

MYSQL
IN A NUTSHELL

Other resources from O’Reilly

Related titles Learning MySQL

Learning PHP & MySQL

Learning PHP 5

Learning Perl

Learning SQL

MySQL Cookbook

MySQL Pocket Reference

MySQL Stored Procedure
Programming

PHP Cookbook

PHP in a Nutshell

Programming PHP

Programming the Perl DBI

SQL Pocket Guide

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You'll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly Media, Inc. brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

MYSQL
IN A NUTSHELL

Second Edition

Russell J.T. Dyer

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

MySQL in a Nutshell, Second Edition
by Russell J.T. Dyer

Copyright © 2008 Russell J.T. Dyer. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Andy Oram
Copy Editor: Sarah Schneider
Production Editor: Sarah Schneider
Proofreader: Genevieve d’Entremont

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
April 2008: Second Edition
May 2005: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade-
marks of O’Reilly Media, Inc. MySQL in a Nutshell, the image of a pied kingfisher, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 978-0-596-51433-4

[C]

1210161771

http://safari.oreilly.com

To my friend Richard Stringer, for
encouraging me in literature, liberalism,
and writing, and for helping me to become

the person I was meant to be.

Table of Contents

Preface . xi

Part I. Introduction and Tutorials

1. Introduction to MySQL . 3
The Value of MySQL 3
The MySQL Package 4
Licensing 4
Mailing Lists 5
Books and Other Publications 6

2. Installing MySQL . 7
Choosing a Distribution 7
Unix Source Distributions 8
Unix Binary Distributions 10
Linux RPM Distributions 11
Macintosh OS X Distributions 12
Novell NetWare Distributions 14
Windows Distributions 15
Postinstallation 16

3. MySQL Basics . 19
The mysql Client 19
Creating a Database and Tables 20
Show Me 23
Inserting Data 23
Selecting Data 24

vii

Ordering, Limiting, and Grouping 25
Analyzing and Manipulating Data 27
Changing Data 29
Deleting Data 30
Searching Data 31
Importing Data in Bulk 32
Command-Line Interface 34
Conclusion 35

Part II. SQL Statements and Functions

4. Security and User Statements and Functions . 39
Statements and Functions 40
SQL Statements in Alphabetical Order 40
Functions in Alphabetical Order 50

5. Database and Table Schema Statements . 57
Statements and Clauses in Alphabetical Order 57

6. Data Manipulation Statements and Functions . 113
Statements and Functions Grouped by Characteristics 113
Statements and Clauses in Alphabetical Order 114
Functions in Alphabetical Order 152

7. Table and Server Administration Statements and Functions 155
Statements and Clauses in Alphabetical Order 155
Functions in Alphabetical Order 172

8. Replication Statements and Functions . 175
Merits of Replication 175
Replication Process 176
The Replication User Account 183
Configuring the Servers 185
Copying Databases and Starting Replication 187
Starting Replication 189
Backups with Replication 190
SQL Statements and Functions in Alphabetical Order 191
Replication States 198

9. Stored Routines Statements . 203
Statements in Alphabetical Order 203

viii | Table of Contents

10. Aggregate Clauses, Aggregate Functions, and Subqueries 221
Aggregate Functions in Alphabetical Order 221
Subqueries 229

11. String Functions . 235
String Functions Grouped by Type 235
String Functions in Alphabetical Order 236

12. Date and Time Functions . 263
Date and Time Functions Grouped by Type 264
Date and Time Functions in Alphabetical Order 264

13. Mathematical Functions . 297
Functions in Alphabetical Order 297

14. Flow Control Functions . 309
Functions in Alphabetical Order 309

Part III. MySQL Server and Client Tools

15. MySQL Server and Client . 315
mysql Client 315
mysqld Server 321
mysqld_multi 352
mysqld_safe 354

16. Command-Line Utilities . 357

Part IV. APIs and Connectors

17. C API . 405
Using C with MySQL 405
Functions in Alphabetical Order 408
C API Datatypes 435

18. Perl API . 437
Using Perl DBI with MySQL 437
Perl DBI Reference 442
Attributes for Handles 470

19. PHP API . 477
Using PHP with MySQL 477

Table of Contents | ix

PHP MySQL Functions in Alphabetical Order 479

Part V. Appendixes

A. Data Types . 503

B. Operators . 511

C. Server and Environment Variables . 517

Index . 519

x | Table of Contents

Preface

MySQL is the most popular open source database system available. Although it’s
free, it’s still very dependable and fast, and is being employed increasingly in areas
that used to be the province of Oracle or MS SQL Server. Thanks to a variety of
utilities packaged with MySQL, administration is fairly effortless. With its several
application programming interfaces (APIs), it’s easy to develop your own software
to interface with MySQL.

This book provides a quick reference to MySQL statements and functions, the ad-
ministrative utilities, and the most popular APIs. The first few chapters are designed
to help you to get started with MySQL. Each chapter on an API also starts with a
tutorial.

When this book was written, version 5.0 of MySQL was generally available, and
early releases of the development versions of 5.1 and 6.0 were available but not yet
stable. As a result, you will find mostly features from version 5.0.x in this book.
Features that appear only in newer versions are noted as such.

The Purpose of This Book
The purpose of this book is to provide a quick reference to:

• MySQL statements and functions

• Command-line options and configuration information for the MySQL server
and utilities

• The most popular APIs used to access MySQL databases

Several chapters start with tutorials, but the central purpose of the book is to fill in
the gaps for people who are already comfortable with relational databases.

The format that I’ve followed for a description of each statement or function is to
move from curt memory-joggers to more leisurely explanations. If you know the

xi

statement or function that you’re looking up, but can’t quite remember the syntax,
you’ll find that first. If you need a bit more information to jog your memory or to
clarify the possibilities available, you can find this in the first sentence or so of the
explanation. If you require more clarification, you can continue with the
slower-paced material that will follow a statement or function. Examples of usage
are provided for almost all statements and functions.

In summary, the goal is to be brief but fairly complete, and to increase the level of
detail as you read on.

How This Book Is Organized
This book is broken up into 14 chapters and 3 appendixes, as follows.

Part I, Introduction and Tutorials
Chapter 1, Introduction to MySQL, explains the major components of MySQL and
useful guidelines for other information on MySQL.

Chapter 2, Installing MySQL, describes how to get MySQL running on common
operating systems supported by MySQL AB. It is necessary to read this chapter only
if your system does not already have MySQL installed.

Chapter 3, MySQL Basics, introduces SQL (Structured Query Language) and use of
the mysql command-line interface. It’s not a replacement for learning SQL and re-
lational database design, but it can be useful to orient you to MySQL.

Part II, SQL Statements and Functions
Chapter 4, Security and User Statements and Functions, covers SQL statements and
functions related to the management of user accounts and security.

Chapter 5, Database and Table Schema Statements, lists, explains, and provides ex-
amples of SQL statements and functions related to the creating, altering, and
dropping of databases, tables, indexes, and views.

Chapter 6, Data Manipulation Statements and Functions, covers any SQL statements
and functions that involve the manipulation of data—inserting, updating, replacing,
or deleting.

Chapter 7, Table and Server Administration Statements and Functions, includes de-
tails and examples related to SQL statements and functions that might be used in
the administration of databases, tables, or the server.

Chapter 8, Replication Statements and Functions, includes SQL statements that
strictly relate to replication. This chapter also includes a tutorial and an explanation
of the replication process. It also explains the replication states to help in solving
problems.

xii | Preface

Chapter 9, Stored Routines Statements, covers statements specifically related to
events, stored procedures, triggers, and user-defined functions.

Chapter 10, Aggregate Clauses, Aggregate Functions, and Subqueries, combines ag-
gregate clauses (i.e., GROUP BY) and functions that basically are only used with an
aggregate clause. It also includes a tutorial on subqueries as they can be used to
aggregate data.

Chapter 11, String Functions, covers any functions that are related to the manipu-
lation of strings of data.

Chapter 12, Date and Time Functions, covers date and time related functions.

Chapter 13, Mathematical Functions, explains and gives examples of strictly math-
ematical related functions.

Chapter 14, Flow Control Functions, covers flow control functions such as CASE and
IF.

Part III, MySQL Server and Client Tools
Chapter 15, MySQL Server and Client, covers the mysqld daemon and the mysql
client and their options. It also explains scripts used to start the server (e.g.,
mysqld_safe).

Chapter 16, Command-Line Utilities, describes the utilities that can be used to ad-
minister the MySQL server and data. It also includes utilities such as mysqldump used
for data backups.

Part IV, MySQL API
Chapter 17, C API, covers the functions provided by MySQL’s basic C library.

Chapter 18, Perl API, presents the Perl DBI module, used to access MySQL databases
from the programming language Perl.

Chapter 19, PHP API, presents the PHP functions used to query and manipulate
MySQL databases.

Appendixes
Appendix A lists all the data types supported by MySQL.

Appendix B lists all MySQL operators, such as arithmetic signs and the LIKE and
IS NULL comparison operators.

Appendix C lists the operating system’s environment variables consulted by the
MySQL server, client, and other utilities.

Preface | xiii

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, usernames, hostnames, filenames,
file extensions, pathnames, and directories.

Constant width
Indicates elements of code, configuration options, variables, functions, mod-
ules, databases, tables, columns, command-line utilities, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quot-
ing example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “MySQL in a Nutshell, Second Ed-
ition, by Russell J.T. Dyer. Copyright 2008 Russell J.T. Dyer, 978-0-596-51433-4.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Request for Comments
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

xiv | Preface

707-829-0515 (international or local)
707-829-0104 (fax)

The examples in this book are professionally written and have been tested, but that
does not mean that they are guaranteed to be bug-free or to work correctly with your
version and your platform’s implementation of MySQL. If you have problems, find
bugs, or have suggestions for future editions, please email them to:

bookquestions@oreilly.com

There’s a web page for this book that lists errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596514334

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

For more information about the author, go to his web site at:

http://russell.dyerhouse.com

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite
technology book, that means the book is available online through
the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current infor-
mation. Try it for free at http://safari.oreilly.com.

Acknowledgments
Thanks to Andy Oram, my editor, for his guidance and editing, and for helping me
to be the person fortunate enough to write this book yet again. I very much want to
thank him and his family (his wife, Judy Lebow, and their children, Sonia and Sam)
for taking me into their home for six weeks after my home town of New Orleans
was devastated by Hurricane Katrina. I shall always appreciate their generosity.

Thanks also to Rick Rezinas, Judith Myerson, Bogdan Kecman, and others for re-
viewing the manuscript for technical accuracy. Their assistance was greatly appre-
ciated. Thanks also to Isabel Kunkel (the assistant editor for the book) for her role
in chasing me down to get chapters written and turned in. Special thanks to Kathryn
Barrett (publicist for O’Reilly) for her moral support and advice over the past few
years.

Preface | xv

http://www.oreilly.com/catalog/9780596514334
http://www.oreilly.com
http://russell.dyerhouse.com
http://safari.oreilly.com

For the last three years I have been working at MySQL Inc. as the editor of its
Knowledge Base. In that time I’ve learned a great deal more about MySQL software,
and made many friends. It’s a fabulous company and a caring community. When
the hurricane chased me out of New Orleans in the summer of 2005, many of the
people at MySQL assisted me in my recovery with funds they personally contributed,
as well as emotional and moral support. Their assistance helped me establish a new
home for myself and deal with the problems I encountered after the loss of my old
home and community. And, of course, many of them helped with information and
advice related to the writing of this book. From MySQL, I’d especially like to thank
Ulf Sandberg (senior vice president) for always being supportive of me, and Rusty
Osborne (my friend of 10 years and coworker in the KB) for her help and for con-
tinuing to listen to me through it all.

xvi | Preface

I
Introduction and Tutorials

This part of the book presents information that is useful to readers who need a basic
introduction to MySQL. This part will probably not be sufficient for someone who
is totally new to database programming and administration; a host of other intro-
ductory books exist for that reader. However, this part can provide the necessary
background to someone who has some knowledge of other databases and wants to
move to MySQL, who has used a MySQL database on a hosting service and wants
to create a standalone server, or who has other gaps in introductory knowledge.
Installation, basic configuration, and essential SQL are explained in this part of the
book.

1
Introduction to MySQL

MySQL is an open source, multithreaded, relational database management system
created by Michael “Monty” Widenius in 1995. In 2000, MySQL was released under
a dual-license model that permitted the public to use it for free under the GNU
General Public License (GPL); this caused its popularity to soar. The company that
owns and develops MySQL is MySQL AB (the AB stands for aktiebolag, the Swedish
term for stock company), which is now a subsidiary of Sun Microsystems. Currently,
MySQL AB estimates that there are more than 6 million installations of MySQL
worldwide, and reports an average of 50,000 downloads a day of MySQL installation
software from its site and from mirror sites. The success of MySQL as a leading
database is due not only to its price—after all, other cost-free and open source
databases are available—but also its reliability, performance, and features.

The Value of MySQL
Many features contribute to MySQL’s standing as a superb database system. Its
speed is one of its most prominent features. In a comparison by eWEEK of several
databases—including MySQL, Oracle, MS SQL, IBM DB2, and Sybase ASE—
MySQL and Oracle tied for best performance and for greatest scalability (see http://
www.mysql.com/it-resources/benchmarks for more details). MySQL is remarkably
scalable, and is able to handle tens of thousands of tables and billions of rows of
data. Plus, it manages small amounts of data quickly and smoothly.

The storage engine, which manages queries and interfaces between a user’s SQL
statements and the database’s backend storage, is the critical software in any data-
base management system. MySQL offers several storage engines with different
advantages. Some are transaction-safe storage engines that allow for rollback of data.
Additionally, MySQL has a tremendous number of built-in functions that are de-
tailed in several chapters of this book. MySQL is also very well known for rapid and
stable improvements. Each new release comes with speed and stability upgrades, as
well as new features.

3

http://www.mysql.com/it-resources/benchmarks
http://www.mysql.com/it-resources/benchmarks

The MySQL Package
The MySQL package comes with several programs. Foremost is the MySQL server,
represented by the mysqld daemon. The daemon listens for requests on a particular
network port (3306 by default) by which clients submit queries. The standard
MySQL client program is simply called mysql. With this text-based interface, a user
can log in and execute SQL queries. This client can also accept queries from text
files containing queries, and thereby execute them on behalf of the user or other
software. However, most MySQL interaction is done by programs using a variety of
languages. The interfaces for C, Perl, and PHP are discussed in this book.

A few wrapper scripts for mysqld come with MySQL. The mysqld_safe script is the
most common way to start mysqld, because the script can restart the daemon if it
crashes. This helps ensure minimal downtime for database services. The script
mysqld_multi is used to start multiple sessions of mysqld_safe, and thereby multiple
mysqld instances, for handling requests from different ports, and to make it easier
to serve different sets of databases or to test different versions of MySQL.

MySQL also comes with a variety of utilities for managing a MySQL server.
mysqlaccess is used for creating user accounts and setting their privileges.
mysqladmin can be used to manage the MySQL server itself from the command line.
This interaction includes checking a server’s status and usage, and shutting down a
server. mysqlshow may be used to examine a server’s status, as well as information
about databases and tables. Some of these utilities require Perl, or ActivePerl for
Windows, to be installed on the server. See http://www.perl.org to download and
install a copy of Perl on non-Windows systems, and see http://www.activestate.com/
Products/ActivePerl to download and install a copy of ActivePerl on Windows
systems.

MySQL also comes with a few utilities for importing and exporting data to and from
MySQL databases. mysqldump is the most popular for exporting data and table struc-
tures to a plain-text file known as a dump file. This can be used for backing up data
or for manually moving it between servers. The mysql client can be used to import
the data back to MySQL from a dump file. See Chapter 16 for more on utilities.

Licensing
Although MySQL can be used for free and is open source, MySQL AB holds the
copyrights to the source code. The company offers a dual-licensing program for its
software: one allows cost-free use through the GPL under certain common circum-
stances, and the other is a commercial license bearing a fee. They’re both the same
software, but each has a different license and different privileges. See http://
www.fsf.org/licenses for more details on the GPL.

MySQL AB allows you to use the software under the GPL if you use it without
redistributing it, or if you redistribute it only with software licensed under the GPL.
You can even use the GPL if you redistribute MySQL with software that you
developed, as long as you distribute your software under the GPL as well.

4 | Chapter 1: Introduction to MySQL

http://www.perl.org
http://www.activestate.com/Products/ActivePerl
http://www.activestate.com/Products/ActivePerl
http://www.fsf.org/licenses
http://www.fsf.org/licenses

However, if you have developed an application that requires MySQL for its func-
tionality and you want to sell your software with MySQL under a nonfree license,
you must purchase a commercial license from MySQL AB. There are other scenarios
in which a commercial license may be required. For details on when you must
purchase a license, see http://www.mysql.com/company/legal/licensing.

Besides holding the software copyrights, MySQL AB also holds the MySQL trade-
mark. As a result, you cannot distribute software that includes MySQL in the name.

Mailing Lists
You can receive some assistance with problems that you may have with MySQL from
the MySQL community at no charge through several listserv email systems hosted
by MySQL AB. There is a main mailing list for MySQL (mysql) and several special-
ized mailing lists where anyone can post a message for help on a particular topic.
One list covers questions about database performance (benchmarks). Another is for
questions on the Windows versions of MySQL (win32). There are also lists for
problems concerning the Java Database Connectivity™ (JDBC) drivers (java) and
for the Perl DBI module (perl).

For a complete listing or to subscribe to one or more of these mailing lists, go to
http://lists.mysql.com. On this mailing list page, you will find links for subscribing
to each list. When you click a subscription link, you will see a very simple form on
which to enter your email address. Incidentally, some subscribers like to use special
email addresses and names representing their online personas. This allows ano-
nymity and may make sorting emails easier. Others prefer to use their real names
and contact information. After you enter your email address, you will receive an
automated message to confirm your address. That email will have a link to the
MySQL site with some parameters identifying your address. Click the link, and it
will open your web browser and confirm your subscription.

The page from which you can subscribe to a list also has links for unsubscribing
from lists, as well as links to archives of previous listserv messages for each list. You
can search these archives for messages from others who are describing the same
problem that you are trying to resolve. It’s always a good idea to search archives
before posting anything of your own, to find out whether your topic has been dis-
cussed before. If you can’t find a solution in the documentation available to you or
in the archives, you can post a message to a particular mailing list by sending an
email to that list on lists.mysql.com. For example, if you have a problem with the
Perl DBI module in relation to MySQL, you would send a message to
perl@lists.mysql.com. Just be sure to send the message from the email account that
is registered with the list to which you’re submitting your question.

Mailing Lists | 5

Introduction to
M

ySQL

http://www.mysql.com/company/legal/licensing
http://lists.mysql.com

Books and Other Publications
Besides the mailing list archives mentioned in the previous section, MySQL AB pro-
vides extensive online documentation of the MySQL server and all of the other
software it distributes. You can find the documentation at http://dev.mysql.com/
doc. The documentation is now organized by version of MySQL. You can read the
material online or download it in a few different formats (e.g., HTML or PDF). It is
also available in hardcopy format: MySQL Language Reference and MySQL
Administrator’s Guide, both from MySQL Press.

In addition to this book, O’Reilly Media publishes a few other books on MySQL
worth buying and reading. O’Reilly’s mainline MySQL book is Managing & Using
MySQL (2nd ed., 2002) by George Reese, Randy Jay Yarger, and Tim King (with
Hugh E. Williams). George Reese has compiled a smaller version called MySQL
Pocket Reference (2nd ed., 2007). For common practical problem solving, there’s
MySQL Cookbook (2nd ed., 2006) by Paul DuBois. For advice on optimizing MySQL
and performing administrative tasks, such as backing up databases, O’Reilly has
published High Performance MySQL (2004) by Jeremy D. Zawodny and Derek J.
Balling.

O’Reilly also publishes several books with regard to the MySQL APIs. For PHP
development with MySQL, there’s Web Database Applications with PHP and
MySQL (2nd ed., 2004) by Hugh E. Williams and David Lane. For interfacing with
Perl to MySQL and other database systems, there’s Programming the Perl DBI (2000)
by Alligator Descartes and Tim Bunce. To interface to MySQL with Java, you can
use the JDBC and JConnector drivers and George Reese’s book, Database
Programming with JDBC and Java (2nd ed., 2000).

In addition to the published books on MySQL, a few web sites offer brief tutorials
on using MySQL topics. The O’Reilly Network often publishes articles on MySQL
and the APIs for Perl, PHP, and Python in its online publication ONLamp.com
(http://www.onlamp.com/onlamp/general/mysql.csp). Incidentally, I’ve contributed
a few articles to that site and to several other publications on MySQL and related
topics. MySQL AB also provides some in-depth articles on MySQL. You can find
them in the DevZone section of its web site, http://dev.mysql.com/tech-resources/
articles. Many of these articles deal with new products and features, making them
ideal if you want to learn about using the latest releases available even while they’re
still in the testing stages. Developer Shed (http://www.devarticles.com/c/b/MySQL)
is an additional educational resource. All of these online publications are
subscription-free. If you are a MySQL Enterprise customer, though, you can get
information about MySQL from its private Knowledge Base, of which I am currently
the editor.

6 | Chapter 1: Introduction to MySQL

http://dev.mysql.com/doc
http://dev.mysql.com/doc
http://www.onlamp.com/onlamp/general/mysql.csp
http://dev.mysql.com/tech-resources/articles
http://dev.mysql.com/tech-resources/articles
http://www.devarticles.com/c/b/MySQL

2
Installing MySQL

The MySQL database server and client software work on several different operating
systems, notably Linux, FreeBSD, and a wide range of Unix systems: Sun Solaris,
IBM AIX, HP-UX, and so on. MySQL AB has also developed a Mac OS X version,
a Novell NetWare version, and several MS Windows versions. You can obtain a
copy of the community version of MySQL from MySQL AB’s site (http://
dev.mysql.com/downloads).

This chapter briefly explains the process of installing MySQL on Unix, Linux, Mac
OS X, NetWare, and Windows operating systems. For some operating systems,
there are additional sections for different distribution formats. For any one platform,
you can install MySQL by reading just three sections of this chapter: the next section
on “Choosing a Distribution”; the section that applies to the distribution that you
choose; and the section on “Postinstallation” at the end of the chapter.

Choosing a Distribution
Before beginning to download an installation package, you must decide which ver-
sion of MySQL to install. The best choice is usually the latest stable version
recommended by MySQL AB on its site. This is the GA (Generally Available) release.
It’s not recommended that you install a newer version unless you need some new
feature that is contained only in one of the newer versions, such as the beta version
or the RC (Release Candidate) version. It’s also not recommended that you install
an older version unless you have an existing database or an API application that
won’t function with the current version.

When installing MySQL, you also have the option of using either a source distribu-
tion or a binary distribution. It’s easier, and recommended, for you to install a binary
distribution. However, you may want to use a source distribution if you have special
configuration requirements that must be set during the installation or at compile
time. You may also have to use a source distribution if a binary distribution isn’t
available for your operating system.

7

http://dev.mysql.com/downloads
http://dev.mysql.com/downloads

Unix Source Distributions
The steps for installing MySQL on all Unix types of operating systems are basically
the same. This includes Linux, Sun Solaris, FreeBSD, IBM AIX, HP-UX, etc. It’s
recommended that you install MySQL with a binary distribution, but as explained
in the previous section, sometimes you may want to use a source distribution. To
install a source distribution, you will need copies of GNU gunzip, GNU tar, GNU
gcc (at least version 2.95.2), and GNU make. These tools are usually included in all
Linux systems and in most Unix systems. If your system doesn’t have them, you can
download them from the GNU Project’s site (http://www.gnu.org).

Once you’ve chosen and downloaded the source distribution files for MySQL, enter
the following commands as root from the directory where you want the source files
stored:

groupadd mysql
useradd -g mysql mysql
tar xvfz /tmp/mysql-version.tar.gz
cd mysql-version

The first command creates the user group mysql. The second creates the system user
mysql and adds it to the group mysql at the same time. The next command uses the
tar utility (along with gunzip via the z option) to unzip and unpack the source dis-
tribution file you downloaded. You should replace the word version with the version
number—that is to say, you should use the actual path and filename of the instal-
lation file that you downloaded for the second argument of the tar command. The
last command changes to the directory created by tar in the previous line. That
directory contains the files needed to configure MySQL.

This brings you to the next step, which is to configure the source files to prepare
them for building the binary programs. This is where you can add any special build
requirements you may have. For instance, if you want to change the default directory
from where MySQL is installed, use the --prefix option with a value set to equal
the desired directory. To set the Unix socket file’s path, you can use --with-unix-
socket-path. If you would like to use a different character set from the default of
latin1, use --with-charset. Here is an example of how you might configure MySQL
with these particular options before building the binary files:

./configure --prefix=/usr/local/mysql \
 --with-unix-socket-path=/tmp \
 --with-charset=latin2

You can also enter this command on one line without the backslashes.

Several other configuration options are available. To get a complete and current
listing of options permitted, enter the following from the command line:

./configure --help

You may also want to look at the latest online documentation for compiling MySQL
at http://dev.mysql.com/doc/mysql/en/compilation_problems.html.

8 | Chapter 2: Installing MySQL

http://www.gnu.org
http://dev.mysql.com/doc/mysql/en/compilation_problems.html

Once you’ve decided on any options that you want, run the configure script with
these options. It will take quite a while to run, and it will display a great deal of
information, which you can ignore usually if it ends successfully. After the
configure script finishes, the binaries will need to be built and MySQL needs to be
initialized. To do this, enter the following:

make
make install
cd /usr/local/mysql
./scripts/mysql_install_db

The first command builds the binary programs. If it’s successful, you need to enter
the second line to install the binary programs and related files in the appropriate
directories. In the next line, you’re changing to the directory where MySQL was
installed. If you configured MySQL to be installed in a different directory, you’ll
have to use that one instead. The last command uses a script provided with the
distribution to generate the initial privileges or grant tables.

All that remains now is to change the ownership of the MySQL programs and
directories. You can do this by entering the following:

chown -R mysql /usr/local/mysql
chgrp -R mysql /usr/local/mysql

The first command changes ownership of the MySQL directories and programs to
the mysql user. The second command changes the group owner of the same directory
and files to mysql. These file paths may be different depending on the version of
MySQL you installed and whether you configured MySQL for different paths.

With the programs installed and their file ownerships properly set, you can start
MySQL. You can do this in several ways. To make sure that the daemon is restarted
in the event that it crashes, enter the following from the command line:

/usr/local/mysql/bin/mysqld_safe &

This starts the mysqld_safe daemon, which will in turn start the MySQL server
mysqld. If the mysqld daemon crashes, mysqld_safe will restart it. The ampersand at
the end of the line instructs the shell to run the daemon in the background.

To have MySQL started at boot time, copy the mysql.server file, located in the
support-files subdirectory of /usr/local/mysql, to the /etc/init.d directory. To do this,
enter the following from the command line:

cp support-files/mysql.server /etc/init.d/mysql
chmod +x /etc/init.d/mysql
chkconfig --add mysql

The first line follows a convention of placing the startup file for the server in the
server’s initial daemons directory with the name mysql. You should change the file
paths to the equivalent directory on your system. The second command makes the
file executable. The third sets the run level of the service for startup and shutdown.

Now that MySQL is installed and running, you need to make some postinstallation
adjustments that are explained in the last section of this chapter (“Postinstallation”).

Unix Source Distributions | 9

Installing M
ySQL

Unix Binary Distributions
Installing MySQL with a binary distribution is easier than using a source distribution
and is the recommended choice if a binary distribution is available for your platform.
The files are packaged together into an archive file and then compressed before being
put on the Internet for downloading. Therefore, you will need a copy of GNU tar
and GNU gunzip to be able to unpack the installation files. These tools are usually
included on all Linux systems and most Unix systems. If your system doesn’t have
them, though, you can download them from the GNU Project’s site (http://
www.gnu.org).

Once you’ve chosen and downloaded the installation package, enter something like
the following from the command line as root to begin the MySQL installation
process:

groupadd mysql
useradd -g mysql mysql
cd /usr/local
tar xvfz /tmp/mysql-version.tar.gz

The first command creates the user group mysql. The second creates the user
mysql and adds it to the group mysql at the same time. The next command changes
to the directory where the MySQL files are about to be extracted. In the last com-
mand, you use the tar utility (along with gunzip via the z option) to unzip and unpack
the source distribution file that you downloaded. The word version in the name of
the installation file is replaced with the version number—that is to say, use the actual
path and name of the installation file that you downloaded as the second argument
of the tar command. For Sun Solaris systems, you should use gtar instead of tar.

After running the previous commands, you need to create a symbolic link to the
directory created by tar in /usr/local:

ln -s /usr/local/mysql-version /usr/local/mysql

This creates /usr/local/mysql as a link to /usr/local/mysql-version, where
mysql-version is the actual name of the subdirectory that tar created in /usr/local.
The link is necessary because MySQL is expecting the software to be located
in /usr/local/mysql and the data to be in /usr/local/mysql/data by default. It should
be noted that for some versions of MySQL, a different directory is expected and
used. So consult MySQL’s online documentation to be sure.

At this point, MySQL is basically installed. Now you must generate the initial priv-
ileges or grant tables, and change the file ownership of the MySQL programs and
datafiles. To do these tasks, enter the following from the command line:

cd /usr/local/mysql
./scripts/mysql_install_db

chown -R mysql /usr/local/mysql
chgrp -R mysql /usr/local/mysql

10 | Chapter 2: Installing MySQL

http://www.gnu.org
http://www.gnu.org

The first command changes to the directory containing MySQL’s files. The second
command uses a script provided with the distribution to generate the initial privi-
leges or grant tables, which consist of the mysql database with MySQL’s root user.
The third command changes the ownership of the MySQL directories and programs
to the mysql user. The last command changes the group owner of the same directory
and files to mysql.

With the programs installed and their ownerships properly set, you can start
MySQL. This can be done in several ways. To make sure that the daemon is restarted
in the event that it crashes, enter the following from the command line:

/usr/local/mysql/bin/mysqld_safe &

The mysqld_safe daemon, started by this command, will in turn start the MySQL
server mysqld. If the mysqld daemon crashes, mysqld_safe will restart it. The am-
persand at the end of the line instructs the shell to run the command in the
background.

To have MySQL started at boot time, copy the mysql.server file located in the
support-files subdirectory of /usr/local/mysql to the /etc/init.d directory. To do this,
enter the following from the command line:

cp support-files/mysql.server /etc/init.d/mysql
chmod +x /etc/init.d/mysql
chkconfig --add mysql

The first line follows a convention of placing the startup file for the server in the
server’s initial daemons directory with the name mysql. Set the file path according
to your system, though. The second command makes the file executable. The third
sets the run level of the service for startup and shutdown.

Now that MySQL is installed and running, you need to make some postinstallation
adjustments that are explained in the last section of this chapter (“Postinstallation”).

Linux RPM Distributions
If your server is running on a version of Linux that installs software through the
RPM package format (where RPM originally stood for Red Hat Package Manager),
it is recommended that you use a package instead of a source distribution. Currently,
RPMs are provided based on only a couple of different Linux distributions: various
versions of Red Hat Enterprise Linux and SuSE Linux Enterprise. For all other dis-
tributions of Linux, MySQL RPMs are based on the Linux kernel or the type of
libraries installed on the server. For each version of MySQL, there are a few RPM
files that you can download. The primary two contain the server and client
files. Their naming scheme is MySQL-server-version.rpm and
MySQL-client-version.rpm, where version is the actual version number. In addition
to these main packages, you may also want to install some of the other RPM files
that are part of a distribution. There’s an RPM for client-shared libraries
(MySQL-shared-version.rpm), another for libraries and C API include files for certain
clients (MySQL-devel-version.rpm), and another for benchmarking and other
MySQL performance tests (MySQL-bench-version.rpm).

Linux RPM Distributions | 11

Installing M
ySQL

To install RPM files after downloading them to your server, enter something like the
following from the command line in the directory where they’re located:

rpm -ivh MySQL-server-version.rpm \
 MySQL-client-version.rpm

If an earlier version of MySQL is already installed on the server, you will receive an
error message stating this problem, and the installation will be canceled. If you want
to upgrade an existing installation, you can replace the i option in the example with
an uppercase U.

When the RPM files are installed, the mysqld daemon will be started or restarted
automatically. Once MySQL is installed and running, you need to make some
postinstallation adjustments that are explained in the last section of this chapter
(“Postinstallation”).

Macintosh OS X Distributions
On recent versions of Mac OS X, MySQL is usually installed already. However, in
case it is not installed on your system or you want to upgrade your copy of MySQL
by installing the latest release, directions are included here.

As of version 10.2 of Mac OS X and version 4.0.11 of MySQL, binary package (PKG)
files are available for installing MySQL. If your server is using an older version of
Mac OS X, you need to install MySQL using a Unix source or binary distribution,
following the directions described earlier in this chapter for those particular pack-
ages. If your server is not running a graphical user interface (GUI) or a desktop
manager, you can instead install MySQL on a Macintosh system with a TAR pack-
age. This can be downloaded from the download page on MySQL’s web site.
Explanation of that method of installation is included here.

If an older version of MySQL is already installed on your server, you will need to
shut down the MySQL service before installing and running the newer version. You
can do this with the MySQL Manager Application, which is a GUI application. It’s
typically installed on recent versions of Mac OS X by default. If your server doesn’t
have the MySQL Manager Application, enter the following from the command line
to shut down the MySQL service:

mysqladmin -u root shutdown

Incidentally, if MySQL isn’t already installed on your system, you may need to create
the system user, mysql, before installing MySQL.

To install the MySQL package file, from the Finder desktop manager, double-click
on the disk image file (the .dmg file) that you downloaded. This will reveal the disk
image file’s contents. Look for the PKG files; there will be at least two. Double-click
on the one named MySQL followed by the version numbers. This will begin the
installation program. The installer will take you through the installation steps from
there. The default settings are recommended for most users and developers. You
will need an administrator username and password. To have MySQL started at boot
time, add a StartupItem. Within the disk image file that you downloaded, you should

12 | Chapter 2: Installing MySQL

see an icon labeled MySQLStartupItem.pkg. Just double-click it, and it will create a
StartupItem for MySQL.

To install the TAR package instead of the PKG package, download the TAR file from
MySQL’s site and move it to the /usr/local directory, and then change to that direc-
tory. Next, untar and unzip the installation program like so:

cd /usr/local
tar xvfz mysql-version.tar.gz

In this example, change version to the actual version number. From here create a
symbolic link for the installation directory. Then run the configuration program:

ln -s /usr/local/mysql-version /usr/local/mysql
cd /usr/local/mysql

./configure --prefix=/usr/local/mysql \
 --with-unix-socket-path=/usr/local/mysql/mysql_socket \
 --with-mysqld-user=mysql

Depending on your needs, you might provide other options than just these few.
Next, you should set the ownership and group for the files and directories created
to the mysql user and group, which should have been created by the installation
program. For some systems, you may have to enable permissions for the hard drive
or volume first. To do that, use the vsdbutil utility. If you want to check if permis-
sions are enabled on the volume first, use the -c option; to just enable it, use the
-a option for vsdbutil. You should also make a link to the mysql client and to
mysqladmin from the /usr/bin directory:

vsdbutil -a /Volumes/Macintosh\ HD/

sudo chgrp -R mysql /usr/local/mysql/.
sudo chown -R mysql /usr/local/mysql/.

ln -s /usr/local/mysql/bin/mysql /usr/bin/mysql
ln -s /usr/local/mysql/bin/mysqladmin /usr/bin/mysqladmin

Of course, change the name of the hard drive and its path to how it reads on your
system. At this point, you should be able to start the daemon and log into MySQL.
This is the same for both the TAR and the PKG method of installation on a Macintosh
system:

sudo /usr/local/mysql/bin/mysqld_safe &

mysql -u root -p

Depending on the release of MySQL, the file path for a PKG installation may be
different than shown here. An ampersand (&) sends the process to the background.

Once MySQL is installed and running, you need to make some postinstallation ad-
justments that are explained in the last section of this chapter (“Postinstallation”).

Macintosh OS X Distributions | 13

Installing M
ySQL

Novell NetWare Distributions
If your server is using Novell NetWare 6.0 or later, and the required Novell support
packs have been installed, you can install MySQL on it. For version 6.0 of NetWare,
you need to have Support Pack 4 installed and updated along with the current version
of LibC. For version 6.5 of NetWare, Support Pack 2 needs to be installed and up-
dated along with the current version of LibC. You can obtain support packs from
Novell’s site (http://support.novell.com). You can find the latest version of LibC at
http://developer.novell.com/wiki/index.php/Libraries_for_C_(LibC). Another re-
quirement for installing MySQL is that the MySQL server and data be installed on
a Novell Storage Services (NSS) volume.

If an older version of MySQL is already installed and running on your server, you
need to shut down the MySQL service before installing and running the newer ver-
sion. You can do this from the server console like so:

mysqladmin -u root shutdown

Next, you need to log on to the server from a client that has access to the location
(SYS:MYSQL) where MySQL is to be installed. Unpack the compressed binary
package to that location. When the ZIP file has finished unpacking, you can establish
a search path for the directory that holds the MySQL NetWare Loadable Modules
(NLMs) by entering the following from the server console:

SEARCH ADD SYS:MYSQL\BIN

At this point, MySQL is basically installed. Now you need to generate the initial
privileges or grant tables. You can do this by entering the following from the server
console:

.\scripts\mysql_install_db

The mysql_install_db utility is a script provided with the distribution to generate
the initial privileges or grant tables (i.e., the mysql database). Once this is done,
MySQL is ready to be started. To do this, just enter the following from the server
console:

mysqld_safe

To have MySQL started at boot time, you must add the following lines to the server’s
autoexec.ncf file:

SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --autoclose --skip-external-locking

The first line establishes the search path for MySQL. The second line starts the
mysqld_safe daemon at startup. The first option in this command instructs the server
to close MySQL automatically when the server shuts down. The second option in-
structs the server not to allow external table locking. (External locks can cause
problems with NetWare version 6.0.) Both of these options are recommended.

Once MySQL is installed and running, you will need to make some postinstallation
adjustments that are explained in the last section of this chapter (“Postinstallation”).

14 | Chapter 2: Installing MySQL

http://support.novell.com
http://developer.novell.com/wiki/index.php/Libraries_for_C_(LibC)

Windows Distributions
Installing MySQL on a server using Windows is fairly easy. If MySQL is already
installed and running on your server and you want to install a newer version, you
will need to shut down the existing one first. For server versions of MS Windows
(e.g., Windows NT), MySQL is installed as a service. If it’s installed as a service on
your server, you can enter the following from a DOS command window to shut
down the service and remove it:

mysqld -remove

If MySQL is running, but not as a service, you can enter the following from a DOS
command window to shut it down:

msyqladmin -u root shutdown

MySQL AB’s site (http://dev.mysql.com/downloads/) contains three installation pack-
ages: a Windows Essential package, a standard Windows package, and a standard
Windows package without the installer. The Windows Essential package is the rec-
ommended format. It contains only the essential files for running MySQL. This
includes the usual command-line utilities and the header files for the C API. The
standard Windows package contains the essential files, as well as documentation,
the MySQL Administrator, the embedded server, the benchmark suite, and a few
other useful scripts. The standard Windows package without the installer contains
the same binary files and other related files for MySQL, but not an installer. You’ll
need to extract and copy the files into the c:\mysql directory. Then, you must create
a my.ini file in the c:\windows directory. Several examples showing different server
usage come with the distribution package.

The Windows Essential package is a file called MySQL-version.msi. From the Win-
dows desktop, just double-click this file’s icon and the Windows Installer program
will start.

The standard Windows installation package is a compressed file from which you
have to extract the installation files. To do this, you need a utility such as WinZip
(http://www.winzip.com) to uncompress the files. One of the files is named
setup.exe. Double-click it to start the installer for this package. From this point, the
installation process is pretty much the same for the packages that use the installer.

Once you’ve started the installer, a dialog box appears that offers you three general
choices. The Typical choice is the recommended one, but it will omit the installation
of C API include files and other client libraries. For the standard Windows package,
this choice will also omit installation of the embedded server, the benchmark suite,
and several other scripts. The Complete installation choice instructs the installer to
install everything that’s included in the distribution package that you downloaded.
The Custom choice allows you to choose from a list of programs and libraries to
install. On the same screen is a button labeled Change that lets you change the
directory in which MySQL will be installed. Older versions of MySQL use
c:\mysql as the default. Recent versions install MySQL by default in directories like
c:\Program Files\MySQL\MySQL Server version\, where the word version is
replaced with the version number.

Windows Distributions | 15

Installing M
ySQL

http://dev.mysql.com/downloads/
http://www.winzip.com

After you choose what to install and where, the files are installed. When the installer
is finished, the MySQL Server Instance Configuration Wizard is started. It asks you
a series of questions to create a server configuration file (my.ini), which, by default,
is stored in c:\windows. The questions are based on the intended usage of the MySQL
server, and your answers determine the contents of the configuration file. You will
also be allowed to change the default location of the datafiles, the TCP/IP port used,
and a couple of other settings.

To invoke the command-line utilities without having to enter the file path to the
directory containing them, enter the following from the command line:

PATH=%PATH%;c:\Program Files\MySQL\MySQL Server version\bin

You should replace the word version with the version number—that is to say, you
should enter the path to the MySQL installation. If you changed location when you
installed MySQL, you need to use the path that you named. Older versions of Win-
dows may not accept long directory names in the startup file. Therefore, you may
need to abbreviate the line shown previously so that it looks something like this:

PATH=%PATH%;c:\Program~1\MySQL\MySQLS~1.1\bin

The characters ~1 are substitutes for the extra characters of a directory name that
follow the first seven characters. An S is a substitute for any space that occurs in the
first seven characters of a directory name. If the directory name ends in a dot and
more characters, the last dot and characters are given. For example, a directory
named “MySQL Server 4.1” would be entered as “MySQLS~1.1,” as shown in the
previous command. To make this new path available at boot time, you may want to
add it to the c:\autoexec.bat file.

Once you’ve finished installing MySQL and you’ve set up the configuration file, the
installer will start the MySQL server automatically. If you’ve installed MySQL man-
ually without an installer, enter something like the following from a DOS command
window:

mysqld --install
net start mysql

All that remains are some postinstallation adjustments that are explained in the next
section.

Postinstallation
After you’ve finished installing MySQL on your server, you should perform a few
tasks before allowing others to begin using the service. You may want to configure
the server differently by making changes to the configuration file. At a minimum,
you should change the password for the root user and add some nonadministrative
users. Some versions of MySQL are initially set up with anonymous users. You
should delete them. This section will briefly explain these tasks.

Although the MySQL developers have set the server daemon to the recommended
configuration, you may want to set the daemon differently. For instance, you may
want to turn on error logging. To do this, you will need to edit the main configuration

16 | Chapter 2: Installing MySQL

file for MySQL. On Unix systems, this file is /etc/my.cnf. On Windows systems, the
main configuration file is usually either c:\windows\my.ini or c:\my.cnf. The config-
uration file is a simple text file that you can edit with a plain-text editor, not a word
processor. The configuration file is organized into sections or groups under a head-
ing name contained in square brackets. For instance, settings for the server daemon
mysqld are listed under the group heading [mysqld]. Under this heading, you could
add something like log = /var/log/mysql to enable logging and to set the directory
for the log files to the one given. You can list many options in the file for a particular
group. For a complete listing and explanation of these options, see Chapter 15.

You can change the password for the root user in MySQL in a few ways. One simple
way is to log in to MySQL through the mysql client by entering the following from
the command line:

mysql -u root -p

On a Windows system, you may have to add the path c:\mysql\bin\ to the beginning
of this line, if you haven’t added it to your command path. After successfully entering
the command, you will be prompted for the root user’s password. This is not the
operating system’s root user, but the root user for MySQL. Initially there is no pass-
word, so press Enter to leave it blank. If everything was installed properly and the
mysqld daemon is running, you should get a prompt like this:

mysql>

This is the prompt for the mysql client interface. You should set the password for
all root users. To get a list of users and their hosts for the server, execute the following
command from the mysql client:

SELECT User, Host FROM mysql.user;

+------+-----------------------+
| User | Host |
+------+-----------------------+
root	127.0.0.1
root	russell.dyerhouse.com
root	localhost
+------+-----------------------+

The results from my server are shown here. After installing, I have three user and
host combinations. Although 127.0.0.1 and localhost translate to the same host,
the password should be changed for both along with the one for my domain. To
change the root user’s password, enter the following at this prompt:

SET PASSWORD FOR 'root'@'127.0.0.1'=PASSWORD('password');

SET PASSWORD FOR 'root'@'russell.dyerhouse.com'=PASSWORD('password');

SET PASSWORD FOR 'root'@'localhost'=PASSWORD('password');

Replace the word password in quotes with the password that you want to use for
root. On some systems, the wildcard % is used to allow root login from any host.
After you change all of the root passwords, log out of the mysql client and log back
in with the new password.

Postinstallation | 17

Installing M
ySQL

On some older systems or versions of MySQL, there are anonymous users. (Newer
editions don’t have them.) They will appear in the results of the SELECT statement
shown earlier with blank fields for usernames. You should delete them by entering
the following from the mysql client:

DELETE FROM mysql.user WHERE User='';
DELETE FROM mysql.db WHERE User='';
FLUSH PRIVILEGES;

The first two statements here delete any anonymous users from the user and db tables
in the database called mysql—that’s where the privileges or grant tables are stored.
The last line resets the server privileges to reflect these changes.

The next step regarding users is to set up at least one user for general use. It’s best
not to use the root user for general database management. When you set up a new
user, you should consider which privileges to allow her. If you want to set up a user
who can view only data, you should enter something like the following from the
mysql client:

GRANT SELECT ON *.* TO 'kerry'@'localhost' IDENTIFIED BY 'beck123';

In this line, the user is kerry from the localhost and her password is beck123. If you
want to give a user more than viewing privileges, you should add additional privi-
leges to the SELECT privilege, separated by commas. To give a user all privileges,
replace SELECT with ALL. Here’s another example using the ALL flag:

GRANT ALL ON db1.* TO 'kerry'@'localhost' IDENTIFIED BY 'beck123';

In this example, the user kerry has all basic privileges, but only for the db1 database
and only when logged in from the localhost, not remotely. This statement adds the
user kerry to the table user in the mysql database, if there is already a row for her in
it, but with no privileges. It will also add a row to the db table in the mysql database
indicating that kerry has all privileges for the db1 database. See the explanation of
GRANT in Chapter 4 for more options.

If you have any existing MySQL datafiles from another system, you can copy the
actual files to the directory where MySQL data is stored on your server—but this is
not a recommended method. If you do this, be sure to change the ownership of the
files to the mysql user and mysql group with the chown system command after you
copy them to the appropriate directory. If your existing datafiles are dump files
created by the mysqldump utility, see the explanation regarding that utility in Chap-
ter 16. If your data needs to be converted from a text file, see the explanation of the
LOAD DATA INFILE statement in Chapter 6. You probably should also check the online
documentation (http://dev.mysql.com/doc/mysql/en/Upgrade.html) on upgrading
from a previous version to a current one, especially if you are migrating across major
versions. If you have existing data, always upgrade one release at a time. Don’t skip
any or you may have problems with tables, passwords, or any applications you’ve
developed.

With the MySQL installation software downloaded and installed and all of the bi-
nary files and data in their places and properly set, MySQL is now ready to use. For
an introduction to using MySQL, see the next chapter.

18 | Chapter 2: Installing MySQL

http://dev.mysql.com/doc/mysql/en/Upgrade.html

3
MySQL Basics

Although the bulk of this new edition of MySQL in a Nutshell contains reference
information, which you can read in small segments as needed, this chapter presents
a basic MySQL tutorial. It explains how to log in to the MySQL server through the
mysql client, create a database, create tables within a database, and enter and
manipulate data in tables.

This tutorial does not cover MySQL in depth. Instead, it’s more of a sampler; it’s
meant to show you what’s possible and to get you thinking about how to approach
tasks in MySQL.

The mysql Client
There are various methods of interacting with the MySQL server to develop or work
with a MySQL database. The most basic interface that you can use is the mysql client.
With it, you can interact with the server from either the command line or within an
interface environment.

If MySQL was installed properly on your server, mysql should be available for use.
If not, see Chapter 2. On Unix-based systems, you can type whereis mysql. Win-
dows, Macintosh, and other GUI-type systems have a program location utility for
finding a program. If you used the default installation method, the mysql program
probably resides at /usr/local/mysql/bin/mysql. On Unix systems, if /usr/local/mysql/
bin/ is in your default path (the PATH environment variable), you can specify mysql
without the full pathname. If the directory is not in your path, you can add it by
entering:

PATH=$PATH:/usr/local/mysql/bin
export PATH

Assuming that everything is working, you will need a MySQL username and pass-
word. If you’re not the administrator, you must obtain these from her. If MySQL
was just installed and the root password is not set yet, its password is blank. To learn

19

how to set the root password and to create new users and grant them privileges, see
Chapter 2 for starting points and Chapter 4 for more advanced details.

From a shell prompt, log in to MySQL like this:

mysql -h host -u user -p

If you’re logging in locally—that is, from the server itself—either physically or
through a remote login method, such as SSH (secure shell), you can omit the
-h host argument. This is because the default host is localhost, which refers to the
system you are on. In other circumstances, where your commands actually have to
travel over a network to reach the server, replace the argument host with either a
hostname that is translatable to an IP address or the actual IP address of the MySQL
server. You should replace the argument user with your MySQL username. This is
not necessarily the same as your filesystem username.

The -p option instructs mysql to prompt you for a password. You can also add the
password to the end of the -p option (e.g., enter -prover where rover is the pass-
word); if you do this, leave no space between -p and the password. However,
entering the password on the command line is not a good security practice, because
it displays the password on the screen and transmits the password as clear text
through the network, as well as making it visible whenever somebody gets a list of
processes running on the server.

When you’re finished working on the MySQL server, to exit mysql, type quit or
exit, and press the Enter key.

Creating a Database and Tables
Assuming that you have all of the privileges necessary to create and modify databases
on your server, let’s look at how to create a database and then tables within a data-
base. For the examples in this chapter, we will build a database for a fictitious
bookstore:

CREATE DATABASE bookstore;

In this brief SQL statement, we have created a database called bookstore. You may
have noticed that the commands or reserved words are printed here in uppercase
letters. This isn’t necessary; MySQL is case-insensitive with regard to reserved words
for SQL statements and clauses. Database and table names are case-sensitive on
operating systems that are case-sensitive, such as Linux systems, but not on systems
that are case-insensitive, such as Windows. As a general convention, though, re-
served words in SQL documentation are presented in uppercase letters and database
names, table names, and column names in lowercase letters. You may have also
noticed that the SQL statement shown ends with a semicolon. An SQL statement
may be entered over more than one line, and it’s not until the semicolon is entered
that the client sends the statement to the server to read and process it. To cancel an
SQL statement once it’s started, enter \c instead of a semicolon.

20 | Chapter 3: MySQL Basics

With our database created, albeit an empty one, we can switch the default database
for the session to the new database like this:

USE bookstore

This saves us from having to specify the database name in every SQL statement.
MySQL by default will assume the current database, the one we last told it to use.
No semicolon is given with the USE statement because it’s a client-based SQL
statement.

Next, we will create our first table, in which we will later add data. We’ll start by
creating a table that we’ll use to enter basic information about books, because that’s
at the core of a bookstore’s business:

CREATE TABLE books (
book_id INT,
title VARCHAR(50),
author VARCHAR(50));

This SQL statement creates the table books with three columns. Note that the entire
list of columns is contained within parentheses.

The first column is a simple identification number for each record, which represents
one book. You can specify the data type either as INTEGER or as INT like the example.
The second and third columns consist of character fields of variable width, up to 50
characters each.

To see the results of the table we just created, enter a DESCRIBE statement, which
displays a table as output:

DESCRIBE books;

+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
book_id	int(11)	YES		NULL	
title	varchar(50)	YES		NULL	
author	varchar(50)	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Considering our bookstore a bit more, we realize that we need to add a few more
columns for data elements: publisher, publication year, ISBN number, genre (e.g.,
novel, poetry, drama), description of book, etc. We also realize that we want MySQL
to automatically assign a number to the book_id column so that we don’t have to
bother creating one for each row or worry about duplicates. Additionally, we’ve
decided to change the author column from the actual author’s name to an identifi-
cation number that we’ll join to a separate table containing a list of authors. This
will reduce typing, and will make sorting and searching easier, as the data will be
uniform. To make these alterations to the table that we’ve already created, enter the
following SQL statement:

ALTER TABLE books
CHANGE COLUMN book_id book_id INT AUTO_INCREMENT PRIMARY KEY,
CHANGE COLUMN author author_id INT,
ADD COLUMN description TEXT,

Creating a Database and Tables | 21

M
ySQL Basics

ADD COLUMN genre ENUM('novel','poetry','drama'),
ADD COLUMN publisher_id INT,
ADD COLUMN pub_year VARCHAR(4),
ADD COLUMN isbn VARCHAR(20);

After the opening line of this SQL statement, notice that each clause in which we
change or add a column is separated from the following one by a comma. On the
second line here, we’re changing the book_id column. Even though we are keeping
the column name and the data type the same, we have to restate them. We’re adding
the AUTO_INCREMENT flag, which carries out the task mentioned in the previous para-
graph, assigning a unique and arbitrary value to each book in the table. We’re also
making the column the PRIMARY KEY for indexing, which allows faster data retrieval.

The first CHANGE clause may look confusing because it lists the column name
(book_id) twice. This makes sense when you understand the syntax of a CHANGE
clause: the first book_id names the existing column you want to change, and the rest
of the clause specifies the entire new column. To understand this better, examine
the second CHANGE clause: it replaces the existing author column with a new
author_id column. There will no longer be a column named author.

In the third line, we’re changing the author column so that its label and data type
align with the authors table that we’ll create later. The authors table will have an
indexed column to represent the author, just as the books table has an indexed col-
umn to represent the books. To figure out which author the author_id column in
the books table is pointing to, we’ll join the books table to the authors table in queries.
Because the corresponding column in the authors table will have a data type of
INT, so must this one.

The fourth line adds a column for each book’s description. This has a data type of
TEXT, which is a variable-length data type that can hold very large amounts of data,
up to 64 kilobytes. There are other factors, though, that can limit a TEXT column
further. See Appendix A for a list of data types, their limits, and other limiting factors.

For genre, we’re enumerating a list of possible values to ensure uniformity. A blank
value and a NULL value are also possible, although they’re not specified.

Before moving on to adding data to our books table, let’s quickly set up the
authors table. This table will be what is known as a reference table. We need to
enter data into the authors table, because when we enter data into the books table,
we will need to know the identification number for the authors of the books:

CREATE TABLE authors
(author_id INT AUTO_INCREMENT PRIMARY KEY,
author_last VARCHAR(50),
author_first VARCHAR(50),
country VARCHAR(50));

This table doesn’t require too many columns, although we might add other columns
to it for an actual bookstore. As mentioned before, as needed, we’ll join the books
table to the authors table through the author_id in both tables.

In the authors table, we’ve separated the first and last name of each author into two
columns so that we can easily sort and search on the last name. We’ve also added a

22 | Chapter 3: MySQL Basics

column for the author’s country of origin so that we can search for works by authors
of a particular country when asked by customers. For production use, it might be
better to use a country code and then have yet another reference table listing the full
names of countries. But we’re trying to keep this tutorial simple and include detail
only when it has educational value.

Show Me
Let’s take a moment to admire our work and see what we’ve done so far. To get a
list of databases, use the SHOW DATABASES statement:

SHOW DATABASES;

+-----------+
| Database |
+-----------+
| bookstore |
| mysql |
| test |
+-----------+

The result of the SHOW DATABASES statement lists not only the database we’ve created,
but also two others. One is the mysql database, which contains data about user
privileges and was covered in Chapter 2. The third database is the test database,
which is set up by default when MySQL is installed. It’s there as a convenience for
you to be able to add tables or run SQL statements for testing.

To see a list of tables in the bookstore database, once we select the bookstore database
with the USE statement shown earlier, we would enter the following statement:

SHOW TABLES;

+---------------------+
| Tables_in_bookstore |
+---------------------+
| authors |
| books |
+---------------------+

The result of the SHOW TABLES statement provides a list containing our two tables, just
as we expected. If you want to see a list of tables from another database while still
using the bookstore database, add a FROM clause to the previous statement:

SHOW TABLES FROM mysql;

This displays a list of tables from the mysql database, even though the default data-
base for the client session is the bookstore database.

Inserting Data
Now that we’ve set up our first two tables, let’s look at how we can add data to them.
We’ll start with the simplest method: the INSERT statement. With the INSERT

Inserting Data | 23

M
ySQL Basics

statement we can add one or more records. Before adding information about a book
to our books table, because it refers to a field in our authors table, we need to add
the author’s information to the latter. We’ll do this by entering these SQL statements
through the mysql client:

INSERT INTO authors
(author_last, author_first, country)
VALUES('Greene','Graham','United Kingdom');

SELECT LAST_INSERT_ID();

+-------------------+
| LAST_INSERT_ID() |
+-------------------+
| 1 |
+-------------------+

INSERT INTO books
(title, author_id, isbn, genre, pub_year)
VALUES('The End of the Affair', 1,'0099478447','novel','1951');

Our first SQL statement added a record, or row, for Graham Greene, an author who
wrote the book The End of the Affair. The standard INSERT syntax names the columns
for which the values are to be inserted, as we’re doing here. If you’re going to enter
values for all of the columns, you don’t need to name the columns, but you must
list the data in the same order in which the columns are listed in the table.

In the second SQL statement, we retrieved the identification number assigned to the
row we just entered for the author by using the LAST_INSERT_ID() function. We
could just as easily have entered SELECT author_id FROM authors;.

In the third SQL statement, we added data for a Graham Greene book. In that state-
ment, we listed the columns in an order that’s different from their order in the table.
That’s acceptable to MySQL; we just have to be sure that our values are in the same
order.

Selecting Data
Now that we have one row of data in each of our two tables, let’s run some queries.
We’ll use the SELECT statement to select the data that we want. To get all of the
columns and rows from the books table, enter the following:

SELECT * FROM books;

The asterisk, which acts as a wildcard, selects all columns. We did not specify any
criteria by which specific rows are selected, so all rows are displayed from the
books table. To select specific columns, we name the columns we want. To select
specific rows, we add a WHERE clause to the end of the SELECT statement:

SELECT book_id, title, description
FROM books
WHERE genre = 'novel';

24 | Chapter 3: MySQL Basics

This SQL statement displays just the book’s identification number, the book’s title,
and the description of the book from the books table for all books where the genre
column has a value of novel. The results will be more meaningful, of course, when
we have data on more books in the database. So, let’s assume that we’ve entered
data for a few dozen more books, and proceed.

If we want to get a list of novels from the database along with the author’s full name,
we need to join the books table to the authors table. We can join the two tables with a
JOIN clause like this:

SELECT book_id, title, pub_year,
CONCAT(author_first, ' ', author_last) AS author
FROM books
JOIN authors USING(author_id)
WHERE author_last = 'Greene';

In the FROM clause, we join the books table to the authors table using the author_id
columns in both tables. If the columns had different labels, we would have to use a
different clause or method in the JOIN clause to join the tables (e.g., ON (author_id
= writer_id)). Notice in the second line of this SQL statement that we’ve employed
a string function, CONCAT(). With this function you can take bits of data and merge
them together with text to form more desirable-looking output. In this case, we’re
taking the author’s first name and pasting a space (in quotes) onto the end of it,
followed by the author’s last name. The results will appear in the output display as
one column, which we’ve given a column heading of author. The keyword AS creates
this column title with our chosen name, called an alias.

In the WHERE clause, we’ve specified that we want data on books written by authors
with the last name Greene. If the books table did not contain books by Greene,
nothing would be displayed. The results of the previous query are as follows:

+---------+-----------------------+----------+---------------+
| book_id | title | pub_year | author |
+---------+-----------------------+----------+---------------+
| 1 | The End of the Affair | 1951 | Graham Greene |
| 2 | Brighton Rock | 1937 | Graham Greene |
+---------+-----------------------+----------+---------------+

As you can see, a second book by Graham Greene was found and both have been
displayed. The column heading was changed for the output of the author’s name
per the AS clause. We could change the column headings in the display for the other
columns with the keyword AS as well. The author alias can be reused in a SELECT
statement, but not in the WHERE clause, unfortunately. You can find more information
on AS in Chapter 6.

Ordering, Limiting, and Grouping
For times when we retrieve a long list of data, it can be tidier to sort the data output
in a specific order. To do this, we can use the ORDER BY clause. Suppose that we want
a list of plays written by William Shakespeare from our database. We could enter

Ordering, Limiting, and Grouping | 25

M
ySQL Basics

the following SQL statement to retrieve such a list and to sort the data by the play
title:

SELECT book_id, title, publisher
FROM books
JOIN authors USING(author_id)
JOIN publishers USING(publisher_id)
WHERE author_last = 'Shakespeare'
AND genre = 'play'
ORDER BY title, pub_year;

The ORDER BY clause comes at the end, after the WHERE clause. Here the ORDER BY clause
orders the data results first by the title column and then, within title, by the
pub_year column, or the year that the particular printing of the play was published.
By default, data is sorted in ascending alphanumeric order. If we want to order the
results in descending order for the titles, we can just add a DESC flag immediately
after the title column in the ORDER BY clause and before the comma that precedes
pub_year:

...
ORDER BY title DESC, pub_year;

A large bookstore will have many editions of Shakespeare’s plays, possibly a few
different printings for each play. If we want to limit the number of records displayed,
we could add a LIMIT clause to the end of the previous SQL statement:

SELECT book_id, title, publisher
FROM books
JOIN authors USING(author_id)
JOIN publishers USING(publisher_id)
WHERE author_last = 'Shakespeare'
AND genre = 'play'
ORDER BY title DESC, pub_year
LIMIT 20;

This addition limits the number of rows displayed to the first 20. The count starts
from the first row of the result set after the data has been ordered according to the
ORDER BY clause. If we want to retrieve the next 10, we would adjust the LIMIT clause
to specify the number of rows to skip, along with the number of records to retrieve.
So if we want to skip the first 20 rows and list the next 10 rows from our sort, we
replace the LIMIT clause in the SQL statement with this one:

...
LIMIT 20, 10;

As you can see, in a two-argument LIMIT clause, the first argument specifies the
number of rows to skip or the point to begin (i.e., 20) and the second argument
states the number of rows to display (i.e., 10).

If we want to get just a list of titles by Shakespeare, and we are not concerned with
which printing or publisher—that is to say, if we want one row for each title and are
satisfied with the first row found for each—we could use the GROUP BY clause like this:

SELECT book_id, title
FROM books
JOIN authors USING(author_id)

26 | Chapter 3: MySQL Basics

WHERE author_last = 'Shakespeare'
GROUP BY title;

The result of this SQL statement is a list of titles by Shakespeare from the database,
displaying the record identification number of the first one found for each title.

Analyzing and Manipulating Data
With MySQL you can not only retrieve raw data, but also analyze and format the
data retrieved. For instance, suppose we want to know how many titles we stock by
Leo Tolstoy. We could enter a SELECT statement containing a COUNT() function
like this:

SELECT COUNT(*)
FROM books
JOIN authors USING(author_id)
WHERE author_last = 'Tolstoy';

+----------+
| COUNT(*) |
+----------+
| 12 |
+----------+

As another example, suppose that after setting up our database and putting it to use
we have another table called orders that contains information on customer orders.
We can query that table to find the total sales of a particular book. For instance, to
find the total revenues generated from, say, William Boyd’s book Armadillo, we
would enter the following SQL statement in the mysql client:

SELECT SUM(sale_amount) AS 'Armadillo Sales'
FROM orders
JOIN books USING(book_id)
JOIN authors USING(author_id)
WHERE title = 'Armadillo'
AND author_last = 'Boyd';

+-----------------+
| Armadillo Sales |
+-----------------+
| 250.25 |
+-----------------+

Here we are joining three tables together to retrieve the desired information. MySQL
selects the value of the sale_amount column from each row in the orders table that
matches the criteria of the WHERE clause. Then it adds those numbers and displays
the sum with the column heading given.

For columns that contain date or time information, we can decide on the format for
displaying the data using a variety of functions. For instance, suppose that we want
to extract from the orders table the date that a customer made a particular purchase,
based on his receipt number (e.g., 1250), which in turn is the record identification

Analyzing and Manipulating Data | 27

M
ySQL Basics

number, or sale_id. We could simply enter the following statement and get the
default format as shown in the last line of results:

SELECT purchase_date AS 'Purchase Date'
FROM orders
WHERE sale_id = '1250';

+---------------+
| Purchase Date |
+---------------+
| 2004-03-01 |
+---------------+

This format (year-month-day) is understandable. However, if we want the month
displayed in English rather than numerically, we have to use some date functions:

SELECT CONCAT(MONTHNAME(purchase_date), ' ',
DAYOFMONTH(purchase_date), ', ',
YEAR(purchase_date)) AS 'Purchase Date'
FROM orders
WHERE sale_id = '1250';

+---------------+
| Purchase Date |
+---------------+
| March 1, 2004 |
+---------------+

To put the date together in the typical human-readable format used in the United
States, we’re using the CONCAT() function in conjunction with a few date functions.
It may be a little confusing at first glance, because we’re inserting a space between
the month and the day at the end of the first line and a comma and a space after the
day at the end of the second line. As for the date functions, the first one extracts the
month from the purchase_date column and formats it so its full name is displayed.
The second date function on the second line extracts just the day, after which we
explicitly specify a comma. The third date function on the third line extracts just the
year.

As you can see in the results, our combination of functions works. However, it’s not
the cleanest method by which the date can be assembled. We could use the
DATE_FORMAT() function instead:

SELECT DATE_FORMAT(purchase_date, "%M %d, %Y")
AS 'Purchase Date'
FROM orders
WHERE sale_id = '1250';

This is a much more efficient method, and it provides the same output as the previous
statement. You just have to know the formatting codes to be able to use this function
properly. They’re listed in Chapter 12, along with several more formatting codes
and many more date and time functions.

28 | Chapter 3: MySQL Basics

Changing Data
You can change data in a table using a few different methods. The most basic and
perhaps the most common method is to use the UPDATE statement. With this state-
ment, you can change data for all rows or for specific records based on a WHERE clause.

Looking back on the results displayed from an earlier query, we can see that Graham
Greene’s book Brighton Rock has a copyright year of 1937. That’s not correct; it
should be 1938. To change or update that bit of information, we would enter the
following SQL statement:

UPDATE books
SET pub_year = '1938'
WHERE book_id = '2';

Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

First, we state the name of the table that’s being updated. Next, we include the
SET keyword with the column to change and its corresponding new value. If we
wanted to change the values of more than one column, we would provide a comma-
separated list of each column along with the equals sign operator and the new
respective values. SET is given only once.

The preceding SQL statement has a WHERE clause limiting the rows that will be up-
dated by specifying a condition the row must meet. In this case, our condition is for
a specific value of a unique column, so only one row will be changed. The results of
the query show that one row was affected, one row was matched, one row was
changed, and there were no problems to generate warnings.

Sometimes inserting data into a table will cause a duplicate row to be created because
a row for the data already exists. For instance, suppose that we want to run an SQL
statement that inserts data on a few books into the books table and one of the books
is already in the table. If we use INSERT, a duplicate row will generally be rejected.
To prevent this, we can use the REPLACE statement, which inserts rows that are new
and replaces existing rows with new data.

From MySQL’s perspective, duplicates occur only when columns defined as unique
contain the same value. Because the book_id column is assigned automatically, it’s
unlikely that we would duplicate it, because we wouldn’t tend to assign its value
when adding records. What’s unique about each book in the book business is its
ISBN number, which is the bar code number on the back of the book. To ensure
that we do not have rows with the same ISBN number, we’ll alter our books table
again and change the isbn column to a UNIQUE column, a column that requires a
unique value. This way we won’t be able to enter data inadvertently on a book more
than once:

ALTER TABLE books
CHANGE COLUMN isbn isbn VARCHAR(20) UNIQUE;

Changing Data | 29

M
ySQL Basics

Now we’re ready to insert data for more books without worrying about duplicate
rows for books with the same ISBN number. Here is an example in which we attempt
to add two more books by Graham Greene, one of which is already in the table:

REPLACE INTO books
(title, author_id, isbn, genre, pub_year)
VALUES('Brighton Rock',1,'0099478471','novel','1938'),
('The Quiet American',1,'0099478393','novel','1955');

The syntax for the REPLACE statement is the same as the INSERT statement. Notice
that we’ve added two rows here in one statement. This is the same syntax that you
would use if you want to add more than one row using INSERT. Just list each row’s
data within parentheses and separate them by commas, as shown. In this example,
there is already a row for the book containing the ISBN number 0099478471 (i.e.,
Brighton Rock), so its data will be replaced and a new row will not be added. There
is currently no row for Greene’s book The Quiet American, though, so it will be
added.

Deleting Data
To delete specific rows of data, you can use the DELETE statement. For example, if
we want to delete all rows of data from our books table for the author J. K. Rowling,
because we’ve decided not to carry Harry Potter books, we could issue the following
statement:

DELETE FROM books
WHERE author_id =
 (SELECT authors.author_id FROM authors
 WHERE author_last = 'Rowling'
 AND author_first = 'J. K.');

DELETE FROM authors
WHERE author_last = 'Rowling'
AND author_first = 'J. K.';

Here, we’re deleting only rows from the books table where the author identification
number is whatever is selected from the authors table based on the specified author’s
last name and first name. That is to say, the author_id must be whatever value is
returned by the SELECT statement, the subquery contained in the parentheses. This
statement involves a subquery, so it requires version 4.1 or later of MySQL. To delete
these same rows with an earlier version of MySQL, you would need to run the
SELECT statement shown in parentheses here separately (not as a subquery), make
note of the author’s identification number, and then run the first DELETE statement,
manually entering the identification number at the end instead of the parenthetical
SELECT statement shown.

An alternative to the previous SQL statements would be to utilize user-defined
variables. Here is the same example using variables:

SET @potter =
 (SELECT author_id FROM authors
 WHERE author_last = 'Rowling'

30 | Chapter 3: MySQL Basics

 AND author_first = 'J. K.');

DELETE FROM books
WHERE author_id = @potter;

DELETE FROM authors
WHERE author_id = @potter;

In the first part, we use the SET statement to establish a variable called @potter that
will contain the results of the SELECT statement that follows in parentheses, another
subquery. Incidentally, although this subquery is not available before version 4.1,
user-defined variables are. The second SQL statement deletes the rows from books
where the author identification number matches the value of the temporary variable.
Next, we delete the data from the authors table, still making use of the variable. A
user-defined variable will last until it’s reset or until the MySQL session is closed.

Searching Data
Once our database is loaded with large amounts of data, it can be cumbersome to
locate data simply by scrolling through the results of SELECT statements. Also, some-
times we don’t have the exact or complete text for a column we’re examining. For
these situations, we can use the LIKE operator. Suppose that our books table now has
thousands of entries. Suppose further that a customer says he’s looking for a specific
book. He can’t remember the name of the author or the title of the book, but he
does remember that the words traveler and winter are in the title. We could enter
this SQL statement to search the database based on this minimal information:

SELECT book_id, title,
CONCAT(author_first, ' ', author_last) AS author
FROM books
JOIN authors USING(author_id)
WHERE title LIKE '%traveler%'
AND title LIKE '%winter%';

+---------+-----------------------------------+---------------+
| book_id | title | author |
+---------+-----------------------------------+---------------+
| 1400 | If on a winter's night a traveler | Italo Calvino |
+---------+-----------------------------------+---------------+

With the LIKE operator, we use the percent sign wildcard twice to indicate that we’re
searching for all rows in which the title column’s data contains the string traveler
with zero or more characters before it (the preceding percent sign), and zero or more
characters after it (the terminating percent sign). Put another way, the word travel-
er must be contained somewhere in the column’s data to have a pattern match. The
next part of the clause indicates that winter must also be found in the same column.
Incidentally, the LIKE keyword is an operator like the equals sign.

If another customer asks us to search the database for a Graham Greene book with
either the word Stamboul or the word Orient in the title, we could use OR within an
expression like this:

Searching Data | 31

M
ySQL Basics

SELECT book_id, title
FROM books
WHERE author_id = 1
AND title LIKE '%Stamboul%'
OR author_id = 1
AND title LIKE '%Orient%';

Since we already know the author’s identification number, this statement is more
succinct and includes only one table. Notice that we have to specify the author_id
in each expression; otherwise we might get results by other authors that match the
words for which we’re searching. For more information on operators, see Appen-
dix B. You can find more examples and possibilities for searching data in Chapter 6.

Importing Data in Bulk
Often, when setting up a new database, you will need to migrate data from an old
database to MySQL. In the case of our bookstore, let’s suppose that a vendor has
sent us a disk with a list of all of their books in a simple text file. Each record for
each book is on a separate line, and each field of each record is separated by a vertical
bar. Here’s what the fictitious vendor’s data text file looks like:

ISBN|TITLE|AUTHOR LAST|AUTHOR FIRST|COPYRIGHT DATE|
067973452X|Notes from Underground|Dostoevsky|Fyodor|August 1994|
...

Obviously, an actual vendor file would contain more fields and records than are
shown here, but this is enough for our example. The first line contains descriptions
of the fields in the records that follow. We don’t need to extract the first line; it’s
just instructions for us. So, we’ll tell MySQL to ignore it when we enter our SQL
statement.

As for the data, we must consider a few problems. First, the fields are not in the order
that they are found in our tables. We’ll have to tell MySQL the order in which the
data will be coming so that it can make adjustments. The other problem is that this
text table contains data for both our books table and our authors table. This is going
to be a bit tricky, but we can deal with it. What we’ll do is extract the author infor-
mation only in one SQL statement, then we’ll run a separate SQL statement to
import the book information. Before starting, we’ve copied the vendor’s file called
books.txt to a temporary directory (e.g., /tmp). Here we run a LOAD DATA INFILE
statement from the mysql client:

LOAD DATA INFILE '/tmp/books.txt' REPLACE INTO TABLE authors
FIELDS TERMINATED BY '|' LINES TERMINATED BY '\r\n'
TEXT_FIELDS(col1, col2, col3, col4, col5)
SET author_last = col3, author_first = col4
IGNORE col1, col2, col5, 1 LINES;

First, I should point out that the TEXT_FIELDS and the IGNORE clause for columns are
not available before version 4.1 of MySQL. The IGNORE n LINES clause has been
around for a while, though. With IGNORE 1 LINES, the first line of the text file con-
taining the column headings will be ignored. Going back to the first line in this SQL
statement, we’ve named the file to load and the table in which to load the data.

32 | Chapter 3: MySQL Basics

The REPLACE flag has the effect of the REPLACE statement mentioned earlier. Of course,
since the name fields aren’t set to unique, there won’t be any duplicates as far as
MySQL is concerned. In a real-life situation, you would have to alter your table to
prevent duplicates based on the author’s name.

In the second line, we specify that fields are terminated by a vertical bar and that
lines are terminated by a carriage return (\r) and a newline (\n). This is the format
for an MS-DOS text file. Unix files have only a newline to terminate the line.

In the third line of the SQL statement, we create aliases for each column. In the
fourth line, we name the table columns to receive data and set their values based on
the aliases given in the previous line. In the final line, we tell MySQL to ignore the
columns that we don’t want, as well as the top line, because it doesn’t contain data.

If you’re using an older version of MySQL that isn’t able to ignore unwanted col-
umns, you will have to perform a couple of extra steps. There are a few different
ways of doing this. One simple way, if the table into which we’re loading data isn’t
too large, is to add three extra, temporary columns to authors that will take in the
unwanted fields of data from the text file and drop them later. This would look like
the following:

ALTER TABLE authors
ADD COLUMN col1 VARCHAR(50),
ADD COLUMN col2 VARCHAR(50),
ADD COLUMN col5 VARCHAR(50);

LOAD DATA INFILE '/tmp/books.txt' REPLACE INTO TABLE authors
FIELDS TERMINATED BY '|' LINES TERMINATED BY '\r\n'
IGNORE 1 LINES
(col1, col2, author_last, author_first, col5);

ALTER TABLE authors
DROP COLUMN col1,
DROP COLUMN col2,
DROP COLUMN col5;

These statements will work, but they’re not as graceful as the more straightforward
statement shown earlier. In the second SQL statement here, notice that the IGNORE
clause specifies one line to be ignored. The last line of the same statement lists the
columns in the authors table that are to receive the data and the sequence in which
they will be imported. In the third SQL statement, having finished importing the
data from the vendor’s text file, we now delete the temporary columns with their
unnecessary data by using a DROP statement. There’s usually no recourse from
DROP, no undo. So take care in using it.

Once we manage to copy the list of authors into the authors table from the text file,
we need to load the data for the books and find the correct author_id for each book.
We do this through the following:

LOAD DATA INFILE '/tmp/books.txt' IGNORE INTO TABLE books
FIELDS TERMINATED BY '|' LINES TERMINATED BY '\r\n'
TEXT_FIELDS(col1, col2, col3, col4, col5)
SET isbn = col1, title = col2,
pub_year = RIGHT(col5, 4),

Importing Data in Bulk | 33

M
ySQL Basics

author_id =
 (SELECT author_id
 WHERE author_last = col3
 AND author_first = col4)
IGNORE col3, col4, 1 LINES;

In this SQL statement, we’ve added a couple of twists to get what we need. On the
fifth line, to extract the year from the copyright field—which contains both the
month and the year—we use the string function RIGHT(). It captures the last four
characters of col5 as specified in the second argument.

The sixth line starts a subquery that determines the author_id based on data from
the authors table, where the author’s last and first names match what is found in
the respective aliases. The results of the column selected within the parentheses will
be written to the author_id column.

Finally, we’re having MySQL ignore col3 and col4, as well as the column heading
line. The IGNORE flag on the first line instructs MySQL to ignore error messages, not
to replace any duplicate rows, and to continue executing the SQL statement. Doing
this maneuver with earlier versions of MySQL will require temporary columns or a
temporary table along the lines of the previous example. Actually, using a temporary
table is still a prudent method for staging data. After you’ve verified it, you can
execute an INSERT...SELECT statement (see Chapter 6).

Command-Line Interface
It’s not necessary to open the mysql interface to enter SQL statements into the
MySQL server. In fact, sometimes you may have only a quick query to make in
MySQL, and you’d rather just do it from the shell or command line. For instance,
suppose we have a table called vendors in our database, and we want to get a quick
list of vendors in Louisiana and their telephone numbers. We could enter the fol-
lowing from the command line in Linux (or an equivalent operating system) to get
this list:

mysql --user='paola' --password='caporale1017' \
-e "SELECT vendor, telephone FROM vendors \
 WHERE state='LA'" bookstore

We’re still using the mysql client, but we’re not entering the interface. As shown
earlier, we provide the username paola and her password caporale1017 as arguments
to the command. This line ends with a backslash to let the Unix shell know that
there are more parameters to come. Otherwise, we would need to put all of the
information shown on one line.

On the second line, we use the -e option to indicate that what follows it in double
quotes is to be executed by the mysql client. Notice that what’s in double quotes is
the same SQL statement with the same syntax as what we would enter if we were
logged in to the interface. The syntax doesn’t change because we’re entering the SQL
statement from the command line. We don’t need a terminating semicolon, though,
because the mysql client knows where the SQL statement ends.

34 | Chapter 3: MySQL Basics

Finally, after the SQL statement, we provide the name of the database to be used.
We could eliminate this argument by adding the database name before the table
name, separated by a dot (i.e., bookstore.vendors).

There are other command-line options with the mysql client. There are also other
command-line utilities available for accessing and manipulating data in MySQL.
You can use some of these utilities for backing up the database or for performing
server maintenance and tuning. They are covered in Chapters 15 and 16.

Conclusion
Obviously, you can do plenty more with MySQL. This tutorial was designed to give
you an idea of how to create a database and manage the data in some very basic
ways. The remaining sections of this book provide details on MySQL statements,
clauses, arguments, options, and functions. If you’re new to MySQL, you can begin
with the statements and clauses highlighted in this chapter, and refer to the chapters
that follow for more options and to learn about other functions and features as
needed.

Conclusion | 35

M
ySQL Basics

II
SQL Statements and Functions

This part of the book is a complete reference for the version of the SQL language
used by MySQL. It divides the SQL statements and functions by the basic functions
(scheme design, data manipulation, replication, etc.). Examples use the mysql
command-line client, but they are equally valid when issued from the programming
APIs discussed in Part IV.

Some of the chapters in this part start with a list of statements grouped by type, as
a quick reference. The statements are then listed in alphabetical order. For the more
complex statements, to simplify their presentation, I’ve broken the syntax into
several sections according to the different uses of the statement.

Here are some general elements of MySQL’s SQL syntax:

• SQL statements may span multiple lines, but they must end with either a
semicolon or \G, unless another character is specified with DELIMITER.

• When values are enclosed in parentheses, multiple values can usually be
specified, separated by commas.

• Strings and dates must be specified within single or double quotes, unless a date
is given as a numeric and is part of a date calculation.

• Elements of a statement’s syntax are case-insensitive. However, on Unix-type
systems, database and table names, as well as filenames, are case-sensitive.

The MySQL statements, clauses, and functions explained in Chapters 4 through
14 are grouped in each chapter, first by statements and clauses, then by functions.

They are listed alphabetically within each group. Each statement is given with its
syntax and an explanation. Optional clauses and flags are shown in square brackets.
Particular components, such as a database or table name, are shown in italics. The
vertical bar is used to separate alternative choices and is not part of the statement
syntax.

Some statements have alternative syntax structures. These alternatives are usually
shown in complete form. The curly braces indicate that one of the choices is required.
Examples show how a statement and the various clauses may be used for almost all
statements.

To save space, some of the examples are shown without their results. Occasionally,
when the results are shown, the typical ASCII table format is not shown because the
statement is executed with a \G ending instead of the usual semicolon. In order to
focus on the particulars of the statements and clauses, the statements are fairly
straightforward and do not make much use of the many built-in functions available
with MySQL. Explanations of any functions used, though, can be found in other
chapters.

4
Security and User Statements

and Functions

User access and privileges can be global (i.e., apply to all databases on the server),
or they can be database-specific, table-specific, or column-specific. In version 5 of
MySQL, users can also be limited to particular functions and procedures.

In addition to security-related SQL statements, users can be limited in their use of
MySQL resources in order to prevent the monopolization of resources and the in-
direct denial of service to other users. Thus, you can limit the number of connections
or the maximum resources per hour for a user.

The primary information regarding user access and privileges is stored in a set of
regular MyISAM tables, known as the grant tables, that reside in the mysql database
on the server. The tables are:

user
Global privileges

db
Database-specific privileges

tables_priv
Table-specific privileges

columns_priv
Column-specific privileges

Several other tables provide fine-tuning for user access and security. Execute SHOW
TABLES FROM mysql; to get a list on your server. You can manipulate the data in these
tables directly with standard SQL statements, such as INSERT, UPDATE, and DELETE,
followed by the FLUSH PRIVILEGES statement to update the server’s cache. However,
it’s recommended that you use specialized SQL statements to manage users and
assign access rights:

39

CREATE USER
To create new users

GRANT
To create a user account, assigning privileges for a new user account, or
assigning privileges to an existing user

REVOKE
To remove privileges

RENAME USER
To change a user’s name

SET PASSWORD
To change a password

DROP USER
To delete a user’s account

All of these statements are described in this chapter. This chapter also lists and
explains MySQL functions related to user maintenance and several related to
database and network security.

Statements and Functions
The following is a list of security and user statements that are covered in this chapter:

CREATE USER, DROP USER, FLUSH, GRANT, RENAME USER, RESET, REVOKE, SET PASSWORD, SHOW
GRANTS, SHOW PRIVILEGES.

The following related functions are covered in this chapter as well. They are
explained in detail after the SQL statements:

AES_DECRYPT(  ), AES_ENCRYPT(  ), CURRENT_USER(  ), DECODE(  ), DES_DECRYPT(  ), DES_EN-
CRYPT(  ),ENCODE(  ), ENCRYPT(  ), MD5(  ), OLD_PASSWORD(  ), PASSWORD(  ), SES-
SION_USER(  ), SHA(  ), SHA1(  ), SYSTEM_USER(  ), USER(  ).

SQL Statements in Alphabetical Order
The following is a list of MySQL statements and clauses in alphabetical order related
to security and user account maintenance. The examples in this particular chapter
have no theme to them and could be found in any organization using a MySQL
database.

CREATE USER
CREATE USER 'user'[@'host']
[IDENTIFIED BY [PASSWORD] 'password'] [, ...]

This statement creates new user accounts on the MySQL server. The username is given
within quotes, followed by the at sign (@) and a host IP address or hostname within
quotes. For accessing MySQL locally, use the host of localhost. The IP address is

40 | Chapter 4: Security and User Statements and Functions

127.0.0.1. Use the percent sign (%) wildcard as the host to allow a client with the specified
username to connect from any host. If no host or @ is given, the percent sign is assumed.

The user password is given in plain text within quotes, preceded by the IDENTIFIED BY
clause. You don’t need to use the PASSWORD() function to encrypt the password; this is
done automatically. However, if you wish to provide the hash value of the password,
precede the password with IDENTIFIED BY PASSWORD. If the password clause is not given,
a blank password is assumed and will be accepted. This is a potential security problem
and should never be done. If you do this by mistake, use the SET PASSWORD statement to
set the password.

Multiple user accounts may be specified in a comma-separated list.

The CREATE USER statement was introduced in version 5.0.2 of MySQL. For previous
versions, use the GRANT statement. This new statement operates similarly to the GRANT
statement, except that you cannot specify user privileges with the CREATE USER statement.
As a result, the process is to create a user with the CREATE USER statement and then to
grant the user privileges with the GRANT statement. This two-step process is a more logical
process, especially to a newcomer to MySQL. However, you can still use just the GRANT
statement to create and set privileges for a new user.

This statement requires CREATE USER privilege or INSERT privilege for the mysql database,
which contains user account information and privileges. To remove a user, use the DROP
USER statement and possibly also the REVOKE statement:

CREATE USER 'paola'@'localhost'
IDENTIFIED BY 'her_password',
'paola'@'caporale.com'
IDENTIFIED BY 'her_password';

In this example, two user accounts are created along with their passwords, but both are
for the same person. The difference is that one allows the user to log into the server
hosting the database and to run the mysql client or some other client on the server, the
localhost. The other account allows the user to connect from a host named
caporale.com using a client from that host. No other host will be allowed for this user.

DROP USER
DROP USER 'user'@'host'

Use this statement to delete a user account for the MySQL server. As of version 5.0.2 of
MySQL, this statement will delete the user account and its privileges from all grant tables.
The username is given within quotes, followed by the at sign (@) and the host IP address
or hostname within quotes. This statement requires a CREATE USER privilege or DELETE
privilege for the mysql database, which contains user account information and privileges.
Dropping a user account does not affect current sessions for the user account. It will take
effect when any sessions opened by the user terminate. Use the KILL statement (explained
in Chapter 7) to terminate an open client session for a user that has been dropped.

Some users may have more than one user account (i.e., user and host combinations).
You should check the server’s mysql.user table to be sure:

SELECT User,Host
FROM mysql.user
WHERE User LIKE 'paola';

DROP USER

Chapter 4: Security and User Statements and Functions | 41

Security & User
Statem

ents

+-------+--------------+
| User | Host |
+-------+--------------+
| paola | localhost |
| paola | caporale.com |
+-------+--------------+

DROP USER 'paola'@'localhost',
'paola'@'caporale.com';

Prior to version 5.0.2 of MySQL, the DROP USER statement won’t delete a user that has
any privileges set to 'Y'. To eliminate the user account’s privileges, issue the REVOKE
statement before using DROP USER:

REVOKE ALL ON *.* FROM 'paola'@'localhost';

DROP USER 'paola'@'localhost';

The ALL option is used to ensure revocation of all privileges. The *.* covers all tables in
all databases. Prior to version 4.1.1 of MySQL, you would have to issue the following
instead of a DROP USER statement:

DELETE FROM mysql.user
WHERE User='paola' AND Host='localhost';

FLUSH PRIVILEGES;

Notice that the FLUSH PRIVILEGES statement is necessary for the preceding DELETE state-
ment to take effect immediately. It’s not necessary after the DROP USER statement, though.

FLUSH
FLUSH [LOCAL|NO_WRITE_TO_BINLOG] option[, ...]

Options:

DES_KEY_FILE, HOSTS, LOGS, MASTER, PRIVILEGES, QUERY_CACHE,
STATUS, TABLE, TABLES, TABLES WITHOUT READ LOCK, USER_RESOURCES

Use this statement to clear and reload temporary caches in MySQL. It requires RELOAD
privileges. To prevent this statement from writing to the binary log file, the
NO_WRITE_TO_BINLOG flag or its LOCAL alias may be given. A particular cache to flush may
be given as an option. Multiple options (see Table 4-1) may be given in a
comma-separated list.

As of version 5.1 of MySQL, FLUSH cannot be used in stored functions and triggers, but
can be used in stored procedures. As an alternative to the FLUSH statement, you can use
the mysqladmin command (see Chapter 16).

Table 4-1. Options for FLUSH statement

Option Explanation

DES_KEY_FILE Reloads the DES encryption file, which is given with the --des-key-file
option at startup or in the options file.

FLUSH

42 | Chapter 4: Security and User Statements and Functions

Option Explanation

HOSTS Clears the hosts cache, which is used to minimize host/IP address lookups. The
hosts cache may need to be flushed if a host has been blocked from accessing the
server.

LOGS Used to close all of the log files and reopen them. If the server has binary logging
enabled, it will change the binary log file to the next in numeric sequence. If the
error log was enabled, it will rename the error log to the same name, but with the
ending -old, and start a new error log. This option is not logged.

MASTER This option is not logged and has been deprecated. Use the RESET MASTER
statement instead.

PRIVILEGES Reloads the grant tables for user privileges. This is necessary if the user table in
the mysql database has been modified manually, without the GRANT statement.

QUERY CACHE Instructs the server to defragment the query cache to improve performance. It
doesn’t remove queries from cache, though. Use the RESET QUERY CACHE
statement to remove the queries.

SLAVE This option is not logged and has been deprecated. Use the RESET SLAVE
statement instead.

STATUS Resets the session values and counters for key caches to 0. The current thread’s
session status variables are set to those of the global variables. The
max_used_conections variable is set to the number of sessions open at the
time.

TABLE[table, ...] Followed by one or more table names, this option forces the given tables to be
closed. This will terminate any active queries on the given tables. Specified without
any tables, the option has the same effect as TABLES.

TABLES Causes all tables to be closed, all queries to be terminated, and the query cache to
be flushed. This is the same as TABLE with no table name.

TABLES WITH READ
LOCK

Closes all tables and locks them with a global read lock. This will allow users to
view the data, but not to update it or insert records. The lock will remain in place
until the UNLOCK TABLES statement is executed. This option is not logged.

USER_RESOURCES Resets all user resource values that are calculated on an hourly basis. These are the
values for the columns max_questions, max_updates, and
max_connections in the user table of the mysql database. Use this
FLUSH option when users have been blocked because they exceed hourly limits.
If these columns are missing, see Chapter 16 for the explanation of
mysql_fix_privilege_tables.

GRANT
GRANT privilege[,...] [(column[,...])][, ...]
ON [TABLE|FUNCTION|PROCEDURE] {[{database|*}.{table|*}] | *}
TO 'user'@'host' [IDENTIFIED BY [PASSWORD] 'password'][, ...]

[REQUIRE NONE |
[{SSL|X509}] [CIPHER 'cipher' [AND]]
[ISSUER 'issue' [AND]]

GRANT

Chapter 4: Security and User Statements and Functions | 43

Security & User
Statem

ents

[SUBJECT 'subject']]

[WITH [GRANT OPTION |
 MAX_QUERIES_PER_HOUR count |
 MAX_UPDATES_PER_HOUR count |
 MAX_CONNECTIONS_PER_HOUR count |
 MAX_USER_CONNECTIONS count] ...]

This statement may be used to create new MySQL users, but its primary use is for granting
user privileges. Privileges can be global (apply to all databases on the server), database-
specific, table-specific, or column-specific. Users can now also be limited by functions
and procedures. Additionally, users can be limited by number of connections or by a
maximum of resources per hour.

The privileges to grant to a user are listed immediately after the GRANT keyword in a
comma-separated list. To restrict a user to specific columns in a table, list those columns
in a comma-separated list within parentheses. This is then followed by the ON clause in
which the privileges granted may be limited to a database, table, function, or procedure.
To limit the privileges to a function, use the FUNCTION keyword; to limit them to a
procedure, use the PROCEDURE keyword.

For tables, the keyword TABLE is optional and the default. You can then specify the da-
tabase to which the privileges relate in quotes, followed by a period (.) and the name of
the table, function, or procedure in quotes. You may also use the asterisk wildcard (*) to
specify all databases or all tables, functions, or procedures offered by the database.

In the TO clause, give the username (in quotes) and the IP address or host (also in quotes)
for which the user account privileges are permitted, separated by an at sign (@). To provide
the password for the user account, add the IDENTIFIED BY clause, followed by the user’s
password in plain text and enclosed in quotes. To provide the password in encrypted
hash form, add the keyword PASSWORD just before the password given. You can use the
WITH clause to grant the GRANT OPTION privilege to a user so that that user may execute
this statement. The GRANT statement with the IDENTIFIED BY clause can be used to change
a password for an existing user.

For an explanation of how to restrict user accounts based on types of connections, see
the next section of this statement (“GRANT: Type of connection restrictions”). For in-
formation on how to restrict user accounts based on the amount of activity for a period
of time or the number of connections permitted, see the last section of this statement
(“GRANT: Time and number of connection limits”). To see the privileges for a given
user, use the SHOW GRANTS statement described later in this chapter.

A large variety of privileges may be granted to a user, so a common set of privileges has
been combined in the ALL keyword. Here is an example:

GRANT ALL PRIVILEGES ON *.*
TO 'evagelia'@'localhost'
IDENTIFIED BY 'papadimitrou1234'
WITH GRANT OPTION;

In this example, the user evagelia is created and granted all basic privileges because of
the ALL keyword. This does not include the GRANT privilege, the ability to use the GRANT
statement. To do that, the WITH GRANT OPTION clause is given, as shown here, explicitly
to give that privilege to the user. It’s not a good idea to give users this privilege unless

GRANT

44 | Chapter 4: Security and User Statements and Functions

they are MySQL server administrators. Table 4-2 later in this chapter lists and describes
each privilege.

As mentioned before, a user’s privileges can be refined to specific SQL statements and
specific databases. A GRANT statement can also restrict a user to only certain tables and
columns. Here is an example that leaves the user fairly limited:

GRANT SELECT ON workrequests.*
TO 'jerry'@'localhost' IDENTIFIED BY 'neumeyer3186';

GRANT SELECT,INSERT,UPDATE ON workrequests.workreq
TO 'jerry'@'localhost' IDENTIFIED BY 'neumeyer3186';

Assuming the user jerry does not already exist, the first statement here creates the user
and gives him SELECT privileges only for the workrequests database for all of its tables.
This will allow him to read from the various tables but not edit the data. The second SQL
statement grants jerry the right to add and change data in the workreq table of the
workrequests database. This will allow him to enter work requests and make changes to
them. The first statement causes an entry to be made to the db table in the mysql database.
The second affects the tables_priv table. An entry is also made to the user table showing
the user jerry, but he has no global privileges. This is the equivalent of granting just the
USAGE privilege.

GRANT: Type of connection restrictions
GRANT privilege[,...] [(column[,...])][, ...]
ON [TABLE|FUNCTION|PROCEDURE] {[{database|*}.{table|*}] | *}
TO 'user'@'host' [IDENTIFIED BY [PASSWORD] 'password'][, ...]

[REQUIRE NONE |
[{SSL|X509} [AND]]
[CIPHER 'cipher' [AND]]
[ISSUER 'issue' [AND]]
[SUBJECT 'subject']]

[time and number of connection limits] ...]

A user can also be restricted to certain types of connections with the REQUIRE clause. There
are several options that may be given together with the keyword AND. Each option can be
used only once in a statement. REQUIRE NONE is the default and indicates that no such
restrictions are required. Encrypted and unencrypted connections from clients are per-
mitted from the user that has been properly authenticated.

The REQUIRE SSL option restricts the user account to only SSL-encrypted connections.
The mysql client of the user account would start the client with the --ssl-ca option, and
also the --ssl-key and --ssl-cert options if necessary:

GRANT ALL PRIVILEGES ON workrequests.* TO 'rusty'@'localhost'
IDENTIFIED BY 'her_password'
REQUIRE SSL;

Use the REQUIRE X509 option to require the user account to have a valid CA certificate.
This does not require any specific certificate, though. The mysql client would need to be
started with the --ssl-ca, --ssl-key, and --ssl-cert options. To simplify handling of
these options, the user can put them in a options file in her home directory on the server

GRANT

Chapter 4: Security and User Statements and Functions | 45

Security & User
Statem

ents

(e.g., ~/.my.cnf). The following is a sample of what that options file would contain to
conform to the user account restrictions:

[client]
ssl-ca=/data/mysql/cacert.pem
ssl-key=/data/mysql/rusty-key.pem
ssl-cert=/data/mysql/rusty-cert.pem

Use the REQUIRE CIPHER option to require that the user account use a given cipher method:

GRANT ALL PRIVILEGES ON workrequests.* TO 'rusty'@'localhost'
IDENTIFIED BY 'her_password'
REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

REQUIRE ISSUER is used to require the user to supply a valid X.509 certificate issued by
the given CA. Although the string given for an issuer may be lengthy, it must be written
as one string without an embedded line break:

GRANT ALL PRIVILEGES ON workrequests.* TO 'rusty'@'localhost'
IDENTIFIED BY 'her_password'
REQUIRE ISSUER '/C=US/ST=Louisiana/L=New+20Orleans/O=WorkRequesters/CN=
 cacert.workrequests.com/emailAddress=admin@workrequests.com';

The REQUIRE SUBJECT option requires that the X.509 certificate used by the user account
have the given subject:

GRANT ALL PRIVILEGES ON workrequests.* TO 'rusty'@'localhost'
IDENTIFIED BY 'her_password'
REQUIRE SUBJECT '/C=US/ST=Louisiana/L=New+20Orleans/O=WorkRequesters/CN=
 Rusty Osborne/emailAddress=rusty@workrequests.com';

GRANT: Time and number of connection limits
GRANT privilege[,...] [(column[,...])][, ...]
ON [TABLE|FUNCTION|PROCEDURE] {[{database|*}.{table|*}] | *}
TO 'user'@'host' [IDENTIFIED BY [PASSWORD] 'password'][, ...]

[type of connection restrictions]

[WITH [MAX_QUERIES_PER_HOUR count |
 MAX_UPDATES_PER_HOUR count |
 MAX_CONNECTIONS_PER_HOUR count |
 MAX_USER_CONNECTIONS count] ...]

You can use the WITH clause along with the MAX_QUERIES_PER_HOUR option to specify the
maximum number of queries that a user account may execute per hour. The
MAX_UPDATES_PER_HOUR option is used to give the maximum number of UPDATE statements
that may be issued per hour by the user account. The maximum number of connections
by a user account to the server per hour can be set with the MAX_CONNECTIONS_PER_HOUR
option. The default values for these three options are all 0. This value indicates that there
is no limit or restrictions for these resources. The MAX_USER_CONNECTIONS option is used
to set the maximum number of simultaneous connections the given user account may
have. If this value is not set or is set to 0, the value of the system variable
max_user_connections is used instead. Here is an example of how a user might be limited
in such a way:

GRANT SELECT ON catalogs.*
TO 'webuser'@'%'

GRANT

46 | Chapter 4: Security and User Statements and Functions

WITH MAX_QUERIES_PER_HOUR 1000
MAX_CONNECTIONS_PER_HOUR 100;

This account is designed for large numbers of users running queries through a web server.
The statement creates the webuser user and allows it to read tables from the catalogs
database. The user may not run more than 1,000 queries in an hour and may establish
only 100 connections in an hour.

To change an existing user account’s resources without changing the account’s existing
privileges, you can use the USAGE keyword. Simply enter a statement like this:

GRANT USAGE ON catalogs.*
TO 'webuser'@'%'
WITH MAX_QUERIES_PER_HOUR 10000
MAX_CONNECTIONS_PER_HOUR 100;

In this example, the existing user account has been limited in resources without changing
the user account’s privileges. See Table 4-2 for a list of privileges.

Table 4-2. Privileges in GRANT and REVOKE

Privilege Description

ALL [PRIVILEGES] Grants all of the basic privileges. Does not include GRANT OPTION.

ALTER Allows use of the ALTER TABLE statement.

ALTER ROUTINE Allows the user account to alter or drop stored routines. This includes the
ALTER FUNCTION and ALTER PROCEDURE statements, as well as the
DROP FUNCTION and DROP PROCEDURE statements.

CREATE Grants CREATE TABLE statement privileges.

CREATE ROUTINE Allows the user account to create stored routines. This includes the CREATE
FUNCTION and CREATE PROCEDURE statements. The user has ALTER
ROUTINE privileges to any routine he creates.

CREATE TEMPORARY
TABLES

Allows the CREATE TEMPORARY TABLES statement to be used.

CREATE USER Allows the user account to execute several user account management state-
ments: CREATE USER, RENAME USER, REVOKE ALL PRIVILEGES, and
the DROP USER statements.

CREATE VIEW Allows the CREATE VIEW statement. This was first enabled in version 5.0.1
of MySQL.

DELETE Allows the DELETE statement to be used.

DROP Allows the user to execute DROP TABLE and TRUNCATE statements.

EVENT Allows the user account to create events for the event scheduler. As of version
5.1.12 of MySQL, this privilege allows the use of the CREATE EVENT, ALTER
EVENT, and DROP EVENT statements.

EXECUTE Allows the execution of stored procedures. This is available as of version 5 of
MySQL.

FILE Allows the use of SELECT...INTO OUTFILE and LOAD DATA INFILE
statements to export from and import to a file.

GRANT

Chapter 4: Security and User Statements and Functions | 47

Security & User
Statem

ents

Privilege Description

GRANT OPTION Allows the use of the GRANT statement to grant privileges to users. This option
is specified with the WITH clause of the GRANT statement.

INDEX Allows the use of CREATE INDEX and DROP INDEX statements.

INSERT Allows the use of INSERT statements.

LOCK TABLES Allows the use of LOCK TABLES statement for tables for which the user has
SELECT privileges.

PROCESS Allows the use of SHOW FULL PROCESSLIST statements.

REFERENCES This is not used. It’s for future releases.

RELOAD Allows the use of FLUSH and RESET statements.

REPLICATION CLIENT Allows the user to query master and slave servers for status information.

REPLICATION SLAVE Required for replication slave servers. Allows binary log events to be read from
the master server.

SELECT Allows the use of the SELECT statement.

SHOW DATABASES Permits the use of the SHOW DATABASES statement for all databases, not
just the ones for which the user has privileges.

SHOW VIEW Allows the use of the SHOW CREATE VIEW statement. This is for version 5.0.1
and above of MySQL.

SHUTDOWN Allows the use of the shutdown option with the mysqladmin utility.

SUPER Allows the use of CHANGE MASTER, KILL, PURGE MASTER LOGS, and
SET GLOBAL statements, and the debug option with the command-line
utility mysqladmin.

TRIGGER Allows the user account to create and drop triggers: the CREATE TRIGGER
and the DROP TRIGGER statements.

UPDATE Allows the use of the UPDATE statement.

USAGE Used to create a user without privileges, or to modify resource limits on an
existing user without affecting the existing privileges.

RENAME USER
RENAME USER 'user'[@'host'] TO 'user'[@'host'][,...]

Use this statement to change the username or the host of an existing user account. It does
not change the user privileges or necessarily migrate any privileges to specific databases,
events, stored routines, tables, triggers, or views. Here is an example:

RENAME USER 'michaelzabalaoui'@'localhost' TO 'zabb'@'%',
'richardstringer'@'localhost' TO 'littlerichard'@'localhost';

The first user’s name and host have been changed here, whereas the second user’s name
only was changed.

RENAME USER

48 | Chapter 4: Security and User Statements and Functions

RESET
RESET [QUERY CACHE|MASTER|SLAVE]

Use this statement to reset certain server settings and log files. The RELOAD privilege is
required to use this statement. The QUERY CACHE option clears the cache containing SQL
query results.

Use the MASTER option to reset a master used for replication. This statement must be
executed from the master itself. It will start a new binary log file, as well as delete the
binary log file names from the index file and delete the contents of the binary log index
file. The SLAVE option is used to reset a slave used for replication and must be executed
from the slave itself. It will start a new relay log file and delete any existing ones, as well
as delete its notation of its position in the master’s binary log. See Chapter 8 on replication
for more information on these two options.

REVOKE
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user[, ...]

REVOKE privilege[,...] [(column[, ...])]
ON {[{database|*}.{table|*}] | *}
FROM 'user'@'host'[, ...]

Use this statement to revoke some or all privileges that were granted to a user with the
GRANT statement. The first syntax is used to revoke all privileges from a user. Multiple
users may be given in a comma-separated list. A list of users and their privileges are stored
in the mysql database, in the user table in particular:

REVOKE ALL PRIVILEGES
ON *.*
FROM 'paola'@localhost';

To revoke only some privileges, use the second syntax structure, giving the specific priv-
ileges to be removed in a comma-separated list after the keyword REVOKE. For a list of
privileges and their descriptions, see Table 4-2 under the description of the GRANT
statement earlier in this chapter.

To revoke privileges for specific columns, list the columns within parentheses in a
comma-separated list. Privileges that are granted based on columns are stored in the
columns_priv table of the mysql database. Privileges may be revoked on a specific table
for a specific database. To revoke privileges on all tables of a database, specify an asterisk
as a wildcard for the table name. You can do the same for the database name to apply
the statement to all databases. Table-specific privileges are stored in the tables_priv
table, and database-specific privileges are stored in the db table.

SET PASSWORD
SET PASSWORD [FOR 'user'@'host'] = PASSWORD('password')

Use this statement to change the password for a user account. The username and host
must be given. The change of password will apply only to the given combination of
username and host. It won’t apply to other hosts for the same user in the grant tables.

SET PASSWORD

Chapter 4: Security and User Statements and Functions | 49

Security & User
Statem

ents

To get a list of user accounts on your server, enter the following SQL statement:

SELECT User, Host FROM mysql.user;

If the FOR clause is not given with the SET PASSWORD statement, the current user account
is assumed. The PASSWORD() function will encrypt the password given.

This statement does not need to be followed by a FLUSH PRIVILEGES statement. It will
automatically update the privileges cache for the new password. If you updated your
server from a version before 4.1 to a new version, you may have problems changing a
user account’s password and cause the user account’s password to become invalid. You
may need to run the mysql_fix_privilege_tables utility to change the Password column
in the user table in the mysql database. See Chapter 16 for more information on this utility.

Here is an example of changing a user account’s password:

SET PASSWORD FOR 'kenneth'@'localhost' = PASSWORD('his_password');

SHOW GRANTS
SHOW GRANTS [FOR 'user'[@'host']]

This SQL statement displays the GRANT statement for a given user. If the FOR clause is not
given, the current user account is assumed. If the username is given without reference to
a particular host, the wildcard % is assumed. Otherwise, the username should be followed
by the host as shown here:

SHOW GRANTS FOR 'russell'@'localhost'\G

*************************** 1. row ***************************
Grants for russell@localhost:

GRANT ALL PRIVILEGES ON *.*
TO 'russell'@'localhost'
IDENTIFIED BY PASSWORD '57fa103a3c5c9f30'
WITH GRANT OPTION

The resulting statement is what would be entered to create the user russell for the host
localhost, with the given privileges including the WITH GRANT OPTION flag.

SHOW PRIVILEGES
SHOW PRIVILEGES

This statement provides a list of privileges available, along with the context of each one
(e.g., server administration) and a description. The output is not based on the user. In-
stead, it’s a complete listing of the privileges that may be assigned to a user. This statement
is available as of version 4.1 of MySQL.

Functions in Alphabetical Order
The following are MySQL functions in alphabetical order related to security and
user account maintenance.

SHOW GRANTS

50 | Chapter 4: Security and User Statements and Functions

AES_DECRYPT(  )
AES_DECRYPT(string, password)

This function decrypts text that was encrypted using the Advanced Encryption Standard
(AES) algorithm with a 128-bit key length, reversing the AES_ENCRYPT() function. The
function unlocks the encrypted string with the password given as the second argument.
It returns NULL if one of the given parameters is NULL. This is available as of version
4.0.2 of MySQL. Here is an example:

SELECT AES_DECRYPT(personal, 'my_password') AS Personal
FROM teachers
WHERE teacher_id='730522';

+----------+
| Personal |
+----------+
| text |
+----------+

In this example, the value for the personal column is decrypted using the password given.
The result is just the plain text of the column.

AES_ENCRYPT(  )
AES_ENCRYPT(string, password)

This function encrypts a given string using the AES algorithm with a 128-bit key length.
It locks the encrypted string with the password given as the second argument. The func-
tion returns NULL if one of the given parameters is NULL. It’s available as of version
4.0.2 of MySQL. The results of this function can be reversed with AES_DECRYPT(). Here
is an example:

UPDATE teachers
SET personal = AES_ENCRYPT('text', 'my_password')
WHERE teacher_id = '730522';

CURRENT_USER(  )
CURRENT_USER()

This function returns the username and the host that were given by the user for the current
MySQL connection. There are no arguments for the function. It may not always return
the same results as USER(  ). Here is an example:

SELECT CURRENT_USER(), USER();

+-----------------+------------------+
| CURRENT_USER() | USER() |
+-----------------+------------------+
| ''@localhost | russel@localhost |
+-----------------+------------------+

In this example, the user logged in to the mysql client with the username russel (missing
one “l” in the name), but because there isn’t an account for that user, the client logged
in with the anonymous (i.e., '') account.

CURRENT_USER(  )

Chapter 4: Security and User Statements and Functions | 51

Security & User
Statem

ents

DECODE(  )
DECODE(string, password)

This function decrypts a given string that was encrypted with a given password. See the
ENCODE(  ) function later in this chapter:

SELECT ENCODE(pwd, 'oreilly')
FROM teachers
WHERE teacher_id = '730522';

This function decrypts the contents of the pwd column and unlocks it using the oreilly
password, which was used to encrypt it originally using ENCODE(  ).

DES_DECRYPT(  )
DES_DECRYPT(string, [key])

This function decrypts text that was encrypted using the triple Data Encryption Standard
(DES) algorithm with a 128-bit key length, reversing the DES_ENCRYPT() function. It re-
turns NULL if an error occurs. The function will work only if MySQL has been configured
for Secure Sockets Layer (SSL) support. It is available as of version 4.0.1 of MySQL. Here
is an example:

SELECT DES_DECRYPT(credit_card_nbr, 0)
FROM orders
WHERE order_nbr = '8347';

In this example, the value for the credit_card_nbr column is decrypted using the first key
string in the key file. See the description of DES_ENCRYPT(  ) next for more information on
key files.

DES_ENCRYPT(  )
DES_ENCRYPT(string, [key])

This function returns encrypted text using the triple DES algorithm with a 128-bit key
length. It returns NULL if an error occurs. The function is available as of version 4.0.1
of MySQL.

This function requires MySQL to be configured for SSL support. In addition, a key file
must be created and the mysqld daemon must be started with the --des-key-file option.
The key file should be set up with a separate key string on each line. Each line should
begin with a single-digit number (0–9) as an index, followed by a space before the key
string (e.g., key_number des_string).

The key given as the second argument to the function can either be the actual key to use
for encryption or a number that refers to a key in the key file. If the second argument is
omitted, the function uses the first key in the key file:

UPDATE orders
SET credit_card_nbr = DES_ENCRYPT('4011-7839-1234-4321')
WHERE order_nbr = '8347';

The results of this function can be reversed with DES_DECRYPT(  ).

DECODE(  )

52 | Chapter 4: Security and User Statements and Functions

ENCODE(  )
ENCODE(string, password)

This function encrypts a given string in binary format and locks it with the password.
You should not use this function for the password column in the user table of the mysql
database. Use PASSWORD(  ) instead. Here is an example:

UPDATE teachers
SET pwd = ENCODE('test', 'oreilly')
WHERE teacher_id = '730522';

The function here encrypts the word test and locks it with the oreilly password. The
results are stored in the pwd column for the chosen teacher. To unlock the results, use
the DECODE(  ) function with the same password.

ENCRYPT(  )
ENCRYPT(string[, seed])

This function returns encrypted text using the C-language crypt function. A two-
character string may be given in the second argument to increase the randomness of
encryption. The resulting string cannot be decrypted. You should not use this function
for the password column in the user table of the mysql database. Use PASSWORD() instead.
Here is an example:

UPDATE teachers
SET pwd = ENCRYPT('test', 'JT')
WHERE teacher_id = '730522';

MD5(  )
MD5(string)

This function uses a Message-Digest algorithm 5 (MD5) 128-bit checksum to return a
32-character hash value of string from the Request for Comments (RFC) 1321 standard.
Here is an example:

SELECT MD5('Test') AS 'MD5() Test';
+----------------------------------+
| MD5() Test |
+----------------------------------+
| 0cbc6611f5540bd0809a388dc95a615b |
+----------------------------------+

OLD_PASSWORD(  )
OLD_PASSWORD(string)

This function encrypts a given string based on the password encryption method used
prior to version 4.1 of MySQL. The result cannot be decrypted. Here is an example:

UPDATE teachers
SET pwd = OLD_PASSWORD('test')
WHERE teacher_id = '730522';

OLD_PASSWORD(  )

Chapter 4: Security and User Statements and Functions | 53

Security & User
Statem

ents

PASSWORD(  )
PASSWORD(string)

This function encrypts a password given as an argument. The result cannot be decrypted.
This function is used for encrypting data in the password column of the user table in the
mysql database. Here is an example:

UPDATE teachers
SET pwd = PASSWORD('test')
WHERE teacher_id = '730522';

SESSION_USER(  )
SESSION_USER()

This function returns the username and the hostname for the current MySQL connection.
The function takes no arguments. It’s synonymous with SYSTEM_USER(  ) and USER(  ).

SHA(  )
SHA(string)

This function returns the Secure Hash Algorithm (SHA) 160-bit checksum for the given
string. The result is a string composed of 40 hexadecimal digits. NULL is returned if the
given string is NULL. This function is synonymous with SHA1(  ). Here is an example:

 SELECT SHA('test');

+--+
| SHA('test') |
+--+
| a94a8fe5ccb19ba61c4c0873d391e987982fbbd3 |
+--+

SHA1(  )
SHA(string)

This function returns the SHA 160-bit checksum for the given string. The result is a string
composed of 40 hexadecimal digits. NULL is returned if the given string is NULL. This
function is synonymous with SHA(  ).

SYSTEM_USER(  )
SYSTEM_USER()

This function returns the username and the hostname for the current MySQL connection.
The function takes no arguments. It’s synonymous with SESSION_USER(  ) and USER(  ).

PASSWORD(  )

54 | Chapter 4: Security and User Statements and Functions

USER(  )
USER()

This function returns the username and the hostname for the current MySQL connection.
The function takes no arguments. It’s synonymous with SESSION_USER(  ) and
with SYSTEM_USER(  ). Here is an example:

SELECT USER();

+-------------------+
| USER() |
+-------------------+
| russell@localhost |
+-------------------+

USER(  )

Chapter 4: Security and User Statements and Functions | 55

Security & User
Statem

ents

5
Database and Table Schema

Statements

This chapter explains the SQL statements in MySQL related to database and table
schema. These statements create, alter, and delete databases and tables, as well as
display information related to databases, tables, and columns. The statements in
this chapter pertain to information about these data structures, not the manipulation
of data within them; statements that affect the data are covered in the next chapter.
In essence, this chapter covers the SQL statements used when one is in the mode of
creating database structures. This mode is a fairly distinct mindset and is sometimes
the responsibility of different persons from those who manipulate the data itself.

This chapter covers the following SQL statements:

ALTER DATABASE, ALTER SCHEMA, ALTER SERVER, ALTER TABLE, ALTER VIEW, CREATE DA-
TABASE, CREATE INDEX, CREATE SCHEMA, CREATE SERVER, CREATE TABLE, CREATE VIEW,
DESCRIBE, DROP DATABASE, DROP INDEX, DROP SERVER, DROP TABLE, DROP VIEW, RENAME
DATABASE, RENAME TABLE, SHOW CHARACTER SET, SHOW COLLATION, SHOW COLUMNS, SHOW
CREATE DATABASE, SHOW CREATE TABLE, SHOW CREATE VIEW, SHOW DATABASES, SHOW IN-
DEXES, SHOW SCHEMAS, SHOW TABLE STATUS, SHOW TABLES, SHOW VIEWS.

Statements and Clauses in Alphabetical Order
The following is a list of MySQL statements and clauses related to database and
table schema, in alphabetical order. To understand how this book presents SQL
syntax and describes SQL statements, as well as for information related to examples,
please see the introduction to Part II. Many of the examples in this particular chapter
involve the activities of the departments of a fictitious company: its human resources
department and employee data, its sales department and client contact information,
and its internal IT department with user work requests.

57

ALTER DATABASE
ALTER {DATABASE|SCHEMA} database
 [DEFAULT] CHARACTER SET character_set |
 [DEFAULT] COLLATE collation

Use this statement to alter settings for a database. Version 4.1.1 of MySQL introduced
this function and added a file named db.opt containing the database settings to the da-
tabase directory. Currently, two options are available: CHARACTER SET and COLLATE. Here
are the contents of a typical db.opt file:

default-character-set=latin1
default-collation=latin1_swedish_ci

Although an administrator can edit the file manually, it may be more robust to use the
ALTER DATABASE statement to change the file. It’s synonymous with ALTER SCHEMA as of
version 5.0.2 of MySQL. The ALTER privilege is necessary for this statement.

The CHARACTER SET option can set the first line shown, which specifies the default database
character set that will be used. The COLLATE option can set the second line, which specifies
the default database collation (how the character data is alphabetized). Here’s an example
of the use of this statement:

ALTER DATABASE human_resources
CHARACTER SET latin2_bin
COLLATE latin2_bin;

Notice that both options may be given in one SQL statement. The DEFAULT keyword is
unnecessary, but it is offered for compatibility with other database systems. Beginning
with version 4.1.8 of MySQL, if the name of the database is omitted from this SQL
statement, the current database will be assumed. To determine the current database, use
the DATABASE() function:

SELECT DATABASE();

+--------------+
| DATABASE() |
+--------------+
| workrequests |
+--------------+

See the explanations for the SHOW CHARACTER SET and SHOW COLLATION SQL statements later
in this chapter for more information on character sets and collations.

ALTER SCHEMA
ALTER {DATABASE|SCHEMA} database
 [DEFAULT] CHARACTER SET character_set |
 [DEFAULT] COLLATE collation

This statement is synonymous with ALTER DATABASE. See the description of that statement
previously for more information and examples.

ALTER DATABASE

58 | Chapter 5: Database and Table Schema Statements

ALTER SERVER
ALTER SERVER server
OPTIONS (
 { HOST host, |
 DATABASE database, |
 USER user, |
 PASSWORD password, |
 SOCKET socket, |
 OWNER character, |
 PORT port }
)

Use this SQL statement with the FEDERATED storage engine to change the connection
parameters of a server created with CREATE SERVER. The values given are stored in the
server table of the mysql database. Options are given in a comma-separated list. Option
values must be specified as character or numeric literals (UTF-8; maximum length of 64
characters). This statement was introduced in version 5.1.15 of MySQL and requires
SUPER privileges:

ALTER SERVER server1
OPTIONS (USER 'test_user', PASSWORD 'testing123', PORT 3307);

This example changes the values of an existing server, the username, the password, and
the port to be used for connecting to the server.

ALTER TABLE
ALTER [IGNORE] TABLE table changes[, ...]

Use this statement to change an existing table’s structure and other properties. A table
may be altered with this statement in the following ways:

• Add a new column (see the “ALTER TABLE: ADD clauses for columns” subsection
that follows)

• Add an index (see the “ALTER TABLE: ADD clause for standard indexes,” “ALTER
TABLE: ADD clause for FULLTEXT indexes,” and “ALTER TABLE: ADD clause
for SPATIAL indexes” subsections)

• Add a foreign key constraint (see the “ALTER TABLE: ADD clauses for foreign
keys” subsection)

• Change an existing column (see the “ALTER TABLE: CHANGE clauses”
subsection)

• Delete a column or index (see the “ALTER TABLE: DROP column clause” and
“ALTER TABLE: DROP index clauses” subsections)

• Set other column and index factors (see the “ALTER TABLE: Miscellaneous clau-
ses” subsection)

• Add and change table partitions (see the “ALTER TABLE: Partition altering clau-
ses” and “ALTER TABLE: Partition administration clauses” subsections)

• Set table-wide options (see the “ALTER TABLE: Table options” subsection)

The IGNORE flag applies to all clauses and instructs MySQL to ignore any error messages
regarding duplicate rows that may occur as a result of a column change. It will keep the

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 59

Database & Table
Schem

a

first unique row found and drop any duplicate rows. Otherwise, the statement will be
terminated and changes will be rolled back.

This statement requires the ALTER, CREATE, and INSERT privileges for the table being al-
tered, at a minimum. While an ALTER TABLE statement is being executed, users will be
able to read the table, but usually they won’t be able to modify data or add data to a table
being altered. Any INSERT statements using the DELAYED parameter that are not completed
when a table is altered will be canceled and the data lost. Increasing the size of the
myisam_sort_buffer_size system variable will sometimes make MyISAM table alterations
go faster.

The syntax and explanation of each clause follows, with examples, grouped by type of
clause. Multiple alterations may be combined in a single ALTER TABLE statement. They
must be separated by commas and each clause must include the minimally required
elements.

ALTER TABLE: ADD clauses for columns
ALTER [IGNORE] TABLE table
ADD [COLUMN] column definition [FIRST|AFTER column] |
ADD [COLUMN] (column definition,...)

These clauses add columns to a table. The same column definitions found in a CREATE
TABLE statement are used in this statement. Basically, the statements list the name of the
column followed by the column data type and the default value or other relevant com-
ponents. The COLUMN keyword is optional and has no effect.

By default, an added column is appended to the end of the table. To insert a new column
at the beginning of a table, use the FIRST keyword at the end of the ADD COLUMN clause.
To insert it after a particular existing column, use the AFTER keyword followed by the
name of the column after which the new column is to be inserted:

ALTER TABLE workreq
ADD COLUMN req_type CHAR(4) AFTER req_date,
ADD COLUMN priority CHAR(4) AFTER req_date;

In this example, two columns are added after the existing req_date column. The clauses
are executed in the order that they are given. Therefore, req_type is placed after
req_date. Then priority is added after req_date and before req_type. Notice that you
can give more than one clause in one ALTER TABLE statement; just separate them with
commas.

ALTER TABLE: ADD clause for standard indexes
ALTER [IGNORE] TABLE table
ADD {INDEX|KEY} [index] [USING index_type] (column,...)

Use the ADD INDEX clause to add an index to a table. If you omit the name of the index,
MySQL will set it to the name of the first column on which the index is based. The type
of index may be stated, but usually it’s not necessary. The names of one or more columns
for indexing must be given within parentheses, separated by commas.

Here is an example of how you can add an index using the ALTER TABLE statement,
followed by the SHOW INDEXES statement with the results:

ALTER TABLE clients
ADD INDEX client_index

ALTER TABLE

60 | Chapter 5: Database and Table Schema Statements

(client_name(10), city(5)) USING BTREE;

SHOW INDEXES FROM clients \G

*************************** 1. row ***************************
 Table: clients
 Non_unique: 0
 Key_name: PRIMARY
Seq_in_index: 1
 Column_name: client_id
 Collation: A
 Cardinality: 0
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
*************************** 2. row ***************************
 Table: clients
 Non_unique: 1
 Key_name: client_index
Seq_in_index: 1
 Column_name: client_name
 Collation: A
 Cardinality: NULL
 Sub_part: 10
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
*************************** 3. row ***************************
 Table: clients
 Non_unique: 1
 Key_name: client_index
Seq_in_index: 2
 Column_name: city
 Collation: A
 Cardinality: NULL
 Sub_part: 5
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:

As you can see in the results, there was already an index in the table clients (see row 1).
The index we’ve added is called client_index. It’s based on two columns: the first 10
characters of the client_name column and the first 5 characters of the city column. Lim-
iting the number of characters used in the index makes for a smaller index, which will
be faster and probably just as accurate as using the complete column widths. The results
of the SHOW INDEXES statement show a separate row for each column indexed, even though
one of the indexes involves two rows.

The table in this example uses the MyISAM storage engine, which uses the BTREE index
type by default, so it was unnecessary to specify a type. See Appendix A for more infor-
mation about storage engines and available index types. Before MySQL version 5.1.10,

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 61

Database & Table
Schem

a

the USING subclause could come either before or after the column list, but as of version
5.1.10, it must follow the column list.

ALTER TABLE: ADD clause for FULLTEXT indexes
ALTER [IGNORE] TABLE table
ADD FULLTEXT [INDEX|KEY] [index] (column,...) [WITH PARSER parser]

The ADD FULLTEXT clause adds an index to a TEXT column within an existing MyISAM
table. A FULLTEXT index can also index CHAR and VARCHAR columns. This type of index is
necessary to use the FULLTEXT functionality (the MATCH(  ) AGAINST(  ) function from Chap-
ter 11). The INDEX and KEY keywords are optional as of MySQL version 5.

With this index, the whole column will be used for each column given. Although you
can instruct it to use only the first few characters of a table, it will still use the full column
for the index. The WITH PARSER clause may be used to give a parser plugin for a
FULLTEXT index:

ALTER TABLE workreq
ADD FULLTEXT INDEX notes_index
(client_description, technician_notes);

SHOW INDEXES FROM workreq \G

*************************** 2. row ***************************
 Table: workreq
 Non_unique: 1
 Key_name: notes_index
Seq_in_index: 1
 Column_name: client_description
 Collation: NULL
 Cardinality: NULL
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: FULLTEXT
 Comment:
*************************** 3. row ***************************
 Table: workreq
 Non_unique: 1
 Key_name: notes_index
Seq_in_index: 2
 Column_name: technician_notes
 Collation: NULL
 Cardinality: NULL
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: FULLTEXT
 Comment:

I’ve eliminated the first row from these results because it relates to the primary index,
not the one created here.

As of version 5.1 of MySQL, you can use the WITH PARSER clause to specify a parser plugin
for a FULLTEXT index. This option requires that the plugin table be loaded in the mysql
database. This table is part of the current installation of MySQL. If you’ve upgraded

ALTER TABLE

62 | Chapter 5: Database and Table Schema Statements

MySQL and the plugin table is not in your system’s mysql database, use the
mysql_upgrade script to add it. Use the SHOW PLUGINS statement to see which plugins are
installed.

ALTER TABLE: ADD clause for SPATIAL indexes
ALTER [IGNORE] TABLE table
ADD SPATIAL [INDEX|KEY] [index] (column,...)

This ADD clause is used to add a SPATIAL index. A SPATIAL index can index only spatial
columns. A spatial index is used in a table that holds data based on the Open Geospatial
Consortium (http://www.opengis.org) data for geographical and global positioning sat-
ellite (GPS) systems. For our purposes here, this clause is necessary to add an index for
spatial extensions. For MyISAM tables, the RTREE index type is used. The BTREE is used
by other storage engines that use nonspatial indexes of spatial columns. Here is an
example:

ALTER TABLE squares
ADD SPATIAL INDEX square_index (square_points);

SHOW INDEXES FROM squares \G

*************************** 1. row ***************************
 Table: squares
 Non_unique: 1
 Key_name: square_index
Seq_in_index: 1
 Column_name: square_points
 Collation: A
 Cardinality: NULL
 Sub_part: 32
 Packed: NULL
 Null:
 Index_type: SPATIAL
 Comment:

Notice that when we created the table, we specified that the column square_points is
NOT NULL. This is required to be able to index the column. See the CREATE INDEX state-
ment for SPATIAL indexes in this chapter for an explanation and more examples related
to spatial indexes.

ALTER TABLE: ADD clauses for foreign keys
ALTER [IGNORE] TABLE table
ADD [CONSTRAINT [symbol]] PRIMARY KEY [USING index_type] (column,...) |
ADD [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY] index [USING index_type]
 (column,...) |
ADD [CONSTRAINT [symbol]] FOREIGN KEY [index] (column,...)
 [REFERENCES table (column,...)
 [ON DELETE {RESTRICT|CASCADE|SET NULL|NO ACTION|SET DEFAULT}]
 [ON UPDATE {RESTRICT|CASCADE|SET NULL|NO ACTION|SET DEFAULT}]]

These ADD clauses add foreign keys and references to InnoDB tables. A foreign key is an
index that refers to a key or an index in another table. See the explanation of the CREATE
TABLE statement later in this chapter for more information and for an example of an SQL

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 63

Database & Table
Schem

a

http://www.opengis.org

statement involving the creation of foreign keys in a table. The various flags shown are
also explained in the CREATE TABLE statement.

Here is an example:

CREATE TABLE employees
(emp_id INT AUTO_INCREMENT PRIMARY KEY,
tax_id CHAR(12),
emp_name VARCHAR(100))
ENGINE = INNODB;

CREATE TABLE employees_telephone
(emp_id INT,
tel_type ENUM('office','home','mobile'),
tel_number CHAR(25))
ENGINE = INNODB;

ALTER TABLE employees_telephone
ADD FOREIGN KEY emp_tel (emp_id)
REFERENCES employees (emp_id)
ON DELETE RESTRICT;

The first two SQL statements create InnoDB tables: one for basic employee information
and the other for employee telephone numbers. Using the ALTER TABLE statement after-
ward, we add a foreign key restriction between the two. Let’s look at the results using
the SHOW TABLE STATUS statement, because the SHOW INDEXES statement won’t show foreign
key restraints:

SHOW TABLE STATUS FROM human_resources
LIKE 'employees_telephone' \G

*************************** 1. row ***************************
 Name: employees_telephone
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2007-04-03 04:01:39
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment: InnoDB free: 4096 kB; ('emp_id')
 REFER 'human_resources'.'employees'('emp_id')

In the Comment field, we can see that we’ve created a restraint on the main table
employees from employees_telephone. We’re telling MySQL not to allow a row for an
employee to be removed from the employees table without first removing the rows of data
for the employee in the employees_telephone table.

ALTER TABLE

64 | Chapter 5: Database and Table Schema Statements

In the following example, we first insert an employee in the employees table, then add
her home telephone number to the second table, and then attempt to delete her from the
first table:

INSERT INTO employees
VALUES(1000,'123-45-6789','Paola Caporale');

INSERT INTO employees_telephone
VALUES(1000,2,'+39 343-12-34-5678');

DELETE FROM employees WHERE emp_id = 1000;

ERROR 1451 (23000): Cannot delete or update a parent row:
a foreign key constraint fails
('human_resources'.'employees_telephone',
 CONSTRAINT 'employees_telephone_ibfk_1'
 FOREIGN KEY ('emp_id') REFERENCES 'employees' ('emp_id')
)

As you can see, we cannot delete the employee from the employees table and leave the
stray row of data in the employees_telephone table. We have to delete the data in
employees_telephone first, before deleting the related data from employees. See the ex-
planation under CREATE TABLE in the “CREATE TABLE: Foreign key references” section
later in this chapter for examples of the other options with foreign keys. Incidentally, you
can’t drop and add a foreign key in the same ALTER TABLE statement.

ALTER TABLE: CHANGE clauses
ALTER [IGNORE] TABLE table
ALTER [COLUMN] column {SET DEFAULT value|DROP DEFAULT} |
CHANGE [COLUMN] column column definition [FIRST|AFTER column] |
MODIFY [COLUMN] column definition [FIRST|AFTER column]

These three clauses are used to alter an existing column in a table. The first syntax struc-
ture is used either to set the default value of a column to a particular value or to reset it
back to its default value for its column type (usually NULL or 0). The other two syntax
structures are used primarily to change the column definitions. The COLUMN keyword is
optional and has no effect.

To change the column’s character set, add CHARACTER SET to the end of the column def-
inition for the CHANGE or MODIFY clauses, followed by the character set name to use. Here’s
an example of the first clause:

ALTER TABLE clients
ALTER COLUMN city SET DEFAULT 'New Orleans';

This statement sets the default value of the city column in the clients table to a value
of New Orleans, because that’s where most of the clients are located.

The clauses that change column definitions are roughly synonymous; they follow the
standards of different SQL systems for the sake of compatibility (e.g., MODIFY is used with
Oracle). They can also be used to relocate the column within the table schema with the
FIRST or the AFTER keywords. If a column’s data type is changed, MySQL attempts to
adjust the data to suit the new data type. If a column width is shortened, MySQL truncates
the data and generates warning messages for the affected rows. Indexes related to
changed columns will be adjusted automatically for the new lengths.

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 65

Database & Table
Schem

a

In the CHANGE clause, the current column name must be specified first, followed by either
the same column name if the name is to remain the same, or a new column name if the
name is to be changed. The full column definition for the column must be given as well,
even if it’s not to be changed.

The MODIFY clause cannot be used to change a column’s name, so the column name
appears only once with it.

The following SQL statement shows the columns in the clients table, where the column
name begins with a c and contains an i to list the columns that begin with either client or
city. After viewing these limited results, we change one column using each of the clauses
for changing column definitions:

SHOW COLUMNS FROM clients LIKE 'c%i%';

+--------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+--------------+------+-----+---------+----------------+
client_id	int(11)	NO	PRI	NULL	auto_increment
client_name	varchar(255)	YES	MUL	NULL	
city	varchar(255)	YES		NULL	
client_zip	char(10)	YES		NULL	
client_state	char(2)	YES		NULL	
+--------------+--------------+------+-----+---------+----------------+

ALTER TABLE clients
CHANGE COLUMN city client_city VARCHAR(100) CHARACTER SET 'latin2',
MODIFY COLUMN client_state CHAR(4) AFTER client_city;

After looking at the current columns, we’ve decided to change the name of the city
column to client_city to match the other related columns, and to enlarge the
client_state column and move it before the column for the postal ZIP code. To do this,
the CHANGE clause is used to change the name of the city column, but not its column type
and size. The second clause changes the column type and size and relocates the
client_state column to a position after the client_city column.

When a column is changed, MySQL will attempt to preserve the data. If a column size
is reduced, the data won’t be completely deleted, but it may be truncated, in which case
the results will show a number of warnings. Use the SHOW WARNINGS statement to view
them.

ALTER TABLE: DROP column clause
ALTER [IGNORE] TABLE table
DROP [COLUMN] column

The DROP clause of the ALTER TABLE statement removes a given column from a table and
deletes the column’s data. A table must have at least one column, so this statement will
fail if used on the only column in a table. Use the DROP TABLE statement to delete a table.
If a dropped column is part of an index, the column will be removed automatically from
the index definition. If all of the columns of an index are dropped, the index will auto-
matically be dropped.

Here is an example including this clause:

ALTER TABLE

66 | Chapter 5: Database and Table Schema Statements

ALTER TABLE clients
DROP COLUMN miscellaneous,
DROP COLUMN comments;

This statement drops two columns and deletes the data they contain without warning.
Notice that multiple columns may be dropped by separating each clause by a comma.
It’s not possible to combine clauses. That is to say, ...DROP COLUMN (miscellaneous,
comments) is not permitted. Once a column has been deleted, you won’t be able to recover
its data from MySQL. Instead, you’ll have to restore the table from a backup of your data
if you made one.

ALTER TABLE: DROP index clauses
ALTER [IGNORE] TABLE table
DROP INDEX index |
DROP PRIMARY KEY |
DROP FOREIGN KEY foreign_key_symbol

These clauses are used to delete indexes. A standard index is fairly easy to eliminate with
the first syntax shown. Here’s an example of its use:

ALTER TABLE clients
DROP INDEX client_index;

The second syntax deletes the primary key index of a table. However, if the primary key
is based on a column with an AUTO_INCREMENT type, you may need to change the column
definition in the same statement so it is no longer AUTO_INCREMENT before you can drop
the primary key. Here is an example in which we fail to change the indexed column first:

ALTER TABLE clients
DROP PRIMARY KEY;

ERROR 1075 (42000): Incorrect table definition;
there can be only one auto column and it must be defined as a key

ALTER TABLE clients
CHANGE client_id client_id INT,
DROP PRIMARY KEY;

The first SQL statement here causes an error in which MySQL complains that if we are
going to have a column with AUTO_INCREMENT, it must be a key column. So using the
CHANGE clause in the second SQL statement, we change the client_id column from INT
AUTO_INCREMENT to just INT. After the AUTO_INCREMENT is removed, the PRIMARY KEY may be
dropped. Before version 5.1 of MySQL, if a primary key doesn’t exist, the first UNIQUE key
is dropped instead. After version 5.1, an error is returned and no key is dropped.

To delete a foreign key, the third syntax is used. Here is an example that deletes a foreign
index:

ALTER TABLE client
DROP FOREIGN KEY '0_34531';

In this example, the name of the index is not the name of any of the columns, but an
index that was created by combining two columns and was given its own name. The
name was changed by InnoDB automatically. To get a list of indexes for a table, use the
SHOW CREATE TABLE statement.

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 67

Database & Table
Schem

a

ALTER TABLE: Miscellaneous clauses
ALTER [IGNORE] TABLE table
CONVERT TO CHARACTER SET charset [COLLATE collation] |
[DEFAULT] CHARACTER SET charset [COLLATE collation] |
DISABLE|ENABLE KEYS |
DISCARD|IMPORT TABLESPACE |
ORDER BY column [ASC|DESC][,...] |
RENAME [TO] table

You can use these miscellaneous clauses with the ALTER TABLE statement to change a
variety of table properties. They are described here in the order that they are listed in the
syntax.

Converting and setting character sets

The first two syntaxes shown may be used to change the character set and collation for
a table. When a table is first created with the CREATE TABLE statement, unless a character
set or collation is specified, defaults for these traits are used. To see the character set and
collation for a particular table, use the SHOW TABLE STATUS statement. To convert the data,
use the CONVERT TO CHARACTER SET clause. To set the table’s default without converting
the data, use the DEFAULT CHARACTER SET clause with the ALTER TABLE statement. The
following example shows how to convert a table’s character set:

SHOW TABLE STATUS LIKE 'clients' \G

*************************** 1. row ***************************
 Name: clients
 Engine: MyISAM
 Version: 10
 Row_format: Dynamic
 Rows: 632
 Avg_row_length: 12732
 Data_length: 1024512
Max_data_length: 281474976710655
 Index_length: 3072
 Data_free: 0
 Auto_increment: 1678
 Create_time: 2006-02-01 14:12:31
 Update_time: 2007-04-03 05:25:41
 Check_time: 2006-08-14 21:31:36
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options: max_rows=1000
 Comment: This table lists basic information on clients.

ALTER TABLE clients
CONVERT TO CHARACTER SET latin2 COLLATE latin2_bin,
DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

The first clause in this example converts the data in the clients table from its default of
latin1_swedish_ci to latin2. The second clause sets the new default for the table to
latin2, as well. Be aware that the CONVERT clause may cause problems with the data. So
be sure to make a backup copy before using this clause and check the converted data
before finishing. If you have a column with a character set in which data might be lost
in the conversion, you could first convert the column to a Binary Large Object (BLOB)

ALTER TABLE

68 | Chapter 5: Database and Table Schema Statements

data type, and then to the data type and character set that you want. This usually works
fine because BLOB data isn’t converted with a character set change.

Disabling and enabling keys

You can use the third clause (DISABLE and ENABLE) to disable or enable the updating of
nonunique indexes on MyISAM tables. You will need ALTER, CREATE, INDEX, and INSERT
privileges to execute this statement and clause. As of version 5.1.11 of MySQL, this clause
will work on partitioned tables. When running a large number of row inserts, it can be
useful to disable indexing until afterward:

ALTER TABLE sales_dept.catalog
DISABLE KEYS;

LOAD DATA INFILE '/tmp/catalog.txt'
INTO TABLE sales_dept.catalog
FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n';

ALTER TABLE sales_dept.catalog
ENABLE KEYS;

In this example, we’ve disabled the indexes of the catalog table in the sales_dept data-
base so that we can more quickly import the new catalog data. If we had run the SHOW
INDEXES statement at this point, we would have seen disabled in the Comment field of the
results for all of the indexes except the PRIMARY key. In our example, we then reenabled
the indexes for faster retrieval of data by users.

Discarding or importing tablespace

InnoDB tables use tablespaces instead of individual files for each table. A tablespace can
involve multiple files and can allow a table to exceed the filesystem file limit as a result.
You can use the TABLESPACE clauses in the ALTER TABLE statement to delete or import a
tablespace:

ALTER TABLE workreq
IMPORT TABLESPACE;

This statement imports the .idb file if it’s in the database’s directory. Replacing the
IMPORT keyword with DISCARD will delete the .idb file.

Reordering rows

You can use the next clause syntax structure, the ORDER BY clause, to permanently reorder
the rows in a given table. Note that after an ALTER TABLE statement, any new rows inserted
will be added to the end of the table and the table will not be reordered automatically.
To enforce another order, you will need to run ALTER TABLE again with this clause. The
only reason to use this clause is for tables that rarely change, because reordering some-
times improves performance. In most cases, instead of reordering the storage of the table,
it’s recommended you include an ORDER BY clause in your SELECT statements.

Here’s an example with this clause:

ALTER TABLE clients
ORDER BY client_name;

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 69

Database & Table
Schem

a

It’s possible to give more than one column name in the ORDER BY clause, separated by
commas. Expressions cannot be used. You can, however, specify ascending (ASC, the
default) or descending (DESC) order for each column.

Renaming a table

You can use the RENAME clause to change the name of an existing table. Here is an example
of this clause:

ALTER TABLE client RENAME TO clients;

This statement renames the client table to clients. The TO keyword is not required; it’s
a matter of style preference and compatibility. A statement with this clause is equivalent
to using the RENAME TABLE statement, except that the RENAME clause does not change user
privileges from the old table name to refer to the new name of the table.

ALTER TABLE: Partition altering clauses
ALTER [IGNORE] TABLE table
PARTITION BY options |
ADD PARTITION (definition) |
COALESCE PARTITION number |
DROP PARTITION partition |
REORGANIZE PARTITION partition INTO (definition) |
REMOVE PARTITIONING

These table partition clauses for ALTER TABLE may be used to add or remove partitions in
a table. They were added as of version 5.1.6 of MySQL. For partition clauses that analyze,
check, optimize, rebuild, and repair partitions in a table, see the next subsection (“ALTER
TABLE: Partition administration clauses”). Also, see the CREATE TABLE statement
explanation for more information on table partitioning.

It should be noted that the execution of the partition clauses for ALTER TABLE is very slow.
You may not want to use them with data that is in use if you can avoid it. Instead, you
might deploy a method of locking the table to be partitioned for read-only activities,
making a copy of the table, partitioning the new table, and switching the new table with
the old one, but keeping the old table as a backup copy in case there are problems.

This section includes several examples of partitioning a MyISAM table. The partition
clauses are explained as they are used in each example. Partitioning is visible at the file-
system level, so to start, let’s look at a table’s files:

ls -1 clients*

clients.frm
clients.MYD
clients.MYI

We used the ls command (because this server is running Linux) at the command line to
get a directory listing of the files for the clients table, in the sales_dept database sub-
directory, in the data directory for MySQL. You can see the usual three file types for a
MyISAM table.

The PARTITION BY clause can be used to initially partition a table with the ALTER TABLE
statement. Any partition options used with the same clause in the CREATE TABLE statement
may be used in ALTER TABLE. See the definition of the CREATE TABLE statement later in this
chapter for more options.

ALTER TABLE

70 | Chapter 5: Database and Table Schema Statements

In the following example, we alter the table clients using this clause to create partitions:

ALTER TABLE clients
PARTITION BY KEY(client_id)
PARTITIONS 2;

In this statement, we are instructing MySQL to partition the given table by the KEY method
using the client_id column. We further tell it to split the table into two partitions. Now,
let’s run the ls command again to see the results at the filesystem level:

ls -1 clients*

clients.frm
clients.par
clients#P#p0.MYD
clients#P#p0.MYI
clients#P#p1.MYD
clients#P#p1.MYI

As you can see, we now have a pair of index and datafiles for each partition, along with
another file related to the partition schema (i.e., the .par file). The table schema file (i.e.,
the .frm file) remains unchanged.

The ADD PARTITION clause adds a new partition to a table in which partitions are deter-
mined based on a range of values. To demonstrate this, let’s partition the clients table
again, but this time we’ll base the partitioning on a range of values for the client_id
column, the primary key. If a table has a primary key, that key must be included in the
basis of the partitions:

ALTER TABLE clients
ADD PARTITION (PARTITION p2);

The REMOVE PARTITIONING clause removes partitioning from a table. It shifts data back to
one datafile and one index file. Here is an example of its use:

ALTER TABLE clients
REMOVE PARTITIONING;

For some situations, the ADD PARTITION clause discussed previously won’t work. In par-
ticular, it won’t work with a table in which the last partition was given the range of
MAXVALUE:

ALTER TABLE clients
PARTITION BY RANGE (client_id) (
PARTITION p0 VALUES LESS THAN (400),
PARTITION p1 VALUES LESS THAN MAXVALUE);

ALTER TABLE clients
ADD PARTITION (PARTITION p2 VALUES LESS THAN (800));

ERROR 1481 (HY000):
VALUES LESS THAN value must be strictly increasing for each partition

Instead of ADD PARTITION, the REORGANIZE PARTITION clause can be used to split the data
contained in the last partition into two separate partitions. This clause can be used to
separate the data in an existing partition into multiple partitions based on their given
partition definitions.

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 71

Database & Table
Schem

a

Here is an example of this clause using the partitions previously described:

ALTER TABLE clients
REORGANIZE PARTITION p1 INTO
(PARTITION p1 VALUES LESS THAN (800),
PARTITION p2 VALUES LESS THAN MAXVALUE);

When experimenting with an empty table, this SQL statement takes my server 10 seconds
to execute. Consider this when using this clause or any partitioning clauses with
ALTER TABLE.

The DROP PARTITION clause may be used to eliminate named partitions in an existing table
and to delete the data contained in the dropped partitions. To reduce the number of
partitions without loss of data, see the COALESCE PARTITION clause for this same SQL
statement. For an example of the DROP PARTITION clause, if you have a table that has six
partitions and you want to delete two of them, you could execute an SQL statement like
the second one here:

CREATE TABLE clients
(client_id INT,
name VARCHAR(255))
PARTITION BY RANGE (client_id) (
PARTITION p0 VALUES LESS THAN (400),
PARTITION p1 VALUES LESS THAN (800),
PARTITION p2 VALUES LESS THAN (1000),
PARTITION p3 VALUES LESS THAN MAXVALUE);

ALTER TABLE clients
DROP PARTITION p1, p2;

Notice that the ALTER TABLE statement is dropping two middle partitions and not the last
one. The data contained in the two dropped would be lost if they had any. Because of
the MAXVALUE parameter of the last partition, any new rows of data that have a
client_id of 400 or greater will be stored in the p3 partition. Partitions need to be in
order, but not sequentially named.

The COALESCE PARTITION clause may be used to reduce the number of partitions in an
existing table by the number given. For example, if you have a table that has four parti-
tions and you want to reduce it to three, you could execute a statement like the ALTER
TABLE one here:

CREATE TABLE clients
(client_id INT,
name VARCHAR(255))
PARTITION BY HASH(client_id)
PARTITIONS 4;

ALTER TABLE clients
COALESCE PARTITION 1;

Notice that the PARTITION keyword in this last SQL statement is not plural. Also notice
that you give the number of partitions by which you want to reduce the partitions, not
the total you want. If you give a value equal to or greater than the number of partitions
in the table, you’ll receive an error instructing you that you must use DROP TABLE instead.

See the CREATE TABLE statement explanation for more information about table
partitioning.

ALTER TABLE

72 | Chapter 5: Database and Table Schema Statements

ALTER TABLE: Partition administration clauses
ALTER [IGNORE] TABLE table
ANALYZE PARTITION partition |
CHECK PARTITION partition |
OPTIMIZE PARTITION partition |
REBUILD PARTITION partition |
REPAIR PARTITION partition

Because the ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements
do not work with partitioned tables, you will have to use the clauses of ALTER TABLE in
this subsection instead. They all follow the same syntax format: the clause is followed
by a comma-separated list of partitions to be administered.

The ANALYZE PARTITION clause may be used to read and store the indexes of a partition:

ALTER TABLE clients
ANALYZE PARTITION p0, p1, p2;

To check a partition for corrupted data and indexes, use the CHECK PARTITION clause:

ALTER TABLE clients
CHECK PARTITION p0, p1, p2;

Use the OPTIMIZE PARTITION clause to compact a partition in which the data has changed
significantly:

ALTER TABLE clients
OPTIMIZE PARTITION p0, p1, p2;

The REBUILD PARTITION clause defragments the given partitions:

ALTER TABLE clients
REBUILD PARTITION p0, p1, p2;

The REPAIR PARTITION clause attempts to repair corrupted partitions, similar to the REPAIR
TABLE statement for tables:

ALTER TABLE clients
REPAIR PARTITION p0, p1, p2;

See the CREATE TABLE statement explanation for more information about table
partitioning.

ALTER TABLE: Table options
ALTER TABLE table
[TABLESPACE tablespace_name STORAGE DISK]
 {ENGINE|TYPE} [=] {BDB|HEAP|ISAM|INNODB|MERGE|MRG_MYISAM|MYISAM} |
AUTO_INCREMENT [=] value |
AVG_ROW_LENGTH [=] value |
[DEFAULT] CHARACTER SET character_set |
CHECKSUM [=] {0|1} |
CONNECTION [=] 'string' |
COLLATE collation |
COMMENT [=] 'string' |
DATA DIRECTORY [=] '/path' |
ENGINE [=] engine |
INDEX DIRECTORY [=] '/path' |
INSERT_METHOD [=] {NO|FIRST|LAST } |

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 73

Database & Table
Schem

a

KEY_BLOCK_SIZE [=] value |
MAX_ROWS [=] value |
MIN_ROWS [=] value |
PACK_KEYS [=] {0|1|DEFAULT} |
DELAY_KEY_WRITE [=] {0|1} |
ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT} |
RAID_TYPE = {1|STRIPED|RAID0} |
UNION [=] (table[,...])

This subsection lists all of the table options that can be set with the ALTER TABLE state-
ment. The options are the same as those that can be specified for CREATE TABLE when a
table is first created. (See the description of that statement in this chapter for more in-
formation about the options available.) You can give multiple options to ALTER TABLE in
a comma-separated list.

To change the starting point for an AUTO_INCREMENT column, enter the following
statement:

ALTER TABLE clients
AUTO_INCREMENT = 1000;

This statement sets the value of the primary key column to 1,000 so that the next row
inserted will be 1,001. You cannot set it to a value less than the highest data value that
already exists for the column.

For large tables, you may want to set the average row length for better table optimization
by using the AVG_ROW_LENGTH option. The following example uses the
SHOW TABLE STATUS statement to see the average row length for a table similar to the one
we want to alter, to get an idea of what the average row length should be:

SHOW TABLE STATUS LIKE 'sales' \G

*************************** 1. row ***************************
 Name: sales
 Engine: MyISAM
 Version: 10
 Row_format: Dynamic
 Rows: 93
 Avg_row_length: 12638
 Data_length: 1175412
Max_data_length: 281474976710655
 Index_length: 706560
 Data_free: 0
 Auto_increment: 113
 Create_time: 2007-05-02 14:27:59
 Update_time: 2007-05-03 13:57:05
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

ALTER TABLE clients
AVG_ROW_LENGTH = 12638;

In the second SQL statement we’ve set the average row length value of the clients table.

ALTER TABLE

74 | Chapter 5: Database and Table Schema Statements

The CHARACTER SET option sets the character set to use for character data in the table. The
DEFAULT flag is not required. This option is typically used along with the COLLATE option.
These options do not affect columns for which the character set and collation are ex-
plicitly specified. Use the SHOW CHARACTER SET and SHOW COLLATION statements to see the
character sets and collations available:

ALTER TABLE clients
DEFAULT CHARACTER SET 'latin2'
COLLATE 'latin2_general_ci';

The CHECKSUM option enables or disables a checksum for a table. Set the value to 0 to
disable a checksum or 1 to enable checksum. If you upgrade a table that uses a checksum
and was created prior to version 4.1 of MySQL, the table may be corrupted in the process.
Try using REPAIR TABLE to recalculate the checksum for the table:

ALTER TABLE clients
CHECKSUM = 0;

The COLLATE option sets the collation to use with the data in the table (that is, how the
character data is alphabetized). This option is typically used along with the CHARACTER
SET option. These options do not affect columns for which the collation and character
sets are explicitly specified. Use the SHOW CREATE TABLE statement to see the collation and
character set for the table and its columns:

ALTER TABLE clients
COLLATE 'latin2_general_ci'
DEFAULT CHARACTER SET 'latin2';

With the COMMENT option, you can add notes for yourself or other table administrators
regarding a table:

ALTER TABLE clients
MAX_ROWS = 1000,
COMMENT = 'This table lists basic information on clients.';

SHOW CREATE TABLE clients \G

*************************** 1. row ***************************
 Table: clients
Create Table: CREATE TABLE 'clients' (
 'client_id' int(11) NOT NULL AUTO_INCREMENT,
 'client_name' varchar(255) DEFAULT NULL, ...
 PRIMARY KEY ('client_id'),
 KEY 'client_index' ('client_name'(10),'city'(5)) USING BTREE
) ENGINE=MyISAM
AUTO_INCREMENT=1001
DEFAULT CHARSET=latin1 MAX_ROWS=1000
COMMENT='This table lists basic information on clients.'

I’ve shortened the results shown here to save space and to focus on the options. SHOW
CREATE TABLE is the only method for viewing the table options in MySQL. They will not
be shown with DESCRIBE.

The CONNECTION option is provided for tables that use the FEDERATED storage engine.
Previously, you would use the COMMENT option to specify this option. The syntax for this
option is:

ALTER TABLE

Chapter 5: Database and Table Schema Statements | 75

Database & Table
Schem

a

CONNECTION='mysql://username:password@hostname:port/database/tablename'

The password and port are optional.

If you wish to federate an existing table with a remote table, you can alter the table on
your system to specify the connection to the remote table like this:

ALTER TABLE clients
CONNECTION='mysql://russell:rover123@santa_clara_svr:9306/federated/clients';

The DATA DIRECTORY option is theoretically used to see the data directory path for the
table. However, MySQL currently ignores the option:

ALTER TABLE clients
DATA DIRECTORY = '/data/mysql/clients';

Use the ENGINE option to change the storage engine (formerly known as the table type)
for the table given. Be careful using this option as it may cause problems with data. Make
a backup of your table and data before using it. As of version 5.1.11 of MySQL, this
option cannot be used to change a table to the BLACKHOLE or MERGE storage engines:

ALTER TABLE clients
ENGINE = INNODB;

This statement changes the storage engine used for the given table to InnoDB. If a table
has special requirements that the new engine cannot provide, you’ll receive an error when
trying to make this change and the statement will fail. For instance, a MyISAM table that
has FULLTEXT indexes could not be changed to InnoDB since it doesn’t support that kind
of indexing. Instead, create a new table using the desired storage engine, migrate the data
to the new table, and then drop the old table after verifying the integrity of the data.

The INDEX DIRECTORY option is theoretically used to see the directory path for the table
indexes. However, MySQL currently ignores the option:

ALTER TABLE clients
INDEX DIRECTORY = '/data/mysql/clients_index';

To insert data into a MERGE table, you will need to specify the insert method it will use.
To specify or change this method, use the INSERT_METHOD option with the ALTER TABLE
statement. A value of FIRST indicates that the first table should be used; LAST indicates
the last table should be used; NO disables inserts:

CREATE TABLE sales_national
(order_id INT, sales_total INT)
ENGINE = MERGE
UNION = (sales_east, sales_west)
INSERT_METHOD = LAST;

ALTER TABLE sales_national
INSERT_METHOD = FIRST;

In the first SQL statement here, we create the table sales_national based on two other
tables and specify that inserts use the last table in the list of tables given. In the second
SQL statement, we change the insert method.

To give the storage engine a hint of the size of index key blocks, use the
KEY_BLOCK_SIZE option. Set the value to 0 to instruct the engine to use the default. This
option was added in version 5.1.10 of MySQL:

ALTER TABLE

76 | Chapter 5: Database and Table Schema Statements

ALTER TABLE clients
KEY_BLOCK_SIZE = 1024;

The MAX_ROWS and MIN_ROWS options are used to set the maximum and minimum rows of
a table, respectively. Use the SHOW CREATE TABLE statement to see the results of these
options:

ALTER TABLE clients
MIN_ROWS = 100,
MAX_ROWS = 1000;

For small MyISAM tables in which users primarily read the data and rarely update it, you
can use the PACK_KEYS option to pack the indexes. This will make reads faster but updates
slower. Set the value of this option to 1 to enable packing and 0 to disable it. A value of
DEFAULT instructs the storage engine to pack CHAR or VARCHAR data type columns only:

ALTER TABLE clients
PACK_KEYS = 1;

The DELAY_KEY_WRITE option delays updates of indexes until the table is closed. It’s ena-
bled with a value of 1, disabled with 0:

ALTER TABLE clients
DELAY_KEY_WRITE = 1;

The ROW_FORMAT option instructs the storage engine how to store rows of data. With
MyISAM, a value of DYNAMIC (i.e., variable length) or FIXED may be given. If you use the
utility myisampack on a MyISAM table, the format will be set to a value of COMPRESSED.
You can change a compressed MyISAM to uncompressed by giving a value of
REDUNDANT. This is deprecated, though. InnoDB tables use the COMPACT method, but offer
a REDUNDANT method to be compatible with a more wasteful format used in older versions
of InnoDB:

ALTER TABLE clients
ROW_FORMAT = FIXED;

The RAID_TYPE option is used to specify the type of Redundant Arrays of Independent
Disks (RAID) to be used. However, support for RAID has been removed from MySQL
as of version 5.0. This SQL statement is also used to permit the options RAID_CHUNKS and
RAID_CHUNKSIZE. They have been deprecated, as well.

For MERGE tables in which you want to change the tables that make up the merged table,
use the UNION option:

ALTER TABLE sales_national
UNION = (sales_north, sales_south, sales_east, sales_west);

See the CREATE TABLE statement later in this chapter for more information and examples
regarding many of the options for the ALTER TABLE statement.

ALTER VIEW
ALTER
 [ALGORITHM = {UNDEFINED|MERGE|TEMPTABLE}]
 [DEFINER = {'user'@'host'|CURRENT_USER}]
 [SQL SECURITY {DEFINER|INVOKER }]
VIEW view [(column, ...)]

ALTER VIEW

Chapter 5: Database and Table Schema Statements | 77

Database & Table
Schem

a

AS SELECT...
[WITH [CASCADED|LOCAL] CHECK OPTION]

Use this statement to change a view. Views are available as of version 5.0.1 of MySQL.

The statement is used primarily to change the SELECT statement that determines the view,
which you can do simply by placing the new SELECT statement for the view after the AS
keyword.

Change the column names provided by the view queries by providing the new column
names in a comma-separated list within the parentheses following the view’s name. Don’t
include either the old SELECT statement or the old column names in the statement.

The ALGORITHM parameter changes algorithmic methods to use for processing a view: the
choices are MERGE or TEMPTABLE. TEMPTABLE prevents a view from being updatable.

The DEFINER clause can change the user account considered to be the view’s creator. This
clause is available as of version 5.1.2 of MySQL. The same version introduced the related
SQL SECURITY clause. It instructs MySQL to authorize access to the view based on the
privileges of either the user account of the view’s creator (DEFINER) or the user account
of the user who is querying the view (INVOKER). This can help prevent some users from
accessing restricted views.

The WITH CHECK OPTION clause can change the restrictions on the updating of a view to
only rows in which the WHERE clause of the underlying SELECT statement returns true. For
a view that is based on another view, if you include the LOCAL keyword, this restriction
will be limited to the view in which it’s given and not the underlying view. If you specify
CASCADED instead, underlying views will be considered as well.

Here is an example of this statement’s use:

ALTER VIEW student_directory(ID, Name, Cell_Telephone, Home_Telephone)
AS SELECT student_id,
CONCAT(name_first, SPACE(1), name_last),
phone_dorm, phone_home
FROM students;

If you look at the example for CREATE VIEW later in this chapter, you’ll see that we’re
adding an extra column to the view created in that example. The other settings remain
unchanged.

You cannot change the name of an existing view. Instead, use the DROP VIEW statement
and then create a new view with the CREATE VIEW statement.

CREATE DATABASE
CREATE {DATABASE|SCHEMA} [IF NOT EXISTS] database [options]

This statement creates a new database with the name given. As of version 5.0.2 of MySQL,
the keyword DATABASE is synonymous with SCHEMA wherever used in any SQL statement.
You can use the IF NOT EXISTS flag to suppress an error message when the statement fails
if a database with the same name already exists.

A database name cannot be longer than 64 bytes (not characters) in size. The system uses
Unicode (UTF-8), so any character that is part of the UTF-8 character set may be used.
The name cannot be the ASCII value of 0 (0x00) or 255 (0xff)—these are reserved. Da-
tabase names should not include single or double quotation marks or end with a space.

CREATE DATABASE

78 | Chapter 5: Database and Table Schema Statements

If you want a database name to include quotes, though, you will have to enable the SQL
mode of ANSI_QUOTES. This can be done with the --sql-mode server option. As of version
5.1.6 of MySQL, database names can contain backslashes, forward slashes, periods, and
other characters that may not be permitted in a directory name at the filesystem level. If
you use a name that is a reserved word, you must always enclose it in quotes when
referring to it.

Special characters in the name are encoded in the filesystem names. If you upgrade your
system to a new version of MySQL and you have a database that has special characters
in its name, the database will be displayed with a prefix of #mysql50#. For instance, a
database named human-resources will be displayed as #mysql50#human-resources. You
won’t be able to access this database. Don’t try to change the name from within MySQL,
as you may destroy data. Instead, there are a couple of methods you can use. One is to
shut down MySQL, go to the MySQL data directory, and rename the subdirectory that
contains the database to a name without the unacceptable character (e.g., from
human-resources to human_resources) and then restart MySQL. Another method would
be to use the mysqlcheck utility, like so:

mysqlcheck --check-upgrade --fix-db-names

The --fix-db-names option was added in version 5.1.7 of MySQL. For more options with
this utility, see Chapter 16.

As of version 4.1.1, a db.opt file is added to the filesystem subdirectory created for the
database in the MySQL server’s data directory. This file contains a couple of settings for
the database. You can specify these settings as options to this SQL statement in a comma-
separated list.

Currently, two options are available: CHARACTER SET and COLLATE. Here is an example of
how you can create a database with both of these options:

CREATE DATABASE sales_prospects
CHARACTER SET latin1
COLLATE latin1_bin;

There is no equals sign before the value given for each option and no comma between
the first and second option. Here are the contents of the db.opt file created for this
statement:

default-character-set=latin1
default-collation=latin1_bin

For a list of character sets available on your system, use the SHOW CHARACTER SET statement.
For a list of collation possibilities, use the SHOW COLLATION statement. MySQL occasionally
adds new character sets and collations to new versions of MySQL. If you need one of the
new ones, you’ll have to upgrade your server to the new version.

CREATE INDEX
CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index
[USING type|TYPE type]
[USING type|TYPE type]
ON table (column [(length)] [ASC|DESC], ...)

CREATE INDEX

Chapter 5: Database and Table Schema Statements | 79

Database & Table
Schem

a

Use this statement to add an index to a table after it has been created. This is an alias of
the clause of the ALTER TABLE statement that adds an index. You can add indexes only to
MyISAM, InnoDB, and BDB types of tables. You can also create these tables with indexes,
as shown in the CREATE TABLE statement later in this chapter.

To prevent duplicates, add the UNIQUE flag between the CREATE keyword and INDEX. Only
columns with CHAR, TEXT, and VARCHAR data types of MyISAM tables can be indexed with
FULLTEXT indexes.

Creating UNIQUE indexes
CREATE UNIQUE INDEX index
ON table (column, ...)

After the INDEX keyword, the name of the index or key is given. This name can be the
same as one of the columns indexed, or a totally new name.

You can specify the type of index with the USING keyword. For MyISAM and InnoDB
tables, BTREE is the default, but RTREE is also available as of version 5.0 of MySQL. The
TYPE keyword is an alias for USING.

For wide columns, it may be advantageous to specify a maximum number of characters
to use from a column for indexing. This can speed up indexing and reduce the size of
index files on the filesystem.

Although there is an ASC option for sorting indexes in ascending order and a DESC option
for sorting in descending order, these are for a future release of MySQL. All indexes are
currently sorted in ascending order. Additional columns for indexing may be given within
the parentheses:

CREATE UNIQUE INDEX client_name
ON clients (client_lastname, client_firstname(4), rec_date);

In this example, an index is created called client_name. It is based on the last names of
clients, the first four letters of their first names, and the dates that the records were
created. This index is based on it being unlikely that a record would be created on the
same day for two people with the same last name and a first name starting with the same
four letters.

To see the indexes that have been created for a table, use the SHOW INDEXES statement. To
remove an index, use the DROP INDEX statement.

Creating FULLTEXT indexes
CREATE FULLTEXT INDEX index
ON table (column, ...)

After the INDEX keyword, the name of the index or key is given. This name can be the
same as one of the columns indexed or a totally new name.

You can specify the type of index with the USING keyword. For MyISAM and InnoDB
tables, BTREE is the default, but RTREE is also available as of version 5.0 of MySQL. The
TYPE keyword is an alias for USING.

For wide columns, it may be advantageous to specify a maximum number of characters
to use from a column for indexing. This can speed up indexing and reduce the size of
index files on the filesystem.

CREATE INDEX

80 | Chapter 5: Database and Table Schema Statements

Although there is an ASC option for sorting indexes in ascending order and a DESC option
for sorting in descending order, these are for a future release of MySQL. All indexes are
currently sorted in ascending order. Additional columns for indexing may be given within
the parentheses:

CREATE FULLTEXT INDEX client_notes
ON clients (business_description, comments);

In this example, an index is created called client_notes. It is based on two columns, both
of which are TEXT columns.

To see the indexes that have been created for a table, use the SHOW INDEXES statement. To
remove an index, use the DROP INDEX statement.

Creating SPATIAL indexes
CREATE SPATIAL INDEX index
ON table (column, ...)

SPATIAL indexes can index spatial columns only in MyISAM tables. This is available
starting with version 4.1 of MySQL. Here is an example in which first a table and then a
spatial index is created:

CREATE TABLE squares
(square_id INT, square_name VARCHAR(100),
square_points POLYGON NOT NULL);

CREATE SPATIAL INDEX square_index
ON squares (square_points);

Notice that when we create the table, we specify that the column square_points is
NOT NULL. This is required to be able to index the column. Let’s insert two rows of data:

INSERT INTO squares
VALUES(1000, 'Red Square',
(GeomFromText('MULTIPOLYGON(((0 0, 0 3, 3 3, 3 0, 0 0)))'))),
(1000, 'Green Square',
(GeomFromText('MULTIPOLYGON(((3 3, 3 5, 5 5, 4 3, 3 3)))')));

Here we added two squares by giving the five points of the polygon: the starting point
(e.g., for the first row, x=0, y=0), the left top point (x=0, y=3), the right top point (x=3,
y=3), the right bottom point (x=3, y=0), and the ending point (x=0, y=0) for good meas-
ure, which is the same as the starting point. So, the first row contains a square that is
3 × 3 in size, and the second contains a square that is 2 × 2 in size. Using the AREA()
function we can find the area of each:

SELECT square_name AS 'Square',
AREA(square_points) AS 'Area of Square'
FROM squares;

+--------------+----------------+
| Square | Area of Square |
+--------------+----------------+
| Red Square | 9 |
| Green Square | 3 |
+--------------+----------------+

CREATE INDEX

Chapter 5: Database and Table Schema Statements | 81

Database & Table
Schem

a

If we want to find which square contains a given point on a Cartesian plane (e.g., x=1,
y=2), we can use the MBRContains() function like so:

SELECT square_name
FROM squares
WHERE
MBRContains(square_points, GeomFromText('POINT(1 2)'));

+-------------+
| square_name |
+-------------+
| Red Square |
+-------------+

To see how the index we added is involved, we would run an EXPLAIN statement using
the same SELECT statement:

EXPLAIN SELECT square_name
FROM squares
WHERE
MBRContains(square_points, GeomFromText('POINT(1 2)')) \G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: squares
 type: range
possible_keys: square_index
 key: square_index
 key_len: 32
 ref: NULL
 rows: 1
 Extra: Using where

Notice that the SQL statement is using the square_index spatial index that we created.

CREATE SCHEMA
CREATE {DATABASE|SCHEMA} [IF NOT EXISTS] database [options]

This statement is synonymous with CREATE DATABASE. See the description of that state-
ment earlier in this chapter for more information and examples.

CREATE SERVER
CREATE SERVER server
FOREIGN DATA WRAPPER wrapper
OPTIONS (
 { DATABASE database, |
 HOST host, |
 USER user, |
 PASSWORD password, |
 SOCKET socket, |
 OWNER character, |

CREATE SCHEMA

82 | Chapter 5: Database and Table Schema Statements

 PORT port }
)

Use this SQL statement with the FEDERATED storage engine to set the connection
parameters. The values given are stored in the mysql database, in the server table, in a
new row. The server name given cannot exceed 63 characters, and it’s not case-sensitive.
The only wrapper permitted at this time is mysql. Options are given in a comma-separated
list. You’re not required to specify all options listed in the example syntax. If an option
is not given, the default will be an empty string. To change options after a server has been
created, use the ALTER SERVER statement, described earlier in this chapter. For option
values, character or numeric literals (UTF-8; maximum length of 64 characters) must be
given. This statement was introduced in version 5.1.15 of MySQL and requires SUPER
privileges.

The host may be a hostname or an IP address. The username and password given are
those that are required for accessing the server. Provide either the name of the socket or
the port to use for connecting to the server. The owner is the filesystem username to use
for accessing the server:

CREATE SERVER server1
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'russell', HOST 'dyerhouse.com', DATABASE 'db1', PORT 3306,
 OWNER 'root');

CREATE TABLE table1 (col1 INT)
ENGINE = FEDERATED CONNECTION='server1';

CREATE TABLE
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
{[(definition)][options]|[[AS] SELECT...]|[LIKE table]}

Use this statement to create a new table within a database. This statement has many
clauses and options; however, when creating a basic table, you can omit most of them.
The TEMPORARY keyword is used to create a temporary table that can be accessed only by
the current connection thread and is not accessible by other users. The IF NOT EXISTS
flag is used to suppress error messages caused by attempting to create a table by the same
name as an existing one. After the table name is given, either the table definition is given
(i.e., a list of columns and their data types) along with table options or properties, or a
table can be created based on another table. The subsections that follow describe how to:

• Set column properties regarding NULL and default values (see the “CREATE TA-
BLE: Column flags” subsection)

• Create an index for a table based on one or more columns (see the “CREATE TABLE:
Index and key definitions” subsection)

• Reference a foreign key constraint (see the “CREATE TABLE: Foreign key referen-
ces” subsection)

• Specify various table options (see the “CREATE TABLE: Table options” subsection)

• Create a table exactly like another table (see the “CREATE TABLE: Based on an
existing table” subsection)

CREATE TABLE

Chapter 5: Database and Table Schema Statements | 83

Database & Table
Schem

a

• Create a table with filesystem partitions (see the three subsections on partitioning:
“CREATE TABLE: Partitioning,” “CREATE TABLE: Partition definitions,” and
“CREATE TABLE: Subpartition definitions”)

Here is a simple example of how you can use the CREATE TABLE statement:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT PRIMARY KEY,
client_name VARCHAR(75),
telephone CHAR(15));

This creates a table with three columns. The first column is called client_id and may
contain integers. It will be incremented automatically as records are created. It will also
be the primary key field for records, which means that no duplicates are allowed and the
rows will be indexed based on this column. The second column, client_name, is a
variable-width, character-type column with a maximum width of 75 characters. The third
column is called telephone and is a fixed-width, character-type column with a minimum
and maximum width of 15 characters. To see the results of this statement, you can use
the DESCRIBE statement. There are many column data types. They’re all listed and
described in Appendix A.

CREATE TABLE: Column flags
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
(column type[(width)] [ASC|DESC] [NOT NULL|NULL] [DEFAULT value]
 [AUTO_INCREMENT] [[PRIMARY] KEY]|[[UNIQUE] KEY]
 [COMMENT 'string']
 [REFERENCES table [(column,...)]
 [MATCH FULL|MATCH PARTIAL|MATCH SIMPLE]
 [ON DELETE [RESTRICT|CASCADE|SET NULL|NO ACTION]]
 [ON UPDATE [RESTRICT|CASCADE|SET NULL|NO ACTION]] [,...]
]
[,...]) [options]

This is the syntax for the CREATE TABLE statement again, but detailing the column flags
portion of the column definition. For some column types, you may need to specify the
size of the column within parentheses after the column name and column type.

If a column is indexed, the keyword ASC or DESC may be given next to indicate whether
indexes should be stored in ascending or descending order, respectively. By default, they
are stored in ascending order. For older versions of MySQL, these flags are ignored.
Adding the NOT NULL flag indicates the column may not be NULL. The NULL flag may be
given to state that a NULL value is allowed. Some data types are NULL by default. For
some, you don’t have a choice whether a column may be NULL or not. To set a default
value for a column, you can use the DEFAULT keyword. For some data types (e.g.,
TIMESTAMP), a default value is not allowed. The AUTO_INCREMENT option tells MySQL to
assign a unique identification number automatically to a column. It must be designated
as a PRIMARY or UNIQUE key column, and you cannot have more than one AUTO_INCRE
MENT column in a table. If a column is to be the basis of an index, either PRIMARY KEY,
UNIQUE KEY, UNIQUE, or just KEY can be given. Just KEY indicates the column is a primary key.

To document what you’re doing for an administrator or a developer, a comment regard-
ing a column may be given. The results of a SELECT statement won’t show it, but a SHOW
FULL COLUMNS statement will reveal it. To add a comment, use the COMMENT keyword

CREATE TABLE

84 | Chapter 5: Database and Table Schema Statements

followed by a string within quotes. Here is an example using some of the flags and clauses
mentioned here:

CREATE TABLE clients
(client_id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
client_name VARCHAR(75),
client_city VARCHAR(50) DEFAULT 'New Orleans',
telephone CHAR(15) COMMENT 'Format: ###-###-####');

In this example, the client_id column is a primary key. The NOT NULL option is included
for completeness, even though it’s not necessary, because a primary key must be unique
and non-NULL. For the client_city column, the DEFAULT clause is used to provide the
default value of the column. The default will be used during inserts when no value is
given, although you can override the default by specifying an explicit blank value for the
column. This statement also includes a comment regarding the typical format for entering
telephone numbers in the telephone column. Again, this will be displayed only with the
SHOW FULL COLUMNS statement.

For information on the REFERENCES column flag, see the “CREATE TABLE: Foreign key
references” subsection later in this section.

CREATE TABLE: Index and key definitions
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
(column, ..., index type[(width)] [ASC|DESC] |
[CONSTRAINT [symbol]] PRIMARY KEY [type] (column,...)
 [KEY_BLOCK_SIZE value|type|WITH PARSER parser] |
INDEX|[PRIMARY] KEY [index] [type] (column,...)
 [KEY_BLOCK_SIZE value|type|WITH PARSER parser] |
[CONSTRAINT [symbol]] UNIQUE [INDEX] [index] [type] (column,...)
 [KEY_BLOCK_SIZE value|type|WITH PARSER parser] |
[FULLTEXT|SPATIAL] [INDEX] [index] (column,...)
 [KEY_BLOCK_SIZE value|type|WITH PARSER parser] |
[CONSTRAINT [symbol]] FOREIGN KEY [index] (column,...)
 [reference_definition] |
CHECK (expression)]
[,...]) [options]

You can use one or more columns for an index, and a table can contain multiple indexes.
Indexes can greatly increase the speed of data retrieval from a table. You can define an
index involving multiple columns with this statement, or later with the ALTER TABLE
statement or the CREATE INDEX statement. With the CREATE TABLE statement, though,
indexes can be given after the definition of the columns they index.

A KEY (also called a PRIMARY KEY) is a particular kind of index obeying certain constraints.
It must be unique, for instance. It is often combined in MySQL with the
AUTO_INCREMENT keyword, and used for identifiers that appear as columns in tables. The
general format is to specify the type of index, such as KEY, INDEX, or UNIQUE. This is
followed by the index name. Optionally, the index type may be specified with the
USING keyword. For most tables, there is only one type of index, so this is unnecessary.

Before version 5 of MySQL, BTREE is the only type for MyISAM tables. Beginning with
version 5, the RTREE index type is also available, so you may want to specify the index
type. After the index type, one or more columns on which the index is based are listed
within parentheses, separated by commas. Before explaining the various possibilities,
let’s look at an example:

CREATE TABLE

Chapter 5: Database and Table Schema Statements | 85

Database & Table
Schem

a

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
name_last VARCHAR(50), name_first VARCHAR(50),
telephone CHAR(15),
INDEX names USING BTREE (name_last(5), name_first(5) DESC));

The client_id column here is a PRIMARY KEY, although that clause has been abbreviated
to just KEY. This abbreviation is available as of version 4.1 of MySQL. There can be only
one PRIMARY KEY but any number of other indexes. The table contains a second index
using the first five characters of the two name columns. To specify a combination, the
index definition is generally given at the end of the table’s column definitions with the
INDEX keyword. The index is named names in the example.

After the index name, the USING clause specifies the type of index to be used. Currently,
this is unnecessary because BTREE is the default type for a MyISAM table.

Next, the two columns to index appear within parentheses. The name columns are
variable-width columns and 50 characters in length, so to speed up indexing, only the
first five characters of each column are used. The name_first column is supposed to be
used in descending order per the DESC flag. However, this will be ignored for the current
version of MySQL.

The syntax structures for the index clauses listed here vary depending on the type of table
index to be created: PRIMARY KEY, INDEX, UNIQUE, FULLTEXT (or BLOB column types), or
SPATIAL.

To create constraints on tables based on columns in another table, use the FOREIGN KEY
index syntax structures. Foreign keys are used only to link columns in InnoDB tables.
The CHECK clause is not used in MySQL but is available for porting to other database
systems. Here is an example of how you can use foreign keys to create a table:

CREATE TABLE employees
(emp_id INT NOT NULL PRIMARY KEY,
name_last VARCHAR(25), name_first VARCHAR(25))
TYPE = INNODB;

CREATE TABLE programmers
(prog_id INT, emp_id INT,
INDEX (emp_id),
FOREIGN KEY (emp_id) REFERENCES employees(emp_id)
ON DELETE CASCADE)
TYPE=INNODB;

The first CREATE TABLE statement creates a table of basic employee information. The sec-
ond CREATE TABLE statement creates a simple table of programmers. In the employees
table, the key column emp_id will be used to identify employees and will be the foreign
key for the programmers table. The programmers table sets up an index based on emp_id,
which will be tied to the emp_id column in the employees table. The FOREIGN KEY clause
establishes this connection using the REFERENCES keyword to indicate the employees table
and the key column to use in that table. Additionally, the ON DELETE CASCADE clause
instructs MySQL to delete the row in the programmers table whenever an employee record
for a programmer is deleted from the employees table.

The next subsection, “CREATE TABLE: Foreign key references,” gives the syntax for
references to foreign keys and the meaning of each component.

CREATE TABLE

86 | Chapter 5: Database and Table Schema Statements

At the end of both of these SQL statements, the storage engine is set to InnoDB with the
TYPE clause. The ENGINE keyword could be used instead and would have the same effect.

To give the storage engine a hint of the size of index key blocks, use the
KEY_BLOCK_SIZE option. Set the value to 0 to instruct the engine to use the default. This
option was added in version 5.1.10 of MySQL.

The WITH PARSER clause may be used to give a parser plugin for an index. This is used
only with FULLTEXT indexes.

CREATE TABLE: Foreign key references
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
(column, ..., index type[(width)] [ASC|DESC]
[CONSTRAINT [symbol]] FOREIGN KEY [index] (column,...)
REFERENCES table [(column,...)]
 [MATCH FULL|MATCH PARTIAL|MATCH SIMPLE]
 [ON DELETE [RESTRICT|CASCADE|SET NULL|NO ACTION]]
 [ON UPDATE [RESTRICT|CASCADE|SET NULL|NO ACTION]]
[,...]) [options]

This subsection describes the REFERENCES options to the FOREIGN KEY clause, which cre-
ates a relationship between an index and another table. This information also applies to
the REFERENCES column flag (see the earlier subsection “CREATE TABLE: Column
flags”).

The MATCH FULL clause requires that the reference match on the full width of each column
indexed. In contrast, MATCH PARTIAL allows the use of partial columns. Partial columns
can accelerate indexing when the first few characters of a column determine that a row
is unique.

The ON DELETE clause instructs MySQL to react to deletions of matching rows from the
foreign table according to the option that follows. The ON UPDATE clause causes MySQL
to respond to updates made to the referenced table according to the options that follow
it. You can use both clauses in the same CREATE TABLE statement.

The RESTRICT keyword option instructs MySQL not to allow the deletion or update (de-
pending on the clause in which it’s used) of the rows in the foreign table if rows in the
current table are linked to them. The CASCADE keyword says that when deleting or up-
dating the rows that are referenced in the parent table, delete or update the related rows
in the child table accordingly (as in the last example of the previous subsection).

SET NULL causes MySQL to change the data contained in the related columns to a NULL
value. For this to work, the column in the child table must allow NULL values. The
NO ACTION setting has MySQL not react to deletions or updates with regard to the refer-
encing table.

CREATE TABLE: Table options
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
(column, ..., index type[(width)] [ASC|DESC]
[TABLESPACE tablespace_name STORAGE DISK]
 {ENGINE|TYPE} [=] {BDB|HEAP|ISAM|INNODB|MERGE|MRG_MYISAM|MYISAM} |
AUTO_INCREMENT [=] value |
AVG_ROW_LENGTH [=] value |
[DEFAULT] CHARACTER SET character_set |

CREATE TABLE

Chapter 5: Database and Table Schema Statements | 87

Database & Table
Schem

a

CHECKSUM [=] {0|1} |
CONNECTION [=] 'string' |
COLLATE collation |
COMMENT [=] 'string' |
DATA DIRECTORY [=] '/path' |
DELAY_KEY_WRITE [=] {0|1} |
ENGINE [=] engine |
INDEX DIRECTORY [=] '/path' |
INSERT_METHOD [=] {NO|FIRST|LAST } |
KEY_BLOCK_SIZE [=] value |
MAX_ROWS [=] value |
MIN_ROWS [=] value |
PACK_KEYS [=] {0|1|DEFAULT} |
ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT} |
RAID_TYPE = {1|STRIPED|RAID0} |
UNION [=] (table[,...])

This subsection lists all of the table options that can be set with the CREATE TABLE state-
ment. The options are given after the closing parenthesis for the column definitions. To
see the values for an existing table, use the SHOW TABLE STATUS statement. To change the
values of any options after a table has been created, use the ALTER TABLE statement. Each
option is explained in the following paragraphs in alphabetical order, as shown in the
preceding syntax. Examples of each are also given.

AUTO_INCREMENT
This parameter causes MySQL to assign a unique identification number automati-
cally to the column in each row added to the table. By default, the starting number
is 1. To set it to a different starting number when creating a table, you can use the
AUTO_INCREMENT table option. Here’s an example using this option:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
AUTO_INCREMENT=1000;

This statement sets the initial value of the primary key column to 1000 so that the
first row inserted will be 1001. There is usually no reason to set a starting number
explicitly, because the key is used merely to distinguish different columns.

AVG_ROW_LENGTH
For large tables, you may want to set the average row length for better table opti-
mization by using the AVG_ROW_LENGTH option:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
AVG_ROW_LENGTH = 12638;

CHARACTER SET
This option sets the character set used for character data in the table. The DEFAULT
flag is not required. This option is typically used along with the COLLATE option.
These options do not affect columns for which the character sets and collation are
explicitly specified. Use the SHOW CHARACTER SET and SHOW COLLATION statements to
see the character sets and collations available:

CREATE TABLE

88 | Chapter 5: Database and Table Schema Statements

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
DEFAULT CHARACTER SET 'latin2'
COLLATE 'latin2_general_ci';

CHECKSUM
This option enables or disables a checksum for a table. Set the value to 0 to disable
the checksum or to 1 to enable a checksum on a table. If you are upgrading a table
that uses a checksum and was created prior to version 4.1 of MySQL, the table may
be corrupted in the process. Try using REPAIR TABLE to recalculate the checksum for
the table:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
CHECKSUM = 0;

COLLATE
This option sets the collation (alphabetizing order) to use with character data in the
table. This option is typically used along with the CHARACTER SET option. These op-
tions do not affect columns for which the collation and character sets are explicitly
specified. Use the SHOW CREATE TABLE statement to see the collation and character
set for the table and its columns:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
COLLATE 'latin2_general_ci'
DEFAULT CHARACTER SET 'latin2';

COMMENT
With this option, you can add notes for yourself or other table administrators re-
garding a table. Comments are shown only when the SHOW CREATE TABLE statement
is executed:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
COMMENT = 'This table lists basic information on clients.';

CONNECTION
This option is provided for tables that use the FEDERATED storage engine. Previ-
ously, you would use the COMMENT option to specify this option. The syntax for this
option is:

CONNECTION='mysql://username:password@hostname:port/database/tablename'

The password and port are optional.

If you want to federate an existing table with a remote table, you can alter the table
on your system to specify the connection to the remote table like this:

CREATE TABLE

Chapter 5: Database and Table Schema Statements | 89

Database & Table
Schem

a

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
ENGINE = FEDERATED
CONNECTION='mysql://russell:rover123@santa_clara_svr:9306/federated/clients';

DATA DIRECTORY
This option is theoretically used to see the data directory path for the table. As of
version 5.1.23 of MySQL, this option is ignored for table partitions. Filesystem
privileges for the path given are required to specify the option:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
DATA DIRECTORY = '/data/mysql/clients';

DELAY_KEY_WRITE
This option delays index updates until the table is closed. It’s enabled with a value
of 1 and disabled with a value of 0:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
DELAY_KEY_WRITE = 1;

ENGINE
Use this option to change the storage engine (formerly known as the table type) for
the table given. Be careful using this option as it may cause problems with data.
Make a backup of your table and data before using it. As of version 5.1.11 of MySQL,
this option cannot be used to change a table to the BLACKHOLE or MERGE storage
engines:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
ENGINE = MyISAM;

INDEX DIRECTORY
This option is theoretically used to see the directory path for the table indexes. As
of version 5.1.23 of MySQL, this option is ignored for table partitions. Filesystem
privileges for the path given are required to specify the option:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
INDEX DIRECTORY = '/data/mysql/clients_index';

INSERT_METHOD
To insert data into a MERGE table, you need to specify the insert method it will
use. To set or change this method, use the INSERT_METHOD option with the CREATE

CREATE TABLE

90 | Chapter 5: Database and Table Schema Statements

TABLE or ALTER TABLE statements. A value of FIRST indicates that the first table should
be used; LAST indicates the last table should be used; NO disables insertions:

CREATE TABLE sales_national
(order_id INT, sales_total INT)
ENGINE = MERGE
UNION = (sales_east, sales_west)
INSERT_METHOD = LAST;

This SQL statement creates the table sales_national based on two other tables while
specifying that insertions use the last table in the list of tables given.

KEY_BLOCK_SIZE
This option gives the storage engine a hint of the size of index key blocks. Set the
value to 0 to instruct the engine to use the default. This option was added in version
5.1.10 of MySQL:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
KEY_BLOCK_SIZE = 1024;

MAX_ROWS, MIN_ROWS
These options are used to set the maximum and minimum rows of a table, respec-
tively. Use the SHOW CREATE TABLE statement to see the results:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
MIN_ROWS = 100,
MAX_ROWS = 1000;

PACK_KEYS
For small MyISAM tables in which users primarily read the data and rarely update
it, you can use the PACK_KEYS option to pack the indexes. This will make reads faster
but updates slower. Set the value of this option to 1 to enable packing and 0 to
disable it. A value of DEFAULT instructs the storage engine to pack CHAR or VARCHAR
data type columns only:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
PACK_KEYS = 0;

RAID_TYPE
This option specifies the type of RAID to be used. However, support for RAID has
been removed from MySQL as of version 5.0. This SQL statement also used to
permit the options RAID_CHUNKS and RAID_CHUNKSIZE, but they have been deprecated
as well.

ROW_FORMAT
This option tells the storage engine how to store rows of data. With MyISAM, a
value of DYNAMIC (i.e., variable-length) or FIXED may be given. If you run the
myisampack utility on a MyISAM table, the format will be set to a value of

CREATE TABLE

Chapter 5: Database and Table Schema Statements | 91

Database & Table
Schem

a

COMPRESSED. You can uncompress a compressed MyISAM table by giving a value of
REDUNDANT. This value is deprecated, though. InnoDB tables use the COMPACT method,
but offer a REDUNDANT method to be compatible with a more wasteful format used in
older versions of InnoDB:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
ROW_FORMAT = DYNAMIC;

UNION
To change the tables that make up a MERGE table, specify the full list of tables using
this option:

CREATE TABLE sales_national
(order_id INT, sales_total INT)
ENGINE = MERGE
UNION = (sales_north, sales_south, sales_east, sales_west);

CREATE TABLE: Partitioning
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
PARTITION BY
 [LINEAR] HASH(expression) |
 [LINEAR] KEY(columns) |
 RANGE(expression) |
 LIST(expression)
 [PARTITIONS number]
 [SUBPARTITION BY
 [LINEAR] HASH(expression) |
 [LINEAR] KEY(columns)
 [SUBPARTITIONS number]
]
 [PARTITION partition
 [VALUES {LESS THAN (expression)|MAXVALUE|IN (values)}]
 [[STORAGE] ENGINE [=] engine]
 [COMMENT [=] 'text']
 [DATA DIRECTORY [=] '/path']
 [INDEX DIRECTORY [=] '/path']
 [MAX_ROWS [=] number]
 [MIN_ROWS [=] number]
 [TABLESPACE [=] (tablespace)]
 [NODEGROUP [=] value]

 [(SUBPARTITION logical_name
 [[STORAGE] ENGINE [=] engine]
 [COMMENT [=] 'text']
 [DATA DIRECTORY [=] '/path']
 [INDEX DIRECTORY [=] '/path']
 [MAX_ROWS [=] number]
 [MIN_ROWS [=] number]
 [TABLESPACE [=] (tablespace)]
 [NODEGROUP [=] value]
 [, SUBPARTITION...])]

CREATE TABLE

92 | Chapter 5: Database and Table Schema Statements

 [, PARTITION...]]
]

These table partition clauses may be used in CREATE TABLE to create a table using partitions
—that is, to organize data into separate files on the filesystem. This capability was added
as of version 5.1.6 of MySQL. To add or alter partitions on an existing table, see the
ALTER TABLE statement explanation earlier in this chapter. See that section also for
comments on partitions in general. This subsection includes several examples of creating
a MyISAM table with partitions.

The PARTITION BY clause is required when partitioning in order to explain how data is
split and distributed among partitions. A table cannot have more than 1,024 partitions
and subpartitions. The subclauses of PARTITION BY are explained in this subsection,
whereas the PARTITION and SUBPARTITION clauses are explained in the next two subsections
that cover this statement (“CREATE TABLE: Partition definitions” and “CREATE TA-
BLE: Subpartition definitions”):

HASH
This subclause creates a key/value pair that controls which partition is used for
saving rows of data and for indexing data. The value of the hash consists of the
specified columns. If a table has a primary key, that column must be used by the
hash. Functions that return a numerical value (not a string) may be used within a
hash specification:

CREATE TABLE sales_figures
(emp_id INT,
sales_date DATE,
amount INT)
PARTITION BY HASH(MONTH(sales_date))
PARTITIONS 12;

This creates 12 partitions, one for each month extracted from the sales_data.

By default, the HASH method and the KEY method (described next) use the modulus
of the hash function’s given value. The keyword LINEAR may be added in front of
HASH or KEY to change the algorithm to a linear powers-of-two algorithm. For ex-
tremely large tables of data, the linear hash has higher performance results in
processing data, but does not evenly spread data among partitions.

KEY
This subclause functions the same as HASH except that it accepts only a comma-
separated list of columns for indexing and distributing data among partitions. The
LINEAR flag may be given to change the algorithm method used. See the previous
description for HASH:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
PARTITION BY KEY (client_id)
PARTITIONS 4;

LIST
This subclause can be used to give specific values for distributing data across
partitions. The column and values must all be numeric, not strings:

CREATE TABLE

Chapter 5: Database and Table Schema Statements | 93

Database & Table
Schem

a

CREATE TABLE sales_figures
(region_id INT, sales_date DATE, amount INT)
PARTITION BY LIST (region_id) (
 PARTITION US_DATA VALUES IN(100,200,300),
 PARTITION EU_DATA VALUES IN(400,500));

In this example, data is distributed between two partitions: one for the sales in the
United States, which is composed of three regions, and a second partition for data
for the two European regions. Notice that the names for the partitions given aren’t
in the usual naming convention (e.g., p0). Any name will do. It’s a matter of
preference.

RANGE
To instruct MySQL to distribute data among the partitions based on a range of
values, use the RANGE subclause. Use the VALUES LESS THAN subclause to set limits
for each range. Use VALUES LESS THAN MAXVALUE to set the limit of the final partition:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
PARTITION BY RANGE (client_id) (
 PARTITION p0 VALUES LESS THAN (500),
 PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p3 VALUES LESS THAN MAXVALUE);

In this example, the data is distributed among the partitions based on the
client_id values. The first partition will contain rows with a client identification
number less than 500; the second will contain rows of values ranging from 501 to
1000; and the last partition will contain values of 1001 and higher. Values given for
partitions must be in ascending order.

See the ALTER TABLE explanation for more information on table partitioning, especially
modifying or removing partitioning.

CREATE TABLE: Partition definitions
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
 PARTITION partition
 [VALUES {LESS THAN (expression) | MAXVALUE | IN (value_list)}]
 [[STORAGE] ENGINE [=] engine]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] '/path']
 [INDEX DIRECTORY [=] '/path']
 [MAX_ROWS [=] number]
 [MIN_ROWS [=] number]
 [TABLESPACE [=] (tablespace)]
 [NODEGROUP [=] number]
 [(subpartition_definition[, subpartition_definition] ...)]

The subclauses described in this subsection define general parameters of partitions, such
as their sizes and locations in the filesystems:

COMMENT
Use this subclause if you want to add a comment to a partition. The text must be
contained within single quotes. Comments can be viewed only with the SHOW CREATE
TABLE statement:

CREATE TABLE

94 | Chapter 5: Database and Table Schema Statements

CREATE TABLE sales_figures
(region_id INT, sales_date DATE, amount INT)
PARTITION BY LIST (region_id) (
 PARTITION US_DATA VALUES IN(100,200,300)
 COMMENT = 'U.S. Data',
 PARTITION EU_DATA VALUES IN(400,500)
 COMMENT = 'Europe Data');

DATA DIRECTORY, INDEX DIRECTORY
With these subclauses, you can specify file pathnames in order to fix the locations
of partitions. The directories given must exist and you must have access privileges
to the given directories:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
PARTITION BY RANGE (client_id) (
 PARTITION p0 VALUES LESS THAN (500)
 DATA DIRECTORY = '/data/mysql/old_clients/data'
 INDEX DIRECTORY = '/data/mysql/old_clients/index',
 PARTITION p1 VALUES LESS THAN MAXVALUE
 DATA DIRECTORY = '/data/mysql/new_clients/data'
 INDEX DIRECTORY = '/data/mysql/new_clients/index');

ENGINE
This subclause specifies an alternative storage engine to use for the partition. How-
ever, at this time all partitions must use the same storage engine:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
PARTITION BY RANGE (client_id) (
 PARTITION p0 VALUES LESS THAN (500)
 ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN MAXVALUE
 ENGINE = InnoDB);

MAX_ROWS, MIN_ROWS
These subclauses suggest the maximum and minimum number of rows in a table
partition, respectively. MySQL may deviate from these limits, though:

CREATE TABLE clients
(client_id INT AUTO_INCREMENT KEY,
client_name VARCHAR(75),
telephone CHAR(15))
PARTITION BY RANGE (client_id) (
 PARTITION p0 VALUES LESS THAN (500)
 MIN_ROWS = 10 MAX_ROWS = 1000,
 PARTITION p3 VALUES LESS THAN MAXVALUE
 MIN_ROWS = 10 MAX_ROWS = 500);

NODEGROUP
This subclause can be used only with MySQL Cluster, and places a partition in the
given node group. (MySQL clusters are divided into different node groups in order
to let certain nodes manage the data nodes.)

CREATE TABLE

Chapter 5: Database and Table Schema Statements | 95

Database & Table
Schem

a

TABLESPACE
This subclause can be used only with MySQL Cluster, and specifies the tablespace
to use with the partition.

VALUES
This subclause specifies a range of values or a list of specific values for indexing and
determining the disbursal of data among partitions. These are described earlier in
the “CREATE TABLE: Partitioning” subsection.

CREATE TABLE: Subpartition definitions
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
 SUBPARTITION partition
 [[STORAGE] ENGINE [=] engine]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] '/path']
 [INDEX DIRECTORY [=] '/path']
 [MAX_ROWS [=] number]
 [MIN_ROWS [=] number]
 [TABLESPACE [=] (tablespace)]
 [NODEGROUP [=] number]

Only partitions distributed by the RANGE or LIST methods can be subpartitioned. The
subpartitions can use only the HASH or KEY methods. The definitions for subpartitions are
the same as for partitions, described earlier in the “CREATE TABLE: Partitioning” sub-
section. Here are some examples of subpartitioning:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased))
 SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

CREATE TABLE sales_figures
(emp_id INT, sales_date DATE, amount INT)
PARTITION BY RANGE(YEAR(sales_date))
SUBPARTITION BY HASH(MONTH(sales_date))
SUBPARTITIONS 4 (
 PARTITION QTR1 VALUES LESS THAN (4),
 PARTITION QTR2 VALUES LESS THAN (7),
 PARTITION QTR3 VALUES LESS THAN (10),
 PARTITION QTR4 VALUES LESS THAN MAXVALUE);

Notice that although the subpartition uses HASH, the subpartitions are specified in ranges
of values because it’s a subpartition of a partition that uses the RANGE method.

CREATE TABLE: Based on an existing table
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
LIKE table |
[IGNORE|REPLACE] [AS] SELECT...

These two syntaxes for the CREATE TABLE statement allow a new table to be created based
on an existing table. With the LIKE clause, a table is created based on the structure of the

CREATE TABLE

96 | Chapter 5: Database and Table Schema Statements

existing table given. For example, suppose a database has a table called employees that
contains information on full-time and part-time employees. Suppose further that it has
been decided that information on part-time employees should be stored in a separate
table. You could execute the following statement to create a new table for part-time
employees with the same structure as the existing employees table:

CREATE TABLE part_time_employees
LIKE employees;

This statement results in a new table with the same structure but without any data. If the
table that was copied has a primary key or any indexes, they won’t be copied. You can
use the CREATE INDEX statement to create an index. You would first have to do the
following to copy the data over:

INSERT INTO part_time_employees
SELECT * FROM employees
WHERE part_time = 'Y';

To create a new table based on the structure of an existing table, and to copy some data
from the old table to the new one, you can enter something like the following statement:

CREATE TABLE part_time_employees
SELECT *
FROM employees
WHERE part_time = 'Y';

CREATE INDEX emp_id ON part_time_employees(emp_id);

In this example, the table structure is copied and the data is copied for rows where the
part_time column has a value of Y, meaning yes. You could follow this statement with a
DELETE statement to delete the rows for part-time employees from the employees table.
The second SQL statement in this example restores the index on emp_id. However, it
doesn’t make the column a primary key or an AUTO_INCREMENT one. For that, you would
need to use ALTER TABLE instead.

You can use the IGNORE keyword before the SELECT statement to instruct MySQL to ignore
any error messages regarding duplicate rows, to not insert them, or to proceed with the
remaining rows of the SELECT statement. Use the REPLACE keyword instead if duplicate
rows are to be replaced in the new table.

CREATE VIEW
CREATE
 [OR REPLACE]
 [ALGORITHM = {MERGE|TEMPTABLE|UNDEFINED}]
 [DEFINER = {'user'@'host'|CURRENT_USER}]
 [SQL SECURITY {DEFINER|INVOKER}]
VIEW view [(column, . . .)]
AS SELECT...
[WITH [CASCADED|LOCAL] CHECK OPTION]

Use this statement to create a view, which is a preset query stored in a database. In certain
situations, a view can be useful for improved security. Views are available as of version
5.0.2 of MySQL.

CREATE VIEW

Chapter 5: Database and Table Schema Statements | 97

Database & Table
Schem

a

The contents of a view are based on the SELECT statement given in the AS clause. Users
can subsequently issue queries and updates to the view in place of a table; updates
ultimately change the data in the tables that underlie the views.

The name of the view cannot be the same as a table in the database, because they share
the same tablespace. A view can be based on other views, rather than directly based on
a table. To label the column headings for the view’s results set, column names may be
given in a comma-separated list in parentheses after the view name. This SQL statement
is available as of version 5.0.1 of MySQL.

A few parameters may appear between the CREATE and VIEW keywords. By default, at-
tempts to create a view with the name of an existing view will fail, but the OR REPLACE
parameter will overwrite a view with the same name if it exists and will create a new view
otherwise. Also by default, the view’s definer (used to determine access rights to the
columns of the view) is the user who creates it, but another user can be specified with
the DEFINER clause. This clause is available as of version 5.1.2 of MySQL. This version
also introduced the related SQL SECURITY clause, which instructs MySQL to authorize
access to the view based on the privileges of either the user account of the view’s creator
(DEFINER, the default) or the user account of the user who is querying the view
(INVOKER). This can help prevent some users from accessing restricted views.

The ALGORITHM parameter selects one of the two types of algorithmic methods to use for
processing a view: MERGE or TEMPTABLE. TEMPTABLE prevents a view from being updatable.
The default of UNDEFINED leaves the choice to MySQL.

The WITH CHECK OPTION clause restricts updates to rows in which the WHERE clause of the
underlying SELECT statement returns true. For a view that is based on another view, if you
include the LOCAL keyword, this restriction will be limited to the view in which it’s given
and not the underlying view. Conversely, if you use the default choice of CASCADED, the
WHERE clauses of underlying views will be considered as well.

If the mysqld server is started with the --updatable_views_with_limit option, updates
that contain a LIMIT clause can update views only if the views contain all of the columns
that are part of the primary keys of the underlying tables. If set to the default value of 1,
only a warning is returned and updates are not restricted.

Here is an example of how you can use this statement:

CREATE DEFINER = 'russell'@'localhost'
SQL SECURITY INVOKER
VIEW student_directory(ID, Name, Telephone)
AS SELECT student_id,
CONCAT(name_first, SPACE(1), name_last), phone_home
FROM students;

This SQL statement creates a view that contains each student’s identification number,
the student’s first and last name concatenated together with a space between, and the
student’s home telephone number. To retrieve this data, enter the following SQL
statement:

SELECT * FROM student_directory
WHERE Name LIKE '%Tears';

CREATE VIEW

98 | Chapter 5: Database and Table Schema Statements

+-----------+-------------------+-----------+
| ID | Name | Telephone |
+-----------+-------------------+-----------+
| 433342000 | Christina Tears | 4883831 |
+-----------+-------------------+-----------+

To save space in the output, the query includes a WHERE clause to retrieve a student with
the last name of Tears. Notice that the column names are the ones named by the CREATE
VIEW statement, not the underlying tables on which the view is based. This view will be
available for all users who have SELECT privileges for the database in which it was created.

By default, a view is created in the default database at the time that the CREATE VIEW
statement is entered. To create a view in a different database, simply add the database
name and a dot as a separator in front of the view name in the CREATE VIEW statement.

To delete a view from a database, use the DROP VIEW statement. To see a list of existing
views for the current database, run SHOW FULL TABLES WHERE Table_type='VIEW';.

DESCRIBE
{DESCRIBE|DESC} table [column]

This statement displays information about the columns of a given table. The DESCRIBE
keyword can be abbreviated to DESC:

DESCRIBE workreq;

+--------------------+---------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------------+---------+------+-----+---------+----------------+
req_id	int(11)	NO	PRI	NULL	auto_increment
client_id	int(11)	YES		NULL	
client_description	text	YES	MUL	NULL	
technician_notes	text	YES		NULL	
+--------------------+---------+------+-----+---------+----------------+

For information on a specific column, supply only the column name. For information
on multiple columns but not all columns, you can supply a name pattern within quotes
and use the wildcard characters % and _. Quotes around the string aren’t necessary unless
the string contains spaces.

To list the columns in the workreq table that have names beginning with the characters
client, enter the following:

DESCRIBE workreq 'client%';

+--------------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------------+---------+------+-----+---------+-------+
| client_id | int(11) | YES | | NULL | |
| client_description | text | YES | MUL | NULL | |
+--------------------+---------+------+-----+---------+-------+

DESCRIBE

Chapter 5: Database and Table Schema Statements | 99

Database & Table
Schem

a

Notice that the keyword LIKE is not used. The fields in the results have the following
meanings:

Field
Lists the name of each column in the table.

Type
Shows the data type of each column.

Null
Indicates whether the column in the table may contain a NULL value.

Default
Shows the default value of the column.

Key
Indicates what type of key the column is. If this field is empty, the column is not
indexed. A value of PRI indicates a PRIMARY KEY column, UNI indicates a UNIQUE in-
dexed column, and MUL means that multiple occurrences, or duplicate values, are
permitted for the column. This is allowed because the column is only one of multiple
columns making up an index.

Extra
Lists any extra information particular to the column.

To understand how the options you use when creating or altering a table affect the output
of DESCRIBE, let’s look at the schema of the table shown in an earlier example:

SHOW CREATE TABLE workreq \G

*************************** 1. row ***************************
 Table: workreq
Create Table: CREATE TABLE 'workreq' (
 'req_id' int(11) NOT NULL AUTO_INCREMENT,
 'client_id' int(11) DEFAULT NULL,
 'client_description' text,
 'technician_notes' text,
 PRIMARY KEY ('req_id'),
 FULLTEXT KEY 'notes_index' ('client_description','technician_notes')
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The results of this SHOW CREATE TABLE statement indicate that client_description is part
of the index called notes_index. The other column that is part of that index is
technician_notes. Notice in the results of the earlier DESCRIBE statement that only the
first column of the index is marked MUL.

DROP DATABASE
DROP {DATABASE|SCHEMA} [IF EXISTS] database

Use this statement to delete a given database along with all of its tables and data. The
addition of the IF EXISTS flag suppresses an error message if the database does not already
exist. You must have the DROP privilege for the database to be able to delete it. Here is an
example of this statement’s use:

DROP DATABASE IF EXISTS test;
Query OK, 6 rows affected (0.42 sec)

DROP DATABASE

100 | Chapter 5: Database and Table Schema Statements

The number of tables deleted is returned in the rows affected count. If the database
doesn’t exist or if there are other files in the database’s filesystem directory, an error
message will be displayed. The tables will be deleted if other files exist, but the foreign
file and the directory for the database won’t be removed. They will have to be deleted
manually at the command line using a filesystem command such as rm in Unix or del in
Windows. Here’s an example in which a foreign file is found in the database directory
when dropping a database:

DROP DATABASE IF EXISTS test;

ERROR 1010 (HY000):
Error dropping database (can't rmdir './test/', errno: 17)

SHOW TABLES FROM test;
Empty set (0.00 sec)

SHOW DATABASES LIKE 'test';

+-----------------+
| Database (test) |
+-----------------+
| test |
+-----------------+

In this example, we attempt to drop the database, but we are unsuccessful because of a
foreign file located in the database’s directory at the filesystem level. The tables are all
dropped as indicated from the results of the SHOW TABLES statement, but the database
remains. After manually deleting the foreign file, we run the DROP DATABASE statement
again:

DROP DATABASE IF EXISTS test;
Query OK, 0 rows affected (0.43 sec)

DROP DATABASE test;

ERROR 1008 (HY000): Can't drop database 'test';
database doesn't exist

This time the statement is successful, as indicated by our extra attempt without the IF
EXISTS flag. No tables are dropped by the second attempt because they are all deleted on
the first attempt, so the number of rows affected is 0.

If a database is dropped, any user privileges specific to the database (e.g., privileges listed
in the db table of the mysql database) are not automatically deleted. Therefore, if a data-
base is later created with the same name, those user privileges will apply to the new
database, which is a potential security risk.

DROP INDEX
DROP INDEX index ON table

This statement deletes a given index from a table. It’s synonymous with ALTER
TABLE...DROP INDEX.... See the section on “ALTER TABLE: DROP index clauses” under
ALTER TABLE earlier in this chapter for more details and options for dropping indexes from
a table.

DROP INDEX

Chapter 5: Database and Table Schema Statements | 101

Database & Table
Schem

a

To determine the name of a particular index, we’ll use the SHOW INDEXES statement:

SHOW INDEXES FROM clients \G

*************************** 1. row ***************************
 Table: clients
 Non_unique: 0
 Key_name: PRIMARY
Seq_in_index: 1
 Column_name: client_id
 Collation: A
 Cardinality: 0
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
*************************** 2. row ***************************
 Table: clients
 Non_unique: 1
 Key_name: client_index
Seq_in_index: 1
 Column_name: client_name
 Collation: A
 Cardinality: NULL
 Sub_part: 10
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
*************************** 3. row ***************************
 Table: clients
 Non_unique: 1
 Key_name: client_index
Seq_in_index: 2
 Column_name: client_city
 Collation: A
 Cardinality: NULL
 Sub_part: 5
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:

The preceding results show three rows, but there are really only two indexes: the primary
key based on the client_id column and the client_index, which is based on the
client_name and the client_city columns combined. To delete client_index, use the
DROP INDEX statement:

DROP INDEX client_index ON clients;

Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

The client_index index is successfully dropped from the clients table. If you run SHOW
INDEXES again, the results will list only the primary key.

DROP INDEX

102 | Chapter 5: Database and Table Schema Statements

DROP SERVER
DROP SERVER [IF EXISTS] server

This statement can be used with the FEDERATED storage engine to delete a given server
that is created with CREATE SERVER. The IF EXISTS flag may be given to prevent an error
from being generated if the server does not exist. Any tables created with a CONNECTION
to a FEDERATED server will not be dropped or altered as a result of this statement. See
the CREATE SERVER statement explanation earlier in this chapter for more information on
this topic. This statement was introduced in version 5.1.15 of MySQL and requires
SUPER privileges:

DROP SERVER server1;

DROP TABLE
DROP [TEMPORARY] TABLE [IF EXISTS] table[, ...]
 [RESTRICT|CASCADE]

Use this statement to delete a table from a database, including its data. You can delete
multiple tables in the same statement by naming them in a comma-separated list. If some
tables given exist and other don’t, the ones that exist will be deleted and an error message
will be generated for the nonexistent ones. The addition of the IF EXISTS flag prevents
the error message from being displayed if a table doesn’t exist. Instead, a NOTE is generated
and not displayed, but can be retrieved with the SHOW WARNINGS statement. If the
TEMPORARY flag is given, only temporary tables matching the table names given will be
deleted. This statement will cause a commit of the current transaction, except when the
TEMPORARY flag is used.

The DROP privilege is required for this statement. This privilege isn’t checked when the
TEMPORARY flag is used because the statement will apply only to temporary tables, and
they are visible and usable only by the user of the current session who created them.

The RESTRICT and CASCADE flags are for future versions and are related to compatibility
with other systems.

If a table is dropped, any specific user privileges for the table (e.g., privileges listed in the
tables_priv table of the mysql database) are not automatically deleted. Therefore, if a
table is later created with the same name, those user privileges will apply to the new table,
a potential security risk:

DROP TABLE IF EXISTS repairs, clientss_old;
Query OK, 0 rows affected (0.00 sec)

SHOW WARNINGS;

+-------+------+------------------------------+
| Level | Code | Message |
+-------+------+------------------------------+
| Note | 1051 | Unknown table 'clientss_old' |
+-------+------+------------------------------+

In this example, we try to delete both the repairs and the clients_old tables, but we
misspell clients_old. Because the IF EXISTS flag is included, the statement doesn’t return
an error message. Starting with version 4.1 of MySQL, a note is created that can be

DROP TABLE

Chapter 5: Database and Table Schema Statements | 103

Database & Table
Schem

a

retrieved using the SHOW WARNINGS statement, as shown in this example. Notice that the
number of tables deleted is not returned, although the repairs table is deleted.

DROP VIEW
DROP VIEW [IF EXISTS] view[, ...] [RESTRICT|CASCADE]

This statement deletes a view. Multiple views may be given in a comma-separated list.
The IF EXISTS flag prevents error messages if one of the specified views doesn’t exist.
Instead, a note will be generated, which can be displayed afterward by executing the SHOW
WARNINGS statement. Any other views given with the statements that do exist will be
dropped.

The RESTRICT or CASCADE options are reserved for a future release of MySQL. This state-
ment is available as of version 5.0.1 of MySQL and requires DROP privilege for the view
being deleted.

RENAME DATABASE
RENAME {DATABASE|SCHEMA} database TO database[,...]

Use this statement to rename a given database to a new name, given after the TO keyword.
While a database is being renamed, no other client can interact with the database in-
volved. Tables that are currently locked or tables that are part of a transaction in progress
cannot be renamed. Additional databases may be renamed in the same statement, given
in a comma-separated list. This statement was added in version 5.1.7 of MySQL. As of
version 5.0.2 of MySQL, the keyword DATABASE is synonymous with SCHEMA:

RENAME DATABASE personnel TO human_resources,
applicants TO human_resources_applicants;

In this example, the name of the database called personnel is changed to
human_resources, and applicants is changed to human_resources_applicants, to coincide
with a renaming of the department to which they relate. All of the tables and data are the
same and continue to exist in the directories with the new database names.

RENAME TABLE
RENAME TABLE table TO table[,...]

Use this statement to rename a table to a new name, given after the TO keyword. Multiple
tables may be specified in a comma-separated list, following the format old_name TO
new_name. Multiple renames are performed left to right, and if any errors are encountered,
all of the table name changes are reversed from right to left. While tables are being re-
named, no other client can interact with the tables involved. Tables that are currently
locked or tables that are part of a transaction in progress cannot be renamed.

Tables can be renamed and moved to databases on the same filesystem. If a trigger is
associated with a table that is renamed and moved to a new database, the trigger will fail
when used. You won’t be warned of this possibility when renaming the table.

You can use this statement to rename a view, but you cannot use it to move the view to
a different database.

DROP VIEW

104 | Chapter 5: Database and Table Schema Statements

This statement requires ALTER and DROP privileges for the table being renamed. CREATE and
INSERT privileges are needed for the new table and database if the table is being moved.

As an example, suppose that users add data to a particular table during the course of the
day, and each day the contents of the table are to be preserved. Suppose further that you
want to reset the table to contain no data. Here’s one way you might do that:

CREATE TABLE survey_new LIKE survey;

RENAME TABLE survey TO survey_bak,
survey_new TO survey;

In this example, a new table called survey_new is created based on the table structure of
the old table called survey, but without the data. In the second SQL statement, the old
table is renamed to survey_bak and the blank table, survey_new, is renamed to survey. If
issued from an API program, the name of the backup copy could be generated based on
the date (e.g., survey_2008dec07) so that each day’s data could be preserved. As
mentioned earlier, you can also change the database of a table in the process:

CREATE TABLE survey_new LIKE survey;

RENAME TABLE survey TO backup.survey_2008dec07,
survey_new TO survey;

In this example, the old table is renamed and moved into a database called backup.

SHOW CHARACTER SET
SHOW CHARACTER SET [LIKE 'pattern'| WHERE expression]

This statement will show all of the character sets installed on the server. To be more
selective, use a pattern with the LIKE clause and the wildcard characters (i.e., % and _).
Or you may use the WHERE clause to refine the results set. For instance, to list all of the
character sets beginning with the name latin, enter the following:

SHOW CHARACTER SET LIKE 'latin%'\G
*************************** 1. row ***************************
 Charset: latin1
 Description: ISO 8859-1 West European
Default collation: latin1_swedish_ci
 Maxlen: 1
*************************** 2. row ***************************
 Charset: latin2
 Description: ISO 8859-2 Central European
Default collation: latin2_general_ci
 Maxlen: 1
*************************** 3. row ***************************
 Charset: latin5
 Description: ISO 8859-9 Turkish
Default collation: latin5_turkish_ci
 Maxlen: 1
*************************** 4. row ***************************
 Charset: latin7
 Description: ISO 8859-13 Baltic
Default collation: latin7_general_ci
 Maxlen: 1

SHOW CHARACTER SET

Chapter 5: Database and Table Schema Statements | 105

Database & Table
Schem

a

To see the default character set, use the SHOW VARIABLES statement. To change the client’s
character set, use the SET CHARACTER SET statement. The Default collation field in the
results indicates the related collation for the character set. The Maxlen field gives the
maximum number of bytes for storing one character of the character set. For European
character sets, this value is usually 1; for Asian character sets, it’s usually more than 1.

SHOW COLLATION
SHOW COLLATION [LIKE 'pattern'| WHERE expression]

Use this statement to list all of the collation character sets. You can use the LIKE clause
and the wildcard characters (% and _) to list character sets based on a naming pattern. Or
you may use the WHERE clause to refine the results set. This statement is available as of
version 4.1 of MySQL. Here is an example:

SHOW COLLATION LIKE '%greek%';

+------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+------------------+---------+----+---------+----------+---------+
| greek_general_ci | greek | 25 | Yes | Yes | 1 |
| greek_bin | greek | 70 | | Yes | 1 |
+------------------+---------+----+---------+----------+---------+

In this example, character sets that contain the letters greek in their name are listed. These
are Greek character sets. Under the Charset column is shown the character set for which
the collation relates. Both are for the greek character set. Using SHOW CHARACTER SET, we
can see information on this character set. Looking at the Default just shown (and the
Default collation shown next), we can see that greek_general_ci is the default collation
for the character set greek. This is indicated with the Yes value. The field Compiled in the
results shown previously indicates that the character set was compiled in the MySQL
server. The field Sortlen indicates the bytes needed when collating data:

SHOW CHARACTER SET LIKE 'greek';

+---------+------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+------------------+-------------------+--------+
| greek | ISO 8859-7 Greek | greek_general_ci | 1 |
+---------+------------------+-------------------+--------+

SHOW COLUMNS
SHOW [FULL] COLUMNS FROM table [FROM database] [LIKE 'pattern'|WHERE expression]

Use this statement to display the columns for a given table. If the table is not in the current
default database, the FROM database clause may be given to specify another database. You
can use the LIKE clause to list only columns that match a naming pattern given in quotes.
Or you may use the WHERE clause to refine the results set. The FULL flag will return the
name of the character set used for collating and the user privileges of the current session
for the columns returned:

SHOW COLUMNS FROM clients FROM workrequests LIKE 'client%';

SHOW COLLATION

106 | Chapter 5: Database and Table Schema Statements

+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| client_id | varchar(4) | | PRI | | |
| client_name | varchar(50) | YES | | NULL | |
+-------------+-------------+------+-----+---------+-------+

In this example, only information for columns beginning with the name client is re-
trieved. The following example is just for the client_id column and uses the FULL flag
along with the alternate display method (\G):

SHOW FULL COLUMNS FROM clients FROM workrequests
LIKE 'client_id'\G
*************************** 1. row ***************************
 Field: client_id
 Type: varchar(4)
 Collation: latin1_swedish_ci
 Null:
 Key: PRI
 Default:
 Extra:
Privileges: select,insert,update,references
 Comment:

Notice that the name of the collation used for the column (latin1_swedish_ci) and the
user’s privileges (SELECT, INSERT, UPDATE, and REFERENCES) with regard to the column are
provided.

SHOW CREATE DATABASE
SHOW CREATE {DATABASE|SCHEMA} database

This statement displays an SQL statement that can be used to create a database like the
one given. This statement is mostly useful for determining the default character set. It’s
available as of version 4.1 of MySQL. As of version 5.0.2, the keyword SCHEMA may be
used instead of DATABASE:

SHOW CREATE DATABASE human_resources \G

*************************** 1. row ***************************
 Database: human_resources
Create Database: CREATE DATABASE `human_resources`
 /*!40100 DEFAULT CHARACTER SET latin1 */

If you don’t want the database name in the results to be quoted with backticks as shown
here, you can set the server variable SQL_QUOTE_SHOW_CREATE to 0 instead of its default
value of 1.

SHOW CREATE TABLE
SHOW CREATE TABLE table

This statement displays an SQL statement that can be used to create a table like the one
named. The results may be copied and used with another database. You can also copy

SHOW CREATE TABLE

Chapter 5: Database and Table Schema Statements | 107

Database & Table
Schem

a

the results and modify the name of the table in order to use the CREATE statement on the
same database. If you want a table exactly like an existing one, you might do better to
use CREATE TABLE...LIKE... instead:

SHOW CREATE TABLE programmers \G

*************************** 1. row ***************************
Table: programmers
Create Table: CREATE TABLE 'programmers' (
 'prog_id' varchar(4) NOT NULL default '',
 'prog_name' varchar(50) NOT NULL default '',
 PRIMARY KEY ('prog_id')
) ENGINE=MyISAM DEFAULT CHARSET=latin1

Notice that the results include the table type and other default options.

As with the SHOW CREATE DATABASE statement, if you don’t want the table name in the
results to be quoted with backticks as shown here, you can set the server variable
SQL_QUOTE_SHOW_CREATE to 0 instead of its default value of 1.

SHOW CREATE VIEW
SHOW CREATE VIEW view

Use this statement to display an SQL statement that can be used to create a view like the
one named. The results may be copied and used with another database. You can also
copy the results and modify the name of the view so that the statement may be used to
create a similar or identical view on the same database. This statement is available as of
version 5.0.1 of MySQL:

SHOW CREATE VIEW student_directory \G

*************************** 1. row ***************************
 View: student_directory
Create View: CREATE ALGORITHM=UNDEFINED
DEFINER='russell'@'localhost' SQL SECURITY INVOKER
VIEW 'student_directory'
AS SELECT 'students'.'student_id' AS 'ID',
CONCAT('students'.'name_first',
convert(repeat(_utf8' ',1) using latin1),
'students'.'name_last') AS 'Name',
'students'.'phone_home' AS 'Telephone'
FROM 'students'

This view is the same one created in the example given for the CREATE VIEW statement
earlier. Notice that the database name (personnel) has been added to the end of the view
name (employee_directory).

SHOW DATABASES
SHOW {DATABASES|SCHEMAS} [LIKE 'pattern'| WHERE expression]

This statement displays the list of databases on the server. The keyword DATABASE is
synonymous with SCHEMA as of version 5.0.2 of MySQL. Using the LIKE clause, a naming
pattern may be given. Or you may use the WHERE clause to refine the results set.

SHOW CREATE VIEW

108 | Chapter 5: Database and Table Schema Statements

For example, suppose that a server has a separate database for each customer of the
organization and that the pattern for the names of the databases is cust_number, where
the number is the customer account number. You could enter the following SQL statement
to obtain a list of databases based on this pattern:

SHOW DATABASES LIKE 'cust%' LIMIT 1;

+------------------+
| Database (cust%) |
+------------------+
| cust_37881 |
+------------------+

The SHOW DATABASES privilege is necessary to see all databases. Otherwise, the user will
see only the databases for which he has privileges. The --skip-show-database server
option will disable this limitation.

The mysqlshow utility can be used at the command line to view the same information:

mysqlshow --user=user --password

The results from this utility are also limited by the user’s privileges.

SHOW INDEXES
SHOW {INDEX|INDEXES|KEYS} FROM table [FROM database]

This SQL statement displays information about the indexes for a given table. A table
from a different database can be specified either by preceding the table name with the
database name and a dot (e.g., database.table) or by adding the FROM clause. The
INDEXES keyword may be replaced with INDEX or KEYS—all three are synonymous:

SHOW INDEXES FROM contacts FROM sales_dept \G

*************************** 1. row ***************************
 Table: contacts
 Non_unique: 0
 Key_name: PRIMARY
Seq_in_index: 1
 Column_name: contact_id
 Collation: A
 Cardinality: 265
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
*************************** 2. row ***************************
 Table: contacts
 Non_unique: 0
 Key_name: contact_name
Seq_in_index: 1
 Column_name: name_last
 Collation: A
 Cardinality: NULL
 Sub_part: 10
 Packed: NULL

SHOW INDEXES

Chapter 5: Database and Table Schema Statements | 109

Database & Table
Schem

a

 Null: YES
 Index_type: BTREE
 Comment:
*************************** 3. row ***************************
 Table: contacts
 Non_unique: 0
 Key_name: contact_name
Seq_in_index: 2
 Column_name: name_first
 Collation: A
 Cardinality: NULL
 Sub_part: 10
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:

Looking at these results, we can see that for each index the table name is given. This is
followed by a field indicating whether the index is nonunique. A unique index is indicated
by 0, a nonunique index by 1. The name of the index or key (i.e., PRIMARY or
contact_name in the example) is shown next. For indexes that use only one column, the
key name and the column name are often the same. For indexes that use more than one
column, a row will be listed for each column, each row having the same table name and
the same key name (i.e., name_last and name_first for contact_name).

The output gives the sequence of the columns in the index, where 1 is the first column.
The name of the column (or columns) indexed is next, followed by the collation (how
the column is sorted in the index). A value of A means ascending and D means descending.
If the index is not sorted, the Collation field value is NULL.

The Cardinality field is based on the number of unique indexes contained in the column.
The server consults this information to determine whether to use an index in a join. The
higher the cardinality, the more likely it will be used.

The Sub_part field indicates the number of characters of the column that are indexed for
partially indexed columns. This field is NULL if the NULL column is indexed.

The Packed field indicates how the key is packed. If the key is not packed, the field has a
value of NULL. See the earlier subsection “ALTER TABLE: Table options” for a
description of packed keys.

If the column may contain a NULL value, the Null field reads Yes; otherwise, it’s empty.
Index_type is the structure of the index, which can be BTREE, HASH, FULLTEXT, RTREE (as of
version 5.0.1 of MySQL), or SPATIAL. The Comments field contains any comments
associated with the index.

From the command line, the mysqlshow utility with the --keys option can be used to show
the same information:

mysqlshow --user=user --password --keys database table

SHOW INDEXES

110 | Chapter 5: Database and Table Schema Statements

SHOW SCHEMAS
SHOW {DATABASES|SCHEMAS} [LIKE 'pattern']

This statement is synonymous with SHOW DATABASES. See the description of that statement
earlier in this chapter for more information and examples.

SHOW TABLE STATUS
SHOW TABLE STATUS [FROM database] [LIKE 'pattern']

This statement displays status information on a set of tables from a database. To obtain
the status of tables from a database other than the current default one, use the FROM clause.
The results include information on all of the tables of the database, unless the LIKE clause
is used to limit the tables displayed by a naming pattern:

SHOW TABLE STATUS FROM human_resources
LIKE 'employees' \G

*************************** 1. row ***************************
 Name: employees
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 122
 Avg_row_length: 16384
 Data_length: 1094812
Max_data_length: 281474976710655
 Index_length: 2048
 Data_free: 0
 Auto_increment: 1145
 Create_time: 2006-08-14 21:31:36
 Update_time: 2007-03-30 07:02:17
 Check_time: 2006-08-14 21:31:36
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options: max_rows=1000
 Comment: InnoDB free: 4096 kB

In this example, the number of tables is limited to one because a specific table name is
given in the LIKE clause without the % wildcard. You can change some of these variables
or table options using the ALTER TABLE statement; see the “ALTER TABLE: Table op-
tions” subsection earlier in this chapter.

In the results of this statement, the name of the table is shown first, followed by a de-
scription of the table. The Engine field lists the type of storage engine used. The
Version field gives the version number from the table’s .frm file. Row_format can be
Compact, Compressed, Dynamic, Fixed, or Redundant, unless it’s an InnoDB table, in which
case the possibilities are Compact or Redundant. The Rows field shows the number of rows
of data contained in the table. Except for MyISAM tables, this number usually isn’t ac-
curate. The Avg_row_length field gives the average length of the rows in bytes. The
Data_length field gives the size of the datafile in bytes. This is the same size shown at the
filesystem level for the .MYD file. Max_data_length gives the maximum size allowed for
the datafile of the table. Index_length is the size of the index file, the .MYI file.
Data_free is the space that has been allocated for the datafile that is not in use at the

SHOW TABLE STATUS

Chapter 5: Database and Table Schema Statements | 111

Database & Table
Schem

a

moment; this is typically 0. The value of the Auto_increment field is the value of the
column that uses AUTO_INCREMENT for the next row to be created. Create_time is the date
and time the table was created; Update_time shows the time the table was last updated;
and Check_time is the last date and time that the table was checked. This isn’t always
accurate. Collation names the collation used for sorting the table’s data. Checksum pro-
vides the checksum value if there is one, NULL if not. The Create_options field lists any
options, and the Comment field shows any comments that were given when the table was
created or altered. For InnoDB tables, the free space is given under Comment.

From the command line, the utility mysqlshow with the --keys option can be used to show
the indexes of a table:

mysqlshow --user=user --password --status database table

SHOW TABLES
SHOW [FULL|OPEN] TABLES [FROM database] [LIKE 'pattern'| WHERE expression]

This statement displays a list of tables and views (as of version 5.0.1 of MySQL). To
distinguish between tables and views, add the FULL keyword. In the results, an extra
column called Table_type will be displayed. A value of BASE TABLE indicates a table, and
VIEW indicates a view. The tables shown will not include temporary tables and will be
from the current database by default. To list tables from another database, add the
FROM clause along with the name of the database. You can reduce the list of tables to those
with a name meeting a given naming pattern with either the LIKE or the WHERE clause. For
a list of all tables for all databases that are currently being used by queries, add the
OPEN flag instead:

SHOW TABLES FROM workrequests LIKE 'work%';

This statement will list all of the tables and views with names that begins with the word
“work” for the database workrequests. By default, only tables for which the user has
privileges will be listed.

From the command line, the utility mysqlshow with the --keys option can be used to show
the tables contained in a database:

mysqlshow --user=user --password database

SHOW VIEWS

There is no SHOW VIEWS statement at this time. To see a list of existing views for the current
database, run SHOW FULL TABLES WHERE Table_type='VIEW';.

SHOW TABLES

112 | Chapter 5: Database and Table Schema Statements

6
Data Manipulation Statements

and Functions

This chapter explains SQL statements in MySQL related to data manipulation: add-
ing, changing, and deleting data, as well as retrieving selected data. Statements that
create and alter databases and tables are covered in the previous chapter. In essence,
this chapter covers SQL statements used when manipulating the data itself, not when
developing a database. The two modes involve fairly distinct mindsets and are
sometimes conducted by different people.

Statements and Functions Grouped by Characteristics
The following SQL statements are covered in this chapter.

Data Manipulation Statements
Here is a list of SQL statements and clauses used in MySQL for data manipulation:

DELETE, DO, EXPLAIN, HANDLER, HELP, INSERT, JOIN, LIMIT, LOAD DATA INFILE, REPLACE,
SELECT, SET, SHOW ERRORS, SHOW WARNINGS, TRUNCATE, UNION, UPDATE, USE.

Transaction Statements
Transactions are a set of SQL statements that the server has to execute as a unit:
either all succeed or all fail. If the server detects that all have succeeded, it commits
the transaction; if any statement fails, the server rolls back the previous statements.
Transactions are supported by the InnoDB, BDB, and NDB Cluster storage engines,
as well as some new storage engines for MySQL that are under development.
Statements that manipulate transactions are ignored if executed against a storage
engine that doesn’t support transactions, notably MyISAM.

113

The following is a list of SQL statements that are specifically related to transactions.
They work only with tables that use a transactional storage engine (e.g., InnoDB,
BDB, and NDB Cluster):

BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, ROLLBACK TO SAVEPOINT, SAVEPOINT, SET
TRANSACTION, START TRANSACTION, XA.

Related Functions
The following functions are also covered in this chapter because they relate to data
manipulation. They are explained at the end of this chapter:

ANALYSE(  ), BENCHMARK(  ), DATABASE(  ), FOUND_ROWS(  ), LAST_INSERT_ID(  ),
ROW_COUNT(  ), SCHEMA(  ).

Statements and Clauses in Alphabetical Order
The following is a list of MySQL statements and clauses related to data manipula-
tion, in alphabetical order. To understand how this book presents SQL syntax and
describes SQL statements, as well as for information related to examples, please see
the introduction to Part II. Many of the examples in this chapter involve the activities
of the departments of a fictitious company: its human resources department and
employee data, its sales department and client contact information, and its internal
IT department’s work requests.

BEGIN
BEGIN [WORK]

Use this statement to start a transaction. Transaction statements are currently supported
by the InnoDB, NDB Cluster, and BDB storage engines and are ignored if used with
MyISAM tables. The WORK keyword is optional. Don’t confuse the BEGIN statement with
the BEGIN...END compound statement used in stored procedures and triggers (see Chap-
ter 9). To eliminate confusion on this point, it’s recommended you use the alias START
TRANSACTION instead of BEGIN.

A transaction is permanently recorded when the session issues a COMMIT statement, starts
another transaction, or terminates the connection. You can reverse a transaction by
issuing a ROLLBACK statement if the transaction has not yet been committed. See the ex-
planations of COMMIT and ROLLBACK later in this chapter for more information on transac-
tions. The SAVEPOINT and ROLLBACK TO SAVEPOINT statements may also be useful.

Here is an example of the BEGIN statement’s use in context:

BEGIN;

INSERT DATA INFILE '/tmp/customer_orders.sql'
INTO TABLE orders;

COMMIT;

114 | Chapter 6: Data Manipulation Statements and Functions

In this example, if there is a problem after the batch of orders is inserted into the
orders table, the ROLLBACK statement could be issued instead of the COMMIT statement
shown here. ROLLBACK would remove the data imported by the INSERT DATA INFILE
statement.

COMMIT
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

Use this statement to commit transactions, which are SQL statements that have changed
data and have been entered into MySQL but are not yet saved. Transaction statements
are currently supported by the InnoDB, NDB Cluster, and BDB storage engines and are
ignored if used with MyISAM tables.

If AUTOCOMMIT is enabled, it must be disabled for this statement to be meaningful. You
can disable it explicitly with the statement:

SET AUTOCOMMIT = 0;

Normally, AUTOCOMMIT is disabled by a START TRANSACTION statement and reinstated with
the COMMIT statement.

The WORK keyword is optional and has no effect on the results. It’s available for compat-
ibility with its counterpart, BEGIN WORK. Use the AND CHAIN clause to complete one
transaction and start another, thus making it unnecessary to use START TRANSACTION
again. Use the AND RELEASE clause to end the current client session after completing the
transaction.

Add the keyword NO to indicate explicitly that a new transaction is not to begin (when
used with CHAIN) or that the client session is not to end (when used with RELEASE). This
is necessary only when the system variable completion_type is set so that the server as-
sumes that a COMMIT statement indicates the start of another transaction or releases a
session.

Here is a basic example of this statement:

START TRANSACTION;

LOCK TABLES orders WRITE;

INSERT DATA INFILE '/tmp/customer_orders.sql'
INTO TABLE orders;

SELECT ...;

COMMIT;

UNLOCK TABLES;

In this example, after inserting a batch of orders into the orders table, an administrator
enters a series of SELECT statements to check the integrity of the data. They are omitted
here to save space. If there is a problem, the ROLLBACK statement could be issued rather
than the COMMIT statement shown here. ROLLBACK would remove the data imported by the
INSERT DATA INFILE statement.

COMMIT

Chapter 6: Data Manipulation Statements and Functions | 115

Data M
anipulation

The following statements also cause a transaction to be committed: ALTER EVENT, ALTER
FUNCTION, ALTER PROCEDURE, ALTER TABLE, BEGIN, CREATE DATABASE, CREATE EVENT, CREATE
FUNCTION, CREATE INDEX, CREATE PROCEDURE, CREATE TABLE, DROP DATABASE, DROP EVENT, DROP
FUNCTION, DROP INDEX, DROP PROCEDURE, DROP TABLE, LOAD DATA INFILE, LOCK TABLES, RENAME
TABLE, SET AUTOCOMMIT=1, START TRANSACTION, TRUNCATE, and UNLOCK TABLES.

DELETE
DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM table
 [WHERE condition]
 [ORDER BY column [ASC|DESC][,...]]
 [LIMIT row_count]

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] table[, table]
 FROM table[,...]
 [WHERE condition]

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM table[, table]
 USING table[,...]
 [WHERE condition]

Use this statement to delete rows of data from a given table. Three basic syntax structures
are allowed. The first one shown here is restricted to a single table, whereas the other
two can handle multiple tables. For all three, the LOW_PRIORITY keyword instructs the
server to wait until there are no queries on the table named before deleting rows. This
keyword works only with storage engines that allow table-level locking (i.e., MyISAM,
MEMORY, MERGE). The QUICK keyword can be used with MyISAM tables to make
deletions faster by not merging leaves in the index’s tree. The IGNORE keyword instructs
MySQL to continue even if it encounters errors. You can retrieve error messages after-
ward with the SHOW WARNINGS statement.

Use the WHERE clause to specify which rows are to be deleted based on a given condition.
You can use the DELETE statement in conjunction with the JOIN clause, which is explained
later in this chapter.

Here is a simple example of this statement:

DELETE LOW_PRIORITY FROM workreq
WHERE client_id = '1076'
AND status <> 'DONE';

In this example, the client 1076 has closed its account, and management has decided just
to delete all of its incomplete work requests. If a WHERE clause is not given, all of the rows
for the table would be deleted permanently.

If you want to delete all of the data in a table, you can use this statement without the
WHERE clause, but it’s slow because deletions are performed one row at a time. The same
result can be obtained faster with the TRUNCATE statement. However, the TRUNCATE state-
ment doesn’t return the number of rows deleted, so use DELETE if that’s important to you.

To delete only a certain number of rows in a table, use the LIMIT clause to specify the
number of rows to delete. To delete a specific number of rows for a particular range of
column values, use the ORDER BY clause along with the LIMIT clause. For example, suppose
an account executive informs the database administrator that the last four work requests

DELETE

116 | Chapter 6: Data Manipulation Statements and Functions

she entered for a particular client (1023) need to be deleted. The database administrator
could enter the following to delete those rows:

DELETE FROM workreq
WHERE client_id = '1023'
ORDER BY request_date DESC
LIMIT 4;

In this example, the rows are first ordered by the date of the work request, in descending
order (latest date first). Additional columns may be given in a comma-separated list for
the ordering. The LIMIT clause is used to limit the number of deletions to the first four
rows of the results of the WHERE clause and the ORDER BY clause.

The second syntax for this statement allows other tables to be referenced. In the first
example shown here, the database administrator wants to delete rows representing a
particular client from the work request table, but she doesn’t know the client account
number. However, she knows the client’s name begins with Cole, so she could enter the
following to delete the records:

DELETE workreq FROM workreq, clients
WHERE workreq.client_id = clients.client_id
AND client_name LIKE 'Cole%';

In this example, the table in which rows will be deleted is given after the DELETE keyword.
It’s also given in the list of tables in the FROM clause, which specifies the table from which
information will be obtained to determine the rows to delete. The two tables are joined
in the WHERE clause on the client identification number column in each. Using the LIKE
keyword, the selection of rows is limited to clients with a name beginning with Cole.
Incidentally, if more than one client has a name beginning with Cole, the rows for all will
be deleted from the work request table. You can delete rows in more than one table with
a single statement by listing the tables in a comma-separated list after the DELETE keyword.
For example, suppose that we decide to delete not only the work requests for the client,
but also the row for the client in the clients table:

DELETE workreq, clients FROM workreq, clients
WHERE workreq.clientid = clients.clientid
AND client_name LIKE 'Cole%';

Notice that the only syntactical difference between this statement and the one in the
previous example is that this statement lists both tables for which rows are to be deleted
after the DELETE keyword and before the FROM clause. Deletions are permanent, so take
care which tables you list for deletion.

The third syntax operates in the same way as the second one, but it offers a couple of
keywords that may be preferred for clarity. If the previous example were entered with
this third syntax, it would look like this:

DELETE FROM workreq USING workreq, clients
WHERE workreq.clientid = clients.clientid
AND client_name LIKE 'Cole%';

Notice that the table from which rows will be deleted is listed in the FROM clause. The
tables that the statement will search for information to determine which rows to delete
are listed in the USING clause. The results of statements using this syntax structure and
those using the previous one are the same. It’s just a matter of style preference and com-
patibility with other database systems.

DELETE

Chapter 6: Data Manipulation Statements and Functions | 117

Data M
anipulation

Although MySQL will eventually reuse space allocated for deleted rows, you can compact
a table that has had many rows deleted by using the OPTIMIZE TABLE statement or the
myisamchk utility.

DO
DO expression[,...] | (statement)

This statement suppresses the display of an expression’s results. Multiple expressions
may be given in a comma-separated list. As of version 4.1 of MySQL, subqueries may be
given. Here is an example:

DO (SET @company = 'Van de Lay Industries');

This statement creates the @company variable with the value given, but without displaying
any results.

EXPLAIN
EXPLAIN table

EXPLAIN [EXTENDED|PARTITIONS] SELECT...

Use this statement to display information about the columns of a given table or the
handling of a SELECT statement. For the first usage, the statement is synonymous with
the DESCRIBE and SHOW COLUMNS statements. For the latter usage, EXPLAIN shows which
index the statement will use and, when multiple tables are queried, the order in which
the tables are used. This can be helpful in determining the cause of a slow query. Here
is an example involving a simple subquery in which we are retrieving a list of our top
clients and counting the number of work request tickets they’ve generated, and then
querying those results to order them by the number of tickets:

EXPLAIN
SELECT * FROM
 (SELECT client_name, COUNT(*) AS tickets
 FROM work_req
 JOIN clients USING(client_id)
 WHERE client_type = 1
 AND DATEDIFF(NOW(), request_date) < 91
 GROUP BY client_id) AS derived1
ORDER BY tickets DESC;

*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 8
 Extra: Using filesort

DO

118 | Chapter 6: Data Manipulation Statements and Functions

*************************** 2. row ***************************
 id: 2
 select_type: DERIVED
 table: clients
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 94
 Extra: Using where; Using temporary; Using filesort
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: work_req
 type: ref
possible_keys: client_id,workreq_date_key
 key: workreq_date_key
 key_len: 5
 ref: company_database.clients.client_id
 rows: 1
 Extra: Using where; Using index

We can discern plenty from these results, such as which indexes were used, if any. For
example, the possible_keys field in the third row lists the indexes that might have been
used to find the data, whereas the key field indicates that the index workreq_date_key
was actually used. (That index covers the client_id and request_date columns.) If the
possible_keys field showed a value of NULL, then no index was used or could have been
used. This would indicate that you should consider adding an index to the table.

Basically, this statement tells you what MySQL does when it executes the given SQL
statement. It doesn’t tell you what to do differently to improve performance. For that,
you will need to use your judgment. See Table 6-1 for a list of possible select_types.

Table 6-1. select_type for EXPLAIN statement results

Type General meaning

SIMPLE Indicates a simple SELECT statement, without a subquery or a UNION.

PRIMARY When using a subquery, this is the main SELECT statement.

UNION When using a UNION, this is not the first SELECT statement.

DEPENDENT UNION When using a UNION, this is not the first SELECT statement that is dependent
on the main query.

UNION RESULT The result of a UNION.

SUBQUERY The first SELECT statement in a subquery.

DEPENDENT SUBQUERY The first SELECT statement in a subquery that is dependent on the main query.

DERIVED The table derived from the subquery.

UNCACHEABLE SUBQUERY Indicates a subquery in which the results cannot be cached and therefore must
be reevaluated for each row of the main query.

EXPLAIN

Chapter 6: Data Manipulation Statements and Functions | 119

Data M
anipulation

Type General meaning

UNCACHEABLE UNION The UNION of a subquery in which the results cannot be cached and therefore
must be reevaluated for each row of the main query.

HANDLER
HANDLER table OPEN [AS handle]

HANDLER handle READ index { = | >= | <= | < } (value,...)
 [WHERE condition] [LIMIT ...]

HANDLER handle READ index {FIRST|NEXT|PREV|LAST}
 [WHERE condition] [LIMIT ...]

HANDLER handle READ {FIRST|NEXT}
 [WHERE condition] [LIMIT ...]

HANDLER handle CLOSE

A handle provides direct access to a table, as opposed to working from a results set.
Handles can be faster than SELECT statements when reading large numbers of rows from
a table. MyISAM and InnoDB tables currently support handlers.

A handle is usable only by the session (connection thread) that established it. The table
is still accessible by other sessions, though, and is not locked by this statement. Because
of this, and because the method provides direct table access, the data in the table can
change and even be incomplete as the handler performs successive reads.

Create a handler by issuing a HANDLER statement with the OPEN clause to establish a handle
for the table, much like a file handle in a programming language such as Perl. The AS
clause and handle name are optional. If an alias is not given, the table name is used as
the handler name for subsequent HANDLER statements.

You can then use HANDLER statement formats with READ clauses to read data from a table.
Finish by issuing HANDLER with a CLOSE clause.

Here are a couple of basic examples of the HANDLER statement:

HANDLER clients OPEN AS clients_handle;
HANDLER clients_handle READ FIRST;

The first line creates the table handle called clients_handle, based on the clients table.
The next SQL statement retrieves the first row of data from the table. The result of this
statement is the same as running a SELECT to retrieve all columns of the table and then
picking off the first row in the results set. To continue retrieving results in the same way
as a results set from a SELECT, issue the following:

HANDLER clients_handle READ NEXT;

Every time the statement is run with the NEXT keyword, the pointer is advanced and the
next row in the table is displayed until the end of the table is reached. To retrieve more
than one row, you can use the LIMIT clause like this:

HANDLER clients_handle READ NEXT LIMIT 3;

This statement displays the next three rows from the table.

HANDLER

120 | Chapter 6: Data Manipulation Statements and Functions

The WHERE clause may be used with a HANDLER...READ statement in the same way as with
the SELECT statement. Here is an example:

HANDLER clients_handle READ FIRST
WHERE state = 'MA' LIMIT 5;

This statement displays the first five rows in which the client is located in the state of
Massachusetts. Note that no ORDER BY clause is available for HANDLER...READ statements.
Therefore, the first five rows are based on the order in which they are stored in the table.

To extract data based on an index, use one of the READ clauses that specify indexes. Here
is an example like the previous one, but with the addition of an index:

HANDLER clients_handle READ cid PREV
WHERE state = 'MA' LIMIT 2;

This example retrieves two rows matching the condition of the WHERE clause; the rows
come from the previous batch of rows displayed thanks to the PREV keyword. Performance
could benefit from the use of the cid index, if it was based on the state column. To
retrieve the next set of rows using this syntax, replace PREV with NEXT.

The LAST keyword searches for and retrieves rows starting from the last row of the table.
Here is another example using an index:

HANDLER clients_handle READ name = ('NeumeyerGera');

The name index is a combination of the name_last and the name_first column, but only
the first four characters of the first name are used by the index. Given the sample database
used for this book, this statement displays the row for the client Gerard Neumeyer. The
values for each column may be separated with commas (e.g., 'Neumeyer', 'Gera'), or spliced
together as shown. This feature, a condition for a multicolumn index, would be a difficult
contortion with a SELECT statement.

HELP
HELP [{'command | reserve_word'}]

You can use this statement to access built-in documentation. Enter HELP alone to display
a list of MySQL commands for which you may display documentation. Typing HELP
contents displays a table of contents for this internal documentation. For quick reference,
you can also give an SQL statement or clause:

HELP SELECT;

This displays the syntax for the SELECT statement along with a brief description of some
of the clauses. Similarly, entering HELP SHOW gives you a list of SQL statements beginning
with SHOW.

INSERT
INSERT [LOW_PRIORITY|DELAYED|HIGH_PRIORITY] [IGNORE]
 [INTO] table
 SET column={expression|DEFAULT}, ...
 [ON DUPLICATE KEY UPDATE column=expression, ...]

INSERT [LOW_PRIORITY|DELAYED|HIGH_PRIORITY] [IGNORE]

INSERT

Chapter 6: Data Manipulation Statements and Functions | 121

Data M
anipulation

 [INTO] table [(column, ...)]
 VALUES ({expression|DEFAULT},...),(...),...
 [ON DUPLICATE KEY UPDATE column=expression, ...]

INSERT [LOW_PRIORITY|HIGH_PRIORITY] [IGNORE]
 [INTO] table [(column, ...)]
 SELECT...
 [ON DUPLICATE KEY UPDATE column=expression, ...]

Use this statement to add rows of data to a table. The first format shown can insert only
one row of data per statement. The second format can handle one or more rows in a
single statement. The columns and their order are specified once, but values for multiple
rows may be given. Each row of values is to be contained in its own set of parentheses,
separated by commas. The third format inserts columns copied from rows in other tables.
Explanations of the specifics of each type of statement, their various clauses and key-
words, and examples of their uses follow in the next three subsections of this SQL
statement.

A few parameters are common to two formats, and a few are common to all formats.

You can use the LOW_PRIORITY keyword to instruct the server to wait until all other queries
related to the table in which data is to be added are finished before running the INSERT
statement. When the table is free, it is locked for the INSERT statement and will prevent
concurrent inserts.

The DELAYED keyword is available for the first two syntaxes and indicates the same priority
status, but it releases the client so that other queries may be run and so that the connection
may be terminated. A DELAYED query that returns without an error message does not
guarantee that the inserts will take place; it confirms only that the query is received by
the server to be processed. If the server crashes, the data additions may not be executed
when the server restarts and the user won’t be informed of the failure. To confirm a
DELAYED insert, the user must check the table later for the inserted content with a
SELECT statement. The DELAYED option works only with MyISAM and InnoDB tables. It’s
also not applicable when the ON DUPLICATE KEY UPDATE clause is used.

Use the HIGH_PRIORITY keyword to override a --low-priority-updates server option and
to disable concurrent inserts.

The IGNORE keyword instructs the server to ignore any errors encountered and suppress
the error messages. In addition, for multiple row insertions, the statement continues to
insert rows after encountering errors on previous rows. Warnings are generated that the
user can display with the SHOW WARNINGS statement.

The INTO keyword is optional and only for compatibility with other database engines.

The DEFAULT keyword can be given for a column for the first two syntax formats to instruct
the server to use the default value for the column. You can set the default value either
with the CREATE TABLE statement when the table is created or with the ALTER TABLE
statement for existing tables.

The ON DUPLICATE KEY UPDATE clause tells an INSERT statement how to handle an insert
when an index in the table already contains a specified value in a column. With this
clause, the statement updates the data in the existing row to reflect the new values in the
given columns. Without this clause, the statement generates an error. An example
appears in the next section.

INSERT

122 | Chapter 6: Data Manipulation Statements and Functions

Single-row insertion with the SET clause
INSERT [LOW_PRIORITY|DELAYED|HIGH_PRIORITY] [IGNORE]
 [INTO] table
 SET column={expression|DEFAULT}, ...
 [ON DUPLICATE KEY UPDATE column=expression, ...]

This variant of the INSERT statement allows only one row of data to be inserted into a
table per SQL statement. The SET clause lists one or more column names, each followed
by the value to which it is to be set. The value given can be a static value or an expression.
Here is an example:

INSERT INTO clients
SET client_name = 'Geoffrey & Company',
city = 'Boston', state = 'MA';

This example lists three columns along with the values to be set in a row entry in the
clients table. Other columns in the newly inserted row will be handled in a default
manner. For instance, an AUTO_INCREMENT column will be set to the next number in
sequence.

As mentioned earlier, the ON DUPLICATE KEY UPDATE clause allows an INSERT statement to
handle rows that already contain specified values. Here is an example:

CREATE UNIQUE INDEX client_phone
ON clients(client_name,telephone);

ALTER TABLE clients
ADD COLUMN new_telephone TINYINT(1)
AFTER telephone;

INSERT INTO clients
SET client_name = 'Marie & Associates',
new_telephone = 0
telephone = '504-486-1234'
ON DUPLICATE KEY UPDATE
new_client = 1;

This example starts by creating an index on the client_phone column in the clients table.
The index type is UNIQUE, which means that duplicate values for the combination of
client_name and telephone columns are not allowed. With the second SQL statement,
we add a column to flag new telephone numbers for existing clients. The INSERT statement
tries to insert the specified client name and telephone number. But it indicates that if
there is already a row in the table for the client, a new row is not to be added. Instead,
the existing row is to be updated per the UPDATE clause, setting the original entry’s
telephone column to the value given in the SET clause. The assumption is that the new
data being inserted either is for a new client or is an update to the existing client’s tele-
phone number. Instead of using a column value after the equals sign, a literal value or
an expression may be given.

Multiple-row insertions
INSERT [LOW_PRIORITY|DELAYED|HIGH_PRIORITY] [IGNORE]
 [INTO] table [(column,...)]
 VALUES ({expression|DEFAULT},...), (...)
 [ON DUPLICATE KEY UPDATE column=expression,...]

INSERT

Chapter 6: Data Manipulation Statements and Functions | 123

Data M
anipulation

This format of the INSERT statement allows one SQL statement to insert multiple rows.
The columns in which data is to be inserted may be given in parentheses in a comma-
separated list. If no columns are specified, the statement must include a value for each
column in each row, in the order that they appear in the table. In the place reserved for
an AUTO_INCREMENT column, specify NULL and the server will insert the correct next value
in the column. To specify default values for other columns, use the DEFAULT keyword.
NULL may also be given for any other column that permits NULL and that you wish to
leave NULL. The VALUES clause lists the values of each row to be inserted into the table.
The values for each row are enclosed in parentheses; each row is separated by a comma.
Here is an example:

INSERT INTO clients (client_name, telephone)
VALUES('Marie & Associates', '504-486-1234'),
('Geoffrey & Company', '617-522-1234'),
('Kenneth & Partners', '617-523-1234');

In this example, three rows are inserted into the clients table with one SQL statement.
Although the table has several columns, only two columns are inserted for each row here.
The other columns are set to their default value or to NULL. The order of the values for
each row corresponds to the order that the columns are listed.

Normally, if a multiple INSERT statement is entered and one of the rows to be inserted is
a duplicate, an error is triggered and an error message is displayed. The statement is
terminated and no rows are inserted. The IGNORE keyword, however, instructs the server
to ignore any errors encountered, suppress the error messages, and insert only the non-
duplicate rows. The results of this statement display like so:

Query OK, 120 rows affected (4.20 sec)
Records: 125 Duplicates: 5 Warnings: 0

These results indicate that 125 records were to be inserted, but only 120 rows were
affected or successfully inserted. There were five duplicates in the SQL statement, but
there were no warnings because of the IGNORE keyword. Entering the SHOW WARNINGS
statement will display the suppressed warning messages.

Inserting rows based on a SELECT
INSERT [LOW_PRIORITY|HIGH_PRIORITY] [IGNORE]
 [INTO] table [(column,...)]
 SELECT...
 [ON DUPLICATE KEY UPDATE column=expression,...]

This method of the INSERT statement allows for multiple rows to be inserted in one SQL
statement, based on data retrieved from another table by way of a SELECT statement. If
no columns are listed (i.e., an asterisk is given instead), the SELECT will return the values
of all columns in the order in which they are in the selected table and will be inserted (if
possible without error) in the same order in the table designated for inserting data into.
If you don’t want to retrieve all of the columns of the selected table, or if the columns in
both tables are not the same, then you must list the columns to retrieve in the SELECT
statement and provide a matching ordered list of the columns of the table that data is to
be inserted into.

For the following example, suppose that the employees table contains a column called
softball to indicate whether an employee is a member of the company’s softball team.
Suppose further that it is decided that a new table should be created to store information

INSERT

124 | Chapter 6: Data Manipulation Statements and Functions

about members of the softball team and that the team’s captain will have privileges to
this new table (softball_team), but no other tables. The employee names and telephone
numbers need to be copied into the new table because the team’s captain will not be
allowed to do a query on the employees table to extract that information. Here are the
SQL statements to set up the new table with its initial data:

CREATE TABLE softball_team
(player_id INT KEY, player_name VARCHAR(50),
 position VARCHAR(20), telephone CHAR(8));

INSERT INTO softball_team
(player_id, player_name, telephone)
 SELECT emp_id, CONCAT(name_first, ' ', name_last),
 RIGHT(telephone_home, 8)
 FROM employees
 WHERE softball = 'Y';

The first SQL statement creates the new table. The columns are very simple: one column
as a row identifier, one column for both the first and last names of the player, another
for the player’s home telephone number, and yet another for the player’s position, to be
filled in later by the team’s captain. Normally, we wouldn’t include a column like the
one for the player’s name because that would be duplicating data in two tables. However,
the team captain intends to change many of the player’s names to softball nicknames
(e.g., Slugger Johnson).

In the second SQL statement, the INSERT statement uses an embedded SELECT statement
to retrieve data from the employees table where the softball column for the row is set to
'Y'. The CONCAT() function is used to put together the first and last names, separated by
a space. This will go into the name column in the new table. The RIGHT() function is used
to extract only the last eight characters of the telephone_home column because all of the
employees on the softball team are from the same telephone dialing area. See Chap-
ter 11 for more information on these functions. Notice that we’ve listed the three columns
that data is to go into, although there are four in the table. Also notice that the SELECT
statement has three columns of the same data types but with different names.

JOIN
SELECT...|UPDATE...|DELETE...
table [INNER|CROSS] JOIN table [ON condition|USING (column[,...])] |
table STRAIGHT_JOIN table ON condition |
table LEFT [OUTER] JOIN table {ON condition|USING (column[,...])} |
table NATURAL [LEFT [OUTER]] JOIN table |
[OJ table LEFT OUTER JOIN table ON condition] |
table RIGHT [OUTER] JOIN table {ON condition|USING (column[,...])} |
table NATURAL [RIGHT [OUTER]] JOIN table

The JOIN clause is common to several SQL statements (SELECT, UPDATE, DELETE) and is
complex; therefore, it is listed here as its own entry in the chapter. Use JOIN to link tables
together based on columns with common data for purposes of selecting, updating, or
deleting data. The JOIN clause is entered at the place in the relevant statement that speci-
fies the tables to be referenced. This precludes the need to join the tables based on key
columns in the WHERE clause.

JOIN

Chapter 6: Data Manipulation Statements and Functions | 125

Data M
anipulation

The ON keyword is used to indicate the pair of columns by which the tables are to be
joined (indicated with the equals sign operator). As an alternative method, the USING
keyword may be given along with a comma-separated list of columns both tables have
in common, contained within parentheses. The columns must exist in each table that is
joined. To improve performance, you can also provide index hints to MySQL (see the
last subsection of this clause definition, “Index hints”).

Here is an example of a JOIN:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Name
FROM employees
JOIN branches ON employees.branch_id = branches.branch_id
WHERE location = 'New Orleans';

This statement displays a list of employees from the employees table who are located in
the New Orleans branch office. The problem solved by the JOIN is that the employees
table doesn’t indicate New Orleans by name as the branch; that table just has a numeric
identifier. The branches table is used to retrieve the branch name for the WHERE clause.
The location column is a column in the branches table. Nothing is actually displayed
from the branches table here. Since the record identification column for branches is
branch_id in both tables, the USING keyword can be used instead of ON to create the same
join:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Name
FROM employees
JOIN branches USING (branch_id)
WHERE location = 'New Orleans';

This will join the two tables on the branch_id column in each table. Since these tables
have only one column in common, it’s not necessary to specify that row; instead, you
can use the NATURAL keyword. Here is the same statement with this change:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Name
FROM employees
NATURAL JOIN branches
WHERE location = 'New Orleans';

Notice that the USING keyword and the column for linking are omitted. MySQL will
assume that branch_id in both columns are the same and will naturally join the tables on
them. The results of this SQL statement will be the same as those of the previous two.

When joining two tables in a simple join, as shown in the previous examples, if no rows
in the second table match rows from the first table, no row will be displayed for the
unmatched data. For example, if the branches table lists a branch office for which there
are no employees listed in the employees table belonging to that branch, the results set
would not show a row for that supposedly empty branch office. Sometimes, though, it
can be useful to display a record regardless. In our example, this would tell us that some-
thing’s wrong with the data: either one or more employees are marked with the wrong
branch_id, or some employee records are missing from the employees table. Conversely,
if an employee has a branch_id value that does not exist in the branches table, we would
want to see it in the results so that we can correct the data.

To list a row for each employee including stray ones, the LEFT keyword may be given in
front of the JOIN keyword to indicate that records from the first table listed on the left
are to be displayed regardless of whether there is a matching row in the table on the right:

JOIN

126 | Chapter 6: Data Manipulation Statements and Functions

SELECT CONCAT(name_first, SPACE(1), name_last) AS Name,
location AS Branch
FROM employees
LEFT JOIN branches USING (branch_id)
ORDER BY location;

This SQL statement lists a row for each employee along with the employee’s location. If
a row for an employee has either a NULL value for the branch_id, or a branch number
that is not in the branches table, the employee name will still be displayed but with the
branch name reading as NULL. Again, this can be useful for spotting errors or inconsis-
tencies in the data between related tables.

In contrast to LEFT JOIN, the RIGHT JOIN clause includes all matching entries from the
table on the right even if there are no matches from the table on the left. Here is an
example using a RIGHT JOIN:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Name,
location AS Branch
FROM employees
RIGHT JOIN branches USING (branch_id)
ORDER BY location;

This example displays branches for which there are no matching employee records. For
both the LEFT and RIGHT JOIN methods, the OUTER keyword is optional and has no effect
on the results. It’s just a matter of preference and compatibility with other database
engines.

The JOIN clause has a few other options. The STRAIGHT_JOIN keyword explicitly instructs
MySQL to read the tables as listed, from left to right. The keywords INNER and CROSS have
no effect on the results, as of recent versions of MySQL. They cannot be used in con-
junction with the keywords LEFT, RIGHT, or NATURAL. The syntax starting with the OJ
keyword is provided for compatibility with Open Database Connectivity (ODBC).

You can use the AS keyword to introduce aliases for tables. Several examples of aliasing
are provided earlier in the explanation of this clause.

Index hints
SELECT...|UPDATE...|DELETE...
table...JOIN table
USE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] ([index[,...]]) |
FORCE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] (index[,...]) |
IGNORE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] (index[,...])

When MySQL joins and searches tables, indexes can be used to increase the speed of the
SQL statements. Use the EXPLAIN statement to analyze a joined SQL statement to see
which indexes are being used and in which order, as well as whether there are other
indexes available that aren’t being used in the join. MySQL may not always choose the
best index available. To hint to MySQL which index it should check first, and perhaps
which index to ignore, or even to force it to use a particular index, you can employ index
hints.

To tell MySQL to use a particular index, add the USE INDEX clause to the JOIN along with
the names of the indexes in a comma-separated list, within parentheses. To present an
example of this method, let’s start with a JOIN statement that may execute in a
suboptimal manner:

JOIN

Chapter 6: Data Manipulation Statements and Functions | 127

Data M
anipulation

SELECT client_name, COUNT(*) AS tickets
FROM work_req
JOIN clients USING(client_id)
WHERE client_type = 1
AND DATEDIFF(NOW(), request_date) < 91
GROUP BY client_id

This statement retrieves a list of support clients and a count of the number of support
tickets that they have created in the last 90 days. It gets the count of tickets from
work_req and the client name from the clients table. To tweak the performance of the
statement, let’s examine the indexes for the work_req table:

SHOW INDEXES FROM work_req \G

*************************** 1. row ***************************
 Table: work_req
 Non_unique: 0
 Key_name: PRIMARY
Seq_in_index: 1
 Column_name: wr_id
 Collation: A
 Cardinality: 115
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
*************************** 2. row ***************************
 Table: work_req
 Non_unique: 1
 Key_name: workreq_date_key
Seq_in_index: 1
 Column_name: wr_id
 Collation: A
 Cardinality: 217337
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
*************************** 3. row ***************************
 Table: work_req
 Non_unique: 1
 Key_name: workreq_date_key
Seq_in_index: 2
 Column_name: request_date
 Collation: A
 Cardinality: 217337
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:

The results show us that the table work_req has two indexes: a primary one based on the
wr_id (see row 1) and a second one called workreq_date_key (see the Key_name field in

JOIN

128 | Chapter 6: Data Manipulation Statements and Functions

rows 2 and 3) based on wr_id and request_date together. To suggest to MySQL in our
JOIN statement that this second index should be used, enter the statement like so:

SELECT client_name, COUNT(*) AS tickets
FROM work_req
JOIN clients
USE INDEX FOR JOIN (workreq_date_key)
USING(client_id)
WHERE client_type = 1
AND DATEDIFF(NOW(), request_date) < 91
GROUP BY client_id;

The FORCE INDEX option instructs MySQL to attempt to limit its search to the specified
index; others, however, will be used if the requested columns make it necessary:

SELECT client_name, COUNT(*) AS tickets
FROM work_req
JOIN clients
FORCE INDEX FOR JOIN (workreq_date_key)
USING(client_id)
WHERE client_type = 1
AND DATEDIFF(NOW(), request_date) < 91
GROUP BY client_id;

To instruct MySQL not to use certain indexes, list them with the IGNORE INDEX option in
the same manner:

SELECT client_name, COUNT(*) AS tickets
FROM work_req
JOIN clients
IGNORE INDEX FOR JOIN (workreq_date_key)
USING(client_id)
WHERE client_type = 1
AND DATEDIFF(NOW(), request_date) < 91
GROUP BY client_id;

It’s also permitted to use combinations of these three index hint clauses, separated only
by a space.

LIMIT
...
LIMIT count |
LIMIT [offset,] count |
LIMIT count OFFSET offset

Use the LIMIT clause to limit the number of rows the server will process to satisfy the
given SQL statement. For the SELECT statement, it limits the number of rows returned in
the results set. In an UPDATE statement, it limits the number of rows changed. With the
DELETE statement, it limits the number of rows deleted. The DELETE statement permits
only the first syntax shown, whereas the other statements allow all three.

The LIMIT clause accepts only literal values, not expressions or variables. Nor will it accept
a negative value. The most straightforward method of limiting the number of rows is to
specify the maximum row count to be displayed, like this:

LIMIT

Chapter 6: Data Manipulation Statements and Functions | 129

Data M
anipulation

SELECT * FROM employees
LIMIT 5;

To begin listing rows after a specific number of records, an offset may be given, where
the offset for the first row is 0. Two syntaxes accomplish this. One gives the amount of
the offset, followed by a comma and then the maximum count of rows to display. The
other specifies the count followed by the OFFSET keyword, followed by the amount of the
offset. Here is an example of the first structure, which is preferred:

SELECT * FROM employees
LIMIT 10, 5;

In this example, after the 10th record is reached, the next 5 records will be returned—in
other words, results 11 through 15 are returned. The offset and count for the LIMIT clause
are based on the rows in the results set, not necessarily on the rows in the tables. So the
amount of the offset is related to the order of the rows retrieved from the tables based
on clauses, such as the WHERE clause and the ORDER BY clause.

LOAD DATA INFILE
LOAD DATA [LOW_PRIORITY|CONCURRENT] [LOCAL] INFILE '/path/file'
 [REPLACE|IGNORE] INTO TABLE table
 [CHARACTER SET character_set]
 [FIELDS [TERMINATED BY 'character']
 [[OPTIONALLY] ENCLOSED BY 'character'] [ESCAPED BY 'character']]

 [LINES [STARTING BY 'string'] [TERMINATED BY 'string']]

 [IGNORE count LINES]

 [(column,...)]

 [SET column = expression,...]

You can use this statement to import organized data from a text file into a table in MySQL.
The file can be either on the server or on the client.

For a file on the server, if you use a bare filename (such as input.txt) or a relative path
(such as ../), the file is found relative to the directory of the database into which the data
is to be imported. If the file is not located in the directory’s database, the file permissions
must be set so it can be read for all filesystem users.

For a file on the client, the LOCAL keyword must be given. This feature must be enabled
on both the client and the server by using the startup option of --local-infile=1. See
Chapter 15 for more information on server and client settings.

If a data text file contains rows of data duplicating some of the rows in the table into
which it’s being imported, an error will occur and the import may end without importing
the remaining data. Duplicate rows are those that have the same values for key columns
or other unique columns. To instruct the server to ignore any errors encountered and to
continue loading other rows, use the IGNORE keyword. Use the SHOW WARNINGS statement
to retrieve the error messages that would have been displayed. To instruct the server to
replace any duplicate rows with the ones being imported, use the REPLACE keyword. This
will completely replace the values of all columns in the row, even when the new record
contains no data for a column and the existing one does.

LOAD DATA INFILE

130 | Chapter 6: Data Manipulation Statements and Functions

Here is a basic example of LOAD DATA INFILE:

LOAD DATA INFILE '/tmp/catalog.txt'
INTO TABLE catalog
FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n';

In this example, the file to be loaded is in the /tmp directory and is called catalog.txt. The
data contained in the file is to be inserted into the catalog table in the current database
in use. Each field in the text file is terminated with a vertical bar character. The rows of
data in the text file are on separate lines. They are separated by a newline character
(\n). This is the default for a Unix text file. For DOS or Windows systems, lines are usually
terminated with \n\r, signifying a newline and a Return character. If the rows start with
a special character, you can identify that character with the LINES STARTED BY clause.

This statement also offers the ENCLOSED BY clause to specify a character that can start and
terminate a field, such as a quotation mark. You can use the OPTIONALLY keyword to
indicate that the character is used for enclosing columns containing string data, but op-
tional for numeric data. Numeric fields may then include or omit the given character.
For example, if the optional character is an apostrophe (single quote), a numeric value
for a field may be given as '1234' or 1234, so MySQL should expect and accept both.

The ESCAPED BY clause indicates the character used in the input file to escape special
characters. The backslash (\) is the default value.

Some data text files contain one or more lines of column headings that should not be
imported. To omit these initial lines from the import, use the IGNORE count LINES clause,
where count is the number of lines to ignore.

For some data text files, the fields of data are not in the same order as the columns of the
receiving table. Sometimes there are fewer fields in the text file than in the table. For both
of these situations, to change the order and number of columns, add a list of columns
and their order in the text file to the end of the statement within parentheses. Here is an
example of such a scenario:

LOAD DATA LOW_PRIORITY INFILE '/tmp/catalog.txt' IGNORE
INTO TABLE catalog
FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n'
IGNORE 1 LINES
(cat_id, description, price);

The first line of the text file contains column headings describing the data, but that line
will not be imported because of the IGNORE 1 LINES clause here. The catalog table has
several more columns than the three that are being imported, and they are in a different
order. Finally, because this import is not critical, the LOW_PRIORITY keyword near the
beginning of the statement instructs the server to handle other queries on the catalog
table before running this statement. If this was replaced with CONCURRENT, the import
would be performed even if other clients were querying the same table.

As of version 5.0.3 of MySQL, the list of fields can contain column names and user
variables. Also, SET may be added to set or change the value to be imported. Here is an
example:

LOAD DATA LOW_PRIORITY INFILE '/tmp/catalog.txt' IGNORE
INTO TABLE catalog

LOAD DATA INFILE

Chapter 6: Data Manipulation Statements and Functions | 131

Data M
anipulation

FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n'
IGNORE 1 LINES
(cat_id, @discarded, description, @mfg_price)
SET price = @mfg_price * .9;

In this example, the table receiving the data has five columns. The second one is to be
ignored and stored in a discarded user variable. The third column is the price. Since the
company sells the manufacturer’s products at ten percent less than the manufacturer’s
suggested retail price, the statement receives the raw value in the user variable
@mfg_price and then we use SET to adjust that value for the column when loaded.

RELEASE SAVEPOINT
RELEASE SAVEPOINT identifier

This statement instructs the server to release a savepoint named earlier with the
SAVEPOINT statement for the current transaction. The statement does not commit the
transaction, nor does it roll back the transaction to the savepoint. Instead, it merely
eliminates the savepoint as a possible rollback point. See the SAVEPOINT statement for
more information. Here is an example of RELEASE SAVEPOINT:

START TRANSACTION;

LOCK TABLES orders WRITE;

INSERT DATA INFILE '/tmp/customer_info.sql'
INTO TABLE orders;

SAVEPOINT orders_import;

INSERT DATA INFILE '/tmp/customer_orders.sql'
INTO TABLE orders;

SAVEPOINT orders_import1;

INSERT DATA INFILE '/tmp/customer_orders1.sql'
INTO TABLE orders;

SELECT...

RELEASE SAVEPOINT orders_import1;

In this example, the database administrator imports a customer information file and two
files containing customer orders and sets up two savepoints. After running a few
SELECT statements (not fully shown here), he decides that the results of the second batch
of orders look all right and he releases the savepoint for that batch. He hasn’t yet decided
if the first batch was imported properly. If he decides that there was a problem, he can
still roll back all of the orders imported, but he can no longer roll back just the second
batch.

RELEASE SAVEPOINT

132 | Chapter 6: Data Manipulation Statements and Functions

REPLACE

REPLACE [LOW_PRIORITY|DELAYED] [INTO] table [(column,...)]
 VALUES ({expression|DEFAULT},...)[, (...)]

REPLACE [LOW_PRIORITY|DELAYED] [INTO] table
 SET column={expression|DEFAULT}[, ...]

REPLACE [LOW_PRIORITY|DELAYED] [INTO] table [(column,...)]
 SELECT...

Use this statement to insert new rows of data and to replace existing rows where the
PRIMARY KEY or UNIQUE index key is the same as the new record being inserted. This state-
ment requires INSERT and DELETE privileges because it is potentially a combination of both.

The LOW_PRIORITY keyword instructs the server to wait until there are no queries on the
table named, including reads, and then to lock the table for exclusive use by the thread
so that data may be inserted and replaced. When the statement is finished, the lock is
released, automatically. For busy servers, a client may be waiting for quite a while. The
DELAYED keyword will free the client by storing the statement in a buffer for processing
when the table is not busy. The client won’t be given notice of the success of the state-
ment, just that it’s buffered. If the server crashes before the changes to the data are
processed, the client will not be informed and the buffer contents will be lost. The INTO
keyword is optional and is a matter of style preference and compatibility with other
database engines.

The REPLACE statement has three basic formats. The first contains the values for each row
in parentheses after the VALUES keyword. If the order and number of values do not match
the columns of the table named, the columns have to be listed in parentheses after the
table name in the order in which the values are arranged. Here is an example of the
REPLACE statement using this syntax:

REPLACE INTO workreq (wr_id, client_id, description)
VALUES(5768,1000,'Network Access Problem'),
(5770,1000,'Network Access Problem');

Notice that this statement is able to insert two rows without the column names being
listed twice. In this example, the first row already exists before this statement is to be
executed. Once it’s run, the row represented by the work request identifier 5768 is com-
pletely replaced with this data. Columns that are not included in the list of columns here
are reset to their default values or to NULL, depending on the column.

The second syntax does not allow multiple rows. Instead of grouping the column names
in one part of the statement and the values in another part, column names and values
are given in a column=value pair. To enter the REPLACE statement from the preceding
example in this format, you would have to enter the following two statements:

REPLACE INTO workreq
SET wr_id = 5768, client_id = 1000,
description = 'Network Access Problem';

REPLACE INTO workreq
SET wr_id = 5770, client_id = 1000,
description = 'Network Access Problem';

REPLACE

Chapter 6: Data Manipulation Statements and Functions | 133

Data M
anipulation

The third syntax involves a subquery, which is available as of version 4.1 of MySQL.
With a subquery, data can be retrieved from another table and inserted into the table
referenced in the main query for the statement. Here is an example:

REPLACE INTO workreq (wr_id, client_id, status)
SELECT wr_id, client_id, 'HOLD'
FROM wk_schedule
WHERE programmer_id = 1000;

Work requests assigned to a particular programmer are being changed to a temporarily
on-hold status. The values for two of the columns are taken from the work schedule table,
and the fixed string of HOLD is inserted as the value of the third column. Currently, the
table for which replacement data is being inserted cannot be used in the subquery.

ROLLBACK
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

Use this statement with transactional tables to reverse transactions that have not yet been
committed. Transaction statements are currently supported by the InnoDB, NDB Clus-
ter, and BDB storage engines and are ignored if used with MyISAM tables.

If AUTOCOMMIT is enabled, it must be disabled for this statement to be meaningful, which
can be done as follows:

SET AUTOCOMMIT = 0;

AUTOCOMMIT is also disabled when a transaction is started with the START TRANSACTION
statement. It is reinstated with the execution of the COMMIT statement, the ending of the
current session, and several other statements that imply that a commit is desired. See the
explanation of COMMIT earlier in this chapter for a list of statements that imply a commit.

The WORK keyword is optional and has no effect on the results. It’s available for compat-
ibility with its counterparts, BEGIN WORK and COMMIT WORK. Use the AND CHAIN clause to
indicate that the transaction is to be rolled back and another is starting, thus making it
unnecessary to execute the START TRANSACTION statement again. Use the AND RELEASE
clause to end the current client session after rolling back the transaction. Add the keyword
NO to indicate explicitly that a new transaction is not to begin (when used with CHAIN) or
the client session is not to end (when used with RELEASE)—these are the default settings,
though. It’s necessary to specify NO only when the system variable completion_type is set
to something other than the default setting.

Here is an example of this statement’s use in context:

START TRANSACTION;

LOCK TABLES orders WRITE;

INSERT DATA INFILE '/tmp/customer_orders.sql'
INTO TABLE orders;

SELECT ...;

ROLLBACK;

UNLOCK TABLES;

ROLLBACK

134 | Chapter 6: Data Manipulation Statements and Functions

In this example, after the batch of orders is inserted into the orders table, the adminis-
trator manually enters a series of SELECT statements (not shown) to check the integrity of
the data. If everything seems all right, the COMMIT statement would be issued to commit
the transactions, instead of the ROLLBACK statement shown here. In this case, a problem
leads the administrator to issue ROLLBACK to remove the data imported by the INSERT DATA
INFILE statement.

A rollback will not undo the creation or deletion of databases. It also cannot be performed
on changes to table schema (e.g., ALTER TABLE, CREATE TABLE, or DROP TABLE statements).
Transactions cannot be reversed with the ROLLBACK statement if they have been commit-
ted. Commits are caused by the COMMIT statement as well as several other implicit commit
statements. See the explanation of COMMIT for a list of statements that imply a commit.

ROLLBACK TO SAVEPOINT
ROLLBACK TO SAVEPOINT identifier

This statement instructs the server to reverse SQL statements for the current transaction
back to a point marked in the transaction by the SAVEPOINT statement. Any transactions
for the session made after the savepoint are undone. This is in contrast to ROLLBACK by
itself, which undoes all changes since the start of the transaction. Transaction statements
are currently supported by the InnoDB, NDB Cluster, and BDB storage engines and are
ignored if used with MyISAM tables. Multiple savepoints may be set up during a
transaction. Here is an example:

START TRANSACTION;

LOCK TABLES orders WRITE;

INSERT DATA INFILE '/tmp/customer_info.sql'
INTO TABLE orders;

SAVEPOINT orders_import;

INSERT DATA INFILE '/tmp/customer_orders.sql'
INTO TABLE orders;

SELECT...

SAVEPOINT orders_import1;

INSERT DATA INFILE '/tmp/customer_orders1.sql'
INTO TABLE orders;

SELECT...

ROLLBACK TO SAVEPOINT orders_import1;

In this example, the database administrator has imported a customer information file
and two files containing customer orders and has set up two savepoints. After running
a few SELECT statements (not fully shown here), he decides that there was a problem
loading the second batch of orders, so he rolls back the transaction to the savepoint,
eliminating the data that was imported from the customer_orders1.sql file. If he wants,
he can still roll back all of the orders imported, as well as the whole transaction. When

ROLLBACK TO SAVEPOINT

Chapter 6: Data Manipulation Statements and Functions | 135

Data M
anipulation

he’s finished, he can commit the transactions by executing the COMMIT statement. See that
statement earlier in this chapter for more information on committing transactions
explicitly and implicitly.

SAVEPOINT
SAVEPOINT identifier

Use this statement to identify a point in a transaction to which SQL statements may
potentially be undone later. It’s used in conjunction with the ROLLBACK TO SAVEPOINT
statement. It may be released with the RELEASE SAVEPOINT statement. You can use any
unreserved word to identify a savepoint and can create several savepoints during a trans-
action. If an additional SAVEPOINT statement is issued with the same name, the previous
point will be replaced with the new point for the name given. Here is an example:

START TRANSACTION;
LOCK TABLES orders WRITE;
INSERT DATA INFILE '/tmp/customer_info.sql'
INTO TABLE orders;
SAVEPOINT orders_import;
INSERT DATA INFILE '/tmp/customer_orders.sql'
INTO TABLE orders;

At this point in this example, the administrator can check the results of the orders im-
ported before committing the transactions. If the administrator decides that the orders
imported have problems (the /tmp/customer_orders.sql file), but not the client informa-
tion that was first imported (the /tmp/customer_info.sql file), the following statement
could be entered:

ROLLBACK TO SAVEPOINT orders_import;

If the administrator decides that the customer information that was imported also has
problems, the ROLLBACK statement can be issued to undo the entire transaction.

As of version 5.0.17 of MySQL, if a stored function or trigger is used, a new savepoint
level is set up and the previous savepoints are suspended. When the stored function or
trigger is finished, any savepoints it created are released and the original savepoint level
resumes.

SELECT
SELECT [flags] {*|column|expression}[, ...]
 FROM table[, ...]
 [WHERE condition]
 [GROUP BY {column|expression|position}[ASC|DESC], ...
 [WITH ROLLUP]]
 [HAVING condition]
 [ORDER BY {column|expression|position}[ASC|DESC] , ...]
 [LIMIT {[offset,] count|count OFFSET offset}]
 [PROCEDURE procedure(arguments)]
 options

Use this statement to retrieve and display data from tables within a database. It has many
clauses and options, but for simple data retrieval many of them can be omitted. The basic
syntax for the statement is shown. After the SELECT keyword, some keywords to control

SAVEPOINT

136 | Chapter 6: Data Manipulation Statements and Functions

the whole operation may be given. Next comes an asterisk to retrieve all columns, a list
of columns to retrieve, or expressions returning values to display, separated by commas.

Data can be retrieved from one or more tables, given in a comma-separated list. If multiple
tables are specified, other clauses must define how the tables are joined. The remaining
clauses may be called on to refine the data to be retrieved, to order it, and so forth. These
various keywords, options, and clauses are detailed in subsections of this statement ex-
planation. To start, here is a simple example of how you can use the SELECT statement:

SELECT name_first, name_last, telephone_home,
DATEDIFF(now(), last_review)
AS 'Days Since Last Review'
FROM employees;

In this example, three columns and the results of an expression based on a fourth column
are to be displayed. The first and last name of each employee, each employee’s home
telephone number, and the difference between the date of the employee’s last employ-
ment review and the date now are listed. This last field has the addition of the AS keyword
to set the column heading of the results set, and to name an alias for the field. An alias
may be referenced in subsequent clauses of the same statement (e.g., the ORDER BY clause).
To select all columns in the table, the wildcard * can be given instead of the column
names.

SELECT statement keywords
SELECT
[ALL|DISTINCT|DISTINCTROW]
[HIGH_PRIORITY] [STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE|SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
{*|column|expression}[, ...]
FROM table[, ...]
[WHERE condition] [other clauses] [options]

Between the initial SELECT keyword and list of columns and expressions, several keywords
may be given. They are shown in the preceding syntax, with the other components of
the statement abbreviated.

When a WHERE clause is used with the SELECT statement, rows in the results may contain
duplicate data. If you want all rows that meet the selection conditions to be displayed,
you may include the ALL keyword. This is the default, so it’s not necessary to give this
keyword. If you want to display only the first occurrence of a row, include the
DISTINCT keyword or its synonym DISTINCTROW. Here is an example:

SELECT DISTINCT dept
FROM employees;

This statement will list the names of all departments for which we have employees listed
in the employees table. Even though there are several employees in the same department,
it will list only one row for each department.

By default, any UPDATE statements that are issued have priority over SELECT statements
submitted by other client sessions at the same time; the updates are run first. To give a
particular SELECT statement higher priority than any UPDATE statements, use the
HIGH_PRIORITY keyword.

SELECT

Chapter 6: Data Manipulation Statements and Functions | 137

Data M
anipulation

Multiple tables may be selected with the SELECT statement. The column on which they
should be joined is given with the WHERE clause or the JOIN clause. The JOIN clause is
described earlier in this chapter. For the purposes of this section, you just need to know
that in order to optimize retrieval, MySQL might not join tables in the order that they
are listed in the SQL statement. To insist on joining in the order given, you must use the
STRAIGHT_JOIN keyword.

When you know that the results of a SELECT statement using the DISTINCT keyword or the
GROUP BY clause (discussed later) will be small, you can use the SQL_SMALL_RESULT key-
word. This will cause MySQL to use temporary tables, with a key based on the GROUP
BY clause elements, to sort the results and possibly make for faster data retrieval. If you
expect the results to be large, you can use the SQL_BIG_RESULT keyword. This will cause
MySQL to use temporary tables on the filesystem. Regardless of whether you use
DISTINCT or GROUP BY, the SQL_BUFFER_RESULT keyword may be given for any SELECT state-
ment to have MySQL use a temporary table to buffer the results. You can use only one
of the SQL_*_RESULT keywords in each statement.

If the MySQL server is not using the query cache by default, you can force its use by
including the SQL_CACHE keyword. If the server does use the query cache by default, you
can use the SQL_NO_CACHE to instruct MySQL not to use the cache for this particular
SELECT statement. To determine whether the server uses query cache by default, enter
SHOW VARIABLES LIKE 'query_cache_type';. A value of ON indicates that it is in use.

The last keyword available is SQL_CALC_FOUND_ROWS, which counts the number of rows
that meet the conditions of the statement. This is not affected by a LIMIT clause. The
results of this count must be retrieved in a separate SELECT statement with the
FOUND_ROWS(  ) function. See the end of this chapter for information on this function:

SELECT SQL_CALC_FOUND_ROWS
name_first, name_last, telephone_home,
DATEDIFF(now(), last_review)
AS 'Days Since Last Review'
FROM employees
WHERE dept = 'sales'
ORDER BY last_review DESC
LIMIT 10;

SELECT FOUND_ROWS();

The first statement retrieves a list of sales people to review, limited to the 10 who have
gone the longest without a performance review. The second gets a count of how many
employees there are to review in the sales department.

Exporting SELECT results
SELECT [flags] {*|columns|expression}[, ...]
[INTO OUTFILE '/path/filename'
 [FIELDS TERMINATED BY 'character']
 [FIELDS ENCLOSED BY 'character']
 [ESCAPED BY 'character']
 [LINES [STARTING BY 'character'] [TERMINATED BY 'character']]
|INTO DUMPFILE '/path/filename'
|INTO 'variable'[, ...]
[FOR UPDATE|LOCK IN SHARE MODE]]
FROM table[, ...]

SELECT

138 | Chapter 6: Data Manipulation Statements and Functions

[WHERE condition]
[other clauses] [options]

The INTO clause is used to export data from a SELECT statement to an external text file or
a variable. Only the results will be exported, not the column names or other information.

Various clauses set delimiter and control characters in the output:

ESCAPED BY
Character used to escape special characters in the output. The default is a backslash.

FIELDS ENCLOSED BY
Character to use before and after each field. By default, no character is used.

FIELDS TERMINATED BY
Character with which to separate fields. The default is a tab.

LINES STARTING BY
Character used to start each line. By default, no character is used.

LINES TERMINATED BY
Character used to end each line. The default is a newline character.

FILE privilege is necessary to use the INTO clause of the SELECT statement. This statement
and clause combination is essentially the counterpart of the LOAD DATA INFILE statement.
See the explanation of that statement earlier in this chapter for more details on the options
for this clause. Here is an example of this clause and these options:

SELECT * FROM employees
INTO OUTFILE '/tmp/employees.txt'
FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n'
ESCAPED BY '\\';

The text file created by this SQL statement will contain a separate line for each row
selected. Each field will end with a vertical bar. Any special characters (e.g., an apostro-
phe) will be preceded by a backslash. Because a backslash is an escape character within
an SQL statement, two backslashes are needed in the ESCAPE BY clause because the first
escapes the second. To import the resulting data text file, use the FOUND_ROWS(  ) statement.

The second syntax uses the clause INTO DUMPFILE and exports only one row into an ex-
ternal text file. It does not allow any field or line terminators like the INTO OUTFILE clause.
Here is an example of its use:

SELECT photograph
INTO DUMPFILE '/tmp/bobs_picture.jpeg'
FROM employees
WHERE emp_id = '1827';

This statement exports the contents of the photograph column for an employee’s record.
It’s a BLOB type column and contains an image file. The result of the exported file is a
complete and usable image file.

You can also use the INTO clause to store a value in a user variable or a system variable
for reuse. Here’s an example:

SET @sales = 0;

SELECT SUM(total_order) AS Sales
INTO @sales

SELECT

Chapter 6: Data Manipulation Statements and Functions | 139

Data M
anipulation

FROM orders
WHERE YEAR(order_date) = YEAR(CURDATE());

This example creates the user variable @sales. Then we calculate the total sales for the
current year and store it into that variable for reuse in subsequent statements in the
session.

Grouping SELECT results
SELECT [flags] {*|column|expression}[, ...]
FROM table[, ...]
[WHERE condition]
[GROUP BY {column|expression|position} [ASC|DESC], ...
 [WITH ROLLUP]]
[other clauses] [options]

A SELECT statement sometimes produces more meaningful results if you group together
rows containing the same value for a particular column. The GROUP BY clause specifies
one or more columns by which MySQL is to group the data retrieved. This is used with
aggregate functions so that the values of numeric columns for the rows grouped will be
aggregated.

For instance, suppose that a SELECT statement is to list the sales representatives for a
business and their orders for the month. Without a GROUP BY clause, one line would be
displayed for each sales representative for each order. Here’s an example of how this
might be resolved:

SELECT CONCAT(name_first, ' ', name_last) AS 'Sales Rep.',
SUM(total_order) AS 'Sales for Month'
FROM orders, employees
WHERE employees.emp_id = sales_rep
AND MONTH(order_date) = MONTH(CURDATE())
GROUP BY sales_rep;

This statement concatenates the first and last name of each sales representative who
placed an order for a customer during the current month. The GROUP BY clause groups
together the rows found for each sales representative. The SUM() function adds the values
of the total_order column for each row within each group. See Chapter 10 for more
information on the SUM(  ) function and other aggregate functions.

You can specify multiple columns in the GROUP BY clause. Instead of stating a column’s
name, you can state its position in the table, where a value of 1 represents the first column
in the table. Expressions may be given as well.

The GROUP BY clause does its own sorting and cannot be used with the ORDER BY clause.
To set the sorting to ascending order explicitly for a column, enter the ASC keyword after
the column in the clause that is to be set. This is not necessary, though, since it is the
default setting. To sort in descending order, add DESC after each column that is to be
sorted in reverse.

When grouping rows by one column, it may be desirable not only to have a total of the
values for certain columns, but also to display a total for all of the grouped rows at the
end of the results set. To do this, use the WITH ROLLUP keyword. Here is an example:

SELECT location AS Branch,
CONCAT(name_first, ' ', name_last) AS 'Sales Rep.',
SUM(total_order) AS 'Sales for Month'

SELECT

140 | Chapter 6: Data Manipulation Statements and Functions

FROM orders, employees, branches
WHERE sales_rep = employees.emp_id
AND MONTH(order_date) = MONTH(CURDATE())
AND employees.branch_id = branches.branch_id
GROUP BY Branch, sales_rep WITH ROLLUP;

+---------------+-----------------+-----------------+
| Branch | Sales Rep. | Sales for Month |
+---------------+-----------------+-----------------+
Boston	Ricky Adams	2472
Boston	Morgan Miller	1600
Boston	Morgan Miller	4072
New Orleans	Marie Dyer	1750
New Orleans	Tom Smith	6407
New Orleans	Simone Caporale	5722
New Orleans	Simone Caporale	13879
San Francisco	Geoffrey Dyer	500
San Francisco	Kenneth Dyer	500
San Francisco	Kenneth Dyer	1000
NULL	Kenneth Dyer	18951
+---------------+-----------------+-----------------+

This statement groups and adds up the total for each sales representative. When there
aren’t any more sales representatives for a branch, a row in the display for the subtotal
is generated. It displays the branch name and the name of the last representative. When
there are no more branches, a row for the grand total of sales is generated. The branch
shows NULL. For clarity, I’ve boldfaced the subtotals and the grand total in the results
set.

Having SELECT results
SELECT [flags] {*|column|expression}[, ...]
FROM table[, ...]
[WHERE condition]
[GROUP BY condition]
[HAVING condition]
[other clauses] [options]

The HAVING clause is similar to the WHERE clause, but it is used for conditions returned by
aggregate functions (e.g., AVG(), MIN(), and MAX()). For older versions of MySQL, you
must use aliases for aggregate functions in the main clause of the SELECT statement. Here
is an example of how you can use this clause:

SELECT CONCAT(name_first, ' ', name_last) AS 'Name', total_order
FROM orders
JOIN employees ON sales_rep = emp_id
JOIN branches USING (branch_id)
WHERE location = 'New Orleans'
GROUP BY sales_rep
HAVING MAX(total_order);

This SQL statement retrieves from the employees table a list of employee names for all
employees located in the New Orleans branch office. From this list, the statement refines
the results by grouping the data for each representative together and determines the sum
of each one’s total_order column. Because of the MAX() function, it displays data only

SELECT

Chapter 6: Data Manipulation Statements and Functions | 141

Data M
anipulation

for the row with the maximum number. The JOIN clause is described in its own section
earlier in this chapter.

Ordering SELECT results
SELECT [flags] {*|column|expression}[, ...]
FROM table[, ...]
[WHERE condition]
[ORDER BY {column|expression|position} [ASC|DESC], ...]
[other clauses] [options]

The results of a SELECT statement, by default, are displayed in the order in which the rows
of data are found in the table, which may be the order in which they were entered into
the table. To change the order of a results set, use the ORDER BY clause. As a basis for
ordering the results, list one or more columns separated by commas. The order in which
columns are listed is the order in which sorts will be conducted. You can also use aliases
for columns, column combinations, or expressions that were established earlier in the
same SELECT statement. Instead of stating a column’s name, you can also state its position,
where a value of 1 represents the first column in the table. Here is an example of a
SELECT statement using the ORDER BY clause:

SELECT CONCAT(name_first, ' ', name_last) AS Name,
MONTH(birth_date) AS 'Birth Month', email_address
FROM employees
ORDER BY 'Birth Month' ASC, Name ASC;

Here a list of employees, the months in which they were born, and their email addresses
are extracted. For the name, the CONCAT() function is used to put the first and last name
together, separated by a space. The AS clause establishes an alias of Name. The
MONTH() function is used to extract the month from the birth_date column, and the AS
clause sets up the alias Birth Month. In the ORDER BY clause, the alias for the birth date is
used for the initial sort and the name is used for the secondary sort. The result will be
that all of the employees who have a birth date in the same month will be listed together
and in alphabetical order by name. Both aliases are followed by the ASC keyword to
indicate that the results should be sorted in ascending order. This is unnecessary, as
ascending order is the default. However, to change an ordering method to descending,
use the DESC keyword.

You can also order the results using expressions, which may be based on columns or
aliases. Here is an example of a SELECT statement using an expression for ordering:

SELECT CONCAT(name_first, ' ', name_last) AS name,
pay_rate, hours
FROM employees
ORDER BY pay_rate * hours DESC;

In this example, the first and last names are selected and concatenated together under
the name column heading in the results set. The pay_rate column lists the hourly dollar
rate an employee is paid, and the hours column contains the typical number of hours a
week that an employee works. In the ORDER BY clause, the product of the hourly pay rate
and the number of hours is determined for the ordering of the results set. The rows are
to be listed in descending order per the DESC keyword based on the expression.

SELECT

142 | Chapter 6: Data Manipulation Statements and Functions

Limiting SELECT results
SELECT [flags] {*|column|expression}[, ...]
FROM table[, ...]
[WHERE condition]
[other clauses]
[LIMIT {[offset,] count|count OFFSET offset}]
[PROCEDURE procedure(arguments)]
[FOR UPDATE|LOCK IN SHARE MODE]]
[other clauses] [options]

The LIMIT clause is used to limit the number of rows displayed by the SELECT statement.
The most straightforward method of limiting the number of rows is to specify the
maximum row count to be displayed, like this:

SELECT * FROM employees
LIMIT 5;

To begin listing rows after a specific number of records, an offset may be given. The offset
for the first row is 0. Two formats accomplish this. One gives the amount of the offset,
followed by a comma and then the maximum count of rows to display. The other syntax
structure specifies the count, followed by the OFFSET keyword, followed by the amount
of the offset. Here is an example of the first structure, which is preferred:

SELECT * FROM employees
LIMIT 10, 5;

In this example, after the 10th record is reached, the next 5 records will be displayed—
in other words, results 11 through 15 are returned. The offset and count for the LIMIT
clause are based on the rows in the results set, not necessarily on the rows in the tables.
So the amount of the offset is related to the order of the rows retrieved from the tables
based on clauses, such as the WHERE clause and the ORDER BY clause. See the description
of the LIMIT clause earlier in this chapter for more details.

Other SELECT clauses and options
SELECT [flags] {*|column|expression}[, ...]
FROM table[, ...]
[WHERE condition]
[other clauses]
[PROCEDURE procedure(arguments)]
[LOCK IN SHARE MODE|FOR UPDATE]

To send the results of a SELECT statement as standard input to a procedure, use the
PROCEDURE clause. The PROCEDURE keyword is followed by the name of the procedure,
which can be followed by parentheses containing parameters to be passed to the proce-
dure. Here is an example:

SELECT * FROM employees
PROCEDURE ANALYSE(10, 225);

In this statement, the results of the SELECT statement are sent to the built-in function
ANALYSE() along with two numeric parameters. See ANALYSE(  ) near the end of this chap-
ter for more information on this function.

To lock the rows that are being selected from a table, LOCK IN SHARE MODE may be given
at the end of the SELECT statement. This prevents other clients from changing the data
while the SELECT statement is running. The FOR UPDATE option instructs MySQL to invoke

SELECT

Chapter 6: Data Manipulation Statements and Functions | 143

Data M
anipulation

a temporary write lock on the rows being selected. Both of these locks will be terminated
when the statement is finished running.

SET
SET [GLOBAL|@@global.|SESSION|@@session.] variable = expression

Use this statement to set a system or user variable for global or session use. System var-
iables can be either global variables, which makes them visible to all users, or session
variables (also called local variables), which are available only to the connection thread
that creates the variable. To make a system variable global, use the GLOBAL keyword or
precede the variable name by @@global. System variables are limited to the current session
by default, but you can document that behavior by using the SESSION keyword or pre-
ceding the variable name with @@session or just @@ (or use the synonyms LOCAL and
@@local). To mark a user variable, place a single @ in front of the variable name. Here is
an example of creating a user variable:

SET @current_quarter = QUARTER(CURDATE());

This statement uses the CURDATE() function to determine the current date. It’s wrapped
in the QUARTER() function, which determines the quarter for the date given. The result
is a number from one to four depending on the date. The number is stored in the user
variable, @current_quarter. For examples involving system variables, see the explanation
of the SET statement in Chapter 7.

Here’s a more complete example of how this statement and a user variable may be used:

SET @row = 0;

SELECT @row := @row + 1 AS Row,
client_name AS Client
FROM clients
ORDER BY client_id LIMIT 3;

+------+--------------------+
| Row | Client |
+------+--------------------+
1	Geoffrey & Company
2	Kenneth & Partners
3	Marie & Associates
+------+--------------------+

In this example, the user variable @row is set to 0 and then used in a SELECT statement
with the := operator to increment the value by 1 with each row retrieved. This gives us
a nice row numbering in the results.

SET

144 | Chapter 6: Data Manipulation Statements and Functions

SET TRANSACTION
SET [GLOBAL|SESSION] TRANSACTION ISOLATION LEVEL
{READ UNCOMMITTED|READ COMMITTED|REPEATABLE READ|SERIALIZABLE}

Use this statement to set an isolation level for the current transaction, for a transaction
that’s about to be started, or globally. Use the keyword SESSION to set the level for the
current session. Use GLOBAL to set it for all subsequent transactions (this does not affect
existing ones). If neither of these two keywords is included, the level is set for the next
transaction of the current session. This statement applies only to InnoDB tables at this
time.

The level READ UNCOMMITTED is known as a dirty read because SELECT statements are exe-
cuted in a nonlocking manner. Thus, queries by one transaction can be affected by
ongoing, uncommitted updates in another transaction, or old data may be used, thus
making the results inconsistent. READ COMMITTED is a more consistent read, similar to
Oracle’s isolation level. However, changes that are committed in one transaction will be
visible to another. The result is that the same query in the same transaction could return
different results.

REPEATABLE READ is the default. It makes all reads consistent for a transaction.

In the safest level, SERIALIZABLE, changes are not allowed in other transactions if a trans-
action has executed a simple SELECT statement. Basically, queries are performed with
LOCK IN SHARE MODE.

Here is an example of how you can use this statement:

SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;
START TRANSACTION;
...

SHOW ERRORS
SHOW ERRORS [LIMIT [offset,] count]

SHOW COUNT(*) ERRORS

Use this statement to display error messages. The results are only for the previous state-
ment that has been executed. To see the number of error messages generated by an SQL
statement, use COUNT(*). To limit the number of error messages displayed, use the
LIMIT clause. An offset can be given along with the count to specify a starting point for
displaying error messages.

This statement is available as of version 4.1 of MySQL. It will not display warnings or
notes—just error messages. Use SHOW WARNINGS to get all three types of messages.

Here are a couple of examples of this statement, which were entered after an INSERT
statement was entered and encountered a problem:

SHOW COUNT(*) ERRORS;

+-----------------------+
| @@session.error_count |
+-----------------------+
| 1 |
+-----------------------+

SHOW ERRORS

Chapter 6: Data Manipulation Statements and Functions | 145

Data M
anipulation

SHOW ERRORS;

+-------+------+---+
| Level | Code | Message |
+-------+------+---+
| Error | 1136 | Column count doesn't match value count at row 2 |
+-------+------+---+

The first statement returns the number of error messages generated by the INSERT state-
ment. Notice that the results are stored in the session variable error_count, which is
updated by each statement issued in the session. The second statement displays the error
messages. This statement is perhaps more meaningful when used with an API program
in which you would like to capture the error messages for a specific purpose or analysis.

SHOW WARNINGS
SHOW WARNINGS [LIMIT [offset,] count]

SHOW COUNT(*) WARNINGS

Use this statement to display warning messages, error messages, and notes for previous
SQL statements for the current session. This statement is available as of version 4.1 of
MySQL. To find out the number of such messages generated by the previous statement
in the session, use COUNT(*). Use the LIMIT clause to limit the number of messages dis-
played. An offset can be given along with the limit to specify a starting point for displaying
messages. Here are a couple of examples of how you can use this statement:

INSERT INTO clients (client_name, telephone)
VALUES('Marie & Associates', '504-486-1234');
Query OK, 1 row affected, 1 warning (0.00 sec)

SHOW COUNT(*) WARNINGS;

+-------------------------+
| @@session.warning_count |
+-------------------------+
| 1 |
+-------------------------+

SHOW WARNINGS;

+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'client_name' at row 1 |
+---------+------+--+

In this example, we enter the name of a client and her telephone number in the table
clients, but in the results we see that one warning is issued. The second statement returns
the number of messages; of course, the last line of the results from the INSERT already
told us this. Notice that the results are stored in the session variable warning_count. The
third SQL statement displays the warning message. These statements are perhaps more

SHOW WARNINGS

146 | Chapter 6: Data Manipulation Statements and Functions

meaningful when used with an API program in which you would like to capture the
number of errors generated or the error messages for a specific purpose or analysis.

START TRANSACTION
START TRANSACTION [WITH CONSISTENT SNAPSHOT]

Use this statement to start a transaction. Transaction statements are currently supported
by the InnoDB, NDB Cluster, and BDB storage engines and are ignored if used with
MyISAM tables. The purpose of a transaction is to be able to undo SQL statements if
need be. You can reverse a transaction if you have not yet committed it with a COMMIT
statement, implicitly by starting another transaction, or by terminating the connection.
In earlier versions of MySQL, BEGIN or BEGIN WORK were used instead of
START TRANSACTION. See the explanations of the COMMIT and ROLLBACK statements earlier in
this chapter for more information on transactions. The SAVEPOINT statement and the
ROLLBACK TO SAVEPOINT statement may also be useful.

Here is an example of this statement’s use in context:

START TRANSACTION;

INSERT DATA INFILE '/tmp/customer_orders.sql'
INTO TABLE orders;

COMMIT;

In this example, after the batch of orders is inserted into the orders table, the user decides
everything went properly and issues the COMMIT statement to actually enter the data in
the database and to end the transaction started with the START TRANSACTION statement. If
there had been a problem, the ROLLBACK statement could be issued instead of COMMIT.
ROLLBACK would remove the data imported by the INSERT DATA INFILE statement.

The WITH CONSISTENT SNAPSHOT clause initiates a consistent read. It does not change the
current transaction isolation level. Therefore, it provides consistent data only if the cur-
rent isolation level allows consistent reading (i.e., REPEATABLE READ or SERIALIZABLE). At
this time, it only works with InnoDB tables. See the SET TRANSACTION statement earlier in
this chapter for more information on isolation levels.

TRUNCATE
TRUNCATE [TABLE] table

Use this statement to delete the contents of a table rapidly. It’s similar to the DELETE
statement in that it will delete all of the data contained in a given table. The TRUNCATE
statement does its job by dropping the table and then recreating it without data. As a
result, it does not report the number of rows deleted. Another drawback is that the value
for an AUTO_INCREMENT column will be lost along with the data. The statement does pre-
serve file partitions and partition parameters if the table was originally partitioned.

This statement is not transaction-safe. As of version 5.1.16 of MySQL, DROP privileges
are required for this statement. Previously, DELETE privileges were required.

TRUNCATE

Chapter 6: Data Manipulation Statements and Functions | 147

Data M
anipulation

UNION
SELECT... UNION [ALL|DISTINCT] SELECT...[, UNION...]

The UNION keyword unites the results of multiple SELECT statements into one results set.
The SELECT statements can retrieve data from the same table or from different tables. If
different tables are used, the results set generated by each SQL statement should match
in column count and the order of column types. The column names do not need to be
the same, but the data sent to the respective fields in the results set needs to match.

Don’t confuse this statement with the JOIN clause or a subquery, which are used to merge
columns of data from multiple tables into rows in the results of a SELECT statement. In
contrast, the UNION clause is used to merge together the results tables of separate and
distinct SELECT statements into one results table.

Here is an example of a UNION used to merge the results of two SELECT statements:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Name,
telephone_work AS Telephone
FROM employees
UNION
SELECT location, telephone FROM branches
ORDER BY Name;

This statement presents a list of employees and branch office locations in one column,
with the telephone number for each in the second. The column headings used for the
results set will be the ones used for the first SELECT statement. Because of the ORDER BY
clause, the results will be sorted by the values for the alias Name. Otherwise, the names
of employees would be listed before the names of offices. The example shown merges
the results of only two SELECT statements. You can merge several SELECT statements,
entering the UNION keyword before each additional SELECT statement.

If the results set is to be sorted based on a column, the table name must not be specified
in the ORDER BY clause (i.e., table.column is not accepted). To resolve ambiguity, use an
alias for the columns to order by. If an alias has been given for a column that is to be part
of the ORDER BY clause, that alias must be used instead of the column name. The use of
column position has been deprecated.

The keyword DISTINCT indicates that any duplicated rows (rows where all of the data of
all columns is the same as a previous row) are not included in the results. This is the
default, so it’s not necessary to include the keyword DISTINCT. Including the keyword
ALL, though, will instruct MySQL to include all rows, including duplicates.

To limit the results of a union, add the LIMIT clause to the end of the SQL statement:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Name,
telephone_work AS Telephone
FROM employees
UNION
SELECT location, telephone FROM branches
ORDER BY Name
LIMIT 10;

To limit the results of one table in a union and not the final results set, put parentheses
around the individual SELECT statements and add the LIMIT clause to the end of the
SELECT statement or statements that you want to limit:

UNION

148 | Chapter 6: Data Manipulation Statements and Functions

(SELECT CONCAT(name_first, SPACE(1), name_last) AS Name,
telephone_work AS Telephone FROM employees LIMIT 10)
UNION
(SELECT location, telephone FROM branches)
ORDER BY Name;

This statement limits the results to only 10 employees, but allows all of the branches to
be displayed. You can put limits on each SELECT statement if you want, and limit the final
results by adding the LIMIT clause to the end of the full SQL statement.

UPDATE
UPDATE [LOW_PRIORITY] [IGNORE] table
SET column=expression[, ...]
[WHERE condition]
[ORDER BY {column|expression|position} [ASC|DESC], ...]
[LIMIT {[offset,] count|count OFFSET offset}]

UPDATE [LOW_PRIORITY] [IGNORE] table_reference
 SET column=expression[, ...]
 [WHERE condition]

This statement changes existing rows of data in a table. The first syntax shown updates
only one table per statement. The second syntax can be used to update or reference data
in multiple tables from one statement. Explanations of both types of statements and
examples of their use follow.

Single table UPDATE
UPDATE [LOW_PRIORITY] [IGNORE] table
SET column=expression[, ...]
[WHERE condition]
[ORDER BY {column|expression|position} [ASC|DESC], ...]
[LIMIT {[offset,] count|count OFFSET offset}]

This syntax changes a single table. The SET clause specifies each column that should
change and the value to which it is to be set, separated by an equals sign. The value can
be a static value or an expression. If a column in a table is defined as NOT NULL, and if an
UPDATE statement then sets its value to NULL, the default value for the column will be
used if it is available; otherwise, an error is generated.

The LOW_PRIORITY keyword may be used to instruct the server to wait until all other
queries related to the table in which data is to be added are completed before running
the UPDATE statement. When the table is free, it will be locked for the UPDATE statement
and thereby prevent concurrent data updates or inserts.

Normally, if one of the updates would create a duplicate row (a row that shares the same
value as an existing row in a column declared to be unique), the statement reports an
error. The statement is then terminated and no more rows are updated. If the table is
InnoDB, BDB, or NDB, the entire transaction is reversed or rolled back; if not, the rows
that were updated before the error will remain updated. However, if the IGNORE keyword
is used, the server ignores any errors encountered, suppresses error messages, and con-
tinues updating nonduplicate rows.

The results of such a statement will display like this:

UPDATE

Chapter 6: Data Manipulation Statements and Functions | 149

Data M
anipulation

Query OK, 120 rows affected (4.20 sec)
Records: 125 Duplicates: 5 Warnings: 0

Notice that only 120 rows were updated, although 125 would have been updated if there
had been no duplication problem.

Here is an example of the UPDATE statement using this syntax:

UPDATE clients
SET client_name = 'Geoffrey & Company',
city = 'Boston', state = 'MA'
WHERE client_name LIKE 'Geoffrey%';

This example sets the values of two columns for any rows (probably only one in this case)
that meet the condition of the WHERE clause using the LIKE operator. Only these two
columns will be updated in the matching rows. If there are several rows with the column
client_name containing a starting value of Geoffrey, all of them will be changed.

The number of rows that are updated can be limited by using the LIMIT clause. As of
version 4.0.13 of MySQL, the LIMIT clause is based on the number of rows matched, not
necessarily the number changed. Starting with version 4.0.0 of MySQL, you can also
choose to UPDATE only the first few rows found in a certain order by using the ORDER BY
clause. See the SELECT statement earlier in this chapter for details about the ORDER BY and
the LIMIT clauses. Here is an example of an UPDATE statement using both of these clauses:

UPDATE clients
SET client_terms = client_terms + 15
WHERE client_city = 'Boston'
AND YEAR(date_opened) < 2005
ORDER BY date_opened
LIMIT 50;

This example indicates that we’ve decided to somewhat arbitrarily upgrade the client
terms (i.e., allow 15 additional days to pay their invoices) for any clients located in Boston
who opened an account before the year 2005, but only for the first 50 clients based on
the date order in which their account was opened. Notice that the value of the column
client_terms is set with an expression that refers to the value of the column before the
UPDATE statement is executed. Expressions are calculated from left to right, so the results
of one expression could affect the results of those that follow within the same statement.

Multiple table UPDATE
UPDATE [LOW_PRIORITY] [IGNORE] table_reference
SET column=expression[, ...]
[WHERE condition]

This syntax of the UPDATE statement, available as of version 4.0.4 of MySQL, allows for
multiple tables to be updated or referenced in one SQL statement. A SET clause speci-
fies each column that should change and the value to which it is to be set, separated by
an equals sign. The value can be a static value or an expression. The keywords
LOW_PRIORITY and IGNORE are handled the same way as in the first syntax for the UPDATE
statement. The ORDER BY and the LIMIT clauses are not available with the multiple-table
syntax.

The columns by which tables are joined may be given in the WHERE clause (e.g., WHERE
clients.branch_id=branches.client_id), or with the JOIN clause.

UPDATE

150 | Chapter 6: Data Manipulation Statements and Functions

Here is an example using the JOIN clause:

UPDATE clients JOIN branches USING (branch_id)
SET client_terms = client_terms + 60
WHERE location = 'New Orleans';

In this example, only one table is being changed, but two are joined to determine which
clients belong to the New Orleans branch in order to be able to give them 60 additional
days to pay their bills due to a recent hurricane. See the JOIN clause earlier in this chapter
for details on joining tables.

USE
USE database

This statement sets the default database that MySQL is to use for the current session.
This allows the name of the default database to be omitted from statements. For instance,
db1.table1 can be written as just table1, and db1 is assumed.

USE company_database;

The semicolon may be omitted from the statement since it’s mysql client-related. You
can specify a default database at startup with the --database or --D option.

XA
XA {START|BEGIN} 'identifier' [JOIN|RESUME]

XA PREPARE 'identifier'

XA COMMIT 'identifier' [ONE PHASE]

XA ROLLBACK 'identifier'

XA RECOVER

XA END 'identifier' [SUSPEND [FOR MIGRATE]]

This statement is used for XA distributed transactions. These are transactions in which
multiple, separate transactional resources may be involved in a global transaction. In
MySQL, this is currently available only with InnoDB tables.

The XA START statement starts an XA transaction, assigning an identifier to be used in
subsequent statements, and puts the transaction into an ACTIVE state. Implicit commits
cannot be made while the transaction is in ACTIVE state. This statement is synonymous
with XA BEGIN. The JOIN and RESUME keywords are not supported.

Once you’ve entered all of the SQL statements for a particular session, mark the trans-
action as PREPARED by executing an XA PREPARE. XA RECOVER lists all transactions in a
prepared state. Use the XA COMMIT ONE PHASE statement to mark the XA transaction just
given as prepared and committed. XA COMMIT without the ONE PHASE keyword will commit
and end the entire transaction. Use XA ROLLBACK to undo the specified XA transaction and
terminate it. XA END ends the specified transaction and puts it into an IDLE state.

XA

Chapter 6: Data Manipulation Statements and Functions | 151

Data M
anipulation

Functions in Alphabetical Order
This section describes special functions that are closely related to the data manipu-
lation SQL statements in this chapter. Functions for the formatting and retrieval of
column data are covered in other chapters.

ANALYSE(  )
ANALYSE([maximum_elements[, maximum_memory]])

This function returns an analysis of a results table from a SELECT statement. Use this
function only as part of a PROCEDURE clause. The first parameter is the maximum number
of unique values that may be analyzed for each column; the default is 256. The second
parameter is the maximum memory that should be allocated for each column during
analysis; the default is 8,192 bytes (8 MB). Here is an example:

SELECT col1
FROM table1
PROCEDURE ANALYSE() \G
*************************** 1. row ***************************
 Field_name: table1.col1
 Min_value: 1
 Max_value: 82
 Min_length: 1
 Max_length: 2
 Empties_or_zeros: 0
 Nulls: 0
Avg_value_or_avg_length: 42.8841
 Std: 24.7600
 Optimal_fieldtype: TINYINT(2) UNSIGNED NOT NULL

BENCHMARK(  )
BENCHMARK(number, expression)

Use this function to evaluate the performance of a MySQL server. The expression given
as the second argument of the function is repeated the number of times given in the first
argument. The results are always 0. It’s the processing time reported that is meaningful.
This function is meant to be used from within the mysql client. Here is an example:

SELECT BENCHMARK(1000000,PI());

+--------------------------+
| BENCHMARK(1000000,PI()) |
+--------------------------+
| 0 |
+--------------------------+
1 row in set (0.04 sec)

152 | Chapter 6: Data Manipulation Statements and Functions

DATABASE(  )
DATABASE()

This function returns the name of the database currently in use for the session. There are
no arguments. If no database has been set to default yet, it returns NULL; prior to version
4.1.1 of MySQL, it returns an empty string. Here is an example:

SELECT DATABASE();

+--------------------+
| DATABASE() |
+--------------------+
| company_database |
+--------------------+

As of version 5.0.2 of MySQL, SCHEMA(  ) has been introduced as a synonym for
DATABASE().

FOUND_ROWS(  )
FOUND_ROWS()

Use this function in conjunction with the SQL_CALC_FOUND_ROWS option of a SELECT state-
ment to determine the number of rows an SQL statement using a LIMIT clause would
have generated without the limitation. There are no arguments for the function. It’s
available as of version 4 of MySQL. Here is an example:

SELECT SQL_CALC_FOUND_ROWS
name_first, name_last, telephone_home,
DATEDIFF(now(), last_review)
AS 'Days Since Last Review'
FROM employees
WHERE dept = 'sales'
ORDER BY last_review DESC
LIMIT 10;

SELECT FOUND_ROWS();

In the first statement, we retrieve a list of sales people to review, limited to the 10 who
have gone the longest without a performance review. In the second SQL statement, we’re
getting a total count of how many employees there are to review in the sales department.

LAST_INSERT_ID(  )
LAST_INSERT_ID([expression])

This function returns the identification number of the last row inserted using the MySQL
connection. The identification number for rows inserted by other clients will not be
returned. Identification numbers that are set manually when rows are inserted, without
the aid of AUTO_INCREMENT, won’t register and therefore won’t be returned by
LAST_INSERT_ID(). If multiple rows are inserted by one SQL statement,
LAST_INSERT_ID() returns the identification number for the first row inserted.

LAST_INSERT_ID(  )

Chapter 6: Data Manipulation Statements and Functions | 153

Data M
anipulation

Here is an example:

SELECT LAST_INSERT_ID();

+-------------------+
| LAST_INSERT_ID() |
+-------------------+
| 1039 |
+-------------------+

As of version 5.1.12 of MySQL, an expression may be given to adjust the results. For
instance, if you insert multiple rows of data, the result would be the value of the first row
inserted, not the last. By giving an expression to include adding the number of rows, the
results will be for the last row.

ROW_COUNT(  )
ROW_COUNT()

This function returns the number of rows changed by the previous SQL statement exe-
cuted. If the previous statement was not one that could potentially change data rows—
in other words, it wasn’t an INSERT, UPDATE, DELETE, or other such statement—this
function will return –1. Here is an example:

SELECT ROW_COUNT();

+-------------+
| ROW_COUNT() |
+-------------+
| 4 |
+-------------+

The results here show that four rows were changed.

SCHEMA(  )
SCHEMA()

This function returns the name of the database currently in use for the session. There are
no arguments. If no database has been set as the default, it returns NULL. Here is an
example:

SELECT SCHEMA();

+--------------------+
| DATABASE() |
+--------------------+
| company_database |
+--------------------+

Introduced in version 5.0.2 of MySQL, SCHEMA() is a synonym for DATABASE(  ).

ROW_COUNT(  )

154 | Chapter 6: Data Manipulation Statements and Functions

7
Table and Server Administration

Statements and Functions

The following SQL statements are covered in this chapter:

ALTER SERVER, ANALYZE TABLE, BACKUP TABLE, CACHE INDEX, CHECK TABLE, CHECKSUM TA-
BLE, CREATE SERVER, FLUSH, KILL, LOAD INDEX INTO CACHE, LOCK TABLES, OPTIMIZE
TABLE, REPAIR TABLE, RESET, RESTORE TABLE, SET, SHOW ENGINE, SHOW ENGINES, SHOW OPEN
TABLES, SHOW PLUGINS, SHOW PROCESSLIST, SHOW STATUS, SHOW TABLE STATUS, SHOW VAR-
IABLES, UNLOCK TABLES.

The following functions are also covered in this chapter as they relate to data
manipulation:

CONNECTION_ID(  ), GET_LOCK(  ), IS_FREE_LOCK(  ), IS_USED_LOCK(  ), RELEASE_LOCK(  ),
UUID(  ), VERSION(  ).

Statements and Clauses in Alphabetical Order
The following is a list of MySQL statements and clauses related to table and server
administration, in alphabetical order. To understand how this book presents SQL
syntax and describes SQL statements, as well as for information related to examples,
please see the introduction to Part II. The examples in this chapter involve a fictitious
database for a computer consulting firm that maintains work requests for computer
maintenance. Some examples involve a fictitious database of a vendor.

155

ALTER SERVER
ALTER SERVER server
 OPTIONS
 ({ HOST host
 | DATABASE database
 | USER user
 | PASSWORD password
 | SOCKET socket
 | OWNER owner
 | PORT port_number }, ...)

Use this statement to change the settings for a server created for a FEDERATE storage
engine. Servers are created with the CREATE SERVER statement. See the description of that
statement later in this chapter for more information on the options. The SUPER privilege
is required to be able to use this statement. Here is an example:

ALTER SERVER testing
OPTIONS(USER 'test_user2');

ANALYZE TABLE
ANALYZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE table[, ...]

Use this statement to store information that can be useful later when the MySQL opti-
mizer chooses the order for consulting indexes during a query. Multiple tables can be
specified in a comma-separated list. The statement works on MyISAM and InnoDB ta-
bles. Unless the NO_WRITE_TO_BINLOG option is given, the statement is written to the binary
log file and will be executed by slaves if using replication. The LOCAL option is synonymous
with this option. For MyISAM tables, this statement places a read lock on the tables; for
InnoDB, a write lock. This statement requires SELECT and INSERT privileges. Here is an
example:

ANALYZE TABLE workreq;

+----------------------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+----------------------+---------+----------+----------+
| workrequests.workreq | analyze | status | OK |
+----------------------+---------+----------+----------+

The message type in the results can be status, error, info, or warning. If the table hasn’t
changed since it was last analyzed, the message text will read, “Table is already up to
date” and the table won’t be analyzed.

This statement is equivalent to using myisamchk --analyze at the command line for
MyISAM tables. To analyze all tables (MyISAM and InnoDB), you can use the
mysqlcheck utility from the command line like so:

mysqlcheck --user=russell -p --analyze --all-databases

If you want to see the stored key distribution that the ANALYZE TABLE statement creates,
execute the SHOW INDEXES statement.

ALTER SERVER

156 | Chapter 7: Table and Server Administration Statements and Functions

BACKUP TABLE
BACKUP TABLE table[, ...] TO '/path'

This statement makes a backup copy of a MyISAM table. However, it has been deprecated
because it does not work reliably. It’s recommended that you use mysqlhotcopy (see
Chapter 16) until this statement is replaced.

You can specify additional tables in a comma-separated list. The absolute path to the
directory to which MySQL is to copy files appears within quotes after the TO keyword.

The statement copies each table’s .frm file and .MYD file, which contain the table struc-
ture and the table data, respectively. The .MYI file containing the index is not copied,
but it will be rebuilt with the RESTORE TABLE statement when restoring the table. Here is
an example:

BACKUP TABLE clients TO '/tmp/backup';

+----------------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+----------------------+--------+----------+----------+
| workrequests.clients | backup | status | OK |
+----------------------+--------+----------+----------+

If the backup succeeds, the results will look like the preceding output and two files will
be created for each table backed up: a .frm file and a .MYD file. If MySQL does not have
the filesystem privileges necessary to write to the backup directory, or if a file with the
same name is already in the directory, the backup will fail. In that case, the results set
will include one row with an error message type and another with a status type and the
message text stating, “Operation failed.”

CACHE INDEX
CACHE INDEX table[[INDEX|KEY] (index, ...), ...] IN cache

This statement tells MySQL to cache the given indexes to a specific index cache, which
can be created with the SET GLOBAL statement. This statement is used only on MyISAM
tables. Multiple tables may be listed in a comma-separated list. To specify only certain
indexes of a table, give them in a comma-separated list in parentheses after the table
name. The INDEX or KEY keyword may be given for clarity and compatibility with other
database products. Note that the naming of specific indexes for a table is ignored in the
current versions of MySQL; the option is for a future release. For now, all indexes are
assigned to the named cache, which is the same as specifying no indexes.

To create an additional cache, issue a SET GLOBAL statement with the key_buffer_size
variable like this:

SET GLOBAL my_cache.key_buffer_size = 100*1024;

CACHE INDEX workreq, clients IN my_cache \G

*************************** 1. row ***************************
 Table: workrequests.workreq
 Op: assign_to_keycache
Msg_type: status
Msg_text: OK

CACHE INDEX

Chapter 7: Table and Server Administration Statements and Functions | 157

Table and Server
Adm

inistration

*************************** 2. row ***************************
 Table: workrequests.clients
 Op: assign_to_keycache
Msg_type: status
Msg_text: OK

In this example, the first line creates a cache called my_cache with a buffer size of 100
megabytes. The second line assigns the indexes for the two tables named to my_cache.
As long as this cache exists, all queries by all users will use this cache. If you attempt to
create a cache index without setting the global variable first, you will receive an error
stating that it’s an unknown key cache. If the key cache is eliminated for any reason, the
indexes will be assigned back to the default key cache for the server.

CHECK TABLE
CHECK TABLE table[, ...] [CHANGED|QUICK|FAST|MEDIUM|EXTENDED|FOR UPGRADE]

Use this statement to check tables for errors; as of version 5.1.9 of MySQL, it works with
the MyISAM, InnoDB, ARCHIVE, and CSV storage engines. If errors are discovered, you
should run the REPAIR TABLE statement to repair the table. Multiple tables may be given
in a comma-separated list. This statement requires SELECT privileges.

There are several ways to control checking, specified after the list of tables:

CHANGED
Checks only tables that have been changed since the last check.

QUICK
Checks tables for errors, but won’t scan individual rows for linking problems.

FAST
Checks only tables that have not been closed properly.

MEDIUM
Determines the key checksum for the rows and compares the results against the
checksum for the keys. This option also checks rows to ensure that links were deleted
properly.

EXTENDED
Thoroughly checks each row for errors. It takes a long time to complete.

FOR UPGRADE
Checks a table against the version of MySQL in use. If the table was created from
an earlier version and there have been changes to the new version that make the
table incompatible, the statement will then begin the EXTENDED method to thoroughly
check the table. If it’s successful, it will note that the table has already been checked
so that future checks can avoid the time-consuming check. This option is available
starting with version 5.1.7 of MySQL.

Here is an example of how you can use this statement:

CHECK TABLE workreq MEDIUM;

+----------------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+----------------------+-------+----------+----------+

CHECK TABLE

158 | Chapter 7: Table and Server Administration Statements and Functions

| workrequests.workreq | check | status | OK |
+----------------------+-------+----------+----------+

If an error is found with an InnoDB table, the server is shut down to prevent more
problems. Check the error log for details to resolve the problem.

CHECKSUM TABLE
CHECKSUM TABLE table[, ...] [QUICK|EXTENDED]

This statement returns a MyISAM table’s live checksum value, a value that can be op-
tionally maintained to improve a table’s repairability. To enable live checksum for a table,
use the CREATE TABLE or ALTER TABLE statements with a table option of CHECKSUM=1.

Multiple tables may be given in a comma-separated list. If the QUICK option is employed,
the live table checksum will be returned, if available. If not, NULL will be returned.
Normally one would use the QUICK option when the table is probably fine. The
EXTENDED option instructs the server to check each row. You should use this option only
as a last resort. If no option is specified, the QUICK option is the default, if available. If
not, the EXTENDED option is the default. The checksum value can be different if the row
format changes, which can happen between versions of MySQL. Here is an example of
this statement’s use and its results:

CHECKSUM TABLE workreq;

+----------------------+-----------+
| Table | Checksum |
+----------------------+-----------+
| workrequests.workreq | 195953487 |
+----------------------+-----------+

CREATE SERVER
CREATE SERVER 'server'
 FOREIGN DATA WRAPPER mysql
 OPTIONS
 ({ HOST host
 | DATABASE database
 | USER user
 | PASSWORD password
 | SOCKET socket
 | OWNER owner
 | PORT port_number }, ...)

This statement creates a server for use by the FEDERATED storage engine. The server
created is registered in the server table in the mysql database. The server name given
cannot exceed 63 characters and is case-insensitive. The only acceptable wrapper name
is mysql. Multiple options may be given, separated by commas. The PORT option requires
a numeric literal, whereas the other options require character literals. So don’t put the
port number within quotes. SUPER privilege is required to be able to use this statement.
Here is an example of this statement:

CREATE SERVER testing
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'test_user', HOST '10.1.1.100',

CREATE SERVER

Chapter 7: Table and Server Administration Statements and Functions | 159

Table and Server
Adm

inistration

DATABASE 'test', PORT 3307);

SELECT * FROM mysql.servers
WHERE Server_name = 'testing' \G

*************************** 1. row ***************************
Server_name: testing
 Host: 10.1.1.100
 Db: test
 Username: test_user
 Password:
 Port: 3307
 Socket:
 Wrapper: mysql
 Owner:

CREATE TABLE table1 (col_id INT, col_1 VARCHAR(25))
ENGINE=FEDERATED CONNECTION='testing';

A server created with this statement can be altered with the ALTER SERVER statement. Once
created, servers can be accessed by setting the ENGINE clause in either the CREATE TABLE
statement or the same clause of the ALTER TABLE statement for existing tables.

FLUSH
FLUSH [LOCAL|NO_WRITE_TO_BINLOG] option[, ...]

Options:

DES_KEY_FILE, HOSTS, LOGS, PRIVILEGES, QUERY_CACHE,
STATUS, TABLE, TABLES, TABLES WITH READ LOCK, USER_RESOURCES

Use this statement to clear temporary caches in MySQL. It requires RELOAD privileges.
Multiple options may be given in a comma-separated list.

To prevent this statement from writing to the binary log file, include the
NO_WRITE_TO_BINLOG keyword or its alias, LOCAL. The DES_KEY_FILE option reloads the DES
encryption file. HOSTS clears the hosts cache, which is used to minimize host/IP address
lookups. The hosts cache may need to be flushed if a host has been blocked from accessing
the server. LOGS is used to close all of the log files and reopen them. The PRIVILEGES option
reloads the grant table for users. This is necessary if the user table in the mysql database
is modified manually, without a GRANT statement. QUERY CACHE instructs the server to
defragment the query cache. The STATUS option resets the status variables that report
information about the caches.

The TABLE option, followed by one or more table names, forces the given tables to be
closed. This will terminate any active queries on the given tables. The TABLES option,
without any table names listed, causes all tables to be closed, all queries to be terminated,
and the query cache to be flushed. This option is actually the same as TABLE with no table
name.

Use the TABLES WITH READ LOCK option to close all tables and lock them with a global read
lock. This should be considered when dealing with transactional tables and implicit
commits of changes. This option will allow users to view the data, but not to update it

FLUSH

160 | Chapter 7: Table and Server Administration Statements and Functions

or to insert records. The lock will remain in place until the UNLOCK TABLES statement is
executed.

USER_RESOURCES resets all user resources. You can use this when users have been locked
out due to exceeding usage limits.

The mysqladmin utility may be used to execute this statement with several of its options.
See Chapter 16 for information on this utility.

Two options for this statement have been deprecated: MASTER and SLAVE. RESET MASTER
and RESET SLAVE should be used instead.

As of version 5.1 of MySQL, the FLUSH statement cannot be called by a stored function
or a trigger, although it can be included in a stored procedure.

KILL
KILL [CONNECTION|QUERY] thread

Use this statement to terminate a client connection to MySQL. You can use the SHOW
PROCESSLIST statement to obtain a connection thread identifier for use in this statement.
As of version 5 of MySQL, you can use CONNECTION or QUERY keywords to distinguish
between terminating a connection or terminating just the current query associated with
the given connection.

Some processes cannot be terminated immediately. Instead, this statement flags the
process for termination. The system may not check the flag until the process is completed.
This will occur with statements such as REPAIR TABLE. Besides, you shouldn’t attempt to
terminate the execution of the REPAIR TABLE or the OPTIMIZE TABLE statements. That will
corrupt a MyISAM table. The utility mysqladmin with the options processlist and KILL
may be used from the command line to execute these related statements.

Here is an example of the SHOW PROCESSLIST and the KILL statements used together:

SHOW PROCESSLIST \G
...
 Id: 14397
 User: reader
 Host: localhost
 db: russell_dyer
Command: Query
 Time: 7
 State: Sending data
 Info: SELECT COUNT(*) AS hits
 FROM apache_log
 WHERE SUBDATE(NOW(), INT....

KILL QUERY 14397;

The results of the SHOW PROCESSLIST are truncated. Using the thread identifier 14397 from
the results, the KILL statement is used with the QUERY keyword to terminate the SQL
statement that’s running, without terminating the client connection. If the CONNECTION
keyword or no keyword is given, the entire connection is terminated. In that case, if the
client attempts to issue another SQL statement, it receives a 2006 error message stating
that the MySQL server has gone away. Then it typically will try to reconnect to the server,
establish a new thread, and run the requested query.

KILL

Chapter 7: Table and Server Administration Statements and Functions | 161

Table and Server
Adm

inistration

LOAD INDEX INTO CACHE
LOAD INDEX INTO CACHE
 table [[INDEX|KEY] (index[, ...)] [IGNORE LEAVES]
 [, ...]

Use this statement to preload a table’s index into a given key cache for a MyISAM table.
The syntax allows one or more indexes to be specified in a comma-separated list in pa-
rentheses, in order to preload just the specified indexes, but presently MySQL simply
loads all the indexes for the table into the cache. The keywords INDEX and KEY are inter-
changeable and optional; they do not affect the results. The IGNORE LEAVES clause
instructs MySQL not to preload leaf nodes of the index. Here is an example of how you
can use this statement:

LOAD INDEX INTO CACHE workreq;

+----------------------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+----------------------+--------------+----------+----------+
| workrequests.workreq | preload_keys | status | OK |
+----------------------+--------------+----------+----------+

LOCK TABLES
LOCK TABLES table [AS alias]
 {READ [LOCAL]|[[LOW_PRIORITY] WRITE]} [, ...]

Use this statement to lock the given tables for exclusive use by the current connection
thread. A READ lock allows the locked tables to be read by all threads, but it does not allow
writes to the tables, even by the thread that locked them. A READ LOCAL lock allows all
threads to read the tables that are locked while the locking connection can execute
INSERT statements. Until the lock is released, though, direct data manipulation by
command-line utilities should be avoided. A WRITE lock prohibits other threads from
reading from or writing to locked tables, but it permits reads and writes by the locking
thread. SQL statements for tables that are locked with the WRITE option have priority over
statements involving tables with a READ lock. However, the LOW_PRIORITY keyword may
be given before the WRITE to instruct the server to wait until there are no queries on the
tables being locked.

Only locked tables may be accessed by a locking thread. Therefore, all tables to be used
must be locked. To illustrate this, assume a new programmer has been hired. The pro-
grammer’s information must be added to the programmers table. The wk_schedule table
that contains the records for scheduling work also needs to be adjusted to assign work
to the new programmer and away from others. Here is how you might lock the relevant
tables:

LOCK TABLES workreq READ, programmers READ LOCAL,
 wk_schedule AS work LOW_PRIORITY WRITE;

In this example, the workreq table is locked with a READ keyword so that no new work
requests may be added while the table for the programmers’ work schedules is being
updated, but the work requests may still be viewed by other users. The programmers table
is locked for writing with the READ LOCAL keyword, because one record needs to be in-

LOAD INDEX INTO CACHE

162 | Chapter 7: Table and Server Administration Statements and Functions

serted for the new programmer’s personal information. The wk_schedule table is locked
for exclusive use by the current thread.

For convenience, you can give a table an alias with the AS keyword. In the example, the
wk_schedule table is referred to as work for subsequent SQL statements until the tables
are unlocked. During this time, the thread can refer to the table only by this name in all
other SQL statements.

You can release locks with the UNLOCK TABLES statements. A START TRANSACTION statement
also unlocks tables, as does the issuing of another TABLE LOCKS statement. Therefore, all
tables to be locked should be named in one statement. Additional tables can be added
to the end of the TABLE LOCKS statement in a comma-separated list.

You can lock all tables with a FLUSH TABLES WITH READ LOCK statement. You can use the
GET_LOCK(  ) and RELEASE_LOCK(  ) functions as alternatives to the LOCK TABLES and UNLOCK
TABLES covered in this chapter.

OPTIMIZE TABLE
OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE table[, ...]

Use this statement to optimize the data contained in a table. Optimization is useful when
many rows have been deleted from a table. It’s also useful to run this statement period-
ically with a table that contains several variable-character-width columns (i.e., VARCHAR,
BLOB, and TEXT columns). This statement generally works only with MyISAM, BDB, and
InnoDB tables. It may work on other tables, however, if the mysqld daemon is started
with the --skip-new option or the --safe-mode option. See Chapter 15 for more infor-
mation on setting server startup options.

This statement also repairs some row problems and sort indexes. It temporarily locks the
tables involved while optimizing. Multiple tables can be listed for optimization in a
comma-separated list. To prevent the activities of this statement from being recorded in
the binary log file, use the NO_WRITE_TO_BINLOG keyword or its alias, LOCAL. Here is an
example of the statement’s use:

OPTIMIZE LOCAL TABLE workreq, clients;

+----------------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+----------------------+----------+----------+----------+
| workrequests.workreq | optimize | status | OK |
| workrequests.clients | optimize | status | OK |
+----------------------+----------+----------+----------+

Here, two tables are optimized successfully and the activity is not written to the binary
log file.

REPAIR TABLE
REPAIR [LOCAL|NO_WRITE_TO_BINLOG] TABLE
 table[, ...] [QUICK] [EXTENDED] [USE_FRM]

Use this statement to repair corrupted MyISAM tables. Multiple tables may be given in
a comma-separated list. To prevent this statement from recording its activities in the

REPAIR TABLE

Chapter 7: Table and Server Administration Statements and Functions | 163

Table and Server
Adm

inistration

binary log file, give the NO_WRITE_TO_BINLOG keyword or its LOCAL alias. The QUICK keyword
instructs MySQL to repair the table indexes only. The EXTENDED keyword rebuilds the
indexes one row at a time. This option takes longer, but it can be more effective, especially
with rows containing duplicate keys.

Before running this statement, make a backup of the table. If a table continues to have
problems, there may be other problems (e.g., filesystem problems) that you should con-
sider. Here is an example of this statement:

REPAIR TABLE systems QUICK EXTENDED;

+----------------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+----------------------+--------+----------+----------+
| workrequests.systems | repair | status | OK |
+----------------------+--------+----------+----------+

In this example, the repair is successful. This is indicated by the OK in the Msg_text field.
If it is unsuccessful, you could try the USE_FRM option with this statement. That option
will create a new index file (.MYI) using the table schema file (.frm). It won’t be able to
determine the current value for AUTO_INCREMENT columns or for DELETE LINK, so it
shouldn’t be used unless the original .MYI file is lost. Incidentally, if the MySQL server
dies while the REPAIR TABLE statement is running, you should run the statement again as
soon as the server is back up, before running any other SQL statements.

RESET
RESET {MASTER|SLAVE|QUERY CACHE}[, ...]

Use this statement to reset certain server settings and files. It’s similar to the FLUSH state-
ment, but more powerful for its specific uses. The RELOAD privilege is required to use it.
Multiple options may be given in a comma-separated list. Currently, you can reset the
MASTER, QUERY CACHE, and SLAVE options. See the RESET MASTER and the RESET SLAVE state-
ments in Chapter 8 for detailed explanations of each option. The QUERY CACHE option
clears the cache containing SQL query results.

RESTORE TABLE
RESTORE TABLE table[, ...] FROM '/path'

This statement restores a table that was saved to the filesystem by the BACKUP TABLE
statement. Multiple tables may be given in a comma-separated list. The absolute path to
the directory containing the backup files must appear within quotes. If the tables already
exist in the database, an error message will be generated and the restore will fail. If it’s
successful, the table indexes will be built automatically. This is necessary because the
BACKUP TABLE statement doesn’t back up the index files. Here is an example of this
statement:

RESTORE TABLE clients, programmers FROM '/tmp/backup';

RESET

164 | Chapter 7: Table and Server Administration Statements and Functions

+--------------------------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------------------+---------+----------+----------+
| workrequests.clients | restore | status | OK |
+--------------------------+---------+----------+----------+
| workrequests.programmers | restore | status | OK |
+--------------------------+---------+----------+----------+

In this example, the statement is successful in restoring the .frm and .MYD files located
in the backup directory and regenerating the .MYI files.

SET
SET [GLOBAL|@@global.|SESSION|@@session.] variable = expression

This statement sets a system or user variable for global or session use. Global variables
relate to all users. Session variables are available only to the connection thread that creates
the variable. For system variables to be recognized as global, the GLOBAL keyword is used.
Alternatively, the variable can be preceded by @@global. to signify that it is global. For
system variables that are limited to the current session, use the SESSION keyword, or place
@@session or just @@ immediately in front of the variable name. The default for variables
is to limit them to the session, making them local. LOCAL and @@local are aliases for
SESSION and @@session, respectively. Here are a couple of examples involving system
variables, one using the keyword method and the other using the variable prefix method:

SET GLOBAL concurrent_insert = 1;
SET @@session.interactive_timeout=40000;

The first statement disables concurrent inserts without having to restart the server. The
second statement changes the interactive timeout to a higher value than normal. This
setting is for the current client connection only. For other clients, this variable will still
contain the default value.

To see a list of system variables and their values, use the SHOW VARIABLES statement. For
a description of these variables, see Appendix C. For examples involving user variables,
see the description of the SET statement in Chapter 6.

SHOW ENGINE
SHOW ENGINE engine {STATUS|MUTEX}

Use this statement to display details of the status of a given storage engine. This statement
provides information on table and record locks for transactions, waiting locks, pending
requests, buffer statistics and activity, and logs related to the engine.

Currently, the engines that may be given are INNODB, NDB, and NDBCLUSTER. These last two
keywords are interchangeable. Prior to version 5.1.12 of MySQL, the option of BDB was
permitted. In later versions, the BDB engine is not supported and a warning message is
generated when it is used with this statement. The MUTEX option is available only for the
InnoDB engine. For the NDB engine, an empty results set is returned if there are no
operations at the time.

SHOW ENGINE

Chapter 7: Table and Server Administration Statements and Functions | 165

Table and Server
Adm

inistration

SHOW ENGINES
SHOW [STORAGE] ENGINES

This statement lists the table types or storage engines available for the version of MySQL
running on the server. It states which are disabled on the server and which are enabled,
as well as which is the default type. It also provides comments on each type. The
STORAGE keyword is optional and has no effect on the results. This SQL statement replaces
SHOW TABLE TYPES, which produced the same results, but is deprecated. Here is an example
of this statement:

SHOW ENGINES \G

*************************** 1. row ***************************
 Engine: ndbcluster
 Support: DISABLED
 Comment: Clustered, fault-tolerant tables
Transactions: YES
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: FEDERATED
 Support: YES
 Comment: Federated MySQL storage engine
Transactions: YES
 XA: NO
 Savepoints: NO

SHOW ENGINES

166 | Chapter 7: Table and Server Administration Statements and Functions

*************************** 7. row ***************************
 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: InnoDB
 Support: YES
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 9. row ***************************
 Engine: MyISAM
 Support: DEFAULT
 Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
 XA: NO
 Savepoints: NO
9 rows in set (0.00 sec)

SHOW OPEN TABLES
SHOW OPEN TABLES [FROM database] [LIKE 'pattern'|WHERE expression]

Use this statement to display a list of tables that are open, i.e., that are in the table cache.
The list does not include any temporary tables. The LIKE clause can be used to limit the
tables displayed by a naming pattern. Similarly, the WHERE clause may be used to refine
the results set. Here is an example of this statement:

SHOW OPEN TABLES
FROM college LIKE '%student%';

+----------+--------------------+--------+-------------+
| Database | Table | In_use | Name_locked |
+----------+--------------------+--------+-------------+
college	student_surveys	0	0
college	students	0	0
college	student_exams	0	0
college	student_exams_past	0	0
+----------+--------------------+--------+-------------+

SHOW PLUGINS
SHOW PLUGINS

Use this statement to display a list of plugins on the server. This statement is available
as of version 5.1.5 of MySQL, but with the name SHOW PLUGIN. It was changed to SHOW
PLUGINS as of version 5.1.9. Here is an example:

SHOW PLUGINS;

SHOW PLUGINS

Chapter 7: Table and Server Administration Statements and Functions | 167

Table and Server
Adm

inistration

+------------+--------+----------------+---------+---------+
| Name | Status | Type | Library | License |
+------------+--------+----------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
FEDERATED	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	ACTIVE	STORAGE ENGINE	NULL	GPL
+------------+--------+----------------+---------+---------+

SHOW PROCESSLIST
SHOW [FULL] PROCESSLIST

This statement displays a list of connection threads running on the MySQL server. The
statement requires SUPER privileges to be able to see all threads. Otherwise, only threads
related to the current connection are shown. The FULL keyword shows the full text of the
information field. Here is an example:

SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: root
 Host: localhost
 db: workrequests
Command: Query
 Time: 0
 State: NULL
 Info: SHOW PROCESSLIST

You can use this statement to determine a thread identification number to be used with
the KILL statement.

SHOW STATUS
SHOW [GLOBAL|LOCAL|SESSION] STATUS [LIKE 'pattern'|WHERE expression]

This statement displays status information and variables from the server. You can reduce
the number of variables shown with the LIKE clause, based on a naming pattern for the
variable name. Similarly, the WHERE clause may be used to refine the results set. Here is
an example of how you can use this statement with the LIKE clause:

SHOW STATUS LIKE '%log%';

+------------------------------+-------+
| Variable_name | Value |
+------------------------------+-------+
| Binlog_cache_disk_use | 0 |
| Binlog_cache_use | 0 |

SHOW PROCESSLIST

168 | Chapter 7: Table and Server Administration Statements and Functions

Com_show_binlog_events	0
Com_show_binlogs	0
Com_show_engine_logs	0
Innodb_log_waits	0
Innodb_log_write_requests	0
Innodb_log_writes	1
Innodb_os_log_fsyncs	3
Innodb_os_log_pending_fsyncs	0
Innodb_os_log_pending_writes	0
Innodb_os_log_written	512
Tc_log_max_pages_used	0
Tc_log_page_size	0
Tc_log_page_waits	0
+------------------------------+-------+

The results show any system variable in which the variable name has the word log in it.
This is a new server installation, so the results have small or zero values. If we wanted to
eliminate the InnoDB logs from the results, we could use the WHERE clause like so:

SHOW STATUS
WHERE Variable_name LIKE '%log%'
AND Variable_name NOT LIKE '%Innodb%';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
Binlog_cache_disk_use	0
Binlog_cache_use	0
Com_show_binlog_events	0
Com_show_binlogs	0
Com_show_engine_logs	0
Tc_log_max_pages_used	0
Tc_log_page_size	0
Tc_log_page_waits	0
+------------------------+-------+

Notice that when using the WHERE clause, the field name in the results must be given. In
this case, the field name Variable_name is given. You could also give the field name
Value to limit the results to entries of a certain value or range of values:

SHOW GLOBAL STATUS
WHERE Variable_name LIKE '%log%'
AND Variable_name LIKE '%Innodb%'
AND Value > 100;

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Innodb_os_log_written | 512 |
+-----------------------+-------+

In this example, we are looking for log entries for InnoDB with values over 100. The
results consist of just one entry.

You can change many variables at server startup using options for the MySQL server
daemon. See Chapter 15 for more details. You can change some of them while the

SHOW STATUS

Chapter 7: Table and Server Administration Statements and Functions | 169

Table and Server
Adm

inistration

daemon is running with the SET statement, without having to restart the server. That
statement is covered earlier in this chapter.

SHOW TABLE STATUS
SHOW TABLE STATUS [FROM database] [LIKE 'pattern'|WHERE expression]

This statement displays status information on a set of tables from a database. To obtain
the status of tables from a database other than the current default one, use the FROM clause.
The results will include information on all of the tables of the database unless the LIKE
clause is used to limit the tables displayed by a naming pattern. Similarly, the WHERE clause
may be used to refine the results set. As an alternative to this statement, you can use the
utility mysqlshow with the --status option, as described in Chapter 16. Here’s an
example of this statement using the LIKE clause:

SHOW TABLE STATUS FROM workrequests LIKE 'workreq'\G

*************************** 1. row ***************************
 Name: workreq
 Engine: MyISAM
 Version: 7
 Row_format: Dynamic
 Rows: 543
 Avg_row_length: 983
 Data_length: 534216
Max_data_length: 4294967295
 Index_length: 6144
 Data_free: 120
 Auto_increment: 5772
 Create_time: 2002-04-23 14:41:58
 Update_time: 2004-11-26 16:01:46
 Check_time: 2004-11-28 17:21:20
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

This example shows results for only one table because a specific table name is given in
the LIKE clause without the % wildcard. To find a group of tables, but to limit the results
more, you can use the WHERE clause. Here is an example:

SHOW TABLE STATUS FROM workrequests
WHERE Rows > 1000;

This example lists all tables from the given database that contain more than 1,000 rows
of data. Notice that we’re using the field name Rows from the results set to limit the results.
Any field name can be used in this way and multiple fields may be given, separated by
the AND parameter of the WHERE clause.

As for the results themselves, most are obvious from their field names. The Row_format
field can have a value of Compact, Compressed, Dynamic, Fixed, or Redundant. InnoDB tables
are either Compact or Redundant. The Rows field gives an accurate count with MyISAM
tables, but not with InnoDB.

The Data_length field gives the size of the datafile associated with the table.
Max_data_length is the maximum size allowed for the datafile. These two values are

SHOW TABLE STATUS

170 | Chapter 7: Table and Server Administration Statements and Functions

estimates for MEMORY tables. The Auto_increment value shows the value for the column
that uses AUTO_INCREMENT.
When used with views, this statement returns NULL values for almost all fields.

You can change some of these variables or table options using the ALTER TABLE statement
in Chapter 5.

SHOW VARIABLES
SHOW [GLOBAL|LOCAL|SESSION] VARIABLES [LIKE 'pattern'|WHERE expression]

This statement displays the system variables for the MySQL server. The SESSION keyword
displays values for current sessions or connections. This is the default and is synonymous
with LOCAL. The GLOBAL keyword shows variables that relate to new connections. You can
limit the variables with the LIKE clause and a naming pattern for the variables. Similarly,
the WHERE clause can be used to refine the results set. Here is an example of this statement
with the LIKE clause:

SHOW GLOBAL VARIABLES LIKE 'version%';

+-------------------------+------------------------------+
| Variable_name | Value |
+-------------------------+------------------------------+
version	5.1.16-beta
version_comment	MySQL Community Server (GPL)
version_compile_machine	i686
version_compile_os	pc-linux-gnu
+-------------------------+------------------------------+

In this example, the variables shown are limited to global variables whose names begin
with the word version. Suppose that we wanted to see only the two variables of these
results that contain a numeric value. We could do this by using the WHERE clause like so:

SHOW GLOBAL VARIABLES
WHERE Variable_name LIKE 'version%'
AND Value REGEXP '[0-9]';

+-------------------------+-------------+
| Variable_name | Value |
+-------------------------+-------------+
| version | 5.1.16-beta |
| version_compile_machine | i686 |
+-------------------------+-------------+

Notice that, for the WHERE clause, we specify the field names of the results set:
Variable_name and Value. In this case, we’re also using the LIKE and REGEXP string com-
parison functions to narrow the results.

You can change many of the variables at server startup with options for the MySQL server
daemon. See Chapter 15 for more details. You can change some of them while the dae-
mon is running with the SET statement, without having to restart the server. That
statement is covered earlier in this chapter.

SHOW VARIABLES

Chapter 7: Table and Server Administration Statements and Functions | 171

Table and Server
Adm

inistration

UNLOCK TABLES
UNLOCK TABLES

Use this statement to unlock tables that were locked by the current connection thread
with the LOCK TABLES statement or by FLUSH TABLES WITH READ LOCK. UNLOCK TABLES
implicitly commits any active transactions if any tables were locked with LOCK TABLES.
When performing a large amount of changes to data in MyISAM tables, it can be useful
and faster to lock the tables first. This way the key cache isn’t flushed after each SQL
statement. Instead, the server flushes the key cache when executing UNLOCK TABLES. Here
is an example:

UNLOCK TABLES;

Functions in Alphabetical Order
The following is a list of MySQL functions related to the tasks in this chapter, in
alphabetical order.

CONNECTION_ID(  )
CONNECTION_ID()

This function returns the MySQL connection or thread identification number for the
MySQL session. There are no arguments. Connection identifiers are unique. Here is an
example:

SELECT CONNECTION_ID();

+------------------+
| CONNECTION_ID() |
+------------------+
| 11266 |
+------------------+

GET_LOCK(  )
GET_LOCK(string, seconds)

This function attempts to get a lock on the name given in the first argument. The number
of seconds to attempt the lock is given in the second argument. If successful, it returns
1. If the function is unsuccessful because the attempt times out, it returns 0. If the lock
fails due to an error of any kind, NULL is returned. The function RELEASE_LOCK(  ) may
be used to release a lock. A lock is also released when the same client issues another
GET_LOCK() or when the client’s connection is terminated. Here is an example:

SELECT GET_LOCK('my_lock', 10);

+-------------------------+
| GET_LOCK('my_lock', 10) |
+-------------------------+
| 1 |
+-------------------------+

UNLOCK TABLES

172 | Chapter 7: Table and Server Administration Statements and Functions

IS_FREE_LOCK(  )
IS_FREE_LOCK(string)

Use this function to determine whether the name of the lock given in parentheses is free
and available as a lock name. The function returns 1 if the lock name is free, and 0 if it’s
not (because it is in use by another client). The function returns NULL if there is an error.
Locks are created by GET_LOCK(  ). This function is available as of version 4.0.2 of MySQL.
Here is an example:

SELECT IS_FREE_LOCK('my_lock');

+-------------------------+
| IS_FREE_LOCK('my_lock') |
+-------------------------+
| 0 |
+-------------------------+

The results here indicate that the lock is not free.

IS_USED_LOCK(  )
IS_USED_LOCK(string)

This function determines whether the name given is already in use as a lock name. If the
lock name is in use, it returns the connection identifier of the client holding the lock. It
returns NULL if it is not in use. Locks are created by GET_LOCK(  ). This function is available
as of version 4.1.0 of MySQL. Here is an example:

SELECT IS_USED_LOCK('my_lock');

+-------------------------+
| IS_USED_LOCK('my_lock') |
+-------------------------+
| 1 |
+-------------------------+

The results here indicate that the lock is in use and the connection identifier of the client
is 1.

RELEASE_LOCK(  )
RELEASE_LOCK(string)

This function releases a lock created by GET_LOCK(  ). The name of the lock is given in
parentheses. If successful, 1 is returned; if unsuccessful, 0 is returned. If the lock specified
does not exist, NULL is returned. Here is an example:

SELECT RELEASE_LOCK('my_lock');

+-------------------------+
| RELEASE_LOCK('my_lock') |
+-------------------------+
| 1 |
+-------------------------+

RELEASE_LOCK(  )

Chapter 7: Table and Server Administration Statements and Functions | 173

Table and Server
Adm

inistration

As an alternative to using SELECT, you can use the DO statement. In this case, no results
are returned, but the lock is released:

DO RELEASE_LOCK('my_lock');

UUID(  )
UUID()

This function returns a Universal Unique Identifier (UUID), a 128-bit number composed
of five hexadecimal numbers. This number is intended to be unique per invocation and
is based on values that are both temporal and spatial. There are no arguments for the
function. It’s available as of version 4.1.2 of MySQL. Here is an example:

SELECT UUID();

+--+
| UUID() |
+--+
| '8bde367a-caeb-0933-1031-7730g3321c32' |
+--+

The first three hexadecimal sets of numbers are based on the date and time of the exe-
cution of the statement. The fourth set is based on time regardless of daylight saving
time. The last set is a unique number, an IEEE 802 node number related to the computer
generating the number. For instance, for some operating systems it could be the network
card’s Media Access Control (MAC) address.

VERSION(  )
VERSION()

This function returns the MySQL server version. There are no arguments for the function.
Here is an example:

SELECT VERSION();

+-------------+
| VERSION() |
+-------------+
| 5.1.16-beta |
+-------------+

UUID(  )

174 | Chapter 7: Table and Server Administration Statements and Functions

8
Replication Statements

and Functions

This chapter includes a tutorial on setting up and using replication, a list of SQL
statements and functions used specifically with replication, and an explanation of
replication states that will be useful for checking whether replication is operating as
needed. The replication SQL statements and functions covered in this chapter are:

CHANGE MASTER TO, LOAD DATA FROM MASTER, LOAD TABLE...FROM MAS-
TER, MASTER_POS_WAIT(  ), PURGE MASTER LOGS, RESET MASTER, RESET SLAVE, SET GLOBAL
SQL_SLAVE_SKIP_COUNTER, SET SQL_LOG_BIN, SHOW BINARY LOGS,SHOW MASTER LOGS, SHOW
BINLOG EVENTS, SHOW MASTER STATUS, SHOW SLAVE HOSTS, SHOW SLAVE STATUS, START
SLAVE, STOP SLAVE.

Merits of Replication
One of the difficulties of maintaining a large and active MySQL database is making
clean backups without having to bring down the server. Performing a backup while
a server is running can slow down a system considerably. Additionally, backups
made on active servers can result in inconsistent data because a related table may be
changed while another is being copied. Taking down the server ensures consistency
of data, but it interrupts MySQL service to users. Sometimes this is necessary and
unavoidable, but daily server outages for backing up data may be an unacceptable
choice. A simple alternative is to set up replication of MySQL, so that one or more
redundant servers maintain a consistent and continuous copy of the main MySQL
server’s databases, and can be taken down for backups while the main server
continues serving the users.

Typically, replication is primarily a matter of configuring multiple servers to the one
where users submit their updates, known in this context as a master server, which
houses the data and handles client requests. The server logs all data changes to a
binary log, locally. The master in turn informs another MySQL server (a slave server),

175

which contains a copy of the master’s databases, and of any additions to its binary
log. The slave in turn makes these same changes to its databases. The slave can either
reexecute the master’s SQL statements locally, or just copy over changes to the
master’s databases. There are other uses for replication (such as load balancing), but
the concern of this tutorial is using replication for data backups and resiliency. Also,
it’s easy to set up multiple slaves for each server, but one is probably enough if you’re
using replication only for backups.

As a backup method, you can set up a separate server to be a slave, and then once
a day (or however often you prefer) turn off replication to make a clean backup of
the slave server’s databases. When you’re finished making the backup, replication
can then be restarted and the slave will automatically query the master for changes
to the master’s data that the slave missed while it was offline.

Replication is an excellent feature built into the MySQL core. It doesn’t require you
to buy or install any additional software. You just physically set up a slave server
and configure MySQL on both servers appropriately to begin replication. Then it’s
a matter of developing a script to routinely stop the replication process, make a
backup of the slave’s data, and restart replication.

To understand how to make replication efficient and robust in a particular envi-
ronment, let’s look in detail at the steps that MySQL goes through to maintain a
replicated server. The process is different depending on the version of MySQL your
servers are using. This chapter applies primarily to version 4.0 or higher of MySQL.
There were some significant improvements made in version 4.0 related to how rep-
lication activities are processed, making it much more dependable. Therefore, it is
recommended that you upgrade your servers if they are using an older version. You
should upgrade one release at a time, and use the same version of MySQL on both
the master and all the slave servers. Otherwise, you may experience problems with
authenticating the servers, incompatible table schemas, and other such problems.

Replication Process
When replication is running, SQL statements that change data are recorded in a
binary log (bin.log) on the master server as it executes them. Only SQL statements
that change the data or the schema are logged. This includes data-changing state-
ments such as INSERT, UPDATE, and DELETE, and schema-manipulation statements
such as CREATE TABLE, ALTER TABLE, and DROP TABLE. This also includes actions that
affect data and schema, but that are executed from the command line by utilities
such as mysqladmin. This does not include SELECT statements or any statements that
only query the server for information (e.g., SHOW VARIABLES).

Along with the SQL statements, the master records a log position identification
number. This is used to determine which log entries the master should relay to the
slave. This is necessary because the slave may not always be able to consistently
receive information from the master. We’ve already discussed one situation where
an administrator deliberately introduces a delay: the planned downtime for making
a backup of the slave. In addition, there may be times when the slave has difficulty
staying connected to the master due to networking problems, or it may simply fall

176 | Chapter 8: Replication Statements and Functions

behind because the master has a heavy load of updates in a short period of time.
However, if the slave reconnects hours or even days later, with the position identi-
fication number of the last log entry received, it can tell the master where it left off
in the binary log and the master can send the slave all of the subsequent entries it
missed while it was disconnected. It can do this even if the entries are contained in
multiple log files due to the master’s logs having been flushed in the interim.

To help you better understand the replication process, I’ve included—in this section
especially, and throughout this chapter—sample excerpts from each replication log
and index file. Knowing how to sift through logs can be useful in resolving server
problems, not only with replication but also with corrupt or erroneously written
data.

Here is a sample excerpt from a master binary log file:

/usr/local/mysql/bin/mysqlbinlog /var/log/mysql/bin.000007 >
 /tmp/binary_log.txt
tail --lines=14 /tmp/binary_log.txt

at 1999
#081120 9:53:27 server id 1 end_log_pos 2158 Query thread_id=1391
 exec_time=0 error_code=0
USE personal;
SET TIMESTAMP=1132502007;
CREATE TABLE contacts2 (contact_id INT AUTO_INCREMENT KEY, name VARCHAR(50),
 telephone CHAR(15));

at 2158
#081120 9:54:53 server id 1 end_log_pos 2186 Intvar
SET INSERT_ID=1;

at 2186
#081120 9:54:53 server id 1 end_log_pos 2333 Query thread_id=1391
 exec_time=0 error_code=0
SET TIMESTAMP=1132502093;
INSERT INTO contacts2 (name, telephone) VALUES ('Rusty Osborne',
 '001-504-838-1234');

As the first line shows, I used the command-line utility mysqlbinlog to read the
contents of a particular binary log file. (MySQL provides mysqlbinlog to make it
possible for administrators to read binary log files.) Because the log is extensive, I
have redirected the results to a text file in the /tmp directory using the shell’s redirect
operator (>). On the second line, I used the tail command to display the last 14
lines of the text file generated, which translates to the last 3 entries in this case. You
could instead pipe (|) the contents to more or less on a Linux or Unix system if you
intend only to scan the results briefly.

After you redirect the results of a binary log to a text file, it may be used to restore
data on the master server to a specific point in time. Point-in-time recovery methods
are an excellent recourse when you have inadvertently deleted a large amount of
data that has been added since your last backup.

The slave server, through an input/output (I/O) thread, listens for communications
from the master that inform the slave of new entries in the master’s binary log and

Replication Process | 177

Replication

of any changes to its data. The master does not transmit data unless requested by
the slave, nor does the slave continuously harass the master with inquiries as to
whether there are new binary log entries. Instead, after the master has made an entry
to its binary log, it looks to see whether any slaves are connected and waiting for
updates. The master then pokes the slave to let it know that an entry has been made
to the binary log in case it’s interested. It’s then up to the slave to request the entries.
The slave will ask the master to send entries starting from the position identification
number of the last log file entry the slave processed.

Looking at each entry in the sample binary log, you will notice that each starts with
the position identification number (e.g., 1999). The second line of each entry pro-
vides the date (e.g., 081120 for November 20, 2008), the time, and the replication
server’s identification number. This is followed by the position number expected for
the next entry. This number is calculated from the number of bytes of text that the
current entry required. The rest of the entry provides stats on the thread that exe-
cuted the SQL statement. In some of the entries, a SET statement is provided with
the TIMESTAMP variable so that when the binary log entry is used, the date and time
will be adjusted on the slave server to match the date and time of the entry on the
master. The final line of each entry lists the SQL statement that was executed.

The excerpt begins with a USE statement, which is included to be sure that the slave
makes the subsequent changes to the correct database. Similarly, notice that the
second entry sets the value of INSERT_ID in preparation for the INSERT statement of
the following entry. This ensures that the value to be used for the column
contact_id on the slave is the same. Nothing is left to chance or assumed, if possible.

The master server keeps track of the names of the binary log files in a simple text file
(bin.index). Here is an excerpt from the binary index file:

/var/log/mysql/bin.000001
/var/log/mysql/bin.000002
/var/log/mysql/bin.000003
/var/log/mysql/bin.000004
/var/log/mysql/bin.000005
/var/log/mysql/bin.000006
/var/log/mysql/bin.000007

This list of binary log files can also be obtained by entering the SHOW MASTER LOGS
statement. Notice that the list includes the full pathname of each binary log file in
order, reflecting the order in which the files were created. The master appends each
name to the end of the index file as the log file is opened. If a slave has been offline
for a couple of days, the master will work backward through the files to find the file
containing the position identification number given to it by the slave. It will then
read that file from the entry following the specified position identification number
to the end, followed by the subsequent files in order, sending SQL statements from
each to the slave until the slave is current or disconnected. If the slave is disconnected
before it can become current, the slave will make another request when it later
reconnects with the last master log position identification number it received.

After the slave is current again, the slave will go back to waiting for another an-
nouncement from the master regarding changes to its binary log. The slave will make

178 | Chapter 8: Replication Statements and Functions

inquiries only when it receives another nudge from the master or if it is disconnected
temporarily. When a slave reconnects to the master after a disconnection, it makes
inquiries to ensure it didn’t miss anything while it was disconnected. If it sits idle
for a long period, the slave’s connection will time out, also causing it to reconnect
and make inquires.

When the slave receives new changes from the master, the slave doesn’t update its
databases directly. Direct application of changes was tried in versions of replication
prior to MySQL 4.0 and found to be too inflexible to deal with heavy loads, partic-
ularly if the slave’s databases are also used to support user read requests (i.e., the
slave helps with load balancing). For example, tables in its replicated databases may
be busy when the slave is attempting to update the data. A SELECT statement could
be executed with the HIGH_PRIORITY flag, giving it priority over UPDATE and other SQL
statements that change data and are not also specifically entered with the
HIGH_PRIORITY flag. In this case, the replication process would be delayed by user
activities. On a busy server, the replication process could be delayed for several
minutes. If the master server crashes during such a lengthy delay, this could mean
the loss of many data changes of which the slave is not informed because it's waiting
to access a table on its own system.

By separating the recording of entries received and their reexecution, the slave is
assured of getting all or almost all transactions up until the time that the master
server crashes. This is a much more dependable method than the direct application
method used in earlier versions of MySQL.

Currently, the slave appends the changes to a file on its filesystem named relay.log.
Here is an excerpt from a relay log:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;

at 4
#081118 3:18:40 server id 2 end_log_pos 98
 Start: binlog v 4, server v 5.0.12-beta-standard-log created 051118
 3:18:40

at 98
#700101 1:00:00 server id 1 end_log_pos 0 Rotate to bin.000025 pos: 4

at 135
#080819 11:40:57 server id 1 end_log_pos 98
 Start: binlog v 4, server v 5.0.10-beta-standard-log created 050819
 11:40:57 at startup
ROLLBACK;

at 949
#080819 11:54:49 server id 1 end_log_pos 952
 Query thread_id=10 exec_time=0 error_code=0
SET TIMESTAMP=1124445289;
CREATE TABLE prepare_test (id INTEGER NOT NULL, name CHAR(64) NOT NULL);

at 952
#080819 11:54:49 server id 1 end_log_pos 1072

Replication Process | 179

Replication

 Query thread_id=10 exec_time=0 error_code=0
SET TIMESTAMP=1124445289;
INSERT INTO prepare_test VALUES ('0','zhzwDeLxLy8XYjqVM');

This log is like the master’s binary log. Notice that the first entry mentions the serv-
er’s ID number, 2, which is the slave’s identification number. There are also some
entries for server 1, the master. The first entries have to do with log rotations on
both servers. The last two entries are SQL statements relayed to the slave from the
master.

A new relay log file is created when replication starts on the slave and when the logs
are flushed (i.e., the FLUSH LOGS statement is issued). A new relay log file is also
created when the current file reaches the maximum size as set with the
max_relay_log_size variable. The maximum size can also be limited by the
max_binlog_size variable. If these variables are set to 0, there is no size limit placed
on the relay log files.

Once the slave has made note of the SQL statements relayed to it by the master, it
records the new position identification number in its master information file
(master.info) on its filesystem. Here is an example of the content of a master infor-
mation file on a slave server:

14
bin.000038
6393
master_host
replicant
my_pwd
3306
60
0

This file is present primarily so the slave can remember its position in the master’s
binary log file even if the slave is rebooted, as well as the information necessary to
reconnect to the master. Each line has a purpose as follows:

1. The first line contains the number of lines of data in the file (14). Although fewer
than 14 lines are shown here, the actual file contains blank lines that make up
the rest.

2. The second line shows the name of the last binary log file on the master from
which the slave received entries. This helps the master respond more quickly
to requests.

3. The third line shows the position identification number (6393) in the master’s
binary log.

4. The next few lines contain the master’s host address, the replication username,
the password, and the port number (3306). Notice that the password is not
encrypted and is stored in clear text. Therefore, be sure to place this file in a
secure directory. You can determine the path for this file in the configuration
file, as discussed later in this chapter.

5. The next to last line (60) lists the number of attempts the slave should make
when reconnecting to the master before stopping.

180 | Chapter 8: Replication Statements and Functions

6. The last line here is 0 because the server from which this master information
file came does not have the SSL feature enabled. If SSL was enabled on the slave
and allowed on the master, there would be a value of 1 on this line. It would
also be followed by 5 more lines containing values related to SSL authentication,
completing the 14 lines anticipated on the first line.

Take note of how the values in the master information file match the following
excerpt from a SHOW SLAVE STATUS statement executed on the slave:

SHOW SLAVE STATUS \G

*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: master_host
Master_User: replicant
Master_Port: 3306
Connect_Retry: 60
Master_Log_File: bin.000038
Read_Master_Log_Pos: 6393
Relay_Log_File: relay.000002
Relay_Log_Pos: 555
Relay_Master_Log_File: bin.000011
Slave_IO_Running: Yes
Slave_SQL_Running: No
Replicate_Do_DB: test
Replicate_Ignore_DB:
Replicate_Do_Table:
Replicate_Ignore_Table:
Replicate_Wild_Do_Table:
Replicate_Wild_Ignore_Table:
Last_Errno: 1062
Last_Error: Error 'Duplicate entry '1000' for key 1' on query.'
Skip_Counter: 0
Exec_Master_Log_Pos: 497
Relay_Log_Space: 22277198
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0
Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:
Master_SSL_Cert:
Master_SSL_Cipher:
Master_SSL_Key:
Seconds_Behind_Master: NULL

Notice the labels for the additional SSL variables at the end of this excerpt. The
master information file contains lines for them, whether they are empty or popula-
ted. Also note that, for tighter security, the command does not return the password.

After noting the new position number and other information that may have changed,
the slave uses the same I/O thread to resume waiting for more entries from the
master.

Replication Process | 181

Replication

When the slave server detects any change to its relay log, through a different thread,
the slave uses an SQL thread to execute the new SQL statement recorded in the relay
log to the slave’s databases. After the new entry is recorded in the slave’s relay log,
the new relay log position identification number is recorded in its relay log infor-
mation file (relay-log.info) through the slave’s SQL thread. Here is an excerpt from
a relay log information file:

/var/log/mysql/relay.000002
555
bin.000011
497

The first line lists the file path and name of the current relay log file
(Relay_Log_File in the SHOW SLAVE STATUS command). The second value is the SQL
thread’s position in the relay log file (Relay_Log_Pos). The third contains the name
of the current binary log file on the master (Relay_Master_Log_File). The last value
is the position in the master log file (Exec_Master_Log_Pos). These values can also be
found in the results of the SHOW SLAVE STATUS statement shown earlier in this section.

When the slave is restarted or its logs are flushed, it appends the name of the current
relay log file to the end of the relay log index file (relay-log.index). Here is an example
of a relay log index file:

/var/log/mysql/relay.000002
/var/log/mysql/relay.000003
/var/log/mysql/relay.000004

This process of separating threads keeps the I/O thread free and dedicated to re-
ceiving changes from the master. It ensures that any delays in writing to the slave’s
databases on the SQL thread will not prevent or slow the receiving of data from the
master. With this separate thread method, the slave server naturally has exclusive
access to its relay log file at the filesystem level.

As an additional safeguard to ensure accuracy of data, the slave compares the entries
in the relay log to the data in its databases. If the comparison reveals any inconsis-
tency, the replication process is stopped and an error message is recorded in the
slave’s error log (error.log). The slave will not restart until it is told to do so. After
you have resolved the discrepancy that the slave detected in the data, you can then
instruct the slave to resume replication, as explained later in this chapter.

Here is an example of what is recorded on a slave server in its error log when the
results don’t match:

020714 01:32:03 mysqld started
020714 1:32:05 InnoDB: Started
/usr/sbin/mysqld-max: ready for connections
020714 8:00:28 Slave SQL thread initialized, starting replication in log
'server2-bin.035' at position 579285542, relay log './db1-relay-bin.001'
position: 4
020714 8:00:29 Slave I/O thread: connected to master
'...@66.216.68.90:3306', replication started in log 'server2-bin.035' at
position 579285542 ERROR: 1146 Table 'test.response' doesn't exist
020714 8:00:30 Slave: error 'Table 'test.response' doesn't exist' on query
'INSERT INTO response SET connect_time=0.073868989944458,

182 | Chapter 8: Replication Statements and Functions

page_time=1.53695404529572, site_id='Apt'', error_code=1146
020714 8:00:30 Error running query, slave SQL thread aborted. Fix the
problem, and restart the slave SQL thread with "SLAVE START". We stopped at
log 'server2-bin.035' position 579285542
020714 8:00:30 Slave SQL thread exiting, replication stopped in log
'server2-bin.035' at position 579285542
020714 8:00:54 Error reading packet from server: (server_errno=1159)
020714 8:00:54 Slave I/O thread killed while reading event
020714 8:00:54 Slave I/O thread exiting, read up to log 'server2-bin.035',
position 579993154
020714 8:01:58 /usr/sbin/mysqld-max: Normal shutdown

020714 8:01:58 InnoDB: Starting shutdown...
020714 8:02:05 InnoDB: Shutdown completed
020714 8:02:06 /usr/sbin/mysqld-max: Shutdown Complete

020714 08:02:06 mysqld ended

In the first message, I have boldfaced an error message showing that the slave has
realized the relay log contains entries involving a table that does not exist on the
slave. The second boldfaced comment gives a message informing the administrator
of the decision and some instructions on how to proceed.

The replication process may seem very involved and complicated at first, but it all
occurs quickly; it’s typically not a significant drain on the master server. Also, it’s
surprisingly easy to set up: it requires only a few lines of options in the configuration
files on the master and slave servers. You will need to copy the databases on the
master server to the slave to get the slave close to being current. Then it’s merely a
matter of starting the slave for it to begin replicating. It will quickly update its data
to record any changes made since the initial backup copied from the master was
installed on the slave. From then on, replication will keep it current—theoretically.
As an administrator, you will have to monitor the replication process and resolve
problems that arise occasionally.

Before concluding this section, let me adjust my previous statement about the ease
of replication: replication is deceptively simple. When it works, it’s simple. Before
it starts working, or if it stops working, the minimal requirements of replication
make it difficult to determine why it doesn’t work. Now let’s look at the steps for
setting up replication.

The Replication User Account
There are only a few steps to setting up replication. The first step is to set up user
accounts dedicated to replication on both the master and the slave. It’s best not to
use an existing account for security reasons. To set up the accounts, enter an SQL
statement like the following on the master server, logged in as root or a user that has
the GRANT OPTION privilege:

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*
TO 'replicant'@'slave_host' IDENTIFIED BY 'my_pwd';

The Replication User Account | 183

Replication

These two privileges are all that are necessary for a user to replicate a server. The
REPLICATE SLAVE privilege permits the user to connect to the master and to receive
updates to the master’s binary log. The REPLICATE CLIENT privilege allows the user
to execute the SHOW MASTER STATUS and the SHOW SLAVE STATUS statements. In this
SQL statement, the user account replicant is granted only what is needed for repli-
cation. The username can be almost anything. Both the username and the hostname
are given within quotes. The hostname can be one that is resolved
through /etc/hosts (or the equivalent on your system), or it can be a domain name
that is resolved through DNS. Instead of a hostname, you can give an IP address:

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*
TO 'replicant'@'12.127.17.72' IDENTIFIED BY 'my_pwd';

If you upgraded MySQL on your server to version 4.x recently, but you didn’t up-
grade your mysql database, the GRANT statement shown won’t work because these
privileges didn’t exist in the earlier versions. For information on fixing this problem,
see the section on mysql_fix_privilege_tables in Chapter 16.

Now enter the same GRANT statement on the slave server with the same username
and password, but with the master’s hostname or IP address:

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*
TO 'replicant'@'master_host' IDENTIFIED BY 'my_pwd';

There is a potential advantage of having the same user on both the master and the
slave: if the master fails and will be down for a while, you can redirect users to the
slave with DNS or by some other method. When the master is back up, you can then
use replication to get the master up-to-date by temporarily making it a slave to the
former slave server. This is cumbersome, though, and is outside the scope of this
book. For details, see High Performance MySQL (O’Reilly). You should experiment
with and practice such a method with a couple of test servers before relying on it
with production servers.

To see the results of the first GRANT statement for the master, enter the following:

SHOW GRANTS FOR 'replicant'@'slave_host' \G

*************************** 1. row ***************************
Grants for replicant@slave_host:

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*
TO 'replicant'@'slave_host'
IDENTIFIED BY PASSWORD '*60115BF697978733E110BA18B3BC31D181FFCG082'

Note, incidentally, that the password has been encrypted in the output. If you don’t
get results similar to those shown here, the GRANT statement entry failed. Check what
you typed when you granted the privileges and when you executed this statement.
If everything was typed correctly and included in both statements, verify that you
have version 4.0 of MySQL or higher, a version that supports these two new privi-
leges. Enter SELECT VERSION(); on each server to determine the versions they are
using.

184 | Chapter 8: Replication Statements and Functions

Configuring the Servers
Once the replication user is set up on both servers, you will need to add some lines
to the MySQL configuration file on the master and on the slave server. Depending
on the type of operating system, the configuration file will probably be called either
my.cnf or my.ini. On Unix types of systems, the configuration file is usually located
in the /etc directory. On Windows systems, it’s usually located in c:\ or in
c:\Windows. If the file doesn’t exist on your system, you can create it. Using a plain
text editor (e.g., vi or Notepad.exe)—one that won’t add binary formatting—add
the following lines to the configuration file of the master under the [mysqld] group
heading:

[mysqld]
server-id = 1
log-bin = /var/log/mysql/bin.log
...

The server identification number is an arbitrary number used to identify the master
server in the binary log and in communications with slave servers. Almost any whole
number from 1 to 4294967295 is fine. Don’t use 0, as that causes problems. If you
don’t assign a server number, the default server identification number of 1 will be
used. The default is all right for the master, but a different one should be assigned
to each slave. To keep log entries straight and avoid confusion in communications
between servers, it is very important that each slave have a unique number.

In the configuration file excerpt shown here, the line containing the log-bin option
instructs MySQL to perform binary logging to the path and file given. The actual
path and filename is mostly up to you. Just be sure that the directory exists and that
the user mysql is the owner, or at least has permission to write to the directory. By
default, if a path is not given, the server’s data directory is assumed as the path for
log files. To leave the defaults in place, give log-bin without the equals sign and
without the file pathname. This example shows the default pathname. If you set the
log file name to something else, keep the suffix .log as shown here. It will be replaced
automatically with an index number (e.g., .000001) as new log files are created when
the server is restarted or the logs are flushed.

These two options are all that is required on the master. They can be put in the
configuration file or given from the command line when starting the mysqld daemon
each time. On the command line, add the required double dashes before each option
and omit the spaces around the equals signs.

For InnoDB tables, you may want to add the following lines to the master’s config-
uration file:

innodb_flush_log_at_trx_commit = 1
sync-binlog = 1

These lines resolve problems that can occur with transactions and binary logging.

For the slave server, we will need to add several options to the slave’s configuration
file, reflecting the greater complexity and number of threads on the slave. You will
have to provide a server identification number, information on connecting to the

Configuring the Servers | 185

Replication

master server, and more log options. Add lines similar to the following to the slave’s
configuration file:

[mysqld]
server-id = 2

log-bin = /var/log/mysql/bin.log
log-bin-index = /var/log/mysql/log-bin.index
log-error = /var/log/mysql/error.log

relay-log = /var/log/mysql/relay.log
relay-log-info-file = /var/log/mysql/relay-log.info
relay-log-index = /var/log/mysql/relay-log.index

slave-load-tmpdir = /var/log/mysql/
skip-slave-start
...

At the top, you can see the server identification number is set to 2. The next stanzas
set the logs and related index files. If these files don’t exist when the slave is started,
it will automatically create them.

The second stanza starts binary logging like on the master server, but this time on
the slave. This is the log that can be used to allow the master and the slave to reverse
roles as mentioned earlier. The binary log index file (log-bin.index) records the name
of the current binary log file to use. The log-error option establishes an error log.
Any problems with replication will be recorded in this log.

The third stanza defines the relay log that records each entry in the master server’s
binary log, along with related files mentioned earlier. The relay-log-info-file op-
tion names the file that records the most recent position in the master’s binary log
that the slave recorded for later execution (not the most recent statement actually
executed by the slave), while the relay log index file in turn records the name of the
current relay log file to use for replication.

The slave-load-tmpdir option is necessary only if you expect the LOAD DATA
INFILE statement to be executed on the server. This SQL statement is used to import
data in bulk into the databases. The slave-load-tmpdir option specifies the tempo-
rary directory for those files. If you don’t specify the option, the value of the
tmpdir variable will be used. This relates to replication because the slave will log
LOAD DATA INFILE activities to the log files with the prefix SQL_LOAD- in this directory.
For security, you may not want those logs to be placed in a directory such as /tmp.

The last option, skip-slave-start, prevents the slave from replicating until you are
ready. The order and spacing of options, incidentally, are a matter of personal style.

To set variables on the slave related to its connection with the master (e.g., the
master’s host address), it is recommended that you use the CHANGE MASTER TO state-
ment to set the values on the slave. You could provide the values in the configuration
file. However, the slave will read the file only the first time you start up the slave for
replication. Because the values are stored in the master.info file, MySQL just relies
on that file during subsequent startups and ignores these options in the main MySQL
configuration file. The only time it adjusts the master.info file contents is when you

186 | Chapter 8: Replication Statements and Functions

tell it to explicitly through a CHANGE MASTER TO statement. You could edit the
master.info file and other replication information files directly, but you might cause
more problems in doing so. It’s best to use the CHANGE MASTER TO statement to make
changes. Here is an example:

CHANGE MASTER TO MASTER_HOST = 'master_host';
CHANGE MASTER TO MASTER_PORT = 3306;
CHANGE MASTER TO MASTER_USER = 'replicant';
CHANGE MASTER TO MASTER_PASSWORD = 'my_pwd';

This set of SQL statements provides information about the master server. The first
statement gives the hostname (or the IP address) of the master. The next one provides
the port for the connection. Port 3306 is the default port for MySQL, but another
could be used for performance or security considerations. The next two lines set the
username and password for logging into the master server. After you run these SQL
statements, their values are stored in the master.info file and you shouldn’t need to
rerun the statements upon subsequent startups.

At this point, the servers should be configured properly. Next, you will need to get
the slave’s data current by making a backup on the master server and copying it
manually to the slave. This is described in the following section. If the master and
slave are new servers and the master has no data yet, you can skip the next section
and proceed to “Starting Replication.”

Copying Databases and Starting Replication
If you’re setting up replication with an existing server that already contains data,
you will need to make an initial backup of the databases and copy the backup to the
slave server. I’ll list the recommended method first, followed by some alternatives
and their limitations.

To get a snapshot of the database in a consistent state, you need to shut down the
server while you make a copy of the data, or at least prevent users from changing
data. Considering that once you set up replication you may never have to shut down
your master server for backups again, explain to management that it’s worth incon-
veniencing the users this one time to get a clean, consistent backup. The following
sections will explain how to lock the tables. Note that you can allow users to make
changes as soon as your copy is made. If they make changes before replication starts,
MySQL can easily recognize and incorporate those changes into the slave.

Using mysqldump
This utility, described in Chapter 16, creates a file of SQL statements that can later
be executed to recreate databases and their contents. For the purposes of setting up
replication, use the following options while running the utility from the command
line on the master server:

mysqldump --user=root --password=my_pwd \
 --extended-insert --all-databases \
 --ignore-table=mysql.users --master-data > /tmp/backup.sql

Copying Databases and Starting Replication | 187

Replication

The result is a text file (backup.sql) containing SQL statements to create all of the
master’s databases and tables and insert their data. Here is an explanation of some
of the special options shown:

--extended-insert
This option creates multiple-row INSERT statements and thereby makes the
resulting dump file smaller. It also allows the backup to run faster.

--ignore-table
This option is used here so that the usernames and passwords won’t be copied.
This is a good security precaution if the slave will have different users, and
especially if it will be used only for backups of the master. Unfortunately, there
is no easy way to exclude the entire mysql database containing user information.
You could list all the tables in that database to be excluded, but they have to be
listed separately, and that becomes cumbersome. The only table that contains
passwords is the users table, so it may be the only one that matters. However,
it depends on whether you set security on a database, table, or other basis, and
therefore want to protect that user information.

--master-data
This option locks all of the tables during the dump to prevent data from being
changed, but allows users to continue reading the tables. This option also adds
a few lines like the following to the end of the dump file:

-- --
Position to start replication from --

CHANGE MASTER TO MASTER_LOG_FILE='bin.000846';
CHANGE MASTER TO MASTER_LOG_POS=427;

When the dump file is executed on the slave server, these lines will record the
name of the master’s binary log file and the position in the log at the time of the
backup, while the tables were locked. When replication is started, these lines
will provide this information to the master so it will know the point in the
master’s binary log to begin sending entries to the slave. This is meant to ensure
that any data that changes while you set up the slave server isn’t missed.

To execute the dump file and thereby set up the databases and data on the slave
server, copy the dump file generated by mysqldump to the slave server. The MySQL
server needs to be running on the slave, but not replication. Run the mysql client
through a command such as the following on the slave:

mysql --user=root --password=my_pwd < /tmp/backup.sql

This will execute all of the SQL statements in the dump file, creating a copy of the
master’s databases and data on the slave.

Alternative Methods for Making Copies
If you peruse MySQL documentation, you might get the idea that the LOAD DATA FROM
MASTER statement is ideal for making a copy, but it is actually not very feasible. First,
it works only on MyISAM tables. Second, because it performs a global read lock on

188 | Chapter 8: Replication Statements and Functions

the master while it is making a backup, it prevents the master from serving users for
some time. Finally, it can be very slow and depends on good network connectivity
(so it can time out while copying data). Basically, the statement is a nice idea, but
it’s not very practical or dependable in most situations. It has been deprecated by
MySQL AB and will be removed from future releases.

A better alternative is to drop down to the operating system level and copy the raw
files containing your schemas and data. To leave the server up but prevent changes
to data before you make a copy of the MySQL data directory, you could put a read-
only lock on the tables by entering the following command:

FLUSH TABLES WITH READ LOCK;

This statement will commit any transactions that may be occurring on the server,
so be careful and make sure the lock is actually in place before you continue. Then,
without disconnecting the client that issued the statement, copy the data directory
to an alternative directory. Once this is completed, issue an UNLOCK TABLES statement
in the client that flushed and locked the tables. After that, the master responds to
updates as usual, while you need only transfer the copy of the data directory to the
slave server, putting it into the slave server’s data directory. Be sure to change the
ownership of all of the files and directories to mysql. In Linux, this is done by entering
the following statement as root:

chown -R mysql:mysql /path_to_data

You will run into a complication with this method of copying the data directory if
you have InnoDB tables in your databases, because they are not stored in the data
directory. Also, if you don’t have administrative access to the filesystem to be able
to manually copy the data directory, you won’t be able to use this method. This is
why mysqldump remains the recommended method for copying the master’s data.

Starting Replication
After you create the replication user accounts, configure the servers properly, and
load the backed-up databases onto the slave server, you’re ready to begin replication.
Execute the following SQL statement while logged in as root or a user with SUPER
privileges on the slave:

START SLAVE;

After this statement is run, the slave should connect to the master and get the changes
it missed since the backup. From there, it should stay current by continuously in-
teracting with the master, as outlined in the “Replication Process” section earlier in
this chapter.

If everything is configured correctly on the slave, it will most likely start without a
problem and return no message when START SLAVE is executed. However, when the
slave tries to connect to the master, the connection may fail. Or when the SQL thread
begins processing entries received from the master, it may fail. For whatever reason,
if a slave fails after it is started, the client that started the slave will not be informed
of the failure, nor will it be informed of the subsequent termination of the slave

Starting Replication | 189

Replication

thread. For that information, you will have to read the slave’s error logs. To confirm
a slave is running, you can execute the SHOW SLAVE STATUS statement and check the
results to see what state the slave is in, if any. We will describe the various slave
states later in this chapter.

By default, the START SLAVE statement starts both the I/O thread and the execution
thread as described earlier in the “Replication Process” section. You can specify
which slave thread to start if you don’t want to start both. You can also specify a
particular master binary log file and the position in the log in which to stop repli-
cating. You shouldn’t need to make these distinctions when first starting a slave.
These extra options for START SLAVE are useful when debugging a problem with a
slave log, and especially when attempting to restore data to a particular position in
the log because a user entered an erroneous statement and you want to revert to an
earlier point in the database.

Here is an example of these possibilities:

START SLAVE SQL_THREAD
UNTIL MASTER_LOG_FILE = 'relay.0000052',
MASTER_LOG_POS = 254;

You can also control the processing of the relay log file with this syntax, but using
the RELAY_LOG_FILE and the RELAY_LOG_POS parameters. You cannot specify a master
log position and a relay log position in the same statement, though.

The UNTIL clause will be ignored if the SQL thread is already running. It will also be
ignored if a slave already doing replication is shut down and restarted, or if the STOP
SLAVE statement is executed followed by a START SLAVE statement without the
UNTIL clause. Therefore, to use these options for fine-grained control, restart the slave
server with the --skip-slave-start option in the configuration file.

Backups with Replication
With replication running, it’s an easy task to make a backup of the data. You just
need to temporarily stop the slave server from replicating by entering the following
SQL statement while logged onto the slave server as root or as a user with SUPER
privileges:

STOP SLAVE;

The slave server knows the position where it left off in the binary log of the master
server and will record that information in the master.info file. So, you can take your
time making a backup of the replicated databases on the slave server. You can use
any backup utility or method you prefer. The only complication is if the slave also
assists in handling user requests for load balancing, in which case STOP SLAVE throws
the burden back on the master or on other slaves.

If the slave is used only for backups and has no users accessing the data, you could
simply copy the data directory. I prefer to use mysqldump because it’s fairly straight-
forward and works with all table types. To make a backup with mysqldump, enter
something like the following:

190 | Chapter 8: Replication Statements and Functions

mysqldump --user=root --password=my_pwd --lock-all-tables \
 --all-databases > /backups/mysql/backup.sql

When the backup is finished, enter the following SQL statement as root on the slave
server to restart replication:

START SLAVE;

After entering this statement, there should be a flurry of activity on the slave as it
executes the SQL statements that occurred while it was down. After a very short
period of time, though, it should be current.

SQL Statements and Functions in Alphabetical Order
Several SQL statements apply directly to replication. One function, MAS-
TER_POS_WAIT(  ), also applies to replication, and it is listed here with the statements.

CHANGE MASTER TO
CHANGE MASTER TO
[MASTER_HOST = 'host' |
MASTER_USER = 'user' |
MASTER_PASSWORD = 'password' |
MASTER_PORT = port |
MASTER_CONNECT_RETRY = count |
MASTER_LOG_FILE = 'filename' |
MASTER_LOG_POS = position |
RELAY_LOG_FILE = 'filename' |
RELAY_LOG_POS = position |
MASTER_SSL = {0|1} |
MASTER_SSL_CA = 'filename' |
MASTER_SSL_CAPATH = 'path' |
MASTER_SSL_CERT = 'filename' |
MASTER_SSL_KEY = 'filename' |
MASTER_SSL_CIPHER = 'list' |
MASTER_SSL_VERIFY_SERVER_CERT = {0|1}], [,...]

This statement changes the settings on a slave server related to the master server and
replication. Some of the variables relate to connecting to the master server, and some
relate to master log files and the current position in the log files. This statement is run
from the slave.

If the slave is engaging in replication, it may be necessary to use the STOP SLAVE statement
before using this statement and the START SLAVE statement afterward. These options can
be set from the server’s options file, but it’s much better to use this SQL statement to set
replication options. MASTER_SSL_VERIFY_SERVER_CERT is available as of version 5.1.18 of
MySQL and is comparable to the --ssl-verify-server-cert option. See Chapter 15 for
more information on this client option.

Multiple option and value pairs may be given in one CHANGE MASTER TO statement, as long
as the pairs are separated by commas. For example, the following SQL statement sets
several properties for this slave:

CHANGE MASTER TO

Chapter 8: Replication Statements and Functions | 191

Replication

CHANGE MASTER TO
 MASTER_HOST='mysql.company.com',
 MASTER_PORT=3306,
 MASTER_USER='slave_server',
 MASTER_PASSWORD='password',
 MASTER_CONNECT_RETRY=5;

The clauses related to log files name the master log files and provide the slave with the
current position of the master log files. This may be necessary when first setting up a new
slave or when a slave has been disabled for a while. Use the SHOW MASTER STATUS statement
to determine the current position of the master log files, and the SHOW SLAVE STATUS
statement to confirm a slave’s position for the related files. Here is an example using the
clauses related to log files:

CHANGE MASTER TO
 MASTER_LOG_FILE= 'log-bin.000153',
 MASTER_LOG_POS = 79,
 RELAY_LOG_FILE = 'log-relay.000153',
 RELAY_LOG_POS = 112;

The remaining clauses set various SSL variables. These values are saved to the
master.info file. To see the current values for these options, use the SHOW SLAVE STATUS
statement.

Relay log options are available as of version 4.1.1 of MySQL. The MASTER_SSL variable is
set to 0 if the master does not allow SSL connections, and 1 if it does. The
MASTER_SSL_CA variable holds the name of the file that contains a list of trusted certificate
authorities (CAs). MASTER_SSL_CAPATH contains the absolute path to that file. The
MASTER_SSL_CERT variable specifies the name of the SSL certificate file for secure connec-
tions, and MASTER_SSL_KEY specifies the SSL key file used to negotiate secure connections.
Finally, MASTER_SSL_CIPHER provides a list of acceptable cipher methods for encryption.

LOAD DATA FROM MASTER
LOAD DATA FROM MASTER

This statement has been deprecated and will be removed from future releases of MySQL.
It never worked very well. It was meant to make a copy of all the databases on the master
server (except the mysql database) and copy them to the slave servers. It gets a global read
lock on all tables while it takes a snapshot of the databases, and releases the lock before
copying them to the slaves. The MASTER_LOG_FILE and the MASTER_LOG_POS variables will
be updated so that the slave knows where to begin logging.

This statement works only with MyISAM tables. The user for the connection must have
RELOAD, SELECT, and SUPER privileges on the master server. The user must also have
CREATE and DROP privileges on the slave server. For large databases, increase the values of
the net_read_timeout and net_write_timeout variables with the SET statement. To load
a specific table from the master server, use the LOAD TABLE...FROM MASTER statement.

Again, this statement does not work very well: it’s not dependable and usually has prob-
lems with properly copying data from the master to the slave. Instead, use a utility such
as mysqldump to copy the data on the master and then transfer the resulting file to the
slave, as described in detail in the tutorial section at the start of this chapter.

LOAD DATA FROM MASTER

192 | Chapter 8: Replication Statements and Functions

LOAD TABLE...FROM MASTER
LOAD TABLE table FROM MASTER

This statement has been deprecated and will be removed from future releases of MySQL
because it has many problems. It was meant to copy a MyISAM table from the master
server to a slave server. The user for the connection must have RELOAD and SUPER privileges
as well as SELECT privileges for the table on the master server. The user must also have
CREATE and DROP privileges on the slave server.

Instead of using this statement, use a utility such as mysqldump to copy the data from the
master. This method is described in detail in the tutorial section at the start of this chapter.

MASTER_POS_WAIT(  )
MASTER_POS_WAIT(log_filename, log_position[, timeout])

This function is useful to synchronize MySQL master and slave server logging. The func-
tion causes the master to wait until the slave server has read and applied all updates to
the position (given in the second argument) in the master log (named in the first argu-
ment). You can specify a third argument to set the number of seconds the master will
wait. A value of 0 or a negative amount is given to instruct the function not to time out
and to keep trying.

The function returns the number of log entries that were made by the slave while the
master was waiting. If all is set properly, you should receive these results rapidly. How-
ever, if there is an error, NULL is returned. NULL is also returned if the slave’s SQL
thread is not started, if the slave’s master options are not set, or if the parameters given
with this function are not correct. If you give the timeout parameter and the amount of
time is exceeded, –1 is returned.

PURGE MASTER LOGS
PURGE {MASTER|BINARY} LOGS {TO 'log_filename'|BEFORE 'date'}

This statement deletes the binary logs from a master server. The keywords MASTER and
BINARY are synonymous and one is required for the statement. Log files are deleted se-
quentially from the starting log file to the one named with the TO clause, or up until (but
not including) the date named with the BEFORE clause. Here is an example of each method:

PURGE MASTER LOGS TO 'log-bin.00110';
PURGE MASTER LOGS BEFORE '2004-11-03 07:00:00';

Before running this statement, it would be prudent to make a backup of the logs. Then
use SHOW SLAVE STATUS on each slave to determine which logs the slaves are reading, and
run SHOW BINARY LOGS on the master server to get a list of log files. The oldest log file in
the list is the one that will be purged. If the slaves are current, they shouldn’t be reading
this log file. If they still are, you might not want to purge it. If you find that your log files
aren’t being rotated very often, you can set the system variable expire_logs_days to
shorten the amount of time before new log files are created and old ones archived.

PURGE MASTER LOGS

Chapter 8: Replication Statements and Functions | 193

Replication

RESET MASTER
RESET MASTER

This statement deletes all the binary log files on the master server. Binary log files are
located in the directory indicated by the value of the --log-bin option of mysqld (see
Chapter 15). The log files are typically named log-bin.n, where n is a six-digit numbering
index. Use the SHOW MASTER LOGS statement to get a list of log files to be sure.

This statement will delete all of the master log files and begin numbering the new file at
000001. To get the slave servers in line with the reset master, run the RESET SLAVE state-
ment. You can run the MASTER and SLAVE options together in a comma-separated list like
so:

RESET MASTER, SLAVE;

This is a recommended method for ensuring consistency.

RESET SLAVE
RESET SLAVE

Use this statement within or after the RESET MASTER statement that sets the binary logging
index back to 1. This statement will delete the master.info file, the relay-log.info file, and
all of the relay log files on the slave server. It will delete the relay log files regardless of
whether the SQL thread has finished executing its contents. A new .info file will be created
with the default startup values.

SET GLOBAL SQL_SLAVE_SKIP_COUNTER
SET GLOBAL SQL_SLAVE_SKIP_COUNTER = number

This statement skips the given number of events from the master. It is used for fine-tuning
a recovery. It returns an error if the slave thread is running. Here is an example:

SET GLOBAL SQL_SLAVE_SKIP_COUNTER=10;

SET SQL_LOG_BIN
SET SQL_LOG_BIN = {0|1}

This statement enables or disables binary logging of SQL statements for the current con-
nection. It does not affect logging for the activities of other threads and is reset to the
default value when the connection is closed. The statement requires SUPER privileges. A
value of 0 disables binary logging; 1 enables it. Here is an example:

SET SQL_LOG_BIN = 0;

SHOW BINLOG EVENTS
SHOW BINLOG EVENTS [IN 'log_filename']
 [FROM position] [LIMIT [offset,] count]

This statement displays the events in a binary log file. Use the IN clause to specify a
particular log file. If the IN clause is omitted, the current file is used. To obtain a list of

RESET MASTER

194 | Chapter 8: Replication Statements and Functions

binary log files, use the SHOW MASTER LOGS statement. Here is an example of how you can
use this statement and typical results:

SHOW BINLOG EVENTS IN 'log-bin.000161'\G
*************************** 1. row ***************************
 Log_name: log-bin.000161
 Pos: 4
 Event_type: Start
 Server_id: 1
Orig_log_pos: 4
 Info: Server ver: 4.1.7-standard-log, Binlog ver: 3
1 row in set (0.00 sec)

This log file has only one row of data because the SQL statement was run shortly after
the server was started. For a larger log file recording many rows of events, the results take
a long time and drain system resources significantly. To minimize this, you can focus and
limit the results with the FROM and LIMIT clauses. In the results, notice the Pos label with
a value of 4. In a large log file, that number might be in the thousands. The results
displayed could be focused only on rows starting from a particular position in the log
with the FROM clause. You can limit the number of rows of events displayed with the
LIMIT clause. In the LIMIT clause, you can also set the starting point of the output based
on the number of rows in the results set and limit them to a certain number of rows. Here
is an example of both of these clauses:

SHOW BINLOG EVENTS IN 'log-bin.000160'
FROM 3869 LIMIT 2,1\G
*************************** 1. row ***************************
 Log_name: log-bin.000160
 Pos: 4002
 Event_type: Intvar
 Server_id: 1
Orig_log_pos: 4002
 Info: INSERT_ID=5

In this example, the retrieval of log events is to begin from position 3869 as set by the
FROM clause. The results set contains several rows, although only one is shown here. The
display is limited to one row, starting from the third one in the results set per the LIMIT
clause. The number of skipped records is the sum of the FROM argument and the first
LIMIT argument.

As an alternative to using this statement when working with large binary log files, you
might try using the mysqlbinlog utility and redirecting the results to a text file that you
can read in a text editor when it’s finished. Besides, this utility will provide you more
information than SHOW BINLOG EVENTS.

SHOW BINARY LOGS
SHOW BINARY LOGS

This statement displays a list of binary logs created by the master MySQL server in the
filesystem directory. It’s synonymous with SHOW MASTER LOGS. To delete logs, see the
description of the PURGE MASTER LOGS statement earlier in this chapter. For information
on enabling logs, see Chapter 16. Here is an example:

SHOW BINARY LOGS;

SHOW BINARY LOGS

Chapter 8: Replication Statements and Functions | 195

Replication

SHOW MASTER LOGS
SHOW MASTER LOGS

This statement displays a list of binary logs created by the master MySQL server in the
filesystem directory. It’s synonymous with SHOW BINARY LOGS. To delete logs, see the
description of the PURGE MASTER LOGS statement earlier in this chapter. For information
on enabling logs, see Chapter 16.

SHOW MASTER STATUS
SHOW MASTER STATUS

This statement displays information on the status of the binary log file that is being used
currently on the master MySQL server:

SHOW MASTER STATUS;

+----------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+----------------+----------+--------------+------------------+
| log-bin.000141 | 1123 | | |
+----------------+----------+--------------+------------------+

SHOW SLAVE HOSTS
SHOW SLAVE HOSTS

This statement displays a list of slave servers for the master server. Slaves must be started
with the --report-host=slave option in order to be shown. Here is an example:

SHOW SLAVE HOSTS;

+------------+-----------+------+-----------+
| Server_id | Host | Port | Master_id |
+------------+-----------+------+-----------+
| 2 | slave2 | 3306 | 1 |
| 3 | slave3 | 3306 | 1 |
+------------+-----------+------+-----------+

Four fields are in the results:

Server_id
The server identification number for the slave server, which is set by the
--server-id option (preferably in the slave’s options file).

Host
The hostname of the slave server, which is set by the --report-host option on the
slave.

Port
The port on which the slave is listening for replication. This defaults to 3306, but
can be set with the CHANGE MASTER TO statement, described earlier in this chapter.

Master_id
The server identification number of the master. It’s set on the master with
--server-id and conversely on the slave with the CHANGE MASTER TO statement.

SHOW MASTER LOGS

196 | Chapter 8: Replication Statements and Functions

SHOW SLAVE STATUS
SHOW SLAVE STATUS

This statement displays information on the slave thread. Here is an example of this
statement and its results:

SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: localhost
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 5
 Master_Log_File: log-bin.000154
 Read_Master_Log_Pos: 159
 Relay_Log_File: log-relay-bin.154
 Relay_Log_Pos: 694
Relay_Master_Log_File: log-bin.154
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 159
 Relay_Log_Space: 694
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: Yes
 Master_SSL_CA_File: ssl_ca.dat
 Master_SSL_CA_Path: /data/mysql/ssl_ca
 Master_SSL_Cert: ssl_cert.dat
 Master_SSL_Cipher:
 Master_SSL_Key:
Seconds_Behind_Master: 3

You can set some of these values at startup with the MySQL server daemon (mysqld).
See Chapter 15 for more information on setting server variables at startup. You can also
set some of these variables with the SET statement, and you can adjust others for particular
tables with the ALTER TABLE statement. You can reset some of the log file variables with
the RESET MASTER and RESET SLAVE statements.

START SLAVE
START SLAVE [IO_THREAD|SQL_THREAD]

START SLAVE [SQL_THREAD]
 UNTIL MASTER_LOG_FILE = 'log_filename', MASTER_LOG_POS = position
START SLAVE [SQL_THREAD]
 UNTIL RELAY_LOG_FILE = 'log_filename', RELAY_LOG_POS = position

Use this statement to start a slave server. In the first syntax, you can start just the I/O
thread or just the SQL thread by using the respective keyword. You can start both by

START SLAVE

Chapter 8: Replication Statements and Functions | 197

Replication

listing both keywords, separated by a comma. The default is to start both. The I/O thread
reads SQL queries from the master server and records them in the relay log file. The SQL
thread reads the relay log file and then executes the SQL statements. See the “Replication
Process” section earlier in this chapter for details.

The second syntax limits the reading of the threads to a specific point, given with
MASTER_LOG_POS, in the master log file named with the MASTER_LOG_FILE parameter. The
UNTIL clause stops processing of the given log files when the given position is reached.
The third syntax specifies the relay log file and limits its reading and execution. If the
SQL_THREAD keyword is given in either the second or third syntaxes, the reading will be
limited to the SQL thread.

The starting of a slave thread isn’t always dependable. Run the SHOW SLAVE STATUS
statement to confirm that the thread began and remained running.

STOP SLAVE
STOP SLAVE [IO_THREAD|SQL_THREAD]

This statement stops the slave server threads. To stop a specific type of slave thread,
specify one or both of the thread types. Both may be given in a comma-separated list.
The default is to stop both. The statement requires SUPER privileges. You can start slave
threads with the START SLAVE statement.

Replication States
In order to be able to monitor replication effectively, you need to know and under-
stand the various states that the master and slave can occupy. Server states can be
displayed by using the SHOW PROCESSLIST statement on the master and the slave. At
least one line of the results will be related to the replication activities for the user
account associated with replication. Following the examples of this chapter, the
account is replicant on the master and system user on the slave. In the Command col-
umn, on the master the value will be Binlog Dump, meaning a binary log thread; on
the slave the value will be Connect. The results will also contain a field called
State, in which the state of the thread will be given. Here is an example from a slave:

SHOW PROCESSLIST \G
*************************** 1. row ***************************
 Id: 16
 User: system user
 Host:
 db: NULL
 Command: Connect
 Time: 119255
 State: Waiting for master to send event
 Info: NULL

These results show only one thread, the I/O thread waiting on the master. If the
server were processing entries from the master’s binary log, there would probably
be another row shown in the results for the SQL thread. What follows is a list of all
of the possible server states that you may see on master and slave servers, along with

STOP SLAVE

198 | Chapter 8: Replication Statements and Functions

descriptions of each. In addition to understanding these traits, you may want to
develop a script to check that replication is running on the slave and not stalled and
to notify you if it’s not running. Replication on MySQL is very stable, but if it does
stop, it’s very quiet about it. Fortunately, it’s very good about rapidly catching up
once you restart it.

Master BinLog Dump Thread States
Here is an overview of master server replication states that can be reported for binary
log threads (Binlog Dump):

Has sent all binlog to slave; waiting for binlog to be updated
This is the most common status message you should see for a slave connection
on the master. In this state, the master is basically doing nothing regarding
replication. It has sent the slave all entries requested and is now waiting for
another event to occur that will cause its binary log to be updated. Notice that
it says it is waiting for the binary log to be updated. It doesn’t say it’s waiting
for the databases to be updated. That’s handled by a different component of
MySQL. The thread lives only to provide information about the binary log to
the slave.

Sending binlog event to slave
After the binary log has been updated, the master informs the slave that one or
more new entries have been made. If the slave requests the entries, the master
enters this state, indicating that it is in the process of sending a slave entries or
information on pertinent database events. There are obviously other states in
between, but they are so fast and short-lived that they are not registered and
therefore will not show up in the results of SHOW PROCESSLIST.

Finished reading one binlog; switching to next binlog
If a slave has been offline for a while, the master may have flushed its logs in
the interim. Whenever the master does this, it will start a new log file, saving
the previous ones. When a slave requests log entries that span more than one
log file as the master switches from one file to the next, it enters this state.

Waiting to finalize termination
Once the master has completed the process of updating a slave, the master
shows this status as it’s closing the binary log file and winding down the com-
munication with the slave. When it is finished, the master will return to the first
thread state (Has sent all binlog to slave; waiting for binlog to be updated) in
which it is waiting for more changes to the binary log.

Slave I/O Thread States
Here is a list of replication states that can be found on the slave server for I/O threads:

Connecting to master
This state indicates that the slave I/O thread is attempting to connect to the
master. If it can’t connect, it may stay in this state for a while as it retries.

Replication States | 199

Replication

Checking master version
After the slave connects to the master, it compares versions of MySQL with the
master to ensure compatibility. This is very quick.

Registering slave on master
After the slave connects to the master, it registers itself with the master as a
replication slave server. During this process, it will be in this state. On the master
side of the connection, the Binlog Dump state will be Has sent all binlog to slave;
waiting for binlog to be updated, as described previously.

Requesting binlog dump
When the slave has been informed of changes to the master binary log, it enters
this state to request the new entries. Also, when it first connects to a server—
either for the first time or after having been disconnected for a while—it enters
this state briefly to request all entries since the last master binary log position
that it gives the master. If no changes have occurred, none are returned. If there
are new entries, the entries starting from the position given until the end of the
master’s binary log will be transmitted to the slave. On the master side, you will
see the state Sending binlog event to slave as a result of the request.

Waiting to reconnect after a failed binlog dump request
If the request for new entries mentioned in the previous state fails to be received
from the master, the slave enters this state as it waits to be able to connect to
the master periodically. This timeout period is configured using the --master-
connect-retry and defaults to 60 seconds. The number of retries it will make
can be found in the master.info file shown earlier in this chapter. Each time the
slave attempts to reconnect, it will enter the next state.

Reconnecting after a failed binlog dump request
If the slave failed to stay connected to the master while trying to retrieve entries
to the master’s binary log (as mentioned in the previous state description), this
state indicates that the slave is trying to reconnect. If it fails again, it will go back
to the previous state and wait to retry. By default, it will try 60 times before
stopping. You can change the number of retries with the --master-connect-
retry option.

Waiting for master to send event
This state is the most common that you will see, unless your server is very busy.
The SQL thread is currently connected to the master and is waiting for the
master to send it binary log updates. If there is no activity after a while, the
connection will time out. The number of seconds that will elapse before timeout
is reached can be found in the variable slave_net_timeout (previously
slave_read_timeout). A timeout is the same as a lost connection for the slave.
Therefore, it will become active and attempt to reconnect to the master, then
inquire about any changes to the master’s binary log, before entering this state
again.

Queueing master event to the relay log
This state occurs when the slave I/O thread has received changes to the master’s
binary log from the master and is writing the SQL statements and the related
information to the slave’s relay log. Once it’s done, the slave’s SQL thread will

200 | Chapter 8: Replication Statements and Functions

read the relay log and execute the new SQL statements written to the log. On
the SQL thread, this is the Reading event from the relay log state described in
the next section.

Waiting to reconnect after a failed master event read
If the connection to the slave failed while reading an event (represented by an
entry in the master’s binary log), the slave will wait in this state for a certain
amount of time before attempting to reconnect to the master. The number of
seconds that the slave will wait before retrying is found in the master-connect-
retry variable on the slave. When the slave attempts to reconnect, it enters the
next state.

Reconnecting after a failed master event read
This state occurs after the slave I/O thread loses its connection to the master
while receiving an entry from the master binary log.

Waiting for the slave SQL thread to free enough relay log space
If the SQL thread isn’t processing the entries in the relay log fast enough, and
the backlog has caused the relay log files to become too large, the I/O thread
will enter this state. In this state, it’s waiting for the SQL thread to process
enough of the entries in the relay log so that the I/O thread can delete some of
the older content of the log. The maximum amount of space allocated for the
relay log files is found in the relay_log_space_limit variable. The slave SQL
thread automatically deletes relay log files. The FLUSH LOGS statement, though,
causes the slave to rotate log files and to consider deleting old files.

Waiting for slave mutex on exit
When the I/O thread has been terminated, it enters this state as it closes. The
term mutex stands for mutual exclusion. The SQL thread gets the mutex to
prevent any other slave replication activities so that replication can be shut
down without loss of data or file corruption.

Slave SQL Thread States
Here is a list of replication states that can be found on the slave server for SQL
threads:

Has read all relay log; waiting for the slave I/O thread to update it
Because replication is so fast, you will usually see the slave’s SQL thread in this
state unless you have a very busy database system with data constantly being
updated. This state indicates that the slave’s SQL thread has read all of the
entries in its relay log and has executed all of the SQL statements that it contains.
It has no further updates to make to its databases and is waiting for the slave’s
I/O thread to add more entries to the relay log file. As mentioned in the similar
state for the master, each thread acts somewhat independently and focuses only
on the activities of its purview. Messages related to each thread’s state reflect
this.

Replication States | 201

Replication

Reading event from the relay log
When an entry has been made to the relay log by the slave’s I/O thread, the
slave’s SQL thread enters this state. In this state it is reading the current relay
log file and is executing the new SQL statements that it contains. Basically, the
SQL thread is busy updating the slave’s databases.

Waiting for slave mutex on exit
When the SQL thread has finished updating the slave’s databases,it enters this
state while it’s closing the relay log file and terminating communications with
the slave server. The SQL thread gets the mutex to prevent any other slave
replication activities so that replication can be shut down without loss of data
or file corruption. This is a very minimal state. However, if there is a problem
with closing the relay log file or ending the activities of the slave server, this state
is displayed so that you know the thread is locked. This could be caused by a
table or log file being corrupted. If you see this state, you may want to run
myisamchk or a similar utility, or the REPAIR TABLE statement on the tables that
accessed at the time of the lockup. You’ll have to look in the relay log file and
the error log file on the slave to determine which tables might need checking.

202 | Chapter 8: Replication Statements and Functions

9
Stored Routines Statements

MySQL allows sets of SQL statements, known as routines, to be stored in the data-
base for easier and more consistent use. You can create your own functions based
on existing SQL statements and built-in functions, allowing a user to pass values to
these user-defined functions as well as receive values in return. This can make com-
plex tasks simpler for end users, as well as allow database administrators to control
or enhance the functions available to users. Additionally, MySQL provides SQL
statements related to events. Events are internal methods to schedule the execution
of SQL statements or stored procedures. These are the SQL statements covered in
this chapter:

ALTER EVENT, ALTER FUNCTION, ALTER PROCEDURE, ALTER TRIGGER, BEGIN...END, CALL,
CLOSE, CREATE EVENT, CREATE FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, DECLARE,
DELIMITER, DROP EVENT, DROP FUNCTION, DROP PREPARE, DROP PROCEDURE, DROP TRIG-
GER, EXECUTE, FETCH, OPEN, PREPARE, SHOW CREATE EVENT, SHOW CREATE FUNCTION, SHOW
CREATE PROCEDURE, SHOW EVENTS, SHOW FUNCTION CODE, SHOW FUNCTION STATUS, SHOW
PROCEDURE CODE, SHOW PROCEDURE STATUS, SHOW TRIGGERS.

Statements in Alphabetical Order
This section is an alphabetical listing of MySQL statements related to events, stored
procedures, triggers, and user-defined functions. For an explanation of the method
of presenting syntax and describing the SQL statements, as well as for information
related to examples, please see the introduction to Part II. Many of the examples in
this particular chapter involve the activities of a fictitious college.

203

ALTER EVENT
ALTER EVENT
[DEFINER = {'user'@'host'|CURRENT_USER}]
event
ON SCHEDULE
AT timestamp [+ INTERVAL count interval] |
EVERY count interval
 [STARTS timestamp [+ INTERVAL count interval]]
 [ENDS timestamp [+ INTERVAL count interval]]
[ON COMPLETION [NOT] PRESERVE]
[ENABLE|DISABLE|DISABLE ON SLAVE]
[COMMENT 'comment']
DO statement

Use this statement to alter an existing scheduled MySQL event. The statement can be
used to change the time when the scheduled SQL statement will execute or other aspects
of its upcoming execution. The event parameter has to be the name of an event that was
already scheduled but has not yet been completed, or was completed but preserved by
the server. It isn’t possible within MySQL to change the name of an event. Instead, use
the DROP EVENT statement to delete an existing event and then create it again with a new
name using CREATE EVENT. You can use the SHOW CREATE EVENT statement to be sure that
all other parameters are the same.

To change the MySQL user and host through which MySQL executes the event, use the
DEFINER clause. As of version 5.1.12 of MySQL, a user that has EVENT privilege can change
an event. Unless the definer is specified with the DEFINER clause, the user that changes an
event becomes the new definer.

To change the time and date that form the basis for running the event, use the
ON SCHEDULE AT clause and give the new time in the timestamp format (yyyy-mm-dd
hh:mm:ss). The time given can be a string, a time function, or just CURRENT_TIMESTAMP. You
can also specify a time relative to the timestamp given by adding a plus sign followed by
the keyword INTERVAL, the number of intervals (e.g., 1), and then the interval increment
(e.g., HOUR). For interval, use one of the allowable intervals shown in the description of
the CREATE EVENT statement later in this chapter.

To make the event a recurring one, add the EVERY clause, using the same syntax and
format. You can also give starting and ending times for a recurring event with the
STARTS and ENDS clauses.

If an event is not yet completed, you can keep the server from dropping it by adding the
ON COMPLETION clause with the PRESERVE keyword. If you already did this when you created
the event, you can change your mind and set the server to NOT PRESERVE the event.

If you created an event that you need to temporarily disable for some reason, you can do
so with this statement by using the DISABLE keyword. An event that has been disabled
can be enabled with the ENABLE keyword. The DISABLE ON SLAVE keyword prevents the
event from running on slave servers.

With the COMMENT clause, you can add or change a comment describing the event for future
reference. The DO clause can include any SQL statement to be executed. A stored proce-
dure can be used to easily execute a set of SQL statements.

ALTER EVENT

204 | Chapter 9: Stored Routines Statements

Here is an example using this statement to change a periodic event:

ALTER EVENT students_copy
ON SCHEDULE EVERY 1 DAY
STARTS '2007-12-10 01:30:00'
ON COMPLETION PRESERVE;

If you look at the example for CREATE EVENT later in this chapter, you’ll see that our only
change is to move the time from 2:30 A.M. to 1:30 A.M. here. The starting time and date
given are not only for the time we want, but since this statement is run on December 9,
the date of December 10 is given. When an event’s time is altered or when an event is
first created, it must be for a future time. The EVERY clause is included because STARTS is
part of it and not a separate clause of its own. So that the ON COMPLETION PRESERVE isn’t
set back to the default of ON COMPLETION NOT PRESERVE, we stipulate it again here.

ALTER FUNCTION
ALTER FUNCTION stored_procedure
 [{CONTAINS SQL|NO SQL|READS SQL DATA|MODIFIES SQL DATA} |
 SQL SECURITY {DEFINER|INVOKER} |
 COMMENT 'string']

This statement changes the characteristics of an existing user-defined function. You can-
not change the function itself with it. To do that, you need to delete the function with
DROP FUNCTION and create a new procedure with CREATE FUNCTION. See the description of
CREATE FUNCTION later in this chapter for an explanation of each characteristic.

There are three types of characteristics you can set or change with this statement: the
types of interaction with the server, the user recognized for SQL security, and a comment.
Each type may be given in a space-separated list, in any order. See CREATE FUNCTION later
in this chapter for a discussion of the characteristics. The COMMENT clause replaces any
existing comment. To clear a comment without inserting another, give two quotes with
nothing between them.

This statement requires the CREATE ROUTINE privilege. The ALTER ROUTINE and EXECUTE
privileges are granted to the user and host account that creates or alters a function, by
default.

Here is an example using this statement, in which a function shown in the example for
the CREATE FUNCTION statement is altered:

ALTER FUNCTION date_reformatted
SQL SECURITY INVOKER
COMMENT "Converts a string date like 'Dec. 7, 2007' to standard format.";

ALTER PROCEDURE
ALTER PROCEDURE stored_procedure
 [{CONTAINS SQL|NO SQL|READS SQL DATA|MODIFIES SQL DATA}]
 [SQL SECURITY {DEFINER|INVOKER}]
 [COMMENT 'string']

This statement changes the characteristics of an existing stored procedure. You cannot
change the procedure itself with it. To do that, you need to delete the procedure with

ALTER PROCEDURE

Chapter 9: Stored Routines Statements | 205

Stored Routines
Statem

ents

DROP PROCEDURE and create a new procedure with CREATE PROCEDURE. See the description
of CREATE PROCEDURE later in this chapter for an explanation of each characteristic.

There are three types of characteristics that you can set or change with this statement:
the types of interaction with the server, the user recognized for SQL security, and a com-
ment. Each type may be given in a space-separated list, in any order. See CREATE
PROCEDURE later in this chapter for a discussion of the characteristics. The COMMENT clause
replaces any existing comment. To clear a comment without inserting another, give two
quotes with nothing between them.

This statement requires the CREATE ROUTINE privilege. The ALTER ROUTINE and EXECUTE
privileges are granted to the user and host account that creates or alters a stored
procedure, by default.

Here is an example of this statement:

ALTER PROCEDURE students_copy_proc
SQL SECURITY INVOKER
COMMENT 'Copies data from students table to students_backup.
Add a comment with @ref_note.'

If you look at the example for CREATE PROCEDURE later in this chapter, you’ll see that the
example here is changing the procedure created in that example. We’re only adding that
the user account to be used for executing the procedure will be the invoker, and we’re
adding a comment about the procedure—we didn’t include one when we created the
procedure.

ALTER TRIGGER

There is not an ALTER TRIGGER statement at this time. Instead, use the DROP TRIGGER state-
ment and then CREATE TRIGGER again with the new, adjusted trigger.

BEGIN...END
BEGIN...END

Use this combination of statements to start and end the steps that are part of a stored
procedure or trigger. In essence, BEGIN marks the beginning of a compound SQL state-
ment and END marks the end of it. Multiple SQL statements can be included between
them.

Traditionally, as you know from using the mysql client, each SQL statement must end
with a semicolon. However, semicolons must be used within CREATE PROCEDURE and
CREATE TRIGGER statements to separate the internal statements that form the procedure
or trigger. So as not to confuse the parser in the client and server, include a DELIMITER
command to change the default delimiter to another character before entering BEGIN, and
then to set it back to a semicolon again after entering END. For examples of these state-
ments, see the CREATE PROCEDURE and CREATE TRIGGER statements later in this chapter.

ALTER TRIGGER

206 | Chapter 9: Stored Routines Statements

CALL
CALL stored_procedure[([parameter[, ...]])]

Use this statement to call a stored procedure. Parameters to be passed to the stored
procedure may be given within the parentheses. If the keyword of INOUT is used, values
may be given to the stored procedure and returned to the SQL statement that called it.
For an example of this statement, see the CREATE PROCEDURE statement later in this chapter.

CLOSE
CLOSE cursor

This statement closes a cursor that has been declared within the current routine and has
been opened using the OPEN statement. See the descriptions of the DECLARE and FETCH
statements later in this chapter for more information on cursors.

CREATE EVENT
CREATE [DEFINER = {'user'@'host'|CURRENT_USER}] EVENT
[IF NOT EXISTS] event
ON SCHEDULE
AT timestamp [+ INTERVAL count interval] |
EVERY count interval
 [STARTS timestamp [+ INTERVAL count interval]]
 [ENDS timestamp [+ INTERVAL count interval]]
[ON COMPLETION [NOT] PRESERVE]
[ENABLE|DISABLE|DISABLE ON SLAVE]
[COMMENT 'comment']
DO statement

Use this statement to schedule the execution of an SQL statement at a specific time and
date. Events may also be recurring. Although there are many options, the basic syntax is:

CREATE EVENT event ON SCHEDULE AT timestamp DO statement

The event name you give may be any nonreserved word and is case-insensitive. The DO
clause can include any SQL statement to be executed. A stored procedure can be passed
here to conveniently execute a set of SQL statements.

With the DEFINER clause, you can specify the MySQL user and host to be used by MySQL
for the event. This means that the event may be created by a user with SUPER privileges
but executed by another user account in which privileges are limited for security reasons.
The IF NOT EXISTS clause may be given to prevent errors from being returned if the event
has already been created.

For the required ON SCHEDULE AT clause, include a specific time and date in the time
stamp format (yyyy-mm-dd hh:mm:ss). The time given can be a string, a time function, or
just CURRENT_TIMESTAMP. You can also specify a time relative to the timestamp given by
adding a plus sign followed by the keyword INTERVAL, the number of intervals (e.g., 1),
and then the interval increment (e.g., HOUR). For interval, use one of the allowable in-
tervals: SECOND, MINUTE, MINUTE_SECOND, HOUR, HOUR_SECOND, HOUR_MINUTE, DAY, DAY_SECOND,
DAY_MINUTE, DAY_HOUR, WEEK, MONTH, QUARTER, YEAR, or YEAR_MONTH.

CREATE EVENT

Chapter 9: Stored Routines Statements | 207

Stored Routines
Statem

ents

To make the event a recurring one, add the EVERY clause, using the same syntax and
format. You can also give starting and ending times for a repeating event with the
STARTS and ENDS clauses.

Once an event is completed, it will be dropped automatically. However, you can drop it
manually before completion with the DROP EVENT statement. You can also keep the server
from dropping an event by adding the ON COMPLETION clause with the PRESERVE keyword.
The NOT PRESERVE keyword instructs the server not to retain the event when completed;
this is the server’s default behavior.

When creating an event, you may want to create it with the DISABLE parameter so that it
won’t begin to execute until you enable it. Then use the ALTER EVENT statement to enable
it later. The DISABLE ON SLAVE keyword will disable the event from running on slave
servers. By default, an event runs on the master and all slaves.

With the COMMENT clause, you can add a comment describing the event for future reference.
This comment is displayed only when SHOW CREATE EVENT is executed for the event.

Here is an example using this statement. It schedules a procedure that is created in the
example under the CREATE PROCEDURE statement later in this chapter:

CREATE EVENT students_copy
ON SCHEDULE EVERY 1 DAY
STARTS '2007-11-27 02:30:00'
ON COMPLETION PRESERVE
COMMENT 'Daily copy of students table to students_backup'
DO CALL students_copy_proc();

In this example, the event will be run once a day starting from the time given and then
every day afterward at the same time (2:30 A.M.). It’s set to be recurring, but in case
someone ever changes that aspect of it, MySQL will preserve the event upon completion.
We’ve added a comment to explain the purpose of the event. Use ALTER EVENT to change
an event and SHOW EVENTS to get a list of events.

CREATE FUNCTION
CREATE
[DEFINER = {'user'@'host'|CURRENT_USER}]
FUNCTION function ([parameter data_type[,...]])
RETURNS data_type
 [LANGUAGE SQL]
 [[NOT] DETERMINISTIC]
 [{CONTAINS SQL|NO SQL|READS SQL DATA|MODIFIES SQL DATA}]
 [COMMENT 'string']
 [SQL SECURITY {DEFINER|INVOKER}]
RETURN routine

A user-defined function is essentially a set of SQL statements that may be called as a unit,
processing any data it’s given in its parameters and returning a value to the caller of the
function. This is similar to a stored procedure, except that a function returns a value and
a stored procedure does not. A stored procedure normally places the values it generates
in user variables that can then be retrieved in various ways.

The basic, minimum syntax is something like this:

CREATE FUNCTION function_name (parameter) RETURNS INT RETURN routine

CREATE FUNCTION

208 | Chapter 9: Stored Routines Statements

The function name given can be any nonreserved name; don’t use the name of a built-in
function. The name is case-insensitive. Within parentheses, give a comma-separated list
of the parameters. For each parameter, specify the data type to be used (INT, CHAR, etc.).
The keyword RETURNS is followed by the data type of the value that will be returned by
the function. At the end comes the keyword RETURN followed by the routine to perform.

You may provide special parameters to indicate the characteristics of the function. Several
may be given in any order, in a space-separated list. You can specify the language used
as SQL with the LANGUAGE SQL parameter, but this is the default and usually unnecessary.

A function that returns the same results each time for the same given parameters is con-
sidered deterministic. You can save processing time on the server by specifying this
property through the DETERMINISTIC parameter. NOT DETERMINISTIC is the default.

The following keywords may be used to tell the server how the function will interact with
it, allowing the server to optimize the function. The server does not enforce the restric-
tions on the function, however:

CONTAINS SQL
The function executes SQL statements, but does not read from or write to a table;
one example is a function that queries server status. This is the default.

NO SQL
The function does not contain any SQL statements.

READS SQL DATA
The function might read data from at least one table, but it doesn’t write data to
any tables.

MODIFIES SQL DATA
The function might write data to at least one table, as well as potentially read data
from tables.

With the COMMENT clause, you can add a comment describing the function for future
reference.

This statement requires the CREATE ROUTINE privilege. The ALTER ROUTINE and EXECUTE
privileges are granted to the user and host account that creates or alters a routine, by
default. With the DEFINER clause, you can specify the MySQL user and host to be used
by MySQL for the function. Related to this clause is SQL SECURITY keyword, which in-
structs MySQL to use either the user account of the creator (DEFINER) of the function or
the account that’s calling the function (INVOKER). This can help to prevent some users
from accessing restricted functions.

Here is an example using this statement:

CREATE FUNCTION date_reformatted (new_date VARCHAR(13))
RETURNS DATE
RETURN STR_TO_DATE(REPLACE(new_date, '.', ''), '%b %d, %Y');

SELECT date_reformatted('Dec. 7, 2007')
AS proper_date;

+-------------+
| proper_date |
+-------------+

CREATE FUNCTION

Chapter 9: Stored Routines Statements | 209

Stored Routines
Statem

ents

| 2007-12-07 |
+-------------+

This function simply uses the STR_TO_DATE() function to convert a string to a particular
date format (i.e., yyyy-mm-dd) based on a common string that users may give. It expects
the data given to be no more than 13 characters long. Because some users may include
a period after the abbreviated month name and some may not, the function uses the
REPLACE() function to remove the period. A function like this one can be used in any
type of statement (e.g., an UPDATE statement to set a column value).

To change an existing user-defined function, use the ALTER FUNCTION statement. The DROP
FUNCTION statement removes a user-defined function. You cannot change standard, built-
in functions.

CREATE PROCEDURE
CREATE
[DEFINER = {'user'@'host'|CURRENT_USER}]
PROCEDURE stored_procedure ([[IN|OUT|INOUT] parameter data_type[,...]])
 [LANGUAGE SQL]
 [NOT] DETERMINISTIC]
 [{CONTAINS SQL|NO SQL|READS SQL DATA|MODIFIES SQL DATA}]
 [COMMENT 'string']
 [SQL SECURITY {DEFINER|INVOKER}]
routine

A procedure, also known as a stored procedure, is a set of SQL statements stored on the
server and called as a unit, processing any data it’s given in its parameters. A procedure
may communicate results back to the user by placing the values it generates in user
variables that can then be retrieved in various ways.

The basic, minimum syntax is something like this:

CREATE PROCEDURE procedure_name (IN parameter INT) SQL_statements

The procedure name given can be any nonreserved name, and is case-insensitive. Within
parentheses, give a comma-separated list of the parameters that will take data in (IN),
return data (OUT), or do both (INOUT). For each parameter, specify the data type to be used
(INT, CHAR, etc.).

You may provide special parameters to indicate the characteristics of the stored proce-
dure. Several may be given in any order, in a space-separated list. You can specify the
language used as SQL with the LANGUAGE SQL parameter, but this is the default and usually
unnecessary.

A procedure that returns the same results each time for the same given parameters is
considered deterministic. You can save processing time on the server by specifying this
property through the DETERMINISTIC parameter. NOT DETERMINISTIC is the default.

The following keywords may be used to tell the server how the procedure will interact
with it, allowing the server to optimize the procedure. The server does not enforce the
restrictions on the procedure, however:

CONTAINS SQL
The procedure executes SQL statements, but does not read from or write to a table;
one example is a procedure that queries server status. This is the default.

CREATE PROCEDURE

210 | Chapter 9: Stored Routines Statements

NO SQL
The procedure does not contain any SQL statements.

READS SQL DATA
The procedure might read data from at least one table, but it doesn’t write data to
any tables.

MODIFIES SQL DATA
The procedure might write data to at least one table, as well as potentially read data
from tables.

With the COMMENT clause, you can add a comment describing the procedure for future
reference.

This statement requires the CREATE ROUTINE privilege. The ALTER ROUTINE and EXECUTE
privileges are granted to the user and host account that creates or alters a routine, by
default. With the DEFINER clause, you can specify the MySQL user and host to be used
by MySQL for the procedure. Related to this clause is the SQL SECURITY keyword, which
instructs MySQL to use either the user account of the creator (DEFINER) of the procedure
or the account that’s executing the procedure (INVOKER). This can help prevent some users
from accessing restricted procedures.

In the following example, we create a simple procedure that copies all of the data from
the students table to a backup table with the same schema. The table also includes an
extra column in which the user can add a comment or reference note:

DELIMITER |

CREATE PROCEDURE students_copy_proc (IN ref_note VARCHAR(255))
BEGIN
REPLACE INTO students_backup
SELECT *, ref_note FROM students;
END|

DELIMITER ;

SET @ref_note = '2008 Spring Roster';

CALL students_copy_proc(@ref_note);

The first statement changes the terminating character for an SQL statement from its
default, a semicolon, to a vertical bar. See the BEGIN...END statement earlier in this chapter
for the reasons this is necessary.

Inside the procedure, the REPLACE statement selects all columns from students along with
the value of the ref_note variable. Thus, every row of students is inserted, along with the
value of the variable, into a new row in students_backup.

After the procedure is defined and the delimiter is changed back to a semicolon, the
example sets a variable called ref_note that contains a note the user wants added to each
row of data in the new table. This variable is passed to the CALL statement that runs the
procedure.

To change an existing stored procedure, use the ALTER PROCEDURE statement. The DROP
PROCEDURE statement removes a procedure.

CREATE PROCEDURE

Chapter 9: Stored Routines Statements | 211

Stored Routines
Statem

ents

CREATE TRIGGER
CREATE
[DEFINER = {'user'@'host'|CURRENT_USER}]
TRIGGER trigger {AFTER|BEFORE}
{DELETE|INSERT|UPDATE}
ON table FOR EACH ROW statement

Only one of each trigger timing and trigger event combination is allowed for each table.
For example, a table cannot have two BEFORE INSERT triggers, but it can have a BEFORE
INSERT and an AFTER INSERT trigger.

To specify that the trigger be executed immediately before the associated user statement,
use the parameter BEFORE; to indicate that the trigger should be executed immediately
afterward, use AFTER.

At this time, only three types of SQL statements can cause the server to execute a trigger:
insertions, deletions, and updates. Specifying INSERT, however, applies the trigger to
INSERT statements, LOAD DATA statements, and REPLACE statements—all statements that
are designed to insert data into a table. Similarly, specifying DELETE includes both
DELETE and REPLACE statements because REPLACE potentially deletes rows as well as in-
serting them.

Triggers are actions to be taken when a user requests a change to data. Each trigger is
associated with a particular table and includes definitions related to timing and event. A
trigger timing indicates when a trigger is to be performed (i.e., BEFORE or AFTER). A trigger
event is the action that causes the trigger to be executed (i.e., a DELETE, INSERT, or
UPDATE on a specified table).

After specifying the trigger event, give the keyword ON followed by the table name. This
is followed by FOR EACH ROW and the SQL statement to be executed when the trigger event
occurs. Multiple SQL statements to execute may be given in the form of a compound
statement using BEGIN...END, which is described earlier in this chapter.

There is no ALTER TRIGGER statement at this time. Instead, use the DROP TRIGGER statement
and then reissue CREATE TRIGGER with the new trigger.

To show how a trigger may be created, suppose that for a college database, whenever a
student record is deleted from the students table, we want to write the data to another
table to preserve that information. Here is an example of how that might be done with
a trigger:

DELIMITER |

CREATE TRIGGER students_deletion
BEFORE DELETE
ON students FOR EACH ROW

BEGIN
INSERT INTO students_deleted
(student_id, name_first, name_last)
VALUES(OLD.student_id, OLD.name_first, OLD.name_last);
END|

DELIMITER ;

CREATE TRIGGER

212 | Chapter 9: Stored Routines Statements

The first statement changes the terminating character for an SQL statement from its
default, a semicolon, to a vertical bar. See the BEGIN...END statement earlier in this chapter
for the reasons this is necessary.

Next, we create a trigger to stipulate that, before making a deletion in the students table,
the server must perform the compound SQL statement given. The statements between
BEGIN and END will write the data to be deleted to another table with the same schema.

To capture that data and pass it to the INSERT statement, we use the OLD table alias pro-
vided by MySQL coupled with the column names of the table where the row is to be
deleted. OLD refers to the table in the trigger’s ON clause, before any changes are made by
the trigger or the statement causing the trigger. To save space, in this example we’re
capturing the data from only three of the columns. OLD.* is not allowed, so we have to
specify each column. To specify the columns after they are inserted or updated, use
NEW as the table alias.

The statement to be executed by the trigger in the previous example is a compound
statement. It starts with BEGIN and ends with END and is followed by the vertical bar (|)
that we specified as the delimiter. The delimiter is then reset in the last line back to a
semicolon.

DECLARE
DECLARE variable data_type [DEFAULT value]

DECLARE condition CONDITION FOR
{SQLSTATE [VALUE] value | error_code]

DECLARE cursor CURSOR FOR SELECT...

DECLARE {CONTINUE|EXIT|UNDO} HANDLER FOR
 {[SQLSTATE [VALUE] value]
 [SQLWARNING]
 [NOT FOUND]
 [SQLEXCEPTION]
 [error_code]
 [condition]}
SQL_statement

This statement declares local variables and other items related to routines. It must be
used within a BEGIN...END compound statement of a routine, after BEGIN and before any
other SQL statements. There are four basic uses for DECLARE: to declare local variables,
conditions, cursors, and handlers. Within a BEGIN...END block, variables and conditions
must be declared before cursors and handlers, and cursors must be declared before
handlers.

The first syntax shows how to declare variables. It includes the data type and, optionally,
default values. A variable declared with this statement is available only within the routine
in which it is declared. If the default is a string, place it within quotes. If no default is
declared, NULL is the default value.

A condition is generally either an SQLSTATE value or a MySQL error code number. The
second syntax is used for declaring a condition and associating it with an SQLSTATE or

DECLARE

Chapter 9: Stored Routines Statements | 213

Stored Routines
Statem

ents

an error code. When declaring a condition based on an SQLSTATE, give the SQLSTATE
VALUE clause followed by the state. Otherwise, give the error code number.

The third syntax declares a cursor, which represents—within a procedure—a results set
that is retrieved one row at a time. Give a unique, nonreserved word for the cursor’s
name. This is followed by CURSOR FOR and then a SELECT statement. It must not have an
INTO clause. To call or open a cursor, use the OPEN statement within the same routine in
which the declaration was made. To retrieve data from a cursor, which is done one row
at a time, use the FETCH statement. When finished, use the CLOSE statement to close an
open cursor.

The last syntax for this statement declares a handler. With a handler, you can specify an
SQL statement to be executed given a specific condition that occurs within a routine.
Three types of handlers are allowed: CONTINUE, EXIT, and UNDO. Use CONTINUE to indicate
that the routine is to continue after the SQL statement given is executed. The EXIT pa-
rameter indicates that the BEGIN...END compound statement that contains the declaration
should be exited when the condition given is met. UNDO is meant to instruct MySQL to
undo the compound statement for which it is given. However, this parameter is not yet
supported by MySQL.

The handler’s FOR clause may contain multiple conditions in a comma-separated list.
There are several related to the SQLSTATE: you can specify a single SQLSTATE code
number, or you can list SQLWARNING to declare any SQLSTATE code starting with 01, NOT
FOUND for any SQLSTATE code starting with 02, or SQLEXCEPTION for all states that don’t
start with 01 or 02. Another condition you can give is a MySQL error code number. You
can also specify the name of a condition you previously created with its own DECLARE
statement.

DELIMITER
DELIMITER character

This statement changes the delimiter (terminating character) of SQL statements from the
default of a semicolon to another character. This is useful when creating a stored proce-
dure or trigger, so that MySQL does not confuse a semicolon contained in the procedure
or trigger as the end of the CREATE PROCEDURE or CREATE TRIGGER statement. This statement
is also used to restore the default delimiter. Don’t use the backslash as the delimiter, as
that is used to escape special characters. Examples of this statement appear in the CREATE
PROCEDURE and CREATE TRIGGER statements earlier in this chapter.

DROP EVENT
DROP EVENT [IF EXISTS] event

This statement deletes an event. The IF EXISTS keyword prevents error messages when
the event doesn’t exist. Instead, a note will be generated, which can be displayed after-
ward by executing the SHOW WARNINGS statement. As of version 5.1.12 of MySQL, this
statement requires the EVENT privilege.

DELIMITER

214 | Chapter 9: Stored Routines Statements

DROP FUNCTION
DROP FUNCTION [IF EXISTS] function

Use this statement to delete a user-defined function. The IF EXISTS keyword prevents
error messages when the function doesn’t exist. Instead, a note will be generated, which
can be displayed afterward by executing the SHOW WARNINGS statement. This statement
requires the ALTER ROUTINE privilege for the function given, which is automatically granted
to the creator of the function.

DROP PREPARE
{DROP|DEALLOCATE} PREPARE statement_name

This statement deletes a prepared statement. The syntax of DROP PREPARE and DEALLOCATE
PREPARE are synonymous. For an example, see the PREPARE statement later in this chapter.

DROP PROCEDURE
DROP PROCEDURE [IF EXISTS] procedure

This statement deletes a stored procedure. The IF EXISTS keyword prevents error mes-
sages when the stored procedure doesn’t exist. Instead, a note will be generated, which
can be displayed afterward by executing the SHOW WARNINGS statement. This statement
requires the ALTER ROUTINE privilege for the stored procedure given, which is automati-
cally granted to the creator of the stored procedure.

DROP TRIGGER
DROP TRIGGER [IF EXISTS] [database.]trigger

This statement deletes a trigger. The IF EXISTS keyword prevents error messages when
the trigger doesn’t exist. Instead, a note will be generated, which can be displayed after-
ward by executing the SHOW WARNINGS statement. You may specify the database or schema
with which the trigger is associated. If not given, the current default database is assumed.
As of version 5.1.6 of MySQL, this statement requires the TRIGGER privilege for the table
related to the trigger given. Previously, it required SUPER privilege. When upgrading from
version 5.0.10 or earlier of MySQL, be sure to drop all triggers because there’s a problem
with using or dropping triggers from earlier versions.

EXECUTE
EXECUTE statement_name [USING @variable[, ...] ...]

This statement executes a user-defined prepared statement. If the prepared statement
contains placeholders so that you can pass parameters to it, these parameters must be
given in the form of user-defined variables. Multiple variables may be given in a comma-
separated list. You can use the SET statement to set the value of a variable. See the
PREPARE statement later in this chapter for an example of the EXECUTE statement’s use.

EXECUTE

Chapter 9: Stored Routines Statements | 215

Stored Routines
Statem

ents

FETCH
FETCH cursor INTO variable[, ...]

A cursor is similar to a table or a view: it represents, within a procedure, a results set that
is retrieved one row at a time using this statement. You first establish a cursor with the
DECLARE statement. Then you use the OPEN statement to initialize the cursor. The FETCH
statement retrieves the next row of the cursor and places the data retrieved into one or
more variables. There should be the same number of variables as there are columns in
the underlying SELECT statement of the cursor. Variables are given in a comma-separated
list. Each execution of FETCH advances the pointer for the cursor by one row. Once all
rows have been fetched, an SQLSTATE of 02000 is returned. You can tie a condition to
this state through a DECLARE statement and end fetches based on the condition. Use the
CLOSE statement to close a cursor.

OPEN
OPEN cursor

This statement opens a cursor that has been declared within the current routine. Data
selected with the cursor is accessed with the FETCH statement. The cursor is closed with
the CLOSE statement. See the descriptions of the DECLARE and FETCH statements earlier in
this chapter for more information on cursors.

PREPARE
PREPARE statement_name FROM statement

This statement creates a prepared statement. A prepared statement is used to cache an
SQL statement, so as to save processing time during multiple executions of the statement.
This can potentially improve performance. Prepared statements are local to the user and
session; they’re not global. The name given can be any nonreserved name and is case-
insensitive. The statement given within quotes can be any type of SQL statement.

If you want to include a value that will be changed when the statement is executed, give
a question mark as a placeholder within statement. When the prepared statement is
executed later with the EXECUTE statement, the placeholders will be replaced with the
values given. The values must be user variables (set with the SET statement) and must be
passed to the EXECUTE statement in the order that the placeholders appear in the prepared
statement. Here is a simple example using these statements:

PREPARE state_tally
FROM 'SELECT COUNT(*)
 FROM students
 WHERE home_city = ?';

SET @city = 'New Orleans';
EXECUTE state_tally USING @city;

SET @city = 'Boston';
EXECUTE state_tally USING @city;

In this example, the query within the prepared statement will return a count of the num-
ber of students from the city given. By setting the value of the user-defined variable

FETCH

216 | Chapter 9: Stored Routines Statements

@city to another city, we can execute the prepared statement state_tally again without
having to reenter the PREPARE statement. The results will probably be different, of course.
To remove a prepared statement from the cache, use the DROP PREPARE statement.

SHOW CREATE EVENT
SHOW CREATE EVENT event

This statement displays an SQL statement that can be used to create an event like the
one given. It’s mostly useful for displaying any comments associated with the event
because they’re not included in the results of the SHOW EVENTS statement.

Here is an example showing an event that was created with the CREATE EVENT statement
earlier in this chapter:

SHOW CREATE EVENT students_copy \G

*************************** 1. row ***************************
 Event: students_copy
 sql_mode:
Create Event: CREATE EVENT `students_copy` ON SCHEDULE
EVERY 1 DAY ON COMPLETION PRESERVE ENABLE
COMMENT 'Daily copy of students table to students_backup'
DO CALL students_copy_proc()

SHOW CREATE FUNCTION
SHOW CREATE FUNCTION function

This statement displays an SQL statement that can be used to create a function like the
one given. It’s useful for displaying the SQL statements that are performed by the
function.

Here is an example of a function that was created with the CREATE FUNCTION statement
earlier in this chapter:

SHOW CREATE FUNCTION date_reformatted \G

*************************** 1. row ***************************
 Function: date_reformatted
 sql_mode:
Create Function: CREATE DEFINER=`root`@`localhost`
FUNCTION `date_reformatted`(new_date VARCHAR(12))
RETURNS date
SQL SECURITY INVOKER
COMMENT 'Converts a string date like ''Dec. 7, 2007'' to standard format.'
RETURN STR_TO_DATE(REPLACE(new_date, '.', ''), '%b %d, %Y')

SHOW CREATE PROCEDURE
SHOW CREATE PROCEDURE procedure

This statement displays an SQL statement that can be used to create a stored procedure
like the one given. It’s useful for displaying the SQL statements that are performed by
the stored procedure.

SHOW CREATE PROCEDURE

Chapter 9: Stored Routines Statements | 217

Stored Routines
Statem

ents

Here is an example of a procedure that was created with the CREATE PROCEDURE statement
earlier in this chapter:

SHOW CREATE PROCEDURE students_copy_proc \G

*************************** 1. row ***************************
 Procedure: students_copy_proc
 sql_mode:
Create Procedure: CREATE DEFINER=`root`@`localhost`
PROCEDURE `students_copy_proc`(IN ref_note VARCHAR(255))
BEGIN
REPLACE INTO students_backup
SELECT *, ref_note FROM students;
END

SHOW EVENTS
SHOW EVENTS [FROM database] [LIKE 'pattern'|WHERE expression]

This statement displays a list of scheduled events on the server. The results can also
include events that have been completed but were preserved. The database to which
events are related may be given in the FROM clause; the default is the current database.
The LIKE or WHERE clauses can be used to list events based on a particular naming pattern.
With the WHERE clause, you can use the names of fields in the results to create an expression
that sets a condition determining the results returned. An example of this follows. See
CREATE EVENT earlier in this chapter for more information on events:

 SHOW EVENTS FROM college
WHERE Definer='russell@localhost' \G

*************************** 1. row ***************************
 Db: college
 Name: students_copy
 Definer: russell@localhost
 Type: RECURRING
 Execute at: NULL
Interval value: 1
Interval field: DAY
 Starts: 2007-11-27 02:30:00
 Ends: NULL
 Status: ENABLED

SHOW FUNCTION CODE
SHOW FUNCTION CODE function

This statement displays the internal code of a function. It requires that the MySQL server
be built with debugging. This statement was introduced in version 5.1.3 of MySQL.

SHOW EVENTS

218 | Chapter 9: Stored Routines Statements

SHOW FUNCTION STATUS
SHOW FUNCTION STATUS [LIKE 'pattern'|WHERE expression]

This statement displays information on user-defined functions. The LIKE or WHERE clauses
can be used to list functions based on a particular naming pattern. With the WHERE clause,
you can use the names of fields in the results to create an expression that sets a condition
determining the results returned. Here is an example using this statement:

SHOW FUNCTION STATUS
WHERE Name='date_reformatted' \G

*************************** 1. row ***************************
 Db: college
 Name: date_reformatted
 Type: FUNCTION
 Definer: root@localhost
 Modified: 2007-11-27 11:55:00
 Created: 2007-11-27 11:47:37
Security_type: INVOKER
 Comment: Converts a string date like 'Dec. 7, 2007' to standard format.

SHOW PROCEDURE CODE
SHOW PROCEDURE CODE stored_procedure

This statement displays the internal code of a stored procedure. It requires that the
MySQL server be built with debugging. This statement was introduced in version 5.1.3
of MySQL.

SHOW PROCEDURE STATUS
SHOW PROCEDURE STATUS [LIKE 'pattern'|WHERE expression]

This statement displays information on stored procedures. The LIKE or WHERE clauses can
be used to list stored procedures based on a particular naming pattern. With the WHERE
clause, you can use the names of fields in the results to create an expression that sets a
condition determining the results returned. Here is an example using this statement:

SHOW PROCEDURE STATUS
WHERE Name='students_copy_proc' \G

*************************** 1. row ***************************
 Db: college
 Name: students_copy_proc
 Type: PROCEDURE
 Definer: russell@localhost
 Modified: 2007-11-27 09:27:42
 Created: 2007-11-27 09:27:42
Security_type: DEFINER
 Comment:

Note that for the WHERE clause we use the field name to get the specific stored procedure.

SHOW PROCEDURE STATUS

Chapter 9: Stored Routines Statements | 219

Stored Routines
Statem

ents

SHOW TRIGGERS
SHOW TRIGGERS STATUS [FROM database]
[LIKE 'pattern'|WHERE expression]

This statement displays a list of triggers on the server. The database to which triggers are
related may be given in the FROM clause; the default is the current database. The LIKE or
WHERE clauses can be used to list triggers based on a particular naming pattern. The
LIKE clause includes the name of the table with which the trigger is associated or a pattern
for the table name that includes wildcards (%). With the WHERE clause, you can use the
names of fields in the results to create an expression that sets a condition determining
the results returned. Here is an example using this statement:

SHOW TRIGGERS LIKE 'students' \G

*************************** 1. row ***************************
 Trigger: students_deletion
 Event: DELETE
 Table: students
Statement: BEGIN
INSERT INTO students_deleted
(student_id, name_first, name_last)
VALUES(OLD.student_id, OLD.name_first, OLD.name_last);
END
 Timing: BEFORE
 Created: NULL
 sql_mode:
 Definer: root@localhost

See CREATE TRIGGER earlier in this chapter for more information on triggers and to see
how the trigger shown was created.

SHOW TRIGGERS

220 | Chapter 9: Stored Routines Statements

10
Aggregate Clauses, Aggregate

Functions, and Subqueries

MySQL has many built-in functions that you can use in SQL statements for per-
forming calculations on combinations of values in databases; these are called
aggregate functions. They include such types of basic statistical analysis as counting
rows, determining the average of a given column’s value, finding the standard de-
viation, and so forth. The first section of this chapter describes MySQL aggregate
functions and includes examples of most of them. The second section provides a
tutorial about subqueries. It includes several examples of subqueries in addition to
the ones shown in the first section and in various examples throughout this book.
Subqueries are included in this chapter because they are often used with GROUP BY
and aggregate functions and because they’re another method for grouping selected
data.

The following functions are covered in this chapter:

AVG(  ), BIT_AND(  ), BIT_OR(  ), COUNT(  ), GROUP_CONCAT(  ), MAX(  ), MIN(  ), STD(  ),
STDDEV(  ), STDDEV_POP(  ), STDDEV_SAMP(  ), SUM(  ), VAR_POP(  ), VAR_SAMP(  ), VAR-
IANCE(  ).

Aggregate Functions in Alphabetical Order
This section describes each aggregate function. Many of the examples use a sub-
query. For detailed information about subqueries, see the “Subqueries” section later
in this chapter.

A few general aspects of aggregate functions include:

• Aggregate functions return NULL when they encounter an error.

• Most uses for aggregate functions include a GROUP BY clause, which is specified
in each description. If an aggregate function is used without a GROUP BY clause
it operates on all rows.

221

AVG(  )
AVG([DISTINCT] column)

This function returns the average or mean of a set of numbers given as the argument. It
returns NULL if unsuccessful. The DISTINCT keyword causes the function to count only
unique values in the calculation; duplicate values will not factor into the averaging.

When returning multiple rows, you generally want to use this function with the GROUP
BY clause that groups the values for each unique item, so that you can get the average for
that item. This will be clearer with an example:

SELECT sales_rep_id,
CONCAT(name_first, SPACE(1), name_last) AS rep_name,
AVG(sale_amount) AS avg_sales
FROM sales
JOIN sales_reps USING(sales_rep_id)
GROUP BY sales_rep_id;

This SQL statement returns the average amount of sales in the sales table made by each
sales representative. It will total all values found for the sale_amount column, for each
unique value for sales_rep_id, and divide by the number of rows found for each of those
unique values. If you would like to include sales representatives who made no sales in
the results, you’ll need to change the JOIN to a RIGHT JOIN:

SELECT sales_rep_id,
CONCAT(name_first, SPACE(1), name_last) AS rep_name,
FORMAT(AVG(sale_amount), 2) AS avg_sales
FROM sales
RIGHT JOIN sales_reps USING(sales_rep_id)
GROUP BY sales_rep_id;

Sales representatives who made no sales will show up with NULL in the avg_sales col-
umn. This version of the statement also includes an enhancement: it rounds the results
for avg_sales to two decimal places by adding the FORMAT() function.

If we only want the average sales for the current month, we could add a WHERE clause.
However, that would negate the effect of the RIGHT JOIN: sales people without orders for
the month wouldn’t appear in the list. To include them, first we need to run a subquery
that extracts the sales data that meets the conditions of the WHERE clause, and then we
need to join the subquery’s results to another subquery containing a tidy list of the names
of sales reps:

SELECT sales_rep_id, rep_name,
IFNULL(avg_sales, 'none') as avg_sales_month
FROM
 (SELECT sales_rep_id,
 FORMAT(AVG(sale_amount), 2) AS avg_sales
 FROM sales
 JOIN sales_reps USING(sales_rep_id)
 WHERE DATE_FORMAT(date_of_sale, '%Y%m') =
 DATE_FORMAT(CURDATE(), '%Y%m')
 GROUP BY sales_rep_id) AS active_reps
RIGHT JOIN
 (SELECT sales_rep_id,
 CONCAT(name_first, SPACE(1), name_last) AS rep_name
 FROM sales_reps) AS all_reps

AVG(  )

222 | Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries

USING(sales_rep_id)
GROUP BY sales_rep_id;

In the first subquery here, we are determining the average sales for each sales rep that
had sales for the current month. In the second subquery, we’re putting together a list of
names of all sales reps, regardless of sales. In the main query, using the sales_rep_id
column as the joining point of the two results sets derived from the subqueries, we are
creating a results set that will show the average sales for the month for each rep that had
some sales, or (using IFNULL()) the word none for those who had none.

BIT_AND(  )
BIT_AND(expression)

This function returns the bitwise AND for all bits for the expression given. Use this in
conjunction with the GROUP BY clause. The function has a 64-bit precision. If there are no
matching rows, before version 4.0.17 of MySQL, –1 is returned. Newer versions return
18446744073709551615, which is the value of 1 for all bits of an unsigned BIGINT
column.

BIT_OR(  )
BIT_OR(expression)

This function returns the bitwise OR for all bits for the expression given. It calculates with
a 64-bit precision (BIGINT). It returns 0 if no matching rows are found. Use it in con-
junction with the GROUP BY clause.

BIT_XOR(  )
BIT_XOR(expression)

This function returns the bitwise XOR (exclusive OR) for all bits for the expression given.
It calculates with a 64-bit precision (BIGINT). It returns 0 if no matching rows are found.
Use it in conjunction with the GROUP BY clause. This function is available as of version
4.1.1 of MySQL.

COUNT(  )
COUNT([DISTINCT] expression)

This function returns the number of rows retrieved in the SELECT statement for the given
column. By default, rows in which the column is NULL are not counted. If the wildcard
* is used as the argument, the function counts all rows, including those with NULL values.
If you want only a count of the number of rows in the table, you don’t need GROUP BY,
and you can still include a WHERE to count only rows meeting specific criteria. If you want
a count of the number of rows for each value of a column, you will need to use the GROUP
BY clause. As an alternative to using GROUP BY, you can add the DISTINCT keyword to get
a count of unique non-NULL values found for the given column. When you use
DISTINCT, you cannot include any other columns in the SELECT statement. You can, how-
ever, include multiple columns or expressions within the function. Here is an example:

COUNT(  )

Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries | 223

Aggregate Clauses
& Functions

SELECT branch_name,
COUNT(sales_rep_id) AS number_of_reps
FROM sales_reps
JOIN branch_offices USING(branch_id)
GROUP BY branch_id;

This example joins the sales_reps and branch_offices tables together using the
branch_id contained in both tables. We then use the COUNT() function to count the
number of sales reps found for each branch (determined by the GROUP BY clause).

GROUP_CONCAT(  )
GROUP_CONCAT([DISTINCT] expression[, ...]
 [ORDER BY {unsigned_integer|column|expression}
 [ASC|DESC] [,column...]]
 [SEPARATOR character])

This function returns non-NULL values of a group concatenated by a GROUP BY clause,
separated by commas. The parameters for this function are included in the parentheses,
separated by spaces, not commas. The function returns NULL if the group doesn’t
contain non-NULL values.

Duplicates are omitted with the DISTINCT keyword. The ORDER BY clause instructs the
function to sort values before concatenating them. Ordering may be based on an unsigned
integer value, a column, or an expression. The sort order can be set to ascending with
the ASC keyword (default), or to descending with DESC. To use a different separator from
a comma, use the SEPARATOR keyword followed by the preferred separator.

The value of the system variable group_concat_max_len limits the number of elements
returned. Its default is 1024. Use the SET statement to change the value. This function is
available as of version 4.1 of MySQL.

As an example of this function, suppose that we wanted to know how many customers
order a particular item. We could enter an SQL statement like this:

SELECT item_nbr AS Item,
GROUP_CONCAT(quantity) AS Quantities
FROM orders
WHERE item_nbr = 100
GROUP BY item_nbr;

+------+------------+
| Item | Quantities |
+------+------------+
| 100 | 7,12,4,8,4 |
+------+------------+

Notice that the quantities aren’t sorted—it’s the item numbers that are sorted by the
GROUP BY clause. To sort the quantities within each field and to use a different separator,
we would enter something like the following instead:

SELECT item_nbr AS Item,
GROUP_CONCAT(DISTINCT quantity
 ORDER BY quantity ASC
 SEPARATOR '|')
AS Quantities

GROUP_CONCAT(  )

224 | Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries

FROM orders
WHERE item_nbr = 100
GROUP BY item_nbr;

+------+------------+
| Item | Quantities |
+------+------------+
| 100 | 4|7|8|12 |
+------+------------+

Because the results previously contained a duplicate value (4), we’re eliminating dupli-
cates here by including the DISTINCT keyword.

MAX(  )
MAX(expression)

This function returns the highest number in the values for a given column. It’s normally
used in conjunction with a GROUP BY clause specifying a unique column, so that values
are compared for each unique item separately.

As an example of this function, suppose that we wanted to know the maximum sale for
each sales person for the month. We could enter the following SQL statement:

SELECT CONCAT(name_first, SPACE(1), name_last) AS rep_name,
MAX(sale_amount) AS biggest_sale
FROM sales
JOIN sales_reps USING(sales_rep_id)
WHERE DATE_FORMAT(date_of_sale, '%Y%m') =
 DATE_FORMAT(CURDATE(), '%Y%m')
GROUP BY sales_rep_id DESC;

We’ve given sale_amount as the column for which we want the largest value returned for
each sales rep. The WHERE clause indicates that we want only sales for the current month.
Notice that the GROUP BY clause includes the DESC keyword. This will order the rows in
descending order for the values of the biggest_sale field: the biggest sale at the top, the
smallest at the bottom.

Here’s an example of another handy but less obvious use of this function: suppose we
have a table in which client profiles are kept by the sales people. When a sales rep changes
a client profile through a web interface, instead of updating the existing row, the program
we wrote creates a new entry. We use this method to prevent sales people from inadver-
tently overwriting data and to keep previous client profiles in case someone wants to
refer to them later. When the client profile is viewed through the web interface, we want
only the latest profile to appear. Retrieving the latest row becomes a bit cumbersome,
but we can do this with MAX() and a subquery as follows:

SELECT client_name, profile,
MAX(entry_date) AS last_entry
FROM
 (SELECT client_id, entry_date, profile
 FROM client_profiles
 ORDER BY client_id, entry_date DESC) AS profiles
JOIN clients USING(client_id)
GROUP BY client_id;

MAX(  )

Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries | 225

Aggregate Clauses
& Functions

In the subquery, we retrieve a list of profiles with the date each has in its entry in the
table client_profiles; the results contain the duplicate entries for clients. In the main
query, using MAX(), we get the maximum (latest) date for each client. The associated
profile is included in the columns selected by the main query. We join the results of the
subquery to the clients table to extract the client’s name.

The subquery is necessary so that we get the latest date instead of the oldest. The problem
is that the GROUP BY clause orders the fields based on the given column. Without the
subquery, the GROUP BY clause would use the value for the entry_date of the first row it
finds, which will be the earliest date, not the latest. So we order the data in the subquery
with the latest entry for each client first. GROUP BY then takes the first entry of the subquery
results, which will be the latest entry.

MIN(  )
MIN(expression)

This function returns the lowest number in the values for a given column. It’s normally
used in conjunction with a GROUP BY clause specifying a unique column, so that values
are compared for each unique item separately. Here is an example:

SELECT CONCAT(name_first, SPACE(1), name_last) AS rep_name,
MIN(sale_amount) AS smallest_sale,
MAX(sale_amount) AS biggest_sale
FROM sales
JOIN sales_reps USING(sales_rep_id)
GROUP BY sales_rep_id;

In this example, we retrieve the smallest sale and largest sale made by each sales repre-
sentative. We use JOIN to join the two tables to get the sales rep’s name. Because
MAX() is very similar, see the examples in its description earlier in this chapter for addi-
tional ways to use MIN().

STD(  )
STD(expression)

This function returns the population standard deviation of the given column. This func-
tion is an alias for STDDEV(  ); see the description of that function for an example of its use.

STDDEV(  )
STDDEV(expression)

This function returns the population standard deviation of the given column. It’s nor-
mally used in conjunction with a GROUP BY clause specifying a unique column, so that
values are compared for each unique item separately. It returns NULL if no matching
rows are found. Here is an example:

SELECT CONCAT(name_first, SPACE(1), name_last) AS rep_name,
SUM(sale_amount) AS total_sales,
COUNT(sale_amount) AS total_tickets,
AVG(sale_amount) AS avg_sale_per_ticket,
STDDEV(sale_amount) AS standard_deviation

MIN(  )

226 | Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries

FROM sales
JOIN sales_reps USING(sales_rep_id)
GROUP BY sales_rep_id;

This statement employs several aggregate functions. We use SUM(  ) to get the total sales
for each sales rep, COUNT(  ) to retrieve the number of orders for the each, AVG(  ) to deter-
mine the average sale, and STDDEV() to find out how much each sale made by each sales
rep tends to vary from each one’s average sale. Incidentally, statistical functions return
several decimal places. To return only two decimal places, you can wrap each function
in FORMAT().

STDDEV_POP(  )
STDDEV_POP(expression)

This function returns the population standard deviation of the given column. It was
added in version 5.0.3 of MySQL for compliance with SQL standards. This function is
an alias for STDDEV(  ); see the description of that function earlier in this chapter for an
example of its use.

STDDEV_SAMP(  )
STDDEV_SAMP(expression)

This function returns the sample standard deviation of the given column. It’s normally
used in conjunction with a GROUP BY clause specifying a unique column, so that values
are compared for each unique item separately. It returns NULL if no matching rows are
found. It was added in version 5.0.3 of MySQL for compliance with SQL standards. Here
is an example:

SELECT CONCAT(name_first, SPACE(1), name_last) AS rep_name,
AVG(sale_amount) AS avg_sale_per_ticket,
STDDEV_POP(sale_amount) AS population_std_dev,
STDDEV_SAMP(sale_amount) AS sample_std_dev
FROM sales
JOIN sales_reps USING(sales_rep_id)
GROUP BY sales_rep_id;

This SQL statement uses several aggregate functions: AVG(  ) to determine the average sale
for each sales rep; STDDEV_POP(  ) to determine how much each sale made by each sales
rep tends to vary from each rep’s average sale; and STDDEV_SAMP() to determine the
standard deviation from the average based on a sample of the data.

SUM(  )
SUM([DISTINCT] expression)

This function returns the sum of the values for the given column or expression. It’s nor-
mally used in conjunction with a GROUP BY clause specifying a unique column, so that
values are compared for each unique item separately. It returns NULL if no matching
rows are found. The parameter DISTINCT may be given within the parentheses of the
function to add only unique values found for a given column. This parameter was added
in version 5.1 of MySQL. Here is an example:

SUM(  )

Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries | 227

Aggregate Clauses
& Functions

SELECT sales_rep_id,
SUM(sale_amount) AS total_sales
FROM sales
WHERE DATE_FORMAT(date_of_sale, '%Y%m') =
 DATE_FORMAT(SUBDATE(CURDATE(), INTERVAL 1 MONTH), '%Y%m')
GROUP BY sales_rep_id;

This statement queries the sales table to retrieve only sales made during the last month.
From these results, SUM() returns the total sale amounts aggregated by the
sales_rep_id (see “Grouping SELECT results” under the SELECT statement in Chapter 6).

VAR_POP(  )
VAR_POP(expression)

This function returns the variance of a given column, based on the rows selected as a
population. It’s synonymous with VARIANCE and was added in version 5.0.3 of MySQL
for compliance with SQL standards. See the description of VAR_SAMP(  ) for an example of
this function’s use.

VAR_SAMP(  )
VAR_SAMP(expression)

This function returns the variance of a given column, based on the rows selected as a
sample of a given population. It’s normally used in conjunction with a GROUP BY clause
specifying a unique column, so that values are compared for each unique item separately.
To determine the variance based on the entire population rather than a sample, use
VAR_POP(  ). Both of these functions were added in version 5.0.3 of MySQL for compliance
with SQL standards. Here is an example of both:

SELECT CONCAT(name_first, SPACE(1), name_last) AS rep_name,
AVG(sale_amount) AS avg_sale,
STDDEV_POP(sale_amount) AS population_std_dev,
STDDEV_SAMP(sale_amount) AS sample_std_dev,
VAR_POP(sale_amount) AS population_variance,
VAR_SAMP(sale_amount) AS sample_variance
FROM sales
JOIN sales_reps USING(sales_rep_id)
GROUP BY sales_rep_id;

This SQL statement uses several aggregate functions: AVG(  ) to determine the average sale
for each sales rep; STDDEV_POP(  ) to determine how much each sale made by each sales
rep tends to vary from each rep’s average sale; and STDDEV_SAMP(  ) to determine the
standard deviation from the average based on a sample of the data. It also includes
VAR_POP(  ) to show the variances based on the population, and VAR_SAMP(  ) to return the
variance based on the sample data.

VARIANCE(  )
VARIANCE(expression)

The variance is determined by taking the difference between each given value and the
average of all values given. Each of those differences is then squared, and the results are

VAR_POP(  )

228 | Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries

totaled. The average of that total is then determined to get the variance. This function
returns the variance of a given column, based on the rows selected as a population. It’s
normally used in conjunction with a GROUP BY clause specifying a unique column, so that
values are compared for each unique item separately. This function is available as of
version 4.1 of MySQL. Here is an example:

SELECT CONCAT(name_first, SPACE(1), name_last) AS rep_name,
AVG(sale_amount) AS avg_sale,
STDDEV_POP(sale_amount) AS standard_deviation,
VARIANCE(sale_amount) AS variance
FROM sales
JOIN sales_reps USING(sales_rep_id)
GROUP BY sales_rep_id;

This SQL statement uses a few aggregate functions: AVG(  ) to determine the average sale
for each sales rep; STDDEV_POP(  ) to determine how much each sale made by each sales
rep tends to vary from each rep’s average sale; and VARIANCE() to show the variances
based on the population. To comply with SQL standards, VAR_POP(  ) could have been
used instead of VARIANCE().

Subqueries
A subquery is a SELECT statement nested within another SQL statement. This feature
became available as of version 4.1 of MySQL. Although the same results can be
accomplished by using the JOIN clause or UNION, depending on the situation, sub-
queries are a cleaner approach that is sometimes easier to read. They make a complex
query more modular, which makes it easier to create and to troubleshoot. Here is a
simple example of a subquery:

SELECT *
FROM
 (SELECT col1, col2
 FROM table1
 WHERE col_id = 1000) AS derived1
ORDER BY col2;

In this example, the subquery or inner query is a SELECT statement specifying two
column names. The other query is called the main or outer query. It doesn’t have to
be a SELECT. It can be an INSERT, a DELETE, a DO, an UPDATE, or even a SET statement.
The outer query generally can’t select data or modify data from the same table as an
inner query, but this doesn’t apply if the subquery is part of a FROM clause. A subquery
can return a value (a scalar), a field, multiple fields containing values, or a full results
set that serves as a derived table.

You can encounter performance problems with subqueries if they are not well con-
structed. One problem occurs when a subquery is placed within an IN() clause as
part of a WHERE clause. It’s generally better to use the = operator for each value, along
with AND for each parameter/value pair.

When you see a performance problem with a subquery, try reconstructing the SQL
statement with JOIN and compare the differences using the BENCHMARK() function.
If the performance is better without a subquery, don’t give up on subqueries. Only

Subqueries | 229

Aggregate Clauses
& Functions

in some situations is performance poorer. For those situations where there is a per-
formance drain, MySQL AB is working on improving MySQL subqueries. So
performance problems you experience now may be resolved in future versions. You
may just need to upgrade to the current release or watch for improvements in future
releases.

Single Field Subqueries
The most basic subquery is one that returns a scalar or single value. This type of
subquery is particularly useful in a WHERE clause in conjunction with an = operator,
or in other instances where a single value from an expression is permitted.

As an example of this situation, suppose that at our fictitious college one of the music
teachers, Sonia Oram, has called us saying that she wants a list of students for one
of her classes so that she can call them to invite them to a concert. She wants the
names and telephone numbers for only the students in her first period Monday
morning class.

The way most databases store this data, the course number would be a unique key
and would make it easy to retrieve the other data without a subquery. But Sonia
doesn’t know the course number, so we enter an SQL statement like this:

SELECT CONCAT(name_first, ' ', name_last) AS student,
phone_home, phone_dorm
FROM students
JOIN course_rosters USING (student_id)
WHERE course_id =
 (SELECT course_id
 FROM course_schedule
 JOIN teachers USING (teacher_id)
 WHERE semester_code = '2007AU'
 AND class_time = 'monday_01'
 AND name_first = 'Sonia'
 AND name_last = 'Oram');

Notice in the subquery that we’re joining the course_schedule table with teachers
so we can give the teacher’s first and last name in the WHERE clause of the subquery.
We’re also indicating in the WHERE clause a specific semester (Autumn 2007) and
time slot (Monday, first period). The results of these specifics should be one course
identification number because a teacher won’t teach more than one class during a
particular class period. That single course number will be used by the WHERE clause
of the main query to return the list of students on the class roster for the course,
along with their telephone numbers.

If by chance more than one value is returned by the subquery in the previous
example, MySQL will return an error:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

Despite our supposition, it is possible that a teacher might teach more than one class
at a time: perhaps the teacher is teaching one course in violin and another in viola,

230 | Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries

but each class had so few students that the department head put them together. In
such a situation, the teacher would want the data for both course numbers. To use
multiple fields derived from a subquery in a WHERE clause like this, we would have to
use something other than the = operator, such as IN. For this kind of situation, see
the next section on “Multiple Fields Subqueries.”

Multiple Fields Subqueries
In the previous section, we discussed instances where one scalar value was obtained
from a subquery in a WHERE clause. However, there are times when you may want to
match multiple values. For those situations you will need to use the subquery in
conjunction with an operator or a clause: ALL, ANY, EXISTS, IN, or SOME.

As an example of a multiple fields subquery—and specifically of a subquery using
IN (or using ANY or SOME)—let’s adapt the example from the previous section to a
situation where the teacher wants the contact information for students in all of her
classes. To do this, we can enter the following SQL statement:

SELECT CONCAT(name_first, ' ', name_last) AS student,
phone_home, phone_dorm
FROM students
JOIN course_rosters USING (student_id)
WHERE course_id IN
 (SELECT course_id
 FROM course_schedule
 JOIN teachers USING (teacher_id)
 WHERE semester_code = '2007AU'
 AND name_first = 'Sonia'
 AND name_last = 'Oram');

In this example, notice that the subquery is contained within the parentheses of the
IN clause. Subqueries are executed first, so the results will be available before the
WHERE clause is executed. Although a comma-separated list isn’t returned, MySQL
still accepts the results so that they may be used by the outer query. The criteria of
the WHERE clause here does not specify a specific time slot as the earlier example did,
so multiple values are much more likely to be returned.

Instead of IN, you can use ANY or SOME to obtain the same results by the same methods.
(ANY and SOME are synonymous.) These two keywords must be preceded by a com-
parison operator (e.g., =, <, >). For example, we could replace the IN in the SQL
previous statement with = ANY or with = SOME and the same results will be returned.
IN can be preceded with NOT for negative comparisons: NOT IN(...). This is the same
as != ANY (...) and != SOME (...).

Let’s look at another subquery returning multiple values but using the ALL operator.
The ALL operator must be preceded by a comparison operator (e.g., =, <, >). As an
example of this usage, suppose one of the piano teachers provides weekend seminars
for students. Suppose also that he heard a few students are enrolled in all of the
seminars he has scheduled for the semester and he wants a list of their names and
telephone numbers in advance. We should be able to get that data by entering an

Subqueries | 231

Aggregate Clauses
& Functions

SQL statement like the following (though currently it doesn’t work, for reasons to
be explained shortly):

SELECT DISTINCT student_id,
CONCAT(name_first, ' ', name_last) AS student
FROM students
JOIN seminar_rosters USING (student_id)
WHERE seminar_id = ALL
 (SELECT seminar_id
 FROM seminar_schedule
 JOIN teachers ON (instructor_id = teacher_id)
 WHERE semester_code = '2007AU'
 AND name_first = 'Sam'
 AND name_last = 'Oram');

In this example, a couple of the tables have different column names for the ID we
want, and we have to join one of them with ON instead of USING, but that has nothing
to do with the subquery. What’s significant is that this subquery returns a list of
seminar identification numbers and is used in the WHERE clause of the main query
with = ALL. Unfortunately, although this statement is constructed correctly, it
doesn’t work with MySQL at the time of this writing and just returns an empty set.
However, it should work in future releases of MySQL, so I’ve included it for future
reference. For now, we would have to reorganize the SQL statement like so:

SELECT student_id, student
FROM
 (SELECT student_id, COUNT(*)
 AS nbr_seminars_registered,
 CONCAT(name_first, ' ', name_last)
 AS student
 FROM students
 JOIN seminar_rosters USING (student_id)
 WHERE seminar_id IN
 (SELECT seminar_id
 FROM seminar_schedule
 JOIN teachers
 ON (instructor_id = teacher_id)
 WHERE semester_code = '2007AU'
 AND name_first = 'Sam'
 AND name_last = 'Oram')
 GROUP BY student_id) AS students_registered
WHERE nbr_seminars_registered =
 (SELECT COUNT(*) AS nbr_seminars
 FROM seminar_schedule
 JOIN teachers
 ON (instructor_id = teacher_id)
 WHERE semester_code = '2007AU'
 AND name_first = 'Sam'
 AND name_last = 'Oram');

This is much more involved, but it does work with the latest release of MySQL.

The first subquery is used to get the student’s name. This subquery’s WHERE clause
uses another subquery to retrieve the list of seminars taught by the professor for the
semester, to determine the results set from which the main query will draw its

232 | Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries

ultimate data. The third subquery counts the number of seminars that the same
professor is teaching for the semester. This single value is used with the WHERE clause
of the main query. In essence, we’re determining the number of seminars the pro-
fessor is teaching and which students are registered for all of them.

The last possible method for using multiple fields in a subquery uses EXISTS. With
EXISTS, in order for it to return meaningful or desired results, you need to stipulate
in the WHERE clauses of the subquery a point in which it is joined to the outer query.
Using the example from the previous section involving the teacher Sonia Oram, let’s
suppose that we want to retrieve a list of courses that she teaches:

SELECT DISTINCT course_id, course_name
FROM courses
WHERE EXISTS
 (SELECT course_id
 FROM course_schedule
 JOIN teachers USING (teacher_id)
 WHERE semester_code = '2007AU'
 AND name_first = 'Sonia'
 AND name_last = 'Oram'
 AND courses.course_id = course_schedule.course_id);

As you can see here, we’ve added EXISTS to the WHERE clause with the subquery in
parentheses, similar to using IN. The significant difference is that we added
courses.course_id = course_schedule.course_id to the end. Without it, a list of all
courses would be returned regardless of the criteria of the WHERE clause in the sub-
query. Incidentally, if we specified NOT EXISTS instead, we would get all courses
except for the ones taught by the teacher given.

Results Set Subqueries
A subquery can be used to generate a results set, which is a table from which an
outer query can select data. That is, a subquery can be used in a FROM clause as if it
were another table in a database. It is a derived table. Along these lines, each derived
table must be named. This is done with AS following the parentheses containing the
subquery. A subquery contained in a FROM clause generally cannot be a correlated
subquery—that is, it cannot reference the same table as the outer query. The ex-
ception is if it’s constructed with a JOIN.

In the following example, let’s consider the subquery separately as though it were a
plain query and not a subquery. It will generate a results set containing the student’s
ID and the student’s average exam score for a specific course taught during a specific
semester. The query uses AVG(), which requires a GROUP BY clause. The problem
with GROUP BY is that it will order data only by the columns by which it’s given to
group data. In this case, it will order the data by student_id and not list the results
by any other, more useful column. If we want to order the data so that the highest
student average is first, descending in order to the lowest student average, we have
to turn our query into a subquery and have the outer query re-sort the results:

SELECT CONCAT(name_first, ' ', name_last) AS student,
student_id, avg_grade

Subqueries | 233

Aggregate Clauses
& Functions

FROM students
JOIN
 (SELECT student_id,
 AVG(exam_grade) AS avg_grade
 FROM exams
 WHERE semester_code = '2007AU'
 AND course_id = 1489
 GROUP BY student_id) AS grade_averages
USING(student_id)
ORDER BY avg_grade DESC;

The results set (the derived table generated by the subquery in the FROM clause) is
named grade_averages. Notice that although the column student_id exists in the
derived table, in the table from which it gets its data (i.e., exams) and in the primary
table used in the main query (i.e., students), there is no ambiguity. No error is gen-
erated. However, if we wanted to specify that the data be taken from the derived
table, we could put grade_averages.student_id in the SELECT of the outer query.

This subquery is a correlated subquery, which is generally not permitted in a FROM
clause. It’s allowed in this example because we are using a JOIN to join the results
set to the table referenced in the outer query.

234 | Chapter 10: Aggregate Clauses, Aggregate Functions, and Subqueries

11
String Functions

MySQL has several built-in functions for formatting, manipulating, and analyzing
strings, both user-specified and within columns of data. This chapter lists these
string functions, provides the syntax of each, and gives examples of their use. The
examples in this chapter use a fictitious database for a college.

String functions do not change their inputs; the functions’ return values contain the
changes.

String Functions Grouped by Type
The list of string functions is quite long, but many perform similar roles. The fol-
lowing list groups the functions by these roles.

Character Sets and Collation
CHARSET(  ), COALESCE(  ), COERCIBILITY(  ), COLLATION(  ).

Converting
ASCII(  ), BIN(  ), BINARY, CAST(  ), CHAR(  ), COMPRESS(  ), CONVERT(  ), EXPORT_SET(  ),
HEX(  ), MAKE_SET(  ), ORD(  ), SOUNDEX(  ), UNCOMPRESS(  ), UNHEX(  ).

Formatting
CONCAT(  ), CONCAT_WS(  ), LCASE(  ), LENGTH(  ), LOWER(  ), LPAD(  ), LTRIM(  ), OC-
TET_LENGTH(  ), QUOTE(  ), RPAD(  ), RTRIM(  ), SPACE(  ), TRIM(  ), UCASE(  ), UPPER(  ).

235

Expressions
BIT_LENGTH(  ), CRC32(  ), CHAR_LENGTH(  ), CHARACTER_LENGTH(  ), ELT(  ), FIELD(  ),
FIND_IN_SET(  ), INSTR(  ), INTERVAL(  ), LOCATE(  ), MATCH(  ) AGAINST(  ), POSITION(  ),
STRCMP(  ), UNCOMPRESSED_LENGTH(  ).

Extracting
LEFT(  ), LOAD_FILE(  ), MID(  ), RIGHT(  ), SUBSTR(  ), SUBSTRING(  ), SUBSTRING_INDEX(  ).

Manipulating
INSERT(  ), REPEAT(  ), REPLACE(  ), REVERSE(  ).

String Functions in Alphabetical Order
The rest of this chapter lists the string functions in alphabetical order.

ASCII(  )
ASCII(string)

This function returns the numeric code corresponding to the first character of a given
string. If the given string is empty, 0 is returned. Despite the function’s name, it works
for characters outside the ASCII set (that is, characters that correspond to values above
127) and is probably most useful for such characters.

As an example of this function’s use, suppose that for a college we had a table listing the
names of fraternities with their Greek letters. For easier manipulation of the data con-
tained in a column, we might want to convert the Greek letters to a numeric code with
this function:

SELECT greek_id,
CONCAT_WS('-',
 ASCII(SUBSTR(greek_id, 1, 1)),
 ASCII(SUBSTR(greek_id, 2, 1)),
 ASCII(SUBSTR(greek_id, 3, 1))
) AS 'ASCII Values'
FROM fraternities WHERE frat_id = 101;

+----------+--------------+
| greek_id | ASCII Values |
+----------+--------------+
| Δ Σ Π | 196-211-208 |
+----------+--------------+

In this example, we use the SUBSTR(  ) function to extract each letter so we can then convert
each one individually to its numeric equivalent with the ASCII() function. Then, using
CONCAT_WS(  ), we insert hyphens between each number returned. We can use this number
to more easily manage the data related to this fraternity. See the descriptions of CHAR(  )

236 | Chapter 11: String Functions

and CONVERT(  ) later in this chapter for more information on this function and for more
details related to this example.

BIN(  )
BIN(number)

This function returns a binary number for a given integer. It returns NULL if the input
is NULL:

SELECT BIN(1), BIN(2), BIN(3);

+--------+--------+--------+
| BIN(1) | BIN(2) | BIN(3) |
+--------+--------+--------+
| 1 | 10 | 11 |
+--------+--------+--------+

For the number 1 in a base 10 system, the first position in a binary system is on, or 1. For
the number 2, the first position from the right is off and the second is on. For 3, the first
and the second positions are on.

BINARY
BINARY string

Use this function to treat strings in their binary state. This function is useful for making
SQL statements case-sensitive. Notice that the syntax does not call for parentheses:

SELECT student_id, name_last
FROM students
WHERE BINARY LEFT(UCASE(name_last), 1) <>
 LEFT(name_last, 1);

+------------+-----------+
| student_id | name_last |
+------------+-----------+
| 433302000 | dyer |
| 434016005 | de Vitto |
+------------+-----------+

This statement checks for any student whose last name starts with a lowercase letter.
Each student’s last name is converted to uppercase letters, and then the first letter starting
from the left is extracted to be compared with the first letter of the last name without
case conversion. The results show one record that is probably a typing error and a second
that is probably correct. Notice that the BINARY keyword is specified before the compar-
ison is made between the strings, and is applied to both strings.

BIT_LENGTH(  )
BIT_LENGTH(string)

This function returns the number of bits in a given string. The following example uses
the default character set, where one character requires 8 bits:

BIT_LENGTH(  )

Chapter 11: String Functions | 237

String Functions

SELECT BIT_LENGTH('a') AS 'One Character',
BIT_LENGTH('ab') AS 'Two Characters';

+---------------+----------------+
| One Character | Two Characters |
+---------------+----------------+
| 8 | 16 |
+---------------+----------------+

CAST(  )
CAST(expression AS type [CHARACTER SET character_set])

Use this function to convert a value from one data type to another. This function is
available as of version 4.0.2 of MySQL. The data type given as the second argument can
be BINARY, CHAR, DATE, DATETIME, SIGNED [INTEGER], TIME, or UNSIGNED [INTEGER]. BINARY
converts a string to a binary string.

CHAR conversion is available as of version 4.0.6 of MySQL. This function is similar to
CONVERT(  ). Optionally, you can add CHARACTER SET to use a different character set from
the default for the value given. The default is drawn from the system variables
character_set_connection and collation_connection.

As an example, suppose we want to retrieve a list of courses for the current semester
(Spring) and their locations, sorting them alphabetically by their building name. Un-
fortunately, the building names are in an ENUM() column because we’re at a small college.
Since they’re not in alphabetical order in the column definition, they won’t be sorted the
way we want. Instead, they will be sorted in the lexical order of the column definition,
that is, the order they are listed in the ENUM() column of the table definition. Using
CAST() in the WHERE clause can resolve this:

SELECT course_id, course_name,
CONCAT(building, '-', room_num) AS location
FROM courses
WHERE year = YEAR(CURDATE())
AND semester = 'spring'
ORDER BY CAST(building AS CHAR);

By using the CAST() function to treat the values of building as a CHAR data type, we make
sure the results will be ordered alphabetically.

CHAR(  )
CHAR(ascii[, ...] [USING character_set])

This function returns a string corresponding to the numeric code passed as the argument.
This is the reverse of ASCII(  ), described earlier in this chapter. You can optionally give
the USING parameter to specify a different character set to use in relation to the string
given. If you give it a value greater than 255, it assumes the amount over 255 is another
character. So, CHAR(256) is equivalent to CHAR(1,0).

As an example of this function’s use, suppose that a college database has a table for
fraternities on campus and that the table has a column to contain the Greek letters for

CAST(  )

238 | Chapter 11: String Functions

each fraternity’s name. To create a table with such a column, we would at a minimum
enter something like the following:

CREATE TABLE fraternities (
frat_id INT(11),
greek_id CHAR(10) CHARACTER SET greek);

Notice that for the column greek_id we’re specifying a special character set to be used.
This can be different from the character set for other columns and for the table. With
this minimal table, we enter the following INSERT statement to add one fraternity and
then follow that with a SELECT statement to see the results:

INSERT INTO fraternities
VALUES(101,
 CONCAT(CHAR(196 USING greek),
 CHAR(211 USING greek),
 CHAR(208 USING greek)));

SELECT greek_id
FROM fraternities
WHERE frat_id = 101;

+----------+
| greek_id |
+----------+
| Δ Σ Π |
+----------+

Using the CHAR() function and looking at a chart showing the Greek alphabet, we figure
out the ASCII number for each of the three Greek letters for the fraternity Delta Sigma
Pi. If we had a Greek keyboard, we could just type them. If we used a chart available
online in a graphical browser, we could just copy and paste them into our mysql client.
Using the CONCAT() function, we put the results of each together to insert the data into
the column in the table.

CHAR_LENGTH(  )
CHAR_LENGTH(string)

This function returns the number of characters in a given string. This is synonymous
with CHARACTER_LENGTH(  ). A multiple-byte character is treated as one character. Use
LENGTH() if you want each byte to be counted. Here is an example:

SELECT course_id,
 CASE
 WHEN CHAR_LENGTH(course_desc) > 30
 THEN CONCAT(SUBSTRING(course_desc, 1, 27), '...')
 ELSE course_desc
 END AS Description
FROM courses;

In this example, a CASE control statement is used to specify different display results based
on a condition. Using the CHAR_LENGTH() function, MySQL determines whether the con-
tent of course_desc is longer than 30 characters. If it is, the SUBSTRING() function extracts
the first 27 characters and the CONCAT() function adds ellipsis points to the end of the
truncated data to indicate that there is more text. Otherwise, the full contents of

CHAR_LENGTH(  )

Chapter 11: String Functions | 239

String Functions

course_desc are displayed. See the CHARACTER_LENGTH(  ) description next for another ex-
ample of how CHAR_LENGTH() may be used.

CHARACTER_LENGTH(  )
CHARACTER_LENGTH(string)

This function returns the number of characters of a given string. A multiple-byte character
is treated as one character. It’s synonymous with CHAR_LENGTH(  ).

As another example of how this function or CHAR_LENGTH() might be used, suppose that
in a college’s table containing students names we notice that some of the names appear
garbled. We realize this is happening because we weren’t prepared for non-Latin char-
acters. We could enter an SQL statement like the following to find students with the
names containing multibyte characters:

SELECT student_id,
CONCAT(name_first, SPACE(1), name_last) AS Name
FROM students
WHERE CHARACTER_LENGTH(name_first) != LENGTH(name_first)
OR CHARACTER_LENGTH(name_last) != LENGTH(name_last);

In this example, in the WHERE clause we’re using CHARACTER_LENGTH() to get the number
of bytes and LENGTH() to get the number of characters for each name, and then we’re
comparing them with the != operator to return only rows where the two methods of
evaluation don’t equal.

CHARSET(  )
CHARSET(string)

This function returns the character set used by a given string. It’s available as of version
4.1.0 of MySQL. Here is an example:

SELECT CHARSET('Rosá')
AS 'Set for My Name';

+-----------------+
| Set for My Name |
+-----------------+
| utf8 |
+-----------------+

COALESCE(  )
COALESCE(column[, ...])

This function returns the leftmost non-NULL string or column in a comma-separated
list. If all elements are NULL, the function returns NULL. Here is an example:

SELECT CONCAT(name_first, ' ', name_last)
 AS Student,
COALESCE(phone_dorm, phone_home, 'No Telephone Number')
 AS Telephone
FROM students;

CHARACTER_LENGTH(  )

240 | Chapter 11: String Functions

In this example, the results will show the student’s dormitory telephone number if there
is one (i.e., if the student lives in the dormitory). If not, it will show the student’s home
telephone number (i.e., maybe his parent’s house). Otherwise, it will return the string
given, indicating that there is no telephone number for the student.

COERCIBILITY(  )
COERCIBILITY(string)

This function returns an arbitrary value known as the coercibility of a given string or other
item, showing how likely that item is to determine the collation used in an expression.
MySQL sometimes needs to choose which collation to use when results of an SQL state-
ment involve different types of data. Here are possible return values from this function:

0
Collation has been explicitly specified (e.g., a statement using COLLATE).

1
The argument merges values of different collations.

2
The argument has an implicit collation (e.g., a column is given).

3
The argument is a system constant, such as a system variable or a function that
returns something similar.

4
The argument is a literal string.

5
The argument is NULL or an expression derived from a NULL value.

Lower coercibility levels take precedence over higher ones when the server is determining
which collation to use. This function is available as of version 4.1.1 of MySQL. Here is
an example:

SELECT COERCIBILITY('Russell')
AS 'My State';

+----------+
| My State |
+----------+
| 4 |
+----------+

COLLATION(  )
COLLATION(string)

This function returns the collation for the character set of a given string. This function
is available as of version 4.1.0 of MySQL. Here is an example:

SELECT COLLATION('Rosá');

COLLATION(  )

Chapter 11: String Functions | 241

String Functions

+--------------------+
| COLLATION('Rosá') |
+--------------------+
| utf8_general_ci |
+--------------------+

COMPRESS(  )
COMPRESS(string)

This function returns a given string after compressing it. It requires MySQL to have been
compiled with a compression library (e.g., zlib). If it wasn’t, a NULL value will be re-
turned. This statement is available as of version 4.1 of MySQL. Here is an example:

UPDATE students_records
SET personal_essay =
(SELECT COMPRESS(essay)
 FROM student_applications
 WHERE applicant_id = '7382') AS derived1
WHERE student_id = '433302000';

If you want to store a value that was compressed with this function, it’s best to store it
in a BLOB column, since the results are binary. Use UNCOMPRESS(  ) to uncompress a string
that was compressed with this function.

CONCAT(  )
CONCAT(string, ...)

With this function, strings or columns can be concatenated or pasted together into one
resulting field. Any number of strings may be specified, with each argument separated
by a comma. If any of the values given are NULL, a NULL value is returned. Here is an
example:

SELECT CONCAT(name_first, ' ', name_last) AS Student
FROM students WHERE name_last = 'Dyer';

+-------------------+
| Student |
+-------------------+
| Kenneth Dyer |
| Geoffrey Dyer |
| Marie Dyer |
| NULL |
+-------------------+

In this example, the database contained four students with the last name Dyer, but one
of them had a NULL value in the name_first column. Within the parentheses of the
function, notice that a space is given within quotes as the second element so that the
results show a space between each student’s first and last name.

Another use for CONCAT() is to convert numeric values of a given column to strings. This
may be useful when working with an API such as Perl and when using UNION to mix data
from two different data types.

COMPRESS(  )

242 | Chapter 11: String Functions

Here is an example:

SELECT CONCAT(type_id) AS id, type AS title
 FROM types
UNION
SELECT topic_id AS id, topic AS title
 FROM topics;

In this example, the column type_id is an INT, whereas the column topic_id is a CHAR
column. In MySQL, the results can be mixed. However, if this SQL statement is used to
create a hash of data in Perl or another API language, you may encounter problems
retrieving data. In order that the data in the columns agree, the CONCAT() function is used
to convert the numeric values to their string equivalents.

CONCAT_WS(  )
CONCAT_WS(separator, string, ...)

This function combines strings of text and columns, separated by the string specified in
the first argument. Any number of strings may be specified after the first argument, with
each argument separated by a comma. Null values are ignored. Here is an example:

SELECT CONCAT_WS('|', student_id, name_last, name_first)
AS 'Dyer Students'
FROM students
WHERE name_last='Dyer';

+------------------------+
| Dyer Students |
+------------------------+
| 433342000|Dyer|Russell |
| 434892001|Dyer|Marie |
+------------------------+

Here, the vertical bar is used to separate the columns. This function can be useful for
exporting data to formats acceptable to other software. You could incorporate something
like this into an API program, or just execute it from the command line using the
mysql client like this:

mysql -u root -p \
-e "SELECT CONCAT_WS('|', student_id, name_last, name_first)
AS '# Dyer Students #' FROM testing.students
WHERE name_last='Dyer';" > dyer_students.txt

cat dyer_students.txt

Dyer Students
433342000|Dyer|Russell
434892001|Dyer|Marie

The -e option in the mysql client instructs it to execute what is contained in quotes. The
entire mysql statement is followed by a > sign to redirect output to a text file. Afterward,
the cat command shows the contents of that file. Notice that the usual ASCII table format
is not included. This makes the file easy to import into other applications.

CONCAT_WS(  )

Chapter 11: String Functions | 243

String Functions

CONVERT(  )
CONVERT([_character_set]string USING character_set)

Use this function to convert the character set of a given string to another character set
specified with the USING keyword. This function is available as of version 4.0.2 of MySQL.
The function has some similarities to CAST(  ). If the character set for the given string is
not the same as the default, you can specify its character set by listing it immediately
before the string and preceded by an underscore:

UPDATE students SET name_first =
CONVERT(_latin1'Rosá' USING utf8)
WHERE student_id = 433342000;

In this example, we’re converting the student’s first name with the accented character
into a format usable by the column that uses UTF-8. Notice that the character set given
for the string is preceded by an underscore and there are no spaces before the quotation
mark for the string.

CRC32(  )
CRC32(string)

This function returns the given string’s cyclic redundancy check (CRC) value as a 32-bit
unsigned value. It’s available as of version 4.1 of MySQL. It returns NULL if given a
NULL value. Even if a numeric value is given, it treats the value as a string:

SELECT CRC32('test');

+---------------+
| CRC32('test') |
+---------------+
| 3632233996 |
+---------------+

ELT(  )
ELT(index, string, ...)

This function returns the index element from the list of strings given, where the list is
numbered starting with 1. If the number given is less than 1 or if the number of elements
is less than the number given, this statement returns NULL:

SELECT student_id,
CONCAT(name_first, SPACE(1), name_last)
 AS Name,
ELT(primary_phone, phone_dorm, phone_home, phone_work)
 AS Telephone
FROM students;

In this SQL statement, we’re using the value of the primary_phone column to provide the
index for ELT(). This column is an ENUM column that records which of the three telephone
columns is the student’s primary telephone number. The function will return the value
for the column selected based on the index. As a result, the SQL statement will give a list
of students and their primary telephone numbers.

CONVERT(  )

244 | Chapter 11: String Functions

EXPORT_SET(  )
EXPORT_SET(number, on, off[, separator,[count]])

This function returns a series of strings in order that represent each bit of a given
number. The second argument specifies a string to represent bits that are 1 (an on bit),
and the third argument specifies a string to represent bits that are 0 (an off bit). The fourth
argument may specify a separator, and the last argument may specify a number of bit
equivalents to display. The default separator is a comma. Here is an example:

SELECT BIN(4) AS 'Binary Number',
EXPORT_SET(4, 'on', 'off', '-', 8)
AS 'Verbal Equivalent';

+---------------+--------------------------------+
| Binary Number | Verbal Equivalent |
+---------------+--------------------------------+
| 100 | off-off-on-off-off-off-off-off |
+---------------+--------------------------------+

Notice that the lowest-order bit is displayed first, so the conversion of the binary equiv-
alent of 4 is displayed by EXPORT_SET() in what one might consider reverse order, from
right to left: not 100, but 001 (or, as part of 8 bits, 00100000).

FIELD(  )
FIELD(string, string[, ...])

This function searches for the first string given in the following list of strings, and returns
the numeric position of the first string in the list that matches. The first element is 1
among the arguments being searched. If the search string is not found or is NULL, 0 is
returned.

As an example of this function, suppose that in a table containing telephone numbers of
students at a college, there are three columns for telephone numbers (dormitory, home,
and work numbers). Suppose further that another column is used to indicate which
column contains the primary telephone number of the student. However, we realize that
for many rows this primary_phone column is NULL. So, we decide to make a guess as to
which is the primary telephone number by using the FIELD() function along with a
subquery:

UPDATE students
JOIN
 (SELECT student_id,
 FIELD(1, phone_dorm IS TRUE,
 phone_home IS TRUE,
 phone_work IS TRUE)
 AS first_phone_found
 FROM students
 WHERE primary_phone IS NULL) AS sub_table
 USING (student_id)
SET primary_phone = first_phone_found;

Notice that in the subquery, within the FIELD() function, we’re looking for a value of 1
(the first parameter of the function). For the other parameters given, each telephone

FIELD(  )

Chapter 11: String Functions | 245

String Functions

column will be examined using the IS TRUE operator: it will return true (or rather 1) if
the column is not NULL. The FIELD() function will return the number of the element
in the list that returns 1 (meaning it exists). So if phone_dorm is NULL but phone_home has
a telephone number in it, the subquery will return a value of 2—even if phone_work also
contains a number. The JOIN uses the results to update each student record that has a
NULL value for primary_phone with the value of the first_phone_found field in the results
of the subquery.

FIND_IN_SET(  )
FIND_IN_SET(string, string_list)

This function returns the location of the first argument within a comma-separated list
that is passed as a single string in the second argument. The first element of the list is 1.
A 0 is returned if the string is not found in the set or if the string list is empty. It returns
NULL if either argument is NULL.

As an example of how this function might be used, suppose that a table in our college
application contains the results of a survey that students took on the college’s web site.
One of the columns, favorite_activities, contains a list of activities each student said
is her favorite in the order that she likes them, her favorite being first. The text of the
column comes from a web form on which students entered a number to rank each activity
they like; they left blank the ones they don’t take part in. So, each column has text
separated by commas and spaces (e.g., bike riding, reading, swimming). Here’s how this
function could be used to order a list of students who said that reading is one of their
favorite activities:

SELECT student_id,
FIND_IN_SET('reading',
 REPLACE(favorite_activities, SPACE(1), ''))
 AS reading_rank
FROM student_surveys
WHERE survey_id = 127
AND favorite_activities LIKE '%reading%'
ORDER BY reading_rank;

We use the WHERE clause to choose the correct survey and the LIKE operator to select only
rows where the column favorite_activities contains the value reading. This will elim-
inate those students who didn’t rank reading as a favorite activity from the results.
FIND_IN_SET() won’t allow spaces because they confuse the function, so we need to
remove spaces from the text in the favorite_activities column. Thus, we slip in a call
to REPLACE() to replace any space found with an empty string. With that done,
FIND_IN_SET() will return the ranking each student gave for reading. The ORDER BY clause
orders those results by reading_rank—the alias given for the second field with the AS
clause.

HEX(  )
HEX(string)

The first version of this function accepts a string and returns its numerical value, in
hexadecimal, as it is represented in the underlying character set. The second version

FIND_IN_SET(  )

246 | Chapter 11: String Functions

accepts a decimal integer and returns the hexadecimal equivalent. The function returns
NULL if given a NULL value.

For an example, suppose that a college has conducted a student survey through an ap-
plication that has somehow saved a number of formatting characters as strings containing
their hexadecimal equivalents. For instance, a tab appears as 09, and we want to replace
each instance with an actual tab. Although we could do this with a straight replacement
function, we’d like to use a slightly more abstract solution that can be used with many
different characters that suffer from this problem in a particular column.

One solution, changing all instances in the column student_surveys, is as follows:

UPDATE student_surveys
SET opinion = REPLACE(opinion, HEX('\t'), UNHEX(HEX('\t')))
WHERE survey_id = 127;

In this SQL statement, HEX() is used to return the hexadecimal value of tab, represented
by \t. That value is given to REPLACE(  ) as the string for which it is to replace. Then, using
HEX() again but wrapped in UNHEX(  ) to return the binary character for tab, we’re pro-
viding REPLACE(  ) with the replacement value.

INSERT(  )
INSERT(string, position, length, new_string)

This function inserts the string from the final argument into the string specified by the
first argument, at the specified position. If length is greater than 0, the function overwrites
that number of characters, so the new string replaces part of the original. The function
returns NULL if any of the arguments are NULL. The first position is 1. Don’t confuse
this function with the SQL INSERT statement. Here is an example of this function:

UPDATE courses
SET course_name =
INSERT(course_name, INSTR(course_name, 'Eng.'), 4, 'English')
WHERE course_name LIKE "%Eng.%";

In this example, some course names have the word English abbreviated as Eng. This SQL
statement overwrites any such occurrences with the word English. It uses the INSTR(  )
function to find the starting point of the abbreviation. The number value it returns is
used as the position argument for the INSERT() function. If it’s not found, the course
name will not be changed because a value of 0 will be returned by INSTR(), and the
INSERT() function ignores any request in which position lies outside the length of the
original string.

INSTR(  )
INSTR(string, substring)

This function returns the starting position of the first occurrence of the substring in the
string given as the first argument. The index of the first position is 1. This function is
case-insensitive unless one of the arguments given is a binary string. For an example of
this function, see the description of INSERT(  ) previously in this chapter. INSTR() is sim-
ilar to one of the syntaxes of LOCATE(  ), but the parameters are given in a different order.

INSTR(  )

Chapter 11: String Functions | 247

String Functions

INTERVAL(  )
INTERVAL(search_value, ordered_value, ...)

This function returns the position in which search_value would be located in a comma-
separated list of ordered_value arguments. In other words, the function returns the first
ordered_value that is less than or equal to search_value. All arguments are treated as
integers, and the caller must list the ordered_value arguments in increasing order. If
search_value would be located before the first ordered value, 0 is returned. If
search_value would be located after the last ordered value, the position of that value is
returned.

For example, suppose that a professor at our fictitious college has given the same few
exams every semester for the last four semesters. Suppose that he has a table containing
a row for each semester, and a column for each exam that contains the average of student
grades for the semester. Now the professor wants to know how the average score for the
same exam for the current semester compares against the previous semesters: he wants
to know how the students on average rank by comparison. We could find this answer
by running the following SQL statement:

SELECT INTERVAL(
 (SELECT AVG(exam1) FROM student_exams),
 S1,S2,S3,S4) AS Ranking
FROM
 (SELECT
 (SELECT exam1_avg FROM student_exams_past
 ORDER BY exam1_avg LIMIT 0,1) AS S1,
 (SELECT exam1_avg FROM student_exams_past
 ORDER BY exam1_avg LIMIT 1,1) AS S2,
 (SELECT exam1_avg FROM student_exams_past
 ORDER BY exam1_avg LIMIT 2,1) AS S3,
 (SELECT exam1_avg FROM student_exams_past
 ORDER BY exam1_avg LIMIT 3,1) AS S4) AS exam1_stats;

In this complex example, we’re running four subqueries to get the average exam score
stored (S1, S2, S3, and S4) in the same column for the four semesters for which we have
data. Then we’re putting each of these values into one row of a derived table
(exam1_stats). We will then select each column of that limited derived table for the strings
to compare against in the INTERVAL() function. For the first parameter of that function,
though, we’re running yet another subquery to determine the average grades of students
for the same exam for the current semester. The results will be a number from 0 to 4,
depending on how this semester’s average compares.

LCASE(  )
LCASE(string)

This function converts a string given to all lowercase letters. It’s an alias of LOWER(  ). Here
is an example:

SELECT teacher_id,
CONCAT(LEFT(UCASE(name_last), 1),
SUBSTRING(LCASE(name_last), 2))
AS Teacher
FROM teachers;

INTERVAL(  )

248 | Chapter 11: String Functions

In this example, we’re using a combination of LEFT() paired with UCASE() and
SUBSTRING() paired with LCASE() to ensure that the first letter of the teacher’s name is
displayed in uppercase and the rest of the name is in lowercase letters.

LEFT(  )
LEFT(string, length)

This function returns the first length characters from a string. If you want to extract the
end of the string instead of the beginning, use the RIGHT(  ) function. Both are multibyte-
safe. Here is an example:

SELECT LEFT(phone_home, 3) AS 'Area Code',
COUNT(*)
FROM students
GROUP BY LEFT(phone_home, 3);

Using the LEFT() function, this statement extracts the first three digits of phone_home for
each row, which is the telephone area code (i.e., city code). It then groups the results,
using the same function in the WHERE clause. This returns a count of the number of stu-
dents living in each telephone area code.

LENGTH(  )
LENGTH(string)

This function returns the number of bytes contained in a given string. It is not aware of
multibyte characters, so it assumes there are eight bits to a byte and one byte to a char-
acter. OCTET_LENGTH(  ) is an alias. If you want to get the length of characters regardless of
whether a character is multibyte or not, use CHARACTER_LENGTH(  ).

As an example, suppose that we notice in an online survey that some odd binary char-
acters have been entered into the data through the web interface—probably from a spam
program. To narrow the list of rows, we can enter the following statement to find the
rows that have binary characters in three columns that have the bad data:

SELECT respondent_id
FROM survey
WHERE CHARACTER_LENGTH(answer1) != LENGTH(answer1)
OR CHARACTER_LENGTH(answer2) != LENGTH(answer2)
OR CHARACTER_LENGTH(answer3) != LENGTH(answer3)
survey_id = 127;

In this example, the WHERE clause invokes CHARACTER_LENGTH(  ) to get the number of bytes,
and LENGTH(  ) to get the number of characters for each column containing a respondent’s
answers to the survey questions. We then compare them with the != operator to return
only rows in which the two methods of evaluation are not equal. The LENGTH() will return
a greater value for multibyte characters, whereas CHARACTER_LENGTH() will return 1 for
each character, regardless of whether it’s a multibyte character.

LENGTH(  )

Chapter 11: String Functions | 249

String Functions

LOAD_FILE(  )
LOAD_FILE(filename)

This function reads the contents of a file and returns it as a string that may be used in
MySQL statements and functions. The user must have FILE privileges in MySQL, and
the file must be readable by all users on the filesystem. It returns NULL if the file doesn’t
exist, if the user doesn’t have proper permissions, or if the file is otherwise unreadable.
The file size in bytes must be less than the amount specified in the system variable
max_allowed_packet. Starting with version 5.1.6 of MySQL, the system variable
character_set_filesystem is used to provide filenames in the character set recognized by
the underlying filesystem. Here is an example:

UPDATE applications
SET essay = LOAD_FILE('/tmp/applicant_7382.txt'),
student_photo = LOAD_FILE('/tmp/applicant_7382.jpeg')
WHERE applicant_id = '7382';

In this example, an essay written by someone who is applying for admission to the college
is loaded into the essay column (which is a TEXT data type) of the row for the applicant
in the applications table. The entire contents of the file, including any binary data (e.g.,
hard returns and tabs), are loaded from the file into the table. Additionally, an image file
containing the student’s photograph is loaded into another column of the same table,
but in a BLOB column.

LOCATE(  )
LOCATE(substring, string[, start_position])

This function returns the numeric starting point of the first occurrence of a substring in
the string supplied as a second argument. A starting position for searching may be speci-
fied as a third argument. It’s not case-sensitive unless one of the strings given is a binary
string. The function is multibyte-safe.

As an example of this function’s potential, suppose that a table for a college contains a
list of courses and one of the columns (course_desc) contains the description of the
courses. A typical column starts like this:

Victorian Literature [19th Cent. Engl. Lit.]: This course covers Engl.
 novels and Engl. short-stories...

We want to replace all occurrences of the abbreviation Engl. with English except in the
beginning of the strings where the abbreviation is contained in square brackets, as shown
here. To do this, we could enter an SQL statement like this:

UPDATE courses
SET course_desc =
INSERT(course_desc, LOCATE('Engl.', course_desc, LOCATE(']', course_desc)),
 5, 'English')
WHERE course_desc LIKE '%Engl.%';

In this statement, we use the LOCATE() function to locate the first occurrence of the
closing square bracket. From there, we use LOCATE() again to find the first occurrence
of Engl.. With the INSERT() function (not the INSERT statement), we remove the five
characters starting from that point located after the closing square bracket and inserting

LOAD_FILE(  )

250 | Chapter 11: String Functions

the text English. This is a bit complex, but it generally works. However, it replaces only
one occurrence of the text we’re trying to replace, whereas in the sample text shown there
are at least two occurrences of Engl. after the brackets. We could keep running that SQL
statement until we replace each one. A better method would be to run this SQL statement
instead:

UPDATE courses
SET course_desc =
CONCAT(
 SUBSTRING_INDEX(course_desc, ']', 1),
 REPLACE(SUBSTR(course_desc, LOCATE(']', course_desc)),
 'Engl.', 'English')
)
WHERE course_desc LIKE '%Engl.%';

In this statement, we use SUBSTRING_INDEX() to extract the opening text until the first
closing bracket. We then use LOCATE() to locate the closing bracket, SUBSTR() to extract
the text from that point forward, and then REPLACE() to replace all occurrences of
Engl. in that substring. Finally, CONCAT() pastes the opening text that we preserved and
excluded from the replacement component together with the cleaned text.

LOWER(  )
LOWER(string)

This function converts a given string to all lowercase letters. It is an alias of LCASE(  ):

SELECT course_id AS 'Course ID',
LOWER(course_name) AS Course
FROM courses;

This statement displays the name of each course in all lowercase letters.

LPAD(  )
LPAD(string, length, padding)

This function adds padding to the left end of string, stopping if the combination of
string and the added padding reach length characters. If length is shorter than the length
of the string, the string will be shortened starting from the left to comply with the length
constraint. The padding can be any character. Here is an example:

SELECT LPAD(course_name, 25, '.') AS Courses
FROM courses
WHERE course_code LIKE 'ENGL%'
LIMIT 3;

+---------------------------+
| Courses |
+---------------------------+
|Creative Writing |
|Professional Writing |
|American Literature |
+---------------------------+

LPAD(  )

Chapter 11: String Functions | 251

String Functions

In this example, a list of three courses is retrieved and the results are padded with dots
to the left of the course names.

LTRIM(  )
LTRIM(string)

This function returns the given string with any leading spaces removed. When used with
an SQL statement such as UPDATE, rows that do not contain leading spaces will not be
changed. This function is multibyte-safe. To trim trailing spaces, use RTRIM(  ). To trim
both leading and trailing spaces, use TRIM(  ). Here is an example:

UPDATE students
SET name_last = LTRIM(name_last);

In this example, the last names of several students have been entered inadvertently with
a space in front of the names. This SQL statement removes any leading spaces from each
name retrieved that contains leading spaces and then writes the trimmed text over the
existing data.

MAKE_SET(  )
MAKE_SET(bits, string1, string2, ...)

This function converts the decimal number in bits to binary and returns a
comma-separated list of values for all the bits that are set in that number, using
string1 for the low-order bit, string2 for the next lowest bit, etc. Here is an example:

SELECT BIN(9) AS 'Binary 9',
MAKE_SET(100, 'A','B','C','D')
AS Set;

+----------+------+
| Binary 9 | Set |
+----------+------+
| 1001 | A,D |
+----------+------+

The binary equivalent of 9 is 1001. The first bit starting from the right of the binary
number shown is 1 (or on), so the first string in the list is put into the results. The second
and third bits of the binary number are 0, so the second and third strings ('B' and 'C')
are left out of the results. The fourth bit counting from the right is 1, so the fourth string
of the list is added to the results.

MATCH(  ) AGAINST(  )
MATCH(column[, ...]) AGAINST (string)

This function is used only for columns indexed by a FULLTEXT index, and only in WHERE
clauses. In these clauses, it can be a condition used to search columns for a given string.
Text in the string containing spaces is parsed into separate words, so a column matches
if it contains at least one word. Small words (three characters or less) are ignored. Here
is an example:

LTRIM(  )

252 | Chapter 11: String Functions

SELECT applicant_id
FROM applications
WHERE MATCH (essay) AGAINST ('English');

This SQL statement searches the table containing data on people applying for admission
to the college. The essay column contains a copy of the applicant’s admission essay. The
column is searched for applicants who mention the word English, so that a list of appli-
cants who have voiced an interest in the English program will be displayed.

MID(  )
MID(string, position[, length])

This function returns the characters of a given string, starting from the position specified
in the second argument. The first character is numbered 1. You can limit the length of
the string retrieved by specifying a limit in the third argument. This function is similar
to SUBSTRING().

As an example of this function, suppose that a table of information about teachers con-
tains a column listing their home telephone numbers. This column’s entries are in a
format showing only numbers, no hyphens or other separators (e.g., 50412345678). Sup-
pose further that we decide to add the country code and hyphens in a typical U.S. format
(e.g., +1-504-123-45678) because although all our teachers live in the U.S., we’re about
to acquire a small school in a different country. We could make these changes like so:

UPDATE teachers
SET phone_home =
CONCAT_WS('-', '+1',
 LEFT(phone_home, 3),
 MID(phone_home, 4, 3),
 MID(phone_home, 7));

This convoluted SQL statement extracts each component of the telephone number with
the LEFT() and MID() functions. Using CONCAT_WS(), the data is merged back together
along with the country code at the beginning. Components in the return value are sep-
arated with a hyphen, which is given as its first parameter.

OCTET_LENGTH(  )
OCTET_LENGTH(string)

This function returns the number of bytes contained in the given string. It does not
recognize multibyte characters, so it assumes there are eight bits to a byte and one byte
to a character. An octet is synonymous with byte in most contexts nowadays, so this
function is an alias of LENGTH(  ). See the description of that function earlier in this chapter
for examples of its use.

ORD(  )
ORD(string)

This function returns an ordinal value, the position of a character in the ASCII character
set of the leftmost character in a given string. For multibyte characters, it follows a
formula to determine the results: byte1 + (byte2 * 256) + (byte3 *2562)....

ORD(  )

Chapter 11: String Functions | 253

String Functions

Here is an example:

SELECT ORD('A'), ORD('a');

+----------+----------+
| ORD('A') | ORD('a') |
+----------+----------+
| 65 | 97 |
+----------+----------+

POSITION(  )
POSITION(substring IN string)

This function returns an index of the character in string where substring first appears.
The first character of string is numbered 1. This function is like LOCATE(), except that
the keyword IN is used instead of a comma to separate the substring and the containing
string. Also, this function does not provide a starting point to begin the search; it must
begin from the leftmost character. Here is an example:

UPDATE courses
SET course_name =
INSERT(course_name, POSITION('Eng.' IN course_name), 4, 'English')
WHERE course_name LIKE "%Eng.%";

In this example, some course names have the word English abbreviated as Eng. This SQL
statement overwrites any such occurrences with the word English. It uses the
POSITION() function to find the starting point of the abbreviation. The numerical value
it returns is then used as the position argument for the INSERT() function (not the
INSERT statement). If it’s not found, the course name will not be changed, because a value
of 0 will be returned by POSITION(), and the INSERT() function ignores any request in
which position lies outside the length of the original string.

QUOTE(  )
QUOTE(string)

This function accepts a string enclosed in single quotes and returns a string that is safe
to manipulate with SQL statements. Single quotes, backslashes, ASCII NULLs, and
Ctrl-Zs contained in the string are escaped with a backslash. This is a useful security
measure when accepting values from a public web interface. Here is an example:

SELECT QUOTE(course_name) AS Courses
FROM courses
WHERE course_code = 'ENGL-405';

+---------------------+
| Courses |
+---------------------+
| 'Works of O\'Henry' |
+---------------------+

Notice in the results that because of the QUOTE() function, the string returned is enclosed
in single quotes, and the single quote within the data returned is escaped with a backslash.

POSITION(  )

254 | Chapter 11: String Functions

REPEAT(  )
REPEAT(string, count)

This function returns the string given in the first argument of the function as many times
as specified in the second argument. It returns an empty string if count is less than 1. It
returns NULL if either argument is NULL. Here is an example:

SELECT REPEAT('Urgent! ', 3)
AS 'Warning Message';

REPLACE(  )
REPLACE(string, old_element, new_element)

This function goes through the first argument and returns a string in which every occur-
rence of the second argument is replaced with the third argument. Here is an example:

UPDATE students,
REPLACE(title, 'Mrs.', 'Ms.');

This SQL statement will retrieve each student’s title and replace any occurrences of
“Mrs.” with “Ms.” UPDATE will change only the rows where the replacement was made.

REVERSE(  )
REVERSE(string)

This function returns the characters of string in reverse order. It’s multibyte-safe. Here
is an example:

SELECT REVERSE('MUD');

+----------------+
| REVERSE('MUD') |
+----------------+
| DUM |
+----------------+

RIGHT(  )
RIGHT(string, length)

This function returns the final length characters from a string. If you want to extract the
beginning of the string instead of the end, use the LEFT(  ) function. Both are multibyte-
safe. Here is an example:

SELECT RIGHT(soc_sec, 4)
FROM students
WHERE student_id = '43325146122';

This statement retrieves the last four digits of the student’s Social Security number as an
identity verification.

RIGHT(  )

Chapter 11: String Functions | 255

String Functions

RPAD(  )
RPAD(string, length, padding)

This function adds padding to the right end of string, stopping if the combination of
string and the added padding reach length characters. If the length given is shorter than
the length of the string, the string will be shortened to comply with the length constraint.
The padding can be any character. Here is an example:

SELECT RPAD(course_name, 25, '.') AS Courses
FROM courses
WHERE course_code LIKE 'ENGL%'
LIMIT 3;

+---------------------------+
| Courses |
+---------------------------+
| Creative Writing......... |
| Professional Writing..... |
| American Literature...... |
+---------------------------+

This statement presents a list of three course names that are retrieved. Each row of the
results is padded with dots to the right.

RTRIM(  )
RTRIM(string)

This function returns the given string with any trailing spaces removed. When used with
an SQL statement such as UPDATE, rows that do not contain trailing spaces will not be
changed. This function is multibyte-safe. To trim leading spaces, use LTRIM(  ). To trim
both leading and trailing spaces, use TRIM(  ). Here is an example:

UPDATE students
SET name_last = RTRIM(name_last);

In this example, the last names of several students have been entered inadvertently with
a space at the end of the names. This SQL statement removes any trailing spaces from
each name retrieved that contains trailing spaces and then writes the trimmed text over
the existing data.

SOUNDEX(  )
SOUNDEX(string)

This function returns the results of a classic algorithm that can be used to compare two
similar strings. Here is an example:

SELECT IF(SOUNDEX('him') = SOUNDEX('hymm'),
'Sounds Alike', 'Does not sound alike')
AS 'Sound Comparison';

+------------------+
| Sound Comparison |
+------------------+

RPAD(  )

256 | Chapter 11: String Functions

| Sounds Alike |
+------------------+

SOUNDEX() was designed to allow comparisons between fuzzy inputs, but it’s rarely used.

SPACE(  )
SPACE(count)

This function returns a string of spaces. The number of spaces returned is set by the
argument. Here is an example:

SELECT CONCAT(name_first, SPACE(1), name_last)
AS Name
FROM students LIMIT 1;

+------------------+
| Name |
+------------------+
| Richard Stringer |
+------------------+

Although this example requires a lot more typing than just placing a space within quotes,
it’s more apparent when glancing at it that a space is to be inserted. For multiple or
variable spaces, you could substitute the count with another function to determine the
number of spaces needed based on data from a table, the length of other inputs, or some
other factor.

STRCMP(  )
STRCMP(string, string)

This function compares two strings to determine whether the first string is before or after
the second string in ASCII sequence. If the first string precedes the second string, –1 is
returned. If the first follows the second, 1 is returned. If they are equal, 0 is returned.
This function is often used for alphanumeric comparisons, but it is case-insensitive unless
at least one of the strings given is binary. Here is an example:

SELECT * FROM
(SELECT STRCMP(
 SUBSTR(pre_req, 1, 8),
 SUBSTR(pre_req, 10, 8))
AS Comparison
FROM courses) AS derived1
WHERE Comparison = 1;

In this example, because course codes are all eight characters long, we use SUBSTR() to
extract the first two course code numbers. Using STRCMP(), we compare the two course
codes to see if they’re in sequence. To see only the results where the courses are out of
sequence, we use a subquery with a WHERE clause to return only rows for which the
STRCMP() returns a –1 value, indicating the two strings are not in sequence.

The problem with this statement is that some courses have more than two prerequisites.
We would have to expand this statement to encompass them. However, that doesn’t
resolve the problem either; it provides only more indications of what we know. To reorder

STRCMP(  )

Chapter 11: String Functions | 257

String Functions

the data, it would be easier to create a simple script using one of the APIs to extract,
reorder, and then replace the column values.

SUBSTR(  )
SUBSTRING(string, position[, length])
SUBSTRING(string FROM position FOR length)

This function is an alias of SUBSTRING(  ). See its description next for details and an
example of its use.

SUBSTRING(  )
SUBSTRING(string, position[, length])
SUBSTRING(string FROM position[FOR length])

This function returns the characters of a given string, starting from the position given.
The first character is numbered 1. You can restrict the length of the string retrieved by
specifying a limit. The function is similar to MID(  ). Here is an example:

SELECT CONCAT_WS('-',
 SUBSTRING(soc_sec, 1, 3),
 SUBSTRING(soc_sec FROM 4 FOR 2),
 SUBSTRING(soc_sec FROM 6)
)
AS 'Social Security Nbr.'
FROM students LIMIT 1;

+----------------------+
| Social Security Nbr. |
+----------------------+
| 433-12-3456 |
+----------------------+

This example shows the two syntaxes of SUBSTRING() for reformatting a Social Security
number (the U.S. federal tax identification number) stored without dashes. It uses
CONCAT_WS() to put the three pieces of data together, separated by the hyphen given.

SUBSTRING_INDEX(  )
SUBSTRING_INDEX(string, delimiter, count)

This function returns a substring of string, using delimiter to separate substrings and
count to determine which of the substrings to return. Thus, a count of 1 returns the first
substring, 2 returns the second, and so on. A negative number instructs the function to
count from the right end. Here is an example:

SELECT SUBSTRING_INDEX(pre_req, '|', -1)
AS 'Last Prerequisite',
pre_req AS 'All Prerequisites'
FROM courses WHERE course_id = '1245';

+--------------------+----------------------------+
| Last Prerequisite | All Prerequisites |
+--------------------+----------------------------+

SUBSTR(  )

258 | Chapter 11: String Functions

| ENGL-202 | ENGL-101|ENGL-201|ENGL-202 |
+--------------------+----------------------------+

In this example, the pre_req column for each course contains prerequisite courses sep-
arated by vertical bars. The statement displays the last prerequisite, because –1 was
entered for the count.

TRIM(  )
TRIM([[BOTH|LEADING|TRAILING] [padding] FROM] string)

This function returns the given string with any trailing or leading padding removed,
depending on which is specified. If neither is specified, BOTH is the default, causing both
leading and trailing padding to be removed. The default padding is a space if none is
specified. The function is multibyte-safe.

As an example, in a table containing the results of a student survey we notice that one of
the columns that lists each student’s favorite activities contains extra commas at the end
of the comma-separated list of activities. This may have been caused by a problem in the
web interface, which treated any activities that a student didn’t select as blank values
separated by commas at the end (e.g., biking,reading,,,,):

UPDATE student_surveys
SET favorite_activities =
TRIM(LEADING SPACE(1) FROM TRIM(TRAILING ',' FROM favorite_activities));

In this example, we’re using TRIM() twice: once to remove the trailing commas from the
column favorite_activities and then again on those results to remove leading spaces.
Since the functions are part of an UPDATE statement, the double-trimmed results are saved
back to the table for the row for which the data was read. This is more verbose than it
needs to be, though. Because a space is the default padding, we don’t have to specify it.
Also, because we want to remove both leading and trailing spaces and commas from the
data, we don’t have to specify LEADING or TRAILING and can allow the default of BOTH to
be used. Making these adjustments, we get this tighter SQL statement:

UPDATE student_surveys
SET favorite_activities =
TRIM(TRIM(',' FROM favorite_activities));

If we suspected that the faulty web form also added extra commas between the text (not
just at the end), we could wrap these concentric uses of TRIM() within REPLACE() to
replace any occurrences of consecutive commas with a single comma:

UPDATE student_surveys
SET favorite_activities =
REPLACE(TRIM(TRIM(',' FROM favorite_activities)), ',,', ',');

UCASE(  )
UCASE(string)

This function converts a given string to all uppercase letters. It’s an alias of UPPER(  ). Here
is an example:

SELECT course_id AS 'Course ID',
UCASE(course_name) AS Course
FROM courses LIMIT 3;

UCASE(  )

Chapter 11: String Functions | 259

String Functions

+-----------+----------------------+
| Course ID | Course |
+-----------+----------------------+
1245	CREATIVE WRITING
1255	PROFESSIONAL WRITING
1244	AMERICAN LITERATURE
+-----------+----------------------+

UNCOMPRESS(  )
UNCOMPRESS(string)

This function returns the uncompressed string corresponding to the compressed string
given, reversing the results of the COMPRESS(  ) function. It requires MySQL to have been
compiled with a compression library (e.g., zlib). It returns NULL if the string is not
compressed or if MySQL wasn’t compiled with zlib. This function is available as of
version 4.1.1 of MySQL. Here is an example:

SELECT UNCOMPRESS(essay)
FROM applications_archive
WHERE applicant_id = '1748';

UNCOMPRESSED_LENGTH(  )
UNCOMPRESSED_LENGTH(string)

This function returns the number of characters contained in the given compressed string
before it was compressed. You can compress strings using the COMPRESS(  ) function. This
function is available as of version 4.1 of MySQL. Here is an example:

SELECT UNCOMPRESSED_LENGTH(COMPRESS(essay))
FROM student_applications
WHERE applicant_id = '1748';

UNHEX(  )
UNHEX(string)

This function converts hexadecimal numbers to their character equivalents. It reverses
the results of the HEX(  ) function and is available as of version 4.1.2 of MySQL.

To illustrate its use, suppose that in a table we have a column with a binary character in
the data; specifically, tabs were entered through a web interface using an API. However,
the column is a VARCHAR data type. The problem is that when the data is retrieved, we
want to line up all the results in our display by counting the length of each column, and
a tab keeps the display from lining up vertically. So we want to fix the data. We can use
UNHEX() to locate rows containing the binary character and then replace it with spaces
instead:

UPDATE students
SET comments = REPLACE(comments, UNHEX(09), SPACE(4))
WHERE LOCATE(UNHEX(09), comments);

UNCOMPRESS(  )

260 | Chapter 11: String Functions

We’ve looked at an ASCII chart and seen that a tab is represented by the hexadecimal
number 09. Knowing that bit of information, in the WHERE clause we’re passing that value
to UNHEX() to return the binary character for a tab, yielding the search string with which
LOCATE() will search the column comments. If it doesn’t find a tab in the column for a
row, it will return 0. Those rows will not be included in the search results. The ones that
do contain tabs will have a value of 1 or greater and therefore will be included in the
results. Using UNHEX() along with REPLACE() in the SET clause, we replace all tabs found
with four spaces.

UPPER(  )
UPPER(string)

This function converts a given string to all uppercase letters. It’s an alias of UCASE(  ). See
that function’s description earlier in this chapter for an example.

UPPER(  )

Chapter 11: String Functions | 261

String Functions

12
Date and Time Functions

By using temporal data type columns, you can use several built-in functions offered
by MySQL. This chapter presents those functions. Currently, five temporal data
types are available: DATE, TIME, DATETIME, TIMESTAMP, and YEAR. You would set a col-
umn to one of these data types when creating or altering a table. See the descriptions
of CREATE TABLE and ALTER TABLE in Chapter 6 for more details. The DATE column
type can be used for recording just the date. It uses the yyyy-mm-dd format. The
TIME column type is for recording time in the hhh:mm:ss format. To record a combi-
nation of date and time, use DATETIME: yyyy-mm-dd hh:mm:ss. The TIMESTAMP column
is similar to DATETIME, but it is more limited in its range of allowable time: it starts
at the Unix epoch time (i.e., 1970-01-01) and stops at the end of 2037. Plus, it has
the distinction of resetting its value automatically when the row in which it is con-
tained is updated, unless you specifically instruct MySQL otherwise. Finally, the
YEAR data type is used only for recording the year in a column. For more information
on date and time data types, see Appendix B.

Any function that calls for a date or a time data type will also accept a combined
datetime data type. MySQL requires that months range from 0 to 12 and that days
range from 0 to 31. Therefore, a date such as February 30 would be accepted prior
to version 5.0.2 of MySQL. Beginning in version 5.0.2, MySQL offers more refined
validation that would reject such a date. However, some date functions accept 0 for
some or all components of a date, or incomplete date information (e.g., 2008-06-00).
As a general rule, the date and time functions that extract part of a date value usually
accept incomplete dates, but date and time functions that require complete date
information return NULL when given an incomplete date. The descriptions of these
functions in this chapter indicate which require valid dates and which don’t, as well
as which return 0 or NULL for invalid dates.

The bulk of this chapter consists of an alphabetical listing of date and time functions,
with explanations of each. Each of the explanations include an example of the func-
tion’s use, along with a resulting display, if any. For the examples in this chapter, I
used the scenario of a professional services firm (e.g., a law firm or an investment

263

advisory firm) that tracks appointments and seminars in MySQL. For help locating
the appropriate function, see the next section or the index at the end of this book.

Date and Time Functions Grouped by Type
Following are lists of date and time functions, grouped according to their purpose:
to retrieve the date or time, to extract an element from a given date or time, or to
perform calculations on given dates or times.

Determining the Date or Time
CURDATE(  ), CURRENT_DATE(  ), CURRENT_TIME(  ), CURRENT_TIMESTAMP(  ), CURTIME(  ), LO-
CALTIME(  ), LOCALTIMESTAMP(  ), NOW(  ), SYSDATE(  ), UNIX_TIMESTAMP(  ), UTC_DATE(  ),
UTC_TIME(  ), UTC_TIMESTAMP(  ).

Extracting and Formatting the Date or Time
DATE(  ), DATE_FORMAT(  ), DAY(  ), DAYNAME(  ), DAYOFMONTH(  ), DAYOFWEEK(  ), DAYOF-
YEAR(  ), EXTRACT(  ), GET_FORMAT(  ), HOUR(  ), LAST_DAY(  ), MAKEDATE(  ), MAKETIME(  ),
MICROSECOND(  ), MINUTE(  ), MONTH(  ), MONTHNAME(  ), QUARTER(  ), SECOND(  ),
STR_TO_DATE(  ), TIME(  ), TIME_FORMAT(  ), TIMESTAMP(  ), WEEK(  ), WEEKDAY(  ), WEEKOF-
YEAR(  ), YEAR(  ), YEARWEEK(  ).

Calculating and Modifying the Date or Time
ADDDATE(  ), ADDTIME(  ), CONVERT_TZ(  ), DATE_ADD(  ), DATE_SUB(  ), DATEDIFF(  ),
FROM_DAYS(  ), FROM_UNIXTIME(  ), PERIOD_ADD(  ), PERIOD_DIFF(  ), SEC_TO_TIME(  ),
SLEEP(  ), SUBDATE(  ), SUBTIME(  ), TIME_TO_SEC(  ), TIMEDIFF(  ), TIMESTAMPADD(  ), TIME-
STAMPDIFF(  ), TO_DAYS(  ).

Date and Time Functions in Alphabetical Order
The rest of the chapter lists each function in alphabetical order.

ADDDATE(  )
ADDDATE(date, INTERVAL value type)
ADDDATE(date, days)

This function adds the given interval of time to the date or time provided. This is a
synonym for DATE_ADD(); see its definition later in this chapter for details and interval
types. The second, simpler syntax is available as of version 4.1 of MySQL. This shorthand
syntax does not work, though, with DATE_ADD(). Here is an example:

UPDATE seminars
SET seminar_date = ADDDATE(seminar_date, INTERVAL 1 MONTH)
WHERE seminar_date = '2007-12-01';

264 | Chapter 12: Date and Time Functions

UPDATE seminars
SET seminar_date = ADDDATE(seminar_date, 7)
WHERE seminar_date = '2007-12-15';

The first SQL statement postpones a seminar that was scheduled for December 1, 2007
to a month later (January 1, 2008). The second statement postpones the seminar on
December 15 to December 22, seven days later.

ADDTIME(  )
ADDTIME(datetime, datetime)

This function returns the date and time for a given string or column (in time or date-
time format), incremented by the time given as the second argument. If a negative number
is given, the time is subtracted. In this case, the function is the equivalent of SUBTIME(  ).
This function is available as of version 4.1.1 of MySQL. Here is an example:

SELECT NOW() AS Now,
ADDTIME(NOW(), '1:00:00.00') AS 'Hour Later';

+---------------------+---------------------+
| Now | Hour Later |
+---------------------+---------------------+
| 2007-01-11 23:20:30 | 2007-01-12 00:20:30 |
+---------------------+---------------------+

Notice that the hour is increased by one, and because the time is near midnight, the
function causes the date to be altered by one day as well. To increase the date, add the
number of days before the time (separated by a space) like so:

SELECT NOW() AS Now,
ADDTIME(NOW(), '30 0:0:0') AS 'Thirty Days Later';

+---------------------+---------------------+
| Now | Thirty Days Later |
+---------------------+---------------------+
| 2007-01-11 23:20:30 | 2007-02-10 23:20:30 |
+---------------------+---------------------+

CONVERT_TZ(  )
CONVERT_TZ(datetime, time_zone, time_zone)

This function converts a given date and time from the first time zone given to the second.
It requires time zone tables to be installed in the mysql database. If they are not already
installed on your system, go to MySQL AB’s web site (http://dev.mysql.com/downloads/
timezones.html) to download the tables. Copy them into the mysql subdirectory of the
data directory of MySQL. Change the ownership to the mysql system user and change
the user permissions with system commands such as chown and chmod, and restart the
server. This function is available as of version 4.1.3 of MySQL. Here is an example:

SELECT NOW() AS 'New Orleans',
CONVERT_TZ(NOW(), 'US/Central', 'Europe/Rome')
e')

CONVERT_TZ(  )

Chapter 12: Date and Time Functions | 265

Date and Tim
e

Functions

http://dev.mysql.com/downloads/timezones.html
http://dev.mysql.com/downloads/timezones.html

AS Milan;

+---------------------+---------------------+
| New Orleans | Milan |
+---------------------+---------------------|
| 2007-03-12 20:56:15 | 2007-03-13 02:56:15 |
+---------------------+---------------------+

This example retrieves the current time of the server, which for the sake of this example
is located in New Orleans, and converts this time to the time in Milan. Notice that we’re
using the named time zone of Europe/Rome. There’s isn’t a Europe/Milan choice. If a named
time zone that doesn’t exist is given, a NULL value is returned for that field. To find the
named time zones available, check the time_zone_name table in the mysql database:

SELECT Name
FROM mysql.time_zone_name
me
WHERE Name LIKE '%Europe%';

This will list all of the time zone names for Europe. From here, you can scan the list for
one in the same zone and close to the city that you want. Incidentally, if you’re converting
times with this function for tables you’ve locked, the time_zone_name table will need to
be locked, too.

CURDATE(  )
CURDATE()

This function returns the current system date in yyyy-mm-dd format. It will return the date
in a yyyymmdd format (a numeric format) if it’s used as part of a numeric calculation. You
can use the function in SELECT statements as shown here, in INSERT and UPDATE statements
to set a value, or in a WHERE clause. CURDATE() is synonymous with CURRENT_DATE(  ); see
its definition next for more details. Here is an example:

SELECT CURDATE() AS Today,
CURDATE() + 1 AS Tomorrow;
ow;

+------------+----------+
| Today | Tomorrow |
+------------+----------+
| 2007-01-15 | 20070116 |
+------------+----------+

Because the second use of the function here involves a numeric calculation, tomorrow’s
date is displayed without dashes. If you only want to convert a date to the numeric format,
just add 0. To keep the format the same, use this function together with a function such
as ADDDATE().

CURRENT_DATE(  )
CURRENT_DATE()

CURDATE(  )

266 | Chapter 12: Date and Time Functions

This function returns the current date. The usual parentheses are not required. It’s syn-
onymous with CURDATE(  ). You can use either in SELECT statements, as well as INSERT and
UPDATE statements to dynamically set values, or in WHERE clauses. Here is an example:

UPDATE appointment
SET appt_date = CURRENT_DATE()
WHERE appt_id = '1250';

This statement changes the appointment date for a client who came in today
unexpectedly.

CURRENT_TIME(  )
CURRENT_TIME()

This function returns the current time in hh:mm:ss format. It will return the time in the
hhmmss format (numeric format) if it’s used as part of a numeric calculation. The paren-
theses are not required. It’s synonymous with CURTIME(  ). Here is an example:

INSERT INTO appointments
(client_id, appt_date, start_time)
VALUES('1403', CURRENT_DATE(), CURRENT_TIME);

In this example, we’re logging an unscheduled appointment that has just begun so that
we can bill the client later. Of course, it’s easy enough to use one datetime column with
the NOW() function for inserting data, and use other functions for extracting separate
components later.

CURRENT_TIMESTAMP(  )
CURRENT_TIMESTAMP()

This function returns the current date and time in yyyy-mm-dd hh:mm:ss format. It will
return the time in a yyyymmddhhmmss format (numeric format) if it’s used as part of a
numeric calculation. Parentheses aren’t required. It’s a synonym of NOW(  ). Here is an
example:

SELECT CURRENT_TIMESTAMP() AS Now,
CURRENT_TIMESTAMP() + 10000 AS 'Hour Later';
r';

+---------------------+----------------+
| Now | Hour Later |
+---------------------+----------------+
| 2008-01-12 16:41:47 | 20080112174147 |
+---------------------+----------------+

By adding 10,000 to the current time, the hour is increased by 1 and the minutes and
seconds by 0 each, and the time is displayed in the second field without dashes. This is
in line with the yyyymmddhhmmss format involved in numeric calculations, with the
numbers right-justified.

CURRENT_TIMESTAMP(  )

Chapter 12: Date and Time Functions | 267

Date and Tim
e

Functions

CURTIME(  )
CURTIME()

This function returns the current system time in hh:mm:ss format. It will return the time
in an hhmmss format (numeric format) if it’s used as part of a numeric calculation. This is
an alias for CURRENT_TIME(  ). Here is an example:

SELECT CURTIME() AS Now,
CURTIME() + 10000 AS 'Hour Later';
r';

+----------+------------+
| Now | Hour Later |
+----------+------------+
| 16:35:43 | 163543 |
+----------+------------+

By adding 10,000 to the current time, this statement increases the hour by 1 and the
minutes and seconds by 0 each. This is in keeping with the yyyymmddhhmmss format
previously mentioned.

DATE(  )
DATE(expression)

This function returns the date from a given string, value, or expression that is submitted
in a date or datetime format. This function is available as of version 4.1.1 of MySQL.
Here is an example:

SELECT appointment, DATE(appointment)
FROM appointments
WHERE client_id = '8639' LIMIT 1;

+---------------------+-------------------+
| appointment | DATE(appointment) |
+---------------------+-------------------+
| 2008-01-11 14:11:43 | 2008-01-11 |
+---------------------+-------------------+

In this SQL statement, the value of the appointment column, which is a DATETIME type
column, is shown first. The second field is the date extracted by the function from the
same column and row.

DATE_ADD(  )
DATE_ADD(date, INTERVAL number type)

Using the date or datetime given, this function adds the number of intervals specified.
It’s fairly synonymous with the ADDDATE(  ) function. If none of the parameters include
datetime or time factors, the results will be returned in date format. Otherwise, the results
will be in datetime format. See Table 12-1 for a list of intervals permitted. Here is an
example:

CURTIME(  )

268 | Chapter 12: Date and Time Functions

UPDATE appointments
SET appt_date = DATE_ADD(appt_date, INTERVAL 1 DAY)
WHERE appt_id='1202';

In this example, the appointment date is changed to its current value plus one additional
day to postpone the appointment by a day. If we changed the 1 to –1, MySQL would
subtract a day instead. This would make the function the equivalent of DATE_SUB().

If you leave out some numbers in the second argument, MySQL assumes that the leftmost
interval factors are 0 and are just not given. In the following example, although we’re
using the interval HOUR_SECOND, we’re not giving the number of hours and the function
still works—assuming we don’t mean 5 hours and 30 minutes later. MySQL assumes
here that we mean '00:05:30' and not '05:30:00':

SELECT NOW() AS 'Now',
DATE_ADD(NOW(), INTERVAL '05:30' HOUR_SECOND)
AS 'Later';

+---------------------+---------------------+
| Now | Later |
+---------------------+---------------------+
| 2007-03-14 10:57:05 | 2007-03-14 11:02:35 |
+---------------------+---------------------+

When adding the intervals MONTH, YEAR, or YEAR_MONTH to a date, if the given date is valid
but the results would be an invalid date because it would be beyond the end of a month,
the results are adjusted to the end of the month:

SELECT DATE_ADD('2009-01-29', INTERVAL 1 MONTH)
AS 'One Month Later';

+-----------------+
| One Month Later |
+-----------------+
| 2009-02-28 |
+-----------------+

Table 12-1 shows the intervals that may be used and how the data should be ordered.
For interval values that require more than one factor, a delimiter is used and the data
must be enclosed in quotes. Other delimiters may be used besides those shown in the
table. For example, 'hh|mm|ss' could be used for HOUR_SECOND. In case you hadn’t noticed,
the names for intervals involving more than two time factors use the name of the first
and last factor (e.g., DAY_MINUTE and not DAY_HOUR_MINUTE). Keep that in mind when trying
to remember the correct interval.

Table 12-1. DATE_ADD() intervals and formats

INTERVAL Format for given values

DAY dd

DAY_HOUR 'dd hh'

DAY_MICROSECOND 'dd.nn'

DAY_MINUTE 'dd hh:mm'

DAY_SECOND 'dd hh:mm:ss'

DATE_ADD(  )

Chapter 12: Date and Time Functions | 269

Date and Tim
e

Functions

INTERVAL Format for given values

HOUR hh

HOUR_MICROSECOND 'hh.nn'

HOUR_MINUTE 'hh:mm'

HOUR_SECOND 'hh:mm:ss'

MICROSECOND nn

MINUTE mm

MINUTE_MICROSECOND 'mm.nn'

MINUTE_SECOND 'mm:ss'

MONTH mm

QUARTER qq

SECOND ss

SECOND_MICROSECOND 'ss.nn'

WEEK ww

YEAR yy

YEAR_MONTH 'yy-mm'

DATE_FORMAT(  )
DATE_FORMAT(date, 'format_code')

This function returns a date and time in a desired format, based on formatting codes
listed within quotes for the second argument of the function. Here is an example:

SELECT DATE_FORMAT(appointment, '%W - %M %e, %Y at %r')
AS 'Appointment'
FROM appointments
WHERE client_id = '8392'
AND appointment > CURDATE();

+---------------------------------------+
| Appointment |
+---------------------------------------+
| Monday - June 16, 2008 at 01:00:00 PM |
+---------------------------------------+

Using the formatting codes, we’re specifying in this example that we want the name of
the day of the week (%W) followed by a dash and then the date of the appointment in a
typical U.S. format (%M %e, %Y), with the month name and a comma after the day. We’re
ending with the word “at” followed by the full nonmilitary time (%r). The results are
returned as a binary string.

As of MySQL version 5.1.15, a string is returned along with the character set and collation
of the string, taken from the character_set_connection and the collation_connection
system variables. This allows the function to return non-ASCII characters. Here is an
example of this function:

DATE_FORMAT(  )

270 | Chapter 12: Date and Time Functions

SELECT NOW(),
DATE_FORMAT(NOW(), '%M') AS 'Month in Hebrew';

+---------------------+-----------------+
| Now | Month in Hebrew |
+---------------------+-----------------+
 | מרץ | 12:00:24 2008-03-14 |
+---------------------+-----------------+

In this example, of course, the client and server were set to display Hebrew characters.
Also, the server variable lc_time_names was set to Hebrew (he_IL) so as to return the
Hebrew word for March. See MySQL’s documentation page on MySQL Server Locale
Support (http://dev.mysql.com/doc/refman/5.1/en/locale-support.html) for a list of locale
values available for time names.

Table 12-2 contains a list of all the formatting codes you can use with DATE_FORMAT().
You can also use these codes with TIME_FORMAT(  ) and EXTRACT(  ).

Table 12-2. DATE_FORMAT() format codes and resulting formats

Code Description Results

%% A literal '%'

%a Abbreviated weekday name (Sun...Sat)

%b Abbreviated month name (Jan...Dec)

%c Month, numeric (1...12)

%d Day of the month, numeric (00...31)

%D Day of the month with English suffix (1st, 2nd, 3rd, etc.)

%e Day of the month, numeric (0...31)

%f Microseconds, numeric (000000...999999)

%h Hour (01...12)

%H Hour (00...23)

%i Minutes, numeric (00...59)

%I Hour (01...12)

%j Day of the year (001...366)

%k Hour (0...23)

%l Hour (1...12)

%m Month, numeric (01...12)

%M Month name (January...December)

%p A.M. or P.M. A.M. or P.M.

%r Time, 12-hour (hh:mm:ss [AM|PM])

%s Seconds (00...59)

%S Seconds (00...59)

%T Time, 24-hour (hh:mm:ss)

DATE_FORMAT(  )

Chapter 12: Date and Time Functions | 271

Date and Tim
e

Functions

http://dev.mysql.com/doc/refman/5.1/en/locale-support.html

Code Description Results

%u Week, where Monday is the first day of the week (0...52)

%U Week, where Sunday is the first day of the week (0...52)

%v Week, where Monday is the first day of the week; used with %x (1...53)

%V Week, where Sunday is the first day of the week; used with %X (1...53)

%w Day of the week (0=Sunday...6=Saturday)

%W Weekday name (Sunday...Saturday)

%x Year for the week, where Monday is the first day of the week, numeric, four
digits; used with %v

(yyyy)

%X Year for the week, where Sunday is the first day of the week, numeric, four
digits; used with %V

(yyyy)

%y Year, numeric, two digits (yy)

%Y Year, numeric, four digits (yyyy)

DATE_SUB(  )
DATE_SUB(date, INTERVAL number type)

Use this function to subtract from the results of a date or time data type column. See
Table 12-1, under the description of DATE_ADD(  ), for a list of interval types. Here is an
example of this function:

SELECT NOW() AS Today,
DATE_SUB(NOW(), INTERVAL 1 DAY)
AS Yesterday;

+---------------------+---------------------+
| Today | Yesterday |
+---------------------+---------------------+
| 2007-05-14 14:26:54 | 2007-05-13 14:26:54 |
+---------------------+---------------------+

Notice in this example that the time remains unchanged, but the date was reduced by
one day. If you place a negative sign in front of the value 1, the reverse effect will occur,
giving a result of May 15 in this example. Any intervals that can be used with
DATE_ADD() can also be used with DATE_SUB().

DATEDIFF(  )
DATEDIFF(date, date)

This function returns the number of days of difference between the two dates given.
Although a parameter may be given in date and time format, only the dates are used for
determining the difference. This function is available as of version 4.1.1 of MySQL. Here
is an example:

SELECT CURDATE() AS Today,
DATEDIFF('2008-12-25', NOW())
AS 'Days to Christmas';

DATE_SUB(  )

272 | Chapter 12: Date and Time Functions

+------------+-------------------+
| Today | Days to Christmas |
+------------+-------------------+
| 2008-03-14 | 286 |
+------------+-------------------+

DAY(  )
DAY(date)

This function returns the day of the month for a given date. It’s available as of version
4.1.1 of MySQL and is synonymous with the DAYOFMONTH(  ) function, described later.
Here is an example:

SELECT DAY('2008-12-15')
AS 'Day';

+-------+
| Day |
+-------+
| 15 |
+-------+

This function is more meaningful when applied to a date column where the date is un-
known before entering the SQL statement.

DAYNAME(  )
DAYNAME(date)

This function returns the name of the day for the date provided. As of MySQL version
5.1.15, the lc_time_names system variable will be consulted to determine the actual set
of names to use. Use the SET statement to change this variable. See MySQL’s documen-
tation page on MySQL Server Locale Support (http://dev.mysql.com/doc/refman/5.1/en/
locale-support.html) for a list of locale values available for time names. Here is an example:

SELECT appt_date AS Appointment,
DAYNAME(appt_date) AS 'Day of Week'
FROM appointments
WHERE appt_id = '1439';

+---------------------+-------------+
| Date of Appointment | Day of Week |
+---------------------+-------------+
| 2008-03-14 | Friday |
+---------------------+-------------+

SET lc_time_names = 'it_IT';

SELECT appt_date AS Appointment,
DAYNAME(appt_date) AS ''Day of Week in Italian'
FROM appointments
WHERE appt_id = '1439';

DAYNAME(  )

Chapter 12: Date and Time Functions | 273

Date and Tim
e

Functions

http://dev.mysql.com/doc/refman/5.1/en/locale-support.html
http://dev.mysql.com/doc/refman/5.1/en/locale-support.html

+---------------------+------------------------+
| Date of Appointment | Day of Week in Italian |
+---------------------+------------------------+
| 2008-03-14 | venerdì |
+---------------------+------------------------+

For this example, I have set character_set_client, character_set_connection, and
character_set_results to utf8, and set my terminal program to UTF-8 characters. Inci-
dentally, the day of the week here is in lowercase because this is how it’s written in Italian.

DAYOFMONTH(  )
DAYOFMONTH(date)

This function returns the day of the month for the date given. If the day for the date is
beyond the end of the month (e.g., '2008-02-30'), the function returns NULL along with
a warning that can be retrieved with SHOW WARNINGS. Here is an example:

SELECT DAYOFMONTH('2008-02-28') AS 'A Good Day',
DAYOFMONTH('2008-02-30') AS 'A Bad Day';

+------------+-----------+
| A Good Day | A Bad Day |
+------------+-----------+
| 28 | NULL |
+------------+-----------+
1 row in set, 1 warning (0.00 sec)

SHOW WARNINGS;

+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect datetime value: '2008-02-30' |
+---------+------+--+

Prior to MySQL version 5.0.2, invalid dates such as this were permitted. The function
would have returned 30 for a value of '2008-02-30'. If you wish to allow invalid dates,
start your server with this line in your options file:

sql_mode = 'TRADITIONAL,ALLOW_INVALID_DATES'

DAYOFWEEK(  )
DAYOFWEEK(date)

This function returns the numerical day of the week for a given date. Sunday returns a
value of 1, and Saturday returns a value of 7. Here is an example:

SELECT DAYOFWEEK('2008-11-03') AS 'Day of Week',
DAYNAME('2008-11-03') AS 'Name of Day';

+-------------+-------------+
| Day of Week | Name of Day |
+-------------+-------------+

DAYOFMONTH(  )

274 | Chapter 12: Date and Time Functions

| 2 | Monday |
+-------------+-------------+

DAYOFYEAR(  )
DAYOFYEAR(date)

This function returns the day of the year. January 1 would give a value of 1, and December
31 would normally be 365, except in leap years, when it would be 366. Here is an
example:

SELECT DAYOFYEAR('2008-03-01') AS 'FirstDate',
DAYOFYEAR('2008-02-28') AS 'SecondDate',
(DAYOFYEAR('2008-03-01') - DAYOFYEAR('2008-02-28')) AS 'Days Apart',
DAYOFYEAR('2008-12-31') AS 'Last Day of Year';

+------------+-------------+------------+------------------+
| First Date | Second Date | Days Apart | Last Day of Year |
+------------+-------------+------------+------------------+
| 61 | 59 | 2 | 366 |
+------------+-------------+------------+------------------+

In the third field, we are using the function to calculate the number of days from the first
date to the second date. Since 2008 is a leap year, the result is 2 and the last field shows
366 for the last day of the year.

EXTRACT(  )
EXTRACT(type FROM expression)

This function extracts date or time information from a date or a datetime expression in
the format type requested. The acceptable types are the same as the intervals for
DATE_ADD(  ). See Table 12-1 earlier in this chapter under that function for a list of intervals
permitted. Here is an example:

SELECT NOW() AS 'Time Now',
EXTRACT(HOUR_MINUTE FROM NOW()) AS "Now in 'hhmm' format";

+---------------------+----------------------+
| Time Now | Now in 'hhmm' format |
+---------------------+----------------------+
| 2008-03-14 20:36:04 | 2036 |
+---------------------+----------------------+

FROM_DAYS(  )
FROM_DAYS(value)

This function returns the date based on the number of days given, which are from the
beginning of the currently used standard calendar. Problems occur for dates before 1582,
when the Gregorian calendar became the standard. The opposite of this function is
TO_DAYS(  ). Here is an example:

SELECT FROM_DAYS((365.25*2008))
AS 'Start of 2008?', FROM_DAYS(366);

FROM_DAYS(  )

Chapter 12: Date and Time Functions | 275

Date and Tim
e

Functions

+----------------+
| Start of 2008? |
+----------------+
| 2008-01-16 |
+----------------+

Assuming that there are 365.25 days in a year on average (allowing for the leap year),
you would think that multiplying that factor by 2008 would give a result of January 1,
2008, but it doesn’t because of the calendar change centuries ago. This function is pos-
sibly useful for comparing dates and displaying the results in a readable format. However,
since there are many other functions available in MySQL, its usefulness is fairly dimin-
ished. Here is an example:

SELECT CURDATE() As 'Now',
TO_DAYS(NOW()) AS 'Days since Day 0',
FROM_DAYS(TO_DAYS(NOW()) + 7) AS '7 Days from Now',
ADDDATE(CURDATE(), 7) AS 'Simpler Method';

+------------+------------------+-----------------+----------------+
| Now | Days since Day 0 | 7 Days from Now | Simpler Method |
+------------+------------------+-----------------+----------------+
| 2007-03-14 | 733114 | 2007-03-21 | 2007-03-21 |
+------------+------------------+-----------------+----------------+

FROM_UNIXTIME(  )
FROM_UNIXTIME(unix_timestamp[, format])

This function returns the date based on Unix time, which is the number of seconds since
January 1, 1970, Greenwich Mean Time (GMT), with 12:00:01 being the first second of
Unix time (the epoch). The second, optional argument formats the results using the
formatting codes from DATE_FORMAT(  ). The function returns the date and time in the
yyyy-mm-dd hh:mm:ss format, unless it’s part of a numeric expression. Then it returns the
data in the yyyymmdd format. Here is an example:

SELECT FROM_UNIXTIME(0) AS 'My Epoch Start',
UNIX_TIMESTAMP() AS 'Now in Unix Terms',
FROM_UNIXTIME(UNIX_TIMESTAMP()) AS 'Now in Human Terms';

+---------------------+-------------------+---------------------+
| My Epoch Start | Now in Unix Terms | Now in Human Terms |
+---------------------+-------------------+---------------------+
| 1969-12-31 18:00:00 | 1173928232 | 2007-03-14 22:10:32 |
+---------------------+-------------------+---------------------+

Here we’re selecting the date based on zero seconds since the start of Unix time. The
results are off by six hours because the server’s not located in the GMT zone. This func-
tion is typically used on columns whose values were derived from UNIX_TIMESTAMP(  ), as
shown in the third field of the example.

GET_FORMAT(  )
GET_FORMAT(data_type, standard)

FROM_UNIXTIME(  )

276 | Chapter 12: Date and Time Functions

This function returns the format for a given data type, based on the standard given as
the second argument. The format codes returned are the same codes used by the
DATE_FORMAT(  ) function. The data type may be DATE, TIME, DATETIME, or TIMESTAMP, and
the format type may be EUR, INTERNAL, ISO, JIS, or USA. This function is available as of
version 4.1.1 of MySQL. The TIMESTAMP data type isn’t acceptable until version 4.1.4.

Here’s an example using the function that returns the USA format:

SELECT GET_FORMAT(DATE, 'USA') AS 'US Format',
GET_FORMAT(DATE, 'EUR') AS 'European Format';

+-----------+-----------------+
| US Format | European Format |
+-----------+-----------------+
| %m.%d.%Y | %d.%m.%Y |
+-----------+-----------------+

I wouldn’t say that using the period as the separator is very American, but the order of
day followed by month is in keeping with American standards, and the day preceding
the month is European. You can hand off the results of the function to DATE_FORMAT()
to format the value of a date column like so:

SELECT appointment,
DATE_FORMAT(appointment, GET_FORMAT(DATE, 'USA'))
AS 'Appointment'
WHERE apt_id = '8382';

+-------------+-------------+
| appointment | Appointment |
+-------------+-------------+
| 2008-03-15 | 03.15.2008 |
+-------------+-------------+

Table 12-3 lists the results for the different combinations. The ISO standard refers to ISO
9075. The data type of TIMESTAMP is not listed because the results are the same as DATETIME.

Table 12-3. DATE_FORMAT arguments and their results

Combination Results

DATE, 'EUR' %d.%m.%Y

DATE, 'INTERNAL' %Y%m%d

DATE, 'ISO' %Y-%m-%d

DATE, 'JIS' %Y-%m-%d

DATE, 'USA' %m.%d.%Y

TIME, 'EUR' %H.%i.%S

TIME, 'INTERNAL' %H%i%s

TIME, 'ISO' %H:%i:%s

TIME, 'JIS' %H:%i:%s

TIME, 'USA' %h:%i:%s %p

DATETIME, 'EUR' %Y-%m-%d-%H.%i.%s

GET_FORMAT(  )

Chapter 12: Date and Time Functions | 277

Date and Tim
e

Functions

Combination Results

DATETIME, 'INTERNAL' %Y%m%d%H%i%s

DATETIME, 'ISO' %Y-%m-%d %H:%i:%s

DATETIME, 'JIS' %Y-%m-%d %H:%i:%s

DATETIME, 'USA' %Y-%m-%d-%H.%i.%s

HOUR(  )
HOUR(time)

This function returns the hour for the time given. For columns containing the time of
day (e.g., DATETIME), the range of results will be from 0 to 23. For TIME data type columns
that contain data not restricted to day limits, this function may return values greater than
23. Here is an example:

SELECT appt_id, appointment,
HOUR(appointment) AS 'Hour of Appointment'
FROM appointments
WHERE client_id = '3992'
AND appointment > CURDATE();

+---------+---------------------+---------------------+
| appt_id | appointment | Hour of Appointment |
+---------+---------------------+---------------------+
| 8393 | 2008-03-15 13:00:00 | 13 |
+---------+---------------------+---------------------+

This statement is selecting the upcoming appointment for a particular client. The hour
is returned in military time (i.e., 13 is 1 P.M.).

LAST_DAY(  )
LAST_DAY(date)

This function returns the date of the last day of the month for a given date or datetime
value. NULL is returned for invalid dates. It’s available as of version 4.1.1 of MySQL.
Here is an example:

SELECT LAST_DAY('2008-12-15')
AS 'End of Month';

+--------------+
| End of Month |
+--------------+
| 2008-12-31 |
+--------------+

There is no FIRST_DAY() function at this time. However, you can use LAST_DAY() in
conjunction with a couple of other functions to return the first day of the month:

SELECT CURDATE() AS 'Today',
ADDDATE(LAST_DAY(SUBDATE(CURDATE(), INTERVAL 1 MONTH)), 1)
AS 'First Day of Month';

HOUR(  )

278 | Chapter 12: Date and Time Functions

+------------+--------------------+
| Today | First Day of Month |
+------------+--------------------+
| 2008-06-18 | 2008-06-01 |
+------------+--------------------+

In this example, we are subtracting one month from the results of CURDATE(  ) to get the
same day last month. From there, we’re using LAST_DAY() to find the last day of last
month. Then ADDDATE(  ) is employed to add one day to the results, to find the first day
of the month after last month, that is to say, the current month. This method adjusts for
dates in January that would involve a previous year.

LOCALTIME(  )
LOCALTIME()

This function returns the current system date in yyyy-mm-dd hh:mm:ss format. When part
of a calculation, the results are in the numeric format of yyyymmddhhmmss.nnnnnn, which
has placeholders for macroseconds. The parentheses are not required. It’s available as of
version 4.0.6 of MySQL and is synonymous with LOCALTIMESTAMP(  ) and NOW(  ). Here is
an example:

SELECT LOCALTIME() AS 'Local Time',
LOCALTIME() + 0 AS 'Local Time as Numeric';

+---------------------+-----------------------+
| Local Time | Local Time as Numeric |
+---------------------+-----------------------+
| 2007-03-15 01:53:16 | 20070315015316.000000 |
+---------------------+-----------------------+

LOCALTIMESTAMP(  )
LOCALTIMESTAMP()

This function returns the current system date in yyyy-mm-dd hh:mm:ss format. When part
of a calculation, the results are in the numeric format of yyyymmddhhmmss.nnnnnn, which
has placeholders for macroseconds. It’s synonymous with LOCALTIMESTAMP(  ) and
NOW(  ). Here is an example:

UPDATE appointments
SET end_time = LOCALTIME()
WHERE appt_id = '8839';

MAKEDATE(  )
MAKEDATE(year, days)

This function determines the date requested from the start of the given year, by adding
the number of days given in the second argument. It returns the date in the yyyy-mm-dd
format. It returns NULL if a value given for days is not greater than 0. It will accept more
than a year’s worth of days, though. It just returns a date into the next year or whatever

MAKEDATE(  )

Chapter 12: Date and Time Functions | 279

Date and Tim
e

Functions

year is appropriate, based on however many days the result is from the beginning of the
year given. This function is available as of version 4.1.1 of MySQL. Here is an example:

SELECT MAKEDATE(2009, 1) AS 'First Day',
MAKEDATE(2009, 365) AS 'Last Day',
MAKEDATE(2009, 366) AS 'One More Day';

+------------+------------+--------------+
| First Day | Last Day | One More Day |
+------------+------------+--------------+
| 2009-01-01 | 2009-12-31 | 2010-01-01 |
+------------+------------+--------------+

MAKETIME(  )
MAKETIME(hour, minute, second)

This function converts a given hour, minute, and second to hh:mm:ss format. It returns
NULL if the value for the minute or the second values are greater than 59. It will accept
an hour value greater than 24, though. This function is available as of version 4.1.1 of
MySQL. Here is an example:

SELECT MAKETIME(14, 32, 5)
AS Time;

+----------+
| Time |
+----------+
| 14:32:05 |
+----------+

MICROSECOND(  )
MICROSECOND(time)

This function extracts the microseconds value of a given time. It displays the resulting
number in six characters, padded with zeros to the right. When a date or datetime is
given that does not include a specific value for microseconds, a value of zero microsec-
onds is assumed. Therefore, 000000 is returned. This function is available as of version
4.1.1 of MySQL. Here is an example:

SELECT MICROSECOND('2008-01-11 19:28:45.82')
AS 'MicroSecond';

+--------------+
| MicroSecond |
+--------------+
| 820000 |
+--------------+

MINUTE(  )
MINUTE(time)

This function returns the minute value (0–59) of a given time. Here is an example:

MAKETIME(  )

280 | Chapter 12: Date and Time Functions

SELECT CONCAT(HOUR(appointment), ':',
MINUTE(appointment)) AS 'Appointment'
FROM appointments
WHERE client_id = '3992'
AND appointment > CURDATE();

+-------------+
| Appointment |
+-------------+
| 13:30 |
+-------------+

This statement is using the string function CONCAT() to paste together the hour and the
minute, with a colon as a separator. Of course, a function such as DATE_FORMAT(  ) would
be a better choice for such a task. If an invalid time is given (e.g., minutes or seconds in
excess of 59), NULL is returned and a warning issued:

SELECT MINUTE('13:60:00') AS 'Bad Time',
MINUTE('13:30:00') AS 'Good Time';

+----------+-----------+
| Bad Time | Good Time |
+----------+-----------+
| NULL | 30 |
+----------+-----------+
1 row in set, 1 warning (0.00 sec)

SHOW WARNINGS;

+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect time value: '13:60:00' |
+---------+------+--+

MONTH(  )
MONTH(date)

This function returns the numeric value of the month (0–12) for the date provided. Since
a date column can contain a zero value (e.g., '0000-00-00'), the function will return 0
for those situations. However, for nonzero invalid dates given, NULL is returned. Here
is an example:

SELECT appointment AS 'Appointment',
MONTH(appointment) AS 'Month of Appointment'
FROM appointments
WHERE client_id = '8302'
AND appointment > CURRDATE();

+-------------+----------------------+
| Appointment | Month of Appointment |
+-------------+----------------------+
| 2008-06-15 | 6 |
+-------------+----------------------+

MONTH(  )

Chapter 12: Date and Time Functions | 281

Date and Tim
e

Functions

This SQL statement is retrieving the month of any appointments after the current date
for a particular client. There’s only one appointment, and it’s in June.

MONTHNAME(  )
MONTHNAME(date)

This function returns the name of the month for the date provided. As of version
5.1.15 of MySQL, the lc_time_names system variable is used to determine the actual set
of names to use. Use the SET statement to change this variable. See the MySQL docu-
mentation page on MySQL Server Locale Support (http://dev.mysql.com/doc/refman/5.1/
en/locale-support.html) for a list of locale values available for time names. Here is an
example:

SELECT appointment AS 'Appointment',
MONTHNAME(appointment) AS 'Month of Appointment'
FROM appointments
WHERE client_id = '8302'
AND appointment > NOW();

+-------------+----------------------+
| Appointment | Month of Appointment |
+-------------+----------------------+
| 2008-03-15 | March |
+-------------+----------------------+

SET lc_time_names = 'it_IT';

+-------------+----------------------+
| Appointment | Month of Appointment |
+-------------+----------------------+
| 2008-03-15 | marzo |
+-------------+----------------------+

In this example, the client has only one appointment after the current date, and it’s in
March. After setting the lc_time_names variable to 'it_I'’ (i.e., italian, Italy), the results
returned for the same SQL statement are given in Italian. You can use this function in
conjunction with a function such as CONCAT() to paste the results into other text or to
create a style you prefer:

SELECT CONCAT('Il tuo appuntamento è in ', MONTHNAME(appointment), '.')
AS 'Reminder'
FROM appointments
WHERE client_id = '8302'
AND appointment > NOW();

+---------------------------------+
| Reminder |
+---------------------------------+
| Il tuo appuntamento è in marzo. |
+---------------------------------+

MONTHNAME(  )

282 | Chapter 12: Date and Time Functions

http://dev.mysql.com/doc/refman/5.1/en/locale-support.html
http://dev.mysql.com/doc/refman/5.1/en/locale-support.html

NOW(  )
NOW()

This function returns the current date and time. The format returned is yyyy-mm-dd
hh:mm:ss.nnnnnn, unless the function is used in a numeric calculation. Then it will return
the data in a yyyymmdd format. It’s synonymous with LOCALTIME(  ) and LOCALTIMES-
TAMP(  ). Here is an example:

SELECT NOW() AS Now,
NOW() + 105008 AS '1 hour, 50 min., 8 sec. Later';

+---------------------+-------------------------------+
| Now | 1 hour, 50 min., 8 sec. Later |
+---------------------+-------------------------------+
| 2007-03-18 20:08:30 | 20070318305838.000000 |
+---------------------+-------------------------------+

By adding 105,008 to the current time, the hour is increased by 1, the minutes by 50, and
the seconds by 8, and the time is displayed in the second field without dashes. Notice
that the results show the hours to be 30 now and not 6, and the date wasn’t adjusted.
Raw adding of time is usually not a good alternative to functions such as DATE_ADD() or
TIME_ADD().

The NOW() function is similar to the SYSDATE(  ) function in that they both return the
current datetime in the same format. However, the NOW() function returns the time the
SQL statement began, whereas SYSDATE() returns the time the function was invoked.
This can lead to differences when long triggers or stored procedures run; an embedded
SYSDATE() will then reflect a later time than NOW(). For this reason, there are potential
problems using SYSDATE() with regard to replication. See the description of SYSDATE(  )
later in this chapter for more information:

SELECT NOW() AS 'Start',
SLEEP(5) AS 'Pause',
NOW() AS 'Middle But Same',
SYSDATE() AS 'End';

+---------------------+-------+---------------------+---------------------+
| Start | Pause | Middle But Same | End |
+---------------------+-------+---------------------+---------------------+
| 2008-06-15 11:02:41 | 0 | 2008-06-15 11:02:41 | 2008-06-15 11:02:46 |
+---------------------+-------+---------------------+---------------------+
1 row in set (5.27 sec)

MySQL executes the elements of a SELECT statement from left to right, so the Start field
is determined first. The SLEEP() function instructs the server to pause the execution of
the SQL statement by the amount of seconds given. After this, the third element is exe-
cuted. As you can see, the results for that third field are the same as the first because
NOW() returns the starting time. However, in the fourth field, SYSDATE() returns the time
it was executed, five seconds after the start. This may not seem like much of a difference
between the functions, but there may be situations where it matters. In particular, it may
matter with SQL statements, triggers, or stored procedures that take a long time to finish
executing.

NOW(  )

Chapter 12: Date and Time Functions | 283

Date and Tim
e

Functions

PERIOD_ADD(  )
PERIOD_ADD(yearmonth, number)

This function adds a specified number of months to a period, which is a string containing
only the year and month in either yyyymm or yymm format. Here is an example:

SELECT CURDATE(),
EXTRACT(YEAR_MONTH FROM CURDATE())
AS 'Current Period',
PERIOD_ADD(EXTRACT(YEAR_MONTH FROM CURDATE()), 1)
AS 'Next Accounting Period';

+------------+----------------+------------------------+
| CURDATE() | Current Period | Next Accounting Period |
+------------+----------------+------------------------+
| 2008-12-15 | 200812 | 200901 |
+------------+----------------+------------------------+

Functions such as this one are particularly useful when you are building a program and
need to design an SQL statement that will account for accounting periods that roll into
the following year.

PERIOD_DIFF(  )
PERIOD_DIFF(yearmonth,yearmonth)

This function returns the number of months between the periods given. The periods
given must be in string format and contain only the year and month, in either yyyymm or
yymm format. Here is an example:

SELECT appointment AS 'Date of Appointment',
CURDATE() AS 'Current Date',
PERIOD_DIFF(
 EXTRACT(YEAR_MONTH FROM appointment),
 EXTRACT(YEAR_MONTH FROM CURDATE())
) AS 'Accounting Periods Apart';

+------------------+--------------+-----------------------------+
| Last Appointment | Current Date | Accounting Periods Ellapsed |
+------------------+--------------+-----------------------------+
| 2008-11-15 | 2009-01-15 | -2 |
+------------------+--------------+-----------------------------+

This SQL statement determines that it has been two months since the client’s last ap-
pointment. If you want the results not to contain a negative, either switch the order of
the periods or wrap the PERIOD_DIFF() within ABS(). The PERIOD_DIFF() function takes
into account that the periods are in different years. But it doesn’t work on standard date
columns, so you have to put them into the proper string format as shown here with a
function such as EXTRACT().

QUARTER(  )
QUARTER(date)

PERIOD_ADD(  )

284 | Chapter 12: Date and Time Functions

This function returns the number of the quarter (1–4) for the date provided. The first
quarter (i.e., the first three months) of each year has a value of 1. Here is an example:

SELECT COUNT(appointment)
AS 'Appts. Last Quarter'
FROM appointments
WHERE QUARTER(appointment) = (QUARTER(NOW()) - 1)
AND client_id = '7393';

+---------------------+
| Appts. Last Quarter |
+---------------------+
| 16 |
+---------------------+

In this example, MySQL calculates the total number of appointments for a particular
client that occurred before the current quarter. The flaw in this SQL statement is that it
doesn’t work when it’s run during the first quarter of a year. In the first quarter, the
calculation on the fourth line would produce a quarter value of 0. This statement also
doesn’t consider appointments in previous quarters of previous years. To solve these
problems, we could set up user-defined variables for the values of the previous quarter
and for its year:

SET @LASTQTR:=IF((QUARTER(CURDATE())-1) = 0, 4, QUARTER(CURDATE())-1);

SET @YR:=IF(@LASTQTR = 4, YEAR(NOW())-1, YEAR(NOW()));

SELECT COUNT(appointment) AS 'Appts. Last Quarter'
FROM appointments
WHERE QUARTER(appointment) = @LASTQTR
AND YEAR(appointment) = @YR
AND client_id = '7393';

In the first SQL statement here, we use an IF statement to test whether reducing the
quarter by 1 would yield a 0 value. If so, we’ll set the user variable for the last quarter to
4. In the second statement, we establish the year for the last quarter based on the value
determined for @LASTQTR. The last SQL statement selects rows and counts them where
the QUARTER() function yields a value equal to the @LASTQTR variable and where the
YEAR() function yields a value equal to the @YR variable based on the appointment date,
and where the client is the one for which we are running the statement.

SEC_TO_TIME(  )
SEC_TO_TIME(seconds)

This function returns the period for a given number of seconds in the format hh:mm:ss.
It will return the time in hhmmss format if it’s used as part of a numeric calculation. Here
is an example:

SELECT SEC_TO_TIME(3600) AS 'Time Format',
SEC_TO_TIME(3600) + 0 AS 'Numeric Format';

+-------------+----------------+
| Time Format | Numeric Format |
+-------------+----------------+

SEC_TO_TIME(  )

Chapter 12: Date and Time Functions | 285

Date and Tim
e

Functions

| 01:00:00 | 10000.000000 |
+-------------+----------------+

We’ve given a value of 3,600 seconds, which the function formats to show as 1 hour in
the first field. The next field shows the same results, but in numeric format and with
microseconds included. If the number of seconds exceeds 86,400, or 1 day’s worth, the
value for hours will result in an amount greater than 23 and will not be reset back to 0.

SECOND(  )
SECOND(time)

This function returns the seconds value (0–59) for a given time. Here is an example:

SELECT NOW(), SECOND(NOW());

+---------------------+----------------+
| NOW() | SECOND(NOW()) |
+---------------------+----------------+
| 2009-05-09 14:56:11 | 11 |
+---------------------+----------------+

The first field generated shows the time that this statement was entered, using the
NOW() function. The second field displays only the seconds value for the results of
NOW().

SLEEP(  )
SLEEP(seconds)

This function pauses the execution of an SQL statement in which it is given for the
number of seconds given. It returns 0 in the results if successful; 1 if not. This function
became available as of version 5.0.12 of MySQL. It’s not exactly a time and date function,
but it’s included here due to it’s true time aspects. Here is an example:

SELECT SYSDATE() AS 'Start',
SLEEP(5) AS 'Pause',
SYSDATE() AS 'End';

+---------------------+-------+---------------------+
| Start | Pause | End |
+---------------------+-------+---------------------+
| 2008-07-16 13:50:20 | 0 | 2008-07-16 13:50:25 |
+---------------------+-------+---------------------+
1 row in set (5.13 sec)

The SYSDATE(  ) function returns the time it is executed, not necessarily the time the state-
ment started or finished. You can see that the time in the first field is different by five
seconds from the results in the third field due to the use of SLEEP(). Notice also that the
statement took a little over five seconds to execute.

If you type Ctrl-C one time before an SQL statement containing SLEEP() is completed,
it will return 1 for the SLEEP() field and MySQL will then go on to execute the rest of
the SQL statement. In that case, the third field in the previous example would show less
than a five-second difference from the first.

SECOND(  )

286 | Chapter 12: Date and Time Functions

STR_TO_DATE(  )
STR_TO_DATE(datetime, 'format_code')

This function returns the date and time of a given string for a given format. The function
takes a string containing a date or time, or both. To specify the format of the string
returned, a formatting code needs to be provided in the second argument. The formatting
codes are the same codes used by the DATE_FORMAT(  ) function; see its definition for a list
of those formats. This function is available as of version 4.1.1 of MySQL. Here is an
example:

SELECT STR_TO_DATE(
'January 15, 2008 1:30 PM',
'%M %d, %Y %h:%i %p'
) AS Anniversary;

+---------------------+
| Anniversary |
+---------------------+
| 2008-01-15 13:30:00 |
+---------------------+

To retrieve a return value suitable for insertion into a date or time column, use
'%Y-%m-%d' for a date column and '%h:%i:%s' for a time column.

SUBDATE(  )
SUBDATE(date, INTERVAL value type)
SUBDATE(date days)

Use this function to subtract a date or time interval from the results of a DATE or TIME data
type column. It’s an alias for DATE_SUB(  ). If a negative value is given, the interval specified
is added instead of subtracted. This is the equivalent of ADDDATE(  ). See Table 12-1 under
DATE_ADD(  ) earlier in this chapter for a list of intervals permitted. Here is an example:

SELECT SUBDATE(NOW(), 1) AS 'Yesterday',
SUBDATE(NOW(), INTERVAL -1 DAY) AS 'Tomorrow';

+---------------------+---------------------+
| Yesterday | Tomorrow |
+---------------------+---------------------+
| 2008-05-09 16:11:56 | 2008-05-11 16:11:56 |
+---------------------+---------------------+

As of version 4.1 of MySQL, when subtracting days you can just give the number of days
for the second argument (i.e., just 1 instead of INTERVAL 1 DAY).

SUBTIME(  )
SUBTIME(datetime, datetime_value)

This function returns the date and time for the given string or column decreased by the
time given as the second argument (d hh:mm:ss). If a negative number is given, the time
is added and the function is the equivalent of ADDTIME(  ). This function is available as of
version 4.1.1 of MySQL. Here is an example:

SUBTIME(  )

Chapter 12: Date and Time Functions | 287

Date and Tim
e

Functions

SELECT NOW() AS Now,
SUBTIME(NOW(), '1:00:00.000000') AS 'Hour Ago';

+---------------------+---------------------+
| Now | Hour Ago |
+---------------------+---------------------+
| 2008-01-12 00:54:59 | 2008-01-11 23:54:59 |
+---------------------+---------------------+

Notice that the hour is decreased by one, and because the time is just after midnight, the
function causes the date to be altered by one day as well. If either argument is given with
a microsecond value other than all zeros, the results will include microseconds. To de-
crease the date, give the number of days before the time (separated by a space) like so:

SELECT NOW() AS Now,
SUBTIME(NOW(), '30 0:0.0') AS 'Thirty Days Ago';

+---------------------+---------------------+
| Now | Thirty Days Ago |
+---------------------+---------------------+
| 2008-01-12 00:57:04 | 2007-12-13 00:57:04 |
+---------------------+---------------------+

SYSDATE(  )
SYSDATE()

This function returns the system date at the time it is executed. It will return the date
and time in the yyyy-mm-dd hh:mm:ss format, but will return the data in the
yyyymmddhhmmss format if it’s used as part of a numeric calculation. It will display the
microseconds value if the calculation involves a microseconds value. Here is an example:

SELECT SYSDATE(),
SYSDATE() + 0 AS 'Numeric Format';

+---------------------+----------------+
| SYSDATE() | Numeric Format |
+---------------------+----------------+
| 2008-03-15 23:37:38 | 20080315233738 |
+---------------------+----------------+

This function is similar to the NOW(  ) function in that they both return the current datetime
and in the same format. However, the NOW() function returns the time when the SQL
statement began, whereas SYSDATE() returns the time the function was invoked. See the
definition of NOW() earlier in this chapter for an example of this situation and its
significance.

If you’re using replication, the binary log will include SET TIMESTAMP entries, so if you
restore a database from the binary log, values from NOW() will be adjusted to the same
times as when the original SQL statements were executed. SYSDATE() entries are unaf-
fected by these SET TIMESTAMP entries:

SET @yesterday = UNIX_TIMESTAMP(SUBDATE(SYSDATE(), 1));

SELECT FROM_UNIXTIME(@yesterday);

SYSDATE(  )

288 | Chapter 12: Date and Time Functions

+---------------------------+
| FROM_UNIXTIME(@yesterday) |
+---------------------------+
| 2008-03-17 00:19:17 |
+---------------------------+

SET TIMESTAMP = @yesterday;

SELECT NOW(), SYSDATE();

+---------------------+---------------------+
| NOW() | SYSDATE() |
+---------------------+---------------------+
| 2008-03-17 00:19:17 | 2008-03-16 00:22:53 |
+---------------------+---------------------+

These statements are more involved than necessary, but they help illustrate my point. In
the first SQL statement, we use the SET statement to set up a user variable to hold the
date and time of yesterday. To change the TIMESTAMP variable, we need the new datetime
in the Unix time format, so we use UNIX_TIMESTAMP(). Within that function, we use
SUBDATE() to get the datetime for one day before. The second statement is just so we can
see the value of the user variable. With the third statement, we set the system variable to
the value of the user variable we created. The result is that when we run the last SQL
statement—the SELECT() with both NOW() and SYSDATE()—we can see that the results
are different by the one day and also a few seconds. The difference is that the value for
NOW() is locked because we set the TIMESTAMP variable.

If you’re replicating, you may not want to use SYSDATE() for setting values, as their results
won’t be replicated if you restore the data later. It is possible to resolve this problem by
starting the server with the --sysdate-is-now option. This will cause SYSDATE() to
function the same as NOW().

TIME(  )
TIME(time)

This function returns the time from a given string or column containing date and time
data. It’s available as of version 4.1.1 of MySQL. Here is an example:

SELECT NOW(), As Now,
TIME(NOW()) AS 'Time only';

+---------------------+-----------+
| Now | Time only |
+---------------------+-----------+
| 2008-03-17 00:19:17 | 00:19:17 |
+---------------------+-----------+

TIME_FORMAT(  )
TIME_FORMAT(time, format_code)

This function returns the time value of the time element provided and formats it accord-
ing to formatting codes given as the second argument. See Table 12-1 under the

TIME_FORMAT(  )

Chapter 12: Date and Time Functions | 289

Date and Tim
e

Functions

DATE_FORMAT(  ) function earlier in this chapter for formatting codes, but only those related
to time values. This function will return NULL or 0 for nontime formatting codes. Here
is an example:

SELECT TIME_FORMAT(appointment, '%l:%i %p')
AS 'Appt. Time' FROM appointments
WHERE client_id = '8373'
AND appointment > SYSDATE();

+------------+
| Appt. Time |
+------------+
| 1:00 PM |
+------------+

TIME_TO_SEC(  )
TIME_TO_SEC(time)

This function returns the number of seconds that the given time represents. It’s the in-
verse of SEC_TO_TIME(  ). Here is an example:

SELECT TIME_TO_SEC('01:00')
AS 'Seconds to 1 a.m.';

+-------------------+
| Seconds to 1 a.m. |
+-------------------+
| 3600 |
+-------------------+

Here, we calculate the number of seconds up until 1 A.M. (i.e., 60 seconds times 60
minutes), or one hour into the day.

TIMEDIFF(  )
TIMEDIFF(time, time)

This function returns the time difference between the two times given. Although the
arguments may be given in time or datetime format, both arguments must be of the same
data type. Otherwise, NULL will be returned. Microseconds may be included in the
values given. They will be returned when given and if the result is not zero microseconds.
This function is available as of version 4.1.1 of MySQL. Here is an example:

SELECT appointment AS Appointment,
NOW() AS 'Time Now',
TIMEDIFF(appointment, NOW()) AS 'Time Remaining'
FROM appointments
WHERE rec_id='3783';

+--------------------+--------------------+----------------+
| Appointment | Time Now | Time Remaining |
+--------------------+--------------------+----------------+
| 2008-01-11 10:30:00| 2008-01-10 22:28:09| 12:01:51 |
+--------------------+--------------------+----------------+

TIME_TO_SEC(  )

290 | Chapter 12: Date and Time Functions

TIMESTAMP(  )
TIMESTAMP(date, time)

This function merges the date and time from given strings or columns that contain date
and time data separately; the result is returned in yyyy-mm-dd hh:mm:ss format. If only
the date or only the time is given, the function will return zeros for the missing parameter.
It’s available as of version 4.1.1 of MySQL. Here is an example:

SELECT TIMESTAMP(appt_date, appt_time) AS 'Appointment'
FROM appointments LIMIT 1;

+---------------------+
| Appointment |
+---------------------+
| 2008-07-16 11:13:41 |
+---------------------+

TIMESTAMPADD(  )
TIMESTAMPADD(interval, number, datetime)

This function adds the given number of intervals of time to the given date or time. In-
tervals that are accepted by this function are: FRAC_SECOND, SECOND, MINUTE, HOUR, DAY, WEEK,
MONTH, QUARTER, and YEAR. For compatibility with other systems, you can add the
SQL_TSI_ prefix to these interval names (e.g., SQL_TSI_YEAR for YEAR). This function is
available as of version 5.0.0 of MySQL and is similar to DATE_ADD(  ), but the list of intervals
accepted is not exactly the same. Here is an example:

UPDATE appointments
SET appointment = TIMESTAMPADD(HOUR, 1, appointment)
WHERE appt_id = '8930';

In this example, an appointment is set to an hour later.

TIMESTAMPDIFF(  )
TIMESTAMPDIFF(interval, datetime, datetime)

This function returns the time difference between the two times given, but only for the
interval being compared. The intervals accepted are the same as those accepted for
TIMESTAMPADD(  ). This function is available as of version 5.0.0 of MySQL. Here is an
example:

SELECT NOW() AS Today,
TIMESTAMPDIFF(DAY, NOW(), LAST_DAY(NOW()))
AS 'Days Remaining in Month';

+---------------------+-------------------------+
| Today | Days Remaining in Month |
+---------------------+-------------------------+
| 2008-01-12 02:19:26 | 19 |
+---------------------+-------------------------+

This SQL statement retrieves the current date and time and uses the LAST_DAY(  ) function
to determine the date of the last day of the month. Then the TIMESTAMPDIFF() function

TIMESTAMPDIFF(  )

Chapter 12: Date and Time Functions | 291

Date and Tim
e

Functions

determines the difference between the day of the date now and the day of the date at the
end of the month.

TO_DAYS(  )
TO_DAYS(date)

This function returns the date based on the number of days given, which are from the
beginning of the currently used standard calendar. Problems occur for dates before 1582,
when the Gregorian calendar became the standard. The opposite of this function is
FROM_DAYS(  ). Here is an example:

SELECT CURDATE() AS 'Today',
TO_DAYS('2008-12-31'),
TO_DAYS(CURDATE()),
(TO_DAYS('2008-12-31') -
TO_DAYS(CURDATE()))
AS 'Days to End of Year' \G

*************************** 1. row ***************************
 Today: 2008-11-03
TO_DAYS('2007-12-31'): 733772
 TO_DAYS(CURDATE()): 733714
 Days to End of Year: 58

In this example, the TO_DAYS() function is used to calculate the difference in the number
of days between the two dates, the number of days from the current date until the year’s
end. I’ve used the \G ending instead of the semicolon so as to save space horizontally.

UNIX_TIMESTAMP(  )
UNIX_TIMESTAMP([datetime])

This function returns the number of seconds since the start of the Unix epoch (January
1, 1970, Greenwich Mean Time). Without a given time, this function will return the Unix
time for the current date and time. Optionally, a date and time value (directly or by way
of a column value) may be given for conversion to Unix time with this function. Here is
an example:

SELECT UNIX_TIMESTAMP() AS 'Now',
UNIX_TIMESTAMP('2008-05-09 20:45:00') AS 'Same Time from String';

+------------+-----------------------+
| Now | Same Time from String |
+------------+-----------------------+
| 1210383900 | 1210383900 |
+------------+-----------------------+

The first column uses the function to determine the Unix time for the moment that the
statement was entered. The second column uses the same function to determine the Unix
time for the same date and time provided in a common, readable format.

TO_DAYS(  )

292 | Chapter 12: Date and Time Functions

UTC_DATE(  )
UTC_DATE()

This function returns the current Universal Time, Coordinated (UTC) date in
yyyy-mm-dd format, or in yyyymmdd format if it’s used as part of a numeric calculation. It’s
available as of version 4.1.1 of MySQL. The parentheses are optional. Here is an example:

SELECT UTC_DATE(),
UTC_DATE() + 0 AS 'UTC_DATE() Numeric';

+-------------+---------------------+
| UTC_DATE() | UTC_DATE() Numeric |
+-------------+---------------------+
| 2008-12-07 | 20081207 |
+-------------+---------------------+

UTC_TIME(  )
UTC_TIME()

This function returns the current UTC time in hh:mm:ss format, or in hhmmss format if it’s
used as part of a numeric calculation. As a numeric, the microseconds are included in
the results. It’s available as of version 4.1.1 of MySQL. The pair of parentheses is optional.
Here is an example:

SELECT UTC_TIME(),
UTC_TIME() + 0 AS 'UTC_TIME() Numeric';

+-------------+-------------------- +
| UTC_TIME() | UTC_TIME() Numeric |
+-------------+---------------------+
| 22:01:14 | 220114.000000 |
+-------------+---------------------+

UTC_TIMESTAMP(  )
UTC_TIMESTAMP()

This function returns the current UTC date and time in yyyy-mm-dd hh:mm:ss format. It
will return the UTC date and time in a yyyymmddhhmmss format if it’s used as part of a
numeric calculation. As a numeric, the microseconds are included in the results. This
statement is available as of version 4.1.1 of MySQL. The parentheses are optional. Use
UTC_TIME(  ) is you want only the UTC time, and UTC_DATE(  ) if you want only the UTC
date. Here is an example:

SELECT UTC_TIMESTAMP(),
UTC_TIMESTAMP() + 0 AS 'UTC_TIMESTAMP() Numeric';

+---------------------+--------------------------+
| UTC_TIMESTAMP() | UTC_TIMESTAMP() Numeric |
+---------------------+--------------------------+
| 2008-12-07 22:08:24 | 20081207220824.000000 |
+---------------------+--------------------------+

UTC_TIMESTAMP(  )

Chapter 12: Date and Time Functions | 293

Date and Tim
e

Functions

WEEK(  )
WEEK(date[, value])

This function returns the number of the week starting from the beginning of the year for
the date provided. This may seem simple enough. However, it’s complex because there
are one or two more days in a year beyond 52 weeks (i.e., 52 × 7 = 364); the first day of
the year usually isn’t the first day of a week. When a year starts on a Sunday—if you
consider Sunday to be the first day of the week—January 1 is definitely the first week of
the year. In that case, the function should return 0 or 1 depending on whether you think
of 0 as the first number or 1. If you consider Monday the first day of the week, though,
then if January 1 is a Sunday, the question is whether you want that day to be considered
as part of the last week of the previous year, or just as week 0 of this year and make 1
represent the first full week of the current year. All of these possibilities for MySQL to
consider when executing WEEK() are represented by the mode you specify as its second
parameter.

The range of values accepted for the function’s second parameter is 0 to 7. Even numbers
indicate that Sunday is the first day of the week; odd values indicate Monday is the first
day of the week. Codes 0, 1, 4, and 5 return results ranging from 0 to 53; codes 2, 3, 6,
and 7 return results ranging from 1 to 53. Codes 0, 2, 5, and 7 determine results of the
date given with regard to the year that holds the first day of the week of the week that
the first day of the year given is in. Here is an example:

SELECT DAYNAME('2006-01-01') AS 'Day',
WEEK('2006-01-01', 0) AS '0(S,0)', WEEK('2006-01-01', 1) AS '1(M,0)',
WEEK('2006-01-01', 2) AS '2(S,1)', WEEK('2006-01-01', 3) AS '3(M,1)',
WEEK('2006-01-01', 4) AS '4(S,0)', WEEK('2006-01-01', 5) AS '5(M,0)',
WEEK('2006-01-01', 6) AS '6(S,1)', WEEK('2006-01-01', 7) AS '7(M,1)'
 UNION ...

+-----------+--------+--------+--------+--------+--------+--------+--------+--------+
| Day | 0(S,0) | 1(M,0) | 2(S,1) | 3(M,1) | 4(S,0) | 5(M,0) | 6(S,1) | 7(M,1) |
+-----------+--------+--------+--------+--------+--------+--------+--------+--------+
Sunday	1	0	1	52	1	0	1	52
Monday	0	1	53	1	1	1	1	1
Tuesday	0	1	52	1	1	0	1	53
Wednesday	0	1	52	1	1	0	1	52
Thursday	0	1	52	1	0	0	53	52
Friday	0	0	52	53	0	0	52	52
Saturday	0	0	52	52	0	0	52	52
+-----------+--------+--------+--------+--------+--------+--------+--------+--------+

This results set is created with the SELECT statement shown repeated six times, joined
together using UNION to merge the results into one results table. The year is adjusted for
each SELECT statement, ranging from 2006 to 2011, and 2014 used in the middle for the
Wednesday due to leap year. This chart shows the results of WEEK() for seven different
dates (one for each day of the week), all the first day of their respective years. For each
date, each row shows the results for each parameter possibility for the WEEK() function.
The column headings specify the parameter used, along with whether the parameter
considers Sunday or Monday (indicated by S or M, respectively) to be the first day of the
week. The 0 just after the S or M indicates that results can range from 0 to 53 weeks; 1
indicates a range of 1 to 53. It’s a complex chart, but the subject is complex and it’s hoped
that seeing all of the possibilities will make it easier to understand. Table 12-4 may also
be useful in choosing the mode that you want.

WEEK(  )

294 | Chapter 12: Date and Time Functions

If no mode is specified with the WEEK() function, the default is used. The default value
is stored in the system variable default_week_format. It can be changed with the SET
statement:

SHOW VARIABLES LIKE 'default_week_format';

+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| default_week_format | 0 |
+---------------------+-------+

SET default_week_format = 1;

As an alternative to WEEK(), you can use YEARWEEK(  ). It’s synonymous with WEEK(), but
with the mode of 3 only.

Table 12-4. WEEK() modes

Mode Beginning of week Range of weeks Determining if week 1 is first week

0 Sunday 0–53 First day of week considered

1 Monday 0–53

2 Sunday 1–53 First day of week considered

3 Monday 1–53

4 Sunday 0–53

5 Monday 0–53 First day of week considered

6 Sunday 1–53

7 Monday 1–53 First day of week considered

WEEKDAY(  )
WEEKDAY(date)

This function returns the number for the day of the week. Monday is considered the first
day of the week for this function and returns a value of 0; a Sunday returns 6. Here is an
example:

SELECT appt_id, client_id
FROM appointments
WHERE WEEKDAY(appt) > 4 AND
EXTRACT(YEAR_MONTH FROM appt) = EXTRACT(YEAR_MONTH FROM NOW());

This SQL statement, based on the WHERE clause, retrieves a list of appointments that are
on the weekends of the current month.

WEEKDAY(  )

Chapter 12: Date and Time Functions | 295

Date and Tim
e

Functions

WEEKOFYEAR(  )
WEEKOFYEAR(date)

This function returns the calendar week of the year for a given date. It was added in
version 4.1.1 of MySQL and is synonymous with WEEK(  ), but with the mode of 3 for that
function only. There’s no way to change the mode for this function. Here is an example:

SELECT CURDATE() AS Date,
WEEKOFYEAR(CURDATE()) AS Week;

+------------+------+
| Date | Week |
+------------+------+
| 2005-01-11 | 2 |
+------------+------+

YEAR(  )
YEAR(date)

This function returns the year of the date provided. It returns values from 1,000 to 9,999,
and returns 0 for a zero date. Here is an example:

SELECT YEAR('2008-01-01')
AS 'Year';

+------+
| Year |
+------+
| 2008 |
+------+

YEARWEEK(  )
YEARWEEK(date[, value])

This function returns the year coupled with the number of the week into the year:
yyyyww. By default, the first day of the week is Sunday and is the basis of the calculation.
Optionally, you can set Monday as the first day of the week by entering a value of 1 for
the second argument. This function is somewhat synonymous with WEEK(  ), but with the
year appended to the results and the mode of 2 for that function. If you set the second
parameter of this function to 1, it becomes similar to WEEK() with the mode of 3. Here
is an example:

SELECT YEARWEEK('2008-01-07')
AS 'YearWeek';

+----------+
| YearWeek |
+----------+
| 200801 |
+----------+

This function can be useful in conjunction with the PERIOD_ADD(  ) and PERIOD_DIFF(  )
functions.

WEEKOFYEAR(  )

296 | Chapter 12: Date and Time Functions

13
Mathematical Functions

MySQL has many built-in mathematical functions that you can use in SQL state-
ments for performing calculations on values in databases. Each function accepts
either numbers or numeric columns for parameter values. All mathematical func-
tions return NULL on error.

The following functions are covered in this chapter:

ABS(  ), ACOS(  ), ASIN(  ), ATAN(  ), ATAN2(  ), BIT_COUNT(  ), CEIL(  ), CEILING(  ), CONV(  ),
COS(  ), COT(  ), DEGREES(  ), EXP(  ), FLOOR(  ), FORMAT(  ), GREATEST(  ), INET_ATON(  ), IN-
ET_NTOA(  ), LEAST(  ), LN(  ), LOG(  ), LOG2(  ), LOG10(  ), MOD(  ), OCT(  ), PI(  ), POW(  ),
POWER(  ), RADIANS(  ), RAND(  ), ROUND(  ), SIGN(  ), SIN(  ), SQRT(  ), TAN(  ), TRUNCATE(  ).

Functions in Alphabetical Order
The following is a list of MySQL mathematical functions in alphabetical order, along
with descriptions of each and examples of their use.

ABS(  )
ABS(number)

This function returns the absolute value of a given number. Here is an example:

SELECT ABS(-10);

+----------+
| ABS(-10) |
+----------+
| 10 |
+----------+

297

ACOS(  )
ACOS(number)

This function returns the arc cosine, in radians, of a given number. For input greater than
1 or less than –1, NULL is returned. Here is an example:

SELECT ACOS(.5), ACOS(1.5);

+----------+-----------+
| ACOS(.5) | ACOS(1.5) |
+----------+-----------+
| 1.047198 | NULL |
+----------+-----------+

ASIN(  )
ASIN(number)

This function returns the arcsine, in radians, of a given number. For input greater than
1 or less than –1, NULL is returned. Here is an example:

SELECT ASIN(1);

+----------+
| ASIN(1) |
+----------+
| 1.570796 |
+----------+

ATAN(  )
ATAN(number[, ...])

This function returns the arctangent, in radians, of a given number. To determine the
arctangent of two numbers (Y and X), add the optional second argument to the function
or use ATAN2(  ). The value of Y for a Cartesian plane is given as the first argument and X
as the second. Here is an example:

SELECT ATAN(2);

+----------+
| ATAN(2) |
+----------+
| 1.107149 |
+----------+

ATAN2(  )
ATAN2(number, number)

This function returns the arctangent, in radians, of X and Y for a point on a Cartesian
plane. The value for Y is given as the first argument and X as the second. The reverse
function is TAN(  ). Here is an example:

ACOS(  )

298 | Chapter 13: Mathematical Functions

SELECT ATAN2(10, 5);

+--------------+
| ATAN2(10, 5) |
+--------------+
| 1.107149 |
+--------------+

BIT_COUNT(  )
BIT_COUNT(number)

This function returns the number of bits set in the argument, which is an integer that the
function treats as a binary number.

SELECT BIT_COUNT(10), BIT_COUNT(11);

+---------------+---------------+
| BIT_COUNT(10) | BIT_COUNT(11) |
+---------------+---------------+
| 2 | 3 |
+---------------+---------------+

CEIL(  )
CEIL(number)

This function rounds a given floating-point number up to the next higher integer. It’s an
alias to CEILING(  ).

SELECT CEIL(1), CEIL(1.1);

+---------+-----------+
| CEIL(1) | CEIL(1.1) |
+---------+-----------+
| 1 | 2 |
+---------+-----------+

CEILING(  )
CEILING(number)

This function rounds a given floating-point number up to the next higher integer. It’s an
alias to CEIL(  ). This function can be particularly useful when you want a numeric value
for a time function, but without the decimal places (the microseconds) in the results:

SELECT NOW(), NOW() + 0, CEILING(NOW() + 0);

+---------------------+-----------------------+--------------------+
| NOW() | NOW() + 0 | CEILING(NOW() + 0) |
+---------------------+-----------------------+--------------------+
| 2007-07-16 00:07:14 | 20070716000714.000000 | 20070716000714 |
+---------------------+-----------------------+--------------------+

CEILING(  )

Chapter 13: Mathematical Functions | 299

M
athem

atical
Functions

CONV(  )
CONV(number, from_base, to_base)

This function converts a number from one numeric base system to another. The number
to convert is given in the first argument, the base from which to convert the number in
the second, and the base to which to convert the number in the third. The minimum base
allowed is 2 and the maximum is 36. Here is an example:

SELECT CONV(4, 10, 2) AS 'Base-10 4 Converted',
CONV(100, 2, 10) AS 'Binary 100 Converted';

+---------------------+----------------------+
| Base-10 4 Converted | Binary 100 Converted |
+---------------------+----------------------+
| 100 | 4 |
+---------------------+----------------------+

Here, the number 4 under the base 10 system is converted to the base 2 or binary equiv-
alent and back again.

COS(  )
COS(number)

This function returns the cosine of number, where number is expressed in radians. Here is
an example:

SELECT COS(2 * PI());

+----------------+
| COS(2 * PI()) |
+----------------+
| 1 |
+----------------+

COT(  )
COT(number)

This function returns the cotangent of a number. Here is an example:

SELECT COT(1);

+------------+
| COT(1) |
+------------+
| 0.64209262 |
+------------+

DEGREES(  )
DEGREES(number)

This function converts radians to degrees.

CONV(  )

300 | Chapter 13: Mathematical Functions

SELECT DEGREES(PI());

+------------------+
| DEGREES(PI()) |
+------------------+
| 180.000000 |
+------------------+

EXP(  )
EXP(number)

This function returns the value of the natural logarithm base number e to the power of
the given number.

SELECT EXP(1);

+----------+
| EXP(1) |
+----------+
| 2.718282 |
+----------+

FLOOR(  )
FLOOR(number)

This function rounds a given floating-point number down to the next lower integer. It’s
a counterpart to CEILING(  ).

SELECT CEILING(1.1), FLOOR(1.1);

+--------------+------------+
| CEILING(1.1) | FLOOR(1.1) |
+--------------+------------+
| 2 | 1 |
+--------------+------------+

FORMAT(  )
FORMAT(number, decimal)

This function returns the given floating-point number with a comma inserted between
every three digits and a period before the number of decimal places specified in the second
argument.

SELECT FORMAT(1000.375, 2)
AS Amount;

+----------+
| Amount |
+----------+
| 1,000.38 |
+----------+

Notice that the function rounds the number given to two decimal places.

FORMAT(  )

Chapter 13: Mathematical Functions | 301

M
athem

atical
Functions

GREATEST(  )
GREATEST(value, value, ...)

This function compares two or more values, returning the greatest value. In an INTEGER
data type context, all values are treated as integers for comparison. In a REAL data type
context, all values are treated as REAL values for comparison. If any parameter contains
a case-sensitive string (i.e., with a BINARY keyword), all values are compared as case-
sensitive strings. Here is an example:

SELECT GREATEST(col1, col2, col3);

INET_ATON(  )
INET_ATON(IP_address)

This function converts an Internet Protocol (IP) address in dot-quad notation to its nu-
meric equivalent. The function INET_NTOA(  ) can be used to reverse the results. Here is
an example:

SELECT INET_ATON('12.127.17.72')
AS 'AT&T';

+-----------+
| AT&T |
+-----------+
| 209654088 |
+-----------+

This function is useful in sorting IP addresses that lexically might not sort properly. For
instance, an address of 10.0.11.1 would come after 10.0.1.1 and before 10.0.2.1 under
normal sort conditions in an ORDER BY clause.

INET_NTOA(  )
INET_NTOA(IP_address)

This function converts the numeric equivalent of an IP address to its dot-quad notation.
The function INET_ATON(  ) can be used to reverse the results.

SELECT INET_NTOA('209654088')
AS 'AT&T';

+--------------+
| AT&T |
+--------------+
| 12.127.17.72 |
+--------------+

LEAST(  )
LEAST(value, value, ...)

Use this function to compare two or more values and return the smallest value. In an
INTEGER datatype context, all values are treated as integers for comparison. In a REAL data

GREATEST(  )

302 | Chapter 13: Mathematical Functions

type context, all values are treated as REAL values for comparison. If any parameter con-
tains a case-sensitive string (i.e., with a BINARY keyword), all values are compared as case-
sensitive strings. Here is an example:

SELECT LEAST(col1, col2, col3);

LN(  )
LN(number)

This function returns the natural logarithm of its input. Here is an example:

SELECT LN(5);

+----------+
| LN(5) |
+----------+
| 1.609438 |
+----------+

LOG(  )
LOG(number[, base])

This function returns the logarithm of the first argument to the base indicated by the
second argument. This is the same as using LOG(number)/LOG(base). If the function is
called with only the first argument, its natural logarithm is returned; the function is
equivalent to LN in that case. Here is an example:

SELECT LOG(5,4);

+------------+
| LOG(5,4) |
+------------+
| 1.16096405 |
+------------+

LOG2(  )
LOG2(number)

This function returns the base 2 logarithm of a given number.

LOG10(  )
LOG10(number)

This function returns the base 10 logarithm of a given number.

MOD(  )
MOD(number, number)
number MOD number

MOD(  )

Chapter 13: Mathematical Functions | 303

M
athem

atical
Functions

This function returns the remainder of a number given in the first argument when divided
by the number given in the second argument, the modulo. The function works the same
as using the % operator between two given numbers. The second syntax shown is available
as of version 4.1 of MySQL. Starting with version 4.1.7, fractional values may be given.
Here is an example:

SELECT MOD(10, 3);

+------------+
| MOD(10, 3) |
+------------+
| 1 |
+------------+

Here’s an example of the alternate syntax:

SELECT 10 MOD 3;

+----------+
| 10 MOD 3 |
+----------+
| 1 |
+----------+

OCT(  )
OCT(number)

This function returns the octal, or base 8, numeric system value of the given number. It
returns NULL if the argument is NULL. Here is an example:

SELECT OCT(1), OCT(9), OCT(16);

+--------+--------+---------+
| OCT(8) | OCT(9) | OCT(16) |
+--------+--------+---------+
| 10 | 11 | 20 |
+--------+--------+---------+

PI(  )
PI()

This function returns by default the first five decimal places of the number pi. You can
adjust it to include more decimal places by adding a mask to the end of the function.
There is no argument within the parentheses of the function. Here is an example:

SELECT PI(), PI() + 0.0000000000;

+----------+----------------------+
| PI() | PI() + 0.0000000000 |
+----------+----------------------+
| 3.141593 | 3.1415926536 |
+----------+----------------------+

OCT(  )

304 | Chapter 13: Mathematical Functions

POW(  )
POW(number, exponent)

This function returns the result of raising the number given in the first argument to the
exponent given in the second argument. It’s an alias of POWER(  ). Here is an example:

SELECT POW(2, 4);

+-----------+
| POW(2, 4) |
+-----------+
| 16.000000 |
+-----------+

POWER(  )
POWER(number, exponent)

This function returns the result of raising the number given in the first argument to the
power of the number given in the second argument. It’s an alias for POW(  ).

RADIANS(  )
RADIANS()

This function converts degrees to radians. Here is an example:

SELECT RADIANS(180);

+-----------------+
| RADIANS(180) |
+-----------------+
| 3.1415926535898 |
+-----------------+

RAND(  )
RAND([seed])

This function returns a random floating-point number from 0 to 1. A seed number may
be passed as an argument to start the sequence of random numbers at a different point.
Here is an example:

SELECT RAND(), RAND();

+------------------+------------------+
| RAND() | RAND() |
+------------------+------------------+
| 0.29085519843814 | 0.45449978900561 |
+------------------+------------------+

Note that rerunning this statement with the same seed will produce the same results.
This type of sequence is properly known as a pseudorandom number generator, and is
generally not considered strong enough for security purposes, but it is adequate for mak-
ing random choices among a set of alternatives.

RAND(  )

Chapter 13: Mathematical Functions | 305

M
athem

atical
Functions

ROUND(  )
ROUND(number[, precision])

This function rounds a number given in the first argument to the nearest integer. The
number may be rounded to the number of decimal places given in the second argument.
Here is an example:

SELECT ROUND(2.875), ROUND(2.875, 2);

+--------------+-----------------+
| ROUND(2.875) | ROUND(2.875, 2) |
+--------------+-----------------+
| 3 | 2.88 |
+--------------+-----------------+

SIGN(  )
SIGN(number)

This function returns –1 if the given number is a negative, 0 if it is zero, and 1 if it is
positive. Here is an example:

SELECT SIGN(-5);

+----------+
| SIGN(-5) |
+----------+
| -1 |
+----------+

SIN(  )
SIN(number)

This function returns the sine of the number given, where number is expressed in radians.
Here is an example:

 SELECT SIN(.5 * PI());

+-----------------+
| SIN(.5 * PI()) |
+-----------------+
| 1 |
+-----------------+

SQRT(  )
SQRT(number)

This function returns the square root of its input, which must be a positive number. Here
is an example:

SELECT SQRT(25);

ROUND(  )

306 | Chapter 13: Mathematical Functions

+----------+
| SQRT(25) |
+----------+
| 5.000000 |
+----------+

TAN(  )
TAN(number)

This function returns the tangent of an angle, where number is expressed in radians. It’s
the reverse of ATAN2(  ). Here is an example:

SELECT ATAN2(1), TAN(0.785398);

+----------+---------------+
| ATAN2(1) | TAN(0.785398) |
+----------+---------------+
| 0.785398 | 1.000000 |
+----------+---------------+

TRUNCATE(  )
TRUNCATE(number, number)

This function returns a number equivalent to its first argument, removing any digits
beyond the number of decimal places specified in the second argument. The function
does not round the number; use the ROUND(  ) function instead. If 0 is given for the second
argument, the decimal point and the fractional value are dropped. If a negative number
is given as the second argument, the decimal point and the fractional value are dropped,
and the number of positions given is zeroed out in the remaining integer. Here is an
example:

SELECT TRUNCATE(321.1234, 2) AS '+2',
TRUNCATE(321.1234, 0) AS '0',
TRUNCATE(321.1234, -2) AS '-2';

+--------+-----+-----+
| +2 | 0 | -2 |
+--------+-----+-----+
| 321.12 | 321 | 300 |
+--------+-----+-----+

Notice that for the first field in the results, the last two decimal places are dropped. For
the second field, the decimal point and all of the fractional value are dropped. For the
third field, the decimal point and the fractional value are dropped, and because the sec-
ond parameter is –2, the two least significant digits (starting from the right) of the integer
are changed to zeros.

TRUNCATE(  )

Chapter 13: Mathematical Functions | 307

M
athem

atical
Functions

14
Flow Control Functions

MySQL has a few built-in flow control functions that you can use in SQL statements
for more precise and directed results. This chapter provides the syntax of function
and gives examples of their use. For the examples in this chapter, a fictitious database
for a stock broker is used.

The following functions are covered in this chapter:

CASE, IF(  ), IFNULL(  ), ISNULL(  ), NULLIF(  ).

Functions in Alphabetical Order
The following are the MySQL flow control functions listed alphabetically.

CASE
CASE value
 WHEN [value] THEN result
 . . .
 [ELSE result]
END

CASE
 WHEN [condition] THEN result
 . . .
 [ELSE result]
END

This function produces results that vary based on which condition is true. It is similar to
the IF(  ) function, except that multiple conditions and results may be strung together.
In the first syntax shown, the value given after CASE is compared to each WHEN value. If a
match is found, the result given for the THEN is returned. The second syntax tests each
condition independently, and they are not based on a single value. For both syntaxes, if
no match is found and an ELSE clause is included, the result given for the ELSE clause is
returned. If there is no match and no ELSE clause is given, NULL is returned.

309

If the chosen result is a string, it is returned as a string data type. If result is numeric,
the result may be returned as a decimal, real, or integer value.

Here’s an example of the first syntax shown:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Client,
telephone_home AS Telephone,
CASE type
 WHEN 'RET' THEN 'Retirement Account'
 WHEN 'REG' THEN 'Regular Account'
 WHEN 'CUS' THEN 'Minor Account'
END AS 'Account Type'
FROM clients;

This SQL statement retrieves a list of clients and their telephone numbers, along with a
description of their account types. However, the account type is a three-letter abbrevia-
tion, so CASE() is used to substitute each type with a more descriptive name.

This example uses the syntax in which a common parameter is evaluated to determine
the possible result. The following SQL statement utilizes the other syntax for the
function:

SELECT CONCAT(name_last, SPACE(1), name_first) AS Prospect,
CASE
 WHEN YEAR(NOW()) - YEAR(birth_date) ≤ 17 THEN 'Minor'
 WHEN YEAR(NOW()) - YEAR(birth_date) > 17 < 26 THEN 'Too Young'
 WHEN YEAR(NOW()) - YEAR(birth_date) > 60 THEN 'Elderly'
 ELSE home_telephone;
END
AS Telephone
FROM prospects;

In this example, the SQL statement analyzes a table containing a list of people that the
broker might call to buy an investment. The table contains the birth dates and the tele-
phone numbers of each prospect. The SQL statement provides the telephone numbers
only for prospects aged 26 to 60 because anyone younger or older would not be suitable
for this particular investment. However, a message for each prospect that is disqualified
is given based on the clauses of the CASE() statement.

When using a CASE statement within a stored procedure, it cannot be given a NULL value
for the ELSE clause. Also, a CASE statement ends with END CASE.

IF(  )
IF(condition, result, result)

This function returns the result given in the second argument if the condition given in
the first argument is met (i.e., the condition does not equal 0 or NULL). If the condition
does equal 0 or NULL, the function returns the result given in the third argument. Note
that the value of condition is converted to an integer. Therefore, use a comparison op-
erator when trying to match a string or a floating-point value. The function returns a
numeric or a string value depending on its use. As of version 4.0.3 of MySQL, if the
second or the third argument is NULL, the type (i.e., string, float, or integer) of the other
non-NULL argument will be returned:

IF(  )

310 | Chapter 14: Flow Control Functions

SELECT clients.client_id AS ID,
CONCAT(name_first, SPACE(1), name_last) AS Client,
telephone_home AS Telephone, SUM(qty) AS Shares,
IF(
 (SELECT SUM(qty * price)
 FROM investments, stock_prices
 WHERE stock_symbol = symbol
 AND client_id = ID)
 > 100000, 'Large', 'Small') AS 'Size'
FROM clients, investments
WHERE stock_symbol = 'GT'
AND clients.client_id = investments.client_id
GROUP BY clients.client_id LIMIT 2;

+------+----------------+-----------+--------+-------+
| ID | Client | Telephone | Shares | Size |
+------+----------------+-----------+--------+-------+
| 8532 | Jerry Neumeyer | 834-8668 | 200 | Large |
| 4638 | Rusty Osborne | 833-8393 | 200 | Small |
+------+----------------+-----------+--------+-------+

This SQL statement is designed to retrieve the names and telephone numbers of clients
who own Goodyear stock (the stock symbol is GT) because the broker wants to call them
to recommend that they sell it. The example utilizes a subquery (available as of version
4.1 of MySQL) to tally the value of all the clients’ stocks first (not just Goodyear stock),
as a condition of the IF() function. It does this by joining the investments table (which
contains a row for each stock purchase and sale) and the stock_prices table (which
contains current prices for all stocks). If the sum of the value of all stocks owned by the
client (the results of the subquery) is more than $100,000, a label of Large is assigned to
the Size column. Otherwise, the client is labeled Small. The broker wants to call her large
clients first. Notice in the results shown that both clients own the same number of shares
of Goodyear, but one has a large portfolio.

Note that the IF statement used in stored procedures has a different syntax from the
IF() function described here. See Chapter 17 for more information on the IF statement.

IFNULL(  )
IFNULL(condition, result)

This function returns the results of the condition given in the first argument of the func-
tion if its results are not NULL. If the condition results are NULL, the results of the
expression or string given in the second argument are returned. It will return a numeric
or a string value depending on the context:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Client,
telephone_home AS Telephone,
IFNULL(goals, 'No Goals Given') AS Goals
FROM clients LIMIT 2;

IFNULL(  )

Chapter 14: Flow Control Functions | 311

Flow Control
Functions

+----------------+-----------+----------------+
| Client | Telephone | Goals |
+----------------+-----------+----------------+
| Janice Sogard | 835-1821 | No Goals Given |
| Kenneth Bilich | 488-3325 | Long Term |
+----------------+-----------+----------------+

This SQL statement provides a list of clients and their telephone numbers, along with
their investment goals. If the client never told the broker of an investment goal (i.e., the
goals column is NULL), the text “No Goals Given” is displayed.

ISNULL(  )
ISNULL(column)

Use this function to determine whether the value of the argument given in parentheses
is NULL. It returns 1 if the value is NULL and 0 if it is not NULL. Here is an example:

SELECT CONCAT(name_first, SPACE(1), name_last) AS Client,
telephone_work AS 'Work Telephone'
FROM clients
WHERE ISNULL(telephone_home);

In this example, after realizing that we don’t have home telephone numbers for several
of our clients, we use the ISNULL() function in the WHERE clause of a SELECT statement to
list client names and their work telephone numbers so that we can call them to get their
home telephone numbers. Only rows in which the home_telephone column is NULL will
result in a value of 1 and will therefore be shown in the results.

NULLIF(  )
NULLIF(condition1, condition2)

This function returns NULL if the two arguments given are equal. Otherwise, it returns
the value or results of the first argument. Here is an example:

SELECT clients.client_id AS ID,
CONCAT(name_first, SPACE(1), name_last) AS Client,
telephone_home AS Telephone,
NULLIF(
 (SELECT SUM(qty * price)
 FROM investments, stock_prices
 WHERE stock_symbol = symbol
 AND client_id = ID), 0)
AS Value
FROM clients, investments
WHERE clients.client_id = investments.client_id
GROUP BY clients.client_id;

In this example, NULL is returned for the Value column if the value of the client’s stocks
is 0 (i.e., the client had stocks but sold them all). If there is a value to the stocks, however,
the sum of their values is displayed.

ISNULL(  )

312 | Chapter 14: Flow Control Functions

III
MySQL Server and Client Tools

This part of the book shows you how to invoke the programs associated with
MySQL: the main mysqld server, various wrappers for that server, the mysql
command-line client, and useful administrative utilities. These programs are con-
trolled by options that can be included on the command line or in the MySQL
configuration file (my.cnf or my.ini, depending on your system).

15
MySQL Server and Client

The primary executable file making up the MySQL server is the mysqld daemon,
which listens for requests from clients and processes them. The general-purpose
client provided with MySQL is the mysql program. This chapter presents the many
options available for both the mysqld MySQL server and the mysql client. A few
scripts provided with MySQL that are used to start the server (mysqld_multi and
mysqld_safe) are also explained. The daemons and scripts are listed in alphabetical
order.

mysql Client

mysql
mysql options [database]

The mysql client can be used to interact with MySQL in terminal or monitor mode. To
enter monitor mode, enter something like the following from the command line:

mysql -u russell -p

If the MySQL server is running, the client will prompt the user for a password (thanks
to the -p option). Once in monitor mode, you can enter SQL statements to view or to
change data as well as the status of the server.

As an alternative to monitor mode, when performing straightforward tasks in MySQL,
you can still use the mysql client from the command line. For instance, to execute a batch
file that contains several SQL statements that will insert data into a database, you could
do something like this:

mysql -u russell -pmy_pwd db1 < stuff.sql

In this example, the password is given so that the user isn’t prompted. It’s entered im-
mediately after the -p option without a space in between. Although including the
password on the command line poses a security risk for interactive use, it’s a valuable
feature for using mysql in scripts.

315

Next, the database name db1 is given. The Unix redirect (the less-than sign) tells the shell
to input the test file stuff.sql to the command. When the client has finished processing
the text file, the user is returned to the command prompt.

To handle even smaller tasks, you can execute a single SQL command against the data-
base by running mysql with the --execute or -e option.

Several options may be given when calling the mysql client at the command line. They
can also be included in the options file (my.cnf or my.ini, depending on your system)
under the group heading of [client]. If used in the options file, the leading double-dashes
are not included. The options are listed alphabetically here:

--auto-rehash
This option generates a hash of table and column names to complete the names for
users when typing in monitor mode; users invoke autocompletion by pressing the
Tab key after having entered the first few letters of the name.

--batch, -B
This option causes the client to display data selected with fields separated by tabs
and rows by carriage returns. The client won’t prompt the user, won’t display error
messages to the stdout, and won’t save to the history file.

--character-sets-dir=path
This option specifies the local directory containing character sets for the client to
use.

--column-names
This option instructs the client to return the names of columns in a results set. This
is more relevant when executing SQL statements from the command line.

--column-type-info, -m
This option instructs the client to return the metadata for columns in a results set.
This option is available as of version 5.1.14 of MySQL; the short form is available
as of version 5.1.21.

--compress, -C
This option instructs the client to compress data passed between it and the server
if supported.

--database=database, -D database
This option sets the default database for the client to use. This is equivalent to
executing the USE statement.

--debug[=options], -#[options]
This option instructs the client to record debugging information to the log file
specified. The set of flags used by default is d:t:o,logname. See Table 16-1 at the end
of the list of options for mysqldump in the next chapter for an explanation of these
flags and others that may be used.

--debug-check
This option causes the client to display debugging information when finished. This
option is available as of version 5.1.21 of MySQL.

--debug-info, -T
This option adds debugging, CPU usage, and memory usage information to the log
when the utility ends.

mysql

316 | Chapter 15: MySQL Server and Client

--default-character-sets-dir=path
This option specifies the local directory that contains the default character sets for
the client to use. Enter SHOW CHARACTER SET; on the server for a list of character sets
available.

--defaults-group-suffix=value
The client looks for options in the options file under the group headings of
[mysql] and [client]. Use this option to specify option groups that the client is to
use, based on their suffixes. For instance, the value given might be just _special so
that groups such as [mysql_special] and [client_special] will be included.

--delimiter=string, -F string
This option use this option to specify the delimiter used to terminate each SQL
statement when entered into the client. By default, the client expects a semicolon.

--execute='statement', -e 'statement'
This option executes the SQL statement contained in single or double quotes, then
terminates the client.

--force, -f
This option makes the client continue executing or processing a statement even if
there are SQL errors.

--help, -?
This option displays basic help information.

--hostname=host, -h host
This option specifies the hostname or IP address of the MySQL server. The default
is localhost, which connects to a server on the same system as the client.

--html, -H
This option instructs the client to return results in an HTML format when executing
an SQL statement at the command line or from a file containing SQL statements.

--ignore-spaces, -i
This option instructs the client to ignore spaces after function names (e.g.,
CUR_DATE()) when executing SQL statements at the command line or from a text
file containing SQL statements.

--line-numbers
When the client is accepting SQL statements from an input file, this option instructs
the client to display the line number of an SQL statement that has returned an error.
This is the default option; use --skip-line-numbers to disable this option.

--local-infile[={0|1}]
The SQL statement LOAD DATA INFILE imports data into a database from a file. That
file could be located on the server or on the computer in which the client is running
(i.e., locally). To indicate that a file is local, you would add the LOCAL flag to that
statement. This option sets that flag: a value of 1 enables the LOCAL, whereas a value
of 0 indicates that the file is on the server. If the server is set so it imports data only
from files on the server, this option will have no effect.

--named-commands, -G
This option permits named commands on the client. See the next section for this
client program for a description of commands. Enter help or \h from the mysql client
to get a list of them. This option is enabled by default. To disable it, use the
--skip-named-commands option.

mysql

Chapter 15: MySQL Server and Client | 317

M
ySQL Server and

Client

--no-auto-rehash, -A
Automatic rehashing is normally used to let the user complete table and column
names when typing in monitor mode by pressing the Tab key after having entered
the first few letters of the name. This option disables autocompletion and thereby
decreases the startup time of the client. This option is deprecated as of version 4 of
MySQL.

--no-beep
This option instructs client not to emit a warning sound for errors.

--no-named-commands
This option disables named commands on the client, except when at the start of a
line (i.e., named commands cannot appear in the middle of an SQL statement). This
option is enabled by default. See the description of the --named-commands option and
the following section for more information.

--no-tee
This option instructs the client not to write results to a file.

--one-database, -o
This option instructs the client to execute SQL statements only for the default da-
tabase (set by the --database option) and to ignore SQL statements for other
databases.

--pager[=utility]
With this option, on a Unix type of system, you can pipe the results of an SQL
statement executed from the command line to a pager utility (e.g., more) that will
allow you to view the results one page at a time and possibly scroll up and down
through the results. If this option is given without specifying a particular pager util-
ity, the value of the environment variable PAGER will be used. This option is enabled
by default. Use the --skip-pager option to disable it.

--password[=password], -p[password]
This option provide the password to give to the MySQL server. No spaces are al-
lowed between the -p and the password. If this option is entered without a password,
the user will be prompted for one.

--port=port, -P port
This option specifies the socket port to use for connecting to the server. The default
is 3306. If you run multiple daemons for testing or other purposes, you can use
different ports for each by setting this option.

--prompt=string
This option sets the prompt for monitor mode to the given string. By default, it’s
set to mysql>.

--protocol=protocol
This option specifies the protocol to use when connecting to the server. The choices
are TCP, SOCKET, PIPE, and MEMORY.

--quick, -q
This option causes the client to retrieve and display data one row at a time instead
of buffering the entire results set before displaying data. With this option, the history
file isn’t used and it may slow the server if the output is suspended.

mysql

318 | Chapter 15: MySQL Server and Client

--raw, -r
For data that may contain characters that would normally be converted in batch
mode to an escape-sequence equivalent (e.g., newline to \n), this option may be
used to have the client print out the characters without converting them.

--reconnect
This option instructs the client to attempt to reconnect to the server if the connection
is lost. The client tries only once, though. This is enabled by default. To disable it,
use --skip-reconnect. To make the client wait until the server is available, use
--wait.

--safe-updates, -U
This option helps prevent inadvertent deletion of multiple and possibly all rows in
a table. It requires that when the DELETE or UPDATE statements are used, a WHERE clause
be given with a key column and value. If this option is included in the options file,
using it at the command line when starting the client will disable it.

--secure-auth
This option prevents authentication of users with passwords created prior to version
4.1 of MySQL or connecting to servers that permit the old format.

--set-variable var=value, -o var=value
This option sets a server variable. Enter mysql --help for the current values for a
particular server’s variables.

--show-warnings
This option instructs the client not to suppress warning messages, but to display
them after an SQL statement is executed in which a warning is generated, even if
there was no error.

--silent, -s
This option suppresses all messages except for error messages. Enter the option
multiple times to further reduce the types of messages returned.

--skip-column-names
This option instructs the client not to return column names in the results.

--skip-line-numbers
When the client is accepting SQL statements from an input file, this option instructs
the client not to display the line number of an SQL statement that has returned an
error. This disables --line-numbers, the default.

--skip-named-commands
This option disables named commands on the client. See the description of the
--named-commands option and the following section for more information.

--skip-pager
This option disables paged results on Unix types of systems. See the --pager option
for more information.

--skip-reconnect
This option instructs the client not to attempt to reconnect to the server if the con-
nection is lost. It disables the default option --reconnect.

--skip-ssl
This option specifies that an SSL connection should not be used, if SSL is enabled
by default.

mysql

Chapter 15: MySQL Server and Client | 319

M
ySQL Server and

Client

--socket=socket, -S socket
This option provides the path and name of the server’s socket file on Unix systems,
or the named pipe on Windows systems.

--ssl
This option specifies that an SSL connection should be used. It requires the server
to have SSL enabled. If this option is enabled on the utility by default, use
--skip-ssl to disable it.

--ssl-ca=pem_file
This option specifies the name of the file (i.e., the pem file) containing a list of trusted
SSL CAs.

--ssl-capath=path
This option specifies the path to the trusted certificates file (i.e., the pem file).

--ssl-cert=filename
This option specifies the name of the SSL certificate file to use for SSL connections.

--ssl-cipher=ciphers
This option gives a list of ciphers that may be used for SSL encryption.

--ssl-key=filename
This option specifies the SSL key file to use for secure connections.

--ssl-verify-server-cert
This option verifies the client’s certificate against the server’s certificate for the client
at startup. It is available as of version 5.1.11 of MySQL.

--table, -t
This option displays results from a query in ASCII format, which is the format nor-
mally used in monitor mode. The alternative is the --xml option.

--tee=filename
This option instructs the client to write results to the given file. You can include an
absolute or relative pathname, or a simple filename. This option doesn’t work in
batch mode.

--unbuffered, -n
This option flushes the memory buffer after each query is performed.

--user=user, -u user
This option instructs the client to access MySQL with a username different from the
current system user.

--verbose, -v
This option displays more information. Use -vv or -vvv to increase verbosity.

--version, -V
This option displays the version of the utility.

--vertical
This option displays results in a vertical format instead of putting each row of data
on a single line. This is similar to using the end of \G of an SQL statement in monitor
mode.

--wait, -w
If the client cannot connect to the server, this option tells the client to wait and retry
repeatedly until it can connect.

mysql

320 | Chapter 15: MySQL Server and Client

--xml, -X
This option exports results in an XML format.

mysqld Server

mysqld
mysqld [options]

When mysqld starts, various options can be used to alter the server’s behavior. Although
you don’t need to know all of the server options available or use them—quite often the
default settings are fine—as a database administrator, it’s useful to know what options
exist for various categories that may be related to your needs.

Options may be given at the command line when starting or restarting the server. How-
ever, it’s common practice to enter them into a configuration file. On Unix-based
systems, the main configuration file typically is /etc/my.cnf. For Windows systems, the
main file is usually either c:\systems\my.ini or c:\my.conf. Options are entered on separate
lines and follow a variable=value format. Some options are binary and can be enabled
by just including the option at the command line when starting the server or in the options
file with no value (or an equals sign followed by no value).

Within the options file, options are grouped under headings contained within square
brackets. The mysqld daemon reads options from the configuration file under the head-
ings of [mysqld] and [server] as it’s started. For more recent versions of the MySQL
server, the group [mysqld-5.0] is also read. Groups are read in the order mentioned here,
and the last setting for an option read is the one used. To get a list of options that
mysqld is using on a particular server, enter the following line from the command line
(results follow):

$ mysqld --print-defaults
/usr/libexec/mysqld would have been started with the following arguments:
--datadir=/data/mysql --socket=/var/lib/mysql/mysql.sock
--old-passwords=1

As the resulting message indicates, the --print-defaults options draws information from
the options files and indicates the options and what their values would be if the MySQL
server were restarted. However, if the options files were changed since MySQL was star-
ted, or if MySQL was started from the command line or with command-line options from
a script on the server, this output will not reflect those options. Basically, the results of
--print-defaults do not reflect the current settings, just the options it finds in the options
files for the relevant server groups. To determine the current server options that have
been used—other than the default options—while a server is running, you can enter the
following command from a Unix system (sample results follow):

$ ps aux | grep mysql

mysql 27670 0.2 3.2 124252 17296 ? Sl Aug21 25:06
/usr/libexec/mysqld --defaults-file=/etc/my.cnf --basedir=/usr
--datadir=/data/mysql --user=mysql --pid-file=/var/run/mysqld/mysqld.pid
--skip-locking --socket=/var/lib/mysql/mysql.sock

mysqld

Chapter 15: MySQL Server and Client | 321

M
ySQL Server and

Client

If you see an option that you don’t see in your default options file, it may be coming from
a different options file. You may even be running a different installation of mysqld than
you think. In such a situation, you would have to specify the path to the mysqld you want
to use when starting the server.

In the following sections of this chapter, options are grouped by their use:

Location
These options specify where the server can find files and directories it needs.

Security and connection
These options are related to user and database security, limits on connections, and
how clients connect to the server.

Global
These options affect server behavior, and are stored in global variables.

Logs
These options relate to server logs.

Performance optimization
This section contains several options that could be included in other categories, but
they are worth considering together because they can affect the speed of the
database.

Replication
These options are strictly related to replication.

Storage engine specific options
These options concerning storage engines (formerly known as table types) are grou-
ped into subsections based on the specific storage engines to which they relate.

Some options are listed in more than one section because they have more than one use
relative to the sections listed.

The options are shown as they would be entered from the command line. If an option is
used in a configuration file, the long form should be used and the double-dash prefix
should be omitted. For example, --basedir=/data/mysql would be entered from the
command line. However, in a configuration file the same option would read as
basedir=/data/mysql on its own separate line.

The syntax for listing options is as follows:

--option=value
An option that requires a value

--option[=value]
An option that can take a value, but does not require one

--option[=value]
A binary option that is to be given without a value

A few options have single-letter abbreviations, also called short forms. The short form is
shown in parentheses after the long form.

As new versions of MySQL are released, more options may be added. To get a list for
your version, type mysqld --verbose --help from the command line on the server host.

For many of the options, there is a system variable with the same name as the option,
but without the leading double-dashes. For some options, the dashes within the name

mysqld

322 | Chapter 15: MySQL Server and Client

will need to be changed to underscores (e.g., the variable associated with --setting-
example would be setting_example). Before changing the value or the setting of a variable,
it’s often a good idea to see what the variable is set to. You can do this by entering a
statement like this:

SHOW VARIABLES LIKE 'setting_example';

Location
Some mysqld options allow you to instruct MySQL where files are located and what
network settings should be used when clients connect to it remotely. An alphabetical list
of these options follows, along with the syntax and an explanation of each. This list does
not include storage system specific options related to file paths. See the section for the
particular storage engine’s options later in this chapter:

--basedir=path, -b path
If you’ve installed more than one version of MySQL on your server or if you have
moved the binary files for MySQL, you will need to specify the base directory for
the MySQL installation. This option is particularly necessary if you’re using
mysqld_safe to keep the mysqld daemon running; list this option under the
[mysqld_safe] group heading.

--character-sets-dir=path
This option specifies the absolute path to the directory containing character sets.
By default, this directory is in the subdirectory charsets in the directory where
MySQL is installed (e.g., /usr/share/mysql/charsets/).

--datadir=path, -h path
If you want to put your datafiles for MySQL (i.e., database directories and table
files) in a different directory from the default, you need to use this option. This is
useful especially if you want the data on a different hard drive. Within the directory
that you name, MySQL will create subdirectories for each database. If you use this
option, be sure that the mysql user on the filesystem has permissions to read and
write to the directory. Generally, you would make it the owner of the directory.

--init-file=filename
If you have a set of SQL commands that you must execute every time you restart
the server, rather than enter them manually you could put them in a file and use this
option to tell MySQL to execute them for you at startup. Each SQL statement in the
file must be on a separate line. Unfortunately, you cannot include comments in the
file. You could put them in a separate text file in the same directory, perhaps with
a similar same filename (e.g., init.sql and init.txt).

--secure-file-priv=path
Use this option to restrict the importing of files to the given path. This is related to
the SELECT...INTO OUTFILE and LOAD DATA statements, as well as the LOAD_FILE()
function. This option is available as of version 5.1.17 of MySQL.

--pid-file=filename
Instead of starting mysqld directly, the common method used lately is to start the
script mysqld_safe. It will in turn start mysqld and make sure it keeps running. Thus,
if mysqld crashes, mysqld_safe will automatically restart it. To keep track of the sys-
tem process for mysqld, the mysqld_safe program will record the process identifica-
tion number in a file called mysqld.pid. With this option, you can tell MySQL where
to put that file.

mysqld

Chapter 15: MySQL Server and Client | 323

M
ySQL Server and

Client

--plugin-dir=path
This option sets the directory where plugins on the server are placed. It’s available
as of version 5.1.2 of MySQL.

--skip-symbolic-links
This option is used to disable symbolic links. The reverse is to enable them through
--symbolic-links. Prior to version 4.0.3 of MySQL, this option was --skip-symlink.

--slave-load-tmpdir=value
This option specifies the directory where a slave server stores temporary files when
the LOAD DATA INFILE statement is executed.

--slow-query-log-file=filename
See the “Performance optimization” section later in this chapter.

--socket=filename
Socket files are used on Unix systems. With this option, you may specify the path
and filename of the socket file. If you don’t use this option, recent versions of MySQL
place the socket file in the data directory of MySQL. On Windows systems, this
option may be used to provide the pipe name (MySQL by default) for local connec-
tions. Just as with the --port option, the --socket option may be used for multiple
instances of MySQL. You could issue one mysqld_safe command with the default
socket file and another with an option such as --socket=mysqld_test.sock to indi-
cate a test server. A second server that you assign to the same socket file will refuse
to start because otherwise the daemons would conflict with each other. Incidentally,
it’s not necessary to specify a separate port and socket file, but most administrators
do it all the same.

--symbolic-links, -s
This option enables symbolic links at the filesystem level for database directories
and table files. MySQL expects to find the files in its data directory, but if you want
to store the data in other directories in order to find more space or spread reads and
writes around, this option allows you to create links in the data directory that point
to where the data actually is stored. On Windows systems, this allows you to create
shortcuts to databases (e.g., database.sym). On Unix systems with MyISAM tables,
this option allows you to specify a different directory for a table’s location with the
DATA DIRECTORY or INDEX DIRECTORY options of both the ALTER TABLE and CREATE
TABLE SQL statements. When the table is renamed or deleted, the related files that
are symbolically linked will be renamed or deleted, respectively.

--sync-frm
This option instructs the server to synchronize the .frm files with the filesystem when
a table is created. This slows down table creation slightly, but is more stable than
leaving it in memory only.

--temp-pool
This option instructs the server to utilize a small set of names for temporary file-
naming rather than unique names for each file.

--tmpdir=path, -t path
If you want to control where MySQL places its temporary files, specify this option.
You can give multiple file paths in a colon-separated list. When you’re using a stor-
age engine such as InnoDB to create tablespaces over multiple files and you’re
working with huge tables of data that would exceed the filesystem limits, this option
is useful for working around those limits. For instance, if you have a system with a

mysqld

324 | Chapter 15: MySQL Server and Client

file or directory size limit of 4 MB, you can provide two directories with the
--tmpdir option and thereby double your physical table limitations to 8 MB. The
directories could even be on separate filesystems that your operating system mounts.

Security and connections
These mysqld server options relate to security, user-related settings, and the network
connections clients make to the server:

--allow-suspicious-udfs[={0|1}]
As of version 5.0.3 of MySQL, the server requires user-defined functions to be named
with an acceptable suffix—function_name_add(), function_name_clear(),
function_name_deinit(), function_name_init(), function_name_reset(), etc.—
and won’t load functions that fail to adhere to that standard. However, you can
disable that security protection by giving this option a value of 0. A value of 1 enables
it and is the default.

--automatic-sp-privileges[={0|1}]
By default, this option is set to 1 and therefore gives users the ALTER ROUTINE and
the EXECUTE privileges for any stored routine that the user has created, as long as the
user and those routines exist. If you set this option to 0, the user does not get those
privileges and therefore cannot alter or execute routines. However, you can explic-
itly grant users those privileges, as with other MySQL privileges.

--back-log=value
When the primary thread of the MySQL server gets many connection requests si-
multaneously, they are backlogged while the server begins new threads. Use this
option to set the number of connections that may be backed up. The number cannot
exceed the system value for TCP/IP connections related to the listen() system
function.

--bind-address=address
This option specifies the IP address the server binds to. It’s used to restrict network
access on a host with multiple IP addresses.

--bootstrap
This option isn’t normally used by administrators. It’s used by the
mysql_install_db script to create the necessary privileges tables without the
mysqld daemon running.

--character-set-client-handshake
Use this option at the command line only (not available in the options file) to instruct
the server not to ignore strange characters that it receives (perhaps due to a character
set mismatch) from the client. Use --skip-character-set-client-handshake to dis-
able this option because it’s set by default.

--chroot=path
This option runs the daemon with chroot() from the filesystem so as to start it in
a closed environment for additional security. This is a recommended security
measure.

--connect-timeout=value
This option may be used to change the number of seconds that the server should
wait for a connection packet before terminating the connection and returning Bad
Handshake. As of version 5.1.23, the related variable is set to five seconds by default.

mysqld

Chapter 15: MySQL Server and Client | 325

M
ySQL Server and

Client

If clients display messages saying that they lost the connection to the server, you
might try increasing this value.

--des-key-file=filename
This option instructs the server to obtain the default keys from the given file when
the MySQL functions DES_ENCRYPT() or DES_DECRYPT() are used.

--enable-named-pipe
This option enables support for named pipe connections with the mysqld-nt and
mysqld-max-nt servers, which support them. It’s used only with Windows NT, 2000,
XP, and 2003 systems; do not use it on non-Windows systems (e.g., Linux or Mac
OS X). Use the --socket option with this one to specify the path and name of the
pipe.

--init-connect='string'
This option specifies one or more SQL statements, all combined in a single
string, that are to be executed each time a client connects to the server. It will not
allow SQL statements to be executed for users with the SUPER privilege.

--init-file=filename
This option indicates a file containing SQL statements that are to be executed when
the server is started. This option will not work if the --disable-grant-options option
is enabled. SQL statements need to be on separate lines, and comments are not
permitted in the file.

--interactive-timeout=value
For interactive clients (clients using mysql_real_connect() with the
CLIENT_INTERACTIVE flag), this option sets the number of seconds of inactivity al-
lowed before closing the connection.

--local-infile[={0|1}]
The SQL statement LOAD DATA INFILE can import data from a file on either the
server’s host or the client’s host. By adding the LOCAL option, the client instructs the
server to import locally from the client machine. This has the potential to be a se-
curity problem, though, because the file being loaded could have malicious code.
Therefore, some administrators for public servers want to prevent clients from being
able to import files local to the client, while still allowing them to import files located
on the server. Use this option and set it to 0 to disable importing files local to the
client. By default this is set to 1.

--max-allowed-packet=value
See the “Performance optimization” section later in this chapter.

--max-connect-errors=value
If the client has problems connecting and the number of attempts exceeds the value
of the MySQL variable max_connect_errors (10 by default), the host address for the
client will be blocked from further attempts. Use this option to change that value
of that variable. To reset blocked hosts, run the FLUSH HOSTS statement on the server.

--max-connections=value
Clients are not permitted to have more connections than the number specified by
the variable max_connections. By default it’s either 100 or 150, depending on your
version. Use this option to change that value.

mysqld

326 | Chapter 15: MySQL Server and Client

--max-user-connections=value
This option limits the number of connections per user account. Set the value to 0
to disable the limit and thereby allow a single user to create as many connections as
MySQL and the operating system allow.

--net-buffer-length=value
Memory is allocated by MySQL for each thread’s connection and results. The
amount initially allocated for each of these buffers is controlled by the variable
net_buffer_length. You can use this option to change the value, but you normally
shouldn’t. Each buffer can expand as needed until it reaches the limit specified in
max_allowed_packet, but when each thread finishes its work, the buffers contract
again to their initial sizes.

--net-read-timeout=value
This option sets the number of seconds the server will wait for a response from the
client while reading from it before terminating the connection. Use
--net-write-timeout to set the amount of time the server should wait when writing
to a client before terminating. The timeouts apply only to TCP/IP connections and
not to connections made through a socket file, a named pipe, or shared memory.

--net-retry-count=value
If the connection to the client is interrupted while the server is reading, the server
will try to reestablish the connection a number of times. That number can be set
with this option.

--net-write-timeout=value
This option sets the number of seconds the server will wait for a response from the
client while writing to it before terminating the connection. Use --net-read-time
out to set the amount of time the server should wait when reading from a client
before terminating. The timeouts apply only to TCP/IP connections and not to con-
nections made through a socket file, a named pipe, or shared memory.

--old-passwords
This option permits clients to continue to use passwords that were created before
version 4.1 of MySQL, along with the old, less secure encryption method in use in
earlier versions.

--old-protocol, -o
This option has the server use version 3.20 protocol of MySQL for compatibility
with older clients.

--old-style-user-limits
Prior to version 5.0.3 of MySQL, user resource limits were based on each combi-
nation of user and host. Since then, user resources are counted based on the user
regardless of the host. To continue to count resources based on the old method, use
this option.

--one-thread
This option instructs the server to run only one thread, which is needed when de-
bugging a Linux system using older versions of the gdb debugger.

--port=port, -P port
This option specifies the port on which the server will listen for client connections.
By default, MySQL uses port 3306. However, if you want to use a separate port, you
may specify one with this option. This feature can be useful if you are running more
than one instance of MySQL on your server. For example, you might use port 3306

mysqld

Chapter 15: MySQL Server and Client | 327

M
ySQL Server and

Client

for your regular MySQL server and port 3307 for a particular department’s
databases, as well as 3308 for testing a new version of MySQL.

--port-open-timeout=value
As of version 5.1.5 of MySQL, this option may be used to set the number of seconds
the server should wait for a TCP/IP port to become available. This usually comes
into play when the server has been restarted.

--safe-show-database
This option hides database names that a user does not have permission to access.

--safe-user-create
This option prevents a user from creating new users without the INSERT privilege for
the user table in the mysql database.

--secure
This option enables reverse host lookup of IP addresses, which provides some de-
fense against spoofing domain names but adds overhead to each remote connection.

--secure-auth
This option prevents authentication of users with passwords created prior to version
4.1 of MySQL.

--secure-file-priv=path
See the “Location” section earlier in this chapter.

--skip-automatic-sp-privileges
This option disables the --automatic-sp-privileges option, which is related to users
automatically being granted ALTER ROUTINE and EXECUTE privileges on stored proce-
dures that they create.

--skip-character-set-client-handshake
This option disables the --character-set-client-handshake option.

--skip-grant-tables
This option instructs the server not to use the grants table and thus give all users
full access. This option presents a security risk. It may be used if the root password
is lost so that you may log in without it and then reset the password. Restart the
server without this option or run the FLUSH PRIVILEGES statement from the monitor
to reenable privileges.

--skip-host-cache
This option disables the use of the internal host cache, which requires a DNS lookup
for each new connection.

--skip-name-resolve
This option requires a client’s IP address to be named in the privileges tables for
tighter security and faster connections.

--skip-networking
This option prevents network connections of clients and allows only local
connections.

--skip-show-database
This option prevents the SHOW DATABASES statement from being executed by users
without the specific privilege.

--skip-ssl
This option specifies that an SSL connection should not be used, if SSL is enabled
by default.

mysqld

328 | Chapter 15: MySQL Server and Client

--ssl
This option specifies the use of SSL-protected connections. It requires the server to
be SSL-enabled. If this option is enabled on the utility by default, use --skip-ssl to
disable it.

--ssl-ca=pem_file
This option specifies the file (i.e., the pem file) that provides a list of trusted SSL CAs.

--ssl-capath=path
This option specifies a directory of files that provide trusted SSL certificates (i.e.,
pem files).

--ssl-cert=filename
This option specifies the SSL certificate file for SSL connections.

--ssl-cipher=ciphers
This option gives a list of ciphers that may be used for SSL encryption.

--ssl-key=filename
This option specifies the SSL key file for secure connections.

--ssl-verify-server-cert
This option has the client verify its certificate with the server during an SSL con-
nection. It is available as of version 5.1.11 of MySQL.

--standalone
If MySQL is running Windows NT, this option instructs the server not to run as a
service.

--thread-handling={one-thread|one-thread-per-connection}
This option specifies the thread handling model that the server is to use. The one-
thread option is basically used for debugging; one-thread-per-connection is the
default. This option is available as of version 5.1.17 of MySQL.

--user=user, -u user
This option instructs the client to access MySQL under a username different from
the current system user.

Global
Following is a list of global server options related to the server’s behavior:

--ansi, -a
This option instructs the server to use standard American National Standards In-
stitute (ANSI) SQL syntax instead of MySQL syntax.

--auto-increment-increment[=value]
This option and the --auto-increment-offset option are used when replicating a
master to a master server. They determine the amount by which an
AUTO_INCREMENT column is increased with each new row inserted into any table in
the system. By default, the variable associated with this option is set to 1. Each can
be set to a value from 1 to 65535. If either option is set to 0, they both will be set
back to 1. If either is set to a non-integer value, it will remain unchanged. If either
is set to a negative value or a value in excess of 65535, they both will then be set to
65535. Don’t use these options with MySQL Cluster, as they cause problems.

mysqld

Chapter 15: MySQL Server and Client | 329

M
ySQL Server and

Client

--auto-increment-offset[=value]
This option sets the starting number for AUTO_INCREMENT columns on all tables on
the server. Each successive row inserted into tables will be incremented by the value
of the auto-increment-increment system variable. If that variable is set to a number
lower than the value set by this option, the value of the auto-increment-offset sys-
tem variable (set by this option) will be ignored. See the description of the
--auto-increment-increment option previously for more restrictions on this option.

--character-set-server=set, -C
This option makes the server use a particular character set by default for its calcu-
lations. It’s available as of version 4.1.3 of MySQL.

--character-set-filesystem=value
This option specifies the character set that the filesystem uses. It was added in ver-
sion 5.1.6 of MySQL.

--completion-type=[=0|1|2]
The SQL statements COMMIT and ROLLBACK support an optional AND CHAIN parameter
that automatically begins a new transaction at the same isolation level after the end
of the transaction completed by these statements. If this option is set to 1, this
chaining effect will be the default setting for those SQL statements. Similarly, if this
option is set to 2, the default setting for the statements will be RELEASE, which causes
the server to disconnect after each transaction is terminated. A value of 0, which is
the default, does nothing.

--console
On Windows systems, this option has the server display error messages to stdout
and std.err even if --log-error is enabled.

--core-file
This option instructs the server to create a core file if the daemon dies. Some systems
require the --skip-stack-trace option to be set as well. Some systems also require
the --core-file-size option when using mysqld_safe. On Solaris systems, if the
--user option is used also, the server will not create the core file.

--date-format=value
The variable associated with this option is not yet implemented. It’s expected to be
used to set the default date format for the MySQL server.

--datetime-format=value
The variable associated with this option is not yet implemented. It’s expected to be
used to set the default datetime format for the MySQL server.

--default-week-format=value
The variable associated with this option is not yet implemented. It’s expected to be
used to set the default format for the days of the week on the MySQL server.

--debug[=options], -# options]
This option is used to get a trace file of the daemon’s activities. The debug options
are typically d:t:o,filename. See Table 16-1 at the end of the list of options for the
mysqldump utility later in this chapter for an explanation of these flags and others
that may be used. MySQL has to be compiled for debugging using the --with-
debug option when configuring.

--default-character-set=character_set
This option is used to specify the default character set. This option is deprecated as
of version 4.1.3 of MySQL. Use the --character-set-server option instead.

mysqld

330 | Chapter 15: MySQL Server and Client

--default-collation=collation
This option specifies the collation to use as the default. This option is deprecated
as of version 4.1.3 of MySQL. Use the --collation-server option instead.

--default-time-zone=zone
This option specifies the default time zone for the server. The filesystem time zone
is used by default.

--div-precision-increment=value
This option sets the number of decimal places to show in the results of dividing
numbers. The variable associated with this option (div_precision_increment) has a
default value of 4. You can set it from 0 to 30.

--enable-pstack
This option instructs the server to print a symbolic stack trace if the server fails and
exits.

--exit-info[=flags], -T [flags]
This option displays debugging information when the server exits.

--external-locking
This option allows system locking. Be careful when using it on a platform with
problems with lockd, such as Linux, because the mysqld daemon may deadlock and
require rebooting the server to unlock it. This option was previously called
--enable-locking.

--flush
This option flushes all changes to disk after each SQL statement instead of waiting
for the filesystem to do the writes at regular intervals.

--flush-time=seconds
This option sets the flush_time variable, which specifies the number of seconds a
table can remain open before it’s closed and flushed to free resources and to syn-
chronize data. For current operating systems, this option shouldn’t be used because
it will slow the server. A value of 0 disables it and is the default.

--gdb
This option is recommended when debugging the MySQL daemon. It enables a
handler for SIGINT, which is necessary for the server daemon to be stopped with
Ctrl-C at debugging breakpoints. It also disables core file handling as well as stack
tracing.

--group-concat-max-len=value
This option sets the maximum length of a value created by the GROUP_CONCAT()
function.

--language=[language|pathname]
This option specifies the language the daemon should use to display messages. It
can be the name of a language or a pathname to the language file.

--lower-case-table-names[=0|1|2]
If this option is set to 1, database and table names will be saved in lowercase letters
on the server, and MySQL will not consider case when given database and table
names. A value of 2 causes databases and tables to be stored on the filesystem in
filenames with uppercase and lowercase based on what it is given when they are
created. However, they will be treated as lowercase. A value of 0 disables these

mysqld

Chapter 15: MySQL Server and Client | 331

M
ySQL Server and

Client

features, but you shouldn’t set it to 0 if using a case-insensitive filesystem, such as
Windows.

--max-error-count=value
When errors, warnings, and notes are generated, they are stored by the server to be
displayed when the SHOW ERRORS or SHOW WARNINGS statements are executed. This
option limits the number of messages that will be stored. The default value is 64.

--max-join-size=value
This option sets the maximum number of rows in a join. By default, this option is
set very high. You may want to lower it if you suspect abuse from users. To reset it
to the default value, enter a value of DEFAULT. If you set this option to any other value,
it causes the system variable SQL_BIG_SELECTS to be set to 0. If the SQL_BIG_SELECTS
variable is then set to another value, this option’s setting is ignored.

--max_length_for_sort_data=value
This option sets the maximum size of data that can be sorted with the ORDER BY
clause.

--max_prepared_stmt_count=value
This option sets the maximum number of prepared statements allowed on the serv-
er. Values from 0 to 1000000 (one million) are accepted; the default is 16382. If you
set the value lower than the current number of prepared statements, existing ones
will be unaffected. But when they are removed, new ones cannot be added until the
total count falls below the value given with this option. This option is available as
of version 5.1.10 of MySQL.

--new, -n
At the time of this writing, this option is used to test queries before upgrading from
version 4.0 to 4.1.

--open_files_limit=value
This option specifies the maximum number of files the daemon can keep open,
which may require it to close tables more often than is optimal.

--help, -?
This option displays basic help information. It displays more information when
combined with the --verbose option.

--read_only
If this option is used, users cannot add, change, or delete data on the server, unless
they have SUPER privileges. The other exception is that updates from slave threads
are allowed. This option does not carry to the slaves. It can be set on slaves inde-
pendently from the master and may be useful to keep slaves synchronized properly.

--safe-mode=value
This option disables some optimizations at startup.

--set-variable variable = value, -0 variable = value
This option sets a server variable. Enter mysqld --verbose --help to see the current
values for particular server variables.

--skip-external-locking
Previously called --skip-locking, this option prevents system locking.

--skip-locking
This option disables system locking of the server.

mysqld

332 | Chapter 15: MySQL Server and Client

--skip-new
This option instructs the server not to use new options—i.e., options that are ena-
bled by default but are still in beta testing mode.

--sql-mode=value
This option covers a number of possible ways of interpreting SQL statements,
mostly for compatibility with other database engines. Multiple values may be given
in a comma-separated list.

--sql_auto_is_null={0|1}
If you enable this option by setting it to 1, you can give the name of a column that
uses AUTO_INCREMENT in WHERE clauses with a condition of NULL to find the last in-
serted row. For example, SELECT...WHERE client_id IS NULL; will return the row
that was last inserted into a table where client_id is the primary key. A value of 0
for this option will disable it. The option is useful when interfacing with ODBC
applications (e.g., MS Access).

--sql_big_selects={0|1}
Disable (set to 0) this option to prevent large SELECT statements from being executed.
Large statements are defined as joins whose results would exceed the maximum
number of rows set by the --max_join_size option. The default value of 1 enables
large SQL statements. Setting the --max_join_size option to something other than
DEFAULT will reset this option back to 0.

--sql_buffer_result={0|1}
If this option is set to 1, the results of SELECT statements will be sent to a buffer before
being returned to the client. This slows the results, but unlocks the associated tables
faster for the use of other clients. The default setting of 0 disables this option.

--sql-safe-updates={0|1}
This option, when set to 1, is useful in helping to prevent inadvertent deletion of
multiple and possibly all rows in a table. It requires that DELETE and UPDATE state-
ments contain a WHERE clause with a key column and value. The default value of 0
disables the option.

--sql_select_limit={value|DEFAULT}
This option limits the number of rows returned from a SELECT statement when the
LIMIT clause hasn’t been given. The value of DEFAULT means that there is no limit.

--sysdate-is-now
The SYSDATE() function returns the date and time in which the function was exe-
cuted by MySQL within an SQL statement. It doesn’t return the time that the SQL
statement started, as the NOW() function does. If you want SYSDATE() to return the
same time as NOW(), use this option. See the description of SYSDATE() in Chap-
ter 12 for an example.

--tc-heuristic-recover={COMMIT|ROLLBACK}
This option is not yet implemented by MySQL. It will relate to the heuristic recovery
process when it is implemented.

--time_format=value
The variable associated with this option is not yet implemented. It’s expected to be
used to set the default time format for the MySQL server.

--transaction-isolation=option
This option sets the default transaction isolation level. The available levels are
READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, or SERIALIZABLE.

mysqld

Chapter 15: MySQL Server and Client | 333

M
ySQL Server and

Client

--updatable_views_with_limit={0|1}
Set this option to 1 to prevent updates to views that do not contain all of the columns
of the primary key of the underlying table; the option applies only when the SQL
statement contains a LIMIT clause. If set to the default value of 1, only a warning is
returned and the update is not prevented.

--version
This option displays the version of MySQL that is running on the server.

--version_compile_machine
This option displays the type of machine on which MySQL was compiled.

--version_compile_os
This option displays the type of operating system on which MySQL was compiled.

Logs
These mysqld server options relate to general logs created by MySQL. For storage engine
specific logs, see the “Storage engine specific options” section later in this chapter.

--binlog-do-db=value
This option limits the binary log to entries created by SQL statements executed
against the database given, and only when it is the default database. If the user sets
the default database to another database, but executes SQL statements affecting the
database given with this option, those statements will not be written to the binary
log. Additional databases may be specified with multiple instances of this option.
Despite this option, though, ALTER DATABASE, CREATE DATABASE, and DROP DATABASE
statements for the given database will be logged regardless of the default database
setting.

--binlog-ignore-db=value
This option omits entries from the binary log for SQL statements executed against
the database given, but only when it is the default database. So when the user sets
the default database to another database, but executes SQL statements affecting the
database given with this option, those statements will be written to the binary log.
Additional databases may be specified with multiple instances of this option. De-
spite this option, though, ALTER DATABASE, CREATE DATABASE, and DROP DATABASE
statements for the given database will be logged regardless of the default database
setting.

--log[=filename], -l [filename]
This option instructs the server to log connection information and queries to the
given file, or to the default (host.log) if none is given.

--log-bin[=filename]
This option records database changes to a binary log to the filename given. If a
filename isn’t provided, the default name of host-bin.index will be used, where
host is the hostname of the server and index is a numeric count.

--log-bin-trust-function-creators[={0|1}]
By default, if binary logging is enabled, when creating a stored procedure you have
to state whether the function is deterministic and whether it will modify data. If this
option is specified without a value or with a value of 1, this requirement is disabled.
If set to 0, which is the default setting, the requirement is enabled.

mysqld

334 | Chapter 15: MySQL Server and Client

--log-error[=filename]
This option activates logging of error messages and server startup messages to the
filename given. The default name for the log if none is specified is host.err, where
host is the server’s hostname.

--log-long-format, -0
This option instructs the server to be more verbose in logs. This is the default setting
as of version 4.1 of MySQL. Use the --log-short-format option to disable this
option.

--log-short-format
This option instructs the server to be less verbose in logs. It is available as of version
4.1 of MySQL.

--log-queries-not-using-indexes
See “Performance optimization” later in this chapter.

--log-slave-updates
This option is used on a slave server to instruct it to write to its own binary log any
updates to data made from SQL threads. The option requires that the --log-bin
option be used on the slave. With this method, it’s possible to have a slave act as
master to a slave under it.

--log-slow-admin-statements
See “Performance optimization.”

--log-slow-queries[=filename]
See “Performance optimization.”

--log-tc=filename
This option specifies the filename of the memory-mapped transaction coordinator
log. The default filename is tc.log, located in the data directory for MySQL.

--log-tc-size=size
This option specifies the size of the memory-mapped transaction coordinator log.
The default is 24 KB.

--log-update[=filename]
Activates logging of updates to the filename given. This feature is deprecated in favor
of binary logging.

--log-warnings, -W
This option activates logging of warning messages. Prior to version 4.0 of MySQL,
this option was invoked with the --warnings option. After version 4.1.2, this option
is enabled by default and can be disabled with the --skip-log-warnings option.

--long_query_time=value
See “Performance optimization.”

--max-binlog-dump-events
This option is used by the MySQL test suite for testing and debugging replication.

--relay-log=filename
See “Replication” later in this chapter.

--relay-log-index=filename
See “Replication” later in this chapter.

--relay-log-info-file=filename
See “Replication” later in this chapter.

mysqld

Chapter 15: MySQL Server and Client | 335

M
ySQL Server and

Client

--relay-log-purge[={0|1}]
See “Replication” later in this chapter.

--relay-log-space-limit=value
See “Replication” later in this chapter.

--skip-log-warnings
This option disables the --log-warnings feature so that warning messages are not
logged.

--skip-stack-trace
This option prevents the writing of stack traces.

--slow-query-log[={0|1}]
See “Performance optimization.”

--slow-query-log-file=filename
See “Performance optimization.”

--sporadic-binlog-dump-fail
This option is used by the MySQL test suite for testing and debugging replication.

--sql_log_bin={0|1}
The default value of 1 for this option has clients log to the binary log. A value of 0
disables it.

--sql_log_off={0|1}
The default value of 0 for this option has clients log to the general query log. A value
of 1 disables it and general logging is not done for the client.

--sql_notes={0|1}
If this option is set to the default of 1, note-level warning messages are logged. A
value of 0 disables it.

--sql_warnings={0|1}
If this option is set to 1, warning messages for single row INSERT statements generate
an information string. The default value of 0 disables it.

--sql_quote_show_create={0|1}
If this option is set to the default of 1, identifiers in statements will be quoted in the
logs. This can be necessary for certain slave servers that may require identifiers to
be contained within quotes. A value of 0 disables it.

--sync_binlog={0|1}
If this option is set to a value of 1, the server will synchronize every write to the
binary log to the disk. The default value of 0 disables this feature.

Performance optimization
These mysqld server options relate to improving server performance. Before changing a
server’s setting, you should make note of its current setting, and then use the
BENCHMARK() function to determine performance before changes are made. After imple-
menting the new server setting, run the BENCHMARK() function again to compare the
results. This is just one of many ways in which you might test a server’s performance
before and after making changes to its settings. The important thing is not to assume that
a particular setting will improve performance and to be aware that a change could cause
other problems. Test and monitor changes to be sure. For performance options that are
specific to InnoDB, see the “InnoDB” subsection of the “Storage engine specific op-
tions” section.

mysqld

336 | Chapter 15: MySQL Server and Client

--big-tables
This option instructs the server to save temporary results sets to a file to solve prob-
lems where results are large and error messages indicate that tables are full.

--bulk_insert_buffer_size=value
When bulk inserting data into an existing table that already contains data, the
MyISAM storage engine uses a special buffer to make the process faster. You can
use this option to set the size of that buffer to improve performance. The default
value is 8 MB. A value of 0 disables the buffer.

--concurrent-insert[={0|1|2}]
If this option is set to its default of 1, the MyISAM storage engine will allow simul-
taneous inserting and selecting of data, but only if there are no free spaces on the
filesystem within the datafile. A setting of 2 for this option allows concurrent reading
and writing despite spaces in the datafile. It just writes the new rows to the end of
the datafile if reads are occurring while the server is trying to write. If no concurrent
reads are taking place, the server will get a write lock on the table and make use of
the blank space. A value of 0 for this option disables concurrent inserting and
reading.

--delayed_insert_limit=value
If an INSERT statement is entered with the DELAYED parameter, the server delays en-
tering rows if there are SELECT statements already running against the table. When
the table is free, the server will then insert the delayed rows. This option causes the
server to enter a fixed number of rows before rechecking to see whether new
SELECT statements are queued. If there are, it will delay the inserts again.

--delayed_insert_timeout=value
When an INSERT statement has been issued with the DELAYED parameter, the server
will wait for the outstanding SELECT statements against the table to finish running
before executing it. Use this option to set the number of seconds that the server
should wait before terminating the INSERT statement.

--delay-key-write[=option]
This option instructs the server how to handle key buffers between writes for
MyISAM tables. The choices are OFF, ON, and ALL. The ON choice delays writes for
tables created with DELAYED KEYS. The ALL choice delays writes for all MyISAM tables.
MyISAM tables should not be accessed by another server or clients such as
myisamcheck when the ALL choice is used; it may cause corruption of indexes.

--delay-key-write-for-all-tables
This option instructs the server not to flush key buffers between writes for MyISAM
tables. As of version 4.0.3 of MySQL, use --delay-key-write=ALL instead.

--delayed_queue_size=value
When an INSERT statement has been entered with the DELAYED parameter, the server
will wait for the outstanding SELECT statements against the table to finish running
before executing it. Use this option to set the maximum number of rows that the
server should queue from inserts. Any additional rows will not be queued, and the
INSERT statements will have to wait until the queue is reduced.

--join_buffer_size=value
This option sets the size of the buffer file to use for joins in which an index is not
used. The maximum value for this option is 4 GB, but on 64-bit operating systems,
as of version 5.1.23, a larger buffer size may be possible.

mysqld

Chapter 15: MySQL Server and Client | 337

M
ySQL Server and

Client

--key_buffer_size=value
This option sets the key cache size. This is a buffer used by MyISAM tables for index
blocks. The maximum value for this option is 4 GB, but on 64-bit operating systems,
as of version 5.1.23, a larger buffer size may be possible. Execute the SHOW STATUS
statement on the server to see the settings for the key cache.

--key_cache_age_threshold=value
This option sets the point at which a buffer will be switched from what is known as
a hot subchain in the key cache to a warm one. Lower values cause the switching to
occur faster. The default value is 300. The lowest value allowed is 100.

--key_cache_block_size=value
This option sets the size of blocks in the key cache. The values are in bytes. The
default is 1024.

--key_cache_division_limit=value
This option sets the division point between hot and warm subchains in the key
cache. The value given represents a percentage of the whole buffer. The default value
is 100. A value of 1 to 100 is allowed.

--large-pages
This option enables large pages in memory.

--log-slow-admin-statements
If this option is enabled, administrative SQL statements that take too long to execute
will be logged. These include statements such as ALTER TABLE, CHECK TABLE, and
OPTIMIZE TABLE.

--log-slow-queries[=filename]
This option instructs the server to log queries that take longer than the number of
seconds specified in the value of the long_query_time variable. If filename is speci-
fied, entries are recorded in the log file named.

--log-queries-not-using-indexes
When used with the --log-slow-queries option, this option causes all queries that
do not use indexes to be logged to the slow query log. It is available as of version
4.1 of MySQL.

--long_query_time=value
This option sets the number of seconds that a query can take to execute before it’s
considered a slow query. If the --log-slow-queries option is in use, queries that
exceed the number of seconds set by this option will be logged.

--low-priority-updates
This option sets all SQL statements that modify data to a lower priority than
SELECT statements, by default.

--max_allowed_packet=value
This option sets the maximum size of a packet or a generated string. If using BLOB
or TEXT columns, the variable associated with this option should be at least as large
as the largest entry for the column. To determine this, you can execute SHOW TABLE
STATUS LIKE 'table'; on the server and look for the Max_data_length field. The
maximum size allowed for this option is 1 GB. The --net_buffer_length option sets
the initial size of buffer packets.

mysqld

338 | Chapter 15: MySQL Server and Client

--max_delayed_threads=value
This option sets the maximum number of threads the server can use to handle de-
layed inserts. See the --delayed_insert_limit and --delayed_insert_timeout op-
tions earlier in this chapter for more information.

--max_seeks_for_key=value
When MySQL searches a table for data based on a WHERE clause using an index, it
expects to have to search a certain number of rows in the index. You can adjust this
expectation with this option. A lower value causes the MySQL optimizer to give
preference to indexes over table scans.

--max_sort_length=value
This option sets the maximum number of bytes the server can examine in each field
when sorting BLOB or TEXT columns. Any bytes of data beyond the value set for this
option are ignored in sorting. The default is 1024.

--max_sp_recursion_depth[=value]
This option sets the maximum depth to which a stored procedure can invoke itself.
The default is 0, which disables all recursion, and the maximum depth allowed is
255.

--max_tmp_tables=value
This is a new option that has not yet been implemented. When it is, you will be able
to use it to limit the number of temporary tables that a client can have open at one
time.

--max_write_lock_count=value
This option limits the number of write locks that may be made without allowing
reads to be performed.

--multi_range_count=value
This option sets the maximum number of ranges that may be sent to a table handler
at one time for a range select. The default is 256.

--memlock
This option is used on filesystems that support mlockall() system calls (e.g., So-
laris) to lock the daemon in memory and thereby avoid the use of disk swapping in
an attempt to improve performance. Requires the daemon to be started by root,
which may be a security problem.

--optimizer_prune_level[={0|1}]
This option sets the behavior of the optimizer when it tries to reduce or remove
plans that don’t seem to be useful. A value of 0 disables heuristics and instructs the
optimizer to search as much as possible. The default value of 1 enables heuristics
and thereby instructs the optimizer to prune plans.

--optimizer_search_depth[=value]
This option sets the maximum depth of searches performed by the query optimizer.
A lower number will make for better queries, but it will take longer to perform. A
higher number should make queries faster. If the value is set to 0, the server will
attempt to decide on the best setting.

--preload_buffer_size=value
This option sets the size of the buffer used to hold preloaded indexes. The default
is 32768 (32 KB).

mysqld

Chapter 15: MySQL Server and Client | 339

M
ySQL Server and

Client

--query_alloc_block_size=value
This option sets the size of memory blocks that are allocated for use in parsing and
executing a statement.

--query_cache_limit=value
This option sets the maximum size of the query cache in bytes. The default is 1 MB.

--query_cache_min_res_unit=value
This option sets the minimum size in bytes of blocks used for the query cache. The
default is 4096 (4 KB).

--query_cache_size=value
This option sets the maximum size in bytes of the cache used for query results. The
default is 0. Values should be given in multiples of 1024 (1 KB).

--query_cache_type={0|1|2}
This option sets the type of query cache to use on the server. A value of 0 causes the
query cache not to be used. The default value of 1 causes all queries to be cached
except SELECT statements that include the SQL_NO_CACHE parameter. A value of 2
means that no queries will be cached except SELECT statements that include the
SQL_CACHE parameter.

--query_cache_wlock_invalidate[={0|1}]
If a table is locked, but the results of querying the same table are already contained
in the query cache, the results of a query will be returned if this option is set to 0,
the default. Setting it to 1 will disable this feature and users will have to wait for the
write lock to be released before reading the table and the related query cache data.

--query_prealloc_size=value
This option sets the size of the persistent buffer used for parsing and executing
statements.

--range_alloc_block_size=value
This option sets the size of blocks of memory allocated for range queries.

--read_buffer_size=value
This option sets the size in bytes of the buffer to use for each thread when doing
sequential scans. The default value is 131072; the maximum is 2 GB.

--read_rnd_buffer_size=value
Rows that are sorted by an index are read into a buffer to minimize disk activity.
You can set the size of this buffer with this option to a maximum of 2 GB.

--safemalloc-mem-limit=value
This option is used to simulate a memory shortage when the server has been com-
piled with the --with-debug=full option.

--shared-memory
This option allows shared memory connections by Windows clients locally. It is
available as of version 4.1 of MySQL.

--shared-memory-base-name=name
This option sets the name to use for shared memory connections in Windows. It is
available as of version 4.1 of MySQL.

--skip-concurrent-insert
This option prevents simultaneous SELECT and INSERT statements for MyISAM
tables.

mysqld

340 | Chapter 15: MySQL Server and Client

--skip-delay-key-write
This option disregards tables marked as DELAY_KEY_WRITE. As of version 4.0.3 of
MySQL, use --delay-key-write=OFF instead.

--skip-safemalloc
This option prevents the server from checking for memory overruns when perform-
ing memory allocation and memory freeing activities.

--skip-thread-priority
This option prevents prioritizing of threads.

--slow-query-log[={0|1}]
Slow queries are ones that take more than the number of seconds set by the
--long_query_time option. A value of 1 for this option enables the logging of slow
queries; the default value of 0 disables it. This option is available as of version 5.1.12
of MySQL.

--slow-query-log-file=filename
This option sets the name of the slow query log file. By default it’s host_name-
slow.log. This option is available as of version 5.1.12 of MySQL.

--slow_launch_time
This option causes a thread’s Slow_launch_threads status to be updated to reflect
whether a thread takes too long to launch.

--sort_buffer_size=value
This option sets the size of the buffer each thread should use when sorting data for
a query. The maximum value for this option is 4 GB, but on 64-bit operating systems,
as of version 5.1.23, a larger buffer size may be possible.

--table_lock_wait_timeout=value
This option sets the number of seconds that the server should wait to get a table
lock before it terminates and returns an error. The timeout is related only to con-
nections with active cursors. The default value is 50.

--table_open_cache=value
This option sets the maximum number of open tables allowed for all threads. Prior
to version 5.1.3, this option was called --table_cache. Executing the FLUSH TABLES
statement will close any open tables and reopen any in use.

--thread_cache_size=value
With this option, you can set the number of threads that the server should cache
for reuse. This may lead to quicker connection times for new connections that are
made by clients.

--thread_concurrency=value
The value of the variable associated with this option is used by applications to pro-
vide a hint regarding the number of threads that the server should run concurrently.
It’s used on Solaris systems in conjunction with the thr_setconcurrency() system
function.

--thread_stack=value
This option sets the size of the stack for each thread. The default value is 192 KB.

--tmp_table_size=value
This option sets the maximum size of internal, in-memory temporary tables. This
option is not related to MEMORY tables, though.

mysqld

Chapter 15: MySQL Server and Client | 341

M
ySQL Server and

Client

--transaction_alloc_block_size=value
The memory pool described under the --transaction_prealloc_size option is in-
creased as needed in increments. The amount of increments is drawn from the value
of the transaction_alloc_block_size server variable. This option can be used to
change that variable.

--transaction_prealloc_size=value
A memory pool is used to temporarily store activities related to transactions. The
size of that pool expands as needed. Initially, it is set to the size of the value of the
server variable transaction_prealloc_size. This option can be used to set that var-
iable higher to improve performance.

--wait_timeout=value
This option sets the number of seconds that the server will wait before terminating
a nonresponsive connection based on TCP/IP or a socket file. This option is not
associated with connections through named pipes or shared memory.

Replication
An alphabetical list follows of mysqld server options related to replication. Many also
appear earlier in Chapter 8. Although these options can be set at the command line when
starting the server, and some can also be set with SQL statements while the server is
running, as a general policy the options should be given in the server’s options file (e.g.,
my.cnf or my.ini, depending on your system). Otherwise, there’s a chance that the options
may be lost when the server is restarted, in which case replication may fail or at least not
function as you want:

--abort-slave-event-count=value
This option is used by the MySQL test suite for testing and debugging replication.

--disconnect-slave-event-count=value
This option is used by the MySQL test suite for testing and debugging replication.

--init_slave='string'
Use this option on the server to specify one or more SQL statements, all combined
in a single string, that are to be executed by the slave each time its SQL thread starts.

--log-slave-updates
This option is used on a slave server to instruct it to write to its own binary log any
updates to data made from SQL threads. It requires that the --log-bin option be
used on the slave. With this method it’s possible to have a slave act as master to a
slave under it.

--master-connect-retry=seconds
This option sets the number of seconds that a slave thread may sleep before trying
to reconnect to the master. The default is 60 seconds. This value is also included in
the master.info file. If that file exists and is accessible, the value contained in it will
override this option.

--master-host=host
This option is superseded by the same information in the master.info file and is
necessary for replication. It that file doesn’t exist or is inaccessible, this option may
be used to set the hostname or IP address of the master server.

mysqld

342 | Chapter 15: MySQL Server and Client

--master-info-file=filename
This option sets the name of the master information file. This file is described in
detail in Chapter 8 in the section “Replication Process.” By default this file is named
master.info and is located in the data directory of MySQL.

--master-password=password
If the master.info file doesn’t exist or is inaccessible, this option may be used to set
the password used by the slave thread for accessing the master server.

--master-port=port
This option sets the port number on which the master will listen for replication. By
default it’s 3306. The value for this variable in the master.info file, if available, will
override this option.

--master-retry-count=value
This option specifies the number of times the slave should try to connect to the
master if attempts fail. The default value is 86400. The interval between retries is
set by the option --master-connect-retry. Retries are initiated when the slave con-
nection times out for the amount of time set with the --slave-net-timeout option.

--master-ssl
This option is similar to --ssl in the “Security and connections” section earlier in
this chapter, but it applies to a slave’s SSL connection with the master server.

--master-ssl-ca[=value]
This option is similar to --ssl-ca in the “Security and connections” section earlier
in this chapter, but it applies to a slave’s SSL connection with the master server.

--master-ssl-capath[=value]
This option is similar to --ssl-capath in the “Security and connections” section
earlier in this chapter, but it applies to a slave’s SSL connection with the master
server.

--master-ssl-cert[=value]
This option is similar to --ssl-cert in the “Security and connections” section earlier
in this chapter, but it applies to a slave’s SSL connection with the master server.

--master-ssl-cipher[=value]
This option is similar to --ssl-cipher in the “Security and connections” section
earlier in this chapter, but it applies to a slave’s SSL connection with the master
server.

--master-ssl-key[=value]
This option is similar to --ssl-key in the “Security and connections” section earlier
in this chapter, but it applies to a slave’s SSL connection with the master server.

--master-user=value
This option sets the name of the user account that the slave thread uses to connect
to the master server for replication. The user given must have the REPLICATION
SLAVE privilege on the master. This option is overridden by the master.info file.

--max-binlog-dump-events=value
This option is used by the MySQL test suite for testing and debugging replication.

--read_only
This option prevents users from adding, changing, or deleting data on the server,
except for users with SUPER privileges. The other exception is that updates from slave
threads are allowed. This option does not carry over from a master to its slaves.

mysqld

Chapter 15: MySQL Server and Client | 343

M
ySQL Server and

Client

It can be set on slaves independently from the master and may be useful to do so to
keep slaves synchronized properly.

--relay-log=filename
This option sets the root name of the relay log file. By default it’s slave_host_name-
relay-bin. MySQL will rotate the log files and append a suffix to the file name given
with this option. The suffix is generally a seven digit number, counting from
0000001.

--relay-log-index=filename
This option sets the name of the relay log index file. By default it’s
slave_host_name-relay-bin.index.

--relay-log-info-file=filename
This option sets the name of the file that the slave will use to record information
related to the relay log. By default it’s relay-log.info and is located in the data direc-
tory of MySQL.

--relay_log_purge[={0|1}]
This option is used to make the server automatically purge relay logs when it de-
termines they are no longer necessary. The default value of 1 enables it; a value of
0 disables it.

--replicate-do-db=database
This option tells the slave thread to limit replication to SQL statements executed
against the database given, and only when it is the default database. When the user
sets the default database to another database, but executes SQL statements affecting
the database given with this option, those statements will not be replicated. Addi-
tional databases may be specified with multiple instances of this option.

--replicate-do-table=database.table
This option tells the slave thread to limit replication to SQL statements executed
against the table given. Additional tables may be specified with multiple instances
of this option.

--replicate-ignore-db=database
This option skips replication for SQL statements executed against the database giv-
en, but only when it is the default database. So when the user sets the default
database to another database, but executes SQL statements affecting the database
given with this option, those statements will be replicated. Additional databases
may be specified with multiple instances of this option.

--replicate-ignore-table=database.table
This option omits replication of SQL statements executed against the table given.
Additional tables may be specified with multiple instances of this option.

--replicate-rewrite-db='filename->filename'
This option tells the slave to change the database with the first name to have the
second name (the name after the ->), but only when the default database on the
master is set to the first database.

--replicate-same-server-id[={0|1}]
If this option is set to 1, entries in the binary log with the same server-id as the slave
will be replicated. This can potentially cause an infinite loop of replication, so it
shouldn’t be implemented unless necessary and then only for a limited time and
purpose. This option is set to 0 by default and is used on the slave server. The option
is ignored if --log-slave-updates is enabled.

mysqld

344 | Chapter 15: MySQL Server and Client

--replicate-wild-do-table=database.table
This option is similar to --replicate-do-table except that you may give wildcards
(% or _) for the database and table names. For instance, to match all tables that start
with the name clients, you would give a value of clients%. To literally give a percent
sign or an underscore, escape the character with a preceding backslash (i.e., \% and
_). Additional tables may be specified with multiple instances of this option.

--replicate-wild-ignore-table=database.table
This option is similar to --replicate-ignore-table except that you may give wild-
cards (% or _) for the database and table names. For instance, to match all tables that
start with the name clients, you would give a value of clients%. To literally give a
percent sign or an underscore, escape the character with a preceding backslash (i.e.,
\% and _). Additional tables may be specified with multiple instances of this option.

--report-host=host
Because the master cannot always ascertain the slave’s hostname or IP address, use
this option to have the slave register with the master and report its hostname or IP
address. This information will be returned when SHOW SLAVE HOSTS is executed on
the master.

--report-password=value
This option sets the password used by the slave to register with the master. If the
--show-slave-auth-info option is enabled, this information will be returned when
SHOW SLAVE HOSTS is executed on the master.

--report-port=value
This option sets the port used by the slave to communicate with the master. It should
be employed only when a special port is being used or if the server has special tun-
neling requirements.

--report-user=value
This option sets the username used by the slave to register with the master. If the
--show-slave-auth-info option is enabled, this information will be returned when
SHOW SLAVE HOSTS is executed on the master.

--server-id=value
This option ets the local server’s server identifier. It must be used on the master as
well as each slave, must be unique for each server, and should be set in the options
file.

--show-slave-auth-info
This option causes the SQL statement SHOW SLAVE HOSTS to reveal the slave’s user-
name and password if the slave was started with the --report-user and the --report-
password options.

--slave_compressed_protocol[={0|1}]
If set to 1, this option instructs the slave to compress data passed between it and the
master, if they support compression. The default is 0.

--slave_load_tmpdir=value
This option specifies the directory where the slave stores temporary files used by the
LOAD DATA INFILE statement.

--slave-net-timeout=value
This option specifies the number of seconds before a slave connection times out and
the slave attempts to reconnect. See the options --master-connect-retry and
--master-retry-count earlier in this chapter, as they relate to this option.

mysqld

Chapter 15: MySQL Server and Client | 345

M
ySQL Server and

Client

--slave-skip-errors=error_nbr,...|all
By default, replication stops on the slave when an error occurs. This option instructs
the slave not to terminate replication for specific errors. Error numbers for the errors
should be given in a comma-separated list. You may specify all errors by giving the
value of all. This option generally should not be used, and the value of all in par-
ticular should probably never be used.

--sql-slave-skip-counter=number
When the slave begins to re-execute commands that the master executed, this option
causes the slave to skip the first number events from the master’s log.

--skip-slave-start
If this option is enabled, the master server won’t automatically start the slaves when
it’s restarted. Instead, you will have to enter the START SLAVE statement on each slave
to start it.

--slave_transaction_retries=value
This option specifies the number of times the slave should try to execute a transac-
tion before returning an error if the transaction fails because of problems related to
InnoDB or NDB settings. For InnoDB, this applies if there is a deadlock or if the
transaction takes more time than is allowed by innodb_lock_wait_timeout. For
NDB, this applies if the transaction takes more time than is allowed by
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout. The default
value of this option is 10.

Storage engine specific options
An alphabetical list follows of mysqld server options recognized by particular storage
engines (formerly known as table types). The options are grouped into subsections based
on the storage engines: “MyISAM,” “InnoDB,” and “Other storage engine options,”
which include MEMORY, MERGE, and NDB (MySQL Cluster).

Older versions of MySQL offered BDB options that are not covered in this book because
MySQL no longer supports the BDB storage engine. See the documentation on MySQL’s
web site for information on BDB options if you’re still using BDB tables. It’s recommen-
ded that you migrate those tables to another storage engine. For a list of storage engines
and to see their status on your server, enter SHOW ENGINES.

Here are a couple of related options that aren’t used for a particular storage engine:

--default-storage-engine=engine
This option specifies the default storage engine. MyISAM is the default unless
changed with this option. The server variable associated with this option is
storage_engine. This option is synonymous with the --default-table-type option.

--default-table-type=engine
This option is synonymous with --default-table-engine.

MyISAM

These options are related to the MyISAM storage engine, which is typically the default
storage engine for MySQL. To determine the default storage engine, enter SHOW VARIABLES
LIKE 'storage_engine'; on the server. You can change the default storage engine with
the --default-storage-engine option:

mysqld

346 | Chapter 15: MySQL Server and Client

--bulk_insert_buffer_size=value
See “Performance optimization” later in this chapter.

--ft_boolean_syntax=value
This option sets the operators that may be used for FULLTEXT searches of TEXT
columns in MyISAM tables. The default operators are: +, –, >, <, (,), ~, *, :, "", &,
and |.

--ft_max_word_len=value
This option sets the maximum length of a word for which a FULLTEXT search of
a table may be made. After setting this option, rebuild the FULLTEXT index by
executing REPAIR TABLE table QUICK; on the server.

--ft_min_word_len=value
Use this option to set the minimum length of a word for which a FULLTEXT search
of a table may be made. After setting this option, rebuild the FULLTEXT index by
executing REPAIR TABLE table QUICK; on the server.

--ft_query_expansion_limit=value
This option sets the maximum number of matches for FULLTEXT searches that can
be made when using the WITH QUERY EXPANSION clause.

--ft_stopword_file=filename
This option specifies a text file containing stopwords, which are words not to be
considered in FULLTEXT searches. Comments should not be included in this file,
only stopwords. A list of words is built into MySQL by default.

--keep_files_on_create[={0|1}]
If for some reason a file with the prefix .MYD or .MYI is located in the data directory
of MySQL, but wasn’t placed there by the server, and a new table is created with
the same name as the prefix of the files, MyISAM will overwrite the files. However,
if this option is set to 1, the files won’t be overwritten and an error will be returned
instead. This option was added as of version 5.1.23 of MySQL.

--myisam_block_size=value
This option sets the block size in bytes for index pages in MyISAM.

--myisam_data_pointer_size=value
This option sets the default pointer size in bytes for MyISAM tables when tables are
created without the MAX_ROWS option of the CREATE TABLE statement. The default
value is 6; valid values range from 2 to 7.

--myisam_max_extra_sort_file_size=value
This option is deprecated as of version 5.1 of MySQL.

--myisam_max_sort_file_size=value
This option sets the maximum file size in bytes of the temporary file used by
MyISAM when recreating a table’s index (i.e., when running the ALTER TABLE, LOAD
DATA INFILE, or REPAIR TABLE statements). Any space in excess of this value that may
be required will be handled in the key cache. The default value is 2 GB.

--myisam-recover[=value,...]
This option sets the MyISAM storage engine’s recovery mode so that all MyISAM
tables will be automatically checked and repaired if needed when the server starts.
The choices of settings are BACKUP (makes backups of recovered tables that were
changed), DEFAULT (disables this option), FORCE (runs recovery regardless of the risk

mysqld

Chapter 15: MySQL Server and Client | 347

M
ySQL Server and

Client

of losing data), or QUICK (doesn’t check rows for tables without any deletions). Mul-
tiple choices may be given in a comma-separated list.

--myisam_repair_threads[={0|1}]
With this option enabled, when repairing a table’s index each index will be sorted
in its own thread. This will potentially increase the speed of the repair process.
However, this option is still in beta testing mode. Its default value is 1, enabling the
option.

--myisam_sort_buffer_size=value
This option sets the size of the buffer used for sorting indexes in a MyISAM table.
The maximum value for this option is 4 GB, but on 64-bit operating systems, as of
version 5.1.23 a larger buffer size may be possible. The variable associated with this
option is used when the ALTER TABLE, CREATE INDEX, or REPAIR TABLE statements are
executed.

--myisam_stats_method={nulls_equal|nulls_unequal}
When aggregate or statistical functions are used, MyISAM has to decide how to treat
NULL values for indexes. If this option is set to nulls_equal, all NULL values will
be considered equal and their associated columns will be grouped together. If
nulls_unequal is given, each row will be considered a separate and distinct value
and they won’t be grouped together.

--myisam_use_mmap
This option instructs MyISAM to use memory mapping on the underlying operating
system when reading from and writing to tables.

InnoDB

These options are related to the InnoDB storage engine, a transactional storage engine:

--innodb
This option enables support for the InnoDB storage engine. It is enabled by default.
Run the SHOW STORAGE ENGINES; statement on the server to see which storage engines
are enabled.

--innodb_additional_mem_pool_size=value
This option sets the size in bytes of the memory pool used by InnoDB for storing
the data dictionary and other internal data structure information. The default value
is 1 MB. If this option does not allocate enough memory, InnoDB will write warning
messages to the error log.

--innodb_autoextend_increment=value
This option sets the size in megabytes of increments made to the size of a tablespace
in InnoDB when it is automatically extended. The default value is 8 (i.e., 8 MB).

--innodb_autoinc_lock_mode={0|1|2}
This option sets the locking mode used when the storage engine generates auto-
matically incremented values. Possible values are 0 (traditional mode), 1 (consecu-
tive mode), and 2 (interleaved mode). The differences are described in the MySQL
online manual. In general, processing can get faster under some circumstances as
the value of this option gets higher, but results may not always be safe. This option
is available as of version 5.1.22 of MySQL.

mysqld

348 | Chapter 15: MySQL Server and Client

--innodb_buffer_pool_awe_mem_mb=value
On 32-bit Windows systems, Address Windowing Extensions (AWE) may be avail-
able for making use of more than the normal 4 GB memory limit. On such a server,
you can use this option to set the amount of AWE memory in megabytes that In-
noDB will use for its buffer pool. This option allows for a value of 0 to 63,000. A
value of 0 disables it. To take advantage of AWE, you need to recompile MySQL.

--innodb_buffer_pool_size=value
This option sets the size in bytes of the memory buffer used by InnoDB for caching
data and indexes.

--innodb_checksums
With this option, which is enabled by default, checksum validation is used on pages
read from the filesystem. This provides greater assurance that when data was re-
trieved there wasn’t a problem due to corrupted files or hardware-related trouble.
Use the --skip-innodb-checksums option to disable it.

--innodb_commit_concurrency=value
This option sets the maximum number of threads that may commit transactions
simultaneously. A value of 0 removes the limit on concurrent commits.

--innodb_data_file_path=path:size...
This option allows you to increase the storage space for InnoDB datafiles by speci-
fying names and sizes of datafiles within the directory given with the
--innodb_data_home_dir option. Each size is a number followed by M for megabytes
or G for gigabytes. The minimum total of the file sizes should be 10 MB. If no size
is given, a 10 MB datafile with autoextending capability will be used by default. For
most operating systems, there is a 4 GB maximum limit.

--innodb_data_home_dir=path
This option specifies the base directory for InnoDB datafiles. If not used, the default
will be the data directory for MySQL.

--innodb_doublewrite
This option, enabled by default, causes InnoDB to write the data it receives twice.
First it writes data to a buffer, then it writes the data to the filesystem, then it com-
pares the data for integrity. To disable this behavior, use the
--skip-innodb_doublewrite option.

--innodb_fast_shutdown[={0|1|2}]
This option determines the general procedures that InnoDB follows when shutting
down the storage engine. If it is set to 0, the process will go much slower (from
minutes to hours longer): it will involve a full purge and a merge of the insert buffer.
If this option is set to the default of 1, the process is disabled. If it’s set to 2, InnoDB
will flush its logs and shut down rapidly. When it’s restarted, a crash recovery will
be conducted. This option is not allowed on NetWare systems.

--innodb_file_io_threads=value
This option sets the number of file I/O threads permitted. The default value is 4.
Changing this on Unix-type systems has no effect. On Windows systems, however,
performance may be improved with a higher value.

--innodb_file_per_table
InnoDB uses a shared tablespace by default. When this option is enabled, a sepa-
rate .idb file will be created for each new table to be used for data and indexes instead
of using the shared tablespace. By default this is disabled.

mysqld

Chapter 15: MySQL Server and Client | 349

M
ySQL Server and

Client

--innodb_flush_log_at_trx_commit={0|1|2}
This option determines the procedure for flushing and writing to logs along with
transaction commits. If it’s set to a value of 0, the log buffer is written to the log file
and the log is flushed every second, but not at a transaction commit. If it’s set to the
default of 1, the log buffer is written to the log file and the log is flushed at every
transaction commit. If it’s set to 2, the log buffer is written to the log file at each
transaction commit and the log is flushed every second without reference to the
actual commit. It’s recommended generally that this option be left at the default
value of 1 and that --sync_binlog also be set to 1 to enable it.

--innodb_flush_method={fdatasync | O_DIRECT | O_DSYNC}
This option sets the method of synchronizing data and flushing logs with InnoDB.
The default value of fdatasync instructs InnoDB to use the operating system’s
fsync() call to synchronize datafiles and log files. The value of O_DIRECT has the
server use O_DIRECT for opening datafiles and fsync() to synchronize datafiles and
log files. This value is available only for Linux, FreeBSD, and Solaris systems.
O_DSYNC has the server use O_SYNCH for opening and flushing log files, but uses
fsync() to flush datafiles.

--innodb_force_recovery=level
This option puts InnoDB in crash recovery mode. The allowable values are 1 through
6. Each level includes all previous levels. Level 1 indicates that the server should
continue running even if it finds corrupt pages. Level 2 prevents the main thread
from running a purge operation if it would cause the server to crash. A value of 3
prevents transaction rollbacks from being run after the recovery is finished. A setting
of 4 prevents operations from the insert buffer from running if they would cause the
server to crash. Level 5 causes InnoDB not to consider undo logs when starting and
to consider all transactions to have been committed. Finally, level 6 instructs the
server not to perform a log roll-forward during the recovery.

--innodb_lock_wait_timeout=value
This option sets the maximum number of seconds that InnoDB can wait to get a
lock on a table before it gives up and rolls back a transaction. The default value is 50.

--innodb_locks_unsafe_for_binlog
To achieve something like row-level locking, InnoDB locks the key for a row. This
will also generally prevent other users from writing to the space next to the row that
has its key locked. Setting this option to a value of 1 disables this extra protection.
Setting it to the default value of 0 protects that next key.

--innodb_log_arch_dir=value
This option sets the file path where completed log files should be archived.
Generally, it should be set to the same directory as the option
--innodb_log_group_home_dir. Archiving is generally not used, as it’s not needed or
used for recovery.

--innodb_log_archive[={0|1}]
A value of 1 instructs InnoDB to archive log files. By default, it’s set to 0 because it’s
no longer used.

--innodb_log_buffer_size=value
This option sets the size in bytes of InnoDB’s log buffer. InnoDB writes from the
buffer to the log file. The default value is 1 MB.

mysqld

350 | Chapter 15: MySQL Server and Client

--innodb_log_file_size=value
This option sets the size in bytes of the log file in a log group to use with InnoDB.
The default value is 5 MB. Larger values for this option make recovery slower. The
total of all log files normally cannot be more than 4 GB.

--innodb_log_files_in_group=value
This option determines the number of log files in a log group. The default is 2. Log
files are written to in a circular manner.

--innodb_log_group_home_dir[=path]
This option sets the file path for InnoDB log files. By default, InnoDB creates two
log files in the data directory of MySQL called ib_logfile0 and ib_logfile1.

--innodb_max_dirty_pages_pct=value
In this context, dirty pages are pages that are in the buffer pool but are not yet written
to the datafiles. Use this option to set the percentage of dirty pages that may be
allowed in the buffer pool. The value given can range from 0 to 100; the default is 90.

--innodb_max_purge_lag=value
This option is related to delays caused by purge operations that are running slowly
or are backed up, thus holding up SQL statements that change data. Set the value
to the number of such statements that may be delayed during purge operations. The
default value of 0 instructs InnoDB not to delay them at all.

--innodb_mirrored_log_groups=value
This option sets the number of mirrored log groups that InnoDB should maintain.
By default, this is set to 1 and is usually sufficient.

--innodb_open_files=value
This option sets the maximum number of .idb files that may be open at one time.
The minimum value is 10; the default is 300. This option applies only when multiple
tablespaces are used.

--innodb-safe-binlog
This option ensures consistency between the contents of InnoDB tables and the
binary log.

--innodb_status_file
This option has InnoDB keep a status file of the results of the SHOW ENGINE INNODB
STATUS statement. It writes to the file occasionally. The file is named
innodb_status.pid and is usually located in the data directory of MySQL.

--innodb_support_xa
This option enables support for a two-phase commit for XA transactions. It’s ena-
bled and set to 1 by default. A value of 0 disables it and can sometimes improve
performance if the system doesn’t use XA transactions.

--innodb_sync_spin_loops=value
This option sets the number of times a thread in InnoDB will wait for a mutex to be
free. Once this is exceeded, the thread will be suspended.

--innodb_table_locks[={0|1}]
When enabled (i.e., set to 1), this option causes InnoDB to internally lock a table if
the LOCK TABLE statement is run and AUTOCOMMIT is set to 0.

--innodb_thread_concurrency=value
This option sets the maximum number of threads that can concurrently use InnoDB.
Additional threads that try to access InnoDB tables are put into wait mode. The value

mysqld

Chapter 15: MySQL Server and Client | 351

M
ySQL Server and

Client

can be from 0 to 1,000. Before version 5.1.12 of MySQL, any value over 20 was the
same as unlimited. A value of 0 disables the waiting behavior and allows unlimited
concurrent threads.

--innodb_thread_sleep_delay=microseconds
This option sets the number of microseconds that a thread may sleep before being
put on a queue. The default value is 10,000; 0 disables sleep.

--skip-innodb
This option disables the InnoDB storage engine.

--skip-innodb-checksums
By default, InnoDB uses checksum validation on pages read from the filesystem (see
--innodb-checksums earlier in this section). This option disables this behavior.

--skip-innodb-doublewrite
By default, InnoDB writes to a buffer before writing to the filesystem (see --innodb-
doublewrite earlier in this section). This option disables this behavior.

--timed_mutexes[={0|1}]
When this option is set to 1, the server stores the amount of time InnoDB threads
waits for mutexes. The default value of 0 disables this option.

Other storage engine options

These options are recognized by storage engines not previously listed. This section in-
cludes MEMORY and NDB specific options for the mysqld daemon:

--max_heap_table_size=value
This option sets the maximum number of rows in a MEMORY table. It applies only
to tables created or altered after it’s set.

--ndbcluster
This option enables support for the NDB Cluster storage engine.

--ndb-connectstring=string
This option specifies the connect string that the NDB storage engine uses to create
its place in a cluster.

--skip-merge
This option disables the MERGE storage engine. It was added in version 5.1.12 of
MySQL.

--skip-ndbcluster
This option disables the NDB Cluster storage engine.

mysqld_multi

mysqld_multi
mysqld_multi [options] {start|stop|report} [server_id]

This option runs multiple MySQL servers on different socket files and ports. To set up
multiple servers, you must create a section for each server in a configuration file
(e.g., /etc/my.cnf). The naming scheme for each section must be [mysqldn], where n is a
different number for each server. You must enter options separately for each server in its

352 | Chapter 15: MySQL Server and Client

own section, even when servers use the same options. At a minimum, each server should
use a different socket file or a different TCP/IP port. You should also use different data
directories for each server. The directory should be accessible to the operating system
user who started the utility. It should not be the root user, though, as this would be a
security vulnerability. To see an example of how a configuration file might be set up for
multiple servers, enter the following from the command line:

mysqld_multi --example

Once you have configured multiple servers, you can enter something like the following
from the command line to start a server:

mysqld_multi start 3

This line would start server number 3, listed in the configuration file as [mysqld3]. By
entering report for the first argument, you can obtain the status on the server. For starting
and stopping the server, this script uses the mysqladmin utility. Here is an alphabetical list
of options specific to mysqld_multi that you can enter from the command line, along with
a brief explanation of each:

--config-file=filename
This option specifies an alternative server configuration file. As of version 5.1.18 of
MySQL, though, this option has been deprecated and is treated like --defaults-
extra-file.

--example
This option displays a sample configuration file.

--help
This option displays basic help information.

--log=filename
This option sets the name of the log file. The default is /tmp/mysqld_multi.log.

--mysqladmin=filename
This option points to the executable file of the mysqladmin utility to invoke.

--mysqld=filename
This option specifies the MySQL daemon to start, either mysqld or mysqld_safe. If
this is mysqld, you should add the --pid-file option of mysqld so that each server
will have a separate process identifier file. If this option is set to mysqld_safe, you
probably should include the options ledir and mysqld as they relate to
mysqld_safe. You would include them in the options file under the server group for
the server started by mysqld_multi.

--no-log
This option instructs the utility not to save messages to a log, but to send them to
stdout instead.

--password=password
This option provides the password for using mysqladmin.

--silent
This option disables warning messages from the utility.

--tcp-ip
This option sends this utility’s commands to the server using a TCP/IP socket instead
of a Unix-domain socket.

mysqld_multi

Chapter 15: MySQL Server and Client | 353

M
ySQL Server and

Client

--user=user
This option provides the username for using mysqladmin. The same user must be
used for all servers and must have the SHUTDOWN privilege on all of them.

--version
This option displays the version of the utility.

mysqld_safe

mysqld_safe
mysqld_safe [options]

mysqld_safe is recommended utility for starting the MySQL server because the server is
restarted automatically if it dies unexpectedly. The utility is available on Unix and Novell
NetWare systems.

Although options may be entered from the command line, they should be included in
the options file (e.g., my.cnf) under the heading [mysqld_safe]. Options specific to
mysqld_safe should not be passed on the command line because they will be passed to
the mysqld server, which will try to interpret them. Therefore, options are shown here as
they would appear in the configuration file, without initial hyphens. mysqld_safe can also
accept options for the mysqld server, but the configuration file is also better for these
because it ensures they will be passed to the daemon when it’s reloaded after a crash:

autoclose
On Novell NetWare systems, when mysqld_safe closes, the related screen does not
close automatically without user interaction. Use this option to have the screen close
automatically.

basedir=path
This option is necessary and is used to specify the path to the directory where
MySQL files are installed.

core-file-size=value
This option sets the maximum size set for the core file to create if the daemon dies.

datadir=path
This option specifies the directory that contains datafiles (i.e., table files).

defaults-extra-file=filename
This option specifies an additional options file to use after the default file is read.
When used at the command line, this has to be the first option, except that
--defaults-file must precede it if used.

defaults-file=filename
This option specifies the default options file for the server; it can be used to substitute
special options for the normal default options files. When used at the command
line, this has to be the first option given.

err-log=filename
This option specifies the path to the error log for error messages outside the daemon,
such as errors when starting.

354 | Chapter 15: MySQL Server and Client

ledir=path
This option is necessary for running mysqld_safe. It specifies the path where the
daemons may be found.

log-error[=filename]
This option enables logging of error messages and server startup messages, option-
ally specifying a log file. The default log file is host.err in MySQL’s data directory,
where host is the host’s name.

mysqld=daemon
This option is required when using a binary distribution and the data directory for
MySQL is not in the location originally set by the distribution. With it you specify
which daemon to start (i.e., mysqld). This daemon program must be in the same
directory given with the ledir option.

mysqld-version=[max]
This option specifies which daemon to use by providing the suffix of the daemon’s
name. A value of max starts mysqld-max, whereas a blank value ensures mysqld is
started.

nice=number
This option employs the nice utility to give scheduling priority to the value given.

no-defaults
This option instructs the script not to refer to configuration files for options. When
used at the command line, this has to be the first option given.

open-files-limit=number
This option limits the number of files the daemon may open. Only root may use this
option.

pid-file=filename
This option specifies the file that will store the server’s process identifier.

port=port
This option specifies the TCP/IP port number to which mysqld_safe should listen
for incoming connections. Unless started by the root filesystem user, the port num-
ber should be 1024 or higher.

skip-kill-mysqld
When mysqld_safe is started on a Linux system, if this option is not used, any
mysqld processes that are running will be terminated by it. Use this option to allow
existing servers to stay up.

skip-syslog
This option causes the daemon not to log errors to the system’s syslog facility. The
MySQL-specific log will still be written. This option is available as of version 5.1.20
of MySQL. See syslog below for more information related to this option.

socket=filename
This option provides the name of the server’s socket file for local connections.

syslog
On operating systems that support the logger program, this option instructs the
daemon to log error messages to the related syslog. This option is available as of
version 5.1.20 of MySQL. See skip-syslog above for more information related to
this option.

mysqld_safe

Chapter 15: MySQL Server and Client | 355

M
ySQL Server and

Client

syslog-tag
When writing error messages to syslog, this option marks each message with
mysqld or mysqld_safe, depending on the source of the error. This option is available
as of version 5.1.21 of MySQL. See syslog and skip-syslog previously for more
information related to this option.

timezone=zone
This option sets the environment variable TZ for the timezone of the server.

user=user
This option specifies the username or user ID number for the user that starts the
server.

mysqld_safe

356 | Chapter 15: MySQL Server and Client

16
Command-Line Utilities

This chapter describes the utilities that you can use to administer the MySQL server
and data. Some interact with the server, and others manipulate MySQL’s datafiles
directly. Others can be used to make backups of data (e.g., mysqldump). The utilities
are listed here in alphabetical order.

Some of these utilities are provided with MySQL and are typically installed in a
standard directory for executables so that they are automatically on the user’s com-
mand path. Other utilities have to be downloaded and installed from MySQL AB’s
site or from a third-party site.

comp_err
comp_err source destination

This utility compiles text files that contain mappings of error codes into a format used
by MySQL. This is particularly useful for creating error code messages in spoken lan-
guages for which error message files do not already exist. You can also use it to modify
error messages to your own wording. To do this, just edit the appropriate errmsg.txt file
in its default directory. For English messages on Unix systems, the source text file and
the compiled system file are found typically in /usr/share/mysql/english. The following
demonstrates how to compile a text file containing error messages in Pig Latin:

comp_err /usr/share/mysql/piglatin/errmsg.txt \
 /usr/share/mysql/piglatin/errmsg.sys

To make the new set of error messages the default set, add the following line to the
MySQL configuration file (e.g., my.cnf or my.ini, depending on your system) under the
[mysqld] section:

language=/usr/share/mysql/piglatin

Notice that only the directory is given and not the filename.

357

Here is a list of options available for this utility in alphabetical order:

--charset=path, -C path
This option specifies the path to the character set files. The default directory
is /usr/local/mysql/sql/share/charsets, adjusted for the server’s installation loca-
tion.

--debug[=options], -# options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of options under the mysql
dump utility for an explanation of these flags and others that may be used.

--debug-info, -T
This option writes debugging information and CPU and memory usage information
to the log after the utility ends.

--header_file=filename, -H filename
This option specifies the error header file. By default, it’s mysqld_error.h.

--in_file=filename, -F filename
This option specifies the input file. By default, it’s /usr/local/mysql/sql/share/
errmsg.txt, adjusted for the server’s installation location.

--name_file=filename, -N filename
This option specifies the error file. By default, it’s mysqld_ername.h.

--out_dir=path, -D path
This option specifies the output directory. By default, it’s /usr/local/mysql/sql/
share, adjusted for the server’s installation location.

--out_file=filename, -O filename
This option specifies the output file. By default, it’s errmsg.sys.

--statefile=filename, -S filename
This option specifies the SQLSTATE header file to be generated. By default, it’s
sql_state.h.

--version, -V
This option returns the version of the utility.

make_binary_distribution
make_binary_distribution

This utility creates a binary distribution of MySQL from the source code. This can be
useful, for instance, to a developer who has modified the source code for her needs and
wants to make a customized binary version for her associates to use. Executing the script
from the directory containing the modified source code generates a GNU zipped TAR
file for distribution.

msql2mysql
msql2mysql program.c

This utility converts C API function calls querying the mSQL database, in programs
written in C, to the MySQL equivalent functions. The only argument is the name of the
source to convert. This utility does not create a copy of the source file. Instead, it converts
the given source file itself. Therefore, you should make a backup of the source before

make_binary_distribution

358 | Chapter 16: Command-Line Utilities

issuing the command. This utility isn’t always effective in converting all mSQL functions,
so manual inspection of the code and testing may be required after a conversion. Note
that the replace utility is used by msql2mysql.

my_print_defaults
my_print_defaults options filename

This utility parses a configuration file, converting key/value pairs into command-line
equivalent options. For instance, a line from the my.cnf file that reads basedir=/data/
mysql will be converted to --basedir=/data/mysql. To export the MySQL daemon (i.e.,
mysqld) section of my.cnf file, enter the following from the command line (the output
follows):

my_print_defaults --config-file=/etc/my.cnf mysqld
--basedir=/data/mysql
--datadir=/data/mysql
--socket=/tmp/mysql.sock
--tmpdir=/tmp
--log-bin=/data/mysql/logs/log-bin

Notice that only the mysqld section is parsed and that the header [mysqld] and the blank
lines are not included in the output. Also, each key/value pair is printed on a separate
line. To parse more than one section, you can list additional section names at the end of
the command line, separated by spaces.

Here is a list of options available for this utility in alphabetical order:

--config-file=filename, --defaults-file=filename, -c filename
This option instructs the utility to read only the given configuration or options file
(i.e., my.cnf or my.ini).

--debug[=options], -# [options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of options under the mysql
dump utility for an explanation of these flags and others that may be used.

--defaults-extra-file=filename, --extra-file=filename, -e filename
This option instructs the utility to read the given configuration or options file in
addition to the default options file (i.e., my.cnf or my.ini).

--defaults-group-suffix=suffix, -g suffix
This option instructs the utility to read the options for the groups with the given
suffix (e.g., _clients).

--help, -?
This option displays basic help information.

--no-defaults, -n
This option indicates that no options file should be used.

--verbose, -v
This option displays more information from the utility.

--version, -V
This option returns the version of the utility.

my_print_defaults

Chapter 16: Command-Line Utilities | 359

Com
m

and-Line
Utilities

myisam_ftdump
myisam_ftdump options table index_nbr

This utility displays information related to FULLTEXT indexes on MyISAM tables. It
must be run from the server. For the table name, you can give either the name of the table
or the name of the table’s index file with its path (e.g., /data/mysql/clients.MYI). The third
argument for this utility is the index number. To determine the index number, execute
SHOW INDEX FROM table; for the table you want to examine. In the results, the
Non_unique field will contain the index numbers:

myisam_ftdump --stats /data/mysql/russell_dyer/articles.MYI 1

Total rows: 98
Total words: 38517
Unique words: 9961
Longest word: 33 chars (mysql_opt_use_embedded_connection)
Median length: 7
Average global weight: 3.826532
Most common word: 83 times, weight: -1.710790 (make)

Here is a list of options available for this utility in alphabetical order:

--count, -c
This option will display a list of all words found in the specified index of the given
table with a count of the number of occurrences of each word, along with its weight-
ing in the index.

--dump, -d
This option is used to dump the index, word weighting, and data offsets.

--length, -l
This option returns the distribution length.

--stats, -s
With this option, you can see some statistical information on the index. If no options
are given with the utility, this option is assumed.

--help, -h, -?
This option displays basic help information.

--verbose, -v
This option is meant to display more information, but it seems to have no effect on
the results at this time.

myisamchk
myisamchk options table[.MYI][...]

This utility checks, repairs, and optimizes MyISAM tables. It works with the table files
directly and does not require interaction with the MySQL server. Therefore, it may be
necessary to specify the path along with the table or table names in the second argument.
Also, tables that are being checked should be locked or the MySQL server daemon should
be stopped. This utility works with the index files for the tables, so the suffix .MYI may
be given for table names to prevent it from attempting to analyze other files. Omitting
the suffix (e.g., work_req instead of work_req.*) will have the same effect as giving a

myisam_ftdump

360 | Chapter 16: Command-Line Utilities

specific suffix (work_req.MYI). To check all of the tables in a database, use the wildcard
(i.e., *.MYI). Here is a basic example of how you can use myisamchk to check one table:

myisamchk /data/mysql/workrequests/requests
Checking MyISAM file: /data/mysql/workrequests/requests
Data records: 531 Deleted blocks: 0
myisamchk: warning: 3 clients is using or hasn't closed the table properly
- check file-size
- check key delete-chain
- check record delete-chain
- check index reference
- check data record references index: 1
- check record links
MyISAM-table '/data/mysql/workrequests/requests' is usable but should be
 fixed

No options are specified here, so the default of --check is used. Notice that myisamchk
detected a problem with the table. To fix this problem, you can run the utility again, but
with the --recover option like so:

myisamchk --recover /data/mysql/workrequests/requests
- recovering (with sort) MyISAM-table
 '/data/mysql/workrequests/requests'
Data records: 531
- Fixing index 1

The following sections list the options available with myisamchk.

myisamchk check options

--check, -c
This option checks tables for errors.

--check-only-changed, -C
This option checks only tables that have changed since the last check.

--extend-check, -e
This option checks tables thoroughly. Use it only in extreme cases.

--fast, -F
Use this option to have the utility check only tables that haven’t been closed
properly.

--force, -f
This option repairs tables that report errors during check mode. It restarts the utility
with the --recover option if any errors occur.

--information, -i
This option displays statistical information about tables being checked.

--medium-check, -m
This option checks tables more thoroughly than --check, but not as thoroughly as
--extend-check.

--read-only, -T
This option tells the utility not to mark tables with status information so that tables
may be used by the utility during its check. Tables are not marked as checked when
using this option.

myisamchk

Chapter 16: Command-Line Utilities | 361

Com
m

and-Line
Utilities

--update-state, -U
This option has the utility update tables to indicate when they were checked and
mark them as crashed if any errors are found.

myisamchk repair options

--backup, -B
This option makes copies of datafiles (table.MYD), naming them table-date-
time.BAK.

--character-sets-dir=path
This option sets the directory where character sets are located.

--correct-checksum
This option corrects a table’s checksum information.

--data-file-length=number, -D number
This option sets the maximum length of a datafile for rebuilding a full datafile.

--extend-check, -e
This option instructs the utility to attempt to recover all rows, including intention-
ally deleted ones.

--force, -f
This option instructs the utility to ignore error messages and to overwrite temporary
files.

--keys-used=bitfield, -k bitfield
This option instructs the utility to have MyISAM updates use only specific keys for
faster data inserts.

--max-record-length=number
This option tells the utility to skip rows larger than the length specified if there is
not enough memory.

--no-symlinks, -l
This option instructs the utility not to follow symbolic links at the filesystem level.

--parallel-recover, -p
This option is the same as the --recover option, but it creates all keys in parallel
using different threads.

--quick, -q
This option repairs only indexes, not datafiles, of uncorrupted tables.

-qq
This option repairs only indexes and updates datafiles only when duplicates are
found.

--recover, -r
Use this option to recover a table that has been corrupted. You might also try in-
creasing the variable sort_buffer_size with this option. If this option does not work,
try --safe-recover.

--safe-recover, -o
Use this option if --recover fails. It also repairs rows that the --sort-recover option
cannot handle (e.g., duplicate values for unique keys).

--set-character-set=set
This option specifies the character set to use.

myisamchk

362 | Chapter 16: Command-Line Utilities

--set-collation=set
This option specifies the collation to use with the utility when sorting table indexes.
Execute SHOW COLLATION; on the server to retrieve a list of collations that may be
used with this option.

--sort-recover, -n
This option instructs the utility to use the sort buffer regardless of whether the
temporary file would be too large based on default limits.

--tmpdir=path, -t path
This option specifies the directory used by the utility for temporary files. Multiple
directories may be given in a colon-separated list on Unix systems and a semicolon-
separated list on Windows systems. By default, this utility uses the value for the
environmental variable TMPDIR.

--unpack, -u
This option unpacks tables that were packed with the myisampack utility.

Other myisamchk options

--analyze, -a
This option optimizes the use of keys in tables. It can help with some joins. Use the
--description and the --verbose options to show the calculated distribution.

--block-search=offset, -b offset
This option searches for a row based on a given offset.

--description, -d
This option displays information about the table.

--set-auto-increment[=value], -A [value]
This option sets the value of an auto-increment column for the next row created. If
no value is given, the next value above the highest value found for the column is used.

--sort-index, -S
This option sorts indexes.

--sort-records=index, -R index
This option sorts rows based on the index given.

Global myisamchk options

--debug[=options], -# [options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of options under the mysql
dump utility for an explanation of these flags and others that may be used.

--character-sets-dir=path
This option specifies the directory containing character sets.

--help, -?
This option displays basic help information.

--silent, -s
This option displays only print error messages. With -ss even less information will
be displayed.

--sort-index, -S
This option sorts indexes.

myisamchk

Chapter 16: Command-Line Utilities | 363

Com
m

and-Line
Utilities

--sort-records=value, -R value
This option sorts records based on the index given.

--tmpdir=path, -t path
This option sets the path for temporary files. Additional paths may be given in a
colon-separated list.

--verbose, -v
This option displays more information. Additional vs (e.g., -vv) will provide more
information.

--version, -V
This option displays the version of the utility.

--wait, -w
This option instructs the utility to wait before proceeding if the table is locked.

myisamlog
myisamlog options [filename [table ...]]

This utility scans and extracts information from the myisam.log file, which logs debug-
ging messages for the MyISAM table handler. The name of the log file may be given. Also,
the command can list specific tables to limit scanning to these tables. To activate the log,
add the following line to the MySQL server configuration file (e.g., my.cnf) under the
[server] section or the [mysqld] section:

log-isam=/data/mysql/logs/myisam.log

Here is a list of options available for this utility in alphabetical order:

-?, -I
This option displays basic help information.

-c number
This option limits the output to number commands.

-D
Use this option with a server that was compiled with debugging in effect.

-F path
This option provides the file path to use. The path should end with a trailing slash.

-f files
This option sets the maximum number of open files allowed.

-i
This option displays additional information.

-o offset
This option specifies where in the log to begin the scan.

-P
This option displays information about processes.

-p number
This option removes the given number of components from the front of the path.

-R
This option displays the current record position.

myisamlog

364 | Chapter 16: Command-Line Utilities

-r
This option displays recovery activities.

-u
This option displays update activities.

-V
This option displays the version of the utility.

-v
This option displays more information. Additional vs (e.g., -vv) will increase the
amount of information.

-w
This option displays file write activities.

myisampack
myisampack options /path/table[.MYI]

This utility creates compressed, read-only tables in order to reduce table sizes and to
increase retrieval speed. For the table, give the path and table name. Optionally, you can
include the .MYI file extension with the table name. When reading compressed tables,
MySQL decompresses the data in memory. To decompress tables packed with
myisampack, use myisamchk with the --unpack option.

Tables that are compressed and later decompressed should be reindexed using myisamchk.

A sample run of this utility is:

myisamchk --verbose /data/mysql/testing/courses.MYI

Here is a list of options available for this utility in alphabetical order:

--backup, -b
This option has the utility create a backup of the given table (table.OLD).

--character-sets-dir=filepath
This option specifies the directory containing the character sets the utility should
use for sorting data.

--debug[=options], -# [options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of options under the
mysqldump utility for an explanation of these flags and others that may be used.

--force, -f
This option forces a compressed table to be created even if the results are larger than
the original, and to overwrite a temporary table (table.TMD) if it exists.

--help, -?
This option displays basic help information.

--join=table, -j table
This option instructs the utility to join the tables given into one compressed table.
The table structures must be identical.

--packlength=bytes, -p bytes
This option sets the size of the pointers for records to the number of bytes given (1,
2, or 3).

myisampack

Chapter 16: Command-Line Utilities | 365

Com
m

and-Line
Utilities

--silent, -s
This option suppresses all information except error messages.

--tmp_dir=path, -T path
This option specifies the directory in which to write temporary tables.

--test, -t
This option has the utility test the compression process without actually compress-
ing the table.

--verbose, -v
This option displays information about the compression process.

--version, -V
This option displays the version of the utility.

--wait, -w
This option instructs the utility to wait before compressing if the table is locked by
another client or utility.

mysql_convert_table_format
mysql_convert_table_format options database

This utility converts all tables in a given database from one storage engine to another. By
default it converts them to MyISAM. The program requires that Perl and the Perl DBI
module and DBD::mysql be installed on the system where it’s executed.

mysql_convert_table_format options

--force
This option instructs the utility to keep running despite errors.

--host=host, -h host
This option specifies the host on which to connect and to convert tables.

--help, -?
This option displays help information about the utility.

--password=password, -p password
This option provides the password of the user logging into the server.

--port=port
This option specifies the port on which to connect to the server. The default is 3306.

--socket=filename, -S filename
This option provides the name of the server’s socket file.

--type=engine
This option specifies the storage engine to which to convert tables. If not given,
MyISAM is assumed.

--user=user, -u user
This option provides the username for logging into the server.

--verbose
This option displays more information from the utility.

--version
This option returns the version of the utility.

mysql_convert_table_format

366 | Chapter 16: Command-Line Utilities

mysql_find_rows
mysql_find_rows options filename

This utility searches a text file containing SQL statements (e.g., a dump file generated by
mysqldump) for a given pattern and prints the SQL statements it finds. Multiple files may
be specified in a comma-separated list:

mysql_find_rows --regexp='Graham Greene' < backup.sql > greene_sql_
 statements.txt

In this example, the utility will search the dump file backup.sql (the redirect for the input
is optional) for occurrences of the name of the writer Graham Greene. It will write
the results—the SQL statements it finds that contain that text—to the
greene_sql_statements.txt file because of the redirect (i.e., >). Otherwise, the results would
be displayed on the screen. When creating a dump file that you want to search with this
utility, you may want to avoid the --extended-insert option (or use --skip-opt to disable
it) because that option leaves a single INSERT statement in the dump file for all rows in
the entire table. Your search with this utility would then show all rows for the table, as
it returns the whole SQL statement containing the search pattern.

mysql_find_rows options

--help
This option displays help information about the utility.

--regexp=pattern
This option specifies the pattern on which the utility is to search the given text file.
The pattern is usually entered between quotes. If the option is not given, then the
utility will search for SET and USE statements.

--rows=number
This option limits the number of rows of the results. It will return the first rows that
it finds, up to the number given.

--skip-use-db
This option instructs the utility not to search for USE statements, which it searches
for by default.

--start_row=number
This option returns rows starting after the given number of rows.

mysql_fix_extensions
mysql_fix_extensions path

This utility converts the file extensions of the names of MyISAM table files from upper-
case to lowercase. The names of MyISAM table files typically end with .frm, .MYD,
and .MYI. This utility changes the names of the last two types to .myd and .myi, respec-
tively. This utility may be necessary when moving database files from servers running on
an operating system that is case-insensitive (e.g., Windows) to one that is case-sensitive
(e.g., Linux). You need to give the path to the directory for the data, that is, the directory
where the database subdirectories are located.

mysql_fix_extensions

Chapter 16: Command-Line Utilities | 367

Com
m

and-Line
Utilities

mysql_fix_privilege_tables
mysql_fix_privilege_tables

At various points in time, the user security database mysql underwent some changes: the
complexity of the passwords was changed, more privileges were added, etc. To make
upgrading an existing database easier, you can use this utility to implement the changes
between versions. Be sure to restart the MySQL server when you are finished running
this utility for the changes to take effect. As of version 5.0.19 of MySQL, this utility has
been replaced by mysql_upgrade. It performs the same functions and has other
capabilities.

The only options for the program are --password, in which the root password is given,
and --verbose to display more information when running the program.

This program is not available on Windows systems. However, there is an SQL file,
mysql_fix_privilege_tables.sql, that may be run with the mysql client as root to perform
the same tasks. The SQL file is located either in the scripts or the share directory where
MySQL is installed.

mysql_setpermission
mysql_setpermission options

This utility is an interactive Perl program that allows an administrator to set user privi-
leges. To run the program, you would typically give the --user option with the admin-
istrative username so you can set privileges. A text menu of options will be displayed for
a variety of user administration tasks, including setting the password and privileges for
an existing user and creating a new user. The program requires that Perl and the Perl DBI
module be installed on the system where it’s executed.

mysql_setpermission options

--host
This option specifies the name or IP address of the server for connection.

--help
This option displays help information about the utility.

--password=password
This option provides the password of the administrative user with which the utility
is to log into the server, not the user for which to change privileges.

--port=port
This option specifies the port number to use for connecting to the server.

--user=user
This option provides the administrative username for logging into the server, not
the user for which to change privileges.

--socket=filename
This option provides the name of the server’s socket file.

mysql_fix_privilege_tables

368 | Chapter 16: Command-Line Utilities

mysql_tableinfo
mysql_tableinfo options new_database [existing_database [existing_table]]

This utility creates a table containing information about existing tables in a database.
You have to specify the database that will contain the newly created metadata tables, and
the utility will create the database if it does not exist. If given the name of an existing
database, it will use its metadata as its basis. If also given a table name, it will refer to its
metadata.

The utility will create four tables in the database: db, col, idx, and tbl. This last table
may be named tbl_status instead. It uses the SHOW COLUMNS, SHOW DATABASES, SHOW
INDEXES, SHOW TABLES, and SHOW TABLE STATUS statements to get metadata information.
The user given must have the necessary privileges for these statements.

mysql_tableinfo options

--clear
This option drops all four tables to be created by the utility if they exist, before
creating new ones and populating them.

--clear-only
This option drops all four tables to be created by the utility if they exist, but doesn’t
create new ones—the utility will exit when it’s finished deleting the tables.

--col
This option puts column metadata into the col table.

--help, -?, -I
This option displays help information about the utility.

--host=host, -h host
This option specifies the host on which to obtain metadata information and to create
tables.

--idx
This option puts index metadata into the idx table.

--password=password, -p password
This option provides the password of the user logging into the server.

--port=port, -P port
This option specifies the port on which to connect to the server. The default is 3306.

--prefix=string
This option adds a prefix to the names of the tables that the utility creates (e.g.,
metadata_db instead of db).

--quiet, -q
This option suppresses all messages except for error messages.

--socket=filename, -S filename
This option provides the name of the server’s socket file.

--tbl-status
This option takes metadata from the SHOW TABLE STATUS statement instead of SHOW
TABLES. The result is more metadata but a slower process.

--user=user, -u user
This option provides the username for logging into the server.

mysql_tableinfo

Chapter 16: Command-Line Utilities | 369

Com
m

and-Line
Utilities

mysql_upgrade
mysql_upgrade options

Use this utility after upgrading to a new version of MySQL. It checks all tables for version
incompatibilities or problems, and attempts to repair or correct tables if possible. It also
updates tables in the mysql database for new privileges and other factors available in the
newer version of MySQL. Tables that are checked are tagged for the new version so they
won’t be checked twice. The utility notes the version number in the
mysql_upgrade_info file located in the data directory for MySQL. This utility replaces the
mysql_fix_privilege_tables utility because it performs the same function and more.

mysql_upgrade options

--basedir=path
This option specifies the base directory of the MySQL server.

--datadir=path
This option specifies the data directory of the MySQL server.

--debug-check
This option writes debugging information to the log when the utility ends. It’s
available as of version 5.1.21 of MySQL.

--debug-info, -T
This option writes debugging information and CPU and memory usage information
to the log after the utility ends.

--force
This option forces the utility to check tables despite the mysql_upgrade_info file
indicating that the tables are marked the same as the version noted in that file.

--help, -?, -I
This option displays help information about the utility.

--password=password, -p password
This option provides the password of the user logging into the server.

--user=user, -u user
This option provides the username for logging into the server. If the option is not
given, the root user is assumed by default.

--verbose
This option displays more information from the utility.

mysql_waitpid
mysql_waitpid options PID wait_time

This utility uses the Unix system kill command to terminate the process identified by a
given process identification number, and to wait for termination for the time given in
seconds. The process identified and the seconds given must be positive integers. It returns
0 on success or if the process didn’t exist. It returns 1 after timeout.

The only options available for this utility are for help (--help, -?, -I), the version num-
ber (--version, -V), and verbosity (--verbose, -v).

mysql_upgrade

370 | Chapter 16: Command-Line Utilities

mysql_zap
mysql_zap [options] pattern

Use this utility to kill processes based on a given pattern.

mysql_zap options

--help, -?, -I
This option displays help information about the utility.

-f
This option forces the utility to kill the processes without confirming the action with
the user first.

-signal
This option specifies the type of kill: TERM (or signal 15) or KILL (signal 9). You can
give either the name or the number for the kill type. Notice that there is only one
dash, not two with this option, and it must be entered before the other options.

-t
This option tests the patterns given without killing the processes.

mysqlaccess
mysqlaccess [host [user [database]]] [options]

This utility checks the privileges that a user has for a specific host and database. One use
is to run it as a preliminary tool to check for user permissions before proceeding with a
customized program that uses one of the APIs.

If MySQL was not installed in the default location for the version you’re using, you’ll
have to set the variable MYSQL in the mysqlaccess script. Change it with a plain text editor.
Look for the following line (near the beginning) and change the file path to where the
mysql client is located:

 $MYSQL = '/usr/local/mysql/bin/mysql'; # path to mysql executable

With regard to the syntax, the hostname is the first argument and is optional. If not given,
localhost is assumed. The username given in the second argument is the name of the user
for which the utility is checking privileges. The third argument is the database against
which to check privileges. The fourth argument involves several possible options, one of
which could be the username by which the utility will access the server to gather infor-
mation on the user named in the second argument. Here is an example of how you might
use this utility:

mysqlaccess localhost marie workrequests -U russell -P

In this example, I give the utility the hostname, then the user I’m inquiring about, then
the database name for which I want user privilege information. The -U option specifies
the username with which to access the server to gather information. This user has full
access to the mysql database. The -P instructs the utility to prompt me for a password.

Here are the results of the preceding inquiry:

Access-rights
for USER 'marie', from HOST 'localhost', to DB 'ANY_NEW_DB'

mysqlaccess

Chapter 16: Command-Line Utilities | 371

Com
m

and-Line
Utilities

 +-----------------+---+ +-----------------+---+
 | Select_priv | Y | | Shutdown_priv | N |
 | Insert_priv | N | | Process_priv | N |
 | Update_priv | N | | File_priv | N |
 | Delete_priv | N | | Grant_priv | N |
 | Create_priv | N | | References_priv | N |
 | Drop_priv | N | | Index_priv | N |
 | Reload_priv | N | | Alter_priv | N |
 +-----------------+---+ +-----------------+---+
NOTE: A password is required for user 'reader' :-(
The following rules are used:
db : 'No matching rule'
host : 'Not processed: host-field is not empty in db-table.'
user:'localhost','marie','6ffa06534985249d','Y','N','N','N',
'N','N','N','N','N','N','N','N','N','N'

First, a table is presented that displays the privileges for the combination of the database
named, the host given, and the user. This user has only SELECT privileges.

Additionally, the results are given in raw form for each component. This user’s privileges
are the same for all databases and hosts (i.e., there are no entries in the db or the host
tables in the mysql database), so there aren’t any results for those particular components.
For the user component, the command displays details without labels, but they are pre-
sented in the order that they are found in the user table in the mysql database. The third
field is the password in the encrypted format in which it is stored. The Ys and Ns are the
settings for each user privilege.

Here is a list of options available for this utility in alphabetical order:

--brief, -b
This option provides a brief display of results from an inquiry.

--commit
This option copies grant rules from temporary tables to the grant tables.

--copy
This option reloads temporary tables with original data from the grant tables so that
privileges take effect.

--db=database, -d database
This option explicitly specifies the database against which to query the user
privileges.

--debug=level
This option sets the debugging level. The choices are from 0 to 3.

--help, -?
This option displays basic help information.

--host=host, -h host
This option specifies the host on which to obtain privilege information. The
localhost is the default.

--howto
This option displays basic examples of usage with sample results.

mysqlaccess

372 | Chapter 16: Command-Line Utilities

--old-server
This option stipulates that the server to which the utility is connecting is running
an older version of MySQL (prior to 3.21), requiring a different method with regard
to WHERE clauses in SQL statements.

--password=password, -p password
This option provides the password of the user logging into the server, not the user
on which to check for privileges.

--plan
This option displays plans for further development of the utility by its developers.

--preview
This option displays the differences in temporary grant tables before they are
committed.

--relnotes
This option displays notes on each release of the utility.

--rhost=host, -H host
If the utility is not being run on the same server as the MySQL server that’s being
queried, use this option to specify the address of the MySQL server to query.

--rollback
This option undoes the last change to user privileges.

--spassword=password, -P password
This option provides the password when using a superuser.

--superuser=user, -U user
This option provides a superuser’s username.

--table, -t
This option displays data in an ASCII table format.

--user=user, -u user
This option provides the username for logging into the server, not the user on which
to check for privileges.

--version, -v
This option displays the version of the utility.

mysqladmin
mysqladmin [options] command [command_options]

This utility allows you to perform MySQL server administration tasks from the command
line. You can use it to check the server’s status and settings, flush tables, change pass-
words, shut down the server, and perform a few other administrative functions. This
utility interacts with the MySQL server.

Here is an alphabetical list of options that you can give as the first argument to the utility:

--character-sets-dir=path
This option specifies the directory that contains character sets.

--compress, -C
This option compresses data passed between the utility and the server, if compres-
sion is supported.

mysqladmin

Chapter 16: Command-Line Utilities | 373

Com
m

and-Line
Utilities

--connect_timeout=number
This option sets the number of seconds a connection may be idle before it will time
out.

--count=number, -c number
This option specifies the number of iterations of commands to perform in conjunc-
tion with the --sleep option.

--debug=options filename, -# options, filename
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of options under the
mysqldump utility for an explanation of these flags and others that may be used.

--debug-check
This option writes debugging information to the log when the utility ends. It’s
available as of version 5.1.21 of MySQL.

--debug-info
This option adds debugging information and CPU and memory usage information
to the log when the utility ends. It’s available as of version 5.1.21 of MySQL.

--default-character-sets-dir=path
This option specifies the directory that contains the default character sets.

--force, -f
This option forces execution of the DROP DATABASE statement and others despite error
messages.

--help, -?
This option displays basic help information.

--host=host, -h host
This option specifies the name or IP address of the server for connection.

--no-beep
This option instructs the utility not to emit a warning sound for errors. It was added
as of version 5.1.17 of MySQL.

--password[=password], -p[password]
This option provides the password to give to the server. No spaces are allowed
between the -p and the password. If a password is not given, the user will be promp-
ted for one.

--port=port, -P port
This option specifies the port on which to connect to the server. The default is 3306.

--relative, -r
This option displays the differences between values with each iteration of commands
issued with the --sleep option.

--shutdown_timeout=number
This option sets the number of seconds the client should wait before shutting down.

--silent, -s
This option tells the utility to exit without error messages if a connection to the
server cannot be established.

--sleep=seconds, -i seconds
This option specifies the number of seconds to wait between the repeated execution
of commands. The number of iterations is set by the --count option.

mysqladmin

374 | Chapter 16: Command-Line Utilities

--socket=filename, -S filename
This option provides the name of the server’s socket file.

--ssl
This option specifies that secure SSL connections should be used. It requires the
server to have SSL enabled.

--ssl-ca=pem_file
This option specifies the name of the file (i.e., the pem file) containing a list of trusted
SSL CAs.

--ssl-capath=path
This option specifies the path to the trusted certificates file (i.e., the pem file).

--ssl-cert=filename
This option specifies the name of the SSL certificate file to use for SSL connections.

--ssl-cipher=ciphers
This option gives a list of ciphers that may be used for SSL encryption.

--ssl-key=filename
This option specifies the SSL key file to use for secure connections.

--ssl-verify-server-cert
This option verifies the client’s certificate against the server’s certificate for the client
at startup. It is available as of version 5.1.11 of MySQL.

--start-slave
This option is issued on a slave server to start replication.

--stop-slave
This option is issued on a slave server to stop replication.

--user=user, -u user
This option specifies a MySQL user other than the current filesystem user.

--verbose, -v
This option displays more information.

--version, -V
This option displays the version of the utility.

--vertical, -E
This option displays output in a vertical format with a separate line for each column
of data.

--wait[=number], -w [number]
This option instructs the utility to wait until it can connect to the server. It will retry
once unless the number of times it is to retry is given with this option.

mysqladmin commands
The main focus of mysqladmin is the commands that perform administrative tasks. Com-
mands are given as the second argument. You can issue one or more commands on the
same line. Here is an alphabetical list of commands (with options for some) and an
explanation of each:

create database
This command creates the new database specified.

mysqladmin

Chapter 16: Command-Line Utilities | 375

Com
m

and-Line
Utilities

debug
This command enables debugging of the utility. It writes debugging information to
the error log.

drop database
This command deletes the database specified.

extended-status
This command displays the MySQL server’s extended status information.

flush-hosts
This command flushes all cached hosts.

flush-logs
This command flushes all logs.

flush-privileges
This command reloads the grant tables.

flush-status
This command flushes status variables.

flush-tables
This command has the utility flush all tables.

flush-threads
This command flushes the thread cache.

kill id
This command kills the server thread specified by an identifier. Additional threads
may be given in a comma-separated list.

old-password password
This command changes the password of the user currently connected to the server
through the utility to the password given, but in the older encryption method prior
to version 4.1 of MySQL.

password password
This command changes the user’s password to the given password. Only the pass-
word for the user connecting to the server can be changed.

ping
This command determines whether the server is running.

processlist
This command displays a list of active server threads. With the --verbose option,
more information is provided on each thread.

refresh
This command flushes all tables and reloads log files.

reload
This command reloads the grant tables.

shutdown
This command shuts down the MySQL server.

start-slave
This command starts a replication slave server.

status
This command displays the server’s status.

mysqladmin

376 | Chapter 16: Command-Line Utilities

stop-slave
This command stops a replication slave server.

variables
This command displays the variables and the values of the server.

version
This command displays the version of the utility.

mysqlbinlog
mysqlbinlog [options] filename

This utility formats the display of the binary log for a MySQL server. Customized appli-
cations can also use it for monitoring server activities. The path to the log file to format
is given as the second argument for the utility. Additional log files may be given either
with filesystem wildcards or by listing them individually, separated by spaces.

Here is an alphabetical list of the options, along with a brief explanation of each:

--base64-output
This option is used to write binary log entries using base-64 encoding. This is used
for debugging and should not be used in production. It’s available as of version 5.1.5
of MySQL.

--character-sets-dir=path
This option specifies the directory containing character sets.

--database=database, -d database
This option displays information regarding only the database given.

--debug[=options], -# [options]
This option logs debugging information, along with various settings (e.g.,
'd:t:o,logname').

--debug-check
This option writes debugging information to the log when the utility ends. It’s
available as of version 5.1.21 of MySQL.

--debug-info
This option writes debugging information and CPU and memory usage information
to the log after the utility ends.

--disable-log-bin, -D
This option disables binary logging.

--force-read, -f
This option forces the reading of unknown log information.

--hexdump, -H
This option dumps the log in hexadecimal format.

--help, -?
This option displays basic help information.

--host=host, -h host
This option specifies the hostname or IP address of a remote server containing the
log file to format.

mysqlbinlog

Chapter 16: Command-Line Utilities | 377

Com
m

and-Line
Utilities

--local-load=path, -l path
This option specifies the local directory in which temporary files are to be prepared
for LOAD DATA INFILE statements.

--offset=number, -o number
This option skips number entries at the start of the log file before starting the display.

--open_files_limit
This option sets the maximum number of open files allowed. The default is 64.

--password=password, -p password
This option provides the password to the remote server that is being accessed.

--port=port, -P port
This option specifies the port to use for connecting to a remote server.

--position=number, -j number
This option sets the number of bytes to skip at the beginning of the log file. It is
deprecated; use --start-position instead.

--protocol=protocol
This option specifies the protocol to use when connecting to the server. The choices
are TCP, SOCKET, PIPE, and MEMORY.

--read-from-remote-server, -R
This option reads the binary log from a remote server instead of the local machine.
You will need to include the necessary options for connecting to a remote server:
--host, --password, and --user. You might also need to include --port,
--protocol, and --socket.

--result-file=filename, -r filename
This option redirects the results of the utility to a given file.

--server-id=identifier
This option returns entries from the binary log that were generated by a connection
matching the given process identifier number. This option is available as of version
5.1.4 of MySQL.

--set-charset=character_set
This option adds a SET NAMES statement to the results to indicate the character set
used. It is available as of version 5.1.12 of MySQL.

--skip-write-binlog
This option disables the --write-binlog option, which is enabled by default. Oth-
erwise, ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements executed by
the utility will be written to the binary log. It’s available as of version 5.1.18 of
MySQL.

--short-form, -s
This option changes the output to a shorter format.

--socket=filename, -S filename
This option provides the name of the server’s socket file for Unix systems, piped
name for Windows systems.

--start-datetime=datetime
This option begins reading the log from the first event recorded with a date and time
equal to or greater than the one given. The time can be in DATETIME or TIMESTAMP
format. Use the time zone of the server.

mysqlbinlog

378 | Chapter 16: Command-Line Utilities

--start-position=number
This option sets the position to start reading the log file.

--stop-datetime=datetime
This option instructs the utility to stop reading the log at the first event recorded
with a date and time equal to or greater than the one given. The time can be in
DATETIME or TIMESTAMP format. Use the time zone of the server.

--stop-position=number
This option sets the position to stop reading the log file.

--table=table, -t table
This option obtains information on the table named.

--to-last-log, -t
This option instructs the utility to continue on in sequence reading through all bi-
nary logs, starting with the one given until the last log file is processed.

--user=user, -u user
This option specifies the username to use when connecting to a remote server.

--version, -V
This option displays the version of the utility.

--write-binlog
With this option, ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements exe-
cuted by the utility will be written to the binary log. It’s available as of version 5.1.18
of MySQL and is enabled by default. To disable it, use --skip-write-binlog.

mysqlbug
mysqlbug

This is a script you can use to report bugs to MySQL AB developers. Executed at the
command line of the server, this script gathers information on the version of MySQL and
related libraries installed, the operating system, as well as how MySQL was compiled.

To run the utility, simply type the command without any options or arguments. After a
few moments, a text editor (e.g., Emacs) will be started with a form for reporting the bug.
Several of the details will be filled in with information gathered by the script. You can
modify this information, and you are expected to answer questions about the bug dis-
covered. This includes a description of how to reproduce the problem or what circum-
stances occurred that may have caused or contributed to the problem. If you discovered
a workaround solution, report this as well. The report created (saved in the /tmp directory
on Unix systems) should be emailed to dev-bugs@mysql.com. Go to http://
bugs.mysql.com to report bugs online.

mysqlcheck
mysqlcheck [options] database [table]

This utility checks, repairs, and optimizes MyISAM tables. It works in part on tables for
other storage engines as well. It uses the ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE,
and REPAIR TABLE statements. Therefore, if the storage engine supports any of these
statements, the operations that can be performed by supported statements can be done
using this utility. For MyISAM tables, this utility is similar in use and purpose to

mysqlcheck

Chapter 16: Command-Line Utilities | 379

Com
m

and-Line
Utilities

http://bugs.mysql.com
http://bugs.mysql.com

myisamchk. Instead of working with the table files directly as myisamchk does, though, this
utility interacts with the MySQL server.

The name of the database containing the tables to check is given as the second argument
to the utility. The table to check is given as the third argument. Additional tables may be
given in a space-separated list.

Here is a list of options that you can give and a brief explanation of each:

--all-databases, -A
This option checks all databases.

--all-in-1, -1
This option executes all queries for all tables in each database in one statement rather
than as separate queries for each table.

--analyze, -a
This option analyzes tables.

--auto-repair
This option automatically repairs any corrupted tables found.

--character-sets-dir=path
This option specifies the directory containing character sets.

--check, -c
This option checks tables for errors.

--check-only-changed, -C
This option checks only tables that have changed since the last check, as well as
tables that were not closed properly.

--compress
This option compresses data passed between the utility and the server, if compres-
sion is supported.

--databases databases, -B databases
This option specifies more than one database for checking. To specify tables along
with databases with this option, use the --tables option.

--debug[=options], -# [options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of options under the
mysqldump utility for an explanation of these flags and others that may be used.

--debug-check
This option writes debugging information to the log when the utility ends. It’s
available as of version 5.1.21 of MySQL.

--debug-info
This option writes debugging information and CPU and memory usage information
to the log after the utility ends.

--default-character-set=set
This option specifies the default character set. Enter SHOW CHARACTER SET; on the
server for a list of character sets available.

mysqlcheck

380 | Chapter 16: Command-Line Utilities

--extended, -e
This option ensures consistency of data when checking tables. When repairing ta-
bles with this option, the utility will attempt to recover all rows, including inten-
tionally deleted ones.

--fast, -F
This option checks only tables that were improperly closed.

--fix-db-names
This option converts the names of databases that contain characters no longer per-
mitted by MySQL as of version 5.1. It’s available as of version 5.1.7 of MySQL.

--fix-table-names
This option converts the names of tables that contain characters no longer permitted
by MySQL as of version 5.1. It’s available as of version 5.1.7.

--force, -f
This option forces processing of tables regardless of SQL errors encountered.

--help, -?
This option displays basic help information.

--host=host, -h host
This option specifies the name or IP address of the server for connection.

--medium-check, -m
This option is more thorough than --check but less thorough than --extended.

--optimize, -o
This option optimizes tables.

--password[=password], -p[password]
This option provides the password to pass to the server. A space is not permitted
after -p if the password is given.

--port=port, -P port
This option specifies the port to use for connecting to the server. The default is 3306.

--protocol=protocol
This option specifies the protocol to use when connecting to the server. The choices
are TCP, SOCKET, PIPE, and MEMORY.

--quick, -q
This option checks tables faster by not scanning rows for incorrect links. When used
to repair tables, it has the utility repair only the index tree. This option is the fastest
method.

--repair, -r
This option repairs tables. Note that it can’t repair unique keys containing
duplicates.

--silent, -s
This option suppresses all messages except for error messages.

--socket=filename, -S filename
This option provides the name of the server’s socket file.

--ssl
This option specifies that secure SSL connections should be used. It requires the
server to have SSL enabled. If this option is enabled on the utility by default, use
--skip-ssl to disable it.

mysqlcheck

Chapter 16: Command-Line Utilities | 381

Com
m

and-Line
Utilities

--ssl-ca=pem_file
This option specifies the name of the file (i.e., the pem file) containing a list of trusted
SSL CAs.

--ssl-capath=path
This option specifies the path to the trusted certificates file (i.e., the pem file).

--ssl-cert=filename
This option specifies the name of the SSL certificate file to use for SSL connections.

--ssl-cipher=ciphers
This option gives a list of ciphers that may be used for SSL encryption.

--ssl-key=filename
This option specifies the SSL key file to use for secure connections.

--ssl-verify-server-cert
This option verifies the client’s certificate against the server’s certificate for the client
at startup. It is available as of version 5.1.11 of MySQL.

--tables
This option specifies table names when using the --databases option.

--use-frm
This option uses the table structure in the .frm file for repairing a corrupted index.

--user=user, -u user
This option specifies the username for connecting to the server.

--verbose, -v
This option displays more information.

--version, -V
This option displays the version of the utility.

mysqldump
mysqldump [options] --all-databases
mysqldump [options] --databases database [database ...]
mysqldump [options] database [table]

This utility exports MySQL data and table structures. Typically, you use it to make
backups of databases or to copy databases from one server to another. You can run it on
an active server. For consistency of data between tables, the tables should be locked (see
the --lock-tables option) or the mysqld daemon should be shutdown.

There are three syntaxes for this utility. The first method shown makes a backup of all
databases for the server. The second method backs up specific databases, named in a
space-separated list, including all tables in each database. The third method backs up
specific tables of a specific database.

Here is an example using the first method, backing up all databases on the server:

mysqldump --host=russell.dyerhouse.com --user=russell --password \
 --lock-tables --all-databases > /tmp/workrequests.sql

Because the backup is being run from a remote server (i.e., not the localhost), the
--host option is given with a domain name address for the host. An IP address could be
given instead. Making a backup remotely like this will work only if the host grants the

mysqldump

382 | Chapter 16: Command-Line Utilities

necessary privileges to user russell with the host from which mysqldump is running. The
example redirects the results with a greater-than sign to a text file.

To make a backup of a specific database, use the second syntax for this utility. Enter
something like the following from the command line:

mysqldump -u russell -p --lock-tables workrequests > /tmp/workrequests.sql

In this example, the username is given with the -u option. The -p option tells the utility
to prompt the user for a password. These shorter options are interchangeable with their
longer, more verbose ones, but the verbose ones are becoming the norm and should be
used. The --lock-tables option has the server lock the tables, make the backup, and
then unlock them when it’s finished. Next, we specify the database to back up
(workrequests). Finally, using the redirect (the greater-than sign), the output is saved to
the filename given.

The --lock-tables option is generally not necessary because the --opt option is a default
option and includes locking tables. In fact, if you’re making a backup and you do not
have the LOCK TABLES privilege, you will receive an error when running mysqldump because
of --opt. In such a situation, you’ll need to include the --skip-opt option to specifically
disable --opt and thereby not attempt to lock the tables.

If you want to back up specific tables and not an entire database, you can use the third
syntax shown at the start of this section for this utility. It’s not a very verbose syntax: you
simply give the name of the database followed by one or more tables. You don’t identify
them individually as a database versus tables; you just put them in the proper order
without the --all-database option. Here’s an example of this syntax:

mysqldump -u russell -p workrequests work_req clients >
 /tmp/workreq_clients_tables.sql

In this example, the database is workrequests and the tables to be backed up are
work_req and clients. Their table structures and data will be copied into the text file
workreq_clients_tables.sql.

The backup or dump file created by mysqldump will be in the text file format. It generally
will contain a CREATE TABLE statement for each table in the database. If you want to
eliminate the CREATE TABLE statements, add the --no-create-info. If they are not included
in the dump file generated on your server, add the --create-options option and run
mysqldump again. The dump files will also generally contain a separate INSERT statement
for each row of data. To back up the data faster, you can add the --extended-insert
option so that only one INSERT with multiple values will be generated for each table
instead of separate INSERT statements for each row of data.

To restore the data from a dump file created by mysqldump, you can use the mysql client.
To restore the file created by the preceding statement, you can enter the following from
the command line:

mysql -u russell -p < /tmp/workrequests.sql

This example redirects the stdin by means of the less-than sign. This instructs the
mysql client to take input from the file given. It will execute the series of SQL statements
contained in the dump file. You won’t be placed into monitor mode; you will remain at
the command line until it’s finished.

mysqldump

Chapter 16: Command-Line Utilities | 383

Com
m

and-Line
Utilities

You can determine the contents of the dump file by the options you choose. Following
is an alphabetical list of options, along with a brief explanation of each. For some options,
there is a shorter, less verbose version (i.e., -u for --user). These shorter options are
interchangeable with their longer, more verbose ones, but the verbose ones are becoming
the norm and should be used.

mysqldump options

--add-drop-database
This option adds a DROP DATABASE statement followed by a CREATE DATABASE state-
ment to the export file for each database, thus replacing the existing database and
data if restored.

--add-drop-table
This option adds a DROP TABLE statement to the export file before each set of
INSERT statements for each table.

--add-locks
This option adds a LOCK statement before each set of INSERT statements and an
UNLOCK after each set.

--all, -a
This option includes all MySQL-specific statements in the export file. This option
is deprecated as of version 4.1.2 of MySQL. It is replaced with the --create-
options option.

--all-databases, -A
This option exports all databases.

--all-tablespaces, -Y
This option is used with MySQL Cluster so that the utility will include the necessary
SQL statements related to the NDB storage engine. This option is available as of
version 5.1.6 of MySQL.

--allow-keywords
This option makes keywords allowable for column names by including the table
name and a dot before such column names in the export file.

--character-sets-dir=path
This option specifies the directory containing character sets.

--comments[=0|1], -i
If this option is set to a value of 1 (the default), any comments from a table’s schema
will be included in the export file. If it is set to 0, they won’t be included. To disable
this option since it’s the default, use the --skip-comments option.

--compact
This option omits comments from the dump file to make the file more compact. It
also calls the --skip-add-drop-table, --skip-add-locks, --skip-disable-keys, and
--skip-set-charset options. Don’t confuse this option with --compress. Before ver-
sion 5.1.2 of MySQL, this option did not work with databases that contained views.

--compatible=type
This option makes the export file’s contents compatible with other database sys-
tems. The choices currently are: ansi, mysql323, msyql40, postgresql, oracle, mssql,
db2, maxdb (or sapdb for older versions), no_key_options, no_table_options, and

mysqldump

384 | Chapter 16: Command-Line Utilities

no_field_options. More than one type may be given in a comma-separated list. This
option is used with version 4.1.0 of MySQL or higher.

--complete-insert, -c
This option generates complete INSERT statements in the export file.

--compress, -C
This option compresses data passed between the utility and the server, if compres-
sion is supported.

--create-options
This option includes all MySQL-specific statements (e.g., CREATE TABLE) in the ex-
port file. It’s synonymous with the --all option.

--databases, -B
This option names more than one database to export. Table names may not be given
with this option unless using the --tables option.

--debug[=options], -#[options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of options for this utility for
an explanation of these flags and others that may be used. Here is an example of
how you might use this option:

mysqldump -u russell -p --debug='d:f:i:o,/tmp/mysql_debug.log'
 workrequests > /tmp/workrequests.sql

--debug-check
This option writes debugging information to the log when the utility ends. It’s
available as of version 5.1.21 of MySQL.

--debug-info
This option writes debugging information and CPU and memory usage information
to the log after the utility ends.

--default-character-set=set
This option specifies the default character set for the utility to use. Execute SHOW
CHARACTER SET from MySQL on the server to get a list of possibilities. By default,
recent versions of the utility use UTF-8. Previous versions used Latin 1.

--delayed-insert
This option adds the DELAYED keyword to INSERT statements in the export file. In
older versions of mysqldump, this option was --delayed.

--delete-master-logs
This option instructs the utility to lock all tables on all servers and then to delete
the binary logs of a master replication server after completing the export. Using this
option also invokes the --master-data option.

--disable-keys, -K
For MyISAM tables, this option adds an ALTER TABLE...DISABLE KEYS statement to
the export file before each set of INSERT statements, and an ALTER TABLE...ENABLE
KEYS statement after each set to optimize later restoration.

--events, -E
This option includes events from the databases. It is available as of version 5.1.8 of
MySQL.

mysqldump

Chapter 16: Command-Line Utilities | 385

Com
m

and-Line
Utilities

--extended-insert, -e
This option bundles INSERT statements together for each table in the export file to
make the export faster. Otherwise, a separate INSERT statement for each row of each
table will be placed in the dump file.

--fields-enclosed-by=characters
Use this option with the --tab option to specify the characters that start and end
fields in the data text file.

--fields-escaped-by=character
Use this option with the --tab option to specify the character that escapes special
characters in the data text file. A backslash is the default.

--fields-optionally-enclosed-by=characters
Use this option with the --tab option to specify the characters that can be used when
necessary to start and end fields in the data text file.

--fields-terminated-by=character
Use this option with the --tab option to specify the characters that end fields in the
data text file.

--first-slave
This option locks all tables on all servers. It has been deprecated and replaced with
--lock-all-tables.

--flush-logs, -F
This option flushes all logs. It requires the user to have RELOAD privilege on the server.

--flush-privileges
This option flushes all privileges. It was added as of version 5.1.12.

--force, -f
This option instructs the utility to continue processing data despite errors. This is
useful in completing dumps for irrelevant errors such as ones related to views that
no longer exist.

--help, -?
This option displays basic help information.

--hex-blob
This option uses hexadecimal equivalents for BINARY, BIT, BLOB, and VARBINARY
columns.

--host=host, -h host
This option specifies the name or IP address of the server for connection. The lo-
calhost is the default. The user and host combination and related privileges will need
to be set on the server.

--ignore-table=database.table
This option instructs the utility not to export the given table of the given database.
For more than one table, enter this option multiple times with one database and
table combination in each.

--insert-ignore
This option adds the IGNORE keyword to INSERT statements in the dump file.

--lines-terminated-by=character
Use this option with the --tab option to specify the character that ends records in
the data text file.

mysqldump

386 | Chapter 16: Command-Line Utilities

--lock-tables, -l
This option instructs the utility to get a READ LOCK on all tables of each database
before exporting data, but not on all databases at the same time. It locks a database
when it’s dumping and releases the lock before locking and dumping the next da-
tabase. This option is typically used with MyISAM tables. For transactional storage
engines, use --single-transaction instead.

--lock-all-tables, -x
This option locks all tables on all servers. It replaces --first-slave, which has been
deprecated.

--log-error=logfile
This option writes errors and warning messages to the file named. The file path may
be included. This option is available as of version 5.1.18 of MySQL.

--master-data=value
This option is used with replication. It writes the name of the current binary log file
and server’s position in the log file to the dump file. It requires the RELOAD privilege.
It will typically disable --lock-tables and --lock-all-tables.

--no-autocommit
This option adds SET AUTOCOMMIT=0: before each INSERT statement, and a COMMIT;
statement after each INSERT statement.

--no-create-db, -n
This option instructs the utility not to add CREATE DATABASE statements to the export
file when the --all-databases option or the --databases option is used.

--no-create-info, -t
This option instructs the utility not to add CREATE TABLE statements to the export file.

--no-data, -d
This option exports only database and table schema, not data.

--opt
This option is a combination of several commonly used options: --add-drop-
table, --add-locks, --create-options (or --all before version 4.1.2), --disable-
keys, --extended-insert, --lock-tables, --quick, and --set-charset. As of version
4.1 of MySQL, the --opt option is enabled by default. Use --skip-opt to disable it
for users with limited access.

--order-by-primary
This option sorts rows of tables by their primary key or first index. It slows down
the backup process, though.

--password[=password], -p[password]
This option provides the password to pass to the server. A space is not permitted
after -p if the password is given. If the password is not given when using the -p
option, the user will be prompted for one.

--port=port, -P port
This option specifies the port number to use for connecting to the server. A space
is expected before the port number when using the -P form of the option.

--protocol=protocol
This option is used to specify the type of protocol to use for connecting to the server.
The choices are TCP, SOCKET, PIPE, and MEMORY.

mysqldump

Chapter 16: Command-Line Utilities | 387

Com
m

and-Line
Utilities

--quick, -q
This option instructs the utility not to buffer data into a complete results set before
exporting. Instead, it exports data one row at a time directly to the export file.

--quote-names, -Q
This option places the names of databases, tables, and columns within backticks
(`). This is the default option. If the server is running in ANSI_QUOTES SQL mode,
double quotes will be used instead. This option is enabled by default. Use --skip-
quote-names to disable it.

--replace
This option puts REPLACE statements into the dump file instead of INSERT statements.
It was added as of version 5.1.3 of MySQL.

--result-file=filename, -r filename, > filename
This option provides the path and the name of the file to which data should be
exported. Use the --result-file option on Windows systems to prevent newline
characters (\n) from being converted to carriage return and newline characters
(\r\n).

--routines, -R
This option dumps stored procedures and functions. It was added as of version 5.1.2
of MySQL. It requires the SELECT privilege in the proc table of the mysql database.
The statements written to the dump file related to these routines do not include
timestamps, so the current time will be used when restoring instead.

--set-charset
This option adds the SET NAMES statement to the dump file. It’s enabled by default.
Use --skip-set-charset to disable it.

--single-transaction
This option executes a BEGIN statement before exporting to help achieve data con-
sistency with the backup. It’s effective only on transactional storage engines. It
should not be used with MySQL Cluster.

--skip-comments
This option instructs the utility not to export any comments from a table’s schema
to the export file. It disables the --comments option.

--skip-opt
This option disables the --opt option.

--skip-quote-names
This option disables the --quote-names option.

--ssl
This option specifies that secure SSL connections should be used. It requires the
server to have SSL enabled. If this option is enabled on the utility by default, use
--skip-ssl to disable it.

--ssl-ca=pem_file
This option specifies the name of the file (i.e., the pem file) containing a list of trusted
SSL CAs.

--ssl-capath=path
This option specifies the path to the trusted certificates file (i.e., the pem file).

--ssl-cert=filename
This option specifies the name of the SSL certificate file to use for SSL connections.

mysqldump

388 | Chapter 16: Command-Line Utilities

--ssl-cipher=ciphers
This option gives a list of ciphers that may be used for SSL encryption.

--ssl-key=filename
This option specifies the SSL key file to use for secure connections.

--ssl-verify-server-cert
This option verifies the client’s certificate against the server’s certificate for the client
at startup. It is available as of version 5.1.11 of MySQL.

--socket=filename, -S filename
This option provides the name of the server’s socket file on a Unix-type system or
the named pipe on Windows systems.

--tab=path, -T path
This option creates two separate export files: one for the table schema (e.g.,
table.sql) and another for the data (e.g., table.txt). The data text file will contain
data in a tab-separated format. This option requires FILE privilege, and the MySQL
server must have write permission for the directory it is to write the exported file.

--tables
This option specifies tables to dump. All names after the --tables option are treated
as table names and not as database names.

--triggers
This option includes triggers in dump files. It is the default. Use --skip-triggers to
disable it.

--tz-utc
This option adds SET TIME_ZONE='+00:00'; to the dump file so that the dump files
may be restored on a server in a different time zone and not cause inconsistencies
with TIMESTAMP columns. This option is available as of version 5.1.2 of MySQL and
is enabled by default. Use --skip-tz-utc to disable it.

--user=user, -u user
This option specifies the username for connecting to the server. A space is expected
after the -u option. If the -u version of this option is used and the username is not
given, the current system user is assumed.

--verbose, -v
This option displays more information.

--version, -V
This option displays the version of the utility and exits.

--where='condition', -w 'condition'
This option sets a WHERE condition for selecting rows from tables to be exported. For
instance, suppose that we want to back up the clients table with only the clients
who are located in New Orleans. We could run the utility like so:

mysqldump -u russell -p /
 --where="client_city='New Orleans'" workrequests clients > /tmp/
 workreq_clients_neworleans.sql

--xml, -X
This option exports databases in XML format.

mysqldump

Chapter 16: Command-Line Utilities | 389

Com
m

and-Line
Utilities

mysqldump --debug options
Table 16-1 lists the debugging, tracing, and profiling flags used with the --debug option
for several MySQL-related utilities. The format is generally --debug='flag:flag:flag'.
When a particular option needs more details, follow the flag with a comma and the details
or extra settings in a comma-separated list: --debug='flag:flag,setting,set-
ting:flag'. An alternative to the --debug='flag:flag:flag' syntax is
--#flag:flag:flag. This syntax lacks the equals sign or quotes; the space afterward marks
the end of the flags and settings.

Table 16-1. Debugging options

Flag Description

d Logs the DBUG macros. To log only certain macros, give the d flag followed by the specific macro keywords.

D Used to specify a delay after each line in the debugging log. After the flag and a comma, give the number
of tenths of a second to delay (e.g., D,10 for a 1 second delay).

f Limits debugging, tracing, and profiling to particular functions. The f flag with no functions listed results
in all functions being filtered out of the log.

F Names the source filename for debugging and tracing output.

i Specifies the process identifier (PID) or thread identifier for each line of debugging and tracing output that
is logged.

g Enables profiling. A file named dbugmon.out may be used to provide details for profiling. A list of functions
to profile may be given after this flag. If none are specified, all functions will be included.

L Includes the source file’s line number in each line of the debugging and tracing log.

n Logs the nesting depth of each function for debugging and tracing.

N Includes a line number in each line of the log.

o Redirects debugging information to a given file, rather than stderr. The filename is given after the flag,
separated from it by a comma (e.g., o,/tmp/mysql_debug.log).

O This is the same as the o flag, but the log file is flushed between each write, and possibly opened and closed
each time.

p Limits debugging to given processes. Each process has to be specified with the DBUG_PROCESS macro.

P Writes the current process name for each line to the debugging and tracing logs.

r Resets the previous state’s function nesting level.

S Used with safemalloc to locate memory leaks. Will run until nonzero is returned.

t Enables call and exit trace logging. A numeric maximum trace level may be given after the flag, separated
from it by a comma.

mysqldumpslow
mysqldumpslow [options] [filename]

Use this utility to display a summary of the slow query log. The name of the log file may
be given in the second argument. Otherwise, the utility will look to the server’s config-
uration file (i.e., my.cnf or my.ini, depending on your system) for this information. The
following options can narrow the summary or change what is displayed.

mysqldumpslow

390 | Chapter 16: Command-Line Utilities

mysqldumpslow options

-a
This option instructs the utility not to combine queries with similar SQL statements.

--debug, -d
This option enables debugging mode.

-g expression
This option extracts information on queries that meet the given expression.

-h host
This option specifies the host’s name for which the utility is to scan. By default, log
files are named with the server’s hostname as the filename’s prefix.

--help
This option displays help information on the utility.

-i host
This option specifies the hostname of the server.

-l
With this option, the lock time is added to the execution time for the utility’s
summary.

-n number
This option sets the minimum number of occurrences for reporting.

-r
This option reverses the order of sorts for reporting.

-s type
This option specifies the type of queries on which to report. The choices are al for
average lock time, ar for average rows, at for average execution time, l for lock time,
r for rows, and t for execution time.

-t
This option sets the number of queries on which to display.

--verbose, -v
This option displays more information.

mysqlhotcopy
mysqlhotcopy database [path]

Use this utility to make backup copies of databases while the server is active. It works
only on MyISAM and ISAM tables. It makes a simple copy of each database directory
and each table file. This results in a separate directory for each database and usually three
files for each table: one for the schema, another for the data, and a third for the index. It
places a read lock on all of the tables in the database while copying them. Here is an
example of how you can copy a database with mysqlhotcopy:

mysqlhotcopy -u russell -p password workrequests /tmp/backup

Note that unlike other MySQL utilities, there is a space between the -p and the password.
Next, specify the database (workrequests). Finally, give the path to write the backup
directories. To restore databases or tables that were copied by mysqlhotcopy, just copy
the table files to be restored to their original data directories.

mysqlhotcopy

Chapter 16: Command-Line Utilities | 391

Com
m

and-Line
Utilities

mysqlhotcopy options

--addtodest
This option instructs the utility not to abort the session or to rename the backup
directory, but to add new files to the directory.

--allowold
This option renames any existing backup directory with an _old suffix so that the
copying may be completed. If the new copy is successful, the old directory is deleted.
If it’s unsuccessful, the old directory is restored.

--checkpoint=database.table
This option saves logging information to the named database and table.

--chroot=path
This option is used to specify the base directory of the chroot in which the mysqld
daemon is located, which should have the same directory of the --chroot option.

--debug
This option is used to enable debugging information.

--dryrun, -n
This option has the utility test the backup process without actually making a copy.

--flushlog
This option flushes logs after all tables are locked.

--help, -?
This option displays basic help information.

--host=host, -h host
This option specifies the name or IP address of the server for connection.

--keepold
This option instructs the utility when using the --allowold option not to delete the
old directory if the copying is successful.

--method=method
This option sets the method used by the utility for copying files. The choices are
cp or scp.

--noindices
This option copies only the headers of index files. Indexes may be rebuilt when
restoring copies.

--password=password, -ppassword
This option provides the password to pass to the server. A space is permitted after
the -p option, before the password.

--port=port, -P port
This option specifies the port number to use for connecting to the server.

--quiet, -q
This option suppresses all messages except for error messages.

--record_log_pos=database.table
This option is used to specify the database and table to record the log position and
status of the master and slave servers when using replication.

mysqlhotcopy

392 | Chapter 16: Command-Line Utilities

--regexp=expression
This option provides a regular expression for determining which databases to copy
based on the name.

--resetmaster
This option executes a RESET MASTER statement after tables are locked.

--resetslave
This option executes a RESET SLAVE statement after tables are locked.

--socket=filename, -S filename
This option provides the name of the server’s socket file.

--sufix=string
This option specifies the suffix for the copies of databases. The default is _copy.

--tmpdir=path
This option specifies the temporary directory to use. The default is /tmp.

--user=user, -u suser
This option specifies the username for connecting to the server.

mysqlimport
mysqlimport [options] database filename[...]

Use this to import data and table structures from a text file given as the third argument
into a database named in the second argument. This utility interacts with the server and
uses the LOAD DATA INFILE statement. The root name of the text file being imported must
be the same as the table name. Additional text files may be given in a space-separated
list. Options may be given on the command line as the first argument of the utility, or
they may be provided in the server’s configuration file (e.g., my.cnf) under the heading
[client] or [mysqlimport]. When included in the configuration file, options appear
without the leading double dashes. Here is an alphabetical list of options you can give
for the first argument, along with an explanation of each.

mysqlimport options

--character-sets-dir=path
This option specifies the directory containing character sets.

--columns=columns, -c columns
This option identifies the order of fields in the text file as they relate to the columns
in the table. Columns are given in a comma-separated list.

--compress, -C
This option compresses data passed between the utility and the server, if compres-
sion is supported.

--debug[=options], -# [options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of the mysqldump utility options
earlier in this chapter for an explanation of these flags and others that may be used.

--debug-check
This option writes debugging information to the log when the utility ends. It’s
available as of version 5.1.21 of MySQL.

mysqlimport

Chapter 16: Command-Line Utilities | 393

Com
m

and-Line
Utilities

--debug-info
This option writes debugging information and CPU and memory usage information
to the log after the utility ends.

--default-character-set=set
This option specifies the default character set.

--defaults-extra-file=filename
This option takes additional options from the text file named.

--defaults-file=filename
This option instructs the utility to accept options only from the text file named.

--delete, -d
This option deletes all data from each target table before importing data from the
text file.

--fields-enclosed-by=characters
This option identifies the characters that indicate the start and end of fields in the
text file being imported.

--fields-escaped-by=character
This option identifies the character that will escape special characters in the text file
being imported. A backslash is the default.

--fields-optionally-enclosed-by=characters
This option identifies the characters that indicate the start and end of fields in the
text file being imported.

--fields-terminated-by=character
This option identifies the character that indicates the end of fields in the text file
being imported.

--force, -f
This option instructs the utility to continue importing data despite errors
encountered.

--help, -?
This option displays basic help information.

--host=host, -h host
This option specifies the name or IP address of the server for connection.

--ignore, -i
This option instructs the utility to ignore error messages regarding rows containing
duplicate keys and thereby not to replace such rows with imported data.

--ignore-lines=number
This option instructs the utility to ignore the first number of lines specified. It’s
useful in skipping headings in the text file being imported.

--lines-terminated-by=character
This option identifies the character that indicates the end of records in the text file
being imported.

--local, -L
This option tells the utility that the text file to import is located locally on the client
and not on the server, which is the default assumption.

--lock-tables, -l
This option locks all tables before importing data.

mysqlimport

394 | Chapter 16: Command-Line Utilities

--low-priority
This option has the utility use the LOW PRIORITY keyword when importing data.

--no-defaults
This option tells the utility not to accept options from a configuration file.

--password[=password], -p[password]
This option provides the password to pass to the server. A space is not permitted
after the -p option if the password is given. If the password is not given, the user
will be prompted for one.

--port=port, -P port
This option specifies the port number to use for connecting to the server.

--print-defaults
This option displays related options found in the server’s configuration files.

--protocol=protocol
This option is used to specify the protocol to use when connecting to the server.
The choices are TCP, SOCKET, PIPE, and MEMORY.

--replace, -r
This option replaces rows that contain duplicate keys with the imported data.

--silent, -s
This option suppress all messages except for error messages.

--socket=filename, -S filename
This option provides the name of the server’s socket file.

--ssl
This option specifies that secure SSL connections should be used. It requires the
server to have SSL enabled. If this option is enabled on the utility by default, use
--skip-ssl to disable it.

--ssl-ca=pem_file
This option specifies the name of the file (i.e., the pem file) containing a list of trusted
SSL CAs.

--ssl-capath=path
This option specifies the path to the trusted certificates file (i.e., the pem file).

--ssl-cert=filename
This option specifies the name of the SSL certificate file to use for SSL connections.

--ssl-cipher=ciphers
This option gives a list of ciphers that may be used for SSL encryption.

--ssl-key=filename
This option specifies the SSL key file to use for secure connections.

--ssl-verify-server-cert
This option verifies the client’s certificate against the server’s certificate for the client
at startup. It is available as of version 5.1.11 of MySQL.

--user=user, -u user
This option specifies the username for connecting to the server.

--verbose, -v
This option displays more information.

--version, -V
This option displays the version of the utility.

mysqlimport

Chapter 16: Command-Line Utilities | 395

Com
m

and-Line
Utilities

mysqlshow
mysqlshow [options] [database [table [column]]]

Use this utility to obtain a list of databases, tables, or descriptions of tables. It interacts
with the server and uses the SHOW DATABASES, SHOW TABLES, and SHOW TABLE statements. If
no database name is given for the second argument, all database names will be listed. If
a database name is given along with a table name, the table named will be described. To
limit information to specific columns, list the columns desired in the fourth argument:

mysqlshow --user=russell -ppassword workrequests work_req

The results of this command will be the same as entering the following SQL statement
from the mysql client:

SHOW TABLE workrequests.work_req;

Here is an alphabetical list of options that you can give as part of the first argument of
the utility, along with a brief explanation of each.

mysqlshow options

--character-sets-dir=path
This option specifies the directory containing character sets.

--compress, -C
This option compresses data passed between the utility and the server, if compres-
sion is supported.

--count
This option returns the number of rows for the given table.

--debug[=options], -# [options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list the mysqldump utility options
earlier in this chapter for an explanation of these flags and others that may be used.

--debug-check
This option writes debugging information to the log when the utility ends. It’s
available as of version 5.1.21 of MySQL.

--debug-info
This option writes debugging information and CPU and memory usage information
to the log after the utility ends.

--default-character-set=set
This option specifies the default character set.

--help, -?
This option displays basic help information.

--host=host, -h host
This option specifies the name or IP address of the server for connection.

--keys, -k
This option displays table indexes.

mysqlshow

396 | Chapter 16: Command-Line Utilities

--password[=password], -p[password]
This option provides the password to pass to the server. A space is not permitted
after the -p option if the password is given. If the password is not given, the user
will be prompted for one.

--port=port, -P port
This option specifies the port number to use for connecting to the server.

--protocol=protocol
This option specifies the protocol to use when connecting to the server. The choices
are TCP, SOCKET, PIPE, and MEMORY.

--show-table-type, -t
This option adds a column to the results to indicate the type of table: a base table
or a view.

--socket=filename, -S filename
This option provides the name of the server’s socket file.

--ssl
This option specifies that secure SSL connections should be used. It requires the
server to have SSL enabled. If this option is enabled on the utility by default, use
--skip-ssl to disable it.

--ssl-ca=pem_file
This option specifies the name of the file (i.e., the pem file) containing a list of trusted
SSL CAs.

--ssl-capath=path
This option specifies the path to the trusted certificates file (i.e., the pem file).

--ssl-cert=filename
This option specifies the name of the SSL certificate file to use for SSL connections.

--ssl-cipher=ciphers
This option gives a list of ciphers that may be used for SSL encryption.

--ssl-key=filename
This option specifies the SSL key file to use for secure connections.

--ssl-verify-server-cert
This option verifies the client’s certificate against the server’s certificate for the client
at startup. It is available as of version 5.1.11 of MySQL.

--status, -i
This option displays additional information regarding tables.

--user=user, -u user
This option specifies the username for connecting to the server.

--verbose, -v
This option displays more information.

--version, -V
This option displays the version of the utility.

mysqlshow

Chapter 16: Command-Line Utilities | 397

Com
m

and-Line
Utilities

mysqlslap
mysqlslap [options] database

This utility is used to emulate a load of multiple clients on the server to check the timing
of the system. It’s available as of version 5.1.4 of MySQL.

mysqlslap options

--auto-generate-sql, -a
If you do not want to use or have a file containing SQL statements for testing the
server, nor do you want to manually supply SQL statements from the command
line, you can use this option to instruct the utility to automatically generate SQL to
emulate a client load.

--compress, -C
This option compresses data passed between the utility and the server, if compres-
sion is supported.

--concurrency=number, -c number
Use this option to specify the number of clients to simulate.

--create=value
This option is used to specify a file or string to use for creating a table for use in
testing.

--create-schema=value
This option is used to specify a file or string containing a table schema to use for
creating a table for use in testing.

--csv[=filename]
This option returns data in a comma-separated value format. It will export the data
to the standard output, unless a filename is given. Then it will save the information
to that file.

--debug[=options], -# [options]
This option logs debugging information. The set of options used by default is
'd:t:o,logname'. See Table 16-1 at the end of the list of the mysqldump utility options
earlier in this chapter for an explanation of these flags and others that may be used.

--debug-check
This option writes debugging information to the log when the utility ends. It’s
available as of version 5.1.21 of MySQL.

--debug-info, -T
This option writes debugging information and CPU and memory usage information
to the log after the utility ends.

--delimiter=string, -F string
Use this option to specify the delimiter used in the SQL file given.

--engine=engine, -e engine
Use this option to specify the storage engine to use for the test table.

--host=host, -h host
This option specifies the host on which to connect to the server.

--help, -?
This option displays help information about the utility.

mysqlslap

398 | Chapter 16: Command-Line Utilities

--iterations=number, -i number
This option is used to specify the number of times to run the client load emulation
tests.

--number-char-cols=number, -x number
When specifying --auto-generate-sql, use this option to specify the number of
VARCHAR columns to use.

--number-int-cols=number, -y number
When specifying --auto-generate-sql, use this option to specify the number of
INT columns to use.

--number-of-queries=number
This option is used to specify the number of queries for each client.

--only-print
This option instructs the utility not to run the tests on the server, but to display only
what would have been done based on the options given.

--password=password, -p password
This option provides the password of the user logging into the server.

--port=port
This option specifies the port on which to connect to the server. The default is 3306.

--preserve-schema
This option preserves the schema used when the utility was run.

--protocol=protocol
This specifies the protocol to use when connecting to the server. The choices are
TCP, SOCKET, PIPE, and MEMORY.

--query=value, -q value
This option is used to give the string or to specify the file to use that contains the
SELECT statement for querying the server for testing.

--silent, -s
This option displays no messages.

--socket=filename, -S filename
This option provides the name of the server’s socket file for Unix-type systems or
the named pipe for Windows systems.

--ssl
This option specifies that secure SSL connections should be used. It requires the
server to have SSL enabled. If this option is enabled on the utility by default, use
--skip-ssl to disable it.

--ssl-ca=pem_file
This option specifies the name of the file (i.e., the pem file) containing a list of trusted
SSL CAs.

--ssl-capath=path
This option specifies the path to the trusted certificates file (i.e., the pem file).

--ssl-cert=filename
This option specifies the name of the SSL certificate file to use for SSL connections.

--ssl-cipher=ciphers
This option gives a list of ciphers that may be used for SSL encryption

mysqlslap

Chapter 16: Command-Line Utilities | 399

Com
m

and-Line
Utilities

--ssl-key=filename
This option specifies the SSL key file to use for secure connections.

--ssl-verify-server-cert
This option verifies the client’s certificate against the server’s certificate for the client
at startup. It is available as of version 5.1.11 of MySQL.

--use-threads
On Unix-type systems, the mysqlap utility uses fork(). This option will instruct the
server to use pthread() instead. On Windows systems threads are used by default.

--user=user, -u user
This option provides the username for logging into the server.

--verbose
This option displays more information from the utility.

--version
This option returns the version of the utility.

perror
perror [options] code

This utility displays descriptions of system error codes that MySQL receives. Multiple
error codes may be given in a space-separated list as the second argument. The only
options available are for help (--help), the version number (--version), and verbosity
(--verbose). As of recent versions of MySQL, the --ndb option has been added to get
MySQL Cluster error messages.

replace
replace options filename

This program searches and replaces text in a simple text file, such as a dump file. Give
the text to be replaced followed by the replacement text. Multiple pairs of such text can
be given in a space-separated list. A double-dash (--) is used to mark the end of text
replacement pairs, after which you list the names of files on which to perform the re-
placement in a space-separated list.

The only options available for this utility are for help (-? or -I), silent mode (-s), the
version number (-v), and verbosity (-V). You can also specify -# followed by a space and
flags for debugging. See the explanation of --debug under mysqldump earlier in this chapter
for options that may be given with this flag.

The strings for which the utility is to search may include a few regular expression pa-
rameters: \^ to indicate the start of a line; \$ for the end of a line; and \b for a space.

resolveip
resolveip [options] host ...

This is a simple network program that translates a hostname to its related IP address. If
an IP address is given, it returns all domains associated with the address. It has nothing
to do with MySQL per se, but it is included in the normal distribution package.

perror

400 | Chapter 16: Command-Line Utilities

resolve_stack_dump
resolve_stack_dump options symbols_filename [numeric_dump_file]

This utility resolves addresses and other numeric data into a stack to symbol names. The
symbols file given should be the output of executing the following at the command line:

nm --numeric-sort mysqld

The numeric file named should be the numeric stack from mysqld.

Instead of following the basic syntax, you can specify the symbols file with the --symbols-
file option. You can also specify the numeric dump file with the --numeric-dump-file
option. For both options, the option is followed by an equals sign and the filename.

resolve_stack_dump

Chapter 16: Command-Line Utilities | 401

Com
m

and-Line
Utilities

IV
APIs and Connectors

This part of the book is a complete reference to database interaction using the most
popular languages used with MySQL. Libraries have been created for each language
that allow you to connect to a MySQL database and issue SQL statements against
it. These permit MySQL to be a backend to other programs or web sites and to hide
SQL behind domain-specific, friendly interfaces.

17
C API

This chapter covers the C API provided by MySQL. The first part provides a basic
tutorial on how to connect to MySQL and how to query MySQL with C and the C
API. Following the tutorial is an alphabetical listing of MySQL functions in the C
API with explanations and, in most cases, examples. At the end of this chapter is a
listing of special data types for the C API. For the examples in this chapter, I have
used a database for a fictitious computer support business. The database contains
one table with client work requests (workreq) and another with client contact
information (clients).

Using C with MySQL
This section presents the basic tasks you need to use the C API.

Connecting to MySQL
When writing a C program to interact with MySQL, you first need to prepare vari-
ables that will store data necessary for a MySQL connection and query results, and
then you need to establish a connection to MySQL. To do this easily, you need to
include a couple of C header files (as shown in the code example): stdio.h for basic
C functions and variables, and mysql.h for special MySQL functions and definitions.
These two files come with C and MySQL, respectively; you shouldn’t have to down-
load them from the Web if both were installed properly:

 #include <stdio.h>
 #include "/usr/include/mysql/mysql.h"
 int main(int argc, char *argv[])
 {
 MYSQL *mysql;
 MYSQL_RES *result;
 MYSQL_ROW row;

405

Because stdio.h is surrounded by < and > symbols, C is instructed to look for it in
the default location for C header files (e.g., /usr/include), or in the user’s path. Be-
cause mysql.h may not be in the default locations, the absolute path is given with
the aid of double quotes. An alternative here would be <mysql/mysql.h> because the
header file is in a subdirectory of the default directory.

Within the standard main function just shown, variables needed for the connection
to MySQL are prepared. The first line creates a pointer to the MYSQL structure stored
in the mysql variable. The next line defines and names a results set based on the
definitions for MYSQL_RES in mysql.h. The results are stored in the result array, which
will be an array of rows from MySQL. The third line of main uses the definition for
MYSQL_ROW to establish the row variable, which will be used later to contain an array
of columns from MySQL.

Having included the header files and set the initial variables, we can now set up an
object in memory for interacting with the MySQL server using mysql_init():

if(mysql_init(mysql) == NULL)
 {
 fprintf(stderr, "Cannot initialize MySQL");
 return 1;
 }

The if statement here is testing whether a MySQL object can be initialized. If the
initialization fails, a message is printed and the program ends. The mysql_init()
function initializes the MySQL object using the MYSQL structure declared at the be-
ginning of the main function, called mysql by convention. If C is successful in
initializing the object, it will go on to attempt to establish a connection to MySQL:

 if(!mysql_real_connect(mysql, "localhost",
 "user", "password", "db1", 0, NULL, 0))
 {
 fprintf(stderr, "%d: %s \n",
 mysql_errno(mysql), mysql_error(mysql));
 return 1;
 }

The elements of the mysql_real_connect() function here are fairly obvious: first,
the MySQL object is referenced; next, the hostname or IP address; then, the user-
name and password; and finally, the database to use. The three remaining items are
the port number, the Unix socket filename, and a client flag, if any. Passing zeros
and NULL tells the function to use the defaults for these. If the program cannot
connect, it is to print the error message generated by the server to the standard error
stream, along with the MySQL error number (hence the %d format instruction for
displaying digits or a number), and finally a string (%s) containing the MySQL error
message and then a line feed or a newline (\n). The actual values to plug into the
format follow, separated by commas.

The program so far only makes a connection to MySQL. Now let’s look at how you
can add code to the program to run an SQL statement with the C API.

406 | Chapter 17: C API

Querying MySQL
If the MySQL connection portion of the program is successful, the program can
query the MySQL server with a query function such as mysql_query():

 if(mysql_query(mysql, "SELECT col1, col2 FROM table1"))
 {
 fprintf(stderr, "%d: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 }
 else
 {
 result = mysql_store_result(mysql);
 while(row = mysql_fetch_row(result))
 { printf("\%d - \%s \n", row[0], row[1]); }
 mysql_free_result(result);
 }
 mysql_close(mysql);
 return 0;
 }

Incidentally, this excerpt is using mysql_query(), but you could use the
mysql_real_query() function instead. The main difference between the two is that
mysql_real_query() allows the retrieval of binary data, which may not be necessary
but is safer to use. mysql_query() returns zero if it’s successful and nonzero if it’s
not successful. So, if the preceding SQL statement does not succeed in selecting data
from MySQL, an error message will be printed. However, if the query is successful,
the else statement will be executed because the if statement will have received a
value of 0 from mysql_query(). In the else statement block, the first line captures
the results of the query and stores them in memory with the use of the
mysql_store_result() function. Later, the memory will be freed when
mysql_free_result() is issued with the variable name result given.

Before letting go of the data, though, we must loop through each row of the results
set and display the results from each row for the user. We’ll do this with a while
statement and the mysql_fetch_row() function. This function retrieves one row of
the results at a time and, in this particular example program, stores each row in the
row variable. Then the printf statement prints to the screen the value of each field
in the format shown. Notice that each field is extracted by typical array syntax (i.e.,
array [n]). The formatting instructions for printf are enclosed within double
quotes, the same method we used with the fprintf in the if statement earlier in this
section. Once C has gone through each row of the results, it will stop processing
and then free up the buffer of the data, concluding the else statement. This brief
program ends with a mysql_close() call to finish the MySQL session and to dis-
connect from MySQL. The final closing curly brace ends the main function.

To compile the program with the GNU C Compiler (gcc), you can enter something
like the following from the command line:

gcc -o mysql_c_prog mysql_c_prog.c \
 -I/usr/include/mysql -L/usr/lib/mysql -lmysqlclient -lm -lz

Using C with MySQL | 407

C API

Notice that the paths to the MySQL header file and the MySQL data directory are
given as well, and the name of the client library, mysqlclient, is also given. These
paths may be different on your system. When the compiler attempts to compile the
program (here, mysql_c_prog.c), it will check for syntax errors in the code. If it finds
any, it will fail to compile and will display error messages. If it’s successful, the
resulting compiled program (mysql_c_prog) may be executed.

Functions in Alphabetical Order
The bulk of this chapter consists of a list of C API functions in alphabetical order.
Each function is given with its syntax and an explanation. For almost all functions,
an example program or excerpt is provided to show how you can use the function.
To save space, almost all of the excerpts are shown without the lines of code nec-
essary to start a C program and to connect to MySQL, nor those necessary to close
the connection and to end the program. For an example of how you would write
opening and closing lines, see the tutorial in the previous section. The examples in
this section tend to be more succinct and won’t usually include typical error check-
ing. It’s assumed that the reader has a basic understanding of C. For the syntax of
each function, the data type expected is given before each parameter or argument.

mysql_affected_rows(  )
my_ulonglong mysql_affected_rows(MYSQL *mysql)

This function returns the number of rows affected by the most recent query for the current
session. This function is meaningful only for INSERT, UPDATE, and DELETE statements. For
SQL statements that don’t affect rows (e.g., SELECT), this function will return 0. For errors,
it will return –1. Here is an example:

...
mysql_query(mysql,"UPDATE workreq
 SET tech_person_id = '1015'
 WHERE tech_person_id = '1012'");
my_ulonglong chg = mysql_affected_rows(mysql);
printf("Number of requests reassigned: %ul \n", chg);
...

In this example, an UPDATE statement is issued and the number of rows changed is ex-
tracted with the function and stored in the chg variable, which is then printed. For
REPLACE statements, rows that are replaced are counted twice: once for the deletion and
once for the insertion.

mysql_autocommit(  )
my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

Use this function to turn on or off autocommit mode. A value of 1 for the second argu-
ment of this function turns on the server’s autocommit mode. A value of 0 turns it off.
The autocommit causes the server to update the database after each INSERT, UPDATE, or

408 | Chapter 17: C API

DELETE statement, essentially running each in its own transaction. The default is on. Here
is an example:

...
mysql_autocommit(mysql, 0);
...

mysql_change_user(  )
my_bool mysql_change_user(MYSQL *mysql, const char *user,
 const char *password, const char *database)

Use this function to change the current user for the MySQL session to the one given as
the second argument. The password of the new user is given in the third argument. Since
this function will end the current session if successful, it will need to reset the default
database. Therefore, a database that it should use for the new connection is to be given
as the fourth argument. Here is an example:

...
mysql_real_connect(mysql,"localhost","hui","shorty","test","3306",NULL,0);
mysql_select_db(mysql,"workrequests");
...
mysql_change_user(mysql,"russell","password","workrequests");
mysql_query(mysql, "UPDATE workreq
 SET tech_person_id = '1015'
 WHERE tech_person_id = '1012'");
...

In this example, the program begins with one user for running SQL statements, which
are replaced with ellipses. However, for changing a sensitive data column (i.e., the person
assigned to perform the work requests), the user is changed to one who has been given
the proper authorization to access.

mysql_character_set_name(  )
const char *mysql_character_set_name(MYSQL *mysql)

This function returns the name of the default character set in use by the MySQL server.
Here is an example:

...
MYSQL *mysql;
const char *char_set;
mysql = mysql_init(NULL);
mysql_real_connect(mysql,"localhost","russell","my_pwd","test","3306",
 NULL,0);
char_set = mysql_character_set_name(mysql);
printf("Character Set: %s \n", char_set);
...

To get just the character set name, it’s not necessary to select a database. Here are what
the results of running this program might look like:

Character Set: latin1

mysql_character_set_name(  )

Chapter 17: C API | 409

C API

mysql_close(  )
void mysql_close(MYSQL *mysql)

Use this function to close the connection to the MySQL server. It also deallocates the
connection handle pointed to by MYSQL if the handle was allocated automatically by
mysql_init() or mysql_connect(). It does not return a value. Here is an example:

...
mysql_connect(mysql,"localhost","ricky","adams");
...
mysql_close(mysql);
...

mysql_commit(  )
my_bool mysql_commit(MYSQL *mysql)

Use this function to commit the current transaction. After this function is executed,
INSERT, UPDATE, and DELETE statements are written to the database, and you cannot use
the mysql_rollback() function to undo them. The function returns 0 if successful, a non-
zero value if unsuccessful. If mysql_autocommit(mysql, 1) is used previously, this function
does nothing and the return of the function is not relevant. Here is an example:

 mysql_commit(mysql);

mysql_connect(  )
MYSQL *mysql_connect(MYSQL *mysql, const char *host,
 const char *user, cont char *password)

This function is deprecated in favor of mysql_real_connect(), described later in this
chapter.

mysql_create_db(  )
int mysql_create_db(MYSQL *mysql, const char *database)

This function can be used to create a new database on the MySQL server, with the new
database name given as the second argument. However, this function has been depre-
cated. Instead, a CREATE DATABASE statement should be given with mysql_query() or
mysql_real_query().

mysql_data_seek(  )
void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Use this function in conjunction with mysql_store_result() and a fetch function such
as mysql_fetch_row() to change the current row being fetched to the one specified in the
second argument of this function. Here is an example:

...
mysql_query(mysql, "SELECT client_id, client_name
 FROM clients ORDER BY start_date");
result = mysql_store_result(mysql);

mysql_close(  )

410 | Chapter 17: C API

num_rows = mysql_num_rows(result);
mysql_data_seek(result, (num_rows - 8));
while((row = mysql_fetch_row(result)) != NULL)
 { printf("%s (%s) \n", row[1], row[0]); }
...

This program excerpt retrieves a list of client names along with their respective IDs. Using
the mysql_data_seek() function in conjunction with mysql_fetch_row() and a while
statement, the last eight clients who started with the company will be displayed.

mysql_debug(  )
void mysql_debug(const char *debug)

Use this function to set debugging if the client was compiled with debugging. The set of
options used by default is 'd:t:o,logname'. See Table 16-1 at the end of the list of options
for the mysqldump utility in Chapter 16 for an explanation of these flags and others that
may be used. Here is an example:

...
mysql_debug("d:t:o,filename");
...

The filename given could include the path to the log file where debugging information
is to be written.

mysql_drop_db(  )
int mysql_drop_db(MYSQL *mysql, const char *database)

This function may be used to delete the database named in the second argument of the
function from the MySQL server. It returns 0 if successful and a nonzero value if not.
However, this function has been deprecated. Use mysql_query() or
mysql_real_query() with a DROP DATABASE statement instead. Here is an example:

...
mysql_real_connect(mysql,host,user,password,NULL,0,NULL,0);
...
mysql_drop_db(mysql, "db5");
...

This returns a nonzero value if it fails, so a program that uses it should include error
checking for the function.

mysql_dump_debug_info(  )
int mysql_dump_debug_info(MYSQL *mysql)

Use this function to write debugging information about the current connection to the
MySQL server’s log file. It returns 0 if successful and a nonzero value if not. The user
must have administrative privileges. Here is an example:

...
if(!mysql_dump_debug_info(mysql))

mysql_dump_debug_info(  )

Chapter 17: C API | 411

C API

 { printf("Debugging Info. Written. \n"); }
...

mysql_eof(  )
my_bool mysql_eof(MYSQL *result)

Use this function to determine whether the last row of the results set has been fetched.
It returns 0 until end of file is reached and a nonzero value at end of file. This function
has been deprecated. Use mysql_errno() and mysql_error(), or
mysql_more_results(), instead to check for an error indicating that the last row has been
reached.

mysql_errno(  )
unsigned int mysql_errno(MYSQL *mysql)

This function returns the error number for the last function that was run if it failed to
execute. If the last function executed was successful, a value of 0 is returned by this
function. Here is an example:

...
if(mysql_real_connect(mysql,host,"goofy",
 password,database,0,NULL,0) == NULL)
 {
 printf("Error %d \n", mysql_errno(mysql));
 return 1;
 }
...

The program here is attempting to connect to the MySQL server for a user who is not in
the mysql database.

mysql_error(  )
char *mysql_error(MYSQL *mysql)

This function returns the error message for the last function that was run if it failed to
execute. If the last function executed was successful, an empty string is returned by this
function. Here is an example:

...
if(!mysql_real_connect(mysql,host,"goofy",
 password,database,0,NULL,0))
 {
 printf("Error Message: %s \n", mysql_error(mysql));
 return 1;
 }
...

The program here is attempting to connect to the MySQL server with a user who is not
in the mysql database.

mysql_eof(  )

412 | Chapter 17: C API

mysql_escape_string(  )
unsigned int mysql_escape_string(char *destination,
 const char *source,
 unsigned int length)

This function returns a string given as the second argument with special characters es-
caped by adding backslashes in front of them. However, this function is a security
problem and has been deprecated. Use the mysql_real_escape_string() function in-
stead; it does this job properly and safely.

mysql_fetch_field(  )
MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

This function returns a MYSQL_FIELD structure that provides information on a given field
of a results set. If you use it in conjunction with a loop statement, you can extract infor-
mation on each field. Here is an example:

...
MYSQL_FIELD *field;
...
mysql_query(mysql, "SELECT * FROM clients LIMIT 1");
result = mysql_store_result(mysql);
while((field = mysql_fetch_field(result)) != NULL)
 { printf("%s \n", field->name); }
...

The wildcard in the SELECT statement selects all columns in the table. The loop therefore
lists the name of each column. The other possibilities are field->table for the table name
and field->def for the default value of the column.

mysql_fetch_field_direct(  )
MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result,
 unsigned int field_nbr)

This function returns a MYSQL_FIELD structure that provides information on a given field
of a results set referred to in the first argument of the function. The particular field is
given as the second argument. Here is an example:

...
MYSQL_FIELD *field;
...
mysql_query(mysql, "SELECT * FROM clients LIMIT 1");
result = mysql_store_result(mysql);
field = mysql_fetch_field_direct(result, 0);
printf("%s \n", field->name);
...

This function is similar to mysql_fetch_field() except that information on just one
specified field can be obtained. In the example here, the name of the first field (0 being
the first) will be displayed.

mysql_fetch_field_direct(  )

Chapter 17: C API | 413

C API

mysql_fetch_fields(  )
MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

This function returns an array of information about the fields in a results set. Here is an
example:

...
mysql_query(mysql, "SELECT * FROM clients");
result = mysql_store_result(mysql);
num_fields = mysql_field_count(mysql);
MYSQL_FIELD *field;
field = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
 { printf("%u.%s \n", i, &field[i].name); }
...

In addition to the .name key to extract the column name, a program can specify .table
for the table name and .def for the default value of the column.

mysql_fetch_lengths(  )
unsigned long *mysql_fetch_lengths(MYSQL *result)

This function returns the length of each column within a particular row of a results set.
The values returned can vary for each row fetched, depending on the data contained in
the columns. Here is an example:

...
mysql_query(mysql, "SELECT * FROM clients");
result = mysql_store_result(mysql);
row = mysql_fetch_row(result);
unsigned int num_fields = mysql_num_fields(result);
unsigned long *lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
 {
 field = mysql_fetch_field(result);
 printf("%s %lu \n", field->name, lengths[i]);
 }
...

This example retrieves one row of the results and checks the lengths of the fields in that
row. To retrieve each field, the SELECT statement would need to be altered and a while
statement would be wrapped around the for statement to loop through each row.

mysql_fetch_row(  )
MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Use this function to retrieve the next row of a results set. When there are no more rows
to retrieve, the function returns NULL. Here is a fairly complete example using this
function:

#include <stdio.h>
#include <stdlib.h>
#include <mysql/mysql.h>

mysql_fetch_fields(  )

414 | Chapter 17: C API

int main()
 {
 MYSQL *mysql;
 MYSQL_RES *result;
 MYSQL_ROW row;
 MYSQL_FIELD *field;
 int i, num_fields;
 mysql = mysql_init(NULL);
 mysql_real_connect(mysql,"localhost","user","password",
 "workrequests",0,NULL,0);
 mysql_query(mysql,"SELECT * FROM users");
 result = mysql_store_result(mysql);
 num_fields = mysql_field_count(mysql);
 while((row = mysql_fetch_row(result)) != NULL)
 {
 for(i = 0; i < num_fields; i++)
 {
 field = mysql_fetch_field_direct(result, i);
 printf("%s: %s, ", field->name, row[i]);
 }
 printf("\n");
 }
 mysql_free_result(result);
 mysql_close(mysql);
 return 0;
 }

Although this example is a complete program, it’s missing the usual error checking
methods.

mysql_field_count(  )
unsigned int mysql_field_count(MYSQL *mysql)

This function returns the number of columns in a results set. You can also use it to test
whether there was an error in a SELECT query. A SELECT query will return at least one blank
field when there is an error, resulting in a value of 0 for the function. Here is an
example:

...
if(!result)
 {
 if(mysql_field_count(mysql) == 0)
 {
 printf("Error \n");
 return 1;
 }
 }
...

See the entry for the mysql_fetch_row() function earlier in this section for another ex-
ample involving this function.

mysql_field_count(  )

Chapter 17: C API | 415

C API

mysql_field_seek(  )
MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result,
 MYSQL_FIELD_OFFSET offset)

Use this function in conjunction with mysql_fetch_field() to change the current field
being fetched to the one specified in the second argument of this function. The function
returns the offset of the field that was current before the function was invoked. A reference
to the results set must be passed as the first argument. Here is an example:

...
mysql_query(mysql, sql_stmnt);
MYSQL_FIELD_OFFSET offset = 2;
mysql_field_seek(result, offset);
while((field = mysql_fetch_field(result)) != NULL)
 {
 printf("%d: %s \n", mysql_field_tell(result), field->name);
 }
...

Using mysql_field_seek() here and an offset of 2, the first two rows of the results set
are skipped. The mysql_field_tell() function is used to ascertain the index of the field
being displayed within each loop of the while statement. The mysql_field_seek() func-
tion will return the offset prior to invoking the function. If you change the
mysql_field_seek() call in the program to the following, the old_offset variable would
contain a value of 0, the starting point for a row:

...
MYSQL_FIELD_OFFSET old_offset = mysql_field_seek(result, offset);
...

You can use this for recording a point in a results set before moving the pointer. The
program can later return to that point using the old offset.

mysql_field_tell(  )
MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

This function returns the value of the field pointer for the current row in use by a fetch
function such as mysql_fetch_field(). The field pointer starts at 0 for the first field when
a row is retrieved and advances by one as each field is retrieved in sequential order. See
mysql_field_seek() earlier in this section for an example of this function.

mysql_free_result(  )
void mysql_free_result(MYSQL_RES *result)

Use this to free memory allocated by a function such as mysql_store_result() in which
a MYSQL_RES element was employed to store a results set. Here is an example:

...
result = mysql_query(mysql, sql_stmnt);
...
mysql_free_result(result);
...

mysql_field_seek(  )

416 | Chapter 17: C API

Not freeing allocated memory or attempting to access allocated memory after it’s freed
can cause problems.

mysql_get_client_info(  )
char *mysql_get_client_info(void)

This function returns the client library version. Here is an example:

...
const char *info;
info = mysql_get_client_info();
printf("Client Library Version: %s \n", info);
...

mysql_get_character_set_info(  )
void mysql_get_character_set_info(MYSQL *mysql, MY_CHARSET_INFO *cs)

This function returns the default character set information for the database given. It uses
the MY_CHARSET_INFO structure, so the information may be retrieved with extensions like
so:

...
if (!mysql_set_character_set(mysql, "utf8"))
{
 MY_CHARSET_INFO ch_set;
 mysql_get_character_set_info(mysql, &ch_set);
 printf("Character Set: %s\n", ch_set.name);
 printf("Collation: %s\n", ch_set.csname);
 printf("Minimum Length for Multibyte Character: %d\n", ch_set.mbminlen);
 printf("Maximum Length for Multibyte Character: %d\n", ch_set.mbmaxlen);
 printf("Comment: %s\n", ch_set.comment);
 printf("Directory: %s\n", ch_set.dir);
}
...

Here are the results of this code excerpt:

Character Set: utf8_general_ci
Collation: utf8
Minimum Length for Multibyte Character: 1
Maximum Length for Multibyte Character: 3
Comment: UTF-8 Unicode
Directory: (null)

mysql_get_client_version(  )
unsigned long *mysql_get_client_version(void)

This function returns the client library version in a numeric format. For example, for
version 4.1.7, the function will return 40107. Here is an example:

...
unsigned long version;
version = mysql_get_client_version();

mysql_get_client_version(  )

Chapter 17: C API | 417

C API

printf("Client Version: %d \n", version);
...

mysql_get_host_info(  )
char *mysql_get_host_info(MYSQL *mysql)

This function returns the hostname and the connection type for the current connection.
Here is an example:

...
MYSQL *mysql;
mysql = mysql_init(NULL);
mysql_real_connect(mysql,"localhost","marie","password",
 NULL,0,NULL,0);
printf("Host Info: %s \n", mysql_get_host_info(mysql));
mysql_close(mysql);
...

The results of this program excerpt will look something like the following:

Host Info: Localhost via UNIX socket

mysql_get_proto_info(  )
unsigned int mysql_get_proto_info(MYSQL *mysql)

This function returns the protocol version for the current connection. Here is an example:

...
MYSQL *mysql;
mysql = mysql_init(NULL);
mysql_real_connect(mysql,"localhost","root","password",
 NULL,0,NULL,0);
printf("Protocol: %u \n", mysql_get_proto_info(mysql));
mysql_close(mysql);
...

mysql_get_server_info(  )
char *mysql_get_server_info(MYSQL *mysql)

This function returns a string containing the version of MySQL running on the server for
the current connection. Here is an example:

...
MYSQL *mysql;
mysql = mysql_init(NULL);
mysql_real_connect(mysql,"localhost","root","password",
 NULL,0,NULL,0);
printf("Server Version: %s \n", mysql_get_server_info(mysql));
mysql_close(mysql);
...

mysql_get_host_info(  )

418 | Chapter 17: C API

mysql_get_server_version(  )
unsigned long mysql_get_server_version(MYSQL *mysql)

This function returns the version of the server for the current connection in a numeric
format. For example, for version 4.1.7, the function will return 40107. Here is an
example:

...
MYSQL *mysql;
mysql = mysql_init(NULL);
mysql_real_connect(mysql,"localhost","root","password",
NULL,0,NULL,0);
printf("Server Version: %ul \n",
 mysql_get_server_version(mysql));
mysql_close(mysql);
...

mysql_get_ssl_cipher(  )
const char *mysql_get_ssl_cipher(MYSQL *mysql)

This function returns a string with the name of the SSL cipher that was used for the
connection given. NULL is returned if there was no cipher used. This function was added
as of version 5.1.11 of MySQL. Here is an example:

...
const char *cipher_name;
cipher_name = mysql_get_ssl_cipher();
printf("Name of Cipher: %s \n", cipher_name);
...

mysql_hex_string(  )
unsigned long mysql_hex_string(char *to, const char *from, unsigned long length)

This function translates a hexadecimal string to a format that can be used in an SQL
statement. The hexadecimal string is to be given in the from position or variable of the
function. The results are saved to the to variable named, and terminated with a NULL
byte. The length is the length of bytes of the from value. The to variable needs to be the
length times 2 plus 1 in length.

mysql_info(  )
char *mysql_info(MYSQL *mysql)

This function returns a string containing information provided by MySQL when certain
SQL statements are executed. This function works with only five types of SQL state-
ments: INSERT INTO...SELECT..., INSERT INTO... VALUES..., LOAD DATA INFILE, ALTER
TABLE, and UPDATE. For all other statements, this function typically returns NULL. Here
is an example:

...
mysql_query(mysql, "UPDATE clients
 SET telephone_areacode = '985'

mysql_info(  )

Chapter 17: C API | 419

C API

 WHERE city = 'Hammond'");
printf("Query Info: %s \n", mysql_info(mysql));
...

The results of this program excerpt will look like the following:

Query Info: Rows matched: 3 Changed: 3 Warnings: 0

mysql_init(  )
MYSQL *mysql_init(MYSQL *mysql)

This function optionally allocates, and then initializes, a MYSQL object suitable for con-
necting to a database server and subsequently performing many of the other operations
described in this chapter. If the function’s parameter is NULL, the library allocates a new
object from the heap; otherwise, the user’s pointed-to local MYSQL object is initialized.

The return value is a pointer to the object, however obtained, and a NULL indicates a
failure of allocation or initialization. Calling mysql_close() with this pointer not only
releases the connection-related resources, but also frees the object itself if the library had
allocated it in the first place.

It’s generally safer to allow the library to allocate this object rather than to do so yourself.
It avoids hard-to-debug complications that can arise if certain compiler options are not
in effect while building the application as they were when building the library.

Although this function prepares a handle for a database connection, no connection is
attempted. Here is an example:

...
MYSQL *mysql;
if(mysql_init(mysql) == NULL)
 {
 printf("Could not initialize MySQL object. \n");
 return 1;
 }
...

mysql_insert_id(  )
my_ulonglong mysql_insert_id(MYSQL *mysql)

This function returns the identification number issued to the primary key of the last
record inserted using INSERT in MySQL for the current connection. This works provided
the column utilizes AUTO_INCREMENT and the value was not manually set. Otherwise, a
value of 0 is returned. Here is an example:

...
const char *sql_stmnt = "INSERT INTO workreq
 (req_date, client_id, description)
 VALUES(NOW(), '1000', 'Net Problem')";
mysql_query(mysql, sql_stmnt);
my_ulonglong wr_id = mysql_insert_id(mysql);
printf("Work Request ID: %ld \n", wr_id);
...

mysql_init(  )

420 | Chapter 17: C API

mysql_kill(  )
int mysql_kill(MYSQL *mysql, unsigned long identifier)

Use this function to terminate a thread on the server. The thread identifier is passed as
the second argument to the function. If you’re attempting to kill the current connection,
you can use the mysql_thread_id() function with the session handle. Here is an example:

...
if(!mysql_kill(mysql, mysql_thread_id(mysql)))
 { printf("Terminated Current Thread. \n"); }
...

To kill a thread other than the current one, you can use the mysql_list_processes()
function to list all threads to determine which one to terminate.

mysql_library_end(  )
void mysql_library_end(void)

Use this function to close the MySQL library after disconnecting from the server. It can
free memory and can be used with either the normal client library or the embedded server
library. It’s used in conjunction with mysql_library_init().

mysql_library_init(  )
int mysql_library_init(int argc, char **argv, char **groups)

Use this function to initialize the MySQL library and any related libraries and systems
before making any other MySQL function calls. It can be used with both the normal
client library or the embedded server library. This function is used within a multithreaded
environment. Otherwise, it’s not necessary and mysql_init() is sufficient. When fin-
ished, use mysql_library_end() to close the library. This function returns zero if
successful, nonzero if not.

Here is an example:

...
static char *server_args[] = {
 "--datadir='/data'",
 "--key_buffer_size=32M"
};
static char *server_groups[] = {
 "embedded",
 "server",
 (char *)NULL
};
int main(int argc, char *argv[]) {
 if(mysql_library_init(sizeof(server_args) / sizeof(char *),
 server_args, server_groups)) {
 fprintf(stderr, "Cannot initialize MySQL library \n");
 return 1;
 }
...
mysql_library_end();

mysql_library_init(  )

Chapter 17: C API | 421

C API

...
}

mysql_list_dbs(  )
MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

This function returns a results set containing a list of databases found for the current
connection. An expression may be given to select databases whose names match a certain
pattern. The % or _ characters may be used as wildcards. If NULL is given for the second
argument, the names of all databases on the server will be selected in the results set. Here
is an example:

...
MYSQL_RES *result;
MYSQL_ROW row;
...
result = mysql_list_dbs(mysql, NULL);
while((row = mysql_fetch_row(result)) != NULL)
 { printf("%s \n", row[0]); }
mysql_free_result(result);
...

This excerpt extracts a list of databases from the server using the mysql_list_dbs()
function and stores the results. Using the mysql_fetch_row() function, each row of the
results set is stored temporarily for printing. To extract a list of databases with “work”
in the name, replace NULL with "%work%". As with all results sets, release the resources
with mysql_free_result() when finished.

mysql_list_fields(  )
MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table,
 const char *wild)

This function returns a results set containing a list of fields found for the table given as
the second argument of the function. An expression may be given as the third argument
to select fields whose names match a certain pattern. The % or may be used as wildcards.
If NULL is given for the third argument, all fields for the table are returned. The results
set must be freed when finished.

Here is an example:

...
result = mysql_list_fields(mysql, "stores", "s%");
num_rows = mysql_num_rows(result);
printf("Rows: %d \n", num_rows);
while((row = mysql_fetch_row(result)) != NULL)
 {
 for(i = 0; i < num_rows; i++)
 { printf("%s \n", row[i]); }
 }
mysql_free_result(result);
...

mysql_list_dbs(  )

422 | Chapter 17: C API

mysql_list_processes(  )
MYSQL_RES *mysql_list_processes(MYSQL *mysql)

This function returns a results set containing a list of MySQL server processes or server
threads found for the handle given as the argument of the function.

Here is an example:

...
result = mysql_list_processes(mysql);
while((row = mysql_fetch_row(result)) != NULL)
 {
 printf("Thread ID: %s \n", row[0]);
 printf("User: %s, Host: %s \n", row[1], row[2]);
 printf("Database: %s, Command: %s \n", row[3], row[4]);
 printf("Time: %s, State: %s, Info: %s \n\n",
 row[5],row[6],row[7]);
 }
mysql_free_result(result);
...

Using the mysql_fetch_row() function, each row of the results set is read and each field
is displayed with its related label. The results are the same as the SHOW PROCESSES query
in MySQL. It’s important to run the mysql_free_result() function when finished with
a results set, as shown here.

mysql_list_tables(  )
MYSQL_RES *mysql_list_tables(MYSQL *mysql,
 const char *expression)

This function returns a results set containing a list of tables in the currently selected
database. An expression may be given as the second argument of the function to select
tables whose names match a certain pattern. The % or _ may be used as wildcards. If
NULL is given for the second argument, all tables in the database will be returned. Here
is an example:

...
MYSQL_RES *result;
MYSQL_ROW row;
...
result = mysql_list_tables(mysql, "w%");
while((row = mysql_fetch_row(result)) != NULL)
 { printf("%s \n", row[0]); }
mysql_free_result(result);
...

This excerpt extracts a list of tables beginning with the letter “w” using the
mysql_list_tables() function and stores the results in the result variable. Using the
mysql_fetch_row() function, each row of the results set is stored temporarily in the
row variable for printing.

mysql_list_tables(  )

Chapter 17: C API | 423

C API

mysql_more_results(  )
my_bool mysql_more_result(MYSQL *mysql)

Use this function to determine whether more results remain in a results set when using
the mysql_next_result() function to retrieve data. It returns 1 if there are more results,
and 0 if not.

mysql_next_result(  )
int mysql_next_result(MYSQL *mysql)

Use this function to read the next row of data from a results set. It returns 0 if successful
and if there are more results to retrieve, and –1 if it was successful in retrieving data, but
there are no further rows to retrieve. It returns an error (or a value greater than 0) if it’s
unsuccessful because the results set was not loaded with the data. You can use the
mysql_more_results() function to check for more results before invoking this function.

mysql_num_fields(  )
unsigned int mysql_num_fields(MYSQL_RES *result)

This function returns the number of fields in each row of a results set. It is similar to
mysql_field_count() except that that function operates on the MYSQL handle and not the
results set. Here is an example:

...
unsigned int num_fields = mysql_num_fields(result);
...

See mysql_fetch_lengths() earlier in this section for a more elaborate example that uses
this function.

mysql_num_rows(  )
int mysql_num_rows(MYSQL_RES *result)

This function returns the number of rows in the results set when issued after the
mysql_store_result() function. When issued after mysql_use_result(), it returns the
number of rows already fetched. Here is an example:

...
my_ulonglong num_rows = mysql_num_rows(result);
...

See mysql_list_fields() earlier in this section for a more elaborate example that uses
this function.

mysql_options(  )
int mysql_options(MYSQL *mysql, enum mysql_option option,
 const char *value)

Use this function to set connection options before a connection has been established
using a function such as mysql_real_connect() or mysql_connect(). This function may

mysql_more_results(  )

424 | Chapter 17: C API

be used multiple times to set additional options before connecting. For the second
argument of the function, you may give specific options for the connection. You may
give a value associated with the chosen option for the third argument. Here is an example:

...
mysql = mysql_init(NULL);
mysql_options(mysql, MYSQL_OPT_COMPRESS, NULL);
mysql_real_connect(mysql,host,user,password,NULL,0,NULL,0);
...

The options permitted for the second argument of the function follow, along with the
type of variable or value for the third argument in parentheses and a brief explanation of
each:

MYSQL_OPT_CONNECT_TIMEOUT (unsigned int *)
This option sets the number of seconds for connection timeout.

MYSQL_OPT_READ_TIMEOUT (unsigned int *)
This option sets the timeout for reads from a Windows MySQL server.

MYSQL_OPT_WRITE_TIMEOUT (unsigned int *)
This option sets the timeout for writes to a Windows MySQL server.

MYSQL_OPT_COMPRESS (NULL)
This option compresses communications between the client and server if supported
by both.

MYSQL_OPT_LOCAL_INFILE (pointer to unsigned integer)
This option runs on a file pointed to in the argument. If the pointer is NULL, the
LOAD LOCAL INFILE statement is run when connecting.

MYSQL_OPT_NAMED_PIPE (NULL)
This option instructs the client to use named pipes for connecting to a Windows
NT MySQL server.

MYSQL_INIT_COMMAND (char *)
This option instructs the server on connecting to execute an initial SQL statement
given as the third argument to the function.

MYSQL_READ_DEFAULT_FILE (char *)
This option instructs the server to read a configuration text file named in the third
argument of the function instead of the default my.cnf configuration file for the
client.

MYSQL_READ_DEFAULT_GROUP (char *)
This option instructs the server to read a server section or group (e.g.,
[special_client]) from either the default my.cnf configuration file or the one speci-
fied by the MYSQL_READ_DEFAULT_FILE option to this function.

MYSQL_OPT_PROTOCOL (unsigned int *)
This option specifies the default protocol for communicating with the server.

MYSQL_SHARED_MEMORY_BASE_NAME (char *)
This option names the shared memory object for connecting to the server.

mysql_ping(  )
int mysql_ping(MYSQL *mysql)

mysql_ping(  )

Chapter 17: C API | 425

C API

Use this function to determine whether the current MYSQL connection is still open. If it’s
not open, the function attempts to reestablish the connection. If the connection is open
or is reestablished, zero is returned. Otherwise, a nonzero value is returned. Here is an
example:

...
MYSQL *mysql;
int main()
{
...
 test_connection();
 mysql_close(mysql);
 test_connection();
}
test_connection()
{
 int live;
 live = mysql_ping(mysql);
 if(live){ printf("Connection not alive. \n"); }
 else { printf("Connection alive. \n"); }
}

This excerpt employs a user function to test for a MySQL connection.

mysql_query(  )
int mysql_query(MYSQL *mysql, const char *query)

Use this function to execute the SQL query given as the second argument of the function.
Only one SQL statement may be given. For queries containing binary data, use the
mysql_real_query() function instead. This function will return zero if successful, and a
nonzero value if not. Here is an example:

...
MYSQL *mysql;
MYSQL_RES *result;
MYSQL_ROW row;
MYSQL_FIELD *field;
int i, num_fields;
...
mysql = mysql_init(NULL);
mysql_real_connect(mysql,host,user,password,database,0,NULL,0);
const char *sql_stmnt = "SELECT * FROM workreq";
mysql_query(mysql, sql_stmnt, bytes);
result = mysql_store_result(mysql);
num_fields = mysql_field_count(mysql);
while((row = mysql_fetch_row(result)) != NULL)
 {
 for(i = 0; i < num_fields; i++)
 { printf("%s, ", row[i]); }
 printf("\n");
 }
mysql_free_result(result);
mysql_close(mysql);
...

mysql_query(  )

426 | Chapter 17: C API

Although this example is fairly complete, the lines declaring the variables containing the
connection information are not shown. See the example for the msyql_real_connect()
function next for those details. The SQL statement in the example is given through a
variable, but it could be given within the function if enclosed in double quotes. The results
of the query are stored in the result variable by way of the mysql_store_result() func-
tion. Incidentally, it’s important to free the memory allocated for the results with the
mysql_free_result() function when finished.

mysql_real_connect(  )
MYSQL *mysql_real_connect(MYSQL *mysql, const char *host,
 const char *user, const char *password,
 const char *user, const char *password,
 const char *database, uint port,
 const char *user, const char *password,
 const char *database, uint port,
 const char *unix_socket, uint flag)

Use this to establish a connection to a MySQL server. The MYSQL structure created by
mysql_init() is given as the first argument to the function. The hostname, username,
and user’s password for connecting to the server are given next. The name of the database
is given as the fifth argument. The port, the socket file path and name for Unix systems,
and any client flags are given as the sixth, seventh, and eighth arguments, respectively.
For any parameter requiring a char pointer, a value of NULL may be given to instruct
the server to use the default setting. For unsigned int variables, a value of 0 may be given
to rely on the default value. Here is an example:

#include <stdio.h>
#include <stdlib.h>
#include <mysql/mysql.h>
int main(void)
{
 MYSQL *mysql;
 MYSQL_RES *result;
 MYSQL_ROW row;
 MYSQL_FIELD *field;
 const char *host = "localhost";
 const char *user = "root";
 const char *password = "my_password";
 const char *database = "workrequests";
 unsigned int port = 3306;
 const char *socket = NULL;
 unsigned long flag = 0;
 int i, num_fields;
 mysql = mysql_init(NULL);
 mysql_real_connect(mysql,host,user,password,database,
 port,socket,flag);
 const char *sql_stmnt = "SELECT * FROM stores";
 ulong bytes = strlen(sql_stmnt);
 mysql_real_query(mysql, sql_stmnt, bytes);
 result = mysql_store_result(mysql);
 num_fields = mysql_field_count(mysql);
 while((row = mysql_fetch_row(result)) != NULL)
 {

mysql_real_connect(  )

Chapter 17: C API | 427

C API

 for(i = 0; i < num_fields; i++)
 { printf("%s, ", row[i]); }
 printf("\n");
 }
 mysql_free_result(result);
 mysql_close(mysql);
 return 0;
}

This example is fairly complete. Each variable is declared at the beginning based on the
type called for by the function, along with its respective values. Without having to dis-
connect and reconnect, you can change the database using the mysql_select_db()
function.

mysql_real_escape_string(  )
unsigned long mysql_real_escape_string(MYSQL *mysql,
 char *result_string,
 char *result_string,
 char *original_string,
 char *result_string,
 char *original_string,
 unsigned long src length)

This function writes a string given as the third argument to a string named in the second
argument, but with special characters escaped by adding backslashes in front of them.
The number of bytes to be copied from the source string is given for the fourth argument.
When declaring the two strings, the destination string must be twice the size of the source
string, plus one byte. Here is an example:

...
const char client_name[] = "O'Reilly Media";
ulong bytes = strlen(client_name);
char client_name_esc[(2 * bytes)+1];
mysql_real_escape_string(mysql, client_name_esc,
 client_name, bytes);
char *sql_stmnt;
sprintf(sql_stmnt, "INSERT INTO clients (client_name)
 VALUES('%s')", client_name_esc);
mysql_real_query(mysql, sql_stmnt, strlen(sql_stmnt));
...

After establishing the initial variable for storing the client’s name, the C function
strlen() is used to determine the number of bytes contained in the string. Next, the
second variable to hold the client’s name is declared with a size twice the size of the first
variable, plus one byte. The mysql_real_escape_string() function is run with both var-
iables and the size of the first. In this example, the function will place a backslash in front
of the apostrophe in the client’s name so as not to cause an error when the query is run
later. Using the C function sprintf(), the escaped client name is inserted into the SQL
statement given. Finally, the SQL statement is run with mysql_real_query().

mysql_real_query(  )

mysql_real_escape_string(  )

428 | Chapter 17: C API

int mysql_real_query(MYSQL *mysql, const char *query,
 unsigned int length)

Use this function to execute the SQL query given as the second argument of the function.
Only one SQL statement may be given. Unlike mysql_query(), this function can execute
queries containing binary data. Because of this feature, the number of bytes contained
in the query needs to be given for the third argument. This can be determined with the
C function strlen(). The function will return zero if successful, and a nonzero value if
not. Here is an example:

...
mysql = mysql_init(NULL);
mysql_real_connect(mysql,host,user,password,database,port,socket,flag);
const char *sql_stmnt = "SELECT * FROM stores";
ulong bytes = strlen(sql_stmnt);
mysql_real_query(mysql, sql_stmnt, bytes);
result = mysql_store_result(mysql);
num_fields = mysql_field_count(mysql);
while((row = mysql_fetch_row(result)) != NULL)
 {
 for(i = 0; i < num_fields; i++)
 { printf("%s, ", row[i]); }
 printf("\n");
 }
...

In this example, the number of bytes of the variable containing the SQL statement is
determined with the C function strlen() and is stored in a separate variable called
bytes. In turn, the bytes variable is given as the third argument to the
mysql_real_query() function. As an alternative, strnlen(sql_stmnt) could be given as
the third argument instead.

mysql_reload(  )
int mysql_reload(MYSQL *mysql)

This function instructs the MySQL server to reload the grants table. It returns zero if
successful and a nonzero value if not. This function has been deprecated. Use
mysql_query() or mysql_real_query() with a FLUSH PRIVILEGES statement instead.

mysql_refresh(  )
int mysql_refresh(MYSQL *mysql, unsigned int options)

Use this function to flush caches and tables. It can also be used to reset a replication
server. It returns a value of zero if successful, and nonzero if not. The RELOAD privilege is
required to use it. Several options may be given: REFRESH_GRANT, REFRESH_LOG,
REFRESH_TABLES, REFRESH_HOSTS, REFRESH_MASTER, REFRESH_SLAVE, REFRESH_STATUS, and
REFRESH_THREADS. There are four possible errors that are returned:
CR_COMMANDS_OUT_OF_SYNC, CR_SERVER_GONE_ERROR, CR_SERVER_LOST, or CR_UNKNOWN_ERROR.
Here is an example:

...
mysql_refresh(MYSQL mysql, unsigned int REFRESH_TABLES);
...

mysql_refresh(  )

Chapter 17: C API | 429

C API

mysql_rollback(  )
my_bool mysql_rollback(MYSQL *mysql)

Use this function to roll back or reverse the current transaction. This will not work if the
mysql_commit() function has already been called for the transaction. The function re-
turns zero if successful, and a nonzero value if not.

mysql_row_seek(  )
MYSQL_ROW_OFFSET mysql_row_seek(MYSQL *result,
 MYSQL_ROW_OFFSET offset)

Use this function to move the pointer of a results set to the row given as the second
argument of the function. The pointer given must use the MYSQL_ROW_OFFSET structure.
Use a function such as mysql_row_tell() to determine the offset in the proper format.
Here is an example:

...
 MYSQL_ROW_OFFSET special_location;
 while((row = mysql_fetch_row(result)) != NULL)
 {
 if(strcmp(row[1], "1000") == 0)
 {
 special_location = mysql_row_tell(result);
 continue;
 }
 if(!mysql_more_results(mysql))
 {
 mysql_row_seek(result, special_location);
 printf("%s (%s) \n", row[1], row[0]);
 break;
 }
 printf("%s (%s) \n", row[1], row[0]);
 }
...

In this example, a list of clients is retrieved, but the developer wants the row with a client
identification number of 1000 to be displayed last. So, an if statement is used to check
for the special record. When it finds the row it’s looking for, the mysql_row_tell() func-
tion is used to make a note of the point in the results set in which it was found. The
remainder of the while statement in which the row is to be printed is then skipped. Using
the mysql_more_results() function, another if statement watches for the end of the
results set. If it determines that there are no more rows in the results set to print, it will
move the pointer back to the special client using the mysql_row_seek() function and the
pointer saved with mysql_row_tell(), print out that particular row’s data, and then end
the while statement with break.

mysql_row_tell(  )
MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

This function returns the pointer for the current position in a results set generated from
the mysql_store_result() function. The value obtained can be used with

mysql_rollback(  )

430 | Chapter 17: C API

mysql_row_seek() for changing the pointer while fetching rows. See the
mysql_row_seek() function earlier in this section for an example of its use.

mysql_select_db(  )
int mysql_select_db(MYSQL *mysql, const char *database)

Use this function to select a different database for the current connection. The name of
the new database to use is given as the second argument of the function. It returns zero
if successful, and a nonzero value if not. Here is an example:

...
mysql = mysql_init(NULL);
mysql_real_connect(mysql,"localhost","ricky","adams",NULL,NULL,NULL,0);
mysql_select_db(mysql,"workrequests");
...

mysql_set_character_set(  )
int mysql_set_character_set(MYSQL *mysql, const char *char_set)

Use this function to set the default character set of a connection to the character set given.
It returns zero if successful, and a nonzero value if not. Here is an example:

...
if (!mysql_set_character_set(mysql, 'utf8'))
{
 printf("Character Set: %s", mysql_character_set_name(mysql));
}
...

mysql_set_local_infile_default(  )
void mysql_set_local_infile_default(MYSQL *mysql)

Use this function to set the handler for LOAD LOCAL DATA INFILE functions to the defaults
necessary for internal use of the C client library. It is normally called automatically by
the C library.

mysql_set_local_infile_handler(  )
void mysql_set_local_infile_handler(MYSQL *mysql,
 int (*local_infile_init)(void **, const char *, void *),
 int (*local_infile_read)(void *, char *, unsigned int),
 void (*local_infile_end)(void *),
 int (*local_infile_error)(void *, char*, unsigned int),
 void *userdata)

Use this function to enable callbacks that you will use with the LOAD DATA LOCAL
INFILE statement. The callback functions must be created first:

...
int local_infile_init(void **ptr, const char *file_name, void *user_info);
int local_infile_read(void *ptr, char *buffer, unsigned int buffer_len);
void local_infile_end(void *ptr);

mysql_set_local_infile_handler(  )

Chapter 17: C API | 431

C API

int local_infile_error(void *ptr, char *error_msg, unsigned int
 error_msg_len);
...

mysql_set_server_option(  )
int mysql_set_server_option(MYSQL *mysql,
 enum mysql_set_option option)

Use this function to enable or disable a server option. The only options currently available
are MYSQL_OPTION_MULTI_STATEMENTS_ON and MYSQL_OPTION_MULTI_STATEMENTS_OFF, to en-
able and disable multiple SQL statements, respectively. It returns 0 if successful, and a
nonzero value if not.

mysql_shutdown(  )
int mysql_shutdown(MYSQL *mysql)

Use this function to shut down the MySQL server. It returns zero if successful, and a
nonzero value if not. Here is an example:

...
if(!mysql_ping(mysql))
 {
 mysql_shutdown(mysql);
 printf("Shutting down server \n");
 if(mysql_ping(mysql))
 { printf("MySQL server is down.\n"); }
 }
...

The mysql_ping() function here checks whether the server is alive. Recall that a zero,
not a TRUE, return signifies a live server.

mysql_sqlstate(  )
const char *mysql_sqlstate(MYSQL *mysql)

This function returns the SQLSTATE error code for the last error that occurred for the
current connection. The string will contain five characters and is terminated with a NULL
character. A lack of error is signified by 00000 and unmapped errors by HY000.

mysql_ssl_set(  )
my_bool mysql_ssl_set(MYSQL *mysql,
 const char *key_path,
 const char *cert_path, const char *ca_path,
 const char *pem_path, const char *cipher)

This function makes a secure connection with SSL. OpenSSL must be enabled in order
to use it. Call it before calling mysql_real_connect(). This function returns zero unless
there is a problem, in which case an error will be returned when
mysql_real_connect() is called. The key_path is the path to the key to be used;
cert_path is the path to the certificate file; ca_path is the file path of the certificate au-
thority file; pem_path is the directory with trusted SSL CA certificates, which are in the

mysql_set_server_option(  )

432 | Chapter 17: C API

pem format; and finally, cipher contains a list of ciphers permitted for SSL encryption.
You can give NULL for parameters that don’t apply.

mysql_stat(  )
char * mysql_stat(MYSQL *mysql)

This function returns a character string containing information about the status of the
MySQL server for the current connection. Here is an example:

...
printf("Server Status \n %s \n", mysql_stat(mysql));
...

mysql_store_result(  )
MYSQL_RES *mysql_store_result(MYSQL *mysql)

Use this function to read and store all of a results set in a MYSQL_RES structure. When
finished with these results, it’s necessary to use the mysql_free_result() function to free
the memory allocated for storing the results set. The function returns NULL if it’s un-
successful or if the query is not the type that would return any results (e.g., an UPDATE
statement). Here is an example:

...
mysql = mysql_init(NULL);
mysql_real_connect(mysql,"localhost","user","password",
 "workrequests",0,NULL,0);
mysql_query(mysql,"SELECT * FROM users");
result = mysql_store_result(mysql);
num_fields = mysql_field_count(mysql);
while((row = mysql_fetch_row(result)) != NULL)
 {
 for(i = 0; i < num_fields; i++)
 {
 field = mysql_fetch_field_direct(result, i);
 printf("%s: %s, ", field->name, row[i]);
 }
 printf("\n");
 }
mysql_free_result(result);
...

See the example for the mysql_fetch_row() function earlier in this chapter for an alter-
native method.

mysql_thread_end(  )
void mysql_thread_end(void)

Use this function before calling free memory used by mysql_thread_init(). It returns
nothing. It isn’t automatically called. Here is an example:

...
if(mysql_thread_safe())
 { printf("Safe Environment \n"); }

mysql_thread_end(  )

Chapter 17: C API | 433

C API

else{ printf("Unsafe Environment \n"); }
...

mysql_thread_id(  )
unsigned long mysql_thread_id(MYSQL *mysql)

This function returns the thread identifier number for the current connection to MySQL.
Thread identifiers can change if a connection is closed or restarted. Here is an example:

...
int thread = mysql_thread_id(mysql);
printf("Thread ID: %d \n", thread);
...

mysql_thread_init(  )
my_bool mysql_thread_init(void)

Use this function to initialize thread specific variables. It’s automatically called by
mysql_connect(), mysql_init(), mysql_library_init(), and mysql_server_init(). It
returns zero if successful, and nonzero if not.

mysql_thread_safe(  )
unsigned int mysql_thread_safe(void)

Use this function to determine whether the MySQL client library is safe for a threaded
environment. It returns 1 if safe, 0 if not. Here is an example:

...
if(mysql_thread_safe())
 { printf("Safe Environment \n"); }
else{ printf("Unsafe Environment \n"); }
...

mysql_use_result(  )
MYSQL_RES *mysql_use_result(MYSQL *mysql)

Use this function to read the results of a query, one row at a time. This works in a way
similar to the mysql_store_result() function, except that function retrieves all of the
data at once and stores it for later use. The mysql_use_result() function is best used
when a results set would be large and speed of processing is a concern. With this function,
processing may be started sooner without having to wait for all of the data to be retrieved.
One drawback to this function is that other queries cannot be run while the results from
the first query are in use. Also, functions such as mysql_data_seek() cannot be used and
the return value from running mysql_num_rows() is altered, because the complete size of
the results set is unknown. Here is an example:

...
mysql_query(mysql, "SELECT * FROM clients");
result = mysql_use_result(mysql);
num_fields = mysql_field_count(mysql);

mysql_thread_id(  )

434 | Chapter 17: C API

while((row = mysql_fetch_row(result)) != NULL)
 {
 for(i = 0; i < num_fields; i++)
 {
 field = mysql_fetch_field_direct(result, i);
 printf("%s: %s, ", field->name, row[i]);
 }
 printf("\n");
}
mysql_free_result(result);
...

See the example for the mysql_fetch_row() function earlier in this chapter for an alter-
native method.

mysql_warning_count(  )
unsigned int mysql_warning_count(MYSQL *mysql)

This function returns the number of warning messages encountered from the previous
query. This can be useful, for instance, when performing multiple INSERT statements with
the IGNORE flag. Here is an example:

...
MYSQL *mysql;
mysql = mysql_init(NULL);
mysql_real_connect(mysql,"localhost","root","password",
 "workrequests",0,NULL,0);
...
unsigned int warnings = mysql_warning_count(mysql);
printf("Number of Warnings: %d \n", warnings);
...

C API Datatypes
Here is a list of C API data types from the mysql.h header file:

MYSQL
A database handle structure created by mysql_init() and released with
mysql_close().

MYSQL_RES
A structure for a results set from an SQL query. This structure is used by fetch
functions and is released with mysql_free_result().

MYSQL_ROW
A structure for holding a row of data from a results set. The data is retrieved
from this structure by the mysql_fetch_row() function.

MYSQL_FIELD
A structure for holding an array of information about a field of a results set. The
array may be set with the mysql_fetch_field() function. The elements include
name, table, and def for the default value.

C API Datatypes | 435

C API

MYSQL_FIELD_OFFSET
Used for recording a pointer location for a results set. The offset value can be
retrieved by the mysql_row_tell() function and deployed with
mysql_row_seek().

my_ulonglong
A variable type for storing the number of rows for functions such as
mysql_affected_rows(), mysql_num_rows(), and mysql_insert_id(). To print
the value of a variable using this type, copy the value to another variable that
uses the unsigned long type.

436 | Chapter 17: C API

18
Perl API

The easiest method of connecting to MySQL with the programming language Perl
is to use the Perl DBI module, which is part of the core Perl installation. You can
download both Perl and the DBI module from CPAN (http://www.cpan.org). I wrote
this chapter with the assumption that the reader has Perl installed along with
DBI.pm and that the reader has a basic knowledge of Perl. Its focus, therefore, is on
how to connect to MySQL, run SQL statements, and effectively retrieve data from
MySQL using Perl and DBI. This chapter begins with a tutorial on using Perl with
MySQL. That’s followed by a list of Perl DBI methods and functions used with
MySQL, with the syntax and descriptions of each and examples for most. The
examples here use the scenario of a bookstore’s inventory.

Using Perl DBI with MySQL
This section presents basic tasks that you can perform with Perl DBI. It’s meant as
a simple tutorial for getting started with the Perl DBI and MySQL.

Connecting to MySQL
To interface with MySQL, first you must call the DBI module and then connect to
MySQL. To make a connection to the bookstore database using the Perl DBI, only
the following lines are needed in a Perl program:

#!/usr/bin/perl -w
use strict;

use DBI;

my $dbh = DBI->connect ("DBI:mysql:bookstore:localhost","russell",
 "my_pwd1234")
 or die "Could not connect to database: "
 . DBI->errstr;

437

http://www.cpan.org

The first two lines start Perl and set a useful condition for reducing programming
errors (use strict). The third line calls the DBI module. The next statement (spread
over more than one line here) sets up a database handle that specifies the database
engine (mysql), the name of the database (bookstore), the hostname (localhost), the
username, and the password. Incidentally, the name of the database handle doesn’t
have to be called $dbh—anything will do. Next, the or operator provides alternate
instructions to be performed if the connection fails. That is, the program will ter-
minate (die) and then display the message in quotes along with whatever error
message is generated by the driver using the errstr method from the DBI—the dot
(.) merges them together.

Executing an SQL Statement
Making a connection to MySQL does little good unless an SQL statement is execu-
ted. Any SQL statement that can be entered from the mysql client can be executed
through the API. Continuing the previous example and using a fictitious database
of a bookstore, let’s look at how an SQL statement that retrieves a list of books and
their authors from a table containing that information might look:

my $sql_stmnt = "SELECT title, author FROM books";

my $sth = $dbh->prepare($sql_stmnt);

$sth->execute();

The first line sets up a variable ($sql_stmnt) to store the SQL statement. The next
line puts together the database handle created earlier and the SQL statement to form
the SQL statement handle ($sth). Finally, the third line executes the statement han-
dle in the notational method of the DBI module.

Capturing Data
Having connected to MySQL and invoked an SQL statement, what remains is to
capture the data results and to display them. MySQL returns the requested data to
Perl in columns and rows, as it would with the mysql client, but without table for-
matting. In Perl, MySQL returns rows one at a time and they are usually processed
by a loop in Perl. Each row is returned as an array, one element per column in the
row. For each array, each element can be parsed into variables for printing and
manipulation before receiving or processing the next row. You can do this with a
while statement like so:

while (my($title, $author) = $sth->fetchrow_array()) {
 print "$title ($author) \n";
}

At the core of this piece of code is the fetchrow_array() method belonging to the
DBI module. As its name suggests, it fetches each row or array of columns, one array
at a time. The while statement executes its block of code repeatedly so long as there
are arrays to process. The value of each element of each array is stored in the two

438 | Chapter 18: Perl API

variables $title and $author—and overwritten with each loop. Then the variables
are printed to the screen with a newline character after each pair.

Disconnecting from MySQL
Once there is no longer a need to maintain a connection to the MySQL database, it
should be terminated. If the connection stays idle for too long, MySQL will even-
tually break the connection on its own. To minimize the drain on system resources,
however, it’s a good practice to have programs end their sessions like so:

$sth->finish();
$dbh->disconnect();

exit();

This first line closes the SQL statement handle. As long as the connection to MySQL
is not broken, as it will be in the second line, more SQL statement handles could be
issued, prepared, and executed without having to reconnect to MySQL. The last line
of code here ends the Perl program.

Temporarily Storing Results
Perhaps a method of retrieving data from MySQL that’s cleaner than the one just
explained involves capturing all of the data in memory for later use in a program,
thus allowing the connection to MySQL to end before processing and displaying the
data. Putting MySQL on hold while processing each row as shown earlier can slow
down a program, especially when dealing with large amounts of data. It’s sometimes
better to create a complex data structure (an array of arrays) and then leave the data
structure in memory, just passing around a reference number to its location in
memory. To do this, instead of using fetchrow_array(), you’d use the
fetchall_arrayref() method. As the method’s name indicates, it fetches all of the
data at once, puts it into an array (an array of rows of data), and returns the array’s
starting location in memory. Here is a Perl program that uses fetchall_arrayref():

#!/usr/bin/perl -w
use strict;
use DBI;

Connect to MySQL and execute SQL statement
my $dbh = DBI->connect("DBI:mysql:bookstore:localhost",
 "username","password")
 || die "Could not connect to database: "
 . DBI->errstr;

my $sql_stmnt = "SELECT title, author
 FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

Retrieve reference number to results
my $books = $sth->fetchall_arrayref();

Using Perl DBI with MySQL | 439

Perl API

$sth->finish();
$dbh->disconnect();

Loop through array containing rows (arrays)

foreach my $book (@$books){
 # Parse each row and display
 my ($title, $author) = @$book;
 print "$title by $author\n";
}

exit();

Instead of embedding the fetch method within a flow control statement, the results
of the SQL statement using fetchall_arrayref() are stored in memory. A reference
number to the location of those results is stored in the $books variable and the con-
nection to MySQL is then closed. A foreach statement is employed to extract each
reference to each array (i.e., each row, each $book) of the complex array. Each re-
cord’s array is parsed into separate variables ($title and $author). The values of the
variables are displayed using print. Incidentally, to learn more about references, see
Randal Schwartz’s book, Intermediate Perl (O’Reilly).

This kind of batch processing of an SQL statement has the added advantage of al-
lowing multiple SQL statements to be performed without them tripping over each
other, while still performing complex queries. For instance, suppose that we want
to get a list of books written by Henry James, ordered by title, then by publisher,
and then by year. This is easy enough in MySQL. Suppose that we also want the
inventory count of each title, bookstore by bookstore, with some address informa-
tion to be displayed between the listing for each store. This becomes a little
complicated. One way to do this is to use a SELECT statement that retrieves a list of
store locations and their relevant information (i.e., their addresses and telephone
numbers) and to save a reference to the data in memory. Next, we could issue an-
other SQL statement to retrieve the book inventory data, and then close the MySQL
connection. With a flow control statement, we could then print a store header fol-
lowed by the store’s relevant inventory information for each book before moving on
to the next store. It would basically look like this:

... # Start program and connect to MySQL

Retrieve list of stores
my $sql_stmnt = "SELECT store_id, store_name,
 address, city, state, telephone
 FROM stores";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();
my $stores = $sth->fetchall_arrayref();
$sth->finish();

Retrieve list of books
my $sql_stmnt = "SELECT title, publisher,
 pub_year, store_id, quantity
 FROM books
 JOIN inventory USING(book_id)

440 | Chapter 18: Perl API

 WHERE author = 'Henry James'
 ORDER BY title, publisher, pub_year";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();
my $books = $sth->fetchall_arrayref();
$sth->finish();
$dbh->disconnect();

foreach my $store (@$stores){

 my ($store_id, $store_name, $address,
 $city, $state, $telephone) = @$store;

 print "$store_name\n
 $address\n$city, $state\n
 $telephone\n\n";

 foreach my $book (@$books){

 my ($title, $publisher,
 $pub_year, $store, $qty) = @$book;

 if($store ne $store_id) { next; }

 print "$title ($publisher $pub_year) $qty\n";
 }
}

exit();

To save space, I left out the opening lines for the program because they are the same
as in the previous program. In the first SQL statement here, we’re selecting the store
information. With the fetchall_arrayref() method, we’re storing the reference for
the data in $stores. If we were to print out this variable, we would see only a long
number and not the actual data. Although an SQL statement may retrieve many
rows of data, all of the data will be stored in memory. Therefore, we can issue
finish(), and as long as we don’t disconnect from MySQL, we can issue another
SQL statement. The next SQL statement selects the book inventory information. In
the SELECT statement we’re hardcoding in the author’s name. We really should re-
place that with a variable (e.g., $author) and allow the user to set the variable earlier
in the program. Once the book inventory information has been collected, the con-
nection to MySQL is terminated and we can begin displaying the data with the use
of flow control statements.

The first foreach statement loops through the data of each store and prints the ad-
dress information. Within each loop is another foreach loop for processing all of the
titles for the particular store. Notice the if statement for the book inventory loop.
The first record or array for the first store is read and the basic store information is
displayed. Then the first array for the inventory is retrieved from its complex array
and the elements parsed into variables. If store (which is the store_id) doesn’t match
the one that it’s on, Perl moves on to the next record. The result is that a store header

Using Perl DBI with MySQL | 441

Perl API

is displayed and all of the inventory information requested is displayed for the store
before Perl goes on to the next store’s data.

You can accomplish this task in many ways—some simpler and some tighter—but
this gives you a general idea of how to perform it, without keeping the connection
to MySQL open while processing data. For more details on using the Perl DBI with
MySQL, see Alligator Descartes and Tim Bunce’s book, Programming the Perl
DBI (O’Reilly).

Perl DBI Reference
The following is a list of DBI methods and functions in alphabetical order. The
syntax and an explanation of each as well as examples for most are provided. How-
ever, to save space, the examples are only excerpts and are missing some compo-
nents, such as the calling of the DBI module and the creation of a database handle.
Also, to focus on the particular method or function described, we’ll use a very simple
table containing a list of books and the names of their authors with the same
SELECT statement. See the previous section (the tutorial) for an example of a com-
plete, albeit simple, Perl DBI program. In addition to passing parameters, you can
affect the behavior of several methods by setting global values called attributes. See
the end of this chapter for a list of attributes.

available_drivers(  )
DBI->available_drivers([nowarn])

This function returns a list of available DBD drivers. You can suppress any warning
messages by providing the text nowarn as an argument. Here is an example:

...
my @drivers = DBI->available_drivers();

foreach my $driver(@drivers) {
 print "$driver \n";
}

begin_work(  )
$dbh->begin_work()

This funciton is used for transactions with a database. It temporarily turns AutoCommit
off until commit() or rollback() is run. There are no arguments to this database handle
method. In MySQL, this is similar to executing the SQL statement BEGIN or BEGIN WORK.
It will only be effective with a transactional storage engine like InnoDB. At the time of
this writing, there is a bug in this function: it returns an error if AUTOCOMMIT is already set.
The error begins, Transactions not supported by database....

442 | Chapter 18: Perl API

bind_col(  )
$sth->bind_col(index, \$variable[, \%attri|type])

This funciton associates or binds a column from a statement handle to a given variable.
The values are updated when the related row is retrieved using a fetch method, without
extra copying of data. Here is an example:

...
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

$sth->bind_col(1, \$title);
$sth->bind_col(2, \$author);

while($sth->fetch()) {
 print "$title by $author \n";
}

In this example, we’re specifying that the first (1) column be bound to the variable
$title and the second to $author. A separate statement has to be issued for each bind.
To bind multiple columns in one statement, use bind_columns().

To specify the column data type to use for the variable—this can potentially change the
data—give the desired SQL standard type as the third argument:

...
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

$sth->bind_col(1, \$title, { TYPE=>SQL_VARCHAR });
$sth->bind_col(2, \$author, { TYPE=>SQL_VARCHAR });

while($sth->fetch()) {
 print "$title by $author \n";
}

To get a list of SQL standard data types available on your server, run this program:

#!/usr/bin/perl -w
use DBI;

foreach (@{ $DBI::EXPORT_TAGS{sql_types} }) {
 printf "%s=%d\n", $_, &{"DBI::$_"};
}

bind_columns(  )
$sth->bind_columns(@variables)

This function associates or binds columns from a statement handle to a given list of
variables (@variables). The values are updated when the related row is retrieved using a
fetch method without extra copying of data. The number of variables given must match
the number of columns selected and the columns are assigned to variables in the order
the columns are returned. Here is an example:

bind_columns(  )

Chapter 18: Perl API | 443

Perl API

...
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

$sth->bind_columns(\$title, \$author);

while($sth->fetch()) {
 print "$title by $author \n";
}

bind_param(  )
$sth->param(index, values[, \%attr|type])

This function associates or binds a value in an SQL statement to a placeholder. Place-
holders are indicated by ? in SQL statements and are numbered in the order they appear
in the statement, starting with 1. The first argument indicates which placeholder to re-
place with a given value, i.e., the second argument. The data type may be specified as a
third argument. Here is an example:

...
my $sql_stmnt = "SELECT title, publisher
 FROM books WHERE author = ?
 AND status = ?";
my $sth = $dbh->prepare($sql_stmnt);
$sth->bind_param(1, $author);
$sth->bind_param(2, $status);
$sth->execute();
while(my ($title,$publisher) = $sth->fetchrow_array()) {
 print "$title ($publisher) \n";
}

In this example, a placeholder (a question mark) is given in the SQL statement and is
replaced with the actual value of $author using bind_param(). This must be done before
the execute() is issued.

bind_param_array(  )
$sth->bind_param_array(index, {array_ref|string}[, \%attri|type])

This function associates or binds an array of values in an SQL statement within a
prepare() using placeholders. The first argument indicates which placeholder to replace
with the array of given values, i.e., the second argument. The values are updated when
the related row is retrieved using a fetch method. Attributes may be added or the data
type given as a third argument. Here is an example:

...
my @old_names = ('Graham Green', 'Virginia Wolf');
my @new_names = ('Graham Greene', 'Virginia Woolf');

my $sql_stmnt = "UPDATE books
 SET author = ?,
 status = ?
 WHERE author = ?";

bind_param(  )

444 | Chapter 18: Perl API

my $sth = $dbh->prepare($sql_stmnt);

$sth->bind_param_array(1,\@new_names);
$sth->bind_param_array(2, 'active');
$sth->bind_param_array(3, \@old_names);

$sth->execute_array(undef);

$sth->finish();

Notice in this example that the first array contains all of the new author names, the
corrected ones. It’s not a pairing or a grouping by row. Instead, it’s all of the values to
be used for the first placeholder in the SQL statement. The second array bound contains
the old names in the same order to be used in the WHERE clause. Incidentally, the backslash
before each array shown here is necessary because an array reference must be given. The
second bind_param_array() set in the example uses just a string (i.e., 'active'). That
value will be used for all rows updated.

bind_param_inout(  )
$sth->bind_param_inout(index, \$value, max_length[, \%attri|type])

This function associates or binds a value in an SQL statement using a placeholder. The
first argument indicates which placeholder to replace with a given value, i.e., the second
argument. It must be given as a reference (a variable preceded by a backslash). The values
are updated when the related row is retrieved using a fetch method. The maximum length
of a value is given in the third argument. Attributes may be added or the data type may
be given as a fourth argument. This function is generally used with stored procedures.

can(  )
$handle->can($method_name)

This function returns true if the method named is implemented by the driver. You can
use this method within a program to determine whether a method for a handle is avail-
able. In the following example, after starting the program and setting the database and
statement handles, we use the can() method:

...
my @methods = qw(fetchrow_array fetchrow_arrays);

foreach $method(@methods) {
 if($sth->can($method)) { print "\$sth->$method is implemented.\n"; }
 else { print "\$sth->$method is not implemented.\n\n"; }
}

Here are the results from running this part of the program. Notice that the second,
fictitious method named is not available:

$sth->fetchrow_array is implemented.
$sth->fetchrow_arrays is not implemented.

can(  )

Chapter 18: Perl API | 445

Perl API

clone(  )
$dbh->clone([\%attri])

Use this function to create a new database handle by reusing the parameters of the da-
tabase handle calling the method. Additional attributes may be given with the method.
Their values will replace any existing values. Any attributes given in the original database
handle will be used in the new handle. Here is an example:

my $dbh1 = $dbh->clone({AutoCommit=>1});

The value of this method is that you can create a second MySQL session with it without
having to restate the parameters from earlier. You can also use it if the disconnect() has
already been issued for the original database handle.

column_info(  )
$dbh->column_info($catalog, $database, $table, $column)

This function returns a statement handle for fetching information about columns in a
table. Here is an example:

...
my $sth = $dbh->column_info(undef, 'bookstore', 'books', '%');
my $col_info = $sth->fetchall_arrayref();

foreach my $info(@$col_info) {
 foreach (@$info) {
 if($_) { print $_ . "|"; }
 }
 print "\n";
}

This program excerpt will produce a list of columns in the books table of the bookstore
database. Here are a couple of lines of the program results:

bookstore|books|book_id|4|INT|11|10|4|1|NO|1|int(11)|
bookstore|books|title|12|VARCHAR|50|1|12|2|YES|varchar(50)|
...

The values of the fields in order are: TABLE_CAT (usually empty), TABLE_SCHEM, TABLE_NAME,
COLUMN_NAME, DATA_TYPE, TYPE_NAME, COLUMN_SIZE, BUFFER_LENGTH, DECIMAL_DIGITS,
NUM_PREC_RADIX, NULLABLE, REMARKS, COLUMN_DEF, SQL_DATA_TYPE, SQL_DATETIME_SUB,
CHAR_OCTET_LENGTH, ORDINAL_POSITION, and IS_NULLABLE.

commit(  )
$dbh->commit()

This function commits or makes permanent changes to a database for transactional tables
(e.g., InnoDB). It’s disregarded if AutoCommit is already enabled; a warning message saying
“Commit ineffective while AutoCommit is on” will be issued.

clone(  )

446 | Chapter 18: Perl API

connect(  )
DBI->connect(DBI:server:database[:host:port],
 username, password[, \%attri])

Use this method to establish a connection to MySQL and to select the default database.
The first argument is a list of required values separated by colons: the module (DBI), the
driver (mysql) for a MySQL server, and the database name. The hostname or IP address
and port number are optional. The second argument is the username and the third is the
user’s password. You can substitute any of these settings or values with variables—just
be sure to enclose each argument containing variables with double quotes so that the
values will be interpolated. Finally, you may give attributes in the fourth argument. Here
is an example:

my $dbh = DBI->connect('DBI:mysql:bookstore:localhost',
 'paola','caporalle1017', {AutoCommit=>0});

In this excerpt, Perl is connecting to the MySQL server with the username paola and the
password caporalle1017, with the database bookstore. The attribute AutoCommit is set to
off so that changes to the data may be undone using rollback(). See the end of this
chapter for a list of attributes.

If you don’t specify the username or the user’s password (i.e., if undef is given instead),
the value of the environment variables, DBI_USER and DBI_PASS, will be used if they are
defined.

connect_cached(  )
DBI->connect_cached(DBI:server:database[:host:port],
 username, password[, \%attri])

This method is similar to connect(), except that the database handle is stored in a hash
with the given parameters. This allows the database handle to be reused if
connect_cached() is called again. You can access and eliminate a cache with the Cached
Kids attribute. This method can cause problems with a database system by inadvertently
opening too many connections.

data_diff(  )
DBI::data_diff(string, string[, length])

This function returns the results of both data_string_desc() and data_string_diff(),
describing the difference between the two given strings. It returns an empty string if the
strings given are identical. Here is an example:

...
my $previous_author = 'Graham Greene';

my $sql_stmnt = "SELECT book_id, author
 FROM books
 WHERE author LIKE 'Graham%'
 LIMIT 1";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

data_diff(  )

Chapter 18: Perl API | 447

Perl API

while(my($book_id,$author) = $sth->fetchrow_array()) {
 my $diff = DBI->data_diff($previous_author, $author);
 if($diff) {
 print "$previous_author <=> $author\n$diff \n";
 $previous_author = $author;
 }
}

Here are the results of running this program:

Graham Green <=> Graham Greene
a: UTF8 off, ASCII, 3 characters 3 bytes
b: UTF8 off, ASCII, 12 characters 12 bytes
Strings differ at index 0: a[0]=D, b[0]=G

data_sources(  )
DBI->data_sources([driver, \%attri])

This function returns a list of databases associated with a given driver. If none is specified,
the driver named in the environment variable DBI_DRIVER is used. Attributes may be given
as a second argument. Here is an example:

...
my @drivers = DBI->available_drivers();
 || die "No drivers found.";
foreach my $driver(@drivers) {
 my @sources = DBI->data_sources($driver);
 foreach my $source(@sources) {
 print "$driver: $source\n";
 }
}

data_string_desc(  )
DBI::data_string_desc(string)

This function returns a description of a given string:

...
print DBI->data_string_desc('Graham Greene');

Here are the results:

UTF8 off, ASCII, 3 characters 3 bytes

data_string_diff(  )
DBI::data_string_diff(string[, length])

This function returns a description of the difference between two given strings. It returns
an empty string if the strings given are identical. Here is an example:

...
my $diff = DBI->data_string_diff($previous_author, $author);
...

data_sources(  )

448 | Chapter 18: Perl API

Using the example shown in data_diff() earlier in this section, but using this function
instead, here are the results of running this program:

(Graham Green, Graham Greene)
Strings differ at index 0: a[0]=D, b[0]=G

disconnect(  )
$dbh->disconnect()

This function disconnects a Perl program from a database; it ends a MySQL session.
There are no arguments for this function. Depending on your system, it may or may not
commit or roll back any open transactions started by the database handle. To be sure,
intentionally commit or roll back open transactions before disconnecting. Also, be sure
to close any open statement handles by executing finish() for each statement handle
before disconnecting, like so:

$sth->finish();
$dbh->disconnect();

do(  )
$dbh->do($sql_stmnt[, \%attri, @values])

This function executes an SQL statement without having to use the prepare() method.
It returns the number of rows changed. The first argument contains an SQL statement.
If placeholders are used in the SQL statement, their values are provided in a comma-
separated list or in an array in the third argument. Statement handle attributes may be
given for the second argument. You would use this method only with SQL statements
that do not return data values (e.g., use with UPDATE, not SELECT). Here is an example:

...
my $sql_stmnt = "UPDATE books SET publisher = ?
 WHERE publisher = ?";

my @values = ('Oxford Univ. Press', 'OUP');

$dbh->do($sql_stmnt, undef, @values);

$dbh->disconnect();

In this example, the initials of a particular publisher are changed to the publisher’s name.
The SQL statement is executed without a prepare() or an execute()—that is, without
a statement handle. Therefore, a finish() isn’t required, just a disconnect(). If you
want to know the number of rows changed, change the example like so:

...
my $rows_changed = $dbh->do($sql_stmnt, undef, @values);
print "Rows Changed: $rows_changed";

dump_results(  )
$sth->dump_results(length, row_delimiter, column_delimiter, filehandle})

dump_results(  )

Chapter 18: Perl API | 449

Perl API

This function displays the results of a statement using the neat_list() function on each
row for the statement handle given. The first argument is the maximum length of each
column’s display. For columns containing more characters than the maximum length,
the excess will be omitted and ellipses will be presented in its place. The default length
is 35 characters. For the second argument, the delimiter for each row may be given—the
default is \n. The delimiter for columns may also be changed from the default of a comma
and a space in the third argument. In the last argument of the function, a file handle that
specifies where to direct the results of the function may be given. If one is not specified,
stdout is used. Here is an example:

...
my $sql_stmnt = "SELECT title, authors
 FROM books
 WHERE author= 'Henry James' LIMIT 3";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();
$results = $sth->dump_results(10, "\n", '|');
...

The results of this program would look like this:

'The Boston...'|'Henry James'
'The Muse'|'Henry James'
'Washington...'|'Henry James'
3 rows

err(  )
$handle->err()

This function returns any error codes from the last driver method call. Here is an example:

...
my $dbh = DBI->connect('DBI:mysql:bookstore:localhost','russell',
 'wrong_password')
 || die DBI->err();

Notice the err() method is added to the end of the database handle as part of the die
function from Perl. Here are the results of executing this connect() with the wrong
password:

DBI connect('bookstore:localhost','russell',...) failed:
1045 at ./dbi_test_program.plx line 8...

Notice that the function err() only returns the error code 1045 from the MySQL server.
The rest of the text is from Perl in general.

errstr(  )
$handle->errstr()

This function returns any error messages from the last driver method called.

...
my $dbh = DBI->connect('DBI:mysql:bookstore:localhost','username',
 'wrong_password')
 || die DBI->errstr;

err(  )

450 | Chapter 18: Perl API

Notice the errstr() method is added to the end of the database handle as part of the
die function from Perl. Here are the results of executing this connect() with the wrong
password:

DBI connect('bookstore:localhost','russell',...) failed:
Access denied for user 'russell'@'localhost' (using password: YES)
at ./dbi_test_program.plx line 8...

Notice that the error message does not display the password given.

execute(  )
$sth->execute([@values])

This function executes a statement handle that has been processed with the prepare()
method. A value of undef is returned if there’s an error. It returns true if successful, even
when the results set is blank or zero. For statements other than SELECT statements, the
number of rows affected is returned. Here is an example:

...
my $dbh = DBI->connect ("$data_source","$user","$pwd")

my $pub_year = '1961';
my $genre = 'novel';

my $sql_stmnt = "SELECT title, author
 FROM books
 WHERE pub_year = '$pub_year'
 AND genre = '$genre'";
my $sth = $dbh->prepare($sql_stmnt);

my $rows_chg = $sth->execute();

while(my($title,$author) = $sth->fetchrow_array()) {
 print "$title by $author \n";
}

You can use placeholders in the SQL statement (e.g., for $pub_year and $genre) by giving
the values with execute():

. . .
my @values = ('1961','novel');

my $sql_stmnt = "SELECT title, author
 FROM books
 WHERE pub_year = ?
 AND genre = ?";
my $sth = $dbh->prepare($sql_stmnt);

$sth->execute(@values);

while(my($title,$author) = $sth->fetchrow_array()) {
 print "$title by $author \n";
}

You don’t have to put values into an array for use with this method. You can put the
strings inside the parentheses of the function (e.g., $sth->execute($pub_year,$genre);).

execute(  )

Chapter 18: Perl API | 451

Perl API

execute_array(  )
$sth->execute_array(\%attri[, @values)

Use this function to execute a prepared statement multiple times, once for each set of
values given either as the second argument of the method or from previous uses of the
bind_param_array() method. If you use the bind_param_array() method, you won’t
provide the array values with this execute_array() method. For an example of this
statement’s use with the bind_param_array() method, see that description earlier in this
chapter. Here is an example without that method:

...
my @old_names = ('Graham Green', 'Virginia Wolf');
my @new_names = ('Graham Greene', 'Virginia Woolf');

my $sql_stmnt = "UPDATE books
 SET author = ?,
 status = ?
 WHERE author = ?";

my $sth = $dbh->prepare($sql_stmnt);

my ($tuple, $rows_chg) = $sth->execute_array(undef, \@new_names, 'active',
 \@old_names);

$sth->finish();

Notice that we are able to capture the number of rows changed by the SQL statement.
Since we didn’t specify any attributes, the $tuple variable will be empty. A tuple is an
ordered list of values or objects.

execute_for_fetch(  )
execute_for_fetch($fetch[, \@status)

Use this method to execute multiple statements given as the argument of the method, as
a sub method. You may give a reference to a subroutine that returns an array of arrays of
data. Or you may give the array of arrays as shown in the following example. Tuple status
may be given as an array reference for the second argument:

...
my @engl = ('one','two','three');
my @ital = ('uno','due','tre');
my @germ = ('eins','zwei','drei');

my @count_values =(\@engl, \@ital, \@germ);

my $sth = $dbh->prepare("INSERT INTO count_three
 (col1, col2, col3)
 VALUES (?,?,?)");
my ($rc) = $sth->execute_for_fetch(sub { shift @count_values }, undef);

The value of $rc is 3. Since the tuple’s status is undefined in this example, there is none.
However, if you were to give one with the method, you could capture the tuple status as
well (e.g., my ($tuple,$rc) = $sth->execute_for_fetch(...);). Here are the contents of
the test table after running this Perl program:

execute_array(  )

452 | Chapter 18: Perl API

SELECT * FROM count_three;

+------+------+-------+
| col1 | col2 | col3 |
+------+------+-------+
one	two	three
uno	due	tre
eins	zwei	drei
+------+------+-------+

fetch(  )
$sth->fetch()

This function returns a reference to an array of one row from the results of a statement
handle. It’s similar to fetchrow_array() except that it requires the use of bind_col() or
bind_columns() for setting variables to values fetched. There are no arguments for this
function. Here is an example:

...
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();
my ($title, $author);

$sth->bind_columns(\$title, \$author);

while($sth->fetchrow_array()) {
 print "$title by $author \n";
}
...

fetchall_arrayref(  )
$sth->fetchall_arrayref()

This function captures the results of a statement and returns a reference to the data. The
results are a complex data structure: an array of references, with each reference to an
array for each row of data retrieved. You can finish the statement handle after executing
this method, since the results are stored in memory. Here is an example:

...
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();
my $books = $sth->fetchall_arrayref();
$sth->finish();

foreach my $book (@$books) {
 my ($title, $author) = @$book;
 print "$title by $author \n";
}
$sth->finish();

fetchall_arrayref(  )

Chapter 18: Perl API | 453

Perl API

Notice that after fetchall_arrayref() is called, finish() is used before the data is
parsed. Using foreach, first the array reference is dereferenced (i.e., @$books) and the
reference to each array containing a row from the results is stored in a variable ($book).
Then that array reference is deferenced (@$book) to parse the fields into variables for use.

fetchall_hashref(  )
$sth->fetchall_hashref(key_column)

This method captures the result of an SQL statement and returns a reference to the data.
The result is a complex data structure: it returns a reference to a hash using the name of
the key column given as its key and the value of the key column given as its value. Each
key column value is then used as the key to another hash with a reference to yet another
hash for each. This final hash has the column names from the SQL statement as its keys
and the values of each row of data retrieved as their respective hash values. The unraveling
of such a hash reference may become clearer if you study the following code excerpt:

...
my $sql_stmnt = "SELECT book_id, title, author
 FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

my $books = $sth->fetchall_hashref('book_id');

$sth->finish();

foreach my $book(keys %$books) {
 my $book_id = $books->{$book}->{'book_id'};
 my $title = $books->{$book}->{'title'};
 my $author = $books->{$book}->{'author'};
 print "$title ($book_id) by $author\n";
}

Notice for the SQL statement we are able to select more than two columns—that’s be-
cause this is not a simple hash, but rather a hash of hashes (a key/value pairing is created
ultimately from the column names and their respective values). Notice also with the
fetchall_hashref() that the primary key column of book_id is given within quotes, as a
string. Since this is a hash, a column with unique values is given. Looking at the fore
ach, we use keys to extract just the keys to the dereferenced hash reference. We don’t
need the values (which are the hashes for each row of data from the results set) at this
point: we’ll get to that value within the code block of the foreach statement. Each key is
then stored in the variable $book. Using that key, we can extract the hashes that are
referenced by an object oriented method: $hash_ref->{$key_col}->{'col_name'}. It
might help a bit if I show you the preceding code but with the keys and values of the first
hash and with more verbose results. We’ll have to use a while statement with the each
function:

...
while(my ($book_key,$book_values) = each(%$books)) {
 my $book_id = $books->{$book_key}->{'book_id'};
 my $title = $books->{$book_key}->{'title'};
 my $author = $books->{$book_key}->{'author'};
 print "$books\->$book_key\->$book_values\->\n

fetchall_hashref(  )

454 | Chapter 18: Perl API

 {book_id->'$book_id',title->'$title',author->'$author'}\n\n";
}

Here are two lines of the results of the program. You can see the two hashes mentioned
earlier. After the first hash, notice the value of book_id is the key to the hash for the row
of data. The book_id is also included in the final hash:

HASH(0x81e09e4)->1000->HASH(0x81e0b10)->
{book_id->'1000', title->'Mrs. Dalloway', author->'Virginia Woolf'}

HASH(0x81e09e4)->1001->HASH(0x81e0a20)->
{book_id->'1001', title->'The End of the Affair', author->'Graham Greene'}

fetchrow_array(  )
$sth->fetchrow_array()

This statement handle method returns one row, the next from the results of an SQL
statement in the form of an array, each of whose element is a field of data. Null values
retrieved are returned as undefined. An empty value is returned when there is an error
or when there are no more rows remaining in the results set. Therefore, if used in a flow
control statement such as while, the empty value returned will end the loop statement.
Here is an example:

...
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

while (my ($title, $author) = $sth->fetchrow_array(){
 print "$title by $author \n";
}

$sth->finish();

If you know that the SQL statement will return only one row, you won’t need the
while statement. Instead, you can save the values directly into a tight list of variables:

...
my $sql_stmnt = "SELECT title, author
 FROM books LIMIT 1";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

my ($title, $author) = $sth->fetchrow_array();

print "$title by $author \n";
...

fetchrow_arrayref(  )
$sth->fetchrow_arrayref()

This function returns a reference to a place in memory containing an array of one row,
the next row from the results of a statement handle. There are no arguments for this
function. Null values retrieved are returned as undefined. An empty value is returned

fetchrow_arrayref(  )

Chapter 18: Perl API | 455

Perl API

when there is an error or when there are no more rows remaining in the results set.
Therefore, if used in a flow control statement such as while, the empty value returned
will end the loop statement. Here is an example:

...
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

while (my $book = $sth->fetchrow_arrayref()) {
 my ($title, $author) = @$book;
 print "$title by $author \n";
}

$sth->finish();

Notice that fetchrow_arrayref() is reused at the beginning of each pass through the
while statement. This is because a reference to one row is retrieved at a time. The same
reference is used for each row retrieved: the array is replaced with each loop. If you want
to use array references, you might want to use fetchall_arrayref() instead.

fetchrow_hashref(  )
$sth->fetchrow_hashref([name])

This function returns a reference to a place in memory containing a hash of keys and
values for one row from the results of a statement handle. The optional argument of this
method is to give the statement handle name attribute: NAME (the default), NAME_lc, or
NAME_uc. See the end of this chapter for a description of these attributes. The name must
be given within quotes if given as a string. Null values retrieved by this method are re-
turned as undefined. An empty value is returned when there is an error or when there
are no more rows remaining in the results set. Therefore, if used in a flow control state-
ment such as while, the empty value returned will end the loop statement. Here is an
example:

...
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();

while (my $book_ref = $sth->fetchrow_hashref('NAME_uc')) {
 print "$book_ref->{'TITLE'} by $book_ref->{'AUTHOR'} \n";
}

$sth->finish();

Notice that the name given here with this method instructs the hash to use all uppercase
letters for the key names. Therefore, when calling the particular data, the column names
are given in all uppercase letters. If no parameter was given, we could use the column
names as they are in the table. The fetchrow_hashref() method is much simpler than
fetchall_hashref(), but you can’t close the statement handle until you’re finished pro-
cessing the results. Therefore, you may want to consider using fetchall_hashref()
instead.

fetchrow_hashref(  )

456 | Chapter 18: Perl API

finish(  )
$sth->finish()

This method ends a statement handle given that was established by the prepare() meth-
od. There are no arguments to the method. It can sometimes help to free system resources.
It should be issued only when the statement handle is not going to be reused or is to be
replaced. Here is an example:

...

my $sql_stmnt = "REPLACE INTO books (title, author)
 VALUES(?,?)";
my $sth = $dbh->prepare($sql_stmnt);

while(my ($title,$author) = each(%books)) {
 $sth->execute($title,$author);
}

$sth->finish();
$dbh->disconnect();

Since we’re reusing the statement handle here (assuming %books defined earlier in the
program has plenty of data), we especially don’t need to call the finish() method after
each execution of the SQL statement. Although a statement handle may have been closed
with finish(), more statement handles may be created and executed as long as the
database handle has not been closed using disconnect().

foreign_key_info(  )
$dbh->foreign_key_info($pk_catalog, $pk_database, $pk_table,
 $fk_catalog, $fk_database, $fk_table[, \%attri])

This function returns a statement handle for fetching information about foreign keys in
a given table. It’s still fairly new and does not seem to be well integrated into MySQL yet.

func(  )
$handle->func(@arguments, function_name)

This function calls private nonportable and nonstandard methods for handles. The name
of the function is given as the last argument. Any arguments for the function specified
are given first. You can give certain private built-in functions: _ListDBs with the hostname
and optionally the port as the first parameter (use data_sources() instead);
_ListTables (deprecated; use tables() instead); _CreateDB with the database name as
the first parameter; and _DropDB with the database name as the first parameter. Here is
an example:

...
my @tables = $dbh->func('_ListTables');

foreach my $table(@tables) {
 print $table, "\n";
}

func(  )

Chapter 18: Perl API | 457

Perl API

As this syntax indicates, you can create your own private DBI functions with this method.
It’s not well supported in MySQL, though.

get_info(  )
$dbh->get_info(type)

This function returns information about the database handle for the numeric code type
(based on SQL standards) given as an argument to the method. Information can include
the driver and the capabilities of the data source. The function returns undef for an un-
known type. Here is an example:

...
use DBI::Const::GetInfoType;
...

if($dbh->get_info($GetInfoType{SQL_DBMS_VER}) lt '5.0') {
 print "Old version of MySQL. Upgrade!"
};

To see a list of other parameters available and their values on your server, run the fol-
lowing from your server:

...
use DBI;
use DBI::Const::GetInfoType;
...
while(my ($key,$value) = each(%GetInfoType)) {
 my $info = $dbh->get_info($GetInfoType{"$key"});
 print "$key\->$info \n";
}

installed_drivers(  )
DBI->installed_drivers([nowarn])

This function returns a hash listing driver names and handles loaded for the current
process. These are only the drivers that are loaded for the program that’s running, not
all that are available and installed. For information on those, use available_drivers().
Here is an example:

...
my %drivers = DBI->installed_drivers();

while(my ($key,$values) = each(%drivers)) {
 print "$key -> $values \n";
}

installed_versions(  )
DBI->installed_versions()

This function returns a list of installed drivers. There are no arguments to this method.
Although it can be used from within a program, it works easily and best from the com-
mand line. Enter the following from the command line of the server:

perl -MDBI -e 'DBI->installed_versions'

get_info(  )

458 | Chapter 18: Perl API

last_insert_id(  )
$dbh->last_insert_id($catalog, $database, $table, $column[, \%attr])

This function returns the value stored in the row identification column of the most recent
row inserted for the current MySQL session, provided the identification number was
incremented using AUTO_INCREMENT in MySQL. It works like the LAST_INSERT_ID() func-
tion in MySQL. No arguments for this function are necessary with MySQL: if given, their
values are ignored, although undef is required at a minimum. Other systems may require
other options. This function doesn’t work with MySQL before version 1.45 of DBI. It
returns undefined if it cannot retrieve the number (which must be retrieved after the
insert, and before another statement in MySQL) or if the driver does not support this
function.

Here is an example:

...
my $sth = $dbh->prepare("INSERT INTO books (title, author)
 VALUES (?,?)");
$sth->execute($title,$author);

my $book_id = $dbh->last_insert_id(undef,undef,undef,undef,undef);

print "New Book ID: $book_id \n";
$sth->finish();

looks_like_number(  )
DBI->looks_like_number(@array)

This method is used for testing a given array to determine whether each element seems
to be a number or not. It returns 1 for each element in an array that appears to be a
number; 0 for those that do not. It returns undefined if the element is empty or undefined.
Here is an example:

...
my $sql_stmnt = "SELECT book_id, title, author, isbn
 FROM books LIMIT 1";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();
my (@book) = $sth->fetchrow_array();

my @num_assessment = DBI->looks_like_number(@book);
my $cnt = 0;

foreach (@num_assessment) {
 if($_) { print "Array Element $cnt looks like a number.\n" };
 ++$cnt;
}

The results of this code will show that elements 1 and 4 appear to be numbers.

neat(  )
DBI::neat(string[, length])

neat(  )

Chapter 18: Perl API | 459

Perl API

This function returns a string given as the first argument, placed in quotes, for an optional
maximum length given as the second argument. It will not escape quotes within the
string. If given a numeric value instead of a string, it will not return the results within
quotes. It will return NULL values as undefined. Here is an example:

...
my $test = "This is Russell's test!";
print "Test: " . DBI::neat($test, 24) . "\n";

Here are the results:

Test: 'This is Russell's t...'

Notice that the results are in single quotes, that the text was truncated even though the
maximum length given was enough to just encompass the string. If a value of 25—one
more than needed—had been given, then the full text would have been displayed without
ellipses. To neaten a list of strings, use the neat_list() function.

neat_list(  )
DBI::neat_list(\@strings[, length, delimiter])

This function returns a list of strings given as the first argument, placed in quotes, each
truncated to an optional maximum length given as the second argument. An optional
third argument can specify a delimiter to place between the elements of the list or the
array given in the first argument. A comma and a space will be used by default if no
delimiter is specified. Here is an example:

...
my @test = ("This is a test.", "Another test");
print "Test: " . DBI::neat_list(\@test, 12, '|');

Here are the results:

Test: 'This is...'|'Another...'

parse_dsn(  )
DBI->parse_dsn($data_source_name)

This function returns the components of the DBI Data Source Name (DSN) values: the
scheme (dbi); the driver ($ENV{DBI_DRIVER}); an optional attribute string; a reference to
a hash with the attribute names and values; and the DBI DSN string. Here is an example:

...
use DBI;
my $dsn = "DBI:mysql:database=bookstore;host=localhost;port=3306";
my $dbh = DBI->connect ($dsn,$user,$pwd) or die DBI->errstr;

my ($scheme, $driver, $attr_string, $attr_hash, $driver_dsn) =
 DBI->parse_dsn($dsn);
print "DSN: ($scheme, $driver, $attr_string, $attr_hash, $driver_dsn) \n";

Here are the results:

DSN: (dbi, mysql, , , database=bookstore;host=localhost;port=3306)

neat_list(  )

460 | Chapter 18: Perl API

parse_trace_flag(  )
$handle->parse_trace_flag($settings)

This function returns a bit flag for a trace flag name given as an argument. To parse a list
of trace flags, see parse_trace_flags() next.

parse_trace_flags(  )
$handle->parse_trace_flags($settings)

Use this function to parse a string given as an argument that contains a list of trace
settings. These settings are either trace flag names or integers representing trace levels.

ping(  )
$dbh->ping()

Use this function to determine whether a MySQL server is still running and the database
connection is still available. There are no arguments for this method. Here is an example:

...
$sth->finish();

my $alive = $dbh->ping();
if($alive) { print "MySQL connection is still alive.\n"}
else{ print "MySQL connection is not alive.\n"}

$dbh->disconnect();

if($dbh->ping()) { print "MySQL connection is still alive.\n"}
else{ print "MySQL connection is not alive.\n"}

...

The results will show that the connection is alive after the finish() is called, but not
after disconnect().

prepare(  )
$sth = $dbh->prepare(statement[, \%attr])

This function creates a statement handle by preparing an SQL statement given as the first
argument for subsequent execution with execute(). It returns a reference to the state-
ment handle. The second argument is a hash of attributes and is optional. A prepared
statement or a statement handle may be used multiple times until the disconnect() is
issued or until the statement handle value is overwritten by another call to prepare()
for the same statement handle variable. More than one statement handle can be prepared
if different variables are used for storing the handle references. Here is an example:

my $dbh = DBI->connect ("$dsn","$user","$pwd")
my $sql_stmnt = "SELECT title, author FROM books";
my $sth = $dbh->prepare($sql_stmnt, {RaiseError => 1, ChopBlanks => 1});

prepare(  )

Chapter 18: Perl API | 461

Perl API

Warning messages are enabled here and trailing spaces of fixed-width character columns
are trimmed. See the end of this chapter for a list of attributes.

prepare_cached(  )
$dbh->prepare_cached($sql_standard[, \%attr, $active])

This function creates a statement handle like prepare() does, but it stores the resulting
statement handle in a hash. Attributes for the statement handle may be given in the
second argument in the form of a hash. The third argument of the method changes the
behavior of the handle if an active statement handle is already in the cache. Table 18-1
lists the four choices for this argument.

The statement handle that this method generates is used in basically the same way as the
statement handle generated by prepare(). However, it can potentially cause system
problems if not used properly. Therefore, use prepare() instead.

Table 18-1. Active argument for prepare_cached()

Active value Result

0 Warning messages will be issued, and finish() for the statement handle will be employed.

1 No warning will be displayed, but finish() will be executed.

2 Disables checking for an active handle.

3 Causes the new statement handle to replace the active one.

primary_key(  )
$dbh->primary_key($catalog, $database, $table)

This function is meant to return a list of primary key column names for a given table. If
there are no primary keys, it will return an empty list. This method does not yet seem to
be supported in MySQL.

primary_key_info(  )
$dbh->primary_key_info($catalog, $database, $table)

This function is meant to return a statement handle for fetching information about pri-
mary key columns for a table. The values are part of a hash for the statement handle:
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and KEY_SEQ. If there is no primary key for the table
given, it returns no rows. This method does not yet seem to be supported in MySQL.

private_attribute_info(  )
$handle->private_attribute_info($settings)

This function is meant to return a reference to a hash containing the private attributes
available for the handle from which it is called. There are no parameters of this method,
and it does not yet seem to be supported in MySQL.

prepare_cached(  )

462 | Chapter 18: Perl API

quote(  )
$dbh->quote(string[, data_type)

Use this method to escape special characters contained in a given string. It’s useful in
SQL statements, particularly for unknown user input that might contain metacharacters
that would cause undesirable behavior in MySQL. You can specify the data type as a
second parameter. Don’t use this method with bind values and placeholders. Here is an
example:

...
my $comment = shift;
my $quoted_comment = $dbh->quote($comment);

my $sql_stmnt = "UPDATE books SET comment = ?";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute($quoted_comment);

print "Original: $comment \n Quoted: $quoted_comment \n";

Here are the command line results:

Original: Henry James' book "The Muse" is wonderful!
Quoted: 'Henry James\' book \"The Muse\" is wonderful!'

quote_identifier(  )
$dbh->quote_identifier({$name|$catalog, $database[, $table, \%attri]})

Use this function to escape special characters of an identifier (e.g., a database, table, or
column name) for use in an SQL statement. You can provide only the first parameter (a
string containing an identifier name), or you can provide the catalog name (undef is
acceptable with MySQL), a database name, a table name, and optionally provide data-
base attributes. Here is an example:

my $col1 = $dbh->quote_identifier('author');
my $col2 = $dbh->quote_identifier('title');
my $table = $dbh->quote_identifier('books');

my $sql_stmnt = "SELECT $col1, $col2 FROM $table";
print $sql_stmnt;

Here is the resulting SQL statement:

SELECT `author`, `title` FROM `books`

rollback(  )
$dbh->rollback()

Use this function to undo a transaction that has not yet been committed. This can only
be used with transactional (e.g., InnoDB or BDB) tables. It requires that the database
handle was created with the AutoCommit attribute set to false or 0, and that the changes
were not committed using the commit() function or by any other method that might
unintentionally commit a transaction.

rollback(  )

Chapter 18: Perl API | 463

Perl API

rows(  )
$sth->rows()

This function returns the number of rows affected by the last statement handle executed.
It works with UPDATE, INSERT, and DELETE dependably. It doesn’t work effectively with
SELECT statements unless all rows in a table are selected. If the number of rows is un-
known, –1 is returned. There are no arguments to this method. Here is an example:

...
my $sql_stmnt = "UPDATE books SET author = 'Robert B. Parker'
 WHERE author = 'Robert Parker'";
my $sth = $dbh->prepare($sql_stmnt);
$sth->execute();
my $change_count = $sth->rows();
print "$change_count rows were changed.";

This program displays the following when run:

2 rows were changed

selectall_arrayref(  )
$dbh->selectall_arrayref($statement[, \%attri][, @bind_values])

This function returns a reference to an array, which is the results set of the SQL statement
executed. For each row of the results, another reference to an array is returned for each
row of data. An optional second argument can specify any of the attributes allowed for
the statement handle. If placeholders are used in the SQL statement, their values may be
given as an array for the final argument. This method combines prepare(), execute(),
and fetchall_arrayref(). Here is an example showing how it might be dereferenced:

my $sql_stmnt = "SELECT title, author
 FROM books WHERE book_id = ?";
my $books = $dbh->selectall_arrayref($sql_stmnt, undef, '1234');

foreach my $book (@$books) {
 my ($title, $author) = @$book;
 print "$title by $author \n";
}

Notice that the prepare() method isn’t called to prepare the SQL statement or to create
a statement handle. This means that finish() doesn’t need to be called. However, in-
stead of giving an SQL statement, you can give a statement handle. Since the result is an
array reference, it must be deferenced in order to extract the data (i.e., the @$books). Using
the foreach Perl function, each element of the array is extracted (the array reference for
each row), which is then deferenced within the code block (@$book). From this, the values
for the individual fields can be parsed and saved to variables.

selectall_hashref(  )
$dbh->selectall_hashref($statement, $key_field[, \%attri][, @bind_values])

This function returns a reference to a hash of references to hashes, one for each row from
the results of an SQL statement given. This method combines prepare(), execute(),

rows(  )

464 | Chapter 18: Perl API

and fetchall_hashref(). A unique key field must be given for the second argument. This
will be used for the key of the main hash of rows from the results set. An optional third
argument can specify any of the attributes allowed for a statement handle. If placeholders
are used in the SQL statement, their values must be given as an array for the final
argument.

Here is an example:

...
my $sql_stmnt = "SELECT rec_id, title, author
 FROM books";

my $books = $dbh->selectall_hashref($sql_stmnt, 'book_id');

foreach my $book_id (keys %$books) {
 print "$books->{$book_id}{title}
 by $books->{$book_id}{author} \n";
}

Notice that the prepare() method isn’t called to prepare the SQL statement or to create
a statement handle. This means that finish() doesn’t need to be called. However, in-
stead of giving an SQL statement, you can give a statement handle. Since the result is a
hash reference, it must be deferenced in order to extract the data (i.e., the %$books). Using
the foreach and the keys Perl functions, each key of the hash is extracted (the hash ref-
erence for each row), which is then deferenced within the code block (%$book). From this,
the values for the individual fields can be extracted by the object oriented method.

selectcol_arrayref(  )
$dbh->selectcol_arrayref($sql_statement[, \%attri][, @bind_values])

This returns a reference to an array containing a value in the first column of each row
selected. The SQL statement is given as the first argument of the function. This can be
particularly useful if the first column is a key field. This function performs prepare()
and execute() on the SQL statement. Here is an example:

...
my $sql_stmnt = "SELECT * FROM books";

my $book = $dbh->selectcol_arrayref($sql_stmnt);

foreach my $author_id (@$book){
 print "$author_id \n";
}

The prepare() method isn’t called to create a statement handle if the SQL statement is
given with this method, making finish() unnecessary. However, a statement handle
could be given instead. Since the result is an array reference, it must be deferenced to
extract the data (i.e., @$book). Using foreach, each element of the array is extracted, one
element per row of the results set, and the value of each temporarily stored in a variable
here ($author_id, the first column of the table).

selectcol_arrayref(  )

Chapter 18: Perl API | 465

Perl API

selectrow_array(  )
$dbh->selectrow_array($sql_statement[, \%attri, @values])

This function returns one row from the results of an SQL statement in the form of an
array, where each column returned is represented by an element of the array, in order.
This method combines prepare(), execute(), and fetchrow_array(). No statement
handle is created, so finish() is unnecessary. An optional second argument can specify
any of the attributes allowed for a statement handle. If placeholders are used in the SQL
statement, their values must be given as an array for the third argument. Here is an
example:

...
my $sql_stmnt = "SELECT title, author
 FROM books WHERE book_id = ?";

my ($title, $author) = $dbh->selectrow_array($sql_stmnt, undef, '1234');

print "$title by $author \n";

No attributes are given for the SQL statement in this example, so undef is used for the
second argument. The third argument provides the book_id value for the placeholder in
the SQL statement. Notice that this select_ type of database handle method does not
require the use of a control statement to parse the data because it retrieves only one row
of data. The prepare() method isn’t called to create a statement handle if the SQL state-
ment is given (as it is here), which means finish() is unnecessary. However, a statement
handle could be given instead.

selectrow_arrayref(  )
$dbh->selectrow_arrayref($sql_statement[, \%attri][, @values])

This function returns a reference to an array of one row from the results of an SQL
statement given. This method combines prepare(), execute(), and
fetchrow_arrayref(). An optional second argument can specify any of the attributes
allowed for a statement handle. If placeholders are used in the SQL statement, their values
must be given as an array for the third argument. Here is an example:

...
my $sql_stmnt = "SELECT title, author
 FROM books WHERE book_id = ?";

my $book = $dbh->selectrow_arrayref($sql_stmnt, undef, '1234');

my ($title, $author) = @$book;
print "$title by $author \n";

The prepare() method isn’t called to create a statement handle if the SQL statement is
given (as it is here), which means finish() is unnecessary. However, a statement handle
could be given instead.

selectrow_hashref(  )
$dbh->selectrow_hashref($sql_statement[, \%attri, @values])

selectrow_array(  )

466 | Chapter 18: Perl API

This function returns a reference to a hash of one row from the results of an SQL state-
ment given. This method combines prepare(), execute(), and fetchrow_hashref().
However, a statement handle could be given. Attributes that may be given for a statement
handle may be provided in a hash for the second argument of this method. If placeholders
are used in the SQL statement, their values may be given as an array for the third
argument.

Here is an example:

...
my $sql_stmnt = "SELECT title, author
 FROM books WHERE book_id = ?";

my $book_ref = $dbh->selectrow_hashref($sql_stmnt, undef, '1234');

print "$book_ref->{title} by $book_ref->{author} \n";

Notice that this method captures the names of the columns as the keys to the values in
the hash generated. Notice also that because only one row is captured, a control state-
ment is unnecessary.

set_err(  )
$handle->set_err($err, $errstr[, $state[, $method[, $return_value]]])

This function sets the values for err, errstr, and state for the handle. The method (e.g.,
RaiseError) can be changed as well. It returns undef unless a different return value is
given as the fifth argument to this method. You can use this manually to return an error
message to a user. Here is an example:

...
my $book_id = shift;
my $books = &get_data_ref($book_id)
 or print "Error: " . DBI->err . DBI->errstr;
...

sub get_data_ref {
 my $book_id = shift;

 if($book_id =~ m/\D/g) {
 return $dbh->DBI::set_err(500, "\nYou entered '$book_id'.\nBad Book
 ID!");
 last;
 }
 ...
}

Notice in the subroutine that if it is given a book identifier that contains any nonnumeric
characters, it does not proceed and instead returns the error as set by set_err. The line
of code at the top of the excerpt that calls the subroutine will display the results if true,
or display the error number and string. Here are the results of the program when a user
enters a book ID that contains a letter:

Error: 500
You entered '100g'?
Bad Book ID!

set_err(  )

Chapter 18: Perl API | 467

Perl API

state(  )
$handle->state()

This method returns the error code of an error in a five-character format, in the
SQLSTATE format. It doesn’t seem to be supported in MySQL yet, so it returns either an
empty value or, for a general error, S1000. Here is an example:

$state = $dbh->state();
print "SQLSTATE: $state";

statistics_info(  )
$dbh->statistics_info($catalog, $database, $table, unique_only, quick)

This method is meant to return an active statement handle that can be used to retrieve
statistical information about a given table and its indexes. It’s experimental at the time
of this writing and its syntax, results, and usage may change. The unique_only argument
may be set to 1 or 0 to indicate whether or not information only on unique indexes should
be retrieved. If quick is set to 1, then some information is not returned unless it can be
retrieved quickly.

swap_inner_handle(  )
$handle->swap_inner_handle($handle)

This method is used to swap handles. However, it’s better to create new handles or use
some other method within your program. Both the handle that calls the method and the
other handle given for the parameter of this method must be of the same type and have
the same parent (i.e., $dbh is parent of both $sth1 and $sth2).

table_info(  )
$dbh->table_info($catalog, $database, $table, $type[, \%attri])

This function returns a statement handle for fetching information about the tables in a
given database. In MySQL, any parameters given are ignored, the values from the data-
base handle are used instead, and a list of tables and views for the database is returned.
Here is an example:

...
my $dbinfo = $dbh->table_info();

while(my($qualifier,$owner,$name,$type,$remarks) =
 $dbinfo->fetchrow_array()) {
 foreach ($qualifier,$owner,$name,$type,$remarks) {
 $_ = '' unless defined $_;
 }
 print "$qualifier $owner $name $type $remarks \n";
}

state(  )

468 | Chapter 18: Perl API

tables(  )
$dbh->tables($catalog, $database, $table, $type)

This function returns an array containing a list of tables and views for a database handle.
In MySQL, the parameters are ignored and the values are drawn from the database han-
dle. Here is an example:

my @tables = $dbh->tables();

foreach $table(@tables) {
 print "$table \n";
}

take_imp_data(  )
$dbh->take_imp_data($catalog, $database, $table)

This method severs the database handle that calls it from the API connection data. It
returns a binary string of implementation data from the driver about the connection that
was severed. This method can cause problems and shouldn’t typically be used. It’s pri-
marily used when programming a multithreaded connection pool.

trace(  )
$handle->trace(level[, log]) |
DBI->trace()

This method sets the trace level for a handle. A level of 0 disables tracing; level 1 traces
the execution of the database handle; level 2 provides more details including parameter
values. If a filename is given as the second argument, trace information will be appended
to that log file instead of stderr. If DBI->trace() syntax is used instead of a statement
handle, it will set the trace level globally. It will return the trace settings it had before it
was called as well.

trace_msg(  )
$handle->trace_msg(message[, minimum_level]) |
DBI->trace_msg()

This function adds text given in the first argument to trace data. A minimum trace level
(see the trace() method discussed previously) required for the message to be used may
be specified as a second argument. The DBI->trace_msg() syntax uses the given message
globally.

type_info(  )
$dbh->type_info([$data_type])

This function returns a hash containing information on a given data type. If no data type
is given, or if SQL_ALL_TYPES is given, all will be returned in the hash. The following
example shows how this method might be used and lists all the possible results:

type_info(  )

Chapter 18: Perl API | 469

Perl API

...
my $dbinfo = $dbh->type_info();

while(my($key, $value) = each(%$dbinfo)){
 print "$key => $value\n";
}

type_info_all(  )
$dbh->type_info_all()

This function returns a reference to an array of all data types supported by the driver.
The following program excerpt shows how it may be used and shows the results of the
method:

my @dbinfo = $dbh->type_info_all();
my $dbinfo_hashref = $dbinfo[0];

while(my($key,$value) = each(%$dbinfo_hashref)){
 print "$key => @$value\n";
}

Attributes for Handles
This section lists the attribute keys and values that can be given in many Perl DBI
methods, as indicated in the previous section with %attri in each method’s syntax.
The basic syntax to set an attribute is $handle->attribute=>'setting'. Attribute key/
value pairs are separated by commas and are all contained within a pair of curly
braces. For example, to instruct DBI not to return error messages for a database
handle, you would do the following when it’s created:

my $dbh = DBI->connect('DBI:mysql:bookstore:localhost',
 'paola','caporalle1017', {RaiseError=>0});

To retrieve a setting, use $handle->{attribute}. This can be stored to a variable or
printed:

print "dbh->{RaiseError=>" . $dbh->{RaiseError} . "}";

If you try this simple line of code, keep in mind that an attribute set to 0 will return
an empty value.

Attributes for All Handles
You can use the following attributes with both database handles and statement
handles:

Active (boolean, read-only)
This attribute indicates that the handle is active. In the case of a database handle,
it indicates that the connection is open. The disconnect() method sets this
attribute to 0 in a database handle; finish() sets it to 0 in a statement handle.

type_info_all(  )

470 | Chapter 18: Perl API

ActiveKids (integer, read-only)
This attribute provides the number of active handles under the handle that
employed the attribute. If called by a driver handle, the number of database
handles will be returned. If called by a database handle, the number of active
statement handles will be returned.

CacheKids (hash ref)
This attribute returns a reference to a hash containing child handles for a driver
or for a database handle that was created by the connect_cached() or
prepare_cached() methods, respectively.

ChildHandles (array ref)
This attribute returns a reference to an array to all accessible handles created
by the handle that called this method. These are weak references and the ref-
erenced arrays may not be dependably available.

ChopBlanks (boolean, inherited)
This attribute trims trailing spaces from fixed-width character fields (i.e., CHAR
fields of results sets).

CompatMode (boolean, inherited)
This attribute makes emulation layers compatible with a driver handle. It is not
normally used in applications.

ErrCount (unsigned integer)
This attribute keeps a count of the number of errors logged by set_err().

Executed (boolean)
This attribute determines whether a handle or one of its children has been
executed.

FetchHashKeyName (string, inherited)
This attribute instructs fetchrow_hashref() calls to convert column names to
either all lowercase (NAME_lc) or all uppercase (NAME_uc) letters. The default is
NAME, which indicates no conversion should be performed.

HandleError (code ref, inherited)
This attribute customizes the response to an error caused by the handle. You
could use this attribute to run a subroutine in the event of an error:

$dbh->{HandleError=> \&my_sub_routine });

HandleSetErr (code ref, inherited)
This attribute customizes the settings for err, errstr, and state values of an
error caused by the handle. It’s similar to the HandleError attribute, but it relates
to set_err().

InactiveDestroy (boolean)
This attribute prevents the server from destroying a handle that is out of scope,
unless it is closed intentionally with a function such as finish() or
disconnect().

Kids (integer, read-only)
This attribute provides the number of all handles (active and inactive) under
the handle that employed the attribute. If it’s called by a database handle, the

Attributes for Handles | 471

Perl API

number of statement handles will be returned. If it’s called by a driver handle,
the number of database handles will be returned.

LongReadLen (unsigned integer, inherited)
This attribute sets the maximum length of data retrieved from long data type
columns (i.e., BLOB and TEXT).

LongTruncOK (boolean, inherited)
If this attribute is set to true, it may prevent a fetch method from failing if a
column’s data length exceeds the maximum length set by the LongReadLen
attribute.

PrintError (boolean, inherited)
If this attribute is set to 1, error codes and error messages associated with the
handle will be logged. If it’s set to 0, they won’t be logged.

PrintWarn (boolean, inherited)
Setting this attribute to 1 will instruct DBI to log warning messages for the
handle. Setting it to 0 will instruct it not to log them.

private_*
This attribute stores information on the handle as a private attribute with a
customized name starting with private_.

Profile (inherited)
This attribute enables the logging of method call timing statistics.

RaiseError (boolean, inherited)
This attribute instructs DBI to raises exceptions when errors are associated with
the handle. By default it’s set to 0. If set to 1, any DBI error will cause the
program to die. If you set this attribute to true, you should also set
PrintError to true.

ReadOnly (boolean, inherited)
Setting this attribute on a handle to true indicates that all actions with the handle
afterward will be read-only activities—data won’t be changed using the handle.

ShowErrorStatement (boolean, inherited)
If set to true, this attribute specifies that the SQL statement text of a statement
handle should be appended to error messages stemming from the PrintError,
PrintWarn, and RaiseError attributes being set to true.

Taint (boolean, inherited)
This attribute combines TaintIn and TaintOut attributes. Whatever value you
set with this attribute will be set for the other two attributes.

TaintIn (boolean, inherited)
This attribute instructs DBI to check whether method calls are tainted, when
Perl is running in taint mode.

TaintOut (boolean, inherited)
This attribute instructs DBI to assume that data fetched is tainted, when Perl is
running in taint mode.

472 | Chapter 18: Perl API

TraceLevel (integer, inherited)
This attribute sets trace levels and flags for a handle. It’s an alternative to the
trace() method.

Type (scalar, read-only)
This attribute is used to determine the type of handle. It returns dr for a driver
handle, db for a database handle, and st for a statement handle.

Warn (boolean, inherited)
This attribute enables or disables warning messages for poor database
procedures.

Attributes Only for Database Handles
AutoCommit (boolean)

This attribute allows the rollback() function to be used if the attribute is set
to 0. At the time of this writing, a bug sometimes produces an error when using
this attribute.

Driver (handle)
This attribute provides the name of the parent driver: $dbh->{Driver}->{Name}.

Name (string)
This attribute provides the name of the database for the database handle.

RowCacheSize (integer)
This attribute is used to suggest a cache size for rows generated for SELECT
statements. If it’s 0, DBI automatically determines the cache size. A value of 1
disables local row caching.

Statement (string, read-only)
This attribute provides the last SQL statement prepared with the database han-
dle, regardless of whether it succeeded.

Username (string)
This attribute provides the name of the user for the database handle.

Attributes Only for Statement Handles
CursorName (string, read-only)

This attribute returns the name of the cursor for the statement handle.

Database (dbh, read-only)
This attribute returns the database handle of the statement handle.

NAME (array-ref, read-only)
This attribute contains a reference to an array containing the names of the col-
umns of the SQL statement from the statement handle.

NAME_hash (hash-ref, read-only)
This attribute returns a reference to a hash containing column name
information.

Attributes for Handles | 473

Perl API

NAME_lc (array-ref, read-only)
This attribute returns a reference to an array containing column name infor-
mation. The keys are the column names in lowercase letters.

NAME_lc_hash (hash-ref, read-only)
This attribute returns a reference to a hash containing column name informa-
tion. The keys are the column names in lowercase letters.

NAME_uc (array-ref, read-only)
This attribute returns a reference to an array containing column name infor-
mation. The keys are the column names in uppercase letters.

NAME_uc_hash (hash-ref, read-only)
This attribute returns a reference to a hash containing column name informa-
tion. The keys are the column names in uppercase letters.

NULLABLE (array-ref, read-only)
This attribute returns a reference to an array indicating whether each column
in the SQL statement of the handle may contain a NULL value.

NUM_OF_FIELDS (integer, read-only)
This attribute returns the number of columns in the SQL statement of the
handle.

NUM_OF_PARAMS (integer, read-only)
This attribute returns the number of placeholders in the SQL statement of the
handle.

ParamArrays (hash ref, read-only)
This attribute returns a reference to a hash containing the names of placeholders
as keys and their associated values for calls made to bind_param_array() and
execute_array().

ParamTypes (hash ref, read-only)
This attribute returns a reference to a hash containing information about
placeholders that are bound by calls made to bind_param(). The placeholder
names are used as the keys of the hash.

ParamValues (hash ref, read-only)
This attribute returns a reference to a hash of bound parameters and their
values.

RowsInCache (integer, read-only)
This attribute returns the number of unfetched rows in the cache if the driver
supports row-level caching.

Statement (string, read-only)
This attribute is the SQL statement passed to prepare().

TYPE (array-ref, read-only)
This attribute contains a reference to an array of codes for international standard
values for data types (e.g., 1 for SQL_CHAR, 4 for SQL_INTEGER).

PRECISION (array-ref, read-only)
This attribute contains a reference to an array containing the length of columns
(as set in the table definition) in the SQL statement of the handle.

474 | Chapter 18: Perl API

SCALE (array-ref, read-only)
This attribute contains a reference to an array containing the number of decimal
places for columns in the SQL statement of the handle.

DBI Dynamic Attributes
These attributes are related to the last handle used, regardless of the type of handle.
The syntax of each of these is $DBI::attribute:

err
This attribute is synonymous with $handle->err.

errstr
This attribute is synonymous with $handle->errstr.

lasth
This attribute returns the handle used by the last method call.

rows
This attribute is synonymous with $handle->rows.

state
This attribute is synonymous with $handle->state.

Attributes for Handles | 475

Perl API

19
PHP API

One of the most popular programming language and database engine combinations
for the Web is PHP with MySQL. This combination works well for many reasons,
but primarily because of the speed, stability, and simplicity of both applications.
The first part of this chapter provides a basic tutorial on how to connect to and query
MySQL with PHP. Following the tutorial is a reference of PHP MySQL functions in
alphabetical order. For the examples in this chapter, I use the database of a fictitious
computer support business. This database contains one table with client work re-
quests (workreq) and another with client contact information (clients).

Using PHP with MySQL
This section presents the basic tasks you need to query a MySQL database from
PHP. Prior to PHP 5, MySQL was enabled by default. As of PHP 5, it’s not enabled
and the MySQL library is not packaged with PHP. To enable MySQL with PHP, you
need to configure PHP with the --with-mysql[=/path_to_mysql] option.

Connecting to MySQL
For a PHP script to interface with MySQL, the script must first make a connection
to MySQL, thus establishing a MySQL session. To connect to the fictitious database
workrequests, a PHP script might begin like this:

<?php

$host = 'localhost';
$user = 'russell';
$pw = 'dyer';
$db = 'workrequests';

mysql_connect($host, $user, $pw)
 or die(mysql_error);

477

mysql_select_db($db);

?>

This excerpt of PHP code starts by establishing the variables with information nec-
essary for connecting to MySQL and the database. After that, PHP connects to
MySQL by giving the host and user variables. If it’s unsuccessful, the script dies with
an error message. If the connection is successful, the workrequests database is se-
lected for use. Each PHP script example in this chapter begins with an excerpt of
code like this one.

Querying MySQL
In the fictitious database is a table called workreq that contains information on client
work requests. To retrieve a list of work requests and some basic information on
clients, a PHP script begins by connecting to MySQL, as shown in the previous script
excerpt. That is followed by the start of a web page and then the invocation of an
SQL statement to retrieve and display the data. You can achieve this with code such
as the following:

 ... // Connect to MySQL

 <html>
 <body>
 <h2>Work Requests</h2>

 <?php
 $sql_stmnt = "SELECT wrid, client_name,
 wr_date, description
 FROM workreq, clients
 WHERE status = 'done'
 AND workreq.clientid = clients.clientid";

 $results = mysql_query($sql_stmnt)
 or die('Invalid query: ' . mysql_error());

 while($row = mysql_fetch_row($results)) {
 list($wrid, $client_name, $wr_date, $description) = $row;
 print "$client_name -
 $desription ($wr_date)
";
 }

 mysql_close();
 ?>
 </body>
 </html>

After connecting to MySQL (substituted with ellipses here) and starting the web
page, a variable ($sql_stmnt) containing the SQL statement is created. Then the
database is queried with the SQL statement, and a reference to the results set is stored
in a variable ($results). The query is followed by an or statement, a common PHP
syntax for error checking. The print statement executes only if no results are found.

478 | Chapter 19: PHP API

Assuming PHP was successful in querying the database, a while statement is used
to loop through each row of data retrieved from MySQL. With each pass, using the
mysql_fetch_row() function, PHP will temporarily store the fields of data for each
row in an array ($row). Within the code block of the while statement, the PHP
list() function parses the elements of the $row array into their respective variables.
The variables here are named to match their column counterparts. This is not nec-
essary, though—they can be named anything. The array could even be used as it is
and the appropriate sequence number referenced to retrieve data. For instance, for
the date of the work request, $row[2] could be used because it’s the third in the
sequence (0 is first). Naming the variables as they are here, though, makes it easier
to read the code and easier for others to follow later.

The second line of code within the while statement displays the data in the format
required for the web page. The data is wrapped in a hyperlink with a reference to
another PHP script (details.php), which will retrieve all of the details for the par-
ticular work request selected by a user. That work request will be identified by the
work request number (i.e., wrid), which is a key column for the details.php PHP
script. Typically, the value for wrid will automatically be placed in a variable by the
same name ($wrid) regardless of what the variable is named in this script. It’s based
on the name given in the hyperlink or anchor tag. This will happen if the php.ini
configuration file has register_globals set to on, something that is not the case in
recent versions of PHP. On Unix and Linux systems, this file is located in the /etc
directory. On a Windows system, it’s usually found in the c:\windows directory. If
not, the value can be referenced using the $_GET associative array, which is describe
in PHP’s online documentation (http://www.php.net).

The output of this script is a line for each incomplete work request found in the
database. Each line will be linked to another script that presumably can provide
details on the work request selected. In this simple example, only a few of the many
PHP MySQL functions are used to display data. In the next section of this chapter,
each function is described with script excerpts that show how they are used.

PHP MySQL Functions in Alphabetical Order
The rest of this chapter contains a list of PHP MySQL functions in alphabetical order.
Each function is given with its syntax and an explanation. An example script, or
script excerpt, is provided to show how you can use the function. To save space,
almost all of the script excerpts are shown without the lines of code necessary to
start a PHP script and to connect to MySQL, and without the lines that should follow
to close the connection and to end the script. For an example showing how to write
these opening and closing lines, see the tutorial in the previous section.

mysql_affected_rows(  )
int mysql_affected_rows([connection])

This function returns the number of rows affected by a previous SQL statement that
modified rows of data for the current MySQL session. The function returns –1 if the

mysql_affected_rows(  )

Chapter 19: PHP API | 479

PHP API

http://www.php.net

previous statement failed. It works only after INSERT, UPDATE, and DELETE statements. See
mysql_num_rows() later in this section for the number of rows returned by a SELECT state-
ment. The connection identifier may be given as an argument to retrieve the number of
rows affected by a different connection. Here is an example:

...
$sql_stmnt = "UPDATE workreq
 SET due_date = ADDDATE(due_date, INTERVAL 1 DAY)
 WHERE due_date = '2004-07-28'";
mysql_query($sql_stmnt);
$updated = mysql_affected_rows();
print "Number of Rows Updated: $updated \n";
...

This script changes the due dates for all work requests by one day.

mysql_change_user(  )
int mysql_change_user(user, password[, database, connection])

This function can be used to change the username for a MySQL connection. The new
username is given as the first argument and the password for that user as the second. A
different database from the one in use may be given as a third argument. You can change
the user information for a different MySQL connection by specifying it as the fourth
argument. If the function is successful, it returns true; if it’s unsuccessful, it returns false.
This function is no longer available as of version 4 of PHP. Instead, you should establish
a new connection with a different user by using the mysql_connect() function.

mysql_client_encoding(  )
string mysql_client_encoding([connection])

This function returns the name of the default character set for the current MySQL con-
nection or, if connection is supplied, for that connection. Here is an example:

...
$info = mysql_client_encoding();
print "Encoding in Use: $info \n";
...

Here are the results of this script on my server:

Encoding in Use: latin1

mysql_close(  )
bool mysql_close([connection])

This function closes the current or last MySQL connection, or a given connection. The
function returns true if it’s successful, and false if it’s unsuccessful. This function will not
close persistent connections started with mysql_pconnect(). Here is an example:

...
$connection = mysql_connect('localhost', 'ricky', 'adams');
mysql_select_db('workrequests', $connection);

mysql_change_user(  )

480 | Chapter 19: PHP API

...
mysql_close($connection);
...

If a script has opened only one connection to MySQL, it’s not necessary to specify the
connection link to close as shown here.

mysql_connect(  )
mysql_connect(server[:port|socket], user, password[,
 new_link, flags])

Use this function to start a MySQL connection. The first argument of the function is the
server name. If none is specified, localhost is assumed. A port may be specified with the
server name (separated by a colon) or a socket along with its path. If no port is given,
port 3306 is assumed. The username is to be given as the second argument and the user’s
password as the third. If a connection is attempted that uses the same parameters as a
previous one, the existing connection will be used and a new connection link will not be
created unless new_link is specified as the fourth argument of this function. As an optional
fifth argument, client flags may be given for the MySQL constants
MYSQL_CLIENT_COMPRESS, MYSQL_CLIENT_IGNORE_SPACE, MYSQL_CLIENT_INTERACTIVE, and
MYSQL_CLIENT_SSL. The function returns a connection identifier if successful; it returns
false if it’s unsuccessful. Use mysql_close() to close a connection created by
mysql_connect(). Here is an example:

#!/usr/bin/php -q
<?
 mysql_connect('localhost', 'ricky', 'adams');
 mysql_select_db('workrequests');
...

To be able to identify the connection link later, especially when a script will be using
more than one link, capture the results of mysql_connect(). Here is a complete script
that sets up two connections to MySQL and captures the resource identification number
for each link:

#!/usr/bin/php -q
<?
$user1 = 'elvis';
$user2 = 'fats';
$connection1 = mysql_connect('localhost', $user1, 'ganslmeier123');
$connection2 = mysql_connect('localhost', $user2, 'holzolling456');
mysql_select_db('workrequests', $connection1);
mysql_select_db('workrequests', $connection2);
counter($connection1,$user1);
counter($connection2,$user2);
function counter($connection,$user) {
 $sql_stmnt = "SELECT * FROM workreq";
 $results = mysql_query($sql_stmnt, $connection);
 if(mysql_errno($connection)){
 print "Could not SELECT with $connection for $user. \n";
 return;
 }
 $count = mysql_num_rows($results);
 print "Number of Rows Found with $connection for $user:

mysql_connect(  )

Chapter 19: PHP API | 481

PHP API

 $count. \n";
}
mysql_close($connection1);
mysql_close($connection2);
?>

In this example, two links are established with different usernames. The counter() sub-
routine is called twice, once with each connection identifier and username passed to the
user-defined function. For the first connection, the user elvis does not have SELECT priv-
ileges, so the SQL statement is unsuccessful. An error is generated and the number of
rows is not determined due to the return ending the function call. For the second con-
nection, the user fats has the necessary privileges, so the function is completed success-
fully. Here is the output from running this script on my server:

Could not SELECT with Resource id #1 for elvis.
Number of Rows Found with Resource id #2 for fats: 528.

mysql_create_db(  )
resource mysql_create_db(database[, connection])

Use this function to create a database in MySQL for the current connection. The name
of the database to create is given as the first argument of the function. A different MySQL
connection identifier may be given as a second argument. The function returns true if
it’s successful, false if unsuccessful. This function is deprecated; use the
mysql_query() function with the CREATE DATABASE statement instead. Still, here is an
example:

...
mysql_create_db('new_db');
$databases = mysql_list_dbs();
while($db = mysql_fetch_row($databases)) {
 print $db[0] . "\n";
}
...

This script will create a new database and then display a list of databases to allow the
user to confirm that it was successful.

mysql_data_seek(  )
bool mysql_data_seek(connection, row)

Use this function in conjunction with the mysql_fetch_row() function to change the
current row being fetched to the one specified in the second argument. The connection
identifier is given as the first argument. The function returns true if it’s successful; false
if it’s unsuccessful. Here is an example:

...
$sql_stmnt = "SELECT wrid, clientid, description
 FROM workreq";
$results = mysql_query($sql_stmnt);
$count = mysql_num_rows($results);
if ($count > 6) mysql_data_seek($results, $count - 6);
$row = mysql_fetch_row($results);

mysql_create_db(  )

482 | Chapter 19: PHP API

while($row = mysql_fetch_object($results)) {
 print "WR-" . $row->wrid . " Client-" . $row->clientid .
 " - " . $row->description . "\n";
}
...

In this script excerpt, the SQL statement is selecting the work request identification
numbers for all rows in the table. The results set is stored in $results. Using the
mysql_num_rows() function, the number of rows is determined and placed in the
$count variable. To be able to display only the last five work requests, the script calls
mysql_data_seek(). The results set is given as the first argument. In order to get the first
row of a results set, the offset would be set to 0—so if a results set contains only one row,
the row count of 1 minus 1 would need to be given as the second argument of
mysql_data_seek(). For the example here, to get the last five records of the results set,
the number of rows is reduced by six to move the pointer to the row before the fifth-to-
last row. Here is the last line of the output of this script:

WR-5755 Client-1000 - Can't connect to network.

mysql_db_name(  )
string mysql_db_name(databases, number)

This function returns the name of the database from the results of the
mysql_list_dbs() function, which returns a pointer to a results set containing the names
of databases for a MySQL server. The reference to the list of databases is given as the first
argument. A number identifying the row to retrieve from the list is given as the second
argument. Here is an example:

...
$databases = mysql_list_dbs();
$dbs = mysql_num_rows($databases);
for($index = 0; $index < $dbs; $index++) {
 print mysql_db_name($databases, $index) . "\n";
}
...

In this script excerpt, a results set containing a list of databases is retrieved and stored in
the $databases variable using the mysql_list_dbs() function. That results set is analyzed
by mysql_num_rows() to determine the number of records (i.e., the number of database
names) that it contains. Using a for statement and the number of databases ($dbs), the
script loops through the results set contained in $databases. With each pass,
mysql_db_name() extracts the name of each database by changing the second argument
of the function as the value of $index increments from 0 to the value of $dbs.

mysql_db_query(  )
resource mysql_db_query(database, sql_statement[, connection])

This function can be used to query the database given—for the current MySQL connec-
tion, unless another is specified—and to execute the SQL statement given as the second
argument. If there isn’t currently a connection to the server, it will attempt to establish
one. For SQL statements that would not return a results set (e.g., UPDATE statements), the

mysql_db_query(  )

Chapter 19: PHP API | 483

PHP API

function will return true if it's successful and false if it’s unsuccessful. This function is
deprecated, so use mysql_query() instead. Here is an example:

...
$sql_stmnt = "SELECT wrid, clientid, description
 FROM workreq";
$results = mysql_db_query('workrequests', $sql_stmnt);
while($row = mysql_fetch_object($results)) {
 print "WR-" . $row->wrid . ",
 Client-" . $row->clientid . " " .
 $row->description . "\n";
}
...

Basically, using mysql_db_query() eliminates the need to use mysql_select_db() and
mysql_query().

mysql_drop_db(  )
bool mysql_drop_db(database[, connection])

Use this function to delete the database given from the MySQL server. A different con-
nection identifier may be given as a second argument. This function returns true if it’s
successful, and false if it’s unsuccessful. This function has been deprecated; use the
mysql_query() function with a DROP DATABASE statement instead. Here is an example:

...
mysql_dropdb('old_db');
...

mysql_errno(  )
int mysql_errno([connection])

This function returns the error code number for the last MySQL statement issued. The
function returns 0 if there was no error. Another MySQL connection identifier may be
given as an argument for the function. Here is an example:

...
$sql_stmnt = "SELECT * FROM workreqs";
$results = mysql_db_query('workrequests', $sql_stmnt)
 or die (mysql_errno() . " " . mysql_error() . "\n");
$count = mysql_num_rows($results);
print "Number of Rows Found: $count \n";
...

I’ve intentionally typed the name of the table incorrectly in the preceding SQL statement.
It should read workreq and not workreqs. Here is the result of this script:

1146 Table 'workrequests.workreqs' doesn't exist

Notice that the error number code is given by mysql_errno() and the message that fol-
lows it is given by mysql_error(), which provides an error message rather than a code.

mysql_drop_db(  )

484 | Chapter 19: PHP API

mysql_error(  )
string mysql_error([connection])

This function returns the error message for the last MySQL statement issued. It returns
nothing if there was no error. Another MySQL connection identifier may be given as an
argument for the function. See mysql_errno() earlier in this section for an example of
how mysql_error() may be used.

mysql_escape_string(  )
string mysql_escape_string(string)

This function returns the string given with special characters preceded by backslashes so
that they are protected from being interpreted by the SQL interpreter. This function is
used in conjunction with mysql_query() to help make SQL statements safe. However,
it is deprecated, so use mysql_real_escape_string() instead. Here is an example:

...
$clientid = '1000';
$description = "Can't connect to network.";
$description = mysql_escape_string($description);
$sql_stmnt = "INSERT INTO workreq
 (date, clientid, description)
 VALUES(NOW(), '$clientid', '$description')";
mysql_query($sql_stmnt);
...

The string contained in the $description variable contains an apostrophe, which would
normally cause the SQL statement to fail because the related value in the SQL statement
is surrounded by single quotes. Without mysql_escape_string(), an apostrophe would
be mistaken for a single quote, which has special meaning in MySQL.

mysql_fetch_array(  )
array mysql_fetch_array(results[, type])

This function returns an array containing a row of data from an SQL query results set.
Data is also stored in an associative array containing the field names as the keys for the
values. Field names are derived from either column names or aliases. To choose whether
only an array or only an associative array is returned, or both are returned, you may give
one of the following as a second argument to the function, respectively: MYSQL_NUM,
MYSQL_ASSOC, or MYSQL_BOTH. This function is typically used with a loop statement to work
through a results set containing multiple rows of data. When there are no more rows to
return, it returns false, which typically triggers the end of the loop. Here is an example:

...
$sql_stmnt = "SELECT wrid, clientid, description
 FROM workreq";
$results = mysql_query($sql_stmnt);
while($row = mysql_fetch_array($results)) {
 print "WR-" . $row[0] . ", Client-" .
 $row['clientid'] . " " . $row['description'] . "\n";
}
...

mysql_fetch_array(  )

Chapter 19: PHP API | 485

PHP API

Notice that both methods of extracting data from the row fetched are used here: the work
request number is retrieved using a standard array data retrieval method (i.e., placing the
index number of the array element in square brackets); and the other pieces of data are
retrieved using the associative array method (i.e., placing the field name and the key name
in brackets).

mysql_fetch_assoc(  )
array mysql_fetch_assoc(results)

This function returns an associative array containing a row of data from an SQL query
results set. Field names of the results set are used as the keys for the values. Field names
are derived from column names unless an alias is employed in the SQL statement. This
function is typically used with a loop statement to work through a results set containing
multiple rows of data. When there are no more rows to return, it returns false, which
will end a loop statement. This function is synonymous with mysql_fetch_array() using
MYSQL_ASSOC as its second argument. Here is an example:

...
$sql_stmnt = "SELECT wr_id, client_id, description
 FROM workreq";
$results = mysql_query($sql_stmnt);
while($row = mysql_fetch_assoc($results)) {
 print "WR-" . $row['wr_id'] . ", Client-" .
 $row['client_id'] . " " . $row['description'] . "\n";
}
...

This loop is identical to the one for mysql_fetch_array() except that, with the
mysql_fetch_assoc() function, the index for a standard array cannot be used to get the
work request number—so the wr_id key for the associative array stored in $row has to be
used instead.

mysql_fetch_field(  )
object mysql_fetch_field(results[, offset])

This function returns an object containing information about a field from a results set
given. Information is given on the first field of a results set waiting to be returned; the
function can be called repeatedly to report on each field of a SELECT statement. A number
may be given as the second argument to skip one or more fields. The elements of the
object are as follows: name for column name; table for table name; max_length for the
maximum length of the column; not_null, which has a value of 1 if the column cannot
have a NULL value; primary_key, which has a value of 1 if the column is a primary key
column; unique_key, which returns 1 if it’s a unique key; multiple_key, which returns 1
if it’s not unique; numeric, which returns 1 if it’s a numeric data type; blob, which returns
1 if it’s a BLOB data type; type, which returns the data type; unsigned, which returns 1 if
the column is unsigned; and zerofill, which returns 1 if it’s a zero-fill column. Here is
an example:

...
$sql_stmnt = "SELECT * FROM workreq LIMIT 1";
$results = mysql_query($sql_stmnt);

mysql_fetch_assoc(  )

486 | Chapter 19: PHP API

$num_fields = mysql_num_fields($results);
for ($index = 0; $index < $num_fields; $index++) {
 $info = mysql_fetch_field($results, $index);
 print "$info->name ($info->type $info->max_length) \n";
}
...

Here, all of the columns for one record are selected and placed in $results. The number
of fields is determined by mysql_num_fields() for the for statement that follows. The
for statement loops through each field of the results set and uses mysql_fetch_field()
to return the field information in the form of an object. Then the example prints out the
name of the field, the data type, and the maximum length. Here are the first few lines of
the output from this script:

wr_id (int 4)
wr_date (date 10)
clientid (string 4)
...

mysql_fetch_lengths(  )
array mysql_fetch_lengths(results)

This function returns an array containing the length of each field of a results set from a
MySQL query. Here is an example:

...
$sql_stmnt = "SELECT wr_id, description, instructions
 FROM workreq";
$results = mysql_query($sql_stmnt);
while($row = mysql_fetch_object($results)) {
 $length = mysql_fetch_lengths($results);
 print "$row->wr_id: description: $length[1],
 instructions: $length[2] \n";
}
...

In this example, each work request number is selected, along with the brief description
and the lengthy instructions. Looping through each row that is retrieved as an object
with mysql_fetch_object() and a while statement, the code determines the length of the
data for all three fields with mysql_fetch_lengths() and places them in an array. Within
the statement block of the while statement, the value of the wr_id field is extracted, and
the lengths of the description field and the instructions field are pulled out of the
$length array using the relative index number for each. Here are a few lines of output
from this script:

...
5753: description: 26, instructions: 254
5754: description: 25, instructions: 156
5755: description: 25, instructions: 170

mysql_fetch_lengths(  )

Chapter 19: PHP API | 487

PHP API

mysql_fetch_object(  )
object mysql_fetch_object(result)

This function returns a row of data as an object from the results set given. The function
returns false if there are no more rows to return. The field names of the results set are
used to retrieve data from the object returned. Here is an example:

...
$sql_stmnt = "SELECT count(wrid) AS wr_count, client_name
 FROM workreq, clients
 WHERE status <> 'done'
 AND workreq.clientid = clients.clientid
 GROUP BY workreq.clientid
 ORDER BY wr_count DESC";
$results = mysql_query($sql_stmnt);
while($row = mysql_fetch_object($results)) {
 print $row->client_name . " " . $row->wr_count . "\n";
}
...

This script is written to generate a list of clients that have outstanding work requests and
to give a count of the number of requests for each, in descending order. Within the
while statement that follows, each row of the results set is processed with
mysql_fetch_object(). The value of each element of the object created for each row is
displayed by calls using the field names, not the column names. For instance, to get the
data from the field with the number of work requests, you use the wr_count alias. Here
are a few lines from the output of this script:

...
Bracey Logistics 3
Neumeyer Consultants 2
Farber Investments 4

mysql_fetch_row(  )
array mysql_fetch_row(results)

This function returns an array containing a row of data from a results set given. This
function is typically used in conjunction with a loop statement to retrieve each row of
data in a results set. Each loop retrieves the next row. Individual fields appear in the array
in the order they appeared in the SELECT statement, and can be retrieved by an array index.
The loop ends when rows are used up because the function returns NULL. Here is an
example:

...
$sql_stmnt = "SELECT wr_id, client_name, description
 FROM workreq, clients
 WHERE workreq.clientid = clients.clientid";
$results = mysql_query($sql_stmnt);
while($row = mysql_fetch_row($results)) {
 print "WR-$row[0]: $row[1] - $row[2] \n";
}
...

mysql_fetch_object(  )

488 | Chapter 19: PHP API

To get the data for each element of the $row array created by mysql_fetch_row(), you
must know the number corresponding to each element. The index of the elements begins
with 0, so $row[0] is the first element and, in this case, the work request number because
wr_id was the first field requested by the SELECT statement. Here’s one line of the output
from this script:

WR-5755: Farber Investments - Can't connect to Internet.

mysql_field_flags(  )
string mysql_field_flags(results, offset)

This function returns the field flags for a field of a results set given. See
mysql_fetch_field() earlier in this chapter for a description of the flags. Specify the
desired field through the offset in the second argument. Here is an example:

...
$sql_stmnt = "SELECT * FROM workreq LIMIT 1";
$results = mysql_query($sql_stmnt);
$num_fields = mysql_num_fields($results);
for ($index = 0; $index < $num_fields; $index++) {
 $field_name = mysql_field_name($results, $index);
 $flags = explode(' ', mysql_field_flags($results, $index));
 print "$field_name \n";
 print_r($flags);
 print "\n\n";
}
...

After retrieving one row as a sampler—using a for statement and the number of fields
in the results set—this example determines the field name with mysql_field_name() and
the flags for each field using mysql_field_flags(). The mysql_field_flags() function
assembles the flags into an array in which the data is separated by spaces. By using the
explode() PHP function, you can retrieve the elements of the array without having to
know the number of elements, and they are stored in $flags. Next, print_r() displays
the field name and prints out the flags. Here is the output of the script for the first field:

wrid
Array
(
 [0] => not_null
 [1] => primary_key
 [2] => auto_increment
)

mysql_field_len(  )
int mysql_field_len(results, index)

This function returns the length from a field of the results set given. Specify the desired
field via the index in the second argument. Here is an example:

...
$sql_stmnt = "SELECT * FROM workreq LIMIT 1";
$results = mysql_query($sql_stmnt);

mysql_field_len(  )

Chapter 19: PHP API | 489

PHP API

$num_fields = mysql_num_fields($results);
for ($index = 0; $index < $num_fields; $index++) {
 $field_name = mysql_field_name($results, $index);
 print "$field_name - " .
 mysql_field_len($results, $index) . "\n";
}
...

Here, one row has been retrieved from a table and mysql_num_fields() determines the
number of fields in the results set. With a for statement, each field is processed to de-
termine its name using mysql_field_name() and the length of each field is ascertained
with mysql_field_len(). Here are a few lines of the output of this script:

wrid - 9
wr_date - 10
clientid - 4
...

mysql_field_name(  )
string mysql_field_name(results, index)

This function returns the name of a field from the results set given. To specify a particular
field, the index of the field in the results set is given as the second argument—0 being
the first field. Here is an example:

...
$sql_stmnt = "SELECT * FROM workreq LIMIT 1";
$results = mysql_query($sql_stmnt);
$num_fields = mysql_num_fields($results);
for ($index = 0; $index < $num_fields; $index++) {
 $field_name = mysql_field_name($results, $index);
 print $field_name . "\n";
}
...

The SQL statement here selects one row from the table. Then mysql_num_fields() ex-
amines the results of the query and determines the number of fields. The loop processes
each field, starting with field 0 using the mysql_field_name() function to extract each
field name. The second argument is changed as the $index variable is incremented with
each loop.

mysql_field_seek(  )
bool mysql_field_seek(results, index)

Use this function to change the pointer to a different field from the results set given. The
amount by which to offset the pointer is given as the second argument. Here is an
example:

...
$sql_stmnt = "SELECT * FROM workreq LIMIT 1";
$results = mysql_db_query('workrequests', $sql_stmnt,
 $connection);
$num_fields = mysql_num_fields($results);
mysql_field_seek($results, $num_fields - 3);

mysql_field_name(  )

490 | Chapter 19: PHP API

for ($index = 0; $index < 3; $index++) {
 $field = mysql_fetch_field($results, $index);
 print "$field->name \n";
}
...

This example determines the number of fields and their values, and then gives the result
as the second argument of the mysql_field_seek() function to choose the last three fields
of the results set. The for statement prints out the field names of the last three fields using
mysql_fetch_field().

mysql_field_table(  )
string mysql_field_table(results, index)

This function returns the name of the table that contains a particular field from the results
set given. An offset for the field is given as the second argument. This is useful for a results
set derived from an SQL statement involving multiple tables. Here is an example:

...
$sql_stmnt = "SELECT wrid, client_name, description
 FROM workreq, clients
 WHERE workreq.clientid = clients.clientid";
$results = mysql_query($sql_stmnt);
$num_fields = mysql_num_fields($results);
for ($index = 0; $index < $num_fields; $index++) {
 $table = mysql_field_table($results, $index);
 $field = mysql_field_name($results, $index);
 print "$table.$field \n";
}
...

The SQL statement here selects columns from two different tables. Using
mysql_field_table() inside of the for statement, the code determines the name of the
table from which each field comes. The mysql_field_name() function gets the field’s
name. Here are the results of this script:

workreq.wrid
clients.client_name
workreq.description

mysql_field_type(  )
string mysql_field_type(results, index)

This function returns the column data type for a field from the results set given. To specify
a particular field, give an offset as the second argument. Here is an example:

...
$sql_stmnt = "SELECT * FROM workreq LIMIT 1";
$results = mysql_query($sql_stmnt);
$num_fields = mysql_num_fields($results);
for ($index = 0; $index < $num_fields; $index++) {
 $name = mysql_field_name($results, $index);
 $type = mysql_field_type($results, $index);
 print "$name - $type \n";

mysql_field_type(  )

Chapter 19: PHP API | 491

PHP API

}
...

In this example, after one row of data is selected as a sample, mysql_num_fields() de-
termines the number of rows in the results set so that a counter limit may be set up
($num_fields) in the for statement that follows. Within the for statement, the name of
the field is extracted using mysql_field_name() and the data type using
mysql_field_type(). Here are a few lines of the output of this script:

wrid - int
wr_date - date
clientid - string
...

mysql_free_result(  )
bool mysql_free_result(results)

Use this function to free the memory containing the results set given. The function returns
true if it’s successful, and false if it’s unsuccessful. Here is an example:

...
mysql_free_result($results);
mysql_close();
?>

There’s not much to this function. It merely flushes out the data for the location in
memory referenced by the variable given.

mysql_get_client_info(  )
string mysql_get_client_info()

This function returns the library version of the MySQL client for the current connection.
Here is an example:

...
$info = mysql_get_client_info();
print "Client Version: $info \n";
...

Here are the results of this script on one of my computers:

Client Version: 3.23.40

mysql_get_host_info(  )
string mysql_get_host_info([connection])

This function returns information on the host for the current connection to MySQL. You
may give an identifier to retrieve information on a host for a different connection. Here
is an example:

...
$info = mysql_get_client_info();
print "Connection Info: $info \n";
...

mysql_free_result(  )

492 | Chapter 19: PHP API

Here are the results of this script when you run it on the host containing the server:

Connection Info: 127.0.0.1 via TCP/IP

mysql_get_proto_info(  )
int mysql_get_proto_info([connection])

This function returns the protocol version for the current connection to MySQL. You
may give an identifier to retrieve the protocol version for a different connection. Here is
an example:

...
$info = mysql_get_proto_info();
print "Protocol Version: $info \n";
...

Here are the results of running this script:

Protocol Version: 10

mysql_get_server_info(  )
string mysql_get_server_info([connection])

This function returns the MySQL server version for the current connection to MySQL.
You may give an identifier to retrieve the server version for a different connection. Here
is an example:

...
$info = mysql_get_server_info();
print "MySQL Server Version: $info \n";
...

Here are the results of running this script:

MySQL Server Version: 4.1.1-alpha-standard

mysql_info(  )
string mysql_info([connection])

This function returns information on the last query for the current connection to MySQL.
You may give an identifier to retrieve information on a query for a different connection.
Here is an example:

...
$sql_stmnt = "SELECT * FROM workreq";
$results = mysql_query($sql_stmnt);
print mysql_info();
...

Here are the results of running this script:

String format: 528 rows in set

mysql_info(  )

Chapter 19: PHP API | 493

PHP API

mysql_insert_id(  )
int mysql_insert_id([connection])

This function returns the identification number of the primary key of the last record
inserted using INSERT for the current connection, provided the column utilizes
AUTO_INCREMENT and the value was not manually set. Otherwise, it returns 0. Here is an
example:

...
$sql_stmnt = "INSERT INTO workreq
 (date, clientid, description)
 VALUES(NOW(), '1000', 'Network Problem')";
mysql_query($sql_stmnt);
$wrid = mysql_insert_id();
print "Work Request ID: $wrid \n";
...

Here is the output of this script:

Work Request ID: 5755

mysql_list_dbs(  )
resource mysql_list_dbs([connection])

This function returns a pointer to a results set containing the names of databases hosted
by the MySQL server. The mysql_db_name() function or any function that extracts data
from a results set may be used to retrieve individual database names. Here is an example:

...
$databases = mysql_list_dbs();
$dbs = mysql_num_rows($databases);
for($index = 0; $index < $dbs; $index++) {
 print mysql_db_name($databases, $index) . "\n";
}
...

mysql_list_fields(  )
resource mysql_list_fields(database, table[, connection])

This function returns a results set containing information about the columns of a table
given for a database specified. The mysql_field_flags(), mysql_field_len(),
mysql_field_name(), and mysql_field_type() functions can be used to extract infor-
mation from the results set. An identifier may be given as a third argument to the function
to retrieve information for a different MySQL connection. This function is deprecated,
though. Use the mysql_query() function with the SHOW COLUMNS statement instead. Here
is an example:

...
$fields = mysql_list_fields('workrequests', 'workreq');
$num_fields = mysql_num_fields($fields);
for ($index = 0; $index < $num_fields; $index++) {
 print mysql_field_name($fields, $index) . "\n";

mysql_insert_id(  )

494 | Chapter 19: PHP API

}
...

After connecting to MySQL, in the first line the example uses mysql_list_fields() to
retrieve a list of column names from the database and table given as arguments. To assist
the for statement that follows, the mysql_num_fields() function determines the number
of fields in the results set, returning a field for each column. Then PHP loops through
the for statement for all the fields and displays the name of each column using
mysql_field_name(). Here are a few lines from the output of this script:

wrid
wr_date
clientid
...

mysql_list_processes(  )
resource mysql_list_processes([connection])

This function returns a results set containing information on the server threads for the
current connection: the connection identifier, the hostname, the database name, and the
command. You may give an identifier to retrieve information for a different connection.
Here is an example:

...
$processes = mysql_list_processes($connection);
while ($row = mysql_fetch_array($processes)){
 print "$row['Id'], $row['Host'],
 $row['db'], $row['Command']";
}
...

mysql_list_tables(  )
resource mysql_list_tables(database[, connection])

This function returns a results set containing a list of tables for database. You may give
an identifier as a second argument to retrieve information for a different connection. The
mysql_tablename() function can be used to extract the names of the tables from the
results set of this function. This function is deprecated, though. Use the
mysql_query() function with the SHOW TABLES statement instead. Here is an example:

...
$tables = mysql_list_tables('workrequests');
$num_tables = mysql_num_rows($tables);
for($index = 0; $index < $num_tables ; $index++) {
 print mysql_tablename($tables, $index) . "\n";
}
...

The first line shown here gives the database name as an argument for the
mysql_list_tables() function. The results are stored in the $tables variable. Next, the
number of rows and the number of tables found are determined and stored in
$num_tables. Using a for statement to loop through the list of tables in the results set,
each table name is printed out with the assistance of mysql_tablename(). The second

mysql_list_tables(  )

Chapter 19: PHP API | 495

PHP API

argument of mysql_tablename() is adjusted incrementally by using the $index variable,
which will increase from 0 to the value of the $num_tables variable.

mysql_num_fields(  )
int mysql_num_fields(results)

This function returns the number of fields of the results set given. Here is an example:

...
$fields = mysql_list_fields('workrequests', 'workreq');
$num_fields = mysql_num_fields($fields);
for ($index = 0; $index < $num_fields; $index++) {
 print mysql_field_name($fields, $index) . "\n";
}
...

As this example shows, mysql_num_fields() can be useful in conjunction with other
functions. Here, a list of fields for a table is retrieved using mysql_list_fields(). In order
to help the code display the names of the fields using a for statement, we need to deter-
mine the number of fields. The mysql_num_fields() function is handy for figuring out
this bit of information.

mysql_num_rows(  )
int mysql_num_rows(results)

This function returns the number of rows in the results set given, generated by issuing a
SELECT statement. For other types of SQL statements that don’t return a results set, use
mysql_affected_rows(). Here is an example:

...
$sql_stmnt = "SELECT * FROM workreq";
$results = mysql_query($sql_stmnt);
$count = mysql_num_rows($results);
print "Number of Rows Found: $count \n";
...

mysql_pconnect(  )
resource mysql_pconnect(server[:port|socket], user, password[, flags])

Use this function to open a persistent connection to MySQL. The connection will not
end with the closing of the PHP script that opened the connection, and it cannot be closed
with mysql_close(). The first argument of the function is the server name. If none is
specified, localhost is assumed. A port may be specified with the server name (separated
by a colon) or a socket along with its path. If no port is given, port 3306 is assumed. The
username is given as the second argument and the user’s password as the third. If you
attempt a connection that uses the same parameters as a previous one, it uses the existing
connection instead of creating a new connection. As an optional fourth argument, you
can give client flags for the MySQL constants MYSQL_CLIENT_COMPRESS,
MYSQL_CLIENT_IGNORE_SPACE, MYSQL_CLIENT_INTERACTIVE, and MYSQL_CLIENT_SSL. The
function returns a connection identifier if it’s successful; it returns false if it’s
unsuccessful.

mysql_num_fields(  )

496 | Chapter 19: PHP API

Here is an example:

 mysql_pconnect('localhost', 'russell', 'dyer');

mysql_ping(  )
bool mysql_ping([connection])

Use this function to determine whether the current MySQL connection is still open. If
it’s not open, the function attempts to reestablish the connection. If the connection is
open or reopened, the function returns true. If the connection is not open and cannot be
reestablished, it returns false. You may give an identifier to ping a different connection.
Here is an example:

...
$ping = mysql_ping($connection);
print "Info: $ping \n";
...

This function is available as of version 4.3 of PHP.

mysql_query(  )
resource mysql_query(sql_statement[, connection])

Use this function to execute an SQL statement given. You may give an identifier as a
second argument to query through a different connection. The function returns false if
the query is unsuccessful. For SQL statements not designed to return a results set (e.g.,
INSERT), the function returns trueif successful. If not successful, it returns a reference to
a results set. Here is an example:

...
$sql_stmnt = "SELECT wrid, client_name, description
 FROM workreq, clients
 WHERE workreq.clientid = clients.clientid";
$results = mysql_query($sql_stmnt, $connection);
while($row = mysql_fetch_row($results)) {
 print "WR-$row[0]: $row[1] - $row[2] \n";
}
...

Here’s one line from the output of this script:

WR-5755: Farber Investments - Can't connect to network.

mysql_real_escape_string(  )
string mysql_real_escape_string(string[, link])

This function returns the string given with special characters preceded by backslashes so
that they are protected from being interpreted by the SQL interpreter. Use this in con-
junction with the mysql_query() function to make SQL statements safe. This function
does not escape % or _ characters, but it does take into account the character set of the
connection. A different connection may be specified as the second argument to the

mysql_real_escape_string(  )

Chapter 19: PHP API | 497

PHP API

function. This function is similar to mysql_escape_string(), but it escapes a string based
on the character set for the current connection.

mysql_result(  )
string mysql_result(results, row[, field|offset])

This function returns the data from one field of a row from results. Normally, this state-
ment returns the next row and can be reused to retrieve results sequentially. As a third
argument, you can give either a field name (i.e., the column or alias name) or an offset
to change the pointer for the function. This function is typically used in conjunction with
a loop statement to process each field of a results set. Here is an example:

...
$sql_stmnt = "SELECT client_name FROM clients";
$results = mysql_query($sql_stmnt);
$num_rows = mysql_num_rows($results);
for ($index = 0; $index < $num_rows; $index++) {
 print mysql_result($results, $index) . "\n";
}
...

This script queries the database for a list of client names. Using the mysql_num_row()
function, the number of rows contained in the results set is determined. Using that bit
of data, a for statement is constructed to loop through the results set using
mysql_result() to extract one field of data per row. Otherwise, a function such as
mysql_fetch_array() would have to be used in conjunction with the usual method of
retrieving data from an array (e.g., $row[0]).

mysql_select_db(  )
bool mysql_select_db(database[, connection])

This function sets the database to be used by the current MySQL connection, but you
also can use it to set the database for another connection by supplying it as a second
argument. The function returns true if it’s successful, and false if it’s unsuccessful. Here
is an example:

...
$connection = mysql_connect('localhost','tina','muller');
mysql_select_db('workrequests', $connection);
...

mysql_set_charset(  )
bool mysql_set_charset(char_set[, connection])

This function sets the default character set for the current connection to MySQL, or for
a connection given with the function. For a list of acceptable character set names that
may be given as an argument to this function, execute SHOW CHARACTER SET; from the
mysql client. Here is an example:

...
mysql_set_charset('utf8', $connection);
...

mysql_result(  )

498 | Chapter 19: PHP API

mysql_stat(  )
string mysql_stat([connection])

This function returns the status of the server for the current MySQL connection, but you
also can use it to get the status for another connection. The function returns—as a space-
separated list—the flush tables, open tables, queries, queries per second, threads, and
uptime for the server. This function is available as of version 4.3 of PHP. Here is an
example:

...
$connection = mysql_connect('localhost',
 'jacinta', 'richardson');
$info = explode(' ', mysql_stat($connection));
print_r($info);
...

The explode() PHP function lists the elements of the space-separated values contained
in the associative array generated by mysql_stat() along with their respective keys.

mysql_tablename(  )
string mysql_tablename(results, index)

This function returns the table name for a particular table in the results set given by
mysql_list_tables(). You can specify an index to retrieve a particular element of the
results set. This function is deprecated, though. Use the mysql_query() function with
the SHOW TABLES statement instead. Here is an example:

...
$tables = mysql_list_tables('workrequests');
$tbs = mysql_num_rows($tables);
for($index = 0; $index < $tbs; $index++) {
 print mysql_tablename($tables, $index) . "\n";
}
...

mysql_thread_id(  )
int mysql_thread_id([connection])

This function returns the thread identification number for the current MySQL connec-
tion. You may give an identifier for another connection. This function is available as of
version 4.3 of PHP. Here is an example:

...
$connection = mysql_connect('127.0.0.1', 'russell', 'spenser');
$info = mysql_thread_id($connection);
print "Thread ID: $info \n";
...

mysql_thread_id(  )

Chapter 19: PHP API | 499

PHP API

mysql_unbuffered_query(  )
resource mysql_unbuffered_query(sql_statement[, connection])

Use this function to execute an SQL statement given without buffering the results so that
you can retrieve the data without having to wait for the results set to be completed. You
may give an identifier as a second argument to interface with a different connection. The
function returns false if the query is unsuccessful. For SQL statements that do not return
a results set based on their nature (e.g., INSERT), the function returns true when successful.
Use this function with care because an enormous results set could overwhelm the pro-
gram’s allocated memory. Here is an example:

...
$sql_stmnt = "SELECT wrid, client_name, description
 FROM workreq, clients
 WHERE workreq.clientid = clients.clientid";
$results = mysql_unbuffered_query($sql_stmnt, $connection);
while($row = mysql_fetch_row($results)) {
 print "WR-$row[0]: $row[1] - $row[2] \n";
}
...

There’s no difference in the syntax of mysql_unbuffered_query() and mysql_query(),
nor in the handling of the results. The only differences in this function are the speed for
large databases and the fact that functions such as mysql_num_row() and
mysql_data_seek() cannot be used, because the results set is not buffered and therefore
cannot be analyzed by these functions.

mysql_unbuffered_query(  )

500 | Chapter 19: PHP API

V
Appendixes

This part of the book contains quick-reference information that applies to many of
the chapters and is often desired in a compact format by a programmer or
administrator.

A
Data Types

When a table is created using the CREATE TABLE statement, every column in a table
must be declared as one of the data types supported by MySQL. A column in a table
can be added or changed using the ALTER TABLE statement. Data types can be or-
ganized in three basic groups: numeric, date and time, and string. This appendix
provides a listing of data types along with their limitations.

Numeric Data Types
Standard SQL numeric data types are allowed: accurate numeric data types (i.e.,
BIGINT, DECIMAL, INTEGER, MEDIUMINT, NUMERIC, SMALLINT, and TINYINT) and approxi-
mate numeric data types (i.e., DOUBLE and FLOAT). For all numeric data types, you can
use the UNSIGNED and ZEROFILL flags depending on your needs. If UNSIGNED is omitted,
SIGNED is assumed. A numeric data type has different allowable ranges based on
whether it’s SIGNED or UNSIGNED. The ZEROFILL flag instructs MySQL to pad the un-
used spaces to the left of a number with zeros. For example, a column with a data
type set to INT(10) using ZEROFILL will display the number 5 as 0000000005. If the
ZEROFILL flag is used, UNSIGNED is assumed for the column. When subtracting values
where one is UNSIGNED, the results will become UNSIGNED.

For several of the numeric data types, you can specify a width for displaying. This
number cannot exceed 255. The display width is a factor only when ZEROFILL is used
for the column. You may also specify the number of digits allowed for the decimals,
including the decimal point.

Approximate numeric data types store floating-point numbers such as fractions
where an approximation must be made. For instance, an accurate number, per se,
cannot be stored for 1/3 because the decimal point for 3 continues on endlessly.
MySQL provides two approximate numeric data types: FLOAT and DOUBLE with their
synonyms.

503

Following is a list of numeric data types. They’re not organized alphabetically; in-
stead, they’re organized in ascending order based on the size of numeric values they
can contain, with the column data types that may be used for approximate numbers
listed last.

BIT
BIT[(width)]

This is a bit-field data column type. With this column you can specify the maximum
number of bits. It accepts 1 to 64. If no width is given, 1 bit is assumed. You can use this
column to store binary data (i.e., data composed of 1s and 0s). You can also use this
column in conjunction with functions like BIN(). Here is an example with a column that
has a data type of BIT(8):

SELECT server_id
FROM servers
WHERE status = BIT(4);

This statement will return rows where the status column has a value of 00000100, which
is the binary equivalent of 4.

TINYINT
TINYINT[(width)] [UNSIGNED] [ZEROFILL]

This data column type can be used for tiny integers. The signed range can be from –128
to 127; unsigned can be from 0 to 255. The default if no width is given is 4. This column
type can be useful for a simple logical column. For example, TINYINT(1) can be used for
a column in which you only want a value of 1 or 0, yes or no. You could just as easily use
BOOLEAN, though.

BOOL, BOOLEAN
BOOL

This data column type, BOOL, is synonymous with BOOLEAN and TINYINT(1). In fact, if you
set a column to this type and then use the DESCRIBE statement to see the description of
the column, it will show it as a TINYINT(1). It can be useful for a simple logical column
in which you want only a true or false value. For example, if a column labeled active was
a BOOLEAN type, you could do something like the following:

SELECT client_name AS 'Client',
IF(active, 'Active', 'Inactive') AS Status
FROM clients;

This statement will show each client name in the table with the words Active or
Inactive next to each name. This works because the IF() function checks for a value of
1 or 0 for the value given; it returns the second parameter given if the value is 1, the third
parameter if the value is 0.

BIT

504 | Appendix A: Data Types

SMALLINT
SMALLINT[(width)] [UNSIGNED] [ZEROFILL]

Use this data column type for small integer values. The signed range can be from –32,768
to 32,767; unsigned can be from 0 to 65,535. The default if no width is given is 6.

MEDIUMINT
MEDIUMINT[(width)] [UNSIGNED] [ZEROFILL]

This data column type is for integer values of medium size. The signed range can be from
–8,388,608 to 8,388,607; unsigned can be from 0 to 16,777,215. The default if no width
is given is 9.

INT, INTEGER
INT[(width)] [UNSIGNED] [ZEROFILL]

This is probably the most common numeric data column type used. The signed range
can be from –2,147,483,648 to 2,147,483,647; unsigned can be from 0 to 4,294,967,295.
The default if no width is given is 11. INTEGER is a synonym for this data type.

BIGINT, SERIAL
BIGINT[(width)] [UNSIGNED] [ZEROFILL]

This data column type is for integer values of a large size. The signed range can be from
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807; unsigned can be from 0 to
18,446,744,073,709,551,615. The default if no width is given is 20. SERIAL is a synonym
for this data type, but with specific column options: BIGINT, UNSIGNED, NOT NULL,
AUTO_INCREMENT, and UNIQUE.

FLOAT
FLOAT[(width, decimals)|(bit_precision)] [UNSIGNED] [ZEROFILL]

You can specify a level of precision for this data type. It may be from 0 to 24 for single-
precision floating-point numbers, and from 25 to 53 for double-precision floating-point
numbers. To make it ODBC-compatible, you can use the second syntax that specifies
the precision only in bits. If you don’t give a precision with FLOAT, a single-precision
floating point is assumed. If the SQL mode for the server has the REAL_AS_FLOAT option
enabled, REAL is a synonym for FLOAT. This is set with the --sql-mode option when starting
the server.

DOUBLE, DOUBLE PRECISION
DOUBLE[(width, decimals)] [UNSIGNED] [ZEROFILL]

Use this data column type for approximate, floating-point numbers. The width given is
the maximum width of the total digits—on both sides of the decimal place, not including
the decimal point. The decimals given are the number of decimals allowed and the num-

DOUBLE, DOUBLE PRECISION

Appendix A: Data Types | 505

Data Types

ber for which it zero-fills. For example, a column type setting of DOUBLE(4,2) that is given
a value of 123.4 will return a warning and store the value as 99.99, the maximum amount
given the width. If the same column is given a value of 12.3, it won’t generate any warn-
ings and it will store the value as 12.30.

The signed range of values can be from –1.7976931348623157E+308 to
–2.2250738585072014E–308; the unsigned range from 2.2250738585072014E–308 to
1.7976931348623157E+308. Usually these limits aren’t possible due to the hardware
and operating system limits of the server. The accuracy of this data type is up to about
15 decimal places.

With this data type, if UNSIGNED is specified, negative values are not allowed. If the SQL
mode for the server does not have the REAL_AS_FLOAT option enabled, REAL is a synonym
for DOUBLE.

DEC, DECIMAL, FIXED, NUMERIC
DECIMAL[(width[, decimals])] [UNSIGNED] [ZEROFILL]

This data column type is similar to FLOAT, but it’s used for accurate, fixed-point numbers.
When calculating with a DECIMAL column, it has a 65-digit level of precision. The width
given is the maximum width of the total digits—on both sides of the decimal place, not
including the decimal point or the negative sign if a negative number. The decimals given
are the number of decimals allowed and the number for which it zero-fills. For example,
a column type setting of DECIMAL(4,2) that is given a value of 123.4 will return a warning
and store the value as 99.99, the maximum amount given the width. If the same column
is given a value of 12.3, it won’t generate any warnings and will store the value as 12.30.
If UNSIGNED is used with DECIMAL, negative values are not allowed.

MySQL stores numbers in DECIMAL columns as strings. Therefore, numbers outside the
maximum numeric range for this data type may be stored in a DECIMAL column. This data
type may be retrieved and displayed as a string, but in a numeric context (i.e., as part of
a calculation), it cannot exceed the values shown in the table.

Date and Time Data Types
There are a few column data types for storing date and time values. They are listed
in Table A-1. The table also lists the valid ranges for each data type. If a value that
is not permitted or that is outside the acceptable range for the data type is inserted,
zeros are used instead. You can override this feature by starting the server with
--sql-mode='ALLOW_INVALID_DATES. As of version 5.0.2 of MySQL, warnings are gen-
erated when inserting invalid dates or times. For dates that are inserted with only 2
digits for the year, values from 00 to 69 are assumed to be in the 21st century. For
years from 70 to 99, they are assumed to be in the 20th century.

Table A-1. Date and time data types

Data type Format Range

DATE yyyy-mm-dd 1000-01-01 to 9999-12-31

DATETIME yyyy-mm-dd hh:mm:ss 1000-01-01 00:00:00 to 9999-12-31 00:00:00

DEC, DECIMAL, FIXED, NUMERIC

506 | Appendix A: Data Types

Data type Format Range

TIMESTAMP yyyy-mm-dd hh:mm:ss 1970-01-01 00:00:00 to 2037-12-31 23:59:59

TIME hh:mm:ss –838:59:59 to 838:59:59

YEAR[(2|4)] yy or yyyy 1970 to 2069, or 1901 to 2155

Times values may be given either as a string or numerically. To give them as a string,
you can enter a value as d hh:mm:ss.f. In this format, d stands for the number of
days, and has an allowable range of 0 to 34. The f stands for a fractional number of
seconds. This value will not be stored, though. The ability to store fractional seconds
is expected to be added in future releases of MySQL. You don’t have to specify values
for all elements of a time. Instead, you can enter a time value using one of these
formats: hh:mm:ss.f, hh:mm:ss, hh:mm, or just ss. If you want to include the number
of days, you can use these formats: d hh:mm:ss, d hh:mm, or d hh. You can also drop
the colons and just enter hhmmss, but you can’t add minutes onto the end of that
format. The data type TIMESTAMP stores the date and time as the number of seconds
since the epoch (its earliest date allowed), but it displays this number with the format
yyyy-mm-dd hh:mm:ss. MySQL will automatically convert a date or time to its numeric
date equivalent when it is used in a numeric context, and it will convert a numeric
date to a date or time. If it isn’t given a date, MySQL will use a default of the current
date—this is the primary difference between this column data type and DATETIME.

String Data Types
There are several column data types for storing strings. String data types are case-
sensitive, so lowercase and uppercase letters remain unchanged when stored or
retrieved. For a few of the string data types, you may specify a maximum column
width. If a string is entered in a column that exceeds the width set for the column,
the string will be right-truncated when stored. Binary strings are case-sensitive.

Following is a list of string data types. They’re not organized alphabetically; instead,
they’re organized in ascending order based on the size of string values they can
contain. This list also includes the width in characters or bytes for each data type.

CHAR
CHAR(width) [BINARY|ASCII|UNICODE] [CHARACTER SET character_set]
 [COLLATE collation]

The CHAR data type is a fixed-width column, padded with spaces to the right as needed.
The spaces are not included in the results when queried. This column may be from 0 to
255 characters wide. The default if no width is given is 1. This type is synonymous with
CHARACTER. You can also use NATIONAL CHARACTER or NCHAR to indicate that a predefined
national character set is to be used. Columns are right-padded with spaces when stored.
FULLTEXT indexing and searching may be performed on a CHAR column with a MyISAM
table.

CHAR

Appendix A: Data Types | 507

Data Types

As of version 4.1 of MySQL, you can specify the ASCII attribute for use with the CHAR data
type. This will set the column to the latin1 character set. Also as of version 4.1 of MySQL,
you can specify the UNICODE attribute, which will set the column to the ucs2 character set.

VARCHAR
VARCHAR(width) [BINARY]

The VARCHAR data type adjusts its width and does not pad the strings stored. Any trailing
spaces contained in a string that is stored are removed. This column may be from 0 to
65,535 characters wide. The type of character set given can affect the number of char-
acters given, as some require more than one byte per character (e.g., UTF-8). The default
if no width is given is 1. This type is synonymous with CHARACTER VARYING. You can also
use NATIONAL VARCHAR to indicate that a predefined national character set is to be used.
FULLTEXT indexing and searching may be performed on a VARCHAR column with a MyISAM
table.

BINARY
BINARY(width)

This data type stores data as binary strings, not as character strings like CHAR does. The
width given is for the maximum width in bytes—this value must be specified. This data
type replaces CHAR BINARY. Before version 4.1.2 of MySQL, if you added the BINARY flag
after CHAR, it instructed MySQL to treat the values as byte strings for sorting and com-
paring. If a BINARY column is used in an expression, all elements of the expression are
treated as binary.

VARBINARY
VARBINARY(width) [CHARACTER SET character_set] [COLLATE collation]

This data type stores data as binary strings, not as character strings like VARCHAR. The
width given is for the maximum width in bytes—this value must be specified. If you want
to use a character set for the column other than the default for the table, you can give
one for the column. Values are sorted based on the collation of the character set for the
column. This data type replaces VARCHAR BINARY. Before version 4.1.2 of MySQL, if you
added the BINARY flag after VARCHAR, it instructed MySQL to treat the values as byte strings
for sorting and comparing. All elements of the expression are then treated as binary.

TINYBLOB
TINYBLOB

This column data type allows for the storage of binary data. The maximum width is 255
bytes.

TINYTEXT
TINYTEXT[CHARACTER SET character_set] [COLLATE collation]

VARCHAR

508 | Appendix A: Data Types

This column data type allows for the storage of text data. The maximum width is 255
bytes. If you want to use a character set for the column other than the default for the
table, you can give one for the column. Values are sorted based on the collation of the
character set for the column.

BLOB
BLOB[(width)]

This column data type allows for the storage of a large amount of binary data. You may
give a width with this data type; the maximum is 65,535 bytes. If you attempt to store a
value in a BLOB column that is larger than its limit, unless the server is set to SQL strict
mode, the data will be truncated and a warning message will be generated. If strict mode
is on, the data will be rejected and an error will be returned. A BLOB column cannot have
a default value. For sorting data, the value given for the system variable
max_sort_length will be used. Only the number of bytes specified by that variable for
each column will be included in sorts.

TEXT
TEXT[(width)] [CHARACTER SET character_set] [COLLATE collation]

This column data type allows for the storage of a large amount of text data. You may
give a width with this data type; the maximum is 65,535 bytes. If you attempt to store a
value in a TEXT column that is larger than its limit, unless the server is set to SQL strict
mode, the data will be truncated and a warning message will be generated. If strict mode
is on, the data will be rejected and an error will be returned. A TEXT column cannot have
a default value. For sorting data, the value given for the system variable
max_sort_length will be used. Only the number of bytes specified by that variable for
each column will be included in sorts. FULLTEXT indexing and searching may be performed
on a TEXT column with a MyISAM table, but not on a BLOB column. If you want to use a
character set for the column other than the default for the table, you can give one for the
column. Values are sorted based on the collation of the character set for the column.

MEDIUMBLOB
MEDIUMBLOB

This column data type allows for the storage of a large amount of binary data. The max-
imum width is 16,777,215 bytes.

MEDIUMTEXT
MEDIUMTEXT [CHARACTER SET character_set] [COLLATE collation]

This column data type allows for the storage of a large amount of text data. The maximum
width is 16,777,215 bytes. If you want to use a character set for the column other than
the default for the table, you can give one for the column. Values are sorted based on the
collation of the character set for the column.

MEDIUMTEXT

Appendix A: Data Types | 509

Data Types

LONGBLOB
LONGBLOB

This column data type allows for the storage of a large amount of binary data. The max-
imum width is 4 GB.

LONGTEXT
LONGTEXT [CHARACTER SET character_set] [COLLATE collation]

This column data type allows for the storage of a large amount of text data. The maximum
width is 4 GB. If you want to use a character set for the column other than the default
for the table, you can give one for the column. Values are sorted based on the collation
of the character set for the column.

ENUM
ENUM('value', ...) [CHARACTER SET character_set] [COLLATE collation]

An ENUM column is one in which all possible choices are enumerated (e.g., ENUM('yes',
'no', 'maybe')). It’s possible for it to contain a blank value (i.e., '') and NULL. If an
ENUM column is set up to allow NULL values, NULL will be the default value. If an ENUM
column is set up with NOT NULL, NULL isn’t allowed and the default value becomes the
first element given.

MySQL stores a numeric index of the enumerated values in the column, 1 being the first
value. The values can be retrieved when the column is used in a numeric context (e.g.,
SELECT col1 + 0 FROM table1;). The reverse may be performed when entering data into
a column (e.g., UPDATE table1 SET col1 = 3; to set the value to the third element). The
column values are sorted in ascending order based on the numeric index, not on their
corresponding enumerated values. If you want to use a character set for the column other
than the default for the table, you can give one for the column. Values are sorted based
on the collation of the character set for the column.

SET
SET('value', ...) [CHARACTER SET character_set] [COLLATE collation]

The SET data type is similar to ENUM, except that a SET column can hold multiple values
(e.g., UPDATE table1 SET col1 = 'a, b';). For this data type, values may be filtered with
the FIND_IN_SET() function. If you want to use a character set for the column other than
the default for the table, you can give one for the column. Values are sorted based on the
collation of the character set for the column.

LONGBLOB

510 | Appendix A: Data Types

B
Operators

Operators are used in mathematical or logical operations. An operator is typically
placed between two values (i.e., numbers, strings, columns, or expressions) that you
want to compare or evaluate. There are four types of operators: arithmetic, rela-
tional, logical, and bitwise. This appendix provides a listing of operators grouped
into these four types. This appendix also includes a list of special pattern-matching
characters and constructs for regular expressions.

Arithmetic Operators
The arithmetic operators in MySQL work only on numbers, not on strings. However,
MySQL will convert a string into a number when in a numeric context if it can. If it
can’t convert a particular string, it will return 0. Table B-1 lists the arithmetic oper-
ators allowed.

The minus sign may be used for subtracting numbers or for setting a number to a
negative. The DIV operator converts values to integers and returns only integers. It
doesn’t round fractions that would be returned, but rather truncates them.

Table B-1. Arithmetic operators

Operator Use

+ Addition

– Subtraction and negation

* Multiplication

/ Division

DIV Division of integers

% Modulo division

511

Relational Operators
Relational operators are used for comparing numbers and strings. If a string is com-
pared to a number, MySQL will try to convert the string to a number. If a
TIMESTAMP column is compared to a string or a number, MySQL will attempt to
convert the string or number to a timestamp value. If it’s unsuccessful at converting
the other value to a timestamp, it will convert the TIMESTAMP column’s value to a
string or a number. TIME and DATE columns are compared to other values as strings.
Table B-2 lists the logical and relational operators allowed in MySQL.

The minus sign may be used for subtracting numbers or for setting a number to a
negative. The equals sign is used to compare two values. If one value is NULL,
though, NULL will be returned. The <=> operator is used to compare values for
equality; it’s NULL-safe. For example, an SQL statement containing something like
IF(col1 <=> col2), where the values of both are NULL, will return 1 and not NULL.

Table B-2. Relational operators

Operator Use

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

expression BETWEEN n AND
n

Between first and second number

expression NOT BETWEEN n
AND n

Not between first and second number

IN (...) In a set

NOT IN (...) Not in a set

= Equal to

<=> Equal to (for comparing NULL values)

LIKE Matches a pattern

SOUNDS LIKE Matches a sound pattern (see SOUNDEX() function described in Chap-
ter 11)

NOT LIKE Doesn’t match a pattern

REGEXP, RLIKE Matches a regular expression

NOT REGEXP Doesn’t match a regular expression

!= Not equal to

<> Not equal to

NOT, ! Negates

IS NULL NULL

IS NOT NULL Not NULL

512 | Appendix B: Operators

Logical Operators
Logical operators are used for evaluating values or expressions for true, false, or
unknown. Table B-3 lists allowable logical operators.

The operators IS and IS NOT are added in version 5.0.2 of MySQL. A boolean value
of TRUE, FALSE, or UNKNOWN should immediately follow these operators.

Table B-3. Logical operators

Operator Use

AND Logical AND

&& Logical AND

IS boolean Logical equal

IS NOT boolean Logical equal

OR Logical OR

|| Logical OR

NOT Logical NOT

! Logical NOT

XOR Logical XOR

Bitwise Operators
Bitwise operators are used for comparing numbers based on their binary digits.
These operators are listed in Table B-4.

The tilde (~) may be used to invert the bits of a value.

Table B-4. Bitwise operators

Operator Use

| OR

^ XOR

& AND

<< Shift bits to left

>> Shift bits to right

~ NOT or invert bits

Regular Expressions
When using the operators REGEXP, RLIKE, and NOT REGEXP, you may need special
characters and parameters to be able to search for data based on regular expressions.
Table B-5 lists the special characters, and Table B-6 shows special constructs that
may be used. In keeping with convention, patterns to match are given within quotes.

Regular Expressions | 513

Operators

As an example of a regular expression used with a SELECT statement, suppose that
we want to find the name of a particular student in a college’s database, but we can’t
quite remember his last name. All we remember is that it’s something like Smith,
but it could be Smithfield or maybe Smyth. We could run an SQL statement like the
following to get a list of possibilities:

SELECT student_id,
CONCAT(name_first, SPACE(1), name_last) AS Student
FROM students
WHERE name_last REGEXP 'Smith.*|Smyth';

As an example using a pattern-matching construct, suppose that we suspect there
are a few student records in which the name columns contain numeric characters.
Suppose also that there are some student records in which the social_security col-
umn contains characters other than numbers or dashes. We could search for them
by executing an SQL statement like the following:

SELECT student_id, soc_sec,
CONCAT(name_first, SPACE(1), name_last) AS Student
FROM students
WHERE CONCAT(name_first, name_last) REGEXP '[[:digit:]]+'
OR soc_sec REGEXP '[[:alpha:]]+';

As an example of a construct using a character name, suppose that the column
containing Social Security tax identification numbers (i.e., soc_sec) shouldn’t con-
tain the usual hyphen separator (i.e., 443-78-8391). We could enter an SQL statement
like the following to find records with hyphens in that column:

SELECT student_id, soc_sec,
CONCAT(name_first, SPACE(1), name_last) AS Student
FROM students
WHERE soc_sec REGEXP '[[.hyphen.]]+';

To find any rows that do not specifically meet the format for the Social Security
number (i.e., nnn-nn-nnnn), we could use this longer but more specific regular
expression:

SELECT student_id, soc_sec,
CONCAT(name_first, SPACE(1), name_last) AS Student
FROM students
WHERE soc_sec NOT REGEXP
'[[:digit:]]{3}[[.hyphen.]]{1}[[:digit:]]{2}[[.hyphen.]]{1}[[:digit:]]{4}';

Notice that this statement uses the curly braces after each construct to specify the
exact number of characters or digits permitted.

Table B-5. Pattern-matching characters

Character Use

^ Matches the beginning of the string.

$ Matches the beginning of the string.

. Matches any character, space, or line ending.

* Matches zero or more of the characters immediately preceding.

514 | Appendix B: Operators

Character Use

+ Matches one or more of the characters immediately preceding.

? Matches zero or one of the characters immediately preceding.

| An OR operator; matches the characters before or after it (e.g., 'Russell|Rusty').

(characters)* Matches zero or more occurrences of the sequence of characters given in parentheses.

{number} Specifies the number of occurrences of the previous pattern given.

{number,number} Specifies the minimum number of occurrences of the previous pattern given, followed by
the maximum number of occurrences. If only the minimum number is omitted, 0 is assumed.
If just the maximum number is omitted, unlimited is assumed.

[x-x] Specifies a range of characters in alphabetical order (e.g., '[a-g]' for the first
seven lowercase letters), or numbers in numeric sequence (e.g., '[0-9]' for all numbers).

Table B-6. Pattern-matching constructs

Construct Use

[.character.] Matches the given character or character name (e.g., backslash, carriage return,
newline, tab).

[=character=] Matches characters of the same class as the character given.

[[:<:]] Matches the beginning of a word.

[[:>:]] Matches the end of a word.

[:alnum:] Matches alphanumeric characters.

[:alpha:] Matches alphabetical characters.

[:blank:] Matches a blank or whitespace characters.

[:cntrl:] Matches control characters.

[:digit:] Matches digits.

[:lower:] Matches lowercase alphabetical characters.

[:print:] Matches graphic and space characters.

[:punct:] Matches punctuation characters.

[:space:] Matches space, carriage return, newline, and tab characters.

[:upper:] Matches uppercase alphabetical characters.

[:xdigit:] Matches hexadecimal characters.

Regular Expressions | 515

Operators

C
Server and Environment Variables

The MySQL server and many of its clients and utilities use several environment
variables provided by the operating system. For some programs, the user can over-
ride some of these variables by command-line options or values set in an options file
(i.e., my.cnf or my.ini, depending on your system). Table C-1 lists the variables used.

Table C-1. Variables and their uses

Variable Use

CC C compiler

CXX C++ compiler

CFLAGS C compiler flags

CXXFLAGS C++ compiler flags

DBI_USER Default username for Perl DBI applications

DBI_TRACE Perl DBI trace options

HOME Default path for mysql client program history file

LD_RUN_PATH Path for libmysqlclient.so file

MYSQL_DEBUG Debug trace options

MYSQL_GROUP_SUFFIX Relates to the value given with the --defaults-group-suffix option for a
program like the mysql client

MYSQL_HISTFILE Default path for the mysql client program history file

MYSQL_HOME Contains the path for the server’s options file (e.g., my.cnf); available as of version
5.0.3 of MySQL

MYSQL_HOST Default host for mysql client program

MYSQL_PS1 Command-line prompt for the first line of a statement for the mysql client program

MYSQL_PWD Default password for connecting to the server

MYSQL_TCP_PORT Default TCP/IP port number

MYSQL_UNIX_PORT Default Unix socket filename

517

Variable Use

PATH Path for the MySQL programs

TMPDIR Path for a temporary directory

TZ Timezone of the server

UMASK_DIR Permissions settings for creating directories

UMASK Permissions settings for creating files

USER Default username for connecting to the server running on MS Windows or Novell
NetWare

518 | Appendix C: Server and Environment Variables

Index

Symbols
% (percent sign) wildcard, 31
* (asterisk) wildcard, 44, 137
; (semicolon), ending SQL statements,

206
= (equal) operator, using with subquery in

a WHERE clause, 230
\G (G flag), for long layout, 107, 292

A
ABS function, 297
ACOS function, 298
ADD COLUMN clause, ALTER TABLE

statement, 60
ADD PARTITION clause, ALTER

TABLE, 71
ADDDATE function, 264
ADDTIME function, 265
Advanced Encryption Standard (AES)

algorithm, 51
AES_DECRYPT function, 51
AES_ENCRYPT function, 51
AFTER INSERT triggers, 212
AFTER keyword, 65
aggregate functions, 221–229

AVG, 222
BIT_AND, 223
BIT_OR, 223

BIT_XOR, 223
COUNT, 223
general characteristics of, 221
GROUP_CONCAT, 224
HAVING clause in SELECT statment,

141
MAX, 225
MIN, 226
STD, 226
STDDEV, 226
STDDEV_POP, 227
STDDEV_SAMP, 227
SUM, 227
VARIANCE, 228
VAR_POP, 228
VAR_SAMP, 228

ALGORITHM parameter, CREATE
VIEW statement, 98

aliases, creating, 25
ALL operator, 231
ALL option, REVOKE statement, 42
ALTER DATABASE statement, 58
ALTER EVENT statement, 203
ALTER FUNCTION statement, 205
ALTER PROCEDURE statement, 205
ALTER SCHEMA statement, 58
ALTER SERVER statement, 59, 156
ALTER TABLE statement, 59–77

ADD clauses for foreign keys, 63

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

519

mailto:index@oreilly.com

ADD FULLTEXT clause, 62
ADD INDEX clause, 60
ADD SPATIAL clause, 63
CHANGE clauses, 65
changing and setting character sets, 68
clauses adding columns, 60
disabling and enabling keys, 69
discarding or importing tablespaces,

69
DROP clause, 66
DROP INDEX clause, 67
ORDER BY clause, 69
partition administration clauses, 73
partition altering clauses, 70
RENAME clause, 70
table options, setting, 74

ALTER VIEW statement, 78
ANALYSE function, 152

using with SELECT statement, 143
ANALYZE PARTITION clause, ALTER

TABLE statement, 73
ANALYZE TABLE statement, 156
AND CHAIN clause

COMMIT statement, 115
ROLLBACK statement, 134

AND operator, bitwise AND, 223
AND RELEASE clause

COMMIT statement, 115
ROLLBACK statement, 134

anonymous users, 16
deleting after MySQL installation, 18

ANY clause, using with multiple fields
subqueries, 231

arc cosine (ACOS) function, 298
AREA function, 81
arithmetic operators, 511
AS keyword, 25

using in SELECT statement, ORDER
BY clause, 142

using with JOIN statements, 127
using with SELECT statement, 137

ascending (ASC) order, 70
index sorting, 80

ASCII function, 236
ASIN function, 298
asterisk (*) wildcard, 44
ATAN function, 298
ATAN2 function, 298

AUTOCOMMIT
disabling for ROLLBACK and START

TRANSACTION, 134
disabling or enabling, 115

AUTO_INCREMENT columns
changing the starting point, 74
CREATE TABLE statement, 88
creating, 84
primary key index deletion and, 67

AUTO_INCREMENT flag, 22
available_drivers function, 442
AVG function, 222, 233
AVG_ROW_LENGTH option

ALTER TABLE statement, 74
CREATE TABLE statement, 88

B
BACKUP TABLE statement, 157, 164
BASE TABLE value, 112
BDB storage engine, 113
BEFORE INSERT triggers, 212
BEGIN statement, 114
begin_work function, 442
BEGIN…END statements, 206
BENCHMARK function, 152
BIGINT, SERIAL data types, 505
BIN function, 237
BINARY data type, 508
binary distributions of MySQL, 7, 358
BINARY function, 237
binary log files

deleting all on master server, 194
deleting from master server, 193
displaying events in, 194
displaying list of logs created by master

server, 195
formatting display with mysqlbinlog

utility, 377
index file, 178
listing, 178
log-bin.index file, 186
path and filename, 185
preventing writing to, 42
reading with mysqlbinlog, 177
sample excerpt, 177
status of file currently in use on master,

196
binary logging

520 | Index

enabling or disabling, 194
master BinLog dump thread states,

199
binary package (PKG) files, installing

MySQL on Mac OS X, 12
bind_col function, 443
bind_columns function, 443
bind_param function, 444
bind_param_inout function, 445
BIT data type, 504
bitwise operators, 513
BIT_AND function, 223
BIT_COUNT function, 299
BIT_LENGTH function, 237
BIT_OR function, 223
BIT_XOR function, 223
BLOB data type, 509
books and other publications on MySQL,

6
BOOL, BOOLEAN data types, 504
BTREE index type, 85
bugs, reporting, 379

C
C language

API provided by MySQL, 405–436
connecting to MySQL, 405
data types, 435
functions, 408–435
querying MySQL, 407

crypt function, 53
function calls querying mSQL

database, 358
CACHE INDEX statement, 157
caching

clearing and reloading temporary
caches, 42

clearing the query results cache, 49
flushing caches, 429
query caching on the server, 138

CALL statement, 207
callbacks

enabling for LOAD DATA LOCAL
INFILE, 431

can function, 445
CAs (certificate authorities), 45

requiring specific issuer, 46
SSL variables for master server, 192

CASCADE keyword, 87
CASCADED keyword, 98
CASE function, 309
CAST function, 238
CEIL function, 299
CEILING function, 299
certificate authorities (see CAs)
CHANGE clause, 22

ALTER TABLE statement, 65
CHANGE MASTER TO statement, 186,

191
changing data in tables, 29
CHAR data type, 507
CHAR function, 238
character sets, 8

changing for a table, 68
changing for columns, 65
CHARACTER SET clause (ALTER

DATABASE), 58
collation, listing, 106
CREATE TABLE statement,

CHARACTER SET option,
88

default character set for a database,
417

mysql_character_set_name function,
409

setting default of a connection, 431,
498

setting for a table, 75
showing all character sets installed on

a server, 105
string, 270
string functions, 235

CHARACTER_LENGTH function, 240,
249

CHARSET function, 240
CHAR_LENGTH function, 239
CHECK PARTITION clause, ALTER

TABLE statement, 73
CHECK TABLE statement, 158
CHECKSUM TABLE function, 159
checksums

ALTER TABLE statement,
CHECKSUM option, 75

CREATE TABLE statement,
CHECKSUM option, 89

MD5, 53

Index | 521

SHA, 54
cipher method, requiring user accounts to

use, 46
client library version, 417
clone function, 446
CLOSE statement, 207
COALESCE function, 240
COALESCE PARTITION clause, ALTER

TABLE, 72
code examples from this book, xiv
COERCIBILITY function, 241
collation

changing for a table, 68
COLLATE option, ALTER

DATABASE statement, 58
COLLATE option, ALTER TABLE

statement, 75
CREATE TABLE statement,

COLLATE option, 89
listing all collation character sets, 106
string, 270
string functions for, 235

COLLATION function, 241
columns

column flags in CREATE TABLE
statement, 84

displaying for a table, 106
length, returning, 414

columns_priv table, 49
column_info function, 446
command line, entering SQL statements

into MySQL, 34
command-line utilities, 357–401

comp_err, 357
invocation on Windows, configuring,

16
make_binary_distribution, 358
msql2mysql, 358
myisamchk, 360–364
myisamlog, 364
myisampack, 365
myisam_ftdump, 360
mysqlaccess, 371
mysqladmin, 373
mysqlbinlog, 377
mysqlbug, 379
mysqlcheck, 379
mysqldump, 382–390

mysqldumpslow, 390
mysqlhotcopy, 391
mysqlimport, 393
mysqlshow, 396
mysqlslap, 398
mysql_convert_table_format, 366
mysql_find_rows, 367
mysql_fix_extensions, 367
mysql_fix_privilege_tables, 368
mysql_setpermission, 368
mysql_tableinfo, 369
mysql_upgrade, 370
mysql_waitpid, 370
mysql_zap, 371
my_print_defaults, 359
perror, 400
replace, 400
resolveip, 400
resolve_stack_dump, 401

COMMENT clause
ALTER EVENT statement, 204
ALTER FUNCTION statement, 205
ALTER PROCEDURE statement, 206
CREATE EVENT statement, 208

COMMENT subclause, CREATE TABLE
statement, 94

comments
COMMENT option, ALTER TABLE

statement, 75
COMMENT option, CREATE TABLE

statement, 89
commit function, 446
COMMIT statement, 115
comparison operators, ALL operator and,

231
COMPRESS function, 242
compression

row storage by storage engines, 77
tables packed with myisampack utility,

365
comp_err utility, 357
CONCAT function, 25, 242

using in date formatting, 28
CONCAT_WS function, 243
conditions, declaring, 213
configuration

MySQL source files, 8
connect method, 447

522 | Index

CONNECTION function, 172
connections

closing, 410
CONNECTION option, CREATE

TABLE statement, 89
limiting number for user accounts, 46
mysqld options, 325–329
restricting users to certain types of

connections, 45
terminating current client connection,

161
connect_cached method, 447
CONTINUE handler, 214
CONV function, 300
conversions

string functions for, 235
CONVERT function, 244
CONVERT TO CHARACTER SET

clause, ALTER TABLE
statement, 68

CONVERT_TZ function, 265
correlated subqueries, 234
COS function, 300
COT function, 300
COUNT function, 223

using in a SELECT statement, 27
CRC function, 244
CREATE DATABASE statement, 78
CREATE EVENT statement, 207
CREATE FULLTEXT INDEX statement,

80
CREATE FUNCTION statement, 208
CREATE INDEX statement, 80
CREATE PROCEDURE statement, 210
CREATE SCHEMA statement, 82
CREATE SERVER statement, 83, 159
CREATE SPATIAL INDEX statement, 81
CREATE TABLE statement, 83–97

column flags, 84
creating a new table based on an

existing table, 96
index and key definitions, 85
partition definition subclauses, 94
partition options, 93
REFERENCES options, FOREIGN

KEY clause, 87
subpartition definitions, 96
table options, 88

CREATE TRIGGER statement, 212
CREATE UNIQUE INDEX statement, 80
CREATE USER statement, 40
CREATE VIEW statement, 97
CROSS keyword, use with JOIN

statements, 127
crypt function (C language), 53
cryptography

decrypting a string encrypted with a
password, 52

decrypting text encrypted with AES
algorithm, 51

decrypting text encrypted with DES
algorithm, 52

encrypting a given string and storing
with a password, 53

encrypting string with AES algorithm,
51

encrypting text with triple DES
algorithm, 52

returning encrypted text using crypt
function, 53

CURDATE function, 144, 266
CURRENT_DATE function, 267
CURRENT_TIME function, 267
CURRENT_TIMESTAMP function, 267
CURRENT_USER function, 51
cursors

declaring, 213
opening, 216
retrieving, 216

CURTIME function, 268
cyclic redundancy check (CRC), 244

D
DATA DIRECTORY

ALTER TABLE statement, 76
CREATE TABLE partition definition

subclause, 95
CREATE TABLE statement option, 90

Data Encryption Standard (DES)
algorithm, 52

data manipulation, 113–154, 115
(see also transactions)
BEGIN statement, 114
DELETE statement, 116
EXLPLAIN statement, 118
functions, 114, 152

Index | 523

HELP statement, 121
INSERT statements, 122
LOAD DATA INFILE statement, 130
RELEASE SAVEPOINT statement,

132
SELECT statement, 136–144
SET statement, 144
SHOW ERRORS statement, 145
SHOW WARNINGS statement, 146
statements and clauses for, 113
statements for transactions, 113
UPDATE statement, 149
USE statement, 151

data types, 503–510
C API, 435
column, setting default values, 65
date and time, 506
INTEGER or INT, 21
numeric, 503–506
string, 507–510
temporal, 263
TEXT, 22

DATABASE function, 58, 153
databases

copying for replication, 187
creating and modifying, 20
creating with mysql_create_db, 410
deleting, 100
deleting with mysl_drop_db, 411
displaying list of all on the server, 108
granting user privileges for, 45
listing for current connection, 422
listing with mysqlshow, 396
listing with SHOW DATABASES, 23
renaming, 104
searching, 31
selecting different for current

connection, 431
setting default for current session, 151
SHOW CREATE DATABASE

statement, 107
data_diff function, 447
data_source function, 448
data_string_desc function, 448
data_string_diff function, 448
DATE data type, 263, 507
DATE function, 268
DATEDIFF function, 272

dates and times
changing for events, 204
converting a string to a date, 210
data types, 506
date functions, 28
formats for displaying, 27
functions for, 263–296

ADDDATE, 264
ADDTIME, 265
calculating and modifying date or

time, 264
CONVERT_TZ, 265
CURDATE, 266
CURRENT_DATE, 267
CURRENT_TIME, 267
CURRENT_TIMESTAMP, 267
CURTIME, 268
DATE, 268
DATEDIFF, 272
DATE_ADD, 268
DATE_FORMAT, 270
DATE_SUB, 272
DAY, 273
DAYNAME, 273
DAYOFMONTH, 274
DAYOFWEEK, 274
DAYOFYEAR, 275
determining date or time, 264
EXTRACT, 275
extracting and formatting date or

time, 264
FROM_DAYS, 275
FROM_UNIXTIME, 276
HOUR, 278
LAST_DAY, 278
LOCALTIME, 279
LOCALTIMESTAMP, 279
MAKEDATE, 279
MAKETIME, 280
MICROSECOND, 280
MINUTE, 280
MONTH, 281
MONTHNAME, 282
NOW, 283
PERIOD_ADD, 284
PERIOD_DIFF, 284
QUARTER, 285
SECOND, 286

524 | Index

SEC_TO_TIME, 285
SLEEP, 286
TIMESTAMP, 291
TIMESTAMPDIFF, 291
TO_DAYS, 292
UNIX_TIMESTAMP, 292
UTC_DATE, 293
UTC_TIME, 293
UTC_TIMESTAMP, 293
WEEK, 294
WEEKDAY, 295
WEEKOFYEAR, 296
YEAR, 296
YEARWEEK, 296

GET_FORMAT function, 277
DATETIME data type, 263, 507
DATE_ADD function, 268
DATE_FORMAT function, 28, 270

format arguments and their results,
277

format codes and resulting formats,
271

DATE_SUB function, 272
DAY function, 273
DAYNAME function, 273
DAYOFMONTH function, 274
DAYOFWEEK function, 274
DAYOFYEAR function, 275
DBD drivers, 442
DBI Data Source Name (DSN), 460
DEC, DECIMAL data types, 506
decimal numbers, converting to bits or

binary, 252
DECLARE statement, 213
DECODE function, 52
DEFAULT clause, INSERT statements,

122
DEFINER clause, 98

ALTER EVENT statement, 204
CREATE EVENT statement, 207
CREATE PROCEDURE statement,

211
DEGREES function, 300
degrees, converting to radians, 305
DELAYED keyword

using with INSERT statements, 122
using with REPLACE statements, 133

DELAY_KEY_WRITE option

ALTER TABLE statement, 77
CREATE TABLE statement, 90

DELETE statements, 30, 116
JOIN clause, 125
trigger execution and, 212

deleting data, 30
DELIMITER command, 206
DELIMITER statement, 211, 212, 214
DESC flag, 26
DESC keyword (see DESCRIBE

statement)
descending (DESC) order, 70

index sorting, 80
DESCRIBE statement, 21, 99
DES_DECRYPT function, 52
DES_ENCRYPT function, 52
DES_KEY_FILE option, FLUSH

statement, 160
deterministic functions, 209
deterministic procedures, 210
directories

changing default directory for MySQL
installation, 8

dirty read, 145
DISABLE KEYS clause, ALTER TABLE

statement, 69
DISABLE keyword, 204
DISABLE ON SLAVE keyword, using with

ALTER EVENT, 204
disconnect function, 449
DISTINCT keyword

AVG function, 222
SUM function, 227
using with SELECT statement, 137

DISTINCTROW keyword, using with
SELECT statement, 137

DO clause, ALTER EVENT statement,
204

do function, 449
DO statement, 118

RELEASE_LOCK function, 174
documentation

online, for compiling MySQL, 8
upgrades from a previous version to

current one, 18
DOUBLE, DOUBLE PRECISION data

types, 505

Index | 525

DROP COLUMN clause, ALTER TABLE
statement, 66

DROP DATABASE statement, 100
DROP EVENT statement, 214
DROP FUNCTION statement, 215
DROP INDEX clause, ALTER TABLE

statement, 67
DROP INDEX statement, 101
DROP PARTITION clause, ALTER

TABLE statement, 72
DROP PREPARE statement, 215
DROP PROCEDURE statement, 215
DROP SERVER statement, 103
DROP TABLE statement, 103
DROP TRIGGER statement, 215
DROP USER statement, 41

using REVOKE before, 42
DROP VIEW statement, 99, 104
dump files, 4

copying databases for replication, 187
debugging information about current

connection, 411
resolve_stack_dump utility, 401
SELECT INTO DUMPFILE statement,

139
dump_results function, 450
duplicates

caused by inserting data into tables,
29

preventing, 33
preventing in indexes, 80

E
ELT function, 244
ENABLE KEYS clause, ALTER TABLE

statement, 69
ENABLE keyword, 204
ENCLOSED BY clause, LOAD DATA

INFILE statement, 131
ENCODE function, 53
ENCRYPT function, 53
ENGINE keyword, 87

ALTER TABLE statement, 76
CREATE TABLE or ALTER TABLE

statements, 160
CREATE TABLE partition definition

subclause, 95
CREATE TABLE statement, 90

ENUM data type, 510
environment variables, 517
err function, 450
error code numbers, 214
error logging, turning on, 16
error messages

displaying, 145
ignoring in SQL statement execution,

34
retrieval with SHOW WARNINGS

statement, 116
errors

checking tables for, 158
displaying descriptions of system error

codes, 400
mysql_errno function, 412
mysql_error function, 412
set_err function, 467
slave server error.log file, 182

errstr function, 450
ESCAPED BY clause

LOAD DATA INFILE statement, 131
SELECT INTO statement, 139

escaping special characters in strings, 485,
497

events
altering existing scheduled events, 203,

204
creating, 207
deleting, 214
listing scheduled events on the server,

218
SHOW CREATE EVENT statement,

217
EVERY clause

ALTER EVENT statement, 204
CREATE EVENT statement, 208

exclusive OR (XOR), 223
execute function, 451
EXECUTE statement, 215
execute_array function, 452
execute_for_fetch function, 452
EXISTS keyword, using with WHERE

clause, 233
EXIT handler, 214
EXP function, 301
expire_logs_days system variable, 193
EXPLAIN SELECT statement, 82

526 | Index

EXPLAIN statement, 118
analyzing joined statements for

indexes, 127
EXPORT_SET function, 245
expressions

ordering SELECT statement results,
142

string functions, 236
EXTENDED keyword

using with CHECK TABLE, 158
using with CHECKSUM TABLE, 159
using with REPAIR TABLE, 164

EXTRACT function, 275
extracting (string functions), 236

F
FEDERATED storage engine

deleting a server, 103
setting connection parameters, 83

fetch function, 453
FETCH statement, 216
fetchall function, 453
fetchall_hashref function, 454
fetchrow_array function, 455
fetchrow_arrayref function, 455
fetchrow_hashref function, 456
FIELD function, 245
fields

mysql_fetch_field function, 413
mysql_fetch_fields function, 414
mysql_fetch_field_direct function,

413
mysql_field_seek function, 416
mysql_list_fields function, 422
mysql_num_fields function, 424

FIELDS ENCLOSED BY clause, SELECT
INTO statement, 139

FIELDS TERMINATED BY clause
LOAD DATA INFILE statement, 131
SELECT INTO statement, 139

FIND_IN_SET function, 246
finish function, 457
FIRST keyword, 60, 65
FLOAT data type, 505
FLOOR function, 301
flow control functions, 309–312

CASE, 309
IF, 310

IFNULL, 311
ISNULL, 312
NULLIF, 312

FLUSH PRIVILEGES statement, 42
FLUSH statement, 42, 160

options, listed, 42
FLUSH TABLES WITH READ LOCK

statement, 163, 189
FORCE INDEX option, JOIN statements,

129
foreign keys

ALTER TABLE statement, ADD
clauses for, 63

deleting, 67
FOREIGN KEY index syntax, 86
REFERENCES options to FOREIGN

KEY clause of CREATE
TABLE, 87

foreign_key_info function, 457
FORMAT function, 222, 301
formatting (string functions), 235
FOUND_ROWS function, 153
FROM clause, 25

DELETE statement, 117
SHOW BINLOG EVENTS statement,

195
SHOW COLUMNS statement, 106
SHOW EVENTS statement, 218
SHOW INDEXES statement, 109
SHOW TABLE STATUS statement,

111, 170
subqueries in, 234

FROM_DAYS function, 275
FROM_UNIXTIME function, 276
FULL keyword

distinguishing between tables and
views, 112

SHOW COLUMNS statement, 106
SHOW PROCESSLIST statement, 168

FULLTEXT indexes, 62
creating, 80

func function, 457
functions

C API, 408–435
changing user-defined function

characteristics, 205
changing user-defined functions, 210
CREATE FUNCTION statement, 208

Index | 527

data manipulation, 114, 152
date, 28
date and time, 263–296
deleting user-defined functions, 215
displaying information on user-defined

functions, 219
displaying internal code, 218
flow control, 309–312
mathematical, 297–307
MySQL, basic C library, xiii
replication, 193
security and user accounts, 50–55
server and table administration, 172
SHOW CREATE FUNCTION

statement, 217
string, 235–261

grouped by type, 235
user access and security, 40

G
G flag (\G), for long layout, 107, 292
GA (Generally Available) release, 7
gcc, 8
geographical and global positioning

satellite (GPS) data, 63
GET_FORMAT function, 277
get_info function, 458
GET_LOCK function, 172
global server options, 329–334
global variables, 144, 165
GNU utilities, 8
GPL (GNU Public License), 4
GPS (global positioning satellite) systems,

63
GRANT statement, 41, 44

displaying for a user with SHOW
GRANTS, 50

privileges, listed, 47
REQUIRE clause, restricting types of

connections, 45
time and number of connection limits,

46
grant tables, 39
GREATEST function, 302
GROUP BY clause, 26

SELECT statement, 140
using with AVG function, 233
using with COUNT function, 223

using with GROUP_CONCAT
function, 224

using with MAX function, 226
using with STDDEV function, 226
using with VARIANCE function, 229

GROUP_CONCAT function, 224
gunzip utility, 8

H
HANDLER statement, 120
handlers, declaring, 213
HASH subclause, PARTITION BY clause,

93
HASH subpartition definitions with

CREATE TABLE, 96
HAVING clause, SELECT statement, 141
HELP statement, 121
HEX function, 246
hexadecimal numbers, converting to

character equivalent, 260
HIGH_PRIORITY keyword

INSERT statements, 122
using with SELECT statement, 137

hosts
accessing MySQL, 40
changing for a user account, 48
mysql_get_host_info function, 418
specifying in CREATE SERVER

statement, 83
HOSTS option, FLUSH statement, 160
HOUR function, 278

I
IDENTIFIED BY clause, 41

GRANT statement, 44
IF EXISTS flag

DROP DATABASE statement, 100
DROP SERVER statement, 103
DROP TABLE statement, 103
DROP VIEW statement, 104

IF function, 310
IFNULL function, 311
IGNORE clause, 32

DELETE statement, 116
INSERT statement, 122
INSERT statement, multiple-row

insertions, 124

528 | Index

UPDATE statement, 150
IGNORE INDEX option, JOIN

statements, 129
IGNORE LINES clause, LOAD DATA

INFILE, 131
IGNORE SELECT statement, 97
ignoring unwanted data in older versions

of MySQL, 33
importing data in bulk, 32
IN clause

SHOW BINLOG EVENTS statement,
194

using with multiple fields subqueries,
231

INDEX DIRECTORY option
CREATE TABLE partition definition

subclause, 95
CREATE TABLE statement, 90

index hints, 127
INDEX keyword, 109
indexes

adding to a table, 60
caching, 157
CREATE INDEX statement, 80
CREATE UNIQUE INDEX statement,

80
creating FULLTEXT indexes, 80
creating SPATIAL indexes, 81
creating, using CREATE TABLE, 85
delaying updating until table is closed,

77
deleting from tables, 67
deleting with DROP INDEX, 101
displaying for a given table, 109
FULLTEXT, adding to tables, 62
INDEX DIRECTORY option, ALTER

TABLE, 76
listing for a table, 67
LOAD INDEX INTO CACHE

statement, 162
nonunique, enabling or disabling on

MyISAM tables, 69
PACK_KEYS option, ALTER TABLE

statement, 77
SPATIAL index, adding to a table, 63
types of table key indexes, 86

INDEXES keyword, 109
INET_ATON function, 302

INET_NTOA function, 302
INNER keyword, use in JOIN statements,

127
inner query, 229
InnoDB storage engine, 113

foreign keys linking table columns, 86
master server configuration file, 185
mysqld server options, 348
row compression with COMPACT, 77

INSERT DATA INFILE statement, 115
ROLLBACK issued to remove

imported data, 135
INSERT function, 247
INSERT statements, 23, 122

duplicates and, 29
insertion of rows based on a SELECT,

124
LOW_PRIORITY keyword, 122
multiple-row insertions, 124
single-row insertion with SET clause,

123
trigger execution and, 212

INSERT_METHOD option
ALTER TABLE statement, 76
CREATE TABLE statement, 90

installation of MySQL, 7–18
choosing a distribution, 7
Linux RPM distributions, 11
Mac OS X distributions, 12
Novell NetWare distributions, 14
postinstallation tasks, 16
Unix binary distributions, 10
Windows distributions, 15

installed_drivers function, 458
installed_versions function, 458
INSTR function, 247
INT, INTEGER data types, 505
INTERVAL function, 248
INTERVAL keyword, 207
intervals

adding to date or datetime, 268
formats, listed, 269

INTO clause
INSERT statement, 122
REPLACE statement, 133
SELECT statement, 139

INTO DUMPFILE clause, SELECT
statement, 139

Index | 529

INTO OUTFILE clause, SELECT
statement, 139

INVOKER parameter, CREATE VIEW
statement, 98

I/O threads, slave server, 181, 199
IP addresses, resolving hostnames to, 400
ISNULL function, 312
isolation level, setting for a transaction,

145
IS_FREE_LOCK function, 173
IS_USED_LOCK function, 173

J
Java, interfacing to MySQL, 6
JOIN clause, 25

joining three tables, 27
using with UPDATE statement, 151

JOIN statements, 125
USE INDEX clause, 127

K
KEY

index type, 85
PARTITION BY clause

ALTER TABLE statement, 71
CREATE TABLE statement, 93

subpartition definitions with CREATE
TABLE, 96

keys
KEYS keyword, 109
PRIMARY of UNIQUE key columns,

84
KEY_BLOCK_SIZE option, 87

ALTER TABLE statement, 76
CREATE TABLE statement, 91

KILL statement, 161
Knowledge Base, 6

L
LAST clause

HANDLER…READ statements, 121
LAST_DAY function, 278
LAST_INSERT_ID function, 24, 153
last_insert_id function, 459
LCASE function, 248
LEAST function, 302
LEFT function, 249

LEFT keyword, using with JOIN
statements, 126

LENGTH function, 249
licensing, MySQL, 4
LIKE clause

DELETE statement, 117
SHOW CHARACTER SET statement,

105
SHOW COLUMNS statement, 106
SHOW DATABASES statement, 108
SHOW EVENTS statement, 218
SHOW OPEN TABLES statement,

167
SHOW STATUS statement, 168
SHOW TABLE STATUS statement,

111, 170
SHOW TABLES statement, 112
SHOW TRIGGER STATUS statment,

220
SHOW VARIABLES statement, 171

LIKE operator, 31
LIMIT clause, 26, 129

DELETE statement, 116
SELECT statement, 143
SHOW BINLOG EVENTS statement,

195
UPDATE statement, 150

LINEAR keyword, 93
LINES STARTED BY clause

LOAD DATA INFILE statement, 131
LINES STARTING BY clause

SELECT INTO statement, 139
LINES TERMINATED BY clause

LOAD DATA INFILE statement, 131
SELECT INTO statement, 139

Linux
installing MySQL through RPM, 11

LIST subclause, PARTITION BY clause,
93

LN function, 303
LOAD DATA FROM MASTER statement

(deprecated), 192
LOAD DATA INFILE statement, 32, 130

execution on slave server, 186
LOAD DATA LOCAL INFILE statement,

431
LOAD INDEX INTO CACHE statement,

162

530 | Index

LOAD TABLE…FROM MASTER
statement (deprecated), 193

LOAD_FILE function, 250
LOCAL keyword, 98

LOAD DATA INFILE statements, 130
LOCAL option

OPTIMIZE TABLE statement, 163
local variables, 144

declaring, 213
locales, 271
LOCALTIME function, 279
LOCALTIMESTAMP function, 279
LOCATE function, 250
location optons, mysqld, 323
LOCK IN SHARE MODE option,

SELECT statement, 143
LOCK TABLES statement, 162
locking

external table locking on Novell
NetWare, 14

locks
determining if lock name is already in

use, 173
free and available lock names,

checking, 173
GET_LOCK function, 172
information provided by SHOW

ENGINE statement, 165
read-only lock on tables for replication,

189
releasing, 173
TABLES WITH READ LOCK, FLUSH

statement, 160
unlocking tables, 163, 172

log files, listing on master server, 194
LOG function, 303
log position identification number, 176
log-bin.index file, 186
LOG2 function, 303
LOG10 function, 303
logging into MySQL, 19
logging, mysqld options, 334
logical operators, 513
long form, mysqld options, 322
LONGBLOB data type, 510
LONGTEXT data type, 510
looks_like_number function, 459
lower case (LCASE) function, 248

LOWER function, 251
LOW_PRIORITY keyword

DELETE statement, 116
INSERT statements, 122
LOCK TABLES statement, 162
REPLACE statement, 133
UPDATE statement, 149, 150

LPAD function, 251
LTRIM function, 252

M
MAC (Media Access Control) address,

174
Mac OS X, installing MySQL, 12
mailing lists, MySQL community, 5
main query, 229
MAKEDATE function, 279
MAKETIME function, 280
make_binary_distribution utility, 358
MAKE_SET function, 252
MASTER option

FLUSH statement, deprecated, 161
RESET statement, 49, 164

master server, 175
BinLog Dump thread states, 199
configuration file, 185
log files, naming and providing

position to slave server, 192
server identification number, 185

master.info file, 180
deleting on slave server, 194
SSL variables, 192
variables on slave server for connection

with master, 186
MASTER_POS_WAIT function, 193
MATCH function, 252
mathematical functions, 297–307

ABS, 297
ACOS, 298
ASIN, 298
ATAN, 298
ATAN2, 298
BIT_COUNT, 299
CEIL, 299
CEILING, 299
CONV, 300
COS, 300
COT, 300

Index | 531

DEGREES, 300
EXP, 301
FLOOR, 301
FORMAT, 301
GREATEST, 302
INET_ATON, 302
INET_NTOA, 302
LEAST, 302
LN, 303
LOG, 303
LOG2, 303
LOG10, 303
MOD, 304
OCT, 304
PI, 304
POW, 305
POWER, 305
RADIANS, 305
RAND, 305
ROUND, 306
SIGN, 306
SIN, 306
SQRT, 306
TAN, 307
TRUNCATE, 307

MAX function, 225
MAX_QUERIES_PER_HOUR option, 46
MAX_ROWS

CREATE TABLE partition definition
subclause, 95

CREATE TABLE statement option, 91
MAX_ROWS option

ALTER TABLE statement, 77
MBRContains function, 82
MD5 function, 53
Media Access Control (MAC) address,

174
MEDIUMBLOB data tpe, 509
MEDIUMINT data type, 505
MEDIUMTEXT data type, 509
memory

allocated by a function, freeing, 416
query results, storing, 407

MEMORY storage engine, mysqld server
options, 352

Message-Digest algorithm 5, 53
MICROSECOND function, 280
MID function, 253

MIN function, 226
MINUTE function, 280
MIN_ROWS

CREATE TABLE partition definition
subclause, 95

CREATE TABLE statement option, 91
MIN_ROWS option

ALTER TABLE statement, 77
MOD function, 304
MODIFY clause, ALTER TABLE, 66
MONTH function, 281
MONTHNAME function, 282
msql2mysql utility, 358
multiple fields subqueries, 231
MUTEX option, SHOW ENGINE

statement, 165
myisamchk utility, 360–364

--analyze option, 156
check options, 361
compacting table after deletion of rows,

118
global options, 363
other options, 363
repair options, 362

myisamlog utility, 364
myisampack utility, 365

row storage format, 77
myisam_ftdump utility, 360
MylSAM storage engine

mysqld server options, 346
MySQL

programs included in package, 4
resources for further information, 6
versions 5.0, 5.1, and 6.0, xi

mysql client, 4, 19, 315
-e option, 243
command-line options, 34, 316–321
executing dump files on slave server,

188
terminal and monitor modes, 315

mysql user accounts
creating for Unix binary distributions,

10
creating for Unix source distributions,

8
creating on Mac OS X, 13
deleting anonymous users, 18

mysqlaccess utility, 4, 371

532 | Index

mysqladmin utility, 373
commands, 375

mysqlbinlog utility, 177, 377
working with large binary log files,

195
mysqlbug utility, 379
mysqlcheck utility, 379
mysqld daemon, 4, 321–356

listing options for your version, 322
location options, 323
logging options, 334
options grouped by use, 322
options syntax, 322
performance optimization options,

336–342
replication options, 342–346
security and connection options, 325–

329
starting for Unix binary distributions,

11
storage engine options, 346–352

mysqldump utility, 4, 382–390
backups of replicated databases on

slave server, 190
debugging options, 390
options, 384
setting up replication, 187

mysqldumpslow utility, 390
mysqld_multi option, 352
mysqld_safe utility, 4, 11, 354
mysqlhotcopy utility, 391
mysqlimport utility, 393
mysqlshow utility, 396

--keys option, 112
mysqlslap utility, 398
mysql_affected_rows function, 408, 479
mysql_autocommit function, 408
mysql_change_user function, 409, 480
mysql_character_set_name function, 409
mysql_client_encoding function, 480
mysql_close function, 410, 480
mysql_commit function, 410
mysql_connect function, 410, 481
mysql_convert_table_format utility, 366
mysql_create_db function, 410, 482
mysql_data_seek function, 410, 482
mysql_db_name function, 483
mysql_db_query function, 483

mysql_debug function, 411
mysql_drop_db function, 411, 484
mysql_dump_debug_info function, 411
mysql_eof function, 412
mysql_errno function, 412, 484
mysql_error function, 412, 485
mysql_escape_string function, 413, 485
mysql_fetch_array function, 485
mysql_fetch_assoc function, 486
mysql_fetch_field function, 413, 486
mysql_fetch_fields function, 414
mysql_fetch_field_direct function, 413
mysql_fetch_lengths function, 414, 487
mysql_fetch_object function, 488
mysql_fetch_row function, 414, 488
mysql_field_count function, 415
mysql_field_flags function, 489
mysql_field_len function, 489
mysql_field_name function, 490
mysql_field_seek function, 416, 490
mysql_field_table function, 491
mysql_field_tell function, 416
mysql_field_type function, 491
mysql_find_rows utility, 367
mysql_fix_extensions utility, 367
mysql_fix_privilege_tables utility, 368
mysql_free_result function, 416, 492
mysql_get_character_set_info function,

417
mysql_get_client function, 492
mysql_get_client_info function, 417
mysql_get_client_version function, 417
mysql_get_host_info function, 418, 492
mysql_get_proto_info function, 418, 493
mysql_get_server_info function, 418, 493
mysql_get_server_version function, 419
mysql_get_ssl_cipher function, 419
mysql_hex_string function, 419
mysql_info function, 419, 493
mysql_init function, 420
mysql_insert_id function, 420, 494
mysql_install_db utility, 14
mysql_kill function, 421
mysql_library_end function, 421
mysql_library_init function, 421
mysql_list_dbs function, 422, 494
mysql_list_fields function, 422, 494
mysql_list_processes function, 423, 495

Index | 533

mysql_list_tables function, 423, 495
mysql_more_results function, 424
mysql_next_result function, 424
mysql_num_fields function, 424, 496
mysql_num_rows function, 424, 496
mysql_options function, 424
mysql_pconnect function, 496
mysql_ping function, 426, 497
mysql_query function, 426, 497
mysql_real_connection function, 427
mysql_real_escape_string function, 428,

497
mysql_real_query function, 429
mysql_refresh function, 429
mysql_reload function, 429
mysql_result function, 498
mysql_rollback function, 430
mysql_row_seek function, 430
mysql_row_tell function, 430
mysql_select_db function, 431, 498
mysql_setpermission utility, 368
mysql_set_character_set function, 431
mysql_set_charset function, 498
mysql_set_local_infile_default function,

431
mysql_set_local_infile_handler function,

431
mysql_set_server_option function, 432
mysql_shutdown function, 432
mysql_sqlstate function, 432
mysql_ssl_set function, 432
mysql_stat function, 433, 499
mysql_store_result function, 433
mysql_tableinfo utility, 369
mysql_tablename function, 499
mysql_thread_end function, 433
mysql_thread_id function, 499
mysql_thread_init function, 434
mysql_thread_safe function, 434
mysql_unbuffered_query function, 500
mysql_upgrade utility, 370
mysql_use_result function, 434
mysql_waitpid utility, 370
mysql_warning_count function, 435
mysql_zap utility, 371
my_print_defaults utility, 359

N
NATURAL keyword, using with JOIN

statements, 126
NDB storage engine, 113

mysqld server options, 352
neat function, 460
neat_list function, 460
NetWare (Novell), installing MySQL, 14
NetWare Loadable Modules (NLMs), 14
NEXT clause

HANDLER READ NEXT statment,
120

HANDLER…READ statements, 121
NLMs (NetWare Loadable Modules), 14
NO ACTION setting, 87
NO keyword, COMMIT statement, 115
NODEGROUP subclause, CREATE

TABLE statement, 95
NOT PRESERVE keyword, 208
Novell NetWare, installing MySQL, 14
NOW function, 283
NO_WRITE_TO_BINLOG flag, 42
NO_WRITE_TO_BINLOG option

ANALYZE TABLE statement, 156
FLUSH statement, 160
OPTIMIZE TABLE statement, 163
REPAIR TABLE statement, 164

NULL values, changing data in related
columns to, 87

NULLIF function, 312
numeric data types, 503–506

O
OCT function, 304
OCTET_LENGTH function, 253
OFFSET keyword, LIMIT clause and,

130
OLD_PASSWORD function, 53
ON COMPLETION clause, ALTER

EVENT statement, 204
ON DELETE CASCADE clause, 86
ON DELETE clause, 87
ON DUPLICATE KEY UPDATE clause,

INSERT statement, 122
ON keyword, JOIN clause, 126
ON SCHEDULE AT clause, ALTER

EVENT statement, 204

534 | Index

ON SCHEDULE AT clause, CREATE
EVENT statement, 207

ON UPDATE clause, 87
OPEN clause

HANDLER statement, 120
OPEN statement, 216
operating systems

MySQL distributions, 7
operators, 511–515

arithmetic, 511
bitwise, 513
logical, 513
regular expression, 513
relational, 512

OPTIMIZE PARTITION clause, ALTER
TABLE statement, 73

OPTIMIZE TABLE statement, 163
compacting tables after row deletion,

118
OPTIONALLY keyword

ENCLOSED BY clause, 131
OR operator

bitwise OR, 223
OR REPLACE parameter, CREATE VIEW

statement, 98
ORD function, 253
ORDER BY clause, 25

ALTER TABLE statement, 69
GROUP_CONCAT function, 224
SELECT statement, 142
UPDATE statement, 150

OUTER keyword
use with LEFT and RIGHT JOINs,

127
outer query, 229

P
PACK_KEYS option

ALTER TABLE statement, 77
CREATE TABLE statement, 91

parser for FULLTEXT indexes, 62
parsers

plugin for an index, 87
parse_dsn function, 460
parse_trace_flag function, 461
parse_trace_flags function, 461
PARTITION BY clause

ALTER TABLE statement, 70

CREATE TABLE statement, 93
partitions

adding or removing with ALTER
TABLE statements, 70

administration clauses, ALTER TABLE
statement, 73

CREATE TABLE partition clauses, 93
CREATE TABLE partition definitions,

94
CREATE TABLE subpartition

definitions, 96
PASSWORD function, 54
passwords

changing on user accounts, 49
decrypting contents of pwd column,

52
encrypting a given string with, 53
encryption method used prior to

MySQL 4.1, 53
providing for user account privileges,

44
server access, 83
setting up for user accounts, 41

paths
MySQL installation on Windows, 16
PATH environment variable, 19

percent sign (%) wildcard, 31
performance optimization options,

mysqld, 336–342
PERIOD_ADD function, 284
PERIOD_DIFF function, 284
Perl, 366, 437–475

attributes for handles, 470
all handles, 470
database handles, 473
dynamic attributes, 475
statement handles, 473

DBI module mailing list, 5
DBI reference, 442–470
interfacing to MySQL, books on, 6
using DBI with MySQL, 437–442

capturing data, 438
connecting to MySQL, 437
disconnecting from MySQL, 439
executing SQL statement, 438
storing results temporarily, 439

PerlDBI module, xiii
perror utility, 400

Index | 535

PHP, 477–500
development with MySQL, resources

for information, 6
functions used to query and manipulate

MySQL, xiii
MySQL functions, 479–500
using with MySQL

connecting to MySQL, 477
querying MySQL, 478

PI function, 304
ping function, 461
pinging connections, 426, 497
PKG (binary package) files for installing

MySQL on Mac OS X, 12
placeholders, 444

in prepared statements, 216
plugins

parser for FULLTEXT indexes, 62
SHOW PLUGINS statement, 167

point-in-time recovery methods, 177
PORT option, CREATE SERVER

statement, 159
POSITION function, 254
position identification number,

master.info file, 180
postinstallation tasks, 16
POW function, 305
POWER function, 305
powers-of-two algorithm, linear, 93
prepare function, 461
PREPARE statement, 216
prepared statements, deleting, 215
prepare_cached function, 462
PRESERVE keyword

ON COMPETITION clause, CREATE
EVENT, 208

using with ON COMPLETION clause,
ALTER EVENT, 204

PREV clause, HANDLER…READ
statements, 121

PRIMARY KEY column, 22
primary keys

deleting primary key index of a table,
67

ID number of last record inserted, 494
PRIMARY KEY columns, 84

primary_key function, 462
private_attribute_info function, 462

privileges
replication user account, 184
revoking, 42

PRIVILEGES option, FLUSH statement,
160

privileges or grant tables, 39
generating, 10
setting up for Novell NetWare, 14

PROCEDURE clause, SELECT statement,
143

procedures (see stored procedures)
processes

listing server processes, 423
terminating based on a given pattern,

371
terminating by given pid, 370

programming languages, C, Perl, and PHP,
4

protocol version for current connection,
418, 493

PURGE MASTER LOGS statement, 193
Python, articles on MySQL APIs, 6

Q
QUARTER function, 144, 285
QUERY CACHE option

FLUSH statement, 160
RESET statement, 49, 164

QUERY keyword, KILL statement, 161
QUICK keyword

DELETE statement, 116
using with REPAIR TABLE statement,

164
quotation marks

neat function, 460
OPTIONALLY keyword, ENCLOSED

BY clause, 131
QUOTE function, 254
SQL_SHOW_CREATE variable, 107
strings for column name patterns, 99

quote function, 463
quote_identifier function, 463

R
RADIANS function, 305
radians, converting to degrees, 300
RAID_TYPE option

536 | Index

ALTER TABLE statement, 77
CREATE TABLE statement, 91

RAND function, 305
RANGE subclause, PARTITION BY

clause, 94
READ clause, HANDLER statements,

120
READ COMMITTED isolation level, 145
READ LOCAL lock, 162
READ UNCOMMITTED isolation level,

145
REBUILD PARTITION option, ALTER

TABLE statement, 73
Redundant Arrays of Independent Disks

(RAID), 77
REFERENCES keyword, 86
REFERENCES option, FOREIGN KEY

clause of CREATE TABLE, 87
regular expressions, 513
relational operators, 512
relay log files

comparison of data to slave server
database, 182

controlling processing of, 190
creation of, 180
deleting on slave server, 194

relay-log.index file, 182
relay-log.info file, 182

deleting on slave server, 194
relay.log files, 179
RELEASE SAVEPOINT statement, 132
RELEASE_LOCK function, 173
REMOVE PARTITIONING clause,

ALTER TABLE statement, 71
RENAME clause, ALTER TABLE

statement, 70
RENAME DATABASE statement, 104
RENAME TABLE statement, 104
RENAME USER statement, 48
REORGANIZE PARTITION clause,

ALTER TABLE statement, 71
REPAIR PARTITION clause, ALTER

TABLE statement, 73
REPAIR TABLE statement, 163
REPEAT function, 255
REPEATABLE READ isolation level, 145
REPLACE flag, 33
REPLACE function, 210, 255

REPLACE keyword, replacing duplicate
rows in new table, 97

REPLACE statement, 30, 133
trigger execution and, 212

replace utility, 400
replication, 175–202

backups of replicated databases on
slave server, 190

CHANGE MASTER TO statement,
191

configuring servers, 185
copying databases, 187

alternative methods for, 188
using mysqldump, 187

LOAD DATA FROM MASTER
statement (deprecated), 192

master binary log dump thread states,
199

MASTER_POS_WAIT function, 193
mysqld server options, 342–346
process of, 176–183
RESET MASTER statement, 194
RESET SLAVE statement, 194
server states, 198
SET GLOBAL

SQL_SLAVE_SKIP_COUN
TER statement, 194

SET SQL_LOG_BIN statement, 194
SHOW BINARY LOGS statement,

195
SHOW BINLOG EVENTS statement,

194
SHOW MASTER LOGS statement,

196
SHOW MASTER STATUS statement,

196
SHOW SLAVE HOSTS statement,

196
SHOW SLAVE STATUS statement,

197
slave I/O thread states, 199
slave SQL thread states, 201
START SLAVE statement, 197
starting, 189
STOP SLAVE statement, 198
user account, 183

REQUIRE clause, GRANT statement, 45

Index | 537

RESET MASTER option, FLUSH
statement, 161

RESET MASTER statement, 194
RESET SLAVE option, FLUSH statement,

161
RESET SLAVE statement, 194
RESET statement, 49, 164
resolveip utility, 400
resolve_stack_dump utility, 401
resources for further information, 6
RESTORE TABLE statement, 164
RESTRICT keyword, 87
results set, generating with a subquery,

233
REVERSE function, 255
REVOKE statement, 42, 49

privileges, listed, 47
RIGHT function, 255
RIGHT JOIN statement, 127, 222
rollback function, 463
ROLLBACK statement, 134
ROLLBACK TO SAVEPOINT statement,

135
root user, changing password, 17
ROUND function, 306
routines, 203
rows

setting average row length in a table,
74

setting minimum and maximum in a
table, 77

rows function, 464
ROW_COUNT function, 154
ROW_FORMAT option

ALTER TABLE statement, 77
CREATE TABLE statement, 91

RPAD function, 256
RPM distributions, Linux, 11
RTREE index type, 85
RTRIM function, 256

S
savepoints

identifying with SAVEPOINT
statement, 136

releasing, 132
ROLLBACK TO SAVEPOINT

statement, 135

scalar values returned by subqueries, 230
SCHEMA function, 154
SCHEMA keyword, SHOW CREATE

SCHEMA, 107
schemas

database and table, statements and
clauses related to, 57–112

SHOW SCHEMAS statement, 111
searching data, 31
SECOND function, 286
Secure Hash Algorithm (SHA), 54
security, 39–55

functions for, 50–55
mysqld options, 325–329
user access and privileges, 39

CREATE USER statement, 40
DROP USER statement, 41
GRANT statement, 44
statements and functions, 40

user accounts and privileges
FLUSH statement, 42
statements for, 40–50

SEC_TO_TIME function, 285
SELECT statements, 24, 136–144

AS clause, 25
containing a COUNT function, 27
EXPLAIN SELECT statement, 82
FROM clause, 25
GROUP BY clause, 140
IGNORE SELECT, 97
INTO clause, exporting SELECT

results, 139
JOIN clause, 25, 125
LIMIT clause, 129, 143
ORDER BY clause, 142
RELEASE_LOCK function, 174
in subqueries, 30, 229
UNION keyword, 148
using with INSERT statement, 124
WHERE clause, 24

selectall_arrayref function, 464
selectall_hashref function, 464
selectcol_array function, 465
selectrow_array function, 466
selectrow_arrayref function, 466
selectrow_hashref function, 467
semicolon (;), ending SQL statements,

206

538 | Index

SEPARATOR keyword, 224
SERIAL data type, 505
SERIALIZABLE isolation level, 145
server identification number (master

server), 185
servers, 321

(see also mysqld daemon)
changing connection parameters, 59
enabling or disabling an option, 432
global server options, 329–334
mysqld daemon, 4
mysql_get_server_info function, 418
mysql_get_server_version function,

419
replicated, 175
shutting down, 432
states of master and slave replication

servers, 198
session variables, 144, 165
SESSION_USER function, 54
SET CHARACTER SET statement, 106
SET clause

INSERT statement, 123
LOAD DATA INFILE statement, 131
UPDATE statement, 149, 150

SET data type, 510
SET GLOBAL

SQL_SLAVE_SKIP_COUNTER
statement, 194

SET NULL clause, CREATE TABLE
statement, 87

SET PASSWORD statement, 41, 49
SET SQL_LOG_BIN statement, 194
SET statement, 144, 165
SET statements, 31
SET TRANSACTION statement, 145
set_err function, 467
SHA function, 54
shell prompts, logging into MySQL, 20
shell, entering SQL statements into

MySQL, 34
short form, mysqld options, 322
SHOW BINARY LOGS statement, 195
SHOW BINLOG EVENTS statement,

194
SHOW CHARACTER SET statement,

105
SHOW COLLATION statement, 106

SHOW COLUMNS statement, 106
SHOW CREATE DATABASE statement,

107
SHOW CREATE EVENT statement, 217
SHOW CREATE FUNCTION statement,

217
SHOW CREATE PROCEDURE

statement, 217
SHOW CREATE TABLE statement, 75,

107
SHOW CREATE VIEW statement, 108
SHOW DATABASES statement, 23, 108
SHOW ENGINE statement, 165
SHOW ENGINES statement, 166
SHOW ERRORS statement, 145
SHOW EVENTS statement, 218
SHOW FULL COLUMNS statement, 84
SHOW FULL TABLES WHERE

statement, 99
SHOW FUNCTION CODE statement,

218
SHOW FUNCTION STATUS statement,

219
SHOW GRANTS statement, 50
SHOW INDEXES statement, 60, 109
SHOW MASTER LOGS statement, 178,

196
SHOW MASTER STATUS statement,

196
SHOW OPEN TABLES statement, 167
SHOW PLUGINS statement, 167
SHOW PRIVILEGES statement, 50
SHOW PROCEDURE CODE statement,

219
SHOW PROCEDURE STATUS

statement, 219
SHOW PROCESSLIST statement, 168,

198
using with KILL statement, 161

SHOW SCHEMAS statement, 111
SHOW SLAVE HOSTS statement, 196
SHOW SLAVE STATUS statement, 197
SHOW STATUS statement, 168
SHOW TABLE STATUS statement, 64,

111, 170
SHOW TABLES statement, 23, 112
SHOW TRIGGERS statement, 220
SHOW VARIABLES LIKE statement

Index | 539

server query caching, determining,
138

SHOW VARIABLES statement, 171
viewing default character set, 106

SHOW WARNINGS statement, 146
SIGN function, 306
SIN function, 306
single field subqueries, 230
SLAVE option

FLUSH statement, deprecated, 161
RESET statement, 49, 164

slave servers, 176
changing settings for master server and

replication, 191
configuration file, 185
displaying information on slave thread,

197
displaying list for master server, 196
I/O thread states, 199
separation of change entries and their

application, 179
SQL thread states, 201
starting, 189

SLEEP function, 286
SMALLINT data type, 505
SOME clause, using with multiple fields

subqueries, 231
sorting

data output with ORDER BY clause,
25

GROUP BY clause, SELECT statement,
140

SOUNDEX function, 256
source distributions (MySQL), 7
source files, configuring to build binary

programs, 8
SPACE function, 257
SPATIAL indexes, 63

creating, 81
SQL SECURITY clause, 98
SQL SECURITY keyword, 211
SQL threads, slave server, 182, 201
SQL_BUFFER_RESULT keyword,

SELECT statement, 138
SQL_CACHE keyword, SELECT

statement, 138
SQL_CALC_FOUND_ROWS option,

SELECT statement, 138, 153

SQL_NO_CACHE keyword, SELECT
statement, 138

SQL_QUOTE_SHOW_CREATE variable
SHOW CREATE DATABASE, 107
SHOW CREATE TABLE, 108

SQL_SMALL_RESULT keyword,
SELECT statement, 138

SQRT function, 306
SSL

cipher name, 419
DES_ENCRYPT function and, 52
encrypted connections, 45
mysql_ssl_set function, 432
setting variables with CHANGE

MASTER TO, 192
variables in master.info file, 181

START SLAVE statement, 189, 197
START TRANSACTION statement, 147

unlocking tables, 163
state method, 468
statements

data manipulation, 113
delimiter, changing, 214
executing with Perl DBI, 438
related to database and table schema,

57–112
replication, 191–199
restricting user privileges to, 45
security and user, 40
semicolon ending, 206
stored routines, 203

statistics_info method, 468
status information for tables, 111
STATUS option

FLUSH statement, 160
STD function, 226
STDDEV function, 226
STDDEV_POP function, 227
STDDEV_SAMP function, 227
STOP SLAVE statement, 190, 198
storage engines

changing for a table, 90
changing with ALTER TABLE,

ENGINE option, 76
converting database tables for, 366
index types, 61
instructing how to store rows of data,

77

540 | Index

mysqld server options, 346–352
InnoDB, 348
MEMORY and NDB, 352
MylSAM, 346

SHOW ENGINE statement, 165
supporting transactions, 115
transaction support, 113

stored procedures
ALTER PROCEDURE statement, 205
calling, 207
CASE statement, 310
creating, 210
cursors, 214
deleting, 215
displaying information on, 219
displaying internal code, 219
IF statement, 311
SHOW CREATE PROCEDURE

statement, 217
starting and ending, 206
use of FLUSH statement, 42
user-defined functions versus, 208

stored routines, 203
ALTER EVENT statement, 203

STRAIGHT_JOIN keyword, 127
STRCMP function, 257
string functions, 235–261

ASCII, 236
BIN, 237
BINARY, 237
BIT_LENGTH, 237
CAST, 238
CHAR, 238
character sets and collation, 235
CHARACTER_LENGTH, 240
CHARSET, 240
CHAR_LENGTH, 239
COALESCE, 240
COERCIBILITY, 241
COLLATION, 241
COMPRESS, 242
CONCAT, 242
CONCAT_WS, 243
conversions, 235
CONVERT, 244
CRC, 244
ELT, 244
EXPORT_SET, 245

expressions, 236
extraction, 236
FIELD, 245
FIND_IN_SET, 246
formatting, 235
grouped by type, 235
HEX, 246
INSERT, 247
INSTR, 247
INTERVAL, 248
LCASE, 248
LEFT, 249
LENGTH, 249
LOAD_FILE, 250
LOCATE, 250
LOWER, 251
LPAD, 251
LTRIM, 252
MAKE_SET, 252
manipulating strings, 236
MATCH, 252
MID, 253
OCTET_LENGTH, 253
ORD, 253
POSITION, 254
QUOTE, 254
REPEAT, 255
REPLACE, 255
REVERSE, 255
RIGHT, 255
RPAD, 256
RTRIM, 256
SOUNDEX, 256
SPACE, 257
STRCMP, 257
SUBSTR, 258
SUBSTRING, 258
SUBSTRING_INDEX, 258
TRIM, 259
UCASE, 259
UNCOMPRESS, 260
UNCOMPRESSED_LENGTH, 260
UNHEX, 260
UPPER, 261

strings
character set and collation, 270
CONCAT function, 25
data types, 507–510

Index | 541

STR_TO_DATE function, 210
subject, requiring for X.509 certificate, 46
subpartitions, 93

defining with CREATE TABLE, 96
subqueries, 30, 229–234

multiple fields, 231
results set, 233
sales data example, 222
SELECT statement inner query, 229
single field, 230
using with MAX function, 225

SUBSTR function, 258
SUBSTRING function, 258
SUBSTRING_INDEX function, 258
SUM function, 227
Sun Solaris systems, installing MySQL

binary distribution, 10
swap_inner_handle method, 468
system variables, 144, 165
SYSTEM_USER function, 54

T
TABLE option, FLUSH statement, 160
tables

altering with ALTER TABLE, 59–77
creating in a database, 21
deleting with DROP TABLE, 103
displaying a list of tables and views,

112
listing for a database, 23, 495
listing in current database, 423
listing with mysqlshow, 396
renaming, 104
revoking user privileges for, 49
SHOW CREATE TABLE statement,

107
SHOW TABLE STATUS statement,

111
user access privileges, 44

tables function, 469
TABLES option, FLUSH statement, 160
TABLES WITH READ LOCK option,

FLUSH statement, 160
tablespaces

discarding or importing, 69
TABLESPACE subclause of CREATE

TABLE statement, 96
table_info function, 468

take_imp_data method, 469
TAN function, 307
TAR package, MySQL installation on Mac

OS X, 13
tar utility, 8
TEMPORARY flag, DROP TABLE

statement, 103
TEXT data type, 22, 509
TEXT_FIELDS, 32
threads

mysql_thread_end function, 433
mysql_thread_id function, 499
mysql_thread_init function, 434
mysql_thread_safe function, 434

TIME data type, 263, 507
time zones, converting dates and times

between, 265
TIMESTAMP data type, 263, 507
TIMESTAMP function, 291
TIMESTAMPDIFF function, 291
timestamps, changing time for events,

204
TINYBLOB data type, 508
TINYINT data type, 504
TINYTEXT data type, 509
TO clause, GRANT statement, 44
TO keyword (RENAME DATABASE TO),

104
TO_DAYS function, 292
trace method, 469
trace_msg function, 469
transactions

BEGIN statement, 114
COMMIT statement, 115
committing with mysql_commit, 410
distributed, using XA statement, 151
ROLLBACK statement, 134
ROLLBACK TO SAVEPOINT

statement, 135
rolling back with mysql_rollback, 430
setting isolation level, 145
START TRANSACTION statement,

147
statements causing commitment of,

116
statements for, 113

triggers
altering, 206

542 | Index

creating, 212
deleting, 215
displaying on a server, 220
FLUSH statement and, 42
starting and ending steps in, 206
tables renamed and moved to another

database, 104
trimming strings

LTRIM function, 252
RTRIM function, 256
TRIM function, 259

TRUNCATE function, 307
TRUNCATE statement, 116, 147
TYPE clause, 87
TYPE keyword, 80
type_info method, 469
type_info_all function, 470

U
UCASE function, 259
UNCOMPRESS function, 260
UNCOMPRESSED_LENGTH function,

260
UNDO handler, 214
UNHEX function, 260
UNION keyword, using with SELECT

statements, 148
UNION option

ALTER TABLE statement, 77
CREATE TABLE statement, 92

UNIQUE columns, 29
UNIQUE flag, using to prevent index

duplicates, 80
UNIQUE key columns, 84
Universal Time, Coordinated (UTC), 293
Universal Unique Identifier (UUID), 174
Unix operating systems

replication server configuration file,
185

Unix systems
entering SQL statements into MySQL

through the shell, 34
installing binary distributions of

MySQL, 10
installing source distributions of

MySQL, 8
main configuration file for MySQL, 17
server options file, 321

Unix time, 276
UNIX_TIMESTAMP function, 292
UNLOCK TABLES statement, 163, 172
UNTIL clause, START SLAVE statement,

190
UPDATE statements, 29, 149

JOIN clause, 125
MAX_UPDATES_PER_HOUR

option, 46
multiple table updates, 150
priority over SELECT statements, 137
SET clause, 149
trigger execution and, 212

upper case (UCASE) function, 259
UPPER function, 261
USAGE keyword, 47
USE INDEX clause, using with JOIN,

127
USE statement, 151
user accounts

changing password, 49
creating, 40
creating and setting privileges, 4
deleting from MySQL server, 41
dropped tables and user privileges,

103
flushing and reloading privileges, 42
functions for maintenance of, 50–55
granting user privileges, 44
listing available privileges, 50
mysql group and system accounts, 8
replication account, 183
revoking privileges, 49
setting up a user for general use, 18
statements for maintenance of, 40–50

USER function, 55
user variables, 165
user-defined functions, 208

changing, 210
deleting, 215
displaying information on, 219

user-defined variables, 31
username, 40

changing, 48
specifying in CREATE SERVER

statement, 83
USER_RESOURCES option, FLUSH

statement, 161

Index | 543

USE_FRM option, REPAIR TABLE
statement, 164

USING keyword
DELETE statement, 117
specifying index type, 80
using with JOIN, 126

USING subclause, 62
UTC_DATE function, 293
UTC_TIME function, 293
UTC_TIMESTAMP function, 293
utilities (see command-line utilities)
UUID function, 174

V
VALUES keyword

CREATE TABLE subclause, 96
using with REPLACE statement, 133

VARBINARY data type, 508
VARCHAR data type, 508
variables

displaying system variables for MySQL
server, 171

server and environment variables, 517
setting, 165
setting for global or session use, 144
setting for slave server, 197
user-defined, 31

VARIANCE function, 228
VAR_POP function, 228
VAR_SAMP function, 228
VERSION function, 174
vertical bar (|), changing statement

delimiter to, 211
views

creating, 97
deleting, 104
displaying a list for the current

database, 112
displaying list of, using SHOW

TABLES, 112
SHOW CREATE VIEW statement,

108
SHOW TABLE STATUS used with,

171

W
warning messages, 146, 435

web page for this book, xv
web sites for MySQL information, 6
WEEK function, 294

modes, 295
WEEKDAY function, 295
WEEKOFYEAR function, 296
WHERE clause

DELETE statement, 116
HANDLER…READ statement, 121
MATCH function, 252
ORDER BY clause and, 26
SELECT statement, 24
SHOW COLUMNS statement, 106
SHOW DATABASES statement, 108
SHOW EVENTS statement, 218
SHOW OPEN TABLES statement,

167
SHOW PROCEDURE STATUS

statement, 219
SHOW STATUS statement, 168
SHOW TABLE STATUS statement,

170
SHOW TABLES statement, 112
SHOW VARIABLES statement, 171
single field subquery used with =

operator, 230
UPDATE statement, 150

multiple table updates, 150
using with SELECT statements, 137
using with UPDATE statement, 29

WHERE EXISTS clause, 233
Widenius, Michael (Monty), 3
wildcards

asterisk (*), 44
using with SELECT statements,

137
percent sign (%), 31
percent sign (%) and _, using with

DESCRIBE statement, 99
using with LIKE clause of SHOW

CHARACTER SET, 105
Windows Essential package, 15
Windows systems

installing MySQL, 15
main configuration file for MySQL, 17
replication server configuration file,

185
server options file, 321

544 | Index

WITH CHECK OPTION clause, 98
WITH CONSISTENT SNAPSHOT

clause, 147
WITH GRANT OPTION clause, 44
WITH PARSER clause

ALTER TABLE statement, 62
CREATE TABLE statement, 87

WITH ROLLUP keyword, GROUP BY
clause of SELECT, 140

WORK keyword
COMMIT statement, 115
ROLLBACK statement, 134

WRITE lock, 162

X
X.509 certificates, 45
XA statement, 151
XOR, bitwise exclusive OR, 223

Y
YEAR data type, 263, 507
YEAR function, 296
YEARWEEK function, 296

Index | 545

About the Author
Russell J.T. Dyer, a freelance writer specializing in MySQL database software, is
the editor of the MySQL Knowledge Base (http://www.mysql.com/network/knowl
edgebase.html). He is the author of the first edition of MySQL in a Nutshell (http://
www.oreilly.com/catalog/mysqlian/) and has writen articles for many publications:
DevZone (a MySQL publication), Linux Journal, ONlamp.com, The Perl Journal,
Red Hat Magazine, Sys Admin magazine, TechRepublic, Unix Review, and
XML.com. He has also finished his first novel, In Search of Kafka. More information
on Russell, along with a list of his published articles and links to them, can be found
on his web site at http://russell.dyerhouse.com.

Colophon
The animal on the cover of MySQL in a Nutshell, Second Edition, is the pied king-
fisher (Ceryle rudis). At 80 grams and 28 centimeters in length, the pied kingfisher
is the largest bird in the world capable of a true hover in still air. Like most king-
fishers, it hunts small fish from a perch or by hovering over open water. But unlike
others, the pied kingfisher often travels up to three miles from land. While the closely
related giant kingfisher relies heavily on shoreline perching places, the pied king-
fisher can hover above choppy water and swallow its prey on the fly. For this adaptive
skill, the pied kingfisher is considered the most advanced of the 87 kingfisher species.

Pied kingfishers are common and widespread across much of Africa, the Middle
East, and Southeast Asia, and are easily distinguishable from other kingfishers by
their unique black and white markings. Never far from water, pied kingfishers breed
in burrows excavated into riverbanks. These birds form family groups, with the
previous season’s offspring often helping to raise their parents’ next brood. Addi-
tional male helpers may also contribute food depending on their availability. If food
is scarce, the breeding male feeds its mate, while helpers feed both parents and chicks
after hatching. Helpers may thus increase their chances of mating with a nesting
female the following year.

Although kingfishers are known for their fishing skills, many kingfishers don’t eat
fish at all; among those that do, less than half of all dives are successful. Kingfishers
are apparently blind under water, so their survival depends on perfect aim from
above. They are able to judge both the size and depth of fish swimming below—the
two greatest factors in determining a likely and rewarding catch. The instant a king-
fisher hits water, opaque, protective third eyelids called nicitating membranes cover
the eyes. More than a few hungry kingfishers have been seen emerging with stones
in their bills. Still, among piscivorous birds, the kingfisher has earned its name justly.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s
TheSansMonoCondensed.

http://www.mysql.com/network/knowledgebase.html
http://www.mysql.com/network/knowledgebase.html
http://www.oreilly.com/catalog/mysqlian/
http://www.oreilly.com/catalog/mysqlian/
http://russell.dyerhouse.com

	Table of Contents
	Preface
	The Purpose of This Book
	How This Book Is Organized
	Part I, Introduction and Tutorials
	Part II, SQL Statements and Functions
	Part III, MySQL Server and Client Tools
	Part IV, MySQL API
	Appendixes

	Conventions Used in This Book
	Using Code Examples
	Request for Comments
	Safari® Enabled
	Acknowledgments

	Part I. Introduction and Tutorials
	Chapter 1. Introduction to MySQL
	The Value of MySQL
	The MySQL Package
	Licensing
	Mailing Lists
	Books and Other Publications

	Chapter 2. Installing MySQL
	Choosing a Distribution
	Unix Source Distributions
	Unix Binary Distributions
	Linux RPM Distributions
	Macintosh OS X Distributions
	Novell NetWare Distributions
	Windows Distributions
	Postinstallation

	Chapter 3. MySQL Basics
	The mysql Client
	Creating a Database and Tables
	Show Me
	Inserting Data
	Selecting Data
	Ordering, Limiting, and Grouping
	Analyzing and Manipulating Data
	Changing Data
	Deleting Data
	Searching Data
	Importing Data in Bulk
	Command-Line Interface
	Conclusion

	Part II. SQL Statements and Functions
	Chapter 4. Security
 and User Statements and
 Functions
	Statements and Functions
	SQL Statements in Alphabetical Order
	CREATE USER
	DROP USER
	FLUSH
	GRANT
	GRANT: Type of connection restrictions
	GRANT: Time and number of connection limits

	RENAME USER
	RESET
	REVOKE
	SET PASSWORD
	SHOW GRANTS
	SHOW PRIVILEGES

	Functions in Alphabetical Order
	AES_DECRYPT()
	AES_ENCRYPT()
	CURRENT_USER()
	DECODE()
	DES_DECRYPT()
	DES_ENCRYPT()
	ENCODE()
	ENCRYPT()
	MD5()
	OLD_PASSWORD()
	PASSWORD()
	SESSION_USER()
	SHA()
	SHA1()
	SYSTEM_USER()
	USER()

	Chapter 5. Database and
 Table Schema Statements
	Statements and Clauses in Alphabetical Order
	ALTER DATABASE
	ALTER SCHEMA
	ALTER SERVER
	ALTER TABLE
	ALTER TABLE: ADD clauses for columns
	ALTER TABLE: ADD clause for standard indexes
	ALTER TABLE: ADD clause for FULLTEXT indexes
	ALTER TABLE: ADD clause for SPATIAL indexes
	ALTER TABLE: ADD clauses for foreign keys
	ALTER TABLE: CHANGE clauses
	ALTER TABLE: DROP column clause
	ALTER TABLE: DROP index clauses
	ALTER TABLE: Miscellaneous clauses
	Converting and setting character sets
	Disabling and enabling keys
	Discarding or importing tablespace
	Reordering rows
	Renaming a table

	ALTER TABLE: Partition altering clauses
	ALTER TABLE: Partition administration clauses
	ALTER TABLE: Table options

	ALTER VIEW
	CREATE DATABASE
	CREATE INDEX
	Creating UNIQUE indexes
	Creating FULLTEXT indexes
	Creating SPATIAL indexes

	CREATE SCHEMA
	CREATE SERVER
	CREATE TABLE
	CREATE TABLE: Column flags
	CREATE TABLE: Index and key definitions
	CREATE TABLE: Foreign key references
	CREATE TABLE: Table options
	CREATE TABLE: Partitioning
	CREATE TABLE: Partition definitions
	CREATE TABLE: Subpartition definitions
	CREATE TABLE: Based on an existing table

	CREATE VIEW
	DESCRIBE
	DROP DATABASE
	DROP INDEX
	DROP SERVER
	DROP TABLE
	DROP VIEW
	RENAME DATABASE
	RENAME TABLE
	SHOW CHARACTER SET
	SHOW COLLATION
	SHOW COLUMNS
	SHOW CREATE DATABASE
	SHOW CREATE TABLE
	SHOW CREATE VIEW
	SHOW DATABASES
	SHOW INDEXES
	SHOW SCHEMAS
	SHOW TABLE STATUS
	SHOW TABLES
	SHOW VIEWS

	Chapter 6. Data Manipulation
 Statements and Functions
	Statements and Functions Grouped by Characteristics
	Data Manipulation Statements
	Transaction Statements
	Related Functions

	Statements and Clauses in Alphabetical Order
	BEGIN
	COMMIT
	DELETE
	DO
	EXPLAIN
	HANDLER
	HELP
	INSERT
	Single-row insertion with the SET clause
	Multiple-row insertions
	Inserting rows based on a SELECT

	JOIN
	Index hints

	LIMIT
	LOAD DATA INFILE
	RELEASE SAVEPOINT
	REPLACE
	ROLLBACK
	ROLLBACK TO SAVEPOINT
	SAVEPOINT
	SELECT
	SELECT statement keywords
	Exporting SELECT results
	Grouping SELECT results
	Having SELECT results
	Ordering SELECT results
	Limiting SELECT results
	Other SELECT clauses and options

	SET
	SET TRANSACTION
	SHOW ERRORS
	SHOW WARNINGS
	START TRANSACTION
	TRUNCATE
	UNION
	UPDATE
	Single table UPDATE
	Multiple table UPDATE

	USE
	XA

	Functions in Alphabetical Order
	ANALYSE()
	BENCHMARK()
	DATABASE()
	FOUND_ROWS()
	LAST_INSERT_ID()
	ROW_COUNT()
	SCHEMA()

	Chapter 7. Table
 and Server Administration Statements and Functions
	Statements and Clauses in Alphabetical Order
	ALTER SERVER
	ANALYZE TABLE
	BACKUP TABLE
	CACHE INDEX
	CHECK TABLE
	CHECKSUM TABLE
	CREATE SERVER
	FLUSH
	KILL
	LOAD INDEX INTO CACHE
	LOCK TABLES
	OPTIMIZE TABLE
	REPAIR TABLE
	RESET
	RESTORE TABLE
	SET
	SHOW ENGINE
	SHOW ENGINES
	SHOW OPEN TABLES
	SHOW PLUGINS
	SHOW PROCESSLIST
	SHOW STATUS
	SHOW TABLE STATUS
	SHOW VARIABLES
	UNLOCK TABLES

	Functions in Alphabetical Order
	CONNECTION_ID()
	GET_LOCK()
	IS_FREE_LOCK()
	IS_USED_LOCK()
	RELEASE_LOCK()
	UUID()
	VERSION()

	Chapter 8. Replication Statements
 and Functions
	Merits of Replication
	Replication Process
	The Replication User Account
	Configuring the Servers
	Copying Databases and Starting Replication
	Using mysqldump
	Alternative Methods for Making Copies

	Starting Replication
	Backups with Replication
	SQL Statements and Functions in Alphabetical Order
	CHANGE MASTER TO
	LOAD DATA FROM MASTER
	LOAD TABLE...FROM MASTER
	MASTER_POS_WAIT()
	PURGE MASTER LOGS
	RESET MASTER
	RESET SLAVE
	SET GLOBAL SQL_SLAVE_SKIP_COUNTER
	SET SQL_LOG_BIN
	SHOW BINLOG EVENTS
	SHOW BINARY LOGS
	SHOW MASTER LOGS
	SHOW MASTER STATUS
	SHOW SLAVE HOSTS
	SHOW SLAVE STATUS
	START SLAVE
	STOP SLAVE

	Replication States
	Master BinLog Dump Thread States
	Slave I/O Thread States
	Slave SQL Thread States

	Chapter 9. Stored Routines Statements
	Statements in Alphabetical Order
	ALTER EVENT
	ALTER FUNCTION
	ALTER PROCEDURE
	ALTER TRIGGER
	BEGIN...END
	CALL
	CLOSE
	CREATE EVENT
	CREATE FUNCTION
	CREATE PROCEDURE
	CREATE TRIGGER
	DECLARE
	DELIMITER
	DROP EVENT
	DROP FUNCTION
	DROP PREPARE
	DROP PROCEDURE
	DROP TRIGGER
	EXECUTE
	FETCH
	OPEN
	PREPARE
	SHOW CREATE EVENT
	SHOW CREATE FUNCTION
	SHOW CREATE PROCEDURE
	SHOW EVENTS
	SHOW FUNCTION CODE
	SHOW FUNCTION STATUS
	SHOW PROCEDURE CODE
	SHOW PROCEDURE STATUS
	SHOW TRIGGERS

	Chapter 10. Aggregate
 Clauses, Aggregate Functions, and Subqueries
	Aggregate Functions in Alphabetical Order
	AVG()
	BIT_AND()
	BIT_OR()
	BIT_XOR()
	COUNT()
	GROUP_CONCAT()
	MAX()
	MIN()
	STD()
	STDDEV()
	STDDEV_POP()
	STDDEV_SAMP()
	SUM()
	VAR_POP()
	VAR_SAMP()
	VARIANCE()

	Subqueries
	Single Field Subqueries
	Multiple Fields Subqueries
	Results Set Subqueries

	Chapter 11. String Functions
	String Functions Grouped by Type
	Character Sets and Collation
	Converting
	Formatting
	Expressions
	Extracting
	Manipulating

	String Functions in Alphabetical Order
	ASCII()
	BIN()
	BINARY
	BIT_LENGTH()
	CAST()
	CHAR()
	CHAR_LENGTH()
	CHARACTER_LENGTH()
	CHARSET()
	COALESCE()
	COERCIBILITY()
	COLLATION()
	COMPRESS()
	CONCAT()
	CONCAT_WS()
	CONVERT()
	CRC32()
	ELT()
	EXPORT_SET()
	FIELD()
	FIND_IN_SET()
	HEX()
	INSERT()
	INSTR()
	INTERVAL()
	LCASE()
	LEFT()
	LENGTH()
	LOAD_FILE()
	LOCATE()
	LOWER()
	LPAD()
	LTRIM()
	MAKE_SET()
	MATCH()
	MID()
	OCTET_LENGTH()
	ORD()
	POSITION()
	QUOTE()
	REPEAT()
	REPLACE()
	REVERSE()
	RIGHT()
	RPAD()
	RTRIM()
	SOUNDEX()
	SPACE()
	STRCMP()
	SUBSTR()
	SUBSTRING()
	SUBSTRING_INDEX()
	TRIM()
	UCASE()
	UNCOMPRESS()
	UNCOMPRESSED_LENGTH()
	UNHEX()
	UPPER()

	Chapter 12. Date and Time Functions
	Date and Time Functions Grouped by Type
	Determining the Date or Time
	Extracting and Formatting the Date or Time
	Calculating and Modifying the Date or Time

	Date and Time Functions in Alphabetical Order
	ADDDATE()
	ADDTIME()
	CONVERT_TZ()
	CURDATE()
	CURRENT_DATE()
	CURRENT_TIME()
	CURRENT_TIMESTAMP()
	CURTIME()
	DATE()
	DATE_ADD()
	DATE_FORMAT()
	DATE_SUB()
	DATEDIFF()
	DAY()
	DAYNAME()
	DAYOFMONTH()
	DAYOFWEEK()
	DAYOFYEAR()
	EXTRACT()
	FROM_DAYS()
	FROM_UNIXTIME()
	GET_FORMAT()
	HOUR()
	LAST_DAY()
	LOCALTIME()
	LOCALTIMESTAMP()
	MAKEDATE()
	MAKETIME()
	MICROSECOND()
	MINUTE()
	MONTH()
	MONTHNAME()
	NOW()
	PERIOD_ADD()
	PERIOD_DIFF()
	QUARTER()
	SEC_TO_TIME()
	SECOND()
	SLEEP()
	STR_TO_DATE()
	SUBDATE()
	SUBTIME()
	SYSDATE()
	TIME()
	TIME_FORMAT()
	TIME_TO_SEC()
	TIMEDIFF()
	TIMESTAMP()
	TIMESTAMPADD()
	TIMESTAMPDIFF()
	TO_DAYS()
	UNIX_TIMESTAMP()
	UTC_DATE()
	UTC_TIME()
	UTC_TIMESTAMP()
	WEEK()
	WEEKDAY()
	WEEKOFYEAR()
	YEAR()
	YEARWEEK()

	Chapter 13. Mathematical Functions
	Functions in Alphabetical Order
	ABS()
	ACOS()
	ASIN()
	ATAN()
	ATAN2()
	BIT_COUNT()
	CEIL()
	CEILING()
	CONV()
	COS()
	COT()
	DEGREES()
	EXP()
	FLOOR()
	FORMAT()
	GREATEST()
	INET_ATON()
	INET_NTOA()
	LEAST()
	LN()
	LOG()
	LOG2()
	LOG10()
	MOD()
	OCT()
	PI()
	POW()
	POWER()
	RADIANS()
	RAND()
	ROUND()
	SIGN()
	SIN()
	SQRT()
	TAN()
	TRUNCATE()

	Chapter 14. Flow Control Functions
	Functions in Alphabetical Order
	CASE
	IF()
	IFNULL()
	ISNULL()
	NULLIF()

	Part III. MySQL Server and Client Tools
	Chapter 15. MySQL Server and Client
	mysql Client
	mysql

	mysqld Server
	mysqld
	Location
	Security and connections
	Global
	Logs
	Performance optimization
	Replication
	Storage engine specific options
	MyISAM
	InnoDB
	Other storage engine options

	mysqld_multi
	mysqld_multi

	mysqld_safe
	mysqld_safe

	Chapter 16. Command-Line Utilities
	comp_err
	make_binary_distribution
	msql2mysql
	my_print_defaults
	myisam_ftdump
	myisamchk
	myisamchk check options
	myisamchk repair options
	Other myisamchk options
	Global myisamchk options

	myisamlog
	myisampack
	mysql_convert_table_format
	mysql_convert_table_format options

	mysql_find_rows
	mysql_find_rows options

	mysql_fix_extensions
	mysql_fix_privilege_tables
	mysql_setpermission
	mysql_setpermission options

	mysql_tableinfo
	mysql_tableinfo options

	mysql_upgrade
	mysql_upgrade options

	mysql_waitpid
	mysql_zap
	mysql_zap options

	mysqlaccess
	mysqladmin
	mysqladmin commands

	mysqlbinlog
	mysqlbug
	mysqlcheck
	mysqldump
	mysqldump options
	mysqldump --debug options

	mysqldumpslow
	mysqldumpslow options

	mysqlhotcopy
	mysqlhotcopy options

	mysqlimport
	mysqlimport options

	mysqlshow
	mysqlshow options

	mysqlslap
	mysqlslap options

	perror
	replace
	resolveip
	resolve_stack_dump

	Part IV. APIs and Connectors
	Chapter 17. C API
	Using C with MySQL
	Connecting to MySQL
	Querying MySQL

	Functions in Alphabetical Order
	mysql_affected_rows()
	mysql_autocommit()
	mysql_change_user()
	mysql_character_set_name()
	mysql_close()
	mysql_commit()
	mysql_connect()
	mysql_create_db()
	mysql_data_seek()
	mysql_debug()
	mysql_drop_db()
	mysql_dump_debug_info()
	mysql_eof()
	mysql_errno()
	mysql_error()
	mysql_escape_string()
	mysql_fetch_field()
	mysql_fetch_field_direct()
	mysql_fetch_fields()
	mysql_fetch_lengths()
	mysql_fetch_row()
	mysql_field_count()
	mysql_field_seek()
	mysql_field_tell()
	mysql_free_result()
	mysql_get_client_info()
	mysql_get_character_set_info()
	mysql_get_client_version()
	mysql_get_host_info()
	mysql_get_proto_info()
	mysql_get_server_info()
	mysql_get_server_version()
	mysql_get_ssl_cipher()
	mysql_hex_string()
	mysql_info()
	mysql_init()
	mysql_insert_id()
	mysql_kill()
	mysql_library_end()
	mysql_library_init()
	mysql_list_dbs()
	mysql_list_fields()
	mysql_list_processes()
	mysql_list_tables()
	mysql_more_results()
	mysql_next_result()
	mysql_num_fields()
	mysql_num_rows()
	mysql_options()
	mysql_ping()
	mysql_query()
	mysql_real_connect()
	mysql_real_escape_string()
	mysql_real_query()
	mysql_reload()
	mysql_refresh()
	mysql_rollback()
	mysql_row_seek()
	mysql_row_tell()
	mysql_select_db()
	mysql_set_character_set()
	mysql_set_local_infile_default()
	mysql_set_local_infile_handler()
	mysql_set_server_option()
	mysql_shutdown()
	mysql_sqlstate()
	mysql_ssl_set()
	mysql_stat()
	mysql_store_result()
	mysql_thread_end()
	mysql_thread_id()
	mysql_thread_init()
	mysql_thread_safe()
	mysql_use_result()
	mysql_warning_count()

	C API Datatypes

	Chapter 18. Perl API
	Using Perl DBI with MySQL
	Connecting to MySQL
	Executing an SQL Statement
	Capturing Data
	Disconnecting from MySQL
	Temporarily Storing Results

	Perl DBI Reference
	available_drivers()
	begin_work()
	bind_col()
	bind_columns()
	bind_param()
	bind_param_array()
	bind_param_inout()
	can()
	clone()
	column_info()
	commit()
	connect()
	connect_cached()
	data_diff()
	data_sources()
	data_string_desc()
	data_string_diff()
	disconnect()
	do()
	dump_results()
	err()
	errstr()
	execute()
	execute_array()
	execute_for_fetch()
	fetch()
	fetchall_arrayref()
	fetchall_hashref()
	fetchrow_array()
	fetchrow_arrayref()
	fetchrow_hashref()
	finish()
	foreign_key_info()
	func()
	get_info()
	installed_drivers()
	installed_versions()
	last_insert_id()
	looks_like_number()
	neat()
	neat_list()
	parse_dsn()
	parse_trace_flag()
	parse_trace_flags()
	ping()
	prepare()
	prepare_cached()
	primary_key()
	primary_key_info()
	private_attribute_info()
	quote()
	quote_identifier()
	rollback()
	rows()
	selectall_arrayref()
	selectall_hashref()
	selectcol_arrayref()
	selectrow_array()
	selectrow_arrayref()
	selectrow_hashref()
	set_err()
	state()
	statistics_info()
	swap_inner_handle()
	table_info()
	tables()
	take_imp_data()
	trace()
	trace_msg()
	type_info()
	type_info_all()

	Attributes for Handles
	Attributes for All Handles
	Attributes Only for Database Handles
	Attributes Only for Statement Handles
	DBI Dynamic Attributes

	Chapter 19. PHP API
	Using PHP with MySQL
	Connecting to MySQL
	Querying MySQL

	PHP MySQL Functions in Alphabetical Order
	mysql_affected_rows()
	mysql_change_user()
	mysql_client_encoding()
	mysql_close()
	mysql_connect()
	mysql_create_db()
	mysql_data_seek()
	mysql_db_name()
	mysql_db_query()
	mysql_drop_db()
	mysql_errno()
	mysql_error()
	mysql_escape_string()
	mysql_fetch_array()
	mysql_fetch_assoc()
	mysql_fetch_field()
	mysql_fetch_lengths()
	mysql_fetch_object()
	mysql_fetch_row()
	mysql_field_flags()
	mysql_field_len()
	mysql_field_name()
	mysql_field_seek()
	mysql_field_table()
	mysql_field_type()
	mysql_free_result()
	mysql_get_client_info()
	mysql_get_host_info()
	mysql_get_proto_info()
	mysql_get_server_info()
	mysql_info()
	mysql_insert_id()
	mysql_list_dbs()
	mysql_list_fields()
	mysql_list_processes()
	mysql_list_tables()
	mysql_num_fields()
	mysql_num_rows()
	mysql_pconnect()
	mysql_ping()
	mysql_query()
	mysql_real_escape_string()
	mysql_result()
	mysql_select_db()
	mysql_set_charset()
	mysql_stat()
	mysql_tablename()
	mysql_thread_id()
	mysql_unbuffered_query()

	Part V. Appendixes
	Appendix A. Data Types
	Numeric Data Types
	BIT
	TINYINT
	BOOL, BOOLEAN
	SMALLINT
	MEDIUMINT
	INT, INTEGER
	BIGINT, SERIAL
	FLOAT
	DOUBLE, DOUBLE PRECISION
	DEC, DECIMAL, FIXED, NUMERIC

	Date and Time Data Types
	String Data Types
	CHAR
	VARCHAR
	BINARY
	VARBINARY
	TINYBLOB
	TINYTEXT
	BLOB
	TEXT
	MEDIUMBLOB
	MEDIUMTEXT
	LONGBLOB
	LONGTEXT
	ENUM
	SET

	Appendix B. Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Regular Expressions

	Appendix C. Server and Environment Variables

	Index

