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Abstract

The surface characteristics of rolled aluminum products such as 
sheets and foils are strongly affected by the particular rolling 
process and the type of aluminum rolling oil compositions.  After 
the rolling process, coiled aluminum sheets and foils undergoes 
annealing to form desired crystal structure and remove the rolling 
oil residues. Depending on the time and the temperature that 
rolled aluminum exposed for annealing, rolling oil residues are 
mostly removed from the coiled aluminum products but if there is 
any contamination in rolling oil due to hydraulic and gearing parts 
of the rolling systems these heavier oils are not easily evaporates 
from the aluminum surfaces especially inner parts of the coiled 
aluminum sheets and foils. These rolling oil contaminants create 
serious problems for the some specific applications of these 
aluminum products in certain industries such as automotive and 
coating as remaining thin oil layer prevents proper painting and 
coating. Therefore, it is very crucial for the rolling industry to be 
able to monitor the heavy oil contamination on the rolled products 
and determine the source of these contaminants .In this study, it 
was aimed to develop a nondestructive infrared spectroscopic 
method combined with chemometric multivariate calibration 
techniques for the quantitative determination of rolling oil 
residues and contaminants on the rolled aluminum products. To be 
able to generate multivariate calibration methods, an industrial 
elemental analysis system was adopted for the quantitative 
determination of heavy oil contaminants on the rolled aluminum 
products and these were used as reference values for infrared 
analysis of the same samples. In addition, apart from conventional 
use of elemental analysis systems for the total organic analysis, 
the raw data (raw chromatogram) obtained from elemental 
analysis was used to directly generate multivariate calibration 
models for each contaminant by using synthetically contaminated 
surfaces as the calibration samples. The results promised that 
elemental analysis can be used not just for the total organic 
content but also specifically to determine amount of each 

infrared spectroscopy with grazing angle spectra collection 
accessories can be used for nondestructive analysis of these 
contaminants.

Introduction

Flat rolled aluminum production is a rolling process to reduce the 
thickness with a further objective of improving the strength, 
surface finish and formability of the stock by conducting the 
process of rolling at the room temperature. Since the material is 
subjected to high compression and surface shear stresses, the 
temperature of the strip can reach the temperature of as high as 
70-80°C in a particular or consecutive rolling passes. High 

temperature generated does not only influence the strip itself but 
also tends to raise the temperature of the rolls and other systems in 
the vicinity. Large variations beyond certain limits, during the 
deformation process, also may render the product unsuitable or 
even lead to the phenomenon of pick up and sticking. It is, 
therefore, necessary that the heat of deformation is carried away 
from the system and a thermal stability with pre-defined system 
temperature is maintained. It is also necessary that required 
lubricity be provide to eliminate any chance of sticking or any 
impairment to the aesthetic appearance of the surface of the 
product. Thus, the main characteristic of the medium need to be 
used to carry out the function of heat removal is primarily its 
being a good carrier of heat. Other important features and 
properties that the medium should possess are to provide required 
lubricity, maintain its film strength and thickness under high loads 
exerted by the rolls. While the base oil provides the required heat 
removal function, additives are effective for maintaining the 
rolling oil strength at the contact area. Additives are polar or 
chemically active compounds. By virtue of the polarity, additives 
are preferentially adsorbed to the metal surface and form a thin 
lubricating film. Base oil provides the carrier for these reduction 
additives. 
Other mechanical and hydraulic components of the mill, such as 
hydraulic pistons, bearings etc., employ other type of oils different 
in chemistry and physical properties than that of base oil and 
additives. Due to their functionality in those systems and 
performance expected, they have longer chain length molecules 
and therefore they are more viscous fluids. Although rolling oil 
circulates within a closed loop in the mill, mechanical failures in 
the joints of these components, leakages during maintenance and
other reasons introduce them into the closed loop of rolling oil. 
Rolling oil contaminated with long chain molecule mill lubes is in 
tendency of creating staining after further annealing operations. 
With increasing magnitude of contamination, the 
micromechanism of friction between strip and roll change from 
boundary film lubrication to hydro-dynamic lubrication mode. 
Viscosity, rolling speed and pressure are three components of 
Streibeck curve determining the coefficient of friction and oil film 
thickness. Hence, any variation in the viscosity of the lubricant 
directly influences the surface quality of the strip, for example 
brightness. Extreme case of failure in impairment of the film 
thickness results in much severe surface defects, such as herring 
bone. 
Degreasing is one of the essential operations for many sheet and 
coil products. It is conducted by using acidic or alkaline chemicals 
to clean the residual oil from previous rolling passes. Efficiency 
of degreasing depends on the amount of residual oil on the 
material surface, content of residual oil, including long chain 
molecule oils, type of chemical used and line speed. Materials 
produced with twin roll casting technology have some additional 
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features on the sheet surface that are interpreted as entities needed 
to be cleaned during degreasing. That is called smut. They are 
very fine aluminum particles generated by the rolling passes. 
Regardless of the production method of aluminum products, smut 
is the unavoidable consequence of rolling operation; however its 
magnitude is much higher on Twin roll cast materials than its DC 
cast-hot rolled counterparts. Products involving backannealing 
operation as the last step of their thermomechanical processing 
route are assumed to be almost free of rolling oil residue on the 
surface. But this might not be case if rolling oil is contaminated 
with viscous long chain mill lubes. While annealing temperature 
is mostly high enough to evaporate base oil and additive, those 
contaminants in the base oil with higher initial boiling point might 
still keep their existence on the surface.  As the presence of smut 
combines with contaminated residual rolling oil on the material 
surface, efficiency of the degreasing operation decreases. Hence, 
performance of degreasing operation and resulting surface 
cleanness is determined primarily by the rolling oil and its 
composition. 
Modern instrumental techniques are offering fast analysis that can 
generate huge amount of raw data in a short period of time for 
multicomponent samples. However univariate calibration 
techniques fail to give the efficient results for those types of data 
as the components of the mixtures generally produce severely 
overlapping signals. Cases like this often requires a multivariate 
calibration approach in which instrumental responses measured on 
multiple channels related to a chemical or physical property of a 
sample even though it contains multiple components. In the last 
couple of decades, chemometrics and advanced computer 
technology resulted in the development of several multivariate 
calibration techniques [1-5]. Inverse Least Squares (ILS) is a 
multivariate calibration method based on inverse Beer’s Law in 
which the concentration of an analysis is modeled as a function of 
absorbance. On the other hand, full spectral information collected 
from a spectroscopic technique produces hundreds of data points
if not thousands for a given samples and often this spectrum 
contains many regions with colinearities and some amount of 
noise. In addition, it also contains absorbance regions where the 
signal is not exactly linearly related to the concentration of the 
component being modeled.  In these cases, ILS may not offer 
efficient solutions for a given problem with whole spectral 
information and therefore, it might be necessary to apply a 
variable selection before the modeling step. Among several 
methods of variable selection, Genetic Algorithms (GA) is 
offering fast and efficient solutions for a given problem [6-11].
Genetic Inverse Least Squares (GILS) is a modified version of 
ILS method in which a small set of wavelengths is selected from a 
full spectral data matrix and evolved to an optimum solution using 
a GA. The detailed description of GILS algorithm has been given 
in a number of reports elsewhere [12-14] and therefore 
algorithmic details will not be repeated here.
Previous studies [1] aiming to determine quantities of heavy oil 
contaminants in the rolling oil by employing FTIR spectroscopic 
methods provided very reliable and reproducible results. Genetic 
inverse least square (GILS) method was used as the multivariate 
calibration and wavelength selection method for each component 
of the rolling oil. Due to the volume of liquid samples used in this 
technique provide sufficient information in the spectra to be 
analyzed in GILS method. However, present study focuses on the 
quantitative characterization of residual rolling oil on the sheet 
surface which has very limited in quantity compared to liquid 
samples. A commercially available industry scale carbon-
hydrogen analyzer was used to characterize the residual oil on the 

surface. If each component and contaminant in the rolling oil 
exhibits different behavior, as they react with oxygen in the 
chamber of the equipment by gradual change in temperature, each 
one would generate distinctive chromatograms. Present study 
aims to exploit this operational principal of the carbon-hydrogen 
analyzer to quantify the minute amount of residual rolling oil on 
the material surface.

Experimental

In order to evaluate the possibility of using carbon – hydrogen 
elemental analysis system along with FTIR spectroscopy for 
quantitative determination of residual rolling oil contaminants on 
the aluminum sheet surfaces, individual heavy oils and rolling oil 
components were analyzed first by carbon – hydrogen elemental 
analysis system (LECO 628, LECO Corporation St. Joseph, 
Michigan USA). Approximately 2.5 mg oil sample were dropped 
on a 1.0 x 1.0 cm piece of aluminum sheet and a heating ramp 
given in Figure 1 was established which provides partial 
separation of component peaks in a reasonable time. A total of 25 
synthetic mixture were prepared by mixing rolling oil (base oil) 
Linpar, additive Nafol and four heavy oil namely Hidrotex, 
Recompound 220, Recompound 320 and Mobil 630. Table 1 
shows the concentration profile of the 25 synthetic samples in 
which the concentration range of the heavy oils were decided on 
the basis of the results obtained from the previous studies about 
the rolling oil composition of the rolling mill systems. Same 
procedure for the elemental analysis was carried out for the 
synthetic samples as the pure components given above. Elemental 
analysis chromatograms were recorded for about 1200 second 
with the increments of 0.1 second and each chromatogram were 
analyzed in terms of total carbon and hydrogen with two CO2
detectors (CO2 low and CO2 high) and one H2O detector. The 
chromatograms were saved as ascii text file and transferred to the 
computer where the multivariate calibration models were 
developed based on the CO2 low detector chromatograms. In 
addition to the synthetic samples and the pure components, two 
real aluminum sheet samples were also analyzed with the 
triplicate samples taken from rolled aluminum sheet from right 
edge, middle and left edge of each.

Figure 1. Heating ramp used in elemental analysis.
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Table 1. Concentration profile of the synthetic samples. The 
concentration unit for each component is given as weight 

percentage (w/w %).

Results and Discussion

Figure 2 shows the elemental analysis chromatograms of rolling 
oil components (base oil and additive) and possible heavy oil
contaminants along with one of the synthetically prepared oil 
sample that contains all of these components.

Figure 2. Carbon – Hydrogen elemental analysis chromatograms 
of rolling oil components (base oil and additive) and possible 
heavy oil contaminants along with a synthetically prepared 

mixture.

Although the primary horizontal axis is the time of the analysis, 
there are two horizontal axis on the top and at the bottom for both 
time and temperature scales of the temperature programming. The 
base oil of the rolling oil given in Figure 1 is the Linpar and the 
additive is Nafol which is given as red and green line, 
respectively. The heavy oil components are named as Hidrotex 
46, Recompound 220, Recompound 320 and Mobil 630. The 
peaks that appear around the first 300 second are so intense that it 
would be imposible to see other peaks that are observed after 400 
second thus the figure is also given in an enlarged scale at bottom. 
It is also worth to note that among the heavy oil components of 
Mobil 630 stronger peaks around 600 and 800 second whereas the 
other components show relatively low peaks beyond 400 seconds.
Based on the temperature program, chromatograms shown in 
Figure 1 indicate a partial peak separation for different 
components but there are still strong overlaps and this would 
make difficult to quantify each component by means of univariate 
calibration. Throughout the multivariate calibration, it is expected 
to build quantitative models that would enable to predict 
individual component concentrations based on these weak 
differences seen on the chromatograms. 
However, the ultimate goal in this particular study is to be able to 
predict the surface residual oil composition on the rolled 
aluminum sheet samples taken from the production.  This requires 
that the chromatograms of the real samples must be comparable 
with the synthetically prepared sample chromatograms. Figure 3 
shows the chromatograms of two rolled aluminum sheet samples 
with triplicate analysis from edges (right and left) and middle part
of the sheets along with the base oil and one of the synthetic 
sample chromatogram.

Figure 3. Carbon – Hydrogen elemental analysis chromatograms 
of base oil Linpar, one of the synthetic samples (Mixture) and two 

rolled aluminum sheet sample.

The most noticeable difference between rolled aluminum sheet 
chromatograms and the synthetic sample chromatogram is that the 
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peak around the first 100 s is so dominating for the synthetic 
sample. It is almost impossible to see any feature on the 
chromatograms after 200 seconds in the rest of the 
chromatograms. This difference is due to the fact that the rolled 
aluminum sheets were thawed at temperatures above 300°C for a 
period of time after rolling process and therefore any base oil 
residue on the sheet samples are already removed from the surface 
of the sheets whereas synthetically prepared samples were
analyzed as they are prepared by applying a tiny droplets of the oil 
mixture on the surface of aluminum. Yet, the enlarged view of the 
bottom chromatogram given in Figure 3 is still quite informative 
in terms of the homogeneity of the surface heavy oil residues. As 
can be seen from the enlarged bottom chromatogram rolled sheet 
sample named as S1 shows significant surface residue differences
compared to sample named S2 in which the surface heavy oil 
residues were distributed  in a somewhat more homogeneous
manner from sides to the interior of the rolled sheet. Despite the 
significant differences in the first 200 second part of the 
chromatograms, the chromatographic profile of the synthetic 
sample is quite consistent with the rolled sheet samples which are
promising for the future part of this study. Figure 4 shows the 
chromatograms of the 25 synthetic samples given in Table 1.

Figure 4. Carbon – Hydrogen elemental analysis chromatograms 
of the 25 synthetic samples (Mixtures) given in Table 1.

As the composition of the synthetic samples different in terms of 
the heavy oils given in Table 1, resulting chromatograms shows 
differences in chromatographic profiles not only in the first 200 
second part but also in the further part of the chromatograms but 
the differences are more characteristic in the range from 200 to 
1000 second. It is expected that these differences would provide a 
way to build quantitative multivariate calibration models for 
heavy oil components of the mixtures. In order to determine 
component concentrations of the synthetic samples with 
multivariate calibration models 18 of the samples given in Table 1 
are randomly selected for calibration set and the remaining 7 
samples were used to build independent validation set. A genetic 
algorithm based multivariate calibration method named genetic 
inverse least squares (GILS) is used to develop calibration 

models. Figure 5 shows the reference versus GILS predicted 
component concentrations for the four heavy oils contained in the 
synthetic mixtures.

Figure 5. Reference vs GILS predicted concentration plots of 
heavy oil components.

As a preliminary study, there were only 25 synthetic samples and 
therefore there were a very limited number of samples to build 
calibration and independent validation sets. As can be seen in 
Figure 5, multivariate calibration models generated with GILS are 
quite good for the Mobil and Recompound components but poor 
for Hidrotex. On the other hand, the prediction results for the 
independent validation sets were not as good as the calibration 
sets. This might bring the question about over fitting of the 
models for the calibration samples, as it is based on an iterative 
variable selection method, so the models are unable to predict the 
validation samples. However this is not the case in this study 
because the GILS method used here relies on a leave one out cross 
validation to avoid overfitting during the model building and in 
fact the model for Hidrotex is not good at all. One of the most 
reasonable causes for the poor predictive ability of the models 
generated by GILS is the limited number of calibration samples 
which limits the number of selected variables on the full 
chromatograms as in ILS the number of variables cannot be more 
than the number of calibration samples. Nevertheless, as an initial 
study which is one of the first time in the literature for the 
multivariate application of elemental analysis, the current study 
demonstrate an interesting and difficult application on this method 
for the quantitative determination of rolling oil contaminants on 
the rolled aluminum sheets. 
When compared to other components, it is seen that the model 
generated for Mobil 630 is much better for the predictive ability 
and this is not surprising as it is the most dominating components 
among the others in the chromatograms given in Figure 2. In fact, 
Hidrotex is the weakest component in the chromatograms in terms 
of peak intensities which means that it has a higher tendency to 
volatilize at lower temperatures when compared to other heavy 
oils. The standard error of the calibration (SEC) and standard 
error of prediction (SEP) for the calibration set and independent 
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validation set for Mobil were 0.05 (w/w %) and 0.26 (w/w %) 
whereas the Recompound 220 and 320 these values were ranged 
from 0.06 to 0.29 (w/w %) for both calibration and validation sets 
respectively. For Hidrotex, while SEC value was around 0.25 
(w/w %), the SEP value was much higher (0.89 w/w %) showing 
that the model was unable predict the validation samples. As a 
result of the strong overlaps in the chromatograms the GILS 
method was having difficulty to establish robust calibration 
models and this could be confirmed if one decides to build total 
heavy oil content of the samples but summing their individual 
concentrations. Figure 6 shows the results of these models in 
which first all of the four heavy oil concentrations  are added and 
then this is done without Hidrotex since it the one which GILS 
had difficulty to develop model.

Figure 6. Reference vs GILS predicted plots of total contaminants 
models.

As seen on the Figure 6, when Hidrotex is not used in the total 
contaminant modeling a much better model is developed in terms 
of predictive ability of the model compared to the case where all 
of the four components used. Because the GILS method is based 
on the a genetic algorithms for the variable selection it is worth to 
see when the algorithm is repeated for predefined times and 
generate frequency distribution of the selected point on the 
chromatograms. Figure 7 shows frequency distribution plot of 
GILS models when the algorithm was set to run 100 times.

Figure 7. Selection frequency plot of the selected variables by 
GILS.

As seen on the Figure 7, the GILS method aims to focus on the 
variables that are more relevant to the component of the interest 
which indicates that the method concentrates the regions where 
component information is located. This frequency plot is only 
generated as the models for the other components did not show 
the same predictive ability for the independent validation set. 
Even though  the predictive ability of the models were somewhat 
poor for most of the component except the Mobil 630, this study 
demonstrated that with more samples in the calibration sets 
elemental analysis with proper temperature programming could be 
used to quantify heavy oil components on the aluminum sheets.
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