Failover Demonstration

> sandbox_options = {'sandboxDir':'/home/cbell/idc_sandbox'}

 MySQL Py > \connect root@localhost:3311

Creating a session to 'root@localhost:3311'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 55

Server version: 8.0.16 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

> dba.kill_sandbox_instance(3311, sandbox_options)

The MySQL sandbox instance on this host in

/home/cbell/idc_sandbox/3311 will be killed

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

433

Killing MySQL instance...

Instance localhost:3311 successfully killed.

> \connect root@localhost:3312

Creating a session to 'root@localhost:3312'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 38

Server version: 8.0.16 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

> my_cluster = dba.get_cluster('MyClusterSB')

> my_cluster.status()

{

 "clusterName": "MyClusterSB",

 "defaultReplicaSet": {

 "name": "default",

 "primary": "localhost:3313",

 "ssl": "REQUIRED",

 "status": "OK_PARTIAL",

 " statusText": "Cluster is ONLINE and can tolerate up to ONE

failure. 1 member is not active",

 "topology": {

 "localhost:3311": {

 "address": "localhost:3311",

 "mode": "n/a",

 "readReplicas": {},

 "role": "HA",

 "status": "(MISSING)"

 },

 "localhost:3312": {

 "address": "localhost:3312",

 "mode": "R/O",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

434

 },

 "localhost:3313": {

 "address": "localhost:3313",

 "mode": "R/W",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 },

 "localhost:3314": {

 "address": "localhost:3314",

 "mode": "R/O",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 }

 },

 "topologyMode": "Single-Primary"

 },

 "groupInformationSourceMember": "localhost:3313"

}

Notice we killed the server running on port 3311. However, when we went to get the

cluster, we got an error. This is because we were already connected to that server we

killed (3311). Thus, we need to connect to another server and retrieve the cluster again to

refresh the data. Then, we can get the status and when we do, we see the server instance

on port 3311 is listed as missing and the server on port 3312 has taken over the read-

write capability.

At this point, we can try to recover the server instance on port 3311 or remove it from

the cluster. Listing 11-8 demonstrates how to remove it from the cluster. Notice we use

the recover method to remove the instance since we cannot connect to it (it is down).

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

435

Listing 11-8. Removing Downed Instance from Cluster

> my_cluster.rescan()

Rescanning the cluster...

Result of the rescanning operation for the 'default' ReplicaSet:

{

 "name": "default",

 "newTopologyMode": null,

 "newlyDiscoveredInstances": [],

 "unavailableInstances": [

 {

 "host": "localhost:3311",

 "label": "localhost:3311",

 "member_id": "27e8019b-8315-11e9-9f3e-5882a8945ac2"

 }

]

}

The instance 'localhost:3311' is no longer part of the ReplicaSet.

The instance is either offline or left the HA group. You can try to add

it to the cluster again with the cluster.rejoinInstance('localhost:3311')

command or you can remove it from the cluster configuration.

Would you like to remove it from the cluster metadata? [Y/n]: y

Removing instance from the cluster metadata...

The instance 'localhost:3311' was successfully removed from the cluster.

> my_cluster.status()

{

 "clusterName": "MyClusterSB",

 "defaultReplicaSet": {

 "name": "default",

 "primary": "localhost:3313",

 "ssl": "REQUIRED",

 "status": "OK",

 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",

 "topology": {

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

436

 "localhost:3312": {

 "address": "localhost:3312",

 "mode": "R/O",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 },

 "localhost:3313": {

 "address": "localhost:3313",

 "mode": "R/W",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 },

 "localhost:3314": {

 "address": "localhost:3314",

 "mode": "R/O",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 }

 },

 "topologyMode": "Single-Primary"

 },

 "groupInformationSourceMember": "localhost:3313"

}

To add the missing instance back, simply restart it by running the start command

located in the sandbox data directory (e.g., idc_sandbox\3311\start.bat) and add

it back to the cluster using the rescan() method as follows. Use this method to add

an instance that was previously part of the cluster. If you are replacing the instance

altogether with a new one, you would use the add_instance() method instead.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

437

> my_cluster.rescan()

Rescanning the cluster...

Result of the rescanning operation for the 'default' ReplicaSet:

{

 "name": "default",

 "newTopologyMode": null,

 "newlyDiscoveredInstances": [

 {

 "host": "localhost:3311",

 "member_id": "1e8f53e2-7335-11e9-9bb1-4ccc6ae8a7a4",

 "name": null,

 "version": "8.0.16"

 }

],

 "unavailableInstances": []

}

A new instance 'localhost:3311' was discovered in the ReplicaSet.

Would you like to add it to the cluster metadata? [Y/n]: y

Adding instance to the cluster metadata...

The instance 'localhost:3311' was successfully added to the cluster metadata.

Now that we’ve seen how to create our InnoDB Cluster, let’s briefly discuss how to

setup MySQL Router for use with the cluster and a test application.

 Using MySQL Router
As mentioned previously, any coverage of InnoDB Cluster would be incomplete without

a brief look at MySQL Router. In this section, we will see a brief tutorial for setting up the

router and using it with applications. We will use a simple Python script to demonstrate

application level failover.

 Bootstrapping the Router

Recall that configuring the router was the step in creating an InnoDB Cluster that

could require some additional setup. While that is true, for the most part the router can

configure itself. It is only once your cluster becomes large or you have customized the

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

438

cluster for performance (read scaling) or if there are multiple applications or multiple

clusters to which you want to route.

Tip If you have not installed MySQL router, you must do so now. Some platforms,
such as Linux, may require downloading the package separately.

Fortunately, we can use the special bootstrap option to connect to your cluster and

read the metadata then update the configuration file automatically. If you’re using a

sandbox installation, this is the quickest and surest way to setup the router. Even if you

are not using a sandbox installation, you can use this method to quickly set the base

configuration, which you can later change to match your needs.

Let’s see how to use the bootstrap option. To use the option, we need some other

parameters. We need the following. In short, must provide the connection information

and a user to use for securing the configuration file. We also add an optional parameter

to supply a name for the configuration, which can be helpful if you’re working with

different clusters or configurations.

• --bootstrap <server_url>: Bootstrap and configure Router for

operation with a MySQL InnoDB Cluster. You can also use the

shortcut -B.

• --name: (optional) Gives a symbolic name for the router instance.

• --user <username>: Run the router as the user have the name

specified (not available on Windows). You can also use the shortcut -u.

In this example, we provide the connection information with the bootstrap option in

the form of a URI such as <username>:<password>@<hostname>:<port>. We will also use

the local user to make it easier to run the router with the sandbox installation, which is

also running under the current user. Thus, the command we will use is the following. We

use elevated privileges because the default locations of the router files are protected.

$ sudo mysqlrouter --bootstrap root:secret@localhost:3313 \

 --name sandbox --user cbell

When we run this command, the router will contact the server we specified and

retrieve all the metadata for the cluster creating the routes for us automatically.

Listing 11-9 shows an example of the output from the command.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

439

Listing 11-9. Configuration with the Bootstrap Option

$ sudo mysqlrouter --bootstrap root:secret@localhost:3313 --name sandbox

--user cbell

Bootstrapping system MySQL Router instance...

Fetching Group Replication Members

disconnecting from mysql-server

trying to connecting to mysql-server at localhost:3313

- Checking for old Router accounts

 - No prior Router accounts found

- Creating mysql account mysql_router1_9twobjgwueud@'%' for cluster management

- Storing account in keyring

- Adjusting permissions of generated files

- Creating configuration /etc/mysqlrouter/mysqlrouter.conf

MySQL Router 'sandbox' configured for the InnoDB cluster 'MyClusterSB'

After this MySQL Router has been started with the generated configuration

 $ /etc/init.d/mysqlrouter restart

or

 $ systemctl start mysqlrouter

or

 $ mysqlrouter -c /etc/mysqlrouter/mysqlrouter.conf

the cluster 'MyClusterSB' can be reached by connecting to:

MySQL Classic protocol

- Read/Write Connections: localhost:6446

- Read/Only Connections: localhost:6447

MySQL X protocol

- Read/Write Connections: localhost:64460

- Read/Only Connections: localhost:64470

Existing configuration backed up to '/etc/mysqlrouter/mysqlrouter.conf.bak'

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

440

Notice we see the router has identified the read-write (RW) and read-only (RO)

connections for us using the default ports of 6446 and 6447, respectively. We also see

the bootstrap step creates routes for using the X Protocol on ports 64460 and 64470,

respectively. Before we test the router, let’s learn more about what the bootstrap method

has done for us. Specifically, we will look at the modified configuration file.

Now, we can start the router.

 Starting the Router

We can start the router with the following command. This launches the router, which will

read the configuration file. Notice we’re not using elevated privileges. This is because

we provided a user option during the bootstrap step that permits the user to read the

file. This can be important for securing your installation, which we will explore in a later

chapter.

$ mysqlrouter &

Loading all plugins.

 plugin 'logger:' loading

 plugin 'metadata_cache:MyClusterSB' loading

 plugin 'routing:MyClusterSB_default_ro' loading

 plugin 'routing:MyClusterSB_default_rw' loading

 plugin 'routing:MyClusterSB_default_x_ro' loading

 plugin 'routing:MyClusterSB_default_x_rw' loading

Initializing all plugins.

 plugin 'logger' initializing

logging facility initialized, switching logging to loggers specified in

configuration

Now that we have the router configured, let’s test it with the sample Python

connection script.

 Sample Application

Now that we have the router installed, configured for our InnoDB Cluster, and running,

let’s see how we can test the router using a simple Python script.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

441

Listing 11-10 shows a simple Python script for connecting to InnoDB Cluster via

the router. Recall that we installed the router on our machine and thus this script (for

conformity if not practice) should be executed on the same machine. Take a moment

to examine the code. If you are following along, you can save the file as router_

connection_test.py on your machine.

Listing 11-10. Router Connection Test

#

Introducing MySQL Shell

#

This example shows how to use the MySQL Router to connect to

the cluster. Notice how connecting via the router port 6446

results in a seamless transport to one of the cluster servers,

in this case, the server with the primary role.

#

Dr. Charles Bell, 2019

#

import mysql.connector

Simple function to display results from a cursor

def show_results(cur_obj):

 for row in cur:

 print(row)

my_cfg = {

 'user':'root',

 'passwd':'secret',

 'host':'127.0.0.1',

 'port':6446 # <<<< Router port (R/W)

}

Connecting to the server

conn = mysql.connector.connect(∗∗my_cfg)

print("Listing the databases on the server.")

query = "SHOW DATABASES"

cur = conn.cursor()

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

442

cur.execute(query)

show_results(cur)

print("\Retrieve the port for the server to which we’re connecting.")

query = "SELECT @@port"

cur = conn.cursor()

cur.execute(query)

show_results(cur)

Close the cursor and connection

cur.close()

conn.close()

The first part of the code simply imports the connector and defines a dictionary of

connection terms. In this case, the user, password, host, and port for the router. We are

using the port number 6446 as shown during the configuration of the router.

Next, the code opens a connection, then runs two queries: one to get a list of the

databases and display them (using a function defined as show_results()) and another

to select the current port of the server. This second query result may surprise you as we

will see.

To execute the code, save this file named router_connect_test.py (the extension

identifies it as a Python script). Then, run the code using the following command.

$ python ./router_connection_test.py

Listing the databases on the server.

(u'information_schema',)

(u'mysql',)

(u'mysql_innodb_cluster_metadata',)

(u'performance_schema',)

(u'sys',)

Retrieve the port for the server to which we’re connecting.

(3313,)

Wait! Why did the output show port 3313? Shouldn’t it show port 6446? After all,

that’s the port we used in the code. Recall, the router simply routes communication to

the appropriate server, it is not a server connection itself. Thus, the router successfully

routed our connection to the machine on port 331. Recall that this machine is the

primary (listed as read-write in the cluster).

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

443

So how do we connect to the read-only servers in the cluster? All we need to now

is to modify the program to connect to the read-only servers (on port 6447). When we

rerun the script, we will see the following output.

$ python ./router_connection_test.py

Listing the databases on the server.

(u'information_schema',)

(u'mysql',)

(u'mysql_innodb_cluster_metadata',)

(u'performance_schema',)

(u'sys',)

Retrieve the port for the server to which we're connecting.

(3312,)

Now we see we’re connecting to a server other than one on port 3311. Recall from

the sandbox setup, the machines on ports 3312, 3313, and 3314 are all read-only.

While this example is quite primitive, it does illustrate how the router redirects

connections to other MySQL servers. It also helps to reinforce the concept that we must

connect our applications to the router itself rather than machines in the cluster and

allow the router to do all the heavy connection routing for us. As you can see, it is quite

sophisticated and knows from its initial (and later cached) configuration which servers

are requested based on the port listened by the router. In this case, we use 6446 for

read-write connections and 6447 for read-only connections. Yes, it is that easy. No more

elaborate hard-coded ports!

 Application Failover Demonstration

Now, let’s try failover only this time at the application layer. More specifically, we will

kill the read-write (or primary) server in the cluster then start the script again. Recall, we

want to connect to the read-write port that the router is using or in this case port 6446.

Be sure to check the my_cfg dictionary in the script before running this test.

Take a moment to verify which instance in your cluster has the read-write role

(primary). We can do this with the shell as follows. Here we see the server on port 3313

has the read-write mode.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

444

$ mysqlsh --uri root@localhost:3312 --py

> dba.get_cluster('MyClusterSB').status()

...

 "localhost:3313": {

 "address": "localhost:3313",

 "mode": "R/W",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE",

 "version": "8.0.16"

 },

Let’s first connect to the cluster without killing any instances and see what port is

returned for the read-write connection.

$ python ./router_connection_test.py

Listing the databases on the server.

(u'information_schema',)

(u'mysql',)

(u'mysql_innodb_cluster_metadata',)

(u'performance_schema',)

(u'sys',)

Retrieve the port for the server to which we're connecting.

(3313,)

Ok, so it mapped to port 3313. That’s good. Now, let’s unceremoniously kill that

server instance.

more ~/idc_sandbox/3313/3313.pid

10264

$ sudo kill -9 10264

Then, run the script again and see what port is shown for the read-write server.

$ python ./router_connection_test.py

Listing the databases on the server.

(u'information_schema',)

(u'mysql',)

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

445

(u'mysql_innodb_cluster_metadata',)

(u'performance_schema',)

(u'sys',)

Retrieve the port for the server to which we're connecting.

(3311,)

Here we see we are indeed connecting to our InnoDB Cluster via the router and

we see the port reported is 3311, which is the port of the new primary (read-write)

server. Cool!

This demonstration shows how we can continue to run our applications even if

there is a failover in the cluster. In this case, we were simply rerunning the application

(script), but in production (or development), you would build your application simply

to retry the connection for either the read-write port or the read-only port. That way,

your application doesn’t even need to restart – you just reconnect and keep going.

How cool is that?

Tip See https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-
router- configuration.html to learn more about configuring the router for
your application and environment.

Before we close out the discussion on InnoDB Cluster, let’s briefly talk about some

administrative tasks you may want to perform.

 Administration
As you have discovered, setting up InnoDB Cluster is not difficult and except for learning

how to use the MySQL Shell and a few of the classes and methods in the AdminAPI, the

steps for configuring InnoDB Cluster are also equally easy. However, we all know from

experience that setup and follow-in administration don’t always compare in complexity.

In this section, we will take a high-level look at the administrative tasks you may

need to perform on InnoDB Cluster. We will also see some specific tasks that you may

want to perform on your InnoDB Cluster running in a sandbox, which may help you

transition from a test environment to development and later production.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-configuration.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-configuration.html

446

 Common Tasks
The tool of choice for working with InnoDB Cluster is the MySQL Shell, which has

been featured prominently in this book. It is especially helpful that you can write

your own special scripts in either Java or Python to work with a cluster. The common

administrative tasks for working with InnoDB Cluster are listed as follows. There are

several others but these are the most common.

• Getting the Cluster: When working with the MySQL Shell to

administer InnoDB Cluster, we must first request an instance of the

Cluster class. Recall, we have seen this done several times throughout

this book. To retrieve the Cluster instance, we use the dba.get_

cluster() method.

• Checking the Cluster Status: Like the last task, we have seen how

to retrieve the cluster status report. Recall, we use the cluster.

status() method. We must connect to one of the servers in the

cluster, retrieve it, then use the status method.

• Describing the Cluster: You can also get information about the cluster

such as the hostnames of the machines in the cluster along with the

ports used by each MySQL instance. The command we use is the

cluster.describe() method.

• Check an Instance for Suitability for Use with InnoDB Cluster: We

have seen the two methods you can use to prepare an instance

for use with InnoDB Cluster. The first, dba.configure_local_

instance(), is used to prepare the local machine for use in the

cluster. The second, dba.check_instance_configuration() can be

used to test the server for proper settings. Unlike the first method, the

check instance configuration method can be run remotely.

• Check and Instance for Cluster Status: You can also check and

instance for its current or last known state using the dba.check_

instance_state() method. This method takes a server connection

information as a parameter and returns its state.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

447

• Join an Instance to the Cluster: We have seen how to join an instance

to the cluster several times during this book. Recall, we use the

cluster.add_instance() method passing in the connection

information to connect to an instance to join the current cluster.

• Remove an Instance from the Cluster: If you need to perform

maintenance on a physical machine or the MySQL instance running

on the server, you should first remove it from the cluster. We can do

this with the cluster.remove_instance() method.

Now, let’s look at a couple of tasks that may be handy for exploring InnoDB Cluster

and working with a sandbox deployment.

 Example Tasks
The following are some specific tasks you may want to perform on your InnoDB Cluster

such as shutting down and restarting the cluster or restarting the cluster.

Ordinarily, an InnoDB Cluster (or any high availability system) would never be

completely shut down. In fact, it is the goal to keep the system running always. However,

for our development cluster running sandbox, it is likely we will not want to allow the

instances to run for an extended period. Not only would we want to shut down the

cluster, but we also may want to restart it later. This section explains one method to safely

shutdown the cluster and restart it.

 Shutting Down the Cluster

Simply put, the InnoDB Cluster is not designed to be turned on and off at will. Rather,

shutting down all the servers will cause the cluster to be in a complete loss of the cluster

continuity. While this would be very bad for a production system, for our development

cluster (or any one similar), it is not a grave concern. If you ever find yourself wanting

to keep the cluster around because you’ve got data in it you don’t want to lose or

applications that rely on it, you are beyond the point of using a sandbox or similar small

experimental installation.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

448

So what do you do? The AdminAPI contains methods in the dba module to recover

a cluster from complete loss. This will only work, however, if you perform a controlled

shutdown of the servers in the cluster. The following outlines a process that you can use

to power down your cluster.

• Get the cluster status and note the read-write server

• Connect to each of the read-only servers and shut them down

• Shut down the read-write server

Recall, we can connect to any machine in the cluster, fetch the cluster, and use the

status() method to find the read-write server. Connecting to the read-only servers

to shut them down should be done via the MySQL Shell or MySQL client issuing the

shutdown SQL command as the following.

$ mysqlsh --uri root@localhost:3311 --sql -e "SHUTDOWN"

Repeat this command for the other read-only servers and then for the read-write

server. Make note of which server is the read-write server.

 Restarting the Cluster

While you may expect the cluster to reestablish itself simply by restarting all the

servers in the cluster, but it doesn’t work that way. When restarting the cluster

from scratch, we must use a special method in the AdminAPI. This method works

for clusters that have not suffered any errors – those that have been shut down

successfully. This is known as recovering the cluster from total outage. However, this

only works if all servers have been rebooted, MySQL has started on all of them, and

they can access the network (and each other).

The following demonstrates how recover the cluster from total outage.

Specifically, the servers have all been restarted (mysqld restarted) and you need to

restart the cluster from the last known good position. We will use the dba.reboot_

cluster_from_complete_outage() method to reboot the cluster. First, log into the

read-write server as noted when you shut down the servers and run the command as

shown in Listing 11-11.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

449

Listing 11-11. Restarting a Cluster from Complete Outage

$./3311/start.sh

Starting MySQL sandbox

$./3312/start.sh

Starting MySQL sandbox

$./3313/start.sh

Starting MySQL sandbox

$./3314/start.sh

Starting MySQL sandbox

$ mysqlsh --py --uri root@localhost:3313

MySQL Shell 8.0.16

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.

Creating a session to 'root@localhost:3313'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 57

Server version: 8.0.16 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

> my_cluster = dba.reboot_cluster_from_complete_outage('MyClusterSB')

Reconfiguring the cluster 'MyClusterSB' from complete outage...

The instance 'localhost:3312' was part of the cluster configuration.

Would you like to rejoin it to the cluster? [y/N]: y

The instance 'localhost:3314' was part of the cluster configuration.

Would you like to rejoin it to the cluster? [y/N]: y

The instance 'localhost:3311' was part of the cluster configuration.

Would you like to rejoin it to the cluster? [y/N]: y

The cluster was successfully rebooted.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

450

Notice the command reads the cluster metadata and attempts to reconnect (rejoin)

all the servers. If this works, you will see messages indicating the cluster was rebooted. If

you encounter errors, make sure all the servers are running and can access the network,

correct any issues, and retry the command.

Tip For more information about InnoDB Cluster and a more in-depth coverage of
how to work with InnoDB Cluster including how to adapt your applications, see my
book Introducing InnoDB Cluster, Bell (apress 2018).

 Summary
What may have sounded like hype that the MySQL Shell is a game changer for MySQL

should, by now, start to look more like the truth. We explored how to use the shell in

building applications either through its SQL interface of the NoSQL interface. In doing

so, we explored the X DevAPI by using a sample application. In this chapter, we looked at

the AdminAPI for use in creating an InnoDB Cluster in a sandbox.

Now that you have seen how to setup MySQL Replication and later Group

Replication, you should now have an appreciation for the huge step forward in user

friendliness that the MySQL Shell and AdminAPI provide. In short, InnoDB Cluster

makes working with Group Replication a simple matter of learning a few API classes and

methods. The best part is it opens the door for DevOps and automation of the InnoDB

Cluster – something up until now required expensive, custom tools. Yes, InnoDB Cluster

is easier to manage and easier to automate with MySQL Shell.

This concludes our tour of MySQL Shell. By now, you should be itching at the chance

to start using it for all your MySQL needs, from simple SQL commands to administration

of InnoDB Cluster. The shell does it all.

ChapTer 11 exaMpLe: INNoDB CLuSTer SeTup aND aDMINISTraTIoN

451
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9_12

CHAPTER 12

Appendix
The example applications in this book are written as web applications using Python and

the Flask framework. If you want to implement the example applications, you will need a

few things installed on your computer to get going.

This appendix will help you prepare your computer with the tools needed; what you

need to install and how to configure your environment. We will also see a short primer

on the Flask framework as well as a walkthrough to get the sample application running.

Let’s begin with a look at how to set up our computers to run the example applications.

 Setup Your Environment
The changes to your environment are not difficult nor are they lengthy. We will be

installing Flask and a few extensions, which are needed for the application user

interface. These web libraries make developing web applications with Python much

easier than using raw HTML code and writing your own handlers and code for the

requests. Plus, Flask is not difficult to learn. The libraries we need to install are shown in

Table A-1. The table lists the name of the library/extension, a short description, and the

URL for the product documentation.

452

Note Depending on how your system is configured, you may see additional or
fewer components installed for the components installed in this section.

Of course, you should already have Python installed on your system. If you do not,

be sure to download and install the latest version of either the 2.X or 3.X edition. The

example code in this chapter was tested with Python 2.7.10 and Python 3.6.0.

To install the libraries, we can use the Python package manager, pip, to install the

libraries from the command line. The pip utility is included in most Python distributions,

but if you need to install it, you can see the installation documentation at https://pip.

pypa.io/en/latest/installing/.

If you need to install pip on Windows, you will need to download an installer,

get- pip.py (https://pip.pypa.io/en/stable/installing/#installing-with-

get-pip-py), then add the path to the installed directory to the PATH environment

variable. There are several articles that document this process in more detail. You

can Google for “installing pip on Windows 10” and find several including https://

matthewhorne.me/how-to-install-python-and-pip-on-windows-10/, which is

among the most accurate.

Table A-1. List of Libraries Required

Library Description Documentation

Flask Python Web API http://flask.pocoo.org/

docs/0.12/installation/

Flask-Script Scripting support for Flask https://flask-script.

readthedocs.io/en/latest/

Flask- Bootstrap User interface improvements and

enhancements

https://pythonhosted.org/

Flask-Bootstrap/

Flask-WTF WTForms integration https://flask-wtf.

readthedocs.io/en/latest/

WTForms Forms validation and rendering https://wtforms.readthedocs.

io/en/latest/

ChAPTer 12 APPenDIx

https://pip.pypa.io/en/latest/installing/
https://pip.pypa.io/en/latest/installing/
https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py
https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py
https://matthewhorne.me/how-to-install-python-and-pip-on-windows-10/
https://matthewhorne.me/how-to-install-python-and-pip-on-windows-10/
http://flask.pocoo.org/docs/0.12/installation/
http://flask.pocoo.org/docs/0.12/installation/
https://flask-script.readthedocs.io/en/latest/
https://flask-script.readthedocs.io/en/latest/
https://pythonhosted.org/Flask-Bootstrap/
https://pythonhosted.org/Flask-Bootstrap/
https://flask-wtf.readthedocs.io/en/latest/
https://flask-wtf.readthedocs.io/en/latest/
https://wtforms.readthedocs.io/en/latest/
https://wtforms.readthedocs.io/en/latest/

453

Note If you have multiple versions of Python installed on your system, the pip
command will install into whichever Python version environment is the default.
To use pip to install to a specific version, use pipN where n is the version. For
example, pip3 installs packages in the Python 3 environment.

The pip command is very handy because it makes installing registered Python

packages – those packages registered in the Python Package Index, abbreviated as

PyPI (https://pypi.python.org/pypi) – very easy. The pip command will download,

unpack, and install using a single command. Let’s discover how to install each of the

packages we need.

Tip Some systems may require running pip with elevated privileges such as sudo
(Linux, macOS), or in a command window run as an administrator user (Windows
10). You will know if you need elevated privileges if the install fails to copy files due
to permission issues.

 Installing Flask
Listing A-1 demonstrates how to install Flask using the command, pip install flask.

Notice the command downloads the necessary components, extracts them, then

runs the setup for each. In this case, we see Flask is composed of several components

including Werkzeug, MarkupSafe, and Jinja2. We will learn more about some of these in

the Flask Primer section.

Listing A-1. Installing Flask

$ pip3 install flask

Collecting flask

 Using cached Flask-0.12.2-py2.py3-none-any.whl

Collecting Werkzeug>=0.7 (from flask)

 Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)

 100% |█████████████████████| 327kB 442kB/s

Collecting Jinja2>=2.4 (from flask)

ChAPTer 12 APPenDIx

https://pypi.python.org/pypi

454

 Using cached Jinja2-2.10-py2.py3-none-any.whl

Collecting itsdangerous>=0.21 (from flask)

 Using cached itsdangerous-0.24.tar.gz

Collecting click>=2.0 (from flask)

 Downloading click-6.7-py2.py3-none-any.whl (71kB)

 100% |█████████████████████| 71kB 9.4MB/s

Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->flask)

 Using cached MarkupSafe-1.0.tar.gz

Installing collected packages: Werkzeug, MarkupSafe, Jinja2, itsdangerous,

click, flask

 Running setup.py install for MarkupSafe ... done

 Running setup.py install for itsdangerous ... done

Successfully installed Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1 click-6.7

flask-0.12.2 itsdangerous-0.24

 Installing Flask-Script
Listing A-2 demonstrates how to install Flask-Script using the command, pip install

flask-script. Notice in this case, we see the installation checking for prerequisites and

their versions.

Listing A-2. Installing Flask-Script

$ pip3 install flask-script

Collecting flask-script

 Using cached Flask-Script-2.0.6.tar.gz

Requirement already satisfied: Flask in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from flask-script)

Requirement already satisfied: click>=2.0 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask- script)

Requirement already satisfied: Jinja2>=2.4 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask- script)

Requirement already satisfied: Werkzeug>=0.7 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask- script)

ChAPTer 12 APPenDIx

455

Requirement already satisfied: itsdangerous>=0.21 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from Flask-

>flask-script)

Requirement already satisfied: MarkupSafe>=0.23 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from

Jinja2>=2.4->Flask->flask-script)

Installing collected packages: flask-script

 Running setup.py install for flask-script ... done

Successfully installed flask-script-2.0.6

 Installing Flask-Bootstrap
Listing A-3 demonstrates how to install Flask-Bootstrap using the command,

pip install flask-bootstrap. Once again, we see the installation checking for

prerequisites and their versions as well as installation of dependent components.

Listing A-3. Installing Flask-Bootstrap

$ pip3 install flask-bootstrap

Collecting flask-bootstrap

 Downloading Flask-Bootstrap-3.3.7.1.tar.gz (456kB)

 100% |█████████████████████| 460kB 267kB/s

Requirement already satisfied: Flask>=0.8 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from flask-bootstrap)

Collecting dominate (from flask-bootstrap)

 Downloading dominate-2.3.1.tar.gz

Collecting visitor (from flask-bootstrap)

 Downloading visitor-0.1.3.tar.gz

Requirement already satisfied: click>=2.0 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask>=0.8->flask-

bootstrap)

Requirement already satisfied: Jinja2>=2.4 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask>=0.8->flask-

bootstrap)

ChAPTer 12 APPenDIx

456

Requirement already satisfied: Werkzeug>=0.7 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask>=0.8->flask-

bootstrap)

Requirement already satisfied: itsdangerous>=0.21 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from Flask>=0.8-

>flask-bootstrap)

Requirement already satisfied: MarkupSafe>=0.23 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages

(from Jinja2>=2.4->Flask>=0.8->flask-bootstrap)

Installing collected packages: dominate, visitor, flask-bootstrap

 Running setup.py install for dominate ... done

 Running setup.py install for visitor ... done

 Running setup.py install for flask-bootstrap ... done

Successfully installed dominate-2.3.1 flask-bootstrap-3.3.7.1 visitor-0.1.3

 Installing Flask-WTF
Listing A-4 demonstrates how to install Flask-WTF using the command, pip install

flask-wtf.

Listing A-4. Installing Flask-WTF

$ pip3 install flask-wtf

Collecting flask-wtf

 Downloading Flask_WTF-0.14.2-py2.py3-none-any.whl

Requirement already satisfied: WTForms in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from flask-wtf)

Requirement already satisfied: Flask in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from flask-wtf)

Requirement already satisfied: Jinja2>=2.4 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-wtf)

Requirement already satisfied: click>=2.0 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-wtf)

Requirement already satisfied: Werkzeug>=0.7 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-wtf)

ChAPTer 12 APPenDIx

457

Requirement already satisfied: itsdangerous>=0.21 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from Flask-

>flask-wtf)

Requirement already satisfied: MarkupSafe>=0.23 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from

Jinja2>=2.4->Flask->flask-wtf)

Installing collected packages: flask-wtf

Successfully installed flask-wtf-0.14.2

 Installing WTForms
The following demonstrates how to install WTForms using the command, pip install

wtforms. In this case, the installation is simple since we only need the one package.

$ pip3 install wtforms

Collecting wtforms

 Using cached WTForms-2.1.zip

Installing collected packages: wtforms

 Running setup.py install for wtforms ... done

Successfully installed wtforms-2.1

 Installing Connector/Python
You should also have the MySQL Connector/Python 8.0.16 or later database connector

installed. If you do not, download it from https://dev.mysql.com/downloads/

connector/python/ and install it. If you have multiple versions of Python installed, be

sure to install it in all Python environments you want to use. Otherwise, you may see an

error like the following when starting the code.

$ python3 ./mygarage_v1.py runserver -p 5001

Traceback (most recent call last):

 File "./mygarage_v1.py", line 18, in <module>

 from database.mygarage import Databases

 File ".../Ch06/database/mygarage.py", line 15, in <module>

 import mysql.connector

ModuleNotFoundError: No module named 'mysql'

ChAPTer 12 APPenDIx

https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/python/

458

Pip can also be used to install MySQL Connector/Python. The following shows how

to use PIP to install the connector.

$ pip3 install mysql-connector-python

Collecting mysql-connector-python

 Downloading mysql_connector_python-8.0.16-cp36-cp36m-macosx_10_12_x86_64.

whl (3.2MB)

 100% |█████████████████████| 3.2MB 16.9MB/s

Installing collected packages: mysql-connector-python

Successfully installed mysql-connector-python-8.0.16

Now that our computer is setup, let’s take a crash course on Flask and its associated

extensions. The following will not teach you every nuance of Flask; rather, the goal is to

get you familiar with the layout of the application and how the pieces fit together.

 Flask Primer
Flask is one of several web application libraries (sometimes called frameworks or

application programming interfaces) for use with Python. Flask is unique among the

choices in that it is small and, once you are familiar with how it works, easy to use. That

is, once you write the initialization code, most of your work with Flask will be limited to

creating web pages, redirecting responses, and writing your feature code.

Flask is considered a micro-framework because it is small and lightweight, and it

doesn’t force you into a box writing code specifically to interact with the framework. It

provides everything you need and nothing you don’t, leaving the choice of what to use in

your code up to you.

Flask is made up of two major components providing the basic functionality: a

Web Server Gateway Interface (WSGI) that handles all the work-hosting web pages

and a template library for easier web page development that reduces the need to learn

HTML, removes repetitive constructs, and provides a scripting capability for HTML

code. The WSGI component is named Werkzeug, which loosely translated from German

means, “work” “stuff” (https://palletsprojects.com/p/werkzeug//). The template

component is named Jinja2 and is modeled after Django (http://jinja.pocoo.org/

docs/2.10/). Both were developed and are maintained by the originators of Flask.

ChAPTer 12 APPenDIx

https://palletsprojects.com/p/werkzeug//
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/

459

Flask is also an extensible library allowing other developers to create additions

(extensions) to the basic library to add functionality. We saw how to install some of the

extensions available for Flask in the previous section. We will be using the scripting,

bootstrap, and WTForms extensions in sample applications.

One of the components that you may consider “missing” from Flask is the ability

to interact with other services like database systems. This was a purposeful design and

functionality like this can be achieved through extensions. We have already installed

the extensions we need along with Connector/Python, which we need to interact with

MySQL.

Flask, together with the extensions described earlier, provides all the wiring and

plumbing you need to make a web application in Python. It removes almost all the

burdens required to write web applications such as interpreting client response packets,

routing, HTML form handling, and more. If you’ve ever written a web application in

Python, you will appreciate the ability to create robust web pages without the complexity

of writing HTML and style sheets.

Now, let’s get started learning Flask! If you take your time and try the sample

application, your first Flask application will work on the first try. The hardest part of

learning Flask is already past – installing Flask and its extensions. The rest is learning the

concepts of writing applications in Flask. Before we do that, let’s learn more about the

terminology in Flask as well as how to set up the base code we will use to initialize the

application instance that we will be using in this chapter.

 Terminology
Flask is designed to make a lot of the tedium of writing web applications easier. In Flask

parlance, a web page is rendered using two parts of your code: a view, which is defined

in the HTML file(s), and a route, which processes the requests from a client. Recall, we

can see one of two requests: a GET request that requests loading of a web page (read

from the client’s perspective), and a POST request that sends data from the client via the

web page to the server (write from the client’s perspective). Both requests are handled in

Flask using functions you define.

These functions then render the web page to send back to the client to satisfy the

request. Flask calls the functions view functions (or views for short). The way Flask

knows which method to call is using decorators that identify the URL path (called a

route in Flask). You can decorate a function with one or more routes making it possible

ChAPTer 12 APPenDIx

460

to provide multiple ways to reach the view. The decorator used is @app.route(<path>).

The following shows an example of multiple routes for a view function. This shows a

small excerpt of the function for brevity.

@app.route('/handtool', methods=['GET', 'POST'])

@app.route('/handtool/<int:handtool_id>', methods=['GET', 'POST'])

def handtool(handtool_id=None):

 """Manage handtool CRUD operations."""

 handtool_table = Handtool(mygarage)

 form = HandtoolForm()

 # Get data from the form if present

 form_handtoolid = form.handtoolid.data

 # Handtool type choices

 form.handtooltype.choices = HANDTOOL_TYPES

 vendor_list = Vendor(mygarage)

 vendors = vendor_list.read()

 vendor_list = []

...

 return render_template("handtool.html", form=form)

Notice there are multiple decorators. The first is handtool, which allows us to use

a URL like localhost:5000/handtool, which causes Flask to route execution to the

handtool() function. The second is handtool/<handtool_id>, which demonstrates how

to use variables to pass information to the view. In this case, if the user (the application)

uses the URL localhost:5000/handtool/4842, which Flask places the value, 4842, in the

handtool_id variable. In this way, we can pass information dynamically to our views.

At the end of the function, we return with a call to the render_template() function

(imported from the flask module) which tells flask to return (refresh) the web page with

data we’ve acquired or assigned. The web page, handtool.html, while part of the view is

called a form in Flask. It is this concept that we will use to retrieve information from the

database and send it to the user. We can return a simple HTML string (or an entire file)

or what is called a form. Since we are using the Flask-WTF and WTForms extensions, we

can return a template rendered as a form class. We will discuss forms, form classes, and

other routes and views in a later section. As you will see, templates are another powerful

feature making it easy to create web pages.

ChAPTer 12 APPenDIx

461

Flask builds a list of all the routes in the application making it easy for the application

to route execution to the correct function when requested. But what happens when a

route is requested but doesn’t exist in the application? By default, you will get a generic

error message like “Not Found. The requested URL was not found on the server.” We will

see how to add our own custom error handling routes in a later section.

Now that we know more about the terminology used in Flask and how it is structured

to work with web pages, let’s look at how a typical Flask application with the extensions

we need is constructed.

 Initialization and the Application Instance
Flask and its extensions provide the entry point for your web application. Instead of

writing all that onerous code yourself, Flask does it for you! The Flask extensions we will

be using in this chapter include Flask-Script, Flask-Bootstrap, Flask-WTF, and WTForms.

The following sections briefly describe each.

 Flask-Script

Flask-Script enables scripting in Flask applications by adding a command-line parser

(manifested as manager) that you can use to link to functions you’ve written. This is

enabled by decorating the function with @manager.command. The best way to understand

what this does for us is through an example.

The following is a basic, raw Flask application that does nothing. It’s not even a

“hello, world” example because nothing is shown and there are no web pages hosted –

it’s just the raw Flask application.

from flask import Flask # import the Flask framework

app = Flask(__name__) # initialize the application

if __name__ == "__main__": # guard for running the code

 app.run() # launch the application

Notice the app.run() call. This is called the server startup and is executed when

we load the script using the Python interpreter. When we run this code, all we see is the

default message from Flask as shown in the following. Notice we don’t have any way

to see help as there are no such options. We also see the code launches using defaults

for the web server (which we can change in the code if we desire). For example, we can

change the port that the server is listening.

ChAPTer 12 APPenDIx

462

$ python ./sample-code.py --help

 ∗ Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

With Flask-Script, we add not only a help option but options to control the server.

The following code shows how easy it is to add the statements to enable Flask-Script. The

new statements are highlighted in bold.

from flask import Flask # import the Flask framework

from flask_script import Manager # import the flask script manager class

app = Flask(__name__) # initialize the application

manager = Manager(app) # initialize the script manager class

Sample method linked as a command-line option

@manager.command

def hello_world():

 """Print 'Hello, world!'"""

 print("Hello, world!")

if __name__ == "__main__": # guard for running the code

 manager.run() # launch the application via manager class

When this code is run, we can see there are additional options available. Notice that

the documentation string (immediately following the method definition) is shown as the

help text for the command added.

$ python ./flask-script-ex.py --help

usage: flask-script-ex.py [-?] {hello_world,shell,runserver} ...

positional arguments:

 {hello_world,shell,runserver}

 hello_world Print 'Hello, world!'

 shell Runs a Python shell inside Flask application

context.

 runserver Runs the Flask development server i.e. app.run()

optional arguments:

 -?, --help show this help message and exit

ChAPTer 12 APPenDIx

463

Notice we see the command line arguments (commands) we added, hello_world,

but we also see two new ones supplied by Flask-Script: shell and runserver. You must

choose one of these commands when launching the server. The shell command allows

you to use the code in a Python interpreter or similar tool and the runserver executes

the code starting the web server.

Not only can we get help about the commands and options, Flask-Script also

provides more control over the server from the command line. In fact, we can see all the

options for each command by appending the --help option as shown in the following.

$ python ./flask-script-ex.py runserver --help

usage: flask-script-ex.py runserver [-?] [-h HOST] [-p PORT] [--threaded]

 [--processes PROCESSES]

 [--passthrough-errors] [-d] [-D] [-r]

[-R]

 [--ssl-crt SSL_CRT] [--ssl-key SSL_KEY]

Runs the Flask development server i.e. app.run()

optional arguments:

 -?, --help show this help message and exit

 -h HOST, --host HOST

 -p PORT, --port PORT

 --threaded

 --processes PROCESSES

 --passthrough-errors

 -d, --debug enable the Werkzeug debugger (DO NOT use in production

 code)

 -D, --no-debug disable the Werkzeug debugger

 -r, --reload monitor Python files for changes (not 100% safe for

 production use)

 -R, --no-reload do not monitor Python files for changes

 --ssl-crt SSL_CRT Path to ssl certificate

 --ssl-key SSL_KEY Path to ssl key

Notice here we see we can control all manner of things about the server including

the port, host, and even how it executes.

ChAPTer 12 APPenDIx

464

Finally, we can execute the method we’ve decorated as a command-line option as

shown in the following.

$ python ./flask-script-ex.py hello_world

Hello, world!

Thus, Flask-Script provides some very powerful features with only a few lines of code.

You’ve got to love that!

 Flask-Bootstrap

Flask-Bootstrap was originally developed by Twitter for making uniform, nice-looking

web clients. Fortunately, they’ve made it a Flask extension so that everyone can take

advantage of its features. Flask-Bootstrap is a framework on its own and provides even

more command-line control as well as user interface components for clean, attractive

web pages. It is also compatible with the newest web browsers.

The framework does its magic behind the scenes as a client library of cascading

style sheets (CSS) and scripts that are invoked from the HTML templates (commonly

referred to as either HTML files or template files) in Flask. We will learn more about

templates in a later section. Since it is client-side, we won’t see much by initializing it in

the main application. Regardless, the following shows how to add Flask-bootstrap to our

application code. Here, we see we have a skeleton with Flask-Script and Flask-Bootstrap

initialized and configured.

from flask import Flask # import the Flask framework

from flask_script import Manager # import the flask script manager class

from flask_bootstrap import Bootstrap # import the flask bootstrap extension

app = Flask(__name__) # initialize the application

manager = Manager(app) # initialize the script manager class

bootstrap = Bootstrap(app) # initialize the bootstrap extension

if __name__ == "__main__": # guard for running the code

 manager.run() # launch the application via manager class

ChAPTer 12 APPenDIx

465

 WTForms

WTForms is a component we need to support the Flask-WTF extension. It provides

much of the functionality that the Flask-WTF component provides (because the Flask-

WTF component is a Flask-specific wrapper for WTForms). Thus, we need only install it

as a prerequisite for Flask-WTF and we will discuss it in the context of Flask-WTF.

 Flask-WTF

The Flask-WTF extension is an interesting component providing several very useful

additions, most notably for our use, integration with WTForms (a framework agnostic

component) that permits the creation of form classes, and additional web security in the

form of cross-site request forgery (CSRF) protection. These two features allow you to take

your web application to a higher level of sophistication.

 Form Classes

Form classes provide a hierarchy of classes that make defining web pages more logical.

With Flask-WTF, you can define your form using two pieces of code; a special class

derived from FormForm class (imported from the Flask framework) that you use to

define fields using one or more additional classes that provide programmatic access to

data, and an HTML file (or template) for rendering the web page. In this way, we see an

abstraction layer (form classes) over the HTML files. We will see more about the HTML

files in the next section.

Using form classes, you can define one or more fields such as TextField for text,

StringField for a string, and more. Better still, you can define validators that allow you

to programmatically describe the data. For example, you can define a minimum and

maximum number of characters for a text field. If the number of characters submitted

is outside of the range, an error message is generated. And, yes, you can define error

message! The following lists some of the validators available. See http://wtforms.

readthedocs.io/en/latest/validators.html for a complete list of validators.

To form classes, we must import the class and any field classes we want to use in

the preamble of the application. The following shows an example of importing the form

class and form field classes. In this example, we also import some validators that we will

use for validating the data automatically.

ChAPTer 12 APPenDIx

http://wtforms.readthedocs.io/en/latest/validators.html
http://wtforms.readthedocs.io/en/latest/validators.html

466

from flask_wtf import FlaskForm

from wtforms import (HiddenField, TextField, TextAreaField, SelectField,

 SelectMultipleField, IntegerField, SubmitField)

from wtforms.validators import Required, Length

To define a form class, we must derive a new class from FlaskForm. From there, we

can construct the class however we want, but it is intended to allow you to define the

fields. The FlaskForm parent class includes all the necessary code that Flask needs to

instantiate and use the form class.

Let’s look at a simple example. The following shows the form class for the handtool

web page. The handtool table, which we will link to this code via the view function,

contains several fields. We add a class for each field we want to put on the page using

one of the available field classes. Since the Id field is not something users need to see, we

make that field a hidden field and the other fields derivatives of the TextField() class.

Notice how these were defined in the listing with names (labels) as the first parameter.

class HandtoolForm(FlaskForm):

 handtoolid = HiddenField('Id')

 vendor = NewSelectField(

 'Vendor', validators=[Required(message=REQUIRED.format("Vendor"))]

)

 description = TextField(

 'Description',

 validators=[Required(message=REQUIRED.format("Description")),

 Length(min=1, max=125,

 message=RANGE.format("Description", 1, 125))]

)

 handtooltype = NewSelectField(

 'Handtool Type',

 validators=[Required(message=REQUIRED.format("Handtool Type"))]

)

 toolsize = TextField('ToolSize')

 place = NewSelectField(

 'Location',

 validators=[Required(message=REQUIRED.format("Location"))]

)

ChAPTer 12 APPenDIx

467

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

 close_button = SubmitField('Close')

Notice also we have defined an array of validators in the form of function calls

imported from the WTForms component for the fields. In each case, we use strings for

the messages to make the code easier to read and more uniform.

We use the Required() validator that indicates the field must have a value. We

augment the default error message with the name of the field to make it easier for the

user to understand. We also use a Length() validator function that defines the minimal

and maximum length of the field data. Once again, we augment the default error

message. Validators are applied only on POST operations (when a submit event has

occurred).

Next, we see there are three SubmitField() instances: one for a create (add) button,

another for a delete button, and a close button. As you may surmise, in HTML parlance,

these fields are rendered as <input> fields with a type of “submit.”

There are several field classes available for use. Table A-2 shows a sample of the most

commonly used field classes (also called HTML fields). You can also derive from these

fields to create custom field classes and provide text for the label that you can display

next to the field (or as the button text for example). We will see an example of this in a

later section.

ChAPTer 12 APPenDIx

468

 Cross-Site Request Forgery (CSRF) Protection

Cross-Site Request Forgery (CSRF) Protection is a technique that permits developers

to sign web pages with an encrypted key making it much more difficult for hackers to

spoof a GET or POST request. This is accomplished by first placing a special key in the

application code and then referencing the key in each of our HTML files. The following

shows an example of the preamble of an application. Notice all we need to do is assign

the SECRET_KEY index of the app.config array with a phrase. This should be a phrase

that is not easily guessed.

from flask import Flask # import the Flask framework

from flask_script import Manager # import the flask script manager class

Table A-2. WTForms Field Classes

Field class Description

BooleanField A checkbox with True and False values

DateField Accepts date values

DateTimeField Accepts date-time values

DecimalField Accepts decimal values

FileField File upload field

FloatField Accepts a floating-point value

HiddenField hidden text field

IntegerField Accepts integer values

MultipleFileField Allows choosing multiple files

PasswordField A password (masked) text field

RadioField A list of radio buttons

SelectField A drop-down list (choose one)

SelectMultipleField A drop-down list of choices (choose one or more)

StringField Accepts simple text

SubmitField Form submit button

TextAreaField Multiline text field

ChAPTer 12 APPenDIx

469

from flask_bootstrap import Bootstrap # import the flask bootstrap extension

app = Flask(__name__) # initialize the application

app.config['SECRET_KEY'] = "He says, he's already got one!"

manager = Manager(app) # initialize the script manager class

bootstrap = Bootstrap(app) # initialize the bootstrap extension

if __name__ == "__main__": # guard for running the code

 manager.run() # launch the application via manager class

To activate the CSRF in our web pages, we merely add the form.csrf_token to the

HTML file. This is a special hidden field that Flask uses to validate the requests. We will

see more about where to place this in a later section. But first, let’s see a cool feature of

Flask called flash.

 Message Flashing

There are many cool features in Flask. The creators and the creators of the Flask

extensions seem to have thought of everything – even error messaging. Consider a

typical web application. How do you communicate errors to the user? Do you redirect to

a new page, issue a popup, or perhaps display the error on the page? Flask has a solution

for this called message flashing.

Message flashing is accomplished using the flash() method from the Flask

framework. We simply import it in the preamble of our code; then when we want to

display a message, we call the flash() function passing in the error message we want

to see. Flask will present the error in a nicely formatted box presented at the top of the

form. It doesn’t replace the form and isn’t a popup, but it does allow the user to dismiss

the message. You can use flash messaging to communicate errors, warnings, and even

state changes to the user. Figure A-1 shows an example of a flash message. In this

example, we see two flash messages demonstrating you can display multiple messages at

the same time. Notice the small X to the right of the message used to dismiss the image.

Figure A-1. Example Flash Message

ChAPTer 12 APPenDIx

470

 HTML Files and Templates
Let’s review our tour so far. We have discovered how to initialize an application with

the various components and learned how Flask uses routes via the decorators to create

a set of URLs for the application; these routes are directed to a view function, which

instantiates the form class. The next piece of the puzzle is how to link the HTML web

page to the form class.

Recall, this is done via the render_template() function where we pass in the name

of a HTML file for processing. The reason template is in the name is because we can use

the Jinja2 template component to make writing web pages easier. More specifically, the

HTML file contains both HTML tags and Jinja2 template constructs.

Note All hTML files (templates) must be stored in the templates folder in the
same location as the main application code. If you place them anywhere else,
Flask won’t be able to find the hTML files.

Templates together with form classes are where the user interface is designed. In

short, templates are used to contain presentation logic and HTML files are used to

contain the presentation data. These topics are likely to be the areas where some may

need to spend some time experimenting with how to use them. The following sections

give you a brief overview of Jinja2 templates and how to use them in our HTML files

through demonstration of working examples. See the online documentation noted for

more details.

 Jinja2 Templates Overview

Jinja2 templates, hence templates, are used to contain any presentation logic like looping

through data arrays, making decisions on what to display, and even formatting and

presentation settings. If you are familiar with other web development environments, you

may have seen this encapsulated in scripts or enabled through embedded scripting such

as JavaScript.

Recall we rendered our web pages in our main code. This function tells Flask to read

the file specified and convert the template constructs (render them) into HTML. That is,

Flask will expand and compile the template constructs into HTML that the web server

can present to the client.

ChAPTer 12 APPenDIx

471

There are several template constructs you can use to control the flow of execution,

loops, and even comments. Whenever you want to use a template construct (think

scripting language), you enclose it with {% %} prefix and suffix. This is so that the Flask

framework recognizes the construct as a template operation rather than HTML.

However, it is not unusual and quite normal to see the template constructs

intermixed with HTML tags. In fact, that is exactly how you should do it. After all, the files

you will create are named .html. They just happen to contain template constructs. Does

that mean you can only use templates when working with Flask? No, certainly not. If you

want, you can render a pure HTML file!

At first, looking at templates can be quite daunting. But it isn’t that difficult. Just look

at all the lines with the {% and %} as the “code” portions. You may also see comments in

the form of {# #} prefix and suffix.

If you look at the template, you will see the constructs and tags and formatted using

indentation of two spaces. Indentation and whitespace in general don’t matter outside

the tags and constructs. However, most developers will use some form of indentation to

make the file easier to read. In fact, most coding guidelines require indentation.

One of the cool features of templates beyond the constructs (think code) is the ability

to create a hierarchy of templates. This allows you to create a “base” template that your

other templates can use. For example, you can create a boilerplate of template constructs

and HTML tags so that all your web pages look the same.

Recall from our look at Flask-Bootstrap, bootstrap provides several nice formatting

features. One of those features is creating a pleasant looking navigation bar. Naturally,

we would want this to appear on all our web pages. We can do this by defining it in the

base template and extending it in our other template (HTML) files. Let’s look at a base

template for the sample application. Listing A-5 shows the base template for the library

application.

Listing A-5. Sample Base Template

{% extends "bootstrap/base.html" %}

{% block title %}MyGarage{% endblock %}

{% block navbar %}

<div class="navbar navbar-inverse" role="navigation">

 <div class="container">

 <div class="navbar-header">

ChAPTer 12 APPenDIx

472

 < button type="button" class="navbar-toggle" data- toggle=

"collapse" data-target=".navbar-collapse">

 Toggle navigation

 </button>

 MyGarage v1

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 Handtools

 <ul class="nav navbar-nav">

 Powertools

 <ul class="nav navbar-nav">

 Organizers

 <ul class="nav navbar-nav">

 Storage Equipment

 <ul class="nav navbar-nav">

 Storage Places

 <ul class="nav navbar-nav">

 Vendors

 </div>

 </div>

</div>

{% endblock %}

{% block content %}

<div class="container">

 {% for message in get_flashed_messages() %}

 <div class="alert alert-warning">

ChAPTer 12 APPenDIx

473

 < button type="button" class="close" data-dismiss="alert">×

</button>

 {{ message }}

 </div>

 {% endfor %}

 {% block page_content %}{% endblock %}

</div>

{% endblock %}

Wow, there is a lot going on here! Take some time and read through it. While it may

seem like something from the ship that crashed in Roswell, it really isn’t that difficult to

understand. You can find a full explanation of templates and Jinja2 at http://jinja.

pocoo.org/docs/2.10/.

 HTML Files Using Templates

Now that we know the template file generates the HTML for the page, we are ready to

see how to manifest the field classes we defined in our form classes. Let’s begin the

discussion with a walkthrough of how to present data for the vendor data in the sample

application. We begin with the form class and the field classes defined to the view

function, which renders the template and finally the template itself.

Recall, the form class is where we define one or more form fields. We will use

these field class instances to access the data in our view functions and in the template.

Listing A-6 shows the form class.

Listing A-6. Vendor Form Class

class VendorForm(FlaskForm):

 """Vendor form class"""

 vendorid = HiddenField('VendorId')

 name = TextField(

 'Name',

 validators=[

 Required(message=REQUIRED.format("Name")),

 Length(min=1, max=50, message=RANGE.format("Name", 1, 50))]

)

 url = TextField(

ChAPTer 12 APPenDIx

http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/

474

 'URL', validators=[

 Required(message=REQUIRED.format("URL")),

 Length(min=0, max=125, message=RANGE.format("URL", 0, 125))]

)

 sources = TextField(

 'Sources',

 validators=[

 Required(message=REQUIRED.format("Sources")),

 Length(min=0, max=40, message=RANGE.format("Sources", 0, 40))]

)

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

 close_button = SubmitField('Close')

Notice the form class creates four fields; one for the vendor Id, which is a hidden

field and one each for the name, URL, and source columns in the database table. We also

see three submit fields (buttons); one for creating new data (create_button), one for

deleting vendor data (del_button), and another to close the form (close_button).

We pass the form data to the template when it is rendered after instantiating it in the

view function. Listing A-7 shows the view function for the vendor data with the database

code removed for clarity with placeholders shown in bold. Here, we instantiate the

vendor form class first, then pass it to the template.

Listing A-7. Vendor View Function (no database access)

@app.route('/vendor', methods=['GET', 'POST'])

@app.route('/vendor/<int:vendor_id>', methods=['GET', 'POST'])

def vendor(vendor_id=None):

 """Manage vendor CRUD operations."""

 form = VendorForm()

 if vendor_id:

 # Read operation goes here

 form.create_button.label.text = "Update"

 else:

 del form.del_button

ChAPTer 12 APPenDIx

475

 if request.method == 'POST':

 operation = "Create"

 if form.close_button.data:

 operation = "Close"

 if form.create_button.data:

 if form.create_button.label.text == "Update":

 operation = "Update"

 if form.del_button and form.del_button.data:

 operation = "Delete"

 # Delete operation goes here

 if form.validate_on_submit():

 # Get the data from the form here

 if operation == "Close":

 return redirect('/list/vendor')

 elif operation == "Create":

 # Create operation goes here

 elif operation == "Update":

 # Delete operation goes here

 else:

 flash_errors(form)

 return render_template("vendor.html", form=form)

Notice here we see the routes we’ve defined for the view. Notice also we have set

the methods for requests to include both GET and POST. Notice that we can check if the

request is a POST (submission of data). It is in this condition that we can retrieve data

from the form class instance and save it to the database.

Finally, notice we instantiate an instance of the vendor form class (form) and later

pass that as a parameter to the render_template("vendor.html", form=form) call. In

this case, we now render the vendor.html template stored in the templates folder.

Ok, now we have our form class and view function. The focus now is what happens

when we render the HTML template file. Listing A-8 shows the HTML file (template) for

the vendor data.

ChAPTer 12 APPenDIx

476

Listing A-8. Vendor HTML File

{% extends "base.html" %}

{% block title %}MyGarage Search{% endblock %}

{% block page_content %}

 <form method=post> {{ form.csrf_token }}

 <fieldset>

 <legend>Vendor - Detail</legend>

 {{ form.hidden_tag() }}

 <div style=font-size:20pz; font-weight:bold; margin-left:150px;s>

 {{ form.name.label }}

 {{ form.name(size=50) }}

 {{ form.url.label }}

 {{ form.url(size=100) }}

 {{ form.sources.label }}

 {{ form.sources(size=40) }}

 {{ form.create_button }}

 {% if form.del_button %}

 {{ form.del_button }}

 {% endif %}

 {{ form.close_button }}

 </div>

 </fieldset>

 </form>

{% endblock %}

Notice the template begins with extending (inheriting) the base.html template file

that we discussed earlier. We see a block defining the title and another block defining the

page content. In that block, we see how to define the fields on the page referencing the

field class instances from the form class instance (form). Indeed, notice we reference the

label of the field as well as the data. The label is defined when you declare the field class

and the data is where the values are stored. When we want to populate a form (GET),

we set the data element to the value, and when we want to read the data (POST), we

reference the data element.

ChAPTer 12 APPenDIx

477

Notice also we added the CSRF token for security, rendered the hidden fields with

the form.hidden_tag() function, and included the submit fields conditionally including

the delete submit field (del_button).

Whew! That’s how Flask works to present a web page. Once you’re used to it, it is a

nifty way to separate several layers of functionality and make it easy to get data from the

user or present it to the user.

Now, let’s look at how to build custom error handlers into our application and later

how to redirect control in our application to the correct view functions.

 Error Handlers
Recall we mentioned it is possible to create your own error handling mechanisms for

errors in your application. There are two such error mechanisms you should consider

making; one for the 404 (not found) error, and another for 500 (application errors). To

define each, we first make a view function decorated with @app.errorhandler(num), a

view function, and an HTML file. Let’s look at each example.

 Not Found (404) Errors

To handle 404 (not found) errors, we create a view function with the special error

handler routing function, which renders the HTML file. Flask will automatically direct

all not found error conditions to this view. The following shows the view function for the

404 not found error handler. As you can see, it is simple.

@app.errorhandler(404)

def page_not_found(e):

 return render_template('404.html'), 404

The associated error handler HTML code is in the file named 404.html as shown in

the following. Notice we inherit from the base.html file so the resulting web page looks

the same as any other in the application complete with the menu from the bootstrap

component. Notice we can also define the text for the error message and a title. Feel free

to embellish your own error handlers to make things more interesting for your users.

{% extends "base.html" %}

{% block title %}MyGarage ERROR: Page Not Found{% endblock %}

{% block page_content %}

ChAPTer 12 APPenDIx

478

<div class="page-header">

 <h1>Page not found.</h1>

</div>

{% endblock %}

 Application (500) Errors

To handle 500 (application) errors, we follow the same pattern as before. The following is

the error handler for the application errors.

@app.errorhandler(500)

def internal_server_error(e):

 return render_template('500.html'), 500

The associated error handler HTML code is in the file named 500.html as shown in

the following. Notice we inherit from the base.html file, so the resulting web page looks

the same as any other in the application complete with the menu from the bootstrap

component.

{% extends "base.html" %}

{% block title %}MyGarage ERROR{% endblock %}

{% block page_content %}

<div class="page-header">

 <h1>OOPS! Application error.</h1>

</div>

{% endblock %}

Creating these basic error handlers is highly recommended for all Flask applications.

You may find the application error handler most helpful when developing your

application. You can even augment the code to provide debug information to be

displayed in the web page.

ChAPTer 12 APPenDIx

479

 Redirects
At this point, you may be wondering how a Flask application can programmatically

direct execution from one view to another. The answer is another simple construct in

Flask: redirects. We use the redirect() function (imported from the flask module) with

a URL to redirect control to another view. For example, suppose you had a list form and,

depending on which button the user clicks (submitting the form via POST), you want

to display a different web page. The following demonstrates how to use the redirect()

function to do this.

if kind == 'handtool':

 form.form_name.label = 'Handtools'

 if request.method == 'POST':

 return redirect('handtool')

...

elif kind == 'organizer':

 form.form_name.label = 'Organizers'

 if request.method == 'POST':

 return redirect('organizer')

...

elif kind == 'powertool':

 form.form_name.label = 'Powertools'

 if request.method == 'POST':

 return redirect('powertool')

...

Here, we see there are three redirects after a POST request. In each case, we are

using one of the routes defined in our application to tell Flask to call the associated view

function. In this way, we can create a menu or a series of submit fields to allow the user

to move from one page to another.

The redirect() function requires a valid route, and for most cases, it is simply

the text you supplied in the decorator. However, if you need for form a complex URL

path, you can use the url_for() function to validate the route before you redirect. The

function also helps avoid broken links if you reorganize or change your routes. For

example, you can use redirect(url_for('vendor')) to validate the route and form a

URL for it.

ChAPTer 12 APPenDIx

480

 Additional Features
There is much more to Flask than what we’ve seen in this crash course. Some of the

things not discussed that you may be interested in learning more about include the

following (these are just a few of them). If these interest you, consider looking them up in

the online documentation.

• Application and Request Context: there are variables you can use

to capture application context such as session, global, request,

and more. For more information, see http://flask.pocoo.org/

docs/0.12/appcontext/.

• Cookies: You can work with cookies if you require. For more

information, see http://flask.pocoo.org/docs/0.12/

quickstart/#cookies.

• Flask-Moment – Localization of Dates and Times: If you need to work

with localization of date and time, see the Flask-Moment extension at

https://github.com/miguelgrinberg/Flask-Moment.

Tip For more information about Flask and how to use it and its associated
packages, the following book is an excellent reference on the topic: Flask Web
Development: Developing Web Applications with Python (O'reilly Media 2014),
Miguel Grinberg.

 Flask Review: Sample Application
Now that we’ve had a brief primer on Flask, let’s see how all this works with one of

our sample applications. In this section, we will review how to set up the sample

applications and how to start them. In this section, we will see the sample application

from Chapter 5. The sample applications from later chapters work in a very similar

manner. Once you are familiar with how to launch and interact with the examples

here, you should be able to run the other sample applications. We begin with how to

download and copy the files.

ChAPTer 12 APPenDIx

http://flask.pocoo.org/docs/0.12/appcontext/
http://flask.pocoo.org/docs/0.12/appcontext/
http://flask.pocoo.org/docs/0.12/quickstart/#cookies
http://flask.pocoo.org/docs/0.12/quickstart/#cookies
https://github.com/miguelgrinberg/Flask-Moment

481

 Preparing Your PC
The first thing you should do is to download the source code for this book from the book

web site https://www.apress.com/us/book/97814NNNNNNNN. You should see folders

representing the source code for each chapter. Just download the folder that matches the

chapter you want. Once you’ve downloaded the source code and extracted it, locate the

folder for the sample application you want to use. For example, the sample application

in Chapter 5 is in a folder by that name at https://github.com/apress/introducing-

mysql- 8-shell.

At this point, you must choose where you want to run the application. If you want

to run it from the location where you downloaded and extracted the files, you can.

However, it is best to move the code to another location.

For example, on Linux or macOS, you can place it in a folder named source in your

home folder. Or, on Windows 10, you can place it in your Documents folder. Once you

decide on the location, you can then create a folder to contain the sample application

(mygarage_v1). Next, copy the files created when you extracted the code for the chapter

into the mygarage_v1 folder including the subdirectories. If you then show the list of files

in the folder, you should have the main executable file and two subfolders as shown in

the following.

C:\Users\cbell\Documents\mygarage_v1>dir

 Volume in drive C is Local Disk

 Volume Serial Number is AAFC-6767

 Directory of C:\Users\cbell\Documents\mygarage_v1

03/14/2019 02:20 PM <DIR> .

03/14/2019 02:20 PM <DIR> ..

03/14/2019 02:20 PM <DIR> database

03/08/2019 11:02 PM 38,045 mygarage_v1.py

03/14/2019 02:20 PM <DIR> templates

 1 File(s) 38,045 bytes

 4 Dir(s) 124,419,055,616 bytes free

The two subfolders, database and templates, are used to store the code modules

and assorted files we need. The database folder is where we place the database code

modules and the templates folder is where we place the .html files. You can explore the

contents of those folders if you’d like.

ChAPTer 12 APPenDIx

https://www.apress.com/us/book/97814NNNNNNNN
https://github.com/apress/introducing-mysql-8-shell
https://github.com/apress/introducing-mysql-8-shell

482

By now, you should have MySQL installed and working on your computer. You will

need the user account and password that you want to use to connect to MySQL to enter

on the command to start the application. Before we do that, let’s ensure we have the

database created and populated.

Recall from the discussion in Chapter 5, the sample source code contains a file

named database/garage_v1.sql, which contains the SQL statements for creating the

sample database and populating it with sample data. If you haven’t already done so, let’s

do that now.

Change to the database folder and issue the following command to tell the shell to

open the file and execute the statements. It won’t take but a minute to run and, since

we’re running in batch mode, will exit the shell when complete. Listing A-9 shows the

results of running these commands.

Listing A-9. Populating the Example Database (Windows 10)

C:\Users\cbell\Documents\mygarage_v1>cd database

C:\Users\cbell\Documents\mygarage_v1\database>mysqlsh --uri root@

localhost:3306 --sql -f garage_v1.sql

Records: 31 Duplicates: 0 Warnings: 0

Records: 6 Duplicates: 0 Warnings: 0

Records: 250 Duplicates: 0 Warnings: 0

Records: 3 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 22 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 22 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 0 Duplicates: 0 Warnings: 0

Records: 2 Duplicates: 0 Warnings: 0

Records: 3 Duplicates: 0 Warnings: 0

ChAPTer 12 APPenDIx

483

Now that we have the database created and populated, we’re ready to launch the

sample application for the first time.

 Running the Sample Application
Change back to the mygarage_v1 folder and run the application with the following

command shown in bold. Notice, you will be prompted for the MySQL user Id (user

account) and password.

C:\Users\cbell\Documents\mygarage_v1>python mygarage_v1.py runserver

User Id: root

Password:

 ∗ Serving Flask app "mygarage_v1" (lazy loading)
 ∗ Environment: production
 WARNING: Do not use the development server in a production environment.

 Use a production WSGI server instead.

 ∗ Debug mode: off
 ∗ Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

If you are running with a newer version of Flask and Python, you may see one or

more deprecation warnings such “DeprecationWarning: Required is going away in

WTForms 3.0, use DataRequired”. If that occurs, you can suppress the warnings with

the option -W ignore::DeprecationWarning as shown in the following.

C:\Users\cbell\Documents\mygarage_v1>python -W ignore::DeprecationWarning

mygarage_v1.py runserver

Notice the line at the end of the output. This shows you the URL to use in your

browser to connect to and use the application. It is running at this point, we just need

to connect to it. Go ahead and copy that URL into your browser. When you press

ENTER (or click Go, etc.), you will see the landing page for the application as shown

in Figure A-2.

ChAPTer 12 APPenDIx

484

Figure A-2. Landing Page (mygarage_v1) – Storage Equipment List View

Here, we see the landing or default page is the storage equipment list. This is shown

as the default as it is the highest level of view of a garage storage solution – all the

containers in the garage.

Notice also across the top of the application we see the Flask banner, which has

links (buttons) for each of the views in the application including handtools, powertools,

organizers, storage equipment, storage places, and vendors. Each of these links displays

a list of the items in the view. Thus, we will call them list views.

Notice each row in the view has a modify/view link, which we can use to see more

detail about an item, or we can edit (or delete) the item. The New button at the top allows

us to create a new item for the active list view.

As we learned in Chapter 5, each of these represents a table in the database. The

handtools, powertools, and vendors represent the tools and their manufacturers in our

garage. The other views are the containers we use in our garage to organize the tools.

As you may surmise from reading Chapter 5, each of the views in presented in list

form. Thus, we will see a list of all the items (records) in each view (table). Let’s briefly

look at each of these in order as shown on the banner. Figure A-3 shows the handtools

view and Figure A-4 shows the handtool detail view.

ChAPTer 12 APPenDIx

485

In this view, we see the tool type, description, size, which storage equipment it’s

stored in, the location type, and location. Thus, with a glance we can see our 8” C clamp

is store in the rolling tool cabinet in the bottom drawer. Notice also we have the modify/

view link for each item, which allows us to edit the item (row) or to see more details

about the handtool.

Figure A-4. Handtool View

Figure A-3. Handtools List View

ChAPTer 12 APPenDIx

486

Here, we see that there are buttons at the bottom for update, delete, or close

operations. If we want to make changes, we use the Update button. If we want to delete the

item (record/row), we use the Delete button. The Close button simply closes the form and

returns to the list view. These buttons are present on all the detailed view forms. Figure A-5

shows the powertools list view, which has a similar layout as the handtools list view.

Figure A-5. Powertools List View

Figure A-6 shows the organizers list view.

Figure A-6. Organizers List View

ChAPTer 12 APPenDIx

487

Figure A-7 shows the storage equipment list view, which is also the starting or

landing view.

Figure A-7. Storage Equipment List View

By now, you are starting to realize all the list views have a similar layout. The

difference is in the columns as some list views use different columns to display the items.

Let’s complete the survey of the list views.

Figure A-8 shows the storage places list view. Here, we see slightly different columns

that match the data we’ve stored in the table.

Figure A-8. Storage Places List View

ChAPTer 12 APPenDIx

488

Finally Figure A-9 shows the vendors list view.

Figure A-9. Vendors List View

At this point, if you’ve launched the application, you should see several messages

appear in the terminal (command window). Each of these tells us what the application

responded to as you clicked through the views. The following shows an excerpt. This is

completely normal and can help you diagnose any problems should something go wrong.

127.0.0.1 - - [17/Mar/2019 17:06:48] "GET /list/handtool HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:07:22] "GET /list/powertool HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:07:42] "GET /list/organizer HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:08:03] "GET /list/storage HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:08:26] "GET /list/place HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:08:55] "GET /list/vendor HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:09:17] "GET /list/place HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:09:18] "GET /list/storage HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:09:20] "GET /list/organizer HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:09:22] "GET /list/powertool HTTP/1.1" 200 -

127.0.0.1 - - [17/Mar/2019 17:09:23] "GET /list/handtool HTTP/1.1" 200 –

Now, let’s review how to use the application to store and locate tools in our garage

including how the create, read, update, and delete (CRUD) operations represented.

ChAPTer 12 APPenDIx

489

 How to Use the Application
Let’s begin by explaining how to use the sample application. While most sample

applications you find in books are meant to simply demonstrate a concept,1 seldom is

there a complete, usable application. The applications in Chapters 5 and 6 are meant to

be usable by anyone not just to demonstrate the concepts, but also to use!

We have already seen how to get a list of the various items in the tables (database)

and we’ve learned that we can edit any item we want to make changes, but what do you

do when you want to add a new item?

For example, when you acquire a new tool or maybe loose or given one away,

you can edit the data by adding a new tool identifying where it is stored. That is, you

identify the organizer, storage place, and storage equipment. For example, if you

acquire a new hammer, you can click on the New button in the handtools list view, fill

in the data, and use the drop-down lists to choose where it is stored. Note that when

you open a new detail view, the Delete button is now shown (not relevant for a create

operation). Figure A-10 shows an example.

Notice here we have drop-down lists for the vendor, tool type, and location.

Each of these is represented in the database. Recall, the tool type is an enumeration

1 Most do an excellent job of that!

Figure A-10. Adding a new hammer

ChAPTer 12 APPenDIx

490

in the handtools table. The vendor is simply a look-up of the vendor names in the

vendors table. The location drop down is populated a bit more sophisticatedly as it is a

combination (join) of the storage equipment and storage place tables so that you can

choose a single entry vs. having to choose from several drop-down lists.

So, how does that help you organize things? Recall, we can also add new organizers,

storage places, and storage equipment. For example, if you want to add a bin to store

things, you can create a new record for it in the organizers view, then identify where it

is – perhaps you place it on a shelf on a shelving unit. In this way, you can build up the

storage capacity of your garage or workshop all without losing track of where things are.

That is, of course, you abide by the stock room moto: things go where things go per the

thing that tells you where things go, not by where you think they should go.2

 CRUD Operations in the Application
To complete our tour of the sample application, let’s now see how the application

implements the CRUD operations. The following briefly explains how each of the CRUD

operations is represented.

• Create: The New button on each list view allows you to create a new

record (row) in the table.

• Read: This is represented in two ways; you can view all rows for each

table using the list views, and you can view the complete details of a

record by clicking the modify/view link on the row in the list view.

• Update: The Update button on the detail view for each item allows

you to update the record (row) in the table.

• Delete: The Delete button on the detail view for each item allows you

to delete the record (row) in the table.

Now that we have seen all the views available in the application (except for

each detail view), we now have the knowledge needed to install and use the sample

application. Once again, the other sample applications in the book will work in a similar

manner even though some of the views may differ.

There is just one more thing to learn: how to turn it off.

2 As humans, we often fail this creed. Hence the need for inventory reconciliation.

ChAPTer 12 APPenDIx

491

 Shutting Down the Sample Application
To shut down the application, simply return to the terminal window where you launched

the application and CTRL-C. You can close the browser at any time, but if you try to use

the application after stopping it, you may see errors such as can’t reach this page or

unable to connect as shown in Figures A-11 and A-12.

Figure A-12. Not Found Error (Windows 10 – Firefox)

Figure A-11. Not Found Error (Windows 10 – Edge)

ChAPTer 12 APPenDIx

493
© Charles Bell 2019
C. Bell, Introducing MySQL Shell, https://doi.org/10.1007/978-1-4842-5083-9

Index

A
Account management

locking, 21
passwords, 21
roles, 20
user limits, 20

add_instance() method, 430, 436
Admin Application Programming

Interface (AdminAPI), 146, 395,
403–404

Application programming
interface (API), 4, 234, 458

APT repository
configuring packages, 67
download, 63
installation, 65, 66

server, 66, 67
shell, 70, 71

password encryption
dialog, 68

root user password, 68
save file, 65
select, 63
skipping the login, 64

Archive storage engine, 399
Authentication method dialog, 41, 42

B
Binary log, 342, 349, 368
Blackhole storage engine, 399

C
CHANGE MASTER command, 358–360
check_instance_configuration() method, 425
Class modules, test

CRUDTest, 222, 223
run_all.py, 227, 228
Test Driver, 228, 230

Comma-separated value (CSV) files, 16,
396, 400

configure_local_instance() method, 426
Cookies, 480
create_cluster() method, 426, 427
create() method, 209, 210
Create, read, update, and delete (CRUD),

147, 191, 209, 282, 488
CREATE TABLE command, 127, 192, 399
Cross-Site Request Forgery (CSRF)

Protection, 465, 468–469
CRUD operations, Python

creating data, 161
delete data, 164, 165
document store/relational data, 154
reading data, 162, 163
schema class, 155
table class, 156–158
updating data, 163, 164
working with results, 165, 167–170

CRUDTest class
code, 223–225
methods, 223
VendorTests, 225–227

https://doi.org/10.1007/978-1-4842-5083-9

494

D
Database design

code design
CRUD, 191
modules, 191

ERD, 181, 182
handtool table, 187, 188
location view, 189
organizer table, 184, 185
powertool table, 188, 189
storage equipment table, 186, 187
storage place table, 185
surrogate key, 182
vendor table, 183, 184

Database management, Python
built-in modules, 146
CRUD operations (see CRUD

operations, Python)
mysqlx module (see Mysqlx module)
script, 170–174
X DevAPI, 146, 147

Data definition language [DDL], 24, 119, 120
--datadir option, 350, 373
Data manipulation language [DML], 24,

119, 120
delete() method, 216, 218
deploy_sandbox_instance() method, 421,

423, 425
Development computer option, 41
Document-oriented database, 235
Document store development

base class
CRUD operations, 319
GarageCollection method, 319

collection classes, 324–327
CRUDTest, 328
drop down lists, 327, 328

GarageCollection Base Class code, 320,
321, 323

MyGarage class
code, 312–315
garage_v1_test unit test, 318
garage_v2_test.py, 317, 318
helper function, 316
methods, 311
Python path, 316
unit test, 317

test driver, 332–334
Test Driver run_all.py, 331, 332
vendor class, 323
VendorTests Class, 329, 330

Document store, schema design
cabinets collection, 283, 284
CREATE TABLE statement, 281
creation, 282
locations collection, 285
organizers collection, 286, 287
shelving_units collection, 287, 288
toolchests collection, 288, 289
tools collection, 289
vendors collection, 290
workbenches collection, 290, 291

Document store set up
import data, 308–310
relational data (see Relational data to

document store)
Document store systems, See also

Document-oriented database
API, 234
JSON, 235, 236
key, value mechanisms, 232, 233
metadata, 235
NoSQL interface, 234
Quick start, 237, 238

INDEX

495

E
Entity-relationship diagram (ERD), 181–183
Error handlers

application (500) Errors, 478
not Found (404) errors, 477–478

F
Fault tolerance, 368, 370
Features

APIs
adminAPI, 6
X DevAPI, 6

auto completion, 5
batch code execution, 6
command history, 6
customize prompt, 6
global variables, 6
interactive code execution, 7
JSON import, 6
logging, 7
multi-line support, 7
new

adminAPI, 8
SQL mode execution, 8
user defined reports, 8

output formats, 7
scripting languages, 7
sessions, 7
startup scripts, 7
upgrade checker, 8
user credentials, 8

Federated storage engine, 400
find_∗ functions, 296
Flash message, 469
Flask-Bootstrap, 464
Flask-Moment extension, 480

Flask primer
application and request

context, 480
cookies, 480
error handlers (see Error handlers)
HTML files, templates

vendor form class, 473, 474
vendor HTML File, 476, 477
vendor view function, 474, 475

initialization and
application instance

CSRF protection, 468, 469
Flask-Bootstrap, 464
Flask-Script, 461–464
Flask-WTF extension, 465
Form classes, 465–468
message flashing, 469
WTForms, 465

Jinja2 templates, 470, 471, 473
localization of date and time, 480
redirects, 479
sample application

CRUD operations, 490
database creation, 481–483
handtools list view, 489
run, 483–488
shutting down, 491

template library, 458
terminology, 459, 460
web application libraries, 458

Flask-Script, 461–464
Flask-WTF extension, 465
Form classes

Flask-WTF, 465
POST operations, 467
TextField, 465, 466
WTForms, 468

Index

496

G
Garage application

code design, 291
code modules, 292
document store, 276, 279
storage equipment, 276
toolchest detail view, 277
Toolchest JSON Document, 279, 280

get_classic_session(), 91
get_∗ functions, 296
get_last_insert_id(), 210
get_session() method, 91, 148
Global transaction

identifiers (GTIDs), 337, 343
GRANT commands, 125, 357
Group communication, 368
Group replication

concepts, 368, 369
failover, 388–391
failure detection, 345, 347
fault tolerance, 347
group membership, 347
GTIDs, 344
high availability, 345
recovery procedure, 345
RW transaction, 344
setup and configuration, 371
setup tutorial (see Group replication

setup)
group_replication_bootstrap

_group, 382
Group Replication plugin, 376, 380
group_replication_recovery_get_

public_key, 378
Group replication setup

data directories, 373, 374
MySQL instances, 379–381

online reference, 375
primary configuration, 376, 377
primary, start, 382
replication status, 383, 385, 386
secondaries, start, 383
secondaries to the primary, 382, 383
secondary configuration, 377–379
shutting down, 388
user account, 381, 382

GTID-based replication, 352, 354

H
Handtool class

SELECT query, 219
sql() method, 220
vendor class, 218

High availability (HA), 337
engineering principles, 338
fault tolerance, 340
features, 341
implementation, 339
recovery, 339
redundancy, 340
reliability, 338
scaling, 340
uptime, 338

I
import_json() method, 309
--initialize-insecure option, 350, 373
Inline path operator, 248
InnoDB, 16, 17
InnoDB Cluster

AdminAPI, 403
application architecture, 405–407
cluster class, 419, 420

INDEX

497

dba class, 417, 418
MySQL Router, 404
MySQL Shell, 403
overview, 393–396
sandbox, 396
storage engine

ACID, 397, 398
archive, 399
blackhole, 399
CSV, 400
federated, 400
group replication, 402
memory, 400
merge storage engine/MRG_

MYISAM, 401, 402
MyISAM, 401
performance schema, 402

typical configuration, 395
upgrade checker, 407–412
X DevAPI, 403

Installation
community edition, 30, 31
Connector/Python, 457, 458
Flask, 453, 454
Flask-Bootstrap, 455, 456
Flask-Script, 454, 455
Flask-WTF, 456, 457
Linux (Ubuntu) (see APT

respository)
macOS (see macOS, install)
MySQL Installer (see MySQL Installer,

Windows)
prerequisites, 29, 30
for Windows, 32
WTForms, 457

J
JavaScript Object Notation (JSON), 231

functions, 249, 250
creation, 251
modification, 255, 257, 258
searching, 258
utility, 264

MySQL, 236, 237
and SQL, 239
strings

MySQL, 240, 241
SQL statements, 241–244

Jinja2 templates, 470–473
JOIN clause, 143
JSON_ARRAY() function, 243, 250
JSON_ARRAYAGG() function, 250, 251
JSON_ARRAY_APPEND() function, 250, 252
JSON_ARRAY_INSERT() function, 250, 253
JSON_CONTAINS() function, 250, 258
JSON_CONTAINS_PATH()

function, 259, 263
JSON data type

querying rows, 14, 15
relational database, 11–13
structures, 10

JSON_DEPTH() function, 250, 264
JSON_EXTACT() function, 97
JSON_EXTRACT() function, 103, 245, 247,

249, 261, 263
JSON_INSERT() function, 250, 254
JSON_KEYS() function, 250, 266
JSON_LENGTH() function, 250, 266
JSON_MERGE_PATCH() function, 254
JSON_MERGE_PRESERVE()

function, 102, 254

Index

498

JSON_OBJECT() function, 243, 250, 251
JSON_PRETTY() function, 13, 101, 270, 271
JSON_QUOTE() function, 251, 268
JSON_REMOVE() function, 251, 256
JSON_REPLACE() function, 251, 257
JSON_SEARCH() function, 251, 263, 264
JSON_SET() function, 251, 257, 258
JSON_TYPE() function, 244, 251, 264
JSON_UNQUOTE() function, 269–272
JSON_VALID() function, 100, 243, 264

K
Key, value mechanisms, 232–234

L
Length() validator function, 467
Location class

class modules, 206, 207
CRUD operations, 205
limit() method, 203
MyGarage class, 203
mysqlx object, 204
primitive code, 203
testing, 207, 208

M
macOS, install

download server, 50
license dialog, 53
password dialog, 55, 56
root user password/start server

dialog, 56
summary dialog, 57
type dialog, 54
welcome dialog, 52

download shell, 51

accept license dialog, 59
summary dialog, 61
type dialog, 60
welcome dialog, 58

make_list() function, 315
Memory storage engine, 400
merge storage engine/MRG_MYISAM, 401
Message flashing, 469
MyGarage class

garage_v1 Code, 196, 198
methods, 195
mysqlx module, 196, 199
testing

garage_v1_test.py, 201
print() statements, 201
--py option, 200
Python path, 199

MyISAM storage engine, 401
MySQL commands/functions

create indexes, 139, 140
database creation, 126, 127
deleting data, 131, 132
selecting data (see Selecting data,

MYSQL)
simple join, 141, 143
stored procedure, 144, 145
storing data, 129, 130
table creation, 127

AUTO INCREMENT, 128
name, 127
PRIMARY KEY, 128
SHOW TABLES command, 129
TIMESTAMP column, 128

terminology, 124
updating data, 130, 131
user accounts and granting

access, 125, 126
view creation, 140, 141

INDEX

499

MySQL Installer, Windows, 32, 33
accounts and roles, 43
authentication method, 42
components, 34, 36, 37
connect to server, 47
group replication, 40
installation complete, 38, 49
installation (in progress), 38
installation (staging), 37
product configuration, 39
products and features, 35, 36
router, 46
samples and examples, 48
setup type, 34
type and networking, 41
welcome panel/license

agreement, 33, 34
Windows service, 44

MySQL replication
asynchronous, 343
binary log, 342
GTIDs, 343
master, 342
secondaries or slaves, 342
semi-synchronous, 343
setup and configuration, 348
SHOW SLAVE STATUS, 343

MySQL router, 342, 345
MySQL Shell

command line options, 83, 84
commands, 75, 77, 78
using connections

individual options, 90
scripts, 91
SSL, 91, 92
URI, 88, 89

with database
create table, 97

JSON_EXTACT() function, 97, 99
JSON_EXTRACT() function, 103
JSON_PRETTY() function, 101
JSON_VALID(), 100
SELECT statement, 102
selecting rows, 96, 97
UPDATE command, 100

installation, 76
modes, 87, 88
new features

adminAPI, 8
changes, 22
data dictionary, 18, 19
SQL mode execution, 8
user defined reports, 8

options, 81, 82
overview (see Overview, MySQL Shell)
pluggable password store, 109, 111
sample database, 93–95
session objects, 85–87
sessions, 84, 85
working

changing prompt, 116, 117
code/command history, 108, 109
option command, 111, 112
Pluggable Password store, 115, 116
set_perist() method, 113, 114
shell.option object, 113
using configuration file, 114
using format, 104, 105, 107, 108

Mysqlx module
classes, 148, 149
connection methods, 153
get_session() method, 148
miscellaneous methods, 153, 154
schema class, 150, 151
session class, 149, 150
transaction methods, 151–153

Index

500

N
NoSQL, 24, 234

O
Organizer class, 220
Overview, MySQL Shell

API, 4
JSON, 2
sample commands, 5
snapshot, 3
SQL commands, 4

P, Q
Paradigm shifting features

document store, 23, 24
InnoDB Cluster, 25, 26
replication, 24, 25

Path expression
inline path operator, 248
JSON array, 245, 247
JSON document, 245, 246
selectors, 246, 247
X DevAPI classes, 245

pip install flask-bootstrap command, 455
pip install flask-script command, 454
pip install wtforms command, 457
Place class, 221
Pluggable password store, 109, 115
powertool table, 188–189, 221, 300
Primary key, 128

R
Read-only (RO) transactions, 344
Read-write (RW) transactions, 344
redirect() function, 479

Relational database management system
(RDBMS), 123

Relational databases
commands, 122, 123
DDL statements, 120–122
DML statements, 120–122
RDBMS, 123

Relational data to document store
challenges, 293
helper functions, 295–299
populate collections

add() method, 300
organizers collection, 302
toolchests collection, 303–306
tools collection, 300
vendors collection, 299

setup code, 294, 295
Relay log, 342, 369
render_template() function, 460, 470
Replication, tutorial

data directory, 350, 351
master configuration, 351–353
sample data, 364
server instances, 355, 356
set up and configure, 349
SHOW SLAVE HOSTS, 363
SHOW SLAVE STATUS, 361, 363
shut down, 365
slaves configuration, 353–355
slaves to master (see Slaves to master

connection)
START SLAVE command, 360
user account, 357

Required() validator, 467
rescan() method, 8, 436
Resource Description Framework

(RDF), 233
Row-based replication (RBR), 342

INDEX

501

S

Sandbox, 396
AdminAPI, 413
administration

restarting cluster, 448, 450
shutting down cluster, 448
tasks, 445–447

cluster class, 420
dba class, 414–416
MySQL Router

bootstrapping, 437, 438, 440
configuration, 440
connection test, 441–443
failover demonstration, 443, 444

setup and configuration
add_instance(), 428–430
check_instance_configuration()

method, 425
configure_local_instance()

method, 426
create_cluster() method, 426, 427
creating directory, 421, 422
dba.stop_sandbox_instance(), 427, 428
deploy_sandbox_instance()

method, 423, 425
failover demonstration, 432–435
rescan() method, 436
status() method, 430, 432

Secure socket layer (SSL), 82
SELECT command, 127
SELECT SQL command, 364
Selecting data, MYSQL

COUNT() function, 135
FROM clause, 132
functions, 137
GROUP BY clause, 135
JOIN operator, 132

ORDER BY clause, 135–137
SELECT statement, 132, 134
sensor values, 138
WHERE clause, 135

Sessions, 84–87
set_perist() method, 113
shell.delete_all_credentials() method, 116
shell.store_credential() method, 116
show_collection() function, 300–302, 305
SHOW MASTER STATUS command, 358
SHOW SLAVE STATUS command, 343, 385
SHOW SQL command, 351, 374
Slaves to master connection

GTIDs
information, 359
MASTER_AUTO_POSITION, 360

log file and position
CHANGE MASTER command, 359
information, 358

SQL database development
MyGarage, sample application, 179

handtool record, 179
Kobalt tool chest, 180, 181
storage portion, 180

Python, 195
sample database design (see Database

design)
setup and configuration, 192, 193

START GROUP_REPLICATION command, 383
Statement-based replication (SBR), 342
status() method, 430, 448
Storage class, 222
Storage engine, 16, 17
Store_inventory database, 126
Strong password encryption option, 41, 42
Structured Query Language (SQL), 24, 119
SubmitField() instances, 467
Synchronous replication, 344, 345, 402

Index

502

T
Topology, 369

U
update() method, 164, 214, 215
Uptime, 338, 340
url_for() function, 479
USE <database> command, 126

V
Vendor class

create operation, 209–211
CRUD operations, 209
read operation

create(), 213
delete operation, 216, 218

read() Method, 211–213
try…except block, 211
update operation, 214, 215
vendor_id, 211

W
Web Ontology Language (OWL), 233
Web Server Gateway Interface (WSGI), 458
Windows firewall option, 41
WTForms, 452, 457, 465

Field classes, 468

X, Y, Z
X Developer API (X DevAPI), 15, 16, 234,

275, 279, 282, 403
X Plugin, 15, 16
X Protocol, 15, 16

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing the MySQL Shell
	Getting To Know the MySQL Shell
	Overview
	Features

	Old Features New Again
	JSON Data Type
	X Plugin, X Protocol, and X DevAPI
	InnoDB Improvements

	New Features
	Data Dictionary
	Account Management
	Roles
	User Account Limits
	Password Management
	User Account Locking

	Removed Options, Variables, and Features

	Paradigm Shifting Features
	Document Store
	Group Replication
	InnoDB Cluster

	Summary

	Chapter 2: Installing the MySQL Shell
	Preparing to Install the MySQL Shell
	Prerequisites
	How to Get the MySQL Shell

	Installing on Windows with the MySQL Installer
	Installing on macOS
	Installing MySQL Server
	Installing the MySQL Shell

	Installing on Linux (Ubuntu) with the APT Repository
	Downloading the APT Repository
	Installing the APT Repository
	Installing MySQL Server
	Installing MySQL Shell

	Summary

	Chapter 3: MySQL Shell Tutorial
	Commands and Options
	Starting the MySQL Shell
	Commands
	Options

	Getting Started with the MySQL Shell
	Sessions and Modes
	Session Objects
	Modes Supported

	Using Connections
	Using a URI
	Using Individual Options
	Using Connections in Scripts
	Using SSL Connections

	Working with the MySQL Shell
	Installing the Sample Database
	Working with Data
	Using Formatting Modes
	Code/Command History
	Saving Passwords
	Customizing the Shell
	Using the \option Command
	Using the shell.option Object
	Using the Configuration File

	Working with Saved Passwords
	Changing the Prompt

	Summary

	Chapter 4: Using the Shell with SQL Databases
	Revisiting Relational Databases
	Working with MySQL Commands and Functions
	Terminology
	Creating Users and Granting Access
	Creating Databases and Tables
	Creating a Database
	Creating a Table

	Storing Data
	Updating Data
	Deleting Data
	Selecting Data (Results)
	Creating Indexes
	Creating Views
	Simple Joins
	Additional Advanced Concepts

	Managing Your Database with Python
	MySQL X Module
	Session Class
	Schema Class
	Transaction Methods
	Connection Methods
	Miscellaneous Methods

	CRUD Operations (Relational Data)
	Schema Class
	Table Class
	Creating Data
	Reading Data
	Updating Data
	Deleting Data
	Working with Results

	Getting Started Writing Python Scripts

	Summary

	Chapter 5: Example: SQL Database Development
	Getting Started
	Sample Application Concept
	Database Design
	Vendor Table
	Organizer Table
	Storage Place Table
	Storage Equipment Table
	Handtool Table
	Powertool Table
	Location View

	Code Design

	Setup and Configuration
	Demonstration
	MyGarage Class
	Writing the Source Code
	Testing the Class

	Location Class
	Writing the Source Code
	Testing the Class

	Vendor Class
	Create
	Read
	Update
	Delete

	Handtool Class
	Organizer Class
	Place Class
	Powertool Class
	Storage Class
	Testing the Class Modules

	Summary

	Chapter 6: Using the Shell with a Document Store
	Overview
	Origins: Key, Value Mechanisms
	Application Programming Interface
	NoSQL Interface
	Document Store
	JSON

	Introducing JSON Documents in MySQL
	Quick Start
	Combining SQL and JSON
	Formatting JSON Strings in MySQL
	Using JSON Strings in SQL Statements
	Path Expressions
	JSON Functions
	Creating JSON Data
	Modifying JSON Data
	Searching JSON Data
	Utility Functions

	Summary

	Chapter 7: Example: Document Store Development
	Getting Started
	Sample Application Concept
	Schema Design
	Cabinets Collection
	Locations Collection
	Organizers Collection
	Shelving Units Collection
	Toolchests Collection
	Tools Collection
	Vendors Collection
	Workbenches Collection

	Code Design

	Setup and Configuration
	Converting Relational Data to a Document Store
	Step 1: Conversion Setup Code
	Step 2: Helper Functions
	Step 3: Populate Collections
	Step 4: Add Locations

	Importing Data to a Document Store

	Demonstration
	MyGarage Class
	Writing the Source Code
	Testing the Class

	Collection Base Class
	Writing the Source Code

	Testing the Class Modules

	Summary

	Chapter 8: Using the Shell with Group Replication
	Overview
	What is High Availability?
	MySQL High Availability Features
	What is MySQL Replication?
	What is Group Replication?

	Setup and Configuration
	Tutorial
	Initialize the Data Directories
	Configure the Master
	Configure the Slaves
	Start the MySQL Instances
	Create the Replication User Account
	Connect the Slaves to the Master
	Connect with Log File and Position
	Connect with GTIDs

	Start Replication
	Verify Replication Status
	Shutting Down Replication

	Summary

	Chapter 9: Example: Group Replication Setup and Administration
	Getting Started
	Concepts, Terms, and Lingo
	Group Replication Fault Tolerance

	Setup and Configuration
	Tutorial
	Initialize the Data Directories
	Configure the Primary
	Primary Configuration File
	Secondary Configuration File

	Start the MySQL Instances
	Create the Replication User Account
	Start Group Replication on the Primary
	Connect the Secondaries to the Primary
	Start Group Replication on the Secondaries
	Verify Group Replication Status
	Shutting Down Group Replication

	Demonstration of Failover
	Summary

	Chapter 10: Using the Shell with InnoDB Cluster
	Overview
	InnoDB Storage Engine
	Archive
	Blackhole
	CSV
	Federated
	Memory
	MyISAM
	Merge (MyISAM)
	Performance Schema
	Group Replication

	MySQL Shell
	X DevAPI
	AdminAPI
	MySQL Router

	Using InnoDB with Applications
	Setup and Configuration
	Upgrade Checker
	Overview of Installing InnoDB Cluster

	Summary

	Chapter 11: Example: InnoDB Cluster Setup and Administration
	Getting Started
	dba
	cluster

	Setup and Configuration
	Create and Deploy Instances in the Sandbox
	Create the Cluster
	Failure to Create Cluster

	Add the Instances to the Cluster
	Check the Status of the Cluster
	Failover Demonstration
	Using MySQL Router
	Bootstrapping the Router
	Starting the Router
	Sample Application
	Application Failover Demonstration

	Administration
	Common Tasks
	Example Tasks
	Shutting Down the Cluster
	Restarting the Cluster

	Summary

	Chapter 12: Appendix
	Setup Your Environment
	Installing Flask
	Installing Flask-Script
	Installing Flask-Bootstrap
	Installing Flask-WTF
	Installing WTForms
	Installing Connector/Python

	Flask Primer
	Terminology
	Initialization and the Application Instance
	Flask-Script
	Flask-Bootstrap
	WTForms
	Flask-WTF
	Form Classes
	Cross-Site Request Forgery (CSRF) Protection
	Message Flashing

	HTML Files and Templates
	Jinja2 Templates Overview
	HTML Files Using Templates

	Error Handlers
	Not Found (404) Errors
	Application (500) Errors

	Redirects
	Additional Features

	Flask Review: Sample Application
	Preparing Your PC
	Running the Sample Application
	How to Use the Application
	CRUD Operations in the Application
	Shutting Down the Sample Application

	Index

